На правах рукописи

САХАРОВ Михаил Константинович

НЕЙТРОННАЯ СПЕКТРОСКОПИЯ И СТРУКТУРНЫЙ АНАЛИЗ ГИДРИДОВ ХРОМА И АЛЮМИНИЯ

Специальность 01.04.07-Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

ЧЕРНОГОЛОВКА 2008

Работа выполнена в Институте физики твердого тела Российской академии наук.

Научный руководитель:	кандидат физико-математических наук, Хасанов Салават Салимьянович
Официальные оппоненты:	доктор физико-математических наук, профессор Понятовский Евгений Генрихович
	доктор физико-математических наук, профессор Никитин Сергей Александрович
Ведущая организация:	Институт проблем химической физики Российской академии наук

Защита состоится « » мая 2008 г. в 10:00 на заседании диссертационного совета Д 002.100.01 при Институте физики твердого тела Российской академии наук по адресу: 142432, г. Черноголовка Московская обл., ул. Институтская, 2, ИФТТ РАН.

С диссертацией можно ознакомиться в библиотеке ИФТТ РАН.

Автореферат разослан « » апреля 2008 г.

Ученый секретарь диссертационного совета доктор физико-математических наук

В.Н. Зверев

© М.К. Сахаров, 2008 © ИФТТ РАН, 2008

ОБЩАЯ ХАРАКТЕРИСТИКА ДИССЕРТАЦИИ

Актуальность темы. Большой и устойчивый интерес к исследованию гидридов металлов в последние десятилетия обусловлен, прежде всего, расширением области применения гидридов в технике и, в особенности, перспективами их использования. В той или иной степени изучение поведения водорода в металлах связано с основными направлениями решения энергетической проблемы: ядерной, термоядерной и водородной энергетикой. Создание термостабильных замедлителей для ядерных реакторов, проблемы диффузии изотопов водорода через первую стенку термоядерных аппаратов, эффективное извлечение, хранение и транспортировка водорода, водородное охрупчивание – все эти и сопутствующие задачи делают необходимым углубление понимания металл-водородных систем.

Диссертационная работа посвящена изучению ГЦК и ГПУ гидридов хрома и наиболее плотной и термически устойчивой α модификации гидрида алюминия, исследование которых методами нейтронной физики представлялось наиболее актуальным и эффективным.

Исследование гидрида AlH₃ было интересно как с научной, так и с практической точки зрения. Гидрид метастабильно устойчив при нормальных условиях, нетоксичен и при этом содержит примерно вдвое больше атомов водорода на единицу объема, чем жидкий водород, и примерно в пять раз больший процент водорода по массе, чем используемое в аккумуляторах водорода соединение FeTiH₂. В связи с этим, AlH₃ является одним из самых перспективных материалов для хранения и транспортировки водорода, и его всестороннее экспериментальное и теоретическое изучение интенсивно ведется практически во всех промышленно развитых странах. Главным сдерживающим фактором для широкого применения гидрида алюминия в энергетике сейчас является отсутствие информации, как обратимо переводить AlH₃ в Al+H₂ и обратно и при каких условиях это возможно. Первоочередная задача в этом вопросе – определение *T-P* области термодинамической устойчивости AlH₃ в атмосфере водорода. Решить эту задачу традиционными методами было нельзя, поскольку при атмосферном давлении гидрид необратимо распадается при нагреве выше 150°С, и его термодинамические свойства невозможно экстраполировать на более высокие температуры из-за существенно недебаевского поведения. При высоких же температурах, равновесие $Al + (3/2)H_2 = AlH_3$ наступает лишь в пока слабо освоенном диапазоне давлений водорода в десятки килобар.

Задача была решена в диссертационной работе путем изучения колебательного спектра AlH_3 методом неупругого рассеяния нейтронов (HPH), построения плотности фононных состояний, расчета с ее помощью термодинамических свойств AlH_3 при атмосферном давлении и линии равновесия $Al + (3/2)H_2 = AlH_3$ при высоких давлениях а, затем, экспериментальной проверки результатов этого расчета с использованием оригинальной аппаратуры для сжатия водорода, разработанной в ИФТТ РАН. Каждый из этапов исследования являлся самостоятельной научной задачей ввиду существенного отличия структуры и свойств гидрида алюминия от наблюдавшихся ранее у других гидридов. Для обеспечения надежности и самосогласованности результатов были также исследованы колебательный спектр и термодинамические свойства дейтерида AlD_3 .

Проведенное в диссертационной работе исследование гидрида СгН с ГЦК (γ) решеткой металла и, для сравнения, гидрида СгН с ГПУ (є) решеткой представляло научный интерес, главным образом, обусловленный тем, что хром замыкает слева ряд 3*d*-металлов (Сг, Мп, Fe, Co, Ni), обладающих магнитным порядком и образующих моногидриды на базе плотноупакованных решеток металла. Кристаллическая структура [1], магнитные свойства [2] и динамика решетки [3] всех этих гидридов за исключением ГЦК гидрида хрома были изучены ранее. ГЦК гидрид хрома почти не изучался из-за сложности синтеза образцов.

Изучение ГЦК и ГПУ гидридов хрома методом нейтронной дифракции показало отсутствие магнитного упорядочения вплоть до гелиевых температур. Благодаря тому, что магнитные свойства гидридов 3*d*-металлов подчиняются модели жесткой *d*-зоны [2], это позволило завершить построение кривых Полинга-Слэтера для ГЦК и ГПУ сплавов 3*d*-металлов во всем интервале существования ферро- и антиферромагнитного упорядочения. Работа по построению кривых Полинга-Слэтера началась в конце тридцатых годов прошлого века (см. [4]), но закончить ее удалось только сейчас путем изучения гидридов, поскольку в широких интервалах электронных концентраций невозможно было получить сплавы без водорода с достаточно просто и однозначно интерпретируемыми магнитными свойствами.

Динамика решетки ГЦК и ГПУ гидридов хрома была исследована методом НРН. Этим завершено исследование колебательных спектров моногидридов переходных октаэдрической металлов с координацией водорода. Показано, что энергия фундаментального пика оптических колебаний водорода в моногидридах определяется взаимодействием между ближайшими атомами водорода и металла, является монотонной функцией расстояния *R* между ними и резко возрастает с увеличением *R*. Определяющая роль взаимодействия Н с ближайшими атомами металла была установлена благодаря возможности сравнить НРН спектры для двух гидридов хрома, ГЦК и ГПУ, с одинаковым химическим составом и близкими значениями R, но сильно различающимся расположением атомов во второй и более отдалённых координационных сферах.

Вышесказанное объясняет **выбор объектов и методов исследования**. Актуальность темы диссертационной работы вытекает из научной и практической значимости решавшихся задач.

Цель работы состояла в экспериментальном исследовании кристаллической и магнитной структуры гидридов ү-CrH и є-CrH; изучении динамики решетки гидридов дейтерида хрома И α молификации гидрида И алюминия: определении термодинамических свойств гидрида и дейтерида алюминия при атмосферном давлении в возможно большем интервале температур; расчете Т-Р области термодинамической большем устойчивости α -AlH₃ В возможно интервале давлений водорода; экспериментальной проверке рассчитанной *T-P* диаграммы системы Al-H и в определении минимальных давлении и температуры прямого синтеза α-AlH₃ из элементов.

В соответствии с поставленной целью, работа была разбита на следующие основные задачи:

- 1. Определение кристаллической и магнитной структуры гидридов γ-CrH и ε-CrH методом нейтронной дифракции.
- 2. Исследование динамики решетки обоих гидридов хрома методом неупругого рассеяния нейтронов (НРН).
- 3. Исследование гидрида α-AlH₃ и дейтерида α-AlD₃ методом HPH и построение спектров *g*(*ω*) плотности фононных состояний.
- 4. Расчёт исходя из $g(\omega)$ температурных зависимостей теплоёмкости C_V при постоянном объеме для α -AlH₃ и α -AlD₃ и экспериментальная проверка точности рассчитанных зависимостей при температурах от 6 до 320 К.
- 5. Измерение температурных зависимостей объема AlH₃ и AlD₃ при 80 < T < 370 К методом рентгеновской дифракции и расчёт с их помощью разности $\Delta C = C_P C_V$ при температурах до 1000 К.
- 6. Расчёт из полученной таким образом зависимости теплоемкости при постоянном давлении $C_P(T) = C_V(T) + \Delta C(T)$ линии термодинамического равновесия AlH₃ = Al + (3/2)H₂ при давлениях до 90 кбар и температурах до 1000 К.
- 7. Экспериментальное определение условий образования и распада α-AlH₃ при давлениях водорода до 90 кбар и температурах до 1000 К.

Эксперименты при высоком давлении водорода и измерения теплоемкости выполнялись в ИФТТ РАН. Нейтронные измерения проводились в Объединенном институте ядерных исследований (Дубна, Россия), Институте Лауэ-Ланжевена (Гренобль, Франция) и Аргоннской национальной лаборатории (Аргонн, США).

<u>Научная новизна основных результатов и положений</u>, выносимых на защиту, сводится к следующему:

- 1. Установлено, что атомы водорода занимают октаэдрические позиции в ГЦК подрешётке металла у гидрида γ-CrH. Этим завершено изучение координации водорода в гидридах 3*d*-металлов с плотноупакованными структурами.
- Установлено, что γ и ε гидриды хрома являются парамагнетиками до гелиевых температур. Это позволило завершить построение кривых Полинга-Слэтера для ГЦК и ГПУ сплавов 3*d*-металлов во всем интервале существования ферро- и антиферромагнитного упорядочения.
- 3. Исследован НРН спектр γ-CrH. Его сравнение со спектром ε-CrH показало, что энергия фундаментального пика оптических колебаний водорода в моногидридах 3*d*-металлов определяется взаимодействием между ближайшими атомами водорода и металла.
- 4. Измерены HPH спектры α-AlH₃ и α-AlD₃. Обнаружена и исследована высокоэнергетическая область растягивающих оптических колебаний, предсказанная теоретически. Построены спектры плотности фононных состояний *g*(*ω*) для α-AlH₃ и α-AlD₃.
- 5. Из $g(\omega)$ для α -AlH₃ и α -AlD₃ рассчитаны зависимости теплоемкости $C_V(T)$.
- 6. Измерены температурные зависимости параметров кристаллической решетки и объема AlH₃ и AlD₃ при 80 < *T* < 370 K.
- 7. Рассчитаны зависимости теплоемкости $C_P(T)$ для AlH₃ и AlD₃ до 1000 К.
- 8. Из зависимости $C_P(T)$ для AlH₃ рассчитаны его стандартная энергия Гиббса и линия термодинамического равновесия AlH₃ = Al + (3/2)H₂ при давлениях водорода до 90 кбар.
- 9. Экспериментально определены условия образования и разложения AlH₃ при давлениях до 90 кбар и температурах до 900 К. Результаты измерений хорошо согласуются с проведённым расчётом.

<u>Научная и практическая ценность.</u> Нейтронографическое исследование гидридов хрома позволило завершить построение кривых Полинга-Слэтера для ГЦК и ГПУ сплавов 3*d*-металлов. В результате, теперь можно предсказывать магнитные свойства ГЦК и ГПУ сплавов любых 3*d*-металлов в любых пропорциях.

Исследование НРН спектров гидридов хрома показало, что энергия фундаментального пика оптических колебаний водорода в моногидридах 3*d*-металлов определяется взаимодействием между ближайшими атомами водорода и металла. Это позволило выявить важную особенность изменения взаимодействия водород-металл в ряду переходных металлов – резкое возрастание энергии колебаний атомов водорода с увеличением расстояния до ближайшего атома металла. Предложено объяснение обнаруженной аномальной зависимости.

Достигнут заметный прогресс в изучении гидрида алюминия – одного из самых перспективных материалов для водородной энергетики. Рассчитана линия равновесия Al + $(3/2)H_2 = AlH_3$ при давлениях до 90 кбар и температурах до 900 К. Эксперимент подтвердил правильность расчета и, следовательно, правильность предсказываемых этим расчетом – и важных для практических приложений – давлений водорода, минимально необходимых для прямого синтеза гидрида при умеренных и пониженных температурах, какие бы катализаторы ни применялись.

Следует отметить также важность проведенных исследований гидрида алюминия в методическом плане. Впервые продемонстрирована возможность количественного определения теплоемкости твердого тела по измеренной плотности фононных состояний. Впервые оценены точность определения разности $C_P - C_V$ и вычислена поправка к C_P на тепловое расширение. Впервые выполнен количественный расчет T-P диаграммы системы металл-водород исходя из термодинамических свойств гидрида при нормальном давлении.

<u>Апробация работы.</u> Результаты работы докладывались и обсуждались на 7 российских и международных научных конференциях:

- 1. «Crystal structure and lattice dynamics of chromium hydrides». *V.E.Antonov, A.I.Beskrovnyj, V.K.Fedotov, S.S.Khasanov, M.K.Sakharov, I.L.Sashin, M.Tkacz.* IV Workshop on Investigations at the IBR-2 Pulsed Reactor, Dubna, Russia, June 15–18, 2005.
- 2. «Lattice dynamics of chromium hydrides». *V.E.Antonov, A.I.Beskrovnyj, V.K.Fedotov, S.S.Khasanov, M.K.Sakharov, I.L.Sashin, M.Tkacz.* Gordon Research Conference on Hydrogen-Metal Systems, Colby College, Waterville, Maine, U.S.A., July 10–15, 2005.
- 3. «Neutron scattering studies of fcc CrH and hcp CrH». *V.E.Antonov, A.I.Beskrovnyj, V.K.Fedotov, S.S.Khasanov, M.K.Sakharov, I.L.Sashin, M.Tkacz.* IX International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials", Sevastopol, Crimea, Ukraine, September 5-11, 2005.
- «Фазовые превращения в системе Al-H при высоких давлениях». М.К. Сахаров. IX Международная конференция молодых ученых "Проблемы физики твердого тела и высоких давлений", г. Сочи, сентябрь 22–30, 2006.
- «T-P diagram of the Al-H system: experiment corroborates calculation». V.E. Antonov, A.I. Kolesnikov, Yu.E. Markushkin, L.I. Sagoyan, M.K. Sakharov. X International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials", Sudak, Crimea, Ukraine, September 22-28, 2007.
- 6. «The diagram of phase transformations and phase equilibria in the Al-H system at pressures up to 90 kbar». *M.K. Sakharov, V.E. Antonov, Yu.E. Markushkin, A.I. Kolesnikov, I. Natkaniec.* Joint 21st AIRAPT and 45th EHPRG Int. Conference, Abstract No. 0135, Catania, Italy, September 17–21, 2007.
- «Т-Р диаграмма системы Al-Н при давлениях до 90 кбар», М.К. Сахаров, В.Е. Антонов, Ю.Е. Маркушкин, А.И. Колесников, И. Натканец. XXIII Международная конференция "Уравнения состояния вещества", п. Эльбрус, Кабардино-Балкарская республика, Россия, март 1–6, 2008

Диссертационная работа выполнена в рамках исследований, проводимых в ИФТТ РАН по теме "Фазовые переходы под давлением" при финансовой поддержке Программы Президиума РАН "Физика и механика сильно сжатого вещества и проблемы внутреннего строения Земли и планет", проекта РФФИ 05-02-17733 и проекта INTAS 05-1000005-7665.

<u>Публикации.</u> По результатам диссертации опубликовано 4 научные работы, в том числе, 3 статьи в реферируемых научных журналах.

<u>Личный вклад автора.</u> Все включенные в диссертацию экспериментальные данные получены, а расчеты произведены лично автором или при его непосредственном участии. Автор принимал участие в обработке, анализе и обсуждении результатов, изложенных в работе, а также в подготовке публикаций в печать.

<u>Структура и объем диссертации.</u> Диссертация состоит из введения, 5 глав, перечня основных результатов и выводов. Диссертация изложена на страницах, содержит список литературы из наименований, рисунков и таблиц.

Во введении обоснована актуальность темы диссертации, сформулированы цели и основные результаты работы, описана её структура.

<u>В первой главе</u> дается краткий обзор теоретических и экспериментальных литературных данных по структуре, динамике решётки, магнитным свойствам и фазовым диаграммам гидридов переходных и простых металлов, описывается состояние и проблемы исследований гидридов хрома и алюминия. Обзор завершается постановкой задачи исследования.

Вторая глава посвящена описанию методики и техники проведения исследований. В первом разделе описан метод изучения кристаллической и магнитной структуры веществ с помощью рентгеновской и нейтронной дифракции. Во втором разделе рассмотрен метод нейтронной спектроскопии и приборы, использованные в этой работе. В третьем разделе описаны химические методы получения гидридов хрома и алюминия. В четвёртом разделе рассмотрен метод прямого синтеза гидридов при высоком давлении водорода. В пятом разделе описан метод анализа содержания водорода в образцах с помощью термической десорбции.

<u>Третья глава</u> посвящена исследованию кристаллической и магнитной структуры и динамики решётки ГЦК (у) и ГПУ (є) гидридов хрома.

<u>В первом разделе</u> приведены результаты нейтронографического исследования кристаллической и магнитной структуры гидридов. Исследуемые в данной работе образцы є-СrH и γ-СrH были получены электрохимическим методом [5], т.к. получить ү модификацию с помощью прямого синтеза при высоком давлении водорода не удалось. Из продуктов нескольких синтезов были отобраны образцы надлежащего качества с наименьшим количеством примесей. Отбор осуществлялся на основе данных рентгенофазового анализа и результатов термического разложения. Для определения позиций атомов водорода, занимаемых в структуре γ-СrH, а также для определения магнитной структуры обоих гидридов отобранные образцы были исследованы с помощью нейтронной дифракции при 8 К на дифрактометре DN-2 в Лаборатории нейтронной физики ОИЯИ в Дубне.

Нейтрон-дифракционные картины образцов ε-CrH и γ-CrH и результаты их профильного анализа показаны на рис. 1 и 2 соответственно. В ГПУ и ГЦК решетках металла у этих гидридов имеется два типа высокосимметричных межузельных позиций, обычно занимаемых атомами водорода при образовании гидридов. Это октаэдрические позиции (число которых равно числу атомов металла) и тетраэдрические позиции (которых в два раза больше, чем атомов металла). По разностным кривым на рис. 1 и 2 можно видеть, что модель с тетраэдрической координацией водорода качественно непригодна для описания экспериментальных спектров. Модель, в которой атомы водорода занимают все октаэдрические позиции, обеспечивает удовлетворительную подгонку профиля экспериментального спектра как для ε-CrH, так и для γ-CrH.

Октаэдрическая координация атомов водорода, установленная для ε-CrH и γ-CrH, характерна для всех гидридов с плотноупакованными металлическими подрешётками, образуемых переходными металлами VI-VIII групп [1], [6].

Пунктирными кривыми, помеченными "магнитный как …" в верхних частях рисунков 1 и 2 показаны рассчитанные профили магнитного вклада, который наблюдался бы в дополнение к структурным линиям, если бы ϵ -CrH и γ -CrH были антиферромагнетиками с такими же магнитными структурами и магнитными моментами как изученные ранее фазы с близкими значениями эффективной концентрации электронов N^{e} , а именно, ϵ -MnD_{0.83} [7] и γ -Mn [8].

Подсчитанный магнитный вклад в дифракцию нейтронов для є-СгН (рис. 1) мал по сравнению с фоном. Магнитный вклад для γ-СгН (рис. 2) значителен, поэтому отсутствие соответствующих дифракционных линий в экспериментальном спектре образца γ-СгН,

свидетельствует об отсутствии магнитного упорядочения при T = 8 K – температуре нейтронографического исследования. Полученные результаты согласуются с предположением [5] о парамагнитном состоянии гидридов ϵ -CrH и γ -CrH при температурах вплоть до 3 K, сделанным на основании результатов ЯМР исследований.

Рис. 1. Порошковая нейтронограмма образца є-СгН, измеренная при 8 К на времяпролетном нейтронном дифрактометре DN-2 в ОИЯИ, Дубна (открытые кружки) и результаты ее профильного анализа (линии).

Рис. 2. Порошковая нейтронограмма образца γ-CrH, измеренная при 8 К на дифрактометре DN-2 в ОИЯИ, Дубна (открытые кружки) и результаты ее профильного анализа (линии). Наряду с γ-CrH, образец содержал 11 мол.% є-CrH и 3 мол.% Cr.

Чтобы обосновать выводы, вытекающие из отсутствия магнитного упорядочения у гидридов хрома, необходимо сделать небольшое отступление.

Магнитные свойства 3*d*-металлов и сплавов с ГЦК и ГПУ структурами хорошо описываются моделью жесткой зоны и могут быть представлены в виде так называемых кривых Полинга-Слэтера как функция эффективной электронной концентрации N^e – среднего числа внешних 3d+4s электронов на атом в сплаве [4]. Магнитные свойства ГШК и ГПУ гидридов этих металлов подчиняются модели жесткой *d*-зоны [2] и изменяются с увеличением концентрации водорода так, как если бы водород был донором дробного числа электронов $\eta \approx 0.5$ на атом водорода в неизменную *d*-зону металла. Это позволило использовать гидриды как модельные объекты для исследования магнитных свойств сплавов 3*d*-металлов и, в частности, построить кривые Полинга-Слэтера в областях электронной концентрации, где получить сплавы без водорода пока не удалось [2]. Построенные кривые приведены на рис. 3. Эти кривые, однако, ранее обрывались при из рис. 3, сплавы $N^e \approx 7$ эл./атом. И. как видно этой концентрации были антиферромагнетиками с точками Нееля порядка сотен К. Отсутствие магнитного упорядочения вплоть до гелиевых температур в ГЦК и ГПУ гидридах хрома с $N^e \approx 6.5$ эл./атом, таким образом, означает резкое падение точек Нееля ГЦК и ГПУ сплавов 3dметаллов в узком интервале изменения N^e от 7 до 6.5 эл./атом (пунктир на рис. 3).

Рис. 3. Кривые Полинга-Слэтера для ГЦК (у) сплавов (эксперимент — тонкие сплошные линии) и ГПУ (є) сплавов (эксперимент — два толстых сплошных отрезка; экстраполяция — пунктирные линии) 3*d*-металлов, являющихся соседями таблице ближайшими В Менделеева. σ_0 спонтанная намагниченность при T = 0 K для ферромагнитных сплавов; T_N – температура Нееля антиферромагнитных сплавов. Символы для гидридов обозначают экспериментальные данные, представленные как функции эффективной концентрации электронов, $N^{e}(x) = N^{e}(0) + \eta x$, где x – отношение числа атомов Н к числу атомов металла и $\eta = 0.5$ электронов на атом H. (1) σ_0 – твёрдые растворы є-CoHx; (2) $\sigma_0 - \varepsilon'$ -FeH с двойной ГПУ решёткой металла; (3) $\sigma_0 Fe_{0.947}Cr_{0.053}H_{0.92}$ с металлической подрешёткой типа 9R; (4) T_N для є-Fe_{0.776}Mn_{0.224}; (5) σ₀ для твёрдых растворов ε-Fe_{0.776}Mn_{0.224}H_x; (6) T_N для ε-Fe; (7) σ_0 для є-FeH_{0.42} (ссылки на оригинальные экспериментальные работы даны в [9]); (8) *T*_N для γ-MnD_{0.83} [7]; (9) *T*_N для γ-Mn [8]; (10) *T*_N для ε-CrH и γ-CrH из работы [5] и данной работы).

Интересно отметить, что быстрое уменьшение температуры Нееля (и, соответственно, магнитных моментов) антиферромагнитных ГЦК сплавов в диапазоне электронных концентраций 7.0–6.5 эл./атом аналогично быстрому уменьшению σ_0 у ферромагнитных ГЦК сплавов, происходящему в инварном диапазоне 8.8–8.4 эл./атом. Можно предположить, что сильная зависимость магнитных свойств от электронной концентрации подразумевает их сильную зависимость от межатомных расстояний, и антиферромагнитные ГЦК фазы (например, гидриды сплавов Cr-Mn) в диапазоне 7.0–6.5 эл./атом тоже будут проявлять инварные аномалии.

Во втором разделе излагаются результаты исследования ГЦК и ГПУ гидридов хрома методом неупругого рассеяния нейтронов (НРН). Исследование производилось с помощью нейтронных спектрометров KDSOG-M в ОИЯИ, Дубна (интервал переданных энергий нейтронов $\hbar\omega = 5-50$ мэВ, T = 10 К) и IN1-ВеF в ИЛЛ, Гренобль (40–400 мэВ, 5 К).

НРН спектры γ -CrH и ε -CrH похожи на изученные ранее спектры моногидридов всех других 3d- и 4d-металлов VI-VIII групп (см. [3], [10] и ссылки, приведенные в этих работах). Для примера, на рис. 4 показан спектр γ -CrH. Как и спектры других моногидридов, он состоят из области решёточных мод ($\hbar \omega < 40$ мэВ) и области оптических колебаний атомов водорода ($\hbar \omega > 90$ мэВ). Первый (фундаментальный) диапазон оптических колебаний атомов водорода представляет собой интенсивный пик с максимумом при $\hbar \omega_0 \approx 118$ мэВ и плечом в сторону высоких энергий до 170 мэВ. Основываясь на результатах для дейтерида палладия [11], главный пик обычно приписывают почти бездисперсионным поперечным оптическим модам, а плечо – продольным оптическим модам со значительной дисперсией из-за дальнодействующего H-H взаимодействия. Второй и третий диапазоны оптических колебаний атомов водорода за выше энергии фундаментальной зоны и характеризуются более плавным распределением интенсивности.

Рис. 4. Динамический структурный фактор $S(Q,\omega)$ рассеяния нейтронов для γ -CrH (сплошная линия, эксперимент) и вклад многофононного рассеяния (пунктирная линия), рассчитанный итерационным методом [12] в изотропном гармоническом приближении.

НРН спектры гидридов, в основном, являются результатом рассеяния нейтронов на протонах и хорошо отражают плотность колебательных состояний атомов водорода. В случае гидридов хрома, вклад рассеяния на атомах хрома для решёточных колебаний составляет менее 4% из-за большого сечения некогерентного рассеяния на атомах водорода, и этот вклад уменьшается до 2×10^{-3} % для оптических колебаний из-за зависимости векторов поляризации соответствующих колебательных мод от массы. Однофононные оптические спектры гидридов γ -CrH и ϵ -CrH, полученные вычитанием вычисленных спектров многофононного рассеяния из экспериментальных данных, показаны на рис. 5.

Рис. 5. Однофононные оптические спектры γ-CrH (сплошная линия) и ε-CrH (пунктирная линия). Горизонтальными отрезками показано разрешение по энергии спектрометра IN1-BeF.

Как видно из рис. 5, фундаментальные зоны оптических колебаний водорода в γ -CrH и ϵ -CrH близки по форме и по ширине энергетического интервала и лишь немного сдвинуты по энергии относительно друг друга. Пик расположен при $\hbar\omega_0 = 118$ мэВ в случае γ -CrH и при $\hbar\omega_0 = 122$ мэВ для ϵ -CrH.

Значения энергии этих пиков как функция минимального расстояния водородметалл R в кристаллической решетке показаны на рис. 6 и согласуются с приблизительно других моногидридов линейной зависимостью $\hbar\omega_0(R)$ для всех 3*d*-металлов, установленной ранее [3]. Как видно из рисунка, значения $\hbar\omega_0(R)$ быстро возрастают с уменьшением атомного номера металла и, соответственно, с увеличением R, и существенно различаются для 3*d*- и для 4*d*-металлов. Довольно давно было замечено [13], что у ГЦК дигидридов различных металлов (переходных, редкоземельных и щелочноземельных), в которых водород занимает тетраэдрические междоузлия, значения $\hbar\omega_0(R)$ описываются единой общей зависимостью $\hbar\omega_0(R) \propto A \cdot R^{-3/2}$ (пунктир на рис. 6) – так называемой "кривой Росса". Удовлетворительного объяснения наличию этой зависимости пока не найдено. С уверенностью можно сказать лишь, что само по себе увеличение *R* должно уменьшать силу межатомного взаимодействия и, следовательно, уменьшать $\hbar\omega_0$.

Противоположное поведение значений $\hbar\omega_0(R)$ у моногидридов с увеличением R и, соответственно, с уменьшением атомного номера металла указывает на значительное

усиление взаимодействия водород-металл в ряду 3d-металлов Ni \rightarrow Co \rightarrow Fe \rightarrow Mn \rightarrow Cr а также 4d-металлов Pd \rightarrow Rh \rightarrow Mo. Разделить эффекты, обусловленные изменением R и изменением типа атомов металла, оказалось возможным благодаря сравнению HPH спектров двух гидридов хрома, ГЦК и ГПУ, с одинаковым химическим составом и близкими значениями R, но сильно различающимся расположением атомов во второй и более отдалённых координационных сферах.

Рис. 6. Энергия $\hbar\omega_0$ фундаментального пика оптических колебаний водорода как функция кратчайшего расстояния водород-металл *R* для различных дигидридов со структурой флюорита (крестики) [13] и для моногидридов 3*d*-металлов (светлые кружки) и 4*d*-металлов (темные кружки) с октаэдрической координацией водорода [3], [10]. γ - ГЦК решетка металла, ε – ГПУ, ε' – двойная ГПУ.

Как видно из рис. 6, точки для γ -СгН и є-СгН близки друг к другу. Более того, немного меньшее значение $\hbar\omega_0$ для γ -СгН может быть объяснено, по крайней мере, частично, бо́льшими межатомными расстояниями *R* в этом гидриде, приводящими к более слабому межатомному взаимодействию. А именно, $R = a/2 = 1.927 \text{ Å}^{\circ}$ для γ -СгН и $R = \sqrt{a^2/3 + c^2/16} = 1.922 \text{ Å}^{\circ}$ для ϵ -СгН. Независимость значений $\hbar\omega_0$ гидридов хрома от кристаллической структуры предполагает, что положение главного оптического пика в моногидридах полностью определяется взаимодействием атомов H с ближайшими атомами металла, поскольку расположение атомов в более отдалённых координационных сферах в ГЦК и ГПУ гидридах значительно отличается.

Таким образом, наблюдаемое возрастание значений $\hbar\omega_0(R)$ у моногидридов при увеличении R связано с быстрым усилением взаимодействия водород-металл по мере уменьшения атомного номера металла, и этот эффект с лихвой компенсирует уменьшение $\hbar\omega_0(R)$ роста межатомного расстояния. Эффект согласуется с предсказаниями первопринципных расчетов [14], согласно которым уменьшение числа валентных электронов при уменьшении атомного номера переходного металла вдоль рядов периодической таблицы должно приводить к увеличению крутизны потенциальной ямы для межузельного водорода из-за менее эффективного экранирования заряда ионного остова.

<u>В четвертой главе</u> представлены результаты нейтронной спектроскопии α модификаций AlH₃ и AlD₃.

Тригональная двенадцатислойная кристаллическая структура α -AlH₃ принадлежит к пространственной группе $R\overline{3}m$ и состоит из чередующихся равноотстоящих плоскостей из атомов Al и атомов H, перпендикулярных оси *c* [15]. Цепочки атомов Al и спирали атомов H параллельны оси *c* и образуют трехмерную сетку из мостиков Al–H–Al. В отличие от большинства других гидридов, атомы водорода в AlH₃ имеют только по два атома металла в качестве ближайших соседей и не занимают каких-либо симметричных межузельных позиций в решетке металла. Соответственно, колебательный спектр AlH₃ также необычен и качественно отличается от спектров других гидридов, что делает AlH₃ привлекательным объектом для экспериментального изучения и моделирования динамики решетки.

Динамика решетки α-AlH₃ ранее изучалась методом HPH [16] с помощью нейтронного спектрометра обратной геометрии TFXA в Резерфордской лаборатории, Англия, см. рис. 7.

Рис. 7. НРН спектр AlH₃, измеренный на нейтронном спектрометре TFXA при T = 25 K (точки). Пунктирная линия – вклад многофононного рассеяния, рассчитанный в изотропном гармоническом приближении. Тонкая сплошная линия – спектр однофононного рассеяния, полученный вычитанием многофононного вклада из экспериментального HPH спектра [16].

При переданных энергиях ниже 150 мэВ измеренный спектр четко разделяется на полосу решеточных колебаний с $\hbar\omega < 42$ мэВ и оптическую полосу в интервале 60–130 мэВ. При энергиях выше 150 мэВ однофононное рассеяние сильно подавляется и не может быть надежно выделено из многофононного спектра. Резкое ослабление однофононного рассеяния при высоких энергиях вызвано быстрым уменьшением фактора Дебая-Валлера $\exp(-\langle u^2 \rangle Q^2)$ из-за совместного действия двух факторов – большой величины среднеквадратичного смещения $\langle u^2 \rangle$ атомов водорода и большой величины передаваемого импульса Q нейтрона. Большая величина Q – специфическая особенность спектрометров обратной геометрии.

Позднее появилась теоретическая работа [17], в которой предсказывалось существование в колебательном спектре AlH_3 еще одной зоны – зоны растягивающих оптических колебаний – состоящей из двух широких перекрывающихся пиков с центрами при 208 и 231 мэВ. Чтобы это проверить, мы исследовали AlH_3 на нейтронном спектрометре прямой геометрии HRMECS в Аргоннской национальной лаборатории (США). В полученных спектрах значения Q^2 в области переданных энергий 150–315 мэВ

были в 5 раз меньше, чем в спектре на рис. 7, что позволило обнаружить и исследовать новую оптическую зону.

Неприятным свойством спектрометра TFXA является неконтролируемое появление избыточной интенсивности в диапазоне переданных энергий ниже 20–25 мэВ. В связи с этим, недебаевское поведение спектра на рис. 7 в этой области энергий могло свидетельствовать о значительном ангармонизме решеточных колебаний в AlH₃, а могло быть и артефактом. Чтобы проверить воспроизводимость тонкой структуры HPH спектра AlH₃ при энергиях до 150 мэВ и определить степень его ангармонизма, мы исследовали образец AlH₃ при двух температурах, 9 и 291 К, и образец AlD₃ при 9 К на нейтронном спектрометре обратной геометрии NERA-PR в ОИЯИ, Дубна. При энергиях от 5 до 150 мэВ спектрометр NERA-PR имеет примерно такое же разрешение 2–3% по энергии, как и спектрометр TFXA, но превосходит его по светосиле.

<u>Первый раздел</u> четвертой главы посвящен результатам измерений на спектрометре NERA-PR. Стандартным представлением данных на этом спектрометре является обобщённая плотность колебательных состояний G(E), связанная с динамическим структурным фактором S(Q,E) соотношением

$$G(E) = \frac{S(Q,\omega)E}{Q^2[n(T,E)+1]},$$

где $E = \hbar \omega$ и n(T,E) - фактор Бозе.

Спектры G(E) образца α -AlH₃ показаны на рис. 8. Как и в случае гидридов хрома, они представляют, главным образом, неупругое рассеяние нейтронов на атомах водорода.

Рис. 8. Обобщённая плотность колебательных состояний G(E) для α -AlH₃, измеренная при (а) 291 К и (б) 9 К на спектрометре NERA-PR. Светлыми кружками, соединёнными сплошными линиями, показаны экспериментальные данные. Пунктирные линии – многофононные вклады. Тонкие сплошные линии – однофононные спектры, полученные вычитанием многофононного вклада из соответствующих экспериментальных данных.

При переданных энергиях от 25 до 135 мэВ однофононный спектр AlH₃, измеренный на спектрометре NERA-PR при 9 К (рис. 8(6)), хорошо воспроизводит форму и положение всех основных особенностей спектра, измеренного при 25 К на спектрометре TFXA (рис. 7). Нагрев образца AlH₃ до 291 К (рис. 8(a)) не изменяет формы и положения особенностей. Это свидетельствует о гармоническом поведении соответствующих колебательных мод при температурах до 291 К.

В обоих спектрах AlH₃, полученных на спектрометре NERA-PR, отсутствует существенно недебаевская, избыточная интенсивность в области решеточных мод при энергиях ниже 25 мэВ. Таким образом, спектрометр TFXA исказил HPH спектр AlH₃ (рис. 7) в области решеточных мод.

Изучение AlD₃ на спектрометре NERA-PR продемонстрировало гармоничность HPH спектра гидрида алюминия по отношению к изотропному замещению D на H. В частности, как видно из рис. 9, низкоэнергетическая часть спектра AlH₃, построенная как функция $E / \sqrt{m_{AlD_3} / m_{AlH_3}} \approx E / \sqrt{33/30} \approx E / 1.049$ хорошо описывает трансляционные колебания блоков Al(D_{1/2})₆ в спектре AlD₃. Зона оптических колебаний атомов дейтерия в AlD₃ хорошо воспроизводится при масштабном множителе, равном 1.37. Отклонение этого множителя от "гармонического" отношения $\sqrt{m_D / m_H} \approx \sqrt{2} \approx 1.41$ может частично объясняться большей величиной межатомных сил в AlD₃ по сравнению с AlH₃ вследствие меньших межатомных расстояний [15].

Рис. 9. Экспериментальные спектры G(E) для α -AlD₃, (темные кружки) и α -AlH₃ (светлые кружки) и спектр α -AlH₃, представленный как функция $E / \sqrt{m_{AlD_3} / m_{AlH_3}} \approx E/1.049$ (тонкая сплошная линия). Не измерявшиеся части спектров при E < 5 мэВ интерполированы дебаевскими зависимостями $G(E) \propto E^2$.

Образец AlD₃ содержал 1.5 ат.% примеси атомов H, и в его спектре G(E) наблюдались два узких пика локальных оптических колебаний этих атомов. О том, как пики локальных колебаний H были выделены из спектра AlD₃, рассказывается во втором разделе данной главы диссертации, а третий раздел посвящен их анализу и моделированию.

Во втором разделе изложены результаты исследования образца AlH₃, на нейтронном спектрометре прямой геометрии HRMECS. Особенностью этого спектрометра является приблизительно линейное изменение разрешения по энергии $\Delta E/E_i$ от 3% до 2% в диапазоне переданных энергий от $E_i/2$ до E_i , где E_i , – начальная энергия нейтронов. На рис. 10 показаны спектры S(Q,E), измеренные при 10 К при использовании нейтронов с E_i = 200 и 355 мэВ.

Рис. 10. Динамический структурный фактор S(Q,E) образца AlH₃, измеренный при 10 К на нейтронном спектрометре HRMECS при использовании нейтронов с начальными энергиями $E_i = 200$ мэВ (данные суммированы по средним углам рассеяния 28° – 63°) и $E_i = 355$ мэВ (суммирование по малым углам от –20° до -6° и от +6° до +20°). Пунктиром показан многофононный вклад для спектра с $E_i = 355$ мэВ.

В спектре с $E_i = 355$ мэВ, полученном при малых углах рассеяния и, следовательно, малых переданных импульсах, отчётливо видны два интенсивных и хорошо разрешённых пика с центрами при 204 и 238 мэВ. Появление этих двух пиков и их положения хорошо согласуются с теоретическими предсказаниями работы [17], а также более поздней работы [18] для высокоэнергетической зоны растягивающих оптических колебаний атомов H в α -AlH₃. Анализ зависимости рассеянной интенсивности от переданного импульса нейтрона показал, что основной вклад в интенсивность этих двух пиков вносит однофононное рассеяние.

Для выявления аналогичной высокоэнергетической зоны оптических растягивающих колебаний атомов D в спектре AlD₃, измеренном на спектрометре NERA-PR (рис. 11), спектр AlH₃, измеренный на HRMECS'е, был преобразован в G(E) и масштабирован по оси *E* так, чтобы совпали высокоэнергетические края первой (нижней) оптической зоны около 96 мэВ. Результат подгонки представлен на рис. 11 тонкой сплошной линией. Коэффициент масштабирования 1.35 близок к значению 1.37, использованному для подгонки первой оптической зоны спектра AlD₃ спектром AlH₃, полученным на NERA-PR.

Как видно из рис. 11, пики вблизи 154 и 175 мэВ в спектре образца AlD₃ определённо произошли от растягивающих мод колебаний атомов дейтерия. Эти пики лучше видны на спектре AlD₃, чем на спектре AlH₃ (рис. 8), измеренном на том же спектрометре NERA-PR, из-за меньшего ослабления фактором Дебая-Валлера $\exp(-\langle u^2 \rangle Q^2)$. Этот фактор имеет бо́льшую величину для колебаний в AlD₃, потому что они смещены в сторону меньших энергий и, следовательно, меньших переданных импульсов

Q, а также потому, что среднеквадратичное смещение $\langle u^2 \rangle$ более тяжёлых атомов D меньше.

Рис. 11. Экспериментальный спектр G(E) образца AlD₃, измеренный при 9 К на нейтронном спектрометре NERA-PR (светлые кружки, соединённые толстой сплошной линией), и спектр AlH₃, измеренный при 10 К на HRMECS и построенный как функция E = E/1.35 (тонкая сплошная линия). Двумя вертикальными стрелками показаны пики примеси H в образце AlD₃.

Два пика при 101.5 и 117.5 мэВ в спектре AlD₃, отмеченные стрелками на рис. 11, могут быть приписаны локальным дефектным модам примесных атомов водорода, равномерно распределенных по позициям атомов D в исследуемом образце. Действительно, если бы 1.5% атомов H в образце AlD₃ образовали макроскопические частицы AlH₃, то в спектре G(E) этого образца появилась бы оптическая зона колебаний H в диапазоне от 60 до 135 мэВ (рис. 8), наложенная на зону оптических колебаний D. В эксперименте (рис. 11) это не наблюдается. Если же примесные атомы H хаотически распределены по кристаллографически эквивалентным позициям атомов D, то среднее расстояние между ближайшими атомами H должно быть велико, а взаимодействие между ними мало. Каждый атом H будет колебаться почти независимо от других, образуя три локальные дефектные моды – одну моду вдоль связи Al-H (высокочастотная растягивающая мода) и две моды в поперечных направлениях (низкочастотные моды изгиба связи H-Al-H). Пики на 101.5 и 117.5 мэВ лежат в диапазоне 60–135 мэВ изгибных мод и могут быть приписаны поперечным дефектным модам.

<u>В третьем разделе</u> проводится анализ локальных колебаний примесных атомов H в матрице AlD₃ в рамках модели Борна-Кармана. Силовые константы модели были определены подгонкой рассчитанных колебательных спектров под экспериментальные спектры чистых AlH₃ и AlD₃ с использованием уменьшенной элементарной ячейки, содержащей 3 формульные единицы. Затем был проведен расчет для AlD₃ с ячейкой, в которой один атом дейтерия был заменен атомом протия, что соответствует 11.1 ат.% примеси H. При выборе константы H-D взаимодействия, близкой к константам H-H и D-D взаимодействия, были получены положения 101.5 и 117.5 мэВ пиков поперечных дефектных мод, совпадающие с экспериментальными. Пик третьей, продольной дефектной моды оказался расположен в области энергий 220–260 мэВ и, как видно из рис. 11, не налагался ни на какие пики в спектре колебаний чистого AlD₃.

Расчёт также показал, что наличие одного атома H (11.1% примеси) в уменьшенной элементарной ячейке AlD_3 не приводит к каким-либо значительным изменениям в плотности фононных состояний остальных восьми атомов D по сравнению со случаем чистого AlD_3 . Поэтому был сделан вывод, что вклады от колебаний атомов H и D аддитивны при концентрации H как минимум до 11%. Пропорциональное уменьшение рассчитанной интенсивности пиков поперечных дефектных мод для эмуляции реальной концентрации примеси 1.5% хорошо воспроизвело относительную интенсивность этих пиков в экспериментальном спектре образца AlD_3 (рис. 11).

Таким образом, можно с уверенностью утверждать, что пики при 101.5 и 117.5 мэВ в НРН спектре образца AlD₃ возникли из-за локальных поперечных мод H-дефектов, и что эти дефекты не нарушают распределение плотности оптических колебаний атомов D в AlD₃.

<u>В четвёртом разделе</u> данной главы описано построение кривых плотности фононных состояний в α -AlH₃ и α -AlD₃. Чтобы получить спектр фононной плотности состояний g(E), однофононный спектр G(E) был поделен на фактор Дебая-Валлера, разложен на 3 неперекрывающиеся зоны – зону решёточных колебаний и две оптические зоны, а затем каждая из этих трёх зон была нормирована так, чтобы представлять количество соответствующих фононных мод (6,12 и 6 мод в соответствии с расчетами [17]). Спектры g(E) для α -AlH₃ и α -AlD₃, полученные таким образом, показаны на рис. 12 вместе со спектром для α -AlH₃, рассчитанным в работе [17]. Как можно видеть, соответствие между двумя спектрами AlH₃ хорошее. Это предполагает адекватность как теоретических расчётов [17], так и процедуры, использованной нами для получения g(E) из экспериментальных данных по HPH.

Рис. 12. Плотности фононных состояний g(E) для α -AlD₃ (a) и α -AlH₃ (б), полученные из данных по HPH (сплошные линии) и плотность фононных состояний, рассчитанная для α -AlH₃ в работе [17] (пунктирная линия). Горизонтальными отрезками показано разрешение по энергии использованных данных HPH.

<u>Пятая глава</u> посвящена исследованию термодинамических свойств α-AlH₃ и α-AlD₃. Гидрид алюминия – диэлектрик, и его теплоемкость определяется только колебаниями решетки, что позволяет рассчитать ее до температур много выше температуры термического разложения гидрида (около 150°С при атмосферном давлении), изучив колебательный спектр при низкой температуре. Мы выполнили такой расчет и экспериментально проверили его правильность при низких и умеренных температурах. Из теплоемкости мы получили термодинамические функции AlH₃ при атмосферном давлении и, используя известные Р-V-Т соотношения для водорода, рассчитали линию равновесия $A1 + (3/2)H_2 = A1H_3$ при давлениях до 90 кбар и температурах до 900 К. Заключительным этапом исследования AlH₃ в диссертационной работе стало экспериментальное определение условий его образования и распада при высоких давлениях водорода и повышенных температурах.

В первом разделе данной главы описывается, как из полученной нами плотности фононных состояний $g(\omega)$ для α -AlH₃ и α -AlD₃ (рис. 12) рассчитывались температурные зависимости теплоёмкости C_V при постоянном объеме, а правильность расчета проверялась сравнением с экспериментальными данными по теплоемкости С_Р при постоянном объеме, взятыми из литературы и измеренными нами.

Расчет теплоемкостей проводился по формуле:

$$C_{V}(T) = \frac{R}{2} \int \left(\frac{\hbar\omega}{k_{\rm B}T}\right)^{2} g(\omega) n(\omega, T) [n(\omega, T) + 1] d\omega, \qquad (1)$$

где *R* – универсальная газовая постоянная; *k*_в – константа Больцмана и $n(\omega,T) = \left[\exp(\hbar\omega/k_{\rm B}T) - 1\right]^{-1}$ – фактор Бозе. Так как спектры $g(\omega)$ были нормированы в сумме на 24 состояния, это уравнение даёт $C_V(T) \xrightarrow{T \to \infty} \frac{R}{2} \int g(\omega) d\omega = 12R = 3R \times 4$ на грамм-моль AlH₃ или AlD₃ в соответствии с законом Дюлонга и Пти. Вычисленные зависимости $C_{V}(T)$ показаны на рис. 13 (пунктирные линии) вместе с экспериментальными

данными, имеющимися в литературе [19], [20] и измеренными в этой работе.

В интервале температур 0-360 К, доступном для измерения теплоемкости при атмосферном давлении, значения С_V и С_P для каждого из двух изученных соединений могут сравниваться напрямую, без каких-либо коррекций, так как различие между C_V и C_P много меньше погрешности экспериментальных и вычисленных данных. Необходимость в проведении наших собственных измерений теплоемкости была вызвана тем, что AlH₃ рассчитанная кривая $C_V(T)$ для не очень хорошо согласовались с экспериментальными данными [19], [20], и точность этих данных была не очень высока. Например, в работе [20] кривая $C_P(T)$ для AlD₃ проходила ниже кривой для AlH₃ при температурах < 70 К, что противоречит установленному нами гармоническому поведению фононного спектра AlH₃ относительно изотопического замещения H на D. В случае справедливости гармонического приближения, относительная погрешность измерения теплоемкости в работе [20] была не лучше 10% при 70 К и достигала 20–25% при 30 К и более низких температурах.

Для получения надежной зависимости $C_P(T)$ для AlH₃ при низких температурах мы измерили ее с точностью 2% в интервале температур от 6 до 30 К с использованием релаксационного микрокалориметра, сконструированного и изготовленного в ИФТТ РАН [21]. Для проверки достоверности литературных данных при умеренных температурах мы измерили зависимости $C_P(T)$ для AlH₃ и AlD₃ с точностью 5% при 130–320 К, использовав дифференциальный сканирующий калориметр Perkin-Elmer DSC-7.

Результаты расчетов и измерений теплоемкости α-AlH₃ и α-AlD₃ в области низких температур показаны на рис. 13(а) в дважды логарифмическом масштабе. Наши расчетная и экспериментальная зависимости для AlH₃ совпадают в пределах допустимой

погрешности. При температурах 10-30 К эти зависимости близки к линейным и соответствуют $C_P \propto T^{2.7}$. При более низких температурах показатель степени увеличивается и приближается к 3.

Зависимости для α -AlH₃ и α -AlD₃ из работы [20] близки к линейным при температурах 15-50 K, почти параллельны и соответствуют $C_P \propto T^{2.96}$. Выполнение дебаевского закона T^3 для низкотемпературной теплоемкости в широком интервале температур характерно для веществ с простой кубической решеткой. Показатель степени для сложных анизотропных соединений, подобных AlH₃, как правило, значительно ниже, и возрастает до 3 только при очень низких температурах [22]. В этом отношении, наши зависимости $T^{2.7}$ при температурах 10–30 К представляются более достоверными, чем зависимости $T^{2.96}$ из [20].

Рис. 13. Температурные зависимости теплоёмкости для α -AlH₃ и α -AlD₃. Экспериментальные значения $C_P(T)$ показаны для AlH₃ светлыми треугольниками [19], светлыми кружками [20], светлыми квадратиками и жирной сплошной кривой (наши данные); для α -AlD₃ – темными кружками [20] и жирной сплошной кривой (наши данные). Пунктирными и тонкими сплошными линиями представлены, соответственно, зависимости $C_P(T)$ и $C_P(T)$, рассчитанные в нашей работе.

При температурах 130–320 К измеренная нами зависимость $C_P(T)$ для AlD₃ (жирная сплошная линия на рис. 13(б)) совпадает с зависимостью из работы [20], а зависимость

для AlH₃ проходит ниже, чем в [20] и [19]. Рассчитанные нами зависимости $C_V(T)$ располагаются между имеющимися экспериментальными зависимостями $C_P(T)$ как для AlD₃, так и для AlH₃, и потому представляют теплоемкости этих соединений при температурах 130–320 К надежнее, чем каждая из экспериментальных зависимостей в отдельности. Следует ожидать, что рассчитанные зависимости хорошо воспроизводят $C_V(T)$ для AlD₃ и AlH₃ также и при гораздо более высоких температурах, потому что результаты расчёта по ур. (1) с увеличением температуры становятся всё менее и менее чувствительными к деталям спектра $g(\omega)$.

Зависимости $C_{I}(T)$ полезны для проверки правильности различных теоретических моделей и первопринципных расчетов динамики решетки. Для термодинамического анализа важны зависимости $C_P(T)$, так как они позволяют непосредственно рассчитать энтропию, энтальпию и свободную энергию Гиббса изучаемого вещества.

<u>Второй раздел</u> данной главы посвящен описанию того, как были получены поправки к расчетным зависимостям $C_V(T)$ для α -AlH₃ и α -AlD₃, превращающие их в зависимости $C_P(T)$ при температурах до 1000 К, показанные на рис.13(б) тонкими сплошными линиями.

Зависимость $C_V(T,V_0)$ была переведена в зависимость $C_P(T,V_0)$ с помощью выражения [22]:

$$\Delta C_{PV}(T) = C_P - C_V = \alpha^2 T V / \beta, \tag{2}$$

где α – коэффициент термического расширения; β – изотермическая сжимаемость; V(T) – молярный объём; $V_0 = V(9 \text{ K}) \approx V(0 \text{ K})$ – молярный объем при $P_0 = 1$ атм и температуре 9 K, для которой были построены плотности фононных состояний α -AlH₃ и α -AlD₃.

Для AlH₃ и AlD₃ нам не удалось найти в литературе ни зависимостей $\alpha(T)$, ни V(T). Мы измерили эти зависимости с помощью рентгеновской дифракции при температурах 80–370 К и проэкстраполировали их на более низкие и более высокие температуры с помощью полуэмпирического закона Грюнайзена [22]:

$$\alpha(T) = B \cdot C_V(T),\tag{3}$$

определив константу В подгонкой к эксперименту.

Сложной проблемой оказалось определение зависимостей $\beta(T)$ при повышенных температурах. В литературе имеются только экспериментальные значения β_{exp} для α -AlH₃ [23] и α -AlD₃ [24] при комнатной температуре. Температурные зависимости сжимаемости каких-либо веществ в последние несколько десятилетий практически не изучались, и сколько-нибудь надежные теоретические или эмпирические рецепты для их описания отсутствуют. Если считать так называемую константу Грюнайзена $\gamma = \alpha V/(\beta C_V)$ постоянной величиной [25], то из (3) следует, что $\beta(T) \propto V(T)$. Среди множества эмпирических и полуэмпирических законов Грюнайзена есть один (см. [26]), наиболее сильно отклоняющийся от этого и гласящий, что $\beta(T) \propto V(T)^{8.4}$. Мы вычислили поправки (2) для обеих зависимостей $\beta(T)$ и взяли их среднее арифметическое $\Delta C_{PV}^{av}(T)$. Результат представлен на рис. 14.

Мы не нашли ни одной работы, в которой для твердого вещества оценивались бы изменения *C_P*, обусловленные увеличением объёма с увеличением температуры. Мы оценили эти изменения следующим образом:

$$\Delta C_{PP}(T) = C_P(V,T) - C_P(V_0,T) \approx \left(\frac{\partial C_P}{\partial P}\right)_T (P_0 - P) \approx TP \left(\frac{\partial^2 V}{\partial T^2}\right)_P,$$

где P – это давление, которое уменьшает объём образца с V(T) до V_0 . Зависимости P(T) были получены из уравнения состояния $V(P,T) \approx V(T)(1 - \beta P)$ при условии, что $V(P,T) = V_0$. Поправка была вычислена для двух разных температурных зависимостей $\beta(T)$ и усреднена. Полученные зависимости $\Delta C_{PP}^{av}(T)$ представлены на рис. 14.

Рис. 14. Средние значения поправок $\Delta C_{PV}(T) = C_P(T,V_0) - C_V(T,V_0)$ и $\Delta C_{PP}(T) = C_P(V,T) - C_P(V_0,T)$, вычисленных с использованием зависимостей $\beta(T) \propto V(T)$ и $\beta(T) \propto V(T)^{8.4}$.

Зависимости $C_P(T)$, показанные на рис. 13(б) тонкими сплошными линиями, были рассчитаны как $C_P(V,T) = C_V(V_0,T) + \Delta C_{PV}^{av}(T) + \Delta C_{PP}^{av}(T)$. Неточность в вычислении величины $\Delta C_{PV}^{av}(T) + \Delta C_{PP}^{av}(T)$ достигает около 15 и 25% при 1000 К для α -AlH₃ и α -AlD₃, соответственно, и обусловлена, в основном, неопределенностью в значениях $\Delta C_{PV}^{av}(T)$. При более высоких температурах неопределенность оценок $\Delta C_{PV}^{av}(T)$ и $\Delta C_{PP}^{av}(T)$ резко возрастает, что ограничило диапазон определения зависимостей $C_P(T)$ в нашей работе температурой 1000 К.

Здесь следует отметить, что неточность 20% в величине $\Delta C_{PV}^{av}(T) + \Delta C_{PP}^{av}(T)$ при 1000 К приводит к неточности около 1 Дж/моль/К или 1% величины C_P . Поэтому в температурном интервале 0–1000 К зависимости $C_P(T)$, представленные на рис. 13(б), практически также точны, как и зависимости $C_V(T)$.

<u>В третьем разделе</u> описан расчет стандартных (при $P_0 = 1$ атм) термодинамических функций α -AlH₃ и фазовой *T*–*P* диаграммы системы Al-H при температурах до 900 K и давлениях водорода до 90 кбар.

Стандартная энергия Гиббса $G^0_{AlH_a}(T)$ была рассчитана как:

$$G^{0}_{AlH_{3}}(T) = H^{0}_{AlH_{3}}(T) - TS^{0}_{AlH_{3}}(T) = \int_{0}^{T} C_{P} dT - T \int_{0}^{T} \frac{C_{P}}{T} dT,$$

а стандартная разность энергий $\Delta G^0(T)$ для реакции AlH₃ = Al + (3/2)H₂ при атмосферном давлении как

$$\Delta G^{0}(T) = G^{0}_{\text{AIH}_{3}}(T) - G^{0}_{\text{AI}}(T) - (3/2)G^{0}_{\text{H}_{2}}(T)$$

с использованием значений $G^0_{\rm Al}(T)$ и $G^0_{\rm H_2}(T)$, затабулированных в справочнике [27].

При заданной температуре *T* в равновесии при давлении P_{eq} должно выполняться равенство $\Delta G(P_{eq},T) = 0$. Поскольку dG = -SdT + VdP и, следовательно, при постоянной температуре dG = VdP, то

$$\Delta G(P_{eq}, T) = \Delta G^{0}(T) + \int_{P_{0}}^{P_{eq}} \Delta V(P, T) dP = 0,$$
(4)

где $\Delta V(P,T) = V_{AlH_3}(P,T) - V_{Al}(P,T) - (3/2)V_{H_2}(P,T)$ – разность молярных объемов фаз, участвующих в реакции.

Используя экспериментальные зависимости $V_{AlH_3}(P)$ и $V_{Al}(P)$ при комнатной температуре [23] и интерполяционную формулу [28] для $V_{H_2}(P,T)$, мы рассчитали кривую равновесия $P_{eq}(T)$ для реакции $AlH_3 = Al + (3/2)H_2$. Эта кривая показана на рис. 15 сплошной линией и совершенно не согласуется с имеющимися в литературе экспериментальными данными по условиям распада и образования гидрида алюминия при высоких давлениях водорода.

Рис. 15. T-P диаграмма системы Al-H. Сплошная линия – рассчитанная нами линия равновесия AlH₃ = Al + (3/2)H₂. Темные и светлые треугольники – точки образования и распада AlH₃, определенные методом ДТА [29]; светлые кружочки – точки образования AlH₃ (наши данные). Темные и светлые квадратики указывают *T*,*P* условия выдержки металлического Al в атмосфере H₂, приводившей или, соответственно, не приводившей к образованию AlH₃ [30], [31].

Мы повторили эксперименты [29] по изучению распада и образования AlH₃ методом дифференциального термического анализа (ДТА). Результаты (тёмные треугольники [29]) по распаду гидрида при нагреве под давлением хорошо воспроизвелись (ср. светлые кружки и треугольники на рис. 15), но мы ни разу не наблюдали образования гидрида при последующем понижении температуры.

Мы предположили, что температура разложения AlH₃ в проводившихся экспериментах могла быть значительно выше равновесной, потому что зерна химически приготовленного гидрида, использовавшегося в качестве исходного материала, были покрыты толстым, прочным слоем оксида, практически непроницаемым для водорода. Чтобы проверить это предположение, была проведена экспериментальная проверка условий образования и разложения AlH₃ при давлениях водорода до 90 кбар с использованием неокисленных частиц Al.

В четвёртом разделе описывается, как это было сделано.

Медная капсула заполнялась химически приготовленным AlH_3 , запаивалась галлием, сжималась до 10 кбар, нагревалась до 300°С и выдерживалась в этих условиях 30 мин для разложения гидрида и получения газа H_2 , окружающего получившиеся частицы Al с разрушенным оксидными оболочками под давлением 10 кбар. Далее температура изменялась до выбранного значения, давление поднималось до выбранной конечной величины, частицы Al выдерживались при этих T и P в течение времени, варьировавшегося от двух суток при комнатной температуре до 30 мин при 600°С, и быстро охлаждались до 0°С. Давление понижалось до атмосферного, образец извлекался из медной капсулы, и определялся его состав по водороду путём термического разложения в вакуумированном объёме и с помощью рентгенофазового анализа.

Условия, при которых происходило образование гидрида, указаны на рис. 16(а) темными звездочками. Отсутствие образования гидрида указано светлыми звездочками. Как видно из рис. 16(а), расположение звездочек согласуется с расчетной линией равновесия.

Рис. 16. *Т*–*Р* диаграмма системы Al-H. Темные и светлые звездочки указывают условия наличия или отсутствия образования AlH₃, соответственно. Темные и светлые кружки указывают условия отсутствия или наличия распада AlH₃. Сплошная линия – та же, что на рис. 15. Данные настоящей работы.

В другой серии экспериментов образец, разложенный на Al и H₂ под давлением 10 кбар, сначала превращали в гидрид выдержкой при T и P много ниже линии равновесия, а затем нагревали и выдерживали при более высокой температуре. Эти эксперименты позволили определить условия распада AlH₃ (кружки на рис. 16(а)).

Линия равновесия $AlH_3 = Al + (3/2)H_2$ должна лежать между точками образования гидрида (темные звездочки) и его распада (светлые кружки). Как можно видеть, при повышенных температурах расчетная линия лежит в точности между этими двумя наборами точек, расположенными близко друг от друга. Следовательно, эта линия хорошо представляет равновесие.

Гистерезис превращения $AlH_3 = Al + (3/2)H_2$ мал при температурах выше 150–100°С, но быстро увеличивается при более низких температурах. Как видно из рис. 16,

минимальное давление водорода, необходимое для образования α-AlH₃, составляет около 20 кбар при температурах 50–100°С.

Хорошее согласие расчетной линии равновесия с экспериментом при повышенных температурах внушает уверенность, что эта линия представляет равновесие $AlH_3 = Al + (3/2)H_2$ также и при пониженных температурах, когда гидрид не образуется и не распадается по кинетическим причинам. Из рис. 16(б) видно, что равновесное давление уменьшается приблизительно до 9 кбар при 0°С и до 4 кбар при –100°С. Это означает, в частности, что прямой синтез гидрида из элементов невозможен при более низких давлениях, даже если будет найден катализатор или что-то другое для ускорения кинетики его образования.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ.

- 1. Гидриды хрома с ГЦК и ГПУ решеткой металла исследованы методом нейтронной дифракции при *T* = 8 К. Установлено, что водород занимает октаэдрические междоузлия в плотноупакованных металлических решетках гидридов, а магнитное упорядочение отсутствует вплоть до гелиевых температур. Последний результат позволил завершить построение кривых Полинга-Слэтера для ГЦК и ГПУ сплавов 3*d*-металлов во всем интервале существования ферро- и антиферромагнитного упорядочения.
- 2. ГЦК и ГПУ гидриды CrH исследованы методом неупругого рассеяния нейтронов (НРН). Этим завершено НРН исследование колебательных спектров моногидридов переходных металлов с октаэдрической координацией водорода. Показано, что энергия фундаментального пика оптических колебаний водорода в моногидридах является монотонной функцией расстояния *R* между ближайшими атомами водорода и металла и резко возрастает с увеличением *R*. Предложено объяснение этой аномальной зависимости.
- 3. Измерены НРН спектры тригидрида и тридейтерида алюминия. Обнаружена и исследована высокоэнергетическая область растягивающих оптических колебаний, предсказанная теоретически. Построены спектры плотности фононных состояний *g*(*E*) для AlH₃ и AlD₃.
- 4. Из g(E) для AlH₃ и AlD₃ рассчитаны зависимости теплоемкости $C_V(T)$. Корректность расчета проверена сравнением с экспериментальными зависимостями $C_P(T)$ при температурах до 320–340 К в области метастабильной устойчивости соединений при атмосферном давлении. Необходимые для термодинамических оценок зависимости $C_P(T)$ до T = 1000 К получены путем вычисления поправок к $C_V(T)$ с использованием температурных зависимостей объема AlH₃ и AlD₃, измеренных при 80 < T < 370 К методом рентгеновской дифракции.
- 5. Из зависимости *C_P*(*T*) для AlH₃ рассчитаны его стандартная энергия Гиббса и линия термодинамического равновесия AlH₃ = Al + (3/2)H₂ при давлениях водорода до 90 кбар. Экспериментально определены условия образования и разложения AlH₃ при давлениях до 90 кбар и температурах до 900 К. Результаты измерений показали хорошее согласие с проведённым расчётом.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОПУБЛИКОВАНЫ В СЛЕДУЮЩИХ РАБОТАХ:

1. A.I. Kolesnikov, V.E. Antonov, Yu.E. Markushkin, I. Natkaniec, M.K. Sakharov "Lattice dynamics of α -AlH₃ and α -AlD₃ by inelastic neutron scattering: High-energy band of optical bond-stretching vibrations", Phys. Rev. B **76** (2007) 064302.

- V.E. Antonov, A.I. Beskrovnyy, V.K. Fedotov, A.S. Ivanov, S.S. Khasanov, A.I. Kolesnikov, M.K. Sakharov, I.L. Sashin, M. Tkacz "Crystal structure and lattice dynamics of chromium hydrides", *J. Alloys Compds* 430 (2007) 22–28.
- 3. М.К. Сахаров, В.Е. Антонов, Ю.Е. Маркушкин, А.И. Колесников, С.С. Хасанов "*T-P* диаграмма системы Al-H при давлениях до 90 кбар", В сб.: *Физика* экстремальных состояний вещества 2008, стр. 71–73. Изд. ИПХФ РАН, Черноголовка, 2008.
- 4. V.E. Antonov, A.I. Kolesnikov, Yu.E. Markushkin, A.V. Palnichenko, Y. Ren, M.K. Sakharov "Heat capacity of α-AlH₃ and α-AlD₃ at temperatures up to 1000 K", *J. Phys.: Condens. Matter*, в печати.

Список литературы:

- 1. Antonov, V.E. J. Alloys Compd. 2002, Vols. 330-332, 110-116.
- 2. Е.Г. Понятовский, В.Е. Антонов, И.Т. Белаш. УФН. 1982 г., Т. 137, 663.
- 3. V.E. Antonov, K. Cornell, B. Dorner, V.K. Fedotov, G. Grosse, A.I. Kolesnikov, F.E. Wagner, H. Wipf. *Solid State Commun.* 2000, Vol. 113, p. 569.
- 4. С.В. Вонсовский, Магнетизм. М.: Наука, 1971. стр. 622.
- 5. J. Poźniak-Fabrowska, B. Nowak, M. Tkacz. J. Alloys Compd. 2001, Vol. 322, p. 82.
- 6. V.E. Antonov, T.E. Antonova, V.K. Fedotov, T. Hansen, A.I. Kolesnikov, A.S. Ivanov. *J. Alloys Compd.* 2005, Vols. 404-406, 73.
- 7. А.В. Иродова, В.П. Глазков, В.А. Соменков, С.Ш. Шильштейн, В.Е. Антонов, Е.Г. Понятовский. ФТТ. 1987 г., Т. 29, стр. 2714.
- 8. G.E. Bacon, I.W. Dunmur, J.H. Smith, R. Street. Proc. R. Soc. 1957, Vol. A241, p. 223.
- 9. V.E. Antonov, M. Baier, B. Dorner, V.K. Fedotov, G. Grosse, A.I. Kolesnikov, E.G. Ponyatovsky, G. Schneider, F.E. Wagner. J. Phys. Condens. Matter. 2002, Vol. 14, 6427.
- 10. V.E. Antonov, T.E. Antonova, V.K. Fedotov, B.A. Gnesin, A.S. Ivanov, A.I. Kolesnikov. *J. Alloys Compd.* 2007, Vols. 446–447, p. 508.
- 11. J.M. Rowe, J.J. Rush, H.G. Smith, M. Mostoller, H.E. Flotow. *Phys. Rev. Lett.* 1974, Vol. 33, p. 1297.
- 12. A.I. Kolesnikov, I. Natkaniec, V.E. Antonov, I.T. Belash, V.K. Fedotov, J. Krawczyk, J. Mayer, E.G. Ponyatovsky. *Physica B*. 1991, Vol. 174, p. 257.
- 13. D.K. Ross, P.F. Martin, W.A. Oates, R. Khoda Bakhsh. Z. Phys. Chem. N. F. 1979, Vol. 114, p. 221.
- 14. C. Elsässer, H. Krimmel, M. Fähnle, S.G. Louie, C.T. Chan. J. Phys.: Condens. Matter. 1998, Vol. 10, p. 5131.
- 15. J.W. Turley, H.W. Rinn. Inorg. Chem. 1969, Vol. 8, pp. 18-22.
- A.I. Kolesnikov, M. Adams, V.E. Antonov, N.A. Chirin, E.A. Goremychkin, Yu.E. Markushkin, M. Prager, I.L. Sashin. J. Phys.: Condens. Matter. 1996, Vol. 8, p. 2529.
- 17. C. Wolverton, V. Ozoliņš, M. Asta. Phys. Rev. B. 2004, Vol. 69, p. 144109.
- 18. X. Ke, A. Kuwabara, I. Tanaka. Phys. Rev. B. 2005, Vol. 71, p. 184107.
- 19. G.C. Sinke, L.C.Walker, F.L. Oetting, D.R. Stull. Thermodynamic Properties of Aluminum Hydride. J. Chem. Phys. 1967, Vol. 47, p. 2759.
- 20. К.С. Гавричев, В.Е. Горбунов, С.И. Бакум, В.М. Гуревич, А.Д. Изотов. *Неорг. матер.* 2002 г., Т. 38, №7, стр. 803-806.
- 21. A.V. Palnichenko, A.F. Gurov, V.N. Kopylov, K. Kusano, S. Tanuma, E.I. Salamatov. *Phys. Rev. B.* 1997, Vol. 56, p. 11629.
- 22. Л.Д. Ландау, Е.М. Лифшиц. *Статистическая физика. Ч. 1.* М. : Наука-физматлит, 1995. Т. 5.
- 23. B. Baranowski, H.D. Hochheimer, K. Strössner, W. Hönle. J. Less-Common Metals. 1985, Vol. 113, p. 341.

- I.N. Goncharenko, V.P. Glazkov, A.V. Irodova and V.A. Somenkov. Neutron diffraction study of crystal structure and equation of state AlD3 up to the pressure of 7.2 GPa. *Physica B*. 1991, Vol. 174, pp. 117–120.
- 25. E. Grüneisen, Ann. Physik. 1908, Vol. 26, p. 394.
- 26. R. Fürth, Proc. Cambr. Phil. Soc. 1941, Vol. 37, pp. 34-54.
- 27. В.П. Глушко, [ред.]. Термодинамические свойства индивидуальных веществ. Справочник в двух томах. М. : Изд-во АН СССР, 1962. Т. 2.
- 28. M. Tkacz, A. Litwiniuk. Alloys Compd. 2002, Vols. 330-332, p. 89.
- 29. С.К. Коновалов, Б.М. Булычев. Ж. неорг. хим. 1992 г., Т. 37, стр. 2640.
- 30. M. Tkacz, S. Filipek, and B. Baranowski. *Polish Journal of Chemistry*. 1983, Vol. 57, p. 651.
- 31. **B. Baranowski, M. Tkacz.** Zeitschrift für Physikalische Chemie Neue Folge. 1983, Vol. 135, pp. 27-38.