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1. Introduction

There are many proposals for writing Classical and Quantum Mechanics in the same lan‐
guage. Some approaches use complex functions for classical probability densities [1] and
other define functions of two variables from single variable quantum wave functions [2,3].
Our approach is to use the same concepts in both types of dynamics but in their own realms,
not using foreign unnatural objects. In this chapter, we derive many inter relationships be‐
tween conjugate variables.

1.1. Conjugate variables

An important object in Quantum Mechanics is the eigenfunctions set {|n >}n=0
∞  of a Hermi‐

tian operator F̂ . These eigenfunctions belong to a Hilbert space and can have several repre‐
sentations, like the coordinate representation ψn(q)= q | n . The basis vector used to provide
the coordinate representation, |q > , of the wave function are themselves eigenfunctions of
the coordinate operator Q̂ We proceed to define the classical analogue of both objects, the
eigenfunction and its support.

Classical motion takes place on the associated cotangent space T *Q with variable z =(q, p),
where q and p are n dimensional vectors representing the coordinate and momentum of
point particles. We can associate to a dynamical variable F (z) its eigensurface, i.e. the level
set

ΣF ( f )= {z∈T *Q | F (z)= f } (1)
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Where f  is a constant, one of the values that F (z) can take. This is the set of points in phase
space such that when we evaluate F (z), we obtain the value f . Examples of these eigensurfa‐
ces are the constant coordinate surface, q = X , and the energy shell, H (z)= E , the surface on
which the evolution of classical systems take place. These level sets are the classical analogues
of the support of quantum eigenfunctions in coordinate or momentum representations.

Many dynamical variables come in pairs. These pairs of dynamical variables are related
through the Poisson bracket. For a pair of conjugate variables, the Poisson bracket is equal to
one. This is the case for coordinate and momentum variables, as well as for energy and time.
In fact, according to Hamilton’s equations of motion, and the chain rule, we have that

{t , H }=∑
i

( ∂ t
∂ q i

∂H
∂ pi

- ∂H
∂ q i

∂ t
∂ pi

)=∑
i

( dt
d q i

d q i

dt +
d pi

dt
dt

d pi
)= dt

dt =1 (2)

Now, a point in cotangent space can be specified as the intersection of 2n hypersurfaces. A
set of 2n independent, intersecting, hypersurfaces can be seen as a coordinate system in co‐
tangent space, as is the case for the hyper surfaces obtained by fixing values of coordinate
and momentum, i.e. the phase space coordinate system with an intersection at z =(q, p). We
can think of alternative coordinate systems by considering another set of conjugate dynami‐
cal variables, as is the case of energy and time.

Thus, in general, the T *Q points can be represented as the intersection of the eigensurfaces
of the pair of conjugate variables F  and G,

ΣFG( f , g)= {z∈T *Q | F (z)= f ,  G(z)= g}. (3)

A point in this set will be denoted as an abstract bra ( f , g | , such that ( f , g |u) means the
function u( f , g).

We can also have marginal representations of functions in phase space by using the eigen‐
surfaces of only one of the functions,

ΣF ( f )= {z∈T *Q | F (z)= f } ,     and    ΣG(g)= {z∈T *Q | G(z)= g}.

A point in the set ΣF ( f ) ΣG(g)  will be denoted by the bra ( f | (g |  and an object like
( f | u) (g |u)  will mean the f g  dependent function u( f ) u(g) .

1.2. Conjugate coordinate systems

It is usual that the origin of one of the variables of a pair of conjugate variables is not well
defined. This happens, for instance, with the pair of conjugate variables q and p. Even
though the momentum can be well defined, the origin of the coordinate is arbitrary on the
trajectory of a point particle, and it can be different for each trajectory. A coordinate system
fixes the origin of coordinates for all of the momentum eigensurfaces.
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A similar situation is found with the conjugate pair energy-time. Usually the energy is well
defined in phase space but time is not. In a previous work, we have developed a method for
defining a time coordinate in phase space [4]. The method takes the hypersurface q 1 = X ,
where X  is fixed, as the zero time eigensurface and propagates it forward and backward in
time generating that way a coordinate system for time in phase space.

Now, recall that any phase space function G(z) generates a motion in phase space through a
set of symplectic system of equations, a dynamical system,

dz
df = XG,       XG =( ∂G

∂ p , - ∂G
∂ q ), (4)

where f  is a variable with the same units as the conjugate variable F (z). You can think of
G(z) as the Hamiltonian for a mechanical system and that f  is the time. For classical sys‐
tems, we are considering conjugate pairs leading to conjugate motions associated to each
variable with the conjugate variable serving as the evolution parameter (see below). This
will be applied to the energy-time conjugate pair. Let us derive some properties in which the
two conjugate variables participate.

1.3. The interplay between conjugate variables

Some relationships between a pair of conjugate variables are derived in this section. We will
deal with general F (z) and G(z) conjugate variables, but the results can be applied to coordi‐
nate and momentum or energy and time or to any other conjugate pair.

The magnitude of the vector field | XG |  is the change of length along the f  direction

|XG|= d q i

df
d q i

df +
d pi

df
d pi

df =
d lF

df  , (5)

where dlF = (dq i)2 + (d p i)2 is the length element.

A unit density with the eigensurface ΣG(g) as support

(z|g)=δ(z - v),     v∈ΣG(g) (6)

is the classical analogue of the corresponding quantum eigenstate in coordinate q | g  and
momentum p | g  representations. When G(z) is evaluated at the points of the support of
(z | g), we get the value g . We use a bra-ket like notation to emphasise the similarity with
the quantum concepts.

The overlap between a probability density with an eigenfunction of F̂  or Ĝ provides margin‐
al representations of a probability density,
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ρ( f )≔ ( f | ρ)≔ ∫( f | z)(z | ρ)dz = ∫δ(z - f )ρ(z)dz ,      f ∈∑
F

( f ). (7)

ρ(g)≔ (g | ρ)≔ ∫(g | z)(z | ρ)dz = ∫δ(z - g)ρ(z)dz ,      g∈∑
G

(g). (8)

But, a complete description of a function in T *Q is obtained by using the two dimensions
unit density (z | f , g)=δ(z - ( f , g)), the eigenfunction of a location in phase space,

ρ( f , g)≔ ( f , g | ρ)≔ ∫( f , g | z)(z | ρ)dz = ∫δ(z - ( f , g))ρ(z)dz ,     ( f , g)∈∑
FG

( f , g). (9)

In this way, we have the classical analogue of the quantum concepts of eigenfunctions of op‐
erators and the projection of vectors on them.

1.4. Conjugate motions

Two dynamical variables with a constant Poisson bracket between them induce two types of
complementary motions in phase space. Let us consider two real functions F(z) and G(z) of
points in cotangent space z ∈ T*Q of a mechanical system, and a unit Poisson bracket be‐
tween them,

{F , G}= ∂ F
∂ q i

∂G
∂ pi

- ∂G
∂ q i

∂ F
∂ pi

=1 , (10)

valid on some domain D=D( ∂ F
∂ q i )∩D( ∂ F

∂ q i )∩D( ∂ F
∂ q i )∩D( ∂ F

∂ q i ), according to the considered func‐

tions F  and G. The application of the chain rule to functions of p and q, and Eq. (10), sug‐
gests two ways of defining dynamical systems for functions F and G that comply with the
unit Poisson bracket. One of these dynamical systems is

d pi

dF = - ∂G
∂ q i  ,      d q i

dF = ∂G
∂ pi

 . (11)

With these replacements, the Poisson bracket becomes the derivative of a function with re‐
spect to itself

{F , G}= ∂ F
∂ q i

∂ q i

∂ F +
∂ pi

∂ F
∂ F
∂ pi

= dF
dF =1 .

(12)
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Note that F  is at the same time a parameter in terms of which the motion of points in phase
space is written, and also the conjugate variable to G.

We can also define other dynamical system as

d pi

dG = ∂ F
∂ q i  ,      d q i

dG = - ∂ F
∂ pi

 . (13)

Now, G is the shift parameter besides of being the conjugate variable to F . This also renders
the Poisson bracket to the identity

{F , G}=
d pi

dG
∂G
∂ pi

+ d q i

dG
∂G
∂ q i = dG

dG =1 . (14)

The dynamical systems and vector fields for the motions just defined are

dz
dG = X F  ,      X F =(- ∂ F

∂ pi
, ∂ F
∂ q i ) ,     and     dz

dF = XG ,      XG =( ∂G
∂ pi

, - ∂G
∂ q i ) (15)

Then, the motion along one of the F  or G directions is determined by the corresponding
conjugate variable. These vector fields in general are not orthogonal, nor parallel.

If the motion of phase space points is governed by the vector field (15), F  remains constant
because

dF
dG = ∂ F

∂ q i
∂ q i

∂G + ∂ F
∂ pi

∂ pi

∂G =
∂ pi

∂G
∂ q i

∂G - ∂ q i

∂G
∂ pi

∂G =0 . (16)

In contrast, when motion occurs in the F  direction, by means of Eq. (16), it is the G variable
the one that remains constant because

dG
dF = ∂G

∂ q i
∂ q i

∂ F + ∂G
∂ pi

∂ pi

∂ F = -
∂ pi

∂ F
∂ q i

∂ F + ∂ q i

∂ F
∂ pi

∂ F =0 . (17)

Hence, motion originated by the conjugate variables F (z) and G(z) occurs on the shells of
constant F (z) or of constant G(z), respectively.

The divergence of these vector fields is zero,

∇ ∙X F = - ∂
∂ q i

∂ F
∂ pi

+ ∂
∂ pi

∂ F
∂ q i =0 ,           ∇ ∙XG = ∂

∂ q i
∂G
∂ pi

- ∂
∂ pi

∂G
∂ q i =0 . (18)

Classical and Quantum Conjugate Dynamics – The Interplay Between Conjugate Variables
http://dx.doi.org/10.5772/53598

7



Thus, the motions associated to each of these conjugate variables preserve the phase space
area.

A constant Poisson bracket is related to the constancy of a cross product because

XG ∧X F = dz
dF ∧

dz
dG =| q̂ p̂ n̂

∂G
∂ p - ∂G

∂ q 0

- ∂ F
∂ p

∂ F
∂ q 0

|= n̂( ∂G
∂ p

∂ F
∂ q - ∂G

∂ q
∂ F
∂ p )= n̂{F , G} . (19)

where n̂ is the unit vector normal to the phase space plane. Then, the magnitudes of the vec‐
tor fields and the angle between them changes in such a way that the cross product remains
constant when the Poisson bracket is equal to one, i.e. the cross product between conjugate
vector fields is a conserved quantity.

The Jacobian for transformations from phase space coordinates to ( f , g) variables is one for
each type of motion:

J =| ∂ q
∂ f

∂ p
∂ f

∂ q
∂ g

∂ p
∂ g

|=| ∂G
∂ p - ∂G

∂ q
∂ q
∂ g

∂ p
∂ g

|= ∂G
∂ p

∂ p
∂ g + ∂G

∂ q
∂ q
∂ g = dG

dg =1 , (20)

and

J =| ∂ q
∂ f

∂ p
∂ f

∂ q
∂ g

∂ p
∂ g

|=| ∂ q
∂ f

∂ p
∂ f

- ∂ F
∂ p

∂ F
∂ q

|= ∂ F
∂ q

∂ q
∂ f + ∂ F

∂ p
∂ p
∂ f = dF

df =1 . (21)

We have seen some properties related to the motion of phase space points caused by conju‐
gate variables.

1.5. Poisson brackets and commutators

We now consider the use of commutators in the classical realm.

The Poisson bracket can also be written in two ways involving a commutator. One form is

{F , G}= ( ∂G
∂ p

∂
∂ q - ∂G

∂ q
∂
∂ p )F = LG, F =1 ,

(22)
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and the other is

{F , G}= ( ∂ F
∂ q

∂
∂ p - ∂ F

∂ p
∂
∂ q )G = LF , G =1 . (23)

With these, we have introduced the Liouville type operators

LF = ∂ F
∂ q

∂
∂ p - ∂ F

∂ p
∂
∂ q = X F ∙∇ ,     and LG = ∂G

∂ p
∂
∂ q - ∂G

∂ q
∂
∂ p = XG ∙∇  . (24)

These are Lie derivatives in the directions of X F  and XG, respectively. These operators gen‐
erate complementary motion of functions in phase space. Note that now, we also have oper‐
ators and commutators as in Quantum Mechanics.

Conserved motion of phase space functions moving along the f  or g  directions can be ach‐
ieved with the above Liouvillian operators as

∂
∂ f = - LG,  and     ∂

∂ g = - LF  . (25)

Indeed, with the help these definitions and of the chain rule, we have that the total deriva‐
tive of functions vanishes, i.e. the total amount of a function is conserved,

d
df = dq

df
∂
∂ q + dp

df
∂
∂ p + ∂

∂ f = dz
df ∙∇ + ∂

∂ f = XG ∙∇ + ∂
∂ f =LG + ∂

∂ f = - ∂
∂ f + ∂

∂ f =0 , (26)

and

d
dg = dq

dg
∂
∂ q + dp

dg
∂
∂ p + ∂

∂ g = dz
dg ∙∇ + ∂

∂ g = X F ∙∇ + ∂
∂ g =LF + ∂

∂ g = - ∂
∂ g + ∂

∂ g =0 . (27)

Also, note that for any function u(z) of a phase space point z, we have that

LF , u(z) =LF u(z)= X F ∙∇u(z)= dz
dG ∙∇u(z)= - ∂

∂ g u(z), (28)

and

LG, u(z) =LGu(z)= XG ∙∇u(z)= dz
dF ∙∇u(z)= - ∂

∂ f u(z) , (29)

which are the evolution equations for functions along the conjugate directions f  and g .

These are the classical analogues of the quantum evolution equation d
dt = 1

iℏ   , Ĥ  for time
dependent operators. The formal solutions to these equations are
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u(z; g)= e -gLF u(z) ,     and    u(z; f )= e - f LGu(z). (30)

With these equations, we can now move a function u(z) on T *Q in such a way that the
points of their support move according to the dynamical systems Eqs. (15) and the total
amount of u is conserved.

1.6. The commutator as a derivation and its consequences

As in quantum theory, we have found commutators and there are many properties based on
them, taking advantage of the fact that a commutator is a derivation.

Since the commutator is a derivation, for conjugate variables F (z) and G(z) we have that, for
integer n,

LG
n , F =n LG

n-1 ,           LG, F n =n F n-1,        LF
n , G =n LF

n-1 ,           LF , G n =n G n-1 . (31)

Based on the above equalities, we can get translation relationships for functions on T *Q. We

first note that, for a holomorphic function u(x)= ∑
n=0

∞
unx n,

u(LG), F = ∑
n=0

∞
unLG

n , F = ∑
n=0

∞
nunLG

n-1 =u '(LG) . (32)

In particular, we have that

e f LG, F = f e f LG . (33)

Then, e f LG is the eigenfunction of the commutator ∙ , F  with eigenvalue f .

From Eq. (32), we find that

u(LG)F - Fu(LG)=u '(LG). (34)

But, if we multiply by u -1(LG) from the right, we arrive to

u(LG)F u -1(LG)= F + u '(LG)u -1(LG). (35)

This is a generalized version of a shift of F , and the classical analogue of a generalization of
the quantum Weyl relationship. A simple form of the above equality, a familiar form, is ob‐
tained with the exponential function, i.e.

e f LGF e - f LG = F + f  . (36)
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This is a relationship that indicates how to translate the function F (z) as an operator. When this
equality is acting on the number one, we arrive at the translation property for F  as a function

F (z; f )= (e f LGF (z))= F (z) e f LG 1 + f  e f LG1= F (z) + f  . (37)

This implies that

d
df F (z; f )=1 , (38)

i.e., up to an additive constant, f  is the value of F (z) itself, one can be replaced by the other
and actually they are the same object, with f  the classical analogue of the spectrum of a
quantum operator.

Continuing in a similar way, we can obtain the relationships shown in the following diagram

Diagram 1.
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where the constant s has units of action, length times momentum, the same units as the
quantum constant ℏ.

Some of the things to note are:

The operator e gLF  is the eigenoperator of the commutator ∙ , G  and can be used to gener‐
ate translations of G(z) as an operator or as a function. This operator is also the propagator
for the evolution of functions along the g  direction. The variable g  is more than just a shift
parameter; it actually labels the values that G(z) takes, the classical analogue of the spec‐
trum of a quantum operator.

The operators LF  and G(z)  are also a pair of conjugate operators, as well as the pair LG

and F (z).

But LF  commutes with F (z) and then it cannot be used to translate functions of F (z), F (z) is
a conserved quantity when motion occurs along the G(z) direction.

The eigenfunction of LF , ∙  and of sLF  is e fG(z)/s and this function can be used to shift LF  as
an operator or as a function.

The variable f  is more than just a parameter in the shift of sLF , it actually is the value that
sLF  can take, the classical analogue of the spectra of a quantum operator.

The steady state of LF  is a function of F (z), but e gF (z)/s is an eigenfunction of LG and of
LG, ∙  and it can be used to translate LG.

These comments involve the left hand side of the above diagram. There are similar conclu‐
sions that can be drawn by considering the right hand side of the diagram.

Remember that the above are results valid for classical systems. Below we derive the corre‐
sponding results for quantum systems.

2. Quantum systems

We now derive the quantum analogues of the relationships found in previous section. We
start with a Hilbert space H of wave functions and two conjugate operators F̂  and Ĝ acting
on vectors in H, and with a constant commutator between them

F̂ , Ĝ = iℏ , (39)

together with the domain D=D(F̂ Ĝ)∩D(ĜF̂ ) in which the commutator holds. Examples of
these operators are coordinate Q̂ and momentum P̂  operators, energy Ĥ  and time T̂  opera‐
tors, creation â† and annihilation â operators.
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The eigenvectors of the position, momentum and energy operators have been used to pro‐
vide a representation of wave functions and of operators. So, in general, the eigenvectors
| f  and | g  of the conjugate operators F̂  and Ĝ provide with a set of vectors for a represen‐
tation of dynamical quantities like the wave functions f | ψ  and g | ψ .

With the help of the properties of commutators between operators, we can see that

F̂ n, Ĝ = iℏF̂ n-1,          F̂ , Ĝn = iℏĜn-1. (40)

Hence, for a holomorphic function u(z)= ∑
n=0

∞
unz n we have that

û(F̂ ), Ĝ = iℏû '(F̂ ) ,         F̂ , û(Ĝ) = iℏû '(Ĝ) ,  (41)

i.e., the commutators behave as derivations with respect to operators. In an abuse of nota‐
tion, we have that

1
iℏ ∙ , Ĝ = d ∙

d F
^  ,           1

iℏ F̂ , ∙ = d ∙
d G

^  . (42)

We can take advantage of this fact and derive the quantum versions of the equalities found
in the classical realm.

A set of equalities is obtained from Eq. (43) by first writing them in expanded form as

û(F̂ )Ĝ - Ĝû(F̂ )= iℏû '(F̂ ),      and      F̂ û(Ĝ) - û(Ĝ)F̂ = iℏû '(Ĝ). (43)

Next, we multiply these equalities by the inverse operator to the right or to the left in order
to obtain

û(F̂ )Ĝû-1(F̂ )= Ĝ + iℏû '(F̂ )û-1(F̂ ),     and    û-1(Ĝ)F̂ û(Ĝ)= F̂ + iℏû-1(Ĝ)û '(Ĝ). (44)

These are a set of generalized shift relationships for the operators Ĝ and F̂ . The usual shift
relationships are obtained when u(x) is the exponential function, i.e.

Ĝ(g) : = e -ig F
^

/ℏĜe ig F
^

/ℏ = Ĝ + g ,     and    F̂ ( f ) : = e if G
^

/ℏF̂ e -if G
^

/ℏ = F̂ + f  . (45)
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Now, as in Classical Mechanics, the commutator between two operators can be seen as two
different derivatives introducing quantum dynamical system as

d P
^ ( f )
df = - ∂G

^ (Q
^

, P
^ )

∂Q
^ = 1

ih P̂( f ), Ĝ(Q̂, P̂) ,        d Q
^ ( f )
df = ∂G

^ (Q
^

, P
^ )

∂ P
^ = 1

iℏ Q̂( f ), Ĝ(Q̂, P̂)  , (46)

d P
^ (g )
dg = ∂ F

^ (Q
^

, P
^ )

∂Q
^ = 1

iℏ F̂ (Q̂, P̂), P̂(g)  ,     and     d Q
^ (g )
dg = - ∂ F

^ (Q
^

, P
^ )

∂ P
^ = 1

ih F̂ (Q̂, P̂), Q̂(g)  , (47)

where

P̂( f )= e if G
^

/ℏP̂e -if G
^

/ℏ ,           Q̂( f )= e if G
^

/ℏQ̂e -if G
^

/ℏ ,  (48)

P̂(g)= e -ig F
^

/ℏP̂e if F
^

/ℏ ,     and     Q̂(g)= e -ig F
^

/ℏQ̂e ig F
^

/ℏ . (49)

These equations can be written in the form of a set of quantum dynamical systems

d ẑ
df = X̂ G ,           X̂ G =( ∂G

^

∂ P
^ , - ∂G

^

∂Q
^ ) ,           d ẑ

dg = X̂ F  ,           X̂ F =(- ∂ F
^

∂ P
^ , ∂ F

^

∂Q
^ ) , (50)

where ẑ =(Q̂, P̂).

The inner product between the operator vector fields is

X̂ F
† ∙ X̂ F =(- ∂ F

^

∂ P
^ , ∂ F

^

∂Q
^ )†∙ (- ∂ F

^

∂ P
^ , ∂ F

^

∂Q
^ )= ( d Q

^

dg )2 + ( d P
^

dg )2≔ ( d l̂ F

dg )2
, (51)

where (d l̂ F )2≔ (dQ̂)2 + (d P̂)2, evaluated along the g  direction, is the quantum analogue of

the square of the line element (dlF )2 =(dq)2 + (dp)2.

We can define many of the classical quantities but now in the quantum realm. Liouville type
operators are

L̂
^

F ≔
1

iℏ F̂ , ∙  ,     and    L̂
^

G≔
1

iℏ ∙ , Ĝ  .
(52)

These operators will move functions of operators along the conjugate directions Ĝ or F̂ , re‐
spectively. This is the case when Ĝ is the Hamiltonian Ĥ  of a physical system, a case in
which we get the usual time evolution of operator.
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There are many equalities that can be obtained as in the classical case. The following dia‐
gram shows some of them:

Diagram 2.
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Note that the conclusions mentioned at the end of the previous section for classical systems
also hold in the quantum realm.

Next, we illustrate the use of these ideas with a simple system.

3. Time evolution using energy and time eigenstates

As a brief application of the abovee ideas, we show how to use the energy-time coordinates
and eigenfunctions in the reversible evolution of probability densities.

Earlier, there was an interest on the classical and semi classical analysis of energy transfer in
molecules. Those studies were based on the quantum procedure of expanding wave func‐
tions in terms of energy eigenstates, after the fact that the evolution of energy eigenstates is
quite simple in Quantum Mechanics because the evolution equation for a wave function

iℏ ∂
∂ t

|ψ > = Ĥ |ψ >  is linear and contains the Hamiltonian operator. In those earlier calcula‐
tions, an attempt to use the eigenfunctions of a complex classical Liouville operator was
made [5-8]. The results in this chapter show that the eigenfunction of the Liouville operator
LH  is e gT (z) and that it do not seems to be a good set of functions in terms of which any other
function can be written, as is the case for the eigenfunctions of the Hamiltonian operator in
Quantum Mechanics. In this section, we use the time eigenstates instead.

With energy-time eigenstates the propagation of classical densities is quite simple. In order
to illustrate our procedure, we will apply it to the harmonic oscillator with Hamiltonian giv‐
en by (we will use dimensionless units)

H (z)= p 2

2 + q 2

2  . (53)

Given and energy scaling parameter Es and the frequency ω of the harmonic oscillator, the
remaining scaling parameters are

ps = mEs ,      qs =
Es

mω 2  ,     ts = 1
ω  . (54)

We need to define time eigensurfaces for our calculations. The procedure to obtain them is
to take the curve q =0 as the zero time curve. The forward and backward propagation of the
zero time curve generates the time coordinate system in phase space. The trajectory generat‐
ed with the harmonic oscillator Hamiltonian is

q(t)= 2Ecos (t + π
2 ) ,     p(t)= 2Esin (t + π

2 ) . (55)

With the choice of phase we have made, q =0 when t =0, which is the requirement for an ini‐
tial time curve. Then, the equation for the time curve is
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 p =q tan (t + π
2 ),   or   q = p cot (t + π

2 ) . (56)

These are just straight lines passing through the origin, equivalent to the polar coordinates.
The value of time on these points is t , precisely. In Fig. 1, we show both coordinate systems,
the phase space coordinates (q, p), and the energy time coordinates (E , t) on the plane. This
is a periodic system, so we will only consider one period in time.

Figure 1. Two conjugate coordinate systems for the classical harmonic oscillator in dimensionless units. Blue and black
lines correspond to the (q, p) coordinates and the red and green curves to the (E , t) coordinates.

At this point, there are two options for time curves. Both options will cover the plane and
we can distinguish between the regions of phase space with negative or positive momen‐
tum. One is to use half lines and t  in the range from -π to π, with the curve t =0 coinciding
with the positive p axes. The other option is to use the complete curve including positive
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and negative momentum values and with t∈ ( - π / 2, π / 2). In the first option, the positive
momentum part of a probability density will correspond to the range t∈ ( - π / 2, π / 2), and

the negative values will correspond to t∈ (-π, - π
2 )∪ (π / 2, π). We take this option.

Now, based on the equalities derived in this chapter, we find the following relationship for a
marginal density dependent only upon H (z), assuming that the function ρ(H ) can be writ‐
ten as a power series of H , ρ(H )=∑

i
ρiH

i,

e -τLH ρ(H )=∑
n

( - τ)n

n ! LH
n ∑

i
ρiH

i =∑
i

ρiH
i =ρ(H ) ,  (57)

where we have made use of the equality LH H =0. Then, a function of H  does not evolve in
time, it is a steady state. For a marginal function dependent upon t , we also have that

e -τLH ρ(t)= e τd /dtρ(t)=ρ(t + τ) . (58)

where we have made use of the result that d
dt = - LH . Therefore, a function of t  is only shifted

in time without changing its shape.

For a function of H  and t  we find that

e -τLH ρ(H , t)= e -τd /dtρ(H , t)=ρ(H , t + τ) . (59)

This means that evolution in energy-time space also is quite simple, it is only a shift of the
function along the t  axes without a change of shape.

So, let us take a concrete probability density and let us evolve it in time. The probability
density, in phase space, that we will consider is

ρ(z)= H (z)e -((q-q0)2+( p- p0)2)/2σ 2

,  (60)

with (q0, p0)= (1,2) and σ =1. A contour plot of this density in phase-space is shown in (a) of
Fig. 2. The energy-time components of this density are shown in (b) of the same figure. Time
evolution by an amount τ correspond to a translation along the t  axes, from t  to t + τ, with‐
out changing the energy values. This translation is illustrated in (d) of Fig. 2 in energy-time
space and in (c) of the same figure in phase-space.

Recall that the whole function ρ(z) is translated in time with the propagator e -τLH . Then,
there are two times involved here, the variable t  as a coordinate and the shift in time τ. The
latter is the time variable that appears in the Liouville equation of motion
dρ(z ; τ)

dτ = - LH ρ(z;τ).
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Figure 2. Contour plots of the time evolution of a probability density on phase-space and on energy-time space. Initial
densities (a) in phase space, and (b) in energy-time space. (d) Evolution in energy-time space is accomplished by a shift
along the taxes. (c) In phase space, the density is also translated to the corresponding time eigensurfaces.

This behaviour is also observed in quantum systems. Time eigenfunctions can be defined in
a similar way as for classical systems. We start with a coordinate eigenfunction |q >  for the
eigenvalue q =0 and propagate it in time. This will be our time eigenstate

|t >  = e
it H

^

ℏ  |q =0>  . (61)

The projection of a wave function onto this vector is

< t|ψ > = <q =0|e -
it H

^

ℏ |ψ> =ψ(q=0; t) , (62)

Which is the time dependent wave function, in the coordinate representation, and evaluated
at q =0. This function is the time component of the wave function.

The time component of a propagated wave function for a time τ is

< t|ψ(τ)> = <q =0|e -
it H

^

ℏ e -
iτ H

^

ℏ |ψ> = < t + τ|ψ>  . (63)

Then, time evolution is the translation in time representation, without a change in shape.
Note that the variable τ is the time variable that appears in the Schrödinger equation for the
wave function.
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Now, assuming a discrete energy spectrum with energy eigenvalue En and corresponding
eigenfunction |n > , in the energy representation we have that

<n|ψ(τ)> = <n|e -
iτ H

^

ℏ |ψ> = e -
iτEn

ℏ <n|ψ>  , (64)

i.e. the wave function in energy space only changes its phase after evolution for a time τ.

4. Concluding remarks

Once that we have made use of the same concepts in both classical and quantum mechanics,
it is more easy to understand quantum theory since many objects then are present in both
theories.

Actually, there are many things in common for both classical and quantum systems, as is the
case of the eigensurfaces and the eigenfunctions of conjugate variables, which can be used as
coordinates for representing dynamical quantities.

Another benefit of knowing the influence of conjugate dynamical variables on themselves
and of using the same language for both theories lies in that some puzzling things that are
found in one of the theories can be analysed in the other and this helps in the understanding
of the original puzzle. This is the case of the Pauli theorem [9-14] that prevents the existence
of a hermitian time operator in Quantum Mechanics. The classical analogue of this puzzle is
found in Reference [15].

These were some of the properties and their consequences in which both conjugate variables
participate, influencing each other.
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1. Introduction

If the classical behavior of a given quantum system is chaotic, how is it reflected in the
quantum properties of the system? To elucidate this correspondence is the main theme of
the quantum chaos study. With the advent of nanophysics techniques, this has become also
of experimental importance. With the advent of new technology, various quantum systems
are now challenging us. These include nano-scale devices, laser trapping of atoms, the
Bose-Einstein condensate, Rydberg atoms, and even web of chaos is observed in superlattices.

In this note we devote ourselves to the investigation of the quantum scars which occurs in
the Anisotropic Kepler Problem (AKP) – the classical and quantum physics of an electron
trapped around a proton in semiconductors. The merit of AKP is that its chaotic property
can be controlled by changing the anisotropy from integrable Kepler limit down ergodic
limit where the tori are completely collapsed and isolated unstable periodic orbits occupy
the classical phase space. Thus in AKP we are able to investigate the classical quantum
correspondence at varying chaoticity. Furthermore each unstable periodic orbit (PO) can be
coded in a Bernoulli code which is a large merit in the formulation of quantum chaos in term
of the periodic orbit theory (POT) [1, 2, 6].

The AKP is an old home ground of the quantum chaos study. Its low energy levels were used
as a test of the periodic orbit theory in the seminal work of Gutzwiller [3-7]. Then an efficient
matrix diagonalization scheme was devised by Wintgen et al. (WMB method) [8]. With this
method, the statistics of up to nearly 8000 AKP quantum levels were examined and it was
found that the quantum level statistics of AKP change from Poisson to Wigner distribution
with the increase of mass anisotropy [9]. Furthermore, an intriguing classical Poincaré
surface of section (POS) was found at medium anisotropy (γ ≡ m(light)/m(heavy) = 0.8),
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which indicates remnants of tori (cantori) in the classical phase space [9]. Thus, over two
decades from the early 70th, AKP was a good testing ground of theories (along with billiards)
as well as a constant source of important information to quantum chaos studies. However,
there has not been much recent theory investigation on AKP. Especially, to our knowledge,
the quantum scar of the classical periodic orbits in AKP has not been directly examined, even
though intriguing phenomena was discovered by Heller [10] in 1984. On the other hand, for
an analogous system – the hydrogen under a magnetic field (diamagnetic Kepler problem
(DKP)), the scars of periodic orbits were extensively studied using highly efficient tool called
as scar strength functions [11]. We note that AKP is by far simpler; for DKP it is necessary to
code the POs by a sequence of symbols consisting of three letters.

Recently the level statistics of AKP was examined from the random matrix theory view
[12]. It was considered that the AKP level statistic in the transitive region from Poisson to
Wigner distribution correspond to the critical level statistics of an extended GOE random
matrix theory and it was conjectured that the wave functions should exhibit characteristic
multifractality. This aspect has been further developed in [13, 14]; it is considered that
Anderson transition occurs in the quantum physics of a class of physical systems such as
AKP and periodically driven kicked rotator in their critical parameter regions. Further very
recently a well devised new solid state experiment has been conducted for AKP and ADKP
[15, 16]. We also refer [17] for a recent overview including this interesting conjecture.

Such is the case we have recently conducted AKP high accuracy matrix diagonalization
based on the WMB method. This is not a perturbation calculation; the anisotropy term
is not regarded as a perturbation and the full Hamiltonian matrix is diagonalized. Thus
the approximation comes only from the size of the matrix. But, as a trade-off, a scaling
parameter is unavoidably included; it is crucial to choose a correct parameter value at every
anisotropy parameter. We have derived a simple rule of thumb to choose a suitable value
[17]. After comparing with original WMB result in Sturmian basis, we have also worked
with tensored-harmonic-wavefunction basis (THWFB) [11], which is more suitable for the
Husimi function calculation to investigate the quantum scars. Our contribution here is the
calculation of anisotropy term in the AKP Hamiltonian in THWFB [17], which is harder than
the diamagnetic case. Comparing the results from two independent bases we have verified
that both results agree completely thus the choices of scaling parameters (in both bases) are
validated.

Aimed by these numerical data, we report in section 2 salient evidences of quantum scars
in AKP for the first time. We compare the features of various known observables; thus
this section will serve as a comparative test of methods and fulfills the gap in the literature
pointed out above. Most interesting is the test using the scar strength function. We show
that even in the ergodic regime (γ = 0.2), we can quantitatively observe that prominent
periodic orbits systematically contribute to the quantum theory endowed with random
energy spectrum.

In section 3 we investigate that how the scaring phenomena are affected by the variation of
the anisotropy parameter. It is well known that the energy levels show successive avoiding
crossings. On the other hand, in the periodic orbit formula, each term in the series for the
density of states (DOS) consists of a contribution of an unstable PO with a pole (with an
imaginary part given by the Lyapunov exponent of the PO) at the Bohr-Sommerfeld-type
energy; thus each term smoothly varies with the anisotropy. We show that how these two
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seemingly contradicting features intriguingly compromise. The localization patterns in the
wave functions or Husimi functions are swapped between two eigenstates of energy at every
avoiding crossing. Repeating successively this swap process characteristic scarring patterns
follow the POs responsible to them. In this sense the quantum scarring phenomena are
robust. We conclude in section 4.

2. Manifestation of Scars in AKP

We first explain how we have prepared the energy levels and wave functions. Then we
introduce the indispensable ingredients to study the scars in AKP. After briefly explaining
Husimi functions, we explain periodic orbit theory. The quantum scars will be observed
along the classical unstable periodic orbits.

2.1. Matrix diagonalization

2.1.1. AKP Hamiltonian

The AKP Hamiltonian in the dimensionless form is given by

HG =
1

2µ
p2

x +
1

2ν
(p2

y + p2
z)−

1

r
(1)

where r =
√

x2 + y2 + z2 and µ > ν[1,4] with which POT was formulated in the history,

or equivalently it may be also written as [9,11] (Harmonic basis)

H88
W =

1

2
(p2

x + p2
y) +

γ

2
p2

z −
1

r
(2)

with γ = ν/µ = 1/µ
2 or

H87
W = p2

x + p2
y + γp2

z −
2

r
(3)

as used in WMB (Sturmian basis) [8]. We recapitulate POT predictions in terms of (1), our
formula for AKP eigenvalue calculation in tensored harmonic wave function basis in terms of
(2), and we discuss quantum scars using energy values in (3) in order to facilitate comparison
with literature.

2.1.2. Matrix diagonalization in Sturmian basis

We here summarize WMB method for efficient matrix diagonalization.

Firstly, in the Sturmian basis
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〈~r|nℓm〉 =
1

r

√

n!

(2ℓ+ n + 1)!
e−

λr
2 (λr)ℓ+1L2ℓ+1

n (λr)Yℓm(θ, ϕ) (4)

with a scaling parameter λ, the Schrödinger equation of the AKP becomes a matrix equation:



−λ

←→

∆(3) + (1− γ)λ

←→

∂
2

∂z2
− 2

←→

1

r



 Ψ =
E

λ

←→

Id Ψ (5)

Dividing the whole equation by λ and packing E/λ
2 into a parameter ε, one obtains

←→

M Ψ ≡



−

←→

∆(3) + (1− γ)

←→

∂
2

∂z2
− ǫ
←→

Id



 Ψ =
2

λ
Ψ. (6)

This ǫ is to be fixed at some constant value. In principle any value will do, but for finite size
of Hamiltonian matrix, the best choice is given [17] approximately

ε
∗
≃ −

1

4
γ. (7)

With this choice, we can get the largest number of reliable energy levels at a given matrix
size. The ratio of reliable levels to the matrix size can be estimated as

Re f f ≃
√

γ. (8)

After fixing ε, the diagonalization of (6) is performed for 2/λi s and finally we obtain the
energy eigenvalues by

Ei = ελ
2
i . (9)

2.1.3. Matrix diagonalization in Sturmian basis

For the (tensored) harmonic wave function basis (THWFB) [11] we convert the Hamiltonian
of AKP into the Hamiltonian of two of two-dimensional harmonic oscillators.

For this purpose semi-parabolic coordinates are introduced

µν = ρ =
√

x2 + y2,
1

2
(µ2
− ν

2) = z, φ = tan−1
( y

x

)

(10)
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and the AKP Schrödinger equation becomes

[

−

1

2 (µ2 + ν2)

(

∆
(2)
µ + ∆

(2)
ν

)

+
1 − γ

2

∂
2

∂z
2
−

2

µ2 + ν2

]

|Ψ〉 = E |Ψ〉. (11)

Multiplying by µ
2 + ν

2and swapping the Coulombic interaction term and the E term one
obtains

[

−

1

2

(

∆
(2)
µ + ∆

(2)
ν

)

+ |E|

(

µ
2 + ν

2
)

+
1 − γ

2

(

µ
2 + ν

2
)

∂
2

∂z
2

]

|Ψ〉 = 2 |Ψ〉 . (12)

Thanks to the semi-parabolic coordinates, the Coulombic singularity has removed [19] for
γ = 1. Corresponding to the Sturmian basis with a scaling parameter λ in (4), we introduce
the harmonic wave function basis

〈µ, ν | i, j, κ〉 =
κ

π
L

i
(κµ

2)L
j
(κν

2) exp

(

−

µ
2 + ν

2

2

)

with a scaling parameter κ and, corresponding to ε in (6), we introduce a parameter

ε̃ = 2
|E|

κ2
(13)

and we solve (12) after transforming it into the matrix equation of WMB form with
eigenvalues Λn = 2/κn. The matrix element calculation of the mass anisotropy term in
(12) is somewhat involved and we refer to [17] for detail. Energy levels are then determined
by

En = −

κ
2
n

2
ε̃ = −

2

Λ2
n

ε̃ (14)

The best value of ε̃ is given by

ε̃
∗
≈ γ (15)

which is similar to (7).

We have found precise agreement between our calculations by the Sturmian basis and by the
harmonic oscillator basis which in turn validates our choices of scaling parameter ε and ε̃.

For the calculation of Husimi functions and scar strength function which uses Husimi
functions, we use the THWFB since the projection of the basis functions to the Gaussian
packets are easy to calculate [17].
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2.2. Husimi function

Husimi function is defined via the scalar product of the wave function |ψ〉 with a coherent
state(CHS) |q0, p0〉 of the system [11]:

WHus
ψ (q0, p0) = |〈ψ | q0, p0〉|

2
. (16)

A detailed account is given in [17].

2.3. Periodic orbit theory

2.3.1. Periodic orbit theory and the density of state

Let us recapitulate Gutzwiller’s periodic orbit theory [4,20]. The starting point is Feynman‘s
path integral formula for the propagator of a particle from q′ to q′′ during the time interval
0 to T;

K
(

q′′, q′, T
)

≡

〈

q′′
∣

∣ exp

(

−i
H

h̄
T

)

∣

∣q′
〉

=
∫ q′′

q′
D [q] e

i
h̄

∫ T

0
L(q, q̇, t)dt (17)

The Green function (response function) is given by the Fourier transformation of the
propagator

G
(

q′′, q′, E
)

≡ −

i

h̄

∫ ∞

0
dte

iEt
h̄ K

(

q′′, q′, T
)

where E has infinitesimally small imaginary part for convergence. Thus we have

G
(

q′′, q′, E
)

=
〈

q′′
∣

∣

1

E + iε − Ĥ

∣

∣q′
〉

= −

i

h̄

∫ ∞

0
dte

iEt
h̄

[

∫ q′′

q′
D [q] e

i
h̄

∫ T

0
L(q, q̇, t)dt

]

(18)

By a stationary approximation we obtain a semiclassical formula for the Green function

G̃
(

q′′, q′, E
)

≃ ∑
Γ

AΓ exp(
i

h̄
SΓ − i

νΓ

2
) (19)

where Γ denotes a classically arrowed orbit, νΓ is the number of conjugate points on the
orbit, and the amplitude AΓ accounts for the Van Vleck determinant. Note that the principal

function in (18) is changed into the action S =
∫ q′′

q′ pdq and the phase iπ/4 from the stationary

point approximation is shifted into AΓ.

Now the density of states is given by
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ρ(E) ≡ ∑
n

δ(E − En) = −

1

π
Im

(

Trn

(

1

E + iε − Ĥ

))

(20)

where in the second equality an identity 1/(x + iε) = P(1/x) − iπδ(x) is used and trace
is taken over all energy eigenstates {|n〉}. Trading this tracing with the tracing over the
eigenstates of coordinate operator {|q〉}, we obtain a semiclassical approximation for the
DOS

ρ(E) ≈ −

1

π
Im

∫

dq′ G̃(q′′, q′, E)
∣

∣

q′′=q′ = −

1

π
Im

∫

dq′ ∑
Γ

AΓ exp

(

i

h̄
SΓ − i

νΓ

2

)

.

(21)

The integration over q′ can be again approximated by a stationary phase approximation.
Because

p′′ =
∂S(q′′, q′)

∂q′′
, p′ = −

∂S(q′′, q′)

∂q′
(22)

the stationary phase condition gives

0 =
∂S(q′, q′)

∂q′
= p′′ − p′ (23)

which dictates the periodic orbits. We obtain finally the periodic orbit theory formula for the
DOS

ρ(E) ≃ ρ(E) + Im ∑
r∈PO

Tr

πh̄ ∑
n 6=0

exp
{

in
[

Sr
h̄ −

π

2 lr
]}

[det((Mr)n
− 1)]

1
2

(24)

Here the first sum runs over all primitive POs and the n sum counts the repetitions of each
peridic orbit; Tr, Sr, and lr denote the period, action, and Maslov index of the primary PO,
and the matrix M stands for the monodromy matrix of the primary PO.

In AKP m = 0 sector, the motion is restricted in a fixed plane which includes the heavy axis,
and the problem essentially reduces to two dimensional one. (Later on the three dimensional
feature is recovered only by the proper choice of the Maslov index [4]). As for AKP unstable
periodic orbits, M has two eigenvalues eu and e−u (hyperbolic case) and the determinant in
(24) is given by

1

2
[det(Mn

− 1)]
1
2 = −i sinh (nu/2) (25)
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2.3.2. Naming of a periodic orbit

In AKP every PO can be coded by the sign of the heavy axis coordinate when the heavy axis
is crossed by it. Note that number of the crossings must be even (2nc) for the orbit to close.

In this note we shall denote the PO according to Gutzwiller’s identification number along
with the Bernoulli sequence of POS. (See Table 1 in ref. [3] which gives a complete list1

of POs up to nc = 5 for the anisotropy γ = 0.2. ) For instance, PO36(+ +−++−) is the
identification number 6 among nc = 3 POs.

2.3.3. The contribution of a periodic orbit to the density of state

The contribution of a single periodic orbit r to the DOS is estimated by a resummation of the
sum over the repetition j (after the approximation sinh x ≈ ex/2),

ρ(E)|r ≈ Tr ∑
m

ur h̄/2

(Sr − 2πh̄(m + l/4))2 + (ur h̄/2)2
. (26)

This gives Lorentzian peak at

Sr = 2πh̄(m + l/4) (27)

similar to the Bohr-Sommerfeld formula. In AKP the action S is given as

Sr(E) =
Tr

√

−2E
. (28)

Hence the peak position of the Lorentzian form in the energy is given by

Er,m = −

1

2

(

Tr

2πh̄(m + 1)

)2

, (29)

where Maslov index l = 4 for three dimensions is taken.

We are aware that it is meant by (24) that the exact DOS with sharp delta function peaks on
the energy axis corresponds to the sum of all PO contributions [20] (assuming convergence).

It is the collective addition of all POs that gives the dos. But, still, it is amusing to observe
that the localization of wave functions occurs around the classical periodic orbits as we will
see below.

1 In [3, 5] an amazing approximation formula that gives a good estimate of the action of each periodic orbit from its
symbolic code is presented. The trace formula has a difficulty coming from the proliferation of POs of long length.
This approximation gives a nice way of estimating the sum. The table is created to fix the two parameters involved
in the approximation. We thank Professor Gutzwiller for informing us of this formula a few years ago.
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2.4. Scars as observed in the probability distributions and Husimi functions

2.4.1. The manifestation of the fundamental FPO(+−)

Let us start exploring the scars in AKP first by investigating the case of the fundamental
periodic orbit FPO (+−) which reduces the Kepler ellipse orbit in the limit γ = 1.

In Figure 1, we show the wave function squared in the µν plane and the Husimi distribution
in the µ pµ plane. The FPO is shown by red line and compared with the probability
distributions in the in the µν plane. At high anisotropy the orbit is largely distorted. Still
at chosen energy levels (upper row) we find clear localization around the FPO for both
anisotropies. In the lower row we have displayed other energy eigenstates. For these energy
levels we see also characteristic probability distribution patterns but not around FPO. Now
let us look at the Husimi distributions. In case of energies in the upper diagrams we see very
clearly that around the Poincaré section of the FPO (the fixed points) the Husimi functions
show clear scars, while in the lower we see anti-scars, the Husimi density is very low at the
fixed points. It is clear that Husimi functions are superior observables. In this demonstration
of scars we have scanned thousands of energy eigenstates and picked examples. Next task is
to use the ability of POT predictions (24) to locate the scaring levels.

Figure 1. Scar and anti-scar phenomena with respect to the fundamental periodic orbit. The left set is for the anisotropy

γ = 0.2 and right for γ = 0.6. In each set, the upper and lower row display prominent scar and anti-scar respectively, while the
left and right columns exhibit the probability distribution on the µν plane and Husimi distribution on the µ pµ plane (ν = 0).
The fundamental orbit is drawn by a red line on the µν plane and its Poincaré section on the µ pµ plane by red points. The

respective eigenvalues are E786, E787, E438, E459 in the m = 0, ℓ =even sector. Classical kinematical boundaries are shown by

yellow circles.
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2.4.2. PO prediction and AKP Scars

As for the FPO the POT works quite well. Thus for this test we have selected more
complicated PO PO22 (+ + +−) and PO36 (+ +−++−). These orbits wind around the
heavy axis forth and back and presumably correspond to the bounce orbit in the billiard.2

The top row in Fig.2 shows the prediction from POT – the contribution of the single orbit to
the DOS (26). We observe clearly the peak regions of POT prediction contains at least one
energy eigenstate which shows the scar of the orbit. On the other hand we have checked that
the relevant orbit pattern does not appear in the non-peak region of the POT prediction.

In this analysis the Husimi function again yields unmistakable information on the scaring.

Figure 2. γ = 0.6, l = even, m = 0. The upper diagrams: The red and green curves are contributions to the density of states
ρ(E) from bouncing-type periodic orbits PO22 (+ + +−) and PO36 (+ +−++−) respectively and the peak positions are
compared with the l even m = 0 energy levels from matrix diagonalization (WMB with tensored harmonic oscillator basis). The
lower: The quantum scars of these periodic orbits are exhibited on the probability distributions and the Husimi functions. (cf.

Fig. 1).

2 We thank Professor Toshiya Takami for explaining his articles [21,22] and pointing us this point.
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2.5. Scars as analyzed by the scar strength function

2.5.1. Scar strength functions

In an extensive analysis of scars in the diamagnetic hydrogen, a tool called as scar strength
function (SSF) is presented [11]. It is defined as

IPO
n =

∮

PO
d4s WHus

ψn

(

µ, ν, pµ, pν

)

(

∮

PO
d4s

)

−1

where the integral is to be performed along the PO with d4s =
√

dµ2 + dν2 + dp2
µ + dp2

ν..

This quantity is exploiting to what extent a given PO is inducing localization along it in
the Husimi function of a given energy eigenstate. Then spectral scar strength function is
introduced as

IPO (E) = ∑
n

IPO
n δ (E − En)

This shows how the given PO affects each energy eigenstate in one function.

2.5.2. The use of SSF IPO(E)

Let explore the region of high anisotropy (γ = 0.2) where the classical phase space is
occupied by the unstable periodic orbits and chaoticity is rather high. We explore this region
by the ability of IPO(E).

We start from FPO (+−) in Fig. 3. The upper is the POT prediction curve, the middle is
the SSF along with real eigenvalues and the bottom is as usual a direct comparison of FPO
with wavefunctions squared as well as Husimi functions. The SSF is the quantum measure
of scaring of a particular PO in consideration, while the FPO prediction is composed from
purely classical information for the PO. When the curve of the contribution from a PO peaks,
the SSF either peaks or reaches its minimum (10−10). The agreement in the energy values of
the peaks (or dips) is quite remarkable. But we do not know why anti-scar occurs here. This
anti-scar is interesting in that it produces a bright hallow just of the same size and position
of the scar but the central core is missing.

2.5.3. IPO(E) for various POs and their Fourier transform

Let us now examine the case of several POs simultaneously in Fig. 4. The profiles, the SSF,
and the Fourier transforms to the action space are listed in three columns. As Wintgen et
al. write as ‘the scars are the rules rather than exception’ [11] we find that particular energy
eigenstates give salient high scar function value while the other states give very low value
of order even 10−10. Further more the Fourier transform IPO(S) of IPO(E)shows sequential

peaks at equal ∆S. We compare in Fig. 5 ∆SQM
r and SCl

r (the measured spacing of the orbit
and the action of the PO). They agree excellently; the POs live in quantum theory.
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γ=0.2   FPO(＋－)  210-302th

E     = - 0.002398239 E     = - 0.002226257 E     = - 0.002073 275 E     = - 0.001958 291E     = - 0.002567223

Figure 3. Contribution of FPO (+−) to AKP. Upper two diagrams: The (+−) contribution as a function of energy predicted
by POT compared with the scar strength extraction from each of the energy eigenstates. Lower two diagrams: the scaring

status of (+−) at levels indicated by arrows are exhibited with respect to wave functions squared and Husimi functions. (cf.
Fig. 1 and Fig. 2). Scar and anti-scar appear alternatively.

2.6. Direct phase space observation of Scaring orbit

The scar strength function is a useful tool which gives a list of numerical values which shows
succinctly to which eigenstates the periodic orbit exerts its effect strongly. But we certainly
want also visualized picture how the PO turns up in the 4 dimensional phase space. (Because
H = const., the actual independent variables are three, and we choose µ, ν, pµ.) The sample
pictures are shown in Fig.6.

3. Robustness of Scaring under the Variation of Anisotropy Parameter

3.1. Swap of the patterns under avoiding crossings

It is well known that the patterns of wave functions (and of Husimi distributions) are
swapped between the energy eigenstates via the avoiding level crossings, which is easy to
demonstrate in terms a simple coupling model of two levels. Fig. 7 is a typical example of
this phenomenon.

It is shown in [21,22] that with the aid of the diabatic transformation one can trace the
localization on the transformed basis until very near to the minimum gap with an explicit
evidence in the billiard scars. We have verified this issue in AKP. Furthermore it is
conjectured that the long periodic orbits may interpolates two shorter orbits and they may
be the cause of the avoiding crossings in this way. We are testing this conjecture in AKP.
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Figure 4. γ = 0.2 Profiles of PO, the scar strength function, and Fourier transformation of scar strength function to the action

space.
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Figure 5. Plot of (∆SQM
r , SCl

r ) for periodic orbits r = FPO, PO22, PO23, PO36, where ∆SQM
r is measured from the third

column of Fig.4 and SCl
r is the action value of the classical orbit.

Figure 6. Two samples of density plot of Husimi functions in the 3 dimensional µ − ν − pµ space. Left: γ =0.2, WHus for
E786 = −0.0007201. Red orbit is the FPO (+−). Right: γ=0.6, WHus for E579 = −0.0005681. Blue and green orbits are
respectively PO23 (+ + −−) and PO37 (+ + −−+−).

3.2. Robust association of localization with periodic orbits

We have posed the following question in the introduction of this chapter.

1. Energy levels exhibit randomness at high anisotropy and change their values randomly
repeating successive avoiding crossings when the anisotropy parameter is varied
gradually.
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Figure 7. Avoiding level crossing between 260th and 261th energy eigen states under the variation of the anisotropy γ ∈

[0.6, 0.606]. Both the wave function squared and Husimi functions are swapped around the avoiding crossing.

2. On the other hand the peak locations (29) of the DOS as predicted by a single PO change
smoothly with the anisotropy and the scar tends to be observed in the energy eigenstate
around the peak position in the DOS as in Fig.2.

Aren’t the two issues in contradiction? We have found that they can live together (within
approximation of the fluctuation size). Most important point is that the swap of the
localization patterns at avoiding crossing is in harmony with the transportation of them by
the responsible PO orbits. Besides the POT prediction (29) does not imply the exact location
of theappearance of the scar.

It has some allowance as recognized by the width of the modulation of SSF[11].

Let us explain this by Fig. 8. Here the anisotropy γ is varied from 0.6 to 0.7 with inclement
0.001. As for (1) we indeed observe both random fluctuation of energy levels as well as many
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avoided crossings. As for (2), we have picked the bouncing-type periodic orbit PO22 as an
example. The predicted peak position (29) of its contribution to DOS varies with the change
of γ as shown by a red (almost straight) curve. This PO22 produces a salient cross-shaped scar
at E260 (and E275) at γ=0.6. We have investigated how the cross-shaped scar travels in the
spectrum space suffering many avoiding crossings. It reaches at E276 (and E291) at γ =0.7

276th

277th

275th

262th

261th

260th

259th

258th

γ=0.6

274th

273th

282th

γ=0.65

281th

284th

283th

γ
0.65

278th

277th

276th

275th

274th

γ=0.7

266th

267th

268th

269th

270th

γ=0.65

PO 22(＋＋＋－)E

Figure 8. The spectrum lines in the wide interval γ ∈ [0.6, 0.7] investigated with increment 0.001. The cross-shaped scar by
PO22 travels within a belt bounded by two dashed lines. The POT prediction (24) is exhibited by a red curve.
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and the track in between is enclosed by a belt shown by two dashed lines. We clearly observe
that the belt is closely associated by the POT prediction curve. In this sense the association
is robust.

4. Conclusion

We have presented ample examples of scaring phenomena for the first time in AKP.
Especially we have found how the fluctuation of energy levels and smooth POT prediction for
the scaring levels are compromised by using the advantage of AKP endowed by a chaoticity
changing parameter.

Although the theme is old, the scaring phenomenon is fascinating and we hope this
contribution fulfills a gap in the literature.
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1. Introduction

Constantin Carathéodory, a Greek-born, well-known German mathematician, is rarely
mentioned in connection to physics. One of his most remarkable contributions to
mathematics is his approach to the calculus of variations, the so-called Carathéodory’s
“royal road” [1]. Among physicists, Carathéodory’s name is most frequently related to his
contributions to the foundations of thermodynamics [2] and to topics of classical optics,
though, as a pupil of Hermann Minkowski, he also worked on the development of especial
relativity. In our opinion, however, Caratheodory’s formulation of the variational problem
deserves to be better known among physicists. For mathematicians, features like rigor
and non-redundancy of basic postulates are of utmost importance. Among physicists, a
more pragmatic attitude is usually behind efforts towards a theoretical construction, whose
principal merit should be to offer an adequate description of Nature. Such a construction
must provide us with predictive power. Rigor of the theoretical construction is necessary
but not sufficient. Elegance – which is how non-redundancy and simplicity usually manifest
themselves – can be sometimes just a welcome feature. Some other times, however, elegance
has become a guiding principle when guessing at how Nature works. Nevertheless, once
the basic principles of a theoretical construction have been identified, elegance may recede
in favor of clarity, and redundancy might become acceptable. Such differences between
the perspectives adopted by mathematicians and physicists have been presumably behind
the different weight they have assigned to Caratheodory’s achievements in the calculus of
variations. To be sure, variational calculus does play a central role in physics, nowadays even
more than ever before. It is by seeking for the appropriate Lagrangian that we hope to find
out the most basic principles ruling physical behavior. Concepts like Feynman’s path integral

©2012 De Zela, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 De Zela; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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have become basic tools for the calculation of probability amplitudes of different processes,
as well as for suggesting new developments in quantum field theory. Symmetry, such a basic
concept underlying those aspects of Nature which appear to us in the form of interactions
among fundamental particles, is best accounted for within the framework of a variational
principle.

Within the domain of classical physics, only two fundamental interactions have been
addressed: the gravitational and the electromagnetic interactions. The theoretical
construction may correspondingly rest on two variational principles, one for gravitation and
the other for electromagnetism. These principles lead to so-called “equations of motion”: the
Maxwell and the Lorentz equations for electromagnetism, and the Einstein and the geodesic
equations for gravitation. All these differential equations can be derived as Euler-Lagrange
equations from the appropriate Lagrangian or Lagrangian density.

The usual approach to variational calculus in physics starts by considering small variations
of a curve which renders extremal the action integral

∫

Ldt, with L being the Lagrangian.
This leads to the Euler-Lagrange equations of motion. By submitting L to a Legendre
transformation one obtains the corresponding Hamiltonian, in terms of which the Hamilton
equations of motion can be established. By considering canonical transformations of these
equations, one arrives at the Hamilton-Jacobi equation for a scalar function S(t, x). It is last
one that has been used to connect the classical approach with the quantum one, e.g., in
Madelung’s hydrodynamic model [3] or in Bohm’s “hidden variables” approach [4]. This
appears natural, because both the Hamilton-Jacobi and the Schrödinger equation rule the
dynamics of quantities like S(t, x) and ψ(t, x), respectively, which are scalar fields. Their
scalar nature is in fact irrelevant; they could be tensors and spinors. The relevant issue is
that while the Euler-Lagrange and the Hamilton equations refer to a single path, quantum
equations address a field. The quantum-classical connection thus requires making a field
out of single paths, something which occurs by going to the Hamilton-Jacobi equation,
or else by establishing a path-integral formulation, as Feynman did. The latter considers
a family of trajectories and assigns a probability to each of them. Now, Carathéodory’s
approach has the advantage of addressing right from the start a field of extremals. In fact,
as the calculus of variations shows, a solution of the extremal problem exists only when the
sought-after extremal curve can be embedded in a field of similar extremals. Carathéodory
exploited this fact by introducing the concepts of “equivalent variational problems” and
the “complete figure”. It is then possible to elegantly derive from a single statement the
Euler-Lagrange and the Hamilton equations, as well as the Hamilton-Jacobi equation, all
of them as field equations. The familiar Euler-Lagrange and Hamilton equations can be
obtained afterwards by singling out a particular extremal of the field. But – as already
stressed – it is not the inherent elegance of the formulation what drives our interest towards
Carathéodory’s approach. It is rather its potentiality as a bridge between classical and
quantum formulations what should be brought to the fore. Indeed, Carathéodory’s approach
can provide new insights into the connection between classical and quantum formulations.
These insights could go beyond those already known, which were obtained by extending
the Hamilton-Jacobi equation with the inclusion of additional terms. By dealing with the
other field equations that appear within Carathéodory’s approach, one may hope to gain
additional insight.

The present chapter, after discussing Carathéodory’s approach, shows how one can
classically explain two phenomena that have been understood as being exclusively quantum
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mechanical: superconductivity and the response of a sample of charged particles to
an external magnetic field. The London equations of superconductivity were originally
understood as an ad-hoc assumption, with quantum mechanics lying at its roots. On the other
hand, according to classical mechanics there can be no diamagnetism and no paramagnetism
at all. We will deal with these two issues, showing how it is possible to classically derive the
London equations and the existence of magnetic moments. This is not to say that there is
a classical explanation of these phenomena. What is meant is that, specifically, the London
equations of superconductivity can be derived from a classical Lagrangian. It is worth noting
that a previous attempt in this direction, due to W. F. Edwards [5], proved false [6–8]. The
failure was due to an improper application of the principle of least action. The approach
presented here is free from any shortcomings. It leads to the London equations both in the
relativistic and in the nonrelativistic domains. It should be stressed that this does not explain
the appearance of the superconducting phase. It only shows how the London equations
follow from a purely classical approach. Also the expulsion of a magnetic field from the
interior of a superconductor, i.e., the Meissner effect, follows. That is, perfect diamagnetism
can be explained classically, as has been shown recently [9] but under restricted conditions.
This is in contradiction with the Bohr-van Leeuwen theorem, according to which there can
be no classical magnetism [10]. This point has been recently discussed (see, e.g., [11]) and
it has been shown that the Bohr-van Leeuwen theorem does not hold when one uses the
Darwin Hamiltonian, which was proposed back in 1920. The Darwin Hamiltonian contains
additional terms with respect to the standard one that is used to describe a charged particle
interacting with an electromagnetic field. Applying Carathéodory’s approach it can be shown
that it is unnecessary to go beyond the standard Hamiltonian or Lagrangian to conclude
that a magnetic response may be explained classically. The main point is that the Bohr-van
Leeuwen theorem did not consider a constant of the motion which in Carathéodory’s
approach naturally arises. By considering this constant of the motion, the possibility of
magnetic response in a sample of charged particles automatically appears.

After dealing with the above two cases, the rest of the chapter will be devoted to show how
gauge invariance can be considered within Carathéodory’s framework. This may have some
inspiring effect for future work aiming at exploring the quantum-classical correspondence.

2. Carathéodory’s royal road

2.1. Preliminaries

Let us begin by recapitulating the approach usually employed in physics. For the sake
of describing a particle’s motion we use a variational principle based on a Lagrangian L.
When describing the dynamics of a field we use instead a variational principle based on a
Lagrangian density L. The Euler-Lagrange equations are, respectively,

d

dt

(

∂L

∂ẋ
i

)

−

∂L

∂x
i
= 0, (1)

for a Lagrangian L(t, x
i, ẋ

i), with i = 1, . . . , n, and

∂

∂x
µ

(

∂L

∂(∂µψi)

)

−

∂L

∂ψi
= 0, (2)
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for a Lagrangian density L(ψi, ∂µψ
i) that depends on n fields ψ

i and their derivatives ∂µψ
i

with respect to space-time coordinates xµ. The convention of summing over repeated indices
has been used in Eq.(2), as we will do henceforth. The above equations are necessary
conditions that are derivable from the action principle

δI = 0, (3)

with the action given by I =
∫

Ldt for the particle motion and I =
∫

Ld4x for the field
dynamics. The variation δ means that we consider different paths joining some fixed initial
and end points – hypersurfaces in the case of

∫

Ld4x – and seek for the path that affords I
an extremal value. Curves which are solutions of the Euler-Lagrange equations are called
extremals.

Let us concentrate on the case I =
∫

Ldt in what follows and sketch how the
standard derivation of Eq.(1) is usually obtained: one takes the variation δ

∫

Ldt =
∫

dt
[

(∂L/∂xi)δxi + (∂L/∂ẋi)δẋi
]

, and observing that δẋi = d(δxi)/dt, integration by parts

gives δI =
∫

dt
(

∂L/∂xi
− d(∂L/∂ẋi)/dt

)

δxi = 0, where we have considered that δxi = 0

at the common endpoints of all the paths involved in the variation. The arbitrariness of δxi

leads to Eq.(1) as a necessary condition for δI to be zero.

The important case of a time-independent Lagrangian (∂L/∂t = 0) leads to the conservation
of the quantity

∂L

∂ẋi
ẋi
− L (4)

along an extremal, as can be seen by taking its time-derivative and using Eq.(1). By
introducing the canonical momenta pi = ∂L(t, x, ẋ)/∂ẋi and assuming that we can solve these
equations for the ẋi as functions of the new set of independent variables, ẋi = ẋi(t, xi, pi), we
can define a Hamiltonian H(t, x, p) through the expression given by Eq.(4), written in terms
of the new variables (t, xi, pi):

H(t, x, p) = pi ẋ
i(t, x, p)− L(t, x, ẋ(t, x, p)). (5)

The Euler-Lagrange equations are then replaced by the Hamilton equations:

dxi

dt
=

∂H

∂pi
,

dpi

dt
= −

∂H

∂xi
. (6)

Eq.(5) can be seen as a Legendre transformation leading from the set (xi, ẋi, t) to the set
(xi, pi, t) by means of the function H(t, x, p). Taking the differential of H(t, x, p) on the
left-hand side of Eq.(5),

dH =
∂H

∂t
dt +

∂H

∂xi
dxi +

∂H

∂pi
dpi, (7)
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and on the right-hand side,

dH = pidẋi + ẋidpi −
∂L

∂xi
dxi

−

∂L

∂ẋi
dẋi

−

∂L

∂t
dt, (8)

and replacing ∂L/∂ẋi by pi, after equating both sides we see that Eqs.(6) must hold true,
together with

∂H

∂t
= −

∂L

∂t
. (9)

A third way to deal with the motion problem is given by the Hamilton-Jacobi equation.
In order to introduce it, one usually starts by considering canonical transformations, i.e.,
those being of the form {xi, pi} → {Xi(x, p, t), Pi(x, p, t)} and leaving the action I invariant.
They lead to equations for {Xi, Pi} that are similar to Eqs.(6) but with a new Hamiltonian,
K(t, X, P). From the set of canonical variables {xi, pi, Xi, Pi} only 2n of them are independent.
One considers then four types of transformations, in accordance to the chosen set of
independent variables: {xi, Xi

}, {xi, Pi}, {pi, Xi
}, and {pi, Pi}. The transformation from

the old to the new canonical variables can be afforded by a so-called “generating function”
S, which depends on the chosen set of independent variables and the time t. The old and
new Hamiltonians are related by K = H + ∂S/∂t. If we succeed in finding a transformation
such that K = 0, the Hamilton equations for K can be trivially solved. One is thus led to
seek for a transformation whose generating function is such that K = 0. When the set of
independent variables is {xi, Pi} the pi are given by pi = ∂S/∂xi , while the new momenta
have constant values Pi = αi in virtue of K = 0. This last equation reads, in terms of the
original Hamiltonian,

∂S/∂t + H(t, xi, ∂S/∂xi) = 0. (10)

This is the Hamilton-Jacobi equation. It has played an important role beyond the context
in which it originally arose, becoming a sort of bridge that links classical and quantum
mechanics. As a first attempt to obtain a quantum-mechanical formalism it was Sommerfeld
who, following Bohr, considered action-angle variables for the case of a conservative
Hamiltonian, ∂H/∂t = 0. This Hamiltonian was furthermore assumed to allow the
splitting of S(t, xi, αi) as S = Et − ∑j Wj(xi; αi). Restricting the treatment to cases where

the relationship between the pi and the xi, given through pi = ∂S/∂xi, is such that
the orbits pi = pi(xj, αj) are either closed (libration-like) or else periodic (rotation-like),
action-angle variables can be introduced as new canonical variables [12]. By imposing that
the action variables are integer-multiples of a fundamental action, i.e., Planck’s h, it was
possible to obtain a first formulation of quantum mechanics. This version is known as “old
quantum mechanics”. A second attempt went along Schrödinger’s reinterpretation of the
left-hand-side of Eq.(10) as a Lagrangian density of a new variational principle. Schrödinger
considered first the case ∂H/∂t = 0, with H = ∑i=1,3 p2

i /2m + V, and introduced ψ through
S = k ln ψ, with k a constant. From the left-hand side of Eq.(10), after multiplying it
by ψ

2, Schrödinger obtained an expression that he took as a Lagrangian density: L =
∑i=1,3 k2(∂ψ/∂xi)2/2m + (V − E)ψ2. Inserting this L into the Euler-Lagrange equations (2)
one readily obtains the (time-independent) Schrödinger equation. The constant k could be
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identified with ℏ by comparison with Bohr’s energy levels in the case of the hydrogen atom
(V ∼ 1/r). We recall that parallel to this approach, another one, due to Heisenberg, Born,
Jordan and Dirac, was constructed out of a reformulation of the action-angle formalism
applied to multiple periodic motions. This reformulation led to a formalism in which the
Poisson brackets were replaced by commutators, and the canonical variables by operators.

Coming back to the general action principle, we have so far followed the road usually
employed by physicists. This road was build out of manifold contributions, made at different
times and with different purposes. As a consequence, it lacks the unity and compactness that
a mathematical theory usually has. At the beginning of the 20th century mathematicians
were concerned with the construction and extension of a sound theory for the calculus of
variations. It is in this context that Carathéodory made his contributions to the subject.
They were thus naturally conceived from a mathematical viewpoint. Apparently, they
added nothing new that could be of use for physicists, and so passed almost unnoticed
to them. Our purpose here is to show how Carathéodory’s formulation can provide
physical insight and inspire new approaches. In the following, we give a short account of
Carathéodory’s approach. We will try to show the conceptual unity and potential usefulness
that Carathéodory’s formulation entails. Such a unity roots on the so-called complete figure
that Carathéodory introduces as a central concept of his approach. It serves as the basis of a
formulation in which the Euler-Lagrange, the Hamilton and the Hamilton-Jacobi equations
appear as three alternative expressions of one and the same underlying concept.

2.2. The non-homogeneous case

Let us first consider the so-called non-homogeneous case, i.e., one in which the action principle
– and with it the Euler-Lagrange equation – is not invariant under a change of the curve
parameter. In physics, this parameter usually corresponds to time. By solving the equations
of motion one obtains not only the geometrical path traced by the particle – or group of
particles – being described, but also how, i.e., the rate at which this path is traveled. The
non-homogeneous case applies to non-relativistic formulations.

The equation of motion follows from the variational principle δ
∫

L(t, xi, ẋi)dt = 0. As
physicists, we usually visualize the variational principle as expressing how Nature works:
among all possible paths joining two given points, Nature chooses the one which affords
∫

Ldt an extremal value. In some sense, this presupposes a non-local behavior, as two
distant points determine the extremal curve that should join them. This is reminiscent of
the action-at-a-distance invoked by earlier formulations, in whose context the variational
principle originally arose. The approach proposed by Carathéodory is more in accordance
with our modern view of local interactions. He replaced the problem of finding an extremum
for the action integral by one of finding a local extremal value for a function. Thus, the field
concept is at the forefront, playing a major role.

Let us recall some important assumptions [1, 13–15] concerning the central problem of
variational calculus:

a) To find an extremal curve xi = xi(t) that satisfies δ
∫

Ldt = 0 requires that we restrict
ourselves to a simply-connected domain. Though apparently technical, this point might
entail a profound physical significance.
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b) An extremal curve exists only in case that it can be embedded in a whole set of extremals,
a so-called “Mayer field”.

Now, having a field of curves is equivalent to defining a vector field vi(t, xj): at each point
xj we just define vi(t, xj) to be tangent to the unique curve which goes through xj. In other
words, the curves that constitute the field are integral curves of vi(t, xj):

dxi(t)

dt
= vi(t, x(t)). (11)

Finding all the extremals xi(t) is thus equivalent to fixing vi(t, x). Once we have vi(t, x),
the extremals can be obtained by integration of Eq.(11). The task of finding vi(t, x)
can be approached locally. To this end, observe that the extremals we are seeking, for
which δ

∫

Ldt = 0, are also extremals of the modified, “equivalent variational problem”,
δ
∫

(L − dS/dt)dt = 0. This can be written as

δ

∫

(L − ∂tS − ẋi
∂iS)dt = 0. (12)

Now, assume that we are dealing with a particular Lagrangian L∗(t, x, v), for which the
following requirements are met: First, it is possible to find a vector field v such that
L∗(t, x, v) = 0. Second, L∗(t, x, w) > 0 for any other field w 6= v. It is then easy to show that
the integral curves of v are extremals of the variational problem δ

∫

L∗dt = 0. Of course, not
every Lagrangian will satisfy the requirements we have put on L∗; but by making use of the
freedom we have to change our original problem into an “equivalent variational problem”, we
let L∗ = L − dS/dt and seek for a vector field v such that

L(t, x, v)− ∂tS − vi
∂iS = 0 (13)

identically, the value zero being an extremal one with respect to variations of v. This happens
for a suitably chosen S(t, x) that remains fixed in this context. The function S(t, x) must
be just the one for which the value of

∫

(∂tS + ẋi
∂iS)dt =

∫

L(t, x, ẋ)dt, this last integral
being calculated along an extremal curve. In other words, among all equivalent variational
problems we seek the one for which the conditions put upon L∗ are fulfilled. Thus, for the
extremal value being, e.g., a minimum, it must hold Eq.(13), while L(t, xi, wi)− ∂tS−wi

∂iS >

0 for any other field w 6= v. In this way our variational problem becomes a local one: v has
to be determined so as to afford an extremal value to the expression at the left-hand side of
Eq.(13). Thus, taking the partial derivative of this expression with respect to v and equating
it to zero we obtain

∂S

∂xi
=

∂L(t, x, v(t, x))

∂vi
. (14)

Eqs.(13) and (14) are referred to as the fundamental equations in Carathéodory’s approach.
From these two equations we can derive all known results of the calculus of variations.
We see, for instance, that defining pi = ∂L(t, x, v)/∂vi, Eq.(14) gives pi = ∂S(t, x)/∂xi. If
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we now introduce, by means of a Legendre transformation, the Hamiltonian H(t, x, p) =
vi(t, x, p)pi − L(t, x, v(t, x, p)), Eq.(13) reads

∂tS + H
(

t, xi, ∂iS
)

= 0, (15)

which is the Hamilton-Jacobi equation. In this way we obtain an equation for S, the
auxiliary function that was so far undetermined. It is also straightforward to deduce the
Euler-Lagrange and the Hamilton equations within the present approach. For the sake of
brevity, we will show how to derive the Euler-Lagrange equations in the homogeneous case
only. The non-homogeneous case can be treated along similar lines.

2.3. The homogeneous case

Let us turn into the so-called homogeneous problem, the one appropriate for a relativistic
formulation. In relativity, we consider a space-time continuum described by four variables
xµ. Our variational principle is of the same form as before, i.e., δ

∫

Ldτ = 0; but we require
it to be invariant under Lorentz transformations and under parameter changes. Indeed, all
we need in order to fix the motion is the geometrical shape of the extremal curve xµ(τ)
in space-time, so that the parameter τ has no physical meaning and the theory must be
invariant under arbitrary changes of it. This is achieved when L does not depend explicitly
on τ and, furthermore, it is homogeneous of first degree in the generalized velocities ẋµ :
L(xµ, αẋµ) = αL(xµ, ẋµ), for α ≥ 0. From this requirement, it follows the identity

ẋµ ∂L(x, ẋ)

∂ẋµ
= L, (16)

which holds true for homogeneous Lagrangians. This property, however, precludes us from
introducing a Hamiltonian in a similar manner as we did in the non-homogeneous case. We
come back to this point later on.

As before, we seek also now for a velocity field v(x) and a function S(xµ), such that

L(x, v)− vµ
∂µS = 0, (17)

the value zero being an extremal one with respect to v, for a suitably chosen S(x) that remains
fixed in this context. For a maximum, for example, it must hold L(xµ, wµ)− wµ

∂µS < 0 for

any other field1 w 6= v. Differentiating the left-hand side of Eq.(17) with respect to v and
equating the result to zero we get

∂S

∂xµ
=

∂L(x, v)

∂vµ
. (18)

1 The considered fields wα are essentially different from vα . A field wα = φvα , with φ a scalar function, is essentially
the same as vα .
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From the fundamental equations, (17) and (18), we can derive all known results also in this
case. In particular, we see that S(x) must satisfy the integrability conditions

∂
2S

∂xµ∂xν
=

∂
2S

∂xν∂xµ
, (19)

which are, as we will shortly see, at the very basis of the Euler-Lagrange equations. Indeed,
from Eq.(17) we obtain, by taking the derivative with respect to xµ,

∂L

∂xµ
+

∂L

∂vσ

∂vσ

∂xµ
=

∂vσ

∂xµ

∂S

∂xσ
+ vσ ∂

2S

∂xµ∂xσ
. (20)

On using Eq.(18), Eq.(20) reduces to

∂L

∂xµ
= vσ ∂

2S

∂xµ∂xσ
. (21)

From Eqs.(18) and (19) we thus obtain

∂
2S

∂xµ∂xσ
=

∂
2S

∂xσ∂xµ
=

∂
2L

∂xσ∂vµ
+

∂
2L

∂vτ∂vµ

∂vτ

∂xσ
, (22)

so that

∂L

∂xµ
= vσ ∂

2L

∂xσ∂vµ
+

∂
2L

∂vτ∂vµ

∂vτ

∂xσ
vσ. (23)

If we now evaluate this last relation along a single extremal, dxµ/dτ = vµ(x(τ)), we
obtain, after recognizing the right hand side of Eq.(23) as d(∂L/∂vµ)/dτ, the Euler-Lagrange
equation:

∂L

∂xµ
=

d

dτ

(

∂L

∂ẋµ

)

. (24)

Eq.(23) is therefore more general than the Euler-Lagrange equation. The latter follows from
Eq.(23); but not the other way around.

For the non-homogeneous case we obtain a similar result

d

dt

(

∂L

∂ẋi

)

−

∂L

∂xi
= 0, (25)

but with the important difference that now the curve-parameter t is fixed: the solution of
Eq.(25) provides us not only with the geometrical shape of the extremal curve, but also with
the rate at which this curve is traced back.
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2.4. The arbitrariness of the curve parameter

Let us see how the arbitrariness of the curve parameter τ manifests itself when dealing with
fields of extremals. It is usual to take advantage of such an arbitrariness in order to simplify
the equations of motion. It is well known that in the cases of electromagnetism, for which
L(x, ẋ) = mc(ηµν ẋµ ẋν)1/2 + e

c Aµ(x)ẋµ, and gravitation, for which L(x, ẋ) = (gµν(x)ẋµ ẋν)1/2,

by choosing τ such that (ηµν ẋµ ẋν)1/2 = 1, and (gµν(x)ẋµ ẋν)1/2 = 1, respectively, the
equations of motion acquire a simple form. We are so led to ask whether the field v satisfying
the fundamental Eqs.(17) and (18) has a corresponding arbitrariness. That this is indeed the
case can be seen as follows. We wish to prove that in case vµ satisfies Eqs.(17) and (18),
so does wµ = φvµ, with φ(x) > 0 an arbitrary, scalar function. From the homogeneity of
the Lagrangian we have L(xµ, φvµ) = φL(xµ, vµ), so that it is seen at once that wµ satisfies
Eq.(17) if vµ does. Indeed, multiplying Eq.(17) by φ(x) > 0 leads to

φ(x)
(

L(x, v)− vµ
∂µS

)

= L(x, φv)− (φvµ) ∂µS = L(x, w)− wµ
∂µS. (26)

The Lagrangian of the “equivalent variational problem” is L∗ = L − vµ
∂µS. Clearly,

L∗(x, φv) = φL∗(x, v), and hence it follows that

∂L∗(x, w)

∂vµ
=

∂L∗(x, w)

∂wν

∂wν

∂vµ
=

∂L∗(x, w)

∂wµ
φ. (27)

On the other hand,

∂L∗(x, w)

∂vµ
=

∂

∂vµ
(φL∗(x, v)) = φ

∂L∗(x, v)

∂vµ
= φ

(

∂L

∂vµ
−

∂S

∂xµ

)

= 0, (28)

on account of Eq.(17). In view of Eq.(27) we have then that ∂L∗(x, w)/∂wµ = 0. In summary,
Eqs.(17,18) hold with v being replaced by w, so that both velocity fields solve our variational
problem for the same S(x). We have thus the freedom to choose φ according to our
convenience. The integral curves of vµ(x) and wµ(x) coincide with each other, differing
only in their parametrization.

2.5. Hamiltonians

The introduction of a Hamiltonian offers no problem in the non-homogeneous case, where
it was defined as H(xi, pi) ≡ ẋi(t, x, p)pi − L(t, x, ẋ(t, x, p)), with pi ≡ ∂L/∂ẋi; the condition
for solving ẋi in terms of (xj, pj) being assumed to be fulfilled: det(∂2L/∂ẋi

∂ẋj) 6= 0. It is
then straightforward [1, 13] to obtain

∂H

∂pi
= ẋi =

dxi

dt
, (29)

which constitute half of the Hamilton equations. It is also easy to sow that ∂H/∂t =
−∂L/∂t and ∂H/∂xi = −∂L/∂xi. Using this last result together with pi = ∂L/∂ẋi in the
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Euler-Lagrange equation, Eq.(25), one gets

dpi

dt
= −

∂H

∂xi
, (30)

the other half of the Hamilton equations.

In the homogeneous case, as already mentioned, the corresponding expression for H, i.e.,
ẋµ

∂L/∂ẋµ
− L, vanishes identically by virtue of Eq.(16) . It is nonetheless generally possible

to introduce a Hamiltonian in a number of ways. Carathéodory’s approach leads to an
infinite set of Hamiltonians, from which we can choose the most suitable one for the problem
at hand. We will not go into the details here, but refer the reader to the standard literature
[1, 13] in which this material is discussed at length.

3. Electromagnetism: The London equations and the Bohr-van Leeuwen

theorem

3.1. The London equations of superconductivity

As mentioned before, there are only two interactions relevant to classical physics:
electromagnetism and gravitation. In electromagnetism, the Lagrangian is given by

L(x, ẋ) = mc(ηµν ẋµ ẋν)1/2 +
e

c
Aµ(x)ẋµ. (31)

Here, ηµν = diag(+1,−1,−1,−1) is the Minkowski metric tensor and summation over
repeated indices from 0 to 3 is understood. The electromagnetic field is given by the
four-potential Aµ, whose components are φ(t, xi) and A(t, xi).

We are now in a position to show how the London equations follow as a logical consequence
of the relations presented above, when we use Eq.(31). From Eqs.(18) and (19) we obtain, in
general,

∂

∂xµ

(

L(x, v(x))

∂vν

)

−

∂

∂xν

(

L(x, v(x))

∂vµ

)

= 0. (32)

This equation can be used to obtain the relativistic version of the London equations: As
stated before, because the Lagrangian is homogeneous of first order in v, this vector field can
be chosen so as to satisfy (vµvµ)1/2 = 1 in the region of interest. From Eq.(32) and Eq.(31)
we get

∂vν

∂xµ
−

∂vµ

∂xν
+

e

mc2

(

∂Aν

∂xµ
−

∂Aµ

∂xν

)

= 0. (33)

This condition leads to the London equations, if we go to the non-relativistic limit, v2/c2
≪ 1.

Indeed, after multiplication by ne, with n meaning a uniform particle density, Eq.(33) can be
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brought into the form:

∂jν
∂xµ

−

∂jµ

∂xν
+

ne2

mc2

(

∂Aν

∂xµ
−

∂Aµ

∂xν

)

= 0, (34)

where jµ ≡ nevµ. In the non-relativistic limit Eq.(34) reduces, for µ, ν = i, k = 1, 2, 3, to

∂jk
∂xi

−

∂ji
∂xk

= −

ne2

mc

(

∂Ak

∂xi
−

∂Ai

∂xk

)

, (35)

where we have used ẋµ(τ) = γ(1, v(t)/c) with γ ≡ (1 − v2/c2)−1/2
≈ 1. In three-vector

notation this equation reads

∇× j = −

ne2

mc
∇×A = −

ne2

mc
B, (36)

which is the London equation [16]. Eq. (36), together with the steady-state Maxwell equation,
∇× B = (4π/c)j, lead to ∇

2B =
(

4πne2/mc2
)

B, from which the Meissner effect follows.
By considering now the case µ = 0, ν = k = 1, 2, 3 in Eq.(34), we obtain

∂jk
∂x0

−

∂j0
∂xk

=
ne2

mc2

(

∂A0

∂xk
−

∂Ak

∂x0

)

. (37)

Multiplying this equation by −c2 and using three-vector notation it reads, with j0 = cρ,

∂j

∂t
+ c2

∇ρ =
ne2

m
E. (38)

This equation was also postulated by the London brothers as part of the phenomenological
description of superconductors. It was guessed as a relativistic generalization of the equation
that should hold for a perfect conductor. Without the ρ-term (which in our case vanishes due
to the assumed uniformity of n) it is nothing but the Newton, or ”acceleration” equation
for charges moving under the force eE. The ρ-term was originally conceived as a relativistic
“time-like supplement ” to the current j [16]. We see that the London equations are in
fact the non-relativistic limit of an integrability condition, Eq.(33), which follows from the
variational principle δ

∫

Lds = 0 alone. The physical content of this procedure appears when
we interpret the integral curves of v(x) as streamlines of an ideal fluid. By contracting Eq.(33)
with vµ and using vµ

∂νvµ = 0 (which follows from vµvµ = 1) we obtain

vµ ∂vν

∂xµ
=

e

mc2
Fνµvµ, (39)
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with Fνµ = ∂ν Aµ − ∂µ Aν, which relates to E and B by Ei = F0i and Bi = −ǫijkFjk/2, with ǫijk

the totally antisymmetric symbol and latin indices running from 1 to 3. The nonrelativistic
limit of Eq.(39) reads

∂v

∂t
+ (v · ∇) v =

e

m

(

E +
v

c
×B

)

. (40)

The left-hand side of this equation is the convective derivative, which reduces to dv/dt by

restriction to a single extremal. Analogously, Eq.(39) becomes the well-known Lorentz

equation when evaluated along a single extremal: dxµ/ds = vµ(x(s)). In this case,

vµ(x(s))∂vν(x(s))/∂xµ = dvν(s)/ds. Thus, we see that the Lorentz equation for a single

particle follows from the more general Eq.(39). For µ = 0 Eq.(39) gives an equation

which can be derived from Eq.(40) by scalar multiplication with v. This is the energy

equation. It is worth mentioning that this last fact is a particular manifestation of a

well-known result valid for homogeneous Lagrangians: only n − 1 out of the n Euler-Lagrange

equations are independent from each other in this case, due to the identity ẋµEµ = 0, with

Eµ ≡ d(∂L/∂ẋµ)/dτ − ∂L/∂xµ being the Euler vector[13]. Such a result follows from Eq.(16).

Some remarks are in place here. Our derivation of the London equations brings into evidence

that they have a validity that goes beyond their original scope. They cannot be seen by

themselves as characterizing the phenomenon of superconductivity. Instead, they describe a

“dust” of charged particles moving along the extremals of the Lagrangian given by Eq.(31).

The field Aµ under which these particles move could be produced by external sources, or

else be the field resulting from the superposition of some external fields with those produced

by the charges themselves. In this last case, the Maxwell and London equations constitute a

self-consistent system. Only under special circumstances, the system of charges can be in a

state of collective motion that may be described by the field of extremals obeying Eq.(39). This

is the superconducting phase, for which quantum aspects are known to play a fundamental

role[17]. However, once the phase transition from the normal to the superconducting state

has occurred, it becomes possible to describe some aspects of the superconducting state by

classical means. This is a case analogous to the one encountered in laser theory. Indeed,

several features of a lasing system can be understood within a semi-classical laser theory,

whereby the electromagnetic field is treated as a classical, non-quantized field. Perhaps

some plasmas could reach the limit of perfect conductivity. However, in order to produce

a Meissner-like effect some conditions should be met. It is necessary, for instance, that the

available free-energy of the plasma is sufficient to overcome the magnetic field energy, so

that the magnetic field can be driven out of the plasma [5–8]. The so-called helicity of the

system should also play a role, attaining the value zero for the superconducting state to be

reached [9].

In any case, we see that Carathéodory’s approach can be a fruitful one in physics. In the case

of superconductivity, from the sole assumption that the Lagrangian be given by Eq.(31) one

can derive all the equations that were more or less guessed, in the course of almost twenty

five years, since Kamerlingh Onnes discovered superconductivity in 1911, until the London

model was proposed, in 1935. But beyond this, there are other aspects that can be illuminated

by following Carathéodory’s approach, as we shall see next.
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3.2. Beyond the London equations

Let us address the case when the charge density ρ is not constant, as previously assumed.

There is a close relationship between the norm of our velocity field, i.e., φ(x) =
(

vµvµ
)1/2

,
and ρ(x). It can be shown that it is always possible to choose vµ so that the continuity
equation ∂µ jµ = 0 holds. Here, jµ := ρvµ and ρ = necφ

−1, n being a free parameter whose
dimensions are 1/volume. Indeed, in view of the aforementioned possibility of changing the
field vµ by wµ = φ̃vµ, we can always satisfy the continuity equation. For, if ∂µ jµ = − f , we

may choose j̃µ = φ̃jµ such that ∂µ j̃µ = φ̃∂µ jµ + jµ∂µφ̃ = 0. Putting ψ = log φ̃, we need to
solve jµ∂µψ = f , which is always possible.

Coming back to our Lagrangian of Eq.(31), by replacing it in Eq.(18), we obtain

vµ =
φ

mc

(

∂µS −

e

c
Aµ

)

, (41)

with φ :=
(

vµvµ
)1/2

. Using the gauge freedom of Aµ we may replace this field by

A′

µ = Aµ −

c

e
∂µS, (42)

in which case Eq.(41) reads

vµ = −φ

( e

mc2

)

A′

µ. (43)

From this equation and vµvµ = φ
2 we get

A′

µ A′µ =

(

mc2

e

)2

. (44)

Eq.(32) applied to the present case gives

∂

∂xµ

(

vν

φ

)

−

∂

∂xν

(

vµ

φ

)

+
e

mc2

(

∂Aν

∂xµ
−

∂Aµ

∂xν

)

= 0. (45)

It is clear that this equation holds for A′

µ as well. Eq.(43) is a particular solution of this
equation. By Fourier-transforming Eq.(45) we obtain, with wµ := vµ/φ,

kµwν
− kνwµ = −

e

mc2
(kµ Aν

− kν Aµ) . (46)

As for the Fourier-transformed version of Eq.(43), it is given by

wµ(k) = −

e

mc2
A′

µ(k). (47)
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As we saw before, vµ can be chosen so that jµ = necwµ = (nec/φ)vµ ≡ ρ(x)vµ satisfies
the continuity equation ∂µ jµ = 0. The factor nec is included for dimensional purposes: c/φ

has no dimensions and n is a free parameter such that ne has dimensions of charge per unit
volume. While n is a constant, ρ(x) is a non-uniform charge density. Thus, the scalar field

φ =
(

vµvµ
)1/2

, the norm of the velocity field, is related to the density ρ(x) by ρ = necφ
−1.

Note that ∂µ jµ = 0 implies a restriction on ∂µvµ. To see this, observe that ∂µ jµ = ρ∂µvµ +
vµ

∂µρ = 0. This can be rewritten as

vµ

φ
∂µφ = f , (48)

with ∂µvµ = f . On the other hand, from vµvµ = φ
2 it follows that φ∂µφ = vν

∂µvν. Eq.(48)
then implies that

vµvν

2φ2
(∂µvν + ∂νvµ) = ∂σvσ. (49)

It is also worth noting that instead of Eq.(39) we have now

vµ ∂vν

∂xµ
=

eφ

mc2
Fνµvµ +

(

vµ ∂

∂xµ
ln φ

)

vν =
eφ

mc2
Fνµvµ + f vν. (50)

We could argue that the second term on the right hand side is not physical, because we could
choose φ = 1, as we did before, getting Eq.(39). However, such a choice is not available any
longer when we invoke charge (or matter) conservation. In such a case, ∂µ jµ = 0, and we
must relate jµ with vµ by jµ = ρvµ, so that the above considerations apply.

Coming back to Eq.(47), we see that it implies that ∂µ A′µ = 0, i.e., A′µ is in the Lorentz
gauge. Because of A′

µ = Aµ − (c/e) ∂µS, the scalar function S must satisfy

∂µ∂
µS ≡ �S =

e

c
∂µ Aµ. (51)

Let us consider now Maxwell equations, ∂µFµν = (4π/c)jν. If we take jν to be the same as
before, we are assuming that Fµν is generated by the same currents upon which this field
is acting. That is, we are considering a closed system of charges and fields. We have then,
using Fµν = ∂

µ A′ν
− ∂

ν A′µ and ∂µ A′µ = 0,

∂µFµν = �A′ν =
4π

c
jν, (52)

while from Eq. (47) we get

A′ν = −

mc

ne2
jν, (53)
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so that we can write Eq. (52) as

�jν = −

4πne2

mc2
jν ≡ −

1

λ2
L

jν, (54)

in which we have identified the London penetration length λL. This equation can be rewritten
in the form of the Klein-Gordon equation:

(

�+ λ
−2
L

)

jν = 0, (55)

with λL replacing λC = h̄/mc, the Compton wavelength that appears in the Klein-Gordon
equation. For the steady-state (∂0 jν = 0), Eq.(54) reads

∇
2 jν = +

1

λ2
L

jν. (56)

Taking the usual configuration of a superconductor filling half the space (z > 0), the solution
of this equation (satisfying appropriate boundary conditions: limz→∞ jν(z) = 0) is

jν(z) = exp

(

−

z

λL

)

jν(0). (57)

In general, however, Eq.(55) admits several other solutions that depend on the assumed
boundary conditions. Note that Eq.(55) corresponds to a field-free case of the Klein-Gordon
equation. This is because jν ∼ A′ν, so that electromagnetic fields and current share the
same dynamics. This is a consequence of having assumed that the Euler-Lagrange equations
(written as field equations) and Maxwell equations conform a closed system. Notably, A′ν

behaves like a source-free Proca field [18] whose mass (in units of inverse length) is fixed by
λL.

3.3. The Bohr-van Leeuwen theorem

Dropping the prime, Eq.(53) gives jν = −(ne2/mc)Aν, which can be rewritten as vν =
−

(

e/mc2
)

Aν, with vνvν = 1. We get thus vν Aν = −mc2/e, which in the nonrelativistic limit
reads

v · A =
mc3

e
. (58)

This condition is important for the following reason. Our considerations have confirmed the
possibility of classical diamagnetism, in contradiction with the Bohr-van Leeuwen theorem.
Therefore, this theorem should be modified. Eq.(58) represents a constant of the motion that
must be taken into account when constructing the phase density for a system of charged
particles. The original version of the Bohr-van Leeuwen theorem did not consider condition
(58). We will show next how this condition modifies the theorem.

Advances in Quantum Mechanics56



Charathéodory’s “Royal Road” to the Calculus of Variations: A Possible Bridge Between Classical and Quantum Physics 17

10.5772/53843

The Bohr-van Leeuwen theorem addresses a sample of charged particles subjected to
a uniform magnetic field B. The nonrelativistic Lagrangian of the system is L =
∑

N
i=1(mi/2)v2

i + (ei/c)vi·A. We can take A = B × r/2. The partition function is given by

Z =

+∞
∫

−∞

...

+∞
∫

−∞

exp

[

−β

(

∑
i

ẋi ∂L

∂ẋi
− L

)]

∣

∣

∣

∣

∂
2L

∂ẋi∂ẋj

∣

∣

∣

∣

dN
τ, (59)

with dN
τ a properly normalized volume element in configuration space. We see that

the terms in L that depend on magnetic potentials are linear in the velocities, so that
the integrand in Z turns out to be independent of magnetic potentials. The Bohr-van
Leeuwen theorem then follows: because Z is independent of magnetic potentials, there
is no effect on the system in response to B. This prediction changes when we take into
account the constant of motion, Eq.(58), or equivalently, G := (eB/2mc) · (r × v) =c2. For
a sample of identical particles we define Gs := ∑i(eB/2mc) · (ri×vi) ≡∑i ωL · (ri×vi),
with ωL the Larmor frequency. The phase density D for the corresponding Hamiltonian

H = ∑i(2m)−1(pi − (ei/c)Ai)
2 is given by D = Z−1 exp(−βH − λGs), with Z being

the partition function that normalizes D and β = (kBT)−1. Both λ and β are Lagrange
multipliers, introduced to take account of the restrictions imposed by Eq. (58) and the fixed
mean energy, respectively. Thus,

D =
1

Z
exp

[

∑
i

(

−β(pi − (e/c)Ai)
2

2m
+ λ(ωL · ri×vi)

)

]

. (60)

The single-particle velocity distribution that can be obtained from D is proportional to

exp

[

−

βm

2

(

v −

λ

βm
ωL×r

)2

+
λ

2

2βm
(ωL×r)2

]

. (61)

This gives the mean velocity at r. We have thus 〈v〉 = (λ/βm)ωL×r, which determines the
value of the Lagrange multiplier as λ = βm. The phase density can finally be written as

D =
1

Z
exp

[

−β

(

∑
i

m

2
vi

2 + B · M

)]

, (62)

with M ≡∑i(e/2c)ri×vi naturally arising as the magnetic moment of the system. A magnetic
response shows up therefore also classically, contrary to what the original version of the
Bohr-van Leeuwen theorem stated. It has been shown before that this theorem does not hold
whenever the magnetic field produced by the moving charges is taken into account. Such a

field is included in the Darwin Lagrangian [11], which is correct to order (v/c)2. In our case,
we do not need to modify the standard Lagrangian.
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4. Hamilton-Jacobi equations without Hamiltonian

We have already mentioned that for homogeneous Lagrangians the definition of a
Hamiltonian is precluded by the vanishing of ẋµ

∂L/∂ẋµ
− L. It is nonetheless possible

to introduce a Hamiltonian in a number of ways. Carathéodory’s approach leads to an
infinite set of Hamiltonians, from which we can choose the most suitable one for dealing
with the problem at hand. Here, we focus on the two Lagrangians of interest to us, given by
L = mc(ηµν ẋµ ẋν)1/2 + eAµ(x)ẋµ/c for electromagnetism and

L(x, ẋ) =
(

gµν(x)ẋµ ẋν
)1/2

(63)

for gravitation. We will prove that in these two particular cases it is possible to derive the
equation which the function S(x) has to satisfy, without having to introduce a Hamiltonian.

Let us start with gravitation. From Eq.(63) with vµ replacing ẋµ, it follows that

∂L

∂vµ
=

1

L
gµνvν. (64)

Using gµνgνσ = δ
σ
µ this equation leads to vν = Lgµν pµ, with pµ ≡ ∂L/∂vµ. Considering that

L2 = gµνvµvν = L2gµν pµ pν, it follows gµν pµ pν = 1. And because ∂S/∂xµ = ∂L/∂vµ = pµ,
we obtain the Hamilton-Jacobi equation for S:

gµν(x)
∂S

∂xµ

∂S

∂xν
= 1. (65)

In the electromagnetic case the corresponding Lagrangian leads, by the same token, to vµ =

(∂µS −
e
c Aµ)φ/mc with φ ≡ (ηµνvµvν)1/2, again as a consequence of ∂S/∂xµ = ∂L/∂vµ. By

replacing the above expression of vµ in φ
2 = η

µνvµvν, it follows the Hamilton-Jacobi equation

η
µν

(

∂S

∂xµ
−

e

c
Aµ

)(

∂S

∂xν
−

e

c
Aν

)

= m2c2. (66)

We remark that there was no need to choose v so as to satisfy either φ = const. in the
electromagnetic case, or L = const. in the gravitational case, as it is usually done for obtaining
the respective Euler-Lagrange equations in their simplest forms. As a consequence, the
constants appearing on the right-hand sides of Eqs.(65) and (66) are independent of the way
by which we decide to fix the parameter τ of the extremal curves. Let us remark that it is
not unusual to find in textbooks Eq.(65) written with m2c2 instead of the 1 on the right-hand
side (see, e.g. [19]). This occurs because Eq.(65) is usually introduced as a generalization of
Eq.(66), with Aµ = 0 (field-free case). Invoking the equivalence principle, one replaces η

µν

by gµν and so arrives at the equation which is supposed to describe a “free” particle moving
in a curved space-time region. Now, the metric tensor gµν embodies all the information that
determines how a test particle moves under gravity, irrespective of its inertial mass m. There
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is therefore no physical reason to put a term like m2c2 on the right-hand side of Eq.(65). To
be sure, for all practical purposes it is irrelevant that we set any constant on the right-hand
side of Eq.(65), as this constant will drop afterwards in the equations describing the motion.
But, as a matter of principle, the mass of a test particle should not appear in an equation
which describes how it moves under the sole action of gravity.

5. Gauge invariance in electromagnetism and gravitation

Gauge invariance is presently understood as a key principle that lies at the root of
fundamental interactions. An equation like Schrödinger’s (or Dirac’s) for a free electron
is invariant under the transformation ψ → exp(iα)ψ, for constant α. This is in accordance
with the physical meaning of the wave-function and the way it enters in all expressions
related to measurable quantities. However, one expects that Nature should respect such an
invariance not only globally, i.e., with constant α, but also locally, with α a function of time
and position. It is, so to say, by recourse to the appropriate interaction that Nature manages
to reach this goal. For achieving invariance under the U(1) transformation ψ → exp(iα)ψ,
it is necessary to introduce a gauge field, in this case a field represented by Aµ(x), which
couples to the particle. The equation for a free particle is correspondingly changed into
one in which Aµ appears. In this context, gauge invariance means invariance under the
simultaneous change ψ → exp(iα)ψ and an appropriate one for Aµ. This last one must be
so designed that the equation now containing Aµ remains invariant. The change of Aµ turns
out to be Aµ → Aµ − (ℏc/e)∂µα, which is the one corresponding to a gauge transformation
of the electromagnetic field. Hence, one is led to interpret electromagnetic interactions as
a consequence of local U(1)-invariance. Other fundamental interactions stem from similar
gauge invariances: SU(2)× U(1) gives rise to electroweak interactions, SU(3) to the strong
interaction [20], and local Lorentz invariance to gravitation [21, 22].

In this Section we want to show how gauge invariance leads, within the classical context,
to considerations paralleling those of quantum mechanics. Carathéodory’s formulation will
be particularly useful to this end. Let us start with the electromagnetic case. Replacing the
Lagrangian of Eq.(31) in the fundamental Eq.(17), we get

mc(vµvµ)1/2 +
e

c
Aµvµ

− vµ
∂µS = 0. (67)

Now, the observable predictions we can make concern the integral curves of the velocity field
vµ. This field remains invariant under the replacement

A∗

µ = Aµ −

c

e
∂µW, (68)

whenever a simultaneous change in S is undertaken. This change is given by S → S∗ =
S + W. It leaves Eq.(67) unchanged, for a fixed vµ(x). Eq.(66), to which the velocity field
vµ(x) belongs, is also fulfilled with S∗ and A∗

µ. The quantum-mechanical counterpart of this

result could have suggested such a conclusion, in view of the relationship ψ ∼ exp(iS/h̄).
Indeed, a change ψ → ψ

∗ = exp(iα)ψ means that ψ
∗
∼ exp(iS∗/h̄), with S∗ = S + W, where

W = ℏα.
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Now, we are naturally led to ask about a similar invariance in the gravitational case. Here,
Eq.(17) reads

(gµνvµvν)1/2
− vµ

∂µS = 0, (69)

and we ask how a simultaneous change of gµν and S might be, in order that vµ remains
fixed and with it the field of extremals. In the present case, it is better to start with Eq.(23)
instead of Eq.(69). The reasons will become clear in what follows. Working out Eq.(23) for
the present Lagrangian we obtain, after some manipulations,

vτ ∂vν

∂xτ
+ gµν(∂τ gµσ −

1

2
∂µgστ)v

σvτ =
∂(ln L(x, v(x)))

∂xτ
vνvτ =

∂Φ(x)

∂xτ
vνvτ , (70)

where Φ(x) = ln L(x, v(x)). The right-hand side of Eq.(70) can be written in the form
1
2 (δ

ν
σ∂τΦ + δ

ν
τ∂σΦ)vσvτ . This suggests us to symmetrize the coefficient of vσvτ on the

left-hand side, thereby obtaining

gµν(∂τ gµσ −

1

2
∂µgστ)v

σvτ =
1

2
gµν(∂τ gµσ + ∂σgµτ − ∂µgστ)v

σvτ
≡ Γν

στvσvτ , (71)

with Γν
στ the Christoffel symbols. Eq.(70) then reads

vτ ∂vν

∂xτ
+ Γν

στvσvτ =
1

2
(δν

σ∂τΦ + δ
ν
τ∂σΦ)vσvτ . (72)

Note that if we choose v such that L = const., then Eq.(72) becomes the usual geodesic
equation, when it is calculated along an extremal curve, dxµ/dτ = vµ(x(τ)):

dẋµ

dτ
+ Γ

µ

σρ

dxσ

dτ

dxρ

dτ
= 0. (73)

If L 6= const., we obtain a geodesic equation with a right-hand side of the form (d f /dτ)ẋν.
In both cases we obtain the same curves – geodesics – but with a different parametrization.

Now, assume that a change, gµσ → g∗µσ can be found, so that the corresponding Γ∗ν
τσ satisfy

Γ∗ν
τσ − Γν

τσ =
1

2
(δν

σ∂τΛ(x) + δ
ν
τ∂σΛ(x)) , (74)

with Λ(x) being arbitrary. Such a change leads to an equation equivalent to Eq.(70), with Φ

being replaced by Φ∗ = Φ + Λ, and hence to the same extremals. In this way we recover an
old result due to Weyl: if Christoffel symbols are related to each other by Eq.(74), then they
have the same geodesics [23]. Given gµν and Λ, it is always possible to find a g∗µν satisfying
Eq.(74). This is because this equation can be put in the form

∂λg∗µν = −g∗νσΩ
µ

λσ
− g∗µσΩν

λσ
, (75)

Advances in Quantum Mechanics60



Charathéodory’s “Royal Road” to the Calculus of Variations: A Possible Bridge Between Classical and Quantum Physics 21

10.5772/53843

with Ω
µ

λσ
:= Γ

µ

λσ
+ 1

2 (δ
µ

σ ∂λΛ + δ
µ

λ
∂σΛ), and it can be straightforwardly proved that the

integrability conditions for the above equation are identically satisfied.

In fact, Weyl arrived at a relation like Eq.(74) but having the expression wτδ
ν
σ + wσδ

ν
τ on the

right hand side, with wσ taken to be a covariant vector. Now, it is easy to see that wσ must be
a gradient. Indeed, after writing Eq.(74) in Weyl’s form, with wµ replacing 1

2 ∂µΛ, we contract

both sides of this equation with respect to ν and τ, thereby obtaining wσ = 1
5 (Γ

∗ν
νσ − Γν

νσ).

Using Γν
νσ = 1

2 ∂σ ln g, with g =| det(gµν) |, we get wσ = ∂σ(ln(g∗/g))/10.

If we take geodesics as the only observable objects, then it is natural to seek transformations
that leave them invariant. Such transformations are given by Eq.(74). However, a
transformation of the metric tensor that fulfils Eq.(74) does not leave invariant Einstein’s
field equations:

Rµν −
1

2
gµν = κTµν, (76)

where, we recall, Rµν = Rσ
µνσ is the Ricci tensor stemming from the Riemann tensor Rλ

µνσ by
contraction of λ and σ, and Tµν means the energy-momentum tensor.

If our transformations do not leave Eq.(76) invariant but we insist in viewing geodesic
invariance as a fundamental requirement, then we are led to ask for alternative equations
for the gravitational field. These equations should be invariant under Eq.(74). Weyl found a
tensor that is invariant under Eq.(74), i.e., a candidate for replacing Rλ

µνσ as the starting point
of the sought-after equations. It is given by

Wλ
µνσ = Rλ

µνσ −

1

4

(

δ
λ
σ Rµν − δ

λ
ν Rµσ

)

. (77)

Unfortunately, any contraction of Wλ
µνσ vanishes identically, thereby precluding an alternative

setting of equations analogous to those of Einstein.

One could argue that it remains still open the possibility of changing our very starting point,
so that we should look for a Lagrangian which does not depend on a metric tensor. A
natural candidate for this would be an affine connection (the Christoffel symbols being a
special case). However, we can show that, even if we start from very general assumptions,
we will end up with a Lagrangian like that of Eq. (63). That is, if we take our variational
principle in the general form δ

∫

L(x, v)dτ = 0, and require that L is invariant under local

Lorentz transformations, then L must be of the form (gµν(x)vµvν)1/2. The requirement of
invariance under local Lorentz transformations follows from the principle of equivalence: at
any given point we can choose our coordinate system so that a body subjected only to gravity
appears to move freely in a small neighborhood of the given point. This requirement leads
to the particular form of L just given, as can be seen as follows [24]: From the homogeneity
of L with respect to v it follows that we can write L in the form L = (gµν(x, v)vµvν)1/2, with

gµν(x, v) := 1
2 ∂

2L2(x, v)/∂vµ
∂vν. This puts our variational problem within the framework

of Finsler spaces [25]. But local Lorentz invariance implies that gµν is independent of v, as
we shall see, so that we end up within the framework of Riemann spaces, a special case of
Finsler spaces.
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A transformation in the tangent space, v → w, defined through wµ =
∼

Λ
µ

ν vν, is a local Lorentz
transformation if it satisfies gµν(x, v) = gλσ(x, v)Λλ

ν (x)Λσ
ν (x) at any fixed point x. Here, Λ

µ

ν

means the inverse of
∼

Λ
µ

ν . Invariance of L under local Lorentz transformations means that

L(xµ, wµ) = L(xµ,
∼

Λ
µ

ν vν) = L(xµ, vµ). From this equality, by taking partial derivatives with
respect to v, we obtain the two following equations:

∂L(x, w)

∂vµ
Λ

µ

ν =
∂L(x, v)

∂vν
(78)

∂
2L(x, w)

∂vµ∂vν
Λ

µ

σΛν
τ =

∂
2L(x, v)

∂vσ∂vτ
(79)

When these equations are substituted into the identity

gµν(x, v) =
1

2

∂
2L2

∂vµ∂vν
=

∂L

∂vµ

∂L

∂vν
+ L

∂
2L

∂vµ∂vν
, (80)

one obtains

gµν(x, w) = gλσ(x, v)Λλ
µ(x)Λσ

ν (x). (81)

We conclude therefore, in view of this last equation and the definition of the Lorentz
transformation given above, that the equality gµν(x, w) = gµν(x, v) holds true for any w and
v that are connected to each other by a Lorentz transformation. Thus, setting w = v + δv, we
obtain

∂gµν(x, v)

∂vλ
= lim δv→0

(

gµν(x, v + δv)− gµν(x, v)

δvλ

)

= 0. (82)

Thus, L must be of the form (gµν(x)vµvν)1/2. As we have seen, this result follows from
the requirement of local Lorentz invariance. Such an assumption is the counterpart of the
condition put by Helmholtz on a general metric space, in order to geometrically characterize
Riemann spaces [23]. In this last case, local rotations played the role that is assigned to local
Lorentz transformations in the physical case.

6. Summary and conclusions

Carathéodory’s approach to the calculus of variations appears to be an appropriate tool
for uncovering some aspects of the quantum-classical relationship. Because it describes a
whole field of extremals rather than a single one, Carathéodory’s approach is, by its very
nature, more akin to the quantal formulation. It remains still open how to introduce in
this framework the second basic element of the quantal formulation, namely probability.
By blending field and probability issues, it is likely that the ensuing result shed some
light on questions concerning the quantum-classical correspondence. Here, by way of
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illustration of the capabilities of Carathéodory’s approach, we have dealt with the two
fundamental interactions of classical physics: electromagnetism and gravitation. We have
seen that the London equations of superconductivity can be formally derived from the
standard Lagrangian of a particle interacting with a prescribed electromagnetic field. The
London equations have therefore not a distinctive quantum-mechanical origin, as it is often
assumed. This does not mean, however, that we can explain superconductivity by recourse to
classical physics alone. The conditions under which a system of charged particles behaves as
described by the standard, classical Lagrangian, might be explainable only through quantum
mechanics.

In the gravitational case, we recovered Weyl’s results about the invariance of geodesics
under some special transformation of the Christoffel symbols. Carathéodory’s fundamental
equations led us to formulate Weyl’s result without having to resort to the tools of differential
geometry. Furthermore, we have seen that the Lagrangian L = (gµν(x)vµvν)1/2 is a direct
consequence of the assumption of local Lorentz invariance. The underlying principle that
led us to state the appropriate questions was the principle of gauge invariance, something
usually tied to a quantal approach.

In summary, Carathéodory’s approach to variational calculus represents an alternative way
to introduce some of the most basic principles of classical physics. It unifies different aspects
that otherwise appear to be independent from one another, and it can help us in our quest
for delimiting the quantum-classical correspondence.
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1. Introduction

One of the fundamental cornerstone of quantum mechanics is the Heisenberg uncertainty
principle. This principle is so fundamental to quantum theory that it is believed that if
a single phenomenon that could violate it is found then the whole building of quantum
mechanics will fall apart. However, since the formulation of the uncertainty principle until
today there is not clear and universal agreement in its formulation or interpretation. Even
Heisenberg was not clear about the exact meaning of p1 and x1 in their first formulation of
the uncertainty relations [1]:

p1q1 ∼ h, (1)

nor in the interpretation of the uncertainty principle. According to Heisenberg, in Eq. (1) q1

represents "the precision with which the value of q is know (q1 is, say, the mean error of q), therefore
here the wavelength of light. Let p1 be the precision with which the value of p is determinable;
that is, here, the discontinuous change of p in the Compton effect [1]". He also thought the
uncertainty principle in terms of disturbance produced on an observable when it is measured
its canonical counterpart.

The relevance of the uncertainty principle to Physics is that it introduced for the first time
the indeterminacy in a physical theory, which mean the end of the era of certainty in Physics.
That is to say, what uncertainty principle made evident was the peculiar characteristic of
quantum theory of not being able to predict with certainty a property of a physical system;
in words of Heisenberg: ". . . canonically conjugate quantities can be determined simultaneously
only with a characteristic indeterminacy. This indeterminacy is the real basis for the occurrence of
statistical relations in quantum mechanics [1]".

©2012 Aguilar et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Aguilar et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

Since now, you can perceive two different meanings of the Uncertainty Principle in the two
quoted paragraphs above. In the first one, the uncertainty comes from a statistical property
(according with Heisenberg, the mean error) of quantum theory; in the second meaning the
uncertainty is a restriction to simultaneously measure two physical properties.

On the other hand, to elucidate the meaning of the time-energy uncertainty relation [1]
E1t1 ∼ h is quite difficult, for, contrary to the uncertainty relation given in Eq. (1), it is not
possible to deduce it from the postulates of quantum mechanics, i. e. there is not an operator
for time. In Heisenberg’s paper the meaning of t1 is the "time during which the atoms are under
the influence of the deflecting field" and E1 refers to the accuracy in the energy measurement.
Heisenberg concludes that "a precise determination of energy can only be obtained at the cost of a
corresponding uncertainty in the time [1]".

In this Chapter of the book, we will review the evolution of the Uncertainty Principle
since its inception by Heisenberg until their application to measure entanglement. We
will review some problems (usually untouched by quantum mechanic’s textbooks) that the
usual interpretation of the Uncertainty Principle have in terms of standard deviations and
its dependence of the wave function. Also, we will review the efforts made to clarify the
meaning of the Uncertainty Principle using uncertainty relations.

2. The relation between the Heisenberg Uncertainty Principle and the

Uncertainty Relations

The uncertainty principle is one of the fundamental issues in which quantum theory differs
from the classical theories, then since its formulation has attracted considerable attention,
even from areas normally outside the scientific development. This has lead to create
misunderstandings about the content of the principle. Thus, it is important to mention
that when we say that there is a lower limit on irreducible uncertainty in the result of a
measurement, what we mean is that the uncertainty is not due to experimental errors or to
inaccuracies in the laboratory. Instead, the restriction attributed to the uncertainty principle
is fundamental and inherent to the theory and is based on theoretical considerations in which
it is assumed that all observations are ideal and perfectly accurate.

A reading of the original Heisenber’s paper shows that he writes (i. e. believes) in some
pharagraps that the indeterminacies comes from the observational procedures. For, in
his original paper, Heisenberg stated [1] that the concepts of classical mechanics could be
used analogously in quantum mechanics to describe a mechanical system, however, the use
of such concepts are affected by an indeterminacy originated purely by the observational
procedures used to determine simultaneously two canonically conjugate variables. This could
be contrasted with the called Statistical Interpretation where it is tough that the wave function
represents and ensemble of identical prepared system and, therefore, the indeterminacy
comes form an intrinsic indeterminacy of the physical properties.

Usually, the uncertainty principle is stated in terms of uncertainty relations. One of the first
way to obtain this indeterminacy relation is due to Robertson [2]. Here, instead, we use the
textbooks approach to deduce the uncertainty relations from the quantum postulates [3, 4].
This approach uses both the Schwarz inequality

〈φ|φ〉 〈ϕ|ϕ〉 ≥ |〈φ|ϕ〉|
2 , (2)
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and the following quantum postulates:

• The state of a quantum system is represented by a wave function Ψ(x, t) ( |Ψ〉, in Dirac
notation).

• For every observable A there is a self-adjoint operator Â, its expectation value is given by
〈

Â
〉

=
∫

Ψ∗(x)ÂΨ(x)dx =
〈

Ψ|Â|Ψ
〉

.

Now, consider the following operators defined as 1:

∆Â = Â −

〈

Â
〉

∆B̂ = B̂ −

〈

B̂
〉

. (3)

Let them operate on an state |Ψ〉, given:

∆Â |Ψ〉 = |ψa〉

∆B̂ |Ψ〉 = |ψb〉 . (4)

Therefore, using the Schwarz inequality given in the Eq. (2),

〈ψa|ψa〉 〈ψb|ψb〉 ≥ |〈ψa|ψb〉|
2 (5)

we arrive to:
〈

∆Â2
〉 〈

∆B̂2
〉

≥

∣

∣

〈

∆Â∆B̂
〉∣

∣

2
, (6)

where
〈

∆Â2
〉

=
〈

Â2
〉

−

〈

Â
〉2

= δA2 is the variance, the same for the operator B̂. From the
Eq. (6), it is not difficult to show that:

δAδB ≥

√

∣

∣

〈[

Â, B̂
]〉∣

∣

2
+

∣

∣

〈{

Â, B̂
}〉∣

∣

2
, (7)

where
{

Â, B̂
}

= ÂB̂ + B̂Â, and δA and δB are the standard deviation. It is worth to notice
that the association of the standard deviation whit the uncertainty relations was not proposed
by Heisenberg, it was Kennard and Robertson [2] who made this association. Although
Heisenberg endorse it later. As it was stated above, Heisenberg associates p1 and q1 with the
mean error, also in the same paper he associates these quantities with the widths of Gaussian
functions representing the quantum states of the system.

Some problems arises with the textbooks uncertainty relations: i) They are given in terms of
the standard deviation, ii) They depend on the state of the system. Additionally, iii) They

1 There are others forms to obtain the uncertainty relations, this begin by defining an operator as D̂ = ∆Â + λ∆B̂ and,
then, requiring that

〈

D̂† D̂
〉

≥ 0.
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does not represent the meaning of the impossibilities of simultaneous measurement of two
observables, iv) They does not quantify the role of the disturbance in the state after the
measurement process. Finally, v) They does not address the concept of complementarity.
There have been proposed some criteria to solve this problems, we are going to review this
proposals in the next sections.

3. Reformulations to the uncertainty principle

In this section we will review some proposed solutions to the problems stated in the last
paragraph of the previous section.

3.1. The dependence on the standard deviation

The principal criticism to the dependence of the uncertainty relation on the standard
deviation comes from J. Hilgevoord and J. M. B. Uffink [5, 6]. Their argument is based
on two reason, first, they argue that the standard deviation is an appropriate measure of
the error of a measurement because errors usually follow a Gaussian distribution, and the
standard deviation is an appropriate measurement of the spread of a Gaussian; however, this
is not true for a general distribution. Secondly, they gave as a principal counter argument the
fact that even for simple phenomenon as the single slit the standard deviation of momentum
diverges. Their approach is inside the thinking that the uncertainty relations are the measure
of the spread of the probability distribution, i. e. it is believed that ∆x and ∆p represents
the probability distribution of the possibles properties of the system. In short, it represents
the spread of values (of x̂ or p̂) that are intrinsic in the physical system that are available to
appear after a measurement.

The principal counter argument with regard to the standard deviations comes from the
single-slit experiment. In this case, it is supposed that the state of an income beam of particles
is represented by plane waves. This plane wave represents a particle of precise momentum
p0. Then, the plane wave arrives at the single-slit and is diffracted by it. Therefore, the wave
function at the screen, according to Hilgevoord and Uffink, is:

ψ(x) =

{

(2a)−1/2, if |x| ≤ a;
0, if |x| < a.

and

φ(p) = (a/π)1/2 sin ap

ap

. (8)

Now, the problem with the standard deviation, as defined in quantum mechanics, in this
case is that it diverges:

∆p =
〈

p̂
2
〉

− 〈 p̂〉
2
→ ∞. (9)

Therefore, these authors defined, instead of the standard deviation, the overall width
(Wψ) and the mean peak width of ψ as the smaller W and w that satisfies the following
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equations [7]:

∫ x0+W/2

x0−W/2
|ψ(x)|2 dx = N

∣

∣

∣

∣

∫

ψ
∗(x′)ψ(x′ − w)dx′

∣

∣

∣

∣

2

= M2 (10)

These quantities, i. e. W and w, provides a better characterization of the spread of the
possible values of x̂ and p̂, in particular there is not any divergence in these numbers. Based
in these definitions Hilgevoord and Uffink give the following uncertainty relations, that they
propose as a substitute to the uncertainty relation given by Kennard (∆x∆p ≥ 1/2), [7]:

wφWψ ≥ arccos

(

M + 1 − N

N

)

wψWφ ≥ arccos

(

M + 1 − N

N

)

(11)

these uncertainty relations works well for the single-slit and double-slit experiments.

3.2. Entropic Uncertainty Relations

In the quantum literature, there are many defined Entropic Uncertainty Relations. Mostly,
they are based in terms of Shannon entropy [8, 9], although in last ten years there has been
extension to other forms of entropy, like Renyi entropy [10]. In reference [11] there is a recent
review of this research area.

One of the important result in this area was the one found by Deutsch [8]. What Deutsch
pursuit was a quantitative expression of the Heisenberg uncertainty principle, he notice that
the customary generalization has the drawback that the lower limit depends on the quantum
state, that is:

∆A∆B ≥

1

4

∣

∣

〈[

Â, B̂
]〉∣

∣

2
. (12)

Deutsch stress that the right hand side of the Equ. (12) does not has a lower bound but is a
function of the state |ψ〉, even it vanishes for some choices of |ψ〉. So, in search of a quantity
that could represent the uncertainty principle Deutsch propose some elementary properties,
like for example that the lower limit must vanishes if the observables have an eigenstate
in common. Based in this considerations he proposed the following entropic uncertainty
relation:

SÂ + SB̂ ≥ 2Ln

(

2

1 + sup{| 〈a|b〉 |}

)

, (13)

where SÂ = −∑a |〈a|ψ〉|2 Ln |〈a|ψ〉|2 and SB̂ = −∑b |〈b|ψ〉|
2 Ln |〈b|ψ〉|2 are the Shanon

entropy, and |a〉 and |b〉 are, respectively, the eigenstates of Â and B̂.
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The next step in this line of research, was quite soon given by Hossein Partovi [12], he
points out that the above uncertainty relation does not take into account the measurement
process. Then, considering that the measuring device realizes a partitioning of the spectrum
of the observable and the assignation of their corresponding probabilities, he proposes the
following definition of entropy [12]:

SA = −∑
i

piln {pi} . (14)

where pi =
〈

ψ
∣

∣π̂
A
i

∣

∣ψ
〉

/ 〈ψ|ψ〉 and π̂
A
i is the projection onto the subspaces spanned by the

states corresponding to the partition induced by the measuring apparatus [12]. In this case, pi

gives the probability of obtaining the outcome of a measurement in a subset of the partition
realized by the measuring apparatus. In this approach, the whole spectrum correspond
to the observable Â but its partitioning correspond to the measuring device. Using these
considerations Hossein Patrovi proses the following lower bound for the uncertainty relation:

SÂ + SB̂ ≥ 2Ln

(

2

1 + supij{||π̂
A
i + π̂B

j ||}

)

. (15)

In the special case where the partition realized by the measuring device includes only one

point of the spectrum of Â, i. e. π̂
A
i = |ai〉 〈ai| and B̂, i. e. π̂

B
j =

∣

∣

∣
bj

〉 〈

bj

∣

∣

∣
, then Equ. (15)

reduces to Equ. (13). Finally, it is worth to mention that the Patrovi’s formulation requires
a formulation of the details of the measuring devices, specifically, the kind of partition that
induces (or could be used) in the spectrum of the observable.

There were two additional improvement on the lower bound of the entropic uncertainty
relations defined above. The first one was due to Bialynicki-Birula who presented, based in
his earlier wok [9], a lower bound for the angle-angular momentum pair [13] Sφ + SLz

≥

−ln(∆φ/2π) and an improved lower bound for the position-momentum pair Sx + Sp
≥

1 − ln(2)− ln(γ), where γ = ∆x∆p/h. The second one was proposed by Maasen and Uffink
[14] who demonstrated, based on a previous work of Kraus [15], that

SA + SB
≥ −2ln(c), (16)

where c = maxjk

∣

∣

∣

〈

aj|bk

〉∣

∣

∣
.

3.3. Simultaneous measurement

Whereas in the previous two subsection we treated the face of the Uncertainty Principle
that is related with the probability distribution of observables of a given wave function, in
this subsection we talk a bout a second version of The Uncertainty Principle. This version
is related with the fact that it is not possible to determine simultaneously, with precision,
two canonically conjugate observable and usually called joint measurement. This is stated,
generally, as: "It is impossible to measure simultaneously two observables like, for example, position
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and momentum." So, this sub-research area is concerned with the simultaneous measurement
of two observables.

One of the first work in this approach was that of Arthurs and Kelly [16], they analyze
this problems as follows: First, they realize that as the problem is the measurement of
two observables, then it is required two devices to perform the measurement. That is,
the system is coupled to two devises. Then, they consider that as the two meter position
commutes then it is possible to perform two simultaneous measurements of them. Therefore,
the simultaneous measurement of the two meters constitutes a simultaneous measurement
of two non-commuting observables of the system. As the two meters interacts with the
quantum system, they consider the following Hamiltonian:

Ĥint = K
(

q̂P̂x + p̂P̂y
)

(17)

where q̂ and p̂ correspond to the position and momentum of the quantum system,
respectively, and P̂x and P̂y are the momentum of the two independent meters. Using two
Gaussian function as the initial wave function of the meters they arrive at the following
uncertainty relation for the simultaneous measurement of two observables:

σxσp ≥ 1. (18)

Therefore, the uncertainty relation of the simultaneous measurement of q̂ and p̂ is greater
(by a factor of two) than the uncertainty relations based on the probability distribution of the
two observables, the topic of the previous two sub-sections.

The next step in this approach was given by Arthurs and Goodman [17]. In this case, the
approach is as follow: To perform a measurement, the system observables, Ĉ = Ĉ1 ⊗ Î2

and D̂ = D̂1 ⊗ Î2, must be coupled to a measuring apparatus which is represented by the
operators R̂ = Î1 ⊗ R̂2 and Ĉ = Ĉ1 ⊗ Î2. Then, if we consider that there is access only to the
meter operators then there must exist an uncertainty relations for these operators that puts
a limit to the available information. Based in this consideration, they prove what they call a
generalized uncertainty relation. To prove it they defined a a noise operator by

N̂R = R̂ − GRĈ(0),

N̂S = Ŝ − GSD̂(0) (19)

where Ĉ(0) and D̂(0) are the system observables and R̂ and Ŝ are the tracking apparatus
observables, the latter obey the commutation rule [R̂, Ŝ] = 0. Also, it is required that the
correlation between the system observables and the meter has, on average, a perfect match,
that is:

Tr
(

ρ̂N̂R,S

)

=
〈

R̂
〉

− GR

〈

Ĉ(0)
〉

= 0. (20)

Using the previous condition, i. e. Equ (20), it is possible to show that the noise operator
is uncorrelated with all system operators like Ĉ and D̂. Using all the previous properties of
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the system, meter and noise operators they arrive to the following generalized Heisenberg
uncertainty relation:

σξ ση ≥

∣

∣Tr
(

ρ̂
[

Ĉ, D̂
])∣

∣ , (21)

where ρ̂ is the state of the system, σξ and ση are, respectively the standard deviation of the

normalized operators ξ = R̂/GR and η = R̂/GR. This uncertainty relation is four times
the corresponding uncertainty relation for Ĉ and D̂. Notice that in the left hand side of the
Eq. (21) there is information of the meter operator whereas in the right hand side there is
information of the system operators and that we have access only to the meter system. In
reference [18] there was published an experimental verification of this uncertainty relation.

3.4. Disturbance due to measurement

The disturbance produced on an observable due to the measurement of another observable
is, perhaps, the face of the uncertainty principled most talked about but the least studied.
This comes from the fact that in quantum mechanics any measurement introduces an
unforeseeable disturbance in the measured quantum system. It was only recently that there
have been some research and understanding of this effect.

Originally, the idea that the measuring process disturb observables comes from Heisenberg’s
analysis of the observation of an electron by means of a microscope. This kind of uncertainty
principle is written down, to use recent terminology, as [19]:

ǫ(x)η(p) ≥
1

2
|〈ψ |[x̂, p̂]|ψ〉| , (22)

where ǫ(x) is the noise in the measurement in position and η(p) is the disturbance caused by
the apparatus [19]. Using a general description of measurement Ozawa demonstrated that
the uncertainty relation for disturbance and noise given by the Eq. (22) does not accurately
represent the disturbance process. He has show that this kind of uncertainty relation includes
additional terms not present in Eq. (22). In the measurement process, the quantum system
interacts with a measuring device. He considers that this devices measures observable A
precisely if its experimental probabilty distribution coincides with the theoretical probability
distribution of the observable. In the measurement process, when the interaction have been
turned off, the device is subject to a measurement of an observable M. Then, Âin = Â ⊗ Î is
the input observable, Âout = Û†

(

Â ⊗ Î
)

Û is the observable after the mesaurement, M̂in =

Î ⊗ M̂ is the device observable when the interaction begin, M̂out = Û†( Î ⊗ M̂)Û and Û is the
unitary time evolution operator

To show that the original uncertainty relation need additional terms, he introduces the
following noise N(Â) and disturbance D(B̂) operators:

N(Â) = M̂out
− Âin,

D(B̂) = B̂out
− B̂in. (23)
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Using this operators, and considering that
[

M̂out, B̂out
]

= 0, Ozawa was able to show the
following uncertainty relation [19]:

ǫ(A)η(B) +
1

2

∣

∣

∣

〈[

N(Â), B̂in
]〉

+
〈[

Âin, D(B̂)
]〉∣

∣

∣
≥

1

2

∣

∣

〈

ψ
∣

∣

[

Â, B̂
]∣

∣ ψ
〉∣

∣ . (24)

where the noise ǫ(A) was defined by Ozawa as the root-mean-square deviation of the
experimental variable M̂out from the theoretical variable Âin:

ǫ(A) =

〈

(

M̂out
− Âin

)1/2
〉

(25)

and the disturbance η(B) on observable B̂ is the change in the observable caused by the
measurement process:

η(B) =

〈

(

B̂out
− B̂in

)1/2
〉

. (26)

This uncertainty relation has been recently experimentally tested, see reference [20]

4. Entanglement determination using entropic uncertainty relations

Nowadays entanglement is considered as an useful resource to make non-clasical task. As
a resource it is convenient to have adequate measures to quantify how much entanglement
are in a given entangled state. However, until recently the most known proposed measures
have the unwanted fact of being difficult to apply in experimental settings. Therefore, it was
necessary to find out new ways of entanglement determination that enable that the amount
of entanglement in a quantum state could be experimentally tested.

Recently there has been much research to proposed new entanglement determination based,
mostly, in uncertainty relations. In this case, the entropic uncertainty relations helps to realize
this task. Recently, Berta et. al. [21] have proposed a new uncertainty relation (based on that
proposed in references [8, 14]) to test the entanglement:

S(R|B) + S(S|B)log2c + S(A|B) (27)

to propose this equation Berta et. al. consider that the system, with observables S and R,
is entangled with a memori, with observable B, so in equation S(R, B) is the von Neumann
entropy and gives the uncertainty about the measurement of R given information stored in a
quantum memory, B. The term S(A|B) quantifies the amount of entanglement between the
particle and the memory. This relation was experimentally tested in reference [22].
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5. Conclusions

In this chapter we review some of the most important improvements of the Heisenberg
uncertainty relation. Although there are advances in their understanding and formulation,
it remains yet as an open research area, specially in the quantification of entanglement.
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1. Introduction

Our main idea is to suggest some new model of nonlinearity in quantum mechanics. The
nonlinearity we discuss is non-perturbative and geometrically motivated, in any case it is not
an auxiliary correction to the linear background. It has a group-theoretic motivation based
on the assumption of the “large” symmetry group. In a sense, it develops further our ideas
suggested earlier in [1–4].

It is well known that quantum mechanics is still plagued by some paradoxes concerning
decoherence, measurement process and the reduction of the state vector. In spite of certain
optimistic opinions, the problem is still unsolved, although many interesting ideas have been
formulated, like that about subsystems of a large (infinite) quantum system or stochastic
quantum Markov processes with the spontaneous reduction of state vectors. There is still
an opinion that the main problem is the linearity of the Schrödinger equation, which seems
to be drastically incompatible with the mentioned problems [5, 6]. But at the same time,
that linearity works beautifully when describing the unobserved unitary quantum evolution,
finding the energy levels and in all statistical predictions. It seems that either we are faced
here with some completely new type of science, roughly speaking, based on some kind of
solipsism with the irreducible role of human being in phenomena, or perhaps we deal with
a very sophisticated and delicate nonlinearity which becomes active and remarkable just in
the process of interaction between quantum systems and “large” classical objects.

The main idea is to analyse the Schrödinger equation and corresponding relativistic linear
wave equations as usual self-adjoint equations of mathematical physics, thus ones derivable
from variational principles. It is easy to construct their Lagrangians. Some problems
appear when trying to formulate Hamiltonian formalism, because Lagrangians for the
Schrödinger or Dirac equations are highly degenerate and the corresponding Legendre
transformation is uninvertible and leads to constraints in the phase space. Nevertheless,
using the Dirac formalism for such Lagrangians, one can find the corresponding Hamiltonian

©2012 Sławianowski and Kovalchuk, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
© 2013 J. Sławianowski and Kovalchuk; licensee InTech. This is an open access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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2 Quantum Mechanics

formalism. Incidentally, it turns out that introducing the second-order time derivatives
to dynamical equations, even as small corrections, one can obtain the regular Legendre
transformation. In non-relativistic quantum mechanics there are certain hints suggesting
just such a modification in the nano-scale physics [1, 7, 8]. One can also show that in
SU(2, 2)-invariant gauge models, i.e., roughly-speaking, in conformal theory, it is more
natural to begin with the four-component Klein-Gordon amplitude and then to derive the
Dirac behavior as an unexpected aspect of the Klein-Gordon theory [4, 9]. This leads us to
certain interesting statements concerning the pairing of fundamental quarks and leptons in
electroweak interactions.

We begin just like in [1] from the first- and second-order (in time) Schrödinger equations
for a finite-level system, i.e., for the finite “configuration space”. We construct the “direct
nonlinearity” as a non-quadratic term in Lagrangian, but further on we concentrate on
our main idea. It consists in that we follow the conceptual transition from the special to
general relativity. Namely, just like in the passing to the theory of general relativity, the
metric tensor loses its status of the absolute geometric object and becomes included into
degrees of freedom (gravitational field), so in our treatment the Hilbert-space scalar product
becomes a dynamical quantity which satisfies together with the state vector the system of
differential equations. The main idea is that there is no fixed scalar product metric and the
dynamical term of Lagrangian, describing the self-interaction of the metric, is invariant under
the total group GL(n, C). But this invariance is possible only for models non-quadratic in
the metric, just like in certain problems of the dynamics of “affinely-rigid” body [2, 3]. There
is a natural metric of this kind and it introduces to the theory a very strong nonlinearity
which induces also the effective nonlinearity of the wave equation, even if there is no “direct
nonlinearity” in it. The structure of Lagrangian and equations of motion is very beautiful,
as usual in high-symmetry problems. Nevertheless, the very strong nonlinearity prevents us
to find a rigorous solution. Nevertheless, there are some partial results, namely, if we fix the
behaviour of wave function to some simple form and provide an academic discussion of the
resulting behaviour of the scalar product, then it turns out that there are rigorous exponential
solutions, including ones infinitely growing and ones exponentially decaying in future. This
makes some hope for describing, e.g., some decay/reduction phenomena. Obviously, the
full answer will be possible only when we will be able to find a rigorous solution for the
total system. We are going to repeat the same discussion for the more realistic infinite-level
system, when the wave function is defined somehow on the total configuration space like,
e.g., the arithmetic space. As usual when passing from the finite to infinite dimensions, some
essentially new features appear then, nevertheless, one can hope that the finite-dimensional
results may be to some extent applicable. This will be done both in the usual non-relativistic
Schrödinger wave equation and for the relativistic Klein-Gordon and Dirac equations. In any
of those cases we are dealing with two kinds of degrees of freedom, i.e., dynamical variables:
wave function and scalar product. They are mutually interacting.

All said above concerns the self-adjoint model of the Schrödinger equation, derivable
from variational principle. However, one can also ask what would result if we admitted
“dissipative” models, where the Schrödinger equation does possess some “friction-like”
term. As yet we have not a ready answer, nevertheless, the question is well formulated and
we will try to check what might appear in a consequence of such a generalization. Maybe
some quantum model of dissipation, i.e., of the open system, but at a moment we are unable
to answer the question.
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2. Nonlinear Schrödinger equation as a self-adjoint equation of

mathematical physics

It is known, although not often noticed and declared, that the Schrödinger equation and
other equations of quantum mechanics, including relativistic ones, are self-adjoint, i.e.,
derivable from variational principles. Therefore, they may be expressed in Hamiltonian
terms, i.e., quantum mechanics becomes a kind of analytical mechanics, usually with an
infinite number of degrees of freedom (excepting finite-level systems). So, as far as one
deals with the unobserved quantum system, its evolution may be described within the
classical mathematical framework of Hamiltonian mechanics and canonical transformations.
Of course, this breaks down when quantum springs, jumps, occur, i.e., when one is
faced with phenomena like macroscopic observation, measurements and decoherence. This
happens when a small/quantum system interacts with a large/classical object showing
some characteristic instability. There were various ways of explaining those catastrophic
phenomena and their statistical rules. It is very interesting that those rules are based on the
Hilbert space geometry, but in addition some unpredictable, statistical phenomena appear.
There were many attempts of explanation, based either on the extension to larger, infinite
systems or on the idea of spontaneous stochastic reduction. But one of the permanent
motives is the hypothesis of nonlinearity, especially one which is “silent” in the evolution
of the unobserved quantum system, but becomes essential in the process of interaction with
the large and unstable classical system. This is also our line in this paper. Mathematical
methods of nonlinear analytical mechanics just seem to suggest some attempts of solution.

To explain the main ideas we start from the simple finite-level system, i.e., one with a
finite-dimensional unitary space of states. Let us denote this complex linear space by W
and put dimC W = n. The dual, antidual and complex-conjugate spaces will be denoted

respectively by W∗, W
∗

= W∗, and W. As usual, W∗ is the space of C-linear functions
on W. Having the same finite dimension, the spaces W, W∗ are isomorphic, however in a
non-canonical way until we introduce some unitary structure to W. But some comments are

necessary concerning the complex conjugate spaces W
∗

= W∗, W. It must be stressed that
in general nothing like the complex structure is defined in W. It is a structure-less space
and the half-linear (semi-linear) bar-operations are defined pointwisely. Therefore, for any

f ∈ W∗ and for any u ∈ W the corresponding f ∈ W
∗

, u ∈ W are given by
(

f
)

(w) = f (w), u(g) = u(g), (1)

where w, g are arbitrary elements of W and W∗. Therefore, under the bar-operation W is

canonically anti-isomorphic with W and W
∗

with W∗. Nevertheless, the bar-operation acts
between different linear spaces and this is often essential. The spaces W and W, and similarly

W∗ and W
∗

may be mutually identified only in important, nevertheless mathematically
exceptional, situations when by the very definition W is a linear subspace of the space of
C-valued functions on a given “configuration space” Q. Then we simply define pointwisely

ψ(q) := ψ(q) (2)

and so W becomes identical with W. In general this is impossible. Let us mention of course
that for the n-level system, Q is an n-element set.
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Let us quote a few analytical formulas. We choose a pair of mutually dual bases (e1, . . . , en),
(

e
1, . . . , e

n
)

in W, W
∗ and induced pair of dual bases

(

e1, . . . , e1n

)

,
(

e
1, . . . , e

1n

)

in the

complex-conjugate spaces W and W
∗

≃ W
∗. Then the complex conjugates of vectors

u = u
a
ea ∈ W, f = fae

a
∈ W

∗ (3)

are analytically expressed as

u = u
a
ea, f = f

a
e

a, (4)

where, obviously, u
a, f

a
are the usual complex conjugates of numbers u

a, fa.

In quantum mechanics one uses often sesquilinear forms, usually Hermitian ones. Usually
our sesquilinear forms are antilinear (half-linear) in the first argument and linear in the
second, therefore,

F(au + bw, v) = aF(u, v) + bF(w, v), (5)

i.e., analytically

F(u, w) = F
ab

u
a
w

b. (6)

So, they are elements of W
∗

⊗ W
∗. For Hermitian forms we have

F(u, w) = F(w, u), F
ab

= F
ba

. (7)

If F is non-degenerate,

det [F
ab
] 6= 0, (8)

then the inverse form F
−1

∈ W ⊗ W does exist with coefficients F
ab such that

F
ac

F
cb

= δ
a

b
, FacF

cb = δa

b. (9)

For any quantum system there are two Hermitian forms: a) the scalar product Γ ∈ W
∗

⊗ W
∗

and b) the Hamiltonian form Γ H obtained by the Γ-lowering of the first index of the Hamilton
operator H ∈ L(W) ≃ W ⊗ W

∗. The Hamilton operator H is Γ-Hermitian, i.e.,

Γ(Hψ, ϕ) = Γ(ψ, Hϕ). (10)

Analytically the sesquilinear form Γ H,

Γ H
ab

= Γac H
c

b
, (11)

is simply Hermitian without any relationship to Γ, and from the Langrangian point of view
it is more fundamental than H itself. The finite-level Schrödinger equation
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ih̄

dψ
a

dt

= H
a

b
ψ

b (12)

is derivable from the Lagrangian

L(1) =
ih̄

2
Γ

ab

(

ψ
a

ψ̇
b
− ψ̇

a

ψ
b

)

− Γ H
ab

ψ
a

ψ
b. (13)

Having in view some kind of “generality” it may be convenient to admit some general
constant coefficients α, γ:

L(1) = iαΓ
ab

(

ψ
a

ψ̇
b
− ψ̇

a

ψ
b

)

− γΓ H
ab

ψ
a

ψ
b. (14)

It is seen that unlike in the Schrödinger equation, from the variational point of view Γ H is
more fundamental. It should be denoted rather as χ

ab
, and H

a

b
with the convention of the

Γ-raised first index of χ, as

H
a

b
=

(

Γ
χ

)

a

b
= Γac

χ
cb

. (15)

One does not do so because of the prevailing role of Schrödinger equation over its variational
interpretation. The Hermitian structure of Γ and Γ H imply that L(1) is real. The descriptor
(1) refers to the first-order polynomial dependence of L(1) on the time derivatives of ψ.
Obviously, the corresponding Legendre transformation leads to phase-space constraints and
to the Dirac procedure in canonical formalism. It is interesting to admit some regularization
by allowing L to contain the terms quadratic in generalized velocities, just in the spirit of
analytical mechanics. The corresponding Lagrangian will have the following form:

L(1, 2) = iαΓ
ab

(

ψ
a

ψ̇
b
− ψ̇

a

ψ
b

)

+ βΓ
ab

ψ̇
a

ψ̇
b
− γΓ H

ab
ψ

a

ψ
b. (16)

To be more precise, in the term quadratic in velocities one can admit some more general
Hermitian form, not necessarily the one proportional to Γ

ab
. However, we do not do things

like those in this paper. Let us stress that α, β, γ are real constants.

One circumstance must be stressed: we use as “independent” components ψ
a, ψ

a

. The
procedure is not new. The same is done in variational principles of field theory [10].
Lagrangians are real, based on Hermitian forms, therefore in variational procedure it is

sufficient to subject, e.g., only ψ
a

to the modification ψ
a

7→ ψ
a

+ δψ
a

. Then, e.g., for the
action functional

I(1, 2) =
∫

L(1, 2)dt (17)

one obtains

δI(1, 2)

δψ
a

(t)
= 2iαΓ

ab

dψ
b

dt

− βΓ
ab

d
2
ψ

b

dt
2

− γΓ H
ab

ψ
b (18)
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and the resulting Schrödinger equation:

2iα
dψ

a

dt
− β

d2
ψ

a

dt2
= γHa

bψ
b. (19)

And this is all, because the variation with respect to ψ
a leads to the complex-conjugate

equation. This is a convenient and commonly used procedure.

The language of analytical mechanics, in this case finite-dimensional one, opens some
possibility of introducing nonlinearity to quantum-mechanical equations. The simplest way
is to believe in Schrödinger equation but reinterpreting it in terms of Hamiltonian mechanics,
to introduce some naturally looking nonlinear perturbations to it. The simplest way is to
introduce to L some non-quadratic potential term V

(

ψ, ψ
)

and the corresponding action
term to I:

I(V) =
∫

Vdt. (20)

For example, the simplest possibility is to use the term like

V

(

ψ, ψ
)

= f
(

Γabψ
a
ψ

b
)

, (21)

with some model function f : R → R. In various physical applications one uses often the
quartic term:

f (y) =
κ

2
(y − b)2. (22)

When using the V-term, one obtains after the variational procedure the following nonlinear
Schrödinger equation:

2iα
dψ

a

dt
− β

d2
ψ

a

dt2
= γHa

bψ
b + f ′ψa, (23)

where f ′ denotes the usual first-order derivative of f . This is the simplest model containing
the superposition of first- and second-order time derivatives of ψ. It is very simple because
of being a finite-level system and because of the direct introduction of nonlinearity as a
perturbation of the primarily linear model. Nevertheless, it demonstrates some interesting
features of nonlinearity and of the mixing of derivatives order.

The problem of the order of derivatives is strongly related to the structure of Hamiltonian
mechanics of our systems. It occurs also in corresponding problems of field theory. Let us
mention some elementary facts. As usual, it is convenient to use the doubled number of

degrees of freedom ψ
a, ψ

a
and the corresponding canonical momenta πa, πa. The symplectic

form is given by

ω = dπa ∧ dψ
a + dπa ∧ dψ

a
, (24)
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and the resulting Poisson bracket is expressed as follows:

{F, G} =
∂F

∂ψa

∂G

∂πa

+
∂F

∂ψ
a

∂G

∂πa

−

∂F

∂πa

∂G

∂ψa
−

∂F

∂πa

∂G

∂ψ
a

. (25)

The Hamiltonian vector field is given by

X
F
=

∂F

∂πa

∂

∂ψa
+

∂F

∂πa

∂

∂ψ
a
−

∂F

∂ψa

∂

∂πa

−

∂F

∂ψ
a

∂

∂πa

. (26)

It must be stressed that all dynamical quantities in this formalism are considered as
independent on their complex conjugates:

〈

dψ
a,

∂

∂ψb

〉

= δ
a

b
,

〈

dψ
a

,
∂

∂ψ
b

〉

= δ
a

b
, (27)

but
〈

dψ
a,

∂

∂ψ
b

〉

= 0,

〈

dψ
a

,
∂

∂ψb

〉

= 0, (28)

and similarly,

〈

dπa,
∂

∂π
b

〉

= δa

b,

〈

dπa,
∂

∂π
b

〉

= δa

b, (29)

〈

dπa,
∂

∂π
b

〉

= 0,

〈

dπa,
∂

∂π
b

〉

= 0. (30)

All the remaining basic evaluations are vanishing, in particular those for dψ
a, dψ

a

with ∂/∂π
b
,

∂/∂π
b
, and similarly, for dπa, dπa with ∂/∂ψ

b, ∂/∂ψ
b

.

Let us write down the Hamilton equations of motion. Their form depends strongly on the
occurrence of second time derivatives in the “Schrödinger equation”. For simplicity let us
begin with the assumption that β 6= 0 and our equation is second-order in time derivatives.
Then the Legendre transformation is given by the formulas:

πa = iαψ
b

Γ
ba
+ βψ̇

b

Γ
ba

, πa = −iαΓ
ab

ψ
b + βΓ

ab
ψ̇

b. (31)

They are invertible and

ψ̇
a =

1

β
Γab

π
b
+

iα

β
ψ

a, ψ̇
a

=
1

β
π

b
Γba

−

iα

β
ψ

a

. (32)
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The Lagrangian "energy" function is given by

E = βΓ
ab

ψ̇
a

ψ̇
b + γΓ H

ab
ψ

a

ψ
b + V

(

ψ, ψ
)

, (33)

and substituting here the above inverse formula we obtain the “Hamilton function” in the
sense of analytical mechanics:

H =
1

β

(

Γab
πaπ

b
+ iα

[

πaψ
a
− πaψ

a

])

+

(

α
2

β
Γ

ab
+ γΓ H

ab

)

ψ
a

ψ
b + V

(

ψ, ψ
)

. (34)

It is clear that the “energy” function is always globally defined in the tangent bundle, but
the “Hamiltonian” H does exist as a function on the cotangent bundle only if β does not
vanish. The special case β = 0 is essentially singular. Let us mention that it is a general
rule that differential equations are catastrophically sensitive to the vanishing of coefficients
at highest-order derivatives. In any case the Schrödinger equation modified by terms with
second derivatives is essentially different than the usual, first-order equation. The problem
has to do both with some doubts concerning the occurrence of second derivatives but also
with certain hopes and new physical ideas. Obviously, if β 6= 0, the second-order Schrödinger
equation is equivalent to the following canonical Hamilton equations:

dψ
a

dt

= {ψ
a,H} =

∂H

∂πa

,
dπa

dt

= {πa,H} = −

∂H

∂ψa
. (35)

Let us mention that there are various arguments for the second-order differential equations
as fundamental ones for quantum theory. In a sense, in conformal SU(2, 2)-ruled
geometrodynamics, some kind of Dirac behaviour is a byproduct of the quadruplet of the
gauge Klein-Gordon equation [4, 9]. Besides, in nano-physics there are also some other
arguments for the mixing of first- and second-order Schrödinger equations [1, 8]. In the
SU(2, 2)-gauge theory there are also some interesting consequences of this mixing within the
framework of the standard model.

Nevertheless, it is also convenient to discuss separately the degenerate Schrödinger
(Schrödinger-Dirac?) model based on the first derivatives. Our Legendre transformation
becomes then

πa = iαψ
b

Γ
ba

, πa = −iαΓ
ab

ψ
b. (36)

It does not depend on velocities at all. The same concerns the energy function:

E = γΓ H
ab

ψ
a

ψ
b = γΓ

(

ψ, ̂Hψ

)

. (37)

Strictly speaking, Hamiltonian is defined only on the manifold of “primary constraints” in

the sense of Dirac, M = L

(

W × W × W × W

)

⊂ W × W × W
∗
× W

∗

, where L is just the
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above Legendre transformation. Some authors, including Dirac himself, define Hamiltonian
H all over the phase space, however, it is then non-unique, and namely

H = H0 + λ
a

(

πa − iαψ
b

Γ
ba

)

+ λ
a

(

πa + iαΓ
ab

ψ
b

)

, (38)

where λ
a, λ

a

are Lagrange multipliers and

H0 = γΓ H
ab

ψ
a

ψ
b + V(ψ, ψ). (39)

One can easily show that the Dirac secondary constraints coincide with the primary ones,
M

S
= M, and the multipliers are given by

λ
a = −

iγ

2α
H

a

b
ψ

b
−

i

2α
Γac

∂V

∂ψ
c

, (40)

λ
a

=
iγ

2α
ψ

b

H
b

a +
i

2α

∂V

∂ψc
Γca, (41)

where operations on indices of H are meant in the sense of the metric tensor Γ.

It is clear that M = M
S

has the complex dimension n, but its real dimension is 2n, always
even, as it should be with symplectic manifolds. The following quantities, π-s doubled in a
consequence of this “complex-real”,

Πa = 2iαψ
b

Γ
ba

, Πa = −2iαΓ
ab

ψ
b, (42)

may be used to represent the canonical conjugate momenta. It follows in particular, that on
the constraints submanifold M we have the following Poisson brackets:

{ψ
a, ψ

b
}

M
= 0, {ψ

a

, ψ
b

}
M

= 0, {ψ
a, ψ

b

}
M

=
1

2iα
Γab. (43)

Therefore, it is seen that up to normalization the complex conjugates ψ
a

coincide with
canonical momenta conjugate to ψ

a. Using the standard properties of Poisson brackets we
can write the resulting canonical equations in the bracket form:

dψ
a

dt

= {ψ
a,H}

M
,

dψ
a

dt

= {ψ
a

,H}
M

. (44)

This implies, of course, the following well-known equation:

ih̄

dψ
a

dt

= H
a

b
ψ

b +
1

2
Γab

∂V

∂ψ
b

(45)
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and, equivalently, its complex conjugate.

Let us stress that due to the V-term, this is a nonlinear Schrödinger equation. The
nonlinearity and its possible consequences for the decoherence and measurement problems
depend on our invention in constructing the V-model. Of course, the procedure is more
promising for large, in particular infinite, systems, and the above finite-level framework is
rather a toy model. This concerns both the first- and second-order Schrödinger equations.
Nevertheless, in the above models nonlinearity was more or less introduced “by hand”, as
an additional perturbation term. Our main idea, we are going to describe it now, consists in
introducing of nonlinearity in analogy to the passing from special to general relativity.

3. Non-direct nonlinearity and the dynamical scalar product

Let us remind some other, well-established nonlinearities of intrinsically geometric origin,
appearing in physics. One of them is Einstein-Hilbert general relativity. It is well known that
majority of well-established field theories is originally linear, and the nonlinearity appears
in a consequence of their mutual interactions and symmetry principles. But there is one
exceptional nonlinearity, namely that of gravitation theory. In special-relativistic physics
the space-time arena is given by the flat Minkowski space. Its geometry is an absolute
factor which restricts the symmetry to the Poincare group. But it is a strange and originally
surprizing fact that physics does not like absolute objects. In general relativity the metric
tensor becomes a dynamical quantity with the dynamics ruled by the Hilbert Lagrangian. It
is so-to-speak an essentially nonlinear centre of physical reality. Its dynamics is essentially,
non-perturbatively nonlinear and invariant under the infinite-dimensional group of the
space-time diffeomorphisms (general covariance group). And automatically it becomes the
group of symmetry of the whole physics. The dynamics is quasilinear, nevertheless by
necessity nonlinear. The relationship between essential nonlinearity and large symmetry
groups seems to be a general rule. Let us mention now two another, simpler examples from
different branches of physics.

The first example belongs to mechanics of continua, first of all to plasticity theory, although
elastic applications are also possible [11]. Let us consider a real linear space V and
the set Sym (V∗

⊗ V∗) of symmetric metric tensors on V. It is obviously non-connected
and consists of components characterized by the signature. Let us consider the manifold
Sym+ (V∗

⊗ V∗) of positively definite metrics. And now, assuming that the metrics elements
of Sym+ (V∗

⊗ V∗) describe some physical reality, let us ask for the metric structures, i.e.,
kinetic energy forms on Sym+ (V∗

⊗ V∗). Of course, the simplest possibility is

ds2 = Gijkldgijdgkl , i.e., G = Gijkldgij ⊗ dgkl , (46)

where Gijkl is constant and satisfies the natural nonsingularity and symmetry conditions:

Gijkl = Gklij, Gijkl = Gjikl = Gijlk. (47)

This metric on the manifold of metrics is flat. But this is rather strange and non-aesthetic.
The natural question appears why not to use the following intrinsic metric:
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ds2 = λgjkglidgijdgkl + µgjiglkdgijdgkl , (48)

or, in more sophisticated terms:

G = λgjkglidgij ⊗ dgkl + µgjiglkdgij ⊗ dgkl , (49)

where λ, µ are constants and
[

gij
]

is the contravariant inverse of
[

gij

]

, i.e., gikgkj = δ
i
j. This

metric structure is evidently non-Euclidean, Riemannian in Sym+ (V∗
⊗ V∗), but it does not

contain anything a priori fixed, but λ, µ. To be more precise, it is only λ that is essential up
to normalization, because the µ-term, being degenerate, is only an auxiliary correction. The
corresponding kinetic energy of the g-process will be

T =
λ

2
gjkgli

dgij

dt

dgkl

dt
+

µ

2
gjiglk

dgij

dt

dgkl

dt
. (50)

Expressions of this type are used, e.g., in incremental approaches to plasticity. They are also
interesting in certain elastic problems and in defect theory.

Let us also mention about some other application. Consider the motion of material point
with the mass m and internal g-degrees of freedom. The corresponding kinetic energy will
be given by

T =
m

2
gij

dxi

dt

dxj

dt
+

λ

2
gjkgli

dgij

dt

dgkl

dt
+

µ

2
gjiglk

dgij

dt

dgkl

dt
, (51)

obviously xi are here coordinates of the centre of mass. One can also introduce some
potential term built of xa, gij. In a sense, the structure of (50), (51) resembles that of
generally-relativistic Lagrangians, obviously with the proviso that only the time derivatives
occur, as we are dealing here with a system which does not possess any other continuous
independent variables. Indeed, the main term of Hilbert Lagrangian begins from the
expression proportional to

gνκgµλgαβgµν,αgκλ,β, (52)

where gµν is the space-time metric and gαβ is its contravariant inverse. Differentiation
with respect to the space-time coordinates is meant here. The structural similarity to the
prescription (50), (51) is obvious.

It is important that the both last expressions for T are invariant under the total group GL(V),
or rather under the semi-direct product GL(V) ×s V. Again the “large” symmetry group
is responsible for the essential nonlinearity even of the geodetic models described by the
expressions for T.

It is interesting to ask what changes appear when we assume V to be a complex linear space
and g a sesquilinear Hermitian form. Obviously, instead of (50), (51) we will have then
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T =
λ

2
gjkgli

dgij

dt

dgkl

dt
+

µ

2
gjiglk

dgij

dt

dgkl

dt
, (53)

T =
m

2
gij

dxi

dt

dxj

dt
+

λ

2
gjkgli

dgij

dt

dgkl

dt
+

µ

2
gjiglk

dgij

dt

dgkl

dt
. (54)

As usual, the matrix
[

gij
]

is reciprocal to
[

gkl

]

.

Let us observe that the models (50), (51), (53), (54) are structurally similar to our
earlier affinely-invariant models of the affinely-rigid body [2, 3], i.e., roughly speaking to
affinely-invariant geodetic models on the affine group. The idea there was that the material
point was endowed with additional internal or collective degrees of freedom described by the
attached linear basis (. . . , eA, . . .), or equivalently its dual

(

. . . , eA, . . .
)

. The affinely-invariant
kinetic energy was given by

T =
m

2
Cij

dxi

dt

dxj

dt
+

A

2
Ωi

jΩ
j
i +

B

2
Ωi

iΩ
j
j, (55)

where Cij = ηABeA
ie

B
j is the Cauchy deformation tensor, ηAB is the fixed reference (material)

metric, and Ωi
j is so-called affine velocity (affine generalization of angular velocity),

Ωi
j =

dei
A

dt
eA

j. (56)

This expression for T is affinely invariant and in spite of its apparently strange structure
it is dynamically applicable, due to its strongly non-quadratic prescription (nonlinearity of
equations of motion).

Let us now go back to our quantum problem. First of all, let us notice that even
in our finite-level system with the nonlinearity directly introduced to the Schrödinger
equation, the procedure is in general non-trivial. There are two reasons for that: the
possible time-dependence of the Hamiltonian Ha

b, and the non-quadratic term V
(

ψ, ψ
)

.
Nevertheless, it is still a provisional solution.

Much more geometric is the following reasoning. To give up the fixed scalar product and
to introduce instead the dynamical one, in analogy to general relativity and continuum
mechanics. And then to define the kinetic energy for Γ in analogy to (53):

T = L[Γ] =
A

2
ΓbcΓdaΓ̇abΓ̇cd +

B

2
ΓbaΓdcΓ̇abΓ̇cd. (57)

Therefore, the configuration space of our system consists of pairs (ψa, Γab). The Lagrangian
may be given by

L[ψ, Γ] = L(1, 2)[ψ, Γ] + V [ψ, Γ] + L[Γ], (58)
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where L(1, 2) [ψ, Γ], V [ψ, Γ] are just the previously introduced models (16), (21), however with
the dynamical, non-fixed Γ subject to the variational procedure. Obviously, this complicates
the Euler-Lagrange equations even in their parts following only from L(1, 2) + V .

The resulting theory is essentially nonlinear and invariant under the group GL(W), instead of
the unitary group U(W, Γ) which preserves the traditional quantum mechanics. In a sense,
the gap between quantum and classical mechanics diffuses. Not everything is quantum,
not everything is classical. And the effective nonlinearity creates some hope for explaining
the quantum paradoxes. Let us observe that the variation of I[Γ] =

∫

L[Γ]dt leads to the
following equations:

− AΓbn

(

Γ̈
nk

− Γ̇
nl

ΓlcΓ̇
ck

)

Γka
− BΓln

(

Γ̈
nl
− Γ̇

nk
ΓkcΓ̇

cl

)

Γba = 0. (59)

As mentioned, the second term is merely a correction; the first term is essential. Let us notice
that we did not perform variation in any other term of Lagrangian (58). It is so as if the
ψ

a-degrees of freedom were non-excited. Of course, this is more than academic assumption,
nevertheless convenient as a toy model. It is clear that the above equation (59) possesses
solutions of the form:

Γrs = Grz exp(Et)z

s = exp(Ft)r

z
Gzs, (60)

where the initial condition for the scalar product G = Γ(0) is a Hermitian sesquilinear form,

G ∈ Herm
(

W
∗

⊗ W
∗

)

. But this Hermitian property is to be preserved during the whole

evolution. This will be the case when the linear mappings E ∈ L(W), F ∈ L

(

W
∗

)

will be

G-Hermitian, i.e., when the sesquilinear forms analytically given by

G
Ers = GrzE

z

s, (F
G
)

rs
= Fr

z
Gzs (61)

are Hermitian. Such solutions are analogous to our geodetic solutions in affinely-invariant
models of the homogeneously deformable body [2, 3]. Obviously, there is a deep geometric
difference, because in mechanics of homogeneously deformable bodies one deals with real
mixed tensors describing configurations, while here we are doing with complex sesquilinear
forms. Nevertheless, the general philosophy is the same. Let us observe some interesting
facts. Namely, the above evolution of Γ may show all possible modes: it may be exponentially
increasing, exponentially decaying, and even oscillatory. The point is how the initial data for
Γ(0) = G, E, F are fixed. Obviously, the academic model of the evolution of Γ when ψ is fixed
is rather non-physical, nevertheless, there is a hope that the mentioned ways of behaviour
may have something to do with decoherence and measurement paradoxes. Obviously, this
hypothesis may be confirmed only a posteriori, by solving, at least approximately, the total
system of equations derived from (58) and (63) below. In any case, it is almost sure that the
supposed dynamics of Γ should be based on (57) in (58). This follows from our demand of
GL(W)-invariance and from the analogy with general relativity and affine body dynamics.
For example, we could try to use some fixed background metric G and assume:

L[G, Γ] =
I

2
G

bc
G

daΓ̇
ab

Γ̇
cd
+

K

2
G

ba
G

dcΓ̇
ab

Γ̇
cd

. (62)
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When having G at disposal, we can also define potential-like terms Tr
(

GΓp
)

, where GΓr
s :=

GrzΓzs. But of course, it seems aesthetically superfluous to fix some scalar products G taken
from nowhere, when the dynamical one is used. And it is only L[Γ] (57) that seems to have
a chance for solving the decoherence problem due to its strong, geometrically motivated
nonlinearity.

In any case, the simplest GL(W)-invariant Lagrangian seems to have the form:

L = iα1Γ
(

ψ
a
ψ̇

b
− ψ̇

a
ψ

b
)

+ α2Γabψ̇
a
ψ̇

b + (α3Γab + α4Hab)ψ
a
ψ

b

+ α5ΓdaΓbcΓ̇abΓ̇cd + α6ΓbaΓdcΓ̇abΓ̇cd − V(ψ, Γ), (63)

where, e.g.,

V(ψ, Γ) =
κ

2

(

Γabψ
a
ψ

b
− b

)2
. (64)

This expression (63) contains all the structural terms mentioned above and is
GL(W)-invariant. All quantities in it (except real constants) are dynamical variables and are
subject to the variational procedure. We do not investigate in detail the resulting equations
of motion. They are very complicated and describe the mutual interaction between ψ

a, Γab.
Nevertheless, their structure is interesting and instructive. Let us quote them for the above
Lagrangian (63):

∂L

∂ψ
a
=

(

2iα1Γab − α2Γ̇ab

)

ψ̇
b
− α2Γabψ̈

b

+
(

iα1Γ̇ab + α3Γab + α4Γ Hab − V
′Γab

)

ψ
b = 0, (65)

∂L

∂Γab
= −AΓbn

(

Γ̈nk − Γ̇nlΓ
lcΓ̇ck

)

Γka
− BΓln

(

Γ̈nl − Γ̇nkΓkcΓ̇cl

)

Γba

+ iα1

(

ψ
a
ψ̇

b
− ψ̇

a
ψ

b
)

+ α2ψ̇
a
ψ̇

b +
(

α3 − V
′
)

ψ
a
ψ

b = 0. (66)

In spite of their relatively complicated structure, these nonlinear equations are readable. For
any case we have retained the direct nonlinearity term derived from V . But the main idea
of nonlinearity and large GL(W) ≃ GL(n, C)-symmetry is just the interaction between ψ

and Γ. And it is just the interaction of the generally-relativistic type. As seen, at the same
time it is structurally similar to affinely-invariant geodetic models of elastic vibrations of the
homogeneously deformable body [2, 3]. Even independently on our quantum programme,
this model is interesting in itself as an example of highly-symmetric dynamical system on a

homogeneous space. Nonlinearity of the system is rational because the inverse matrix
[

Γab
]

is a rational function of [Γcd]. Therefore, there are some hopes for a solvability, perhaps at
least qualitative or approximate, of the system (65), (66).

Let us notice that the α3-controlled term may be included into the α4-expression. We simply
decided to write it separately to stress the special role of the Hamiltonian terms proportional
to the identity operator. Let us stress that the Lagrangian (63) is not the only expression with
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the above enumerated properties. Rather, it is the simplest one. For example, one might

replace Γab by Γab + α7ψ
a
ψ

b

, etc. Perhaps this will modify somehow the resulting equations,
but in a rather non-essential way. All important features are already predicted by equations
following from (63). Let us remind that in (63) we have according to quantum mechanics

α1 =
h̄

2
, α4 = −1. (67)

The nonlinearity contained in (63) resembles in a sense the Thomas-Fermi approximation in
quantum mechanics [12, 13]. It may be considered as an alternative way of describing open
systems.

When concentrating on the dynamical system model of Schrödinger equation, one is faced
with the interesting question as to what might be described by admitting non-Hamiltonian
forces. Perhaps nothing physical. There is nevertheless some possibility that such forces
might be useful for describing quantum dissipative phenomena. However, at this stage we
have no idea concerning this problem.

The GL(W) ≃ GL(n, C)-invariance of the Hamiltonian system implies the existence of n
2

complex constants of motion. We do not quote here their explicit form to avoid writing
unnecessary and complicated formulas. Nevertheless, their existence is a remarkable
property of the theory.

Let us stress that the strong and geometrically implied nonlinearity of equations following
from (63) gives a chance for the macroscopic reinforcement and enhancement of quantum
events.

It is very important to remember that in the model (63), (65), (66), based on the mutual
interaction between ψ and Γ, the “scalar product” Γ is not a constant of motion. And there is
an exchange of energy between ψ- and Γ-degrees of freedom, especially in situations when
the Γ-motion is remarkably excited. Therefore, if α5 6= 0, α6 6= 0, the quantity Γ, although
fundamental for physical interpretation, in a sense loses its physical meaning of the scalar
product. If α2 = 0, α5 = 0, α6 = 0, then the invariance of L under the U(1)-group

ψ 7→ exp

(

−

i

h̄

eχ

)

ψ (68)

implies, via Noether theorem, that

e

2α1

h̄

〈ψ|ψ〉 = e

2α1

h̄

Γ
ab

ψ
a

ψ
b (69)

is a constant of motion. And then the usual polarization formula for quadratic forms implies

that 〈ψ|ϕ〉 = Γ
ab

ψ
a

ϕ
b is preserved. If α2 6= 0, this procedure leads to the scalar product

Γ
ab

ψ
a

ϕ
b +

iα2

2α1
Γ

ab

(

ψ
a

ϕ̇
b
− ψ̇

a

ϕ
b

)

. (70)
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It fails to be positively definite, nevertheless, it seems to be physically interesting [1]. And
finally, when α5 6= 0, α6 6= 0, Noether theorem tells us that the U(1)-constant of motion

differs form the above ones by the term proportional to ΓabΓ̇ba. But now Γ is a dynamical

variable and the last expression is not quadratic in
(

Γab, Γ̇ab

)

. Because of this there is no
polarization procedure and no well-defined Noether-based scalar product at all.

4. Towards general systems

The main ideas of our nonlinearity model in quantum mechanics were formulated and
presented in the simplest case of finite-level systems. Let us mention now about a more
general situation. We concentrate mainly on the non-relativistic Schrödinger mechanics. It
is true that on the very fundamental level of theoretical physics one is interested mainly
in relativistic theory. Nevertheless, the non-relativistic counterparts are also interesting at
least from the methodological point of view; they just enable us to understand deeper the
peculiarity of relativistic theory. And of course they may be also directly useful physically
in situations where in condensed matter theory, relativistic effects are not relevant, e.g., in
superconductivity and superfluidity.

Galilei group and Galilei space-time are structurally much more complicated than
Poincare (inhomogeneous Lorentz) group and Minkowski space-time. Because of this, the
construction of Lagrangian for the Schrödinger theory need some comments and a few steps
of reasoning.

One is rather used to start with wave-mechanical ideas of Schrödinger equation, i.e.,

ih̄
∂ψ

∂t
= Hψ (71)

rather than with some yet unspecified precisely field theory on the Galilei space-time. The
standard scalar product of Schrödinger amplitudes on the three-dimensional Euclidean space
will be denoted as usually by

〈ψ1|ψ2〉 =
∫

ψ1(x)ψ2(x)d3x, (72)

where, obviously, orthogonal Cartesian coordinates are meant. More generally, in curvilinear
coordinates we would have

〈ψ1|ψ2〉 =
∫

ψ1(q)ψ2(q)
√

|g(3)|d3q, (73)

where |g(3)| is an abbreviation for the determinant of the matrix of Euclidean metric tensor
g(3), and qi are generalized coordinates. The same formula is valid in the Riemann space,
where all coordinates are “curvilinear”. However, here we do not get into such details.

Hermitian conjugation of operators, A 7→ A+ is meant in the usual sense of L2
(

R3
)

with
the above scalar product,

〈ψ1|Aψ2〉 = 〈A
+

ψ1|ψ2〉, (74)
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obviously with some additional remarks concerning domains. The Hamilton operator is
self-adjoint, H+ = H, also with some care concerning the domains.

The Schrödinger equation is again variational with the Lagrangian

L = LT + LH , (75)

where, LT , LH denote respectively the terms depending linearly on first-order time
derivatives and independent on them,

LT =
ih̄

2

(

ψ
∂ψ

∂t
−

∂ψ

∂t
ψ

)

= −Im

(

h̄ψ
∂ψ

∂t

)

= Re

(

ih̄ψ
∂ψ

∂t

)

, (76)

LH = −ψ (Hψ) . (77)

The total action is

I = IT + IH =
∫

LTdtd3x +
∫

LHdtd3x, (78)

and the resulting variational derivative of I equals

δI

δψ(t, x)
= −Hψ + ih̄

∂ψ

∂t
, (79)

therefore, the stationary points are given indeed by the solutions of (71). In the very
important special case of a material point moving in the potential field V,

H = −

h̄2

2m
gij ∂

2

∂xi∂xj
+ V = −

h̄2

2m
∆ + V, (80)

it is convenient and instructive to rewrite the Lagrangian term LH in a variationally
equivalent form structurally similar to the Klein-Gordon Lagrangian,

L
′

H = −

h̄2

2m
gij ∂ψ

∂xi

∂ψ

∂xj
+ Vψψ, (81)

which differs from the original one by a total divergence term. In particular, there are no
artificial second derivatives in L

′

H . This resembles the situation one is faced with in General
Relativity. For a free particle the total Lagrangian equals

L
′ =

ih̄

2

(

ψ
∂ψ

∂t
−

∂ψ

∂t
ψ

)

−

h̄2

2m
gij ∂ψ

∂xi

∂ψ

∂xj
. (82)

In this form, structurally as similar as possible to the Lagrangian for the Klein-Gordon field,
the essential geometrical similarities and differences between Galilei and Poincare quantum
symmetries are visible.
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The well-known expressions for the probability density and probability current are obtained
in non-relativistic quantum mechanics on the basis of some rather rough and intuitive
statistical concepts. However, when the Schrödinger equation is interpreted within the
framework of field theory on the Galilean space-time, those concepts appear as direct
consequences of Noether theorem just as said above in the finite number of levels part. The
Schrödinger Lagrangian for a free particle is invariant under the group U(1) of global gauge
transformations,

ψ 7→ exp

(

−

i

h̄
eχ

)

ψ, (83)

where e denotes the coupling constant (elementary charge) and χ is the gauge parameter.
Within the Kaluza-Klein formulation of electrodynamics of point charges, the variable χ and
electric charge e are canonically conjugate quantities. The invariance under this gauge group
implies the conservation law for the Galilean current

(

jt, j
)

, where

jt = ̺ = eψψ, ja =
eh̄

2im

(

ψ
∂ψ

∂xa
−

∂ψ

∂xa
ψ

)

. (84)

The resulting continuity equation has the usual form:

∂̺

∂t
+

∂ja

∂xa
= 0, i.e.,

∂̺

∂t
+ divj = 0. (85)

Let us stress that all those formulas hold in rectilinear orthonormal coordinates. In general
coordinates we would have to multiply the above expressions by

√

|g(3)| so as to turn them
respectively into scalar and contravariant vector densities. And so one does in a general
Riemann space. Continuity equation is satisfied if ψ is a solution of the Schrödinger equation.

The functional

ψ 7→ Qt[ψ] =
∫

jtd3x =
∫

̺(t, x)d3x (86)

describes the total charge at the time instant t. On the basis of field equations it is
independent on time,

d

dt
Qt[ψ] = 0. (87)

This is the global law of the charge conservation. Let us observe that Q is a functional
quadratic form of ψ. Its polarization reproduces the usual scalar product as a sesquilinear
Hermitian form (up to a constant factor):

4e〈ψ|ϕ〉 = Q[ψ + ϕ]− Q[ψ − ϕ]− iQ[ψ + iϕ] + iQ[ψ − iϕ]. (88)

In a consequence of charge conservation law 〈ψ|ϕ〉 is time-independent if ψ, ϕ are solutions
of the same Schrödinger equation.
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One can do the same for multiplets of scalar Schrödinger fields ψ
a, i.e., for the continuum of

systems described in the previous section. Then we have

LT =
ih̄

2
Γab

(

ψ
a ∂ψ

b

∂t
−

∂ψ
a

∂t
ψ

b

)

, (89)

〈ψ|ϕ〉 =
∫

Γabψ
a
ϕ

b
√

|g(3)|d3q, (90)

LT = Re

〈

ψ|ih̄
∂ψ

∂t

〉

= −Im

〈

ψ|h̄
∂ψ

∂t

〉

, (91)

LH = −Γabψ
a
(Hψ)b , LH = −〈ψ|Hψ〉. (92)

And again, for systems with scalar potentials, when

(Hψ)a = −

h̄2

2m
∆ψ

a + Va
bψ

b, (93)

we can remove second derivatives as a divergence term and obtain the modified Lagrangian

L
′

H = −

h̄2

2m
Γab

∂ψ
a

∂xi

∂ψ
b

∂xj
g(3)ij

− Vabψ
a
ψ

b, (94)

where

Vab = ΓacVc
b. (95)

We have used here Cartesian coordinates for simplicity. Using the operator of linear
momentum,

Pa =
h̄

i

∂

∂xa
, (96)

we can write

LH = −

1

2m
〈Paψ|Pbψ〉 g(3)ab

− 〈ψ|Vψ〉. (97)

In analogy to (16), (17), (21) we can write the direct-nonlinearity Lagrangian as follows:

L = iα1Γab

(

ψ
a
ψ̇

b
−

˙
ψ

a
ψ

b
)

+ α2Γabψ̇
a
ψ̇

b

+ α3Γab
∂ψ

a

∂xi

∂ψ
b

∂xj
g(3)ij + α4Vabψ

a
ψ

b
− V(ψ, Γ), (98)

where, e.g., the non-quadratic term V responsible for nonlinearity may be chosen in a quartic
form (22). The combination of the α2-, α3-terms may be purely academic, as explained above,
but it may also describe something like the Klein-Gordon phenomena, when α2 and α3 are
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appropriately suited. Indeed, at an appropriate ratio α2 : α3 the above expression for L

becomes:

L = iα1Γab

(

ψ
a
ψ̇

b
−

˙
ψ

a
ψ

b
)

+ α231Γab
∂ψ

a

∂xµ

∂ψ
b

∂xν
gµν

− α232Γabψ
a
ψ

b + α4Vabψ
a
ψ

b
− V(ψ, Γ), (99)

where g is the Minkowskian metric. For the notational simplicity we used Cartesian
coordinates in this formula, to avoid the multiplying of L by

√

|g|. Of course, within
relativistic framework it is rather artificial to superpose the g-Minkowskian terms with
the non-relativistic α1-term. The consequent relativistic theory should rather combine the
Klein-Gordon and Dirac terms. Therefore, L should be then postulated as:

L = iα11Γµ
ab

(

ψ
a ∂ψ

b

∂xµ
−

∂ψ
a

∂xµ
ψ

b

)

+ α231Γab
∂ψ

a

∂xµ

∂ψ
b

∂xν
gµν

− α232Γabψ
a
ψ

b + α4Vabψ
a
ψ

b
− V(ψ, Γ). (100)

Here we do not fix entities and constants. As usual in the Dirac framework, Γ in the α231-,
α232-terms is the sesquilinear Hermitian form of the neutral signature (++−−). And Γµ

are sesquilinear Hermitian Dirac forms, i.e., raising their first index with the help of the

reciprocal contravariant Γab, ΓacΓcb = δ
a

b, one obtains the Dirac matrices γ
µa

b = ΓacΓµ
cb

satisfying the anticommutation rules:

γ
µ

γ
ν + γ

ν
γ

µ = 2gµν I4. (101)

Strictly speaking, the quantities Γab at α231-, α232-terms need not be the same. Nevertheless,
in the fundamental quantum studies it is convenient to identify them. Let us mention,
e.g., some ideas connected with the Dirac-Klein-Gordon equation appearing in certain
problems of mathematical physics [2, 3]. In particular, it turns out that the SU(2, 2)-ruled
(conformally ruled) theory of spinorial geometrodynamics has a specially-relativistic limit
based on Lagrangian similar to (100). In any case, the specially-relativistic theory based on
the superposition of the Klein-Gordon and Dirac Lagrangians is interesting from the point
of view of some peculiar kinship between pairs of fundamental particles. We mean pairs of
fermions and pairs of quarks which occur in the standard model [9, 14, 15].

Let us go back to our general model (98), not necessarily relativistic one. Its nonlinearity
is contained only in the non-quadratic potential term V(ψ, Γ). Lagrangian L and the
action are local in the x-space when the Hamilton operator is a sum of the position- and
momentum-type operators. However, in general the corresponding contribution to action is
given by

Iχ[ψ] = −γ

∫

ψ
a
(t, x)χab(x, y)ψb(t, y)dtdxdy, (102)
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therefore,

δIχ

δψ
a
(t, x)

= −γ

∫

χab(x, y)ψb(t, y)dy. (103)

This integral expression implies that our equations of motion will be integro-differential ones.
If we seriously assume that also the scalar product is given by the double spatial integral, so
that, e.g.,

I1 = iα
∫

Γab(x, y)
(

ψ
a
(t, x)ψ̇b(t, y)− ψ̇

a
(t, x)ψb(t, y)

)

dtdxdy, (104)

and in general

Γab(x, y) 6= Γabδ(x − y), (105)

then the variational derivative of I1 also leads to the integro-differential equation, because

δI1

δψ
a
(t, x)

= 2iα
∫

Γab(x, y)ψ̇b(t, y)dy. (106)

The necessity of using integro-differential equations is embarrassing. However, the main
difficulty appears when we wish to follow the finite-level systems dynamics in the general

case. Namely, it was relatively easy to write formally something like the elements
[

Γab
]

of the matrix reciprocal to [Γcd] for the finite-dimensional system. And one can try to
follow this procedure for the dynamical scalar product in the general infinite-dimensional
case. However, such a hybrid is not convincing. It would be then only “internal degrees
of freedom” subject to the procedure of the dynamical scalar product. No doubt that this
does not seem satisfactory. Let us write the dynamical scalar product of the Schrödinger-like
quantum mechanics in the form:

〈ψ|ϕ〉 =
∫

Γab(x, y)ψ
a
(x)ϕ

b(y)dxdy, (107)

where Γab(x, y) = Γba(y, x). Assuming in addition the translational invariance, we have
Γ(x, y) = Γ(x − y), i.e.,

〈ψ|ϕ〉 =
∫

Γab(x − y)ψ
a
(x)ϕ

b(y)dxdy. (108)

A simplifying assumption would be factorization

Γab(x, y) = ΓabK(x, y) = ΓabK(x − y). (109)

Let us remind that in the usual quantum mechanics without the dynamical scalar product,
we have simply

Γab(x, y) = ∆abδ(x − y), (110)
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where ∆ is a positively definite algebraic scalar product for internal modes. In appropriately
chosen basis we have simply ∆ab = δab. In the mentioned half-a-way approach, (110) is still
valid but with the dynamical, time-dependent ∆ab.

Much more reasonable, although incomparatively more difficult, would be a consequent

approach based on the dynamical scalar product (107). Here we only mention some ideas.

The main point is the construction of the full inverse of Γ in (107), with the time-dependent

Γ, i.e., analytically Γab(x, y; t) such that

∫

Γac(x, u; t)Γcb(u, y; t)du = δ
a

bδ(x − y). (111)

Obviously, in general it is a rather very difficult problem to find explicitly the formula for

that inverse. One can try to discretize it by choosing some appropriate finite (or perhaps

countable) family Ω of vectors ap such that

Γab(x, y; t) = ∑
p∈Ω

Γab(p; t)δ(x − y + ap). (112)

This may be used as a basis for some discretization procedure like the finite-element method

for finding Γab(x, y; t).

In any case, everything said in the former section about the dynamical scalar product and

about the failure of the absolute scalar product (72), (73) remains true in wave mechanics

on the differential configuration manifold. Although it is true that in this case everything

becomes much more complicated.
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1. Introduction

The Schrödinger equation based on the Hamiltonian taken from the classical physics
provides the solutions that may be correlated to the solutions of Hamilton equations or to
their superpositions, if the additional assumptions introduced by Bohr have not been added;
i.e., simple Hilbert space spanned on one set of Hamiltonian eigenfunctions and each vector
representing pure state. It may describe, therefore, physical processes at microscopic as well
as macroscopic levels; only the set of allowed states being partially limited. However, the
given equation represents approximative phenomenological theory that is not able to explain
the emergence of quantum states on the basis of Coulomb potential only; e.g., in the case of
hydrogen atom such a state may arise evidently only if a repulsive short-ranged force (or
some contact interaction) exists between electron and proton at low kinetic energy values.
The dimensions and other properties of proton should play then important role in such
a case. These characteristics may be derived from different experiments studying collisions
between corresponding objects at different energies. They should be taken into account when
the quantum physics is to pass from hitherto mere phenomenological description of physical
evolution to causal realistic interpretation as it was common in classical physics. It concerns
mainly the spontaneous transitions between different quantum states in atoms.

However, let us start with short summary of main points concerning the evolution of
quantum mechanics theory during the 20th century. The Copenhagen quantum mechanics
(based fundamentally on the Schrödinger equation [1] and proposed by Bohr [2] in 1927)
has been taken as the only theory of microscopic physical processes till the end of the 20th
century, even if it has involved a series of paradoxes corresponding in principle to internal
contradictions contained in corresponding mathematical model. Already in 1933 Pauli [3]
showed that the corresponding Hamiltonian was to exhibit continuous energy spectrum in
the whole interval E ∈ (−∞,+∞), which contradicted the existence of quantized energy

©2012 Lokajíček et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 V. Lokajíček et al.; licensee InTech. This is an open access article distributed under the terms of the
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2 Quantum Mechanics

states in closed systems. However, it has been possible to say that this fact did not raised any
greater interest at that time.

More attention was devoted to the criticism of Einstein [4] in 1935, who showed with the
help of a Gedankenexperiment that the given quantum theory required the existence of
immediate interaction (or rather linkage) between two very distant matter objects, which
was denoted by him as unacceptable on the basis of standard ontological experience. The
given critique was refused by Bohr [5] having argued that this distant immediate interaction
might exist between microscopic objects (at the difference to macroscopic phenomena). The
world scientific community accepted fully Bohr’s standpoint that was supported partially by
the earlier argument of von Neumann [6] who refused the existence of any local (hidden)
parameters in Copenhagen theory; the problem having been discussed several years ago.
The argument of Grete Herrmann that the given conclusion of von Neumann was based on
circular proof [7] was not taken into account, having remained practically unknown at that
time.

A partial change occurred in 1952 when Bohm [8] showed that an additional (hidden)
parameter existed already in the simplest solutions of Schrödinger equation. Two
alternatives (Copenhagen mechanics and hidden-variable theory) were then considered in
the microscopic region. The decision between them was expected to be done on the basis of
experimental results when Bell [9] derived his inequalities in 1964 which were assumed to
hold in the hidden-variable theory and not in the Copenhagen alternative. The corresponding
experiments based in principle on the original proposal of Einstein were finished in 1982 and
the inequalities of Bell were provably violated [10]. The Copenhagen quantum mechanics
was then taken as the only physical theory valid for microscopic physical processes.

Only in the end of the last century it was shown for the first time that the given conclusion
was based on the mistaking assumption and that the given inequalities did not hold in any
quantum alternative based on Schrödinger equation [11]. In 2004 it was then shown by
Rosinger [12] that Bell’s inequalities contradicted also the inequalities derived by Boole (in
1854) for any probabilistic system [13, 14]:

max {p1, p2, ...., pn} ≤ P(A1 ∪ A2 ∪ .... ∪ An) ≤

min {1, p1 + p2 + ...... + pn}

max {0, p1 + p2 + .... + pn − n + 1} ≤

P(A1 ∩ A2 ∩ .... ∩ An) ≤ min {1, p1, p2, ......, pn}

where the first relation concerns the probabilities p
j

of possible alternative phenomena A
j

and the other one concerns those of contemporary phenomena.

More detailed analysis of the Bell inequalities problem may be found in [15]. It has been
possible to conclude that these inequalities have been valid only in the classical physics, not
in any kind of quantum theory. They have been mistakenly applied to experiment where
photon polarizations have been measured while this possibility has been excluded by the
assumption on the basis of which they were derived.

The consequences following from this fact have been summarized in [16]; more complete
summary of all problems of contemporary quantum mechanics has been then presented in
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[17]. It has followed from these results that the Schrödinger equation itself may be denoted
as common theory of all physical reality when the Hilbert space formed by its solutions has
been adapted to given physical system (i.e., correspondingly extended) in contradiction to
limiting and deforming conditions imposed by Bohr.

The given conclusion has followed practically from the fact that the Schrödinger equation
may be derived for the set of statistical combinations of Hamilton equation solutions when
the given set has been limited by a suitable condition (e.g., by Boltzmann statistics); see
[18, 19]. It means that any Schrödinger function ψ(x, t) may represent always a classical state
or a statistical combination of such states; see also [20] (or already quoted [17]).

However, the Schrödinger equation (including Coulomb potential only) represents
approximative phenomenological theory only. It is not able to explain any emergence of
quantum energy states. In such a case some additional properties of individual objects
forming a quantized system must be taken into account. E.g., in the case of hydrogen
atom any quantum state could not come into being only on the basis of Coulomb force if
some further repulsive or contact interaction did not exist between electron and proton that
would depend necessarily on dimensions and structures of main constituents. The study of
corresponding structures of individual objects should represent, therefore, inseparable part
of contemporary quantum physics.

These structures may be derived mainly from the data gained in experiments concerning
the collisions between corresponding particles. However, it is not sufficient to look for a
phenomenological description of some measured values. More detailed collision models
must be made use of in such a case. They must be able to study the dependence on impact
parameter value; e.g., at least the so called eikonal model should be made use of. Some
results obtained on the given realistic basis will be introduced in the following; it will be
discussed how they may be made use of in solving the problems of quantum physics in the
next future.

In Sec. 2 we shall start with discussing the significance of the Schrödinger equation, based
on the fact that it may be derived in principle from Hamilton equations. The necessity of
repulsive force in the emergence of quantum states in closed systems will be then discussed
in Sec. 3. The eikonal model of elastic collisions between hadrons and some results obtained
for elastic proton-proton collisions in the impact parameter space will be presented in Sec. 4.
The problem of validity of optical theorem on which practically all contemporary elastic
collision results have been based will be discussed in Sec. 5. In Sec. 6 new probabilistic
ontological model enabling to study the existence of internal proton structures will be
applied to experimental data and new results will be presented. In Sec. 7 some metaphysical
consequences will be considered. Several open questions will be then mentioned in Sec. 8.

2. Schrödinger equation and Hilbert space structure

The evolution of a physical system consisting of different matter objects may be described
with the help of Hamilton equations

q̇j =
∂H

∂pj
, ṗj = −

∂H

∂qj
(1)
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where qj and pj are space coordinates and momenta of all individual objects; the
corresponding Hamiltonian given by

H =
p2

j

2m
+ V(qj) (2)

represents the total energy of the given system.

Schrödinger equation may be then written as

ih̄
∂ψ(x, t)

∂t
= Hψ(x, t) (3)

where x represents the set of coordinates and qj and pj in the Hamiltonian are substituted by

operators q
j
op = xj and p

j
op = −ih̄ ∂

∂xj
. Time-dependent physical quantities are then defined

as expectation values of corresponding operators

A(t) =
∫

ψ
∗(x, t) Aop ψ(x, t) dx (4)

where Aop is represented by corresponding combination of operators q
j
op and p

j
op.

It has been introduced in the preceding section that any solution ψ(x, t) of Schrödinger
equation may be identified with a solution of Hamilton equations or with a superposition
of these classical solutions. Any function ψ(x, t) at a given t may be then represented by
a vector in the correspondingly constructed Hilbert space. This Hilbert space must consist
of several mutually orthogonal Hilbert subspaces, each of them being spanned on the set of
Hamiltonian eigenfunctions:

HψE(xj) = EψE(xj). (5)

Two identical ψ(x, t) functions exhibiting opposite time derivatives must belong always to
different subspaces (i.e., incoming and outgoing states of evolving physical system must be
taken as fundamentally different). The arrangements of total Hilbert spaces differ somewhat
for continuous and discrete parts of Hamiltonian energy spectrum; corresponding details
being found in [21, 22].

In the system of two free particles in their center-of-mass system, e.g., the Hilbert space must
consist of two mutually orthogonal Hilbert subspaces (see also [23, 24]) being formed by
incoming and outgoing states:

H ≡ {∆−
⊕ ∆+

}; (6)

the given subspaces being mutually related with the help of evolution operator

U(t) = e−iHt. (7)
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The individual vectors of evolution trajectory correspond then to the different expectation
values of time operator T fulfilling the condition

i[H, T] = 1 (8)

where the state corresponding to zero value of T may be arbitrarily chosen; being usually
attributed to the state when mutual particle distance (impact parameter) is minimal. Eq. (8)
defines the time unit for a corresponding physical system; or for any subsystem that evolves
independently of the whole greater system.

Any time evolution trajectory may be characterized by the Hamiltonian expectation value E
that is conserved during the whole evolution. It is, of course, also the expectation value of
the angular momentum operator

M2 = Mi Mi, Mi = εijk q
j
op pk

op (9)

commuting with the Hamiltonian

[M2, H] = 0 (10)

that is conserved. In principle it holds also [Mi, H] = 0 and [Mi, M2] = 0; thus one of
components Mi should be also conserved. However, its value depends on the orientation
of the coordinate system. It is always possible to choose it so that the expectation value of
given Mi is maximal. It means that any evolution trajectory of a given physical system is
defined in addition to energy E also by the value of M2; and in principle also by the sign of
corresponding Mi.

As to the closed physical systems they are standardly taken as corresponding to the discrete
part of Hamiltonian spectrum. In such a case the Hilbert space should be at least doubled
in comparison to Eq. (6) as two different kinds of incoming and outgoing states exist; for
more details see [21, 22]. Some other problems concerning closed physical systems (e.g.,
their emergence) will be discussed in the next section.

Let us return, however, to the problem of free two-particle system. It is necessary to mention
one additional possibility when two incoming particles having corresponding kinetic energy
may form an unstable object that decays after a short time. In such a case the Hilbert space
may be further extended:

H ≡ {∆−
⊕ Θ ⊕ ∆+

} (11)

where Θ may represent the object (or physical system) arisen by merging of two incoming
particles (belonging to ∆− subspace). This new object (or system) may be stable or (according
to available free energy) unstable decaying into a state lying in ∆+ or creating a further kind
of physical systems or objects. The terms representing corresponding transition probabilities
between different Hilbert subspaces must be added to earlier (classical) potential between
two particles.

In this case it is, of course, necessary to respect always that the evolution goes in irreversible
way. Evolution of the pair of colliding particles is described in the beginning in ∆−, particles
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going nearer one to the other (incoming). In dependence on impact parameter value they
are scattered by mutual potential and continue in ∆+ as outgoing pair. However, in the case
of small impact parameter values (at corresponding energy values) they may form also one
common object being represented by a vector in Hilbert subspace Θ. The corresponding
evolution may be described, of course, at the present on phenomenological level only as we
do not know actual internal dynamics of arising object.

The object represented by the subspace Θ may be stable (e.g., creation of atom from nucleus
and electron) or unstable (decaying in the same particle pair or in another one). At much
higher energy values many other particles may be, of course, formed. In such a case
the subspace Θ is to be substituted by a more complex system of products (or sums) of
corresponding subspaces describing further evolution of separated physical systems.

While the simple subspaces (in which the interacting particles remain stable) may be in
principle described with the help of corresponding Schrödinger equations the other processes
require to be characterized by additional probabilities between concrete states in individual
subspaces. There is not any interference between amplitudes from different orthogonal
subspaces.

The individual (stable as well as unstable) objects represent closed physical systems that are
characterized by some quantum physical values. Each object has some internal dynamics
(eventually, exists in some different internal states - stable or unstable). And just these
questions represent evidently one of the main problems of the future quantum physics.

3. Closed systems and quantum states

The idea of quantum states has been based on experimental data concerning the measured
light spectra emitted by excited atoms, as it was formulated in two phenomenological
postulates of N. Bohr [25]. These spectra have been correlated to transitions between different
quantum energy levels. The existence of quantum states have been then derived with the help
of Schrödinger equation containing Coulomb potential.

However, it is necessary to call attention to the fact that the Schrödinger equation provides an
approximative phenomenological description of quantum phenomena only. It predicts and
admits the existence of quantum states but it cannot explain at all how such a quantum state
may arise when two corresponding objects (forming then the closed system) are mutually
attracted and go always nearer one to the other. It is evident that the emergence of quantum
state is not possible without the conjoint existence of short-ranged repulsive (or contact) force
acting between these objects, too. One should expect that both the corresponding potentials
(forces) are to be responsible for the final effect.

In the standard approach the corresponding quantum states are represented by special
trajectories of electrons orbiting around a nucleus. It means that the quantum energy value
should be correlated to a special value of angular momentum. It should be correlated also to
dimensions of the physical system in the given state (and also to the dimensions of individual
objects), which does not seem to have been analyzed sufficiently until now. It relates probably
to the emergence of quantum states, which represents open question, too.

Let us start with this last problem in the case of hydrogen atom consisting of one electron
and one proton. A stable hydrogen atom should arise always when a slowly moving electron
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appears in the neighborhood of a proton. The electron is attracted to a proton and it is evident
that the given atom might be hardly formed if a repulsive (short-ranged) force between
electron and proton did not exist. Some contact linkage of these two objects (e.g., some
adhesive force between them) should be also taken into consideration.

At the present any force is being interpreted as the result of some potential. In such a case it

might be expected that corresponding quantum states correspond to the distance when both

these potentials compensate:

V(x) = VCoul(x) + Vrep(x) ∼= 0 .

The corresponding quantum states should then depend on the shapes of these two potentials.

And we should ask how they might be influenced, e.g., by the proton or by its internal

states that might be changeable as one must expect for the proton to exhibit some internal

dynamics. The other question concerns then the problem how the energy of emitted photon

is determined to correspond to the difference of corresponding quantum energy values and

further which atom constituent emits the given photon.

It seems, therefore, that to expect for the quantum states to be mediated by some potential

acting at the distance may be hardly convenient. The other possibility, i.e., the existence of

weak adhesive force between electron and proton, might be more acceptable. In such a case

the properties of hydrogen atom should follow from the properties of proton and its internal

dynamics. The changes in the given adhesive linkage might be then responsible also for the

energy of emitted photons.

In both the cases it is, of course, necessary to expect that the quantum states of hydrogen

atom are to be fundamentally dependent on the dimensions and structure of proton. One

must, therefore, assemble and analyze all corresponding characteristics that may be derived

from available experimental data.

The characteristics of proton may be studied mainly with the help of experiments concerning

the collisions between electrons and protons or between two protons. Unfortunately, in the

corresponding analyzes only some mathematical models are usually used that describe some

average phenomenological characteristics of given particles, which can hardly contribute to

understanding the discussed problems of quantum physics. The models respecting the size

and structures of individual particles must be made use of.

In the last time we have studied the elastic proton-proton collisions at higher values of

collision energy using the eikonal model where the probability of different processes in the

dependence on impact parameter values may be derived [26]; some conclusions differing

from earlier ones having been obtained. First of all it has been demonstrated that there is

not any reason for arguing that the elastic processes should be central, i.e., existing at very

small (even zero) values of impact parameter. When any limiting condition (facilitating the

calculations) has not been imposed the elastic collisions may be interpreted as peripheral in

full agreement with ontological interpretation of microscopic objects; see more details in the

next section.
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4. Proton-proton collisions in impact parameter space

In this section we shall present some results of elastic proton-proton collisions in the impact

parameter space obtained earlier. The corresponding experimental data are represented

by elastic differential cross section that is in the given case given by two different mutual

interactions: Coulomb and strong ones. If the influence of proton spins is neglected one

measures and establishes the dependence
dσ

C+N(s,t)
dt where s is the square of center-of-mass

energy and t is the square of center-of-mass four-momentum transfer (it is zero or negative

and it is a function of scattering angle).

It is not possible to measure the influence of individual interactions separately. In the

standard theoretical framework any collision process is regarded as fully described provided

its complex scattering amplitude is given. The measured differential cross section is written

as

dσ
C+N(s, t)

dt
=

π

sp2

∣

∣

∣
FC+N(s, t)

∣

∣

∣

2
(12)

where p is the three-momentum of incident nucleon in the center-of-mass system (s = 4(p2 +
m2); m being mass of a proton); natural units have been used: h̄ = c = 1. In the case of only

hadronic (resp. Coulomb) elastic scattering it is, therefore, necessary to know amplitude

FN(s, t) (resp. FC(s, t)). And one must ask how to express complete amplitude FC+N(s, t)
with the help of individual amplitudes FN(s, t) and FC(s, t).

Formulas still standardly used for complete elastic scattering amplitude FC+N(s, t) were

derived under several very limiting assumptions. One of such commonly used formulas

has been the simplified formula of West and Yennie (WY) published in 1968 [27] which was

derived only for very low values of |t| under assumption that the modulus of FN(s, t) was

purely exponential in t and the phase of FN(s, t) was t-independent; both these assumptions

were supposed to be valid in the whole region of kinematically allowed values of t at that

time. Detailed discussion concerning both theoretical and experimental problems following

from drastic limitation involved in this formula may be found, e.g., in [28].

The question has been raised whether it is possible to derive more general formula without

any a priory limitation on FC+N(s, t), which could be used for more relevant analysis of

experimental data. It has been possible to remove the most of earlier limitations if eikonal

model has been applied to. According to [26] (in 1994) it has been possible to derive on the

basis of the eikonal model more general formula for the complete elastic amplitude for any

s and t with the accuracy up to terms linear in α and without any a priory restriction on

hadronic amplitude FN(s, t).

If this hadronic amplitude FN(s, t) is given then some physically significant quantities may

be calculated from it. For example, one may calculate distribution functions of total, elastic

and inelastic hadronic collisions in the impact parameter space and if they are determined

then one may evaluate mean-squares of impact parameter for corresponding processes. The

mean-square of impact parameter in the case of elastic processes may be calculated from

corresponding elastic distribution function Del(s, b) as
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〈b
2(s)〉

el
=

∞
∫

0

bdb b
2
D

el
(s, b)

∞
∫

0

bdb D
el
(s, b)

. (13)

and similarly we may define also 〈b
2(s)〉tot and 〈b

2(s)〉
inel

in the case of total and inelastic
hadronic collisions. However, in eikonal model the mean-squares of all these processes
may be derived directly from the t-dependent elastic hadronic amplitude F

N(s, t) without
trying to establish the whole distribution functions, which is mathematically much more
complicated; detailed discussion how to actually determine all distribution functions on
the basis of corresponding experimental data can be found in [29]. For a given hadronic

amplitude F
N(s, t) one may thus calculate relatively easily root-mean-squares

√

〈b
2(s)〉

el
and

√

〈b
2(s)〉

inel
and compare both the values. If the value

√

〈b
2(s)〉

el
is lesser than

√

〈b
2(s)〉

inel

then it would mean that elastic hadronic processes should be realized in average at lower
impact parameter values than inelastic processes; the protons should be rather "transparent"
which might be hardly acceptable from the ontological point of view. We may denote

this situation as "central" behavior of elastic scattering. If the value
√

〈b
2(s)〉

el
is greater

than
√

〈b
2(s)〉

inel
then we denote situation as "peripheral" behavior of elastic scattering; the

situation being in agreement with usual interpretation of two matter object collisions.

As already mentioned the corresponding proton-proton collision data have been interpreted
with the help of rather simplified phenomenological mathematical models in the past. Some
conclusions have been rather surprising. Especially, when it has been concluded that a rather
great ratio of elastic processes has corresponded to purely central collisions (i.e., protons
could scatter elastically even at impact parameter b = 0). This kind of "transparency"
of protons has been denoted already in 1979 in [30] as a "puzzle". In 1981 it has been
then shown that the corresponding result has depended mainly on the t-dependence of the
phase of elastic hadronic scattering amplitude, see [31]. The mentioned central behavior
has been derived when the t-dependence of the phase has been strongly limited. And it
has been shown that if the modulus is purely exponential and hadronic phase is practically
t-independent in the whole region of kinematically allowed values of t (at arbitrary collision
energy

√

s) one obtains necessarily the mentioned central behavior of elastic hadronic
collisions in the impact parameter space. These two (over)simplified assumptions have been
commonly used in many analysis of corresponding experimental data (they are included also
in the simplified WY formula).

Consequently, it has been very interesting to put the opposite question: How to modify
the given mathematical model to obtain collision processes corresponding to usual ideas.
The experimentally established elastic proton-proton differential cross section at energy of
√

s = 53 GeV has been analyzed in the whole measured t-range with the help of more
general eikonal formula used for complete scattering amplitude in [26]. It was possible
to obtain acceptable fits for different t-dependencies of the phase (according to chosen
parametrization). Two quite different dependencies of hadronic phase have been then shown
in the quoted paper. The first phase was the so-called "standard" phase (used, e.g., in [32] for
interpretation of experimental data) and the second phase corresponded to natural peripheral
elastic collisions. Both the hadronic phases are plotted in Fig. 1. The root-mean-squares
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Figure 1. Two different hadronic phases ζ
N(s, t) defined by FN(s, t) = i

∣

∣FN(s, t)
∣

∣ e−iζN (s,t) and fitted to corresponding

experimental data at energy of
√

s = 53 GeV. Dashed line - standard hadronic phase admitting central elastic hadronic collisions;
full line - peripheral phase.

corresponding to the two hadronic phases are then given in Table 1. The case with the
standard hadronic phase leads to central elastic hadronic collisions. Similar result as in the
case of proton-proton collisions was obtained also in the case of elastic antiproton-proton
scattering at energy of 541 GeV (see [26, 29]). The phase which leads to peripheral behavior
of hadronic proton-proton collisions has very similar t-dependence as that obtained earlier
at lower collision energy of

√

s = 23 GeV in the already quoted older paper [31].

Data Hadronic phase Profile
√

〈b2(s)〉tot

√

〈b2(s)〉el

√

〈b2(s)〉inel

pp 53 GeV peripheral peripheral 1.028 1.803 0.772
pp 53 GeV standard central 1.028 0.679 1.087
p̄p 541 GeV peripheral peripheral 1.140 2.205 0.609
p̄p 541 GeV standard central 1.140 0.756 1.220

Table 1. Values of root-mean-squares (in femtometers) obtained from analysis of experimental data with standard and

peripheral hadronic phase.

Model
√

〈b2(s)〉tot

√

〈b2(s)〉el

√

〈b2(s)〉inel

Bourelly et al. 1.249 0.876 1.399
Petrov et al. (2P) 1.227 0.875 1.324
Petrov et al. (3P) 1.263 0.901 1.375
Block et al. 1.223 0.883 1.336
Islam et al. 1.552 1.048 1.659

Table 2. Values of root-mean-squares (in femtometers) predicted by different models of proton-proton collisions at collision

energy of 14 TeV. All the models predicts
√

〈b2(s)〉el <
√

〈b2(s)〉inel , i.e., central behavior of elastic scattering.

The elastic and inelastic root-mean-squares have been calculated in [28] also for several
relatively new phenomenological models proposed for elastic hadronic proton-proton
scattering at energy of 14 TeV (planned ultimate LHC collision energy). In all these cases
it has been found that 〈b2(s)〉el < 〈b2(s)〉inel , i.e., all these models correspond to central
behavior of proton collisions, as shown in Table 2.
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One of the results obtained in [26] was that the modulus of hadronic amplitude
∣

∣FN(s, t)
∣

∣

was practically uniquely determined from corresponding measured elastic differential cross
section while the hadronic phase remained quite undetermined, being only slightly limited
due to Coulomb interaction. It should be determined on the basis of other physical
requirements, not on the basis of some arbitrary assumptions. The results gained in elastic
proton-proton collisions might be very helpful for nuclear and particle physics in general.
However, practically in all current descriptions of proton-proton elastic scattering the validity
of optical theorem which relates the imaginary part of hadronic amplitude to total hadronic
cross section, has been taken as a basic assumption. The given problem will be discussed in
the next section, as the given validity does not seem to be sufficiently reasoned.

As to the other problem mentioned in the end of preceding section (the use of mathematical
models representing only average structure of colliding objects) it has been at least partially
removed when the more general eikonal model has been applied to and the results in
dependence on impact parameter values have been established. However, the main character
of some average phenomenological characteristics obtained from hitherto phenomenological
models remains, which can hardly contribute to understanding the results of contemporary
quantum physics. A new more detailed model of proton-proton elastic collisions with
realistic behavior of the collisions in the impact parameter space and respecting the sizes and
structures of individual colliding particles will be formulated and applied in preliminary
form to experimental data in Sec. 6.

5. Optical theorem and its validity

Practically all hitherto mathematical models of proton collision processes (including the
eikonal model described in Sec. 4) have been based on the assumption of optical theorem
validity. This theorem has been taken from optical approaches where the total cross section
was correlated to the imaginary part of complex index of refraction (see, e.g., the description
of the given problem in [35]) and the behavior of light was studied on wave basis. The optical
theorem has been applied then also to elastic particle collisions when the wave behavior has
been attributed to all physical objects.

The approaches of deriving the validity of optical theorem in particle collisions have been
summarized recently, e.g., in [36]. The goal of these approaches has consisted in deducing
that it has held for the total cross section

σ
tot(s) = σ

el(s) + σ
inel(s) =

4π

p
√

s
ℑF(s, t = 0) (14)

where the function F(t) defines the elastic differential cross section

dσ

dt
=

π

sp2
|F(s, t)|2. (15)

It holds then also

F(s, t) = 2π
√

s
∫ ∞

0
b db J0(b

√

−t)Γ(b). (16)
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where Γ(b) is the profile function in impact parameter space characterizing the probability of
elastic processes in dependence on impact parameter values and on their initial distribution.

Until now there is not any reliable theory of elastic scattering and only different
phenomenological models are practically available. The complex function

F(s, t) = i|F(s, t)| e
−iζ(s,t) (17)

is being, therefore, derived usually from corresponding experimental data. However,
from them only the modulus may be established while the phase ζ(t) remains quite
undetermined. It is to be predicted on the basis of additional assumptions that may
influence strongly the conclusions concerning the value of total cross section. Also the optical
theorem has been practically always involved even if it has been derived on the basis of
other additional assumptions that have not corresponded to actual characteristics of strong
interactions as it was mentioned already earlier in [37].

In all attempts to derive the validity of optical theorem in particle collisions the standard
approaches based on the Copenhagen quantum mechanics have been made use of; especially,
the summation of amplitudes used commonly in S-matrix theory has been applied to. The
states belonging to two mutually orthogonal Hilbert subspaces ∆− and ∆+ (see Sec. (2)),
i.e., the states at time τ = −∞ and at time τ = +∞, were taken as lying in one common
Hilbert space and corresponding amplitudes were superposed, which cannot be done if the
ontological approach is to be respected (i.e., time evolution described correctly with the help
of time-dependent Schröedinger equation). It may be then denoted as surprising that the
optical theorem has been applied to strong interaction only and never considered in the case
of Coulomb interaction, even if the given derivation approach does not relate to a kind of
interaction.

The final effect in collision processes of two protons is to depend on the conditions in
individual events characterized mainly by corresponding impact parameter value. However,
only the Coulomb elastic scattering comes into account for greater values of b where
short-ranged (or contact) strong interaction cannot exist while for lower values of b elastic
interaction (Coulomb or hadronic) may exist together with inelastic one. Consequently, as
to the strong interaction the particles may continue in original motion practically without
any disturbance; it means that such states represent a special set of states in the subspace
∆+ which cannot be added if the total cross section corresponding to strong interaction is
considered. Only the states scattered elastically by strong interaction may be involved.

It has been mentioned that for a given collision energy
√

s only the modulus of hadronic
amplitude F(s, t) may be established from experimental data and the hadronic phase ζ(s, t)
may be practically arbitrary. It means that very different characteristics may be attributed to
elastic particle collisions; see the problem of centrality and peripherality of elastic hadronic
processes discussed in preceding section. The choice of phase t-dependence has been
then fundamentally influenced also by the application of the optical theorem, mainly in
the region of very low values of |t| where the measurement cannot be done. Even the
separation of Coulomb and strong interactions might be fundamentally influenced when the
parametrization of the strong part of scattering amplitude has allowed only the differential
cross section decreasing monotony from the maximum value at t = 0 . In the case of
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short-ranged (contact) strong interactions it is necessary to admit that the maximum value
may lie at non-zero value of t as it will be demonstrated in the next section.

6. Probabilistic ontological model of elastic proton-proton collisions

It follows from the preceding that the Schrödinger equation leads to the same results as
classical physics. However, in the classical physics based fully on ontological approach
the individual matter objects represent always only the source of corresponding potentials
mediating corresponding interactions. It may be applied fully to electromagnetic or
gravitational forces. The strong (and also weak) interactions differ, however, rather strongly
from these interactions. The short-ranged effect of the latter ones indicates that these forces
should be denoted rather as contact ones; being zero at any greater distance. It means that
in elastic proton-proton collisions (especially, at higher energy values) there is not practically
any actual interference between Coulomb and strong interactions. In any event only one of
these interactions is effective according to impact parameter value and the corresponding
probabilities of individual contributions to elastic differential cross section may be added.
However, in such a case it is necessary to take into account possible proton dimensions in
collision instant. According to contemporary knowledge protons consist evidently of other
objects that must be in mutual interaction. It is also necessary to expect that the particles
having special value of spin must exhibit some internal dynamics. We are to accept that
the proton may exist in different spontaneously changeable internal states that may have
also different shapes and dimensions (as it has been proposed earlier in [38]). And we
shall attempt to test whether these dimensional characteristics may become evident in elastic
collision characteristics.

To make use of the given idea in the analysis of elastic proton-proton processes let us assume
that a colliding proton may exist in n different states, each being characterized by maximal
possible dimension dk (d1 ≥ ... ≥ dk ≥ ... ≥ dn). The corresponding probabilities that
proton is in such a state in the moment of interaction are then pk (∑k pk = 1).

If two such protons or other similar objects collide the different pairs of states may interact;
the individual probabilities of such collision channels (or collision states) being equal to

rk,l =

{

pk pl if k = l or the colliding object are not identical
2pk pl if k 6= l and the colliding object are identical, k < l

(18)

The factor 2 in the last relation follows from the fact that for k 6= l and identical colliding
objects the cases with interchanged collision types k, l and l, k are the same and the
corresponding probabilities may be summed but we need to introduce convention k < l
to count each distinct collision type only once.

6.1. Nuclear and Coulomb scattering

As to the strong interactions (taken as contact ones) the maximum effective impact parameter
for which two protons may still interact hadronically in corresponding collisions will be then
equal to

Bk,l = (dk + dl)/2. (19)
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The two indexes k and l in rk,l and Bk,l may be for convenience substituted by only one index
j using a one-to-one correspondence (k, l) ↔ j. In other words, if one object in a state k
collide with an another one in a state l then this always implies unique collision type j and
vice versa. It is obvious that ∑j rj = 1.

It is necessary to expect that for each j-th collision channel at any given impact parameter
b < Bj the value of scattering angle (or equivalently |t|) of two elastically (and hadronically
only) scattered protons will belong to a limited interval of values beginning always with
zero value. The corresponding frequency of individual values of scattering angle will go to a
maximum and will diminish again to zero; the interval being reduced to one point at b = Bj.
However, in the following very preliminary (and simplified) analysis of experimental data
we have substituted the given interval by the corresponding mean value. Let us denote the
corresponding function as t̄j(b) which smoothly fall from zero to some lower negative values

when b will change from Bj to lower values. The inverse function will be denoted as b̄j(t).

We may write for partial elastic hadronic cross section corresponding to a j-th collision state
following expression

dσ
N
j (t)

dt
= 2πPel

j

(

b̄j(t)
)

b̄j(t)
db̄j(t)

dt
(20)

where the factor Pel
j (b) represents individual probability of elastic processes at corresponding

impact parameter values b if cylindrical symmetry in impact parameter dependence has been
assumed. The elastic hadronic differential cross section is then given by the sum of individual
contributions from all the collision states j:

dσ
N(t)

dt
= ∑

j

rj

dσ
N
j (t)

dt
. (21)

Parameters rj in the last relation represent the weights (probabilities) of individual collision
channels.

The behavior of the given pair of two colliding protons depends then on probabilities pk of
individual states, their dimension values dk and on two series of functions Pel

j (b) and b̄j(t)

(or t̄j(b)). Their values or shapes are to be derived from corresponding experimental data.

However, the function Pel
j (b) may be expressed as the product of two functions

Pel
j (b) = Ptot

j (b) Prat
j (b) (22)

where Ptot
j (b) is the probability of any mutual hadronic particle interaction (elastic as well as

inelastic) at impact parameter b corresponding to a j-th collision type while Prat
j (b) represents

the corresponding ratio of elastic hadronic processes from all possible hadronic interactions.
Both the functions Ptot

j (b) and Prat
j (b) are evidently monotonous. The former one is to

be non-increasing function of impact parameter b while the latter one is non-decreasing
in dependence on b ∈ 〈0, Bj〉. The monotony of the functions brings very important
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simplification in the choice of parametrization of both the new functions; their values moving
in the whole interval 〈0, 1〉. The probability of any inelastic process may be then defined as

Pinel
j (b) = Ptot

j (b)− Pel
j (b). (23)

It must hold always Ptot
j (b) = Pel

j (b) = Pinel
j (b) = 0 for any b ≥ Bj. This will allow us

to integrate in corresponding cases over finite interval of impact parameter 〈0, Bj〉 instead
of infinite interval 〈0, ∞〉. We will use this fact in the following quite frequently; it also
simplifies numerical calculations of corresponding expressions.

The (integrated) elastic hadronic cross section may be written with the help of Eq. (20) and
Eq. (21) as

σ
el,N =

∫ 0

tmin

dt
dσ

N(t)

dt
= ∑

j

rjσ
el,N
j (24)

where we have introduced elastic hadronic cross section just for j-th collision channel

σ
el,N
j = 2π

∫ Bj

0
dbPel

j (b)b. (25)

In the given model it is possible to derive also total hadronic cross sections for individual

collision types σ
tot,N
j from elastic experimental data without adding any further assumption;

it holds

σ
tot,N
j = 2π

∫ Bj

0
dbPtot

j (b)b. (26)

The total hadronic cross section may be then written again as a sum of contributions from all
the collision channels

σ
tot,N = ∑

j

rjσ
tot,N
j (27)

And using the relation (23) the corresponding values for inelastic cross section may be
established, too.

The mutual elastic collisions between two protons at smaller scattering angles (smaller
momentum transfers |t|) are caused, however, not only by strong interactions that may be
interpreted practically as contact but also by mutual Coulomb forces acting at distance. One
can express then the experimentally measured elastic differential cross section as the sum of
the two given interactions

dσ
C+N(t)

dt
= ∑

j

rj

dσ
N
j (t)

dt
+

dσ
C(t)

dt
(28)
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where the Coulomb differential cross section will be established directly by fitting

experimental data. It will not be determined with the help of formfactors from the standard

Coulomb potential valid for pointlike particles as such approach does not correspond to

reality. The infinite Coulomb elastic differential cross section for t = 0 may be theoretically

obtained at infinite distance while in real experiments the zero value of t may exist inside

narrow particle beam as combined effect from different surrounding scattering centers. The

similar difference may concern, of course, also the frequencies for higher values of |t| due

to asymmetric positions of charged partons in individual protons.

In our model we have introduced some free parameters and some unknown functions which

are to be determined from corresponding measured elastic differential cross section using

formula (28). It is necessary to fit maximal dimensions dk of all the (considered) hadron

states and their corresponding probabilities pk at the moment of collision. We also need to

parametrize and then to fit three monotonic functions Ptot
j (b), Prat

j (b) and b̄j(t) (or t̄j(b)) for

each corresponding j-th hadronic collision channel. It is also the Coulomb interaction effect
dσ

C(t)
dt which needs to be determined from data. Several other very interesting and physically

significant quantities may be then calculated from these parameters and functions as it has

been shown in preceding.

6.2. Analysis of experimental data

We shall apply the given probabilistic model as we have already mentioned to the data

obtained at ISR at CERN at the energy of 53 GeV [33, 34] (the same data as made use of

in Sec. 4). We shall try to show that two proton states exhibiting the largest dimensions

may be responsible for the part of differential elastic cross section data corresponding to

|t| ∈ (0., 1.25) GeV2; see the corresponding part of experimental points shown in Fig. 2. As

in the lower part of |t| the density of measured points has been very great only one fifth of

experimental points has been pictured in the interval (0., 0.45) GeV2.

If one proton in k-state (k=1,2) collides with another proton in l-state (l=1,2) we may define

collision state j using a following one-to-one correspondence (k, l) ↔ j (k < l): (1, 1) ↔ 1,

(1, 2) ↔ 2 and (2, 2) ↔ 3. We have thus three distinct collision types that will be responsible

for the given part of elastic differential cross section.

It is, of course, necessary to parametrize suitably the corresponding functions used in the

description of the given process. The following parameterizations of three monotonous

functions Ptot
j (b), Prat

j (b) and b̄j(t) have been used for individual collision channels

Ptot
j (b) =























1 if 0 ≤ b ≤ µ0,j

e
−(µ1,j (b−µ0,j ))

µ2,j

(1+µ3,j)

1+µ3,je
−(µ1,j (b−µ0,j ))

µ2,j
if µ0,j < b < Bj

0 if Bj ≤ b

(29)
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Prat
j (b) =

e−(ν0,j(Bj−b))
ν1,j

(1 + ν2,j)

1 + ν2,je
−(ν0,j(Bj−b))

ν1,j
(30)

b̄j(t) = Bj





2

π
arccos





(

|t|

η0,j

)1/η2,j








1/η1,j

(31)

where µ0,j, µ1,j, µ2,j, µ3,j; ν0,j, ν1,j, ν2,j; η0,j, η1,j, η2,j (j = 1, 2, 3) are free parameters that
are to be determined from experimental data together with parameters pk and dk (k = 1, 2).

As it has been already mentioned also the Coulomb interaction effect is to be determined
from corresponding experimental data. To enable precise fit the following parametrization
has been chosen

dσ
C(t)

dt
= ξ0(1 + (ξ1|t|)

ξ2 ) e−ξ3|t| + ξ4 e−(ξ5|t|)ξ6 1 + ξ7

1 + ξ7 e−(ξ5|t|)ξ6
(32)

where ξi (i = 0, .., 7) are additional free parameters that are to be derived from corresponding
experimental data.

The number of free parameters may seem to be rather high. However, this is quite irrelevant
at this stage of our research when quite new physical ideas are looked for and tested. The
goal of our effort consists in principle in describing the characteristics of partial structures to
a sufficient detail, to initiate further analysis with the help of other experiments.

The results of the corresponding fit are shown in Fig. 2. The probabilistic model can be fitted
to experimental data practically in the whole considered interval of |t| ∈ (0, 1.25) GeV2.

Hadronic differential cross sections
dσ

N
j (t)

dt given by Eq. (20) for all the three collision types
are plotted in Fig. 2, too. Only their parts given by rj parameters contribute to complete

differential cross section
dσ

C+N(t)
dt . The Coulomb differential cross section

dσ
C(t)
dt given by

parametrization (32) is also shown in Fig. 2.

The following values of individual free parameters have been obtained on the basis of our
analysis. The frequencies of two internal states considered in our fit to experimental data
having the greatest dimensions are given by

p1 = 0.48, p2 = 0.39

and the corresponding dimensions are

d1 = 2.50 fm, d2 = 2.29 fm
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Figure 2. Differential elastic cross sections for proton-proton scattering at energy of 53 GeV; individual points - experimental

data, full line - our probabilistic model fitted to experimental data, dashed line - Coulomb differential cross section

dσ
C(t)/dt, three other lines - individual hadronic collision types (top - contributions rjdσ

N
j (t)/dt to complete differential

cross dσ
C+N(t)/dt, bottom - individual differential cross sections dσ

N
j (t)/dt).

The functions Ptot
j (b) and Prat

j (b) (see Eqs. (29) and (30)) representing the b-dependences of

probabilities of total and elastic collisions together with function t̄j(b) (inverse function of
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b̄j(t) given by Eq. (31)) are shown in Fig. 3. The values of free parameters in the functions
describing the elastic scattering caused by strong interaction are shown in Table 3 for all the
three considered collision states.

j 1 2 3

Ptot
j (b)

µ0,j [fm] 0.70 0.59 0.50

µ1,j [fm−1] 0.95 2.35 4.34

µ2,j [1] 5.90 2.55 1.69

µ3,j [1] 193. 995. 15.

Prat
j (b)

ν0,j [fm−1] 2.03 2.40 1.80

ν1,j [1] 4.34 3.38 5.65

ν2,j [1] 20.7 144. 3742.

b̄j(t)
η0,j [GeV2] 24.8 26.8 35.3

η1,j [1] 0.97 0.44 0.47

η2,j [1] 5.15 2.63 2.85

Table 3. Values of free parameters of monotonous functions Ptot
j (b), Prat

j (b) and b̄j(t) for all the three collision types given by

parametrizations (29), (30) and (31).

The additional effect caused by electric charges is then characterized by function (32)
that contains some further free parameters. Their values obtained by fitting the given
experimental data are

ξ0 = 491 mb.GeV−2, ξ1 = 265 GeV−2, ξ2 = 3.70, ξ3 = 742GeV−2,

ξ4 = 1.32 mb.GeV−2, ξ5 = 6.14 GeV−2, ξ6 = 1.70, ξ7 = 106 .

Once we have determined all the free parameters and unknown functions from the fit we may
calculate several other physically significant quantities. Let us start with quantities which we
can calculate for all the three individual collision states considered in our fit.

The parameters rj (see Eq. (18)) determining the contribution of individual channels (their
probabilities) are in Table 4. Corresponding maximal effective impact parameters Bj for
which protons might still interact via hadronic interaction calculated from Eq. (19) are shown,
too; they are around 2.4 fm slightly different for each collision type j. Further total, elastic
and inelastic hadronic cross sections having been calculated for all three collision states j are
introduced in Table 4.

According to our very very rough model a colliding proton may be in one of two considered
internal states with probability p1 + p2 = 0.86. It means that in 14% of cases the proton is
to be in different internal states with different maximal dimensions. The proton collisions
go then in the given three channels with the probability ∑

3
j=1 rj = p2

1 + 2p1 p2 + p2
2 = 0.75.

The additional internal states may be responsible for measured differential cross section
outside our considered t-range (for |t| > 1.25 GeV2); partially also in combination with two
already considered states, which is in agreement with preliminary tests done already by us,
too. It means that the actual total and inelastic cross sections will be higher than the values
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Figure 3. Functions Ptot
j (b) and Prat

j (b) with opposite monotony (dashed and full lines) and functions |t̄j(b)| (dotted line) for

individual collision types (top j = 1, middle j = 2, bottom j = 3). Individual points lying on |t̄j(b)| curves correspond to values
of impact parameters b at experimentally established values of t calculated using functions b̄j(t).
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j 1 2 3
∑

3
j=1k,l 1,1 1,2 2,2

rj [1] 0.23 0.37 0.15 0.75

Bj [fm] 2.50 2.39 2.29 -

σ
tot,N
j [mb] 137. 69.7 27.1 -

σ
el,N
j [mb] 28.1 6.2 × 10−2 7.2 × 10−4 -

σ
inel
j [mb] 109. 69.7 27.1 -

rjσ
tot,N
j [mb] 31.5 25.7 4.0 61.2

rjσ
el,N
j [mb] 6.5 2.3 × 10−2 1.1 × 10−4 6.5

rjσ
inel
j [mb] 25.0 25.7 4.0 54.7

Table 4. Values of some physically significant quantities obtained as a result of the probabilistic ontological model fitted to

corresponding experimental data at energy of 53 GeV.

introduced in Table 4: σ
tot,N

> ∑
3
j=1 rjσ

tot,N
j = 61.2 mb (resp. σ

inel,N
> ∑

3
j=1 rjσ

inel,N
j =

54.7 mb), while the increase of elastic cross section may be neglected. The given values may
be, of course, influenced by the very rough approximation neglecting the distribution of
momentum transverses at any impact parameter value.

It is evident that according to our probabilistic model the Coulomb effect appears as
significant till |t| ∼= 0.5 GeV2, which might throw quite new light to the structure of charge
distribution in individual protons and contribute fundamentally to our understanding of the
internal structure of hadron objects.

The presented model has been based, of course, on one very simplifying and rough
assumption (t̄j(b) - relating always only one momentum value to each impact parameter),
which might significantly influence the corresponding numerical results. We are working
already on the model that will respect the existence of momentum transfer spectrum for
any impact parameter value, which should allow much more realistic fit of experimental
data on the given basis. Also the fitting of experimental data at other energy values will be
performed; the fits for higher values of |t| will be done, too.

7. Contemporary quantum physics and metaphysics

We have mentioned already in the preceding that the new results require for the physicists
to return to ontological basis the classical physics was based on. This basic approach
changed fundamentally in the beginning of modern period when Descartes formulated his
mathematically-philosophical concept in which any linkage between human knowledge and
ontological approach to matter world was practically excluded. Any knowledge of matter
existence started to be based fully on human thinking. Also the participation of human
senses was excluded at that time, which was criticized by some philosophers. It led then to
the positivism that influenced fully the thinking of European society in the course of the 19th
century.

In the middle of the 19th century the given thinking dominated also scientific approaches
and scientific knowledge. Boltzmann started it when he denoted one phenomenological
characteristics of the system consisting of a great number of particles as natural law. It is
possible to say that the given way was accomplished when Bohr formulated his Copenhagen
quantum mechanics in 1927. He started from Schrödinger equation proposed in 1925 which
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itself was fully acceptable as the same results followed from it as from the classical concept of
Galileo and Newton (only the set of corresponding states was smaller); see short paragraph
(with corresponding quotations) in Sec. 1. However, Bohr deformed significantly physical
conclusions (following from proper Schröedinger equation) by adding further very strong
assumptions without any actual reason, which influenced fundamentally the evolution of
quantum physics in the 20th century.

The corresponding (quantum) era of physical research started in principle at the break of
the 19th and 20th centuries when black-body radiation was being intensively studied and
at the same time new phenomena at the level of microscopic world were discovered (X and
gamma radiations and electron (1895-1897)); and further, quantum energy transfer (1900)
and photon existence (1904) were predicted. A broad space was opened for formulation
of new hypotheses that could not be tested directly but only on the basis of indirect
effects established with the help of macroscopic measuring devices. In such a situation the
phenomenological models seemed to be very advantageous.

However, to understand the possibility of scientific knowledge it is necessary to realize what
are the approaches of scientific research. As to the region of physical research it is possible to
say that it is based on falsification approach. The basic step consists then in formulating some
more general statements or unifying hypotheses with the help of our reason on the basis of
observation and measurement; with the help of the approach making use of logical induction,
or intuition. The goal of further approaches and analyses consists then in deriving all
possible consequences that follow from a given hypothesis (or a set of hypotheses). As such
hypotheses start always from a limited set of our pieces of knowledge it is clear in some cases
immediately that they cannot sustain in further considerations. Generally, it is necessary
to derive for any hypothesis all possible consequences with the help of logical deduction
and to analyze, whether some logical contradictions between individual consequences do
not exist, and further to compare these consequences to all possible observations of natural
phenomena. If a contradiction is found the given hypothesis (or a set of hypotheses) must
be refused, resp. modified, so as the given contradiction might be removed. If one does not
come after sufficient falsifying effort to any contradiction the given set of hypotheses may
be denoted as plausible; and it is possible to start from it in further considerations about the
natural laws concerning the world and human being.

It follows from the preceding that the falsification approach represents important and
practically basic knowledge method based on human reason, as K. Popper (1902-94)
presented in the first half of the 20th century. One is never justified to denote our reason
knowledge for a verified truth, as one can never grant that in following steps a logical
contradiction or a contradiction to nature observation will not appear. On the other side
one must accept any non-falsified hypothesis as plausible, even if it is in contradiction to
another plausible hypothesis. All these statements or hypotheses must be fully tolerated.
The decision concerning the preference of one of them must be left to other logical and
experimental analyses. On the other side in contradiction to contemporary requirements
of some human groups any falsified statement cannot be tolerated and must be decisively
refused.

The preceding arguments have thrown new light also to the principle of falsifiability
propagated in the region of physical research in the last century. The requirement of
falsification tests to any statement has been interpreted as the possibility to prove the validity
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of the given statement, which contradicts the possibilities of our reason knowledge. At least
some positive test should be necessary to admit the given statement as plausible; however, it
can never represent any proof of its validity.

In the 20th century purely phenomenological view was taken as the knowledge basis and any
ontological aspects have not been respected. Evidently mutually contradicting assumptions
were being applied especially to elastic collision processes. It follows from these facts that
the corresponding metaphysical view must be based on ontological view respecting fully our
experience with matter nature.

8. Some open questions

One of the most important pieces of knowledge introduced in preceding sections is the
fact that there is fundamental difference between Coulomb forces and strong (nuclear)
interaction; the former acting at a distance and the latter representing a contact force.
To interpret this force as the effect of some potential may be misleading. And it is the
task of contemporary research to find some new approaches how to describe successfully
the given phenomenon. The analyses of elastic collisions between the particles exhibiting
corresponding interaction may be very helpful in this direction. It is even possible to say that
the further progress of future quantum physics is strongly bound to the problem of particle
structure. The existence and emergence of quantum states where not only the values of
energy but also the values of angular momentum are quantized may be hardly understood
without the progress in this region.

It follows from the preceding that it will be probably necessary to distinguish between two
kinds of quantum states: one relating to the quantum states of atoms and the other relating
to existence of individual matter objects characterized by special values of rest energy and
angular momentum. The former relates to the mutual properties (interaction) of electrons
and protons and the latter to mutual interactions of strongly interacting objects. It has been
shown that the Coulomb interaction itself cannot explain the emergence of quantum states
and that some additional interaction must exist between protons (nucleons) and electrons.
And one should ask whether a kind of weak contact forces does not exist in addition to strong
(nuclear) contact ones.

The existence of contact forces has opened a new question: How to describe the given
situation with the help of corresponding mathematical models. It is evident that it will be
necessary to limit the solutions of Schrödinger equation to subsystems exhibiting continuous
evolution. This approach should be used in individual subsystems where no sudden changes
(caused by contact forces) are occurring; and to describe the effect of contact forces probably
as the passage to another subsystem being described again as developing continuously.
The given situation may be represented in the Hilbert space consisting of individual
mutually orthogonal subspaces defined with the help of corresponding Schrödinger equation
describing respective continuous evolution.

The representation of physical processes in a suitable Hilbert space is surely very helpful. It
means, of course, that we must represent the states corresponding to quantities conserving
during the whole time evolution in mutually orthogonal subspaces. It concerns mainly two
quantities: energy and angular momentum. The corresponding trajectories should always
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belong to mutually orthogonal subspaces. It may concern also the representation of states
characterized by impact parameter values in the case of collision processes.

In any case it is possible to say that we have pass to the other ontological level that differs
from that the classical physics has been based on and opens quite new questions. It is also
the fact that these basic particles are to be characterized by special values of spins, testifying
that these particles exhibit special internal dynamics which may lead to the existence of their
different internal states. It has been demonstrated that these characteristics may be studied
with the help of corresponding elastic collisions processes.

The given results might then help in revealing the internal dynamics running in
corresponding objects. It is evident that practically all particles existing in the nature must
be taken as complex quantum objects. The new results may contribute in looking for the
characteristics of constituents of which the given particles consist and which are responsible
for their structures. At the present the main attention is to be devoted to the protons and
other hadrons; especially the reasons for their stability or instability should be analyzed.

From the presented results it is also possible to conclude that the contemporary quark
theory having been proposed on the basis of phenomenological description of corresponding
physical situation may hardly represent suitable basis to the given goal. It is, of
course, necessary to expect that some basic objects (some "quasi-quarks") should exist that
should exhibit some very strong (superstrong) contact interaction. This interaction kind
might be responsible for forming some conglomerates equivalent to the so called partons
corresponding in principle to experimentally observable hadrons. These partons might form
changeable structures (being held mutually together by standard strong forces) of individual
hadrons while they might be kicked out from the given object when sufficient amount of
kinetic energy has been furnished to them in the corresponding collision event.

The preceding considerations have been based on the ontological approach respecting the
basic matter properties when it has been shown that the past refusal of ontology led to key
mistakes in the physics of the 20th century. One must be very careful in formulating and
testing different hypotheses when some quite new properties of nanoscopic objects should
be taken into account (e.g., the existence of contact forces). However, the ontological basis
(including causal sequentiality) in the description of matter world should not be abandoned.

9. Conclusion

Even if the Schrödinger equation might represent in principle basic theory of the whole
matter reality it corresponds to approximate phenomenological description only. Especially,
it is not possible to explain at all how a quantum state may emerge. E.g., it is evident that the
hydrogen atom arises always when slowly moving electron and proton meet and are attracted
mutually by Coulomb force, which cannot be theoretically reasoned. It may occurred only
if a kind of repulsive force between two given objects or a kind of impenetrability of proton
having certain dimensions is to be involved. It means that the structure of protons (and other
hadrons) represents indivisible part of the contemporary quantum physics.

Consequently, the concept of the hydrogen atom formed by proton and electron orbiting
around should be taken hardly as acceptable. The adhesive merging of both the constituents
must be regarded as much more probable concept. Here, of course, the existence of different
internal proton structures should be responsible for divers quantum states of hydrogen
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atoms. It is necessary to look for the experiments how to get corresponding pieces of
knowledge.

It has been demonstrated that some characteristics of these different proton structures might
be derived from the data of elastic two-proton collisions. However, the earlier antiontological
proton properties have been obtained on the basis of phenomenological models where some
arbitrary additional assumptions have been added. The standard ontological characteristics
have been obtained when the eikonal model enabling to test the dependence on impact
parameter value has been made use of. When this ontological model has been further
generalized (and corresponding probabilities have been derived directly from measured
values) it has been shown that the momentum transfer dependence of differential cross
section may be reconstructed as the consequence of colliding protons exhibiting a series of
structures of different external dimensions. It opens new way how the existence of quantum
atom states might be interpreted on much more realistic basis.

It represents also important argument that the purely phenomenological approach to
physical reality should be abandoned as quite insufficient. It is necessary to return to
ontological approach on which all successes of the classical physics were based and from
which practically all world civilization emerged. Some interesting orientation results have
been already obtained with the help of the mentioned very rough model. Now the attention
is to be devoted to its generalization to correspond fully to all ontological requirements and
not to involve any unphysical limitation.

The given results should contribute mainly to understand better the existence of atom
quantum states; and how they may be influenced by proton structure. It is necessary
to analyze corresponding data from experiments that might help in this direction; mainly
elastic collision experiments may be very helpful. However, it is not more possible to look
for a phenomenological description of measured values only, but for the interpretation of
corresponding processes on ontological basis.

However, it may be also helpful to answer the question how it was possible that the
Copenhagen alternative was influencing scientific thinking in greater part of the past century.
It followed from the fact that two different kinds of quantum physics have existed; one based
on the Copenhagen quantum mechanics and looking for the support of quantum paradoxes
and the other one solving in principle successfully different physical and technological
problems on the basis of standard Schrödinger approach (no additional assumption having
been added - without mentioning it explicitly). It is possible to say that it followed from
the fact that the scientific thinking in the modern period was fundamentally influenced
by mathematical philosophy of Descartes refusing ontological approach. It was also the
reason why also Einstein’s criticism based on ontological argument has been refused by
scientific community. Our main contemporary task consists in devoting more attention to
the ontological properties of physical objects.
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Quantum Damped Harmonic Oscillator

Kazuyuki Fujii
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1. Introduction

In this chapter we introduce a toy model of Quantum Mechanics with Dissipation. Quantum
Mechanics with Dissipation plays a crucial role to understand real world. However, it
is not easy to master the theory for undergraduates. The target of this chapter is eager
undergraduates in the world. Therefore, a good toy model to understand it deeply is
required.

The quantum damped harmonic oscillator is just such a one because undergraduates must
use (master) many fundamental techniques in Quantum Mechanics and Mathematics. That
is, harmonic oscillator, density operator, Lindblad form, coherent state, squeezed state, tensor
product, Lie algebra, representation theory, Baker–Campbell–Hausdorff formula, etc.

They are “jewels" in Quantum Mechanics and Mathematics. If undergraduates master this
model, they will get a powerful weapon for Quantum Physics. I expect some of them will
attack many hard problems of Quantum Mechanics with Dissipation.

The contents of this chapter are based on our two papers [3] and [6]. I will give a clear and
fruitful explanation to them as much as I can.

2. Some preliminaries

In this section let us make some reviews from Physics and Mathematics within our necessity.

2.1. From physics

First we review the solution of classical damped harmonic oscillator, which is important to
understand the text. For this topic see any textbook of Mathematical Physics.

The differential equation is given by

ẍ + ω
2
x = −γẋ ⇐⇒ ẍ + γẋ + ω

2
x = 0 (γ > 0) (2.1)

©2012 Fujii, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Fujii; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

where x = x(t), ẋ = dx/dt and the mass m is set to 1 for simplicity. In the following we treat
only the case ω > γ/2 (the case ω = γ/2 may be interesting).

Solutions (with complex form) are well–known to be

x±(t) = e
−

(

γ

2 ±i
√

ω2
−( γ

2 )
2
)

t
,

so the general solution is given by

x(t) = αx+(t) + ᾱx−(t) = αe
−

(

γ

2 +i
√

ω2
−( γ

2 )
2
)

t
+ ᾱe

−

(

γ

2 −i
√

ω2
−( γ

2 )
2
)

t

= αe
−

(

γ

2 +iω
√

1−( γ

2ω
)2
)

t
+ ᾱe

−

(

γ

2 −iω
√

1−( γ

2ω
)2
)

t
(2.2)

where α is a complex number. If γ/2ω is small enough we have an approximate solution

x(t) ≈ αe−(
γ

2 +iω)t + ᾱe−(
γ

2 −iω)t. (2.3)

Next, we consider the quantum harmonic oscillator. This is well–known in textbooks of
Quantum Mechanics. As standard textbooks of Quantum Mechanics see [2] and [11] ([2] is
particularly interesting).

For the Hamiltonian

H = H(q, p) =
1

2
(p2 + ω

2q2) (2.4)

where q = q(t), p = p(t), the canonical equation of motion reads

q̇ ≡

∂H

∂p
= p, ṗ ≡ −

∂H

∂q
= −ω

2q.

From these we recover the equation

q̈ = −ω
2q ⇐⇒ q̈ + ω

2q = 0.

See (2.1) with q = x and λ = 0.

Next, we introduce the Poisson bracket. For A = A(q, p), B = B(q, p) it is defined as

{A, B}c ≡
∂A

∂q

∂B

∂p
−

∂A

∂p

∂B

∂q
(2.5)

where {, }c means classical. Then it is easy to see

{q, q}c = 0, {p, p}c = 0, {q, p}c = 1. (2.6)
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Now, we are in a position to give a quantization condition due to Dirac. Before that we
prepare some notation from algebra.

Square matrices A and B don’t commute in general, so we need the commutator

[A, B] = AB − BA.

Then Dirac gives an abstract correspondence q −→ q̂, p −→ p̂ which satisfies the
condition

[q̂, q̂] = 0, [ p̂, p̂] = 0, [q̂, p̂] = ih̄1 (2.7)

corresponding to (2.6). Here h̄ is the Plank constant, and q̂ and p̂ are both Hermite operators
on some Fock space (a kind of Hilbert space) given in the latter and 1 is the identity on it.
Therefore, our quantum Hamiltonian should be

H = H(q̂, p̂) =
1

2
( p̂2 + ω

2q̂2) (2.8)

from (2.4). Note that a notation H instead of Ĥ is used for simplicity. From now on we
consider a complex version. From (2.4) and (2.8) we rewrite like

H(q, p) =
1

2
(p2 + ω

2q2) =
ω

2

2
(q2 +

1

ω2
p2) =

ω
2

2
(q −

i

ω
p)(q +

i

ω
p)

and

H(q̂, p̂) =
ω

2

2
(q̂2 +

1

ω2
p̂2) =

ω
2

2

{

(q̂ −
i

ω
p̂)(q̂ +

i

ω
p̂)−

i

ω
[q̂, p̂]

}

=
ω

2

2

{

(q̂ −
i

ω
p̂)(q̂ +

i

ω
p̂) +

h̄

ω

}

= ωh̄

{

ω

2h̄
(q̂ −

i

ω
p̂)(q̂ +

i

ω
p̂) +

1

2

}

by use of (2.7), and if we set

a† =

√

ω

2h̄
(q̂ −

i

ω
p̂), a =

√

ω

2h̄
(q̂ +

i

ω
p̂) (2.9)

we have easily

[a, a†] =
ω

2h̄
[q̂ +

i

ω
p̂, q̂ −

i

ω
p̂] =

ω

2h̄

{

−

2i

ω
[q̂, p̂]

}

=
ω

2h̄

{

−

2i

ω
× ih̄

}

= 1

by use of (2.7). As a result we obtain a well–known form

H = ωh̄(a†a +
1

2
), [a, a†] = 1. (2.10)

Here we used an abbreviation 1/2 in place of (1/2)1 for simplicity.
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If we define an operator N = a
†
a (which is called the number operator) then it is easy to see

the relations

[N, a
†] = a

†, [N, a] = −a, [a, a
†] = 1. (2.11)

For the proof a well–known formula [AB, C] = [A, C]B + A[B, C] is used. Note that aa
† =

a
†
a + [a, a

†] = N + 1. The set {a
†, a, N} is just a generator of Heisenberg algebra and we can

construct a Fock space based on this. Let us note that a, a
† and N are called the annihilation

operator, creation one and number one respectively.

First of all let us define a vacuum |0〉. This is defined by the equation a|0〉 = 0. Based on this
vacuum we construct the n state |n〉 like

|n〉 =
(a

†)n

√

n!
|0〉 (0 ≤ n).

Then we can easily prove

a
†
|n〉 =

√

n + 1|n + 1〉, a|n〉 =
√

n|n − 1〉, N|n〉 = n|n〉 (2.12)

and moreover can prove both the orthogonality condition and the resolution of unity

〈m|n〉 = δmn,
∞

∑
n=0

|n〉〈n| = 1. (2.13)

For the proof one can use for example

a
2(a

†)2 = a(aa
†)a

† = a(N + 1)a
† = (N + 2)aa

† = (N + 2)(N + 1)

by (2.11), therefore we have

〈0|a2(a
†)2

|0〉 = 〈0|(N + 2)(N + 1)|0〉 = 2! =⇒ 〈2|2〉 = 1.

The proof of the resolution of unity may be not easy for readers (we omit it here).

As a result we can define a Fock space generated by the generator {a
†, a, N}

F =

{

∞

∑
n=0

cn|n〉 ∈ C
∞
|

∞

∑
n=0

|cn|
2
< ∞

}

. (2.14)

This is just a kind of Hilbert space. On this space the operators (= infinite dimensional
matrices) a

†, a and N are represented as
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a =



















0 1

0
√

2

0
√

3

0
. . .

. . .



















, a
† =















0
1 0
√

2 0
√

3 0
. . .

. . .















,

N = a
†
a =















0
1

2
3

. . .















(2.15)

by use of (2.12).

Note We can add a phase to {a, a
†
} like

b = e
iθ

a, b
† = e

−iθ
a

†, N = b
†
b = a

†
a

where θ is constant. Then we have another Heisenberg algebra

[N, b
†] = b

†, [N, b] = −b, [b, b
†] = 1.

Next, we introduce a coherent state which plays a central role in Quantum Optics or
Quantum Computation. For z ∈ C the coherent state |z〉 ∈ F is defined by the equation

a|z〉 = z|z〉 and 〈z|z〉 = 1.

The annihilation operator a is not hermitian, so this equation is never trivial. For this state
the following three equations are equivalent :











(1) a|z〉 = z|z〉 and 〈z|z〉 = 1,

(2) |z〉 = e
za

†
−z̄a

|0〉,

(3) |z〉 = e
−

|z|
2

2 ∑
∞
n=0

z
n

√

n!
|n〉.

(2.16)

The proof is as follows. From (1) to (2) we use a popular formula

e
A

Be
−A = B + [A, B] +

1

2!
[A, [A, B]] + · · ·
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(A, B : operators) to prove

e−(za†
−z̄a)aeza†

−z̄a = a + z.

From (2) to (3) we use the Baker-Campbell-Hausdorff formula (see for example [17])

eAeB = eA+B+ 1
2 [A,B]+ 1

6 [A,[A,B]]+ 1
6 [B,[A,B]]+···.

If [A, [A, B]] = 0 = [B, [A, B]] (namely, [A, B] commutes with both A and B) then we have

eAeB = eA+B+ 1
2 [A,B] = e

1
2 [A,B]eA+B =⇒ eA+B = e−

1
2 [A,B]eAeB. (2.17)

In our case the condition is satisfied because of [a, a†] = 1. Therefore we obtain a (famous)
decomposition

eza†
−z̄a = e−

|z|2

2 eza†
e−z̄a. (2.18)

The remaining part of the proof is left to readers.

From the equation (3) in (2.16) we obtain the resolution of unity for coherent states

∫ ∫

dxdy

π
|z〉〈z| =

∞

∑
n=0

|n〉〈n| = 1 (z = x + iy). (2.19)

The proof is reduced to the following formula

∫ ∫

dxdy

π
e−|z|2 z̄mzn = n! δmn (z = x + iy).

The proof is left to readers. See [14] for more general knowledge of coherent states.

2.2. From mathematics

We consider a simple matrix equation

d

dt
X = AXB (2.20)

where

X = X(t) =

(

x11(t) x12(t)
x21(t) x22(t)

)

, A =

(

a11 a12

a21 a22

)

, B =

(

b11 b12

b21 b22

)

.
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A standard form of linear differential equation which we usually treat is

d

dt

x = Cx

where x = x(t) is a vector and C is a matrix associated to the vector. Therefore, we want to
rewrite (2.20) into a standard form.

For the purpose we introduce the Kronecker product of matrices. For example, it is defined
as

A ⊗ B =

(

a11 a12

a21 a22

)

⊗ B ≡

(

a11B a12B

a21B a22B

)

=









a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22









(2.21)

for A and B above. Note that recently we use the tensor product instead of the Kronecker
product, so we use it in the following. Here, let us list some useful properties of the tensor
product

(1) (A1 ⊗ B1)(A2 ⊗ B2) = A1 A2 ⊗ B1B2,

(2) (A ⊗ E)(E ⊗ B) = A ⊗ B = (E ⊗ B)(A ⊗ E),

(3) e
A⊗E+E⊗B = e

A⊗E
e

E⊗B = (eA
⊗ E)(E ⊗ e

B) = e
A
⊗ e

B, (2.22)

(4) (A ⊗ B)† = A
†
⊗ B

†

where E is the unit matrix. The proof is left to readers. [9] is recommended as a general
introduction.

Then the equation (2.20) can be written in terms of components as



















dx11
dt

= a11b11x11 + a11b21x12 + a12b11x21 + a12b21x22,
dx12
dt

= a11b12x11 + a11b22x12 + a12b12x21 + a12b22x22,
dx21
dt

= a21b11x11 + a21b21x12 + a22b11x21 + a22b21x22,
dx22
dt

= a21b12x11 + a21b22x12 + a22b12x21 + a22b22x22

or in a matrix form

d

dt









x11

x12

x21

x22









=









a11b11 a11b21 a12b11 a12b21

a11b12 a11b22 a12b12 a12b22

a21b11 a21b21 a22b11 a22b21

a21b12 a21b22 a22b12 a22b22

















x11

x12

x21

x22









.
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8 Quantum Mechanics

If we set

X =

(

x11 x12

x21 x22

)

=⇒ ̂X = (x11, x12, x21, x22)
T

where T is the transpose, then we obtain a standard form

d

dt

X = AXB =⇒
d

dt

̂X = (A ⊗ B
T) ̂X (2.23)

from (2.21).

Similarly we have a standard form

d

dt

X = AX + XB =⇒
d

dt

̂X = (A ⊗ E + E ⊗ B
T) ̂X (2.24)

where E
T = E for the unit matrix E.

From these lessons there is no problem to generalize (2.23) and (2.24) based on 2× 2 matrices
to ones based on any (square) matrices or operators on F . Namely, we have

{

d

dt
X = AXB =⇒ d

dt

̂X = (A ⊗ B
T) ̂X,

d

dt
X = AX + XB =⇒ d

dt

̂X = (A ⊗ I + I ⊗ B
T) ̂X.

(2.25)

where I is the identity E (matrices) or 1 (operators).

3. Quantum damped harmonic oscillator

In this section we treat the quantum damped harmonic oscillator. As a general introduction
to this topic see [1] or [16].

3.1. Model

Before that we introduce the quantum harmonic oscillator. The Schrödinger equation is given
by

ih̄

∂

∂t

|Ψ(t)〉 = H|Ψ(t)〉 =

(

ωh̄(N +
1

2
)

)

|Ψ(t)〉

by (2.10) (note N = a
†
a). In the following we use ∂

∂t
instead of d

dt
.

Now we change from a wave–function to a density operator because we want to treat a mixed
state, which is a well–known technique in Quantum Mechanics or Quantum Optics.

If we set ρ(t) = |Ψ(t)〉〈Ψ(t)|, then a little algebra gives

Advances in Quantum Mechanics140



Quantum Damped Harmonic Oscillator 9

ih̄
∂

∂t
ρ = [H, ρ] = [ωh̄N, ρ] =⇒

∂

∂t
ρ = −i[ωN, ρ]. (3.1)

This is called the quantum Liouville equation. With this form we can treat a mixed state like

ρ = ρ(t) =
N

∑
j=1

uj|Ψj(t)〉〈Ψj(t)|

where uj ≥ 0 and ∑
N
j=1 uj = 1. Note that the general solution of (3.1) is given by

ρ(t) = e−iωNt
ρ(0)eiωNt.

We are in a position to state the equation of quantum damped harmonic oscillator by use of
(3.1).

Definition The equation is given by

∂

∂t
ρ = −i[ωa†a, ρ]−

µ

2

(

a†aρ + ρa†a − 2aρa†
)

−

ν

2

(

aa†
ρ + ρaa†

− 2a†
ρa

)

(3.2)

where µ, ν (µ > ν ≥ 0) are some real constants depending on the system (for example, a
damping rate of the cavity mode)1.

Note that the extra term

−

µ

2

(

a†aρ + ρa†a − 2aρa†
)

−

ν

2

(

aa†
ρ + ρaa†

− 2a†
ρa

)

is called the Lindblad form (term). Such a term plays an essential role in Decoherence.

3.2. Method of solution

First we solve the Lindblad equation :

∂

∂t
ρ = −

µ

2

(

a†aρ + ρa†a − 2aρa†
)

−

ν

2

(

aa†
ρ + ρaa†

− 2a†
ρa

)

. (3.3)

Interesting enough, we can solve this equation completely.

1 The aim of this chapter is not to drive this equation. In fact, its derivation is not easy for non–experts, so see for
example the original papers [15] and [10], or [12] as a short review paper
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Let us rewrite (3.3) more conveniently using the number operator N ≡ a†a

∂

∂t
ρ = µaρa† + νa†

ρa −
µ + ν

2
(Nρ + ρN + ρ) +

µ − ν

2
ρ (3.4)

where we have used aa† = N + 1.

From here we use the method developed in Section 2.2. For a matrix X = (xij) ∈ M(F ) over
F

X =











x00 x01 x02 · · ·

x10 x11 x12 · · ·

x20 x21 x22 · · ·

...
...

...
. . .











we correspond to the vector ̂X ∈ F
dimCF as

X = (xij) −→ ̂X = (x00, x01, x02, · · · ; x10, x11, x12, · · · ; x20, x21, x22, · · · ; · · · · · · )T (3.5)

where T means the transpose. The following formulas

ÂXB = (A ⊗ BT) ̂X, ̂(AX + XB) = (A ⊗ 1 + 1 ⊗ BT) ̂X (3.6)

hold for A, B, X ∈ M(F ), see (2.25).

Then (3.4) becomes

∂

∂t
ρ̂ =

{

µa ⊗ (a†)T + νa†
⊗ aT

−

µ + ν

2
(N ⊗ 1 + 1 ⊗ N + 1 ⊗ 1) +

µ − ν

2
1 ⊗ 1

}

ρ̂

=

{

µ − ν

2
1 ⊗ 1 + νa†

⊗ a† + µa ⊗ a −
µ + ν

2
(N ⊗ 1 + 1 ⊗ N + 1 ⊗ 1)

}

ρ̂ (3.7)

where we have used aT = a† from the form (2.15), so that the solution is formally given by

ρ̂(t) = e
µ−ν

2 tet{νa†
⊗a†+µa⊗a−

µ+ν

2 (N⊗1+1⊗N+1⊗1)}
ρ̂(0). (3.8)

In order to use some techniques from Lie algebra we set

K3 =
1

2
(N ⊗ 1 + 1 ⊗ N + 1 ⊗ 1), K+ = a†

⊗ a†, K− = a ⊗ a
(

K− = K†
+

)

(3.9)

then we can show the relations

[K3, K+] = K+, [K3, K−] = −K−, [K+, K−] = −2K3.
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This is just the su(1, 1) algebra. The proof is very easy and is left to readers.

The equation (3.8) can be written simply as

ρ̂(t) = e

µ−ν

2 t
e

t{νK++µK−−(µ+ν)K3} ρ̂(0), (3.10)

so we have only to calculate the term

e
t{νK++µK−−(µ+ν)K3}, (3.11)

which is of course not simple. Now the disentangling formula in [4] is helpful in calculating
(3.11).

If we set {k+, k−, k3} as

k+ =

(

0 1

0 0

)

, k− =

(

0 0

−1 0

)

, k3 =
1

2

(

1 0

0 −1

)

(

k− 6= k
†
+

)

(3.12)

then it is very easy to check the relations

[k3, k+] = k+, [k3, k−] = −k−, [k+, k−] = −2k3.

That is, {k+, k−, k3} are generators of the Lie algebra su(1, 1). Let us show by SU(1, 1) the

corresponding Lie group, which is a typical noncompact group.

Since SU(1, 1) is contained in the special linear group SL(2; C), we assume that there

exists an infinite dimensional unitary representation ρ : SL(2; C) −→ U(F ⊗ F ) (group

homomorphism) satisfying

dρ(k+) = K+, dρ(k−) = K−, dρ(k3) = K3.

From (3.11) some algebra gives

e
t{νK++µK−−(µ+ν)K3} = e

t{νdρ(k+)+µdρ(k−)−(µ+ν)dρ(k3)}

= e
dρ(t(νk++µk−−(µ+ν)k3))

= ρ

(

e
t(νk++µk−−(µ+ν)k3)

)

(⇓ by definition)

≡ ρ

(

e
tA

)

(3.13)
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and we have

e
tA = e

t{νk++µk−−(µ+ν)k3}

= exp

{

t

(

−
µ+ν

2 ν

−µ
µ+ν

2

)}

=





cosh
(

µ−ν

2 t

)

−
µ+ν

µ−ν
sinh

(

µ−ν

2 t

)

2ν

µ−ν
sinh

(

µ−ν

2 t

)

−
2µ

µ−ν
sinh

(

µ−ν

2 t

)

cosh
(

µ−ν

2 t

)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t

)



 .

The proof is based on the following two facts.

(tA)2 = t
2

(

−
µ+ν

2 ν

−µ
µ+ν

2

)2

= t
2







(

µ+ν

2

)2
− µν 0

0
(

µ+ν

2

)2
− µν






=

(

µ − ν

2
t

)2 (
1 0

0 1

)

and

e
X =

∞

∑
n=0

1

n!
X

n =
∞

∑
n=0

1

(2n)!
X

2n +
∞

∑
n=0

1

(2n + 1)!
X

2n+1 (X = tA).

Note that

cosh(x) =
e

x + e
−x

2
=

∞

∑
n=0

x
2n

(2n)!
and sinh(x) =

e
x
− e

−x

2
=

∞

∑
n=0

x
2n+1

(2n + 1)!
.

The remainder is left to readers.

The Gauss decomposition formula (in SL(2; C))

(

a b

c d

)

=

(

1 b

d

0 1

)(

1
d

0

0 d

)(

1 0
c

d
1

)

(ad − bc = 1)

gives the decomposition
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e
tA =





1
2ν

µ−ν
sinh( µ−ν

2 t)
cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
0 1



×





1
cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
0

0 cosh
(

µ−ν

2 t

)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t

)



×





1 0

−

2µ

µ−ν
sinh( µ−ν

2 t)
cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
1





and moreover we have

e
tA = exp





0
2ν

µ−ν
sinh( µ−ν

2 t)
cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
0 0



×

exp

(

− log
(

cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
)

0

0 log
(

cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
)

)

×

exp





0 0

−

2µ

µ−ν
sinh( µ−ν

2 t)
cosh( µ−ν

2 t)+ µ+ν

µ−ν
sinh( µ−ν

2 t)
0





= exp





2ν

µ−ν
sinh

(

µ−ν

2 t

)

cosh
(

µ−ν

2 t

)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t

) k+



×

exp

(

−2 log

(

cosh

(

µ − ν

2
t

)

+
µ + ν

µ − ν
sinh

(

µ − ν

2
t

))

k3

)

×

exp





2µ

µ−ν
sinh

(

µ−ν

2 t

)

cosh
(

µ−ν

2 t

)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t

) k−



 .

Since ρ is a group homomorphism (ρ(XYZ) = ρ(X)ρ(Y)ρ(Z)) and the formula ρ

(

e
Lk

)

=

e
Ldρ(k) (k = k+, k3, k−) holds we obtain
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ρ

(

etA
)

=exp





2ν

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
) dρ(k+)



×

exp

(

−2 log

(

cosh

(

µ − ν

2
t

)

+
µ + ν

µ − ν
sinh

(

µ − ν

2
t

))

dρ(k3)

)

×

exp





2µ

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
) dρ(k−)



 .

As a result we have the disentangling formula

et{νK++µK−−(µ+ν)K3} = exp





2ν

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
)K+



×

exp

(

−2 log

(

cosh

(

µ − ν

2
t

)

+
µ + ν

µ − ν
sinh

(

µ − ν

2
t

))

K3

)

×

exp





2µ

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
)K−



 (3.14)

by (3.13).

In the following we set for simplicity

E(t) =

2µ

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
) ,

F(t) = cosh

(

µ − ν

2
t

)

+
µ + ν

µ − ν
sinh

(

µ − ν

2
t

)

, (3.15)

G(t) =

2ν

µ−ν
sinh

(

µ−ν

2 t
)

cosh
(

µ−ν

2 t
)

+
µ+ν

µ−ν
sinh

(

µ−ν

2 t
) .

Readers should be careful of this “proof", which is a heuristic method. In fact, it is incomplete
because we have assumed a group homomorphism. In order to complete it we want to show
a disentangling formula like

et{νK++µK−−(µ+ν)K3} = e f (t)K+ eg(t)K3 eh(t)K−
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with unknowns f (t), g(t), h(t) satisfying f (0) = g(0) = h(0) = 0. For the purpose we set

A(t) = et{νK++µK−−(µ+ν)K3}, B(t) = e f (t)K+ eg(t)K3 eh(t)K− .

For t = 0 we have A(0) = B(0) = identity and

Ȧ(t) = {νK+ + µK− − (µ + ν)K3}A(t).

Next, let us calculate Ḃ(t). By use of the Leibniz rule

Ḃ(t) = ( ḟ K+)e
f (t)K+ eg(t)K3 eh(t)K− + e f (t)K+ (ġK3)e

g(t)K3 eh(t)K− + e f (t)K+ eg(t)K3 (ḣK−)e
h(t)K−

=
{

ḟ K+ + ġe f K+K3e− f K+ + ḣe f K+ egK3 K−e−gK3 e− f K+

}

e f (t)K+ eg(t)K3 eh(t)K−

=
{

ḟ K+ + ġ(K3 − f K+) + ḣe−g(K− − 2 f K3 + f 2K+)
}

B(t)

=
{

( ḟ − ġ f + ḣe−g f 2)K+ + (ġ − 2ḣe−g f )K3 + ḣe−gK−

}

B(t)

where we have used relations

e f K+K3e− f K+ = K3 − f K+,

egK3 K−e−gK3 = e−gK− and e f K+K−e− f K+ = K− − 2 f K3 + f 2K+.

The proof is easy. By comparing coefficients of Ȧ(t) and Ḃ(t) we have







ḣe−g = µ,

ġ − 2ḣe−g f = −(µ + ν),
ḟ − ġ f + ḣe−g f 2 = ν

=⇒







ḣe−g = µ,
ġ − 2µ f = −(µ + ν),
ḟ − ġ f + µ f 2 = ν

=⇒







ḣe−g = µ,
ġ − 2µ f = −(µ + ν),
ḟ + (µ + ν) f − µ f 2 = ν.

Note that the equation

ḟ + (µ + ν) f − µ f 2 = ν

is a (famous) Riccati equation. If we can solve the equation then we obtain solutions like

f =⇒ g =⇒ h.

Unfortunately, it is not easy. However there is an ansatz for the solution, G, F and E. That is,

f (t) = G(t), g(t) = −2 log(F(t)), h(t) = E(t)

in (3.15). To check these equations is left to readers (as a good exercise). From this

A(0) = B(0), Ȧ(0) = Ḃ(0) =⇒ A(t) = B(t) for all t
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and we finally obtain the disentangling formula

e
t{νK++µK−−(µ+ν)K3} = e

G(t)K+
e
−2 log(F(t))K3

e
E(t)K− (3.16)

with (3.15).

Therefore (3.8) becomes

ρ̂(t) = e

µ−ν

2 t exp
(

G(t)a
†
⊗ a

†
)

exp (− log(F(t))(N ⊗ 1 + 1 ⊗ N + 1 ⊗ 1)) exp (E(t)a ⊗ a) ρ̂(0)

with (3.15). Some calculation by use of (2.22) gives

ρ̂(t) =
e

µ−ν

2 t

F(t)
exp

(

G(t)a
†
⊗ a

T

) {

exp (− log(F(t))N)⊗ exp (− log(F(t))N)T

}

×

exp
(

E(t)a ⊗ (a
†)T

)

ρ̂(0) (3.17)

where we have used N
T = N and a

† = a
T . By coming back to matrix form by use of (3.6)

like

exp
(

E(t)a ⊗ (a
†)T

)

ρ̂(0) =
∞

∑
m=0

E(t)m

m!

(

a ⊗ (a
†)T

)

m

ρ̂(0)

=
∞

∑
m=0

E(t)m

m!

(

a
m
⊗ ((a

†)m)T

)

ρ̂(0) −→
∞

∑
m=0

E(t)m

m!
a

m
ρ(0)(a

†)m

we finally obtain

ρ(t) =
e

µ−ν

2 t

F(t)
×

∞

∑
n=0

G(t)n

n!
(a

†)n

[

exp (− log(F(t))N)

{

∞

∑
m=0

E(t)m

m!
a

m
ρ(0)(a

†)m

}

exp (− log(F(t))N)

]

a
n.

(3.18)

This form is very beautiful but complicated !

3.3. General solution

Last, we treat the full equation (3.2)

∂

∂t

ρ = −iω(a
†
aρ − ρa

†
a)−

µ

2

(

a
†
aρ + ρa

†
a − 2aρa

†
)

−

ν

2

(

aa
†
ρ + ρaa

†
− 2a

†
ρa

)

.
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From the lesson in the preceding subsection it is easy to rewrite this as

∂

∂t

ρ̂ =

{

−iωK0 + νK+ + µK− − (µ + ν)K3 +
µ − ν

2
1 ⊗ 1

}

ρ̂ (3.19)

in terms of K0 = N ⊗ 1 − 1 ⊗ N (note that N
T = N). Then it is easy to see

[K0, K+] = [K0, K3] = [K0, K−] = 0 (3.20)

from (3.9), which is left to readers. That is, K0 commutes with all {K+, K3, K−}. Therefore

ρ̂(t) = e
−iωtK0

e
t{νK++µK−−(µ+ν)K3+

µ−ν

2 1⊗1}
ρ̂(0)

= e

µ−ν

2 t exp (−iωtK0) exp (G(t)K+) exp (−2 log(F(t))K3) exp (E(t)K−) ρ̂(0)

= e

µ−ν

2 t exp (G(t)K+) exp ({−iωtK0 − 2 log(F(t))K3}) exp (E(t)K−) ρ̂(0),

so that the general solution that we are looking for is just given by

ρ(t) =
e

µ−ν

2 t

F(t)

∞

∑
n=0

G(t)n

n!
(a

†)n[exp ({−iωt − log(F(t))}N)×

{

∞

∑
m=0

E(t)m

m!
a

m
ρ(0)(a

†)m

}

exp ({iωt − log(F(t))}N)]an (3.21)

by use of (3.17) and (3.18).

Particularly, if ν = 0 then

E(t) =
2 sinh

(

µ

2 t

)

cosh
(

µ

2 t

)

+ sinh
(

µ

2 t

) = 1 − e
−µt,

F(t) = cosh
(

µ

2
t

)

+ sinh
(

µ

2
t

)

= e

µ

2 t,

G(t) = 0

from (3.15), so that we have

ρ(t) = e
−( µ

2 +iω)tN

{

∞

∑
m=0

(

1 − e
−µt

)

m

m!
a

m
ρ(0)(a

†)m

}

e
−( µ

2 −iω)tN (3.22)

from (3.21).

4. Quantum counterpart

In this section we explicitly calculate ρ(t) for the initial value ρ(0) given in the following.
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4.1. Case of ρ(0) = |0〉〈0|

Noting a|0〉 = 0 (⇔ 0 = 〈0|a†), this case is very easy and we have

ρ(t) =
e

µ−ν

2 t

F(t)

∞

∑
n=0

G(t)n

n!
(a

†)n
|0〉〈0|an =

e

µ−ν

2 t

F(t)

∞

∑
n=0

G(t)n
|n〉〈n| =

e

µ−ν

2 t

F(t)
e

log G(t)N (4.1)

because the number operator N (= a
†
a) is written as

N =
∞

∑
n=0

n|n〉〈n| =⇒ N|n〉 = n|n〉

, see for example (2.15). To check the last equality of (4.1) is left to readers. Moreover, ρ(t)
can be written as

ρ(t) = (1 − G(t))elog G(t)N = e
log(1−G(t))

e
log G(t)N , (4.2)

see the next subsection.

4.2. Case of ρ(0) = |α〉〈α| (α ∈ C)

Remind that |α〉 is a coherent state given by (2.16) (a|α〉 = α|α〉 ⇔ 〈α|a
† = 〈α|ᾱ). First of all

let us write down the result :

ρ(t) = e
|α|

2
e
−(µ−ν)t log G(t)+log(1−G(t)) exp

{

− log G(t)
(

αe
−( µ−ν

2 +iω)t
a

† + ᾱe
−( µ−ν

2 −iω)t
a − N

)}

(4.3)
with G(t) in (3.15). Here we again meet a term like (2.3)

αe
−( µ−ν

2 +iω)t
a

† + ᾱe
−( µ−ν

2 −iω)t
a

with λ =
µ−ν

2 .

Therefore, (4.3) is just our quantum counterpart of the classical damped harmonic oscillator.

The proof is divided into four parts.

[First Step] From (3.21) it is easy to see

∞

∑
m=0

E(t)m

m!
a

m
|α〉〈α|(a

†)m =
∞

∑
m=0

E(t)m

m!
α

m
|α〉〈α|ᾱ

m =
∞

∑
m=0

(E(t)|α|2)m

m!
|α〉〈α| = e

E(t)|α|2
|α〉〈α|.
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[Second Step] From (3.21) we must calculate the term

e
γN

|α〉〈α|e
γ̄N = e

γN
e

αa
†
−ᾱa

|0〉〈0|e−(αa
†
−ᾱa)

e
γ̄N

where γ = −iωt − log(F(t)) (note γ̄ 6= −γ). It is easy to see

e
γN

e
αa

†
−ᾱa

|0〉 = e
γN

e
αa

†
−ᾱa

e
−γN

e
γN

|0〉 = e
e

γN(αa
†
−ᾱa)e−γN

|0〉 = e
αe

γ
a

†
−ᾱe

−γ
a
|0〉

where we have used

e
γN

a
†
e
−γN = e

γ
a

† and e
γN

ae
−γN = e

−γ
a.

The proof is easy and left to readers. Therefore, by use of Baker–Campbell–Hausdorff

formula (2.17) two times

e
αe

γ
a

†
−ᾱe

−γ
a
|0〉 = e

−
|α|

2

2 e
αe

γ
a

†
e
−ᾱe

−γ
a
|0〉 = e

−
|α|

2

2 e
αe

γ
a

†
|0〉

= e
−

|α|
2

2 e

|α|
2

2 e
γ+γ̄

e
αe

γ
a

†
−ᾱe

γ̄
a
|0〉 = e

−
|α|

2

2 (1−e
γ+γ̄)

|αe
γ
〉

and we obtain

e
γN

|α〉〈α|e
γ̄N = e

−|α|
2(1−e

γ+γ̄)
|αe

γ
〉〈αe

γ
|

with γ = −iωt − log(F(t)).

[Third Step] Under two steps above the equation (3.21) becomes

ρ(t) =
e

µ−ν

2 t
e
|α|

2(E(t)−1+e
γ+γ̄)

F(t)

∞

∑
n=0

G(t)n

n!
(a

†)n
|αe

γ
〉〈αe

γ
|a

n.

For simplicity we set z = αe
γ and calculate the term

(♯) =
∞

∑
n=0

G(t)n

n!
(a

†)n
|z〉〈z|a

n.

Since |z〉 = e
−|z|

2/2
e

za
†
|0〉 we have
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(♯) = e
−|z|

2
∞

∑
n=0

G(t)n

n!
(a

†)n
e

za
†
|0〉〈0|ez̄a

a
n

= e
−|z|

2
e

za
†

{

∞

∑
n=0

G(t)n

n!
(a

†)n
|0〉〈0|an

}

e
z̄a

= e
−|z|

2
e

za
†

{

∞

∑
n=0

G(t)n
|n〉〈n|

}

e
z̄a

= e
−|z|

2
e

za
†
e

log G(t)N
e

z̄a

by (4.1). Namely, this form is a kind of disentangling formula, so we want to restore an
entangling formula.

For the purpose we use the disentangling formula

e
αa

†+βa+γN = e

αβ
e
γ
−(1+γ)

γ2
e

α
e
γ
−1
γ

a
†

e
γN

e
β

e
γ
−1
γ

a (4.4)

where α, β, γ are usual numbers. The proof is given in the fourth step. From this it is easy
to see

e
ua

†
e

vN
e

wa = e

−
uw(ev

−(1+v))

(ev
−1)2

e

uv

e
v
−1

a
†+ vw

e
v
−1

a+vN . (4.5)

Therefore (u → z, v → log G(t), w → z̄)

(♯) = e
−|z|

2
e

|z|
2(1+log G(t)−G(t))

(1−G(t))2
e

log G(t)
G(t)−1

za
†+ log G(t)

G(t)−1
z̄a+log G(t)N

,

so by noting

z = αe
γ = α

e
−iωt

F(t)
and |z|

2 = |α|
2
e

γ+γ̄ = |α|
2 1

F(t)2

we have

ρ(t) =
e

µ−ν

2 t

F(t)
e
|α|

2(E(t)−1)
e

|α|
2 1+log G(t)−G(t)

F(t)2(1−G(t))2
e

log G(t)
F(t)(G(t)−1) αe

−iωt
a

†+ log G(t)
F(t)(G(t)−1) ᾱe

iωt
a+log G(t)N

=
e

µ−ν

2 t

F(t)
e

|α|
2
{

E(t)−1+ 1+log G(t)−G(t)

F(t)2(1−G(t))2

}

e

log G(t)
F(t)(G(t)−1) αe

−iωt
a

†+ log G(t)
F(t)(G(t)−1) ᾱe

iωt
a+log G(t)N

.

By the way, from (3.15)
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G(t)− 1 = −

e

µ−ν

2 t

F(t)
,

1

F(t)(G(t)− 1)
= −e

−
µ−ν

2 t, E(t)− 1 = −

e
−

µ−ν

2 t

F(t)

and

1 − G(t) + log G(t)

F(t)2(G(t)− 1)2
= e

−(µ−ν)t

{

e

µ−ν

2 t

F(t)
+ log G(t)

}

=
e
−

µ−ν

2 t

F(t)
+ e

−(µ−ν)t log G(t)

= −(E(t)− 1) + e
−(µ−ν)t log G(t)

we finally obtain

ρ(t) = (1 − G(t))e|α|
2
e
−(µ−ν)t log G(t)

e

− log G(t)

{

αe
−iωt

e
−

µ−ν

2 t

a
†+ᾱe

iωt
e
−

µ−ν

2 t

a−N

}

= e
|α|

2
e
−(µ−ν)t log G(t)+log(1−G(t))

e

− log G(t)

{

αe
−( µ−ν

2 +iω)t

a
†+ᾱe

−( µ−ν

2 −iω)t

a−N

}

.

[Fourth Step] In last, let us give the proof to the disentangling formula (4.4) because it is
not so popular as far as we know. From (4.4)

αa
† + βa + γN = γa

†
a + αa

† + βa

= γ

{(

a
† +

β

γ

)(

a +
α

γ

)

−

αβ

γ2

}

= γ

(

a
† +

β

γ

)(

a +
α

γ

)

−

αβ

γ

we have

e
αa

†+βa+γN = e
−

αβ

γ e
γ

(

a
†+ β

γ

)(

a+ α

γ

)

= e
−

αβ

γ e

β

γ
a

e
γa

†
(

a+ α

γ

)

e
−

β

γ
a

= e
−

αβ

γ e

β

γ
a

e
−

α

γ
a

†

e
γa

†
a
e

α

γ
a

†

e
−

β

γ
a.
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Then, careful calculation gives the disentangling formula (4.4) (N = a
†
a)
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αβ

γ e

β
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−
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γ
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†

e
γN
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γ
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†
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−
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−

α
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a

†

e

β

γ
a

e
γN
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α
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a

†

e
−

β

γ
a
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γ
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−

α
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a
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−

β

γ
a

= e

−( αβ

γ
+ αβ

γ2 )
e
−
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−
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γ2 )+
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γ
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−

α
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†
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†
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γ
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γ
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e
−

β

γ
a
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αβ
e
γ
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−

α

γ
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†
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γ
e

γ
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†

e
γN

e
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e
γ
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γ
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αβ
e
γ
−1−γ

γ2
e

α
e
γ
−1
γ
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†

e
γN

e
β

e
γ
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by use of some commutation relations

e
sa

e
ta

†
= e

st
e

ta
†
e

sa, e
sa

e
tN = e

tN
e

se
t
a, e

tN
e

sa
†
= e

se
t
a

†
e

tN .

The proof is simple. For example,

e
sa

e
ta

†
= e

sa
e

ta
†
e
−sa

e
sa = e

te
sa

a
†
e
−sa

e
sa = e

t(a
†+s)

e
sa = e

st
e

ta
†
e

sa.

The remainder is left to readers.

We finished the proof. The formula (4.3) is both compact and clear-cut and has not been
known as far as we know. See [1] and [16] for some applications.

In last, let us present a challenging problem. A squeezed state |β〉 (β ∈ C) is defined as

|β〉 = e

1
2 (β(a

†)2
−β̄a

2)
|0〉. (4.6)

See for example [4]. For the initial value ρ(0) = |β〉〈β| we want to calculate ρ(t) in (3.21)
like in the text. However, we cannot sum up it in a compact form like (4.3) at the present
time, so we propose the problem,

Problem sum up ρ(t) in a compact form.

5. Concluding remarks

In this chapter we treated the quantum damped harmonic oscillator, and studied
mathematical structure of the model, and constructed general solution with any initial
condition, and gave a quantum counterpart in the case of taking coherent state as an initial
condition. It is in my opinion perfect.
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However, readers should pay attention to the fact that this is not a goal but a starting point.
Our real target is to construct general theory of Quantum Mechanics with Dissipation.

In the papers [7] and [8] (see also [13]) we studied a more realistic model entitled
“Jaynes–Cummings Model with Dissipation" and constructed some approximate solutions
under any initial condition. In the paper [5] we studied “Superluminal Group Velocity of
Neutrinos" from the point of view of Quantum Mechanics with Dissipation.

Unfortunately, there is no space to introduce them. It is a good challenge for readers to read
them carefully and attack the problems.
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1. Introduction

In physics it is generally of interest to understand the dynamics of a system. The way the
dynamics is to be specified and studied invariably depends on the scale of the system, that
is whether it is macroscopic or microscopic. The formal machinery with which the world is
explained and understood depends at which of these two levels an experiment is conducted
[1]. At the classical level, the dynamics of the system can be understood in terms of such
things as trajectories in space or space-time.

In fact, classical mechanics can be formulated in terms of a principle of stationary action to
obtain the Euler-Lagrange equations. To carry this out, an action functional has to be defined.
It is written as S and given by

S[q(t)] =
∫ t2

t1

L(qi(t), q̇i(t), t) dt. (1)

The action depends on the Lagrangian, written L in (1). It is to be emphasized that the action
is a functional, which can be thought of as a function defined on a space of functions. For
any given trajectory or path in space, the action works out to be a number, so S maps paths
to real numbers.

One way to obtain equations of motion is by means of Hamilton’s principle. Hamilton’s
principle states that the actual motion of a particle with Lagrangian L is such that the action
functional is stationary. This means the action functional achieves a minimum or maximum
value. To apply and use this principle, Stationary action must result in the Euler-Lagrange
equations of motion. Conversely, if the Euler-Lagrange equations are imposed, the action
functional should be stationary. As is well known, the Euler-Lagrange equations provide
a system of second-order differential equations for the path. This in turn leads to other
approaches to the same end.

©2012 Bracken, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Bracken; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

As an illustration, the momentum canonically conjugate to the coordinate qi is defined by

pi =
∂L

∂q̇i
. (2)

The dependence on the velocity components q̇i can be eliminated in favor of the canonical
momentum. This means that (2) must be solved for the q̇i in terms of the qi and pi, and
the inverse function theorem states this is possible if and only if (∂pi/∂q̇j) 6= 0. Given
a non-singular system all dependence on q̇i can be eliminated by means of a Legendre
transformation

H(q, p, t) = pi q̇
i
− L(q, q̇, t). (3)

The Hamiltonian equations are obtained by considering the derivatives of the Hamiltonian
with respect to qi and pi. The action in terms of H is written

S[q, p] =
∫ t2

t1

dt [pi q̇
i
− H(q, p, t)], (4)

such that the action now depends on both q and p. Using this the principle of stationary
action can then be modified so that Hamilton’s equations result.

In passing to the quantum domain, the concept of path or trajectory is of less importance,
largely because it has no meaning. In quantum physics it can no longer be assumed that
the interaction between system and measuring device can be made arbitrarily small and that
there are no restrictions on what measurements can be made on the system either in terms
of type or in accuracy. Both these assumptions tend to break down at the scales of interest
here, and one is much more interested in states and observables, which replace the classical
idea of a trajectory with well defined properties [2,3].

Now let us follow Dirac and consider possible measurements on a system as observables.
Suppose Ai denotes any observable with ai as a possible outcome of any measurement of
this observable. As much information as possible can be extracted with regard to a quantum
mechanical system by measuring some set of observables {Ai}

n
i=1 without restriction. Thus,

the observables should be mutually compatible because the measurement of any observable
in the set does not affect the measurement of any of the other observables. The most
information that can be assembled about a system is the collection of numbers {ai}

n
i=1, which

are possible values for the set of mutually compatible observables, and this set specifies the
state of the system.

2. Schwinger’s action principle

In Dirac’s view of quantum mechanics, the state of a system is associated with a vector in
a complex vector space V. The knowledge of the values for a complete set of mutually
compatible observables gives the most information about a state. It can then be assumed that
{|a〉}, where |a〉 = |a1, · · · , an〉, the set of all possible states, forms a basis for V. Associated
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with any vector space V is the dual space V
∗ whose elements are referred to as bras in Dirac’s

terminology. A basis for V
∗ is denoted by {〈a|} and is dual to {|a〉}. The quantities satisfy

〈a
′
|a
′′
〉 = δ(a

′, a
′′), (5)

where δ(a
′, a

′′) is the Kronecker delta if a
′ is a discrete set, and the Dirac delta if it is

continuous. The choice of a complete set of mutually compatible observables is not unique.
Suppose {|b〉} also provides a basis for V relevant to another set of mutually compatible
observables B1, B2, · · · . Since {|a〉} and {|b〉} are both bases for V, this means that one set of
basis vectors can be expressed in terms of the other set

|b〉 = ∑
a

|a〉〈a|b〉, (6)

and the 〈a|b〉 coefficients are some set of complex numbers, so that 〈b|a〉∗ = 〈a|b〉. If there is
a third basis for V provided by {|c〉}, then these complex numbers are related by means of

〈a|c〉 = ∑
b

〈a|b〉〈b|c〉. (7)

Schwinger’s action principle is based on the types of transformation properties of the
transformation functions which can be constructed from this basis set [4].

Suppose the transformation function is subjected to, as Schwinger asserted, any conceivable
infinitesimal variation. Then, by performing an arbitrary variation of (7), it follows that

δ〈a|c〉 = ∑
b

[(δ〈a|b〉)〈b|c〉+ 〈a|b〉(δ〈b|c〉)], (8)

and moreover,

δ〈a|b〉 = δ〈b|a〉
∗. (9)

Now a new operator can be defined which evaluates this actual variation when it is placed
between the relevant state vectors. Define this operator to be δW

ab
, so that it has the following

action between states

δ〈a|b〉 =
i

h̄

〈a|δW
ab
|b〉. (10)

Including the factor of h̄ gives the operator units of action. Using (10) in (8) produces,

〈a|δWac|c〉 = ∑
b

[〈a|δW
ab
|b〉〈b|c〉+ 〈a|b〉〈b|δW

bc
|c〉] = 〈a|δW

ab
+ δW

bc
|c〉, (11)

using the completeness relation (7). Now it follows from (11) that

δWac = δW
ab
+ δW

bc
. (12)
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In the case in which the a and b descriptions are identified then using δ〈a|a
′
〉 = 0, there

results

δWaa = 0. (13)

Identifying the a and c pictures in (11) gives,

δW
ba

= −δW
ab

. (14)

The complex conjugate of (10) with a and b descriptions reversed implies

−

i

h̄

〈b|δW
ba
|a〉

∗ =
i

h̄

〈a|δW
ab
|b〉. (15)

This has the equivalent form

− 〈a|δW
†
ba
|b〉 = 〈a|δW

ab
|b〉. (16)

Using (14), this yields the property

δW
†
ba

= δW
ab

. (17)

The basic properties of the transformation function and the definition (10) have produced all
of these additional properties [5,6].

In the Heisenberg picture, the basis kets become time dependent. The transformation
function relates states which are eigenstates of different complete sets of commuting
observables at different times. Instead of using different letters, different subscripts 1, 2 can
be used to denote different complete sets of commuting observables. In this event, (10) takes
the form

δ〈a
′

2, t2|a
′

1, t1〉 =
i

h̄

〈a
′

2, t2|δW21|a
′

1, t1〉. (18)

The assumption at the heart of this approach is that the operator δW21 in (18) is obtained
from the variation of a single operator W21. This is referred to as the action operator.

To adapt the results of the previous notation to the case with subscripts, we should have

W31 = W32 + W21, W11 = 0, W21 = −W12 = W
†
21. (19)

At this point, a correspondence between the Schwinger action principle and the classical
principle of stationary action can be made. Suppose the members of a complete set of
commuting observables A1 which have eigenvectors |a1, t〉 in the Heisenberg picture are
deformed in some fashion at time t1. For example, take the alteration in the observables
to correspond to a unitary transformation A → U

†
AU such that U

† = U
−1. To remain
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eigenstates of the transformed operator, it must be that states transform as |a〉 → U†
|a〉.

Thinking of the transformation as being infinitesimal in nature, the operator U can be written

U = I + i
h̄ G, where G is Hermitean. It is then possible to define a variation

δ|a1, t1〉 = −

i

h̄
G1|a1, t1〉. (20)

Here operator G is a Hermitian operator and depends only on the observables A1 at the time
t1. Similarly, if observables A2 are altered at t2, it is the case that

δ〈a2, t2| =
i

h̄
〈a2, t2|G2, (21)

and the operator G2 depends only on observables A2 at time t2. If both sets A1, A2 are
altered infinitesimally, then the change in the transformation function is given by

δ〈a2, t2|a1, t1〉 =
i

h̄
〈a2, t2|G2 − G1|a1, t1〉. (22)

Comparing this with (18), it is concluded that

δW21 = G2 − G1. (23)

If the time evolution from state |a1, t1〉 to |a2, t2〉 can be thought of as occurring continuously
in time, then W21 can be expressed as

W21 =
∫ t2

t1

L(t) dt, (24)

where L(t) is called the Lagrange operator. As a consequence of (23), it follows that if the
dynamical variables which enter L(t) are altered during an arbitrary infinitesimal change
between t1 and t2, then it must be that

δW21 = 0. (25)

The operator equations of motion are implied in this result. The usual form for the Lagrange
operator is

L(t) =
1

2
(pi ẋi + ẋi pi)− H(x, p, t). (26)

The first term has been symmetrized to give a Hermitian L(t), as the operators ẋi and pi do
not as usual commute. It is assumed the Hamiltonian H is a Hermitian operator. The action
operator (24) is used to calculate the variation δW21. In order to vary the endpoints t1, t2,

The Schwinger Action Principle and Its Applications to Quantum Mechanics
http://dx.doi.org/10.5772/53472

163
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we follow Schwinger exactly and change the variable of integration from t to τ such that
t = t(τ). This allows for the variation of the functional dependence of t to depend on τ with
the variable of integration τ held fixed. Then W21 takes the form,

W21 =
∫

τ2

τ1

dτ [
1

2
(Pi

dyi

dτ
+

dyi

dτ
Pi)− H̃(y, P, τ)

dt

dτ
], (27)

where in (27),

H̃(y, P, τ) = H(x, p, t). (28)

Thus yi(τ) = xi(t) and Pi(τ) = pi(t) when the transformation t = t(τ) is implemented.
Evaluating the infinitesimal variation of (27), it is found that

δW21 =
∫

τ2

τ1

dτ[
1

2
δPi

dyi

dτ
+

1

2
Piδ(

dyi

dτ
) +

1

2
δ(

dyi

dτ
)Pi +

1

2

dyi

dτ
δPi − δH̃

dt

dτ
− H̃δ(

dt

dτ
)]. (29)

Moving the operator δ through the derivative, this becomes

δW21 =
∫ t2

t1

dτ {

1

2
(δPi

dyi

dτ
+

dyi

dτ
δPi −

dPi

dτ
δyi

− δyi dPi

dτ
)− δH̃

dt

dτ
+

dH̃

dτ
δt

+
d

dτ
[
1

2
(Piδxi + δxiPi)− H̃δt]}. (30)

No assumptions with regard to the commutation properties of the variations with the
dynamical variables have been made yet. It may be assumed that the variations are multiples
of the identity operator, which commutes with everything. After returning to the variable t
in the integral in δW21, the result is

δW21 =
∫ t2

t1

dt(δpi ẋ
i
− ṗiδxi +

dH

dt
δt − δH) + G2 − G1. (31)

Here G1 and G2 denote the quantity

G = pi δxi
− H δt, (32)

when it is evaluated at the two endpoints t = t1 and t = t2. If we define,

δH = δxi ∂H

∂xi
+ δpi

∂H

∂pi
+ δt

∂H

∂t
, (33)
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then δW21 can be expressed in the form,

δW21 =
∫ t2

t1

dt {δpi(ẋi
−

∂H

∂pi
)− δxi( ṗi +

∂H

∂xi
) + (

dH

dt
−

∂H

∂t
)δt}+ G2 − G1. (34)

Taking the variations with endpoints fixed, it follows that G1 = G2 = 0. Consequently, the
operator equations of motion which follow from equating δW21 in (34) to zero are then

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
,

dH

dt
=

∂H

∂t
. (35)

The results produced in this way are exactly of the form of the classical Hamilton equations
of motion, and the derivatives in the first two equations of (35) are with respect to operators.

3. Commutation relations

Let B represent any observable and consider the matrix element 〈a|B|a′〉. If the variables A
are subjected to a unitary transformation A → Ā = UAU†, where U is a unitary operator,
then the eigenstates |a〉 are transformed into |ā〉 = U|a〉 having the eigenvalue a. Define the
operator B̄ to be

B̄ = UBU†. (36)

These operators have the property that

〈ā|B̄|ā′〉 = 〈a|B|a′〉. (37)

Let U now be an infinitesimal unitary transformation which can be expressed in the form

U = I −
i

h̄
Ga. (38)

In (38), Ga is a Hermitian quantity and can depend on observables A. Consequently, if δGa
is

the change produced by the canonical transformation whose generator is Ga, then

δGa
|a〉 = |ā〉 − |a〉 = −

i

h̄
Ga|a〉, (39)

and B̄ is given by

B̄ = (I −
i

h̄
Ga)B(I +

i

h̄
Ga) = B −

i

h̄
[Ga, B]. (40)
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The change in the matrix element 〈a|B|a′〉 can then be considered to be entirely due to the
change in the state vector, with B held fixed. To first order in the operator Ga, there results

δGa
〈a|B|a′〉 = 〈ā|B|ā′〉 − 〈a|B|a′〉 = 〈a|

i

h̄
[Ga, B]|a′〉. (41)

Alternatively, this can be approached by taking the change in 〈a|B|a′〉 to be due to a change
in the operator B, but with the states held fixed. Define then the change in B as δGa

B such
that

δGa
〈a|B|a′〉 = 〈a|δGa

B|a′〉. (42)

If the result obtained for the change in 〈a|B|a′〉 is not to depend on which of these approaches
is taken, by comparing (41) and (42) it is concluded that

δGa
B =

i

h̄
[Ga, B]. (43)

As an example, let the change in the operators A at times t1 and t2 be due to a change in time
t → t + δt with the xi fixed at times t1 and t2 so that the generator for this tranformation is
given by G(t) = −H(t)δt and (43) in this case is

δGa
B =

i

h̄
[B, H]δt, (44)

where B and H are evaluated at the same time. It is only the change in B resulting from
a change in operators which is considered now. Specifically, if B = B[A(t), t], then B̄ =
B[A(t + δt), t] and so

δB = −δt(
dB

dt
−

δB

δt
). (45)

Using (45) in (44), a result in agreement with the Heisenberg picture equation of motion
results,

dB

dt
=

∂B

∂t
+

i

h̄
[H, B]. (46)

The Heisenberg equation of motion has resulted by this process. If B is taken to be the
operator B = xi, then (46) becomes,

ẋi =
i

h̄
[H, xi]. (47)

If B = pi is used in (46), there results

ṗi =
i

h̄
[H, pi]. (48)
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The general equations of motion have been produced [7].

The canonical commutation relations are also a consequence of the action principle. To see
this, first fix δt at the times t1 and t2 but permit δxi to vary. Then (32) gives the generator of
this transformation

G = piδxi. (49)

Then for any operator B, equation (43) gives

δB =
i

h̄
δxi [pi, B]. (50)

Putting B = xi and B = pj respectively in (50) leads to the following pair of commutation
relations

[xi, pj] = ih̄ δ
i
j, [pi, pj] = 0. (51)

If B has a dependence on x, then δB = B[x(t)]− B[x(t)− δx(t)] implies

[pi, B] = −

i

h̄

∂

∂xi
B. (52)

In order to obtain the commutator [xi, xj], the freedom of altering the Lagrangian operator
by the addition of a total time derivative can be used. Suppose that

F =
1

2
(pix

i + xi pi), (53)

which satisfies F† = F, and consequently

δF =
1

2
(δpix

i + piδxi + δxi pi + xi
δpi) = δpix

i + piδxi. (54)

Then Ḡ is calculated to be

Ḡ = G − δF = −δpix
i
− H δt. (55)

Taking δt = 0 so that Gp can be defined as Gp = −δpi xi, it follows that

δB = −

i

h̄
δpi [x

i, B], (56)

for any operator B. Taking B = pj, the bracket [xi, pj] = ih̄δ
i
j is obtained from (56), and when

B = xj, using the independence of δxi and δpi there results the bracket
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[xi, xj] = 0. (57)

It has been shown that the set of canonical commutation relations can be obtained from this
action principle.

Consider a matrix element 〈a|F(A, B)|b〉 where A and B each represent a complete set of
mutually compatible observables and F(A, B) is some function, and it is not assumed the
observables from the two different sets commute with each other. If the commutator [B, A]
is known, it is always possible to order the operators in F(A, B) so all A terms are to the left
of B, which allows the matrix element to be evaluated. Let

F (A, B) = F(A, B) (58)

denote the operator where the commutation relation for [A, B] has been used to move all
occurrences of A in F(A, B) to the left of all B, and (58) is said to be well-ordered

〈a|F(A, B)|b〉 = F (a, b)〈a|b〉. (59)

The matrix element of F(A, B) is directly related to the transformation function 〈a|b〉.

The idea of well-ordering operators can be used in the action principle. Define

δW21 = δW21. (60)

be the well-ordered form of δW21. Then

δ〈a2, t2|a1, t1〉 =
i

h̄
δW21〈a2, t2|a1, t1〉, (61)

where δW21 denotes the replacement of all operators with their eigenvalues. Equation (61)
can be integrated to yield

〈a2, t2|a1, t1〉 = exp(
i

h̄
W21). (62)

Using (23) and (32) in the action principle,

δ〈a2, t2|a1, t1〉 =
i

h̄
δxi(t2)〈a2, t2|p(t2)|a1, t1〉 −

i

h̄
δt2〈a2, t2|H(t2)|a1, t1〉

−

i

h̄
δxi(t1)〈a2, t2|pi(t1)|a1, t1〉+

i

h̄
δt1〈a2, t2|H(t1)|a1, t1〉. (63)
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Since δW21 is well-ordered, it is possible to write

δ〈a2, t2|a1, t1〉 =
i

h̄
〈a2, t2|δW21|a1, t1〉. (64)

Comparing this with (63), it must be that

∂W21

∂xi(t2)
= pi(t2),

∂W21

∂t2
= −H(t2),

∂W21

∂xi(t1)
= −pi(t1),

∂W21

∂t1
= H(t1). (65)

If we consider a matrix element 〈x2, t2|x1, t1〉, which could be regarded as the propagator, we
then have a form of (62),

〈x2, t2|x1, t1〉 = exp(
i

h̄
W21). (66)

The arbitrary integration constant is determined by requiring that 〈x2, t2|x1, t1〉 = δ(x2, x1).
Any other transformation function can be recovered from the propagator equation

〈a2, t2|a1, t1〉 =
∫

dnx2

∫

dnx1 〈a2, t2|x2, t2〉〈x2, t2|x1, t1〉〈x1t1|a1, t1〉, (67)

which follows from the completeness relation. Another way of formulating transition
amplitudes will be seen when the path integral approach is formulated.

4. Action principle adapted to case of quantum fields

The Schwinger action principle, much like the Feynman path integral, concentrates on the
transition amplitude between two quantum states. The action principle will be formulated
here for a local field theory. Classically, a local field is a function which depends only on a
single spacetime point, rather than on an extended region of spacetime. The theory can be
quantized by replacing the classical fields φ

i(x) with field operators ϕ
i(x).

Let Σ denote a spacelike hypersurface. This means that any two points on Σ have a spacelike
separation and consequently must be causally disconnected. As a consequence of this, the
values of the field at different points of the surface Σ must be independent. If x1 and x2 are
two spacetime points of Σ, then

[ϕi(x1), ϕ
j(x2)] = 0. (68)

This follows since it must be the case that a measurement at x1 must not influence one at
x2. A fundamental assumption of local field theory is that a complete set of commuting
observables can be constructed based on the fields and their derivatives on the surface Σ.
Let τ denote such a complete set of commuting observables on Σ such that τ

′ represents the
eigenvalues of the observables. A quantum state is then denoted by

|τ
′, Σ〉. (69)
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Since causality properties are important in field theory, the surface Σ is written explicitly in
the ket. The Heisenberg picture has been adopted here. The states are then time-independent
with the time dependence located in the operators. This is necessary for manifest covariance,
since the time and space arguments of the field are not treated differently.

Suppose that Σ1 and Σ2 are two spacelike hypersurfaces such that all points of Σ2 are to
the future of Σ1. Let τ1 be a complete set of commuting observables defined on Σ1, and
τ2 a complete set of observables defined on Σ2, such that these observables have the same
eigenvalue spectrum. Then τ1 and τ2 should be related by a unitary transformation

τ2 = U12τ1U
−1
12 . (70)

The eigenstates are related by

|τ
′

2, Σ2〉 = U12|τ
′

1, Σ1〉. (71)

In (71), U12 is a unitary operator giving the evolution of the state in the spacetime between
the two spacelike hypersurfaces. The transition amplitude is defined by

〈τ
′

2, Σ2|τ
′

1, Σ1〉 = 〈τ
′

1, Σ1|U
−1
12 |τ

′

1, Σ1〉. (72)

The unitary operator U12 depends on a number of details of the quantum system, namely,
the choice made for the commuting observables τ, and the spacelike hypersurfaces Σ1 and
Σ2. A change in any of these quantities will induce a change in the transformation function
according to

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉 = 〈τ
′

1, Σ1|δU
−1
12 |τ

′

1, Σ1〉. (73)

The unitary operator U12 can be expressed in the form

U12 = exp(−
i

h̄

S12), (74)

in which S
†
12 = S12 is a Hermitian operator. Moreover, beginning with U12U

−1
12 = I and using

(74), it is found that

δU
−1
12 = −U

−1
12 δU12U

−1
12 =

i

h̄

U
−1
12 δS12. (75)

The change in the transformation function can be written in terms of the operator in (74) as

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉 =
i

h̄

〈τ
′

2, Σ2|δS12|τ
′

1, Σ1〉. (76)

Equation (76) can be regarded as a definition of δS12. In order that δS12 be consistent with
the basic requirement that

〈τ
′

2, Σ2|τ
′

1, Σ1〉
∗ = 〈τ

′

1, Σ1|τ
′

2, Σ2〉,
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it must be that δS12 is Hermitean. If Σ3 is a spacelike hypersurface, all of whose points lie to
the future of those on Σ2, the basic law for composition of probability amplitudes is

〈τ
′

3, Σ3|τ
′

1, Σ1〉 = ∑
τ′

2

〈τ
′

3, Σ3|τ
′

2, Σ2〉〈τ
′

2, Σ2|τ
′

1, Σ1〉. (77)

Varying both sides of the expression in (77),

〈τ
′

3, Σ3|δS13|τ
′

1, Σ1〉 = ∑
τ′

2

{〈τ
′

3, Σ3|δS23|τ
′

2, Σ2〉〈τ
′

2, Σ2|τ
′

1, Σ1〉+ 〈τ
′

3, Σ3|τ
′

2, Σ2〉〈τ
′

2, Σ2|δS12|τ
′

1, Σ1〉}

= 〈τ
′

3, Σ3|δS23 + δS12|τ
′

1, Σ1〉. (78)

Comparing both ends of the result in (78), it follows that

δS13 = δS23 + δS12. (79)

In the limit Σ2 → Σ1, it must be that

δS12 = 0.

In the limit in which Σ3 → Σ1, it follows that

δS21 = −δS12.

If the operators in τ1 and τ2 undergo infinitesimal, unitary transformations on the
hypersurfaces Σ1 and Σ2, respectively, and only on these two hypersurfaces, then the change
in the transformation function has the form

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉 =
i

h̄

〈τ
′

2, Σ2|F2 − F1|τ
′

1, Σ1〉. (80)

Here F1 and F2 are Hermitean operators constructed from a knowledge of the fields and their
derivatives on Σ1 and Σ2. The result (80) is of the form (76) provided that

δS12 = F2 − F1. (81)

A generator F of this type on a spacelike hypersurface Σ should be expressible in the form,

F =
∫

Σ
dσxn

µ
Fµ(x), (82)

and dσx is the area element on Σ, n
µ is the outward unit normal to Σ, and Fµ(x) may be put

together based on a knowledge of the fields on the surface Σ.
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The points of Σ are all spacelike separated, hence independent and so the result follows by
adding up all of these independent contributions. Applying (82) to Σ1 and Σ2 assuming that
Fµ(x) is defined throughout the spacetime region bounded by these two surfaces, δS12 can
be expressed as

δ12S =
∫

Σ2

dσx n
µ

Fµ(x)−
∫

Σ1

dσx n
µ

Fµ(x) =
∫

Ω12

dvx ∇
µ

Fµ(x). (83)

In (83), Ω12 is the spacetime region bounded by Σ1 and Σ2, and dvx is the invariant volume.
This assumes that the operators are changes only on Σ1 and Σ2. However, suppose the
operators are changed in the spacetime region between Σ1 and Σ2. Assume once more that
δS12 can be expressed as a volume integral as,

δS12 =
∫

Ω12

dvx δL(x) (84)

for some δL(x). Combining these two types of variation yields

δS12 = F2 − F1 +
∫

Ω12

dvx δL(x) =
∫

Ω12

dvx[δL(x) +∇
µ

Fµ(x)]. (85)

It is an important result of (85) that altering δL by the addition of the divergence of a vector
field will result in a unitary transformation of the states on Σ1 and Σ2.

To summarize, the fundamental assumption of the Schwinger action principle is that δS12

may be obtained from a variation of

S12 =
∫

Ω12

dvx L(x), (86)

where L(x) is a Lagrangian density. The density depends on the fields and their derivatives
at a single spacetime point. Since δS12 is required to be Hermitian, S12 must be Hermitian
and similarly, so must the Lagrangian density.

5. Correspondence with Feynman path integrals

Suppose a classical theory described by the action S[ϕ] is altered by coupling the field to an
external source J

i
= J

I
(x). By external it is meant that it has no dependence on the field ϕ

i,
and i stands for (I, x). For example, F,i[ϕ]σ

i is an abbreviation for

F,i[ϕ]σ
i =

∫

d
n

x
′

δF[ϕ(x)]

δϕI(x
′)

σ
i(x

′).

The idea of introducing external sources originates with Schwinger. As he states, causality
and space-time uniformity are the creative principles of source theory. Uniformity in
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space-time also has a complementary momentum-energy implication, illustrated by the
source idea [5,8]. Not only for the special balance of energy and momentum involved in
the emission or absorption of a single particle is the source defined and meaningful. Given
a sufficient excess of energy over momentum, or an excess of mass, several particles can
be emitted or absorbed. For example, consider the emission of a pair of charged particles
by an extended photon source. This process is represented as the conversion of a virtual
photon into a pair of real particles. In ordinary scattering, particle-particle scattering, the
particles persist while exchanging a space-like virtual photon. Another is an annihilation
of the particle-antiparticle pair, producing a time-like virtual photon, which quickly decays
back into particles.

Let us choose a simple scalar theory

S
J
[ϕ] = S[ϕ] +

∫

J
I
(x)ϕ

I(x) d
n

x, (87)

and try to establish a connection between the action principle introduced here and a path
integral picture [9]. The transition amplitude 〈τ

′

2, Σ2|τ
′

1, Σ1〉 discussed in the previous section
may be regarded as a functional of the source term J

I
(x). This will be denoted explicitly by

writing 〈τ
′

2, Σ2|τ
′

1, Σ1〉J
. If the Schwinger action principle is applied to this modified theory

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉J
=

i

h̄

〈τ
′

2, Σ2|δS
J
|τ

′

1, Σ1〉J
. (88)

The classical field ϕ
I(x) has been replaced by the operator φ

I(x). Moreover, in addition to
its previous meaning, δ now includes a possible change in the source. By considering the
variation to be with respect to the dynamical variables which are held fixed on Σ1 and Σ2,
the operator field equations are obtained as

δS[φ]

δφI(x)
+ J

I
(x) = 0. (89)

Assume that the variation in (88) is one in which the dynamical variables are held fixed and
only the source is altered. Since the source enters in the simple way given in (87),

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉 =
i

h̄

∫

δJ
I
(x)〈τ′

2, Σ2|φ
I(x)|τ′

1, Σ1〉J
d

n
x. (90)

The result in (90) may be rewritten in the equivariant form,

δ〈τ
′

2, Σ2|τ
′

1, Σ1〉

δJ
i
(x)

=
i

h̄

〈τ
′

2, Σ2|φ
i(x)|τ′

1, Σ1〉[J]. (91)

To simplify this, it can be written in the alternate form,

δ〈2|1〉

δJ
i

=
i

h̄

〈2|φi
|1〉[J]. (92)
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An abbreviated notation for the initial and final state has been introduced. This result can be
varied with respect to the source which gives

δ
δ〈2|1〉[J]

δJi
=

i

h̄
δ〈2|φi

|1〉[J]. (93)

To evaluate (93), a spatial hypersurface Σ′ is introduced which resides to the future of Σ1

and the past of Σ2 and contains the spacetime point on which the φ
i(x) depend. Any source

variation can be represented as the sum of a variation which vanishes to the future of Σ′, but
is non-zero to the past, and one which vanishes to the past of Σ′ but is nonzero to the future.
Consider the case where δJi vanishes to the future. In this event, any amplitude of the form
〈2|φi

|τ
′
〉[J], where |τ

′
〉 represents a state on Σ′, can not be affected by the variation of the

source since δJi will vanish to the future of Σ′. By using the completeness relation

〈2|φi
|1〉[J] = ∑

τ′

〈2|φi
|τ

′
〉〈τ

′
|1〉[J],

it follows that the right-hand side of (93) may be reexpressed with the use of

δ〈2|φi
|1〉[J] = ∑

τ′

〈2|φi
|τ

′
〉δ〈τ

′
|1〉[J]. (94)

The Schwinger action principle then implies that

δ〈τ
′
|1〉[J] =

i

h̄
δJk〈τ

′
|φ

k
|1〉[J]. (95)

Substituting (95) into (94) leads to the conclusion that

δ〈2|φi
|1〉[J] =

i

h̄
δJj ∑

τ′

〈2|φi
|τ

′
〉〈τ

′
|φ

j
|1〉[J] =

i

h̄
δJj 〈2|φ

i
φ

j
|1〉[J]. (96)

Since it can be said that δJj vanishes to the future of Σ′, which contains the spacetime point

of φ
i, the spacetime point of φ

j must lie to the past of the former.

Consider the case in which δJj vanishes to the past of Σ′. A similar argument yields the same

conclusion as (96), but with φ
j to the left of φ

i. Combining this set of results produces the
following conclusion

δ〈2|φi
|1〉

δJj
=

i

h̄
〈2|T(φi

φ
j)|1〉[J]. (97)

In (97), T is the chronological, or time, ordering operator, which orders any product of fields
in the sequence of increasing time, with those furthest to the past to the very right.
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Differentiating (91) and using the result (97), we get

δ
2
〈2|1〉[J]

δJiδJj
= (

i

h̄
)〈2|T(φi

φ
j)|1〉[J]. (98)

This can be generalized, and omitting details,

δ
n
〈2|1〉[J]

δJi1
· · · δJin

= (
i

h̄
)n
〈2|T(φi1

· · · φ
in )|1〉[J]. (99)

The amplitude 〈2|1〉[J] may be defined by a Taylor expansion about Ji = 0, so using the
previous result

〈2|1〉[J] =
∞

∑
n=0

1

n!
(

i

h̄
)n Ji1

· · · Jin
〈2|T(φi1

· · · φ
in )|1〉[J = 0]. (100)

The series may be formally summed to yield

〈2|1〉[J] = 〈2|T(exp(
i

h̄
Jiφ

i))|1〉[J = 0] (101)

and Ji is set to zero everywhere on the right-hand side except in the exponential.

The action S[φ] can be expanded in a Taylor series about φ
i = 0, indicating differentiation

with a comma,

S[φ] =
∞

∑
n=0

1

n!
S,i1···in

[φ = 0]φi1
· · · φ

in . (102)

Similarly, the derivative of S with respect to the field has the expansion [7],

S,i[φ] =
∞

∑
n=0

1

n!
S,ii1···in

[φ = 0]φi1
· · · φ

in . (103)

If φ
i is replaced by h̄

i
δ

δJi
in this expression and then operate on 〈2|1〉[J] with S,i[

h̄
i

δ

δJi
], and use

(102), the following differential equation arises

S,i[
h̄

i

δ

δJi
]〈2|1〉[J] = 〈2|T(S,i[φ] exp(

i

h̄
Jiφ

i))|1〉[J = 0]. (104)

The operator equation of motion (89) implies

S,i[
h̄

i

δ

δJi
]〈2|1〉[J] = −Ji〈2|1〉[J]. (105)
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This results in a differential equation for the transition amplitude. In order to solve equation
(105), the functional analogue of a Fourier transform may be used

〈2|1〉 =
∫

(∏
I

dϕ
I(x))F[ϕ] exp(

i

h̄

∫

J
I
(x

′)ϕ
I(x

′) d
n

x
′). (106)

The integration in (106) extends over all fields which correspond to the choice of states
described by |1〉 and |2〉. The functional F[ϕ] which is to be thought of as the Fourier
transform of the transformation function, is to be determined by requiring (106) satisfy (105)

0 =
∫

(∏
I,x

dϕ
I(x)){S,i[ϕ] + J

i
}F[ϕ] exp(

i

h̄

∫

J
I
(x

′)ϕ
I(x

′) d
n

x
′)

=
∫

(∏
I

dϕ
I(x)){S,i[ϕ]F[ϕ] +

h̄

i

F[ϕ]
δ

δϕi
} exp(

i

h̄

∫

J
I
(x

′)ϕ
I(x

′) d
n

x
′).

Upon carrying out an integration by parts on the second term here

0 =
∫

(∏
i

dϕ
i){S,i[ϕ]F[ϕ]−

h̄

i

F,i[ϕ]} exp(
i

h̄

∫

J
I
(x

′)ϕ
I(x

′) d
n

x
′)

+
h̄

i

F[ϕ] exp(
i

h̄

∫

J
I
(x

′)ϕ
I(x

′) d
n

x
′)|

ϕ2
ϕ1

. (107)

Assuming the surface term at the end vanishes, it follows from (107) that

F[ϕ] = N exp(
i

h̄

S[ϕ]), (108)

where N is any field-independent constant. The condition for the surface term to vanish
is that the action S[ϕ] be the same on both surfaces Σ1 and Σ2. This condition is usually
fulfilled in field theory by assuming that the fields are in the vacuum state on the initial and
final hypersurface.

The transformation function can then be summarized as

〈2|1〉[J] = N

∫

(∏
i

dϕ
i) exp(

i

h̄

{S[ϕ] + J
i
ϕ

i
}). (109)

This is one form of the Feynman path integral, or functional integral, which represents
the transformation function. This technique turns out to be very effective with further
modifications applied to the quantization of gauge theories. These theories have been
particularly successful in understanding the weak and strong interactions [10].
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6. QED - A physical example and summary

A given elementary interaction implies a system of coupled field equations. Thus for the
photon and the charged spin 1/2 particle as in quantum electrodynamics [5],

[γ(−i∂ − eqA(x)) + m]ψ(x) = η
A(x),

− ∂
2 Aµ(x) + ∂

µ
∂A(x) = Jµ(x) +

1

2
ψ(x)γ0

γ
µeqψ(x)−

∫

dx′ f µ(x − x′)ψ(x′)γ0ieqη
A(x′).

(110)
Since this is a nonlinear system, the construction of the fields in terms of the sources will be
given by doubly infinite power series. The succesive terms of this series Wnν with n paricles
and ν photon sources represent increasingly complicated physical processes. One of the
simplest terms in the interaction skeleton will be discussed below to the point of obtaining
experimental consequences.

There are two asymmetrical ways to eliminate the fields. First, introduce the formal solution
of the particle field equation

ψ
A(x) =

∫

dx′GA
+(x, x′)ηA(x),

and GA
+(x, x′) is the Green function

[γ(−i∂ − eqA(x)) + m]GA
+(x, x′) = δ(x − x′).

This gives the partial action

W =
∫

dx[Jµ Aµ −

1

4
FµνFµν] +

1

2

∫

dxdx′ η
A(x)γ0GA

+(x, x′)ηA(x′).

The stationarity requirement on variations of Aµ recovers the Maxwell equation above. If we
eliminate the vector potential

A
f
µ(x) =

∫

dx′D+(x − x′)[Jµ(x) + j
µ

cons] + ∂µλ(x).

j
µ

cons(x) = jµ(x)−
∫

dx′ f µ(x − x′)∂′ν(x′),

and the gauge condition determines λ(x).

Finally, the first few successive W2ν are written out, noting each particle source is multiplied
by a propagation function G+(x, x′) to form the field ψ,

W21 =
1

2

∫

d4xψ(x)γ0eqγA(x)ψ(2),
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W22 =
1

2

∫

dxdx′ψ(x)γ0eqγA(x)G+(x − x′)eqγA(x′)ψ(x′).

As a brief introduction to how this formalism can lead to important physical results, let
us look at a specific term like W21, the interaction energy of an electron with a static
electromagnetic field Aext

µ

E =
∫

d3x jµ A
µ

ext = e
∫

d3xψ̄p′ (γµ + ΓR
µ (p′, p) +

i

4π
ΠR

µνiDνσ
γσ)ψp A

µ

ext. (111)

These terms include the bare electron-photon term, the electron-photon correction terms and
then the photon vacuum-polarization correction term, R means a renormalized quantity and
γµ denote Dirac matrices. The self-energy correction is left out, because for free particles,

it contributes only to charge and mass renormalization. The polarization tensor Πµν(q2) is
given by

Πµν(q
2) = (q2gµν − qµqν)Π(q2), (112)

where Π(q2) is the polarization function. A simple result is obtained in the limit of low
momentum transfer, q2

→ 0, which is also of special physical significance and the case of
interest here. The renormalized polarization function is

ΠR(q2) = −

e2

π

q2

m2
(

1

15
+

1

140

q2

m2
+ · · · ). (113)

The regularized vertex function is

ΓR
µ (p′, p) = γµF1(q

2) +
i

2m
σµνqνF2(q

2). (114)

The functions F1(q
2) and F2(q

2) are called form factors. The electron gets an apparent internal
structure by the interaction with the virtual radiation field which alters it from a pure Dirac
particle. In the limit, q2

→ 0, these functions can be calculated to be

F1(q
2) =

α

3π

q2

m2
(ln(

m

µ
)−

3

8
), F2(q

2) =
α

2π
. (115)

Substituting all of these factors and D
µν

F (q2) = −4πgµν/q2 into (111) yields for small values

of q2,

E = e
∫

d3x ψ̄p′ {γµ[1 +
α

3π

q2

m2
(ln(

m

µ
)−

3

8
−

1

5
) +

α

2π

i

2m
σµνqν

}ψp A
µ

ext. (116)

Note µ appears in (115) as an elementary attempt to regularize a photon propagator in one
of the terms and does not interfere further with the application at this level and α is the fine
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structure constant. The Gordon decomposition allows this to be written

E = e
∫

d3xψ̄p′{
1

2m
(p + p′)µ[1 +

α

3π

q2

m2
(ln(

m

µ
)−

3

8
−

1

5
)] + (1 +

α

2π
)

i

2m
σµνqν

}ψp A
µ

ext.

(117)
The momentum factors can be transformed into gradients in configuration space, thus qµ →

i∂µ acts on the photon field and p′µ = −i
←−

∂ µ pµ = i∂µ act on the spinor field to the left and
right respectively. Then (117) becomes

E = e
∫

d3x{
i

2m
ψ̄p′ (x)(∂µ −

←−

∂ )ψp[1−
α

3π

1

m2
(ln(

m

µ
)−

3

8
−

1

5
)]A

µ

ext

− (1 +
α

2π
)

1

2m
ψ̄p(x)σµνψp(x)∂ν A

µ

ext}. (118)

The first term contains the convection current of the electron which interacts with the
potential. In the special case of a purely magnetic field the second part can be identified as the
dipole energy. By introducing the electromagnetic field strength tensor Fµν = ∂

µ Aν
− ∂

ν Aµ

and using the antisymmetry of σµν = i
2 [γµ, γν], the second part is

Wmag = e(1 +
α

2π
)

1

4m

∫

d3xψ̄(x)σµνψ(x)Fµν. (119)

When Fµν represents a pure magnetic field, F12 = −B3, σ12 = Σ3 with cyclic permutations
and the interaction energy becomes

Wmag = −
e

4m
(1 +

α

2π
)2

∫

d3x ψ̄(x)~Σψ(x) · ~B = −〈~µ〉 · ~B. (120)

The magnetic moment is given by

〈~µ〉 =
eh̄

2mc
(1 +

α

2π
)2〈~S〉 = gµB〈

~S〉. (121)

The magnetic moment is thus proportional to the spin expectation value of the electron. The
proportionality factor is the so called g-factor

g = 2(1 +
α

2π
) = 2(1 + 0.00116141). (122)

The first point to note is that the value of the g-factor obtained including quantum mechanics
differs from the classical value of 2. The result in (122) was first calculated by Schwinger and
it has been measured to remarkable accuracy many times. A modern experimental value for
the g-factor is

gexp = 2(1 + 0.001159652193), (123)
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and only the last digit is uncertain.

Of course Schwinger’s calculation has been carried out to much further accuracy and is
the subject of continuing work. At around order α

4, further corrections must be included,
such as such effects as virtual hadron creation. The pure-QED contributions are represented
by coefficients Ci as a power series in powers of α/π, which acts as a natural expansion
parameter for the calculation

gtheo = 2[1 + C1(
α

π
) + C2(

α

π
)2 + C3(

α

π
)3 + · · · ]. (124)

Not all of the assumptions made in classical physics apply in quantum physics. In particular,
the assumption that it is possible, at least in principle to perform a measurement on a given
system in a way in which the interaction between the measured and measuring device can
be made as small as desired. In the absence of concepts which follow from observation,
principles such as the action principle discussed here are extremely important in providing
a direction in which to proceed to formulate a picture of reality which is valid at the
microscopic level, given that many assumptions at the normal level of perception no longer
apply. These ideas such as the action principle touched on here have led to wide ranging
conclusions about the quantum world and resulted in a way to produce useful tools for
calculation and results such as transition amplitudes, interaction energies and the result
concerning the g factor given here.
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Chapter 9

Generalized Path Integral Technique: Nanoparticles
Incident on a Slit Grating, Matter Wave Interference

Valeriy I. Sbitnev

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53471

1. Introduction

One of the crises of contemporary mathematics belongs in part to the subject of the infinite
and infinitesimals [1]. It originates from the barest necessity to develop a rigorous language
for description of observable physical phenomena. It was a time when foundations of inte‐
gral and differential calculi were developed. A theoretical foundation for facilitation of un‐
derstanding of classical mechanics is provided by the concepts of absolute time and space
originally formulated by Sir Isaac Newton [2]. Space is distinct from body. And time passes
uniformly without regard to whether anything happens in the world. For this reason New‐
ton spoke of absolute space and absolute time as of a "container" for all possible objects and
events. The space-time container is absolutely empty until prescribed metric and a reference
frame are introduced. Infinitesimals are main tools of differential calculus [3, 4] within chos‐
en reference frames.

Infinitesimal increment being a cornerstone of theoretical physics has one receptee default
belief, that increment δV tending to zero contains a lot of events to be under consideration.
Probability of detection of a particle within this infinitesimal volume ρ(r→ )δV  is adopted as a
smooth differentiable function with respect to its argument. From experience we know that
for reproducing the probability one needs to accumulate enormous amount of events occur‐
ring within this volume. On the other hand we know, that as δV tends to zero we lose infor‐
mation about amount of the events. What is more, the information becomes uncertain. It
means the infinitesimal increment being applied in physics faces with a conflict of depth of
understanding physical processes on such minuscule scales. This trouble is avoided in quan‐
tum mechanics by proclamation that infinitesimal increments are operators, whereas ob‐
servables are averaged on an ensemble.

© 2013 Sbitnev; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In light of classical views Newton maintained the theory that light was made up of tiny par‐
ticles, corpuscles. They spread through space in accordance with law of classical mechanics.
Christian Huygens (a contemporary of Newton), believed that light was made up of waves
vibrating up and down perpendicularly to direction of the light propagation. It comes into
contradiction with Newtonian idea about corpuscular nature of light. Huygens was a pro‐
claimer of wave mechanics as opposite to classical mechanics [5].

We abstain from allusion to physical vacuum but expand Huygensian idea to its logical
completion. Let us imagine that all Newtonian absolute space is not empty but is populated
everywhere densely by Huygensian vibrators. The vibrators are silent at absence of wave
propagating through. But as soon as a wave front reaches some surface all vibrators on this
surface begin to radiate at a frequency resonant with that of incident wave. From here it fol‐
lows, that in each point of the space there are vibrators with different frequencies ranging
from zero frequency up to infinite. All are silent in absence of an external wave perturbance.
Thus, the infinitesimal volume δV is populated by infinite amount of the vibrators with fre‐
quencies ranging from zero to infinity. They are virtual vibrators facilitating propagation of
waves through space.

Let us return to our days. One believes that besides matter and physical fields there is noth‐
ing more in the universe. Elementary particles are only a building material of "eternal and
indestructible" substance of the cosmos. However we should avow that all observed matter
and physical fields, are not the basis of the world, but they are only a small part of the total
quantum reality. Physical vacuum in this picture constitutes a basic part of this reality. In
particular, modern conception of the physical vacuum covers Huygens's idea perfectly. All
space is fully populated by virtual particle-antiparticle pairs situated on a ground level.
Such a particle-antiparticle pair has zero mass, zero charge, and zero magnetic moment. Fa‐
mous Dirac’ sea (Dirac postulated that the entire universe is entirely filled by particles with
negative energy) is boundless space of electron-positron pairs populated everywhere dense‐
ly - each quantum state possessing a positive energy is accompanied by a corresponding
state with negative energy. Electron has positive mass and positron has the same mass but
negative; electron has negative charge and positron has the same positive charge; when elec‐
tron and positron dance in pair theirs magnetic moments have opposite orientations, so
magnetic moment of the pair is zero.

Let electron and positron of a virtual pair rotate about mass center of this pair. Rotation of
the pairs happens on a Bohr orbit. Energy level of the first Bohr orbit, for example, mv 2/2, is
about 14 eV. Here m is electron mass and v is its velocity (on the first Bohr orbit the velocity
is about 2.188 106 m/s). Energy of the pair remains zero since positron has the same energy
but with negative sign. Quantum fluctuations around this zero energy are as zero oscilla‐
tions of electromagnetic field. Observe that, energy releasing of electron and positron from
vacuum occurs at mc2 = 1.022 MeV. So we see that there are about 7.5 104 Bohr orbits lying
below this energy. That is, there is a vast scope for occupation of different Bohr orbits by the
virtual electron-positron pairs.

A short outline given above is a basis for understanding of interference effects to be descri‐
bed below.
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Ones suppose that random fluctuations of electron-positron pairs take place always. What is
more, these fluctuations are induced by other pairs and by particles traveling through this
random conglomerate. Edward Nelson has described mathematical models [6, 7] represent‐
ing the above random fluctuations as Brownian motions of particles that are subjected by
random impacts from particles populating aether (Nelson's title of a lower environment).
The model is viewed as a Markov process

( ) ( ( ), ) ( )dx t b x t t dt dw t= + (1)

loaded by a Wiener term w with diffusion coefficient equal to ћ/2m, where m is a mass of the
particle and ћ is the reduced Planck constant. In this perspective Nelson has considered two
Markov processes complementary to each other. One is described by forward-difference op‐
erator in the time, here b(x(t),t) is a velocity calculated forward. And other equation is de‐
scribed by backward-difference operator in the time with the velocity b†(x(t),t) calculated
backward. In general b(x(t),t) ≠ b†(x(t),t) [6, 7]. The two complementary processes, by means
of transition to two new variables, real and imaginary, finally lead to emergence of the
Schrödinger equation.

Nelson' vision that aether fluctuations look as Brownian movements of subparticles with ћ/2m
being the diffusion coefficient of the movements, correlates with Feynman's ideas about quan‐
tum fluctuations of virtual particles in vacuum [8]. The Feynman path integral is akin to the
Einstein-Smoluchowski integral equation [9]. The latter computes transition probability densi‐
ty. We shall deal with the modified Feynman path integral loaded by a temperature multi‐
plied by the Boltzmann constant.  At that,  probability amplitude stays as  a  fundamental
mathematical object at all stages of computations. As an example we shall consider emergence
of interference patterns at scattering heavy particles on gratings. The particles are heavy in the
sense that they adjoin to both realms, quantum and classical. They are nanoparticles. Such
nanoparticles have masses about 100 amu and more, as, for example, fullerene molecules [10]
shown in Fig. 1. It is remarkable that there are many experiments with such molecules show‐
ing interference patterns in the near field [11-18]. On the other hand these molecules are so
large, that they behave themselves as classical particles at ordinary conditions.

Figure 1. The fullerene molecule C60 consists of 60 carbon atoms. Its radius is about 700 pm. De Broglie wavelength of
the molecule, λdB, is about 5 pm at a flight velocity v =100 m/s [18]. The molecules are prepared in a thermal emission
gun which has temperature about 1000 K. It means that carbon atoms accomplish thermal fluctuations.
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The article consists of five sections. Sec. 2 introduces a general conception of the path inte‐
gral that describes transitions along paths both of classical and quantum particles. Here we
fulfill expansions in the Taylor series of terms presented in the path integral. Depending on
type of presented parameters we disclose either the Schrödinger equation or diffusion-drift
equation containing extra term, osmotic diffusion. In the end of the section we compute
passing nanoparticles through N-slit grating. Sec. 3 deals with interference patterns from the
N-slit grating. Specifically, we study blurring of the Talbot carpet (an interference pattern
emergent under special conditions imposed on the grating [19, 20]) arising under decoher‐
ence of incident on the grating nanoparticles. In Sec. 4 we find equations for computing the
Bohmian trajectories. Also we compute variance of momenta along the trajectories. These
computations lead to emergence of the uncertainty conditions. In concluding Sec. 5 we sum‐
marize results. For confirmation of existence of the Bohmian trajectories here we mention in‐
terference experiments with single silicon oil droplet [21].

2. Generalized path integral

Let many classical particles occupy a volume V and they move with different velocities in
different directions. Let us imagine that there is a predominant orientation along which en‐
semble of the particles drifts. As a rule, one chooses a small volume δV in order to evaluate
such a drift, Fig. 2. Learning of statistical mechanics begins with assumption that the volume
should contain many particles.

Figure 2. Infinitesimal volume δV contains many particles moving with different velocities having predominant orien‐
tation along blue arrow. The infinitesimal volume δV, as a mental image, is shifted along the same orientation.

The problem is to find transition probabilities that describe transition of the particle ensemble
from one statistical state to another. These transient probabilities can be found through solu‐
tion of the integral Einstein-Smoluchowski equation [9]. This equation in mathematical phys‐
ics is known as Chapman-Kolmogorov [22-24] equation.. This equation looks as follows
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( ) ( ) ( )2 1 2 1, ; , ; , , ; .p r r t p r r t t p r r t dVdt dt+ = +ò
r r r r r r

R
(2)

This equation describes a Markovian process without memory. That is, only previous state
bears information for the next state. Integration here is fulfilled over all a working scene R,
encompassing finite space volume. Infinitesimal volume δV in the integral tends to zero. It
should be noted, however, that this volume should contain as many particles as possible for
getting a satisfactory statistical pattern. One can see that this claim enters in conflict with the
assumption δV → 0.

Next we shall slightly modify approach to this problem. Essential difference from the classi‐
cal probability theory is that instead of the probabilities we shall deal with probability am‐
plitudes. The transition amplitudes can contain also imaginary terms. They bear information
about phase shifts accumulated along paths. In that way, a transition from an initial state q→ 0

to a final state q→ 1 through all intermediate positions q→ x given on a manifold R3 (see Fig. 2) is
represented by the following path integral

3
1 0 1 0( , ; ) ( , ; , ) ( , ; ) .x x xq q t t K q q t t t q q t qy d d y+ = +ò
r r r r r r

R

D (3)

Here function ψ(...) is a probability amplitude. Probability density p(...), in turn, is represent‐
ed by square of modulo of the probability amplitude, namely, p(...)=|ψ(...)|2. Integral kernel
K (q→ 1, q→ x; t + δt , t) represents the transition amplitude from an intermediate state q→ x to a final
state q→ 1. It is called propagator [8, 25, 26]. We suppose that the propagator has the following
standard form

1
( , )1( , ; , ) exp ,x x

x
L q q t

K q q t t t
A

d
d

ì üï ï+ = -í ý
Gï ïî þ

r r&r r
(4)

where denominator Γ under exponent is a complex-valued quantity, i.e., Γ = β+iћ. The both
parameters, β and the reduced Planck constant ћ, have dimensionality of energy multiplied
by time. From here it follows that β = 2kBTδt. Here kB is Boltzmann constant and T is temper‐
ature. So, we can write

B2 .k T tdG = + ih (5)

Factor 2 at the first term is conditioned by the fact that the kernel K relates to transitions of
the probability amplitude ψ, not the probability p. Observe that a fullerene molecular beam
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for interference experiment prepared in a Knudsen cell at T=1070 K [27] spreads further in a
vacuum. That is, fullerene molecules keep this temperature. From here it follows, that ther‐
mal fluctuations of carbon atoms from equilibrium occur at that temperature as the fullerene
molecules propagate further within the vacuum chamber. One can see that at T=1000 K the
term 2kBTδt may be about ћ if δt is about 10-14 s.

Next let us imagine that particles pass through a path length one by one. That is, they do not
collide with each other along the path length. The particles are complex objects, however.
They are nanoparticles. Fullerene molecule, for example, contains 60 carbon atoms, Fig. 1.
Conditionally we can think that the atoms are connected with each other by springs simulat‐
ing elastic vibrations. In this view the Lagrangian L (q→ x, q→̇ x) can be written in the following
form

2
1, ,

,2
1

( ))
( , ) ( ) .

2

N
k x k

x x x k
k

q qmL q q U q
td=

é ù-
ê ú= -
ê úë û

å
r r

r r r& (6)

Here N is amount of atoms, constituent complex molecule, and m is mass of a single atom.
By supposing that there are no quantum permutations between atoms we may expand the
Lagrangian further

2
1, 1 1 ,

,2
1 1

22
1, , 1, ,1 1

,2 2
1 1 1

( )
( , ) ( )

2
( ) ( )( ) ( ) 1 ( ) .

2 2

N N
k x k x x

x x x k
k k

N N N
k x k k x kN x x

N x k
k k k

q q q q q qmL q q U q
t

m q q q q mm U q
t N tt t

d
d d d d

d dd d

= =

= = =

- + - + -
= -

- -- -
= - + -

å å

å å å

r r r r r r
r r r&

r r r rr r r r
r

(7)

Here we admit that q→ x and q→ 1 are coordinates of center of mass of that complex molecule in
intermediate and final positions. And mN = Nm is a mass of the molecule referred to its cen‐
ter of mass. Small deviations δ→ 1,k =(q→ 1−q→ 1,k ) and δ→ x ,k =(q→ x −q→ x ,k ) are due to oscillations of the
kth atoms with respect to the center of mass.

Let us consider the second row in Eq. (7). First of all we note that the term (q→ 1−q→ x) / δt  repre‐
sents a velocity of movement of the center of mass. In such a case the first term is a kinetic
energy of the center of mass. The second term represents product of the center mass velocity
on an averaged velocity of partial oscillations of atoms constituting this molecule. The aver‐
aged velocity we believe vanishes because of conservation of total momentum. The third
term represents a thermal kinetic energy of partial oscillating atoms constituting this molec‐
ular object. This energy is small enough. But it is sufficient to exhibit itself in the Casimir
effect. The last term is a total potential energy U (q→ x)in the point q→ x.
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The path integral (3) contains functions depending only on coordinates q→ 0, q
→

1, q
→

xrelating to
positions of the center of mass. Whereas the Lagrangian (6) gives description for behavior of
each atom constituent the complex molecule. Here we shall suppose that oscillations of all
atoms are noncoherent. And consequently they do not give contribution to interference ef‐
fect on output. We believe that these oscillations provide a thermal noise. And next we shall
replace this oscillating background by a corresponding thermal term. For this reason, we be‐
lieve that along with the reduced Planck constant ћ the parameter 2kBTδt in Eq. (5) can be
different from zero as well.

2.1. Expansion of the path integral

The next step is to expand terms, ingoing into the integral (3), into Taylor series. The wave
function written on the left is expanded up to the first term

1 0 1 0( , ; ) ( , ; ) .q q t t q q t t
t
yy d y d¶

+ » +
¶

r r r r
(8)

As for the terms under the integral, here we preliminarily make some transformations. We
define a small increment

3 3
1 .x xq q qx x= - Þ = -

r r r
D D (9)

The Lagrangian (7) is rewritten, in such a case, in the following view

22
1, , 1, ,

2 2
1 1

( ) ( )1( , ) ( )
2 2

N N
k x k k x kN

x x N x
k k

m mL q q m q
t N tt t

d d d dx x
d dd d= =

- -
= - + -å å

r r r r
r r r& U (10)

Here U (q→ x)is sum of all potentials U (q→ x ,k ) given in the center of mass. Further we shall deal
with the path integral (3) where the kernel K contains the Lagrangian given from Eq. (10).
The under integral function ψ(q→ x, q→ 0; t)=ψ(q→ 1−ξ→ , q→ 0; t)is subjected to expansion into the Tay‐
lor series up to the second terms of the expansion

( ) 2 2
1 0 1 0( , ; ) ( , ; ) , 2q q t q q ty x y y x y x- » - Ñ +Ñ ×
r rr r r r

(11)

The potential energy U (q→ x)=U (q→ 1−ξ→ ) is subjected to expansion into the Taylor series by the
small parameter ξ→ also. Here we restrict themselves by the first two terms of the expansion,
U (q→ 1)− (∇U (q→ 1), ξ→ ).

Taking into account the expressions (8)-(11) and substituting theirs into Eq. (3) we get
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3

22
1, , 1, ,

1 0 2
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2 2 3
1 1 1 0

( ) ( )1 1( , ; ) exp
2 2

( ) ( ( ), ) ( , ; ) , 2

N N
k x k k x kN N
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a b

m m mq q t t t
t A t N t t

q q t q q t

d d d dy xy d x d
d d d

x d y y x y x
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r r

144424443 144424443

r rr r r r

R

U U D .x

(12)

First, we consider terms enveloped by braces (a) and (b): (a) here displacement (δ→ 1,k −δ→ x ,k )
divided by δt is a velocity v→ k  of kth atom at its deviation from a steady position relative to
the center of mass. Summation through all deviations of atoms divided by N gives averaged
velocity, v→ , of all atoms with respect to the center of mass. This averaged velocity, as we
mentioned above, vanishes. The velocity can be nonzero only in a case when external forces
push coherently all atoms. This case we do not consider here. (b) this term is a thermal kinet‐
ic energy, TN, of the atoms oscillating about the center of mass. Observe that energy of ther‐
mal fluctuations, TN, is proportional to kBT. Because of its presence in the propagator
intensity of an interference pattern diminishes in general. Further we shall add this term in‐
to the potential energy as some constant component.

In the light of the above observation we rewrite Eq. (12) as follows

{ { ( )

( )( )
3

2

1 0 1 1
( ) ( )

2 2 3
1 0

1( , ; ) exp 1 ( ) ( ( ), )
2

( , ; ) , 2 .

N
N N
a b

m t tq q t t m v T q q
t A t

q q t

y x x d dy d x
d

y y x y x x

æ öì ü¶ ï ïç ÷+ = - - + + + - Ñí ýç ÷¶ G G G Gç ÷ï ïî þè ø

´ - Ñ +Ñ ×

ò
r rr r r r r

rr r
R

U U

D

(13)

Here we have expanded preliminarily exponents to the Taylor series up to the first term of
the expansion. Exception relates to the term exp{ -mN ξ 2/2Γδt} which remains in its original
form. This exponent integrated over all space R 3 results in

3

3 2 3 22
3 2 21 1exp 1 .

2
N

N N

m t tA
A t A m m

p d p dx x
d

ì ü æ ö æ öG Gï ï- - = - = Þ = -ç ÷ ç ÷í ý ç ÷ ç ÷Gï ï è ø è øî þ
ò

R

D (14)

To derive outcomes of integration of terms containing factors (∇ψ, ξ→ ) and ∇2 ψ ⋅ξ 2 / 2 we
mention the following integrals [8]

3 3

2 2
3 2 31 1exp 0 and exp

2 2
N N

N

m m
t

A t A t m
x xx x x x d
d d
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Advances in Quantum Mechanics190



In the light of this observation let us now solve integral (13) accurate to terms containing δt
not higher the first order:

( )2
1 0 1 0 1

1( , ; ) ( , ; ) ( ) .
2 N

N
q q t t q q t t q T t

t m
yy d y y d y d¶ G

+ = + Ñ + -
¶ G

r r r r r
U (16)

We note that the term (v→ , ∇ψ) here is absent since we consider v→ =0, as was mentioned
above. By reducing from the both sides the function ψ(q→ 1, q→ 0; t) we come to the following dif‐
ferential equation

( )21 0
1 0 1 1 0

( , ; ) 1( , ; ) ( ) ( , ; ).
2 N

N

q q t
q q t q T q q t

t m
y

y y
¶ G

= Ñ + -
¶ G

r r
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U (17)

The parameter

B2
2 2 2N N N

k T t
m m m

dG
= + i h

(18)

is seen to be as a complex-valued diffusion coefficient consisting of real and imaginary
parts.

2.1.1. Temperature is zero

Let kBTδt = 0. It means that Γ = iћ. Also TN = 0. One can see that Eq. (17) is reduced to

2
1 0

1 0 1 1 0
( , ; )

( , ; ) ( ) ( , ; ).
2 N

q q t
q q t q q q t

t m
y

y y
¶

= - D +
¶

i
r r

r r r r rhh U (19)

It is the Schrödinger equation.

2.1.2. Temperature is not zero

Let kBTδt >> ћ. We can suppose that Γ = kBTδt. Eq. (17) takes a form

( )11 0
1 0 1 0

( )( , ; )
( , ; ) ( , ; ).

2
N

N

q Tq q t
D q q t q q t

t m D
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y y
-¶
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(20)

Here
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B

N

k T t
D

m
d

= (21)

is the diffusion coefficient. The coefficient has dimensionality of [length2 time-1]. It is a factor
of proportionality representing amount of substance diffusing across a unit area in a unit
time - concentration gradient in unit time.

We can see that Eq. (20) deals with the amplitude function ψ, not a concentration. However,
a measurable function is ρ=|ψ|2 - concentration having dimensionality of [(amount of sub‐
stance) length-3]. Let us multiply Eq. (20) from the left by 2ψ. First we note that the combina‐
tion 2ψ Δψ =2ψ∇ψ −1ψ∇ψ =2(ψ∇ψ −1)(ψ∇ψ) + 2∇ (ψ∇ψ) results in
− (1 / 2)(∇ ln(ρ)⋅∇ρ) + Δρ. As a result we come to a diffusion-drift equation describing dif‐
fusion in a space loaded by a potential field (U (q→ 1)−TN ):

( ) 1( ( ) )
ln( ),

2 2
N

N

q TD D
t m D
r r r r r

-¶
+ Ñ Ñ = D +

¶

r
U

(22)

Extra term (D / 2)∇ ln(ρ) in this diffusion-drift equation is a velocity of outflow of the particles
from volume populated by much more number of particles than in adjacent volume. The term
− ln(ρ) is entropy of a particle ensemble. From here it follows that ∇ ln(ρ) describes inflow of
the particles to a region where the entropy is small. Observe that the velocity

ln( )u D Dr r
r
Ñ

= = Ñ
r

(23)

is an osmotic velocity required of the particle to counteract osmotic effects [6]. Namely,
imagine a suspension of many Brownian particles within a physical volume acted on by an
external, virtual in general, force. This force is balanced by an osmotic pressure force of the
suspension [6]:

B .K k T r
r
Ñ

=
r

(24)

From here it is seen, that the osmotic pressure force arises always when density difference
exists and especially when the density tends to zero. And vice-versa, the force disappears in
extra-dense media with spatially homogeneous distribution of particles. As states the sec‐
ond law of thermodynamics spontaneous processes happen with increasing entropy. The
osmosis evolves spontaneously because it leads to increase of disorder, i.e., with increase of
entropy. When the entropy gradient becomes zero the system achieves equilibrium, osmotic
forces vanish.
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Due to appearance of the term (D / 2)∇ ln(ρ) in Eq. (22) the diffusion equation becomes nonlin‐
ear. It is interesting to note, running ahead, that this osmotic term reveals many common with
the quantum potential, which is show further. Observe that the both expressions contain the
term ∇ρ / ρ =∇ ln(ρ) relating to gradient of the quantum entropy SQ = − ln(ρ) / 2 [28].

Reduction to PDEs, Eq. (19) and Eq. (22), was done with aim to show that the both quantum
and classical realms adjoin with each other much more closely, than it could seem with the
first glance. Further we shall return to the integral path paradigm [8] and calculate patterns
arising after passing particles through gratings. We shall combine quantum and classical
realms by introducing the complex-valued parameter Γ = 2kBTδt + iћ.

2.2. Paths through N-slit grating

Computation of a passing particle through a grating is based on the path integral technique [8].
We begin with writing the path integral that describes passing the particle through a slit made
in an opaque screen that is situated perpendicularly to axis z, Fig. 3. For this reason we need to
describe a movement of the particle from a source to the screen and its possible deflection at
passing through the slit, see Fig. 4. At that we need to evaluate all possible deflections.

Figure 3. Interferometry from one grating G0 situated transversely to a particle beam emitted from a distributed
source.

We believe, that before the screen and after it, the particle (fullerene molecule, for example)
moves as a free particle. Its Lagrangian, rewritten from Eq. (17), describes its deflection from
a straight path in the following form

2
( , ) .

2N N N
xL m m x v T= - +
& r& (25)

The first term relates to movement of the center of mass of the molecule. So that mN is mass
of the molecule and ẋ is its transversal velocity, i.e., the velocity lies in transversal direction
to the axis z. The second term is conditioned by collective fluctuations of atoms constituent
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this molecule. This term is nonzero when atoms have predominant fluctuations along axis x.
For the sake of simplicity we admit that v→  is constant. The third term is a constant and comes
from Eq. (17). It can be introduced into the normalization factor. For that reason we shall ig‐
nore this term in the following computations. A longitudinal momentum, pz, is much greater
than its transverse component [16, 17, 29] and we believe it is constant also. By translating a
particle's position on a small distance δx = (xb - xa)<< 1 for a small time δt = (tb - ta)<< 1 we
find that a weight factor of such a translation has the following form

Figure 4. Passage of a particle along path (zs,xs) → (z0,x0) → (z1,x1) through a screen containing one slit with a width
equal to 2b0. Divergence angle of particles incident on the slit, α, tends to zero as the source is removed to infinity.

2( )
exp exp ( ) .

2 ( )
N b a N

b a
b a

m x x m vL t x x
t t

d ì ü-ì ü ï ï- = - + -í ý í ý
G G - Gî þ ï ïî þ

(26)

The particles flying to the grating slit along a ray α, Fig. 4, pass through the slit within a
range from x0-b0 to x0+b0 with high probability. The path integral in that case reads

0

0

1 0 1 0 1 0 0 0 0 0 0 0( , , ) ( , ; , ) ( , ; ,0) .
b

s s
b

x x x K x x K x x dy t t x t x t x
-

= + + +ò (27)

Integral kernel (propagator) for the particle freely flying is as follows [8, 26]

1 2 2
( , )

( , )

(1 2 ) ( )
( , ; , ) exp 1 2

2 ( ) 2 ( )
N a b N b a

b b a a
b a b a a b

m v v m x x vK x t x t
t t t t vp

ì üæ öé ù- -ï ïç ÷= - -ê ú í ýç ÷G - G -ê ú ï ïë û è øî þ
(28)

Here v(a,b) = (xb – xa)/(tb – tb) is a velocity of the molecule on a segment from xa to xb. And v is
an average velocity of collective deflection of atoms constituent the molecule. It was defined
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in Eq. (12). We shall believe that the ratio v/v (a,b) is small enough. We can define a new renor‐
malized mass {m}N = mN (1 - v/v(a,b)) and further we shall deal with this mass.

2.2.1. Passing of a particle through slit

By substituting the kernel (28) into the integral (27) we obtain the following detailed form

0

0

1 2 1 22 2
1 0 0 0 0

1 0 0
1 1 0 0

{ } { } ( ( )) { } { } (( ) )
( , , ) exp exp .

2 2 2 2

b
N N N N s

s
b

m m x x m m x x
x x x d

x x
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p t t p t t-

ì ü ì üæ öæ ö - + + -ï ï ï ï= - -ç ÷ç ÷ í ý í ýç ÷ ç ÷G G G Gï ï ï ïè ø è øî þ î þ
ò (29)

The integral is computed within a finite interval [-b0,+b0]. Observe, that the integrating can
be broadened from -∞ to +∞. But in this case we need to load the integral by the step func‐
tion equal to unit within the finite interval [-b0,+b0] and it vanishes outside of the interval.
The step function, that simulate a single slit, can be approximated by the following a set of
the Gaussian functions [30]

2

2
1

1 2 ( ( (2 1)))( , , , ) exp .
2( )

K

k

K b K kG b K
b

xx h
h p h=

ì ü- - -ï ï= -í ý
ï ïî þ

å (30)

Here parameter b is a half-width of the slit, real η > 0 is a tuning parameter, and K takes inte‐
ger values. At K = 1 this form-factor degenerates to a single Gaussian function. And at K → ∞
this function tends to an infinite collection of the Kronecker deltas which fill everywhere
densely the step function. We rewrite Eq. (29) with inserting this form-factor

2 2
1 0 0 0 0

1 0 0 0 0
1 01 0
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ò (31)

We do not write parameters η and K in the Gaussian form-factor and for the sake of simplic‐
ity further we shall consider they equal to 1. That is, for simulating the slit we select a single
Gaussian function.

2.2.2. Definition of new working parameters

First we replace the flight times τ0 and τ1 by flight distances (z0-zs) and (z1-z0), see Fig. 4. This
replacement reads

0 0

1 1 0

( )
( )

s z

z

z z v
z z v

t
t
ì = -ï
í = -ïî

(32)
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where vz is a particle velocity along the axis z.

There is, however, one more parameter of time that is represented in definition of the co‐
efficient Γ= 2kBTδt  + iћ.  It is a small time increment δt.  The parameter δt  first appears in
the path integral (3) as the time increment along a path. In accordance with the uncertain‐
ty principle δt should be more or equal to the ratio of ћ, Planck constant, to energy of oc‐
curring events. In a case of a flying particle through vacuum it can be minimal energy of
vacuum fluctuations  (it  is  about  energy  of  the  first  Bohr  orbit  of  electron-positron  pair
that is about 14 eV). Evaluation gives δt  ~ 2.8 10-16  s. From here it follows, that 2kBTδt  is
less than ћ  on about one order at T  = 1000 K (almost temperature of fullerene evapora‐
tion from the Knudsen cell [27]).

Emergence of the term 2kBTδt can be induced by existence of quantum drag [31] owing to
different conditions for quantum fluctuations both inside of the fullerene molecule and out‐
side what can induce weak Casimir forces. Because of the weak Casimir force the quantum
drag does not lead to decoherence at least in the near zone. However further we shall see
that a weak washing out of the Talbot interference pattern is due to existence of this term.

Let us divide the parameter Γ by {m}N vz

B2
.

{ } { } { }N z N z N z

k T
t

m v m v m v
dG

= + i h
(33)

Here pz = {m}N vz is a particle momentum along axis z. We can define the de Broglie wave‐
length λdB = h/pz where h = 2πћ is the Planck constant. Let us also define a length δT =
4πkBTδt/({m}N vz). In this view we can rewrite Eq. (33) as follows

dB 1 .
{ } 2 2 2

T

N zm v
ld

p p p
G

= + = Li (34)

The length δT tends to zero as T → 0. At T = 1000 K and at adopted δt = 2.8 10-16 s we have δT

≈ 0.4 pm. On the other hand, the de Broglie wavelength, λdB, evaluated for the fullerene mol‐
ecule moving with the velocity vz =100 m/s is about 5 pm [18]. So, we can see that the length
δT is less of the de Broglie wavelength on about one order and smaller. A signification of the
length δT is that it determines decoherence of a particle beam. Decoherence of flying parti‐
cles occurs the quickly, the larger δT. Observe that the length δT has a close relation with the
coherence width - a main parameter in the generalized Gaussian Schell-model [32, 33].

3. Wave function behind the grating

Wave function from one slit after integration over ξ0 from -∞ to +∞ has the following view [28]
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Here argument of ψ-function contains apart x also z in order to emphasize that we carry out
observation in the point (z,x), see Fig. 4. The factor (2/π)1/2 comes from (30). Parameters Ξ0

and Σ0 read

0 0 0
0 0 2

0 0 0 0

( )( ) ( ) ( )
1 and
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s s

s s

x x z z z z z z
z z x x z z bp

- - - L -
X = - S = +

- - - (36)

In order to simplify records here we omit subscript 1 at x and z - an observation point that is
situated after the slit.

Let us consider that an opaque screen contains N0 slits spaced through equal distance, d,
from each other. Numeration of the slits is given as it is shown in Fig. 3, n0 = 0,1,2, …, N0 – 1.
Sum of all wave functions (35), each of which calculates outcome from an individual slit,
gives a total effect in the point (z,x) where a detector is placed:

0

0

1
0

0 0
0

1
( , , , , ) , , , .

2

N

s x
n

N
x z d x x z n d xy

-

=

æ öæ ö-
Y L = -ç ÷ç ÷ç ÷è øè ø

å (37)

Probability density in the vicinity of the observation point (x,z) reads

0 0( , ) ( , , , , ) ( , , , , ) .s sp x z x z d x x z d x= Y L Y L (38)

Calculation of the wave function (37) is fulfilled for the grating containing N0 = 32 slits. Dis‐
tance between slits is d = 105λdB. So at λdB = 5 pm the distance is equal to 500 nm. Require‐
ment λdB << d and N0 tending to infinity together with a condition that the particle beam is
paraxial, that is, xs = 0 and zs → -∞, provides emergence in the near-field of an interference
pattern, named Talbot carpet [19,20]. Here a spacing along interference patterns is measured
in the Talbot length

2

T
dB

2 ,dz
l

= (39)

which is a convenient natural length at representation of interference patterns. Since we re‐
strict themselves by finite N0 we have a defective carpet, which progressively collapses as a
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spacing from the slit increases. Fig. 5 shows the Talbot carpet, being perfect in the vicinity of
the grating slit; it is destroyed progressively with increasing zT. As for the Talbot carpet we
have the following observation. We see that in a cross-section z = zT/2 image reproduces ra‐
diation of the slits but phase-shifted by half period between them. At z = zT radiation of the
slits is reproduced again on the same positions where the slits are placed. And so forth.

Evaluation of sizes of the interference pattern is given by ratio of the Talbot length to a
length of the slit grating. In our case the Talbot length is zT = 0.1 m. And length of the slit
grating is about N0d = 1.6 10-5 m. From here we find that the ratio is 6250. It means that the
interference pattern shown in Fig. 5 represents itself a very narrow strip.

Figure 5. Interference pattern in the near field. It is shown only the central part of the grating containing N0 = 32 slits,
λdB = 5 pm, d = 500 nm, and δT = 0. In the upper part of the figure a set of the Bohmian trajectories, looking like on
zigzag curves, drawn in dark blue color is shown.

Zigzag curves, drawn in the upper part of Fig. 5 by dark blue color, show Bohmian trajecto‐
ries that start from the slit No. 15. One can see that particles prefer to move between nodes
having positive interference effect and avoid empty lacunas. However the above we noted,
that the ratio of the Talbot length to the length of the grating is about 6250 >> 1. It means that
really the Bohmian trajectories look almost as straight lines slightly divergent apart. Zigzag-
like behavior of the trajectories is almost invisible. Such an almost feebly marked zigzag-like
behavior may be induced by fluctuations of virtual particles escorting the real particle.

As soon as we add the term kBTδt different from zero (T > 0 K) we observe blurring the inter‐
ference pattern. The blurring is the stronger, the larger kBTδt. For comparison see Figs. 6 and
7. Here instead of kBTδt we write a more convenient parameter, the coherence length δT. This
length characterizes a dispersed divergence from initially tuned the de Broglie wavelength.
Such a disperse medium can be due to quantum drag on the vacuum fluctuations. Here the
Bohmian trajectories are not shown, since because of the thermal term kBTδt > 0 a Brownian
like scattering of the trajectories arises. This scattering we shall discuss later on.
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Figure 6. Blurred interference pattern in the near field. It is shown only the central part of the grating containing N0 =
32 slits; d = 500 nm, δT = 0.04 pm << λdB = 5 pm.

Figure 7. Blurred interference pattern in the near field. It is shown only the central part of the grating containing N0 =
32 slits; d = 500 nm, δT = 0.4 pm < λdB = 5 pm.

Figure 8. Destroyed interference pattern because of large δT = 4 pm ~ λdB = 5 pm. N0 = 32 slits, d = 500 nm.
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We may think that the technical vacuum can be not perfect. It causes additional scattering of
particles on residual gases. Because of this additional scattering the interference pattern can
be destroyed entirely, as shown in Fig. 8.

Now let us draw dependence of the probability density p(x, z) as a function of x at fixed z. In
other words, we calculate interference fringes in a cross-section of the interference patterns
at z = zT/2 for different values of the length δT. Such a cross-section is chosen because a self
image of the slit grating appears phase-shifted by half period of the grating. For that reason
we should see the interference fringes spaced between the slit sources of radiation.

Fig. 9 shows three characteristic patterns of the interference fringes. In Fig. 9(a) almost ideal
interference fringes are shown obtained at δT < λdB. Fig. 9(b) shows interference fringes ob‐
tained at δT ~ λdB. It is instructive to compare these interference fringes with those that have
been measured in experiments [14, 34]. And Fig. 9(c) shows disappearance of interference
fringes because of strong scattering of the particles on residual gases in vacuum, δT > λdB.

Figure 9. Interference fringes in cross-section of the density distribution pattern by the Talbot half-length, z = zT/2,
(the fringes are drawn in red): (a) δT = 0.4 pm, almost coherent beam; (b) δT = 4 pm, weak coherence; (c) δT = 40 pm,
entirely noncoherent beam. Cyan strips show luminosity of slits. The grating consists of N0 = 9 slits. Collapse of the
interference pattern on edges of the grating is due to its finite length. Therefore visibility of the interference fringes is
evaluated only for 5 central slits.
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Disappearance of interference fringes is numerically evaluated by calculating a characteristic
called visibility [14, 34]. The fringe visibility [27] is represented as a ratio of difference be‐
tween maximal and minimal intensities of the fringes to their sum:

max min

max min
.

P P
V

P P
-

=
+ (40)

Evaluation of Pmax and Pmin is shown in Fig. 9(b). As follows from the figure, the evaluations
are fulfilled in a central region of the grating. That is, edges of the grating have to be left far
off from the measured zone. The visibility V as a function of the parameter δT is shown in
Fig. 10. One can see that crossover from almost perfect interference fringes, V = 1, up to their
absence, V = 0, begins near δT. ~ λdB. Transition from almost coherent particle beam to inco‐
herent is a cause of such a crossover [30].

Figure 10. Visibility of interference fringes as a function of the parameter δT ranging from 0.1 to 40 pm. Wavelength
of a matter wave is λdB = 5 pm.

4. Bohmian trajectories and variance of momenta and positions along
paths

Here we repeat computations of David Bohm [35] which lead to the Hamiltoton-Jacobi
equation loaded by the quantum potential and, as consequence, to finding Bohmian trajecto‐
ries. But instead of the Schrödinger equation we choose Eq. (17) that contains complex-val‐
ued parameter Γ=β+iћ:
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(41)

Here β = 2kBTδt (in particular, the diffusion coefficient reads D = β/2mN) and V =U (q→ 1)−TN .
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Further we apply polar representation of the wave function, ψ = R exp{iS/ћ}. It leads to ob‐
taining two equations for real and imaginary parts that deal with real-valued functions R
and S. The function R is the amplitude of the wave function and S/ћ is its phase. After series
of computations, aim of which is to put together real and imaginary terms, we obtain the
following equations

2 2 2 2 2 2 2
2
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Firstly, we can see that at β = 0 Eq. (42) reduces to the modified Hamilton-Jacobi equation
due to loaded the quantum potential that is enveloped here by brace (b). And Eq. (43) re‐
duces to the continuity equation. These equations read
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Terms enveloped by braces (a), (b), and (c) are the kinetic energy of the particle, the quan‐
tum potential, and the right part is a kernel of the continuity equation (45), respectively. In
particular, the term 2∇R / R =∇ ln(R 2) relates to the osmotic velocity, see Eq. (23). Eqs. (44)
and (45) are the same equations obtained by Bohm [35]. From historical viewpoint it should
be noted that the same equations were published by Madelung1 in 1926 [36].

Momentum of the particle reads

,Np m v S= = Ñ
r r

(46)

where v→  is its current velocity. The de Broglie equation relates the momentum p to the wave‐
length λdB = h/p, where h = 2πћ is the Planck constant. Now, as soon as we found the current
velocity

1 My attention to the Madelung' article was drawn by Prof. M. Berry.
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positions of the particle in each current time beginning from the grating' slits up to a detec‐
tor is calculated by the following formula

( ) ( ) ( ) .r t t r t v t td d+ = +
r r r

(48)

Here t is a current time that starts from t=0 on a slit source and δt is an arbitrarily small in‐
crement of time. Some calculated trajectories of particles, the Bohmian trajectories, are
shown in upper part of Fig. 5. It should be noted that the Bohmian trajectories follow from
exact solutions of Eqs. (44)-(45). These equations give a rule for finding geodesic trajectories
and secants of equal phases, S/ћ, at given boundary conditions. The geodesic trajectories
point to tendency of the particle migration along paths. And the secant surfaces describe a
coherence of all the passing particles created on a single source.

In case of β >> ћ we have the following two equations
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Here we take into consideration that in the first equation we may replace
(∇S / ℏ)2 =4π 2 / λdB

2 . In the second equation we may replace the term ∇S  by mN v→  as follows

from Eq. (46). We notice also, that 2R −1∇R =2∇ ln(R)=∇ ln(ρ). And β/2mN =D is the diffu‐
sion coefficient. Now we may rewrite Eqs. (49)-(50) as follows

2
2

2
dB(b)

(a)

4 ,R D R D R
t

p
l

¶
= Ñ -

¶ 123
14243

(51)

( )2 2

(c)

( ln( ), ) ( , ).N N
S D S m v D S m u v
t

r¶
= Ñ + Ñ = Ñ +

¶
r r r

14444244443 (52)
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Here u→ = D∇ ln(ρ) is the osmotic velocity defined in Eq. (23). We got the two diffusion equa‐
tions coupled with each other through sources. Namely, this coupling is provided due to the
de Broglie wavelength and the osmotic velocity which can change with time. These diffu‐
sion equations cardinally differ from Eqs. (44)-(45). Because of diffusive nature of these sup‐
plementary parts blurring of interference patterns occurs. It leads to degeneration of the
Bohmian trajectories to Brownian ones.

4.1. Dispersion of trajectories and the uncertainty principle

As for the Bohmian trajectories there is a problem concerning their possible existence. As
follows from Eqs. (46) and (48) in each moment of time there are definite values of the mo‐
mentum and the coordinate of a particle moving along the Bohmian trajectory. This state‐
ment enters in conflict with the uncertainty principle.

Here we try to retrace emergence of the uncertainty principle stemming from standard
probability-theoretical computations of expectation value and variance of a particle momen‐
tum. We adopt a wave function in the polar representation

{ }exp ,R SY = i h (53)

where R = (ρ)1/2 is the amplitude of the wave function (ρ =R2 = <Ψ|Ψ> is the probability den‐
sity) and S/ћ is its phase. Momentum operator p̂ = − iℏ∇and corresponding velocity opera‐
tor v̂ = − i(ℏ / m)∇are kinetic operators in quantum mechanics. Here m is mass of the particle.
Expectation value of the velocity operator reads

( )1 1 .S
m m

= Y - Ñ Y = Ñ + Ñ
Y Y

i i
r h hVg QS (54)

The velocity V g is seen to be complex-valued. Here SQ = − ln(R)= − ln(ρ) / 2 is the quantum
entropy [28] and (ћ/2m) is the quantum diffusion coefficient [6, 7]. Therefore its imaginary
part is a quantum osmotic velocity

( / ) ( / 2 ) ln( ).Q Qu m S m r= - Ñ = Ñ
r h h (55)

It is instructive to compare this velocity with the classical osmotic velocity given in Eq. (23).
As can see the osmotic velocity stems from gradient of entropy that evaluates degree of or‐
der and disorder on a quantum level, likely of vacuum fluctuations.

Real part of Eq. (54) gives the current velocity v→  defined by Eq. (47). It should be noted that
because of existence of imaginary unit in definition of the momentum operator, real part of
Eq. (54) is taken as the current velocity. Whereas imaginary unit is absent in Eq. (47). There‐
fore at computing the current velocity by Eq. (47) we take imaginary part.
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Let us now calculate variance of the velocity V g. This computation reads

2 2

2

(d)

1 1Var( ) .
m m m m

æ ö
= Y - Ñ - Y = Y Ñ + Ñ + - D Yç ÷Y Y Y Yè ø

i i i
r r rh h h h

1442443
2

g g g g gV V V V V (56)

Terms over bracket (d) kill each other as follows from Eq. (54). It is reasonable in the per‐
spective to multiply Var(V g) by m/2

21Var( ) .
2 2 2
m

m
= - Y D Y + Ñ

Y Y
i

rh h
g gV V (57)

So, this expression has a dimensionality of energy. The first term to be computed represents
the following result

2 2 2
2

(a) (b) (c)

1 1 ( , )( ) 2 .
2 2 2 2

R S RS S
m m m R m R

æ öÑ Ñ Ñ
- Y D Y = Ñ - - D +ç ÷Y Y è ø

ih h h

14243 14243 144424443
(58)

Here the term enveloped by bracket (a) is a kinetic energy of the particle, the term envel‐
oped by bracket (b) with negative sign added is the quantum potential Q, and the term en‐
veloped by bracket (c) comes from the continuity equation. See for comparison Eqs. (44) and
(45). We rewrite the quantum potential as follows

2 2 22
2 2( ) .

2 2 2Q Q
RQ S S

m R m m
Ñ

= - = - Ñ + Ñ
h h h (59)

As for the second term in Eq. (57) we have i(ℏ / 2)∇V
→

g = i(ℏ / 2m)ΔS − (ℏ2 / 2m)ΔSQ. It is fol‐
lows from computation by Eq. (54). As a result, the expression (57) takes the following view

2
2 21 ( , )Var( ) ( ) ( ) .

2 2 2 Q
m S RS S

m m m R
Ñ Ñ

= Ñ - Ñ - ih h
gV (60)

One can see that the variance consists of real and imaginary parts. Observe that the right
side is represented through square of gradient of the complexified action [28], namely
(∇ (S + iℏSQ))2 / 2m. We shall not consider here the imaginary part. Instead we shall consider
the real part of this expression. It reads
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m
2 Re(Var(Vg))=

1
2m (∇S)2−ℏ( ℏ

2m (∇SQ)2). (61)

The first term in this expression represents kinetic energy, E, of the particle. The second
term, stemming from the quantum potential, contains under braces a term having dimen‐
sionality of inverse time, that is, of frequency

ωQ =
ℏ

2m (∇SQ)2 (62)

This frequency multiplied by ћ represents an energy binding a particle with vacuum fluctu‐
ations. This energy, as follows from Eq. (61), is equal to the particle mass multiplied by
squared the osmotic velocity (55) and divided by 2. It is an osmotic kinetic energy. In the
light of the above said we rewrite Eq. (61) in the following way

m
2 Re(Var(Vg))= E −ℏωQ ≥ 0. (63)

Let we have two Bohmian trajectories. Along one trajectory we have E1 - ћωQ,1, and along
other trajectory we have a perturbed value E2 - ћωQ,2. Subtracting one from other we have

δE −ℏδωQ ≥ 0. (64)

One can suppose that emergence of the second trajectory was conditioned by a perturbation
of the particle moving along the first trajectory. If it is so, then emergence of the second tra‐
jectory stems from an operation of measurement of some parameters of the particle. One can
think that duration of the measurement is about δt = 1/δωQ. From here we find

δEδt ≥ ℏ (65)

Now let us return to Eq. (48) and rewrite it in the following view

δr→ (t)=v→ 1(t)δt ≥ v→ 1(t)ℏ / δE . (66)

The initial Bohmian trajectory is marked here by subscript 1. Observe that
δE =m(v2

2−v1
2) / 2≈m v→ 1δv→ . Here we have calculated v2

2 =(v→ 1 + δv→ )2≈v1
2 + 2v→ 1δv→ . Substituting

computations of δE into Eq. (66) we obtain finally
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δ p→ δr→ ≥ ℏ (67)

Here we take into account δ p→ =mδv→ .

5. Concluding remarks

Each nanoparticle incident on a slit grating passes only through a single slit. Its path runs
along a Bohmian trajectory which is represented as an optimal path for the nanoparticle mi‐
grating from a source to a detector. Unfortunately, the Bohmian trajectory can not be observ‐
able since a serious obstacle for the observation comes from the uncertainty principle. In
other words, an attempt to measure any attribute of the nanoparticle, be it position or orien‐
tation, i.e., the particle momentum, leads to destroying information relating to future history
of the nanoparticle. What is more, any collision of the nanoparticle with a foreign particle
destroys the Bohmian trajectory which could give a real contribution to the interference pat‐
tern. It relates closely with quality of vacuum. In the case of a bad vacuum such collisions
will occur frequently. They lead to destruction of the Bohmian trajectories. Actually, they
degenerate to Brownian trajectories.

Excellent article [21] of Couder & Fort with droplets gives, however, a clear hint of what
happens when the nanoparticle passes through a single grating slit. In the light of this hint
we may admit that the particle “bouncing at moving through vacuum” generates a wave at
each bounce. So, a holistic quantum mechanical object is the particle + wave. Here the wave
to be generated by the particle plays a role of the pilot-wave first formulated by Lui de Bro‐
glie and later developed by Bohm [37]. It is interesting to note in this context, that the pilot-
waves have many common with Huygens waves [5].

A particle passing through vacuum generates waves with wavelength that is inversely pro‐
portional to its momentum (it follows from the de Broglie formula, λ = h/p, where h is
Planck's constant). One can guess that a role of the vacuum in the experiment of Couder &
Fort takes upon itself a silicon oil surface with subcritical Faraday ripples activated on it
[21]. Observe that pattern of the ripples is changed in the vicinity of extraneous bodies im‐
mersed in the oil which simulate grating slits. Interference of the ripples with waves gener‐
ated by the bouncing droplets provides optimal paths for the droplets traveling through the
slits and further. As a result we may observe an interference pattern emergent depending on
amount of slits in the grating and distance between them.

Now we may suppose that the subcritical Faraday ripples on the silicon oil surface simulate
vacuum fluctuations. Consequently, the vacuum fluctuations change their own pattern near
the slit grating depending on amount of slits and distance between them. We may imagine
that the particle passing through vacuum (bouncing through, Fig. 11) initiates waves which
interfere with the vacuum fluctuations. As a result of such an interference the particle moves
along an optimal path - along the Bohmian trajectory. Mathematically the bounce is imitated
by an exponential term exp{iS/ћ}, where the angle S/ћ parametrizes the group of rotation
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given on a circle of unit radius. So, the path along which the particle moves is scaled by this
unitary group, U(1), due to the exponential mapping of the phase S/ћ on the circle.

Figure 11. Bouncing a nanoparticle at moving through vacuum. Vertical dotted sinusoidal curves depict exchange by
energy ΔE with vacuum virtual particle-antiparticle pairs over period of about Δt=ћ/ΔE.

In conclusion it would be like to remember remarkable reflection of Paul Dirac. In 1933 Paul
Dirac drew attention to a special role of the action S in quantum mechanics [38] - it can ex‐
hibit itself in expressions through exp{iS/ћ}. In 1945 he emphasized once again, that the clas‐
sical and quantum mechanics have many general points of crossing [39]. In particular, he
had written in this article: "We can use the formal probability to set up a quantum picture
rather close to the classical picture in which the coordinates q of a dynamical system have
definite values at any time. We take a number of times t1, t2, t3, … following closely one after
another and set up the formal probability for the q's at each of these times lying within
specified small ranges, this being permissible since the q's at any time all commutate. We
then get a formal probability for the trajectory of the system in quantum mechanics lying
within certain limits. This enables us to speak of some trajectories being improbable and oth‐
ers being likely."
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1. Introduction 7 

In the universe three fundamental realities exist inside our perception, which share 8 

messages and quantum processes: the physical, energy and mental reality. These realities 9 

happen at all times and they are around us like part of our existence spending one to other 10 

one across organised transformations which realise a linking field - energy-matter across the 11 

concept of conscience of a field on the interpretation of the matter and space to create a 12 

reality non-temporal that only depends on the nature of the field, for example, the 13 

gravitational field is a reality in the space - time that generates a curved space for the 14 

presence of masses. At macroscopic level and according to the Einsteinian models the time 15 

is a flexible band that acts in form parallel to the space. Nevertheless, studying the field at 16 

microscopic level dominated by particles that produce gravity, the time is an intrinsic part of 17 

the space (there is no distinction between one and other), since the particles contain a rotation 18 

concept (called spin) that is intrinsic to the same particles that produce gravity from quantum 19 

level [1].Then the gravitational field between such particles is an always present reality and 20 

therefore non-temporal. The time at quantum level is the distance between cause and effect, 21 

but the effect (gravitational spin) is contained in the proper particle that is their cause on 22 

having been interrelated with other particles and vice versa the effect contains the cause 23 

since the particle changed their direction [1]. 24 

Then the action of any field that is wished transforms their surrounding reality which must 25 

spill through the component particles of the space - time, their nature and to transmit it in 26 

organised form, which is legal, because the field is invariant under movements of the proper 27 

space, and in every particle there sublies a part of the field through their spinor. 28 

© 2013 Bulnes; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 

Three fundamental realities perceived by our anthropometric development of the universe; 1 

field - energy- matter between three different but indistinguishable realities are realised at 2 

macroscopic level: one is the material reality which is determined by their atomic linkage 3 

between material particles (atoms constituted by protons, neutrons and electrons), an energy 4 

reality, called also quantum reality, since the information in this reality area exchanges the 5 

matter happen through sub-particles (bosons, fermions, gluons, etc) and finally a virtual reality 6 

that sublies like fundamental field and that is an origin of the changes of spin of the sub-7 

particles and their support doing that they transform these into others and that they 8 

transform everything around him (Higgs field). The integration of these three realities will be 9 

called by us a hyper-reality by us. The hyper-reality contains to the quantum reality and to the 10 

reality perceived by our senses (material reality). 11 

Consider Rd  It, like the space - time where happens the transitions of energy states into 12 

space - time, and let u, v, elements of this space, the integral of all the continuous possible 13 

paths to particle x(s), that transit from energy state in u, to an energy state in v, in Rd  It, is 14 

  I

C [0, ]

( , ( )) exp ( ) ,
u,v

t

i
L x t x dx

h
 (1) 15 

where h, is the constant of Max Planck, and the action  , is the one realised by their 16 

Lagrangian L. 17 

Since we have mentioned, the action of a field is realised being a cause and effect, for which 18 

it must be a cause and effect in each of the component particles, “waking up” the particle 19 

conscience to particle being transmitted this way without any exception. This action must 20 

infiltrate to the field itself that it sublies in the space and that it is shaped by the proper 21 

particles that compose it creating a certain co-action that is major than their algebraic sum 22 

[2].The configuration space Cn, m = { t ( ) t / } [3], is the model created by the 23 

due action to each corresponding trajectory to the different splits it. Is clear here we must 24 

have in mind all the paths in the space-time M, that contribute to interference amplitude in 25 

this space, remaining the path of major statistical weight. The intention takes implicitly a 26 

space Cn, m. Any transformation that wants to realise of a space, has as constant the same 27 

energy that comes from the permanent field of the matter and which is determined by the 28 

quantum field of the particles x(s), constituents of the space and matter. If we want to define 29 

a conscience in the above mentioned field, that is to say, an action that involves an intention 30 

is necessary to establish it inside the argument of the action. Likewise, if x(s) , and (x(s)), 31 

there is their action due to a field of particles X, and there is spilled an intention defined by 32 

(1) the length and breadth of the space M, such that satisfies the property of synergy [2], for 33 

all the possible trajectories that they fill , we have that 34 

 

E

TOTAL

E

( ( )) ( ( )) ,

t

j
j

x s d x s d  (2) 35 
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Provisional chapter 3 

where the entire action (2) is an intentional action (for the whole infinity of paths t, that defines 1 

, and that are trajectories of the space - time R3  It), if and only if Oc(x, ( )x s ) = L( (x), 2 

(x))d , where then 3 

 (c
( ) ( )

( )) ( ( )) ( ) ( ( ))d ( ) ,
TOTAL x s

O x d x E E x s x s

  

(3) 4 

where the energy factor E+ E , represents the energy needed by the always present force to 5 

realise the action and Oc, is the conscience operator which defines the value or record of the 6 

field X (direction), on every particle of the space ( ), which along their set of trajectories , 7 

realizes the action of permanent field Oc, it being fulfilled that 8 

 
O

X

x O x d x
c c

( )

( ( )) ( ( )) ( ),
M

 (4)  9 

where the operator Oc, invests an energy quasi-infinite, encapsulated in a microscopic 10 

region of the space (quantum space M), and with applications and influence in an unlimited 11 

space of the sub-particles (boson space). Likewise a photon of certain class (x), will be 12 

generated by the quantum field (if it manages to change its field spin) and will be moved for 13 

the intention on a trajectory , by the path integral 14 

 (I
c c

( ( ))

( ( ( ))) ( )) ( ( )) ,
O

X

x O x d x

  

(5) 15 

Interesting applications of the formula (3) to nano-sciences will happen at the end of the 16 

present chapter. Also it will be demonstrated that (3) is a quantum integral transform of 17 

bundles or distortions of energy in the space - time if it involves a special kernel. The bundle 18 

stops existing if there is applied certain intention (path integral transform). The operator Oc, 19 

involves a connection of the tangent bundle of the space of trajectories ( ). 20 

The operator Oc, include a connection of the tangent bundle of the space of trajectories ( ). 21 

The integral (5) will determine on certain hypotheses the interdependence between the 22 

material, quantum and virtual realities in M. 23 

Def. 2. 1 (intentional action of the X).  Let X, be a field acting on the particles x1(s), x2(s), , M, 24 

and let , be their action on the above mentioned particles under an operator who 25 

recognizes the “target” in M, (conscience operator). We say that , is an conscientious 26 

intentional action (or simply intention) of the field X, if and only if: 27 

a. , is the determination of the field X, to realise or execute, (their force F(x)), 28 

b. , recognizes well their target, it is known what the field X wants to do (their 29 

direction  she follows a configuration patron)   30 
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4 

Consider a particle system p1, p2,  in a space - time M  R4. Let x(t) ( )  R3  It, be a 1 

trajectory which predetermines a position x R3, for all time t It. A field X, that infiltrates its 2 

action to the whole space of points predetermined by all the trajectories x1(t), x2(t), x3(t), 3 

, ( ), is the field that predetermines the points i(xi(t)), which are fields whose 4 

determination is given by the action of the field X, and evaluated in the position of every 5 

particle. Every point have a defined force by the action , of X, along the geodesic t, and 6 

determined direction by their tangent bundle given for Tx1( ( )), that is the cotangent space 7 

T*( ( )) [4], which give the images of the states under Lagrangian, that is to say, the field 8 

provides of direction to every point i, because their tangent bundle has a subjacent spinor 9 

bundle S [5], where the field X, comes given as i i( , )
i

,i

i x
X  1, 2, 3, x1, on 10 

every particle pi = xi(t) (i = 1, 2, ). Then to direct an intention is the map or connection: 11 

 1( ) ( ( )):  x  ))*( ( ,(cO T T T   (6) 12 

with rule of correspondence 13 

 ,) ),( (i i i i
t mx x I   (7) 14 

which produces one to us ith- state of field energy i [6], where the action , of the field X, 15 

infiltrates and transmits from particle to particle in the whole space ( ), using a 16 

configuration given by their Lagrangian L (conscience operator), along all the trajectories of 17 

( ). Then of a sum of trajectories DF(x(t)), one has the sum d( (x)), on all the possible field 18 

configurations Cn, m. Extending these intentions to whole space ( )  M, on all the elections 19 

of possible paths whose statistical weight corresponds to the determined one by the 20 

intention of the field, and realising the integration in paths for an infinity of particles - fields 21 

in T ( ), it is had that 22 

 
( )T

I

1 n i [ , ]

N
1s 0

1
( ( )) ( ( )) lim e ( ( )),

i i

i i

i

d d
x x d x s

B B B
  (8) 23 

where ,
2

1/2
m

B
i s

 is the amplitude of their propagator and in the second integral of 24 

(8), we have expressed the Feynman integral using the form of volume ( (x)), of the space 25 

of all the paths that add in T ( ), to obtain the real path of the particle (where we have chosen 26 

quantized trajectories,  that is to say, d( (x))). Remember that the sum of all these paths is the 27 

interference amplitude between paths that is established under an action whose Lagrangian 28 

is  ( (x))= (x)d (x), where, if M , is a complex with M, the space-time, and C(M), is a 29 

complex or configuration space on M, (interfered paths in the experiment given by multiple split 30 

[7]), endowed with a pairing  31 

 ( )  ( ): *C ,M M R   (9) 32 
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Provisional chapter 5 

where *(M), is some dual complex (“forms on configuration spaces”), i.e. such that “Stokes 1 

theorem” holds: 2 

 ,  , d

C
  

(10) 3 

then the integrals given by (8) can be written (to m-border points and n-inner points (see 4 

figure 1a))) as: 5 

 
)

1

1 m

1

1 2 m

q 1T ( ( ) ( )

1( ) ( ) ( )

( ( )) d d

( ( d ) d ) ,

n

t t

n

t t t

mm

n

m m

n

x d

  (11) 6 

This is an infiltration in the space-time by the direct action  [2, 3], that happens in the space 7 

C, to each component of the space ( ), through the expressed Lagrangian in this case 8 

by , de (10) In (11), the integration of the space realises with the infiltration of the time, 9 

integrating only energy state elements of the field.  10 

The design of some possible spintronic devices that show the functioning of this process of 11 

transformation in the space M, will be included in this chapter. 12 

 13 
Figure 1. In a) The configuration space Cn, m, is the model created by the due action to each corresponding trajectory 14 
to the different splits. b) Example of a doble fibration to explain the relation between two realities of a space of 15 
particles: the bundle of lines L, and the ordinary space R3. c) Way in as a quantum field X, which acts on a space - time 16 
to change its reality, that is to say, to spill their intention. 17 
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6 

2. Conscience operators and configuration spaces 1 

We consider M  R3  It, the space-time of certain particles x(s), in movement, and let L, be an 2 

operator that explains certain law of movement that governs the movement of the set of 3 

particles in M, in such a way that the energy conservation law is applied for the total action 4 

of each one of their particles. The movement of all the particles of the space M, is given 5 

geometrically for their tangent vector bundle TM. Then the action due to L, on M, is defined 6 

like [8]: 7 

 :  ,
L
TM R   (12) 8 

with rule of correspondence 9 

 ,x s FluxL x s x s   (13) 10 

and whose energy due to the movement is 11 

 ,E L   (14) 12 

But this energy is due from their Lagrangian L C (TM, R), defined like [9] 13 

 ,   ,  ( ) ( ) ( ),  ,x xL x s s T x s s xV x s ss s s( ), ( ), ( ),   (15) 14 

If we want to calculate the action defined in (7) and (8), along a given path = x(s), we have 15 

that the action is 16 

 ( ( ), ( ), ) ,L x s x s s ds   (16) 17 

If this action involves an intention (that is to say, it is an intentional action) then the action is 18 

translated in all the possible field configurations, considering all the variations of the action 19 

along the fiber derivative defined by the Lagrangian L. Of this way, the conscience operator 20 

is the map 21 

 : T T* ,
c
O M M   (17) 22 

with corresponding rule  23 

 ( ) (Lc 0
) ,
t

d
O t

dt
v w v w   (18) 24 

That is, Oc(v)w, is the derivative of L, along the fiber in direction w. In the case of v = x‘(s), and q = 25 

x(s),  q M, L(q, v) = E – V = ½<v, v> - V(q), we see that Oc(v)w = <v, w>, so we recover the usual 26 

map sb : TM  T*M, (with b Euclidean in R3) associated with the bilinear form < , >. Is here where 27 

the spin structure subjacent appears in the momentum of the particle x(s). 28 
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Provisional chapter 7 

As we can see, T*M, carries a canonical symplectic form, which we call . Using Oc, we 1 

obtain a closed two-form L, on TM, by setting 2 

 * ,L cO  (19) 3 

Considering the local coordinates ( i, i), to L, modeling the space-time M, through H-4 

spaces, we have that (19) is 5 

 
2 2L

d d d d ,j ji i
L j ji i

L   (20) 6 

Likewise, the variation of the action from the operator Oc = d ( ) = L( , )d , is translated 7 

in the differential  8 

 
L d L

h s s h s ds
dt

d ( ) ( ( ), ( )) ( ) ,   (21) 9 

where h(s): TM, and is such that M o h =  and h(x1) = h(x2) = 0, to extreme points of 10 

x(s1) = p y x(s2) = q. The total differential (21) is the symplectic form L, that constructs the 11 

application of the field intention expanding 2n-coordinates in (20). The space x1( ( )), is the 12 

space of differentiable vector fields on ( ), and ( ), is the manifold of trajectories (space-13 

time of curves) that satisfies the variation principle given by the Lagrange equation that 14 

expresses the force F(x(s)j), (j = 1, 2, , n) generated by a field that generates one 15 

“conscience” of order given by their Lagrangian (to see the figure 2). 16 

 17 

 18 
 19 

Figure 2. a) The particles act in free form in the space - time without the action of a quantum field that spills a force 20 
that generates an order conscience. b) A force F(x(s)j), is spilled, generated by a field that generates a "conscience" of 21 
order given by their Lagrangian. For it, there is not to forget the principle of conservation energy  re-interpreted in the 22 

Lagrange equations and given for this force like 
j j

d T T j
- = F (x(s)), 

dt xx
 (also acquaintances as “living forces”) 23 

transmitting their momentum in every ith-particle of the space E, creating a infiltred region by path integrals of 24 
trajectories ( ), where the actions have effect. Here T, is their kinetic energy.  25 
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8 

How does it influence the above mentioned intention in the space - time? what is the 1 

handling of the force Fj(x(s))? What is the quantum mechanism that makes possible the 2 

transformation of a body or space dictated by this intention? 3 

It is necessary to have two aspects clear: the influence grade on the space, and a property 4 

that the field itself "wakes up" in the space or body to be transformed though the quantum 5 

information  (x), their particles. Consider the integral (8) and their Green function for n,  6 

states (xj) (j = 1, 2, . n): 7 

 

i [ , ]

1( )
1 2

i [ , ] i

e ( ( ))

G ( , , , ) ,

e ( ( ))

i i

i i

n
i

in
n

d x s

x x x

d x s

  (22) 8 

These Green’s functions can most straightforwardly be evaluated by use of generating 9 

functional where we are using an external force Fj(x(s)), given by the intention  10 

 j j j jx s x s x d x sj

( )

W[F ( ( ))] N exp i ( , ) i F ( ( )) ( ) ( ( )),

  

(23) 11 

This operator is the operator of execution exe ( ), which establishes in general form (5) that 12 

has been studied and applied in other developed research (see [2, 10, 11] as an example). 13 

Then the influence realised on the space ( )  M, that there bears the functional one (23) 14 

that involves the force of the intention given by the field (observe that the second addend of 15 

the argument of exp, is the action which is realised from the exterior on the space ( )) can 16 

go according to the functional derivative: 17 

  ( )
1 2 F 0

1

1
G ( , , , ) ( i) W[F ( ( ))] ,

W[0] F ( ) F ( )
j

n
jn n

n j j
n

x x x x s
x x

  (24) 18 

where 
1F ( ) F ( )

n

j j
nx x

 , describe the functional differentiation of nth-order, defined by 19 

the formula [6]  20 

 
E

1 1 2 2

1 1
( )

1

(F ( ))
(  - )F (  - )F

F ( ) F ( ) F ( ) F ( )

(  - )F d d (  - ) (  - ),

n j n
j j

j j j j

n n

j

n n 1 n n

n

x
x x x x x x

x x x x

x x x x x x x x x

  (25) 21 

where these derivatives express impulses (force) of every particle placed in the positions x1, 22 

, xn. In case of receiving the influence of the field X, these impulses will be directed by the 23 
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Provisional chapter 9 

derivative of their Lagrangian density L(0), that is a consequence of the differential (21), 1 

(whereas, by the application of their conscience operator Oc) know  2 

 
L L
(0) (0)

0,
x x

  (26) 3 

But the equation (26) is the quantum wave equation (bearer of the information (configuration 4 

and momentum of the intention)) due to Oc, to the time s. Then the generating functional 5 

takes the form (23), considering the property of the operator Oc, given through the operator 6 

O(x - xj)1:  7 

 

,

O O

O O

-1

( ) ( )

' ' -1

( ) ( )

i
[F ( ( ))] N exp ( ) ( ) ( ) i F ( ( )) ( )F ( ( )) ( ( ))

2

i '
N exp ( ) ( ) ( ) i F ( ( )) ( )F ( ( )) ( ))

2

j j j

j j j j

j j

j j j j

W x s x x x x x s x x x s d x

x x x x x s x x x s d x

 

(27) 8 

Where we have used [d (x)] = [d (x)].  9 

The intention infiltrated by the conscience given for Oc, establishes that the differential of the 10 

action d ( )h, given by (21) (using the energy (amplitude) that their propagator contributes 11 

DF) can be visualised inside the configuration space through their boarder points (“targets” 12 

of the intention of the field X, and that happen in M [12]),being also the interior points of 13 

the space M, intM, are the proper sources of the field (particles of the space M, that generate the 14 

field X). Then the intention of the field X, is the total action 15 

 ,( )T intM M
  (28)  16 

where this is a composition of the actions intM, and M. These actions have codimensions 17 

strata k, and n – k, respectively, when we want to form the space M, using path integrals []. 18 

To extract the intrinsic properties of integrals over configurating spaces, we will follow the 19 

proof of the formality theorem [13], and record the relevant facts in our homological-20 

physical interpretation: admissible graphs are “cobordisms” ( )  [m], when Un is thought 21 

as a state-sum model [14]. The graphs are also interpreted as “extensions”    ’, when 22 

considering the associated Hopf algebra structure. The implementations of these tools were 23 

done in the [3].  Remember that using the Stokes theorem (10) a  Lagrangian on the class G, 24 

of Feynman graphs is a k-linear map  : H  �(M), associating to any Feynman graph , a 25 

                                                                 
1 The operator O(x - xj) = ( x+ m2 – i ) n(x - xj), and such that to their inverse O 1(x - xj), the functional 

property  is had:  

n n

j j j
x x x y d x x y

1

( )

( ) (  - ) ( ),O O  
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10 

closed volume form on ( ), vanishing on the boundaries, i.e. for any subgraph    1 

(viewed as a sub-object) meeting the boundary of  : [s]  [t] (viewed as a cobordism), ( ) 2 

= 0. Then an action given by intM, is defined through their interior as:   3 

Def. 2. 1. An action on G (“ int”), is a character W : H  R, which is a cocycle in the 4 

associated DG-coalgebra (T(H*), D), where G, is a class of Feynman graph.  5 

Let Cn,m, be the configuration space of n, interior points and m, boundary points in the 6 

manifold M, with boundary M (that is to say. [13], upper half-plane H). Its elements will be 7 

thought as (geometric) “representations of cobordisms” (enabling degrees of freedom with 8 

constraints). Then the action in (28) takes the form  9 

 M
x(s)[ ] [ ]{ 0} [ ] { 0} ,n m

m   (29) 10 

Let H, be the Hopf algebra (associative algebra used to the quantised action in the space-time), of a 11 

class of Feynman graphs G [12]. If , is such a graph, then configurations are attached to 12 

their vertices, while momentum are attached to edges in the two dual representations 13 

(Feynman rules in position and momentum spaces). This duality is represented by a pairing 14 

between a “configuration functor” (typically C , (configuration space of subgraphs and 15 

strings [15], and a “Lagrangian” (e.g. , determined by its value on an edge, i.e. by a 16 

propagator DF). Together with the pairing (typically integration) representing the action, 17 

they are thought as part of the Feynman model of the state space of a quantum system. The 18 

differential (21) considering the DG-structure [12], in the class of Feynman graphs G, can be 19 

defined as one graph homology differential: 20 

 e
e

/ ,
E

d   (30) 21 

where the sum is over the edges of , e is the one-edge graph, and / e, is the quotient 22 

(forget about the signs for now).  23 

We can give a major generalisation of this graphical homological version of the differential 24 

establishing the graduated derivation that comes from considering H = T(g), the tensor 25 

algebra with reduced co-product  26 

 
'

',   (31) 27 

Consider the following basic properties of the operators Oc. Let O(x – x‘), defined in the 28 

footnote 1, and  (x) H, where the space is the set of points H = { (x) [m] [m]  T*M}
2
 [8]. 29 

                                                                 
2 The corresponding cotangent space to vector fields is: 

T*x1(M)= {( , ) H  Tx1(M)   = ,  x1(M)}. 

Here [m] = T*Cn,m. 
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Provisional chapter 11 

Points of phase space are called states of the particle system acting in the cotangent space of 1 

M. Thus, to give the state of a system, one must specify their configuration and momentum. 2 

a) b) c)  3 

Figure 3. a) In every plane there is a particle configuration for a given time. b) The evolution of the particles along 4 
everything t, happens for a succession of configurations through which the particles system spends different strata 5 
codimension one. The causal structure of the space - time is invariant for every particle along the transformation 6 
process. d) Strata Evolution strata of the configuration space Cn, m, in the space-time E4. The translation obeys to 7 
evolution of Lagrangian system given by L( 1, , n). 8 

Example 1. Let M M, be and R  TCn, m, then   R M, describes the curve in 9 

the configuration space which describes the sequence of configurations through which the 10 

particles system passes to different strata of co-dimension one (see figure 2). Every strata 11 

correspond to a phase space of m, particles that are moved by curve  and directed from 12 

their energy states d (x), by , to n, particles (x).  13 

This defines our intentional conscience. Then are true the following properties: 14 

i. O(x – x‘) (x) = (x – x‘) (x),  x, x’ M, 15 

ii. Oc(x(s)) (x’(s)) = O(x – x‘),   x, x’ M, and s  t, 16 

iii. Oc( (s))d  = Oc;   d Oc( (s))/d = Oc(x(s)), in the unlimited space H, 17 

iv. Oc = (s – s‘), if and only if x(s)/ x(s’) = (s – s‘),  s  t, then F(x(s)) = x(s), 18 

v. O 1(x  x’)Oc(x(s)) =  F(x  x’) (x – x‘),  x, x’ M, and s  t, 19 

vi. H Oc( (s))d  = O(x – x‘)x(s)d(x(s)). 20 

On the one hand, 
H 

Oc( (s)) (x)dx =
H 

Oc( (s))d = j O(x – x‘)x(s)ds. Also  21 

H

Oc

( )

( ( )) ( ) (  - ') ( )O s x s ds x x x dx,

22 

then i, is satisfied. To the property ii. is necessary consider O(x – x‘) = ( x + m2  i ) (x  x’) 23 

[6]. But the operator Oc, is the defined as 24 

c

c( ( )) ( ') ( ')
O

d
O x s x x

d
 25 

Considering the operator O(x – x‘), we have 26 

O
c

(  - ') ( ')
O

x x d d x
 27 
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12 

Integrating both members on unlimited space H , (applying the principle of Stokes 1 

integration given by (10)) we have that integral identity is valid for whole space. Then is 2 

verifying ii. The property iii., is directly consequence of (19), (20) and (21), considering the Stokes 3 

theorem given in (10), therefore  Oc(x(s)), is such that L = (Oc)* , considering  = d . Then 4 

 
H

c c

( ) ( )

( ) * ,LO O   (32) 5 

 which is a integral of type (10). Indeed,  6 

 

H H H H

c cc c( ( )) * ( ( )) ( )O L OO x s O x s d d   (33) 7 

The derivative in the last integral from (33) is the total differential given by (21) from where 8 

we have the derivative formula in the context of the unlimited space H.  9 

The property iv., require demonstrate two implication where both implications are 10 

reciprocates. If Oc(x(s‘)) = (s – s‘), then all intention on trajectory defined , its had that  11 

 c( ( )) ( )d (  - ') ( ) ,O x s x s s s s x s ds   (34) 12 

But for the differential (21) and the second member of the integral (34) we have 13 

c
( ( ')) ( (  - ') ( ') ')O x s s s x s ds  14 

since ( (  - ') ( ') ')  (  - '),
( ')

s s x s ds s s
x s

 then ( (  - ') ( ') '  ),s s x s ds x s  and for other side 15 

( ( ) ( ) ) ( ) ),s - s' x s' ds'   s - s' x s'  16 

from where 
( )

 (  - '),  
( ')

x s
s s s t

x s
 3.  But this implies directly F(x(s)) = x(s). This property tell 17 

us that we can have influence on the space M, considering only a curve any of the space 18 

where the influence of the field exists like the force (s – s‘), since the space is infiltrated by 19 

                                                                 

3In the general sense the functional derivative  na
ba

b

y
y x

x

( )
 (  - ), 

( )
 implies   

n

b a ba
a

y y x x dx( ) (  - ) ( ) ,  

but does not imply 

n

b ba a
y y x x( )  (  - ) ( ).  
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the force F, and this produces the permanent state of energy generated by every component 1 

of the space. On the other side, if ( )
 (  - '),  

( ')

x s
s s s t

x s

 which is equivalent to  2 

( (  - ') ( ') ')  (  - '),
( ')

s s x s ds s s
x s

 . But integrating (21) we have 3 

c
( ( ')) (  - ') ( ') ',

O
x s s s x s ds  4 

which for before implication is (s – s‘) x(s‘). But  5 

c{ ( ( ')) ( ')  (  - ') ( ')} '  0O x s x s s s x s ds  6 

This integral is valid  M. Thus Oc(x(s‘)) = (s – s‘). With this, the demostration of iv., is 7 

completed. The identity in v, happens because O 1(x x‘) = F(x x‘), considering the 8 

before property (simple conaequence of the property iv) [6]. 9 

The identity in vi., happens in the phase space created by the cotangent space due to the 10 

image of the differential (21). Therefore, both members of integral identity will have to 11 

coincide in the intention given by Oc. Indeed, consider the integral 12 

 

H H

c c c c

( )

( ( ))  O x d O d   (35) 13 

On the other side, inside the quantum wave equation: 14 

 

� �

�

H H

2 2

( ) ( )

2
c

(  - ')d ( ) ( i ) ( i )

( i )

x x

x

O x x x s m m x dx

m d d

  (36) 15 

Joining (35) with (36) we have vi.  16 

3. Quantum intentionality and organized transformations 17 

Considering the quantizations of our Lagrangian system describe in (11), (18) and (19) on Rn, 18 

n  2, coordinated by {xj}, we describe terms of a graded commutative C (M)-algebra H, with 19 

generating elements   20 

 1 2 1, , ,  . . . , ... ,  . . ,{ .}a a a a
m m l m l l m l lkx x x x   (37) 21 

and the bi-graded differential algebra H*, of differential forms (the Chevalley–Eilenberg 22 

differential calculus) over H0, as an R-algebra [1-3]. One can think of generating elements 23 

(37) of H, as being sui generis coordinates of even and odd fields and their partial derivatives.  24 
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The graded commutative R-algebra H0, is provided with the even graded derivations (called 1 

total derivatives) 2 

 
1

0

, d d d
k

a

a
d   (38) 3 

where  = ( 1... k), | | = k, and +  = ( , 1, . . . , k) are symmetric multi-indices. One can 4 

think of even elements 5 

 0
, ,      ( 1)) ) ,( (l a n a n a n

a a
L x x d x L d x d x d x d L d xE   (39)     6 

where  we  observe  that  L,  is  the  2-form  given  by  L,  in  the  formula  (20) with n = 2, 7 

and = 1 2.  8 

Now we consider the dual part of the space (H, ( )), that is to say, the space (H*, L), be 9 

We consider quantize this Lagrangian system in the framework of perturbative Euclidean 10 

QFT. We suppose that L, is a Lagrangian of Euclidean fields on ( )  Rn. The key point is 11 

that the algebra of Euclidean quantum fields B , as like as H0, is graded commutative. It is 12 

generated by elements a, x  ( ). For any x  ( ), there is a homomorphism belonging 13 

to space H  Hom(T(H), D) (with homomorphisms Hom(T(H), D) given for DG-algebra of 14 

cycles) 15 

 I I I
1 1 11 1

1 1 1 1 1
x : ( ) , C ( ( ))r r r r r

r r r r r

a aa a

a a a a x x a a
x x x   (40) 16 

Of the algebra H0, of classical fields to the algebra B , which sends the basic elements 17 

xa H0 to the elements a B , and replaces coefficient functions I, of elements of H0, with 18 

their values I(x) (executions) at a point x. Then a state <, > of B  is given by symbolic 19 

functional integrals 20 

 
H

1 1

1 1
c

( )

1
exp ( ) [ ],

N
k k

k k

a aa a a n a

x xx x x x

x

O d x d

  

(41) 21 

where this is an integral of type
H

c

( )

( ( ))d ,O x s  as give by the properties. When the 22 

intention expands to the whole space, infiltrating their information on the tangent spaces 23 

images of the cotangent bundle T*M, (given by the imagen of (x), under d Oc).Then their 24 

intentionality will be the property of the field to spill or infiltrate their intention from a nano 25 

level of strings inside the quantum particles.  Then from the energy states of the particles, 26 

and considering the intention spilled in them given  by Oc( ), we have the homomorphism 27 

(40) that establishes the action from M (  ( )), to M, for their transformation through the 28 
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action T, defined in (28) to any derivation given through their conscience operator (fiber 1 

(18)),  like the graded derivation ,  (considering the derivatives Oc(x) = (Oc)* , DF = d ): 2 

 c L c: ( , ) ( ( ), ) ( ( ), ) ( )a a a

x c x
x x O x O x O   (42) 3 

of the algebra of quantum fields B . With an odd parameter , let us consider the 4 

automorphism 5 

Û exp Id ,  6 

Of the algebra B . This automorphism yields a new state < , >, of B , given by the equality 7 

 ˆ ˆ1 1

1 1
H

1
( ) ( )exp

N'
k k

k k

a aa a

x x x x
U U

  

(43) 8 

where the energy state has survived, since  ˆ ( )a a

x x
dU d . That because the intention is the 9 

same. The intention has not changed. 10 

What happens towards the interior of every particle? what is the field intention mechanism 11 

inside every particle? 12 

To answer these questions we have to internalise the actions of field X, on the particles of 13 

the space M, and consider their spin. But for it, it is necessary to do the immersion of the 14 

Lagrangian , defined as the map 15 

2:  ,nw L M  4  16 

with rule of correspondence  17 

,i iZ w Z  18 

where the image of the 1-form , that the Lagrangian defines, (Zi), is a symplectic form [8], 19 

and the variable Zi, is constructed through the algebraic equations Wa(Zi) = 0 [16].They 20 

describe the k-dimensional hypersurfaces denoted by S, such that S H, where H, is the 21 

phase space defined in the section 2. The index a = 1, . . . , q runs over the number of 22 

polynomials Wa(Zi), in the variables Zi and i runs over the dimension of the ambient 23 

manifold which is assumed to be CN. If the space is a complete intersection, the constraints 24 

                                                                 
4 Having chosen M2n, is to consider the two components  of any point in the space CN, (that we are 

considering isomorfo to the ambient space of any quantum particle x(s), in the space-time) to have the 

two components that characterise any quantum particle x(s), that is their spin (direction) and their 

energy state (density of energy or “living force of the particle”). L, is the corresponding Lagrangian 

submanifold of the symplectic structure given by (M2n, ).   
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Wa(Zi) (there is exact solution to Wa(Zi) = 0), are linearly independent and the differential 1 

form 2 

 
N k

n
a a ,N-K1

1

aak dW dW   (44) 3 

is not vanishing. In this case, q = N  k and the dimension of the surface is easily determined. 4 

For example, if the hypersurface is described by a single algebraic equation W(Z) = 0, the 5 

form (44) is given by (1) = dW. On the other hand, if the hypersurface is not a complete 6 

intersection, then there exists a differential form 7 

 T
1 N

,(N )
[ ] ,N-K1

k

aa A k qn k
A a a dW dW   (45) 8 

where A, (N -k - q), is a set of N – k –q, forms defined such that (N - k), is non-vanishing on the 9 

constraints Wa(Zi) = 0, and TA, [a1 aN - k], is a numerical tensor which is antisymmetric in the 10 

indices  a1 aq. The construction of A, (N -k - q), depends upon the precise form of the algebraic 11 

manifold (variety of the equations Wa(Zi) = 0). In some cases a general form can be given, but 12 

in general it is not easy to find it and we did not find a general procedure for that 13 

computation. 14 

To construct a global form on the space S, one can use a modification of the Griffiths residue 15 

method [16], by observing that given the global holomorphic form on the ambient space  16 

,NiN 1

1 N

i
i idZ dZ  we can decompose the {Zi}’s, into a set of coordinates Ya = 17 

Wa(Z), and the rest. By using the contraction with respect to q, vectors {Zai}, the top form for 18 

S, can be written as 19 

 1

1

(N)

(N )
,

a

a

k

k
  (46) 20 

which is independent from {Zai}, as can be easily proved by using the constraints Wa(Zi) = 0. 21 

Notice that this form is nowhere-vanishing and non singular only the case of CY-space 22 

(Calabi-Yau manifold). The calabi-Yau manifols is a spin manifold and their existence in the 23 

our space M2n, like product of this construction is the first evidence that a spin manifold is the 24 

spin of our space-time due to their holomorphicity [17]. The vectors {Zai}, play the role of gauge 25 

fixing parameters needed to choose a polarisation of the space S, into the ambient space.  26 

For example, in the case of pure spinor we have: the ambient form 27 

1

1 ,
1 6i id d  and 5 m m m

mnpd d d d d . From these data, we 28 

can get the holomorphic top form (11), by introducing 5, independent parameters , and by 29 

using the formula (46). 30 

Advances in Quantum Mechanics228



Provisional chapter 17 

The latter is independent from the choice of parameters , (however, some care has to be 1 

devoted to the choice of the contour of integration and of the integrand: in the minimal 2 

formalism, the presence of delta function ( ), might introduce some singularities which 3 

prevent from proving the independence from , as was pointed out in [18], [19]). Using (k) 4 

 (k), one can compute the correlation functions by integrating globally defined functions. 5 

When the space is Calabi-Yau, it also exists a globally-defined nowhere vanishing 6 

holomorphic form hol(k 0), such that  hol(k 0)  hol(k 0), is proportional to (k)  (k). The ratio of 7 

the two top forms is a globally defined function on the CY-space. In the case of the 8 

holomorphic measure hol(k 0), the integration of holomorphic functions is related to the 9 

definition of a contour S, in the complex space 10 

 O O
( ,0)

0
A S

(Z , ) (Z , ),k
i A i A

A

p p   (47)11 

where O(Zi, pA), are the vertex operators of the theory localized at the points pA, of the 12 

Riemann surface and O0(Zi, pA), is the zero-mode component of the vertex operators. Newly 13 

our conscience operator come given by the form (k, 0). 14 

Example 2. All Calabi-Yau manifolds are spin. In hypothetical quantum process (from point 15 

of view QFT), to obtain a Calabi-Yau manifold is necessary add (or sum) strings in all 16 

directions. In the inverse imaginary process, all these strings define a direction or spin. The 17 

strings themselves are Lagrangian submanifolds whose Lagrangian action is a path integral. 18 

In mathematics, an isotropic manifold is a manifold in which the geometry doesn't depend 19 

on directions. A simple example is the surface of a sphere. This directional independence 20 

grants us freedom to generate a quantum dimension process, since it does not import what 21 

direction falls ill through a string, the space is the same way affected and it presents the 22 

same aspect in any direction that is observed creating this way their isotropy. 23 

 24 

Figure 4. a) For instance, let us consider the hypersurface S : iZi
2 = 0, in CN. This equation can be put in the form 25 

using generalized coordinates S(ui) = wz, where i, runs over i = 1, 2, , N-2, coordinates and w, z, are two 26 
combinations of the Z’s. S(ui), is a polynomial of the coordinates ui. For a given N, they are local CY-manifolds (spin 27 
manifolds) and there exist a globally-defined a organized transformation inside space M [20]. b) Intention inside 28 
particle Q.   29 

The importance of this isotropy property in our spin manifold, helps us to establish that the 30 

transformations applied to the space that are directed to use (awakening) their  nano-31 

structure do it through an organized transformation that introduces the time as isotropic 32 

(a) (b)
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variable, creating a momentary timelessness in the space where the above mentioned 1 

transformation is created. Then the intentionality like a organized transformation is a co-2 

action compose by field that act to realise the transformation of space and the field of  the 3 

proper space that is transformed. Then the symplectic structure subjacent in M, receives 4 

sense.  5 

A transformation T, it is said organized if in whole stage of execution of the transformation, 6 

isotropic images are obtained of the original manifold (object space of the transformation), 7 

under a finite number of endomorphisms of the underlying group to the manifold that co-8 

acts with this transformation.  9 

Likewise, if T, is a transformation on the space M, whose subjacent group G, have 10 

endomorphisms  , , n, such that T(M), nT(M), are isotropic then the infinite tensor 11 

product of isotropic submanifolds is a isotropic manifold, and is a organized transform 12 

equivalent to tensor product of spin representations T(M)  nT(M)  [2, 5].  13 

4. Quantum integral transforms: Elimination of distortions and 14 

quantum singularities  15 

One of the quantum phenomena that can form or provoke the conditions of formation of 16 

singularities at this level is the propensity of a quantum system to develop scattering 17 

phenomena for the appearance of the anomalous states of energy, as antimatter energy or 18 

energy of particles of matter in the free state [21], which crowds (a big number of particles 19 

overlaps) due to the accumulation of the states of energy of the past or future (to see table 1) 20 

[21, 22],which on have different existence time and to having met their corresponding pairs 21 

of particles (particle/anti-particle pair) provoke bundles of energy that there form in the 22 

space time M  It, singularities of certain weight (for mechanisms that can be explained 23 

inside the actions in SU(3) and SU(2) [11, 21]) due to its energy charge [21]. 24 

Studies in astrophysics and experiments in the CERN (Organisation Européenne pour la 25 

Recherche Nucléaire) establish that a similar mechanism although with substantial 26 

differences (known also like Schwinger mechanism) can explain the formation of a 27 

singularity such as the fundamental singularity (big-bang). This one establishes that the 28 

gravitational field turns into virtual pairs of particle- antiparticle of an environment of 29 

quantum gap in authentic pair’s particle-antiparticle. If the black hole (singularity of the 30 

Universe) is done of matter (antimatter), it might repel violently to thousands of million 31 

antiparticles (particles), expelling them to the space in a second fraction, creating an event of 32 

ejection very similar to a Big-Bang. Nevertheless, in case of a singularity in the region of 33 

space - time of the particles in a quantum ambience is different in that aspect, since the small 34 

mass of a singularity (s), might perform the order of the Planck mass, which is 35 

approximately 2 × 10 8 kg or 1,1 × 1019 GeV. To this scale, the formulation of the 36 

thermodynamic theory of singularities of the space macroscopic time predicts that the 37 
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Provisional chapter 19 

quantum singularity (s), could have an entropy of only 4 nats; and a Hawking 1 

temperature of needing quantum thermal energy comparable approximately to the mass of 2 

the finished singularity; and a Compton wavelength equivalent within a radius of 3 

Schwarzschild of the singularity in the Universe (this distance being equivalent to the 4 

Planck length). This is the point where the classic gravitational description of the object is 5 

not valid, being probably very important the quantum effects of the gravity. But there exists 6 

another mechanism or thermodynamic limit that is fundamental in the theory of the 7 

quantum dispersion and of the formation of quantum singularities. 8 

Z+/Z- 

The past and future in the quantum scattering phenomena 

Particle 

(1) 

Anti-particle 

( 1) 

Input 
 (1)  

Positive Future 

 (1) 

Negative Future 

Output 
  (1)  

Positive Past 

(1) 

Negative Past 

Table 1.  9 

Proposition 1. The energy of the singularity is born of the proper state of altered energy of 10 

the quantum space-time, although without a clear distinction of a suitable path of the 11 

particles (without a normal sequence of superposition of (past and future) particles (a path does not 12 

exist)). Then in this absence of paths, the singularity arises. 13 

Proof. It is necessary to demonstrate that the past and present particles overlap without a 14 

normal sequential order in the causality, passing to the unconscious one (Oc = 0, since L 0 = 0 15 

or L = 0) for fluctuations of energy that have a property of adherence to the transition of 16 

energy states forming energy bundles ([23]) that alter the normal behavior of the particles in 17 

the atoms. In effect, this happens when the quantum energy fragments and the photons 18 

exchange at electromagnetic level do not take in finished form (there is no exchange in the 19 

virtual field of the SO(3)). For which there is no path that the execution operator I, (see the 20 

section 2) could resolve through of a path integral between two photons (virtual particles). In 21 

this case the path integral does not exist. For the adherent effect, the virtual particles that do 22 

not manage to be exchanged accumulate forming the altered energy states (an excess very 23 

nearby of particles of the certain class (inclusive anti-particles of certain class) they add to 24 

themselves to the adherent space of photon (in this case the adherent photon is an excited 25 

photon intE  (E), (where E, is the influence of the singularity) with the infinitesimal 26 
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nearby of points given by (E) [24])) which are the bundles of energy that defines the 1 

singularities.   2 

 3 
Figure 5. In a). is the elastic band of the space-time M, and b), result the pulse solutions of the Fokker-Planck 4 
Equation. In c), the singularity is being perturbed by states of different particles interacting and creating big scattering  5 
(the red circles are perturbations created by the states of different particles creating scattering with a big level of 6 
particles pair annihilating. This produce defecting evolution in every sub-particles and increase of inflation in quantum 7 
level of the space-time). In d), the singularity is formed. 8 

Let ˆ
0( , ),U t s  the operator of evolution [6], of a particle x(t), in the space of transition of the 9 

levels of conscience operator Oc, to all time t  s. Whose operator limits of s (that is to say, 10 

coming to the process of understanding of a concept, (border conditions  of ˆ
0( , )U t s )), satisfy 11 

 ˆ
0lim ( , ) 1,[31]

t s

U t s   (48) 12 

But there are waves of certain level (Table 1), that act like moderators of wave length to the 13 

operator of evolution defined by (s), satisfying that 14 

 ˆ
0

( ) ,
( , ) ( ) ,

0, 0

s t s
U t s s

t
  (49) 15 

having then that the singularity (s), that is object of quantum transformation to along of 16 

the time, is that product obtained by the integral transform  17 

 ˆ

2i ( ')

2
c 0

C

( ) ( ( )) ( , ) (E E ) e ( , ) ,
2 i

m x x

X(C)

m
s O x t w s t dt U s t dx dt

n
  (50) 18 

where the singularity changes the time t  s, for the evolution operator ˆ
0( , ),U t s  [11], due to 19 

the evolution of the quantum system in the space-time. But by evolution operator [6, 21], 20 

this evolution comes given by the anomalous energy ( ) [6] (see figure 3) , which 21 

establishes the energy load functions w+(s, t) w (s, t), that define the energy load function 22 

w(s, t), at time t  s, where w(s, t) = ( )U0(s, t) and are amplitudes of the curves M 23 

= Itx(s), It = Mx 1(s),  and M, It, functions of evolution curves of space-time see figure 3). 24 
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Then a corrective action is the inverse transform that transform the energy load function in 1 

energy useful to the process of re-establishment on the quantum space (remember that it is 2 

necessary to release the bundle of energy captive). How this inverse transformation realise?   3 

 4 
Figure 6. a). This is the graph that shows the formation of singularities of quantum type by the energy load 5 
(positives and negatives), rational amplitudes (extremes and defects), and bundle energy created and defined by 6 

. The load is  pre-determined by the impulse (t s), which focalize the field action. The adherence zones are 7 
propitious to the formation of singularities with all conditions described. The wave function , stays under constant 8 
regime in space evolution, which is = (x, 0). In the second wave, the corresponding wave function is for other 9 
transition time (other evolution space), under the same conditions. 10 

Lemma 1. Let M = M  It, the unlimited space of the quantum space (Fock space [24]). A 11 

particle x(t), that is focalized by a bad evolution given for the energy load function w(t, s), 12 

comes given for 13 

 ( ) ( ) ( ) ( ) ( ) ,x s x t dx t t s x t dt  (51) 14 

Then to time t = s, begin the singularity. 15 

Proof.  We consider the function w(t, s), like a Green function on the interval t  s. Given that 16 

this function is focalised for the emotional interpretation which is fed by the proper energy 17 

of the deep quantum energy (since it produce an auto-disipant effect that deviates the evolution of 18 

every particles [23]), then Oc(x(t), x’(t))x(t) = 2w(t, s) = (t s) [25]. By the nature of Green 19 

function of the weight function w(t, s), we have 20 

c

2

( ') ( ) ( ) ( ) (  - ') ( ) ( ) ( ( )) ( )

( , ) ( ) ( ) ( )

t

t t

M I M

t

x x t dx t x x x dx t x t O x t x t

w s t x t t s x t dt,

 21 

Then all particle x(t), in the space-time M  It, affected by this regime to time t = s, and after, 22 

take the form (that is to say, to past and future particles)    23 
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c c( ( )) ( ) ( ( )) ( ) 0 ( ) ( ) ,
s

s s

O x t x t dt O x t x t dt t s x t dt   1 

where the first integral is equal to cero, because there is no singularity before s, (the 2 

evolution happens after the time t  s (see (49)). But this evolution is anomalous, since to all t 3 

< s, includes a captive energy not assimilated to t = s (this because it does not have a conscience 4 

operator at this moment (part of (28) defined by O0c)). Then    5 

c( ) ( ) ( ) ( ) .
t t

O x x t dt t s x t dt  6 

 7 
Figure 7. The surface represents the perturbation given by the existence of a singularity in the space-time of the 8 
quantum zone. The computational model obeys the solution of Planck-Fokker partial differential equation. The waves 9 
of perturbed state begins to s  t, such as it was predicted in the lemma 1. The surface include the waves established in 10 
figure 3, given by z = Plot3D(exp(-1/2(x^2 + y^2))(cos(4x) + sin(2x) + 3sin(1/3y) + cos(5y)ln(2x))), through the space-time 11 
4.0 program. Observe that is present a kernel of transformation for normal distribution given by exp(-1/2(x2 + y2)) that 12 
will appear in the transform that defines the singularity when a particle is not appropriately assimilate. The normal 13 
distribution kernel is the statistical weight that establishes the appearance of an abnormal evolution created by the 14 
existence of the singularity. That is to say, the singularity is detected by the anomalous effects that are glimpsed in the 15 
flux of the operator Oc, and that are observed in the surface bundle. 16 

Theorem. 1. (F. Bulnes). Let consider a conscience operator with singularity Oc( ), for the 17 

presence of an energy load w(s, t). Then the elimination of the singularity (s), comes given for  18 

 
c

1

1
( ) ( ( )) ( , ) ( ) ( ) ( ) ,

j j
jX(C) C

x t correction restoring O s w t s dt dim n F n dx t
A

  (52) 19 

where dim ( ), is the Neumann dimension corresponding to the Weyl camera of the roots j, 20 

[26 27 used in the rotation process to eliminate the deviation [11], created by the 21 

singularity.  22 

Proof. Consider an arbitrary irreducible diagram with nodes with w-parts (parts of diagrams 23 

with nodes of weight w(t, s)). Suppose that this points “nodes” with weight w, determines 24 

the singularity given by (50). In fact, by the theory of Van Hove on the singularities in the 25 
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thermodynamic limit [23], each transition matrix of energy states has a correspondence with 1 

the product of Hermitian matrices of the corresponding evolution operators that to this case 2 

on a node en t = s, are given by (s’) = eis’h0 e is’h where we have used the lemma 1, to the 3 

arising of the quantum impurity in the space-time M (quantum singularity) in the image space 4 

of the conscience operator TM*, located in R3  It, in the point or node (  G [12, 23] (w-5 

diagram)) t = s, corresponding of root space . Then considering a irreducible diagram 6 

containing a w(t, s)-part, their contribution will be contained in r – R-space (which is the E+ 7 

E -space (see figure 2)) [23] by the function (t  s): 8 

 ˆ0 0i i(3) 3 3

1

( ) ( ) ( , ) ( , ),H t H sj j j j

jC

x t e U t s d r d R e n s
r

r R  (53) 9 

to jth-particle in the interaction of a jth-thought to time s. The diagrams drawn here (figure 3) 10 

may be interpreted to represent the evolution of particles contributing the position density 11 

matrix nr(R, t) at t = t, in the corresponding path integral of correction. The true correction 12 

comes given by the evolution created in the quantum process of transformation of the 13 

functional Oc( (s)), where the information (s), must be changed when lim i ( , ) ( )
t s

w t s n s  14 

(is to say, when M = It). If we call tj = s, (j-th-time of evolution in the thought process) then the 15 

integral (53), takes the form 16 

 
j 12

j 0i( )

1 2 1
1 10 0 0

1 ( i) ( ) ) ( ) ( ) ( )} ( ) ,
1

tj t t
t t H

j 2 j j j
j

e dt dt dt t t t n F n dx t  (54) 17 

where the states j, are established in the density matrix n(0), that to a vertex of G,  (w -18 

diagram), arrange, those perturbations B (see figure 3), that they gave origin to the 19 

singularity, with the corresponding arrange of those positive perturbations A, that will 20 

realises the corrective action to transform the singularity signal (s), of an adequate thought 21 

given by x(t). Due to that, the information given by the product An(0)B, must be changed 22 

when lim i ( , ) ( )
t s

w t s n s  , then a w-diagram must be change for diagram [27]. But this 23 

live in the quantum field of the space-time TM*, that is to say, in the corresponding zone of 24 

the executive operator I. Then in the material space-time (Einstein universe), the 25 

displacement of energy needs inside this transformation the application of an invariant 26 

given in the quantum space that guarantee that the new particle (boson) obtained let that 27 

correct. This is given by number dim ( ), since it depends on the roots system to the 28 

representation of the corresponding action group [27], that recover the recognition action. 29 

By the integral (4), the transformation due to the new conscience operator created in TM*-30 

zone obtained on whole the space-time is,             31 

c
1

( ) 1
( ) ( ) ( ) ( ) ,j j

jX(C) X(C)

x t
O dx t n F n dx t

dim A
 32 

that is the result wanted.  33 
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5. Re-composition and determination of the realities   1 

We consider the space-time M, like space where Rd  It, is the macroscopic component of the  2 

space-time  and  we  called  F,  the microscopic component of the space-time of ratio 10-33cm 3 

(length of a string [21]). For previously described the quantum zone of the space-time M, is 4 

connected with N, which will called virtual zone of the space-time (zone of the space-time 5 

where the process and transformation of the virtual particles happen) are connected by 6 

possibilities causal space generated by certain class of photons and by the material particles 7 

interacting in the material space time, with permanent energy and the material particles re-8 

combining their states they become in waves on having moved in Rd  It, on any path of 9 

Feynman. Likewise we can define the space of this double fibration of quantum processing 10 

as: 11 

 2 , , ,, d
c tO x t t C IR

2
2

c2
( ) 0O x t t

t

L   (55) 12 

with the states , of quantum field are in the quantum zone M. Let N, the ambi-space (set of 13 

connection and field) defined as: 14 

 ,    0 ,( ) |X M L XXY

X'Y'
N   (56) 15 

where , is the connection of virtual field X, with the quantum field Y, and , is the field 16 

whose action is always present to create perceptions in the quantum zone connected with  17 

(2-form)[28]. Then we can create the correspondence given by the double fibration [29]: 18 

  (57) 19 

This double fibration conformed the interrelation between M, and N.  x(t) M, give 20 

beginning to a complex submanifold (that represents the spaces where are the quantum 21 

hologram) that includes all these quantum images given by quantum holograms, why? 22 

Because this complex submanifolds, considering the causal structure given in the space-time 23 

by the light cones (see figure 6 a)) [26], of all trajectories that follow a particle in the space-24 

time [29], they can write using (57) as:  25 

 
-1

x = x ,
  (58) 26 

of N, such that x  P1  P1, which by space-time properties to quantum level represent the 27 

space of all light rays that transit through x, conforming a hypersurface (projective surface) 28 

that is a light surface. This surface is called the sky x [30]. A sky in this context represents the 29 

set of light rays through x (bosons) that it comes of the virtual field. 30 
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If M  C4, then M = M  Qx, is the complete universe (include the cosmogonist perception by 1 

the super-symmetry specialist [31]). But, what is there of our quantum universe with regard 2 

to our real universe (included the material part given by the atoms)? 3 

The answer is the same, we have an universe of ten dimensions and M = N  M, where the 4 

quantum representation of the object x(s), is the quantum space-time M = R3  It, (which is 5 

the Einstein cosmogonist perception) then the cosmo-vision of the virtual particles is C2  Qx, 6 

[21],  then the execution operator I, that proceeds to connect virtual particles through the 7 

paths which have path integrals on double fibration, establishing the material-quantum-8 

virtual connection required to a total reality: 9 

  (59) 10 

where C, is the material part connected with the quantum zone of the space-time (space 11 

taken by atoms) M. The corresponding path integral that connects virtual particles in the 12 

whole fibration is the integral of line type (5) defining feedback connection: 13 

 1 1
I Q c( ( ( ))) ( ( ( ( ( )))) ,

x
s

x s O x  (60) 14 

always with the space {x(s) M  x  N}, to the permanent field actions. Then the reality 15 

state is the obtained through the integral of perception (60), considering the fibre of the 16 

corresponding reality in the argument of the operator Oc, of the integrating from (60).  17 

6. Applications to the nanosciences 18 

6.1. Nanomedicine 19 

The integral medicine into of the class of alternative medicine, fundament their methods of 20 

cure in to health and reactive the vital field X, of the human body B, the regeneration of the 21 

centers of energy of B, and the corrections and restoration of the flux of energy Flux, in and in 22 

each organ B, of the human body B, taking constant of gradient of their electromagnetic 23 

current, voltage and resistance, obtaining of this manner, the balance of each organ in 24 

sunstone with the other organs to characterize to B, like complete synergic system in 25 

equilibrium and harmony [10]. 26 

Now, the cure that is realized to nano-metric scale must be executed with a synergic action 27 

of constant field 33 , equal to effect in each atom of our body to unison of real conscience of 28 

cure (duality mind-body [11]). Of this way, the conscience of B, is the obtained synergy by the 29 

atoms in this sense and that will come reflected in the reconstitution of the vital field X. 30 

Quantum Intentionality and Determination of Realities in the Space-Time Through Path Integrals ...
http://dx.doi.org/10.5772/53439

237



26 

Then under this reinterpretation, the sickness is only an effect of the fragmentation of this 1 

real conscience of cure of B, that is deduced by disconnections and disparity of atoms [11]. The 2 

integral medicine helps to recover the continuity of this conscience through of the electronic 3 

memory of health of the proper body [11, 22] (see the figure 6 c)).   4 

6.2. Quantology and neurosciences 5 

Let M, the mind space and their organic component (material component) the brain space C. 6 

Also we consider the quantum component of the mind given by the space-time M. Studies 7 

realised in statistical mechanics have revealed that the Bose-Einstein statistics stretches to 8 

accentuate the low energy levels. This reflects his closeness to the emission of a virtual field, 9 

where the virtual particles are not detected in a virtual energy sea. This allows to surmise that 10 

the radiation that takes place from the virtual field to the quantum field of M, is composed 11 

by photons type bosons (that is to say it obeys this Bose-Einstein statistics), since the quantum 12 

field interacts with the material particles that contains the material field of the mind which is 13 

anchored in the brain C, like material organ.  14 

Theorem (F. Bulnes). [21] The total Lagrangian of mental field comes given by the superior 15 

action whose total conscience is 16 

 
total QCD EM

O = O O ,   (61) 17 

to one total action defined by the groups SU(3), (quantum and virtual field) and SU(2), 18 

(material field).  19 

Proof. The Lagrangian of the theory is an invariant of Lorentz and invariant under local 20 

transformations of phase of the group SU(3), (for the charge of color) and has the following 21 

form [31]: 22 

 

1
L

4
b b bTOTAL i T ,a a

a aq q qmq bq q
 (62) 23 

This corresponds to the space of the mind M =M +C , where OEM, put in C, (neurological 24 

studies have proved that the process of thought in the level at least visible is of electromagnetic type) 25 

signals through charges in the synapses and neurons of C. Nevertheless these charges  26 

produce in one level deeper. The tensor ba , is anti-symmetric and represent a  bosonic field  27 

created  by  the  interaction  of  quarks  q, p = ,q   and [p, q] = q q - q q.  Whose bosonic field 28 

has all the particles of spin 0, and the trace of tensor ba , has electromagnetic components 29 

conformed by the photons that are stable on the limit of the transformation q(x(s)) I  30 

e i a(x(s))Tab(x(s)), of the thought x(s), where some a(x(s))Ta, is the electromagnetic frequency ka, 31 

of the term ikav [7, 10 26], where in these cases the last term in the second member of (62), is 32 

¼ F F . Then the SU(2)-actions are included in the SU(3), actions and their points are 33 

electromagnetic particles transformed by these rules like photons (= thoughts in M) [28].  34 
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 1 
Figure 8. a). Concept of the topological space (sky [21, 30]) and the cosmogonist perceptions of the mind. The 2 
conscience operator of the different realities is given by (60). b) Modelling from boson-shape distribution in localizing 3 
of symptoms in the mind by cerebral signals with low interchange electrons [24, 25, 32, 33]. Bose-Einstein distribution 4 
was published in [22]. c) Total Action due Gelsem including the action de Bervul and Ignamara. The corresponding 5 
quantum intelligence code of this total action is given by 01111010110110110110111110, [7]. The corresponding 6 
code given in black include de codes of Gelsem and Bervul. The code in orange is the code of Gelsemium equal to code 7 
of Gelsem. This quantum code was used to cure a patient with a digestive illness [11, 21, 22]. 8 

6.3. Electromagnetic vehicle with levitation magnetic conscience 9 

Considering some applications of quantum electrodynamics in the design of flaying vehicles 10 

self-supported and their magnetic levitation, we find the magnetic conscience operator is 11 

defined for the transmitting of the diamagnetic property every particle of the ship structure.       12 

This vehicle is controlled by one microchip that is programmed by conscience operators 13 

algebra of electromagnetic type that leads to the flow of Eddy currents, the iso-rotations and 14 

suspension of the special geometrical characteristics vehicle, generating also on the vehicle 15 

structure certain “magnetic conscience” that provokes all movements like succeeding the 16 

sidereal objects in the universe [26, 34]. This magnetic conscience is generating by the proper 17 

particles of the ship structure transmitted for the interaction of superconductor inside the 18 

reactor with the magnetic field generated by the rotating rings under the ship. By so doing, 19 

the Eddy's currents in the “skin effect” around the structure of the ship are given by the 20 

actions [35] 21 

 ship M rot ,   (63) 22 

and using the quantum E  H-fields to create (magnetic conscious operator given by the 23 

integrals [36]) 24 

 

2( , ) H /8 V,M M

ship

H A L d

  (64) 25 
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 1 
Figure 9. a). The green color represents the state of quantum particles in transition to obtain the anti-gravity states 2 
through the interaction of the E  H-fields used on the structure of the vehicle. The blue flux represents Eddy's 3 
currents that interact with the lines of magnetic field to produce an diamagnetic effect in the top part of the vehicle. 4 
The red central ring is the magnetic field that generates the twistor surface (this computational simulation is 5 
published in [35, 36]). b) Top part of the flying plate showing the generation of the effect skin obtained in the 6 
interaction superconductor - magnetic field. The regions in light and obscure blue represent the flow of Eddy's 7 
currents, in this top part of the vehicle. The Skin effect is derived by the quantum interaction by the actions of E  H 8 
[26, 37]. c) The microscopic effects of the electromagnetic fields (quantum densities of field) created inside the 9 
algebra E  H, create an effect of macro-particle of the vehicle [36] (the vehicle and their electromagnetic revetment 10 
behaves like a particle) where their displacement is realized in instantaneous form and their direction it is a macro-spin 11 
projected from the magnetic conscious operator (from M, from (63)) of the ship which defines their angular moment 12 
[35, 36]. 13 

Apendix 14 

Technical notation  15 

Oc – Is an operator that involves the Lagrangian but directing this Lagrangian in one specific 16 

fiber  (direction)  prefixing tha Lagrangian action in one direction. This is defined as the map: Oc 17 

: TM  TM*, with rule of correspondence c( )w O v w , where w = L(v), with L, the classic 18 

Lagrangian. This defines the quantum conscience. If we locally restrict to Oc, that is to say, on 19 

the tangent space TxM   TxM,  x M (  ( )), we have that  20 

locally
c : T T ,( T ) T *

x x
O M  M M M   21 

with rule of correspondence  22 

c( ,  ) ( ) ,v w O v w  23 

Oc(v)w, generalise the means of Oc(v)v = L(v),  v TxM,  x ( ). Likewise, if : TM  R, 24 

with rule of correspondence ( ) ( ( ))  ( )  
c

L v L v O v v , then the total action along the 25 

trajectory , will be  26 

(a) (b) (c) 
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c

( ) ( )

( )   ( ),O v v L v

  1 

In the forms language, the conscience operator comes given by the map L : TM  TM*, with 2 

rule of correspondence given by (19). The quantum conscience shape a continuous flux of 3 

energy with an intention, involving a smooth map  (defined in the example 1). Then the 4 

conscience operator is related with the action , and the trajectories t, through of the 5 

following diagram: 6 

R

CTM TM *

M
t

O

  7 

Oc( ) – Conscience Operator in the singularity .  This is a kernel of the quantum inverse 8 

transfom of path integrals to eliminate singularities. Their direct transform use the kernel 9 

Oc(x(t)).   10 

O0(Zi, pA) – Vertex operator of the theory given by the equations Wa(Zi) = 0, localized at the 11 

points pA, of the Riemann surface S. 12 

O(x – x’) – Is the functional operator O(x - xj) = ( x+ m2 – i ) n(x - xj). This operator involves 13 

to electronic propagator in a pulse impulse. 14 

OQCD – Quantum chromodynamics conscience operator. Their Lagrangian density using the 15 

quantum chromodynamics is LEM = n (ihc nD n mnc2 n n) G G , Where D, is the 16 

QCD gauge covariant derivative (in Feynman notation D ), n = 1, 2, 6 counts the quark 17 

types, and   is the gluon field strength tensor. 18 

OEM – Conscience operator defined through of the Lagrangian to quantum electromagnetic 19 

field (these like gauge fields). Their Lagrangian density is LEM = 20 

ihc D mc2 (1/4 0)F F where F , is the electromagnetic tensor, D, is the gauge 21 

covariant derivative, and D, is Feynman notation for D  . 22 

Ototal – Total quantum conscience operator. This is the composition of operators OEM 23 

followed OQCD.  24 

Oc – Action that involves a conscience operator  Oc. 25 

(k, 0) – Differential form to complex hypersurfaces of dimension k. This form is analogous to 26 

the form L, and involves the conscience operator (Oc)*.   27 

x – Fibers of the topological space Qx, called sky conformed by the light rays through x 28 

(bosons) that it comes of the virtual field. This is a conscience operator when realises the 29 

reality transformation by the double fibration. 30 
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M- Action that have codimension strata n – k. This action is due to the differential d ( )h. 1 

intM- Action that have codimension strata k. This action is due by ( ). 2 

Author details 3 

Francisco Bulnes 4 

Department of Research in Mathematics and Engineering, TESCHA, Mexico 5 

Acknowledgements 6 

I am grateful with Carlos Sotero, Eng., for the help offered for the digital process of the 7 

images that were included in this chapter. 8 

7. References 9 

[1] Sobreiro R., editor. Quantum Gravity. Rijeka: InTech; 2012.  10 

http://www.intechopen.com/books/quantum-gravity- (accessed 20 January 2012).  11 

[2] Bulnes F.  Analysis of prospective and development of effective technologies through 12 

integral synergic operators of the mechanics. In: ISPJAE, Superior Education Ministry of 13 

Cuba (eds.) 14th Scientific Convention of Engineering and Arquitecture: proceedings of 14 

the 5th Cuban Congress of Mechanical Engineering, December 2-5, 2008, CCIA2008, 2-5 15 

December, 2008, Havana, Cuba. 16 

[3] Bulnes F. Theoretical Concepts of Quantum Mechanics. In: Mohammad Reza Pahlavani 17 

(ed.) Correction, Alignment, Restoration and Re-Composition of Quantum Mechanical 18 

Fields of Particles by Path Integrals and Their Applications. Rijeka: InTech; 2012. p 19 

Available from http://www.intechopen.com/books/theoretical-concepts-of-quantum-20 

mechanics/correction-alignment-restoration-and-re-composition-of-fields-of-particles-21 

by-path-integrals-and-the 22 

[4] Marsden, JE.; Abraham, R. Manifolds, tensor analysis and applications. Massachusetts: 23 

Addison-Wesley; 1993. 24 

[5] Lawson, HB.; Michelsohn, ML. Spin Geometry, Princeton University Press; 1989. 25 

[6] Holstein, BR. Topics in Advanced Quantum Mechanics. CA, USA: Addison-Wesley 26 

Publishing Company; 1992. 27 

[7] Feynman, RP; Leighton, RB; Sands, M. Electromagnetism and matter (Vol. II). USA: 28 

Addison-Wesley; 1964. 29 

[8] Warner, FW. Foundations of Differential Manifolds and Lie Groups, New York: 30 

Springer, 1983. 31 

Advances in Quantum Mechanics242



Provisional chapter 31 

[9] Sokolnikoff, IS. Tensor Analysis: Theory and Applications. New York: Wiley and Sons; 1 

1951.  2 

[10] Bulnes F; Bulnes H. F; Hernandez E; Maya J. Integral Medicine: New Methods of 3 

Organ-Regeneration by Cellular Encoding through Path Integrals applied to the 4 

Quantum Medicine. Journal of Nanotechnology in Engineering and Medicine ASME 5 

2010; 030019(1) 7. 6 

[11] Bulnes F; Bulnes H. F; Hernandez E; Maya J. Diagnosis and Spectral Encoding in 7 

Integral Medicine through Electronic Devices Designed and Developed by Path 8 

Integrals. Journal of Nanotechnology in Engineering and Medicine ASME 2011; 9 

021009(2)10. 10 

[12] Ionescu LM. Considerations on some algebraic properties of Feynman integrals. 11 

Surveys in Mathematics and Its Applications. Vol. 3 (2008). p79-110.    12 

[13] Kontsevich M, Deformation quantization of Poisson manifolds I. In: Joseph A, Mignot F, 13 

Murat F, Prum B, Rentschler R.(eds.) Proceedings of the First European Congress of 14 

Mathematics, Vol. II, 6–10 July 1992, Paris, France. Progr. Math., 120, Birkhäuser, Basel, 1994. 15 

[14] Kontsevich M. Feynman diagrams and low-dimensional topology. In: Joseph A, Mignot 16 

F, Murat F, Prum B, Rentschler R.(eds.)  Proceedings of the first European congress of 17 

mathematics (ECM),  Vol. II, 6–10 July 1992, Paris, France, Progr. Math., 120, Birkhäuser, 18 

Basel, 1994. 19 

[15] Bulnes F. Cohomology of Cycles and Integral Topology.  In: Bulnes, F. (ed.) Meeting of 20 

27- 29 Autumn 2008, Mexico City, Appliedmath 4, IM-UNAM, Mexico, 2008. 21 

www.Appliedmath4.ipn.mx 22 

[16] Griffiths P; Harris J. Principles of Algebraic Geometry. USA: Wiley-Interscience; 1994. 23 

[17] Gross M; Huybrechts D; Joyce D. Calabi-Yau Manifolds and Related Geometries. 24 

Norway: Springer, 2001.    25 

[18] Hoogeveen J; Skenderis K. Decoupling of unphysical states in the minimal pure spinor 26 

formalism I. JHEP 1001 (2010) 041. [arXiv:0906.3368]. 27 

[19] Berkovits N; Hoogeveen J; Skenderis K. Decoupling of unphysical states in the minimal 28 

pure spinor formalism II. JHEP 0909 (2009) 035. [arXiv:0906.3371] 29 

[20] Kibbe TWB. Geometrization of Quantum Mechanics. Springer Online Journal Archives 30 

1860-2000 1979; 65(2) 189-201. 31 

[21] Bulnes F; Bulnes HF; Cote D. Symptom Quantum Theory: Loops and Nodes in 32 

Psychology and Nanometric Actions by Quantum Medicine on the Mind Mechanisms 33 

Programming Path Integrals. Journal of Smart Nanosystems in Engineering and 34 

Medicine 2012; 1(1) 97-121. 35 

[22] Bulnes F; Bulnes HF. Quantum Medicine Actions: Programming Path Integrals on 36 

Integral Mono-Pharmacists for Strengthening and Arranging of the Mind on Body. 37 

Journal of Frontiers of Public Health 2012; accepted. 38 

Quantum Intentionality and Determination of Realities in the Space-Time Through Path Integrals ...
http://dx.doi.org/10.5772/53439

243



32 

[23] Fujita S. Introduction to non-equilibrium quantum statistical mechanics. Malabar, Fla:  1 

W. Krieger Pub. Co. 1983. 2 

[24] Simon B; Reed M. Mathematical methods for physics, Vol. I (functional analysis). New 3 

York: Academic Press, 1972. 4 

[25] Eleftherios N; Economou E;  Economou N. Green’s Functions in Quantum Physics. 5 

Berlin Germany: Springer, 2006. 6 

[26] Bulnes F, Doctoral course of mathematical electrodynamics.  In: National Polytechnique 7 

Institute (ed.) Appliedmath3: Advanced Courses: Proceedings of the Applied Mathematics 8 

International Congress, Appliedmath3, 25-29 October SEPI-IPN, México, 2006. 9 

[27] Bulnes F, Conferences of Mathematics: Seminar of Representation Theory of Reductive 10 

Lie Groups. Mexico: Compilation of Institute of Mathematics (ed.), UNAM Publications, 11 

2000. 12 

[28] Aharonov Y; Bohm D. Significance of electromagnetic potentials in quantum theory. 13 

Phys. Rev. 115 (1959) 485-491. 14 

[29] Bulnes F; Shapiro M. On general theory of integral operators to analysis and geometry 15 

(Monograph in Mathematics). Mexico: SEPI-IPN, IMUMAM, 2007. 16 

[30] LeBrun ER, Twistors, Ambitwistors and Conformal Gravity. In: Bailey TN, Baston RJ 17 

(ed.) Twistors in Mathematics and Physics, UK: Cambridge University; 1990. p71-86.  18 

[31] Hughston LP; Shaw WT. Classical Strings in Ten Dimensions. Proceedings of the Royal 19 

Society of London. Series A, Mathematical and Physical Sciences, Vol 414. No. 1847 20 

(December 8). UK, 1987.  21 

[32] Dossey L. Space, Time and Medicine. Boston: Shambhala, USA, 1982. 22 

[33] Truesdell C; Topin RA. The classical fields theories (in encyclopedia of physics, Vol. 23 

III/1). Berlin: Springer-Verlag. 1960. 24 

[34] Bulnes F. Special dissertations of Maxwell equations. Mexico: unpublished. Only 25 

registered SEP, 1996.  26 

[35]  Bulnes F; Hernández E; Maya J. Design and Development of an Impeller Synergic 27 

System of Electromagnetic Type for Levitation, Suspension and Movement of 28 

Symmetrical Body. Imece2010: Fluid Flow, Heat Transfer and Thermal Systems Part A 29 

and B: Proceedings of 11th Symposium on Advances in Materials Processing Science and 30 

Manufacturing, 12-18 November2010, British Columbia, Canada, 2010.  31 

[36] Bulnes F; Maya J; Martínez I. Design and Development of Impeller Synergic Systems of 32 

Electromagnetic Type to Levitation/Suspension Flight of Symmetrical Bodies. Journal of 33 

Electromagnetic Analysis and Applications 2012 1(4) 42-52. See in: 34 

http://www.scirp.org/journal/PaperInformation.aspx?paperID=17151 35 

[37] Bulnes F. Foundations on possible technological applications of the mathematical 36 

electrodynamics. Masterful Conference in Section of Postgraduate Studies and Research 37 

(SEPI), National Polytechnic Institute, Federal District, Mexico 2007. 38 

Advances in Quantum Mechanics244



Chapter 11

Convergence of the Neumann Series for the
Schrödinger Equation and General Volterra Equations
in Banach Spaces

Fernando D. Mera and Stephen A. Fulling

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52489

Provisional chapter

Convergence of the Neumann Series for the

Schrödinger Equation and General Volterra

Equations in Banach Spaces

Fernando D. Mera and Stephen A. Fulling

Additional information is available at the end of the chapter

10.5772/52489

1. Introduction

The time-dependent Schrödinger equation, like many other time-evolution equations, can be
converted along with its initial data into a linear integral equation of Volterra type (defined
below). Such an equation can be solved formally by iteration (the Picard algorithm), which
produces a Neumann series whose jth term involves the jth power of an integral operator.
The Volterra structure of the integral operator ensures that the time integration in this term
is over a j-simplex, so that its size is of the order of 1/j!. One would therefore expect to
be able to prove that the series converges, being bounded by an exponential series. The
difficulty in implementing this idea is that the integrand usually is itself an operator in
an infinite-dimensional vector space (for example, representing integration over the spatial
variables of a wave function). If one can prove that this operator is bounded, uniformly in
its time variables, with respect to some Banach-space norm, then one obtains a convergence
theorem for the Neumann series. This strategy is indeed implemented for the heat equation
in the books of the Rubinsteins [1] and Kress [2]. The objective of the thesis [3] was to treat
the Schrödinger equation as much as possible in parallel with this standard treatment of the
heat equation. This article reports from the thesis a summary of the rigorous framework of
the problem, the main theorem, and the most elementary applications of the theorem.

We stress that the situation for time-evolution equations is different (in this respect, nicer)
than for the Laplace and Poisson equations, which are the problems studied in most detail
in most graduate textbooks on partial differential equations, such as [4]. In that harmonic
potential theory the problem is similarly reduced to an integral equation, but the integral
equation is not of Volterra type and therefore the Neumann series does not converge

©2012 Mera and Fulling, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 D. Mera and A. Fulling; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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automatically. The terms are bounded by a geometric series but not an exponential one,
so to prove convergence it is not enough to show that the Banach-space operator has finite
norm; the norm would need to be less than unity, whereas in the PDE application it turns out
to be exactly unity. Therefore, in the theory of elliptic PDEs the Neumann series is not used
to prove existence of a solution; instead, the Fredholm theory is used to prove existence more
abstractly. In time-evolution problems the concrete convergence of the series gives rigorous
meaning to formal constructions used by physicists, such as path integrals and perturbation
series.

The similarities between the Schrödinger equation and the heat equation were used in [3] to
create a theoretical framework for representing and studying the solutions to the Schrödinger
problem, which is summarized here. As much as possible, we use the books [1, 2] as guides
to treat the quantum problem like a heat problem. However, the parallel between the heat
equation and the Schrödinger equation is a limited one, because the exponential decay of the
heat equation’s fundamental solution is not available here. Therefore, different formulations
and proofs needed to be constructed for the basic representation theorems in section 2, as
well as for the main theorem in section 4 . For example, the Poisson integral formula (14) with
the Schrödinger kernel (11) is shown to hold in the “Abel summable” sense [5, Sec. 1.5][6,
Sec. 6.2].

Section 2 is devoted to the basic integral representation of a solution of the Schrödinger
equation in terms of prescribed data and the fundamental solution (11). Here, unlike [3],
we do not consider boundary-value problems, so the representation consists of two terms,
a Poisson integral incorporating the initial data and a source integral. (In a boundary-value
problem there is a third term incorporating boundary data.) For the free Schrödinger
equation (6) with a known nonhomogeneous term F(x, t), the source integral (10) simply
gives the contribution of F to the solution. In the more interesting case of a homogeneous
equation including a potential, F involves the unknown function (multiplied by the
potential), so the representation theorem yields an integral equation that must be solved.
The crucial feature of the integral operator in (10) is that the upper limit of the time
integration is t, the time variable of the solution, rather than +∞ or some constant. This is the
Volterra structure that causes the iterative solution of the equation to converge exponentially.
Thus the initial-value problem for the Schrödinger PDE has been expressed as a Volterra
integral equation of the second kind with respect to time. Our main task is to use the
Picard–Neumann method of successive approximation to construct the unique solution of
this integral equation. The abstract theory of such iterative solutions for linear operators in
arbitrary Banach spaces is outlined in section 3 .

The main theorem is proved in section 4 . It treats a Volterra integral equation for a function
of t taking values at each t in some Banach space, B, such as L2(R3). More precisely, one has
bounded operators A(t, τ) : B → B, with the bound independent of the time variables, that
satisfy the Volterra property that A(t, τ) = 0 unless τ < t. It can then be proved inductively
that the jth term of the Neumann series has norm proportional to tj/j!. The conclusion is that
the series converges in the topology of L∞((0, T);B) for t < T. A variant with L∞ replaced
by Lp is also given.

In section 5 the main theorem is applied to some simple and familiar cases. First, we consider
classical integral equations, such as one with a kernel that is Hilbert–Schmidt in space and
Volterra in time. Then we return to the Schrödinger problem set up in section 2, with a
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bounded potential function. In that case the unitarity of the free Schrödinger evolution
operator between fixed times is the key to proving boundedness of the integral operator, and
the resulting Neumann series is a standard form of time-dependent perturbation theory.

2. The Poisson integral and source integral theorems

The wavefunction Ψ(x, t) of a nonrelativistic particle in Rn is a solution to the Schrödinger
equation,

HΨ(x, t) = ih̄∂tΨ(x, t), (1)

where H is the Hamiltonian, given by

H = H0 + V ≡

1

2m
p2 + V(x, t) ≡ −

h̄2

2m
∆x + V(x, t). (2)

In the “free”case, V(x, t) = 0, the equation becomes

ih̄∂tΨ(x, t) = −a2∆xΨ(x, t), ∀(x, t) ∈ R
n
× R, (3)

where

a2 =
h̄2

2m
. (4)

For the differential operator appearing in (3) we introduce the notation

L = a2∆x + ih̄∂t . (5)

Unlike the corresponding operator for the heat equation, L is formally self-adjoint with
respect to the usual L2 inner product.

We now consider the more general equation

Lu(x, t) ≡ a2∆xu(x, t) + ih̄∂tu(x, t) = F(x, t), (6)

again in all of space-time. If the source term F(x, t) is prescribed, (6) is a nonhomogeneous
version of the free Schrödinger equation. In order to get an integral equation for the
homogeneous problem with a potential V(x, t), however, we will later take F(x, t) to be
V(x, t)u(x, t). In any case, one imposes the initial condition

u(x, 0) = f (x), ∀(x, t) = (x, 0) ∈ R
n
× {t = 0} (7)

and usually concentrates attention tacitly on t > 0.
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The initial-value problem for (6) with the nonhomogeneous initial condition (7) can be
reduced to the analogous problem with homogeneous initial condition by decomposing the
solution u into two integral representations:

u(x, t) = Φ(x, t) + Π(x, t), (8)

where Φ(x, t), called the source term, contains the effects of F and has null initial data, while
Π(x, t), the Poisson integral term, solves the homogeneous equation (3) with the data (7). We
shall show (Theorem 2) that

Π(x, t) = e−itH0/h̄ f (x) =
∫

Rn
Kf(x, y, t) f (y) dy (9)

and

Φ(x, t) =
∫ t

0
e−itH0/h̄eiτH0/h̄F(·, τ) dτ = −

i

h̄

∫ t

0

∫

Rn
Kf(x, y, t − τ)F(y, τ) dy dτ. (10)

Here Kf(x, y, t) is the fundamental solution (free propagator) to the Schrödinger equation (3)
in Rn, which is given by

Kf(x, y, t) ≡ Kf(x − y, t) =

(

m

2πh̄it

)n/2

eim|x−y|2/2h̄t, ∀x, y ∈ R
n, t 6= 0. (11)

The formula (9) is equivalent to the statement that Kf(x, y, t) as a function of (x, t) satisfies
the homogeneous free Schrödinger equation and the initial condition

Kf(x, y, 0) = lim
t↓τ

Kf(x, y, t − τ) = δ(x − y). (12)

Thus Kf(x, y, t) vanishes as a distribution as t → 0 in the region x 6= y, even though as a
function it does not approach pointwise limits there. The formula (10) is equivalent to the
alternative characterization that Kf is the causal solution of the nonhomogeneous equation

LKf(x, y, t − τ) = δ(x − y)δ(t − τ), (13)

where L acts on the (x, t) variables.

The following theorem introduces the Poisson integral, which gives the solution of the
initial-value problem for the free Schrödinger equation. Our discussion of the Poisson
integral is somewhat more detailed than that of Evans [7], especially concerning the role
of Abel summability.
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Theorem 1. Let f (x) be a function on Rn such that (1 + |y|2) f (y) ∈ L1(Rn). Then the Poisson
integral

u(x, t) = Kf ∗ f =
∫

Rn
Kf(x − y, t) f (y) dy (14)

exists and is a solution of the equation

Lu(x, t) = a2∆xu(x, t) + ih̄∂tu(x, t) = 0, ∀(x, t) ∈ R
n
× R, (15)

and it satisfies the initial condition (7) in the sense of Abel summability. The Poisson integral defines
a solution of the free Schrödinger equation in Rn

× {t 6= 0} (including negative t). This solution is
extended into Rn

×R by the initial condition u(x, 0) = f (x) at all points x at which f is continuous.

Proof. If |y|2 f (y) ∈ L1(Rn), then the order of differentiation and integration in (15), (14) can
be interchanged to verify that the Poisson integral solves the Schrödinger equation. This
hypothesis is obtained from [7, Chapter IV].

The harder part is verifying the initial value. Assuming t > 0, let y = x + γz, where γ
2 =

2h̄t/m ; then we can rewrite the Poisson integral as

u(x, t) =

(

1

πi

)n/2 ∫

Rn
ei|z|2 f (x + γz) dz (16)

where |z| = |x − y|/γ. Let ǫ be any positive number. Then

(πi)n/2u(x, t) =
∫

Rn
ei|z|2 f (x + γz) dz = I1 + I2 + I3 , (17)

where

I1 =
∫

|z|≤ǫ

ei|z|2
{ f (x + γz)− f (x)} dz, (18)

I2 =
∫

|z|≥ǫ

ei|z|2 f (x + γz) dz, (19)

I3 =
∫

|z|≤ǫ

ei|z|2 f (x) dz. (20)

To dispose of I1 , let x be a point in Rn where f is continuous: ∀ η > 0 ∃δ > 0 such that
∀y ∈ Rn with |y − x| < δ one has | f (y)− f (x)| < η. Given ǫ (however large) and η (however
small), choose t (hence γ) so small that γǫ < δ; then | f (x + γz)− f (x)| < η for all z such
that |z| ≤ ǫ. Therefore,
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|I1| ≤ η

∫

|z|≤ǫ

dz, (21)

which can be made arbitrarily small in the limit t → 0.

On the other hand, since f ∈ L
1(Rn),

|I2| ≤

∫

|z|≥ǫ

| f (x + γz)| dz → 0 (22)

(not necessarily uniformly in x) as ǫ → ∞. Thus the initial value u(x, 0+) comes entirely from
I3 .

To evaluate I3 we use the Fresnel integral formula

∫

Rn

e
i|z|

2
dz = (πi)n/2. (23)

A proof of (23) with n = 1, which converges classically, appears in [8, pp. 82–83]. The
one-dimensional formula appears to imply the product version by

∫

Rn

e
i|z|

2
dz =

∫

Rn

exp

(

i

n

∑
k=1

z
2
k

)

dz =
n

∏
k=1

∫ ∞

−∞
e

iz
2
k dz

k
=

n

∏
k=1

(πi)1/2 = (πi)n/2.

Therefore, we have

lim
ǫ→∞

I3 = (πi)n/2
f (x), (24)

which is what we want to prove.

However, the integral on the left side of (23) is rather questionable when n > 1, so we
reconsider it in polar coordinates:

∫

Rn

e
i|z|

2
dz =

∫ ∞

0

∫

S
n−1

e
iρ

2
ρ

n−1
dρ dΩ ≡ ωn

∫ ∞

0
ρ

n−1
e

iρ
2

dρ.

The surface area of the unit n-sphere is

ωn = 2π
n/2/Γ

(

n

2

)

. (25)

With the substitutions t = ρ
2, m = (n − 2)/2, we obtain

∫

Rn

e
i|z|

2
dz =

ωn

2

∫ ∞

0
t
m

e
it

dt, (26)
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which technically is not convergent. Therefore. we insert the Abel factor e−αt (α > 0) into
(26) to get

A(α) ≡
ωn

2

∫ ∞

0
e−αttmeit dt. (27)

This integral is convergent, and it can be transformed as

2A(α)

ωn
= lim

r→∞

∫ r

0
e−αttmeit dt = lim

r→∞
i
∫ ir

0
e−iαz(iz)me−z dz.

The path of integration can be moved back to the positive real axis, because the integral over
the arc of radius r tends to 0. Thus

2A(α)

ωn
= in/2

∫ ∞

0
e−iαzz(n/2)−1e−z dz,

and in the limit

A(0) = 1
2 ωnin/2Γ

(

n
2

)

= (πi)n/2. (28)

This analysis confirms (23) in an alternative way and gives it a rigorous meaning.

This completes the proof that the Poisson integral has the initial value u(x, 0) = f (x) at all
points x where f is continuous. �

Theorem 2 establishes formula (10) rigorously. Our proof is partly based on [9], which
considers the nonhomogeneous Schrödinger equation (6) in the more abstract form

ih̄
∂u(t)

∂t
= H0u(t) + F(t). (29)

Here and later, I will denote the time interval (0, T), where T is a positive constant. In
Theorem 2 we deal with the space L∞(I;B) of functions u(t) taking values in the Banach
space B, equipped with the norm (cf. Definition 5)

‖u‖L∞(I;B) = inf{M ≥ 0 : ‖u(t)‖
B
≤ M for almost all t ∈ [0, T]}. (30)

Theorem 2. Let f (x) belong to some Banach space B of functions on Rn that includes those for
which (1 + |y|2) f (y) ∈ L1(Rn). Furthermore, suppose that the source term F(x, t) is continuous in
t and satisfies the condition

‖F(·, t)‖L1(Rn) ≤ ξ(t), ‖ξ‖L∞(I) ≤ M (31)
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for some positive constant M. The solution of the initial-value problem for the nonhomogeneous
Schrödinger equation (6) can be represented in the form u = Π + Φ of (8), where the initial term is

Π(x, t) =
∫

Rn
Kf(x, y, t) f (y) dy (32)

and the source term is

Φ(x, t) = −

i

h̄

∫ t

0

∫

Rn
Kf(x, y, t − τ)F(y, τ) dy dτ. (33)

Here Kf(x, y, t) is the fundamental solution (11) and u(x, 0) = f (x). The solution u belongs to the
Banach space L∞(I;B).

Proof. Theorem 1 shows that the Poisson integral Π solves the initial-value problem for the
homogeneous Schrödinger equation. We claim that the solution of the full problem has the
Volterra integral representation

u(x, t) =
∫

Rn Kf(x, y, t) f (y) dy −
i
h̄

∫ t
0

∫

Rn Kf(x, y, t − τ)F(y, τ) dy dτ

≡ Π(x, t) + Φ(x, t). (34)

By applying the Schrödinger operator (5) to u(t), we have

Lu = LΠ + LΦ = a2∆xΦ + ih̄
∂Φ

∂t

= a2

(

−

i

h̄

)

∆x

∫

Rn
Kf(x, y, t − τ)F(y, τ) dy dτ

+ ih̄
∂

∂t

(

−

i

h̄

∫ t

0

∫

Rn
Kf(x, y, t − τ)F(y, τ) dy dτ

)

=
∫ t

0

∫

Rn
LKf(x, y, t − τ)F(y, τ) dy dτ

+ lim
t↓τ

∫

Rn
Kf(x, y, t − τ)F(y, τ)dy.

(35)

But LKf(x, y, t − τ) = 0 for all t > τ, and Theorem 1 shows that Kf(x, y, t − τ) → δ(x − y).
Therefore, we have

LΦ = F(x, t). (36)

Furthermore, it is clear that F(x, 0) = 0. Therfore, by linearity the sum u = Π + Φ solves the
problem.

Another way to express (34) is via unitary operators:
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u(t) = e−itH0/h̄ f (x)−
i

h̄

∫ t

0
e−itH0/h̄eiτH0/h̄F(τ) dτ. (37)

Consider the integral

−ih̄−1
∫ t

0
eiτH0/h̄Lu(τ) dτ = −ih̄−1

∫ t

0
eiτH+0/h̄

(

−a∆u(τ) + ih̄
∂u(τ)

∂τ

)

dτ

= −ih̄−1
∫ t

0
eiτH0/h̄

(

−H0u(τ) + ih̄
∂u

∂τ

)

dτ

=
∫ t

0

∂

∂τ

(

eiτH0/h̄u(τ)

)

dτ

= eitH0/h̄u(t)− u(0).

(38)

This calculation implies that

u(t) = e−itH0/h̄u(0)− ih̄−1e−itH0/h̄
∫ t

0
eiτH0/h̄Lu(τ) dτ, (39)

which is equivalent to (37) and to the Volterra integral formula (34). The expression u(t)−
e−itH0/h̄u(0) is simply the source term Φ(x, t). Taking its Banach space norm and using the
unitarity of the evolution operator e−itH0/h̄ and the fundamental theorem of calculus, we
have

‖Φ(t)‖ =

∥

∥

∥

∥

ih̄−1e−itH0/h̄
∫ t

0
eiτH0/h̄Lu(τ) dτ

∥

∥

∥

∥

≤

1

h

∫ t

0
‖Lu‖ dτ ≤

1

h̄

∫ t

0
ξ(τ) dτ ≤

Mt

h̄
,

(40)

because of (31). Therefore, Φ → 0 when t → 0. Since e−itH0/h̄u(0) is another way of writing
Π(x, t), we have again established that (8) is the desired solution. �

Remark 3. The L1 condition of Theorem 1 has not been used in the second, more abstract proof of
Theorem 2, because the limits (t ↓ 0) are being taken in the topology of the quantum Hilbert space
L2(Rn), not pointwise.

Corollary 4. The homogeneous Schrödinger initial-value problem,

ih̄∂tΨ(x, t) = −a2∆Ψ(x.t) + V(x, t)Ψ(x, t), Ψ(x, 0) = f (x), (41)

is equivalent to a nonhomogeneous Volterra integral equation of the second kind,

Ψ(x, t) =
∫

Rn
Kf(x, y, t) f (y) dy −

i

h̄

∫ t

0

∫

Rn
Kf(x, y, t − τ)V(y, τ)Ψ(y, τ) dy dτ. (42)

Proof. (42) is (34) with the source F in (6) identified with VΨ. �
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3. Integral equations and Neumann series

In this section we introduce integral operators in arbitrary Banach spaces in order to set
up a framework for constructing solutions to the Schrödinger equation. This section is
a preliminary to the general Volterra theorems that are proved in section 4. It uses as a
foundation Kress’s treatment of linear integral equations [2].

In operator notation, an integral equation of the second kind has the structure

φ − Q̂φ = f , (43)

where Q̂ is a bounded linear operator from a Banach space W to itself, and φ and f are in W .
A solution φ exists and is unique for each f if and only if the inverse operator (1− Q̂)−1 exists
(where 1 indicates the identity operator). For Volterra operators, the focus of our attention,
the existence of the inverse operator will become clear below. Equivalently, the theorems of
the next section will prove that the spectral radius of a Volterra operator is zero. For these
purposes we need to work in Lebesgue spaces W = Lp(I;B) (including, especially, p = ∞)
of functions of t to obtain useful estimates.

Definition 5. Let (Ω, Σ, µ) be a measure space and B be a Banach space. The collection of all
essentially bounded measurable functions on Ω taking values in B is denoted L∞(Ω, µ;B), the
reference to µ being omitted when there is no danger of confusion. The essential supremum of a
function ϕ : Ω → B is given by

‖ϕ‖L∞(Ω;B) = inf{M ≥ 0 : ‖ϕ(x)‖
B
≤ M for almost all x}. (44)

Definition 6. Let B1 and B2 be Banach spaces and Ω be some measurable space. For each (x, y) ∈
Ω × Ω ≡ Ω2 let A(x, y) : B1 → B2 be a bounded linear operator, and suppose that the function
A(·, ·) is measurable. At each (x, y) define its norm

‖A(x, y)‖
B1→B2

= inf{M ≥ 0 : ‖A(x, y)φ‖ ≤ M‖φ‖, ∀φ ∈ B1}. (45)

If B1 = B2 = B, then one abbreviates ‖A(x, y)‖
B1→B2

as ‖A(x, y)‖
B

or even ‖A(x, y)‖. Now
define the uniform norm

‖A‖L∞(Ω2;B1→B2) ≡ inf{M ≥ 0 : ‖A(x, y)‖ ≤ M for almost all (x, y) ∈ Ω2
}

≡ ess sup(x,y)∈Ω2 ‖A(x, y)‖
B1→B2

(46)

and call A(·, ·) a uniformly bounded operator kernel if ‖A‖L∞(Ω2;B1→B2) is finite.

Definition 7. In Definition 6 let Ω = I = (0, T). If A is a uniformly bounded operator kernel, the
operator Q̂ defined by

Q̂ f (t) =
∫ t

0
A(t, τ) f (τ) dτ (47)

is called a bounded Volterra operator on L∞(I;B) with kernel A.
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Remark 8. In (47) one may write the integration as
∫ T

0 · · · dτ if one has defined A(t, τ) to be 0
whenever τ > t. In that case A is called a Volterra kernel.

In Corollary 4 we have reformulated the Schrödinger equation as an integral equation of the
second kind. The existence and uniqueness of its solution can be found by analysis of the
Neumann series. The successive approximations (Picard’s algorithm)

φN = Q̂φN−1 + f =
N

∑
j=0

Q̂j f (48)

converge to the exact solution of the integral equation (43), if some technical conditions are
satisfied. In the terminology of an arbitrary Banach space, one must establish that

1. the function φ0 ≡ f belongs to a Banach space B,

2. the integral operator Q̂ is a bounded Volterra operator on L∞(I;B), and

3. the infinite (Neumann) series φ = ∑
∞
j=0 Q̂j f is a convergent series with respect to the

topology of L∞(I;B).

If these three conditions are satisfied, then the Neumann series provides the exact solution
to the integral equation (43). In the Schrödinger case, therefore, it solves the original
initial-value problem for the Schrödinger equation. This program will be implemented in
detail in the next two sections.

4. Volterra kernels and successive approximations

In this section we implement the method of successive approximations set forth in section 3.
The Volterra operator has a nice property, known as the simplex structure, which makes its
infinite Neumann series converge. This claim is made precise in our main theorems.

It follows from the convergence of the Neumann series that the spectral radius of the Volterra
integral operator of the second kind is zero. In Kress’s treatment of the heat equation [2] the
logic runs in the other direction — convergence follows from a theorem on spectral radius.
For the Schrödinger equation we find it more convenient to prove convergence directly.

Hypotheses

• B is a Banach space, and I = (0, T) is an interval, with closure Ī.

• For all (t, τ) ∈ Ī2, A(t, τ) is a linear operator from B to B.

• the operator kernel A(t, τ) is measurable and uniformly bounded, in the sense of
Definition 6, with bound ‖A‖L∞(I2;B→B) = D.

• A(t, τ) satisfes the Volterra condition, A(t, τ) = 0 if τ > t.
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Our primary theorem, like the definitions in section 3, deals with the space L∞(I;B). We
also provide variants of the theorem and the key lemma for other Lebesgue spaces, L1(I;B)
and Lp(I;B). In each case, the space B is likely, in applications, to be itself a Lebesgue space
of functions of a spatial variable, Lm(Rn), with no connection between m and p.

The first step of the proof is a fundamental lemma establishing a bound on the Volterra
operator that fully exploits its simplex structure. This argument inductively establishes the
norm of each term in the Neumann series, from which the convergence quickly follows. In
the lemmas, j (the future summation index) is understood to be an arbitrary nonnegative
integer (or even a real positive number).

Lemma 9. Let the Volterra integral operator, Q̂ : L∞(I;B) → L∞(I;B), be defined by

Q̂φ(t) =
∫ T

0
A(t, τ)φ(τ) dτ =

∫ t

0
A(t, τ)φ(τ) dτ. (49)

Let φ ∈ L∞(I;B) and assume that ∃C > 0 such that for each subinterval Jt of the form (0, t), we
have ‖φ‖L∞(Jt ;B) ≡ ess sup0<τ<t ‖φ(τ)‖

B
≤ Ctj. Assume that the Hypotheses are satisfied. Then it

follows that

‖Q̂φ‖L∞(Jt ,B) ≤
DC

j + 1
tj+1. (50)

Proof. Recall that D is defined so that ‖A(t, τ)‖ ≤ D < ∞ for all (t, τ) ∈ Ī2. The L∞(Jt;B)
norm of the function Q̂φ(·) is

‖Q̂φ‖L∞(Jt ;B) = sup
t1≤t

∥

∥

∥

∥

∫ t1

0
A(t, τ)φ(τ) dτ

∥

∥

∥

∥

≤ sup
t1≤t

∫ t1

0
‖A(t, τ)φ(τ)‖ dτ

≤ sup
t1≤t

∫ t1

0
‖A(t, τ)‖ ‖φ(τ)‖ dτ ≤ sup

t1≤t

∫ t1

0
DCτ

j dτ

= sup
t1≤t

DC
t
j+1
1

j + 1
=

DCtj+1

j + 1
. �

(51)

Lemma 10. Let the Volterra integral operator, Q̂ : L1(I;B) → L1(I;B), be defined by (49). Let
φ ∈ L1(I;B), and assume that ∃C > 0 such that for each subinterval Jt = (0, t), we have

‖φ‖L1(Jt ;B) ≡

∫ t

0
‖φ(τ)‖ dτ ≤ Ctj. (52)

Assume that the Hypotheses are satisfied. Then it follows that

‖Q̂φ‖L1(Jt ,B) ≤
DC

j + 1
tj+1. (53)
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Proof. The argument is the same as before, except that the L1(Jt;B) norm of Q̂φ(·) is

‖Q̂φ‖L1(Jt ;B) =
∫ t

0

∥

∥

∥

∥

∫ t1

0
A(t, τ)φ(τ) dτ

∥

∥

∥

∥

dt1 ≤

∫ t

0

∫ t1

0
‖A(t, τ)‖ ‖φ(τ)‖ dτ

≤

∫ t

0
D

∫ t1

0
‖φ(τ)‖ dτdt1 ≤

∫ t

0
D‖φ‖L1(Jt1

;B) dt1

≤

∫ t

0
DCt

j
1 dt1 =

DCtj+1

j + 1
. �

(54)

Corollary 11. Let the Volterra integral operator, Q̂ : Lp(I;B) → Lp(I;B), where 1 < p < ∞, be
defined by (49). Let φ ∈ Lp(I;B) and assume that ∃C > 0 such that for each subinterval Jt = (0, t),
we have

‖φ‖Lp(Jt ;B) ≡

(

∫ t

0
‖φ(τ)‖

p
B

dτ

)1/p

≤ Ctn. (55)

Assume that the Hypotheses are satisfied. Then it follows that

‖Q̂φ‖Lp(Jt ,B) ≤
DC

j + 1
tj+1. (56)

Proof. This follows from Lemmas 9 and 10 by the Riesz–Thorin theorem [10, pp. 27–28].
�

It may be of some interest to see how the Lp theorem can be proved directly. The proof of
the needed lemma uses Folland’s proof of Young’s inequality [4] as a model.

Lemma 12. Let the Volterra integral operator, Q̂ : Lp(I;B) → Lp(I;B), where 1 < p < ∞, be
defined by (49). Let φ ∈ Lp(I;B) and assume that ∃C > 0 such that for each subinterval Jt = (0, t),
we have

‖φ‖Lp(Jt ;B) ≡

(

∫ t

0
‖φ(τ)‖

p
B

dτ

)1/p

≤ Ctn. (57)

Assume that the Hypotheses are satisfied. Then it follows that

‖Q̂φ‖Lp(Jt ,B) ≤
DCtj+1

[p(j + 1)]1/p
. (58)

Proof. Let q be the conjugate exponent (p−1 + q−1 = 1). The Banach-space norm of Q̂φ(t)
satisfies
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‖Q̂φ(t1)‖B ≤

(

∫ t1

0
‖A(t1, τ)‖) dτ

)1/q(∫ t1

0
‖A(t1, τ)‖ ‖φ(τ)‖p dτ

)1/p

≤ D1/q

(

∫ t1

0
dτ

)1/q(∫ t1

0
D‖φ(τ)‖p dτ

)1/p

≤ D1/qD1/pt
1/q
1

(

∫ t1

0
‖φ(τ)‖p dτ

)1/p

≤ Dt
1/q
1

(

∫ t1

0
‖φ(τ)‖p dτ

)1/p

.

(59)

Then we must raise both sides to the pth power and integrate, seeing by Fubini’s theorem
that

∫ t1

0
‖Q̂φ(t1)‖

p dt1 ≤

∫ t

0
Dpt

p/q
1

∫ t1

0
‖φ(τ)‖p dτ dt1 ≤

∫ t

0
Dp

∫ t

0
t

p/q
1 ‖φ‖

p

Lp(Jt1
;B)

dt1

≤ Dp
∫ t

0
Cpt

np+p/q
1 dt1 ≤ DpCp tnp+p/q+1

np +
p
q + 1

= DpCp t(j+1)p

jp + p
,

(60)

since 1 +
p
q = p. Now take the pth root, getting

‖Q̂φ‖Lp(Jt ;B) ≤ DC
tj+1

[p(j + 1)]1/p
. � (61)

The following theorem is the main theorem of [3]; its proof is corrected here.

Theorem 13. (L∞ Volterra Theorem) Let the Hypotheses be satisfied, and let Q̂ be defined by (49).
Let f belong to L∞(I;B). Then the Volterra integral equation

φ = Q̂φ + f (62)

can be solved by successive approximations. That is, the Neumann series for φ,

φ =
∞

∑
j=0

Q̂j f , (63)

converges in the topology of L∞(I;B).

Proof. Let ‖ f ‖L∞(I;B) = C0 . Of course, ‖ f ‖L∞(Jt ;B) ≤ C0 on a smaller interval, Jt = (0, t), so
by Lemma 9 with j = 0,
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‖Q̂1 f ‖L∞(Jt ;B) ≤ DC0t. (64)

Then by inductively applying Lemma 9 with C = Dj−1C0/(j − 1)! , we see that the jth term
of the Neumann series, Q̂j f , has, because of its simplex structure, the bound

‖Q̂j f ‖L∞(Jt ;B) ≤ DjC0
tj

j!
. (65)

Therefore, the series (63) is majorized by

C0

∞

∑
n=0

Djtj

j!
= ‖ f ‖L∞(I;B)e

Dt (66)

for all t ∈ (0, T]. Therefore, the Neumann series converges in the topology of L∞(I;B).
�

The L∞ norm on the time behavior is the most natural and likely one to apply to solutions
of a time-evolution equation (especially for the Schrödinger equation with B a Hilbert space,
because of the unitary of the evolution). However, the other Lp norms may prove to be
useful, and it is easy to generalize the theorem to them. Note that the appropriate condition
on A(t, τ) is still the uniform boundedness of Definition 6.

Theorem 14. (L1 Volterra Theorem) Let the Hypotheses be satisfied, and let Q̂ be defined by (49).
Let f belong to L1(I;B). Then the Volterra integral equation φ = Q̂φ + f can be solved by successive
approximations. That is, the Neumann series for φ, (63), converges in the topology of L1(I;B).

Proof. Let ‖ f ‖L1(I;B) = C0 and argue as before, except that Lemma 10 is used to bound all

the terms ‖Q̂j f ‖L1(Jt ;B) . �

Theorem 15. (Lp Volterra Theorem) Let the Hypotheses be satisfied, and let Q̂ be defined by (49).
Let f belong to Lp(I;B). Then the Volterra integral equation φ = Q̂φ + f can be solved by successive
approximations. That is, the Neumann series converges in the topology of Lp(I;B).

Proof. The proof based on the Riesz–Thorin theorem goes exactly like the previous two,
using Corollary 11. To prove the theorem directly, let ‖ f ‖Lp(I;B) = C0 and use Lemma 12
inductively to show

‖Q̂j f ‖Lp(Jt ;B) ≤
Dj

pj/p
‖ f ‖Lp(I;B)

tj

(j!)1/p
. (67)

To see whether the series

∞

∑
j=0

‖Q̂j f ‖Lp(I;B) = ‖ f ‖Lp(I;B)

∞

∑
j=0

Dj

pj/p

tj

(j!)1/p
(68)
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is convergent, we use the ratio test. Let

L = lim
j→∞

∣

∣

∣

∣

aj+1

aj

∣

∣

∣

∣

, aj = ‖Q̂j f ‖Lp(I;B) . (69)

Let M(p) = Dp−1/p. Then

L = lim
n→∞

‖ f ‖Lp(I;B)M(p)j+1tj+1

[(j + 1)!]1/p
·

(j!)1/p

‖ f ‖Lp(I;B)M(p)jtj

= M(p)t lim
j→∞

(j + 1)−1/p = 0,

(70)

Thus L < 1, and by the ratio-test and series-majorization theorems, the Neumann series
converges absolutely in the topology of Lp(I;B). �

5. Applications of the Volterra theorem

In this section we present some quick applications of the general Volterra theorem of
section 4. The conclusions are already well known, or are obvious generalizations of those
that are, so these examples just show how they fit into the general framework. More
serious applications are delayed to later papers. The first set of examples comprises some
of the standard elementary types of Volterra integral equations [11–13], generalized to
vector-valued functions and functions of additional variables. The second application is
to the Schrödinger problem set up in section 2 ; the result is essentially what is known in
textbooks of quantum mechanics as “time-dependent perturbation theory”.

Although we use the L∞ version of the theorem, Theorem 13, one could easily apply
Theorems 14 and 15 as well. Thus a general setting for many examples is the generic
double Lebesgue space defined as follows. As usual, let I = (0, T) be the maximal time
interval considered. In the role of B, consider the Lebesgue space Lm(Rn) of functions of an
n-dimensional spatial variable. Then Lp,m(I; Rn) is the Banach space of functions on I taking
values in Lm(Rn) and subjected to the Lp norm as functions of t. Thus

Lp,m(I; R
n) =

{

φ :

(

∫

I

[

∫

Rn
|φ(y, τ)|m dy

]p/m

dτ

)1/p

≡ ‖φ‖Lp,m(I;Rn) < ∞

}

. (71)

When either p or m is ∞, the Lebesgue norm is replaced by the essential supremum in the
obvious way.

5.1. Classical integral equations

5.1.1. Spatial variables

For x and y in Rn, let K(x, t; y, τ) be a uniformly bounded complex-valued function,
satisfying the Volterra condition in (t, τ). The Volterra operator kernel A(t, τ) : Lm(Rn) →
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Lm(Rn) is defined by

A(t, τ)φ(x) =
∫

Rn
K(x, t; y, τ)φ(y) dy, (72)

for φ ∈ Lm(Rn). (We shall be using this equation for functions φ that depend on τ as well as y,
so that A(t, τ)φ is a function of (x, t, τ).) To assure that A(t, τ) is a bounded Banach-space
operator, we need to impose an additional technical condition on the kernel function K. The
simplest possibility is to exploit the generalized Young inequality [4, Theorem (0.10)].

Suppose that we wish to treat functions φ(y, τ) ∈ L∞,∞(I; Rn). Then (72) leads to

|[A(t, τ)φ](x, t, τ)| ≤
∫

Rn
|K(x, t; y, τ)||φ(y, τ)| dy

≤ ‖φ‖L∞,∞(I;Rn)

∫

Rn
|K(x, t; y, τ)| dy.

(73)

Therefore, if

∫

Rn
|K(x, t; y, τ)| dy ≤ D (74)

uniformly in (x, t, τ), then

‖A(t, τ)φ‖L∞,∞(I;Rn) ≤ D‖φ‖L∞,∞(I;Rn) . (75)

That is,

‖A‖L∞(I2;B→B) ≤ D, (76)

and Lemma 9 applies. Theorem 13 therefore proves that the Volterra integral equation φ =
Q̂φ + f can be solved by iteration within L∞,∞(I; Rn).

Now suppose instead that we want to work in L∞,1(I; Rn). In place of (73) we have

|A(t, τ)φ(x, t, τ)| ≤
∫

Rn
|K(x, t; y, τ)||φ(y, τ)| dy

≤ ‖φ‖L∞,1(I;Rn) sup
y

|K(x, t; y, τ)|.
(77)

This time we need the condition that

∫

Rn
|K(x, t; y, τ)| dx ≤ D (78)

uniformly in (y, t, τ); then

‖A(t, τ)φ‖L∞,1(I;Rn) ≤ D‖φ‖L∞,1(I;Rn) (79)
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in place of (75). The argument concludes as before, using Lemma 10 and Theorem 14.

For L∞,p(I; Rn), the generalized Young inequality [4] assumes both (74) and (78) and assures
that

‖A(t, τ)φ‖L∞,p(I;Rn) ≤ D‖φ‖L∞,p(I;Rn) . (80)

The argument concludes as before, using Lemma 12 and Theorem 15, proving convergence
of the Neumann series within L∞,p(I; Rn).

5.1.2. Vector-valued functions

A similar but simpler situation is where B is finite-dimensional, say Cn. Then A(t, τ) is an
n × n matrix. Boundedness of A as an operator is automatic, but uniformity in the time
variables is still a nontrivial condition. The theorem then gives a vectorial generalization of
the usual Neumann series for a scalar Volterra equation.

5.1.3. Hilbert–Schmidt operators

Although the generalized Young approach yields a theorem for B = L2(Rn), the
boundedness of operators on that space is often proved from a stronger condition on their
kernels. In our context a Hilbert–Schmidt kernel is a function K : Rn

× R × Rn
× R → C for

which

(

∫

Rn
×Rn

|K(x, t; y, τ)|2 dx dy

)1/2

≡ ‖K(t, τ)‖L2(R2n) ≤ D < ∞, (81)

and, of course, we also want it to be Volterra in (t, τ). In other words, K(x, t; y, τ)
belongs to L∞,2(I2; R2n) and vanishes (or is ignored in the integrals) when τ > t. Then
A(t, τ) : L2(Rn) → L2(Rn) defined by (72) is a Hilbert–Schmidt operator, which under our
assumptions is uniformly bounded with norm at most D.

In parallel with (73) or (77) one has

|A(t, τ)φ(x, t, τ)| ≤
∫

Rn
|K(x, t; y, τ)||φ(y, τ)|dy

≤

(

∫

Rn
|K(x, t; y, τ)|2dy

)1/2(∫

Rn
|φ(y, τ)|2dy

)1/2 (82)

and hence

‖A(t, τ)φ(·)‖L2(Rn) ≤ ‖K(t, τ)‖L2(R2n)‖φ(τ)‖L2(Rn) ≤ ‖K‖L∞,2(I2;R2n)‖φ(τ)‖L2(Rn) . (83)

Therefore,
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‖A‖L∞(I2;B→B) ≤ D, (84)

and hence Lemma 9 and Theorem 13 apply as usual, establishing convergence of the Picard
solution of φ = Q̂φ + f in the topology of L∞,2(I, Rn).

5.2. Perturbation theory for the Schrödinger equation

In Corollary 4 we converted the time-dependent Schrödinger problem to a Volterra integral

equation, (42), wherein Kf(x, y, t) = (4πit)−n/2ei|x−y|2/4t. The solution of that equation
by iteration (successive approximations, Picard algorithm, Neumann series) is effectively
a power series in the potential V, so it is the same thing as a perturbation calculation with
respect to a coupling constant multiplying V.

In this problem the Banach space B is the Hilbert space L2(Rn). (To assure pointwise
convergence to the initial data, according to Theorem 2 and Remark 3, we should also take
the intersection with L1(Rn; (1 + |x|2)−1 dx).) In order for our method to work simply, we
must assume that V(x, t) is a bounded potential. It may be time-dependent, but in that case
its bound should be independent of t. That is, we assume

V ∈ L∞(Rn
× I); |V(y, t)| ≤ D (almost everywhere). (85)

Note that the role of f in the abstract Volterra equation (62) is played by the entire first
integral term in (42),

∫

Kf(x, y, t) f (y) dy.

From the other term of (42) we extract the kernel function

K(x, t; y, τ) = −

i

h̄
Kf(x, y, t − τ)V(y, τ). (86)

It satisfies neither the Hilbert–Schmidt condition (81) nor the generalized Young conditions
(73) and (77). However, the resulting operator kernel can be factored as

A(t, τ) = −

i

h̄
Uf(t − τ)V̂(τ), (87)

where Uf is the free time evolution (9) implemented by the kernel Kf , and V̂ is the operator
of pointwise multiplication by the potential V(y, τ). It is well known [7, Chapter 4] that
Uf(t) = e−itH0/h̄ is unitary, and hence its norm as an operator on L2(Rn) is 1. On the other
hand,

‖V(τ) f (τ)‖2
L2(Rn) =

∫

Rn
|V(y, τ) f (y, τ)|2 dy

≤ D2
∫

Rn
| f (y, τ)|2 dy = D2

‖ f (τ)‖2
L2(Rn) ,

(88)
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so the operator norm of V̂(τ) is

‖V̂(τ)‖ = ‖V(·, τ)‖L∞(Rn) ≤ ‖V‖L∞(I×Rn) ≤ D. (89)

Therefore, the norm of the product operator is

‖A(t, τ)‖ = ‖(ih̄)−1Uf(t − τ)V̂(τ)‖ ≤ D/h̄. (90)

Therefore, Lemma 9 and Theorem 13 apply to the integral equation (42), and we reach the
desired conclusion:

Theorem 16. If the potential V(x, t) is uniformly bounded, then the time-dependent Schrödinger
problem described in Corollary 4 can be solved by iteration. That is, the perturbation (Neumann)
series converges in the topology of L∞((0, T), L2(Rn)) for any finite, positive T.

6. Concluding remarks

Most mathematical physics literature on the Schrödinger equation (for example, [14])
works in an abstract Hilbert-space framework and concentrates on proving that particular
second-order elliptic Hamiltonian operators are self-adjoint, then describing their spectra and
other properties. Here we have investigated a different aspect of the subject; we regard the
time-dependent Schrödinger equation as a classical partial differential equation analogous to
the heat or wave equation and study it by classical analysis.

The similarities between the Schrödinger and heat equations were exploited to create the
theoretical framework, and then their technical differences were addressed. In section 2 the
structure of solutions in terms of the free propagator Kf was worked out, and thereby the
initial-value problem was recast as an integral equation.

The key feature of that equation is its Volterra character: It involves integration only up to
the time in question. In this respect it is like the heat equation and unlike, for instance, the
Poisson equation. The consequence of the Volterra property is that when the equation is
solved by iteration, the jth iterate involves integration over a j-dimensional simplex (not a
hypercube). The resulting volume factor of (j!)−1 suggests that the series should converge.

The implementation of that idea in any particular case requires some technical work to prove
that the operators A(t, τ) connecting any two times are bounded, and uniformly so. In
section 4 we showed, in the setting of any Banach space, that that hypothesis is sufficient to
establish the convergence of the Neumann series. In section 5 we verified the hypothesis in
several simple examples, including the Schrödinger problem with a bounded potential.

In future work we hope to apply the Volterra theorem in contexts more complicated than
the simple examples presented here. Preliminary work on those applications appears in
Chapters 8 and 9 of [3]. Chapter 9 and [15] (see also [16]) implement an idea due to Balian
and Bloch [17] to use a semiclassical Green function to construct a perturbation expansion
for a smooth potential V(x, t). The solution of the Schrödinger equation is approximated
in terms of classical paths, and the resulting semiclassical propagator Kscl = AeiS/h̄ is used
as the building block for the exact propagator. The result is a series in h̄, rather than in a
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coupling constant as in Theorem 16. The domain of validity of the construction in its simplest
form is limited because the caustic structure of Kscl can spoil the uniform boundedness;
improvements are an open field of research.

Chapter 8 dealt with the application of the Volterra method to boundary-value problems
for the Schrödinger equation. Following the heat-equation theory [1, 2, 18], the solutions
were formally represented as single-layer and double-layer potentials, giving rise to Volterra
integral equations on the boundary. Unfortunately, the proof in [3] of the existence
and boundedness of the resulting operators is defective. The problem remains under
investigation, and we hope that generalizing the Volterra theorem to a less obvious space
(similarly to Theorems 14 and 15) will provide the answer.
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Chapter 12

Quantum Perturbation Theory in Fluid Mixtures

S. M. Motevalli and M. Azimi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54056

1. Introduction

Experimental assessment of macroscopic thermo-dynamical parameters under extreme
conditions is almost impossible and very expensive. Therefore, theoretical EOS for further
experiments or evaluation is inevitable. In spite of other efficient methods of calculation such
as integral equations and computer simulations, we have used perturbation theory because of
its extensive qualities. Moreover, other methods are more time consuming than perturbation
theories. When one wants to deal with realistic intermolecular interactions, the problem of
deriving the thermodynamic and structural properties of the system becomes rather formida‐
ble. Thus, perturbation theories of liquid have been devised since the mid-20th century.
Thermodynamic perturbation theory offers a molecular, as opposed to continuum approach
to the prediction of fluid thermodynamic properties. Although, perturbation predictions are
not expected to rival those of advanced integral-equations or large scale computer simulations
methods, they are far more numerically efficient than the latter approaches and often produced
comparably accurate results.

Dealing with light species such as He and H2 at low temperature and high densities makes it
necessary taking into account quantum mechanical effects. Quantum rules and shapes related
with the electronic orbital change completely the macroscopic properties.

Furthermore, for this fluid mixture, the quantum effect has been exerted in terms of first order
quantum mechanical correction term in the Wigner-Kirkwood expansion. This term by
generalizing the Wigner-Kirkwood correction for one component fluid to binary mixture
produce acceptable results in comparison with simulation and other experimental data. Since
utilizing Wigner-Kirkwood expansion in temperatures below 50 K bears diverges, we
preferred to restrict our investigations in ranges above those temperatures from 50 to 4000
degrees. In these regions our calculations provide more acceptable results in comparison with
other studies.

© 2013 Motevalli and Azimi; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



This term make a negligible contribution under high temperatures conditions. Taking into
account various contributions, we have utilized an improved version of the equation of state
to study the Helmholtz free energy F, to investigate the effects of P and T on thermodynamic
properties of helium and hydrogen isotopes mixtures over a wide range of densities. We also
have studied effects of concentrations of each component on macroscopic parameters. In
addition, comparisons among various perturbation and ideal parts have been presented in
logarithmic diagrams for different densities and concentrations for evaluation of perturbation
terms validity in respect to variables ranges.

The first section is dedicated to a brief description of Wigner expansion which leads to
derivation of first quantum correction term in free energy. With the intention of describing
effects of quantum correction term we have explained theoretical method of our calculations
in the frame work of statistical perturbation theory of free energy in section two. In section
three we have depicted diagrams resulted from our theoretical evaluations and gave a brief
explanation for them. In section four we have focused on the description of our calculations
and its usages in different areas. Finally, some applications of this study have been introduced
in the last section.

2. Quantum correction term

Considering quantum system of N  identical particles of mass m confined to the region of Λ
with the interacting potential ofU . This structure is considered in υ-dimension space (R υ). In
the absence of external fields the Hamiltonian of particles is given as

( ) ( )21
2

H i U r
m

= - Ñ +
r rh (1)

Where, ℏ is the Plank constant. The equilibrium statistical mechanics of the particle system is
studied in the canonical ensemble at the temperature T  (or, alternatively, the inverse temper‐
ature β =1 / kBT  with kB being Boltzmann’s constant). Quantum effects will be considered via

de Broglie wavelength λ =ℏ β /m. For a typical microscopic length of particles l , for suffi‐
ciently small dimensionless parameter λ / l  semi-classical regime is dominant. In such system
Boltzmann density in configuration space r→  can be expanded in powers of λ 2 within the well-
known Wigner-Kirkwood expansion [1, 2]. In the case of an inverse-power-law repulsive
potential V (r)=V0(a / r)n from the range 1<n <∞, the Wigner-Kirkwood expansion turns out

to be analytic in λ 2 [3]. In the hard-core limit n→∞, this expansion is not further correct and
one has the non-analyticity of type (λ 2)1/2, as was shown in numerous analytic studies [4-7].
In contrast to the bulk case, the resulting Boltzmann density involves also position dependent
terms which are non-analytic in λ. Under some condition about the classical density profile,
the analyticity in λ is restored by integrating the Boltzmann density over configuration space.
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2.1. Wigner-Kirkwood expansion

To have an analytical equation for quantum effects in fluid we must derive partition function
of it. In approximating partition function we need to evaluate Boltzmann density. Conse‐
quently having an expansion of quantum correction terms it is necessary to expand Boltzmann
density. Considering system of N  particles in the infinite space in standard Wigner-Kirkwood
expansion [1, 2] fermions or boson exchange effects between quantum particles have been
neglected. In the “bulk” regime, equilibrium quantities of this system in the nearly classical
regime can be expanded in powers of h 2. In this section, we review briefly the derivation of
this expansion for utilizing it in statistical perturbation framework. The Boltzmann density Bβ
in configuration space r→  can be formally written in the basis of plane waves as a υN -dimen‐
sional integral defined in an infinite domain R υ:

( )
( ) ( ). .

2
i p r i p rH H

N
dPB r e r e e eb b

b u
p

-- -= = ò
r r r rh h

ur
r r

h
(2)

Where p→ = (p1, p2, p3, ...) is the υN -dimensional momentum vector. Instead of considering we
take the Laplace transform of this operator with respect to the inverse temperature β,

0

1H zd e e
H Z

b b bb - - =
+ò (3)

Via integrating equation 2 in respect to β we have

( )
( ) ( ). .

0

1

2
i p r i p rH z

N
dPd r e r e e e

H Z
b b b

u
b

p

-- - =
+ò ò

r r r rh h
ur

r r

h
(4)

Let us introduce following definition

H z D Q+ = + (5)

That Q and D respectively represent

( )

( )

22

2

1 1
2 2

1
2

Q i P
m m

D P U r z
m

= - Ñ -

= + +

urr
h
ur r (6)

Quantum Perturbation Theory in Fluid Mixtures
http://dx.doi.org/10.5772/54056

271



One can expand

1 1 1 1 1 1 1 ...Q Q Q
H Z D D D D D D

= - + -
+

(7)

Q, operates in the following manner

( ) ( ) ( ) ( )
2 2. . .

2
i p r i p r iQ f r e e p f r

m m
- é ùé ù = Ñ + Ñê úê úë û ê úë û

r r r rh hr r ur ur rh h
(8)

And then we can find that

( ) ( )

( )
( ) ( )

( )

( )

2 2. .

0

2 2. .

0

2

0

1 1 1.
2

1 1 1.
22 2

1 .
22

n
i p r i p r

n

n
i p r i p r

N N
n

H z
N

ie e p
H z D m m D

dP dP ie e p
H z D m m D

dP id r e r e p
D m

u u

b b b
u

p p

b
p

¥
-

=

¥
-

=

- -

ì üé ùï ï= Ñ + Ñê úí ý+ ê úï ïë ûî þ

ì üé ùï ï= Ñ + Ñ =ê úí ý+ ê úï ïë ûî þ

= Ñ +

å

åò ò

ò ò

r r r rh h

r r r rh h

r ur urh h

ur ur r ur urh h

h h
ur r urr r h h

h

2

0

1
n

n m D

¥

=

ì üé ùï ïÑê úí ý
ê úï ïë ûî þ

å
ur

(9)

So we have expanded series in ℏ2n which enable us power series of ℏn. It remains to define
1 /D j

( ) ( )
( )2

2
1 1

0 0

1 1 1
1 ! 1 !

p m U r
j jD z

j d e d e e
j jD

b
b bb b b b

é ù- +¥ ¥ ê ú- -- - ë û= =
- -ò ò

r r

(10)

and finally integrating on the momentum variables p→ , the Boltzmann density in configuration
space is obtained as the series

( ) ( )
0

,nH

n
r e r B rb

b

¥
-

=

=år r r
(11)

where
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We conclude that the quantum Boltzmann density in configuration space is g
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(12)

Integrating Boltzmann density ignoring exchange effects over configuration space will result
in partition function of fluids mixture.

1
!

H
qu V
Z dr r e r

N
b-= ò

r r r
(13)

Substituting the λ-expansion of the Boltzmann density (12A) into formula (13), the quantum
partition function takes the expansion form
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For expressing macroscopic physical quantities, one defines the quantum average of a function
f (r→ ) as follows

( )1
!

H
qu

qu
f dr r e r f r

Z N
b-

L
= ò

r r r r
(15)

At the one-particle level, one introduces the particle density
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= -å (16)

At the two-particle level, the two-body density is given by
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And the pair distribution function
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The classical partition function and the classical average of a function f (r→ ) are defined as
follows
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Consequently with the definition of equation 19 one can derive below equation for Zqu

22 41
24quZ Z U Obl lì ü

= - Ñ +í ý
î þ

ur
(21)

( )lnqu quF Zb = - (22)

( ) 22 4ln ln( ) ln(1 ...)
24quZ Z U Obl l= + - Ñ + +

ur
(23)
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Since we have ln(1− x)= − x − x 2 / 2− ... we can expand the second term in the right side. By
means of equation 18 in deriving ∇

→ 2U  we can have explicit formula for the second term of
which indicates the first term of Wigner-Kirkwood correction part that is consist of the second
derivative of potential function that leads to below equation for quantum correction term with
the number density of n we have

0

2
(1) 2

2 ( ) ( )
96

A
qu

h N n
F U r g r dr

m s

b

p

¥
= Ñò (24)

g(r) represents radial distribution function, which is a measure of the spatial structure of the
particles in reference system, is the expected number of particles at a distance r . NA is Avogadro

constant and σ 0 is the distance in which potential function effectively tend to zero.

2.2. Free energy

Generalizing to multi-component system we have [8]

0
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c ch N n
F u r g r r V dr

m s

b
p

p

¥
= Ñå ò (25)

m11 =m1, m22 =m2, m12 =c1m1 + c2m2

mi is the ith particle’s mass. V ij̄ is the average molecular volume. Distribution function defines
probability of finding particle at particular point r . In many literatures that have studied
distribution function found it more versatile to use Laplace transform of this function G(s).

( ) 0
( ) sr

ij ijG s rg r e dr
¥ -= ò (26)

In this chapter the two formula which use RDF, we will encounter below integral equation
that need expansion.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
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13 3 2 2
0 01 0 0

I r r rg r dr x x xg x dx x x g x dx x x g x dx
s

f s f s f f
¥ ¥ ¥

= = = -ò ò ò ò (27)

On the right side of above equation from the right in the first equation we approximate
distribution function with its values at contact points. This choice has been resulted from the
behavior of molecules of which their repulsive interactions dominate their attractive potential.
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However, for the second term (I ′) we will use change in integrals to employ Laplace transform
of RDF instead of RDF directly.

( ) ( )1
2

i sx
i

xg x G s e ds
i

g

gp
- ¥ -
- ¥

= ò (28)

Substituting above equation in I ′ we have

( ) ( )0
I s G s dsj

¥
¢ = ò (29)

Where φ(s) represents
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j f

p
- ¥ -
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= ò (30)

That indicates inverse Laplace of xϕ(x). So it suffices to just define inverse Laplace of potential
function multiplied by x.

Therefore, Using Laplace transform of RDF G(s) [9] quantum correction term for DY potential
turn out to be

2
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ci is the i particle’s concentration and n represents number density. Aij, λij and υij are controlling
parameters of double Yukawa(DY). εij is the attractive well depth of mutual interacting
potential.

3. Framework

The derivation of the thermodynamic and structural properties of a fluid system becomes a
rather difficult problem when one wants to deal with realistic intermolecular interactions. For
that reason, since the mid-20th century, simplifying attempts to (approximately) solve this
problem have been devised, among which the perturbation theories of liquids have played a
prominent role [10]. In this instance, the key idea is to express the actual potential in terms of
a reference potential (that in terms of Ross perturbation theory Helmholtz free energy is
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expressed as of the “unperturbed” system) plus a correction term. This in turn implies that the
thermodynamic and structural properties of the real system may be expressed in terms of those
of the reference system which, of course, should be known. In the case of two component fluids,
a natural choice for the reference system is the hard-sphere fluid, even for this simple system
the thermodynamic and structural properties are known only approximately. Let us now
consider a system defined by a pair interaction potential u(r). The usual perturbation expan‐
sion for the Helmholtz free energy, F , to first order in β =1 / kβT , with T  being the absolute
temperature and kB being the Boltzmann constant, leads to F . Common starting point of many
thermodynamic perturbation theories is an expansion of the Helmholtz free energy, the
resulting first-order prediction for a fluid composed of particles helium and hydrogen is given
via the following equation.

t Q HB idF F F F F= + + + (32)

The terms respectively are perturbation, Quantum, hard convex body and ideal terms.
Perturbation term due to long range attraction of potential is given by [10]

0
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F n c c u r g r r V dr
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p r s p

¥
= å ò (33)

Via Laplace transform of RDF (rg ij
HS ) in calculation of first order perturbation contribution due

to long-ranged attraction for DY potential we can employ below equation:
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V ij̄ the average molecular volume defined as:
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(35)

Where n ′
i define the number of element in a molecule, li is distance of centre to centre for each

molecule. δF t  corresponds to the interval of σij, σij
0  which long range attractive range is not

further applicable. Consequently, we prefer to use the contact value of hard sphere RDF at
r =σij. By this approach we can express this term as:
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gij
HS (σij) is the contact value of radial distribution function. σij stands for separation distance

at contact between the centers of two interacting fluid particles, with species i and j. Although
via minimization of Helmholtz free energy we can achieve value for hard sphere diameter, we
preferred to use its analytical form due to its practical approach [17]. Hard sphere diameter
will be calculated by means of Barker-Henderson equation as a function of interacting potential
and temperature. Using Gauss-Legendre qudrature integration method we are able to evaluate
its values numerically.
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F HB,  Helmholtz free energy of hard convex body is given by following equation:

( )HB HS nd
mixF a F F= + (38)

Non-sphericity parameter amix for the scaling theory [11] is defined as
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(V ijeff )′ and (V ijeff )″ are the first and second partial derivatives of V ij
eff  with respect to σii and

σ jj. From Boublik, Mansoori, Carnahan, Starling, Leland (BMCSL) [12, 8] with correction term

of Barrio [13] on EOS, the Helmholtz free energy, F HS  for hard sphere term becomes:

F HS

KT =
η3 ξ1 + (2−η3)ξ2

1−η3
+

η3ξ3

(1−η3)2 + (ξ3 + 2ξ2−1)ln(1−η3),

ξ1 =
3η1η2
η0η3

, ξ2 =
η1η2
η32 (η4z1 + η0z2), ξ3 =

η23

η0η33
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The correction term due to nonadditivity of the hard sphere diameter is the first order
perturbation correction [14]

( )( )1 2 11 22 11 22 12 12 122 ( )nd HSF kT nc c gp s s s s s s= - + + - (41)

In Eq. (41), g12
HS (σ12) refer to as hard sphere radial distribution function at r =σ12 contact point

by inclusion of Barrio and Solana correction on equation of state of BMCSL. Undoubtedly, the
availability of the analytical HS RDF obtained from the solution to the corresponding Percus–
Yevick (PY) equation represented a major step toward the successful application of the
perturbation theory of liquids to more realistic inter-particle potentials. However, the lack of
thermodynamic consistency between the virial and compressibility routes to the equation of
state present in the PY approximation (as well as in other integral equation theories) is a
drawback that may question the results derived from its use within a perturbation treatment.
Fortunately, for our purposes, another analytical approximation for the RDF of the HS fluid,
which avoids the thermodynamic consistency problem, has been more recently derived [15,
16]. We used improved RDF that yields exact asymptotic expression for the thermodynamic
properties. However, we have used improved version of RDF that yields exact asymptotic
expression for the thermodynamic properties. This have been derived by inclusion of Barrio
and Solana correction on EOS of BMCSL at r =σ12 [9]
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(42)

ηi =
π
6 n∑j

cjσ jj i

δij is the Kronecker delta function. For additive mixtures σij is arithmetic mean of hard-core
diameters of each species. Otherwise, the system is said to be non-additive.
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The ideal free energy with N  particle for the atomic and molecular components of fluid mixture
are given by,

1 2

2

1 2

3( , ) ln ln ln 1
2 2

id
i ic c

i

hF n T n c c
kTm mp

æ ö
ç ÷= + + -
ç ÷
è ø

å (43)

Compressibility factor of ideal term is one and Z HB would be estimated with the following
derivation of related Helmholtz free energy

HB
HB FZ n

n kT
¶

=
¶

(44)

For the perturbation term due to long rage attraction of potential tail employing (44) we will
have

Z t =
2πn
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∂
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0

uij
DY (r)4πr 2V ij̄dr

Numerical integration has been used for calculation of δZ t  in the range of σij, σij
0 . Expressions

for first order perturbation and quantum correction term of compressibility factor are achiev‐
able via applying (44) for the free energy part of the quantum correction term.
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Summation over compressibility factors gives the total pressure of mixture

( )1 HB t QP nkT Z Z Z= + + + (46)

Defining Gibbs free energy provides information at critical points of phase stability diagram.
Concavity and convexity of Gibbs diagram indicates if mixture is in one phase or not,
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NG F P
n

= + (47)

Furthermore, Gibbs excess free energy is an appropriate measure in the definition of phase
stability. Negative values for this energy describe stable state. This is expressed as

0 lnxs i i i i
i i

G G c G NkT c c= - -å å (48)

That Gi
0 represents the Gibbs free energy of pure fluid of species i. Concentration-concentration

structure factor is defined as

12

2
, ,

(0)cc
T P N

S NkT G
c

-
æ ö¶

= ç ÷ç ÷¶è ø
(49)

Compairing this equation with Scc
id  enable us to define degree of hetero-coordination. In a given

composition if Scc(0)< <Scc
id  then unlike atoms tend to pair as nearest neighbors (hetero-

coordination) and when Scc(0)> >Scc
id  then like atoms are preferred as a neighbor.

3.1. Potentials

It  is  convenient  to consider interacting potential  with short-range sharply repulsive and
longer-range attractive tail and treat them within a combined potential. The most practical
method for the repulsive term of potential  is  the hard-sphere model with the benefit  of
preventing particles overlap. Furthermore, attractive or repulsive tails may be included using
a perturbation theory. It is incontrovertible to generalize this potential to multi-component
mixtures.  This  behavior  is  conveyed  in  double  Yukawa  (DY)  potential  which  provides
accurate thermodynamic properties of fluid in low temperatures and high density [18, 19].
At first we define DY potential as its effects on pressure of He −H2 mixture has been studied
in this work, written as:

( ) ( )0 00
1 1

( ) ij ij ij ijr rijDY
ij ij iju r A e e

r
l s u ss

e
- -é ù

= -ê ú
ë û

(50)

Aij, λij, υij are controlling parameters. These parameters for He and H2 are listed in table 1 with
their reference [20].
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He−He He-H2 H2-H2

σ 0 2.634 2.970 2.978

A 2.548 2.801 3.179

ε / kB 10.57 15.50 36.40

υ 3.336 3.386 3.211

λ 12.204 10.954 9.083

Table 1. Potential parameters for He, H2 interactions for DY potential [20].

For the atomic and molecular fluids studies in this mixture, these particles interact via a
exponential six (exp-6) or Double Yukawa (DY) potential energy function [20]. The fluids
considered in this work are binary mixtures that their constituents are spherical particles of
two species, i and j, interacting via pair potential uij(r).

exp 6 ( ) min,6 66 exp( (1 )) ( ), 6 min,
ij

r
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s

a s
e a s

a a s

-
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ïï æ ö= í ç ÷- - > ¥ï - ç ÷ï è øî

(51)

So we consider two-component fluid interacting via Buckingham potential uij(r) between
molecules of types i and j. This potential is more realistic than square-well or Yukawa type
potential for hydrogen isotope’s mixture [21] at high temperatures. Because of same atomic
structure of hydrogen and its isotopes, the three constant of potential are same for hydrogen
isotopes. These constants obtained experimentally from molecular scattering [22].

σmin indicate the range of interaction and the parameter α regulates the stiffness of repulsion.
For hydrogen and helium type atoms these parameters have been organized in Table 2. It is
well known that the long range attractive part of exp-6 potential is similar to Lenard–Jones
potential.

In view of the energy equation (32), one can readily obtain equation for total pressure and
different contributions to pressure from standard derivation of respective Helmholtz free
energy. By the exp-6 potential, we have computed the Helmholtz free energy. The ten-point
Gausses quadrature has been used to calculate integrals in quantum correction and perturba‐
tion contribution. The calculated pressure for D2 + T2 fluid mixture with equal mole fraction

and at temperature of T =100o K  is showed logarithmically in figure 1. As it is clear from this
figure, the effect of hard sphere term of pressure in given rang of temperature is significant
and the range of pressure variation is wider than ideal part. As it is mentioned earlier the
difference between isotopes is simply related to the neutron number in each nucleus and
correction due to difference in mass which involves in non-additive correction term doesn’t
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affect sensibly. In addition, this figure shows the predicted equimolar surface of the deuterium
and tritium mixture for quantum correction term. This part is the most significant contribution
at low temperature and varying smoothly in higher temperature. At very high densities,
perturbation term contribution increases sharply with reducing density. Also, terms, P t , P Q,
P HS  and P id , tend to infinity as ρ→∞.

He−He He-H2 H2-H2

α 13.10 12.7 11.1

ε / kB 10.80 15.50 36.40

σmin 0.29673 0.337 0.343

Table 2. Potential parameters for He, H2 interactions for exp-6 potential [20]
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Figure 1. Different contributions of pressure as a function of reduced density for T = 100oK  for fluid mixture of deute‐
rium and tritium

4. Results

For helium-hydrogen mixtures different parts of pressure due to correction terms and ideal
parts have been showed in figure 2 at T =100o K . Ideal pressure at reduced density of approx‐
imately zero, to about 0.25 rises drastically. However, afterward it soars gently up to 100M
(pa). Pressure due to hard sphere is the most significant contribution except that it is less than
perturbation part at value of 1.5 for reduced density. Effects of perturbation and Quantum
correction are important in high densities. In low densities, these contributions are insignificant
and may possibly be ignored. Non-additive part has been caused by dissimilarity of particles
which surges steadily from the beginning.
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Figure 2. Different contribution of correction terms on pressure of helium-hydrogen mixture at T=100, che=0.5 vs. re‐
duce density

Gibbs excess free energy which is a measure for indicating phase stability of matters has been
depicted in figure 3. Stability is limited to the areas that Gibbs excess free energy tends to
negative values. This figure explains that stability rages for helium-hydrogen mixture at room
temperature is confide in the boundaries in which helium concentration is less than 0.1.
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Figure 3. Gibbs excess free energy for helium-hydrogen mixture

Table 3 presents a comparison between results of pressure from this work using DY potential
in place of exp-6, Monte–Carlo simulations and additionally study of reference [23] Obviously,
there are appreciable adaption among our investigation results and MC which proves validity
of our calculations. As Table 3, exhibits in low temperatures DY potential have more consistent
results in comparison with exp-6. However, values of pressure extracted using DY potential
cannot adjust with simulation resembling exp-6. Moreover, at higher temperatures after
T =1000o K , DY potential is not good choice for evaluating EOS of hydrogen and helium
mixture. We clarify our deduction presenting comparison between effects of these two
potentials over wide ranges of temperatures.
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T (K ) cHe ρ * η PMC P[19] P[23] PDY [19]

300 0.25 1.101 0.433 2.3090 2.7039 1.9664 2.8678

300 0.5 1.101 0.400 1.8560 1.7001 1.5729 1.8402

300 0.75 1.101 0.367 1.4240 1.2816 1.3160 1.3887

1000 0.5 1.223 0.335 4.5100 4.4205 4.1094 4.9406

1000 0.75 1.223 0.307 3.7150 3.5190 3.5904 3.9328

4000 0.5 1.376 0.247 12.4300 12.0832 12.1014 14.154

4000 0.5 1.572 0.282 16.3300 16.4485 16.4720 19.859

Table 3. Comparison of values of pressure results from our study [19], Monte-Carlo simulation [24] and Isam Ali’s
study [23].
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Figure 4. Comparision of efect of DY and EXP-6 potential on pressure of mixture in che=0.5, T=300 vs. Reduced density

Providing evidence of gradual divergence of DY and exp-6 potentials, a comparative figure
has been made in figure 4 for helium-hydrogen mixtures. This figure shows more steepening
effects of DY on total pressure of this mixture. Both potentials engender increase in pressure,
except that, Buckingham affects moderately on pressure increase. The exp-6’s more steady
behavior makes it adjustable with previous studies and MC simulation.

In figures 5, 6, 7, 8 we tried to give information about effects of quantum correction term on
total pressure of helium-hydrogen and deuterium-tritium mixtures at the high reduced density
of 1.3. This correction term has been plotted in 3-dimensional diagram in figure 5. This term
is approximately zero for temperatures higher than 200 (K). Figure 6 represents that for
hydrogen rich mixture at low temperature due to quantum effects pressure rise is significant.
For effectual discussion on the effects of this term we have described P Q / P  in figure 7 for
helium-hydrogen and in figure 8 for deuterium tritium mixture. For the third picture increase
in pressure is similar to what have been elaborated for figures 5 and 6. For figure 8 this manner
remains analogous to helium-hydrogen mixture and temperatures next to 100 (K). However,
for temperature lower than this it would behave inversely. For this range any increase in
tritium concentration bears decrease in pressure.
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5. Conclusion

An Equation of state of hydrogen–helium mixture has been studied up to 90G (pa) pres‐
sure and temperature equal to 4000◦K. We have used perturbation theory as an adequate
theory for describing EOS of fluid mixtures. As well, by using this theory we can add extra
distributive  terms  as  perturb  part  which  makes  it  more  applicable  than  other  theories.
Considering this advantage, we can spread it out with additional terms for investigation on
other  states  of  matter  like  plasma in  the  direction of  compares  with  experimental  data.
Otherwise, using simulation methods, for evaluating our theoretical results. Such as ab initio
simulations with the code VASP,[25] which combines classical molecular dynamics simula‐
tion for the ions with electrons, behave in quantum mechanical system by means of finite
temperature  density  functional  theory  [26].  In  this  chapter,  two  potentials  have  been
presented, which we have used them for hydrogen isotopes and helium, and their mix‐
tures. By means of comparison with Monte Carlo simulation and results of refrence [14] in
Table 3 we could prove that exp-6 potential is more beneficial than DY in wider ranges of
variables, since its application in this theory shows more convergent results in comparison
with MC simulation [24]. Also exp-6 potential is a good choice of potential since it allows us
to elevate temperature and density [28]. But as hydrogen molecules dissociation occurs [28]
for pressures more than 100G (pa), this effect must be accounted. Therefore, we have restricted
ourselves to pressures below 100G (pa).

Furthermore, we have used Wertheim RDF which enables us to use this EOS for extended
values of temperature. As well, we have compared different contributions of pressure to
represent which one is more effective in different density and temperature regimes. By finding
the most effective parts of pressure contributions in each ranges of independent variables
(Temperature, reduced density, mole fraction), we can omit the less significant parts which
are considered ignorable in value, to decrease unnecessary efforts. Likewise, we can speculate
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from Fig. 1 that in low temperature and high densities, long range perturbation term has the
most significant effect in comparison with other parts. On the other hand, hard sphere part
can be assumed as the most noticeable part in high temperature ranges. Moreover, comparison
of DY and exp-6 potentials effects, on pressure of this mixture has been studied to express
benefits of using exp-6 potential for higher temperatures and densities. Additionally, as it is
obvious in high temperature and density difference between effects of two potentials are
considerable for this equimolar mixture. This discriminating property makes exp-6 potential
preferable.

Furthermore, this approach has been used to evaluate EOS of D2 + T2 mixture. Also, we have
used this method to compare different contribution parts of pressure. These comparisons
indicate that in low temperature quantum effects are more important, however in high
temperatures, hard sphere part is the most effective. The last two three dimensional diagrams
reveals the importance of quantum term in comparison with total pressure. However, for
temperatures below 100 (k) for deuterium-tritium mixture negative pressure express that in
low tritium concentration, deuterium rich fluid tend to consolidate.

6. Applications

One of the topics which can count on a great deal of interest from both theoretical and
experimental physics is research in fluid mixture properties. These interests, not only comprise
in the wide abundance of mixtures in our everyday life and in our universe but also the
surprising new phenomena which were detected in the laboratories responsible for this
increased attention. Mixtures, in general, have a much richer phase diagram than their pure
constituents and various effects can be observed only in multi-component systems.

These kinds of studies have allowed a more complete modeling of mixture and consequently
a better prediction and a more accurate calculation of thermodynamic quantities of mixture,
such as activity coefficient, partial molar volume, phase behavior, local composition in general
and have promoted a deeper understanding of the microscopic structure of mixtures.

Furthermore, for astronomical applications it is known that most of giant gas planets are like
Jupiter is consisting primarily of hydrogen and helium. Modeling the interior of such planets
requires an accurate equation of state for hydrogen-helium mixtures at high pressure and
temperature conditions similar to those in planetary interiors [29]. Thus, the characterization
of such system by statistical perturbation calculations will help us to answer questions
concerning the inner structure of planets, their origin and evolution [29, 30].

In addition, in perturbation consideration of plasma via chemical picture, perturbation
corrections will be included by means of additional free energy correction terms. Therefore,
in considering transition behavior of molecular fluid to fully ionized plasma these terms are
suitable in studying the neutral interaction parts. Consequently this will help us in studying
inertial confinement fusion [31] and considering plasma as a fluid mixture in tokomak [32].
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Chapter 13

Quantal Cumulant Mechanics
as Extended Ehrenfest Theorem

Yasuteru Shigeta

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53703

1. Introduction

Since Schrödinger proposed wave mechanics for quantum phenomena in 1926 [1-4], referred
as Schrödinger equation named after his name, this equation has been applied to atom-mol‐
ecules, condensed matter, particle, and elementary particle physics and succeeded to repro‐
duce various experiments. Although the Schrödinger equation is in principle the differential
equation and difficult to solve, by introducing trial wave functions it is reduced to matrix
equations on the basis of the variational principle. The accuracy of the approximate Schrö‐
dinger equation depends strongly on the quality of the trial wave function. He also derived
the time-dependent Schrödinger equation by imposing the time-energy correspondence.
This extension opened to describe time-dependent phenomena within quantum mechanics.
However there exist a few exactly solvable systems so that the methodology to solve Schrö‐
dinger equation approximately is extensively explored, yet.

In contrast to the time-dependent wave mechanics, Heisenberg developed the equations of
motion (EOM) derived for time-dependent operator rather than wave function [5]. This
equation is now referred as the Heisenberg’ EOM. This equation is exactly equivalent to the
time-dependent Schrödinger equation so that the trials to solve the Heisenberg’ EOM rather
than Schrödinger one were also done for long time. For example, the Dyson equation, which
is the basic equation in the Green’s function theory, is also derived from the Heisenberg’
EOM. Various approximate methods were deviced to solve the Dyson equation for nuclear
and electronic structures.

In this chapter, we propose a new approximate methodology to solve dynamical properties
of given systems on the basis of quantum mechanics starting from the Heisenberg’ EOM.
First, theoretical background of the method is given for one-dimensional systems and an ex‐
tension to multi-dimensional cases is derived. Then, we show three applications in molecu‐

© 2013 Shigeta; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



lar physics, i.e. the molecular vibration, the proton transfer reaction, and the quantum
structural transition, respectively. Finally, we give conclusion at the last part.

2. Theoretical background

2.1. Heisenberg’ equation of motion and Ehrenfest theorem

When the Hamiltonian does not explicitly depend on time, by defining time-dependent of
an arbitrary operator Â in the Heisenberg representation as

( ) ( )
ˆ ˆ

ˆ ˆ 0 .
i iHt Ht

A t e A e
-

= h h (1)

The Heisenberg’ equation of motion (EOM) is given as

( ) ( )
ˆ 1 ˆ ˆ, ,
A t

A t H
t i

¶
é ù= ë û¶ h

(2)

where Ĥ  is the Hamiltonian operator and h =2πℏ is the Planck’s constant. As an expectation
value of Â with respect to ψ is expressed as Â ≡ ψ | Â|ψ , the Heisenberg’ EOM is rewrit‐
ten as

( )
( )

ˆ ˆˆ 1 1ˆ ˆ ˆ ˆ, , .
i iHt HtA t

A t H e A H e
t i i

-¶
é ù é ù= ºë û ë û¶

h h
h h

(3)

For one-dimensional case, the Hamiltonian operator is expressed as a sum of the kinetic and
the potential operator as

( )
2ˆˆ ˆ .

2
pH V q
m

= + (4)

The Heisenberg’ EOMs for both a coordinate and a momentum are derived as
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These equations resemble corresponding Newton’ EOMs as

( ) ( )

( ) ( ) ( )( )1 .

p t
q t

m
p t V q t

=

= -

&

&
(6)

This relationship is so-called Ehrenfest’s theorem [6]. A definite difference between Heisen‐
berg’ and Nowton’ EOMs is that the expectation value of the potential operator appears in
the former. If one approximates the expectation value as

( )( ) ( )( )ˆ ˆ ,V q t V q t» (7)

the same structure of the EOM is immediately derived. However, there is no guarantee that
this approximation always holds for general cases. Including this approximation is also re‐
ferred as the Ehrenfest’s theorem.

In general, Taylor expansion of the potential energy term,

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 32 31 1ˆ ˆ ˆ ˆ0 0 0 0 ,
2! 3!

V q t V V q t V q t V q t= + + + +L (8)

gives a infinite series of higher-order derivatives, V (m)(0), times expectation values of high‐
er-powers of coordinate moment operators, q̂m(t) (m =1, 2, ⋯ ). Introducing a fluctuation
operator of Â as δÂ≡ Â− Â  and the expectation values of the higher-order central moment
δq̂m(t) ≡ (q̂(t)− q̂(t) )m (m =2, 3, ⋯ ), the Taylor series is rewritten as

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2 32 31 1ˆ ˆ ˆ ˆ ˆ ˆ ,
2! 3!

V q t V q t V q t q t V q t q td d= + + +L (9)

The first term appears in Eq. (2-7) and the other terms are neglected by the approximation
made before. This relation indicates that the difference between classical mechanics and
quantum mechanics is existence of higher-order moment.

2.2. Quantized Hamilton dynamics and quantal cumulant dynamics

Ehrenfest’ theorem fulfills for the arbitrary wave function. In previous studies, effects of the
higher-order moments on dynamics were explored. The most of studies treat second-order

Quantal Cumulant Mechanics as Extended Ehrenfest Theorem
http://dx.doi.org/10.5772/53703

295



term with the potential being a series of q. For example, Prezhdo and co-workers derived
EOMs for three additional moments of q̂2(t) , p̂2(t) , and (q̂(t) p̂(t))s  and solved the EOMs
by truncating the potential term up to fourth-order power series. The subscript s represent a

symmetric sum of the operator product defined as (q̂(t) p̂(t))s = 1
2 (q̂(t) p̂(t) + p̂(t)q̂(t)) . Judg‐

ing from previous works, this formalism is essentially the same as Gaussian wave packet
method. Prezhdo also proposed a correction to the higher-order moments [8]. Nevertheless
their formalism could not be applied general potential without any approximation such as
the truncation.

Recently Shigeta and co-workers derived a general expression for the expectation value of
an arbitrary operator by means of cumulants rather than moments [9-19]. For one-dimen‐
sional case, the expectation value of a differential arbitrary operator, As(q̂, p̂), that consists of
the symmetric sum of power series of q and p is derived as

( ) ( )( ) ( )
( ) ( ),

s
0

ˆ ˆ, exp , ,
! !

m
l m l

l m l
m l m

t
A q t p t A q p

l m l q p
l -

-
£ £

æ ö¶
= ç ÷ç ÷- ¶ ¶è ø

å å (10)

where we introduced the general expression for the cumulant λm,n(t)≡ (δq̂m(t)δ p̂n(t))s , in
which the subscripts mean m-th order and n-th order with respect to the coordinate and mo‐
mentum, respectively [20-22]. Using the expression, the expectation value of the potential is

( )( ) ( ) ( ),0

2
ˆ exp .
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m
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V q t V q

m q
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æ ö¶
= ç ÷ç ÷¶è ø

å (11)

Thus, when the anharmonicity of the potential is remarkable, it is expected that the higher-
order cumulants play important role in their dynamics. Indeed, for the harmonic oscillator
case, only the second-order cumulant appears as

( )( ) ( ) ( )( )2 2
2,0ˆ ,

2
mV q t q t tw l= + (12)

and the other higher-order terms do not.

Up to the second-order, Heisenberg’ EOMs for cumulants are given by
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where Ṽ  is second-order “quantal” potential defined as
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Ṽ (n,0) is the n-th derivative of Ṽ  with respect to q. It is easily seen that the quantal potential
is a finite series with respect to the cumulant by expanding as a Taylor series as
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It is noteworthy that the first and second terms of above equation corresponds to the first
and second terms of Eq. (2-9), on the other hand, the other term are different each other.

Now we here give an expression to the quantal potential that has complicated form like as
in Eq. (2-14). By using the famous formula for the Gaussian integral
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the exponential operator appearing in Eq. (2-14) is rewritten as,

2 2
2,0

2
2,02,0

1exp exp .
2 22

r r dr
qq

l
lpl

¥

-¥

é ùæ öæ ö¶ ¶
ê ú= - +ç ÷ç ÷ç ÷ ç ÷¶¶ ê úè ø è øë û

ò (17)

Quantal Cumulant Mechanics as Extended Ehrenfest Theorem
http://dx.doi.org/10.5772/53703

297



The first derivative operator term in right hand side of the above equation can act to the po‐

tential with the relationship of exp r
∂
∂q f (q)= f (q + r) as
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Therefore it is possible to estimate potential energy term without the truncation of the po‐
tential. However the analytic integration is not always has the closed form and the numeri‐
cal integration does not converge depending on the kind of the potential. For the quantal
potential including third and higher-order culumant, it is convenient to use the Fourier inte‐
gral instead of Gaussian integral. Nevertheless this scheme also has problems concerning
about the integrability and its convergence.

2.3. Energy conservation law and least uncertainty state

For the EOMs of Eq. (2-13), there exists first integral that always hold for. Now defining a
function,

( ) ( ) ( ) ( )2
2,0 0,2 1,1 ,t t t tg l l l= - (19)

and differentiating it result in
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Thus, this function is a time-independent constant. It is well-known that the least uncertain‐

ty state fulfills γ =
ℏ2

4 . By setting the adequate parameter, one can incorporate the Heisen‐

berg’ uncertainty principle and thus least uncertainty relation into EOMs. Using this value,
one can delete one cumulant from EOMs, for example
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Now by considering the dimension we define new coordinate and momentum as
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The second-order momentum cumulant λ0,2(t) is rewritten using them as

( ) ( ) ( )
2

2
0,2 2 .

4
t p t

q tl
l

l = +
h (23)

Total energy are expressed using the cumulant variables as
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Above expression indicates that the energy does not depend on λ1,1(t). Differentiating the
energy with respect to time gives the energy conservation law. The proof of the energy con‐
servation law is give below.
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By means of the new coordinate and momentum, the total energy is rewritten as
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This equation tells us that the effective potential derived from the kinetic energy term affect
the dynamics of q(t) via dynamics of qλ(t). A variational principle of E2,

2 2 2 2 0,
E E E E
p p q ql l

¶ ¶ ¶ ¶
= = = =
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gives stationary state that fulfills the least uncertainty condition as
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For both momenta, the solutions of the above variational principle are zero. On the other
hand, the solutions for the coordinates strongly depend on the shape of the give potential.
As an exactly soluble case, we here consider the harmonic oscillator. The variational condi‐

tion gives a set of solutions as (p, pλ, q, qλ)= (0, 0, 0, ℏ / 2mω). The corresponding energy

E2 =
ℏω
2  is the same as the exact ground state energy. The cumulant variables estimated

from the solutions result in (λ2,0, λ1,1, λ0,2)= ( ℏ
2mω , 0,

mℏω
2 ) being the exact expectation val‐

ues for the ground state. Thus the present scheme with the least uncertainty relation is rea‐
sonable at least for the ground state.

2.4. Distribution function and joint distribution

In order to visualize the trajectory in this theory, we here introduce distribution function as
a function of coordinate and second-order cumulant variables. Now the density finding a
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particle at r is the expectation value of the density operator, δ(q̂ − r), with a useful expression
as

( ) ( ) ( )( )2ˆ ˆlim exp .r q r q rb
br d b
p®¥= - = - - (29)

Thus the second-order expression for the density is evaluated as
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This density shows that the distribution is a Gaussian centered at q with a width depending
on the cumulant λ2,0. Thus the physical meaning of the second-order cumulant λ2,0 results in
the width of the distribution. As the integration of this density for the whole space becomes
unity, the density is normalized. Therefore the density has the physical meaning of probabil‐
ity. Comparison with Eq. (2-18), the potential energy is rewritten by means of the density as
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This expression indicates that the expectation value of the potential is related to the mean
average of the potential with weight ρ2(r). The same relationship holds for the momentum
distribution.

In principle, one cannot determine the position and momentum at the same time within the
quantum mechanics. In other words, resolution of phase space is no more than the Planck’
constant, h. In contrast to the quantum mechanics, we can define the joint distribution func‐
tion on the basis of the present theory as

( ) ( ) ( )( )joint s
ˆ ˆ, .r s q r p sr d d= - - (32)

The second-order expression is given by
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In contrast to the energy, the joint distribution depends on all the cumulant variables. In the
phase space, this joint distribution has the elliptic shape rotated toward r-s axes. This joint
distribution corresponds not to a simple coherent state, but to a squeezed-coherent state.

Using the joint distribution, the expectation value of the arbitrary operator is evaluated via

( ) ( ) ( )s jointˆ ˆ, , , .A q p A r s r s drdsr= ò ò (34)

In this sense, this theory is one of variants of the quantum distribution function theory. This
joint distribution fulfills the following relations as
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Moreover the coordinate, momentum, and cumulants are derived by means of the joint dis‐
tribution as
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2.5. Extension to multi-dimensional systems

The Hamiltonian of an n-dimensional N particle system including a two-body interaction is
written by

( )
2

1

ˆ ˆ ˆˆ ,
2

N N
I

I J
I I JI

H V
m= >

= + -å å
P

Q Q (37)

where Q̂ I =(q̂ I 1, q̂ I 2, ⋯ , q̂ In) and P̂ I =( p̂ I 1, p̂ I 2, ⋯ , p̂ In), and mI  represent a vector of I-th po‐
sition operator, that of momentum operator, and mass, respectively. We here assume that
the potential V (r) is a function of the inter-nuclear distance r . Using the definitions of the
second-order single-particle cumulants given by
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the total energy is derived as an extension of Eq. (2-26) by

( )
2

2 2
1

, ,
2

N N
I I n

I J I J
I I JI

E V
m= >

+ ×
= + - +å å

P 1
Q Q%h

x x (39)

where PI  and QI  are n-dimensional momentum and coordinae and 1n =(1 1 ⋯ 1) is n-di‐
mensional identity vector. V (Q, ξ) is the second-order quantal potential given as
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where ξ is an n by n matrix composed of the position cumulant variables. From Heisenberg
uncertainty relation and the least uncertainty, the total energy of Eq. (2-39) is rewritten as
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From Heisenberg EOM, EOMs up to the second-order cumulants are given by
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where W̃ 2
(1Ik )({QI −QJ }, {ξI + ξJ }) and W̃ 2

(2Ik ,Im)({QI −QJ }, {ξI + ξJ }) are the 1st and 2nd deriva‐
tives of the sum of the quantal potentials with respect to the position qik  and to qik  and qim

defined as
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In contrast to the one-dimensional problems, second-order cumulants are represented as
matrices. Thus, the total degrees of freedom are 24N for 3-dimensional cases. For the latter
convenience, we here propose two different approximations. The one is the diagonal ap‐
proximation, where the all off-diagonal elements are neglected, and the spherical approxi‐
mation, where the all diagonal cumulants are the same in addition to the diagonal
approximation. In the following, we apply the present methods for several multi-dimension‐
al problems. We hereafter refer our method as QCD2.

3. Applications

3.1. Application to molecular vibration

Here we evaluate the vibrational modes from the results obtained from molecular dynamics
(MD) simulations. Since the force field based model potentials, which are often used in mo‐
lecular dynamics simulations, are empirical so that they sometimes leads to poor results for
molecular vibrations. For quantitative results in any MD study, the accuracy of the PES is
the other important requirement as well as the treatment of the nuclear motion. Here we use
an efficient representation of the PES derived from ab initio electronic structure methods,
which is suitable for both molecular vibration and the QCD scheme in principle. In order to
include anharmonic effects, multi-dimensional quartic force field (QFF) approximation [23]
is applied as

{ }( ) 2
QFF 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2 6 24

ijk ijklii
i i i j k i j k l

i ijk ijkl

t uh
V Q V Q Q Q Q Q Q Q Q= + + +å å å (44)

whereV0, h ii, tijk , and uijkl  denote the potential energy and its second-, third- and fourth-or‐
der derivatives with respect to a set of normal coordinates {Q̂ i}, at the equilibrium geometry,
respectively. To further reduce the computational cost for multi-dimensional cases, an n-
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mode coupling representation of QFF (nMR-QFF) was applied [23], which includes mode
couplings up to n modes.

By taking each normal mode as the degree of freedom in the dynamics simulation, the Ham‐
iltonian for QCD2 with nMR-QFF as the potential energy is

{ } { }( ) { }( )
2

mode
QFF

ˆˆ ˆˆ ˆ , ,
2
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where VQFF
n−mode denotes nMR-QFF. In this Hamiltonian we neglected the Watson term,

which represents the vibrational-rotational coupling. Mass does not appear in the equations
since the QFF normal coordinate is mass weighted. Therefore, the time evolution of varia‐
bles of QCD2 with 1MR-QFF (general expressions are not shown for simplicity) is derived as
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For molecules with more than 1 degree of freedom, we applied 3MR-QFF, because it has
been shown by various examples that the 3MR-QFF is sufficient to describe fundamental
modes as well as more complex overtone modes. The QCD2 and classical simulations were
performed numerically with a fourth-order Runge-Kutta integrator. For formaldehyde
(CH2O) and formic acid (HCOOH), 3MR-QFF PES was generated at the level of MP2/aug-cc-
pVTZ [24, 25] using GAMESS [26] and Gaussian03 [27] program packages. In this work, the
results obtained by our method are compared with those by vibrational self-consistent field
method (VSCF) with full second-order perturbation correction (VPT2), which is based on the
quantum mechanics and accurate enough to treat molecular vibrations.

We here present results of the spectral analysis of trajectories obtained from the simulation
that can be compared with other theoretical calculations and experimental results. The Four‐
ier transform of any dynamical variables obtained from the trajectories of MD simulations is
related to spectral densities. In particular, Fourier transform of velocity autocorrelation func‐
tion gives the density of vibrational states. In addition, the power spectrum of the time ser‐
ies or autocorrelation function of each normal coordinate shows the contribution to
frequency peaks of the spectrum obtained from velocity autocorrelation. Here we adopted
the latter procedure. The time interval used was 0.1 fs and total time is 1 ps for all MD and
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QCD simulations. The resolution in the frequency domain is less than 1 cm-1, which is
enough accuracy for the analysis of the molecular vibrations of interest. If a longer time tra‐
jectory is obtained, the resolution of the Fourier spectrum becomes fine.

Since each normal mode is taken as the degree of freedom explicitly in the present dynamics
simulation, the interpretation and analysis of the results can directly be related with each
normal mode. The results are shown in Table 1. The table indicates that the harmonic and
QFF approximation of the PES results in a large deviation between each other. Therefore,
anharmonicity of the potential must be considered to perform reliable simulations. The table
shows that for the analysis of fundamental frequencies, the QCD2 has higher accuracy than
the classical results, which can be compared with the VPT2 results in all cases. In spite of the
high accuracy, the computational cost of the QCD2 remains low even when applied to larger
systems. For HCOOH molecule, the QFF is so anharmonic that the classical simulation does
not give clear vibrational frequencies due to the chaotic behavior of the power spectrum.
The QCD may suppress the chaotic motion as seen in the full quantum mechanics.

Mode NMA MD QCD VPT2 Exp.

H2CO

ν1 3040 2901 2843 2866 2843

ν2 2997 2868 2838 2849 2782

ν3 1766 1764 1723 1734 1746

ν4 1548 1504 1509 1515 1500

ν5 1268 1247 1250 1251 1250

ν6 1202 1166 N/A 1189 1167

HCOOH

ν1 3739 N/A 3527 3554 3570

ν2 3126 N/A 2980 2989 2943

ν3 1794 N/A 1761 1761 1770

ν4 1409 N/A 1377 1385 1387

ν5 1302 N/A 1270 1231 1229

ν6 1130 N/A 1120 1097 1105

ν7 626 N/A 631 620 625

ν8

/ν9

1058

/676
N/A N/A

1036

/642

1033

/638

Table 1.

Advances in Quantum Mechanics306



3.2. Proton transfer reaction in guanine-cytosine base pair

DNA base pairs have two and three inter-base hydrogen bonds for Adenine-Thymine and
Guanine-Cytosine pairs, respectively. Proton transfer reactions among based were theoreti‐
cally investigated by quantum chemical methods and further quantum mechanical analyses
for decases [28-33]. In order to investigate dynamical stability of proton-transferred struc‐
tures of the model system consisting DNA bases, we here perform QCD2 simulations of a
model Guanine-Cytosine base pair. The model potential is given by

( )GC
, ,

, ,
, , ' ,ji k

i j k
i j k

V x y z h x y z= å (47)

where parameters in the model potential are given by Villani’s paper [30, 31], which is fifth-
order polynomials with respect to the coordinates for GC pairs and determined by the first
principle calculations (B3LYP/cc-pVDZ). The reaction coordinates x, y, and z are shown in
the figure. The corresponding quantal potentials are explicitly given by
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where Greek characters denote the cumulant variables. In order to avoid the particles escap‐
ing from the bottoms, we have added the well-like potential is defined as
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where qimax and qimin are maximum and minimum range of potential and V0 is height of the
well-like potential. An approximate Heaviside function is given by

( ) ( )erf 1
,

2b

bx
xq

+
= (51)

where b is an effective width of the approximate Heaviside function and guarantees smooth‐
ness of the potential. Using this approximate Heaviside function, the quantal potential for
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the well-like potential is analytically derived. When V0 is appropriately large, the particles
stay around minima during dynamics simulations. We set b =100, qimax =2.0(Å), qimin =0.4(Å),
and V0 =0.05 (a.u.). Both qimax and qimin are in a reasonable range for the coordinate of the
proton, because the distances between heavy elements (O and N) of the DNA bases are ap‐
proximately 2.7~3.0 (Å) and roughly speaking the bond length of OH and NH are almost 1.0
~ 1.1 (Å). The ordinary PES analysis gives both global and metastable structures for the GC
pair. The former structure is the original Watson-Crick type and the latter is double proton-
transferred one as easily found in (a) and (c). No other proton-transferred structure is found
on the PES.

In the actual calculations, the time interval used was 0.1fs, total time is 2ps. The initial condi‐
tions of the variables can be determined by the least quantal energy principle. In figures 2
we have depicted phase space (x/px, y/py, z/pz) structures of a trajectory obtained by the
QCD simulations. For cases (a) and (b), the dynamical feature of the closed orbits is the same
except for its amplitudes. The phase space of the x/px is compact, on the other hand, that of
z/pz is loose in comparison with that of y/py. The explicit isotope effects on the phase space
structure are found in the cases of (c) and (d). In Fig. 2-(c), the nuclei initially located at the
metastable structure go out from the basin and strongly vibrate around the global minimum
due to tunneling. On the other hand, the deuterated isotopomer remains around the meta‐
stable structure. It is concluded that the metastable structure of the protonated isotopomer is
quantum mechanically unstable, though it is classically stable based on the PES analysis.
Therefore, it is important to take the quantum effects into isotope effects on the metastable
structure with a small energy gap.

Figure 1. A Model for multiple proton transfer reactions in GC pairs. x, y, and z are reaction coordinates of the proton
transfer reactions
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Figure 2. QCD phase space structures of the GC pair, where q=x, y, or z and p=px, py, or pz, respectively. (a) and (b) are
initially located around the global minimum for the protonated and deuterated cases. (c) and (d) are initially located
around the metastable structure for the protonated and deuterated cases.

3.3. Quantal structural transition of finite clusters

Melting behavior of the finite quantum clusters were extensively investigated by many re‐
searchers using different kind of methodologies [34-39]. We here investigate the melting be‐
havior of n particle Morse clusters (abbreviated as Mn) by means of the QCD2 method. The
Morse potential has following form:

( ) ( )( ) ( )( )e e eexp 2 2exp ,MV r D r R r Rr ré ù= - - - - -ë û (52)

where De, Re and ρ are parameters for a depth, a position of minimum, and a curvature of
potential. In order to evaluate the quantal potential for the Morse potential, we adopt a
Gaussian fit for the potential as
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which has an analytic form of the quantal potential and coefficients {ci} are obtained by a
least square fit for a set of even-tempered exponent with upper and lower bounds
(αupper =106 and αlower =10−3). By choosing the number of Gaussians, NG, the set of the coeffi‐
cients is explicitly determined and we here set NG=41.

We here evaluate optimized structures of Mn clusters (n=3-7) for De =1, Re =1, and α =1. The
classical global minimum structures of M3, M4, M5, M6, and M7 structure have C3v, Td, D3h,
Oh, and D5h symmetry respectively. Table 2 lists energy for each method. We found that the
diagonal approximation causes the artificial symmetry breaking and the spherical approxi‐
mation gives less accurate results. Original approximation gives the most accurate and cor‐
rectly symmetric global minimum structures. The diagonal approximation gives the same
results by the original one for M6 due to the same reason denoted before. The error of both
the diagonal and spherical approximation decreases with the increase of the number of the
particles. It is expected that both approximations work well for many particle systems in‐
stead of the original one. In particular the error of the diagonal approximation is 0.006 % for
the M7 cluster. This fact tells us that the diagonal approximation is reliable for the M7 cluster
at least the stable structure.

For the analyses on quantum melting behavior, the parameters of the Morse potential are
chosen asDe =1, Re =3, and α =1. Table 2 also lists nearest and next nearest distances obtained
by the original and classical ones. As found in this Table, all the distances elongate with re‐
spect to classical ones. For example, the distances of M3 and M4 elongate by 7.2% and 7.8%,
respectively. It is notable that these distances does not equally elongate. The ratio between
the original and classical ones is different for the nearest and next nearest distances, i.e.
8.16% and 6.20% for M5, 7.36% and 3.91% for M6, and 8.70% and 6.79% for M7, respectively.
In future works, we investigate influence of these behaviors on the structural transition (de‐
formation) of the quantum Morse clusters in detail.

In order to measure the melting behavior of the finite clusters, we here use the Lindemann
index defined as

( )

22
2 ,

1
ij ij

ij ij

r r

N N r
s

-
=

- å (54)

where rij  is a long time-averaged distance between i and j-th particles. In the present ap‐
proach, there exist two possible choices of the average. One is the quantum mechanical aver‐
age within the second-order QCD approach, r̂ ij QCD2 = | q̂ i − q̂ j | QCD2, which include
information of both the classical position and the second-order position cumulant simulta‐
neously, and the other is the average evaluated by means of the classical positions appear‐
ing in the QCD approach, rij = |qi −q j | . We perform real-time dynamics simulation to
obtain the Lindemann index for both systems, where we adopt m=100.
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The Lindemann indexes obtained by CD and QCD are illustrated in Fig. 1. In the figure,
there exist three different regions. Until a freezing point, the Lindemann index gradually in‐
creases as the increase of the additional kinetic energy. In this region, the structural transi‐
tion does not actually occur and the cluster remains stiff. This phase is called “solid-like
phase”. On the other hand, above a melting point, the structural transition often occurs and
the cluster is soft. This phase is called “liquid-like phase”. Between two phases, the Linde‐
mann index rapidly increases. This phase is referred as “coexistence phase”, which is not al‐
lowed for the bulk systems and peculiar to the finite systems. For both the solid- and liquid-
like phases, the Lindeman index does not deviate too much. However that of the coexistence
phase fluctuates due to a choice of the initial condition. In comparison with CD and QCD
results, the transition temperatures of QCD are lower than those of the CD reflecting the
quantum effects. The freezing and melting temperatures are about 0.35 and 0.42 for QCD
and about 0.41 and 0.60 for CD, respectively. Since the zero-point vibrational energy is in‐
cluded in QCD, the energy barrier between the basin and transition state become lower so
that the less temperature is needed to overcome the barrier. This is so-called quantum soft‐
ening as indicated by Doll and coworker for the Neon case by means of the path-integral
approach. Our real-time dynamics well reproduce their tendency for this static property. On
the other hand, behavior of Lidemann indexes from r̂ ij QCD2 = | q̂ i − q̂ j | QCD2 and
rij = |qi −q j |  is slight different, whereas the transition temperature is the same. In the sol‐

id-like phase the Lindemann index obtained by the classical dynamics is equivalent to that
of the classical contribution from QCD approach. On the other hand, in the liquid-like phase
the Lindemann index is equivalent to that by the classical dynamics. This fact originates
from the fact that the high temperature limit of the quantum results coincides with that of
the classical one. It is stressed here that the cumulant variables, which contributes to not on‐
ly to the quantum delocalization but also to the thermal fluctuation.

Energy Distance

Spherical Diagonal Original Classical Original Classical

M3 -2.52135 -2.55978 -2.56510 -3.00000 1.07198 1

M4 -5.20344 -5.22683 -5.24237 -6.0000 1.07811 1

M5 -8.71392 -8.74464 -8.76049 -9.85233
0.99212

1.15085

0.91725

1.08364

M6 -13.1836 -13.2141 -13.2141 -14.7182
1.00473

1.37518

0.93581

1.32343

M7 -18.4016 -18.4404 -18.4415 -20.3282
0.88288

1.01263

0.81221

0.948237

Table 2. Nearest and next nearest distances and energy for global minimum obtained by cumulant and classical
dynamics for 3-dimensional Mn clusters (n=3-7).
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Figure 3. Static Lindemann indexes evaluated from QCD quantum distance (red), QCD classical distance (blue), and
CD classical distance (green).

4. Summary

As an extension to the mechanics concerning about Ehrenfest theorem, we formulated a
quantal cumulant mechanics (QCM) and corresponding dynamic method (QCD). The key
point is the use of a position shift operator acting on the potential operator and introducing
the cumulant variables to evaluate it, so that one need not truncate the potential, and it does
not require separating into quantum and classical parts. In particular, we derived the cou‐
pled equation of motion (EOM) for the position, momentum, and second-order cumulants
of the product of the momentum and position fluctuation operators. The EOM consists of
variables and a quantal potential and its derivatives, where the quantal potential is ex‐
pressed as an exponential function of the differential operator acting on the given potential.
We defined density and joint density evaluated from the cumulant expansion scheme. It is
clearly found that the present second-order approach gives a Gaussian density distribution
spanned both on position and momentum space. Since the density is normalized, the joint
density is considered exactly as probability distribution. We also indicated the relation be‐
tween the joint density and cumulant variables as expectation values calculated from the
distribution. We extended the QCD for the one-dimensional system in to treat the multi-di‐
mensional systems. We derived the EOMs with the 24N dimensional phase space.
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As numerical examples, we performed four applications to the simple systems. The first is
the application to molecular vibrations. At first we showed that the normal mode analysis is
extended to the effective potential appeared in the QCD. We illustrated that the anharmonic
contribution is taken into account through mixing between the ordinary and the extended
coordinates. The QCD simulations for the ab initio derived quartic force field are performed.
The vibrational frequencies obtained from its power spectrum are good agreement with
those obtained by accurate methods such as VPT2 and VCI.

The second is the proton transfer reactions in model DNA base pairs. We numerically
showed the geometric isotope effects on the stability of the proton-transferred structures of
the DNA base pairs as a function of the mass. We performed QCD simulations in order to
investigate dynamical stability of the proton-transferred GC pair. The results showed that
the proton-transferred structure of the protonated isotopomer is dynamically unstable and
that of deuterated isotopomer remains stable. In former case, dynamically induced transi‐
tion from the metastable to global minimum occurs. It is relevant to include dynamical ef‐
fects to treat quantum isotope effects on the proton transfer reactions.

The last application is structural transition of finite quantum Morse clusters. We first com‐
pared the energy of the stable structures of the classical Mn cluster with those of quantum
counterpart and found that the quantum effects due to zero point vibration is remarkable
for small system and suppressed for larger. Then we performed the real-time dynamics to
evaluate the Lindemann index to characterize the dynamical effects on the melting for M7

cluster. In between solid-like and liquid-like phases (so-called coexistence phase), structural
changes of the cluster occur intermittently.
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1. Introduction

Quantum mechanics has many features which are distinct from classical physics. Perhaps
none more so than tunneling – the ability of a quantum particle to pass through some
potential barrier even when, classically, it would not have enough energy to do so. The
examples of tunneling phenomenon range from the nuclear (e.g. alpha decay of nuclei) to
the molecular(oscillations of the ammonia molecule). Every text book on quantum mechanics
devotes a good fraction of of page space to tunneling (usually introduced via the tunneling
through a one dimensional step potential) and its applications.

In general, tunneling problems can not be solved, easily or at all, in closed, analytic form and
so one must resort to various approximation techniques. One of the first and mostly useful
approximations techniques is the WKB method [1] names after its co-discovers Wentzel,
Krammers and Brillouin. For a particle with an energy E and rest mass m moving in a
one-dimensional potential V(x) (where E < V(x) for some range of x, say a ≤ x ≤ b, which
is the region through which the particle tunnels) the tunneling amplitude is given by

exp

[

−

1

h̄

∫ b

a
[2m(V(x)− E)]1/2dx

]

= exp

[

−

1

h̄

∫ b

a
p(x)dx

]

, (1)

where p(x) is the canonical momentum of the particle. Taking the square of (1) gives the
probability for the particle to tunnel through the barrier.

In this chapter we show how the essentially quantum field theory phenomenon of Unruh
radiation [4] can be seen as a tunneling phenomenon and how one can calculate some details
of Unruh radiation using the WKB method. Unruh radiation is the radiation seen by an
observer who accelerates through Minkowski space-time. Via the equivalence principle (i.e.
the local equivalence between observations in a gravitational field versus in an accelerating
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2 Quantum Mechanics

frame) Unruh radiation is closely related to Hawking radiation [2] – the radiation seen by an
observer in the space-time background of a Schwarzschild black hole.

In the WKB derivation of Unruh radiation presented here we do not recover all the details
of the radiation that the full quantum field theory calculation of the Unurh effect yields.
The most obvious gap is that from the quantum field theory calculations it is known that
Unruh radiation as well as Hawking radiation have a thermal/Planckian spectrum. In the
simple treatment given here we do not obtain the thermal character of the spectrum of Unruh
radiation but rather one must assume the spectrum is thermal (however as shown in [5] one
can use the density matrix formalism to obtain the thermal nature of Unruh radiation as
well as Hawking radiation in the WKB tunneling approach). The advantage of the present
approach (in contrast to the full quantum field theory calculation) is that it easy to apply to a
wide range of observer and space-times. For example, an observer in de Sitter space-time (the
space-time with a positive cosmological constant) will see Hawking–Gibbons radiation [3];
an observer in the Friedmann-Robertson-Walker metric of standard Big Bang cosmology will
see Hawking-like radiation [6]. One can easily calculate the basic thermal features of many
space-times (e.g. Reissner–Nordstrom [9], de Sitter [14], Kerr and Kerr–Newmann [15, 16],
Unruh [17]) using the WKB tunneling method. Additionally, one can easily incorporate
the Hawking radiation of particles with different spins [18] and one can begin to take into
account back reaction effects on the metric [9, 10, 19] i.e. the effect that due to the emission
of Hawking radiation the space-time will change which in turn will modify the nature of
subsequent Hawking radiation.

The WKB tunneling method of calculating the Unruh and Hawking effects also corresponds
the heuristic picture of Hawking radiation given in the original work by Hawking (see pg. 202
of [2]). In this paper Hawking describes the effect as a tunneling outward of positive energy
modes from behind the black hole event horizon and a tunneling inward of negative energy
modes. However only after a span of about twenty five years where mathematical details
given to this heuristic tunneling picture with the works [7–10]. These works showed that the
action for a particle which crosses the horizon of some space-time picked up an imaginary
contribution on crossing the horizon. This imaginary contribution was then interpreted as
the tunneling probability.

One additional advantage of the WKB tunneling method for calculating some of the features
of Hawking and Unruh radiation is that this method does not rely on quantum field theory
techniques. Thus this approach should make some aspects of Unruh radiation accessible to
beginning graduate students or even advanced undergraduate students.

Because of the strong equivalence principle (i.e., locally, a constant acceleration and
a gravitational field are observationally equivalent), the Unruh radiation from Rindler
space-time is the prototype of this type of effect. Also, of all these effects – Hawking
radiation, Hawking–Gibbons radiation – Unruh radiation has the best prospects for being
observed experimentally [20–23]. This WKB approach to Unruh radiation draws together
many different areas of study: (i) classical mechanics via the Hamilton–Jacobi equations;
(ii) relativity via the use of the Rindler metric; (iii) relativistic field theory through the
Klein–Gordon equation in curved backgrounds; (iv) quantum mechanics via the use of the
WKB–like method applied to gravitational backgrounds; (v) thermodynamics via the use
of the Boltzmann distribution to extract the temperature of the radiation; (vi) mathematical
methods in physics via the use of contour integrations to evaluate the imaginary part of
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the action of the particle that crosses the horizon. Thus this single problem serves to show
students how the different areas of physics are interconnected.

Finally, through this discussion of Unruh radiation we will highlight some subtle features of
the Rindler space-time and the WKB method which are usually overlooked. In particular,
we show that the gravitational WKB amplitude has a contribution coming from a change
of the time coordinate from crossing the horizon [14]. This temporal contribution is never
encountered in ordinary quantum mechanics, where time acts as a parameter rather than
a coordinate. Additionally we show that the invariance under canonical transformations of
the tunneling amplitude for Unurh radiation is crucially important to obtaining the correct
results in the case of tunneling in space-time with a horizon.

2. Some details of Rindler space-time

We now introduce and discuss some relevant features of Rindler space-time. This is
the space-time seen by an observer moving with constant proper acceleration through
Minkowski space-time. Thus in some sense this is distinct from the case of a gravitational
field since here we are dealing with flat, Minkowski space-time but now seen by an
accelerating observer. However, because of the equivalence principle this discussion is
connected to situations where one does have gravitational fields such as Hawking radiation
in the vicinity of a black hole.

The Rindler metric can be obtained by starting with the Minkowski metric, i.e., ds2 =
−dt2 + dx2 + dy2 + dz2, where we have set c = 1, and transforming to the coordinates of
the accelerating observer. We take the acceleration to be along the x–direction, thus we only
need to consider a 1+1 dimensional Minkowski space-time

ds2 = −dt2 + dx2 . (2)

Using the Lorentz transformations (LT) of special relativity, the worldlines of an accelerated
observer moving along the x–axis in empty spacetime can be related to Minkowski
coordinates t, x according to the following transformations

t = (a−1 + xR) sinh(atR)

x = (a−1 + xR) cosh(atR) ,
(3)

where a is the constant, proper acceleration of the Rindler observer measured in his
instantaneous rest frame. One can show that the acceleration associated with the trajectory
of (3) is constant since aµaµ = (d2xµ/dt2

R)
2 = a2 with xR = 0. The trajectory of (3) can

be obtained using the definitions of four–velocity and four–acceleration of the accelerated
observer in his instantaneous inertial rest frame [24]. Another derivation of (3) uses a LT to
relate the proper acceleration of the non–inertial observer to the acceleration of the inertial
observer [25]. The text by Taylor and Wheeler [26] also provides a discussion of the Rindler
observer.

The coordinates xR and tR, when parametrized and plotted in a spacetime diagram whose
axes are the Minkowski coordinates x and t, result in the familiar hyperbolic trajectories (i.e.,
x2

− t2 = a−2) that represent the worldlines of the Rindler observer.

Unruh Radiation via WKB Method
http://dx.doi.org/10.5772/53898

319



4 Quantum Mechanics

Differentiating each coordinate in (3) and substituting the result into (2) yields the standard
Rindler metric

ds2 = −(1 + axR)
2dt2

R + dx2
R . (4)

When xR = −
1
a , the determinant of the metric given by (4), det(gab) ≡ g = −(1 + axR)

2,

vanishes. This indicates the presence of a coordinate singularity at xR = −
1
a , which can

not be a real singularity since (4) is the result of a global coordinate transformation from
Minkowski spacetime. The horizon of the Rindler space-time is given by xR = −

1
a .

1� 

 

 t 

Future 

x 

Past 

Right wedge Left wedge 

Figure 1. Trajectory of the Rindler observer as seen by the observer at rest.

In the spacetime diagram shown above, the horizon for this metric is represented by the null
asymptotes, x = ±t, that the hyperbola given by (3) approaches as x and t tend to infinity
[27]. Note that this horizon is a particle horizon, since the Rindler observer is not influenced
by the whole space-time, and the horizon’s location is observer dependent [28].

One can also see that the transformations (3) that lead to the Rindler metric in (4) only cover
a quarter of the full Minkowski space-time, given by x − t > 0 and x + t > 0. This portion
of Minkowski is usually labeled Right wedge. To recover the Left wedge, one can modify the
second equation of (3) with a minus sign in front of the transformation of the x coordinate,
thus recovering the trajectory of an observer moving with a negative acceleration. In fact,
we will show below that the coordinates xR and tR double cover the region in front of the
horizon, xR = −

1
a . In this sense, the metric in (4) is similar to the Schwarzschild metric

written in isotropic coordinates. For further details, see reference [28].
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There is an alternative form of the Rindler metric that can be obtained from (4) by the
following transformation:

(1 + a x
R
) =

√

|1 + 2 a x
R
′ | . (5)

Using the coordinate transformation given by (5) in (4), we get the following
Schwarzschild–like form of the Rindler metric

ds
2 = −(1 + 2 a x

R
′ )dt

2
R
′ + (1 + 2 a x

R
′ )−1

dx
2
R
′ . (6)

If one makes the substitution a → GM/x
2
R
′ one can see the similarity to the usual

Schwarzschild metric. The horizon is now at x
R
′ = −1/2a and the time coordinate, t

R
′ ,

does change sign as one crosses x
R
′ = −1/2a. In addition, from (5) one can see explicitly

that as x
R
′ ranges from +∞ to −∞ the standard Rindler coordinate will go from +∞ down

to x
R
= −1/a and then back out to +∞.

The Schwarzschild–like form of the Rindler metric given by (6) can also be obtained directly
from the 2–dimensional Minkowski metric (2) via the transformations

t =

√

1 + 2ax
R
′

a

sinh(at
R
′ )

x =

√

1 + 2ax
R
′

a

cosh(at
R
′ )

(7)

for x
R
′ ≥ −

1
2a

, and

t =

√

|1 + 2ax
R
′ |

a

cosh(at
R
′ )

x =

√

|1 + 2ax
R
′ |

a

sinh(at
R
′ )

(8)

for x
R
′ ≤ −

1
2a

. Note that imposing the above conditions on the coordinate x
R
′ fixes the

signature of the metric, since for x
R
′ ≤ −

1
2a

or 1 + 2ax
R
′ ≤ 0 the metric signature changes

to (+,−), while for 1 + 2ax
R
′ ≥ 0 the metric has signature (−,+). Thus one sees that

the crossing of the horizon is achieved by the crossing of the coordinate singularity, which
is precisely the tunneling barrier that causes the radiation in this formalism. As a final
comment, we note that the determinant of the metric for (4) is zero at the horizon x

R
= −1/a,

while the determinant of the metric given by (6) is 1 everywhere.

3. The WKB/Tunneling method applied to Rindler space-time

In this section we study a scalar field placed in a background metric. Physically, these fields
come from the quantum fields, i.e., vacuum fluctuations, that permeate the space-time given
by the metric. By applying the WKB method to this scalar field, we find that the phase of the
scalar field develops imaginary contributions upon crossing the horizon. The exponential of
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these imaginary contributions is interpreted as a tunneling amplitude through the horizon.
By assuming a Boltzmann distribution and associating it with the tunneling amplitude, we
obtain the temperature of the radiation.

To begin we derive the Hamilton–Jacobi equations for a scalar field, φ, in a given background
metric. In using a scalar field, we are following the original works [2, 4]. The derivation with
spinor or vector particles/fields would only add the complication of having to carry around
spinor or Lorentz indices without adding to the basic understanding of the phenomenon.
Using the WKB approach presented here it is straightforward to do the calculation using
spinor[18] or vector particles. The scalar field in some background metic, gµν is taken to
satisfy the Klein-Gordon (KG) equation

(

1
√

−g
∂µ(

√

−ggµν
∂ν)−

m2c2

h̄2

)

φ = 0 , (9)

where c is the speed of light, h̄ is Planck’s constant, m is the mass of the scalar field and gµν is
the background metric. For Minkowski space-time, the (9) reduces to the free Klein–Gordon

equation, i.e., (� − m2c2/h̄2)φ = (−∂
2/c2

∂t2 + ∇
2
− m2c2/h̄2)φ = 0. This equation is

nothing other than the fundamental relativistic equation E2
− p2c2 = m2c4 with E → ih̄∂t

and p → −ih̄∇.

Setting the speed of light c = 1, multiplying (9) by −h̄ and using the product rule, (9)
becomes

−h̄2

√

−g

[

(∂µ

√

−g)gµν
∂νφ +

√

−g(∂µgµν)∂νφ+

√

−ggµν
∂µ∂νφ

]

+ m2
φ = 0 .

(10)

The above equation can be simplified using the fact that the covariant derivative of any metric
g vanishes

∇αgµν = ∂αgµν + Γ
µ

αβ
gβν + Γν

αβ
gµβ = 0 , (11)

where Γ
µ

αβ
is the Christoffel connection. All the metrics that we consider here are diagonal

so Γ
µ

αβ
= 0, for µ 6= α 6= β. It can also be shown that

Γ
µ

µγ = ∂γ(ln
√

−g) =
∂γ

√

−g
√

−g
. (12)

Using (11) and (12), the term ∂µgµν in (10) can be rewritten as

∂µgµν = −Γ
µ

µγgγν
− Γν

µρgµρ = −

∂γ

√

−g
√

−g
gγν , (13)
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since the harmonic condition is imposed on the metric gµν, i.e., Γν
µρgµρ = 0. Thus (10)

becomes

− h̄2gµν
∂µ∂νφ + m2

φ = 0 . (14)

We now express the scalar field φ in terms of its action S = S(t,~x)

φ = φ0e
i
h̄ S(t,~x) , (15)

where φ0 is an amplitude [29] not relevant for calculating the tunneling rate. Plugging this
expression for φ into (14), we get

− h̄gµν(∂µ(∂ν(iS))) + gµν
∂ν(S)∂µ(S) + m2 = 0 . (16)

Taking the classical limit, i.e., letting h̄ → 0, we obtain the Hamilton–Jacobi equations for the
action S of the field φ in the gravitational background given by the metric gµν,

gµν
∂ν(S)∂µ(S) + m2 = 0 . (17)

For stationary space-times (technically space-times for which one can define a time–like
Killing vector that yields a conserved energy, E) the action S can be split into a time and
space part, i.e., S(t,~x) = Et + S0(~x).

If S0 has an imaginary part, this then gives the tunneling rate, ΓQM, via the standard WKB
formula. The WKB approximation tells us how to find the transmission probability in terms
of the incident wave and transmitted wave amplitudes. The transition probability is in
turn given by the exponentially decaying part of the wave function over the non–classical
(tunneling) region [30]

ΓQM ∝ e−Im 1
h̄

∮

pxdx . (18)

The tunneling rate given by (18) is just the lowest order, quasi-classical approximation to the
full non–perturbative Schwinger [31] rate. 1

In most cases (with an important exception of Painlevé–Gulstrand form of the Schwarzschild
metric which we discuss below), pout and pin have the same magnitude but opposite signs.
Thus ΓQM will receive equal contributions from the ingoing and outgoing particles, since

the sign difference between pout and pin will be compensated for by the minus sign that
is picked up in the pin integration due to the fact that the path is being traversed in the

1 The Schwinger rate is found by taking the Trace–Log of the operator (�g − m2c2/h̄2), where �g is the d’Alembertian
in the background metric gµν , i.e., the first term in (9). As a side comment, the Schwinger rate was initially calculated
for the case of a uniform electric field. In this case, the Schwinger rate corresponded to the probability of creating
particle–antiparticle pairs from the vacuum field at the expense of the electric field’s energy. This electric field
must have a critical strength in order for the Schwinger effect to occur. A good discussion of the calculation of the
Schwinger rate for the usual case of a uniform electric field and the connection of the Schwinger effect to Unruh and
Hawking radiation can be found in reference [32].
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backward x-direction. In all quantum mechanical tunneling problems that we are aware of
this is the case: the tunneling rate across a barrier is the same for particles going right to left
or left to right. For this reason, the tunneling rate (18) is usually written as [30]

ΓQM ∝ e∓2Im 1
h̄

∫

pout,in
x dx , (19)

In (19) the − sign goes with pout
x and the + sign with pin

x .

There is a technical reason to prefer (18) over (19). As was remarked in references [33–35],
equation (18) is invariant under canonical transformations, whereas the form given by (19) is
not. Thus the form given by (19) is not a proper observable.

Moreover, we now show that the two formulas, (18) and (19), are not even numerically
equivalent when one applies the WKB method to the Schwarzschild space-time in
Painlevé-Gulstrand coordinates. The Painlevé–Gulstrand form of the Schwarzschild
space-time is obtained by transforming the Schwarzschild time t to the Painlevé–Gulstrand
time t′ using the transformation

dt = dt′ −

√

2M
r dr

1 − 2 M
r

. (20)

Applying the above transformation to the Schwarzshild metric gives us the
Painlevé–Gulstrand form of the Schwarzschild space-time

ds2 = −

(

1 −
2M

r

)

dt′
2
+ 2

√

2M

r
dr dt′ + dr2 . (21)

The time is transformed, but all the other coordinates (r, θ, φ) are the same as the
Schwarzschild coordinates. If we use the metric in (21) to calculate the spatial part of the
action as in (35) and (29), we obtain

S0 = −

∫ ∞

−∞

dr

1 − 2M
r

√

2M

r
E (22)

±

∫ ∞

−∞

dr

1 − 2M
r

√

E2
− m2

(

1 −
2M

r

)

. (23)

Each of these two integrals has an imaginary contribution of equal magnitude, as can be
seen by performing a contour integration. Thus one finds that for the ingoing particle (the
+ sign in the second integral) one has a zero net imaginary contribution, while from for
the outgoing particle (the − sign in the second integral) there is a non–zero net imaginary
contribution. Also as anticipated above the ingoing momentum (i.e, the integrand in (22) with
the + sign in the second term) is not equal to the outgoing momentum (i.e, the integrand
in (22) with the − sign in the second term) In these coordinates there is a difference by a
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factor of two between using (18) and (19) which comes exactly because the tunneling rates
from the spatial contributions in this case do depend upon the direction in which the barrier
(i.e., the horizon) is crossed. The Schwarzcshild metric has a similar temporal contribution
as for the Rindler metric [36]. The Painlevé–Gulstrand form of the Schwarzschild metric
actually has two temporal contributions: (i) one coming from the jump in the Schwarzschild
time coordinate similar to what occurs with the Rindler metric in (7) and (8); (ii) the
second temporal contribution coming from the transformation between the Schwarzschild
and Painlevé–Gulstrand time coordinates in (20). If one integrates equation (20), one can
see that there is a pole coming from the second term. One needs to take into account both
of these time contributions in addition to the spatial contribution, to recover the Hawking
temperature. Only by adding the temporal contribution to the spatial part from (18), does

one recover the Hawking temperature [36] T = h̄
8πM . Thus for both reasons – canonical

invariance and to recover the temperature – it is (18) which should be used over (19), when
calculating ΓQM. In ordinary quantum mechanics, there is never a case – as far as we know
– where it makes a difference whether one uses (18) or (19). This feature – dependence of
the tunneling rate on the direction in which the barrier is traverse – appears to be a unique
feature of the gravitational WKB problem. So in terms of the WKB method as applied to the
gravitational field, we have found that there are situations (e.g. Schwarzschild space-time in
Painlevé–Gulstrand coordinates) where the tunneling rate depends on the direction in which
barrier is traversed so that (18) over (19) are not equivalent and will thus yield different
tunneling rates, Γ.

For the case of the gravitational WKB problem, equation (19) only gives the imaginary
contribution to the total action coming from the spatial part of the action. In addition,
there is a temporal piece, E∆t, that must be added to the total imaginary part of the action
to obtain the tunneling rate. This temporal piece originates from an imaginary change of
the time coordinate as the horizon is crossed. We will explicitly show how to account for
this temporal piece in the next section, where we apply the WKB method to the Rindler
space-time. This imaginary part of the total action coming from the time piece is a unique
feature of the gravitational WKB problem. Therefore, for the case of the gravitational WKB
problem, the tunneling rate is given by

Γ ∝ e−
1
h̄ [Im(

∮

pxdx)−EIm(∆t)] . (24)

In order to obtain the temperature of the radiation, we assume a Boltzmann distribution for
the emitted particles

Γ ∝ e−
E
T , (25)

where E is the energy of the emitted particle, T is the temperature associated with the
radiation, and we have set Boltzmann’s constant, kB, equal to 1. Equation (25) gives the
probability that a system at temperature T occupies a quantum state with energy E. One
weak point of this derivation is that we had to assume a Boltzmann distribution for the
radiation while the original derivations [2, 4] obtain the thermal spectrum without any
assumptions. Recently, this shortcoming of the tunneling method has been addressed in
reference [5], where the thermal spectrum was obtained within the tunneling method using
density matrix techniques of quantum mechanics.
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By equating (25) and (24), we obtain the following formula for the temperature T

T =
Eh̄

Im
(∮

pxdx
)

− EIm(∆t)
. (26)

4. Unruh radiation via WKB/tunneling

We now apply the above method to the alternative Rindler metric previously introduced. For
the 1 + 1 Rindler space-times, the Hamilton–Jacobi equations (H–J) reduce to

gtt
∂tS∂tS + gxx

∂xS∂xS + m2 = 0 .

For the Schwarzschild–like form of Rindler given in (6) the H–J equations are

−

1

(1 + 2 a xR′ )
(∂tS)

2 + (1 + 2 a xR′ )(∂xS)2 + m2 = 0 . (27)

Now splitting up the action S as S(t,~x) = Et + S0(~x) in (27) gives

−

E

(1 + 2 a xR′ )2
+ (∂xS0(xR′ ))2 +

m2

1 + 2 a xR′

= 0 . (28)

From (28), S0 is found to be

S±

0 = ±

∫ ∞

−∞

√

E2
− m2(1 + 2 a xR′ )

1 + 2 a xR′

dxR′ . (29)

In (29), the + sign corresponds to the ingoing particles (i.e., particles that move from right to
left) and the − sign to the outgoing particles (i.e., particles that move left to right). Note also
that (29) is of the form S0 =

∫

px dx, where px is the canonical momentum of the field in
the Rindler background. The Minkowski space-time expression for the momentum is easily

recovered by setting a = 0, in which case one sees that px =
√

E2
− m2.

From (29), one can see that this integral has a pole along the path of integration at xR′ = −
1
2a .

Using a contour integration gives an imaginary contribution to the action. We will give
explicit details of the contour integration since this will be important when we try to apply
this method to the standard form of the Rindler metric (4) (see Appendix I for the details of
this calculation). We go around the pole at xR′ = −

1
2a using a semi–circular contour which

we parameterize as xR′ = −
1
2a + ǫeiθ , where ǫ ≪ 1 and θ goes from 0 to π for the ingoing

path and π to 0 for the outgoing path. These contours are illustrated in the figure below.
With this parameterization of the path, and taking the limit ǫ → 0, we find that the imaginary
part of (29) for ingoing (+) particles is
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S+
0 =

∫

π

0

√

E2
− m2ǫeiθ

2aǫeiθ
iǫeiθdθ =

i π E

2a
, (30)

and for outgoing (−) particles, we get

S−

0 = −

∫ 0

π

√

E2
− m2ǫeiθ

2aǫeiθ
iǫeiθdθ =

i π E

2a
. (31)

  

  

  

 

(i) 

(ii) 

Figure 2. Contours of integration for (i) the ingoing and (ii) the outgoing particles.

In order to recover the Unruh temperature, we need to take into account the contribution
from the time piece of the total action S(t,~x) = Et + S0(~x), as indicated by the formula
of the temperature, (26), found in the previous section. The transformation of (7) into (8)
indicates that the time coordinate has a discrete imaginary jump as one crosses the horizon
at xR′ = −

1
2a , since the two time coordinate transformations are connected across the horizon

by the change tR′ → tR′ −
iπ
2a , that is,

sinh(atR′ ) → sinh

(

atR′ −

iπ

2

)

= −i cosh(atR′ ) .

Note that as the horizon is crossed, a factor of i comes from the term in front of the hyperbolic
function in (7), i.e.,

√

1 + 2axR′ → i
√

|1 + 2axR′ | ,

so that (8) is recovered.

Therefore every time the horizon is crossed, the total action S(t,~x) = S0(~x) + Et picks

up a factor of E∆t = −
iπE
2a . For the temporal contribution, the direction in which the

horizon is crossed does not affect the sign. This is different from the situation for the spatial
contribution. When the horizon is crossed once, the total action S(t,~x) gets a contribution

of E∆t = −
iEπ

2a , and for a round trip, as implied by the spatial part
∮

pxdx, the total

contribution is E∆ttotal = −
iEπ

a . So using the equation for the temperature (26) developed in
the previous section, we obtain
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T
Unruh

=
Eh̄

πE

a
+ πE

a

=
h̄a

2π
, (32)

which is the Unruh temperature. The interesting feature of this result is that the gravitational
WKB problem has contributions from both spatial and temporal parts of the wave function,
whereas the ordinary quantum mechanical WKB problem has only a spatial contribution.
This is natural since time in quantum mechanics is treated as a distinct parameter, separate
in character from the spatial coordinates. However, in relativity time is on equal footing with
the spatial coordinates.

5. Conclusions and summary

We have given a derivation of Unruh radiation in terms of the original heuristic explanation
as tunneling of virtual particles tunneling through the horizon [2]. This tunneling method
can easily be applied to different space-times and to different types of virtual particles. We
chose the Rindler metric and Unruh radiation since, because of the local equivalence of
acceleration and gravitational fields, it represents the prototype of all similar effects (e.g.
Hawking radiation, Hawking–Gibbons radiation).

Since this derivation touches on many different areas – classical mechanics (through the
H–J equations), relativity (via the Rindler metric), relativistic field theory (through the
Klein–Gordon equation in curved backgrounds), quantum mechanics (via the WKB method
for gravitational fields), thermodynamics (via the Boltzmann distribution to extract the
temperature), and mathematical methods (via the contour integration to obtain the imaginary
part of the action) – this single problem serves as a reminder of the connections between the
different areas of physics.

This derivation also highlights several subtle points regarding the Rindler metric and the
WKB tunneling method. In terms of the Rindler metric, we found that the different forms of
the metric (4) and (6) do not cover the same parts of the full spacetime diagram. Also, as one
crosses the horizon, there is an imaginary jump of the Rindler time coordinate as given by
comparing (7) and (8).

In addition, for the gravitational WKB problem, Γ has contributions from both the spatial
and temporal parts of the action. Both these features are not found in the ordinary quantum
mechanical WKB problem.

As a final comment, note that one can define an absorption probability (i.e., P
abs

∝ |φ
in
|
2) and

an emission probability (i.e., P
emit

∝ |φout|
2). These probabilities can also be used to obtain

the temperature of the radiation via the “detailed balance method" [8]

P
emit

P
abs

= e
−E/T .

Using the expression of the field φ = φ0e

i

h̄
S(t,~x), the Schwarzschild–like form of the Rindler

metric given in (6), and taking into account the spatial and temporal contributions gives an
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an absorption probability of

P
abs

∝ e

πE

a
−

πE

a = 1

and an emission probability of

P
emit

∝ e
−

πE

a
−

πE

a = e
−

2πE

a .

The first term in the exponents of the above probabilities corresponds to the spatial
contribution of the action S, while the second term is the time piece. When using this
method, we are not dealing with a directed line integral as in (18), so the spatial parts of
the absorption and emission probability have opposite signs. In addition, the absorption
probability is 1, which physically makes sense – particles should be able to fall into the
horizon with unit probability. If the time part were not included in P

abs
, then for some given

E and a one would have P
abs

∝ e

πE

a > 1, i.e., the probability of absorption would exceed 1 for
some energy. Thus for the detailed balance method the temporal piece is crucial to ensure
that one has a physically reasonable absorption probability.

Appendix I: Unruh radiation from the standard Rindler metric

For the standard form of the Rindler metric given by (4), the Hamilton–Jacobi equations
become

−

1

(1 + a x
R
)2

(∂tS)
2 + (∂xS)2 + m

2 = 0 . (33)

After splitting up the action as S(t,~x) = Et + S0(~x), we get

−

E

(1 + a x
R
)2

+ (∂xS0(x
R
))2 + m

2 = 0 . (34)

The above yields the following solution for S0

S
±

0 = ±

∫ ∞

−∞

√

E
2
− m

2 (1 + a x
R
)2

1 + a x
R

dx
R

, (35)

where the +(−) sign corresponds to the ingoing (outgoing) particles.

Looking at (35), we see that the pole is now at x
R
= −1/a and a naive application of contour

integration appears to give the results ±
i π E

a
. However, this cannot be justified since the two

forms of the Rindler metric – (4) and (6) – are related by the simple coordinate transformation
(5), and one should not change the value of an integral by a change of variables. The
resolution to this puzzle is that one needs to transform not only the integrand but the path of
integration, so applying the transformation (5) to the semi–circular contour x

R
′ = −

1
2a

+ ǫe
iθ

gives x
R

= −
1
a
+

√

ǫ

a
e

iθ/2. Because e
iθ is replaced by e

iθ/2 due to the square root in the
transformation (5), the semi–circular contour of (30) is replaced by a quarter–circle, which
then leads to a contour integral of i

π

2 × Residue instead of iπ × Residue. Thus both forms of
Rindler yield the same spatial contribution to the total imaginary part of the action.
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1. Introduction

Compaired to other physical theories, the foundation of quantum mechanics is very formal
and abstract. The pure state of a system is defined as a complex vector (or ray) in some
abstract vector space, the observables as Hermitian operators on this space. Even a modern
textbook like Ballentine [1] starts by introducing two abstract postulates:

1. To each dynamical variable there corresponds a linear operator, and the possible values
of the dynamical variable are the eigenvalues of the operator.

2. To each state there corresponds a unique operator ρ. The average value of a dynamical
variable R, represented by the operator R, in the state given by the operator ρ is given by

〈R〉 =
Tr(ρR)

Tr(ρ)
. (1)

Here Tr is the trace operator. The discussion in [1] goes on by arguing that R must be
Hermitian (have real eigenvalues) and that ρ ought to be positive with trace 1. An important
special case is when ρ is one-dimensional: ρ = |ψ〉〈ψ| for a vector |ψ〉. Then the state is pure,
and is equivalently specified by the vector |ψ〉. In general the formula (1) is a consequence of
Born’s formula: The probability of observing a pure state |φ〉 when the system is prepared
in a pure state |ψ〉 is given by |〈φ|ψ〉|

2.

From these two postulates a very rich theory is deduced, a theory which has proved to be in
agreement with observations in each case where it has been tested. Still, the abstract nature
of the basic postulates leaves one a little uneasy: Is it possible to find another basis which is
more directly connected to what one observes in nature? The purpose of this chapter is to
show that to a large extent one can give a positive answer to this question.

©2012 Helland, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Helland; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

Another problem is that there are many interpretations of quantum mechanics. In this
chapter I will choose an epistemic interpretation: Quantum mechanics is related to the
knowledge we get about nature, not directly to how nature ’is’. The latter aspect - the
ontological aspect of nature - is something we can talk about when all observers agree on the
same information. Any knowledge about nature is found through an epistemic process - an
experiment or an observational study. Typically we ask a question: What is θ? And after the
epistemic process is completed, nature gives an answer, in the simplest case: θ = uk, where
uk is one of several possible values. Here θ is what we will call an epistemic conceptual variable
or e-variable, a variable defined by an observer or by a group of observers and defining the
epistemic process.

In all empirical sciences, epistemic questions like this are posed to nature. It is well known
that the answers are not always that simple. Typically we end up with a confidence interval
(a frequentist concept) or a credibility interval (a Bayesian concept) for θ. This leads us into
statistical science. In statistics, θ is most often called a parameter, and is often connected to
a population of experimental units. But there are instances also in statistics where we want
to predict a value for a single unit. The corresponding intervals are then called prediction
intervals. In this chapter we will also use θ for an unknown variable for a single unit, which
is a situation very often met in physics. This is the generalization we think about when we
in general call θ an e-variable, not a parameter. Also, the notion of a parameter may have a
different meaning in physics, so by this we will avoid confusion.

A more detailed discussion than what can be covered here, can be found in Helland [2].

2. A basis for statistics

Every experiment or observational study is made in a context. Part of the context may
be physical, another part may be historical, including earlier experiments. Also, the status
of the observer(s) may be seen as a part of the context, and another part of the context
may be conceptual, including a goal for the study. In all our discussion, we assume that
we have conditioned upon the context τ. We can imagine the context formulated as a set
of propositions. But propositional calculus corresponds to set theory, as both are Boolean
algebras. Therefore we can here in principle use the familiar concept of conditioning as
developed in Kolmogorov’s theory of probability, where it is defined as a Radon-Nikodym
derivative. Readers unfamiliar to this mathematics may think of a more intuitive conditioning
concept.

In addition, for every experiment, we have an e-variable of interest θ and we have data z.
A basis for all statistical theory is the statistical model, the distribution of z as a function
of θ. Conceptual variables which are not of interest, may be taken as part of the context τ.
The density of the statistical model, seen as a function of θ, is called the likelihood. We will
assume throughout:

1) The distribution of z, given τ, depends on an unknown e-variable θ.

2) If τ or part of τ has a distribution, this is independent of θ. The part of τ which does not
have a distribution is functionally independent of θ.

A function of the data is called a statistic t(z). Often it is of interest to reduce the data to a
sufficient statistic, a concept due to R. A. Fisher.
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Definition 1.

We say that t = t(z) is a τ-sufficient for θ if the conditional distribution of z, given t, τ and θ is
independent of θ.

The intuitive notion here is that if the distribution of z, given t is independent of θ, the
distribution of the whole data set might as well be generated by the distribution of t, given
θ together with some random mechanism which is totally independent of the conceptual
variable of interest. This is the basis for

The sufficiency principle.

Consider an experiment in a context τ, let z be the data of this experiment, and let θ be the e-variable
of interest. Let t = t(z) be a τ-sufficient statistic for θ. Then, if t(z1) = t(z2), the data z1 and z2

contain the same experimental evidence about θ in the context τ.

Here ’experimental evidence’ is left undefined. The principle is regarded as intuitively
obvious by most statisticians.

Another principle which is concidered intuitively obvious by most statisticians, is

The conditionality principle 1.

Suppose that there are two experiments E1 and E2 with common conceptual variable of interest θ and
with equivalent contexts τ. Consider a mixed experiment E∗, whereby u = 1 or u = 2 is observed,
each having probability 1/2 (independent of θ, the data of the experiments and the contexts), and the
experiment Eu is then performed. Then the evidence about θ from E∗ is just the evidence from the
experiment actually performed.

Two contexts τ and τ
′ are defined to be equivalent if there is a one-to-one correspondence

between them: τ
′ = f (τ); τ = f−1(τ′). The principle can be motivated by simple examples.

From these examples one can also deduce

The conditionality principle 2.

In the situation of conditionality principle 1 one should in any statistical analysis condition upon the
outcome of the coin toss.

It caused much discussion among statisticians when Birnbaum [3] proved that the sufficiency
principle and the conditionality principle 1 together imply

The likelihood principle.

Consider two experiments with equivalent contexts τ, and assume that θ is the same full e-variable
in both experiments. Suppose that the two observations z∗1 and z∗2 have proportional likelihoods in the
two experiments. Then these two observations produce the same evidence on θ in this context.

It is crucial for the present chapter that these principles may be generalized from experiments
to any epistemic processes involving data such that 1) and 2) are satisfied.

An important special case of the likelihood principle is when E1 and E2 are the same
experiment and z∗1 and z∗2 have equal likelihoods. Then the likelihood principle says that
any experimental evidence on θ must only depend on the likelihood (given the context).
Without taking the context into account this is really controversial. It seems like common
statistical methods like confidence intervals and test of hypotheses are excluded. But this is
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saved when we can take confidence levels, alternative hypotheses, test levels etc. as part of
the context.

A discussion of these common statistical methods will not be included here; the reader is
referred to [2] for this. Also, a discussion of the important topic of model reduction in
statistics will be omitted here. Sometimes a statistical model contains more structure than
what has been assumed here; for instance group actions may be defined on the space of
e-variables. Then any model reduction should be to an orbit or to a set of orbits for the
group; for examples, see [2].

3. Inaccessible conceptual variables and quantum theory

An e-variable as it is used here is related to the question posed in an epistemic process:
What is the value of θ? Sometimes we can obtain an accurate answer to such a question,
sometimes not. We call θ accessible if we in principle can devise an experiment such that θ

can be assessed with arbitrary accuracy. If this in principle is impossible, we say that θ is
inaccessible.

Consider a single medical patient which at time t = 0 can be given one out of two mutually
exclusive treatments A or B. The time θ

A until recovery given treatment A can be measured
accurately by giving this treatment and waiting a sufficiently long time, likewise the time θ

B

until recovery given treatment B. But consider the vector φ = (θA, θ
B). This vector can not

be assessed with arbitrary accuracy by any person neither before, during nor after treatment.
The vector φ is inaccessible. A similar phenomenon occurs in all counterfactual situations.

Many more situations with inaccessible conceptual variables can be devised. Consider a
fragile apparatus which is destroyed after a single measurement of some quantity θ1, and
let θ2 be another quantity which can only be measured by dismantling the apparatus. Then
φ = (θ1, θ2) is inaccessible. Or consider two sensitive questions to be posed to a single person
at some moment of time, where we expect that the order in which the questions are posed
may be relevant for the answers. Let (θ1, θ2) be the answers when the questions are posed in
one order, and let (θ3, θ4) be the answers when the questions are posed in the opposite order.
Then the vector φ = (θ1, θ2, θ3, θ4) is inaccessible.

I will approach quantum mechanics by looking upon it as an epistemic science and pointing
out the different inaccessible conceptual variables. First, by Heisenberg’s uncertainty
principle, the vector (ξ, π) is inaccessible, where ξ is the theoretical position and π is the
theoretical momentum of a particle. This implies that (ξ(t1), ξ(t2)), the positions at two
different times, is an inaccessible vector. Hence the trajectory of the particle is inaccessible.
In the two-slit experiment (α, θ) is inaccessible, where α denotes the slit that the particle goes
through, and θ is the phase of the particle’s wave as it hits the screen.

In this chapter I will pay particular attention to a particle’s spin/ angular momentum.
The spin or angular momentum vector is inaccessible, but its component λ

a in any chosen
direction a will be accessible.

It will be crucial for my discussion that even though a vector is inaccessible, it can be seen
upon as an abstract quantity taking values in some space and one can often act on it by group
actions. Thus in the medical example which started this section, a change of time units will
affect the whole vector φ, and a spin vector can be acted upon by rotations.
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4. The maximal symmetrical epistemic setting

A general setting will be descibed, and then I will show that spin and angular momentum
are special cases of this setting. This is called the maximal symmetrical epistemic setting.

Consider an inaccessible conceptual variable φ, and let there be accessible e-variables λ
a(φ)

(a ∈ A) indexed by some set A. Thus for each a, one can ask the question: What is the value
of λ

a? and get some information from experiment. To begin with, assume that these are
maximally accessible, more precisely maximal in the ordering where α < β when α = f (β)
for some f . This can be assumed by Zorn’s lemma, but it will later be relaxed. For a 6= b let
there be an invertible transformation gab such that λ

b(φ) = λ
a(gab(φ)).

In general, let a group H act on a conceptual variable φ. A function η(φ) is said to be
permissible with respect to H if η(φ1) = η(φ2) implies η(hφ1) = η(hφ2) for all h ∈ H. Then
one can define a corresponding group H̃ acting upon η. For a given function η(φ) there is a
maximal group with respect to which it is permissible.

Now fix 0 ∈ A and let G0 be the maximal group under which λ
0(φ) is permissible. Take

Ga = ga0G0g0a, and let G be the smallest group containing G0 and all the transformations
ga0. It is then easy to see that Ga is the maximal group under which λ

a(φ) is permissible, and
that G is the group generated by Ga; a ∈ A and the transformations gab. Make the following
assumptions about G:

a) It is a locally compact topological group satisfying weak conditions such that an invariant
measure ρ exists on the space Φ of φ’s.

b) λ
a(φ) varies over an orbit or a set of orbits of the smaller group Ga. More precisely: λ

a

varies over an orbit or a set of orbits of the corresponding group G̃a on its range.

c) G is generated by the product of elements of Ga, Gb, ...; a, b, ... ∈ A.

As an important example, let φ be the spin vector or the angular momentum vector for a
particle or a system of particles. Let G be the group of rotations of the vector φ, that is, the
group which fixes the norm ‖φ‖. Next, choose a direction a i space, and focus upon the
spin component in this direction: ζ

a = ‖φ‖cos(φ, a). The largest subgroup Ga with respect
to which ζ

a(φ) is permissible, is given by rotations around a together with a reflection in a
plane pependicular to a. However, the action of the corresponding group G̃a on ζ

a is just a
reflection together with the identity.

Finally introduce model reduction. As mentioned at the end of the previous section, such a
model reduction for ζ

a should be to an orbit or to a set of orbits for the group G̃a as acting on
ζ

a. These orbits are given as two-point sets ±c together with the single point 0. To conform
to the ordinary theory of spin/angular momentum, I will choose the set of orbits indexed by
an integer or half-integer j and let the reduced set of orbits be −j,−j + 1, ..., j − 1, j. Letting
λ

a be the e-variable ζ
a reduced to this set of orbits of G̃a, and assuming it to be a maximally

accessible e-variable, we can prove the general assumptions of the maximal symmetrical
epistemic setting (except for the case j = 0, where we must redefine G to be the trivial
group). For instance, here is an indication of the proof leading to assumption c) above: given
a and b, a transformation gab sending λa(φ) onto λb(φ) can be obtained by a reflection in a
plane orthogonal to the two vectors a and b, a plane containing the midline between a and b.

The case with one orbit and c = j = 1/2 corresponds to electrons and other spin 1/2 particles.
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In general, assumption b) in the maximal symmetrical epistemic setting may be motivated in
a similar manner: First, a conceptual variable ζ

a is introduced for each a through a chosen
focusing, then define Ga as the maximal group under which ζ

a(φ) is permissible, with G̃a

being the corresponding group acting on ζ
a. Finally define λ

a as the reduction of ζ
a to a

set of orbits of G̃a. The content of assumption b) is that it is this λ
a which is maximally

accessible. This may be regarded as the quantum hypothesis.

5. Hilbert space, pure states and operators

Consider the maximal symmetrical epistemic setting. The crucial step towards the formalism
of quantum mechanics is to define a Hilbert space, that is, a complete inner product space
which can serve as a state space for the system.

By assumption a) there exists an invariant measure ρ for the group’s action: ρ(gA) = ρ(A)
for all g ∈ G and all Borel-measurable subsets A of the space Φ of inaccessible conceptual
variables. If G is transitive on Φ, then ρ is unique up to a multiplicative constant. For compact
groups ρ can be normalized, i.e., taken as a probability measure. For each a define

Ha = { f ∈ L2(Φ, ρ) : f (φ) = r(λa(φ)) for some function r.}

Thus Ha is the set of L2-functions that are functions of λ
a(φ). Since Ha is a closed subspace

of the Hilbert space L2(Φ, ρ), it is itself a Hilbert space. To define our state space H, we now
fix an arbitrary index a = 0 ∈ A, and take

H = H0.

First look at the case where the accessible e-variables take a finite, discrete set of values. Let
{uk} be the set of possible values of λ

a. Since λ
a(·) is maximal, {uk} can be taken to be

independent of a, see [2]. Now go back to the definition of an epistemic process: We start by
choosing a, that is, ask an epistemic question: What is the value of λ

a? After the process we
get some information; I will here look upon the simple case where we get full knowledge:
λ

a = uk. I define this as a pure state of the system; it can be characterized by the indicator
function 1(λa(φ) = uk). This is a function in Ha, but I will show below that one can find an
invertible operator Va such that

f a
k (φ) = Va1(λa(φ) = uk) (2)

is a unique function in H = H0. Since H in this case is a K-dimensional vector space, where
K is the number of values uk, we can regard f a

k as a K-dimensional vector. To conform to the
ordinary quantum mechanical notation, I write this as a ket-vector |a; k〉 = f a

k . It is easy to
see that {|0; k〉; k = 1, ..., K} is an orthonormal basis of H when ρ is normalized to be 1 for the
whole space Φ. I will show below that {|a; k〉; k = 1, ..., K} has the same property. My main
point is that |a; k〉 is characterized by and characterizes a question: What is λ

a? together with
an answer: λ

a = uk. This is a pure state for the maximal symmetrical epistemic setting.
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I will also introduce operators by

Aa =
K

∑
k=1

uk|a; k〉〈a; k|,

where 〈a; k| is the bra vector corresponding to |a; k〉. This is by definition the observator
corresponding to the e-variable λ

a. Since λ
a is maximal, Aa will have non-degenerate

eigenvalues uk. Knowing Aa, we will have information of all possible values of λ
a together

with information about all possible states connected to this variable.

The rest of this section will be devoted to proving (2) and showing the properties of the
state vectors |a; k〉. To allow for future generalizations I now allow the accessible e-variables
λ

a to take any set of values, continuous or discrete. The discussion will by necessity be
a bit technical. First I define the (left) regular representation U for a group G. For given
f ∈ L2(Φ, ρ) and given g ∈ G we define a new function U(g) f by

U(g) f (φ) = f (g−1
φ). (3)

Without proof I mention 5 properties of the set of operators U(g):

• U(g) is linear: U(g)(a1 f1 + a2 f2) = a1U(g) f1 + a2U(g) f2.

• U(g) is unitary: 〈U(g) f1, f2〉 = 〈 f1, U(g)−1 f2〉 in L2(Φ, ρ).

• U(g) is bounded: sup f :‖ f ‖=1‖U(g) f ‖ = 1 < ∞.

• U(·) is continuous: If lim gn = g0 in the group topology, then lim U(gn) = U(g0) (in the
matrix norm in the finite-dimensional case, which is what I will focus on here, in general
in the topology of bounded linear operators).

• U(·) is a homomorphism: U(g1g2) = U(g1)U(g2) for all g1, g2 and U(e) = I for the unit
element.

The concept of homomorphism will be crucial in this section. In general, a homomorphism
is a mapping k → k′ between groups K and K′ such that k1 → k′1 and k2 → k′2 implies

k1k2 → k′1k′2 and such that e → e′ for the identities. Then also k−1
→ (k′)−1 when k → k′.

A representation of a group K is a continuous homomorphism from K into a group of invertible
operators on some vector space. If the vector space is finite dimensional, the linear operators
can be taken as matrices. There is a large and useful mathematical theory about operator
(matrix) representations of groups; some of it is sketched in Appendix 3 of [2]. Equation (3)
gives one such representation of the basic group G on the vector space L2(Φ, ρ).

Proposition 1.

Let Ua = U(g0a) with gab defined in the beginning of Section 4. Then

Ha = U−1
a H through r(λa(φ)) = U−1

a r(λ0(φ)).
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Proof. If f ∈ Ha, then f (φ) = r(λa(φ)) = r(λ0(g0aφ)) = U(g0a)
−1r(λ0(φ)) = U−1

a f0(φ),
where f0 ∈ H = H0.

Since a = 0 is a fixed but arbitrary index, this gives in principle a unitary connection between
the different choices of H, different representations of the ’Hilbert space apparatus’. However
this connection cannot be used directly in (2), since if f a

k = 1(λa = uk) is the state function
representing the question: What is λ

a? together with the answer λ
a = uk, then we have

Ua f a
k = U(g0a)1(λ

0(g0aφ) = uk) = U(g0a)U(g0a)
−1

1(λ0(φ) = uk) = f 0
k .

Thus by this simple transformation the indicator functions in H are not able to distinguish
between the different questions asked.

Another reason why the simple solution is not satisfactory is that the regular representation
U will not typically be a representation of the whole group G on the Hilbert space H. This
can however be amended by the following theorem. Its proof and the resulting discussion
below are where the Assumption c) of the maximal symmetrical epistemic setting is used.
Recall that throughout, upper indices (Ga, ga) are for the subgroups of G connected to the
accessible variables λ

a, similarly (G̃a, g̃a) for the group (elements) acting upon λ
a. Lower

indices (e.g., Ua = U(g0a)) are related to the transformations between these variables.

Theorem 1.

(i) A representation (possibly multivalued) V of the whole group G on H can always be found.

(ii) For ga
∈ Ga we have V(ga) = UaU(ga)U†

a .

Proof. (i) For each a and for ga
∈ Ga define V(ga) = U(g0a)U(ga)U(ga0). Then V(ga) is an

operator on H = H0, since it is equal to U(g0agaga0), and g0agaga0 ∈ G0 by the construction of
Ga from G0. For a product gagbgc with ga

∈ Ga, gb
∈ Gb and gc

∈ Gc we define V(gagbgc) =
V(ga)V(gb)V(gc), and similarly for all elements of G that can be written as a finite product
of elements from different subgroups.

Let now g and h be any two elements in G such that g can be written as a product of
elements from Ga, Gb and Gc, and similarly h (the proof is similar for other cases.) It follows
that V(gh) = V(g)V(h) on these elements, since the last factor of g and the first factor of h
either must belong to the same subgroup or to different subgroups; in both cases the product
can be reduced by the definition of the previous paragraph. In this way we see that V is a
representation on the set of finite products, and since these generate G by Assumption c),
and since U, hence by definition V, is continuous, it is a representation of G.

Since different representations of g as a product may give different solutions, we have to
include the possibility that V may be multivalued.

(ii) Directly from the proof of (i).

What is meant by a multivalued representation? As an example, consider the group SU(2) of
unitary 2× 2 matrices. Many books in group theory will state that there is a homomorphism
from SU(2) to the group SO(3) of real 3-dimensional rotations, where the kernel of the
homomorphism is ±I. This latter statement means that both +I and −I are mapped into the
identity rotation by the homomorphism.

Advances in Quantum Mechanics342



A Basis for Statistical Theory and Quantum Theory 9

In this case there is no unique inverse SO(3) → SU(2), but nevertheless we may say
informally that there is a multivalued homomorphism from SO(3) to SU(2). Here is a way
to make this precise:

Extend SU(2) to a new group with elements (g, k), where g ∈ SU(2) and k is an element
of the group K = {±1} with the natural multiplication. The multiplication in this extended
group is defined by (g1, k1) · (g2, k2) = (g1g2, k1k2), and the inverse by (g, k)−1 = (g−1, k−1).
Then there is an invertible homomorphism between this extended group and SO(3).

A similar construction can be made with the representation V of Theorem 1.

Theorem 2.

(i) There is an extended group G′ such that V is a univariate representation of G′ on H.

(ii) There is a unique mapping G′
→ G, denoted by g′ → g, such that V(g′) = V(g). This mapping

is a homomorphism.

Proof. (i) Assume as in Theorem 1 that we have a multivalued representation V of G. Define
a larger group G′ as follows: If gagbgc = gdgeg f , say, with gk

∈ Gk for all k, we define
g′1 = gagbgc and g′2 = gdgeg f . A similar definition of new group elements is done if we
have equality of a limit of such products. Let G′ be the collection of all such new elements
that can be written as a formal product of elements gk

∈ Gk or as limits of such symbols.
The product is defined in the natural way, and the inverse by for example (gagbgc)−1 =
(gc)−1(gb)−1(ga)−1. By Assumption 2c), the group G′ generated by this construction must
be at least as large as G. It is clear from the proof of Theorem 1 that V also is a representation
of the larger group G′ on H, now a one-valued representation.

(ii) Again, if gagbgc = gdgeg f = g, say, with gk
∈ Gk for all k, we define g′1 = gagbgc and

g′2 = gdgeg f . There is a natural map g′1 → g and g′2 → g, and the situation is similar for other
products and limits of products. It is easily shown that this mapping is a homomorphism.

Note that while G is a group of transformations on Φ, the extended group G′ must be
considered as an abstract group.

Theorem 3.

(i) For g′ ∈ G′ there is a unique g0
∈ G0 such that V(g′) = U(g0). The mapping g′ → g0 is a

homomorphism.

(ii) If g′ → g0 by the homomorphism of (i), and g′ 6= e′ in G′, then g0
6= e in G0.

Proof. (i) Consider the case where g′ = gagbgc with gk
∈ Gk. Then by the proof of Theorem

1:

V(g′) = UaU(ga)U†
a UbU(gb)U†

b UcU(gc)U†
c = U(g0agaga0g0bgbgb0g0cgcgc0)

= U(g0),

where g0
∈ G0. The group element g0 is unique since the decomposition g′ = gagbgc is

unique for g′ ∈ G′. The proof is similar for other decompositions and limits of these. By the
construction, the mapping g′ → g0 is a homomorphism.
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(ii) Assume that g0 = e and g′ 6= e′. Since U(g0) f̃ (λ0(φ)) = f̃ (λ0((g0)−1(φ))), it follows
from g0 = e that U(g0) = I on H. But then from (i), V(g′) = I, and since V is a univariate
representation, it follows that g′ = e′, contrary to the assumption.

The theorems 1-3 are valid in any maximal symmetrical epistemic setting. I will now again
specialize to the case where the accessible e-variables λ have a finite discrete range. This is
often done in elementary quantum theory texts, in fact also in recent quantum foundation
papers, and in our situation it has several advantages:

• It is easy to interprete the principle that λ can be estimated with any fixed accuracy.

• In particular, confidence regions and credibility regions for an accessible e-variable can
be taken as single points if observations are accurate enough.

• The operators involved will be much simpler and are defined everywhere.

• The operators Aa can be understood directly from the epistemic setting; see above.

So look at the statement λ
a(φ) = uk. This means two things: 1) One has sought information

about the value of the maximally accessible e-variable λ
a, that is, asked the question: What is

the value of λ
a? 2) One has obtained the answer λ

a = uk. This information can be thought of
as a perfect measurement, and it can be represented by the indicator function 1(λa(φ) = uk),
which is a function in Ha. From Proposition 1, this function can by a unitary transformation
be represented in H, which now is a vector space with a discrete basis, a finite-dimensional
vector space: Ua f a

k . However, we have seen that this tentative state definition Ua1(λa(φ) =

uk) = U(g0a)1(λ
0(g0aφ) = uk) led to ambiguities. These ambiguities can be removed by

replacing the two g0a’s here in effect by different elements g′0ai of the extended group G′. Let
g′0a1 and g′0a2 be two different such elements where both g′0a1 → g0a and g′0a2 → g0a according
to Theorem 2 (ii). I will prove in a moment that this is in fact always possible when g0a 6= e.
Let g′a = (g′0a1)

−1g′0a2, and define

f a
k (φ) = V(g′a)Ua1(λa(φ) = uk) = V(g′a) f 0

k (φ).

This gives the relation (2).

In order that the interpretation of f a
k as a state |a; k〉 shall make sense, I need the following

result. I assume that G̃0 is non-trivial.

Theorem 4.

a) Assume that two vectors in H satisfy |a; i〉 = |b; j〉, where |a; i〉 corresponds to λ
a = ui for one

perfect measurement and |b; j〉 corresponds to λ
b = uj for another perfect measurement. Then there

is a one-to-one function F such that λ
b = F(λa) and uj = F(ui). On the other hand, if λ

b = F(λa)
and uj = F(ui) for such a function F, then |a; i〉 = |b; j〉.

b) Each |a; k〉 corresponds to only one {λ
a, uk} pair except possibly for a simultaneous one-to-one

transformation of this pair.

Proof. a) I prove the first statement; the second follows from the proof of the first statement.
Without loss of generality consider a system where each e-variable λ takes only two values,
say 0 and 1. Otherwise we can reduce to a degerate system with just these two values: The
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statement |a; i〉 = |b; j〉 involves, in addition to λ
a and λ

b, only the two values ui and uj. By
considering a function of the maximally accessible e-variable (compare the next section), we
can take one specific value equal to 1, and the others collected in 0. By doing this, we also
arrange that both ui and uj are 1, so we are comparing the state given by λ

a = 1 with the

state given by λ
b = 1.

By the definition, |a; 1〉 = |b; 1〉 can be written

V(g′a)Ua1(λa(φ) = 1) = V(g′b)Ub1(λb(φ) = 1)

for group elements g′a and g′b in G′.

Use Theorem 3(i) and find g0
a and g0

b in G0 such that V(g′a) = U(g0
a) and V(g′b) = U(g0

b).
Therefore

U(g0
a)U(g0a)1(λ

a(φ) = 1) = U(g0
b)U(g0b)1(λ

b(φ) = 1);

1(λa(φ) = 1) = U(g0)1(λb(φ) = 1) = 1(λb((g0)−1
φ) = 1),

for g0 = (g0a)
−1(g0

a)
−1g0

b g0b.

Both λ
a and λ

b take only the values 0 and 1. Since the set where λ
b(φ) = 1 can

be transformed into the set where λ
a(φ) = 1, we must have λ

a = F(λb) for some
transformation F.

b) follows trivially from a).

Corollary.

The group G is properly contained in G′, so the representation V of Theorem 1 is really multivalued.

Proof. If we had G′ = G, then |a; k〉 and |b; k〉 both reduce to Ua1(λa(φ) = uk) = Ub1(λb(φ) =
uk) = 1(λ0 = uk), so Theorem 4 and its proof could not be valid.

Theorem 4 and its corollary are also valid in the situation where we are interested in just
two accessible variables λ

a and λ
b, which might as well be called λ

0 and λ
a. We can then

provisionally let the group G be generated by g0a, ga0 = g−1
0a and all elements g0 and ga. The

earlier statement that it is always possible to find two different elements g′0a1 and g′0a2 in G′

which are mapped onto g0a follows.

Finally we have

Theorem 5.

For each a ∈ A, the vectors {|a; k〉; k = 1, 2, ...} form an orthonormal basis for H.

Proof. Taking the invariant measure ρ on H as normalized to 1, the indicator functions |0; k〉 =
1(λ0(φ) = uk) form an orthonormal basis for H. Since the mapping |0; k〉 → |a; k〉 is unitary,
the Theorem follows.

So if b 6= a and k is fixed, there are complex constants cki such that |b; k〉 = ∑i cki|a; i〉. This
opens for the interference effects that one sees discussed in quantum mechanical texts. In
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particular |a; k〉 = ∑i dki|0; i〉 for some constants dki. This is the first instance of something
that we also will meet later in different situations: New states in H are found by taking linear
combinations of a basic set of state vectors.

6. The general symmetrical epistemic setting

Go back to the definition of the maximal symmetrical epistemic setting. Let again φ be the
inaccessible conceptual variable and let λ

a for a ∈ A be the maximal accessible conceptual
variables, functions of φ. Let the corresponding induced groups Ga and G satisfy the
assumptions a)-c). Finally, let ta for each a be an arbitrary function on the range of λ

a,
and assume that we observe θ

a = ta(λa); a ∈ A. We will call this the symmetrical epistemic
setting; it is no longer necessarily maximal with respect to the observations θ

a.

Consider first the quantum states |a; k〉. We are no longer interested in the full information
on λ

a, but keep the Hilbert space as in Section 5, and now let ha
k(φ) = 1(ta(λa) = ta(uk)) =

1(θa = ua
k), where ua

k = ta(uk). We let again g′0a1 and g′0a2 be two distinct elements of G′ such

that g′0ai → g0a, define g′a = (g′0a1)
−1g′0a2 and then

|a; k〉 = V(g′a)Uaha
k = V(g′a)|0; k〉,

where |0; k〉 = h0
k .

Interpretation of the state vector |a; k〉:

1) The question: ’What is the value of θ
a?’ has been posed. 2) We have obtained the answer θ

a = ua
k .

Both the question and the answer are contained in the state vector.

From this we may define the operator connected to the e-variable θ
a:

Aa = ∑
k

ua
k |a; k〉〈a; k| = ∑

k

ta(uk)|a; k〉〈a; k|.

Then Aa is no longer necessarily an operator with distinct eigenvalues, but Aa is still
Hermitian: Aa† = Aa.

Interpretation of the operator Aa:

This gives all possible states and all possible values corresponding to the accessible e-variable θ
a.

The projectors |a; k〉〈a; k| and hence the ket vectors |a; k〉 are no longer uniquely determined
by Aa: They can be transformed arbitrarily by unitary transformations in each space
corresponding to one eigenvalue. In general I will redefine |a; k〉 by allowing it to be subject
to such transformations. These transformed eigenvectors all still correspond to the same
eigenvalue, that is, the same observed value of θ

a and they give the same operators Aa.
In particular, in the maximal symmetric epistemic setting I will allow an arbitrary constant
phase factor in the definition of the |a; k〉’s.
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As an example of the general construction, assume that λ
a is a vector: λ

a = (θa1 , ..., θ
am ).

Then one can write a state vector corresponding to λ
a as

|a; k〉 = |a1; k1〉 ⊗ ... ⊗ |am; km〉

in an obvious notation, where a = (a1, ..., am) and k = (k1, ..., km). The different θ’s may be
connected to different subsystems.

So far I have kept the same groups Ga and G when going from λ
a to θ

a = ta(λa), that
is from the maximal symmetrical epistemic setting to the general symmetrical epistemic
setting. This implies that the (large) Hilbert space will be the same. A special case occurs
if ta is a reduction to an orbit of Ga. This is the kind of model reduction mentioned at the
end of Section 2. Then the construction of the previous sections can also be carried with a
smaller group action acting just upon an orbit, resulting then in a smaller Hilbert space. In
the example of the previous paragraph it may be relevant to consider one Hilbert space for
each subsystem. The large Hilbert space is however the correct space to use when the whole
system is considered.

Connected to a general physical system, one may have many e-variables θ and corresponding
operators A. In the ordinary quantum formalism, there is well-known theorem saying that,
in my formulation, θ

1, ..., θ
n are compatible, that is, there exists an e-variable λ such that

θ
i = ti(λ) for some functions ti if and only if the corresponding operators commute:

[Ai, Aj] ≡ Ai Aj
− Aj Ai = 0 for all i, j.

(See Holevo [4].) Compatible e-variables may in principle be estimated simultaneously with
arbitrary accuracy.

The way I have defined pure state, the only state vectors that are allowed, are those which
are eigenvectors of some physically meaningful operator. This is hardly a limitation in the
spin/angular momentum case where operators corresponding to all directions are included.
Nevertheless it is an open question to find general conditions under which all unit vectors in
H correspond to states |a; k〉 the way I have defined them. It is shown in [5] that this holds
under no further conditions for the spin 1/2 case.

7. Link to statistical inference

Assume now the symmetrical epistemic setting. We can think of a spin component in a
fixed direction to be assessed. To assume a state |a; k〉 is to assume perfect knowledge of the
e-variable θ

a: θ
a = ua

k . Such perfect knowledge is rarely available. In practice we have data za

about the system, and use these data to obtain knowledge about θ
a. Let us start with Bayesian

inference. This assumes prior probabilities π
a
k on the values ua

k , and after the inference we
have posterior probabilities π

a
k(z

a). In either case we summarize this information in the
density operator:

σ
a = ∑

k

π
a
k |a; k〉〈a; k|.
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Interpretation of the density operator σ
a:

1) We have posed the question ’What is the value of θ
a?’ 2) We have specified a prior or posterior

probability distribution π
a
k over the possible answers. The probability for all possible answers to the

question, formulated in terms of state vectors, can be recovered from the density operator.

A third possibility for the probability specifications is a relatively new, but important concept
of a confidence distribution ([6], [7]). This is a frequentist alternative to the distribution
connected to a parameter (here: e-variable). The idea is that one looks at a one-sided
confidence interval for any value of the confidence coefficient γ. Let the data be z, and
let (−∞, β(γ, z)] be such an interval. Then β(γ) = β(γ, z) is an increasing function. We
define H(·) = β

−1(·) as the confidence distribution for θ. This H is a cumulative distribution
function, and in the continuous case it is characterized with the property that H(β(γ, z))
has a uniform distribution over [0, 1] under the model. For discrete θ

a the confidence
distribution function Ha is connected to a discrete distribution, which gives the probabilities
π

a
k . Extending the argument in [7] to this situation, this should not be looked upon as a

distribution of θ
a, but a distribution for θ

a, to be used in the epistemic process.

Since the sum of the probabilities is 1, the trace (sum of eigenvalues) of any density operator
is 1. In the quantum mechanical literature, a density operator is any positive operator with
trace 1.

Note that specification of the accessible e-variables θ
a is equivalent to specifying t(θa) for

any one-to-one function t. The operator t(Aa) has then distinct eigenvalues if and only if the
operator Aa has distinct eigenvalues. Hence it is enough in order to specify the question 1)
to give the set of orthonormal vectors |a; k〉.

Given the question a, the e-variable θ
a plays the role similar to a parameter in statistical

inference, even though it may be connected to a single unit. Inference can be done by
preparing many independent units in the same state. Inference is then from data za, a
part of the total data z that nature can provide us with. All inference theory that one finds
in standard texts like [8] applies. In particular, the concepts of unbiasedness, equivariance,
minimaxity and admissibility apply. None of these concepts are much discussed in the
physical literature, first because measurements there are often considered as perfect, at least
in elementary texts, secondly because, when measurements are considered in the physical
literature, they are discussed in terms of the more abstract concept of an operator-valued
measure; see below.

Whatever kind of inference we make on θ
a, we can take as a point of departure the statistical

model and the likelihood principle of Section 2. Hence after an experiment is done, and given
some context τ, all evidence on θ

a is contained in the likelihood p(za
|τ, θ

a), where za is the
portion of the data relevant for inference on θ

a, also assumed discrete. This is summarized
in the likelihood effect:

E(za, τ) = ∑
k

p(za
|τ, θ

a = ua
k)|a; k〉〈a; k|.

Interpretation of the likelihood effect E(za, τ):
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1) We have posed some inference question on the accessible e-variable θ
a. 2) We have specified the

relevant likelihood for the data. The likelihood for all possible answers of the question, formulated in
terms of state vectors, can be recovered from the likelihood effect.

Since the focused question assumes discrete data, each likelihood is in the range 0 ≤ p ≤ 1.
In the quantum mechanical literature, an effect is any operator with eigenvalues in the range
[0, 1].

Return now to the likelihood principle of Section 2. The following principle follows.

The focused likelihood principle (FLP)

Consider two potential experiments in the symmetrical epistemic setting with equivalent contexts τ,
and assume that the inaccessible conceptual variable φ is the same in both experiments. Suppose
that the observations z∗1 and z∗2 have proportional likelihood effects in the two experiments, with a
constant of proportionality independent of the conceptual variable. Then the questions posed in the
two experiments are equivalent, that is, there is an e-variable θ

a which can be considered to be the same
in the two experiments, and the two observations produce the same evidence on θ

a in this context.

In many examples the two observations will have equal, not only proportional, likelihood
effects. Then the FLP says simply that the experimental evidence is a function of the
likelihood effect.

In the FLP we have the freedom to redefine the e-variable in the case of coinciding
eigenvalues in the likelihood effect, that is, if p(za

|τ, θ
a = uk) = p(za

|τ, θ
a = ul) for some k,

l. An extreme case is the likelihood effect E(za, τ) = I, where all the likelihoods are 1, that is,
the probability of z is 1 under any considered model. Then any accessible e-variable θ

a will
serve our purpose.

We are now ready to define the operator-valued measure in this discrete case:

Ma(B|τ) = ∑
za
∈B

E(za, τ)

for any Borel set in the sample space for experiment a. Its usefulness will be seen after we
have discussed Born’s formula. Then we will also have background for reading much of [9],
a survey over quantum statistical inference.

8. Rationality and experimental evidence

Throughout this section I will consider a fixed context τ and a fixed epistemic setting in this
context. The inaccessible e-variable is φ, and I assume that the accessible e-variables θ

a take
a discrete set of values. Let the data behind the potential experiment be za, also assumed to
take a discrete set of values.

Let first a single experimentalist A be in this situation, and let all conceptual variables be
attached to A, although he also has the possibility to receiving information from others
through part of the context τ. He has the choice of doing different experiments a, and he
also has the choice of choosing different models for his experiment through his likelihood
pA(z

a
|τ, θ

a). The experiment and the model, hence the likelihood, should be chosen before
the data are obtained. All these choices are summarized in the likelihood effect E, a function
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of the at present unknown data za. For use after the experiment, he should also choose

a good estimator/predictor ̂θa, and he may also have to choose some loss function, but the
principles behind these latter choices will be considered as part of the context τ. If he chooses
to do a Bayesian analysis, the estimator should be based on a prior π(θa|τ). We assume that
A is trying to be as rational as possible in all his choices, and that this rationality is connected
to his loss function or to other criteria.

What should be meant by experimental evidence, and how should it be measured? As a
natural choice, let the experimental evidence that we are seeking, be the marginal probability
of the obtained data for a fixed experiment and for a given likelihood function. From the
experimentalist A’s point of view this is given by:

pa
A(z

a|τ) = ∑
k

pA(z
a|τ, θ

a = uk)πA(θ
a = uk|τ),

assuming the likelihood chosen by A and A’s prior πA for θ
a. In a non-Bayesian analysis,

we can let pa
A(z

a|τ) be the probability given the true value u0
k of the e-variable: pa

A(z
a|τ) =

pA(z
a|τ, θ

a = u0
k). In general, take pa

A(z
a|τ) as the probability of the part of the data za

which A assesses in connection to his inference on θ
a. By the FLP - specialized to the case of

one experiment and equal likelihoods - this experimental evidence must be a function of the
likelihood effect: pa

A(z
a|τ) = qA(E(za)|τ).

We have to make precise in some way what is meant by the rationality of the experimentalist
A. He has to make many difficult choices on the basis of uncertain knowledge. His actions
can partly be based on intuition, partly on experience from similar situations, partly on a
common scientific culture and partly on advices from other persons. These other persons
will in turn have their intuition, their experience and their scientific education. Often A will
have certain explicitly formulated principles on which to base his decisions, but sometimes
he has to dispense with the principles. In the latter case, he has to rely on some ’inner voice’,
a conviction which tells him what to do.

We will formalize all this by introducing a perfectly rational superior actor D, to which all
these principles, experiences and convictions can be related. We also assume that D can
observe everything that is going on, in particular A, and that he on this background can
have some influence on A’s decisions. The real experimental evidence will then be defined
as the probability of the data za from D’s point of view, which we assume also to give the real objective
probabilities. By the FLP this must again be a function of the likelihood effect E, where the
likelihood now may be seen as the objectively correct model.

pa(za|τ) = q(E(za)|τ) (4)

As said, we assume that D is perfectly rational. This can be formalized mathematically by
considering a hypothetical betting situation for D against a bookie, nature N. A similar
discussion was recently done in [10] using a more abstract language. Note the difference
to the ordinary Bayesian assumption, where A himself is assumed to be perfectly rational.
This difference is crucial to me. I do not see any human scientist, including myself, as being
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perfectly rational. We can try to be as rational as possible, but we have to rely on some
underlying rational principles that partly determine our actions.

So let the hypothetical odds of a given bet for D be (1 − q)/q to 1, where q is the probability
as defined by (4). This odds specification is a way to make precise that, given the context
τ and given the question a, the bettor’s probability that the experimental result takes some
value is given by q: For a given utility measured by x, the bettor D pays in an amount qx -
the stake - to the bookie. After the experiment the bookie pays out an amount x - the payoff
- to the bettor if the result of the experiment takes the value za, otherwise nothing is payed.

The rationality of D is formulated in terms of

The Dutch book principle.

No choice of payoffs in a series of bets shall lead to a sure loss for the bettor.

For a related use of the same principle, see [11].

Assumption D.

Consider in some context τ a maximal symmetrical epistemic setting where the FLP is satisfied, and
the whole situation is observed and acted upon by a superior actor D as described above. Assume that
D’s probabilities q given by (4) are taken as the experimental evidence, and that D acts rationally in
agreement with the Dutch book principle.

A situation where all the Assumption D holds together with the assumptions of a symmetric
epistemic setting will be called a rational epistemic setting.

Theorem 6.

Assume a rational epistemic setting. Let E1 and E2 be two likelihood effects in this setting, and assume
that E1 + E2 also is a likelihood effect. Then the experimental evidences, taken as the probabilities of
the corresponding data, satisfy

q(E1 + E2|τ) = q(E1|τ) + q(E2|τ).

Proof. The result of the theorem is obvious, without making Assumption D, if E1 and E2

are likelihood effects connected to experiments on the same e-variable θ
a. We will prove

it in general. Consider then any finite number of potential experiments including the two
with likelihood effects E1 and E2. Let q1 = q(E1|τ) be equal to (4) for the first experiment,
and let q2 = q(E2|τ) be equal to the same quantity for the second experiment. Consider in
addition the following randomized experiment: Throw an unbiased coin. If head, choose
the experiment with likelihood effect E1; if tail, choose the experiment with likelihood effect
E2. This is a valid experiment. The likelihood effect when the coin shows head is 1

2 E1,

when it shows tail 1
2 E2, so that the likelihood effect of this experiment is E0 = 1

2 (E1 + E2).
Define q0 = q(E0). Let the bettor bet on the results of all these 3 experiments: Payoff x1 for
experiment 1, payoff x2 for experiment 2 and payoff x0 for experiment 0.

I will divide into 3 possible outcomes: Either the likelihood effect from the data z is E1 or it
is E2 or it is none of these. The randomization in the choice of E0 is considered separately
from the result of the bet. (Technically this can be done by repeating the whole series of
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experiments many times with the same randomization. This is also consistent with the
conditionality principle.) Thus if E1 occurs, the payoff for experiment 0 is replaced by the
expected payoff x0/2, similarly if E2 occurs. The net expected amount the bettor receives is
then

x1 +
1

2
x0 − q1x1 − q2x2 − q0x0 = (1 − q1)x1 − q2x2 − (1 − 2q0)

1

2
x0 if E1,

x2 +
1

2
x0 − q1x1 − q2x2 − q0x0 = −q1x1 − (1 − q2)x2 − (1 − 2q0)

1

2
x0 if E2,

−q1x1 − q2x2 − 2q0 ·
1

2
x0 otherwise.

The payoffs (x1, x2, x0) can be chosen by nature N in such a way that it leads to sure loss for
the bettor D if not the determinant of this system is zero:

0 =

∣

∣

∣

∣

∣

∣

1 − q1 −q2 1 − 2q0

−q1 1 − q2 1 − 2q0

−q1 −q2 −2q0

∣

∣

∣

∣

∣

∣

= q1 + q2 − 2q0.

Thus we must have

q(
1

2
(E1 + E2)|τ) =

1

2
(q(E1|τ) + q(E2|τ)).

If E1 + E2 is an effect, the common factor 1
2 can be removed by changing the likelihoods, and

the result follows.

Corollary.

Assume a rational epistemic setting. Let E1, E2, ... be likelihood effects in this setting, and assume
that E1 + E2 + ... also is a likelihood effect. Then

q(E1 + E2 + ...|τ) = q(E1|τ) + q(E2|τ) + ....

Proof. The finite case follows immediately from Theorem 6. Then the infinite case follows
from monotone convergence.

The result of this section is quite general. In particular the loss function and any other
criterion for the success of the experiments are arbitrary. So far I have assumed that the
choice of experiment a is fixed, which implies that it is the same for A and for D. However,
the result also applies to the following more general situation: Let A have some definite
purpose of his experiment, and to achieve that purpose, he has to choose the question a in a
clever manner, as rationally as he can. Assume that this rationality is formalized through the
actor D, who has the ideal likelihood effect E and the experimental evidence p(z|τ) = q(E|τ).
If two such questions shall be chosen, the result of Theorem 6 holds, with essentially the same
proof.
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9. The Born formula

9.1. The basic formula

Born’s formula is the basis for all probability calculations in quantum mechanics. In

textbooks it is usually stated as a separate axiom, but it has also been argued for by using

various sets of assumptions; see [12] for some references. Here I will base the discussion

upon the result of Section 8.

I begin with a recent result by Busch [13], giving a new version of a classical mathematical

theorem by Gleason. Busch’s version has the advantage that it is valid for a Hilbert space of

dimension 2, which Gleason’s original theorem is not, and it also has a simpler proof. For a

proof for the finite-dimensional case, see Appendix 5 of [2].

Let in general H be any Hilbert space. Recall that an effect E is any operator on the Hilbert

space with eigenvalues in the range [0, 1]. A generalized probability measure µ is a function

on the effects with the properties

(1) 0 ≤ µ(E) ≤ 1 for all E,

(2) µ(I) = 1,

(3) µ(E1 + E2 + ...) = µ(E1) + µ(E2) + ... whenever E1 + E2 + ... ≤ I.

Theorem 7. (Busch, 2003).

Any generalized probability measure µ is of the form µ(E) = Tr(σE) for some density operator σ.

It is now easy to see that q(E|τ) = p(z|τ) on the ideal likelihood effects of Section 8 is a

generalized probability measure if Assumption D holds: (1) follows since q is a probability;

(2) since E = I implies that the likelihood is 1 for all values of the e-variable, hence p(z) = 1;

finally (3) is a concequence of the corollary of Theorem 6. Hence there is a density operator

σ = σ(τ) such that p(z|τ) = Tr(σ(τ)E) for all ideal likelihood effects E = E(z).

Define now a perfect experiment as one where the measurement uncertainty can be

disregarded. The quantum mechanical literature operates very much with perfect

experiments which give well-defined states |k〉. From the point of view of statistics, if, say the

99% confidence or credibility region of θ
b is the single point ub

k , we can infer approximately

that a perfect experiment has given the result θ
b = ub

k .

In our symmetric epistemic setting then: We have asked the question: ’What is the value

of the accessible e-variable θ
b?’, and are interested in finding the probability of the answer

θ
b = ub

j though a perfect experiment. This is the probability of the state |b; j〉. Assume now

that this probability is sought in a context τ = τ
a,k defined as follows: We have previous

knowledge of the answer θ
a = ua

k of another accessible question: What is the value of θ
a?

That is, we know the state |a; k〉. If θ
a is maximally accessible, this is the maximal knowledge

about the system that τ may contain; in general we assume that the context τ does not contain

more information about this system. It can contain irrelevant information, however.
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Theorem 8. (Born’s formula)

Assume a rational epistemic setting. In the above situation we have:

P(θb = ub
j |θ

a = ua
k) = |〈a; k|b; j〉|2.

Proof. Fix j and k, let |v〉 be either |a; k〉 or |b; j〉, and consider likelihood effects of
the form E = |v〉〈v|. This corresponds in both cases to a perfect measurement of
a maximally accessible parameter with a definite result. By Theorem 7 there exists a
density operator σ

a,k = ∑i πi(τ
a,k)|i〉〈i| such that q(E|τa,k) = 〈v|σa,k

|v〉, where πi(τ
a,k) are

non-negative constants adding to 1. Consider first |v〉 = |a; k〉. For this case one must have

∑i πi(τ
a,k)|〈i|a; k〉|2 = 1 and thus ∑i πi(τ

a,k)(1 − |〈i|a; k〉|2) = 0. This implies for each i that
either πi(τ

a,k) = 0 or |〈i|a; k〉| = 1. Since the last condition implies |i〉 = |a; k〉 (modulus an
irrelevant phase factor), and this is a condition which can only be true for one i, it follows
that πi(τ

a,k) = 0 for all other i than this one, and that πi(τ
a,k) = 1 for this particular i.

Summarizing this, we get σ
a,k = |a; k〉〈a; k|, and setting |v〉 = |b; j〉, Born’s formula follows,

since q(E|τa,k) in this case is equal to the probability of the perfect result θ
b = ub

j .

9.2. Consequences

Here are three easy consequences of Born’s formula:

(1) If the context of the system is given by the state |a; k〉, and Ab is the operator corresponding
to the e-variable θ

b, then the expected value of a perfect measurement of θ
b is 〈a; k|Ab

|a; k〉.

(2) If the context is given by a density operator σ, and A is the operator corresponding to the
e-variable θ, then the expected value of a perfect measurement of θ is Tr(σA).

(3) In the same situation the expected value of a perfect measurement of f (θ) is Tr(σ f (A)).

Proof of (1):

E(θb
|θ

a = ua
k) = ∑

i

ub
i P(θb = ub

i |θ
a = ua

k)

= ∑
i

ub
i 〈a; k|b; i〉〈b; i|a; k〉 = 〈a; k|Ab

|a; k〉.

These results give an extended interpretation of the operator A compared to what I gave in
Section 5: There is a simple formula for all expectations in terms of the operator. On the other
hand, the set of such expectations determine the state of the system. Also on the other hand:
If A is specialized to an indicator function, we get back Born’s formula, so the consequences
are equivalent to this formula.

As an application of Born’s formula, we give the transition probabilities for electron spin. I
will, for a given direction a, define the e-variable θ

a as +1 if the measured spin component by
a perfect measurement for the electron is +h̄/2 in this direction, θ

a = −1 if the component is
−h̄/2. Assume that a and b are two directions in which the spin component can be measured.
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Proposition 2.

For electron spin we have

P(θb = ±1|θa = +1) =
1

2
(1 ± cos(a · b)).

This is proved in several textbooks, for instance [4], from Born’s formula. A similar proof
using the Pauli spin matrices is also given in [5].

Finally, using Born’s formula, we deduce the basic formula for quantum measurement. Let
the state of a system be given by a density matrix ρ = ρ(η), where η is an unknown statistical
parameter, and let the measurements be determined by an operator-valued measure M(·) as
defined in Section 7. Then the probability distribution of the observations is given by

P(B; η) = Tr(ρ(η)M(B)).

This, together with an assumption on the state after measurement, is the basis for [9].

10. Entanglement, EPR and the Bell theorem

The total spin components in different directions for a system of two spin 1/2 particles
satisfy the assumptions of a maximal symmetric epistemic setting. Assume that we have
such a system where j = 0, that is, the state is such that the total spin is zero. By ordinary
quantum mechanical calculations, this state can be explicitly written as

|0〉 =
1
√

2
(|1,+〉 ⊗ |2,−〉 − |1,−〉 ⊗ |2,+〉), (5)

where |1,+〉 ⊗ |2,−〉 is a state where particle 1 has a spin component +h̄/2 and particle 2
has a spin component −h̄/2 along the z-axis, and vice versa for |1,−〉⊗ |2,+〉. This is what is
called an entangled state, that is, a state which is not a direct product of the component state
vectors. I will follow my own programme, however, and stick to the e-variable description.

Assume further that the two particles separate, the spin component of particle 1 is measured
in some direction by an observer Alice, and the spin component of particle 2 is measured by
an observer Bob. Before the experiment, the two observers agree both either to measure spin
in some fixed direction a or in another fixed direction b, orthogonal to a, both measurements
assumed for simplicity to be perfect. As a final assumption, let the positions of the two
observers at the time of measurement be spacelike, that is, the distance between them is so
large that no signal can reach from one to the other at this time, taking into account that
signals cannot go faster that the speed of light by the theory of relativity.

This is Bohm’s version of the situation behind the argument against the completeness of
quantum mechanics as posed by Einstein et al. [14] and countered by Bohr [15], [16]. This
discussion is still sometimes taken up today, although most physicists now support Bohr. So
will I, but I will go a step further. The main thesis in [14] was as follows: If, without in any
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way disturbing a system, we can predict the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical reality. Bohr answered by introducing a strict
interpretation of this criterion: To ascribe reality to P, the measurement of an observable whose
outcome allows for the prediction of P, must actually be performed, or one must give a description
of how it can be performed. Several authors have argued that Einstein’s criterion of reality
lead an assumption of non-locality: Signals between observers with a spacelike separation
must travel faster than light. Recently, it has been shown in [17] that the possibility is open
to interpret the non-locality theorems in the physical literature as arguments supporting the
strict criterion of reality, rather than a violation of locality. I agree with this last interpretation.

I will be very brief on this discussion here. Let λ be the spin component in units of h̄/2 as
measured by Alice, and let η be the spin component in the same units as measured by Bob.
Alice has a free choice between measuring in the the directions a and in the direction b. In
both cases, her probability is 1/2 for each of λ = ±1. If she measures λ

a = +1, say, she will
predict η

a = −1 for the corresponding component measured by Bob. According to Einstein
et al. [14] there should then be an element of reality corresponding to this prediction, but if
we adapt the strict interpretation of Bohr here, there is no way in which Alice can predict
Bob’s actual real measurement at this point of time. Bob on his side has also a free choice
of measurement direction a or b, and in both cases he has the probability 1/2 for each of
η = ±1. The variables λ and η are conceptual, the first one connected to Alice and the
second one connected to Bob. As long as the two are not able to communicate, there is no
sense in which we can make statements like η = −λ meaningful.

The situation changes. however, if Alice and Bob meet at some time after the measurement.
If Alice then says ’I chose to make a measurement in the direction a and got the result u’
and Bob happens to say ’I also chose to make a measurement in the direction a, and then
I got the result v’, then these two statements must be consistent: v = −u. This seems to
be a necessary requirement for the consistency of the theory. There is a subtle distinction
here. The clue is that the choices of measurement direction both for Alice and for Bob are
free and independent. The directions are either equal or different. If they should happen to
be different, there is no consistency requirement after the measurement, due to the assumed
orthogonality of a and b. Note again that we have an epistemic interpretation of quantum
mechanics. At the time of measurement, nothing exists except the observations by the two
observers.

Let us then look at the more complicated situation where a and b are not necessarily
orthogonal, where Alice tosses a coin and measures in the direction a if head and b if tail,
while Bob tosses an independent coin and measures in some direction c if head and in
another direction d if tail. Then there is an algebraic inequality

λ
a
η

c + λ
b
η

c + λ
b
η

d
− λ

a
η

d
≤ 2. (6)

Since all the conceptual variables take values ±1, this inequality follows from

(λa + λ
b)ηc + (λb

− λ
a)ηd = ±2 ≤ 2.

Now replace the conceptual variables here with actual measurements. Taking then formal
expectations from (6), assumes that the products here have meaning as random variables;
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in the physical literature this is stated as an assumption of realism and locality. This leads
formally to

E(̂λa
̂ηc) + E(̂λb

̂ηc) + E(̂λb̂ηd)− E(̂λâηd) ≤ 2 (7)

This is one of Bell’s inequalities, called the CHSH inequality.

On the other hand, using quantum-mechanical calculations, that is Born’s formula, from the
basic state (5), shows that a, b, c and d can be chosen such that Bell’s inequality (7) is violated.
This is also confirmed by numerous experiments with electrons and photons.

From our point of view the transition from (6) to (7) is not valid. One can not take the
expectation term by term in equation (6). The λ’s and η’s are conceptual variables belonging
to different observers. Any valid statistical expectation must take one of these observers
as a point of departure. Look at (6) from Alice’s point of view, for instance. She starts
by tossing a coin. The outcome of this toss leads to some e-variable λ being measured in
one of the directions a or b. This measurement is an epistemic process, and any prediction
based upon this measurement is a new epistemic process. During these processes she must
obey Conditionality principle 2 of Section 2. By this conditionality principle she should
condition upon the outcome of the coin toss. So in any prediction she should condition upon
the choice a or b. It is crucial for this argument that the prediction of an e-variable is an
epistemic process, not a process where ordinary probability calculations can be immediately
used.

By doing predictions from her measurement result, she can use Born’s formula. Suppose that
she measures λ

a and finds λ
a = +1, for instance. Then she can predict the value of λ

c and
hence η

c = −λ
c. Thus she can (given the outcome a of the coin toss) compute the expectation

of the first term (6). similarly, she can compute the expectation of the last term in (6). But
there is no way in which she simultaneously can predict λ

b and η
d. Hence the expectation

of the second term (and also, similarly the third term) in (6) is for her meaningless. A
similar conclusion is reached if the outcome of the coin toss gives b. And of course a similar
conclusion is valid if we take Bob’s point of view. Therefore the transition from (6) to (7) is
not valid, not by non-locality, but by a simple use of the conditionality principle. This can
also in some sense be called lack of realism: In this situation is it not meaningful to take
expectation from the point of view of an impartial observer. By necessity one must see the
situation from the point of view of one of the observers Alice or Bob.

Entanglement is very important in modern applications of quantum mechanics, not least
in quantum information theory, including quantum computation. It is also an important
ingredient in the theory of decoherence [18], which explains why ordinary quantum effects
are not usually visible on a larger scale. Decoherence theory shows the importance of the
entanglement of each system with its environment. In particular, it leads in effect to the
conclusion that all observers share common observations after decoherence between the
system and its environment, and this can then be identified with the ’objective’ aspects of the
world; which is also what the superior actor D of Section 8 would find.

11. Position as an e-variable and the Schrödinger equation

So far I have looked at e-variables taking a finite discrete set of values, but the concept of
an e-variable carries over to the continuous case. Consider the motion of a non-relativistic
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one-dimensional particle. Its position ξ at some time t can in principle be determined by
arbitrary accuracy, resulting in an arbitrarily short confidence interval. But momentum and
hence velocity cannot be determined simultaneously with arbitrary accuracy, hence the vector
(ξ(s), ξ(t)) for positions at two different time points is inaccessible. Now fix some time t. An
observer i may predict ξ(t) by conditioning on some σ-algebra Pi of information from the
past. This may be information from some time point si < t, but it can also take other forms.
We must think of different observers as hypothetical; only one of them can be realized.
Nevertheless one can imagine that all this information, subject to the choice of observer later,
is collected in an inaccessible σ-algebra Pt, the past of ξ(t). The distribution of ξ(t), given
the past Pt, for each t, can then be represented as a stochastic process.

In the simplest case one can then imagine {ξ(s); s ≥ 0} as an inaccessible Markov process:
The future is independent of the past, given the present. Under suitable regularity conditions,
a continuous Markov process will be a diffusion process, i.e., a solution of a stochastic
differential equation of the type

dξ(t) = b(ξ(t), t)dt + σ(ξ(t), t)dw(t). (8)

Here b(·, ·) and σ(·, ·) are continuous functions, also assumed differentiable, and {w(t); t ≥
0} is a Wiener process. The Wiener process is a stochastic process with continuous paths,
independent increments w(t) − w(s), w(0) = 0 and E((w(t) − w(s))2) = t − s. Many
properties of the Wiener process have been studied, including the fact that its paths are
nowhere differentiable. The stochastic differential equation (8) must therefore be defined in
a particular way; for an introduction to Itô calculus or Stochastic calculus; see for instance
[19].

So far we have considered observers making predictions of the present value ξ(t), given
the past Pt. There is another type of epistemic processes which can be described as follows:
Imagine an actor A which considers some future event for the particle, lying in a σ-algebra Fj.
He asks himself in which position he should place the particle at time t as well as possible
in order to have this event fulfilled. In other words, he can adjust ξ(t) for this purpose.
Again one can collect the σ-algebras for the different potential actors in one big inaccessible
σ-algebra Ft, the future after t. The conditioning of the present, given the future, defines
{ξ(t); t ≥ 0} as a new inaccessible stochastic process, with now t running backwards in time.
In the simplest case this is a Markov process, and can be described by a stochastic differential
equation

dξ(t) = b∗(ξ(t), t)dt + σ∗(ξ(t), t)dw∗(t), (9)

where again w∗(t) is a Wiener process.

Without having much previous knowledge about modern stochastic analysis and without
knowing anything about epistemic processes, Nelson [20] formulated his stochastic
mechanics, which serves our purpose perfectly. Nelson considered the multidimensional
case, but for simplicity, I will here only discuss a one-dimensional particle. Everything can
be generalized.

Nelson discussed what corresponds to the stochastic differential equations (8) and (9) with
σ and σ∗ constant in space and time. Since heavy particles fluctuate less than light particles,
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he assumed that these quantities vary inversely with mass m, that is, σ
2 = σ

2
∗
= h̄/m. The

constant h̄ has dimension action, and turns out to be equal to Planck’s constant divided by
2π. This assumes that σ

2 = σ
2
∗

, a fact that Nelson actually proved in addition to proving that

b∗ = b − σ
2(lnρ)x,

where ρ = ρ(x, t) is the probability density of ξ(t).

Introduce u = (b − b∗)/2 and v = (b + b∗)/2. Then R = 1
2 lnρ(x, t) satisfies Rx = mu/h̄.

Let S be defined up to an additive constant by Sx = mv/h̄ and define the wave function
of the particle by f = exp(R + iS). Then | f (x, t)|2 = ρ(x, t) as it should. By defining the
acceleration of the particle in a proper way and using Newton’s second law, a set of partial
differential equations for u and v can be found, and by choosing the additive constant in S
properly, one deduces from these equations

ih̄
∂

∂t
f (x, t) = [

1

2m
(−ih̄

∂

∂x
)2 + V(x)] f (x, t), (10)

where V(x) is the potential energy. The details of these derivations can be found in [2] with

more details in [20]. Identifying −ih̄ ∂

∂x as the operator for momentum, we see that (10) is the
Schrödinger equation for the particle.

12. Conclusion

Even though the mathematics here is more involved, the approach of the present chapter
(expressed in more detail in [2]) should serve to take some of the mystery off the ordinary
formal introduction to quantum theory. A challenge for the future will be to develop the
corresponding relativistic theory, by using representations of the Poincaré group together
with an argument like that in Section 11. Also, one should seek a link to elementary particle
physics using the relevant Lie group theory. Group theory is an important part of physics,
and it should come as no surprise that this also is relevant to the foundation of quantum
mechanics.
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1. Introduction

Quantum mechanics (QM) stands out as the theory of the 20th century, shaping the most
diverse phenomena, from subatomic physics to cosmology. All quantum predictions have
been crowned with full success and utmost accuracy. Yet, the admiration we feel towards
QM is mixed with surprise and uneasiness. QM defies common sense and common logic.
Various paradoxes, including Schrodinger’s cat and EPR paradox, exemplify the lurking
conflict. The reality of the problem is confirmed by the Bell’s inequalities and the GHZ
equalities. We are thus led to revisit a number of old interlocked oppositions: operator –
operand, discrete – continuous, finite –infinite, hardware – software, local – global, particular
– universal, syntax – semantics, ontological – epistemological.

The logic of a physical theory reflects the structure of the propositions describing the
physical system under study. The propositional logic of classical mechanics is Boolean
logic, which is based on set theory. A set theory is deprived of any structure, being a
plurality of structure-less individuals, qualified only by membership (or non-membership).
Accordingly a set-theoretic enterprise is analytic, atomistic, arithmetic. It was noticed as
early as 1936 by Neumann and Birkhoff that the quantum real needs a non-Boolean logical
structure. On numerous cases the need for a novel system of logical syntax is evident.
Quantum measurement bypasses the old disjunctions subject-object, observer-observed. The
observer affects the system under observation and the borderline between ontological and
epistemological is blurred. Correlations are not anymore local and a quantum system
embodies multiple entanglements. The particular-universal dichotomy is also under revision.
While a single quantum event is particular, a plethora of quantum events leads to universal
patterns. Viewing the quantum system as a system encoding information, we understand
that the usual distinction between hardware and software is not relevant. Most importantly,
if we consider the opposing terms being-becoming, we realize that the emphasis is sifted to
the becoming, the movement, the process. The underlying dynamics is governed by relational

©2012 Nicolaidis, licensee InTech. This is an open access chapter distributed under the terms of the Creative
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2 Quantum Mechanics

principles and we have suggested [1] that the relational logic of C. S. Peirce may serve as
the conceptual foundation of QM.

Peirce, the founder of American pragmatism, made important contributions in science,
philosophy, semeiotics and notably in logic. Many scholars (Clifford, Schröder, Whitehead,
Lukasiewicz) rank Peirce with Leibniz and Aristotle in the history of thought. Logic, in its
most general sense, is the formal science of representation, coextensive with semeiotics.
Algebraic logic attempts to express the laws of thought in the form of mathematical
equations, and Peirce incorporated a theory of relations into algebraic logic [2, 3]. Relation is
the primary irreducible datum and everything is expressed in terms of relations. A relational
formulation is bound to be synthetic, holistic, geometric. Peirce invented also a notation for
quantifiers and developed quantification theory, thus he is regarded as one of the principal
founders of modern logic.

In the next section we present the structures of the relational logic and a representation of
relation which will lead us to the probability rule of QM. In the third section we analyze a
discrete system and demonstrate the non-commutation of conjugate operators. In the last
section we present the conclusions and indicate directions for future work.

2. The logic of relations and the quantum rules

The starting point is the binary relation SiRSj between the two ’individual terms’ (subjects)
Sj and Si. In a short hand notation we represent this relation by Rij . Relations may be
composed: whenever we have relations of the form Rij , Rjl, a third transitive relation Ril

emerges following the rule [2, 3]

RijRkl = ❞jkRil (1)

In ordinary logic the individual subject is the starting point and it is defined as a member
of a set. Peirce, in an original move, considered the individual as the aggregate of all its
relations

Si =
∑

j

Rij . (2)

It is easy to verify that the individual Si thus defined is an eigenstate of the Rii relation

RiiSi = Si. (3)

The relations Rii are idempotent

R
2

ii = Rii (4)

and they span the identity

∑

i

Rii = 1 (5)

The Peircean logical structure bears great resemblance to category theory, a remarkably
rich branch of mathematics developed by Eilenberg and Maclane in 1945 [4]. In categories
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the concept of transformation (transition, map, morphism or arrow) enjoys an autonomous,
primary and irreducible role. A category [5] consists of objects A, B, C,... and arrows
(morphisms) f, g, h,... . Each arrow f is assigned an object A as domain and an object B

as codomain, indicated by writing f : A → B. If g is an arrow g : B → C with domain
B, the codomain of f, then f and g can be “composed” to give an arrow gof : A → C.
The composition obeys the associative law ho(gof) = (hog)of . For each object A there
is an arrow 1A : A → A called the identity arrow of A. The analogy with the relational
logic of Peirce is evident, Rij stands as an arrow, the composition rule is manifested in eq.
(1) and the identity arrow for A ≡ Si is Rii. There is an important literature on possible
ways the category notions can be applied to physics; specifically to quantising space-time
[6], attaching a formal language to a physical system [7], studying topological quantum field
theories [8, 9], exploring quantum issues and quantum information theory [10].

A relation Rij may receive multiple interpretations: as the proof of the logical proposition
i starting from the logical premise j, as a transition from the j state to the i state, as a
measurement process that rejects all impinging systems except those in the state j and
permits only systems in the state i to emerge from the apparatus. We proceed to a
representation of Rij

Rij = |ri〉
〈
rj

∣∣ (6)

where state 〈ri| is the dual of the state|ri〉 and they obey the orthonormal condition

〈ri| rj

〉
= δij (7)

It is immediately seen that our representation satisfies the composition rule eq. (1). The
completeness, eq.(5), takes the form

∑

i

|ri〉 〈ri| = 1 (8)

All relations remain satisfied if we replace the state |ri〉 by |̺i〉, where

|̺i〉 =
1√
N

∑

n

|ri〉 〈rn| (9)

with N the number of states. Thus we verify Peirce’s suggestion, eq. (2), and the state |ri〉
is derived as the sum of all its interactions with the other states. Rij acts as a projection,
transferring from one r state to another r state

Rij |rk〉 = δjk |ri〉 . (10)

We may think also of another property characterizing our states and define a corresponding
operator

Qij = |qi〉
〈
qj

∣∣ (11)
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with

Qij |qk〉 = δjk |qi〉 (12)

and
∑

i

|qi〉 〈qi| = 1. (13)

Successive measurements of the q-ness and r-ness of the states is provided by the operator

RijQkl = |ri〉
〈
rj

∣∣ qk〉 〈ql| =
〈
rj

∣∣ qk〉 Sil (14)

with

Sil = |ri〉 〈ql| . (15)

Considering the matrix elements of an operator A as Anm = 〈rn |A| rm〉 we find for the
trace

T r (Sil) =
∑

n

〈rn |Sil| rn〉 = 〈ql| ri〉 . (16)

From the above relation we deduce

T r (Rij) = δij . (17)

Any operator can be expressed as a linear superposition of the Rij

A =
∑

i,j

AijRij (18)

with

Aij = T r (ARji) . (19)

The individual states can be redefined

|ri〉 → e
iϕi |ri〉 (20)

|qi〉 → e
iθi |qi〉 (21)

without affecting the corresponding composition laws. However the overlap number 〈ri| qj

〉

changes and therefore we need an invariant formulation for the transition |ri〉 →
∣∣qj

〉
. This

is provided by the trace of the closed operation RiiQjjRii

T r (RiiQjjRii) ≡ p (qj , ri) =
∣∣〈ri| qj

〉∣∣2
. (22)
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The completeness relation, eq. (13), guarantees that p (qj , ri) may assume the role of a
probability since

∑

j

p (qj , ri) = 1. (23)

We discover that starting from the relational logic of Peirce we obtain the essential law of
Quantum Mechanics. Our derivation underlines the outmost relational nature of Quantum
Mechanics and goes in parallel with the analysis of the quantum algebra of microscopic
measurement presented by Schwinger [11].

3. The emergence of Planck’s constant

Consider a chain of N discrete states |ak〉, with k = 1, 2, . . . , N . A relation R acts like a
shift operator

R |ak〉 = |ak+1〉 (24)

R |aN 〉 = |a1〉 (25)

N is the period of R

R
N = 1 (26)

The numbers which satisfy aN = 1 are given by

ak = exp
(

2πi
k

N

)
k = 1, 2, . . . , N (27)

Then we have

R
N − 1 =

(
R

ak

)N

− 1 =

[(
R

ak

)
− 1

] N−1∑

j=0

(
R

ak

)j

= 0 (28)

R has a set of eigenfunctions

R |bi〉 = bi |bi〉 (29)

with bi the N -th root of unity (bi = ai). It is decomposed like

R =
∑

j

bj

∣∣bj

〉 〈
bj

∣∣ (30)

Notice that we may write

∣∣bj

〉 〈
bj

∣∣ = 1

N

N∑

k=1

(
R

bj

)k

(31)
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The above projection operator acting upon |aN 〉 will give

∣∣bj

〉 〈
bj

∣∣ aN 〉 = 1

N

N∑

k=1

(
1

bj

)k

|ak〉 (32)

Matching from the right with 〈aN | we obtain

〈aN | bj

〉 〈
bj

∣∣ aN 〉 = 1

N
(33)

We adopt the positive root

〈
bj

∣∣ aN 〉 = 1√
N

(34)

and equ. (32) becomes

∣∣bj

〉
=

1√
N

N∑

k=1

exp
[
−2πi

jk

N

]
|ak〉 (35)

Inversely we have the decomposition

|am〉 = 1√
N

N∑

n=1

exp
[
2πi

mn

N

]
|an〉 . (36)

We introduce another relation Q acting like shift operator

〈bk| Q = 〈bk+1| (37)

〈bN | Q = 〈b1| (38)

The relation Q receives the decomposition

Q =
∑

j

aj

∣∣aj

〉 〈
aj

∣∣ (39)

Consider now

〈bk| QR = 〈bk+1| R = exp

[
2πi

(k + 1)

N

]
〈bk+1| (40)

〈bk| RQ = exp
[
2πi

k

N

]
〈bk| Q = exp

[
2πi

k

N

]
〈bk+1| (41)
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We conclude that the conjugate operators R and Q do not commute

QR = exp
[
2πi

1

N

]
RQ (42)

Similarly

Q
n

R
m = exp

[
2πi

nm

N

]
R

m
Q

n (43)

In our discrete model the non-commutativity is determined by N . As N → ∞ the
relation-operators Q and R commute. However it would be hasty to conclude that as N → ∞
we reach the continuum. The transition from the discrete to the continuum is a subtle affair
and many options are available. Let us define

L = Na p =
2π

L
(44)

Then

exp
[
2πi

1

N

]
= exp [ipa] . (45)

What counts is the size of the available phase space and we may use Planck’s constant h as a
unit measuring the number of phase space cells. Using rather exp

[
i

h̄
pa

]
, equ.(42) becomes

QR = exp
[

i

h̄
pa

]
RQ (46)

Approaching the continuum we may replace the discrete operators by exponential forms

R = exp
[

i

h̄
pX

]
(47)

Q = exp
[

i

h̄
aP

]
. (48)

With R and Q unitary operators, X and P are hermitian operators. From equs. (46), (47),
(48), we deduce

[X, P ] = i h̄. (49)

The foundational non-commutative law of Quantum Mechanics testifies that there is a limit
size h̄ ∼ pa in dividing the phase space. With p ∼ mv ≃ mc we understand that a represents
the Compton wavelength.
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4. Conclusions

We are used first to wonder about particles or states and then about their interactions. First
to ask about “what is it” and afterwards “how is it”. On the other hand, quantum mechanics
displays a highly relational nature. We are led to reorient our thinking and consider that
things have no meaning in themselves, and that only the correlations between them are “real”
[12]. We adopted the Peircean relational logic as a consistent framework to prime correlations
and gain new insights into these theories. The logic of relations leads us naturally to the
fundamental quantum rule, the probability as the square of an amplitude. The study of a
simple discrete model, once extended to the continuum, reveals that only finite degrees of
freedom can live in a given phase space. The “granularity” of phase space (how many cells
reside within a given phase space) is determined by Planck’s constant h.

Discerning the foundations of a theory is not simply a curiosity. It is a quest for the
internal architecture of the theory, offering a better comprehension of the entire theoretical
construction and favoring the study of more complex issues. We have indicated elsewhere
[13] that a relation may be represented by a spinor. The Cartan – Penrose argument [14, 15],
connecting spinor to geometry, allowed us to study geometries using spinors. Furthermore
we have shown that space-time may emerge as the outcome of quantum entanglement [16].

It isn’t inappropriate to connect category theory and relational logic, the conceptual
foundations of quantum mechanics, to broader philosophical interrogations. Relational and
categorical principles have been presented by Aristotle, Leibniz, Kant, Peirce, among others.
Relational ontology is one of the cornerstones of Christian theology, advocated consistently
by the Fathers (notably by Saint Gregory Palamas). We should view then science as a
“laboratory philosophy” and always link the meaning of concepts to their operational or
practical consequences.

Acknowledgment

This work has been supported by the Templeton Foundation.

Author details

A. Nicolaidis

⋆ Address all correspondence to: nicolaid@auth.gr

Theoretical Physics Department, Aristotle University of Thessaloniki, Thessaloniki, Greece

References

[1] A. Nicolaidis, Categorical Foundation of Quantum Mechanics and String Theory, Int.
J. Mod. Phys. A24: 1175 - 1183, 2009

[2] C. S. Peirce, Description of a notation for the logic of relatives, resulting from an

amplification of the conceptions of Boole’s calculus of logic, Memoirs of the American
Academy of Sciences 9, pp 317-378 (1870)

Advances in Quantum Mechanics368



Relational Quantum Mechanics 9

[3] C. S. Peirce, On the algebra of logic, American Journal of Mathematics 3, pp 15-57
(1880)

[4] S. Eilenberg and S. Maclane, General theory of natural equivalences, Transactions of
the American Mathematical Society, 58, pp 239-294 (1945)

[5] F. Lawvere and S. Schanuel, Conceptual Mathematics: A first indroduction to categories,
Cambridge University Press (1997)

[6] C. Isham, A New Approach to Quantising Space-Time: I. Quantising on a General

Category, Adv. Theor. Math. Phys. 7, 331-367 (2003)

[7] A. Doring and C. Isham, A topos foundation for Theoretical Physics: I. Formal

languages for physics, J. Math. Phys. 49: 053515, 2008

[8] J. Baez and J. Dolan, Higher-dimensional algebra and topological quantum field theory,
J. Math. Phys. 36, 6073 (1995)

[9] J. Baez, Quantum quandaries: A category-theoretic perspective, quant-ph/0404040
preprint, to appear in Structural Foundations of Quantum Gravity, Oxford University
Press

[10] S. Abramsky and B. Coecke, A categorical sematics of quantum protocols, Proceedings
of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer
Science Press (2004)

[11] J. Schwinger, Proc. N.A. S. 45, 1542 (1959)

[12] Vlatko Vedral, Quantum physics: Entanglement hits the big time, Nature 425, 28-29 (4
September 2003)

[13] A. Nicolaidis and V. Kiosses, Spinor Geometry, Int. J. of Mod. Phys. A27, Issue 22, id.
1250126, arXiv:1201.6231

[14] E. Cartan, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane,
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Chapter 17

On the Dual Concepts of
'Quantum State' and 'Quantum Process'

Cynthia Kolb  Whitney

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53326

1. Introduction

Many of us who made a living in the 20th century did so by functioning as some kind of
engineer. Though schooled mostly in Physics, this author often functioned in those days as an
engineer. It was a good continuing education. One aspect of it was the big tool kit in use. For
example, some subject systems were best viewed in the frequency domain: a system function‐
ing as a filter would suppress some frequencies and enhance others. But other systems were
better viewed in the time domain: a system functioning as a controller would take a time series
of input signals and produce a time series of output commands. Neither approach was
considered more right, or more fundamental, than the other. They were complementary.

But in the 20th century, things felt less eclectic in Physics. Especially in the literature of Quantum
Mechanics (QM), there often seemed to be a lot of passion about what viewpoint was allowed,
and what viewpoint was not allowed. We were taught that it just was not correct to think of
an atom as a nucleus with electrons in orbits around it. There could not be orbits; there had to
be only ‘orbitals’, a new word coined to refer to complex wave functions that extended over
all space, and provided only spatial densities of probability, in the form of squared amplitude.
Except for its phase factor, there was no sense of time-line to an orbital. It was a stable state.

So in QM, the emphasis was all on the stable states. Between the stable states, there could occur
transitions, resulting in emission or absorption of a photon, but the state transitions themselves
were essentially instantaneous, and not open to study. This emphasis on the stable states, and
the avoidance of the transitions between them, implied that questions about the details of state
transitions should be regarded as illegitimate.

Back at the turn of the 20th century, there was a good reason for the avoidance of details about
process in QM: we did not understand how any atom could resist one totally destructive

© 2013 Whitney; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



process that was expected within the context of classical electrodynamics. Even the simplest
atom, the Hydrogen atom, was expected to continuously radiate away its orbit energy, and so
quickly collapse. So ever paying attention to any details of process looked fraught with peril.

A way of escaping the issue of process in QM came along with the discovery of the photon.
Quantization of light was implied in the spectrum of blackbody radiation, and demonstrated
in the photoelectric effect. Those developments gave us Planck’s constant. Planck’s constant
provided a constraint for defining the ground state of the Hydrogen atom. So Schrödinger
wrote it into his equation for the wave function of the electron in the Hydrogen atom. The
Schrödinger equation produced a set of solutions representing a whole family of stationary
states for the Hydrogen atom. We could forget process, and focus on those stationary states.

But today, one of the big application areas for QM is in development of computational
approaches fitting the name Quantum Chemistry (QC). Chemistry is largely about reactions,
and certainly every reaction is a complex process. So the chemical reactions are like the
quantum state transitions: they have, not only the stationary state before, and the stationary
state after, but also something of interest in between. So the historical injunction against inquiry
into the specifics of quantum state transitions tends to inhibit the full application of QM to the
process-related problems that QC presents. So consideration of process is no longer avoidable
for QM.

Fortunately, history is never the final story; it exists mainly to be updated from time to time.
A Chapter in an earlier Book in this series (Whitney, 2012) argued that our understanding of
Maxwell’s Electromagnetic Theory (EMT) at the turn of the 20th century was incomplete. When
we develop a description for the photon based on EMT, we learn some facts that have bearing
on the communication between the electron and the proton in the Hydrogen atom, and how
that communication in turn supports the continuing existence of the atom as a system. So
consideration of a quantum process becomes less perilous for QM.

But the practical difficulties are numerous. In many cases, molecules involve numbers of atoms
that are too small for any kind of statistical ideas to be applicable, but too large for traditional
QM calculations to be practical; hence, they are altogether awkward to address. Furthermore,
Chemistry is all about reactions, which can involve many molecules. And sometimes there are
multiple reaction steps, or even multiple paths, each one with multiple steps, each one with a
time line worthy of detailed numerical study.

The practical difficulties of QC arise largely because the most common way of thinking about
QM is still in terms of wave functions. Their amplitudes are squared to make probability
density functions, multiplied by functions or differential operators representing variables of
interest, and integrated over argument variables. It can add up to way too much computation.

So how can QM better meet the needs of QC? A potentially helpful concept comes out of QM:
the concept of duality. Abad and Huichalaf (2012) describe it in terms of seeming contradiction,
and seeming is certainly the right characterization, for duality is not really a contradiction at
all. Consider, for example, the traditional wave vs. particle duality of light. The earlier Chapter
(Whitney, 2012) presented a model for the photon based on Maxwell’s four coupled field
equations, together with boundary conditions representing the source and the receiver of the
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photon. The Maxwell photon model is pulse-like at emission, and evolves into an extended
wave-like condition, and then collects back into a more confined pulse-like condition for
absorption. In QM, all observable objects are like the Maxwell photon model, in that they
present both particle-like and wave-like aspects. Which aspect is seen just depends on when
and how one observes the object.

To meet the needs of QC, we clearly need to develop and exploit another duality analogous
to the traditional wave vs. particle duality of observed objects. We need a duality of observer
descriptions: state descriptions vs. process descriptions. Where the traditional QM approach
starts with the idea of quantum state, which is something stationary, the dual approach must
start with the idea of quantum process, which naturally has a time line to it. The temporal
evolution of the Maxwell photon model is fundamentally a process, and it can be followed in
detail, with no untoward disasters, so it is a promising point of departure for this work.

One key thing about photons is that they have finite energy. In this respect, photons are
completely different from infinite plane waves, which have infinite energy. The Maxwell
photon model has the finite total energy as needed. That energy is always trapped in the space
between the source and the receiver. So another key role in the photon model is played by
mathematical boundary conditions. Section 2 picks up where the earlier work left off, discus‐
sing in more detail what the boundary conditions are, what they do, and how they do it.

Photons were not known in Maxwell’s day, so the implication of their finite energy was not
then appreciated. Coupled with their finite propagation speed, their finite energy causes the
definite Arrow of Time that has long been considered such a mystery in Physics. Many people
suppose that the Arrow of Time has to do with Thermodynamics, because that subject deals
with entropy and irreversibility. Searching for a mechanism, many people would think of
friction in Newtonian mechanics. When told that Electrodynamics displays the Arrow of Time,
many people think first of the friction-like effect of radiation reaction acting on accelerating
charges. But actually, the Arrow of Time is present quite apart from anything that happens to
material particles. It appears in the photon itself.

There is a reason why this fact was not emphasized a long time ago. Section 3 recalls how
Maxwell’s coupled field equations were immediately inserted, one into another, in order to
reduce the set of four coupled field equations into a set of two un-coupled wave equations.
The two un-coupled wave equations clearly display the finite propagation speed, but they
totally hide the effect of finite energy.

The problem is this: the two un-coupled wave equations are less restrictive than the four
coupled field equations are, so they have a larger set of solution functions, some of which do
not also solve the four coupled field equations. One example of such a solution is a finite-energy
pair of orthogonal E and B pulses that travels without distortion and faithfully delivers
information.

In the early 20th century, Einstein used this kind of solution for the role of ‘signal’ in his Special
Relativity Theory (SRT). His goal was to capture the spirit of Maxwell’s EMT into SRT. But his
signal model is inadequate for that job. The Maxwell photon model better captures the spirit
of Maxwell, and only slightly modifies the SRT results, and better ties those results into QM.
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What about the QM of material particles? Section 4 revisits the Schrödinger equation. Viewed
as the analog to a statement from Newtonian mechanics, it has no essential irreversibility to
it. That is one reason why its solutions are stable states. That is why something else is needed
for the study of transitions between the quantum states of atoms, and for the numerous
chemical processes that QC should address.

Section 5 points out that the main thing for Chemistry is not revealed in the Hydrogen atom,
due to the fact that the Hydrogen atom has only one electron. The main thing for Chemistry
is the variety of relationships among multiple electrons. Chemistry data suggest that electrons
can sometimes actually attract, rather than repel, each other. That propensity can be important
in driving chemical reactions. The calculation approach suitable for QC was introduced in the
earlier Chapter (Whitney 2012). It is called Algebraic Chemistry (AC). It is a big subject, detailed
further in a full Book (Whitney 2013).

Section 6 concludes this Chapter. It draws a lesson from all the problems treated here. The lesson
is that we sometimes actually make problems very much worse than they need to be by oversim‐
plifying them. Many seeming mysteries in physical science are nothing but our own creations.

2. More about photons

The earlier Chapter (Whitney, 2012) revisited the quantum of light, the photon, and its
relationship to Classical Electrodynamics. That Chapter argued that a simple mental picture
of a photon as a pair of electric and magnetic field pulses that travel together, but do not change
their pulse shapes, does not comport with Maxwell’s four coupled field equations. Instead,
there has to be a temporal evolution, first from pulses emitted by a source, into a waveform
shape extended in the propagation direction, then back to a more compact shape, concluding
with absorption by a receiver; in short, a whole time-line process.

This Section gives further mathematical detail about the temporal evolution of the photon
waveform. In summary, the evolution begins with emission of Gaussian field pulses at the
photon source. After emission, the fields develop according to Maxwell’s coupled field
equations. The development is constrained and guided by boundary conditions that represent
the initial source of the photon and the ultimate receiver of the photon. In the end, all the energy
accumulates near the receiver, and can finally be swallowed by it.

In more detail, Maxwell’s coupled field equations cause the Gaussians in E and B to beget first-
order Hermite polynomials in B and E, and then those beget second-order Hermite polyno‐
mials in E and B, and so on, indefinitely as time goes on. The roots of each newly generated
Hermite polynomial interleave with the roots of the previously generated Hermite polynomial,
with one more root being added at each step of the process. This process is illustrated with
Figure 1 in (Whitney, 2012). It shows spreading of the waveform in its propagation direction.

Next, there have to be boundary conditions to represent the source and the receiver. The
boundary conditions can be like those representing the mirrors in a laser cavity: they can
enforce a zero in the E field at the boundary locations. As a result of the zero-E condition at

Advances in Quantum Mechanics374



the source, the spreading never causes any backflow of field energy into the space behind the
source. And as a result of the zero-E condition at the receiver, the waveform spreading never
causes any field energy to propagate into the space beyond the receiver. So eventually all the
energy just ‘piles up’ before its final absorption into the receiver.

A mental picture of the photon in terms of electric and magnetic fields is quite complicated, even
without the boundary conditions. There have to be two field vectors E and B in orthogonal direc‐
tions to create a cross product, the Poynting vector of energy propagation. And there have to be
two such pairs of fields, one a quarter cycle out of phase with the other in both space and time, to
create circular polarization. That makes a quartet of field vectors to think about. Then to create
the boundary conditions, there have to be two more such quartets of field vectors, arranged to
propagate in the opposite direction, and placed to provide the E-field cancellations at the boun‐
daries. But each of these field vector quartets slightly spoils the boundary condition fixed by the
other one. So then an infinite regression of more and more field quartets is demanded.

A mental picture of the photon can be formulated much more simply in terms of its overall
profile of energy density, (E 2 + B 2) / 2. Before the boundary conditions are imposed, the energy
density profile is always a simple Gaussian, the height of which decreases over time, and the
width of which increases over time. Then to impose the boundary conditions, the infinite
Gaussian tails get folded, and refolded infinitely many times over, back into the space between
the source and the receiver. That means the energy density profile is a slightly deformed from
Gaussian in the vicinity of the source, and the vicinity of the receiver: cut off sharply at those
points, and slightly more than doubled in height near them, because zero E  means double B
and double energy density. Of course, the total energy, the integral of the energy density profile
between the source and the receiver, never changes.

Figure 1 illustrates this mental picture of the photon as a changing energy density profile with
constant total energy. The three data series plotted correspond to the energy density profiles
near the beginning, in the middle, and near the end, of the photon propagation scenario. Take
note of the phenomenon of waveform spreading. It is not reversible. It shows the Arrow of Time.
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3. On the arrow of time

There is an interesting history to the Arrow of Time, and it begins with the beginning of
Mathematical Physics itself. Newton developed his laws of mechanics at a time of great interest
in celestial events. In that sphere, the absence of contact invites the assumption of no friction,
and in the absence of friction, Newtonian mechanics is invariant under time reversal. In this
case, there is in principle no Arrow of Time. However, in practice there is a related problem
about chaos, which develops in the mathematics when three or more bodies interact. It was
certainly impossible to solve for three trajectories in closed form, i.e. as simple functions of
time. Even today, it is not entirely clear exactly what is possible to do.

Maxwell developed his electromagnetic theory at a time of developing industrial technology.
In that domain, the first thing encountered is limitation. With real-world machines, there is
always an Arrow of Time, and it is best described with the science of Thermodynamics. In
Maxwell’s electrodynamics, there are two important features. First, there is not instantaneous-
action-at-a-distance; there is a finite propagation speed. It shows up clearly with propagating
waves. Second, there can be infinite plane waves in the mathematics, but not in physical reality.
Reality is always about finite energy.

The finite propagation speed was discovered first. People quickly transformed Maxwell’s four
coupled field equations into something more familiar: two un-coupled wave equations. They
then often fixated on the infinite plane wave solutions of those equations. The implications of
finite energy were then left for investigation later. The job was partially addressed in the study
of Optics: finite apertures create diffraction patterns transverse to the propagation direction.
But the implications of pulsing in the propagation direction itself would become interesting
only much later; for example, with the invention of pulsed lasers.

But much work was left undone at that time. So let us pursue the investigation a little further
now. In modern notation and Gaussian units, Maxwell’s four coupled field equations go

∇ · B =0, ∇ ·D =4πρ, ∇ ×E +
1
c ∂B / ∂ t =0, ∇ ×H −

1
c ∂D / ∂ t =

4π
c J .

Here B is the magnetic field vector and E  is the electric field vector. In free space D =ε0E ,

H =B / μ0, 1 / c = ε0μ0, and charge density ρ and current density vector J  are zero.

The two uncoupled wave equations go

∇2E − 1
c 2 ∂2E / ∂ t 2 =0, ∇2B − 1

c 2 ∂2B / ∂ t 2 =0.

where 1 / c 2 =ε0μ0.

Because the time derivatives in the two un-coupled wave equations are second order, the sign
attributed to time cancels out. So the two un-coupled wave equations are invariant under time
reversal. This fact means the two un-coupled wave equations are not equivalent to the four
coupled field equations. The two un-coupled wave equations have a larger set of solutions than
do the four coupled field equations. So while all of the solutions to the four coupled field
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equations will satisfy the two un-coupled wave equations, only some of the solutions to the
two un-coupled wave equations will satisfy the four coupled field equations.

So some solutions to the two un-coupled wave equations do not satisfy the four coupled field
equations. The infinite plane wave is one of those. It has the parameter c, which was interpreted
as the speed of propagation for light, not just in the context of the infinite plane wave, but also
in every other context; in particular, in the context of the concept of signal that Einstein used
in the development of Special Relativity Theory (SRT).

But the signal for SRT cannot be just an infinite plane wave. A signal has to have some
discernable feature in order to carry any information. Bracken (2012) discusses the mathemat‐
ical concept of information, and its relation to entropy. The infinite plane wave has a delta-
function spectrum, meaning just one wavelength, zero entropy, and hence zero information
content.

Instead of an infinite plane wave, a signal needs finite E and B pulses. These can be constructed
from a spectrum of infinite plane waves with infinitesimal amplitudes. But as we have seen,
such pulses have to evolve over time into spread-out waveforms. Pulses without such
evolution can satisfy the two uncoupled wave equations, but they cannot satisfy Maxwell’s
four coupled field equations.

The purpose of the SRT signal concept was to capture the essence of Maxwell’s EMT into SRT.
So in retrospect, it does not seem very appropriate to have used a model for the signal that
does not satisfy Maxwell’s four coupled field equations. It seems more appropriate to use the
Maxwell photon model instead. Einstein did develop SRT at nearly the same time as he did
his Nobel-prize winning work about the photoelectric effect – and the photon. But mysteri‐
ously, the idea that the SRT signal is similar to the photon did not come up at that time.

Better late than never, we can tackle that problem now. Clearly, at the beginning of the
propagation scenario, the boundary condition at the source dominates the energy profile, and
at the end of the propagation scenario, the boundary condition at the receiver dominates the
energy profile. From this assessment, it is easy to imagine a generalization of the propagation
scenario. Like the mirrors in a tunable laser, the source and the receiver in the propagation
scenario can be imagined to move relative to each other. This possibility then suggests the deep
question:

What is the frame of reference for light speed c ?

This question lies at the heart of SRT. There, the reference for light speed c is any and all
observers. That is Einstein’s Second Postulate. To be fair, it was also the hidden Assumption
of all prior works in Electrodynamics. So Einstein is to be credited for making it so explicit.

But a Postulate is a rather formalized way of stating an Assumption, and, as such, does not
invite as much scrutiny, or convey as much reward when scrutiny is given, as an Assumption
would do. Linguistically, the Second Postulate may seem quite incomprehensible, but its status
of Postulate, rather than Assumption, invites a level of deference. This appears to be a partial
answer for the ‘Why?’ articulated above.
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However, use of the Maxwell photon model instead of the Einstein signal does allow a more
linguistically normal kind of statement. Observe that during times soon after the emission, the
boundary condition that is numerically more significant is the one demanding zero E at the
source. But during times just before the reception, the boundary condition that is numerically
more significant is the one demanding zero E at the receiver. The consequence is that the
photon energy starts out traveling at speed c relative to the source, but then finishes up
traveling at speed c relative to the receiver. In between, the reference for c has to transition
gradually from one frame to the other, along with the numerical dominance of the corre‐
sponding boundary conditions.

This analysis leaves us with a conundrum: If the Maxwell photon model can be adopted as the
signal for developing SRT, then the Einstein’s Second Postulate is true at the moment of
reception, but not generally true at any moment before that event. So then SRT cannot be
universally valid. But if the Maxwell photon model cannot be adopted as the signal for
developing SRT, then SRT should not be considered as founded in Maxwell’s EMT. So then
SRT is not founded in any prior science. This conundrum does not disqualify SRT as a useful
theory, but it does mean that prudence demands investigation of other theories too.

Use of the Maxwell photon model instead of Einstein’s Second Postulate does produce results
somewhat different from those of Einstein’s SRT. Fortunately, it is not very difficult to work
out these slightly different results. The different results that are important for connecting better
with QM are given in Whitney (2012). In summary, they are the following: 1) Within the
Hydrogen atom, there exists not just the one electromagnetic process, the radiation from the
accelerating electron; there exist three electromagnetic processes. The other two are: 2) torquing
internal to the atomic system, and 3) circular motion of its center of mass. The torquing
produces an energy gain mechanism that more than compensates the energy loss due to
radiation. But the center-of-mass motion amplifies the radiation loss, bringing the atomic
system into its final balance. The combination of these three electromagnetic processes, instead
of just one, makes it possible to model a stable Hydrogen atom electromagnetically.

Here is how finite signal propagation speed causes the second and third effects. Each particle
is attracted to a former position of the other. The forces are not central, and are not even
balanced. The non-centrality centrality causes the torquing. The force imbalance causes the
center of mass circulation. That in turn causes Thomas rotation, which amplifies the radiation.
It is interesting that Thomas rotation was first discovered in the context of sequential Lorentz
transformations, and is generally believed to be a consequence of SRT. See, for example, De
Zela (2012). But Thomas rotation actually does not depend on Lorentz transformations; it
emerges just as well from sequential Galilean transformations. It is not a relativistic effect.

4. More about the hydrogen atom

The treatment of the Hydrogen atom given in Whitney 2012 was the first-order approximation,
in which the cosine and the sine of an angle traversed around the circular orbit were repre‐
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sented to first order, by unity and by the angle itself. Let us now go further. The total radiation
power changes from

Ptotal radiated≈24(2e 2 / 3c 3)ae
2 =(25e 6 / me

2) / 3c 3(re + rp)4

to

Ptotal radiated≈ (25e 6 / me
2) / 3c 3(re + rp)4 ×cos2(ve / 2c).

The total torquing power changes from

Ptorquing≈
me
mp

reΩe
2

c
e 2

(re + rp) = (e 4 / mp) / c(re + rp)3

to

Ptorquing = (e 4 / mp) / c(re + rp)3 ×
1
2

sin(ve / 2c)
(ve / 2c) +

sin(vp / 2c)
(vp / 2c) .

Observe that both of these expressions are oscillatory. But where Ptotal radiated is confined to
non-negative values, Ptorquing is not. So while Ptotal radiated always represents a mechanism for
energy loss, Ptorquing does not always represent a mechanism for energy gain. For electron orbit
radius re below the Hydrogen ground state orbit, Ptorquing oscillates between giving energy
gain and giving energy loss. Therefore, there exist many values of re where
Ptotal radiated = Ptorquing, and the Hydrogen atom can exist, and even persist. These represent ‘sub-
states’ of the Hydrogen atom. Such states are sometimes discussed in the literature of experi‐
mental physics, but never in the literature of theoretical physics. For one thing, they seem to
involve orbit speeds beyond the speed of light, and so violate SRT. For another thing, they are
not within the universe of discourse of the Schrödinger approach to the Hydrogen atom.

The Schrödinger approach to the hydrogen atom

Schrödinger’s famous equation representing a particle, such as an electron, reads:

iℏ ∂
∂ t Ψ(r , t)= − ℏ2

2m∇
2 + V (r , t) Ψ(r , t),

where Ψ(r , t) is the wave function, r  is position in three-dimensional space, and t  is time. The
ℏ is the reduced Planck’s constant h / 2π, m is the particle mass, ∇2  is the usual three-space
second-derivative operator, and V (r , t) is the potential energy, created for example by a
nucleus. For an atom that is not moving, and is not perturbed by some measuring device,
V (r , t) is time-invariant, reducing to V (r).

Schrödinger’s equation is about a wave function, and not about a particle. So in the beginning,
it seemed to have no clear foundation in the science prior to its own time. It was taken as a gift
from heaven. But actually, Schrödinger’s equation does have a foundation – just not entirely
within Physics, but also partly within Engineering Science. The following analysis shows that
Schrödinger’s equation reduces to a classical equation based on Newton’s laws. The reduction
uses Fourier transforms, a tool very commonly used in Engineering Science.
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Consider first the wave function Ψ(r , t). By definition, it satisfies the normalization condition

∫−∞
∞

Ψ(r , t) Ψ * (r , t)d 3r = ∫−∞
∞

|Ψ(r , t)|2 d 3r =1.

The function Ψ(r , t) has four-dimensional Fourier transform Ψ(p, E), where p is momentum
and E  is total energy. This Fourier transform is defined by:

Ψ(p, E)= 1
(2π)2 ∫−∞

∞
Ψ(r , t)exp i(p · r −E ⋅ t) / ℏ d 3r dt .

This function too satisfies a normalization condition

∫−∞
∞

Ψ(p, E ) Ψ * (p, E )d 3p = ∫−∞
∞

|Ψ(p, E ) |2
d 3p =1.

The corresponding inverse Fourier transform is defined by

Ψ(r , t)= 1
(2π)2 ∫−∞

∞
Ψ(p, E )exp − i(p · r −E ⋅ t) / ℏ d 3p dE .

(An aside: definitions of Fourier transforms for other applications sometimes deploy the factors
of 2π differently, although always such that the round trip from one space to the other and
back again has 1 / 2π for each dimension.)

Observe first of all that if Ψ(r , t) is very sharply peaked over a small range Δr , say centered at
r =0, then Ψ(p, E) will be very spread out over a large range Δp, centered at p =0. And vice
versa: large Δr  makes for small Δp. That means the Fourier pair of functions Ψ(r , t) and Ψ(p, E)
automatically generates a relationship that looks like the Heisenberg uncertainty relationship.

The product Δr · Δp has its minimum possible value when Ψ(r , t) is a Gaussian function, in
which case Ψ(p, E) is also a Gaussian function. For the Physics application, the product
(Δr · Δp)Gaussian is Planck’s constant h .

There is no way around the law Δr · Δp ≥ (Δr · Δp)Gaussian. It is a property of Mathematics in
general, and not of QM in particular. But physicists do worry about its meaning for QM. For
example, Cini (2012) seems ready to remove the deBroglie and Schrödinger classical proba‐
bility wave approaches from the main narrative of QM, and begin it instead with quantum
field theory. One problem with this strategy is the risk of putting too much trust in SRT, which
appears possibly flawed in its founding Postulate.

In contrast to physicists, engineers just accept the law Δr · Δp >(Δr · Δp)Gaussian, because in
their world there never exists a measurement without a spread, and they regard any proposed
perfectly precise physical quantity as just a metaphysical idea, and not a real physical thing.

The present analysis proceeds in that spirit. The next step is to rewrite Schrödinger’s equation
in the form:

− ℏ2

2m∇
2 Ψ(r , t) Ψ *(r , t) + V (r , t)Ψ(r , t) Ψ *(r , t)= iℏ ∂

∂ t Ψ(r , t) Ψ *(r , t).
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With its seemingly superfluous Ψ *(r , t) factors, this form of Schrödinger’s equation looks more
complicated than the original form. But this form ultimately leads to tremendous simplification
and explanatory power. And, as in Berkdemir (2012), the objective here is mainly pedagogical.

The first term on the left side of the rewritten Schrödinger’s equation is:

− ℏ2

2m∇
2 Ψ(r , t) Ψ * (r , t)=

1
(2π)2 ∫−∞

∞ p 2

2m Ψ(p, E )exp − i(p · r −E ⋅ t) / ℏ d 3p dE 1
(2π)2 ∫−∞

∞
Ψ * (p ′, E ′)exp +i(p ′ · r −E ′⋅ t) / ℏ d 3p ′ d E ′

= ∫−∞
∞ p 2

2m Ψ(p, E ) Ψ * (p, E )d 3p dE = p 2

2m

where  indicates statistically average value.

The second term on the left side is just:

∫−∞
∞

V (r , t)Ψ(r , t) Ψ *(r , t) d 3r dt = V (r , t)

The one term on the right side is:

iℏ ∂
∂ t Ψ(r , t) Ψ * (r , t)=

1
(2π)2 ∫−∞

∞
E Ψ(p, E )exp − i(p · r −E ⋅ t) / ℏ d 3p dE 1

(2π)2 ∫−∞
∞

Ψ * (p ′, E ′)exp +i(p ′ · r −E ⋅ t) / ℏ d 3p ′ d E ′

= ∫−∞
∞

E Ψ(p, E )Ψ * (p, E )d 3p dE = E

So viewed in this way, Schrödinger’s equation reads:

p 2

2m + V (r , t) = E .

This presentation of Schrödinger’s equation just says that the classical kinetic energy plus the
potential energy makes the total energy. This is basically a statement from classical mechanics,
ultimately derivable from Newton’s laws.

Observe that if V (r , t) is time invariant, and so reduces to just V (r), then |Ψ(r , t)|  is also time
invariant, and reduces to just |Ψ(r)| . That is, time then enters into the wave function Ψ(r , t)
only through its un-observable phase factor. That is why Ψ(r , t) represents a stationary state
for the Hydrogen atom.

Observe too that, however one writes Schrödinger’s equation, there is no parameter c, or any
other trace of Maxwell theory in it. That is why Schrödinger’s equation cannot give any clue
about sub-states of the Hydrogen atom.

Observe next that, in giving only stationary Ψ(r , t) solutions, Schrödinger’s equation does not
reveal the irreversibility that we know exists in our macroscopic world. Lunin (2012) has
identified this absence of irreversibility in Schrödinger’s equation as an unsolved problem.
Skála & Kapsa (2012) have noted that the measuring apparatus is not described in QM, and
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they have worked out an approach to deal with that deficit. Streklas (2012) has done the same
with regard to the surrounding environment in which the system sits.

(An aside: the background could include a gravitational field, and Streklas notes how classical
General Relativity Theory (GRT) breaks down at the Planck scale. As a cause for this failure,
I suspect the SRT background from which GRT developed.)

In the present exposition, the time variation of V (r , t) can represent the intrusion of a meas‐
urement process, or an environmental factor, or some other disturbance, and then Schröding‐
er’s equation can capture the phenomenon of irreversibility.

Can the foundation for Schrödinger’s equation be further explicated by using the proposed
Maxwell photon model? Recall that in its emission / propagation / reception scenario, the
Maxwell photon model naturally displays particle-like localization at the two ends, and wave-
like periodicity in the middle. The middle part of the photon scenario establishes a precedent
for he use of the wave function as the subject of the Schrödinger equation.

The Maxwell photon model also helps explain why Schrödinger’s equation seemingly
demands complex numbers, while Physics before that time used them for convenience, but
not out of necessity. Recall that that the Maxwell photon model has a second E ,  B vector pair
a quarter cycle out of phase with the first E ,  B vector pair to make the circular polarization.
That sort of phase issue naturally brings complex numbers.

Also, recall that the important output from the Maxwell photon model was its energy density,
defined in terms of squared electric and magnetic fields. If we represented the fields a quarter
cycle out of phase as imaginary numbers, then we would need fields, not just squared, but
multiplied by complex conjugate fields. That operation would resemble the familiar
|Ψ|2 =ΨΨ *  operation for probability density.

Finally, the Maxwell photon model can help clarify the issue of ‘duality’. The word has been
taken to suggest a mysteriously simultaneous wave-particle character. But the general
Schrödinger equation, with a time-dependent V (r , t) to represent some sort of measurement
process, could certainly display the same less mysterious, more pedestrian, kind of duality
that the Maxwell photon displays: sequential particle-like and wave-like behaviors.

Schrödinger’s equation gives a lot more than just the ground state of Hydrogen. Like Maxwell’s
equations, it admits an infinite set of solutions. They are currently understood as representing
an infinite set of excited states of the Hydrogen atom.

What exactly are excited states of the Hydrogen atom? The usual understanding is that they
refer to something like spherical neighborhoods around the nucleus at larger radii, and that
the electron can live in any one of these neighborhoods, and if it tumbles into a lower neigh‐
borhood, then a photon will be released.

I want to encourage readers to consider also any and all alternative interpretations that may
be offered for the meaning of the term ‘excited state’. My own working idea (Whitney 2012) is
that ‘excited state’ does not refer to an attribute that a single Hydrogen atom can possess. The
Hydrogen atom is too simple; it has too few degrees of freedom. My mental image of ‘excited
state’ is a system involving, not one, but several, Hydrogen atoms.
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The basis for such a candidate interpretation is that a balance between radiation and torquing
works out, not only for two charges of opposite sign, but also for two, or more, charges of the
same sign – if superluminal orbit speeds are allowed. And what is there to disallow them? The
only factors are Einstein’s Second Postulate and his resulting SRT, which together embed a
rash denial of the well-known Arrow of Time. So be prudent; don’t a priori disallow super-
luminal orbit speeds.

The idea of the excited state of an atom as being actually a system of several atoms answers a
need that was identified in Gevorkyan (2012). He pointed to spontaneous transition between
quantum levels of a system as a hard-to-explain phenomenon. Indeed it is hard to explain in
terms of excited states of a single atom. But it is easy to explain in terms of a system involving
several atoms: the system can simply disintegrate back into several isolated single atoms.

5. Quantum chemistry

The main thing for Chemistry is not revealed in the Hydrogen atom, due to the fact that the
Hydrogen atom has only one electron. The main thing for Chemistry is the variety of rela‐
tionships among multiple electrons. Chemistry data suggest that electrons can sometimes
actually attract, rather than repel, each other. That propensity can be important in driving
chemical reactions. A basis for understanding that process is needed, and it cannot be found
in the Schrödinger equation, or in any extension of Quantum Mechanics that injects Special
Relativity Theory.

Buzea, Agop, & Nejneru (2012) investigate the Bohm/Vigier approach and the Madelung
approach for the kinds of problems that Chemistry presents. The former approach relies at its
outset on SRT, which seems risky to those of us who doubt SRT. The latter approach invokes
a ‘quantum potential’ for interaction with a ‘subquantic medium’. That sounds like ‘aether’,
and seems risky to those of us who doubt the existence of ‘aether’.

So perhaps additional approaches are still to be welcomed. One such approach was introduced
in Whitney (2012), is expanded in Whitney (2013, in press), and is discussed further below.

The approach is called Algebraic Chemistry (AC). The name reflects the fact AC is carried out
entirely with algebra, and not numerical integration. In fact, the math is hardly even algebra,
since only the occasional square root goes beyond simple Arithmetic. Such simple math
suffices because the AC approach is based on scaling laws. The model for the Hydrogen atom
is the prototype for similar models of the atoms of all the other elements. The input information
for all atoms is consists ionization potentials. The raw data set looks quite daunting, but as
reported in Whitney (2012), the data fall into neat patterns when scaled by M / Z  where M  is
the nuclear mass number and Z  is the nuclear charge.

This M / Z  scaling produces a variable I P1,Z  that we call ‘population generic’ because infor‐
mation about any element can be inferred from information about other elements. The AC
Hydrogen-based model invites the division of each ionization potential I P1,Z  into two parts,
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one part being I P1,1 for the Hydrogen-like interaction of the electron population as a whole
with the nucleus, and the other part being the increment ΔI P1,Z =  I P1,Z − I P1,1 for the electron-
electron interactions.

Modeling the energy requirements for making ions
The I P1,Z  and ΔI P1,Z  for 118 elements are given in Whitney (2012). The utility of that data
lies in the larger universe of inferences it supports. It can be used to estimate the actual ener‐
gy involved in creating any ionization state of any element. To refer to the data I P1,Z  and
ΔI P1,Z  used, the term ‘population generic’ applies. To refer to the inferences made, the term
‘element-specific’ applies.

The formulae used are essentially the same for every element, so let us use the symbol ‘ EZ ’ for
an arbitrary element, so we can write the formulae in a symbolic way. First consider the
transition EZ → EZ +. It definitely takes an energy investment of I P1,Z ×Z / MZ , where the factors
of Z  and 1 / MZ  restore the population-generic information I P1,Z  to element-specific informa‐
tion. This energy investment corresponds to a potential ‘wall’ to be gotten over. The wall has
two parts, I P1,1 ×Z / MZ  and ΔI P1,Z ×Z / MZ . The transition EZ → EZ + may also consume some
heat, or generate some heat, as the remaining Z −1 electrons form new relationships, not
necessarily instantaneously. This process constitutes adjustment to the rock pile, or the ditch,
on the other side of the potential wall. It is represented by a term −ΔI P1,Z −1 ×(Z −1) / MZ , where
the factors of (Z −1) and 1 / MZ  restore the population-generic information −ΔI P1,Z −1 to
element-specific information tailored for EZ . Thus altogether, EZ → EZ + takes:

I P1,1 ×Z / MZ + ΔI P1,Z ×Z / MZ −ΔI P1,Z −1 ×(Z −1) / MZ .

Now consider removal of a second electron, EZ + → EZ 2+. Being already stripped of one of its
electrons, the EZ + system has less internal Coulomb attraction than neutral EZ  has. So the factor
of Z  multiplying I P1,1 for EZ → EZ + has to change to something smaller. Since Coulomb
attraction generally reflects the product of the number of positive charges (here Z ) and the
number of negative charges (here Z −1), the reduced factor is Z ×(Z −1). Given this factor,

EZ + → EZ 2+takes:

I P1,1 × Z ×(Z −1) / MZ + ΔI P1,Z −1 ×(Z −1) / MZ −ΔI P1,Z −2 ×(Z −2) / MZ

Observe that putting the steps EZ → EZ + and EZ + → EZ 2+ together, the terms involving ΔI P1,Z −1

cancel, leaving that altogether, EZ → EZ 2+ takes:

I P1,1 ×Z / MZ + I P1,1 Z ×(Z −1) / MZ + ΔI P1,Z ×Z / MZ −ΔI P1,Z −2 ×(Z −2) / MZ .

This reduction to just two terms involving ΔIP’s is typical of all sequential ionizations, of
however many steps. Observe too that in the cumulative, we have two terms in I P1,1,

I P1,1 ×Z / MZ  and I P1,1 Z ×(Z −1) / MZ . This makes sense since two electrons are removed.
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From the above, it should be clear how to proceed with stripping however many more electrons
you may be interested in removing. Now consider adding an electron to EZ . The problem is
similar to removing an electron from EZ +1 , but in reverse. So, EZ → EZ − takes:

− I P1,1 × Z ×(Z + 1) / MZ −ΔI P1,Z +1(Z + 1) / MZ + ΔI P1,Z Z / MZ

Going one step further, the problem of adding another electron to EZ − is similar to removing
an electron from 

Z +2
E, but in reverse. So, EZ −→ EZ 2− takes:

− I P1,1 × Z ×(Z + 2) / MZ −ΔI P1,Z +2 ×(Z + 2) / MZ + ΔI P1,Z +1 ×(Z + 1) / MZ

Observe that putting the steps EZ → EZ − and EZ −→ EZ 2− together, the terms involving ΔI P1,Z +1

cancel, leaving that altogether, EZ → EZ 2− takes:

− I P1,1 × Z ×(Z + 1) / MZ − I P1,1 × Z ×(Z + 2) / MZ + ΔI P1,Z ×Z / MZ −ΔI P1,Z +2 ×(Z + 2) / MZ

From the above, it should be clear how to proceed with adding however many more electrons
you may be interested in adding.

To illustrate the development and use of information, consider a few example elements:
Hydrogen, Carbon and Oxygen. The steps to develop essential information for Hydrogen are:

Write Formulae:

H1 → H1 +:I P1,1 ×1 / M1 + ΔI P1,1 ×1 / M1−ΔI P1,0 ×0 / M1(Note: ΔI P1,1≡0,  and ΔI P1,0 does not exist.)

H1 → H1 −:− I P1,1 × 1×2 / M1−ΔI P1,2 ×2 / M1 + ΔI P1,1 ×1 / M1

Insert Data:

H1 → H1 +:14.250×1 / 1.008 + 0−0

H1 → H1 −:−14.250×1.4142 / 1.008−35.625×2 / 1.008 + 0×1 / 1.008

Evaluate Formulae:

H1 → H1 +:14.1369 + 0−0=14.1369eV

H1 → H1 −:−19.9924−70.6845 + 0= −90.6769eV

The steps to develop the information needed for Carbon are far more numerous because it
routinely gives or takes so many electrons. The steps are:

Write Formulae:

C6 → C6 +:I P1,1 ×6 / M6 + ΔI P1,6 ×6 / M6−ΔI P1,5 ×5 / M6

C6 + → C6 2+:I P1,1 × 6×5 / M6 + ΔI P1,5 ×5 / M6−ΔI P1,4 ×4 / M6

C6 2+ → C6 3+:I P1,1 × 6×4 / M6 + ΔI P1,4 ×4 / M6−ΔI P1,3 ×3 / M6
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C6 3+ → C6 4+:I P1,1 × 6×3 / M6 + ΔI P1,3 ×3 / M6−ΔI P1,2 ×2 / M16

C6 → C6 −:− I P1,1 × 6×7 / M6−ΔI P1,7 ×7 / M6 + ΔI P1,6 ×6 / M6

C6 −→ C6 2−:− I P1,1 × 6×8 / M6−ΔI P1,8 ×8 / M6 + ΔI P1,7 ×7 / M6

C6 2−→ C6 3−:− I P1,1 × 6×9 / M6−ΔI P1,9 ×9 / M6 + ΔI P1,8 ×8 / M6

C6 3−→ C6 4−:− I P1,1 × 6×10 / M6−ΔI P1,10 ×10 / M6 + ΔI P1,9 ×9 / M6

Insert Data:

C6 → C6 +:14.250×6 / 12.011 + 7.320×6 / 12.011−2.805×5 / 12.011

C6 + → C6 2+:14.250×5.4772 / 12.011 + 2.805×5 / 12.011−9.077×4 / 12.011

C6 2+ → C6 3+:14.250×4.8990 / 12.011 + 9.077×4 / 12.011− (−1.781)×3 / 12.011

C6 3+ → C6 4+:14.250×4.2426 / 12.011 + (−1.781)×3 / 12.011−35.625×2 / 12.011

C6 → C6 −:−14.250×6.4807 / 12.011−13.031×7 / 12.011 + 7.320×6 / 12.011

C6 −→ C6 2−:−14.250×6.9282 / 12.011−13.031×8 / 12.011 + 13.031×7 / 12.011

C6 2−→ C6 3−:−14.250×7.3485 / 12.011−20.254×9 / 12.011 + 13.031×8 / 12.011

C6 3−→ C6 4−:−14.250×7.7460 / 12.011−29.391×10 / 12.011 + 20.254×9 / 12.011

Evaluate Formulae:

C6 → C6 +:7.1185 + 3.6566−1.1677=9.6074eV

C6 + → C6 2+:6.4982 + 1.1678−3.0229=4.6431eV

C6 2+ → C6 3+:5.8122 + 3.0229 + 0.4448=9.2799eV

C6 3+ → C6 4+:5.0335−0.4448−5.9321= −1.3434eV

C6 → C6 −:−7.6888−7.5945 + 3.6566= −11.6267eV

C6 −→ C6 2−:−8.2197−8.6794 + 7.5945= −9.3046eV

C6 2−→ C6 3−:−8.7184−15.1766 + 8.6794= −15.2156eV

C6 3−→ C6 4−:−9.1900−24.4701 + 15.1766= −18.4835eV

Evaluate sums:

C6 → C6 2+:9.6074 + 4.6431=14.2505eV

C6 → C6 3+:14.2505 + 9.2799=23.5304eV
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C6 → C6 4+:23.5304−1.3434=22.187eV

C6 → C6 2−:−11.6267−9.3046= −20.9313eV

C6 → C6 3−:−20.9313−15.2156= −36.1469eV

C6 → C6 4−:−36.1469−18.4835= −54.6304eV

The steps to develop information for Oxygen are:

Write Formulae:

O8 → O8 +:I P1,1 ×8 / M8 + ΔI P1,8 ×8 / M8−ΔI P1,7 ×7 / M8

O8 + → O8 2+:I P1,1 × 8×7 / M8 + ΔI P1,7 ×7 / M8−ΔI P1,6 ×6 / M8

O8 → O8 −:− I P1,1 × 8×9 / M8−ΔI P1,9 ×9 / M8 + ΔI P1,8 ×8 / M8

O8 −→ O8 2−:− I P1,1 × 8×10 / M8−ΔI P1,10 ×10 / M8 + ΔI P1,9 ×9 / M8

Insert Data:

O8 → O8 +:14.250×8 / 15.999 + 13.031×8 / 15.999−13.031×7 / 15.999

O8 + → O8 2+:14.250×7.4833 / 15.999 + 13.031×7 / 15.999−7.320×6 / 15.999

O8 → O8 −:−14.250×8.4853 / 15.999−20.254×9 / 15.999 + 13.031×8 / 15.999

O8 −→ O8 2−:−14.250×8.9443 / 15.999−29.391×10 / 15.999 + 20.254×9 / 15.999

Evaluate Formulae:

O8 → O8 +:7.1254 + 6.5159−5.7014=7.9399eV

O8 + → O8 2+:6.6652 + 5.7014−2.7452=9.6214eV

O8 → O8 −:−7.5577−11.3936 + 6.5159= −12.4354eV

O8 −→ O8 2−:−7.9665−18.3705 + 11.3936= −14.9434eV

Evaluate sums:

O8 → O8 2+:7.9399 + 9.6214=17.5613eV

O8 → O8 2−:−12.4354−14.9434= −27.3788eV

What can we tell from all this information? Consider a few of the molecules that these elements
can make. The simplest one is the Hydrogen molecule H2. Forming it takes
14.1369−90.6769= −76.54eV. That number is very negative, which means the Hydrogen
molecule forms quickly, even explosively. Isolated neutral Hydrogen atoms are rare in Nature.
Even at very low density, in deep space, Hydrogen atoms would rather form molecules, or
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form plasma, than remain as neutral atoms. How ironic it is that the prototypical atom for the
development of QM was something that is hardly to be found in Nature!

Another simple molecule is O2. This oxygen molecule illustrates the interesting possibility of
more than one ionic configuration, a situation that turns out to be the case for many molecules.
O2 can be O8 + + O8 − or O8 2+ + O8 2−. Forming O8 + + O8 − takes 7.9399−12.4354= −4.4955eV, and
forming O8 2+ + O8 2− takes 17.5613−27.3788= −9.8175eV. Although the second ionic configura‐
tion is better in terms of energy, the two are close. In situations like this, both ionic configura‐
tions exist, in proportions determined by thermodynamic entropy maximization, which
depends on temperature.

The fact that the two ionic configurations of O2 are so close in energy means that transitions
between them are easy. This can make O2 an absorber and emitter of low energy photons; i.e.
infrared photons, i.e. heat. This can in turn make Oxygen act as a so-called ‘greenhouse gas’;
i.e., a contributor to atmospheric warming. But as O2-consuming animals, we just never speak
of O2 in such a derogatory way.

Consider H2O. Water again illustrates the possibility of more than one ionic configuration for

a given molecule. Water is known to dissociate into the naked proton H+ and the hydroxyl
radical OH−. In turn, the hydroxyl radical has to be the combination of ions O2− + H+; there is
not an alternative form using H−, because then O would have to be neutral. So we might well
imagine that H2O had ionic configuration 2H+ + O2−. But the formation of that ionic configu‐
ration takes 2×14.1369−27.3788= + 0.8950eV, a slightly positive energy. That can’t be right for
the common water molecule covering our planet. So in fact, common water must not live in
the ionic configuration to which it dissociates, and thereby dies. Therefore, consider the
alternative ionic configuration 2H− + O2+. This one requires 2× (−90.6769) + 17.5613= −163.7925
eV. This is a decidedly negative energy, and so is believable for a decidedly stable molecule.

Water in the normal 2H− + O2+ ionic configuration has to form a tetrahedron, with two H+ naked
protons on two vertices and two 2e− electron pairs on and the other two vertices. That is why
the water molecule we know has a bend to it. Viewing the Hydrogen nuclei as lying on arms
originating from the Oxygen nucleus, the angle of the bend is the angle characteristic of arms
from the center to two corners of a regular tetrahedron – on the order of 109.5° .

The other ionic configuration for water, 2H+ + O2−, is the charge mirror image of the commonly
known one. But it has to be a completely different shape: not tetrahedral, but instead linear. It
just looks like H ·  O ·  H, where the dots mean ‘chemical bond’. This form of water apparently
does exist, but only in a very un-natural circumstance. There exists an electrochemically
created substance known as ‘Brown’s gas’ that has occasioned some impossibly wild claims
about energy generation, but has also been investigated quite legitimately for applications in
welding. A linear isomer of water is thought to be the active ingredient in Brown’s gas.

The story of water tells us that even the most familiar of compounds can have some very
interesting isomers. The conclusion to be drawn is that any molecule with three or more atoms
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can have isomers that differ, certainly in ionic configuration, but probably also in molecular
shape, and in resultant chemical properties.

The very negative −163.7925eV result for forming the 2H− + O2+ ionic configuration of normal
water is what makes the burning of all hydrocarbons so worthwhile as energy sources. It is
the main thing, but it generally attracts no mention. Other reaction products get all the
attention.

Consider CO2. Carbon dioxide is a normal atmospheric constituent, and a product of hydro‐
carbon combustion, a possible contributor to global warming, and sometimes a target for
government regulation.

CO2 again illustrates the possibility of several ionic configurations for a molecule. CO2 has at

least four plausible ionization configurations: C4+ + 2O2−, C4− + 2O2+, C2+ + 2O−, and C2− + O+.
The energy requirements to make them from the neutral atoms are:

C4+ + 2O2− : 22.187 + 2×(−27.3788)=22.187−54.7576= −32.5706eV

C4− + 2O2+ : −54.6304 + 2×17.5613= −54.6304 + 35.1226= −19.5078eV

C2+ + 2O− : 14.2505 + 2×(−12.4354)=14.2505−24.8708= −10.6203eV

C2− + 2O+ : −20.9313 + 2×7.9399= −20.9313 + 15.8798= −5.0515eV

The first ionic configuration listed is the one favored electrically, but the others must also occur,
all in thermodynamically determined proportion. The fact that there are so many possibilities
for just this one little tri-atomic molecule means that QC can benefit from using AC to identify
all the possibilities in a situation, and select rationally among them, and spend computation
power wisely.

Single-electron state filling over the periodic table

Nobody is yet satisfied that we completely understand the Periodic Table. QM informs us of
single electron states and their quantum numbers, and we can tell from spectroscopic data
what single electron states are filled for each element, and we can see what the governing rule
is, but we do not understand why that is the rule, and we do not understand why there are
exceptions to the rule.

The normal order of state filling can be described in terms of the quantum numbers n =1, 2, 3, ...
for radial level, l =0, 1, ...n −1for orbital angular momentum, and s = −1 / 2, + 1 / 2 for spin. The
normal order of state filling goes with increasing n + l , with all of s = −1 / 2 first, and then all of
s = −1 / 2. So that makes the normal order:

In Period 1: n =1,  l =0,  s = −1 / 2 and n =1,  l =0,  s = + 1 / 2;

Then in Period 2:

n =2,  l =0,  s = −1 / 2, n =2,  l =0,  s = + 1 / 2 and n =2,  l =1,  s = −1 / 2 three times,
n =2,  l =1,  s = + 1 / 2 three times;
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Then in Period 3:

n =3,  l =0,  s = −1 / 2, n =3,  l =0,  s = + 1 / 2 and n =3,  l =1,  s = −1 / 2 three times,
n =3,  l =1,  s = + 1 / 2 three times;

Then in Period 4:

n =4,  l =0,  s = ± 1 / 2, n =3,  l =2,  s = −1 / 2 five times, n =3,  l =2,  s = + 1 / 2 five times,

n =4,  l =1,  s = −1 / 2 three times, n =4,  l =1,  s = + 1 / 2 three times;

Then in Period 5:

n =5,  l =0,  s = ± 1 / 2, n =4,  l =2,  s = −1 / 2 five times, n =4,  l =2,  s = + 1 / 2 five times,

n =5,  l =1,  s = −1 / 2 three times, n =5,  l =1,  s = + 1 / 2 three times;

Then in Period 6:

n =6,  l =0,  s = ± 1 / 2, n =5,  l =3,  s = −1 / 2 seven times, n =5,  l =3,  s = + 1 / 2 seven times,

n =5,  l =3,  s = −1 / 2 five times, n =5,  l =3,  s = + 1 / 2 five times,

n =6,  l =1,  s = −1 / 2 three times, n =6,  l =1,  s = + 1 / 2 three times;

Then in Period 7:

n =7,  l =0,  s = ± 1 / 2, n =6,  l =3,  s = −1 / 2 seven times, n =6,  l =3,  s = + 1 / 2 seven times,

n =6  l =3,  s = −1 / 2 five times, n =6  l =3,  s = + 1 / 2 five times,

n =7,  l =1,  s = −1 / 2 three times, n =7,  l =1,  s = + 1 / 2 three times.

It is perhaps possible to do enough QM calculations to develop a numerical explanation for
this pattern. But we do not have from QM any higher-level, conceptual explanation for this
pattern.

And on top of that, there are 19 exceptions to the pattern. They are:

In Period 4: Chromium C24 r, Copper C29 u;

In Period 5: Niobium N41 b, Molybdenum M42 o, Rubidium R44 u, Rhodium R45 h, Palladium
P46 d, Silver A47 g;

In Period 6: Lanthanum L57 a, Cerium C58 e, Gadolinium G64 d, Platinum P78 t, Gold A79 u;

In Period 7: Actinium A89 c, Thallium T90 h, Protactinium P91 a, Uranium U92 , Neptunium
N93 p, Cerium C96 m.

So it is a good project for AC to try to improve this situation, both in regard to explaining the
pattern, and in regard to explaining the exceptions.

The Hydrogen-based model used for AC makes the electron population a rather localized
subsystem, orbiting the nucleus, rather than enclosing it. The electron subsystem is composed
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of electron rings spinning at superluminal speeds, stacked together like little magnets. This
model creates a hierarchy of magnetic confinement levels. Two rings with two electrons each
create a ‘magnetic bottle’, and it can contain up to two geometrically smaller rings with three
electrons each. Two such three-electron rings create a stronger ‘magnetic thermos jug’. That
can contain up to two geometrically smaller rings with five electrons each. Two such five-
electron rings create an even stronger ‘magnetic Dewar flask’. It is capable of containing up to
two geometrically smaller rings with seven electrons each.

The electron state filling sequence is determined by a rather ‘fractal’ looking algorithm: Always
build and store an electron ring for the largest number of electrons possible, where ‘possible’
means having a suitable magnetic confinement volume available to fit into, and where
‘suitable’ means created by two electron rings with smaller electron count, and not yet filled
with two electron rings of larger electron count. Sometimes only a new two-electron ring is
possible, and that is what starts a new period in the Periodic Table.

So there follows the expected order for the filling of single electron states across the Periodic
Table.

AC can also identify factors that account for individual exceptions. The worst exception is
Palladium, because it has not just one, but two, violations of the nominal pattern. Here is the
explanation for Palladium. According to the nominal electron filling pattern, P46 d would have
a not yet used space for two three-electron rings, and hence it would have an un-used two-
electron ring. Total consumption of that un-used two-electron ring into an unfilled five-
electron ring allows an extremely symmetric stack of filled electron rings. It goes: 2, 3, 5,5, 3,
2, 3,3, 2, 3, 5,5, 3, 2. The opportunity for such symmetry is what trumps the nominal pattern.

Here is a list of brief comments about all of the exceptions:

Chromium C24 r robs one electron from a two-electron ring to complete a five-electron ring.

Copper C29 u robs one electron from a two-electron ring to complete a five-electron ring.

Niobium N41 b robs one electron from a two-electron ring to complete a five-electron ring.

Molybdenum M42 o robs one electron from a two-electron ring to complete a five-electron ring.

Rubidium R44 u robs one electron from a two-electron ring to complete a five-electron ring.

Rhodium R45 h robs one electron from a two-electron ring to complete a five-electron ring.

Palladium P46 d completely consumes a two-electron ring to complete a five-electron ring.

Silver A47 g robs one electron from a two-electron ring to complete a five-electron ring.

Lanthanum L57 a puts an electron in a five-electron place instead of a seven-electron place.

Cerium C58 e puts an electron in a five-electron place instead of a seven-electron place.

Gadolinium G64 d puts an electron in a five-electron place instead of a seven-electron place.

On the Dual Concepts of ‘Quantum State’ and ‘Quantum Process’
http://dx.doi.org/10.5772/53326

391



Platinum P78 t robs one electron from a two-electron ring to complete a five-electron ring.

Gold A79 u robs one electron from a two-electron ring to complete a five-electron ring.

Actinium A89 c puts an electron in a five-electron place instead of a seven-electron place.

Thallium T90 h puts an electron in a five-electron place instead of a seven-electron place.

Protactinium P91 a puts an electron in a five-electron place instead of a seven-electron place.

Uranium U92  puts an electron in a five-electron place instead of a seven-electron place.

Neptunium N93 p puts an electron in a five-electron place instead of a seven-electron place.

Cerium C96 m puts an electron in a five-electron place instead of a seven-electron place.

6. Conclusion

It is this author’s opinion is that a more fully developed quantum mechanics, giving equal
attention to both stable states, and the transitions between them, would fulfill a property that
the subject matter of quantum mechanics has always demanded: some kind of duality. All of
the objects of study in quantum mechanics exhibit a wave-particle duality, and the theory itself
needs a corresponding kind of duality: attention both to the definition of stable states, and to
the study of details of state transitions.

This paper attempts to make some progress in that direction. It gives several examples of old
problems treated with a new approach. The first of these concerns the nature of the photon.
There is a perception that the discovery of the photon marks a departure from Maxwell. This
author disagrees with that perception. The second problem concerns Schrödinger’s equation.
There is a perception that Schrödinger’s equation marks a departure from Newton, and the
classical physics of particles. This author disagrees with that perception too. The third problem
has to do with the application of QM in Chemistry. There is a perception that such an appli‐
cation of QM demands extensive computer calculation. This author believes in an alternative
approach based on scaling laws: Algebraic Chemistry.

All of these problems illustrate a reasoned concern about the current practice of Physics. I think
Physics sometimes goes a step too far in the direction of reductionism. Einstein’s signal for
SRT, with only a speed parameter, is a step too far. The photon concept without Maxwell’s
equations is a step too far. An atom with a stationary nucleus is a step too far. Schrödinger’s
equation without the Ψ *  factor is a step too far. A single atom with multiple excited states is
a step too far. And so on.

Consider some history. At the turn of the 20th century, there was a lot of work concerning a
isolated electron. Why does the electron not explode due to internal Coulomb forces? Why
does the equation of motion for the electron allow run-away solutions that do not occur in
Nature? There are many such puzzles. Chapter 17 in the standard textbook by Jackson (1975)
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discusses radiation damping, self-fields of a particle, scattering and absorption of radiation by
a bound system, all from the classical viewpoint and from the viewpoint of SRT. It is a status
report, not a final resolution. These matters are still not fully resolved. I suspect too much
reductionism as their cause.

Always remember: Sometimes, backing off from reductionism, and analyzing a slightly more
complicated problem, actually leads to simpler results.
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Chapter 18

The Computational Unified Field Theory (CUFT):
A Candidate 'Theory of Everything'

Jonathan Bentwich

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53804

Einstein: "Our experience hitherto justifies us in believing that nature is the realization of the simplest conceivable

mathematical ideas… In a certain sense, therefore, I hold it true that pure thought can grasp reality, as the ancients

dreamed" (1933)

1. Introduction

Two previous articles (Bentwich, 2012: a & b) have postulated the existence of a new (hypothet‐
ical) Computational Unified Field Theory (CUFT) which appears to be capable of bridging the
gap between Quantum Mechanics and Relativity Theory within a conceptually higher-or‐
dered ('D2') Universal Computational Principle (' י'), thereby representing a potential candi‐
date for a 'Theory of Everything' (TOE) (Brumfiel, 2006; Ellis, 1986; Greene, 2003). The CUFT is
based on five basic theoretical postulates which include: a) the discovery of a new computation‐
al 'Duality Principle' (Bentwich, 2003: a, b, c, 2004, 2006), e.g., which proves that it is not possible
to determine the "existence" or "non-existence" of any particular 'y' element based on any direct
or indirect interaction/s with any exhaustive hypothetical series of 'x' factor/s (termed: a 'Self-
Referential Ontological Computational System' (SROCS), but only based on a conceptually
higher-ordered 'D2'  computational framework which can compute the "simultaneous co-
occurrences" of any exhaustive hypothetical 'x-y' series. The validity of the Duality Principle has
been demonstrated for a series of key scientific (computational SROCS) paradigms, including:
Darwin's 'Natural Selection Principle' (and associated 'Genetic Encoding' hypothesis, Neuro‐
science's Psychophysical Problem (PPP) of human Consciousness as well as to all other (inductive
or deductive) 'Gödel-like' SROCS computational paradigms (for which there is a knowable
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empirical capacity to determine the values of the 'x' and 'y' elements) (Bentwich, 2012: a & b); the
existence of such a higher-ordered 'D2' 'Universal Computational Principle' (termed: 'י', denoted
by the Hebrew letter "yud") which carries out an extremely rapid computation (e.g., 'c2/h') of a
series of 'Universal Simultaneous Computational Frames' (USCF's) that comprise the entire
corpus of spatial pixels in the universe (e.g., computed simultaneously at any minimal Planck's
'h' time interval); c) The existence of three Computational Dimensions: 'Framework' (e.g., 'frame'
vs. 'object'), 'Consistency' (e.g., 'consistent' vs. 'inconsistent') and 'Locus' (e.g., 'local', vs. global')
whose various combinations gives rise to the four basic 'physical' properties of 'space', 'time',
'energy' and 'mass' (i.e., through the four possible combinations of Framework and Consisten‐
cy), and to all relativistic effects (e.g., through these four secondary computational 'physical'
properties' combinations with Locus' two abovementioned levels); d) The 'Computational
Invariance Principle' (e.g., based on 'Ockham's razor'), which proves that since only the 'Univer‐
sal Computational Principle' (' י') exists invariantly – i.e., both as producing and underlying each
of the USCF's secondary computational four 'physical' properties (of 'space', 'time', 'energy' and
'mass) and as existing solely (and independently) "in-between" any two subsequent USCF's
frames, whereas these four secondary computational 'physical' properties represent computationally
variant features (e.g., since they are computed based on different computational combinations
and only exist "during" the USCF's frames but not "in-between" any two such USCF's frames),
then we may only regard the computationally invariant Universal Computational Principle (' י')
as "real" whereas the computationally variant four secondary computational 'physical' proper‐
ties (of 'space', 'time', 'energy' and 'mass') must be viewed as "phenomenal" or "unreal" (i.e.,
relative  to  their  solely  underlying  computationally  invariant  Universal  Computational
Principle); and e) The 'Universal Consciousness Principle' which proves that since (based on the
previous 'Computational Invariance Principle') only the Universal Computational Principle
solely exists both "in-between" any two subsequent USCF's and as producing all USCF's four
secondary computational 'physical' properties, then it necessarily follows that this (solely
existing)  Universal  Computational  Principle  must  also  possess  an  equivalent  'Universal
Consciousness Principle' capacity to produce- sustain or evolve all exhaustive (hypothetical) spatial
pixels in the universe (i.e., across any two subsequent USCF's)…

The discovery of this new hypothetical CUFT has been accompanied by the identification of
specific (empirical) 'critical predictions' for which the CUFT significantly differs from both
quantum and relativistic models of the physical reality, e.g., including: 1) embedding of the
(known) relativistic "E=Mc2" equation and Quantum 'Uncertainty Principle's complimentary
pairs (e.g., of 'space and energy' or of 'time and mass') within a broader (novel) 'Universal
Computational Formula':

 
c 2x’

h =
sxe
t

2) the CUFT's differential critical prediction regarding the greater number of (consistent)
presentations of a more "massive" element (e.g., across a series of USCF's), relative to the
number of presentations of a less massive element; and 3) A hypothetical capacity to "reverse
the flow of time" based on the measurement of any given object's sequence of spatial electro‐
magnetic values (across a given series of USCF's) and the application of the appropriate
electromagnetic modulation values (applied to any of its identified spatial-electromagnetic
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pixels across the measured USCF's series) that is necessary in order to attain the reversed
spatial-temporal electromagnetic sequence (e.g., comprising that object's reversed spatial-
temporal sequence). (Such methodology could also hypothetically lead to the "de-materiali‐
zation" or "materialization" of any given object or event).

Due to the fact that the current Scientific framework is anchored and based (entirely) upon a
Cartesian 'materialistic-reductionistic' assumption wherein it is assumed that any given (or even
hypothetical) phenomenon- element- or natural law (represented as: 'y') is reducible to- or can
be explained- solely based on a certain number of physical interactions between this 'y' ele‐
ment and any exhaustive hypothetical 'x' factor/s, element/s, phenomenon/a or events etc. – e.g.,
giving rise to the Duality Principle's (abovementioned) SROCS computational structure; and
due to the transcendence of such 'computationally invalid' SROCS structure (Bentwich, 2012:a
& b) by the Duality Principle and its embedding within the CUFT's higher-ordered 'D2': Universal
Computational/Universal Consciousness Principle theoretical framework; it was previously
suggested that to the extent that the CUFT may be validated experimentally (e.g., such as for
instance through an empirical validation of one (or more) of its (abovementioned) differential
critical predictions – then this may lead to a 'paradigmatic shift' from the current Cartesian
'materialistic-reductionsitic'  theoretical framework towards a conceptually higher-ordered
singular  Universal  Computational/Universal  Consciousness  Principle  which  explains  the
physical universe in terms of its apparent production by a singular non-material, a-causal D2
computation which gives rise to all apparent (secondary computational) properties of 'space',
'time', 'energy' and 'mass'.

However, to the extent that the CUFT is corroborated empirically (e.g., especially in terms of
the validation of its previously outlined critical empirical predictions), then the possible
theoretical ramifications of its signified (potential) scientific paradigmatic shift must be further
explored: Hence, the primary aim of the current chapter is to investigate the various potential
theoretical ramifications of the CUFT as a candidate 'Theory of Everything' which points at
the existence of the singular "reality" of the Universal Computational/Consciousness Principle
as underlying all four basic physical properties (of 'space', 'time', 'energy' and 'mass') as well
as all other inductive or deductive 'x-y' relationships; and finally also the possible relationship
between this Universal Consciousness Principle and our individual human consciousness
(e.g., which in fact may lead to a further modification of the CUFT's Universal Computational
Formula based on the recognition of the potential gradations of individual human conscious‐
ness as embedded within the full expansiveness of the Universal Consciousness)…

2. The universal computational principle's D2 A–causal computation

We therefore (first) aim at fully integrating between the CUFT's Duality Principle proof for the
conceptual computational inability to determine the "existence" or "non-existence" of any
particular 'y' element based on any exhaustive hypothetical series of interactions with any 'x'
factor/s (e.g., constituting a SROCS computational paradigm) – but only based on a concep‐
tually higher-ordered (D2) Universal Computational Principle which computes the "simulta‐
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neous co-occurrences" of any (empirically computable) exhaustive hypothetical series of 'x-y'
pairs; and between the CUFT's Universal Consciousness Principle assertion that that this
higher-ordered (singular) Universal Computational Principle is (in fact) the only "real" element
that truly exists – both as solely producing all USCF's secondary computational physical
properties (of 'space', 'time', 'energy' and 'mass') and as existing solely (and independently of
any such USCF's secondary computational properties) "in-between" any two subsequent
USCF's: The starting point (to attain this first aim) is the CUFT's Duality Principle proof that
all (hypothetical inductive or deductive) scientific SROCS paradigms must be constrained by
a conceptually higher-ordered (D2) Universal Computational Principle which alone is capable
of computing the "simultaneous co-occurrences" of any exhaustive hypothetical 'x-y' pairs
series: Thus, both in the case of the CUFT's unification between quantum and relativistic
models of physical reality as well as in the case of all other (hypothetical) inductive or deductive
SROCS computational paradigms (e.g., for which there is an empirically known capacity to
determine the values of any exhaustive 'y' and 'x' pairs series) the CUFT's Duality Principle
has shown that the sole means for computing all of these (exhaustive hypothetical) quantum,
relativistic, inductive or deductive 'x-y' relationships is based on the operation of the (concep‐
tually higher-ordered) 'Universal Computational Principle' ('‘') which computes the "simulta‐
neous co-occurrences" of all of these 'x-y' pairs series (e.g., which comprise a series of USCF's
frames). Hence, we realize that all physical quantum or relativistic 'x-y' relationships as well
as all (hypothetical) inductive (logical or mathematical) or deductive (e.g., including all natural
sciences) 'x-y' relationships – are underline by the singular Universal Computational Princi‐
ple's (‘) computation of the "simultaneous co-occurrences" of each of these 'x-y' pairs series…
But, since according to the CUFT's 'Computational Invariance' and 'Universal Consciousness
Principle' theoretical postulates the sole (and singular) computationally invariant "reality" that
exists both as producing any USCF's series and which also (solely) exists "in-between" any two
subsequent USCF's is that Universal Computational Principle which is equated with a
Universal Consciousness Principle (e.g., capable of "producing", "retaining" and "evolving"
any of the multifarious spatial pixels across subsequent USCF's frames) – whereas all physical
properties - quantum or relativistic, or any inductive or deductive 'x-y' relationships may only
be as "phenomenal" or "unreal" due to their basic computationally variant properties). We are
therefore forced to conclude that the sole production- sustenance- or any evolution- in any
physical (quantum or relativistic), inductive or deductive (exhaustive hypothetical) 'x-y' pairs'
series is based on the operation of the singular Universal Consciousness Principle which
underlies the production of all USCF's frames and also exists independently "in-between" any
two such (subsequent) USCF's. Thus, we accomplish our first aim of fully integrating between
the CUFT Duality Principle's constraint of all scientific (inductive or deductive) scientific
SROCS paradigms, e.g., based on the operation of the singular (conceptually higher-ordered)
Universal Computational Principle ('‘') and the CUFT's (Computational Invariance and
Universal Consciousness theoretical postulates') assertion regarding the sole "reality" of this
Universal Computational/Consciousness Principle (e.g., both as producing all USCF's derived
secondary computational physical properties or inductive or deductive 'x-y' relationships):
This implies that instead of the existence of any "real" "material-causal" relationship between
any quantum or relativistic (or any other exhaustive hypothetical inductive or deductive) 'x'
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and 'y' factor/s, elements, events etc. – the sole "reality" is of the existence of the singular
'Universal Consciousness Principle' which produces- sustains- and can evolve- all exhaustive
hypothetical physical (quantum or relativistic) or inductive or deductive 'x-y pairs' series, e.g.,
based on its sole production of the USCF's frames and its independent existence in between
any two such USCF's frames…

3. The exhaustiveness of the universal consciousness principle for all
natural phenomena

Based on the CUFT's postulation of this singular Universal Computational/Consciousness
Principle as comprising the only "real" (computationally invariant) principle which produces-
all USCF's (secondary computational) 'physical' properties (e.g., of 'space', time', 'energy' and
'mass'), and which also solely exists "in-between" any two (subsequent) USCF's, it is worth‐
while to consider the broader applicability of this Universal Computation/Consciousness
Principle ('‘') as underlying- and constraining- all (empirically knowable) hypothetical
inductive or deductive 'x-y' relationship/s; Perhaps the best starting point for the such a
comprehensive endeavor is to reexamine the computational SROCS structure underlying
Gödel's Incompleteness Theorem (GIT) equivalent computational paradigms: This is because
It is hereby hypothesized that an application of the Duality Principle to generalized deductive
or inductive computational SROCS paradigms may bear equivalence to a certain aspect of
Gödel's Incompleteness Theorem (GIT) – while allowing Science to advance beyond the
mathematical constraint imposed by GIT; The basic hypothesis (advanced here) is that the
Duality Principle sets a conceptual computational constraint upon all logical, mathematical or (indeed)
scientific SROCS exhaustive relationship/s between any two given 'x' and 'y' elements – for which
there exists an empirically known or determinable result (e.g., an empirically known capacity of the
specific logical, mathematical, or other scientific computational system's to determine whether
a particular given 'y' value or entity etc. "exists" or "doesn't exist");

In the general case of all (hypothetical) inductive 'x' and 'y' relationships, the Duality Principle
constrains all SROCS paradigms of the form:

SROCS: CR(x,y}→ 'y' or 'not y' /di1…din

In the (generalized) case of all hypothetical deductive SROCS paradigms the Duality Principle
constraint may be apply to a specific formalization of any computational system that attempts
to determine the 'truth-value' (e.g., true: 't' or false: 'not t') of any hypothetical (exhaustive)
Mathematical System ('Sm') based on an (exhaustive hypothetical) series of direct or indirect
conceptual relationship/s between that given System and its definition of the 'true' ('t') value
of that System, thus:

CR{'Sm', t}→ 't' or 'not 't /di1…din

In fact, it is suggested that GIT proof may be equivalent to the Duality Principle's constraint
of the (abovementioned) SRONCS special 'negative' computational outcome case:
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SRONCS: CR{'Sm', t}→'not t' /di1…din

which was proven (by the Duality Principle) to inevitably lead to both 'logical inconsistency'
and 'computational indeterminacy', e.g., stemming from the SRONCS logically contradictory
assertion wherein the particular 'y' ('t') element both "exists" AND "doesn't exist" at the same
computational level ('di1…din') – which necessarily also leads to such SRONCS structure's
conceptual inability to determine whether that particular 'y' ('t') value "exists" or "doesn't
exist"… But, for all of those logical, mathematical or inductive computational systems for
which there exists an empirical capacity to determine whether any such particular System is "true"
('t') or 'false ('f') – since this empirical capacity contradicts the (abovementioned) SRONCS's
inevitably ensuing 'logical inconsistency' and 'computational indeterminacy', then the Duality
Principle asserts that there must exist a conceptually higher-ordered D2 computational
framework capable of computing the simultaneous co-occurrences of any exhaustive hypo‐
thetical series of {'Sm',t[1…n]}… It is suggested that GIT's logical-mathematical proof may
replicate the Duality Principle assertion regarding the inevitable 'logical inconsistency' and
'computational indeterminacy' that ensue from a SRONCS computational structure.

The principle difference between the Duality Principle's conceptual computational proof and
GIT's logical mathematical proof is that whereas GIT focuses on the inevitable 'logical
inconsistency' and (subsequent) 'computational indeterminacy' that arise from any SRONCS
computational structure – whereas the Duality Principle goes further to investigate the
empirical-computational ramifications of those specific computational systems for which there is a
proven empirical capacity to determine whether or not any such (particular) 'y' value "exists" or
"doesn't exist"; which therefore points at the inevitable existence of a conceptually higher-
ordered D2 computational framework which can determine the "co-occurrences" of any
(hypothetical) ['S' and 't'/'not t'] pairs' series… Thus, the Duality Principle's focus only on those
logical, mathematical or scientific Systems for which there exists an empirical evidence for their capacity
to determine the "truth" or "false" value of any given proposition or entity etc. – for which the Duality
Principle proves that there exists a conceptually higher-ordered 'D2' computational framework
that is capable of determining the "co-existence" of any (exhaustive hypothetical) pairs of 'Sm'
and 't' values.

In fact, as has been shown previously (Bentwich, 2011c) since there can only exist one (singular)
such conceptually higher-ordered 'D2' computational framework (e.g., as underlying any and
all SROCS computational systems) and based on its identification as no other than the
Computational Unified Field Theory's singular D2 rapid series of USCF's), then we are led to
the inevitable conclusion that all logical, mathematical or scientific (e.g., empirically knowable
SROCS) paradigms must be embedded within the CUFT singular D2 rapid series of USCF's….

In order to formally present the exhaustiveness of the Duality Principle (e.g., as embedded
within the CUFT's D2 framework) it may be helpful to formalize the conceptual computational
constraint imposed by the Duality Principle on all (exhaustive hypothetical) inductive or
deductive relationships in this manner:

SROCS 1…z : R{x,y 1…n }→ 'y' or 'not y' /di1…din
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wherein any (exhaustive hypothetical) logical, mathematical, computational or scientific
SROCS paradigm/s is one which attempts to determine the "existence" or "non-existence" of
any given 'y' element (or particular 'y' value) based on its direct or indirect physical or
conceptual relationship/s with an exhaustive series of (hypothetical) 'x' series (e.g., at any single
or multiple: 'di1…din' computational levels) – and for which there is a known (or knowable)
empirical capacity to determine whether the particular 'y' entity or value "exists" or "doesn't
exist".

Interestingly, once the Duality Principle narrows down the computational definition of all
those (apparent) logical, mathematical, computational or (any other hypothetical) scientific
SROCS paradigms – to only those computational systems for which there exists an empirical capacity
to determine whether any particular 'y' entity "exists" or "doesn't exist", then according to the
computational Duality Principle it (in effect) compliments (and may transcend) Gödel's
Incompleteness Theorem, i.e., through the recognition of a (singular) conceptually higher-
ordered 'D2' computational framework which is no other than the Universal Computational
Principle's (extremely rapid) computation of a series of Universal Simultaneous Computa‐
tional Frames (USCF's) – which also determines the simultaneous "co-occurrences" of any
(exhaustive hypothetical) series of any 'x' and 'y' factors underlying all of (inductive or
deductive) relationships, laws, phenomena (e.g., that can be known)… This is because based
on the Duality Principle's narrowed down computational definition of any (exhaustive
hypothetical) SROCS (inductive or deductive) scientific paradigm that possesses the general
format:

PR{x,y}→ 'y' or 'not y' /di1…din

and for which there exists an empirically known (or knowable) outcome (e.g., 'y' or 'not y'),
the Duality Principle's computational proof (shown previously: Bentwich, 2011c & d) indicated
that such scientific SROCS paradigms can only be computed by the conceptually higher-
ordered 'D2' computational framework (e.g., which was also shown to be equivalent to the
abovementioned rapid series of USCF's).

In other words, the generalized format of the Duality Principle – when narrowed down to only
those (apparently) computational SROCS paradigms for which there exist an empirical proof
for the capacity of any such (inductive or deductive) computational system/s to determine
whether any particular 'y' or 'not y' outcome exists (e.g., at any given spatial-temporal
point/s) – also necessarily provides us with the Duality Principle's asserted conceptual
computational proof for the existence of a singular higher-ordered 'D2' USCF's based compu‐
tation of the co-occurrences of any exhaustive hypothetical series of (particular) 'x' and 'y' pairs.
Indeed, it is suggested that in the particular case of 'Gödel's Incompleteness Theorem' (GIT)
which constitutes the state of the art known conceptual mathematical constraint imposed on
our capacity to construct any (hypothetical deductive) logical or mathematical System – i.e.,
as necessarily containing certain mathematical statement/s which either lead to 'logical
inconsistency' (e.g., such as in the basic case of the "liar's paradox" - as embedded within GIT),
or which cannot be determined from within any such (exhaustive hypothetical) Mathematical
System – the generalized form of the Duality Principle provides us with a clear indication that
even though the consistency of certain mathematical (SRONCS) statements cannot be deter‐
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mined from within any (exhaustive hypothetical) Mathematical System, their consistency can be
determined by the conceptually higher-ordered 'D2' (USCF based) computational frame‐
work…

As such, the computational Duality Principle offers us a potentially significant alternative to
'Gödel's Incompleteness Theorem's (GIT) 'negative' constraint set upon the capacity to
construct any consistent logical, mathematical (e.g., or indeed scientific – as shown later on)
computational System based on the realization that any such (exhaustive hypothetical) logical
or mathematical (empirically validated) System can be formulated based on a conceptually
higher-ordered 'D2 a-causal' computational framework (Bentwich, 2012: a & b) that is capable
of computing the simultaneous "co-occurrences" of any such (exhaustive hypothetical) pairs
series of logical or mathematical System and corresponding 't' (truth-value) definition/s; This
is due to the fact that based on the (abovementioned) Duality Principle's strict definition of
only those mathematical or logical systems for which there is a known (empirical) capacity to
compute the "truth" or "false" value of any System (or statement within a given System) – its
proof for the conceptual computational inability of any (such) SROCS/SRONCS system to carry
out such computation at the same computational level as any direct or indirect (conceptual)
interaction between the System and the 'truth value' definition but only at a conceptually
higher-ordered 'D2 a-causal' computational framework (Bentwich, 2012a) points at the
capacity of any such hypothetical logical or mathematical System to determine the simulta‐
neous "co-occurrences" of any series of 'System' and 'truth-value' definition/s (e.g., at the 'D2
a-causal' computational framework)… In other words, once the (generalized) Duality Principle
narrows down the computational definition of any possible logical or mathematical SROCS
paradigm (e.g., of the form: CR{S,t}→['t' or 'not t']) to only those Systems for which there is a
known empirical capacity to determine whether any given System or any given statement/s
within a given System), then we necessarily obtain the Duality Principle's conceptual compu‐
tational proof for the capacity to produce a particular series of logical or mathematical systems
that are capable of determining whether they are 'true' or 'false' – based on a conceptually
higher-ordered 'D2 a-causal' computational framework. In that sense, this generalized Duality
Principle format (e.g., for empirically computable logical or mathematical systems) seems to
transcend Gödel's Incompleteness Theorem's strict constraints set on the construction of any
logical or mathematical consistent systems, e.g., as devoid of any 'logical inconsistency' or
'mathematical indeterminacy' (as also defined previously: Bentwich, 2012a); this is because
such generalized Duality Principle format in fact asserts the capacity to construct specific
logical or mathematical systems for which we can determine their truth-value based on a
conceptually higher-ordered 'D2 a-causal' computational framework which can compute the
simultaneous "co-occurrences" of any exhaustive hypothetical pairs series of mathematical
system and truth-value (e.g., 't' or 'not t'). Indeed, based on the Duality Principle's previously
proven singularity of such conceptually higher-ordered 'D2 a-causal' computational frame‐
work (e.g., which has been furthermore shown to be synonymous with the Computational
Unified Field Theory's rapid series of Universal Simultaneous Computational Frames) – the
generalized Duality Principle's proof indicates that for all empirically determinable logical or
mathematical systems there necessarily exists only one singular higher-ordered D2 (USCF's)
computational framework that is capable of determining any exhaustive hypothetical pairs
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(series) of logical or mathematical system and corresponding 'truth-value' (e.g., 't' or 'not t')
outcome.

Finally, it is suggested that this generalized format of the Duality Principle offers a constructive
computational alternative to GIT's failing of Hilbert's famous 'Mathematical Program' – to base
all of Mathematics on the basis of Logic (e.g., and moreover attempt to base the whole of Science
upon the foundations of such a logical-mathematical structure); This is because GIT essentially
proved that any exhaustive hypothetical (SRONCS) Mathematical System (e.g., of the form:
CR{S,t}→ 'not t') necessarily leads to both 'logical inconsistency' and 'mathematical inconsis‐
tency' – i.e., as also indicated by the Duality Principle's analysis of any such SRONCS compu‐
tational structure); As such, GIT evinces – as does the Duality Principle, that such SRONCS
computational structure cannot be computed, e.g., from within the confinements of any such
SRONCS Mathematical System… However, since GIT does not go further to investigate
whether any such specific (apparent SRONCS) computational system can determine empirical‐
ly whether any given statement (found within that System) is 'true' or 'false', then the theoretical
assertion made by GIT is that for any given (exhaustive hypothetical) mathematical system
there exist certain SRONCS statement/s which cannot be proven from within such system…
Hence, the theoretical ramification of GIT was taken to indicate that the whole of Logic and
Mathematics cannot be based on any exhaustive hypothetical logical or mathematical system
(i.e., regardless of its potential complexity etc.) – which essentially failed Hilbert's 'Mathemat‐
ical Program' to base the whole of Mathematics (e.g., and by extension potentially also the
whole of deductive and inductive Science) upon the foundations of any given logical (or
mathematical system)… However, if we are to accept the Duality Principle's (generalized
format) proof for the specifically defined logical or mathematical systems – i.e., of the form:
CR{S,t}→['t' or 'not t'] for which there exist an empirical capacity to determine whether any
given statement found within such system/s is 'true' or 'false', then the Duality Principle in fact
proves that for such (empirically determinable) logical or mathematical systems there exists a
conceptually higher-ordered computational framework (e.g., 'D2') which can determine the
simultaneous "co-occurrences" of any exhaustive hypothetical series of 'statement' and 'true'
or 'false' pairs! Thus, the Duality Principle in effect offers a higher-ordered 'hierarchical-
dualistic' ('D2') alternative (i.e., for those specific logical or mathematical systems for which
there is a known capacity to determine the "true" or "false" value of any given statement) – to
GIT's asserted conceptual computational inability to determine the consistency or computa‐
bility of any mathematical system that can contain a SRONCS statement!

Therefore, it may be said that GIT proved the inevitable 'logical inconsistency' and 'computa‐
tional indeterminacy' of any given SRONCS statement – and subsequently 'extrapolated' from
the existence of such 'logically inconsistent' and 'computationally indeterminable' SRONCS
statements that the whole of Logic or Mathematics is "flawed" in that there is no possibility to
construct any exhaustive hypothetical logical or mathematical system that will be free of any
such logical inconsistencies or computational indeterminacy… In contrast, the (generalized)
Duality Principle views the existence of any such SRONCS statement/s – as embedded within
the general SROCS/SRONCS scientific computational structure and asserts that for any such
scientific (e.g., inductive or deductive) SROCS/SRONCS structure for which there is a capacity
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to determine whether any given statement possesses a "true" or "false" value there must exist
a conceptually higher-ordered (singular) 'D2' computational framework that is capable of
computing the simultaneous "co-occurrences" of any series of pairs of 'statement' and 'true' or
'false'; Hence, the (generalized) Duality Principle evinces the existence of a whole series of
(deductive or inductive) scientific SROCS/SRONCS paradigms for which there is an empiri‐
cally proven capacity to determine the truth value (e.g., "true" or "false") of any given state‐
ment/s – which point at the (inevitable) existence of a conceptually higher-ordered (singular)
'D2 a-causal' computational framework that computes any exhaustive hypothetical series of
statement and truth value pairs… Therefore, the Duality Principle in fact replaces GIT's strict
assertion wherein it is not possible to construct any logically consistent and computationally
determinable logical or mathematical system – instead pointing at the existence of a whole
series of inductive or deductive (apparently SROCS/SRONCS) computational systems for
which there exists an empirically proven capacity to determine whether any given statement
is 'true' or 'false' and which is necessarily computed by that singular conceptually higher-
ordered 'D2 a-causal' computational framework that can compute the simultaneous "co-
occurrences" of any 'statement' and 'true'/'false' value. Hence, the (generalized) Duality
Principle points at the existence of a singular conceptually higher-ordered 'D2' computational
framework – upon which all of the empirically 'known' (or 'knowable') inductive or deductive
relationships has to be based; It is therefore suggested that a new hierarchical-dualistic
formalization of (deductive and inductive) Science has to be anchored in- and based upon- this
singular conceptually higher-ordered 'D2 a-causal' computational framework, which has been
previously shown to be no different than the Computational Unified Field Theory's (CUFT)
D2 Universal Computational Principle ('‘') based rapid series of Universal Simultaneous
Computational Frames (USCF's)…

Therefore, the Duality Principle's (generalized) resolution of GIT consists of the precise
definition of only those deductive systems or statements possessing the (apparent) SROCS
form:

CR{{x,y}→ 'y' or 'not y' /di1…din; or

CR{S,t}→ 't' or 'not t' /di1…din

which are known empirically to be capable of determining whether any given 'y' element (or
value) "exists" or "doesn't exist" or whether a given System or statement possesses a 'true' or
'false' value (e.g., as defined by that System or statement);

Indeed, based on this (narrower) definition of only those deductive (apparent) SROCS
paradigms for which there is a capacity to determine the "existence" or "non-existence" of a
particular 'y' value or 'truth value' (i.e., 'true' [t] or 'false' [f]) the (generalized) Duality Principle
proves that there must exist a conceptually higher-ordered (singular) 'a-causal D2' computa‐
tional framework which can compute the simultaneous "co-occurrences" of any exhaustive
hypothetical pairs of the deductive system's (or statement's) abovementioned 'x' and 'y' factors
or of any exhaustive hypothetical pairs of 'S' and 't' values, thus:

D2 :  ( {S {1...n}, t}i …  {S {1...n}, t}z ,  or  {x{1...n}i, yi}…{x{1...n}z, yz} )
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Note that this particular definition of the (generalized) Duality Principle asserts that for all of
those deductive systems (or statements) for which there exists an empirical proof for their
capacity to determine the "existence" or "non-existence" of any particular 'y' element/s (or
factor/s) or any particular 't' value (e.g., 'true' or 'false') – the Duality Principle proves that there
must exist a conceptually higher-ordered 'D2 a-causal' computational framework which can
compute the simultaneous "co-occurrences" of any exhaustive hypothetical series of 'S' and 't'
pairs or of 'x' and 'y' pairs; This implies that through the narrower definition of only those
empirical deductive computational systems (or statements) for which there is a capacity to
determine their (particular) 'y' or 'truth value' – the (generalized) Duality Principle is able to
go beyond GIT's negative SRONCS' assertion wherein for all logical or mathematical systems
there exist specific statements that cannot be determined from (within that system) or which
lead to logical inconsistency (of that system), thereby opening the door for a novel 'hierarchical-
dualistic' definition of those deductive systems that can be known and which do not lead to
any logical inconsistencies…

Finally, it is suggested that based on the equivalence of GIT (deductive) SROCS computational
structure to all (previously: Bentwich, 2011d) analyzed (inductive) SROCS scientific para‐
digms:

PR{x,y}→ 'y' or 'not y' /di1…din; or

CR{{x,y}→ 'y' or 'not y' /di1…din;

Then according to the Duality Principle's computational-empirical proof (Bentwich, 2011c &
d), i.e. indicating that it is not possible (in principle) to compute the "existence" or "non-
existence" of any such particular 'y' entity (or value) based on its direct (or indirect) physical
or conceptual relationship/s with another 'x' entity (e.g., at any 'di1…din' computational level/
s) – but rather the empirically proven capacity of specific computational systems to compute
the simultaneous "co-occurrences" of any (exhaustive hypothetical) series of pairs of 'x' and 'y'
(occurring at any known given spatial-temporal point/s or at any known computational level/
s or instance/s). Indeed, based on the (abovementioned) Duality Principle's (generalized)
particular definition of any such inductive or deductive SROCS scientific paradigm as
possessing both the (above outlined) inductive or deductive SROCS computational structure
and the empirical capacity to determine whether any given 'y' element "exists" or "doesn't
exist", as well as the Duality Principle's proof for the existence of a conceptually higher-ordered
(singular) 'D2 a-causal' (USCF's based) computational framework – then this evinces the fact
that all empirically determinable scientific (inductive or deductive) SROCS paradigms must
all be computed by this singular conceptually higher-ordered D2 USCF's series computational
framework…

Therefore, the next (logical) step may be to consider all of the previously demonstrated
scientific SROCS paradigms constrained by the Duality Principle (including: Darwin's Natural
Selection Principle, the Genetic Encoding Hypothesis, Neuroscience's (materialistic-reduc‐
tionistic) Psycho-Physical Problem of human consciousness, as well as Gödel's Incompleteness
Theorem's replacement by the generalized Duality Principle's proof for the capacity to
determine the simultaneous "co-occurrences" of any 'x' and 'y' (deductive or inductive)
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exhaustive hypothetical pairs (e.g., for all those empirical computational systems for which
there is a known empirical capacity to determine the "existence" or "non-existence" of any given
'y' element or value/s); Specifically, the next section attempts to fully integrate between all
known (any determinable) inductive or deductive scientific SROCS paradigms (e.g., delineat‐
ed previously: Bentwich, 2012: a & b, and above) as necessarily comprising- and being
embedded within- the singular conceptually higher-ordered 'D2 a-causal' computational
framework which was already shown to be no other than the CUFT's rapid series of USCF's
computed solely by the Universal Computational Principle, '‘').

Previously (Bentwich, 2012b) it  was shown that each of a series of key scientific SROCS
paradigms (including: Darwin's Natural Selection Principle, the Genetic Encoding Hypothe‐
sis and Neuroscience's Psycho-Physical Problem) are necessarily constrained by the Duali‐
ty Principle – indicating that their empirically proven capacity to determine the "existence"
or "non-existence" of their (particular) 'y' element may not be based on any direct or indirect
physical interaction between that given 'y' element and any (exhaustive hypothetical) x-series of the
form:

SROCS: PR{x,y}→['y' or 'not 'y'\/di1…din

Instead, the Duality Principle pointed at the (inevitable) existence of a conceptually higher-
ordered 'D2 a-causal' computational framework which is capable of computing the simulta‐
neous "co-occurrences" of any (exhaustive hypothetical) 'x' and 'y' pairs series – as embedded
within the Computational Unified Field Theory's singular D2 rapid series of USCF's (which
are computed by the Universal Computational Principle, '‘'); Thus, for instance, both Darwin's
Natural Selection Principle's SROCS and (associated) Genetic Encoding SROCS computational
structures were shown to constrained by the Duality Principle – pointing at an (inevitable)
singular conceptually higher-ordered 'D2 a-causal' USCF's (rapid) series which is computed
by the Universal Computational Principle and which computes the simultaneous "co-occur‐
rences" of any exhaustive hypothetical series of 'organism' ('o') and 'Environmental Factors'
(E(1…n)) or of 'Genetic Factors' and 'Phenotype property', or of Genetic Encoding and Protein
Synthesis' etc. Likewise, it was hypothesized that the four computational SROCS levels
constituting Neuroscience's (materialistic-reductionistic) Psycho-Physical Problem are also
necessarily constrained by the Duality Principle – also pointing at the same singular concep‐
tually higher-ordered 'D2 a-causal' computational framework constituting the rapid USCF's
series that is computed by the Universal Computational Principle ('‘'), which also embeds
within each of those rapid series of USCF's the simultaneous "co-occurrences" of any (exhaus‐
tive hypothetical) 'Psychophysical Stimulus' and (corresponding) 'Neural Activation' pairs; or
any 'Neural Activation' and 'Functional Activation' pairs, or any 'Functional Activation' and
'Pheneomenological Experience' pairs; or any 'Phenomenological Experience' and 'Self-
Consciousness' pairs… In much the same manner, the abovementioned analysis offered by the
generalized Duality Principle for Gödel's Incompleteness Theorem (GIT) and subsequent
(narrower) definition of all those scientific (inductive or deductive) SROCS paradigms (which
can be determined empirically) also pointed at the existence of a singular conceptually higher-
ordered 'D2 a-causal' USCF's based computational framework that can compute any (exhaus‐
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tive hypothetical) 'x' and 'y' pairs series as "co-occurring" simultaneously (e.g., as embedded
within any single or multiple USCF's frames).

Thus, an application of one of the key theoretical postulates of the 'Computational Unified
Field Theory' (CUFT), namely: the computational 'Duality Principle' to a series of central
(inductive or deductive) scientific SROCS paradigms (including: Darwin's Natural Selection
Principle, the Genetic Encoding hypothesis, Neuroscience's Psycho-Physical Problem and
'Gödel's Incompleteness Theorem' and broader hierarchical-dualistic reformalization of all
determinable deductive apparently SROCS paradigms) pointed at the need to reformulate all
such scientific SROCS paradigms based on a singular conceptually higher-ordered 'D2 a-
causal' computational framework which was previously shown (Bentwich, 2012: a & b) to be
no other than the 'Universal Computational Principle' computed rapid series of USCF's (as
delineated by the Computational Unified Field Theory); There are several potentially far
reaching theoretical ramifications for this new hypothetical assertion made by the Computa‐
tional Unified Field Theory (CUFT) and embedded computational 'Duality Principle': First, to
the extent that the CUFT and Duality Principle's (abovementioned) applied scientific SROCS
paradigms (e.g., including: Darwin's Natural Selection Principle and Genetic Encoding
hypothesis, Neuroscience's Psycho-Physical Problem and Gödel's Incompleteness Theorem
etc.) may be corroborated, then we must accept that all of these inductive and deductive
scientific paradigms must be reformulated based on the recognition of a singular conceptually
higher-ordered CUFT's based 'D2 a-causal' USCF's computational framework;

Specifically, the acceptance of the Duality Principle – e.g., as one of the key postulates of the
CUFT as well as a basic constraint for each of these major scientific paradigms forces us to
relinquish the current 'material-causal' working assumption underlying each of these scientific
SROCS paradigms (i.e., of the general form: PR{x,y}→['y' or 'not y'] or CR{x.y}→['y' or 'not y']
or PR{S,t}→['t' or 'not t'], as explained above); Thus, instead of Darwin's Natural Selection
SROCS paradigm wherein it is assumed that it is the direct physical interaction between an
'organism' and an (exhaustive hypothetical) series of 'Environmental Factors' that materially
causes the "existence" or "extinction" (e.g., non-existence) of a given organism – the Duality
Principle points at the existence of a conceptually higher-ordered 'D2 a-causal' computational
framework which computes the simultaneous "co-occurrences" of any given 'organism' and
corresponding 'Environmental Factors' pair/s (e.g., comprising any particular Universal
Simultaneous Computational Frame [USCF's] frame); Likewise, instead of the basic 'Genetic
Encoding' hypothesis underlying much of modern Genetics and Biology – wherein it is
assumed that it is the material-causal (direct or indirect) relationship/s between a given
'Genetic Factors' and particular 'Phenotypic Property' (or properties) which determines
whether any such Phenotypic Property shall "exist" or "not exist"; or wherein it is assumed that
it is the direct or indirect physical interaction/s between a particular 'Genetic Encoding' process
and certain 'Protein Synthesis' process/es that determines whether or not any given protein/s
shall be synthesized (e.g., or vice versa) (Bentwich, 2012b) – the Duality Principle asserts that
it is not possible in principle to determine the "existence" or "non-existence" of any such
(particular) 'y' entity (e.g., 'Phenotypic Property' or 'Protein Synthesis' etc.) based on its direct
or indirect physical interaction with any exhaustive hypothetical series of 'x factors'; Instead,
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the Duality Principle (once again) points at the existence of a conceptually higher-ordered 'D2
a-causal' USCF's based computation of the simultaneous "co-occurrences" of any exhaustive
hypothetical pairs series of any such 'Genetic Factors' and (particular) 'Phenotypic Property',
or of any 'Genetic Encoding' and 'Protein Synthesis' etc. – all computed simultaneously by the
singular conceptually higher-ordered 'D2 a-causal' Universal Computational Principle ('‘')
which are embedded within its series of rapidly computed USCF's… In much the same manner,
the Duality Principle challenges the currently 'materialistic-reductionistic' working hypothesis
underlying Neuroscience's assumption whereby any of the (four level) Psycho-Physical
Problem's SROCS paradigms asserting that any of the four levels of human Consciousness is
necessarily caused by a (direct or indirect) material interaction/s between a certain stimulus
and corresponding neural activation pattern (e.g., essentially replicating the above- and
previous mentioned SROCS computational structure: Bentwich 2012b); Instead, the Duality
Principle evinces that any of these (four leveled SROCS) 'x-y' pairs relating to various aspects
of the human Consciousness is computed simultaneously as "co-occurring" pairs by the
singular conceptually higher-ordered 'D2 a-causal' Universal Computational Principle as
embedded within the rapid series of USCF's frames… Finally, it was suggested (above) that
Gödel's Incompleteness Theorem (GIT) may also replicate the SROCS computational structure
and therefore may need to give way to the Duality Principle's (generalized) assertion that for
all of those deductive paradigms (or statement/s or instances) for which there is a known
empirical capability to determine the "existence" or "non-existence" of any given 'y' entity (or
value) or of any given 'truth-value' definition ("t": 'true' or 'false'), there must exist a concep‐
tually higher-ordered (singular) 'D2 a-causal' computational framework which is synonymous
to the Universal Computational Principle's that is capable of determining the simultaneous
"co-occurrences" of any exhaustive hypothetical series of such deductive 'x' and 'y', or 'S' and
't' pairs which are necessarily embedded within the rapid series of USCF's). Therefore, the
acceptance of the Duality Principle as embedded within the CUFT's rapid series of ('Universal
Computational Principle' produced) USCF's and as constraining any of the (abovementioned)
scientific SROCS paradigms necessarily calls for the reformulation of each and every one of
these SROCS paradigms based on the existence of the CUFT's asserted singular conceptually
higher-ordered Universal Computational Principle's 'D2 a-causal' computed rapid series of
USCF's (e.g., instead of these scientific SROCS' current asserted 'material-causal' determination
of any particular 'y' factor based on its direct or indirect physical interaction/s with another
exhaustive hypothetical series of 'x' factors)…

Second, based on the Duality Principle's conceptual computational proof for the singularity of
the 'D2 a-causal' computational framework – i.e., as necessarily computing all apparent SROCS
paradigms' 'x' and 'y' (direct or indirect) relationship/s, and as embedded within the Universal
Computational Principle's rapid computation of the series of USCF's, we must accept the
notion wherein all of the abovementioned scientific SROCS paradigms must be computed
simultaneously as "co-occurring" (particular) 'x' and 'y' (inductive or deductive) pairs by the
Universal Computational Principle ('‘') through its computation of the rapid series of USCF's…
Indeed, if we were to assemble all of the Duality Principle's (earlier proven: Bentwich, 2012: a
& b) SROCS' conceptually higher-ordered 'D2' computational levels which were shown to
(alone) be capable of computing the "co-occurrences" of any (particular) 'x' and 'y' factors we
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would obtain a series of SROCS scientific paradigms that are all shown (by the Duality
Principle) to be computed by the conceptually higher-ordered (singular) D2 'a-causal' com‐
putational framework:

N.S.:D2: [{E{1...n}, o}st1; {E{1...n}, o}st2... {E{1...n}, o}stn].

G.F – P.S.:D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti;...{G{1...n}, 'phn(o)' }stn].

G.E. – P.S.:D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ; Ge{1...n}, pn-
synth (o-phi)}stn]

Psychophysical:D2: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }]

Functional: D2: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)]

Phen.: D2: [{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)]

Self: D2: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} st-(i+n)]

GIT:D2: ([{S{1...n}, t}i … {S{1...n}, t}z], or [{x{1...n}i, yi} … {x{1...n}z, yz}])

But, since it was already proven by the Duality Principle that this singular conceptually higher-
ordered 'D2 a-causal' computation cannot be reduced to any direct or indirect material interaction/
s between any (particular) exhaustive series of 'x' factor/s and any 'y' entity (or between any
exhaustive series of logical or mathematical Systems or statement/s and any of their specific
'truth-value' definitions (Bentwich, 2012: a & b); and since the Computational Unified Field
Theory (CUFT) evinced the existence of a rapid series of Universal Simultaneous Computa‐
tional Frames (USCF's) which was postulated to be computed (e.g., at an extremely rapid rate:
'c2/h') by the singular Universal Computational Principle ('‘') – i.e., with no "material" entity
existing "in-between" any two subsequent USCF's (frames); then it follows that all of the
abovementioned scientific SROCS paradigms must be computed based on the CUFT's singular
conceptually higher-ordered 'D2 a-causal' Universal Computational/Consciousness Principle
('‘') as part of its (rapid) computation of the USCF's series – with no material entity, 'mass',
'energy', 'space' or 'time' object/s or event/s, factor/s or process/es etc. existing "in-between" any
USCF's frames…

4. The universal computational principle's paradigmatic shift:
Transcending cartesian dualism

Based on the above demonstration of the basic constraint imposed by the (singular) Universal
Computational/Consciousness Principle ('‘') upon the computation of any hypothetical
(empirically knowable) 'x-y' relationship (or phenomenon), the next logical question would
be: what may be the possible relationship between this conceptually higher-ordered, singular
Universal Consciousness Principle and out individual human Consciousness? (Interestingly
enough, as we be shown below, posing such a question may have significant theoretical
ramifications with regards to some of the most basic tenets underlying modern Cartesian
Science, i.e., including the basic tacit assumption wherein the "objective" physical reality may
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be separated from the "subjective" Consciousness observing or measuring such objective
phenomenon…);

A natural starting point for exploring this important question may be related to the Duality
Principle's (previous) analysis of Neuroscience's current SROCS computational Psychophys‐
ical Problem (PPP) of human Consciousness (Bentwich, 2012b): This is because the above
analysis of Neuroscience's PPP indicated that all four computational levels of Neuroscience's
SROCS PPP computational structure are constrained by the same (basic) Duality Principle,
thereby pointing at the (singular) Universal Computational Principle as computing the
"simultaneous co-occurrences" of all of these multifarious (e.g., Psychophysical, Functional,
Phenomenal, Self) 'x-y' pairs. It was moreover shown (above and previously) that the Universal
Computational/Consciousness Principle is responsible for the simultaneous computation of
all "co-occurring" PPP, (quantum and relativistic) physical relationships, as well as all (empir‐
ically knowable) inductive and deductive 'x-y' pairs; We thus arrive at the inevitable conclusion
that all (quantum and relativistic) 'x-y' physical relationships, all exhaustive hypothetical
inductive or deductive 'x-y' relationships, as well as all human Consciousness Psychophysical
'x-y' relationships must be solely produced- sustained- and evolved- by this (singular)
Universal Computation/Consciousness Principle, and moreover that this Universal Con‐
sciousness Principle comprises the sole "reality" underlying all such (secondary computation‐
al) phenomenal relationships…

But, if indeed the sole "reality" underlying all physical, inductive, deductive and individu‐
al Consciousness (Psychophysical) 'x-y' phenomenal relationships is the Universal Conscious‐
ness Principle, then this means that in reality there is only a singular Universal Consciousness
Principle which produces all apparent physical, inductive, deductive or individual human
Consciousness  (secondary computational)  phenomena (e.g.,  comprising of  all  exhaustive
hypothetical  empirically  knowable  'x-y'  pairs);  In  this  respect,  the  singular  Universal
Consciousness Principle becomes the sole "reality" which supersedes- (entirely) constrains-
all apparent (quantum or relativistic) phenomenal 'x-y' relationships, or indeed any induc‐
tive or deductive or any individual human Consciousness 'x-y' relationships… Obviously,
such  a  profound  realization  signifies  a  major  'paradigmatic  shift'  in  Cartesian  Science's
(contemporary)  theoretical  framework  which  assumes  that  all  natural  phenomena  are
reducible  to  the  analysis  of  fundamental  (SROCS)  'x-y'  relationships,  wherein  the  "exis‐
tence" or "non-existence" of any given 'y' element, value, phenomenon or process etc. can be
determined solely based on its direct or indirect physical interactions with another (exhaus‐
tive  hypothetical)  series  of  'x'  factor/s;  Instead,  the  acceptance  of  the  CUFT's  assertion
regarding the sole existence of a singular Universal Computational/Consciousness Princi‐
ple ('י') that is (solely) responsible for the production- sustenance- and possible evolution- of
all quantum and relativistic physical relationships, all inductive or deductive (empirically
knowable) relationships and all individual human Consciousness (psychophysical) relation‐
ships  –  represents  a  basic  shift  from a  purely  'materialistic-reductionistic'  Cartesian  ap‐
proach to the realization that the sole "reality" underlying all phenomenal physical, inductive,
deductive or individual human consciousness relationships is only this singular Universal
Computational/Consciousness Principle…
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However, in order to fully appreciate the potential theoretical significance of this Universal
Computation/Consciousness Principle paradigmatic shift, let's focus our attention on the
"mechanics" of this Universal Consciousness Principle's production- sustenance- and evolu‐
tion- of all (abovementioned) quantum and relativistic physical relationships, inductive or
deductive relationships or individual human Consciousness relationships; If we were to take
a closer look at the operation of this Universal Computational/Consciousness Principle (''') and
its production- sustenance- and (possible) evolution- of any of these physical, inductive,
deductive or individual human Consciousness 'x-y' relationships we would realize a few
important points:

a. Based on the CUFT's delineation of the operation of this (singular) Universal Computa‐
tional/Consciousness Principle (alongside the Duality Principle's assertion regarding the
Universal Computational/Consciousness Principle's computation of the "simultaneous
co-occurrences" of all physical, inductive or deductive 'x-y' pairs) we realize that all
exhaustive hypothetical physical, inductive, deductive or individual human Conscious‐
ness psychophysical 'x-y' pairs must be computed simultaneously by the same Universal
Computational/Consciousness Principle – e.g., as embedded within single or multiple
USCF's frame/s; As noted above (and previously), such a conceptually higher-ordered
(singular) Universal Computational/Consciousness Principle's 'A-Causal D2' computa‐
tion negates the possibility of any real "material-causal" relationship/s existing between
any of these 'x→y' pairs series (but instead advocates the Universal Computational/
Consciousness Principle's sole computation of any singular or multiple USCF's "simulta‐
neous co-occurrences" of an exhaustive hypothetical series of 'x-y' pairs…) Again, as
indicated previously, this implies that for instance instead of the Darwin's Natural
Selection Principle's postulation of the existence of a 'material-causal' relationship existing
between a given organism's Environmental Factors and their determination of that
organism's "existence" or "extinction" based on their direct (or indirect) physical interac‐
tions with that organism, the Universal Computational/Consciousness Principle indicates
that in "reality" there cannot be any "material-causal" relationships between the organism
and its Environmental Factors but instead only the Universal Computational/Conscious‐
ness Principle's computation of the "simultaneous co-occurrences" of a series of such
(particular) 'organism' and Environmental Factors (e.g., as embedded within a series of
USCF's). Indeed, based on the (generalized) Duality Principle proof for all inductive or
deductive ('Gödel-like' SROCS) computational paradigms, it becomes clear that there
cannot exist any "real" "material-causal" relationships between any exhaustive hypothet‐
ical (physical quantum or relativistic, inductive or deductive) 'x-y' entities, but only the
conceptually higher-ordered Universal Computational/Consciousness Principle's
computation of the "simultaneous co-occurrences" of such pairs across a series of USCF's.

The CUFT's 'Computational Invariance Principle' and 'Universal Consciousness Principle'
theoretical postulates which prove that only the 'computationally invariant' Universal
Computational Principle ('י') may be regarded as "real" whereas the 'computationally
variant' (secondary computational) physical properties of 'space', 'time', 'energy' and
'mass' must be regarded as "illusory"; and that since only this singular Universal Com‐
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putational Principle exists both "in-between" any two (subsequent) USCF's and (solely)
produces any of these "illusory" (secondary computational) physical properties – then this
Universal Computational Principle must also possess the 'Universal Consciousness
Principle' functions of being capable of producing- sustaining-/retaining- and evolving-
any of the numerous spatial pixels properties across any series of USCF frame;

b. Therefore, the CUFT's Universal Consciousness Principle (e.g., augmented by the CUFT's
'Computational Invariance' postulate) asserts that the sole existence of any phenomenal
(secondary computational) physical property (of any given object or event) is in truth
entirely produced- retained- and evolved- solely and singularly based on the "reality" of
this singular Universal Consciousness which solely "exists" both "in-between" any (two
subsequent) USCF's and solely produces any of these (secondary computational) physical
properties; Note that since none of the 'physical' properties (of 'space', 'time', 'energy' or
'mass') exist "in-between" any (two subsequent) USCF's (e.g., but only the Universal
Consciousness Principle which both produces- all of these USCF's secondary computa‐
tional properties as well as exists "in-between" any two subsequent USCF's), then the sole
"reality" that exists both as producing the USCF's and "in-between" any two such USCF's
is that Universal Consciousness Principle. Likewise, since according to this Universal
Consciousness Principle all four 'physical' properties of 'space', 'time', 'energy' and 'mass'
"exist" – only as 'phenomenal' secondary computational properties of the "real" Universal
Computational Principle's production of the (rapid series of) USCF's (but "vanish" in
between any two such subsequent USCF's), then it is also obvious that no "real" 'material-
causal' relationship can exist between any physical property of an object or an event (e.g.,
found in a particular USCF frame) and any physical property in any subsequent USCF
frame/s… Therefore, we reach the inevitable conclusion that it is only the (singular)
Universal Consciousness Principle which truly "exists" and is solely responsible for the
production- retention- and evolution- of any of the four (secondary computational)
'physical' properties (e.g., of 'space', 'time', 'energy' and 'mass').

c. Hence, the paradigmatic shift portrayed by the CUFT is that instead of current Cartesian
'materialistic-reductionsitic' Science's basic (implicit) assumption wherein any hypothet‐
ical (inductive or deductive) element, entity, phenomenon or process {'y'} can be deter‐
mined solely based on its direct or indirect physical interaction/s with another exhaustive
hypothetical 'x' series (e.g., comprising a SROCS computational structure negated by the
CUFT's Duality Principle for all empirically knowable 'x-y' relationships); the CUFT
proves the existence of a singular (conceptually higher-ordered) Universal Consciousness
(and Computational) Principle which constitutes the sole "reality" that both produces-
retains- and evolves- the (extremely rapid) series of USCF's giving rise to all four (secon‐
dary computational) phenomenal 'physical' properties (e.g., of 'space', 'time', 'energy' and
'mass') and also solely exists "in-between" any (two such) USCF's; Thus, the acceptance of
the CUFT's Universal Consciousness Principle overturns the current Cartesian 'material‐
sitic-reductionistic' scientific paradigm which assumes that the reality is "physical" (e.g.,
represented by a basic SROCS computational structure) – in favor of a "non-material, a-
causal" (singular) 'Universal Consciousness Principle' which is the sole "reality" underly‐
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ing the phenomenal universe (e.g., including all hypothetical quantum and relativistic
physical, inductive or deductive 'x-y' relationships), as well exists "independently" of any
such secondary computational SROCS derived 'physical phenomenal' properties of the
universe…

5. The CUFT's sixth postulate: 'Ontological relativism'

But, if indeed we accept the CUFT's (fifth) 'Universal Consciousness Principle' theoretical
postulate's assertion regarding the sole "reality" of this 'Universal Consciousness Principle' as
(solely) producing- retaining- and evolving- all secondary computational (apparent phenom‐
enal) 'physical' properties (of 'space', 'time', 'energy' and 'mass'), then this may lead to the
recognition of a sixth (hypothetical) theoretical postulate of "Ontological Relativism' – i.e., the
realization that since the only "valid" principle underlying the phenomenal physical universe is that
Universal Consciousness Principle, then our scientific ontological knowledge of the singular "reality"
must be based solely on the Universal Consciousness Principle: i.e., specifically on our perception of
that Universal Consciousness Principle through our own individual human Consciousness' three states
of human Consciousness!

Formally presented, this sixth CUFT's 'Ontological Relativism' postulate appears through a
modification of the (previously presented) Universal Computational Formula as the 'Universal
Consciousness Formula' thus:

ordered Universal Computational/Consciousness Principle's computation of the "simultaneous co-occurrences" of such pairs across 

a series of USCF's.         

The CUFT's 'Computational Invariance Principle' and 'Universal Consciousness Principle' theoretical postulates which prove that 

only the 'computationally invariant' Universal Computational Principle ('י') may be regarded as "real" whereas the 'computationally 

variant' (secondary computational) physical properties of 'space', 'time', 'energy' and 'mass' must be regarded as "illusory"; and that 

since only this singular Universal Computational Principle exists both "in-between" any two (subsequent) USCF's and (solely) 

produces any of these "illusory" (secondary computational) physical properties – then this Universal Computational Principle must 

also possess the 'Universal Consciousness Principle' functions of being capable of producing- sustaining-/retaining- and evolving- 

any of the numerous spatial pixels properties across any series of USCF frame;  

b. Therefore, the CUFT's Universal Consciousness Principle (e.g., augmented by the CUFT's 'Computational Invariance' 

postulate) asserts that the sole existence of any phenomenal (secondary computational) physical property (of any given object or 

event) is in truth entirely produced- retained- and evolved- solely and singularly based on the "reality" of this singular Universal 

Consciousness which solely "exists" both "in-between" any (two subsequent) USCF's and solely produces any of these (secondary 

computational) physical properties;  Note that since none of the 'physical' properties (of 'space', 'time', 'energy' or 'mass') exist "in-

between" any (two subsequent) USCF's (e.g., but only the Universal Consciousness Principle which both produces- all of these 

USCF's secondary computational properties as well as exists "in-between" any two subsequent USCF's), then the sole "reality" that 

exists both as producing the USCF's and  "in-between" any two such USCF's is that Universal Consciousness Principle. Likewise, 

since according to this Universal Consciousness Principle all four 'physical' properties of 'space', 'time', 'energy' and 'mass' "exist" – 

only as 'phenomenal' secondary computational properties of the "real" Universal Computational Principle's production of the 

(rapid series of) USCF's (but "vanish" in between any two such subsequent USCF's), then it is also obvious that no "real" 'material-

causal' relationship can exist between any physical property of an object or an event (e.g., found in a particular USCF frame and 

any physical property in any subsequent USCF frame/s)… Therefore, we reach the inevitable conclusion that it is only the 

(singular) Universal Consciousness Principle which truly "exists" and is solely responsible for the production- retention- and 

evolution- of any of the four (secondary computational) 'physical' properties (e.g., of 'space', 'time', 'energy' and 'mass').  

c. Hence, the paradigmatic shift portrayed by the CUFT is that instead of current Cartesian 'materialistic-reductionsitic' 

Science's basic (implicit) assumption wherein any hypothetical (inductive or deductive) element, entity, phenomenon or process 

{'y'} can be determined solely based on its direct or indirect physical interaction/s with another exhaustive hypothetical 'x' series 

(e.g., comprising a SROCS computational structure negated by the CUFT's Duality Principle for all empirically knowable 'x-y' 

relationships); the CUFT proves the existence of a singular (conceptually higher-ordered) Universal Consciousness (and 

Computational) Principle which constitutes the sole "reality" that both produces- retains- and evolves- the (extremely rapid) series 

of USCF's giving rise to all four (secondary computational) phenomenal 'physical' properties (e.g., of 'space', 'time', 'energy' and 

'mass') and also solely exists "in-between" any (two such) USCF's; Thus, the acceptance of the CUFT's Universal Consciousness 

Principle overturns the current Cartesian 'materialsitic-reductionistic' scientific paradigm which assumes that the reality is 

"physical" (e.g., represented by a basic SROCS computational structure) – in favor of a "non-material, a-causal" (singular) 'Universal 

Consciousness Principle' which is the sole "reality" underlying the phenomenal universe (e.g., including all hypothetical quantum 

and relativistic physical, inductive or deductive 'x-y' relationships), as well exists "independently" of any such secondary 

computational SROCS derived 'physical phenomenal' properties of the universe…           

5. The CUFT's sixth postulate: 'Ontological relativism' 

But, if indeed we accept the CUFT's (fifth) 'Universal Consciousness Principle' theoretical postulate's assertion regarding the sole 

"reality" of this 'Universal Consciousness Principle' as (solely) producing- retaining- and evolving- all secondary computational 

(apparent phenomenal) 'physical' properties (of 'space', 'time', 'energy' and 'mass'), then this may lead to the recognition of a sixth 

(hypothetical) theoretical postulate of "Ontological Relativism' – i.e., the realization that since the only "valid" principle underlying the 

phenomenal physical universe is that Universal Consciousness Principle, then our scientific ontological knowledge of the singular "reality" 

must be based solely on the Universal Consciousness Principle: that is specifically on our perception of that Universal Consciousness Principle 

through our own individual human Consciousness' three states of human Consciousness!  

Formally presented, this sixth CUFT's 'Ontological Relativism' postulate appears through a modification of the (previously 

presented) Universal Computational Formula as the 'Universal Consciousness Formula' thus:  

  2( ) w(1... ):c =sxe , ,

h t m

i d s י  
 Inline formula 

wherein our sole knowledge of the singular "reality" of the 'Universal Consciousness Principle' (') is gained through our individual 

human Consciousness which comprises three states of individual human Consciousness (ת), namely: "waking" {'w'} (e.g., solely in 

which we experience the four abovementioned secondary computational 'physical' properties of 'space', 'time', 'energy' and 'mass'), 

"dream" {'d'} (in which we experience quite a similar 'dream-physical' universe – also produced solely by the singular Universal 

Consciousness Principle), and "deep sleep" {'S'}  (e.g., in which we only experience solely this singular 'Universal Consciousness 

Principle' – independently of any of its produced secondary computational 'physical' USCF's derivatives of 'space', 'time', 'energy' 

wherein our sole knowledge of the singular "reality" of the 'Universal Consciousness Principle'
(') is gained through our individual human Consciousness which comprises three states of
individual human Consciousness (i), namely: "waking" {'w'} (e.g., solely in which we experi‐
ence the four abovementioned secondary computational 'physical' properties of 'space', 'time',
'energy' and 'mass'), "dream" {'d'} (in which we experience quite a similar 'dream-physical'
universe – also produced solely by the singular Universal Consciousness Principle), and "deep
sleep" {'S'} (e.g., in which we only experience solely this singular 'Universal Consciousness
Principle' – independently of any of its produced secondary computational 'physical' USCF's
derivatives of 'space', 'time', 'energy' and 'mass')… Furthermore, it is hypothesized that the
ontological knowledge represented by the 'waking' state of (individual) human Consciousness
spans between "1" (e.g., representing our normal individual human Consciousness sensory
perception and cognitive ideation) and "∞" (e.g., representing an 'infinitely' expanded indi‐
vidual human Consciousness state which in fact is hypothesized to be identical with the 'pure'
Universal Consciousness Principle ('‘') existing "in-between" any two subsequent USCF's, see
further discussion below).

Indeed, the gist of the CUFT's (sixth) 'Ontological Relativism' postulate is the recognition that
given that all four 'physical' properties (of 'space', 'time', 'energy' and 'mass') merely represent
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'computationally variant' (secondary computational) properties that are hence deemed as
'phenomenal' (or even 'illusory') relative to the 'computationally invariant' 'Universal Con‐
sciousness Principle' ('י') which solely produces- sustains- and evolves- these apparent
phenomenal 'physical' properties (as secondary computational derivatives of the USCF's
series) and which also solely exists "in-between" any two such subsequent USCF's; and that
our sole knowledge of this singular "reality" of the 'Universal Consciousness Principle' (' י')
may only be derived through the three states of (individual) human Consciousness (e.g.,
'waking', 'dream' and 'deep sleep'); then there does not exist any "objective" means for
preferring the "waking" human Consciousness state (i.e., solely in which there appear those
secondary computational phenomenal 'physical' properties of 'space', 'time', 'energy' and
'mass') – upon the two other states of human Consciousness, e.g., "dream" and "deep sleep"!
Thus, all three states of (individual) human Consciousness are solely produced by the singular
"reality" of the 'Universal Consciousness Principle' ('‘') and therefore their corresponding
'ontological knowledge' possesses the same relative ontological validity – i.e., it represents an
apparent ontological phenomenology which is "unreal" relative to the sole reality of their
underlying 'Universal Consciousness Principle'…

Hence, the above formal presentation of the (broader) Universal Consciousness Principle's
delineation of the Universal Computational Formula indicates that our sole knowledge of the
singular "reality" of the Universal Consciousness Principle ('‘') may be derived through the
'Ontological Relativism' of the three states of (individual) human Consciousness (e.g., which
are all deemed as 'phenomenal' or "unreal" relative to the singularity of the Universal Con‐
sciousness Principle)… Therefore, note that a subset of this 'Universal Consciousness Principle's
Formula' constitutes the previously presented special case of the Universal Computational
Formula – e.g., which delineates the production of the (four secondary computational)
'physical' properties of 'space', 'time', 'energy' and 'mass':

and 'mass')… Furthermore, it is hypothesized that the ontological knowledge represented by the 'waking' state of (individual) 

human Consciousness spans between "1" (e.g., representing our normal individual human Consciousness sensory perception and 

cognitive ideation) and "∞" (e.g., representing an 'infinitely' expanded individual human Consciousness state which in fact is 

hypothesized to be identical with the 'pure' Universal Consciousness Principle ('י') existing "in-between" any two subsequent 

USCF's, see further discussion below).    

Indeed, the gist of the CUFT's (sixth) 'Ontological Relativism' postulate is the recognition that given that all four 'physical' 

properties (of 'space', 'time', 'energy' and 'mass') merely represent 'computationally variant' (secondary computational) properties 

that are hence deemed as 'phenomenal' (or even 'illusory') relative to the 'computationally invariant' 'Universal Consciousness 

Principle' ('י') which solely produces- sustains- and evolves- these apparent phenomenal 'physical' properties (as secondary 

computational derivatives of the USCF's series) and which also solely exists "in-between" any two such subsequent USCF's;  and 

that our sole knowledge of this singular "reality" of the 'Universal Consciousness Principle' ('י') may only be derived through the 

three states of (individual) human Consciousness (e.g., 'waking', 'dream' and 'deep sleep'); then there does not exist any "objective" 

means for preferring the "waking" human Consciousness state (i.e., solely in which there appear those secondary computational 

phenomenal 'physical' properties of 'space', 'time', 'energy' and 'mass') – upon the two other states of human Consciousness, e.g., 

"dream" and "deep sleep"! Thus, all three states of (individual) human Consciousness are solely produced by the singular "reality" 

of the 'Universal Consciousness Principle' ('י') and therefore their corresponding 'ontological knowledge' possesses the same 

relative ontological validity – i.e., it represents an apparent ontological phenomenology which is "unreal" relative to the sole reality 

of their underlying 'Universal Consciousness Principle'…  

Hence, the above formal presentation of the (broader) Universal Consciousness Principle's delineation of the Universal 

Computational Formula indicates that our sole knowledge of the singular "reality" of the Universal Consciousness Principle ('י') 
may be derived through the 'Ontological Relativism' of the three states of (individual) human Consciousness (e.g., which are all 

deemed as 'phenomenal' or "unreal" relative to the singularity of the Universal Consciousness Principle)… Therefore, note that a 

subset of this 'Universal Consciousness Principle's Formula' constitutes the previously presented special case of the Universal 

Computational Formula – e.g., which delineates the production of the (four secondary computational) 'physical' properties of 

'space', 'time', 'energy' and 'mass':  

  2(i) w(1 ):c =sxe, d,s
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 Inline formula 

However, in addition to the (individual) 'waking' state of human Consciousness (which was previously presented in the Universal 

Computational Principle), the more generalized Universal Consciousness Formula also incorporates two other individual human 

Consciousness' (corresponding) forms of ontological knowledge of the sole "reality" of the Universal Consciousness Principle– e.g., 

which possess the  same (relative) ontological validity (namely: the ontological knowledge of the Universal Consciousness 

Principle arising from the 'dream' and 'deep sleep' states).    

The potential significance of this generalized formalization of the Universal Consciousness Principle may be threefold: 

a. It fully delineates the various (three) states of our individual human Consciousness' ontological knowledge of the sole 

"reality" of the (singular) 'Universal Consciousness Principle ('י'), thereby providing an exhaustive portrayal of this (newly 

discovered) higher-ordered "reality" underlying the phenomenal universe and beyond it.  

b. It identifies specific empirical instances of our individual human Consciousness which can validate the Universal 

Consciousness Principle's (abovementioned) "mechanics" – i.e., as producing- sustaining- or evolving- all four secondary 

computational 'physical properties in the 'waking' state of individual human Consciousness; as solely existing 

independently of any such 'physical' properties "in-between" any two USCF's frames – as also exemplified in the deep 

sleep state of individual human Consciousness; (and as producing an equivalent 'ontological relativistic' phenomena 

universe in the dream state).   

c. As identifying particular novel empirical predictions stemming from the possibility of manipulating individual human 

Consciousness states – i.e., such as for instance I the case of successful meditative states that may 'expand' the individual 

human Consciousness from its 'standard' 'waking' (1=ת) through a spectrum of expanded individual human 

Consciousness and up to an infinitely expanded individual human Consciousness state (ת=∞) which is hypothesized to be 

identical with the 'pure' Universal Consciousness Principle ('י') which also exists "in-between" any two subsequent USCF's 

frames… (These potential individual human Consciousness expanded spectrum state will be further delineated below.)   

6. The seventh postulate: "Universal Consciousness Spectrum (UCS) 

 Finally, a sixth theoretical postulate is hereby added to the CUFT, namely: the 'Universal Consciousness Spectrum' postulate, which 

hypothesizes that the Universal Consciousness Principle ('י') is capable of expressing a whole spectrum of (individual) human 

Consciousness (degrees), including (but not limited to) the three (abovementioned) states of individual human Consciousness (e.g., 

However, in addition to the (individual) 'waking' state of human Consciousness (which was
previously presented in the Universal Computational Principle), the more generalized Universal
Consciousness Formula also incorporates two other individual human Consciousness' (corre‐
sponding) forms of ontological knowledge of the sole "reality" of the Universal Consciousness
Principle– e.g., which possess the same (relative) ontological validity (namely: the ontological
knowledge of the Universal Consciousness Principle arising from the 'dream' and 'deep sleep'
states).

The potential significance of this generalized formalization of the Universal Consciousness
Principle may be threefold:

a. It fully delineates the various (three) states of our individual human Consciousness'
ontological knowledge of the sole "reality" of the (singular) 'Universal Consciousness
Principle ('‘'), thereby providing an exhaustive portrayal of this (newly discovered)
higher-ordered "reality" underlying the phenomenal universe and beyond it.
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b. It identifies specific empirical instances of our individual human Consciousness which
can validate the Universal Consciousness Principle's (abovementioned) "mechanics" – i.e.,
as producing- sustaining- or evolving- all four secondary computational 'physical
properties in the 'waking' state of individual human Consciousness; as solely existing
independently of any such 'physical' properties "in-between" any two USCF's frames; and
as also exemplified in the deep sleep state of individual human Consciousness; ; and as
producing an equivalent 'ontological relativistic' phenomena universe in the dream state.

c. It identifies particular novel empirical predictions stemming from the possibility of
manipulating individual human Consciousness states – i.e., such as for instance in the
case of successful meditative states that may 'expand' the individual human Conscious‐
ness from its 'standard' 'waking' (i=1) through a spectrum of expanded individual human
Consciousness and up to an infinitely expanded individual human Consciousness state
(i=∞) which is hypothesized to be identical with the 'pure' Universal Consciousness
Principle ('‘') which also exists "in-between" any two subsequent USCF's frames… (This
potential individual human Consciousness' expanded spectrum state will be further
delineated below.)

6. The seventh postulate: “Universal Consciousness Spectrum (UCS)”

Finally, a sixth theoretical postulate is hereby added to the CUFT, namely: the 'Universal
Consciousness Spectrum' postulate, which hypothesizes that the Universal Consciousness
Principle ('‘') is capable of expressing a whole spectrum of (individual) human Consciousness
(degrees), including (but not limited to) the three (abovementioned) states of individual human
Consciousness (e.g., 'waking', 'dream' and 'deep sleep') as well as a myriad of different degrees
of "expansiveness" of that individual human Consciousness in the 'waking' state, represented
(above) in the Universal Consciousness Formula thus:'waking', 'dream' and 'deep sleep') as well as a myriad of different degrees of "expansiveness" of that individual human 

Consciousness in the 'waking' state, represented (above) in the Universal Consciousness Formula thus: 

  2'= (i) w(1... ):c =sxe, d,s

h t m


 Inline formula 

The potential significance of the empirical verification of this sixth 'Universal Consciousness Spectrum postulate is that it would 

indeed enable us to demonstrate that our individual human Consciousness (' ת' ) forms a particular subset of the 'Universal 

Consciousness Principle' ('י') – i.e., which ordinarily conforms to our 'standard' ('1 = ת') (sensory and cognitive) perceptions of the 

'waking' state of Consciousness, but which nevertheless has the potential of experiencing the two "non-waking" states of individual 

human Consciousness (e.g., daily: as the 'dream' and 'deep sleep' states) as well as a whole spectrum of (different degrees of) 

"expansiveness" of the 'waking' state of individual human Consciousness; 

The basic assumption postulated by this 'Universal Consciousness Spectrum' is hence that whereas the Universal Consciousness 

Principle ('י') forms the sole "reality" underling all phenomenal (inductive or deductive), physical or (individual) human 

Consciousness 'x-y' relationships, the individual human Consciousness ('ת') possesses the potential of experiencing the full range of 

this exhaustive Universal Consciousness Principle ('י') including: the three 'standard' states of individual human Consciousness 

(e.g., 'waking', 'dream' and 'deep sleep'), as well as the multifarious degrees of "expansiveness" of this individual human 

Consciousness in the 'waking' state: Specifically, it is hypothesized that the varying degrees of individual human Consciousness 

"expansiveness" (e.g., in the 'waking' state of Consciousness) correspond to its 'inclusiveness' of an increasing number of 'spatial 

pixels' comprising any single or multiple USCF frame/s (wherein the 'inclusiveness' of all exhaustive spatial pixels comprising such 

USCF's – represents its "infinite expansiveness", which is precisely equivalent to the Universal Consciousness production- 

sustenance- and evolution- of the phenomenal physical universe through its series of USCF's)… 

Once again, it is suggested that our capacity to verify (e.g., empirically) this (sixth) 'Universal Consciousness Spectrum' theoretical 

postulate may both validate the complete structure of the CUFT (e.g., as it would demonstrate the fact that the production- 

sustenance- and evolution- of the phenomenal 'physical' universe is entirely produced by the Universal Consciousness Principle, 'י' 
– to which we have "access" through varying degrees of our individual human Consciousness "expansiveness"); as well as open 

new theoretical "vistas" for exploring the potential effects of modulating our individual human Consciousness on the 'physical' 

properties of the world. Hence, what follows is a delineation of a (partial) list of specific empirical predictions made by the 

'Universal Consciousness Spectrum' postulate: 

7. Critical Predictions of the 'Universal Consciousness Spectrum'. 

We last come to delineating a (partial) list of some of the critical empirical predictions of the 'Universal Consciousness Spectrum' 

postulate, which may (specifically) validate this Universal Consciousness Spectrum postulate, as well as (more generally) validate 

the complete structure of the 'Computational Unified Field Theory': 

a. It may be possible to affect certain (secondary computational) 'physical' properties (e.g., of 'space', 'time', 'energy' or mass') 

of a human being whose individual Consciousness is being modulated in such a manner as to manipulate that human 

being's body's 'mass', 'time', 'energy', or 'spatial' values: Essentially, this critical empirical prediction asserts that since 

according to the above Universal Consciousness Formula the individual human Consciousness (ת) is capable of 

experiencing the full spectrum the 'Universal Consciousness Principle's ('י') 'waking' state "expansiveness" – i.e., being 

inclusive of varying degrees of the Universal Consciousness Principle's generated USCF's spatial pixels;  and since all four 

(secondary computational) 'physical' properties (of 'space', 'time', 'energy' and 'mass' are solely produced- retained- or 

evolved- by the Universal Consciousness Principle ('י'); then  it should be possible for a human being to modulate his or 

her individual Consciousness' "expansiveness" is such a manner as to affect that person's physical body's 'mass', 'time', 

'energy' or 'space' values; Empirically, this prediction refers to the potential capacity of qualified "meditators" (e.g., who 

possess the capacity to modulate their individual Consciousness "expansiveness" spectrum) to affect their body's various 

(four) 'physical' properties (through their manipulation of their individual Consciousness spectrum). 

b. Based on these (same) two 'Universal Consciousness Formula' and 'Universal Consciousness Spectrum' tenets it is also 

predicted that such a qualified "meditator"  could also affect their individual Consciousness spectrum "expansiveness" – 

regarding other spatial pixels that are not associated with their own body, e.g., such as the four 'physical' properties of 

various objects and events 'external' to their body; Thus, it should be possible (at least in principle) for such a qualified 

"meditator" to alter any given object's 'spatial', 'temporal', 'mass' or 'energy' values based on their alteration of their 

individual Consciousness "expansiveness" as it relates to the Universal Consciousness Principle's computation of that 

object's USCF's physical properties.  

c. Finally, since the Universal Consciousness Principle is solely responsible for the production- retention- and evolution- of 

any physical object or event (across the relevant series of USCF's); and since this Universal Consciousness Principle is 

exhaustively responsible for this production- sustenance- and evolution of all the spatial pixels in the physical universe 

(e.g., in the "past", "present" and "future"); and since according to the 'Universal Consciousness Spectrum' postulate all of 

The potential significance of the empirical verification of this sixth 'Universal Consciousness
Spectrum postulate is that it would indeed enable us to demonstrate that our individual human
Consciousness (‘i') forms a particular subset of the 'Universal Consciousness Principle' ('‘') –
i.e., which ordinarily conforms to our 'standard' (‘i' = 1') (sensory and cognitive) perceptions
of the 'waking' state of Consciousness, but which nevertheless has the potential of experiencing
the two "non-waking" states of individual human Consciousness (e.g., daily: as the 'dream'
and 'deep sleep' states) as well as a whole spectrum of (different degrees of) "expansiveness"
of the 'waking' state of individual human Consciousness;

The basic assumption postulated by this 'Universal Consciousness Spectrum' is hence that
whereas the Universal Consciousness Principle ('‘') forms the sole "reality" underling all
phenomenal (inductive or deductive), physical or (individual) human Consciousness 'x-y'
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relationships, the individual human Consciousness (‘i') possesses the potential of experiencing
the full range of this exhaustive Universal Consciousness Principle ('‘') including: the three
'standard' states of individual human Consciousness (e.g., 'waking', 'dream' and 'deep sleep'),
as well as the multifarious degrees of "expansiveness" of this individual human Consciousness
in the 'waking' state: Specifically, it is hypothesized that the varying degrees of individual
human Consciousness "expansiveness" (e.g., in the 'waking' state of Consciousness) corre‐
spond to its 'inclusiveness' of an increasing number of 'spatial pixels' comprising any single or
multiple USCF frame/s (wherein the 'inclusiveness' of all exhaustive spatial pixels comprising
such USCF's – represents its "infinite expansiveness", which is precisely equivalent to the
Universal Consciousness production- sustenance- and evolution- of the phenomenal physical
universe through its series of USCF's)…

Once again, it is suggested that our capacity to verify (e.g., empirically) this (sixth) 'Universal
Consciousness Spectrum' theoretical postulate may both validate the complete structure of the
CUFT (e.g., as it would demonstrate the fact that the production- sustenance- and evolution-
of the phenomenal 'physical' universe is entirely produced by the Universal Consciousness
Principle, '‘' – to which we have "access" through varying degrees of our individual human
Consciousness "expansiveness"); as well as open new theoretical "vistas" for exploring the
potential effects of modulating our individual human Consciousness on the 'physical' prop‐
erties of the world. Hence, what follows is a delineation of a (partial) list of specific empirical
predictions made by the 'Universal Consciousness Spectrum' postulate:

7. Critical Predictions of the 'Universal Consciousness Spectrum'

We last come to delineating a (partial) list of some of the critical empirical predictions of the
'Universal Consciousness Spectrum' postulate, which may (specifically) validate this Universal
Consciousness Spectrum postulate, as well as (more generally) validate the complete structure
of the 'Computational Unified Field Theory':

a. It may be possible to affect certain (secondary computational) 'physical' properties (e.g.,
of 'space', 'time', 'energy' or mass') of a human being whose individual Consciousness is
being modulated in such a manner as to manipulate that human being's body's 'mass',
'time', 'energy', or 'spatial' values: Essentially, this critical empirical prediction asserts that
since according to the above Universal Consciousness Formula the individual human
Consciousness (i) is capable of experiencing the full spectrum the 'Universal Conscious‐
ness Principle's ('‘') 'waking' state "expansiveness" – i.e., being inclusive of varying degrees
of the Universal Consciousness Principle's generated USCF's spatial pixels; and since all
four (secondary computational) 'physical' properties (of 'space', 'time', 'energy' and 'mass'
are solely produced- retained- or evolved- by the Universal Consciousness Principle ('‘');
then it should be possible for a human being to modulate his or her individual Con‐
sciousness' "expansiveness" is such a manner as to affect that person's physical body's
'mass', 'time', 'energy' or 'space' values; Empirically, this prediction refers to the potential
capacity of qualified "meditators" (e.g., who possess the capacity to modulate their
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individual Consciousness "expansiveness" spectrum) to affect their body's various (four)
'physical' properties (through their manipulation of their individual Consciousness
spectrum).

b. Based on these (same) two 'Universal Consciousness Formula' and 'Universal Conscious‐
ness Spectrum' tenets it is also predicted that such a qualified "meditator" could also affect
their individual Consciousness spectrum "expansiveness" – regarding other spatial pixels
that are not associated with their own body, e.g., such as the four 'physical' properties of
various objects and events 'external' to their body; Thus, it should be possible (at least in
principle) for such a qualified "meditator" to alter any given object's 'spatial', 'temporal',
'mass' or 'energy' values based on their alteration of their individual Consciousness
"expansiveness" as it relates to the Universal Consciousness Principle's computation of
that object's USCF's physical properties.

c. Finally, since the Universal Consciousness Principle is solely responsible for the produc‐
tion- retention- and evolution- of any physical object or event (across the relevant series
of USCF's); and since this Universal Consciousness Principle is exhaustively responsible for
this production- sustenance- and evolution of all the spatial pixels in the physical universe –
i.e., in the "past", "present" and "future"; and since according to the 'Universal Conscious‐
ness Spectrum' postulate all of these exhaustive spatial pixels comprising all USCF's pixels
comprising the entire physical universe are "accessible" to the individual human Con‐
sciousness "expansiveness" degree; then it should be possible (at least in principle), for
highly qualified "meditators" to manipulate the physical properties of any physical object
or event , e.g., throughout the exhaustive pool of USCF's frames comprising the physical
universe in the "past" and "present", and perhaps even in the "future"…

8. The scientific implications of the CUFT's universal consciousness
principle

We finally arrive at considering some of the potential theoretical ramifications of the CUFT's
Universal Consciousness Principle, the Universal Consciousness Formula and the Universal
Consciousness Spectrum tenets explored in this chapter (as well as their implications for the
generality of the Computational Unified Field Theory and Science in general);

Hence, the current manuscript traces the potential theoretical ramifications of:

a. An 'a-causal' computational framework of the (CUFT's) singular Universal Consciousness
Principle's ('‘') responsible for the (higher-ordered) computation of all exhaustive hypo‐
thetical (e.g., empirically knowable) inductive or deductive 'x-y' pairs series – which leads
to the discovery of a-causal 'Universal Consciousness Principle Computational Program'.

b. An exploration of the CUFT's Universal Consciousness Principle's ('‘') and Duality
Principle's (Bentwich, 2003c, 2004, 2006) reformalization of all (apparent inductive or
deductive) major SROCS computational paradigms (e.g., including: Darwin's 'Natural
Selection Principle' (Darwin, 1859) and associated Genetic Encoding hypothesis, Neuro‐

The Computational Unified Field Theory (CUFT): A Candidate ‘Theory of Everything’
http://dx.doi.org/10.5772/53804

417



science's Psychophysical Problem of human Consciousness and all inductive and deduc‐
tive Gödel-like SROCS paradigms).

c. Theoretical Ramifications of the Universal Consciousness Principle.

8.1. A singular 'A–causal' universal consciousness principle computation of all inductive
and deductive 'X–Y' relationships

We thus begin with an exploration of three potential theoretical ramifications of the CUFT's
description of the operation of the (singular) Universal Consciousness Principle (‘‘') which has
been shown to compute an extremely rapid series of Universal Simultaneous Computational
Frames (USCF's);

The Universal Computational/Consciousness Principle was (previously) shown to encapsulate
a singular higher-ordered 'D2' computation of an 'a-causal' computation of the "simultaneous
co-occurrences" of all exhaustive hypothetical inductive or deductive (e.g., empirically
knowable) 'x-y' pairs series; Therefore, the acceptance of the CUFT's description of the
Universal Consciousness Principle necessarily implies that throughout the various (inductive
or deductive) disciplines of Science we need to shift from the current basic (Cartesian)
"material-causal" scientific theoretical towards a singular (higher-ordered 'D2') 'Universal
Consciousness Principle's a-causal computation':

This means that the current (Cartesian) 'material-causal' scientific framework assumes that
any given 'y' element (or value) can be explained as a result of its (direct or indirect) 'causal'
interaction/s with another (exhaustive hypothetical inductive or deductive) series of 'x' factor/
s – which determines whether that 'y' element (or value) "exists" or "doesn't exist", thereby
comprising a 'Self-Referential Ontological Computational System' (SROCS) (Bentwich, 2012:
a & b).

SROCS: PR{x,y}→ ['y' or 'not y']/di1…din.

But, since it was previously shown that such SROCS computational structure inevitably leads
to both 'logical inconsistency' and 'computational indeterminacy' that were shown to be
contradicted by robust empirical findings indicating the capacity of the major scientific SROCS
paradigms to be capable of determining the "existence" or "non-existence" of the particular 'y'
element, see Bentwich 2012b) – then the CUFT's 'Duality Principle' asserted the existence of
the singular 'Universal Consciousness Principle' ('‘') which is capable of computing the
"simultaneous co-occurrences" of any particular (exhaustive hypothetical) 'x-y' pairs series
which are embedded within the Universal Computational/Consciousness Principle's rapid
series of USCF's.

What this means is that both specifically for each of the (previously identified) key scientific
SROCS paradigms as well as more generally for any hypothetical ('empirically knowable')
inductive or deductive ('x-y') phenomenon, we must reformulate our scientific understanding
in such a way which will allow us to present any such 'x-y' relationship/s as being computed
by the singular Universal Consciousness Principle (e.g., as the computation of an exhaustive-
hypothetical "co-occurring" 'x-y' pairs' series); In that respect, this (novel) 'Universal Con‐
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sciousness Principle's' scientific framework shifts Science from its current basic (Cartesian)
assumption wherein all natural phenomena can be described as 'material-causal' ('x→y')
relationships (e.g., comprising the apparent SROCS computational structure contradicted by
the computational Duality Principle) – to an 'a-causal' singular Universal Consciousness
Principle which computes the simultaneous "co-occurrences" of any inductive or deductive 'x-
y' pairs series comprising the various 'pixels' of the USCF's frames (e.g., produced by this
Universal Consciousness Principle).

Finally, it should be noted that a key principle underlying this shift from the current 'material-
causal' (Cartesian) scientific framework towards the CUFT's (proven) higher-ordered singular
Universal Consciousness Principle's ('‘') 'a-causal' theoretical framework is the acceptance of
the impossibility of the existence of any such 'material-causal' ('x-y') relationship/s – i.e., due
to the impossibility of any 'physical' entity, attribute (or property) being transferred across any
(two subsequent) 'USCF's frames: Thus, apart from the (previously shown) conceptual
computational proof of the 'Duality Principle' wherein due to the inevitable 'logical inconsis‐
tency' and 'computational indeterminacy' arising from the SROCS computational structure
(which is contradicted by empirical evidence indicating the capacity of these key scientific
SROCS paradigms to compute the "existence" or "non-existence" of any particular 'y' element
or value) – pointing at the existence of the higher-ordered (singular) 'Universal Computational/
Consciousness Principle that computes the "simultaneous co-occurrences" of any (exhaustive-
hypothetical) 'x-y' pairs' series; it is suggested that the inclusion of this computational Duality
Principle as one of the (seven) theoretical postulates of the CUFT (e.g., specifically alongside
the CUFT's 'Computational Invariance' and 'Universal Consciousness' postulates) unequivo‐
cally asserts that there cannot (in principle) exist any 'material-causal' effect/s (or relationship/
s) being transferred across any (two subsequent) USCF's frames! This is because the CUFT's
very definition of all four 'physical' properties of 'space', 'time', 'energy' and 'mass' – as
secondary computational by-products of the (singular) Universal Computational Conscious‐
ness' computation of (an extremely rapid series of) 'Universal Simultaneous Computational
Frames' (USCF's); and moreover the CUFT's 'Computational Invariance' postulate indication
that due to the 'computational variance' of these four (secondary computational) 'physical'
properties (e.g., as existing only "during" the appearance of the USCF frames but 'non-
existence' "in-between" any two such subsequent frames, see Bentwich, 2012:a & b) as opposed
to the 'computational invariance' of the 'Universal Consciousness Principle' ('‘'), we need to
regard only this singular (computationally invariant) 'Universal Consciousness Principle' as
"real" whereas all four (secondary computationally variant) 'physical' properties must be
regarded as merely 'phenomenal' (i.e., as being comprised in reality only from the singular
Universal Consciousness Principle); Therefore, the CUFT's 'Universal Consciousness Principle'
advocated that none of these four (secondary computationally variant) 'physical' properties
(e.g., of 'space', 'time', 'energy' or 'mass') "really" exists – but rather that there is only this one
singular Universal Consciousness Principle which exists (solely) "in-between" any (two
subsequent) USCF's frames and also solely produces each of these USCF's derived four
'phenomenal physical' properties; Hence, it was evinced (by the CUFT's Universal Conscious‐
ness Principle) that there cannot be any 'transference' of any hypothetical 'material' or 'physical'
entity, effect, or property across any (two subsequent) USCF's frames! We therefore reach the
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inevitable theoretical conclusion that the current scientific (Cartesian) ''material-causality'
basic assumption underlying all key scientific SROCS paradigms as well as all (empirically
knowable) 'Gödel-like' (inductive or deductive) SROCS 'x-y' relationships, wherein there exists
a 'material-causal' effect/s (or relationship/s) between any given 'x' element and any (exhaus‐
tive hypothetical) 'y' series which determines the "existence" or "non-existence" of that
(particular) 'y' element (or value) – is untenable! Instead, we must accept the CUFT's assertion
that there can only exists one singular 'Universal Consciousness Principle' ('‘') which both
(solely) produces- all (apparent) secondary computational 'physical' properties (of 'space',
'time', 'energy' and 'mass'), as well as computes the "simultaneous co-occurrences" of any
(particular) exhaustive-hypothetical inductive or deductive 'x-y' pairs series (e.g., comprising
the exhaustive USCF's frames).

8.2. The "universal consciousness principle's computational program"

Therefore, it follows that based on the recognition of the singularity of the Universal Con‐
sciousness Principle's 'a-casual' computation of the "simultaneous co-occurrences" of all
(inductive or deductive) 'x-y' pairs' series (as comprising the exhaustive USCF's frames) – we
need to be able to reformulate all of the previously mentioned key scientific SROCS paradigms
(Bentwich, 2012: a-b), including: Darwin's 'Natural Selection Principle' and associated 'Genetic
Encoding' hypothesis, Neuroscience's Psychophysical Problem of human Consciousness, as
well as all (exhaustive hypothetical) 'Gödel-like' (apparent) inductive or deductive SROCS
computational paradigms based on this singular (higher-ordered) Universal Consciousness
Principle's ('‘') 'a-causal' USCF's computation;

Hence, what follows is a description of the principle theoretical ramifications of reformulating
each of these key scientific (apparent) SROCS computational paradigms, as well as a more
generalized description of a tentative 'Universal Consciousness Principle Program' (e.g., which
may offer a successful alternative for 'Hilbert's Mathematical Program' to base all of our human
scientific knowledge upon the foundations of the operation of the singular Universal Con‐
sciousness Principle). First, it may be worthwhile to rearticulate the reformalization of each of
these key scientific (apparent) SROCS paradigms in terms of the operation of the singular
Universal Consciousness Principle (as previously outlined: Bentwich, 2012b):

N.S.:D2: [{E{1...n}, o}st1; {E{1...n}, o}st2... {E{1...n}, o}stn].

G.F – P.S.:D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti;...{G{1...n}, 'phn(o)' }stn].

G.E. – P.S.:D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ; Ge{1...n}, pn-
synth (o-phi)}stn]

Psychophysical:D2: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }]

Functional: D2: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)]

Phen.: D2: [{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)]

Self: D2: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} st-(i+n)]

GIT:D2: ([{S{1...n}, t}i … {S{1...n}, t}z], or [{x{1...n}i, yi} … {x{1...n}z, yz}])
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Indeed, what may be seen from this singular description of all of these key scientific SROCS
paradigms, is that it recognize the fact that all of these major (apparent) SROCS paradigms are
computed simultaneously as different "co-occurring" 'x-y' pairs embedded within the same
(single or multiple) USCF frame that is produced by the singular Universal Consciousness
Principle ('‘'); What this means is that the recognition of the singularity of this Universal
Consciousness Principle as the sole "reality" which computes the "simultaneous co-occurrenc‐
es" of all of these (particular) exhaustive hypothetical 'x-y' pairs series, and which also exists
(solely) "in-between" any two such USCF's – forces us to transcend the 'narrow constraints' of
the (current) Cartesian 'material-causal' theoretical framework (e.g., which assumes that any
given 'y' entity (or phenomenon) is "caused" by its (direct or indirect) physical interaction/s
with (an exhaustive hypothetical 'x' series); Instead, this singular Universal Consciousness
Principle 'a-causal' computation asserts that it is the same singular Universal Consciousness
Principle which computes- produces- retains- and evolves- all of these particular scientific
(apparent) SROCS 'x-y' pairs series across a series of USCF's…

In other words, instead of the existence of any "real" material-causal relationship between any
of these (particular SROCS) 'x→y' entities (e.g., Darwin's Natural Selection Principle's assumed
'material-causal' relationship between an organism's Environmental Factors, 'x', and own traits
or behavior 'y'; or between any exhaustive hypothetical Genetic Factors and any given
phenotypic behavior; or between Neuroscience's Psychophysical Problem of Human Con‐
sciousness' psychophysical stimulation, 'x', and Neural Activation, 'y'; or in fact between any
hypothetical inductive or deductive Gödel-like SROCS 'x-y' factors); the CUFT's Universal
Consciousness Principle offers an alternative singular (higher-ordered) computational
mechanism which computes the "simultaneous co-occurrences" of any of these (exhaustive
hypothetical) 'x-y' pairs' series – which are all produced- and embedded- within the Universal
Consciousness Principle's computed USCF's frames… Indeed, the shift from the current
'material-causal' (Cartesian) scientific framework towards the Universal Consciousness
Principle's singular computation of the "simultaneous co-occurrences" of all exhaustive
hypothetical (inductive or deductive) 'x-y' pairs' series may lead the way for reformulating all
of these key scientific SROCS paradigms (as well as any other hypothetical inductive or
deductive 'x-y' series) within a basic "Universal Consciousness Principle Computational
Program";

Essentially, such a 'Universal Consciousness Principle's Computational Program' is based upon
the foundations of the CUFT's (abovementioned) three postulates of the 'Duality Principle',
the 'Computational Invariance' principle and the 'Universal Consciousness Principle' – all
pointing at the fact that all empirically computable (inductive or deductive) 'x-y' relationships
must necessarily be based upon the singular (conceptually higher-ordered) Universal Con‐
sciousness Principle which is solely responsible for the computation of the "simultaneous co-
occurrences" of all such (exhaustive hypothetical) inductive or deductive 'x-y' pairs series
comprising the totality of the USCF's (single or multiple) frames…. Moreover, this singular
Universal Consciousness Principle ('‘') was also shown to exist independently of any (secon‐
dary computational) 'physical properties' (e.g., of 'space', 'time', 'energy' and 'mass') and
therefore constitute the only "reality" that exists invariantly (i.e., both as giving rise to the four
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'phenomenal' physical properties and as existing solely "in-between" any two such subsequent
USCF's frames).

In order to appreciate the full (potential) theoretical significance of such a 'Universal Con‐
sciousness Principle Computational Program' it may be worthwhile to reexamine Hillbert's
famous 'Mathematical Program' to base Mathematics upon the foundations of Logic (e.g., and
by extension also all of Science upon the foundations of Mathematics and Logic), and more
specifically, to revisit 'Gödel's Incompleteness Theorem' (GIT) which delivered a critical blow
to Hilbert's 'Mathematical Program'; It is a well-known that Hilbert's Mathematical Program
sought to base Mathematics (e.g., and by extension also the rest of inductive and deductive
Science) upon a logical foundation (e.g., of certain axiomatic definitions); It is also well known
that Gödel's Incompleteness Theorem (GIT) has failed Hillbert's Mathematical Program due
to its proof that there exists certain 'self-referential' logical-mathematical statements that
cannot be determined as "true" or "false" (e.g., or logically 'consistent' or 'inconsistent') from
within any hypothetical axiomatic logical-mathematical system… Previously (Bentwich, 2012:
a & b) it was suggested that perhaps scientific Gödel -like SROCS computational systems may
in fact be constrained by the Duality Principle's (generalized) format, thus:

i. SROCS: PR{x,y}→['y' or 'not y']/di1…din

ii. SROCS CR{S,t}→ ['t' or 'not t']/di1…din

wherein it was shown that both inductive ('i') and deductive (ii) SROCS scientific computa‐
tional systems are necessarily constrained by the Duality Principle (e.g., as part of the broader
CUFT). In other words, the Duality Principle's (generalized format) was shown to constrain
all (exhaustive hypothetical) Gödel -like (inductive or deductive) scientific SROCS paradigms,
thereby pointing at the existence of a singular (higher-ordered) Universal Consciousness
Principle ('‘') which is solely capable of computing the "simultaneous co-occurrences" of any
(exhaustive hypothetical) 'x-y' pairs series. It is important to note, however, that the conceptual
computational constraint imposed upon all (Gödel -like) inductive or deductive scientific
SROCS paradigms was shown to apply for all of those inductive or deductive (apparent)
scientific SROCS paradigms – for which there is an empirically known (or 'knowable') 'x-y'
pairs series results!

This latter assertion of the Duality Principle's (generalized proof) may be significant as it both
narrows- and emphasized- the scope of the 'scientifically knowable domain'; In other words,
instead of the current 'materialistic-reductionistic' scientific framework which is anchored in
a basic (inductive or deductive) SROCS computational format (see above) which inevitably
leads to both 'logical inconsistency' and 'computational indeterminacy' that are contradicted
by robust empirical findings (e.g., pertaining to the key scientific SROCS paradigms); The
Duality Principle (e.g., as one of the postulates within the broader CUFT) proves that the only
means for computing the "simultaneous co-occurrences" of any (exhaustive hypothetical) 'x-
y' pairs series is carried out by the singular (higher-ordered) Universal Consciousness Principle
('‘')… Moreover, the (generalized format of the) Duality Principle goes farther to state that for
all other (exhaustive hypothetical) inductive or deductive computational SROCS paradigms –
for which there exists a proven empirical capacity to determine the values of any particular 'x-y' pairs
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(e.g., empirically "known" or "knowable" 'x-y' pairs results)- any of these (hypothetical) scientific
SROCS computations must be carried out by the CUFT's identified singular Universal
Consciousness Principle ('‘')!

The (potential) significance of this generalized assertion made by the Computational Unified
Field Theory's (CUFT): 'Duality Principle', 'Computational Invariance' principle and Universal
Consciousness Principle ('‘') is twofold:

a. First, it narrows down the scope of (inductive or deductive) determinable scientific
phenomena – to only those (inductive or deductive) 'x-y' relationships for which there is
an empirical capacity to determine their "simultaneously co-occurring" values; essentially
the 'Universal Consciousness Principle's Computational Program' anchors itself in the
Duality Principle's focus on only those inductive or deductive 'x-y' relationship/s or
phenomenon for which there is an empirically 'known' or 'knowable' capacity to deter‐
mine these 'x-y' pairs values. It is perhaps important to note (in this context) that all of the
'other' inductive or deductive 'x-y' relationship/s which cannot be (empirically) known –
"naturally" lie outside the scope of our human (scientific) knowledge (and therefore
should not be included, anyway within the scope of Science)… Nevertheless, the strict
limitation imposed by the 'Universal Consciousness Principle Computational Program' –
may indeed be significant, as it clearly defines the boundaries of "admissible scientific
knowledge" to only that scientific knowledge which is based on empirically known or
knowable results pertaining to the "simultaneous co-occurrences" of any 'x-y' relationship
or phenomenon; (Needless to say that the strict insistence of the Universal Consciousness
Computational Program upon dealing only with

b. Second, based on this strict definition of Science as dealing solely with 'empirical know‐
able' (simultaneously co-occurring) 'x-y' relationship/s or phenomenon – the 'Universal
Consciousness Computational Program' may in fact offer a broader alternative to GIT
(failing of Hilbert's 'Mathematical Program'); This is because once we accept the Universal
Consciousness Principle's Computational Program's (above) strict 'empirical constrains',
we are led to the Duality Principle's (generalized) conceptual computational proof that
any (exhaustive hypothetical) inductive or deductive scientific SROCS' 'x-y' relationship
must be determined by the singular Universal Consciousness Principle ('‘') computation
of the "simultaneous co-occurrences" of any (exhaustive hypothetical) 'x-y' pairs series;
then this means that instead of GIT assertion that it is not possible (in principle) to
construct a consistent Logical-Mathematical System which will be capable of computing
any mathematical (or scientific) claim or theorem, the Universal Consciousness Compu‐
tational Program asserts that based on a strict definition of Science as dealing solely with
empirically knowable 'x-y' relationship/s or phenomenon, we obtain a singular (higher-
ordered) Universal Consciousness Principle which is solely responsible for computing the
"simultaneous co-occurrences" of any (exhaustive hypothetical) inductive or deductive 'x-
y' pairs series (e.g., which were shown by the CUFT to comprise the totality of any single
or multiple USCF's frames that are solely produced by this Universal Consciousness
Principle). In that sense, it may be said that the Universal Consciousness Principle
Computational Program points at the existence of the singular (higher-ordered) Universal
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Consciousness Principle as constraining- and producing- all inductive or deductive
scientific relationship/s or phenomena (e.g., which was also shown earlier and previously
to constitute the only "reality" which both produces all USCF's derived secondary
computational 'physical properties and also solely exists "in-between" any two such
USCF's).

9. Theoretical ramifications of the universal consciousness principle

The discovery of the singular Universal Consciousness Principle (alongside its 'Universal
Consciousness Computational Program') may bear a few significant theoretical ramifications:

a. The Sole "Reality" of the Universal Consciousness Principle: As shown above, all scientific
(inductive and deductive) disciplines need to be reformulated based on the recognition
that there exists only a singular (higher-ordered) Universal Consciousness Principle ('‘')
which solely produces- sustains- evolves (and constrains) all (apparent) SROCS (inductive
or deductive) 'x-y' relationships; Moreover, this Universal Consciousness Principle is
recognized as the sole "reality" that both produces- sustains- and evolves- any of the
apparent (four) 'physical' properties of 'space', 'time', 'energy' and 'mass', as well as exists
independently of any such 'physical' properties – and is therefore recognized as the only
singular "reality", whereas these apparent 'physical' properties are seen as merely
'phenomenal' (secondary computational) manifestations of this singular (higher-ordered)
Universal Consciousness Principle "reality".

b. The Transcendence of 'Material-Causality' by the Universal Consciousness Principle 'A-
Causal' Computation: As shown (above), the acceptance of the Universal Consciousness
Principle ('‘') as the sole "reality" which both produces- (sustains- and evolves-) all USCF's
(secondary computational) 'physical' properties, as well as exists independently "in-
between" any (two subsequent) USCF's; (Alongside the Duality Principle's negation of
any apparent SROCS' 'causal' relationships and the 'Computational Invariance' principle
indication that only the 'computationally invariant' 'Universal Consciousness Principle'
"really" exists whereas the secondary 'computationally variant' physical properties are
only 'phenomenal') – point at the negation of any "real" material-causal ('x-y') relation‐
ships, but instead indicate that there can only exist a singular (higher-ordered) Universal
Consciousness Principle 'a-causal' computation of the "simultaneous co-occurrences" of
any exhaustive hypothetical inductive or deductive 'x-y' pairs' series… (As shown earlier,
the strict negation of the existence of any "real" 'material-causal' 'x→y' relationships was
evinced by the simple fact that according to the CUFT's model there cannot exist any "real"
computationally variant 'physical' or 'material' property that can "pass" across any two
subsequent USCF's, but only the computationally invariant "real" Universal Conscious‐
ness Principle which exists singularly – as solely producing all apparent secondary
computational 'physical' properties as well as existing independently "in-between" any
two such subsequent USCF's frames.) Indeed, the need to replace all apparent 'material-
causal' 'x-y' SROCS relationships by a singular (higher-ordered) Universal Consciousness

Advances in Quantum Mechanics424



Principle computation of the 'simultaneous co-occurrences' of all possible inductive or
deductive 'x-y' pairs series was shown to apply to all of the key (apparent) scientific SROCS
paradigms (including: Darwin's Natural Selection Principle and associated Genetic
Encoding hypothesis, Neuroscience's Psychophysical Problem of human Consciousness
as well as to all Gödel-like hypothetical inductive or deductive SROCS paradigms; what
this implies is that for all of these apparent SROCS scientific paradigms the sole "reality"
of the Universal Consciousness Principle forces us to transcend each of the (particular)
'material-causal' x-y relationships in favor of the Universal Consciousness Principle's
singular computation of all (exhaustive hypothetical) 'x-y' pairs series; Thus, for example,
instead of Darwin's current 'Natural Selection Principle' SROCS material-causality thesis,
which assumes that it is the direct (or indirect) physical interaction between the organism
and its Environmental Factors that causes that organism to 'survive' or be 'extinct', the
adoption of the Universal Consciousness Principle (and Duality Principle) postulates
brigs about a recognition that there is only a singular (Universal Consciousness based)
conceptually higher-ordered 'a-causal' computation of the "simultaneous co-occurrences"
of an exhaustive hypothetical pairs series of 'organism' and 'Environmental Factors' (e.g.,
which are computed as part of the Universal Consciousness Principle's production of the
series of USCF's frames).

c. Possible Resolution of Physical Conundrums: It is suggested that certain key Physical
(and Mathematical) Conundrums including: Physics' "dark energy", "dark matter" and
"arrow of time" enigmas may be potentially resolved through the application of this
singular 'Universal Consciousness Principle'; this is because according to the CUFT, all
(four) 'physical'  properties of 'space',  'time', 'energy' and 'mass' are (in reality) solely
produced by the Universal Consciousness Principle (e.g., as secondary computational
'phenomenal' properties); Hence, the key enigma of "dark energy" and "dark matter"
(e.g., the fact that based on the calculation of the totality of 'mass' and 'energy' in the
observable cosmos the expansion of the universe should not be as rapid as is observed
– which is currently interpreted as indicating that approximately 70-90% of the "ener‐
gy" and "mass" in the universe in "dark", that is not yet observable) – may be explaina‐
ble  based  on  the  CUFT's  delineation  of  the  Universal  Consciousness  Principle's
(extremely  rapid)  computation  of  the  series  of  USCF's.  This  is  due  to  the  fact  that
according  to  the  Universal  Consciousness  Principle's  (previously  discovered:  Bent‐
wich, 2012a) 'Universal Computational Formula' the production of any "mass" or "energy"
("space" or "time") 'physical' properties – are entirely (and solely) produced through the
Universal Consciousness Principle's computation of the degree of 'Consistency' (e.g.,
'consistent' or 'inconsistent') across two other Computational Dimensions, i.e., 'Frame‐
work' ('frame' vs. 'object') and 'Locus' ('global' vs. 'local'): Thus, for instance it was shown
that any "mass" measurement of any object in the universe is computed by the Univer‐
sal Consciousness Principle ('‘') as the degree of 'consistent-object' measurement (of that
particular) object across a series of USCF frames.

Hence, by extension, the totality of the "mass" measured across the entire physical universe
should be a measure of the degree of consistent-object/s values across a series of USCF's! Note,
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however, that based on the abovementioned recognition that in "reality" – only the Universal
Consciousness Principle ('‘') "exists" (e.g., both as producing any of the USCF's derived four
secondary computational 'physical' properties as well as existing independently "in-between"
any two such USCF's frames), and therefore that only this Universal Consciousness Principle
"really" produces all of the (apparent) "mass" and "energy" in the 'physical' universe (e.g., rather
than the "energy" and "mass" in the 'physical' universe being "caused" by the "material" objects
in the cosmos)… Hence, also all of the "energy" in the physical universe is solely produced by
this (singular) Universal Consciousness Principle, e.g., as a measure of the degree of 'incon‐
sistent-frame' (changes) of all of the objects (in the universe) across a series of USCF's frames.
Therefore, according to the CUFT, the explanation of all of the "mass" and "energy" values
observed in the 'physical' universe – should be solely attributed to the operation of the
Universal Computational Principle, i.e., through its (extremely rapid) computation of the rapid
series of USCF's (respective secondary computational measures of the abovementioned degree
of 'consistent-object': "mass", or 'inconsistent-frame': "energy"). We therefore obtain that the
(accelerated) rate of expansion of the physical universe – should be explained (according to
the CUFT) based on the Universal Consciousness (extremely rapid) computation of the USCF's
(e.g., which gives rise to the apparent secondary computational 'physical' measures of
'consistent-object': "mass" or 'inconsistent-frame': "energy"), rather than arise from any
'material-causal' effects of any (strictly hypothetical) "dark mass" or "dark energy"… (Once
again, it may be worth pointing at the abovementioned conceptual computational proof that
there cannot be any transference of any "physical" property entity or effect etc. across any two
subsequent USCF's frames, but only the retention- or evolution- of all of the spatial pixels'
"physical" properties by the singular Universal Consciousness Principle across the series of
USCF's – which therefore also precludes the possibility of any "real" "material" effects exerted
by any "dark" mass or energy on the expansion of the 'physical' universe across a series of
USCF frames.)

Similarly, the "arrow of time" conundrum in modern Physics essentially points at the fact that
according to the laws of Physics, there should not be any difference between the physical
pathways of say the "breaking of a glass cup into a (thousand) small glass' pieces" and the "re-
integration of these thousand glass' pieces into a unitary glass cup"! In other words, according
to the strict laws of Physics, there should not be any preference for us seeing "glasses" break
into a thousand pieces – over our seeing of the thousand pieces become "reintegrated" into
whole glass cups (again), which is obviously contradicted by our (everyday) phenomenal
experiences (as well as by our empirical scientific observations)… Hence, according to the
current state of (quantum and relativistic) models of Physical reality – there is no reasonable
explanation for this "arrow of time" apparent empirical "preference" for the "glass breaking
into pieces" scenario over the "reintegration of the glass pieces" scenario…

However, it is suggested that according to one of the CUFT critical empirical predictions
(previously outlined: Bentwich, 2012b) this "arrow of time" Physical conundrum may be
resolved: This is because one (of three) critical empirical predictions of the CUFT assert the
possibility of reversing any spatial-temporal sequence associated with any given 'electromag‐
netic spatial pixel' through the appropriate manipulation of that object's (or event's) electro‐
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magnetic spatial pixel values (across a series of USCF's): It was thus indicated that if we were
to accurately record the spatial electromagnetic pixels' values of any particular object (e.g.,
such as an amoeba or any other living organism for instance) across a series of USCF's frames
(e.g., or even through a certain sampling from a series of USCF's), and to the extent that we
could appropriately manipulate these various electromagnetic spatial pixels' values in such a
manner which allows us to reproduce that objects' electromagnetic spatial pixels' values (across
the measured series of USCF's) – in the reversed spatial-temporal sequence, then it may be
possible to reverse the "flow of time" (e.g., spatial-temporal electromagnetic pixels' sequence).
In this way it should be possible (according to one of the critical predictions of the CUFT) to
actually "reverse" the "arrow of time" (e.g., at least for particular object/s or event/s: such as for
instance, bring about a situation in which a "broken glass cup may in fact be reintegrated"…)

10. The CUFT's eighth postulate: The 'universal consciousness reality'

A final (potential) culmination of the CUFT may be given by its seventh (and final) theoretical
postulate of the 'Universal Consciousness Reality' – which essentially postulates that there
exists only one (and singular) Universal Consciousness Reality which consists of the Universal
Consciousness Principle's sole production of the four (secondary computational) 'physical'
properties (of 'space', 'time', 'energy' and 'mass'), mass'; that exists invariantly both as produc‐
ing- maintaining- and evolving- any spatial pixel in the physical universe (through its
production of the extremely rapid series of USCF's) as well as exists independently "in-
between" any (two) subsequent USCF's; and that this singular "Universal Consciousness
Reality" also pervades- produces- evolves- and alternates- any of the three states of individual
human Consciousness (e.g., or even 'four' as will be shown below), thereby constituting the
only "real" Universal Consciousness Reality underlying the totality of the physical cosmos, all
of our scientific (inductive or deductive) ontological knowledge as well as our own three (or
four) individual states of human Consciousness… It is suggested that this final CUFT postulate
is a direct continuation of the CUFT's latter theoretical postulates of 'Universal Consciousness',
'Ontological Relativism' and the 'Universal Consciousness Principle Spectrum': This is because
the Universal Consciousness Principle asserted that the sole and single "reality" underlying
the four 'physical' properties (e.g., of 'space', 'time', 'energy' and 'mass') is only the (singular)
Universal Consciousness Principle; that our sole scientific (ontological) knowledge of this
singular Universal Consciousness Principle "reality" may only be gained through the three
states of individual human Consciousness (e.g., 'waking', 'dream' and 'deep-sleep' – and a
fourth potential 'non-dual' state of Consciousness which will be discussed below), and that the
ontological validity of these three states of individual human Consciousness is equal (e.g., all
being produced- maintained- evolved- and alternated- solely by the Universal Consciousness
Principle singular "reality); Next, the CUFT advanced the 'Universal Consciousness Principle
Spectrum' theoretical postulate which hypothesized that individual human Consciousness
possesses the potential of 'expanding' to encapsulate all of the Universal Consciousness
Principle's produced spatial pixels (e.g., comprising the exhaustive series of pixels comprising
any single or multiple USCF's – in the waking state of Consciousness).

The Computational Unified Field Theory (CUFT): A Candidate ‘Theory of Everything’
http://dx.doi.org/10.5772/53804

427



Based on these (latter) CUFT theoretical postulates, the Universal Consciousness Reality (final)
postulate fully combines these advanced theoretical understandings together with the
discovery of the "non-existence" of any real "independent" existence of the individual human
Consciousness separately from the sole existence of the Universal Consciousness (Principle)
Reality, thereby fully integrating our whole scientific (ontological) knowledge of the physical
universe (and all hypothetical inductive or deductive scientific knowledge) into the singular
Universal Consciousness Reality (proposed by the CUFT).

In order to arrive at this (potentially far reaching) theoretical conclusion, it is necessary to
retrace some of the key theoretical postulates of the CUFT – i.e., specifically, those of the
Computational Invariance Principe, the Universal Consciousness Principle, Ontological
Relativism and the Universal Consciousness Principle's Spectrum postulate; According to the
CUFT's Universal Consciousness Principle (''), there must exist a singular conceptually higher-
ordered Universal Computational Principle which solely exists – both as producing the
(extremely rapid) series of USCF's (e.g., and all of their secondary computational 'phenomenal
physical' properties of 'space', 'time', 'energy' and 'mass'), as well as existing independently of
any such secondary computational 'physical' properties "in-between" any two such subsequent
USCF's. Moreover, based on this Universal Consciousness Principle the Universal Computa‐
tional Principle must (indeed) possess the basic functions of a Universal Consciousness – i.e.,
retention, production and evolution of any spatial pixel comprising the entirety of all of the
USCFs' multifarious spatial pixels (due to the fact that there is no "material" or "physical"
property, element or factor that can "pass" across any two subsequent USCF's – based on the
CUFT's previous Duality Principle, Universal Computational Principle and Computational
Invariance theoretical postulates); Thus, according to the Universal Consciousness Principle,
the sole and singular "reality" that comprises- produces- sustains- and evolves- any spatial
pixel in the physical universe (and which also importantly exists "in-between" any two
subsequent USCF's) is only that "immaterial" Universal Consciousness Principle ('‘')!

Next, based on the CUFT's realization that there cannot exist any "physical reality" – but only
that singular (and sole) reality of the Universal Consciousness Principle ('‘') it was also
recognized that our sole access- (and knowledge-) of this singular Universal Consciousness
Principle ('‘') may only be gained through the three states of individual human Consciousness,
e.g., those of 'waking', 'dream' and 'deep sleep'. Moreover, since (based on these abovemen‐
tioned CUFT latter theoretical postulates) there does not exist any "real" 'physical reality' (e.g.,
but only its 'phenomenal' appearance as secondary computational 'physical' properties arising
from the production of the extremely rapid series of USCF's by this singular higher-ordered
Universal Consciousness Principle), then CUFT (final) 'Ontological Relativism' postulate was
given which states that there does not exist any "superiority" of the 'waking' state of individual
human Consciousness over any of the other (two) states of individual human Consciousness
(e.g., 'dream' or 'deep sleep'); Hence, based on the Universal Consciousness Principle (e.g.,
alongside the other latter CUFT theoretical postulates) there exists only one singular "reality"
comprising the entirety of the physical universe (e.g., through its production- maintenance-
and evolution- of all USCF's secondary computational 'physical' properties of 'space', 'time',
'energy' and 'mass') and since our sole knowledge of this singular Universal Consciousness
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Principle "reality" is only through our own three states of individual human Consciousness
(e.g., consisting of: the waking state which comprises the previously outlined (Bentwich,
2012b) Universal Computational Principle's extremely rapid production of the series of USCF's
and their four secondary computational 'physical' properties); and based on the abovemen‐
tioned (CUFT final) 'Ontological Relativism' theoretical postulate we must reach the inevitable
conclusion whereby – not only the ontological contents of these three states of individual
human Consciousness are equal (based on the Ontological Relativism postulate), but also these
three states of individual human Consciousness must be underlie- comprised- sustained- and
evolved- solely based on the singular "Reality" of the Universal Consciousness Principle!

Moreover, based on the (previous mentioned) Universal Consciousness Principle's proof for
the sole existence of that sole and singular Universal Consciousness as the only "reality"
underlying all secondary computational 'phenomenal physical' properties (e.g., of the USCF's
series), as well as of what exists "in-between" any two such subsequent USCF's, then the CUFT's
Ontological Relativism theoretical postulate also essentially asserts the fact that each of these
three states of individual human Consciousness – is not "different" or "separate" from the
singularity of the Universal Consciousness Principle.

Based on these (latter) theoretical postulates – e.g., of 'Computational Invariance', 'Universal
Consciousness' and 'Ontological Relativism' – the 'Universal Consciousness Principle Spec‐
trum' (UCPS) postulate was obtained; This UCPS theoretical postulate essentially claims that
since (based on the abovementioned CUFT's latter theoretical postulates), there exists only one
singular "reality" of the Universal Consciousness Principle ('‘') which both produces all of the
USCF's secondary computational 'physical' properties (e.g., of 'space', 'time', 'energy' and
'mass'), and also exists (solely) "in-between" any two subsequent USCF's; since our only
"access" to this singular (higher-ordered) Universal Consciousness Principle – is through the
three states of individual human Consciousness (e.g., 'waking', 'dream', and 'deep-sleep'); since
(according to the 'Ontological Relativism' postulate), the ontological validity of the 'waking
state' (of individual human Consciousness) is equivalent to the ontological validity of the two
other states (e.g., 'dream' and 'deep-sleep') – as they are all underlie- constrained- produced-
maintained- and evolved- by the singularity of the Universal Consciousness Principle ('‘')
which was shown to constitute the sole "reality" underlying all 'physical' as well as individual
human Consciousness phenomena; Therefore, the Universal Consciousness Principle Spec‐
trum (UCPS) theoretical postulate goes further to assert that, in reality, there cannot exist any
difference between the phenomenal experiences gained through our individual human
Consciousness and that Universal Consciousness Principle ('‘') which produces- maintains and
evolves- any "spatial pixel" (e.g., as well as the four phenomenal 'physical' properties of 'space',
'time', 'energy' and 'mass') comprising any USCF frame/s; In other words, in contrast to our
basic phenomenal experience - i.e., at least in the 'waking' state (and also in the 'dream') of
individual human Consciousness: in which we experience our sensory-motor-intellectual (and
other individual Consciousness functions, see Bentwich 2012b) as constrained to only a limited
body and sensory-physiological functions, the Universal Consciousness Principle Spectrum
(UCPS) theoretical postulate actually expands (e.g., 'infinitely') the potential capacity of our
individual human Consciousness – to engulf the (unlimited) Universal Consciousness
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Principle ('‘') which has been shown previously to produce- comprise- sustain- and evolve any
and all spatial pixels in the phenomenal universe (as comprising particular single or multiple
USCF's)…

It is important to note that despite the fact that this latter assertion made by this 'Universal
Consciousness Principle Spectrum' (UCPS) theoretical postulate may seem quite "counter-
intuitive", it is directly supported also by an application of one of the previous theoretical
postulates of the CUFT, namely: through an application of the 'Computational Invariance'
principle – i.e., when applied towards the examination of the three states of human Con‐
sciousness; Essentially, the 'Computational Invariance' principle asserted that when we
contrast between the 'computational invariance' of the Universal Computation/Consciousness
Principle (e.g., which both produces- sustains- and evolves- all USCF's secondary computa‐
tional 'physical' properties, and also exists solely and independently "in-between" any two
subsequent USCF's) and the 'computational variance' of the USCF's derived secondary
computational 'physical' properties (e.g., of 'space', 'time', 'energy' and 'mass') – based on the
basic scientific tenet of 'Ockham's Razor' which states that Science seeks to find the most
parsimonious theoretical account for any given phenomenon (or phenomena), the CUFT's
Computational Invariance postulate points at the Universal Computational Principle as the
only "real" principle that remains invariant – i.e., by both producing- sustaining- and evolving-
all USCF's derived secondary computational 'physical' properties (of 'space', 'time', 'energy'
and 'mass'), as well as existing independently (of these four basic physical properties) "in-
between" any two subsequent USCF's. It is suggested that in much the same manner, an
application of the Computational Invariance Principle towards the Universal Consciousness
Principle and the Universal Consciousness Principle Spectrum theoretical postulates may
point (unequivocally) at the existence of a singular Universal Consciousness Principle "reality"
– which solely underlies- comprises- and produces- all three states of individual human
Consciousness (e.g., and therefore proves the complete equivalence of individual human
Consciousness with the Universal Consciousness Principle – at least in terms of the potential
capacity of individual human Consciousness to "expand" or "experience" the full spectrum of
the Universal Consciousness Principle)…

Well, it is hereby hypothesized that a further application of the same Computational Invariance
Principle in the case of the three states of (individual) human Consciousness – may indeed
prove that underlying the three states of individual human Consciousness there can only exist
the singular Universal Consciousness Principle ('‘'), which is therefore proven to be necessarily
equivalent to the three states of individual human Consciousness, e.g., as well as transcend
them – thereby comprising the sole and singular "reality" underlying both the entirety of the
physical cosmos, as well as constitute the three states of individual human Consciousness…

This is because it is suggested that when we apply the (same) Computational Invariance
principle to the 'computationally variant' three states of (individual) human Consciousness –
i.e., visa vis. the 'computationally invariant' Universal Consciousness Principle ('‘'); we obtain
(once again) that whereas the three states of (individual) human Consciousness are solely
produced by the singularity of the Universal Consciousness Principle (e.g., and are constantly
alternating), the Universal Consciousness Principle (itself) remains unaltered and exists
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uniformly throughout the three states of individual human Consciousness (and also produces
the entirety of the 'physical' cosmos in the waking state of individual human Consciousness).
Once again – as in the application of the Computational Invariance Principle to the 'compu‐
tationally variant' USCF's derived secondary computational 'physical' properties of 'space',
'time', 'energy' and 'mass', e.g., in which it was shown that the when we contrast between the
computationally invariance of the Universal Consciousness Principle with the computational
variance of the USCF's derived (secondary computational) 'physical' properties (of 'space',
'time', 'energy' and 'mass') we reach the inevitable conclusion whereby the singular computa‐
tionally invariant Universal Consciousness Principle ('‘') must be recognized as the sole
"reality", whereas the three states of individual human Consciousness are seen as only
'phenomenal' properties of this singular Universal Consciousness Principle… In other words,
based on the fact that the three states of individual human Consciousness were already shown
to be necessarily produced- sustained- evolved- (and constrained) by the singularity of the
Universal Consciousness Principle (e.g., based on the CUFT's previous Universal Conscious‐
ness Principle which indicated that the sole and singular "reality" which exists "in-between"
any two subsequent USCF's and also produces- and evolves- any USCF derived secondary
computational 'physical' property is the singular Universal Consciousness Principle, and
based on the 'Ontological Relativism' theoretical postulate which indicated that our sole access
to this singular Universal Consciousness Principle can be gained solely through the three states
of individual human Consciousness which possess the same ontological validity); a further
application of the 'Computational Invariance Principle' (to the three states of individual human
Consciousness) points at the fact that whereas there exists a singular (e.g., computationally
invariant) Universal Consciousness Principle which produces- sustains- evolves- and alter‐
nates- the three states of individual human Consciousness, there are three (computationally
variant) individual consciousness states (e.g., of 'waking', 'dream' and 'deep-sleep') which are
produced, sustained and evolved etc. by this singular Universal Consciousness Principle;
Therefore, an application of the Computational Invariance Principle to the case of the three
states of individual human Consciousness points at the only 'phenomenal' stance of each of
these three states of (apparent) individual human Consciousness – which are hence seen as
"phenomenal" relative to the singular "reality" of the (computationally invariant) 'Universal
Consciousness (Principle) Reality' which is recognized as the sole and singular "reality" that
produces- sustains- evolves- all (four) waking state's phenomenal secondary computational
'physical' properties (e.g., of 'space', 'time', 'energy' and 'mass'), as well as the three phenomenal
states of individual human Consciousness…

Thus, our analysis of the CUFT's (latter) 'Computational Invariance', 'Universal Consciousness
Principle', 'Ontological Relativism' and 'Universal Consciousness Principle Spectrum' theo‐
retical postulates has led us to recognize the existence of a singular 'Universal Consciousness
Reality' which is solely responsible for the production- maintenance- and evolution- of all
USCF's secondary derived computational 'physical' properties (of 'space', 'time', 'energy' and
'mass'), which exists independently of any of these secondary USCF's computational 'physical'
properties (e.g., "in-between" any two subsequent frames), and which is also entirely underlies-
sustains- evolves- and alternates- any of the three (or four) individual human Consciousness
states (of 'waking', dream', 'deep-sleep' or the "non-dual" state which will be further described
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below); The emphasis of the Universal Consciousness Reality (postulate) is that in "reality"
there does not exist any "real" (separate) existence – of either our 'individual' human Con‐
sciousness (e.g., comprising the three or four abovementioned states of individual Conscious‐
ness), or of the 'phenomenal' physical cosmos (which merely represents the apparent
secondary computational properties of 'space', 'time', 'energy' or 'mass' of the Universal
Computational Principle's production of the three previously mentioned computationally
variant Computational Dimensions). Therefore, it may be said that the culmination of the
CUFT may be encapsulated by its seventh 'Universal Consciousness Reality' which highlights
the fact that there can only exist one (singular) 'Universal Consciousness Reality' that solely
produces- sustains- evolves- (and alternates-) all four (apparent secondary computational)
'physical' properties (of 'space', 'time', 'energy' and 'mass'), as well as all three (or four)
individual states of human Consciousness. Needless to say that this latter (potential) equiva‐
lence of our individual human Consciousness with the singular Universal Consciousness
(Principle) Reality also calls for further scientific exploration of the means for realizing this
potential equivalence. Suffice to state (at this point) that some of these potential theoretical
ramifications include the (previously stated Universal Consciousness Spectrum postulate's)
possibility of modulating human Consciousness in such a manner which enables it to "expand"
its scope to encapsulate broader USCF's 'spatial pixels' (than those identified by a particular
"person" at a particular 'spatial-temporal' point/s appearing at a single or multiple USCF's
frames), thereby potentially affecting any spatial, temporal, mass or energy properties
associated with any particular region/s in a given single or multiple USCF's frames…

We've begun this chapter by noting that the discovery of the CUFT's Universal Consciousness
Principle ('‘') may signify a basic "paradigmatic shift" from the current Cartesian "materialistic-
reductionistic" theoretical framework which assumes that any (hypothetical) 'y' element,
phenomenon or process etc. can be determined strictly based on its direct or indirect physical
interactions with an exhaustive set of 'x' factors (e.g., comprising a SROCS computational
structure which was negated by the CUFT's Duality Principle for all empirically knowable 'x-
y' relationships) – to a conceptually higher-ordered (singular) Universal Computational/
Consciousness Principle that is solely responsible for the production- sustenance- or evolution-
of all 'phenomenal' (secondary computational four 'physical' properties of 'space', 'time',
'energy' or 'mass', or indeed of all (exhaustive hypothetical) inductive or deductive 'x-y' pairs
series embedded within any given series of USCF's… We've then emphasized the conceptually
higher-ordered ('D2') 'non-material', 'a-causal' computational nature of this singular Universal
Computational/Consciousness Principle which computes the "simultaneous co-occurrences"
of any exhaustive hypothetical inductive or deductive 'x-y' pairs' series, thereby negating the
possibility of any "real" 'material-causal' relationships existing between any of these exhaustive
hypothetical (quantum or relativistic physical, inductive or deductive) 'x-y' pairs;

Indeed, the application of a generalized format of the Duality Principle has proven that all
hypothetical inductive or deductive 'x-y' pairs comprising a basic ('Gödel-like') SROCS
computational structure must be constrained by the CUFT's Duality Principle which therefore
precludes the existence of any "real" 'causal-material' relationship between the 'x' and 'y'
elements, instead pointing at their sole contingency upon the singular (conceptually higher-
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ordered) Universal Computational/Consciousness Principle (‘) which computes the "simulta‐
neous co-occurrences" of any of these exhaustive hypothetical inductive or deductive 'x-y' pairs
series comprising a series of USCF's; Moreover, based on the (previous) discovery of the
Computational Invariance Principle and Universal Consciousness Principle theoretical
postulates and the current chapters delineation of the Universal Consciousness Principle's sole
and singular production- sustenance- and (potential) evolution of all the spatial pixels
comprising the USCF's portrayal of the physical universe, it was realized that only this
Universal Consciousness Principle may be regarded as "real" whereas all of the secondary
computational 'physical' properties (e.g., of 'space', 'time', 'energy' or 'mass') as well as all other
hypothetical inductive or deductive or any human Consciousness (psychophysical) 'x-y'
relationships (or phenomena) must be regarded as (at best) as representing 'phenomenal' (or
even "illusory") properties… Likewise, based on the 'Computational Invariance Principle' and
the 'Universal Consciousness Principle' which (jointly) indicated that only the Universal
Consciousness Principle ('‘') exists permanently and invariantly both as producing- sustaining-
and evolving- any of the (secondary computational) USCF's is "real", whereas all (secondary
computational) 'physical' properties (of 'space', 'time', 'energy' and 'mass') are 'phenomenal' or
"illusory", it was proven that there cannot be any "real" 'material-causal' effects between any
(exhaustive hypothetical) 'x' and 'y' (physical, inductive or deductive) factors that can "pass"
across two (or more) USCF's frames, thereby nulling the possibility of any real 'material-causal'
'x-y' relationship (e.g., but instead pointing at the abovementioned higher-ordered Universal
Consciousness Principle computed 'a-causal' "simultaneous co-occurrences" of any exhaustive
hypothetical 'x-y' pairs series).

Indeed, the recognition that only the (singular) Universal Consciousness Principle may be
regarded as "real" whereas all of the (secondary computational) 'physical' properties must be
seen as 'phenomenal' (e.g., "unreal" relative to their sole production- sustenance- and evolu‐
tion- by the singular conceptually higher-ordered Universal Consciousness Principle) – has
led to the identification of the sixth theoretical postulate of 'Ontological Relativism': i.e., the
realization that accepting the Universal Consciousness Principle ('‘') as the sole and singular
"reality" which produces- retains- and evolves- all (phenomenal) 'physical' properties (of
'space', 'time', 'energy' and 'mass') implies that our ontological knowledge of that Universal
Consciousness Principle is constrained by three different states of individual human Con‐
sciousness (e.g., 'waking', 'dream' and 'deep sleep') whose ontological validity is equivalent…
In other words, the 'Ontological Relativism' postulate indicates that there is no longer any
"advantage" (or "superiority") for the 'waking' state of individual human Consciousness upon
the two other (e.g., 'dream' or 'deep sleep') states – as they are all equivalent in terms of their
portrayal of the same singular "reality" of the Universal Consciousness Principle.

Thus, based on this (sixth) 'Ontological Relativism' postulate we arrived at a more compre‐
hensive 'Universal Consciousness Principle Formula' which incorporated the CUFT's (original)
'Universal Computational Formula' within the broader conceptual understanding of (the
CUFT's sixth) 'Ontological Relativism' postulate as well as its associated (CUFT's seventh)
'Universal Consciousness Spectrum' postulate; Hence, the broader 'Universal Consciousness
Formula' delineated the Universal Consciousness Principle's inclusiveness of the three states
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of (individual) human Consciousness as well as the (new hypothetical) seventh theoretical
postulate of the 'Universal Consciousness Spectrum'; Jointly, these two new tenets of the CUFT
indicated that over and beyond the individual human Consciousness comprising of three
separate states (whose ontological validity is equivalent relative to the "reality" of the singular
Universal Consciousness Principle), the individual human Consciousness possesses a full
spectrum of 'waking' state "expansiveness" (e.g., spanning from "1 to infinity") which differ in
the degree of their "expansiveness" of the number of spatial pixels being included in any given
individual human Consciousness portrayal of their perception of the "reality"…

In terms of some of the potential (broader) Scientific implications that may stem from this
broader formalization of the CUFT's Universal Consciousness Principle, Universal Conscious‐
ness Formula, and 'Universal Consciousness Spectrum' postulates (e.g., as well as from the
entirety of the Universal Consciousness Principle based more comprehensive formalization of
the CUFT; it is suggested that (first), based on the CUFT (generalized) Duality Principle and
Universal Consciousness Principle postulate – e.g., pointing at the computational "invalidity"
of any inductive or deductive or indeed any quantum or relativistic physical SROCS' 'x-y'
(materialistic-reductionistic) relationships, Science must accept the need to formalize any such
physical – quantum or relativistic, inductive or deductive 'x-y' relationships based on the
conceptually higher-ordered (singular) Universal Consciousness 'a-causal' computation of the
"simultaneous co-occurrence" of an (exhaustive hypothetical) series of 'x-y' pairs (comprising
a segment of a certain USCF/s frame/s); This would also include the reformalization of the
(previously and abovementioned) key scientific SROCS paradigms, including: Darwin's
Natural Selection Principle and associated genetic encoding hypothesis, Neuroscience's
Psychophysical Problem of human Consciousness (and others) based on the sole operation of
the singular "reality" of the Universal Consciousness Principle…

Second, the acceptance of the sole "reality" of the singular Universal Consciousness Principle,
e.g., visa vis. the realization that all (secondary computational) 'physical' properties (of 'space',
'time', 'energy' and 'mass') are merely 'phenomenal' (or "unreal" – relative to this singular
Universal Consciousness Principle which produces- retains- and evolves- all such secondary
computational 'physical' properties); And moreover based on the recognition of the (inevitably
ensuing) 'Ontological Relativism' which highlights the lack of any "objective-physical" criteria
by which to evaluate the ontological validity of any of the three (abovementioned) states of
individual human Consciousness (e.g., instead asserting that each of the three states of our
individual human Consciousness' is equivalent in terms of its ontological validity relative to
the singular "reality" of the Universal Consciousness Principle) – necessitates a basic paradig‐
matic shift from the (current) Cartesian 'materialistic-reductionsitic' (SROCS) computational
paradigms towards the realization that there exist only one singular "reality" of the Universal
Consciousness Principle which produces- sustains- and evolves- any of the apparent 'phe‐
nomenal' (secondary computational) 'physical' properties of any spatial pixel comprising the
(rapid series of) USCF's.

Finally, even above and beyond the (abovementioned) potentially far reaching theoretical
ramifications of accepting the sole "reality" of this (singular higher-ordered) Universal
Consciousness Principle (e.g., as opposed to the currently accepted Cartesian 'materialistic-
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reductionistic' scientific framework), the discovery of the (broader) 'Universal Consciousness
Formula' and 'Universal Consciousness Spectrum' tenets brings about a potentially profound
shift in our basic conception of the role of (individual) human Consciousness in modulating
the 'physical' properties of 'space', 'time', 'energy' or 'mass', and opens the door for further
(important) scientific research regarding the true nature of our individual human Conscious‐
ness and its precise relationship to the singular "reality" of the 'Universal Consciousness
Principle' (and the phenomenal 'physical' properties).
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1. Introduction

There is great interest in “emergent” dynamical systems and the possibility of quantum
mechanics as emergent phenomena. We engage the topic by making a sharp distinction
between models of microphysics, and the so-called quantum framework. We find the models
have all the information. Given that the framework of quantum theory is mathematically
self-consistent we propose it should be viewed as an information management tool not
derived from physics nor depending on physics. That encourages practical applications
of quantum-style information management to near arbitrary data systems. As part of
developing the physics, we show there is no intrinsic distinction between quantum dynamics
and classical dynamics in its general form, and there is no observable function for the unit
converter known as Planck’s constant. The main accomplishment of quantum-style theory is
a expanding the notion of probability. A map exists going from macroscopic information as
“data” to quantum probability. The map allows a hidden variable description for quantum
states, and broadens the scope of quantum information theory. Probabilities defined for
mutually exclusive objects equal the classical ones, while probabilities of objects in more
general equivalence classes yield the quantum values. Quantum probability is a remarkably
efficient data processing device; the Principle of Minimum Entropy explains how it serves to
construct order out of chaos.

2. Complexity and symmetry induce dynamics

The framework of quantum mechanics is intricately structured and thought the perfection
of fundamental theory. It predicts an absolute and unvarying law of time evolution. There
is a tightly defined space of possible states, upon which strictly prescribed operators act
to produce crisp possibilities for observables. There is an unprecedented universal rule
for predicting probabilities of observations. The general predictions of the framework are
incompatible with hidden variables defined by distributions, and have been confirmed by
every experiment so far conducted.
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2 Advances in Quantum Mechanics

Meanwhile, the particular realizations of physical theories are widely believed to be emergent.
That means they probably do not really represent fundamental physical law, but instead
represent generic outputs of complicated systems not driven by the same laws. The Standard
Model of particle physics is the most sophisticated prototype. It explains all data from all
experiments done so far, except for a few outliers. Yet it is hard to find anyone involved
that will argue the Standard Model is more than a generic derivative expansion embodying
certain symmetries of some more complicated theory, of which numberless possibilities exist.
Like Hooke’s Law, Standard Model Laws are no longer imagined to be serious candidates for
Laws, because they are so contrived and of the type that had to occur one way or the other.
Nor does one really need the machinery of the Standard Model to understand most of the
Universe. For most of what matters, the non-relativistic Schroedinger Equation is a “theory
of everything”[1].

Then it is very reasonable to expect that quantum mechanics itself should be a generic,
self-defining “emergent” feature of the Universe. In simple terms, an output, not an input.

2.0.1. Practical goals

What does that mean? Discussions of emergent quantum mechanics tend to become confused
by discord over what we mean by quantum mechanics. Different writers will disagree
about what is fundamental and even about what experimental data says. Not far behind
is a superstition that quantum objects cannot possibly be understood, so that making them
even more obscure and more difficult might be the intellectual high ground. We reject that
holdover from the 1920’s, but it’s not clear whether it has died out, or might be coming back

To skirt the morass we have a new point of view. We want physics to be practical and simple.
In this century not many find the mathematics of quantum theory so intimidating. Perhaps
physics “quantum-style” is not so profound after all. What is the evidence that the quantum
framework itself is so meaningful and fundamental?

Most accomplishments of “quantum mechanics” come from the model details. For example,
understanding the Hydrogen atom and calculating g − 2 of the electron are astounding
achievements. However those accomplishments come directly from the model details, and
systematic laborious tuning of theory to experimental facts, rather than from the framework
of quantum mechanics itself. That is not always noticed while the framework lays claim
for every accomplishment. The framework passes every test, especially when tested by
thought-experiments set up for validation by pencil and typewriter challenges that recycle
the framework. But the framework is rather hard to falsify experimentally. When it might have
failed, a little ingenuity never fails to bring it back. That is quite unlike models challenging
conventional theory, such as non-linear Schroedinger equations and so on, which have the
decency to be able to fail.

Following this and other clues, we propose the quantum framework amounts to descriptive
tools and classification tools that categorize data beautifully, but predict very little at all. When
the “Laws” of quantum mechanics are considered as procedural and classification structures,
it’s much easier to guess how they would emerge as human-made bookkeeping.

Not everything in quantum mechanics is procedural, and some of its general workings
contain clues to Nature. It is rarely noticed that quantum theory has infinities of hidden
variables. They are not classical hidden variables of the usual kind. The “electron” and
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“photon” of the 1920’s thought to be so fundamental and ultimate are not fundamental
objects. They are approximations that never stop interacting with an infinite ocean of
quantum fields, if not something more unknown and more interesting. The self-consistency
of the framework suggests that living in peaceful co-existence with what it must ignore may
be its main accomplishments.

2.1. What would emerge?

Many workers seek to derive quantum mechanics. An active movement suspects or
maintains that it is emergent, not fundamental[2–4]. We think it would be a waste to obtain
exactly the quantum framework already known. Progress requires new features and new
viewpoints. Progress usually involves dropping obsolete views and clearing out deadwood:
call it un-Quantization.

We start by considering what can and cannot be given up. Quantum mechanics wiped
out the previous vision of a Newtonian universe made of point particles. It’s gone forever.
There remains some confusion and disagreement about whether the theory is about point
particles of some subtle magic kind. While point particles are loosely cited in press releases,
and inaccurately associated with theories based on local space-time interactions, we cannot
find any evidence for them, and give that up. We believe all the rest of early quantum
lore also can be given up, especially those parts leading to pedagogical confusion. We
can’t explain why it is unconventional or even scandalous to admit that the pre-history
of quantum mechanics –meaning that period between 1900 and 1926 – was characterized
by great theoretical advances that were all wrong or limiting in some way or other. Being
wrong is normal in physics but covering it for generations is very strange.

Many professional physicists are still influenced by the cult of the “quantum of action,”
forgetting it went away when quantum mechanics found action is not quantized. Physicists

have been programmed from birth to hold Einstein’s relations E = h̄ω, ~p = h̄~k as highly
fundamental. They actually know these relations are not universal, but derived facts coming
from special cases, yet downgrading them is taboo. Physicists often believe that classical
Newtonian mechanics shall be a starting point to be “quantized” to predict quantum systems,
forgetting this recipe only predicts textbook problems for training purposes. It would forbid
the Standard Model of physics to exist at all. Physicists are also trained that Feynman’s
path integral creates a quantum theory from a classical one, forgetting that what’s integrated
over nowadays has no relation to the starting point young Mr. Feynman used. When we
un-Quantize this, an integral representation of correlation functions is a math tool, not an
independent principle, nor does it “come from physics.”

We must honor our forebears and we do. Yet why are historical misdirections kept around
with special emphasis in quantum physics? The culture of quantum mechanics almost
seems to maintain mistakes of pre-quantum history on purpose. Instead of giving them up,
misconceptions are kept around as philosophical quandaries and paradoxes because there is
no other way to perpetuate mistakes except as paradoxes. All that can be given up.

2.1.1. Quantum-Style Things Not to Give Up

Quantum mechanics is a misnomer held-over from the pre-quantum era. The Schroedinger
equation explained how and when quantization of physical quantities occurs as an outcome
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of dynamics, and quantization is not the primary new feature of the theory. We have coined
the term “quantum-style” to describe things done in the organizational style of quantum
mechanics that we don’t want to give up.

Quantum-style mechanics describes certain data of the Universe, and the ability to describe
experimental data absolutely cannot be given up. But that does not mean in some future
time we would interpret success the same way. A certain vagueness of description is
probably tied to success. For example, it is rarely noticed that the dramatic demonstrations
of beginning quantum probability, such as the Bell inequalities and EPR “paradoxes,” are
realized experimentally only by virtuoso fiddling and selection of systems nice enough to
make them work out. When an experiment produces nothing but the mundane predictions
of ordinary classical probability, nobody notices that was also a retrospective quantum
prediction of certain dirty density matrices, protecting the framework from falsification. But
we have noticed, and it suggests that quantum mechanics must be a framework that is so
broad and flexible it does not restrict much. For example, if a future civilization discovered a
true and ultimate Newtonian particle, contradicting everything now believed, any competent
theorist would find no great difficulty describing it with an appropriately constructed density
matrix.

All of this suggests what a new vision of “quantum theory” should include. The restriction
of the subject to describing micro-physical objects of fundamental physical character is obsolete. It
seems the same mistake as thinking complex numbers have no practical use because they
have an “imaginary” part. We believe the framework of quantum theory is mathematically
self-consistent. And when there are self-consistent structures, they ought to have more uses
than microphysics, and not depend on microphysics for their uses. Even more directly,
asking a self-consistent framework to “emerge” means mainly to start using it without fear
it could go wrong.

This idea appears radical because it contradicts a few existing ideas. Physicists are educated
in the magical antics of quantum objects and convinced they are impossible to understand
before they begin serious coursework. As a result, misidentifying mathematical relations as
inexplicable Facts of Nature is very common. That is fatal to physics, because Facts and
Behaviors of a special Universe are not supposed to work on other Universes. That is why it
is generally considered stupid to apply quantum-style methods to non-quantumy objects.

The degree of stupidity depends strongly one’s Bayesian priors. 100,000 years ago humans
would know the concepts of integers but probably be unable to separate them from
empirical facts of Nature. It would be considered absurd and dangerous to imagine integers
disassociated from their experimental realization in the number of rocks or rabbits. Yet those
humans were not stupid. They lacked the background about the Universe to decide whether
integers came from physics or came from human thinking, with physics probably having
the edge because it was real. In much the same way the occult mysteries of h̄, i =

√

−1,
and electrons “in all states at once” conditioned the physics community to think “quantum
methods are for quantum objects. ”

Anyone thoughtful ought to notice that is circular, and ought to be open to using
mathematical structures more liberally. But thoughtful people are given false information by
the physicists about what’s established, and what can be contradicted, and even about what
experiments find. We feel it is significant that the early 20th century was the first time physics
needed to seriously deal with the details of experiments involving a large number of degrees
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of freedom, equilibrium thermodynamics notwithstanding. Whether or not microphysics
had any new and spooky elements, we find that quantum-style methods would need to be
invented to handle the complexity. It is very efficient: And then the classification system
and information processing power of quantum data organization should be used wherever a
useful result might come out.

2.1.2. How to Proceed

Towards that end, we have developed an approach which largely avoids the historical
path. That path and its traditional presentation interweaves a little dynamics, measurement
theory, microphysical facts, experimental claims and the prehistory of failed theories in an
alternating web. It is designed not to be challengeable, which is a cheat. To make progress we
must change something. We first separate the dynamics, meaning rules of time evolution,
from the rest, and identify it as being trivial. This is developed in Section 3. For us the
ordinary form of quantum dynamics is a “toy model”, which at first seems too simple to be
realistic. This is not to say that the models describing microphysics are trivial or easy to solve.
Actually the models are the real discovery, while claims that the dynamical framework is the
real discovery have things reversed.

The great roadblock to using the organizational scheme of quantum theory more generally
is Planck’s constant. Once the claim is made that Nature partitions itself into little cells
determined by h̄, one cannot do without h̄, nor use quantum theory for anything else but
issues of h̄. But the claim is wrong. In Section 4 we discuss a quantum-style Universe
without h̄. We claim it is the ordinary Universe, but if that is too provocative, the step of
never introducing h̄ is a part of our approach where it never appears.

We also dispense with needlessly obscure definitions of “observables.” We define observables
(Section 5) as maps from the system coordinates to numbers. This is plain and unpretentious.
Satisfying things, including relations of Poisson Brackets usually postulated as independent,
can actually be derived using symmetry. In principle the map between system and
observables is invertible: the system coordinates (wave function, density matrix) are
observable. It is a non-trivial fact that real physical systems seem to have infinite complexity,
making exhaustive measurements a bit out of reach, but this “bug” is a “feature.”

In the end the new thing that came out of quantum mechanics are new definitions of
“probability”, Section 6. The working of quantum probability has always been explained
by physicists using a self-validating logic that “it works” because “features of microphysical
object make it work”. (And this is very mysterious and too profound for humans to grasp,
etc.) Every time that thinking style is used we find it unprogressive and circular.

Instead of buying it, we seek a rational explanation why certain mathematical tools work
sometimes and other rules work other times without depending on circular postulates. In
our approach the information management of quantum theory is a topic of mathematical
classification, and for that reason mostly devoid of physical content. Since it is mathematics,
we can derive the quantum rules of probability as a bookkeeping system that does not need
any special features from the objects they describe. And we do this to increase the scope and
utility of the rules so we can use them in new applications.
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2.1.3. Question From the Bottom Up

It is not always helpful to put the framework of quantum mechanics on a high pedestal. It is
sometimes assumed that quantum mechanics might only be “explained” by progress at the
far edge of the research frontier involving quantum gravity, foamy space-time, strings, and
so on[5]. But if true that would put our topic among those not seeking to deal with what is
observable and testable. We are only interested in what is observable and testable.

Progress needs to come from revising the bottom. Successful work at the bottom revises
basic notions that are actually harder to challenge than advanced work, because the whole
system rests on the base The mathematics of our discussion is not advanced. It is little more
than linear algebra, and deliberate choices not to use mathematics that is more advanced
than needs to be used.

There is a very elementary point often overlooked. Mathematical subjects can be reduced to
a definite minimal number of axioms, which might be swapped around, but not decreased.
Early on quantum theory looked ripe for axiomization, and it tends to be accepted today.
Yet every effort to make physics into axioms fails because we don’t know what the
Universe is. However physics can often reduce the number of postulates, axioms or guesses
by swapping around the order, which actually changes their meaning and power. The
everyday assumption that this was optimized long ago is not true. Thus, it is a form of
progress to explore how post-quantum physics-axioms can be eliminated by re-ordering and
re-interpreting the logic. The process will help quantum mechanics “emerge” more clearly
from its own tangles.

3. Dynamics

3.0.4. Where to Start?

By very curious structuring, the usual approach to quantum mechanics starts with the
doctrine of measurement postulates. What is out of order in those approaches is failing
to first define the system and its dynamics. For example the Stern-Gerlach experiment is
traditionally developed as a raw mystery of 1922 involving point-like electrons and two spots,
then requiring a new principle[6]. If one were given from the start that a two-component
wave function was involved the separation into two spots does not really need any new
principles. It was known to Fresnel from calcite crystals and explained without requiring a
new principle. And if one knew the particular two-component wave functions of electrons
were expected from representations of the rotation group none of it would be a terrible
surprise. While ordering things to make physics more mysterious and inexplicable was
an early promotional tool, we lack any interest in it. That is why we will start with the
dynamics, because it can be explained. We will discuss how there is nothing new contributed
by quantum mechanics to its own framework of dynamics: at least in our approach.

3.1. Hamilton’s equations in Schroedinger’s notation

Physics predicts little more than evolution of systems with time, symbol t. By the end of this
work we will argue the predictions (above and beyond the empirically-found model details!)
originate in symmetry.
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We assume the reader knows how to get equations by varying an action S, expressed using
a Lagrangian L(qi q̇i):

δS = δ

∫

dt L(qi q̇i).

Symbols qi are generalized coordinates, namely numbers describing a system, labeled by
i = 1...N, and the dot indicates a time derivative. We are not going to suggest that the “action
principle” will be our foundation postulate. When and if an emergent quantum system has
sufficiently nice dynamics that it gets noticed as an experimental regularity, the action is a
fine invariant notation to express it.

By familiar steps, finding the extrema of the action produces Lagrange’s equations. Define
the Hamiltonian H by

H(qi, pi) = pi q̇i − L(qi q̇i).

Repeated indices are summed. When these transformations can be done, then Lagrange’s
equations are equivalent to Hamilton’s:

q̇i =
∂H

∂pi
; ṗi = −

∂H

∂qi
. (1)

We will pause at this point to repeat that (qi, pi) are real-valued numbers, that everything
above was known by (say) 1850, and that our subject is nevertheless quantum dynamics. We
will never confuse a classical coordinate with an operator, we will never use the abusive term
“quantum particle” except to reject it, and when an operator is intended it will be indicated
by a ˆhat.

The thing for our discussion not known in 1850 lies in the number of dynamical degrees of
freedom (do f ) we intend to use. A Newtonian particle has three do f usually taken to be its
Cartesian coordinates. The Newtonian particle is not a valid prototype and (unlike the early
history) we base nothing on making contact with it. In our approach we have no advance
information on the number of do f describing a system, because that is an arbitrary defining
feature of a system. For N do f the phase-space of (qi, pi) is 2N dimensional. We also pretend
to no advance information on the Hamiltonian, although some properties will be specified
to make contact with existing models. We claim this freedom not to commit is a defining fact
of basic quantum mechanics: but if that is not agreed, it is a fact of our theory.

Now proceed: Hamilton’s equations are invariant under symplectic (Sp) transformations.
It is usually developed by combining ( qi, pi ) into a 2N dimensional multiplet Φ =
( q1...qN , p1...pN ). Hamilton’s equations become

Φ̇ = J
∂H

∂Φ
. (2)
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Here J is a matrix with block representation

J =

(

0 1N×N

−1N×N 0

)

. (3)

Under a real-valued 2N × 2N transformation S, the equation transforms

Φ → ΦS = SΦ;

Φ̇S = S · J · ST ∂H

∂Φ
. (4)

Super-T denotes the transpose. The symplectic group of 2N dimensions is the set of
transformations such that

S · J · ST = J. (5)

It can be shown the determinant det(S) = 1. Transformations satisfying Eq. 5 with
determinant -1 will be called Sp − parity changing.

3.1.1. Simplistic Linear Theories Are Not Our Burden To Defend

By a linear theory we mean that the Hamiltonian H is bilinear in qi, pi:

H(q, p) =
1

2
ΦT HΦΦ;

HΦ =
1

2

(

hqq hqp

hT
qp hpp

)

(6)

Matrix multiplication is implied, and hqq, hqp...etc are N × N arrays of constant parameters.
We are not writing linear terms like αq + βp, which can be removed by translating
coordinates. We have no commitment here to the bilinear form, which is presented to make
contact with ordinary quantum mechanics.

The most general such theory has a familiar form, seen by writing1

hqq = K; hpp = M−1 hqp = −ΓT M. (7)

Complete the square:

H(q, p) =
1

2
pM−1 p +

1

2
qKq + qMΓp + pΓT Mq, (8)

=
1

2
(p −A(q))M−1(p −A(q)) + V ; (9)

where A(q) = Γq; V =
1

2
q(K − ΓT M−1Γ)q.

1 There’s no loss of generality using these symbols, as M−1 is meant to be the inverse on the space M does not send
to zero, i.e. the pseudoinverse.
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The Hamiltonian of a classical, 3-dimensional, non-relativistic particle in an external

electromagnetic field is Hem = (~p − e~A(~q))2/2m + V(~q), where ~A is the vector potential.
Except for allowing a tensor mass, a quantum system with three do f (spin-1, say) is
dynamically indistinguishable. For more do f the symbol A(q) continues to serves as a vector
potential with an associated curvature

Fij =
∂Ai

∂qj
−

∂Aj

∂qi
= Γij − Γji. (10)

These theories have gauge symmetries. From Eq. 10 any symmetric part of Γ drops out
of Fij and the equations of motion. That is equivalent to gauge transformation A(q) →

A(q) + Σq, where Σ = ΣT . As a rule gauge symmetries indicate a system that is being
described with more coordinates than are truly dynamical: the redundant coordinates may
be hard to eradicate, and easier to treat as “symmetries.” That will be a clue.

3.1.2. Diagonal Frame

Go to coordinates where the symplectic metric J is diagonal. Since J is antisymmetric, the
transformation goes from real to complex numbers:

Φ =













q1

q2 ...
p1

p2

...













→ Ψ =

















ψ1

ψ2

...
ψ
∗

1
ψ
∗

2
...

















(11)

An appropriate map is

Ψ = UΦ;

U =
1
√

2

(

1N×N i 1N×N

1N×N −i 1N×N

)

,

with

UU
† = 12N×2N , (12)

and then

U JU † = −

(

i 1N×N 0
0 −i 1N×N .

)

. (13)
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The transformation produces a remarkable simplification of linear dynamical systems.
Hamilton’s first equation (Eq. 2) become

i
∂Ψ

∂t
=

∂H(Ψ, Ψ∗)

∂Ψ∗
. (14)

Since it is an important point we show the algebra for one do f . We are given

q̇ =
∂H

∂p
; ṗ = −

∂H

∂q
.

Combine two real numbers into one complex one:

ψ(q + ip)/
√

2. (15)

We call this the “quantum map”. It explains how complex numbers came to be essential in
quantum theory. Compute

ψ̇ = (q̇ + i ṗ)/
√

2 = (
∂H

∂p
− i

∂H

∂q
)/

√

2. (16)

The chain rule gives

∂

∂p
− i

∂

∂q
=

√

2
∂

∂ψ∗
,

and then Hamilton’s equations are

iψ̇ =
∂H

∂ψ∗
. (17)

Continuing: When H(q, p) is bilinear then H(Ψ, Ψ∗) is bilinear. In quantum mechanics one
always chooses parameters so that

H(Ψ, Ψ∗) = Ψ∗ΩΨ, (18)

where Ω now contains the parameters. Eq. 14 and 18 give

i
∂Ψ

∂t
= Ω̂ · Ψ. (19)

This is Schroedinger’s equation, which is nothing more than Hamilton’s equation in complex
notation. We prefer symbol Ω̂ to Ĥ for reasons to be explained soon.
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3.1.3. Conventionally Assumed Properties

We do not have hermiticity in the form Ω̂ = Ω̂† automatically. First as Bender and
collaborators has emphasized[8], the self-adjoint test does not have a magnificent degree
of invariance. If an operator is self-adjoint it will be Hermitian, as defined by having real
eigenvalues. It will also remain self-adjoint under unitary transformations. But if a Hermitian
operator is subject to arbitrary similarity transformations it may cease to be self-adjoint, while
its eigenvalues will not change.

Second, the class of eigenvalues of Ω̂ are a physics decision. The most general solution to
Eq. 19 is an expansion in normal modes,

Ψ(t) = ∑
n

ψn(0)e
−iωnt, (20)

where ψn are solutions to the eigenvalue problem

Ω̂ψn = ωnψn. (21)

This happens to eliminate a postulate, as we’ll explain, and just to re-iterate, we’re discussing
a system of generalized classical coordinate where the assumption of units h̄ = 1 has
definitely not been imposed. We have no need for h̄ as explained in Section 4. Eq. 21 is
self explanatory. Frequencies are the eigenvalues of the frequency operator Ω̂. As Feynman
must have said, the textbook business of multiplying ωn → h̄ωn ≡ En so the time evolution
appears as e−iEnt/h̄

≡ e−iωnt is a complete waste of time.

If ωn has a complex part the time evolution contains exponentially growing or damped
solutions, which were frowned upon by the authorities in charge of setting up quantum
mechanics. That eliminates another postulate (the postulate of Hermiticity), replacing it by
the Decision of Hermiticity. To conform with this reasonable decision we specify real ωn,
Hermitian Ω̂, which a short exercise shows is equivalent to Eq. 18.

To reiterate, in our approach we have available every freedom to consider non-linear or
non-Hermitian systems, at least up to here. We have taken a more general framework and
reduced it to the less general dynamical rules of quantum theory by identifying the restrictions
assumed in standard lore. Classical mechanics is a vast general framework not at all the
same as Newtonian physics. Understanding that, there is nothing but classical physics in the
Schroedinger equation.

3.1.4. Discussion

Eq. 19 comes from mere algebraic manipulations. While developed a bit in Ref.[7] it is
surprisingly unknown to most physicists. Discussions with many physicists find several
frequently asked questions:

• Every interesting quantum theory is non-linear. Right? Why is the linearization H →< ψ|Ω|ψ >

relevant? No, quantum dynamics is always linear. The mixup about what is linear comes
from habitual sloppiness in physics discussions to mix operators with numbers, and then
constructing Hamiltonians as non-linear combinations of operators. An operator appears
in matrix elements Ω̂ij =< i|Ω̂|j >, which remains unspecified.
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• Does this method assume a finite-dimensional system, and why would that be relevant? No. The
whole point of applying linear algebra and Hilbert space methods to quantum mechanics
is one unified notation. The usual infinite dimensional expression for the Hamiltonian is

H(ψ, ψ
∗) =

∫

dx ψ
∗(x)Ĥψ(x). (22)

Apply Hamilton’s equations (Eq. 14) using a functional derivative and you are done.

• Current physics of quantum field theory uses highly non-linear Hamiltonians, for which Eq. 22
fails. Why bother with beginning quantum mechanics? Once again the question is about the
matrix elements and dimension of the Hamiltonian operator, which we’ve left unspecified,
and which is generally a non-linear function of the fields. That does not change (repeat)
the linearity of the dynamics. It is most directly seen in the functional Schroedinger
equation

iΨ̇(Φ) = Ĥ(Φ, −iδ/δΦ)Ψ(Φ).

This differential equation is equation is linear in the dynamical do f Ψ, while exactly
equivalent to the non-linear operator relations of the usual approach. Feynman himself
was very fond of the Schroedinger picture for the practical reason that wave function
equations are easier to solve and approximate than operator equations. For us (up to
here) quantum field theory is a very large classical dynamical system.

• How can this be the same as the path integral formulation? Moreover, the field-theoretic
path-integral is different from the one of beginning quantum mechanics. We say that basic
quantum mechanics is more fundamental than the path integral. Given the Schroedinger
equation, the path integral comes to be derived as an integral representation of certain
correlations. So we also have path integrals as (up to here) a representation of certain
quantities evolving by generalized classical mechanics.

• Where are the operator equations of motion? What role exists for operators? It is interesting
that the dis-ordering of material in the education of physicists is such that questions
like these come up, while everyone knows the answer. Given the Schroedinger time
evolution, and any arbitrary operator, the Heisenberg picture is developed as a definition
of time-dependent operators. We must use the Schroedinger picture because it’s not
really true that Heisenberg operator equations of motion makes an “equivalent theory”.
The operators lack a wave function to encode a system’s initial conditions and state, and
which develops proper observables.

• Where is Planck’s constant? With classical mechanics and without Planck’s constant how are you
going to quantize the Hydrogen atom ? One of the advantages of our approach is the ability
to discard deadwood. “Deriving the Hamiltonian” of the Hydrogen atom is schoolbook
bunk: at least in our approach! Planck’s constant deserves a separate discussion: the next
topic.
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4. A World without Planck’s constant

Hamilton’s equations in its three equivalent forms (Eq. 1, 2, 19) lack Planck’s constant. Most
physicists believe that Planck’s constant is a fundamental feature of our Universe, cannot
imagine a world without it, and also have no idea how h̄ could possible “emerge” from the
(possible noise and chaos) of theory more fundamental. But a Universe without Planck’s
constant is not hard to imagine[12]. It is a Universe where human history would have gone
differently.

Figure 1. A record of physics from a Universe without Planck’s constant. Rydberg’s original fits to frequency (wavenumber)

data for the Hydrogen spectrum did not need to be converted into Newtonian units and back again to frequency fix the

parameters of quantum theory. As Feynman must have said, converting units and the associated conversion constant is a total

waste of time.

4.1. The culprit is mass

Human history defined a notion of mass as a quantity of matter such as silver or butter long
before physics defined mass. Imagine a history where Hamiltonian methods were developed
first. Then mass would be more neutral, a particular “coupling constant” appearing in the
Hamiltonian. We might find ourselves lacking the Newtonian intuitive picture of “mass,”
which might be a good thing. We would need to teach ourselves how to get the meaning of
parameters from the theory where they appear.

Transformation properties are generally a key. Just as q’s and p’s transform under a change
of variables, the parameters of a theory transform. However parameters do not transform
automatically. Consider the constant c in an ordinary wave equation:

∂
2
φ

∂t2
− c2~∇

2
φ = 0. (23)

Under changes of scale x → x′ = λxx, t → t′ = λtt the equation changes, and becomes false,
unless c is transformed by hand. The equation is form-unchanged (has a symmetry) under
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c → c′ = λxc/λt. That is read “c has units of length over time.” Transforming constants is so
familiar the need for derivation escapes notice.

Notice that transforming parameters is not treated as an ordinary symmetry. Under an
ordinary symmetry, including space-time symmetries such as Lorentz transformations, the
Hamiltonian is unchanged, including the parameters. The reason c must be changed by hand
is that the value c = 3× 108m/s refers to a particular Universe where units of length and time
measured it. Once c is measured and fixed in our particular universe, then changing its value
(with fixed scales of space and time) is definitely not a physical symmetry. Educating the math
about a passive scale change of coordinates requires we transform parameters measured in
old units into new numbers so the Universe described remains the same.

Review such scale changes more generally. We noted that the group of canonical
transformations, which preserve the action of our theory, is the symplectic group Sp(2N).
Every element S ∈ Sp(2N) can be written locally as a product of three factors S = K1 · Λ · K2,
where K1, K2 are “rotations” from the maximal compact subgroup of S. The elements Λ are
scaling transformations of the form

qi → q′i = λiqi;

pi → p′i = p′i/λi; (24)

dqidpi = dq′idp′i . (25)

The phase-space volume on every pair (not just the entire space) is preserved by re-scaling
and rotations. There are N parameters in Λ, and 2N2 in K1, K2, accounting for all
N(2N + 1) parameters of Sp(2N). The decomposition is unique up to discrete row-swapping
transformations maintaining det(S) = 1.

The action-preserving transformations predict momenta pi scale like 1/qi. Unless a different
definition is made, that requires pi to have units of 1/qi. This also follows from the
momentum being the generator of translations. Similarly the energy E as the value of the
Hamiltonian, and the time t are conjugate. Under scaling transformations preserving the
action, they transform with dtdE = dt′dE′, as seen from Ldt = pidqi − Hdt. The intrinsic
units of energy are inverse time, as also seen using the action of a solved system directly:
H = −∂S/∂t.

There is more than one way to apply this. It applies to our complexified dynamical wave

functions, ψi = (qi + ipi)/
√

2. But it also applies at the most beginning level known as “high
school physics.” It is astonishing that mixups at the level of high school physics might affect
deep questions of quantum mechanics. But this is not as unlikely as it seems. High school
students and their teachers are seldom given freedom to challenge what they are taught.
Later on it is difficult to give up what we were taught as children.

4.1.1. Mass Paradox

Knowing the scaling information of Eq. 25, consider changing the units of a translational
coordinate q, for example changing the units of length from meters to centimeters. There
are 100 cm/m, hence qcm = λcm/mqm with λcm/m = 100. Ordinary usage of Newtonian
momentum predicts
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p = mq̇;

qi → q′i = λiqi;

p → p′ = mλq̇ = λp. (26)

The transformation is precisely the inverse of Eq. 24. That is a good paradox.

The paradox comes because Eq. 26 has re-scaled coordinates without re-scaling parameters.
Try it with the speed of light, x = ct. Under t → t′ = λtt, then x → x′ = cλtt = λtx.
Changing units of one second to one hour changes the unit of a kilometer by a factor of 3600.

The correct parameter transformation properties can be found from the Hamiltonian. The
Newtonian mass symbol m is defined by HN = p2/2m. The scaling transformation properties
of time t, a spatial coordinate q, its conjugate momentum p, and mass m are:

t → t′ = λtt;

q → q′ = λqq;

p = m
dq

dt
→ p′ = m′

λq

λt

p

m
=

p

λq

m → m′ =
λt

λ2
q

m. (27)

The last relation tells us that Newtonian mass has the scaling properties of time over length2,
or seconds/meter2.

Now just as we are accustomed to saying that the number for the speed of light is
meaningless until it is expressed as a number of meters per second, or miles per hour, we
need to get accustomed to mass as a number of seconds per square meter.

Example Consider a Newtonian object with mass m = 3(seconds/meter2)
moving at 2meter/second, carrying momentum p = mv = 6/meter at position
q = 5meter. Transform to q′ = 5meter(100centimeter/meter) = 500 centimeter and
p′ = 6/meter(1meter/100centimeter) = 0.06/centimeter. The area of the initial phase space
between the origin and the canonical coordinates is ∆A = ∆p∆q = 5 × 6 = 30 and equals
the area of the final phase space ∆p′∆q′ = 500 × 0.06 = 30.

Example Under the force of gravity on Earth, an object falls with acceleration g =
9.8 meter/second2. The gravitational force F on a given mass m1 = 1 second/meter2 is

F = m1g = 9.8
seconds

meter2

meter

seconds2
=

9.8

meter · second
.
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The work lifting the mass one meter is

work = m1gh = 9.8 meter
1

meter · second
= 9.8

1

second
.

The power delivered by the force is

power = ~F ·~v =
9.8

meter · second

meter

second
(

v

meter/second
)

=
9.8

second2
vMS,

where vMS is the dimensionless velocity measured in meter/second. Using a pulley or spring
balance to apply the same force to a second object with mass m2 = 2 second/meter2 produces
an acceleration

a2 = F/m2 =
9.8

meter · second

1

2

meter2

second
= 4.9

meter

second2
.

4.1.2. How This is Related to Planck’s Constant

To see how the discussion is related to quantum theory, use a theory that is relevant. Consider
a standard wave equation:

∂
2
φ

∂t2
− c2~∇

2
φ + m2c4

φ = 0.

This equation comes from a ubiquitous linear Hamiltonian model. It is a trap to “derive”
this equation using substitution rules of beginning quantum theory: they are circular. It is
better to find the equation generic, as indeed it appears in the vibrations of any collection
of oscillators that has an “optical” branch. By inspection the dimensions of the combination
m2c4 are seconds−2. Then m scales like a Newtonian mass and we are entitled to call m a
“mass parameter.”

Make the definition

φ = e−imc2t
ψ;

∂φ

∂t
= e−imc2t(−imc2

ψ +
∂ψ

∂t
).

This transformation removes the m2c4 term. Continue to obtain the time evolution equation
for ψ. Impose a low frequency approximation that drops the term proportional to ψ̈. The
result is

iψ̇ = −

~∇
2

2mc
ψ. (28)
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Here we have a model frequency operator Ω̂ = −~∇
2/2mc familiar from Schroedinger theory.

We are still lacking h̄, and in our approach, we will never find it in quantum theory.

Essentially the same analysis is done in Ref[12]. A more complicated frequency operator Ω̂ =

−~∇
2/2m + U(x) represents an ansatz for interacting waves. We would not pretend to know

the interaction function U(x) from first principles. (The old predictive recipes, we noted, are
just mnemonics and pedagogy.) We find U from data for electrons. Basic scattering theory
allows one to invert the Born-level differential cross section of electron-atom scattering into
U(x). The same U(x) predicts the observed Hydrogen frequency spectrum, which is quite
non-trivial. Figure 1 shows an example of the frequency data of Rydberg[10]. Taken before
1900, the data was of surprisingly high quality. Several other data comparisons are consistent.
The entire theory has only two parameters m and κ. The constant κ is dimensionless, as
consistent with the results of data-fitting

U(x) =
κc

|~x|
,

and U correctly has dimensions of frequency.

We said we are only concerned with what is observable and testable. When using
experimental data to fit the parameters of quantum theory h̄ is unobservable, and given
up, in our theory. Figure 2 shows that we have done the work to fit parameters [12]. With
basic information on the frequencies observed in the Rydberg spectrum, and the scattering
lengths observed by Geiger and Marsden, etc. one derives κ and λe = c/me directly. The
numerical value of κ is about 1/137. By a natural coincidence Sommerfeld discovered the
dimensionless constant κ and called it α, the fine structure constant. Dimensionless constants
do not depend on the units used to compute them, so that the unobservable unit converter
h̄ cancelled out for Sommerfeld. In none of this is the introduction of a conversion to archaic
MKS units necessary, nor is it helpful. As Feynman must have said, “bothering to convert
units with the meaningless constant known as h̄ is a total waste of time”.
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Figure 2. Contours of χ
2, the summed-squared differences of data versus fit obtained from the data analysis of Ref. [12]. Left

panel: As a function of parameters κ and λe with ce → c. Right panel: As a function of parameters κ and ce with λe given by

Compton’s 1922 experiment. Dots shows the points of minimum χ
2
∼ 0.24 in both cases. Contours are χ

2 = 1, 2, 3... Lines
show modern values c = 3 × 1010cm/s, λe = 3.87 × 10−11, κ = 1/137 all lie inside the range of χ

2
. 1.

When one redundant unit is dropped, something is gained. The errors in the definition and
inconsistent uses of the kilogram drop out. Continuing up the ladder, the system where mass
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is measured in seconds/meter2 is such that the accuracy of the best determinations of the
electric charge and electron mass were improved[12] by a factor of order 100 compared to
the official CODATA determinations[13].

4.2. A redundant convention

We come to see where Planck’s constant entered human history. The space-time scaling
properties of mass were overlooked early, which continues today, due to a Newtonian
prejudice that mass is intuitively self-defined. For a long time mass was even thought to
be a “constant quantity of matter, unchanging by the principle of conservation of mass.”
That led to a unit of mass unrelated to meters and seconds, and declared independent by
defining a totally arbitrary unit known as the kilogram. Introducing an artificial reference
standard was found acceptable for Newtonian physics: using artificial standards to weigh
silver and butter was quite ancient and obvious.

Notice that introducing artificial unit conventions cannot be detected as faulty by math or
logic. Intelligent technicians and business people use a huge array of unnecessary units daily,
in many cases imagining that relations between them (such as 1 pascal =0.000145 pounds-per
square-inch) must be “laws of physics.” Once a redundant unit and its arithmetic enters the
scaling laws it can stay around forever.

But as a price for these mistakes, a unit-conversion constant was needed in history to change
black-body frequency in terms of temperature, which is energy, which is the frequency of
the action, to black body frequency observed in the spectrum, which is frequency. If and only
if one insists on measuring mass in kilograms, one needs a new symbol mkg = ηm, where eta

has units of kgm2/s. The value of the conversion constant η is arbitrary, just as the kilogram
is arbitrary, and as Ref. [12] shows, fixing one predicts the other. (And that explains[7]
the peculiar phenomenon of international unit standardization from global fits finding 100%
correlation of the “experimental errors in the kilogram” with the “experimental errors in
Planck’s constant.”)

There is a fast way to reach the same conclusions. The action principle is δS = 0. The right
hand side “0” has no scale, and no units of S can be physically observable. By S we don’t
mean the action of some subsystem which can be compared to another to define an arbitrary
fiducial unit, just like the kilogram. We mean the action of the Universe. That causes one
overall constant that was defined in quantum pre-history “with the dimensions of action” to
drop out.

At least in our approach, every quantum mechanical relation that involves h̄ is an ordinary
relation not involving h̄ that has been multiplied by some power of h̄ on both sides: so that h̄
cancels out of everything observable.

Example: Although Planck is reported to have gotten his constant from black-body data, his
original work shows otherwise. From his derivation and data fits [11] the most Planck could
get was the ratio of h̄/kB, where kB is Boltzman’s constant. Planck thought kB was extremely
fundamental, although we now know it is nothing from Nature. It is a conversion constant
of energy in temperature units to energy in energy units. The Newtonian convention for
mass entered in kB and h̄ both. The kilogram cancels out. When measuring quantum data
with quantum data h̄ cannot be obtained [12], and it is nothing but convention to insert the
kilogram so as to force a relation. The information was available in 1900. Indeed Wien’s Law
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used the classical adiabatic invariance of the action to relate the electromagnetic energy to its
frequency. It was already known that the value of the Hamiltonian H = −∂S/∂t. Hence the
clue of a redundant unit existed, and if the connection had been made, it might have led to
getting rid of the kilogram before 1900.

Example: Due to pre-quantum nonsense everyone is obliged to learn, the quantization of
angular momentum is blamed on the value of Planck’s constant. One cannot possibly
do without h̄, it is claimed, due to the fundamental commutation relations of angular
momentum

[Ji, Ji] = ih̄ǫijk Jk. (29)

Strictly deductive algebraic relations developed from those commutators produce the
possible representations and the spectrum of observables Jz = nh̄, where n must be an integer
or half-integer. And this reproduces data. And in the limit of h̄ → 0, the commutators go to
zero, which is the classical limit of operators becoming c-numbers, etc.

We say: that kind of argumentation fails the quality-control standards of the current
millennium. Groups and representations are fine organizing devices that don’t originate in
claims about physical existence. The representations of SU(2) had been worked out before
quantum mechanics wanted them. To get Eq. 29 one takes a set of dimensionless SU(2)
generators J̃i and arbitrarily multiplies them by h̄:

[h̄ J̃i, h̄ J̃i] = ih̄ǫijk(h̄ J̃k). (30)

Then Ji = h̄ J̃i come to obey Eq.29. But by remarkable rules of algebra, multiplying both sides
of any equation by the same constant does not change the equation. In Eq. 30 one sees that

h̄2 cancels out: including that magic limit that h̄ → 0 or h̄ → −17.3 or anything else, so it
also cancels out in Eq. 29.

The quantization of angular momentum eigenvalues is a fact that has nothing to do with
h̄. The “classical limit” has nothing to do with h̄, assuming one can count and distinguish
low quantum numbers from huge ones. The reason that h̄ is artificially spliced into Eq. 29,
and other algebras, is so that 21st century measurements of angular momentum will be cast
into an MKS unit system designed for 17th century Newtonian physics. Which continues to
assess and obstruct quantum mechanical data by interposing the universal kilogram which is
not a feature of Nature.

5. Observables, quantization and bracket relations

We seek to get as much from the theory as possible without making unnecessary postulates:

5.0.0.1. Operators as Physical Observables

The postulate that operators are “physical observables” is redundant: in our approach. We
find using it slyly abuses language that first defined observables as numbers, in order to slip
in the operator as a philosophically transcendent realization of physics. That’s too cheap.
Very simply, the wave function is observable, and using operators to probe a wave function
may be convenient, but that is not independent.
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5.1. Observables as numbers

An observable is a number extracted from the wave function as a projective representation,
meaning that ψ ≡ zψ for any complex z. This symmetry exists in the equation of motion. We
wish to call attention to it as a feature of “quantum homogeneity.” It makes the information
in |ψ > equivalent to the information in the density matrix ρψ = |ψ >< ψ|/ < ψ|ψ >.
(The bracket notation, suppressed before to reduce clutter, is useful here.) Equivalence exists
because if ρψ is given then its unit eigenvector predicts |ψ > up to a constant z. (Later we
discover that density matrices of rank-1 are too special to base the full theory upon, but that
comes with development of quantum probability, which is not yet under discussion.)

It is convenient to extract a number using an “operator sandwich”. We define an observable
< Â > as the number from the map

|ψ >→< Â >=
< ψ|Â|ψ >

< ψ|ψ >
=

tr(Âρψ)

tr(ρψ)
.

The last relation is general for cases where ρ is not so simple as rank − 1. Note we need
nothing from quantum probability to make the map. Instead of prescribing < ψ|ψ > with
a normalization postulate, we maintain it is simply unobservable, and drops out. We may
then set < ψ|ψ >→ 1 to simplify expressions.

The trace (symbol tr) acts as an inner product between operators. Let Âi be a normalized
complete set of operators, which is defined by tr(Â†

i Âj) = δij. Since the set is complete,

ρ = ∑
j

Ajtr(Â†
i ρ) = ∑

j

< Âj > Âj.

Thus ρ is equivalent to a number of observables, and |ψ > is observable to the exact extent it
is defined. At some point this simple relation seems to have been re-packaged as “quantum
holography.” The very late date of realizing the wave function is observable (to the extent it
is defined) supports our case that quantum mechanics is still “emerging” from its history.

5.1.1. Eliminating More Postulates

There is no particular reason for us to postulate that Â must be Hermitian. If it is not
Hermitian the operator sandwich gives a complex number, equivalent to two real numbers
and two observables, because any operator is the sum of a Hermitian operator and i times
a Hermitian operator. As for complex numbers being observable in the lab, mathematics
tells us that complex numbers are real pairs with 2-vector addition and multiplication rules.
It is not unusual to observe such number pairs that have phase relations like qi, pi which
map directly into ψi, a complex number. So there is no reason for the 18th century trick of
scaring people with complex numbers. And yet: given that ρ is Hermitian no harm is done
by restricting the operators for observables to being Hermitian. One more grand postulate
turns to clay.

At least in our approach, those matters of definition need no foundation postulates. Neither is
there a good reason to insist that an observable be an eigenvalue of some especially known
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operator. The interpolation of that rule seems designed to create conflict. Checking a bit
of physical data, measuring the eigenvalue of an operator intended is rare. For example
experimentalists have been measuring neutrinos for decades while the theorists argued about
their operators. We think that measuring a number and calling it an eigenvalue of “some
operator ” is meaningless. If and when an eigenvalues of a known operator appear in a
data set, one obtains that fact that |ψ > will then be the corresponding eigenvector of Â
automatically. We also don’t need to discuss “compatible and incompatible” observers in
terms of operators that commute. In this century everyone knows how that math works.

5.1.2. Bracket Relations Are Kinematic

The quantum map shows that complex ψi are canonical coordinates, up to i:

ψi = (qi + ipi)/
√

2.

A factor of i is tolerable, in that Hamilton’s equations are recognizable including it:

iψ̇ =
∂H

∂ψ∗

i

, iψ̇∗ = −

∂H

∂ψi
.

Thus iψ∗

i is the canonical momentum conjugate to ψi. Poisson brackets (PB) are canonically
invariant, so that transcribing them to ψ, ψ

∗ involves only a factor of i.

In fact the PB relations among our observable are rather simple due to the decision to
make observables bilinear in ψ, ψ

∗. The most famous application was the early desire to

project the wave function into a few particle-like observables ~Q, ~P, mistakenly thought to

be important from Newtonian bias. For ~Q to represent a translational coordinate it must
transform properly:

given ψ(x) → ψ~a(~x) = ψ(~x −~a),

then ~Q = d3x ψ
∗ ~̂Qψ → ~Q → ~Q +~a.

There are few choices but ~Q = ~x. The test that a candidate variable Pi is conjugate to these
Qi needs the bracket {Qi, Pj}PB = δij.

Write this out, assuming operator sandwiches:

{Qi, Pj}PB = −i ∑
x

(

δQi

δψx

δPj

δψ∗

x
−

δPj

δψx

δQi

δψ∗

x

)

.

Computing the derivatives gives

{Qi, Pj}PB = −i
∫

dx ψ
∗

x [Q̂i, P̂j]ψx.
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This must be true for all ψ. Quantum homogeneity (the irrelevance of < ψ|ψ >) then obtains
the map between the operator algebra and Poisson bracket

{Qi, Pj}PB = δij → [Q̂i, P̂j] = iδij (31)

The other consistency relations of “quantization” are similar. A PB algebra predicts a
commutator algebra, as follows: If {A, B}PB = C is true for general |ψ >, and all quantities
are operator sandwiches, then [Â, B̂] = iĈ follows by identity. An interesting application
comes from the lack of any non-zero commutator with the unit operator “1.” It tells us that
< ψ|ψ > does not transform, time evolve, nor give a non-trivial result, so it is a conserved
“momentum” of the theory that drops out as unobservable.2

The early history of quantum theory found the map between Poisson brackets and
commutators profound, and it tends to still be viewed that way. In our approach it
emerges on its own as useful, but automatic. If one chooses operators that satisfy the
bracket-commutator rules, then their observables transform as they are intended, and
vice-versa. It is not really necessary to cast around and discover operators by trial and
error. Noether’s Theorem will manufacture any number of generalized conjugate Pi from
point transformations on Qi as the “charges” of conserved (or un-conserved) currents[7].

It is interesting that in retrospect the original Heisenberg program, based on Poisson brackets,
guaranteed such an outcome. The virtue of bracket relations lies in generating Lie algebra
and related relations that are inherently coordinate-free. Once a given algebra is transcribed
to a different notation, it is not going to produce new results. Thus when Heisenberg
transcribed the Poisson bracket algebra of Hamiltonian time evolution to a different notation
he was building up a classical Hamiltonian dynamics of ordinary kind, if it was not
recognized at the time.

The big advance, as mentioned before, comes with the physical model of electrons having
an infinite number of do f , as Eq. 31 requires, and as found in a wave theory. That
fact was supposed to be evident in the spectrum of atoms showing a (practically) infinite
number of normal mode frequencies. That in turn could have been done by 19th century
classical physicists, who knew about spectra and normal modes. And indeed Stokes, Kelvin
and Lorentz[9] all deduced the facts that atoms are vibrating jello from such clues before
1900. Lacking any technology to test the speculation, they made little of it which is a
pity. Immediately after 1900, the cult of the quantum of action went the way of postulating
mistakes that could not be expressed without Planck’s constant. All of that can be dropped.

5.1.2.1. Quantization

The PB-commutator relation of Eq. 31 is commonly called the “quantization” principle
according to the recipe of Heisenberg or Dirac, which (being a postulate) cannot be explained.
While that is what those gentlemen believed, it is not our approach.

Once the physicists have committed to a linear, Hamiltonian theory, there is very little left to
determine except its dimension. As already mentioned Eq. 31 realized with xi, ∂j = −i∂/∂xi

requires a space of a continuously infinite number of degrees of freedom: waves. Less

2 Similarly, the center of mass momentum of the Universe in Newtonian physics is unobservable.
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information exists in the algebra than in the direct and simple model of waves. For one
thing, the algebra is kinematic, and will work for any Hamiltonian, including non-local ones
that do not seem to be observed. In comparison the wave model predicts the algebra, because
it contains everything, so it is superior.

It is sometimes thought that “field quantization” proves that quantization principles are a
golden road. But what’s kinematic on one space is kinematic on a larger space. If one
believes there should be wave functions for classical fields, one defines quantum field theory
straightforwardly. It also happens to be equivalent to the space made from products of an
arbitrary number of beginning quantum systems, which is neat, but which again shows that
invoking the quantization principle was redundant.

Finally, we find there is a perception that abstract operator methods are superior just because
they are difficult. It is seldom noticed that an unlimited amount of tortuous and clever
operator manipulation can never have more information than just solving the differential
equation, which predicts everything, and (in fact) all the differential equations of quantum
mechanics are already “solved” by Eq. 20.

These are reason we wrote in the Introduction that the viable models are a higher
accomplishment than framework.

In our approach the state space is not going to be predicted by a simplistic algebraic
transcription. Finite dimensional quantum models are known and hardly useless: they
are models of spin, and molecular rotational dynamics. Finite dimensional models of
quantum field theory are known. They are called “lattice theories.” The dimensionality
of quantum models has no restriction. Leaving the dimension free to grow without limit is
what transpired, and one of the reasons the subject is so flexible it cannot fail.

6. Quantum probability

In this Section we explore the origins of probability in our approach. Quantum probability is
an old subject with many contributions we cannot possibly review. There is some agreement
that the Born rule should be “a Theorem, not a Principle”[14], although our approach is not
quite the same. In the first place we must dismiss a common misconception that quantum
probability contradicts classical probability, or is inconsistent with it, by defining each.

6.1. Define terms

Probability itself is a subtle topic. It is not well-defined until “objects” are categorized for the
purposes of probability. Classical probability (CP) of frequentist kind is about classifying
objects into mutually exclusive (me) equivalence classes3, and assigning numbers to the
information by counting. Distributions are a useful tool of CP. Quantum probability (QP)
allows such classifications but does not insist on them. Instead QP is a projective map from
a system’s state, represented by density matrix, into a number. Distributions sometimes exist
in QP, but are not always compatible.

3 Although “equivalence classes” are often mutually exclusive sets by definition, we use the term more broadly, and
add me when the term is intended.

Emergent un-Quantum Mechanics
http://dx.doi.org/10.5772/55954

459



24 Advances in Quantum Mechanics

The breakthrough of quantum probability, we believe, lies in generalizing the notion of
probability so as not to insist on pre-ordained equivalence classes. Vectors are categorized so
they have a great chance of being nearly equivalent. Physicists seem to believe that “quantum
objects” from Nature are needed to make sense of quantum probability, and vice-versa. But
nothing from physics is involved in developing an accounting system where different vectors
are not automatically treated as mutually exclusive. While we will extensively use physics
and its examples, the ultimate goal of this Section is not to depend on physics.

6.2. Discovering quantum probability with a hidden-variable map

Begin with a remarkably simple map from classical to quantum probability which illustrates
the necessary class ideas. Let |D > be a big vector we call “data”. By means which are

quite arbitrary it is partitioned in a collection of smaller vectors D
J

i
=< i J|D > with names

J = 1...Jmax and components i = 1...imax. We tentatively interpret J as labeling the sample
number taken from some (deterministic or random) process. The other index is interpreted
as describing “objects”. The sample space and object space are tentative because certain

operations will mix them, as we will see. Formally D
J

i
exists on the direct product of spaces

of dimension imax ⊗ Jmax, upon which there are certain transformation groups and invariants.
For convenience the record is normalized < D|D >= 1 in the usual way, removing one
number set aside.

Now we seek a notion of orderliness or physical regularity. We will expand the vectors in
an orthonormal basis set {|e

α
>}, where e

α

i
=< i|α >, and seek some form of statistical

repetition. The basis matters, so which basis is used? Every data record actually has two
preferred bases, in which the expansion is diagonal:

|D〉 = |e
α
〉Λα

|s
α
〉 . (32)

This is the singular value decomposition (svd), which is unique. It is proven by diagonalizing
two correlations (matrices) that automatically have positive real eigenvalues:

DD
† = ∑

α

|e
α
> (Λα)2

< e
α
|; (33)

D
†
D = ∑

α

|s
α
> (Λα)2

< s
α
|.

Notice that the decomposition yields vectors which are orthonormal on their respective
spaces. Notice that the vectors are defined up to a symmetry:

|eα >→ ze|eα >;

|s
α
>→ zs|s

α
>;

|D >→ |D > .

Here ze, zs are arbitrary complex numbers. The factor vectors are eigenvectors which have
no normalization except the normalization given by convention. By phase convention the
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singular values are positive real numbers, Λα > 0. The singular values are invariant with
the data is transformed by arbitrary and different unitary transformations on the object and
sample spaces.

The interpretation of each term |sα
> |eα > summed in Eq. 32 is a strict correlation of a unique

object vector labeled α with a unique sample vector labeled α.

Example Suppose the data consists of integer numbers of objects that are |apple > or
|orange >. This is classical me data: by existing in different spaces, < apple|orange >= 0.
Sufficiently fine sampling will produce samples which are either 1 or 0. Typical data is then

|D >= (|apple >, 0, |orange >, |apple >, |orange >,

. . . |apple >).

The expression only makes sense if these me objects are normalized, < apple|apple >= 1,
and so on, else the normalization would conflict with the number of apples. Expand in the
natural basis we started with,

|D >=|apple > (1, 0, 0, 1, 0, . . . 1)

+ |orange > (0, 0, 1, 0, 1, . . . 0). (34)

The diagonal form of svd has appeared, up to a normalization. Whenever data consists of
disjoint me objects, one can show those same objects are automatically the svd factors. The fact
of strict correlation comes with projecting onto one object such as |apple > and producing
its sample vector, which is automatically orthogonal to all the other sample vectors:

< apple|D >= (1, 0, 0, 1, 0, . . . 1).

Conversely, selecting one of the me sampling histories automatically selects a unique object.
These are features of classical “events.”

To reach the svd form implies samples that are normalized:
〈

sα
| sβ

〉

= δ
αβ. Let Napple be

the total number of apples observed. Let Ntot be the total of apples and oranges. Remember
that we normalized our data. Then

(1, 0, 0, 1, 0, . . . 1) →
√

Napple/Ntot(1, 0, 0, 1, 0, . . . 1)/
√

Ntot/Napple

=
√

Napple/Ntot|s
apple

> . (35)

Once normalized we can read off the singular values:

|D >=
√

Napple/Ntot|s
apple

> |apple >

+
√

Norange/Ntot|s
orange

> |orange > .
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Now suppose there is a unitary transformation of our data on either object of sample or
both spaces - but not mixing them. The result will involve linear combinations of the form
α|apple > +β|orange >, which is classically “taboo.” For better or worse, we cannot stop
linear transformations from being used or being useful. Whatever the coordinate system, we
can construct the svd factors and singular values as invariants.

In many cases (and always in physics) we are actually forced to suppress some detail by
summing over unwanted or unrecorded details of the sampling history. That was already
done in Eq. 33. We use that observation as the first example in constructing the density matrix
ρobject of the object system:

ρobject = trs(|D >< D|) = ∑
α

|eα
> (Λα)2

< eα
|.

The form ρobject we traced-out the sample history. This identity now defines the me
|objectα >= |eα >. By construction, whenever me data is used, we have a convenient invariant
formula for the probability of finding such an object:

P(|eα > |ρobject) =< eα|ρobject|eα >= tr(ρobject|eα >< eα|).

The symbol P(|eα > |ρobject) is read as the probability of |eα > given ρobject, and exactly
coincides with counting numbers: thus

P(|apple > |ρ) = (
√

Napple/Ntot)
2 = Napple/Ntot.

In general form the probability P to get an observable < Â > is

P = tr(ρÂ)/tr(ρ). (36)

6.3. The quantum-style agreement

We propose an agreement on how data will be managed: we agree to describe a system using its
density matrix. We give up the possibility of keeping more information, because it is efficient
not to have it.

Review the apples − oranges discussion with a physical example where transformations are
natural. Suppose observations consist of events with 3-vector polarizations |E >. Moreover,
only two orthogonal components |e1 >, |e2 > are measured. A generic data set including the
sampling history will not generally consist of me events, but combinations of the form

|D > = (|E1 >, 0 |E2 >, . . . |En >)

which is expanded in the basis

|D >=|e1 > (< e1|E1 >, < e1|E12 > .. . . . < e1|En >)

+ |e2 > (< e2|E1 >, < e2|E2 >, ... < e2|En >).
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In the form above we have both the events and the sample history. The samples are not
mutually exclusive, but naturally fall into the corresponding projections. That can be called
the “underlying reality.” Meanwhile there exists a unitary transformation on the objects and
samples where this arbitrary data will be a sum of strictly correlated, me elements which are
indistinguishable from classical events. The difference between that interpretation and the
quantum-style one is a coordinate transformation not available from the density matrix, so it
becomes meaningless.

Normalize the sample history and take the trace over the sample space to form the density
matrix. Upon reaching that level, one cannot distinguish the system from one where
every event actually was a product of mutually exclusive object and sample vectors. This
information is deliberately lost in forming the data categories. That makes it consistent and
unique to define probability using the Born rule. No subsequent experiment can make it
false. Probabilities defined by naive counting of integer-valued data will agree exactly.

6.3.1. Outcome Dependence

“Outcome dependence” is the name given to statistics that depend on the order of
measurement. Our procedure has outcome dependence. Suppose one is selecting channels
by simple filters. A “measurement” β uses a state |β > and an associated projector
πβ = |β >< β|. A series of measurements β, γ, η... in that order, yields

P(β, γ, ...η|ρ) = tr(πη ...πγπβρπβπγ...πη).

The projective and non-commutative nature of this kind of probability is self-evident. It
follows immediately that no classical distributions can reproduce this kind of probability in
general.

The famous Bell inequalities[15] dramatize this fact, yet there was nothing new in finding
that distributions fail in general. It would have been extraordinary for probability based on
density matrix projections to be equivalent to distributions in the first place. Years after Bell,
Werner[16] formulated the criteria called “separability” of density matrices, which when
true allows QP to coincide with CP as formulated with distributions. Thus the classical
probability rules exist inside of QP, when and if a special case happens to occur. Conversely
QP in our approach is a more general extension of the concepts and rules of CP that does
not contradict any of it. We will argue that QP is so general there are no restrictions on how
it might be used.

About Disturbing Measurements: It is a geometrical fact that any vector can be considered
to be any other vector, plus the difference. It takes one step to make the difference orthogonal,
by writing

|a >= |b >< b|a > +(|a > −|b >< b|a >).

The term in braces is orthogonal to |b >, given normalized vectors. Up to an overall scale,
the vector |b > that is literally pre-existing in vector |a > is |b >< b|a >. This decomposition,
of course, does not come from physics. We see that agreeing vectors are“ equivalent” up to
a scale is a prelude to counting them as equivalent for probability purposes.
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It is quite important (we repeat) that the coefficient < b|a > happens to measure the amount
of vector |a > that is pre-existing and pre-aligned with |b >. It is very reasonable that a quiet,
non-disturbing “physical measurement” of a system will filter out a pre-existing component
of a vector variable, and pass it through undisturbed. Undisturbed filtering is precisely what
happens in textbook discussions of polarizers, Stern-Gerlach, and diffraction gratings. We
wish it would be mentioned it has nothing to do with h̄ (to repeat). Using the undisturbed,
pre-existing projection also totally contradicts the old line of thinking that ‘measurement”
involves an uncontrollable disturbance of the system due to the finite quantum of action.
Indeed if one believed that, the overlaps would change by the process of measurement, and
the Born rule would fail.

6.3.2. Division and Reduction

The conventional approach to “quantum interacting systems” holds that system A “exists on”
space A, system B “exists on” space B, and when they interact the joint system exists on the
direct product of spaces C = A ⊗ B. This is physically puzzling, and we think backwards.
Instead we use our idea of equivalence classes developed by partitioning information, or
“division”.

Given any vector on a space C, we may partition it into factor vectors on procedurally-defined
spaces A and B, as used above. For example a vector of 40 dimensions can be written as the
product of vectors on 4 dimensions and vectors on 10 dimensions, or products of 5 × 8, etc.

Division is particularly well-developed with Clebsch-series done in the inverse direction:
discovering what smaller group representations can be composed to make a given bigger
one. A more straightforward division groups a data vector’s components into adjacent bins
of sub-dimension imax and names J:

Da → D
i J

J = int(a/imax); i = mod(a, J),

where int takes the integer part, and mod(a, J) returns the remainder of a/J. Arnold’s famous
“cat map” is an example. The freedom to choose the bins and dimensions is very important.

Division is quite coordinate-dependent. Division can be repeated to divide the factors, and
make subdivisions. The process of vector “division” is not profound mathematics, but the
arbitrariness is important for physics and data manipulation. Given a particular division,
the physicist (knowingly or not) inspects the decomposition searching for simplicity and
regularity to “emerge”. The factor-states that turn out to make physics easy become well
known under many terms...electrons, photons, quarks, etc. The interesting question of the
ultimate meaning of such entities is discussed in Section 7.2.

Given a density matrix ρ
AB

defined on C, the decision not to study an observable with a
non-trivial operator on space B allows us to prepare the density matrix

ρ
A
= tr

B
(ρ

AB
).

Here tr
B

sums the diagonal elements of the labels on space B. This defines reduction in the
conventional way. Reduction is inevitable in physics because physics measures very little.

Advances in Quantum Mechanics464



Emergent un-Quantum Mechanics 29

10.5772/55954

The rank of a density matrix obtained from reduction depends on how the reduction was
done. Obtaining a rank − 1 reduced matrix is exceptional. Finding such systems in the
laboratory requires great ingenuity. That is why we treat systems that can be described with
wave functions as special cases. That may seem to put our dynamical framework discussing
wave functions somewhat askew relative to the probabilistic one. Section 6.3.4 explains why
and how Hamiltonian time evolution remains relevant.

6.3.3. What Are Those Hidden Variables?

It is remarkable that Bell’s artful introduction of distribution theory[15], which is
inappropriate for quantum-style systems, led to a false perception that “hidden variables”
had been excluded. The hidden variables of ordinary quantum mechanics are the physical
degrees of freedom (wave function or density matrix projections) on those spaces the
physicist ignored in setting up his oversimplified model. There are always such spaces in
Nature.

There is no limit to the number of products or their dimensionality that can be used as “data”
or “sample vectors.” Partitioning vectors on any given space into a number of factors is a
highly coordinate-dependent business. It is essentially a map from one sort of index to a
number of composite indices, which can always be done linearly: D

k
→ D

abc... = Γabc...
k

D
k
,

where Γ is an array of constants. In a sufficiently large data vector the “sample” and “object”
spaces can be re-configured in practically infinite variations. There is very little that is
invariant about entanglement when we allow such freedom. Nature cannot possibly care
about these coordinate conventions: Pause to consider how it affects physics.

In early days the Hilbert spaces of single electrons or single photons were considered utterly
fundamental. They were building blocks for lofty postulates that could not be explained.
Yet quantum mechanics was long ago enlarged to develop quantum field theory (QFT).
For some purposes QFT is considered to have no new information on quantum mechanics
itself, while defining very complicated quantum models. Yet Nature has subtleties. Basic
non-relativistic quantum mechanics is incapable of dealing with the very questions of
causality and non-locality that cloud interpretation of measurements. Relativistic QFT deals
with issues of causality directly in terms of correlation functions with very well-defined
properties. On that basis QFT is the more fundamental topic: it is big enough to support
realistic models.

The relation of ordinary quantum mechanics to field theory is then developed by reduction,
where unobserved do f are integrated out. As a result all of the phenomenology of ordinary
quantum mechanics is subject to the hidden variables known to have been integrated over
in developing density matrices that actually occur. This is ignored in ordinary quantum
mechanics seeking by itself to be “fundamental.” It is not logically consistent to ignore what
is known. Now we have shown how naive probabilities of counting emerge from density
matrix constructions integrating over quite arbitrary sample spaces. It is hard to escape the
inference that the probability interpretation – which beginning quantum mechanics could
not explain about its own framework – must certainly originate in reduction of interacting
systems of QFT down to the experimentally crude probes developed in beginning quantum
mechanics.

Infrared Example: There exists certain pure states of the QFT called bare electrons: the
quanta of a free field theory. If such a state actually participated in an experiment we
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doubt we’d have a statistical explanation for its behavior in the same free field theory.
But that dynamics is too trivial to describe anything, or even permit participation, because
free electrons are free. The so-called bare electron of free field theory has never been
observed and cannot in principle be observed. All electrons and all observable states
are “dressed.” Calculations addressing infrared divergences find that electrons with zero
photons are unobservable, or have zero probability to participate in reactions, as known
from the ancient time of the Bloch-Nordseik analysis[21]. When the experimenter finally
specifies his experimental resolution adequately, the probabilities of events emerge from
density matrix steps integrating over unobserved quanta, exactly as we have discussed, yet
in such a technical fashion that its relation to beginning questions of quantum probability is never
recognized. The same facts also occur for all degrees of freedom not directly pinned down
by experimental probes, which is most of them, that are much more difficult to categorize.
Every single physical experiment involves so many uncontrolled variables that a statistical
description via density matrices cannot be avoided. It is a rare experiment that even finds
a single wave function will model the data: and a rare experimenter who can tune his
instruments to make that expectation come out.

6.3.4. Invariants Under Time Evolution

At the level of QFT one can assert certain wave functions exist, and model them with the
Hamiltonian time evolution we cited earlier. That is the state of the art, and returns to how
the Hamiltonian dynamics is relevant once again.

i  =  
.

?

i  = [ ,  ] 
?.

no yes

yesno

add

freedoms verified !

verified !

0

1

2

Figure 3. How to test Quantum Dynamics: Tests begin at point 0 with maximal optimism, and assuming the Schroedinger
equation applies. At stages 1, 2 tests of dynamics and statistics against observations are made. Dynamical freedoms will be

added by the user when a test fails: The system dimension is increased. The procedure flows around a closed loop. The

framework cannot be falsified; All outputs verify quantum dynamics.

When probabilities refer to physical measurements, it is important that they be invariants
of the system being measured. Invariants refer to some definite transformation group. The
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symmetries of (our approach) to quantum dynamics are Sp(2N). There is no precedent to
define quantum probability with that symmetry. By adopting a linear dynamical model with
Hermitian Ω̂ the dynamical symmetry group is no worse than U(N). This is easier to work
with.

The relation of the groups in our approach is very intimate. Consider the largest set of
transformations preserving the unobservable < Ψ|Ψ >= ∑

N
j (p2

j + q2
j )/2. That is O(2N),

a relatively large group overlooked in ordinary quantum discussions. The intersection
with the actual symmetries O(2N)

⋂

SP(2N) ∼ U(N), where ∼ means isomorphic after
complexification. Thus invariance of a probability notion under U(N) is enough for
consistency.

Once more our motivation differs from the traditional one. Tradition asserts - blindly and
falsely - that since U(N) is the symmetry group of Schroedinger’s equation, the notion of
total probability must be preserved under U(N). We can’t buy that. We don’t have a reason to
preserve the precious notation of the Schroedinger equation. (It is less general than Hamilton’s
equations.) What we buy is the fact that U(N) time evolution will not destroy a U(N)
invariant probability, if and when the time evolution is that simple. It seems unwise to
expect more than that from physics.

Supposing the system is so orderly on a chosen space, one cannot be sure of its effective
dynamics for a density matrix on a reduced space. This contradicts lore of the Von Neumann
(vN) equation, which is “derived” by methods hoping it might be correct[18]. The equation is
equivalent to predicting the time evolution ρ(t) = U(t)ρ(0)U†(t), where U(t) = exp(−iΩ̂t).
Notice the traditional context assumes that symbol “ρ” refers to a unique object space, while
we recognize that concept is procedural. Once a particular division and reduction has been
done, it is enough for a single eigenvalue of ρ to be time dependent for the vN equation to
fail. While the Von Neumann equation is true by definition in textbooks, it is seldom true in
experimental practice. That is because almost all physical systems which are “dirty” enough
to need a density matrix are also dirty enough to interact with the environment and spoil
the assumptions. There are schemes (“Lindblad theory”)[19] to cover the gap. If sometimes
a good phenomenology, the cannot be considered general. When energy and interactions
leave a subsystem they go into the larger system to return on any number of different time
scales. It is not possible in principle for a first order dynamical system to contain enough
initial conditions to parameterize all possible cases.

Once every system is a subsystem of a larger system, we should never expect to always predict
dynamics.

How the Framework Never Fails: Nevertheless physicists put great faith in the fundamental
existence of a wave function on the largest space they are thinking about. That makes a
puzzle of why their faith persists. There is a question of whether that framework can be
falsified. We do not believe it is possible to falsify the framework. Any system that fails the
test of Hamiltonian evolution can be embedded in a larger system. On the larger system
it’s always possible to “unitarize” any transformation. One method is the “unitary dilation”
found by Sz.-Nagy. Figure 3 illustrates the more painful process that physicists follow. By
now particle physicists have added numerous quantum fields to the early quantum theory
of electrons and photons following the process the figure illustrates. The infinite capacity of
theory to expand practically terminates questions of whether such a theory could fail.
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7. Applications

As mentioned in the Introduction, our main goal is to take advantage of the efficiency
and flexibility of quantum-style data descriptions. We have remarked that description by
quantum-style methods is deliberately incomplete. At the same time a great deal of practical
experimental information from physics is encoded in wave functions and density matrices
by default usage. That is a clue on how to proceed.

7.1. The optimal patterns defined by data

Given any “data” as a set of numbers, real or complex, and choosing a method of division,
one can start making density matrices and classifying data. But in what sense is this intrinsic
and why should it be powerful?

As before let D J
x stand for the Jth instance of data Dx. The index x now may stand for

multiple labels x1, x2...xn of any dimension. We are interested in the patterns of fluctuations
which tend to occur in the entire data set. We define a “pattern ” |e > as a normalized
vector with projections e(x) =< x|e >. To quantify the importance of a particular pattern,
we calculate its overlap-squared summed over the entire data set:

E =
Jtot

∑
J

| < D J |e > |2.

Define the optimal pattern as having the largest possible overlap, subject to the normalization
constraint. Algebra gives

E =< e|ρ|e >; ρ =
Jtot

∑
J

|D J
>< D J | (37)

δ

δ|e >

(

< e|ρ|e >

< e|e >

)

= 0;

ρ|eα > = Λ2
α|eα >

The eigenvalue problem tells us that a complete set of solutions |eα > generally exists; since
ρ = ρ

†, the patterns are automatically orthogonal, and eigenvalues Λ2
α are real and positive.

To interpret the eigenvalues note the overlap Ωβ =< eβ|ρ|eβ >= Λ2
β
. Sorting the eigenvalues

Λ2
1 > Λ2

2 > ...Λ2
N to makes an optimally convergent expansion of the data expressed in its

own patterns.

This result attributed to Karhunen-Loeve[17] is a foundation point of modern signal and
image-processing schemes of great effectiveness. Optimally compressing data while
retaining a given overlap is done by truncating the expansion of Eq. 37. We think it is
no accident that the density matrix appears in Eq. 37.
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7.2. The principle of minimum entropy

How does one evaluate a system, and in particular the division of data we mentioned earlier
has tremendous flexibility? For that we consider the system’s entropy S . The definition is

S = −tr(ρ log(ρ)). (38)

For a normalized N × N density matrix the absolute minimum entropy is S = 0, if and only
if ρ has rank − 1. The minimum entropy state is the most orderly, least complicated, and is
hardly typical. Developing S = 0 from samples requires every single sample pattern to be a
multiple of every other. The maximum value of S = log(N) comes when ρ → 1N×N/N is
completely isotropic, and has no preferred basis or pattern associated with it.

In thermodynamics the entropy is recognized as a logarithmic measure of the phase
space-volume occupied by the system. The equilibrium distribution is defined by maximizing
that volume, the entropy, subject to all constraints such as a fixed total energy or particle
number. Experimental science seeks order where it can be found, under which we express
the principle of minimum entropy. The principle predicts we should actively use our freedom
to partition data to discover low-entropy divisions. They are simple.

10 20 30 40 50 60 70 80

1

2

3

4

5

Figure 4. Entropy (in bits) of a coherent data record partitioned on dimension D. Bottom curve (blue online): the quantum
entropy −tr(ρlog2(ρ) is comparatively small, and detects the optimal division with a sharp dip. Middle curve (red online): the
classical entropy on the same data resolved to 2D bit accuracy. Curve highest on left (green online): the entropy of Huffman

compression can be less than the classical unprocessed entropy, but it is larger than the quantum entropy.

An Experiment: Figure 4 shows an experiment with Monte Carlo simulation. Two
dimensional distributions were defined using sums of Gaussians with randomly generated
parameters. A sample from the distribution was extracted from 0.1 unit bins over the interval
−10 < x < 10, −3 < y < 3, making a 12261-point data record Di J , which was normalized.

Re-partitioning the record on intervals of length L created arrays4 Now compare classical and
quantum methods. The empirical marginal distribution on index i is di = ∑j dij. That leads

to the classical entropy Scl = −∑i dilog(di). Compare the density matrix on the same space,
ρii′ = dijdij′ , with quantum entropy Sq = −tr( ρ log( ρ ) ). The figure shows that Sq << Scl

unless the data is very noisy. A dip in Sq occurs at favored divisions (Fig. 4). Indeed if one

4 Data were rescaled by a constant to be resolved on exactly L dimensions.
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makes data with random linear combinations of specified patterns, the entropy will dip at
the division of the pattern’s periodicity, or approximate periodicity. Minimum entropy finds
simplicity.

Information theory is like experimental physics in manipulating the encoding of repeated
patterns to lower the effective entropy. As L increases longer patterns or “words” can
be compressed into symbols. Huffman compression is a method to optimize classical
information content towards minimum entropy. Huffman coding is a procedure based on me
class definitions and therefore classical characterization. Figure 4 shows that using Huffman
coding produces Shu f f man < Scl . Yet across the board both classical entropies exceed the
quantum value. Both miss the optimal division, because no notion of dividing a product
space exists. Similar features have been seen in dozens of different types of data.

An Experiment: A symmetry of a correlation means it is unchanged under a transformation.
A symmetry of the density matrix implies it commutes with the generator of the
transformation, and then shares eigenstates. Figure 5 shows an experiment in self-organizing
or “auto-quantization” of the eigenvectors of the density matrix. To make the figure the first
60 decimal digits of π were collected as an array D1i. Random cyclic permutations of the
same list produced the samples D2i, D3i...DJi for J = 1...1000. The eigenvectors of ρii′ are
found to be nearly pure momentum eigenstates: Each shows a peak in Fourier power at a
single wave number. The probability to find cos(πx/2) sampled on the first 60 integers is
about 2.3%.

wavenumber

state

Fourier Power

Figure 5. “Auto-quantization” by symmetry. The Fourier power of density matrix eigenvectors made from the first 60 digits of

π sampled over 1000 random circular permutations is quantized.

Similar results are found with more structured group operations, such as rotations, unitary
transformations, or more complicated group operations with elements R(ω), where ω =
αJ , β J , γJ ... are group parameters of sample J. Let |l, m...〉 be an irreducible basis of group
representations. Let the objects in the sample be copies of a single object transformed under
the group, and let ∑J → dω, the invariant group volume. The density matrix approaches a
limit:

ρ =
∫

dω ∑
j,j′ ,l,l′ ,m,m′ ...

R(ω) |l, m...〉 〈l, m...|

× |a〉 〈a|
∣

∣l′, m′...
〉 〈

l′, m′...
∣

∣ R†(ω).
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Use the completeness property of matrix representations D
j′ ,l′ ...
m′′m′′′

:

∫

dω D
j,l...
mm′

(ω)D̄
j′ ,l′ ...
m′′m′′′

(ω) = δ
jj′

δ
ll′

δ
mm′′

..., .

Only the diagonal elements survive the sums, with the weights just as dictated by quantum
rules:

ρ → |j, l, m...〉 | 〈j, l, m... | a〉 |2 〈j, l, m...|

Data which is many copies of some complicated scalar function of angles, such as the shape
of a paramecium or the map of the Earth permuted over all orientations will give a density
matrix a diagonal sum of spherical harmonics, with probabilities given by the standard
formula. It is kinematic because the machinery defining probability was constructed to
expedite linear transformations.

Time Evolution: Turn to time evolution. Earlier we commented that physics predicts little
else, and that our Hamiltonian model was a toy. Bounded linear Hamiltonian time evolution
is unitary time evolution, also a toy. We offer the idea these features emerge from the
Agreement to categorize things with density matrices. A typical correlation in QFT is written

C(x1, t1, x2, t2, ...xn, tn) = < 0|φ(x1, t1)..φ(xn, tn)|0 >,

= tr(ρ0φ(x1, t1)..φ(xn, tn)).

The state of the art of physics consists of reverting all known correlations into a model for
the density matrix ρ0. It is very beautiful that the model is relatively simple, but whatever
was obtained in the lab, we cannot see how the representation itself could fail.

From space - and time-translational symmetry, which physicists desire to arrange, the
correlation is a function of differences C = C(x2 − x1, t2 − t1, ...tn − tn−1). Any function of

x2 − x1 has a Fourier representation in terms of expi~k12(~x2−~x1)exp−iω(t2−t1). The ultimate time
evolution is unitary. By standard steps of the convolution theorem the law of Conservation
of Frequency (energy) is kinematic, and inventing a Hamiltonian with enough degrees of
freedom cannot fail to describe it5, so long as the eigenvalues of ρ0 are conserved: otherwise,
add freedoms. Thus we don’t need to be too embarrassed about the toy dynamics, whose
success ought to be judged on the effectiveness and simplicity of the model, not needing
higher principles: in our approach.

Many Experiments: In the Introduction we mentioned that the restriction of the quantum
methods to describing micro-physical objects of fundamental physical character is obsolete.
We’ve done many experiments to extend the scope. • In Ref. [20] the radio frequency
emissions of relativistic protons were used to construct density matrices from signal data and
noise data. A combination of techniques improved the signal to noise ratio by about a factor
of more than 100, producing the first detection of virtual Cherenkov radiation from protons.

5 One might discover a time-dependent Hamiltonian, which does occur in physics, yet which is invariably embedded
in a time-independent larger system.
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• In Refs. [22] data from the cosmic microwave background (CMB) was analyzed to test the
“cosmological principle” requiring isotropy. The alignment of spherical harmonic multipoles
and the entropy of their power distribution contradicts isotropy at a high degree of statistical
significance. The origin is unknown, while it cannot be explained by galactic foreground
subtractions [23]. • In Ref.[24] the density matrix was constructed from high-dimensional
spectroscopic data of a pharmaceutical protein. The principal values were sorted to make
projections onto certain subspaces from which the phases of the protein could be determined
by inspection. Ref. [25] reviews subsequent progress. By now the method has been used
to make empirical phase diagrams towards characterizing the active states, phase transitions
and shelf-life of about 100 pharmaceuticals.

8. Concluding remarks

Our discussion began with conventional observations that “the framework of quantum
mechanics is thought the perfection of fundamental theory” that “predicts an absolute and
unvarying law of time evolution.” Those observations have been found false in general.

Our Universe seems to need many degrees of freedom for its description. Physics has greatly
progressed in the details of models, while giving away credit to a quantum-style framework
we claim is independent. The important part of the framework is its extension and
enlargement of the definition of probability. In Section 6.1 we stated that the breakthrough
of quantum probability lies in generalizing the notion of probability so as not to insist on
pre-ordained equivalence classes.

We showed that a map exists going from macroscopic information to quantum probability.
The map maintains a hidden variable description for quantum systems, and extends the
scope of subjects of quantum information theory. We showed that the probabilistic features of
quantum mechanics itself come from the process of reducing hidden freedoms. It is no more
profound than a certain method of counting. We believe that quantum physics operates by
the same procedures, but so long as parts of physics are unknown, that cannot be “derived.”
Rather than argue with opinions about what the Universe is, we call it “our approach.”

No relation to microphysics is needed. Quantum probability can be viewed as an efficient
data-management device, a branch of information theory, reversing a perception that
quantum information theory should be a science of microphysical objects.

8.0.1. What do we mean by the probability of a vector?

Both classical probability and quantum probability have a feature that certain independent
probabilities multiply, using direct product spaces to organize the mathematics. The
difference is illustrated by the different way to discriminate between “different” vectors,
which finishes our discussion.

Both approaches will decompose a state space into coordinates vi =< i|v >, for i = 1....N
The typical approach to classical probability defines a distribution f (v) = dN/dv1dv2...dvN .
Break each dimension into K equal bins of resolution ∆vi. The distribution for any situation is
a list among KN mutually exclusive possibilities. Completely sampling the distribution needs
KN pieces of information, which may well be impossible. There are practical consequences.
The classical device made with 10 2-state q − bits has 210 possible states, all declared distinct.
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One such state is written vi =(0, 0, 1, 1, 0, 0, 1, 0, 0, 1). Another vector is ui =(0, 1, 0, 0, 1, 1, 0,
0, 1, 1). These are not the same so their probability of being the same is zero. The probability
for any random 2-state vector is of order 2−10

∼ 9 × 10−4, which is very small.

Compare the quantum probability that one vector can serve for another. It is not based

on a distribution. The normalized inner product < u|v >= 1/(2
√

5). The probability
the vector |u > defined above can serve for |v > is | < u|v > |

2= 1/20, which is a
much larger probability of coincidence than zero. A numerical calculation finds the average
overlap-squared of such random vectors with another one is about 0.3. If one generates 1000
normalized vectors, there will be around 180 with a Born probability exceeding 0.5 that look
like a given vector.

Two facts are so basic they tend to escapes notice. First, it is not actually possible in principle
to sample and then categorize the spaces of most distributions cited for classical physics.
If the data uses 16-bit accuracy and 10-element vectors there are (216)10 = 1.46 × 1048

mutually exclusive class labels set up in the first step. The entire 19th century conception of
multidimensional phase spaces for many particles (“moles” of atoms) does not exist in any
physically realizable form. While ignoring all dynamics was a success of thermodynamics,
the ambition to keep track of some fragment of the vast experimental complexity of many
degrees of freedom cannot really be maintained within the framework of distributions: a
great deal of classical theory notwithstanding.

Second, the quantum description of any given data is not more complicated, it is vastly
less. The language abuse of “quantum particles” greatly confuses this. The 10-dimensional
space cited above has no more than 10-1=9 vectors that are mutually-exclusive of any given
vector. The simplification of quantum-style data characterization also occurs with infinitely
fine resolution, and with no great sensitivity to the resolution. It is grossly misleading to
compare a quantum space of 210 dimensions, from spin products 1/2 ⊗ 1/2 ⊗ ...1/2 with a
classical space of K10 mutually-exclusive categories.

That is why we end reiterating the principle of minimum entropy from Section 7.2. Whether
or not physics must do it by principle, there is a practical fact that large data sets should be
reduced to correlations, and that correlations should be reduced to sub-correlations. When
the entropy of dividing data is as low as possible, the experimenter has found order, and
statistical regularity, which is the purpose of science. The applications of a new science
seeking minimum entropy as defined on flexible quantum-style categories are unlimited.
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1. Introduction

While the supersymmetry in quantum mechanics (SUSY QM) algebra has thus received
much operator applications for potential problems [1–4], another algebra, the general
Wigner-Heisenberg(WH) oscillator algebra [5–8], which already possesses an in built
structure which generalises the usual oscillators ladder operators, has not, however, in
our opinion, received its due attention in the literature as regards its potential for being
developed as an effective operator technique for the spectral resolution of oscillator-related
potentials. The purpose of the chapter is to bridge this gulf.

The WH algebraic technique which was super-realized for quantum oscillators [9–11], is
related to the paraboson relations and a graded Lie algebra structure analogous to Witten’s
SUSY QM algebra was realized in which only annihilation operators participate, all expressed
in terms of the Wigner annihilation operator of a related super Wigner oscillator system [12].
In this reference, the coherent states are investigate via WH algebra for bound states, which
are defined as the eigenstates of the lowering operator, according to the Barut-Girardello
approach [13]. Recently, the problem of the construction of coherent states for systems with
continuous spectra has been investigated from two viewpoints by Bragov et al. [17]. They
adopt the approach of Malkin-Manko [18] to systems with continuous spectra that are not
oscillator-like systems. On the other hand, they generalize, modify and apply the approach
followed in [19] to the same kind of systems.

To illustrate the formalism we consider here simpler types of such potentials only, of the full
3D isotropic harmonic oscillator problem (for a particle of spin 1

2 ) [9] and non-relativistic
Coulomb problem for the electron [16].

The WH algebra has been considered for the three-dimensional non-canonical oscillator to
generate a representation of the orthosympletic Lie superalgebra osp(3/2), and recently

©2012 Rodrigues, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Rodrigues; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Palev have investigated the 3D Wigner oscillator under a discrete non-commutative context
[20]. Let us now point out the following (anti-)commutation relations ([A, B]+ ≡ AB + BA
and [A, B]− ≡ AB − BA).

Also, the relevance of WH algebra to quantization in fractional dimension has been also
discussed [21] and the properties of Weyl-ordered polynomials in operators P and Q, in
fractional-dimensional quantum mechanics have been developed [22].

The Kustaanheimo-Stiefel mapping [25] yields the Schrödinger equation for the hydrogen
atom that has been exactly solved and well-studied in the literature. (See for example, Chen
[26], Cornish [27], Chen and Kibler [28], D’Hoker and Vinet [29].)

Kostelecky, Nieto and Truax [30] have studied in a detailed manner the relation of the
supersymmetric (SUSY) Coulombian problem [31–33] in D-dimensions with that of SUSY
isotropic oscillators in D-dimensions in the radial version.

The vastly simplified algebraic treatment within the framework of the WH algebra of
some other oscillator-related potentials like those of certain generalised SUSY oscillator
Hamiltonian models of the type of Celka and Hussin which generalise the earlier potentials
of Ui and Balantekin have been applied by Jayaraman and Rodrigues [10]. Also, the
connection of the WH algebra with the Lie superalgebra sℓ(1|n) has been studied in a
detailed manner [34].

Also, some super-conformal models are sigma models that describe the propagation of a
non-relativistic spinning particle in a curved background [35]. It was conjectured by Gibbons
and Townsend that large n limit of an N = 4 superconformal extension of the n particle
Calogero model [36] might provide a description of the extreme Reissner-Nordström black
hole near the horizon [37]. The superconformal mechanics, black holes and non-linear
realizations have also been investigated by Azcárraga et al. [38].

2. The abstract WH algebra and its super-realisation

Six decades ago Wigner [5] posed an interesting question as if from the equations of
motion determine the quantum mechanical commutation relations and found as an answer a
generalised quantum commutation rule for the one-dimensional harmonic oscillator. Starting
with the Schrödinger equation H|ψn >= En|ψn >, where the Hamiltonian operator becomes

Ĥ =
1

2
( p̂2 + x̂2) =

1

2
[â−, â+]+ =

1

2
(â− â+ + â+ â−) (1)

(we employ the convention of units such that h̄ = m = ω = 1) where the abstract Wigner
Hamiltonian Ĥ is expressed in the symmetrised bilinear form in the mutually adjoint abstract
operators a± defined by

â± =
1
√

2
(±i p̂ − x̂) (â+)† = â−. (2)

Wigner showed that the Heisenberg equations of motion
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[Ĥ, â±]− = ±â± (3)

obtained by also combining the requirement that x satisfies the equation of motion of classical
form. The form of this general quantum rule can be given by

[â−, â+]− = 1 + cR̂ → [x̂, p̂]− = i(1 + cR̂) (4)

where c is a real constant that is related to the ground-state energy E(0) of Ĥ and R̂ is an
abstract operator, Hermitian and unitary, also possessing the properties

R̂ = R̂† = ˆR−1
→ R̂2 = 1, [R̂, â†]+ = 0 → [R̂, Ĥ]− = 0. (5)

It follows from equations (1) and (4) that

Ĥ =

{

â+ â− + 1
2 (1 + cR̂)

â− â+ −
1
2 (1 + cR̂)

(6)

Abstractly R̂ is the Klein operator ±exp[iπ(Ĥ − E0)] while in Schrödinger coordinate
representation, first investigated by Yang, R is realised by ±P where P is the parity operator:

P|x >= ±|x >, P−1 = P, P2 = 1, PxP−1 = −x. (7)

The basic (anti-)commutation relation (1) and (3) together with their derived relation (4) will
be referred to here as constituting the WH algebra which is in fact a parabose algebra for
one degree of freedom. We shall assume here in after, without loss of generality, that c is
positive, i.e. c =| c |> 0. Thus, in coordinate representation the generalized quantization à la
Wigner requires that

x̂ = x, ∞− < x < ∞, p̂ = −i
d

dx
+

ic

2x
P, R = P. (8)

Indeed, following Yang representation [6] we obtain the coordinate representation for the
ladder operators as given by

â± −→ a±c
2
=

1
√

2

(

±

d

dx
∓

c

2x
P − x

)

. (9)

Yang’s wave mechanical description was further investigated in [7, 8].
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The present author have applied a super-realization so that R = Σ3 to illustrate the first
application of our operator method to the cases of the Hamiltonian of an isotonic oscillator
(harmonic plus a centripetal barrier) system. To obtain a super-realisation of the WH algebra,

we introduce, in addition to the usual bosonic coordinates (x,−i d
dx ), the fermionic ones

b∓(= (b±)†) that commute with the bosonic set and are represented in terms of the usual
Pauli matrices Σi, (i = 1, 2, 3). Indeed, expressing a±( c

2 ) in the following respective factorised
forms:

a+(
c

2
) =

1
√

2
Σ1x(1/2)cΣ3 exp(

1

2
x2)(

d

dx
)exp(

−1

2
x2)x−(1/2)cΣ3 (10)

a−(
c

2
) =

1
√

2
Σ1x(1/2)cΣ3 exp(

−1

2
x2)(

−d

dx
)exp(

1

2
x2)x−(1/2)cΣ3 , (11)

where these lader operators satisfy the algebra of Wigner-Heisenberg. From (1), (11) and (10)
the Wigner Hamiltonian becomes

H(
c

2
) =

1

2

[

a+(
c

2
), a−(

c

2
)
]

+

=

(

H−(
c
2 − 1) 0
0 H+(

c
2 − 1) = H−(

c
2 )

)

, (12)

where the even and odd sector Hamiltonians are respectively given by

H−(
c

2
− 1) =

1

2

{

−

d2

dx2
+ x2 +

1

x2
(

c

2
)(

c

2
− 1)

}

(13)

and

H+(
c

2
− 1) =

1

2

{

−

d2

dx2
+ x2 +

1

x2
(

c

2
)(

c

2
+ 1)

}

= H−(
c

2
). (14)

The time-independent Schrödinger equation for these Hamiltonians of an isotonic oscillator
(harmonic plus a centripetal barrier) system becomes the following eigenvalue equation:

H±(
c

2
− 1) | m,

c

2
− 1 >= E±(

c

2
− 1) | m,

c

2
− 1 > . (15)

Thus, from the annihilation condition a−|0 >= 0, the ground-state energy is given by

Advances in Quantum Mechanics480



The Wigner-Heisenberg Algebra in Quantum Mechanics 5

10.5772/55994

E
(0)(

c

2
) =

1

2
(1 + c) >

1

2
, c > 0. (16)

At this stage an independent verification of the existence or not of a zero ground-state energy
for H( c

2 ) suggested by its positive semi-definite form may be in order.

The question we formulate now is the following: What is the behaviour of the ladder
operators on the autokets of the Wigner oscillator quantum states? To answer this question
is obtained via WH algebra, note that the Wigner oscillator ladder operators on autokets of
these quantum states are given by

a
−

c

2
|2m,

c

2
> =

√

2m|2m − 1,
c

2
>

a
−

c

2
|2m + 1,

c

2
> =

√

2(m + E
(0))|2m,

c

2
>

a
+
c

2
|2m,

c

2
> =

√

2(m + E
(0))|2m + 1,

c

2
>

a
+
c

2
|2m + 1,

c

2
> =

√

2(m + 1)|2m + 2,
c

2
> . (17)

Now, from the role of a
+( c

2 ) as the energy step-up operator (the upper sign choice)
the excited-state energy eigenfunctions and the complete energy spectrum of H( c

2 ) are

respectively given by ψ
(n)( c

2 ) ∝ [a+( c

2 )]
n

ψ
(0)( c

2 ) and E
(n)( c

2 ) = E
(0) + n, n = 0, 1, 2, · · · .

It is known that the operators ±
i

2

(

a
±( c

2 )
)2

and 1
2 H( c

2 ) can be chosen as a basis for a

realization of the so(2, 1) ∼ su(1, 1) ∼ sℓ(2, R) Lie algebra. When projected the −
1
2

(

a
±
)2

operators in the even sector with 1
2 (1 + Σ3), viz.,

1

2
(1 + Σ3)B

− =
1

2
(1 + Σ3)

(

a
−
)2

=

(

B
− 0
0 0

)

and

1

2
(1 + Σ3)B

+ =
1

2
(1 + Σ3)

(

a
+)2

=

(

B
+ 0
0 0

)

we obtain

B
−(

c

2
− 1) =

1

2

{

d
2

dx
2
+ 2x

d

dx

+ x
2
−

( c

2 − 1) c

2

x
2

+ 1

}

(18)

and
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B
+(

c

2
− 1) = (B

−)† =
1

2

{

d
2

dx
2
− 2x

d

dx

+ x
2
−

( c

2 − 1) c

2

x
2

− 1

}

. (19)

Thus, the Lie algebra becomes

[K0, K−]− = −K−, [K0, K+]− = +K+, [K−, K+]− = 2K0, (20)

where K0 = 1
2 H−, K− = −

1
2 B

− and K+ = 1
2 B

+ generate once again the su(1, 1) Lie algebra.

Therefore, these ladder operators obey the following commutation relations:

[B−(
c

2
− 1), B

+(
c

2
− 1)]− = 4H−(

c

2
− 1)

[

H−, B
±(

c

2
− 1)

]

−

= ±2B
±(

c

2
− 1). (21)

Hence, the quadratic operators B
±( c

2 − 1) acting on the orthonormal basis of eigenstates of
H−(

c

2 − 1), {| m, c

2 − 1 >} where m = 0, 1, 2, · · · have the effect of raising or lowering the
quanta by two units so that we can write

B
−(

c

2
− 1) | m,

c

2
− 1 >=

√

2m(2m + c + 1) | m − 1,
c

2
− 1 > (22)

and

B
+(

c

2
− 1) | m,

c

2
− 1 >=

√

2(m + 1)(2m + c + 1) | m + 1,
c

2
− 1 > (23)

giving

| m,
c

2
− 1 >= 2−m

{

Γ( c+1
2 )

m!Γ( c+1
2 + m)

}1/2
{

B
+(

c

2
− 1)

}

m

| 0,
c

2
− 1 >, (24)

where Γ(x) is the ordinary Gamma Function. Note that B
±( c

2 − 1) | m, c

2 − 1 > are associated

with the energy eigenvalues E
(m±1)
−

= c+1
2 + 2(m ± 1), m = 0, 1, 2, . . . .

Let us to conclude this section presenting the following comments: one can generate the
called canonical coherent states, which are defined as the eigenstates of the lowering operator
B
−( c

2 − 1) of the bosonic sector, according to the Barut-Girardello approach [12, 13] and
generalized coherent states according to Perelomov [14, 15]. Results of our investigations on
these coherent states will be reported separately.
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3. The 3D Wigner and SUSY systems

As is well-known, the quantum mechanical (QM) N = 2 supersymmetry (SUSY) algebra of
Witten [1–4]

Hss = [Q−, Q+]+

(Q−)
2 = (Q+)

2 = 0 → [Hss, Q∓] = 0, (25)

involves bosonic and fermionic sector Hamiltonians of the SUSY Hamiltonian Hss (the even
element), which get intertwined through the nilpotent charge operators Q− = (Q+)† (the
odd elements).

The connection between the 3D Wigner Hamiltonian H(~σ ·~L + 1) and a 3D SUSY isotropic
harmonic oscillator for spin 1

2 is given by anti-commutation relation (25) and the mutually
adjoint charge operators Q∓ in terms of the Wigner system ladder operators:

Q− =
1

2
(1 − Σ3)a

−(~σ ·~L + 1)

Q+ = Q
†
−
=

1

2
(1 + Σ3)a

+(~σ ·~L + 1), (Q−)
2 = (Q+)

2 = 0. (26)

In this Section, we consider the 3D isotropic spin- 1
2 oscillator Hamiltonian in the bosonic

sector of a Wigner system

H−(~σ ·~L) =
1

2
(p

2 + r
2) =

1

2
(−

∂
2

∂r
2
−

2

r

∂

∂r

+
1

r
2
(~σ ·~L)(~σ ·~L + 1) + r

2) (0 < r < ∞) (27)

for a non-relativistic 3D isotropic oscillator with spin- 1
2 represented here by 1

2 σ. With the use

of the following familiar spin- 1
2 equalities:

~σ · ~p = σr pr +
i

r

σr(~σ ·~L + 1), pr = −i(
1

r

+
∂

∂r

) =
1

r

(−i

∂

∂r

)r = p
†
r

(28)

σr =
1

r

~σ ·~r, σ
2
r
= 1, [σr,~σ ·~L + 1]+ = 0, L

2 =~σ ·~L(~σ ·~L + 1). (29)

The 3D fermionic sector Hamiltonian becomes
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H+(~σ ·~L) = H−(~σ ·~L + 1) =
1

2
(−

∂
2

∂r2
−

2

r

∂

∂r
+

1

r2
(~σ ·~L + 1)(~σ ·~L + 2) + r2). (30)

In this case the connection between Hss and Hw is given by

Hss = Hw −

1

2
Σ3{1 + 2(~σ ·~L + 1)Σ3}, (31)

where Hw = diag(H̃−(~σ ·~L), H̃+(~σ ·~L)) is the diagonal 3D Wigner Hamiltonian given by

Hw = Hw(~σ ·~L + 1) =

(

H−(~σ ·~L) 0

0 H−(~σ ·~L + 1)

)

. (32)

Indeed from the role of a+ as the energy step-up operator, the complete excited state wave
functions Ψn

w are readily given by the step up operation with a+:

ψ
(n)
w ∝ (a+)n

ψ
(0)
w,+(r, θ, ϕ) = (a+)n

˜R
(0)
1,+(r)

(

1

0

)

y+(θ, ϕ). (33)

On the eigenspaces of the operator (~σ ·~L + 1), the 3D Wigner algebra gets reduced to a 1D

from with (~σ ·~L + 1) replaced by its eigenvalue ∓(ℓ+ 1), ℓ = 0, 1, 2,..., where ℓ is the orbital

angular momentum quantum number. The eigenfunctions of (~σ ·~L + 1) for the eigenvalues
(ℓ+ 1) and −(ℓ+ 1) are respectively given by the well known spin-spherical harmonic y∓.
Thus, from the super-realized first order ladder operators given by

a±(ℓ+ 1) =
1
√

2

{

±

d

dr
±

(ℓ+ 1)

r
Σ3 − r

}

Σ1, (34)

where c
2 = ℓ+ 1, the Wigner Hamiltonian becomes

H(ℓ+ 1) =
1

2

[

a+(ℓ+ 1), a−(ℓ+ 1)
]

+

=

(

H−(ℓ) 0
0 H+(ℓ) = H−(ℓ+ 1)

)

, (35)

where in the representation of the radial part wave functions, χ(r) = rR(r), the even and
odd sector Hamiltonians are respectively given by
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H−(ℓ) =
1

2

{

−

d
2

dr
2
+ r

2 +
1

r
2
ℓ(ℓ+ 1)

}

(36)

and

H+(ℓ) =
1

2

{

−

d
2

dr
2
+ r

2 +
1

r
2
(ℓ+ 1)(ℓ+ 2)

}

= H−(ℓ+ 1). (37)

In this representation the eigenvalue equation becomes

H±(ℓ)χ(r) = E±(ℓ)χ(r), χ(r) = rR(r). (38)

The WH algebra ladder relations are readily obtained as

[

H(ℓ+ 1), a
±(ℓ+ 1)

]

−
= ±a

±(ℓ+ 1). (39)

Equations (35) and (39) together with the commutation relation

[

a
−(ℓ+ 1), a

+(ℓ+ 1)
]

−
= 1 + 2(ℓ+ 1)Σ3 (40)

constitute the WH algebra.

The Wigner eigenfunctions that generate the eigenspace associated with even(odd) σ3-parity
for even(odd) quanta n = 2m(n = 2m + 1) are given by

| n = 2m, ℓ+ 1 >=

(

| m, ℓ >
0

)

, | n = 2m + 1, ℓ >=

(

0
| m, ℓ >

)

(41)

and satisfy the following eigenvalue equation

H(ℓ+ 1) | n, ℓ+ 1 >= E
(n)

| n, ℓ+ 1 >, (42)

the non-degenerate energy eigenvalues are obtained by the application of the raising operator
on the ground eigenstate and are given by

ψ
(n)
W

(r) ∝ (a
+)n

ψ
(0)
W,+(r) = (a

+)n
χ
(0)
1,+(r)

(

1

0

)

(43)

and
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E(n) = ℓ+
3

2
+ n, n = 0, 1, 2, . . . . (44)

The ground state energy eigenvalue is determined by the annihilation condition which reads
as:

a−ψ
(0)
w,+ = 0, (~σ ·~L + 1) → ℓ+ 1; (45)

which, after operation on the fermion spinors and the spin-angular part, turns into

(exp( r2

2 )r
−ℓ−1

χ
(0)
1,+(r)

exp( r2

2 )r
−ℓ+1χ

(0)
2,+(r)

)

=

(

c1

c2

)

(46)

Retaining only the non-singular and normalizable R
(0)
1,+(r), we simply take the singular

solution R
(0)
2,+(r), which is physically non-existing, as identically zero. Hence the Wigner’s

eigenfunction of the ground state becomes

ψ
(0)
w,+ =

(

χ
(0)
1,+(r)y+

0

)

, χ
(0)
1,+(r) ∝ rℓ+1exp(−

r2

2
), (47)

where 0 < r < ∞. For the radial oscillator the energy eigenvectors satisfy the following
eigenvalue equations

H−(ℓ) | m, ℓ >= E
(m)
−

| m, ℓ >, (48)

where the eigenvalues are exactly constructed via WH algebra ladder relations and are given
by

E
(m)
−

= ℓ+
3

2
+ 2m, m = 0, 1, 2, . . . . (49)

We stress that similar results can be adequately extended for any physical D-dimensional

radial oscillator system by the Hermitian replacement of −i
(

d
dr +

1
r

)

→ −i
(

d
dr +

D−1
2r

)

and

the Wigner deformation parameter ℓ+ 1 → ℓD + 1
2 (D − 1) where ℓD(ℓD = 0, 1, 2, · · · ) is the

D-dimensional oscillator angular momentum.

4. The constrained Super Wigner Oscillator in 4D and the hydrogen atom

In this section, the complete spectrum for the hydrogen atom is found with considerable
simplicity. Indeed, the solutions of the time-independent Schrödinger equation for the
hydrogen atom were mapped onto the super Wigner harmonic oscillator in 4D by using
the Kustaanheimo-Stiefel transformation. The Kustaanheimo-Stiefel mapping yields the
Schrödinger equation for the hydrogen atom that has been exactly solved and well-studied
in the literature. (See for example, [16].)
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Kostelecky, Nieto and Truax have studied in a detailed manner the relation of the
SUSY Coulombian problem in D-dimensions with that of SUSY isotropic oscillators in
D-dimensions in the radial version. (See also Lahiri et. al. [2].)

The bosonic sector of the above eigenvalue equation can immediately be identified with the
eigenvalue equation for the Hamiltonian of the 3D Hydrogen-like atom expressed in the
equivalent form given by [16]

The usual isotropic oscillator in 4D has the following eigenvalue equation for it’s
Hamiltonian HB

osc, described by (employing natural system of units h̄ = m = 1)
time-independent Schrödinger equation

HB
oscΨB

osc(y) = EB
oscΨB

osc(y), (50)

with

HB
osc = −

1

2
∇

2
4 +

1

2
s2, s2 = Σ4

i=1y2
i , (51)

∇
2
4 =

∂
2

∂y2
1

+
∂

2

∂y2
2

+
∂

2

∂y2
3

+
∂

2

∂y2
4

=
4

∑
i=1

∂
2

∂y2
i

, (52)

where the superscript B in HB
osc is in anticipation of the Hamiltonian, with constraint to be

defined, being implemented in the bosonic sector of the super 4D Wigner system with unitary
frequency. Changing to spherical coordinates in 4-space dimensions, allowing a factorization
of the energy eigenfunctions as a product of a radial eigenfunction and spin-spherical
harmonic.

In (52), the coordinates yi(i = 1, 2, 3, 4) in spherical coordinates in 4D are defined by [26, 29]

y1 = s cos

(

θ

2

)

cos

(

ϕ − ω

2

)

y2 = s cos

(

θ

2

)

sin

(

ϕ − ω

2

)

y3 = s sin

(

θ

2

)

cos

(

ϕ + ω

2

)

y4 = s sin

(

θ

2

)

sin

(

ϕ + ω

2

)

, (53)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π and 0 ≤ ω ≤ 4π.

The mapping of the coordinates yi(i = 1, 2, 3, 4) in 4D with the Cartesian coordinates ρi(i =
1, 2, 3) in 3D is given by the Kustaanheimo-Stiefel transformation
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ρi =
2

∑
a,b=1

z∗a Γi
abzb, (i = 1, 2, 3) (54)

z1 = y1 + iy2, z2 = y3 + iy4, (55)

where the Γi
ab are the elements of the usual Pauli matrices. If one defines z1 and z2 as in

Eq. (55), Z =

(

z1

z2

)

is a two dimensional spinor of SU(2) transforming as Z → Z′ = UZ

with U a two-by-two matrix of SU(2) and of course Z†Z is invariant. So the transformation
(54) is very spinorial. Also, using the standard Euler angles parametrizing SU(2) as in
transformations (53) and (55) one obtains

z1 = s cos

(

θ

2

)

e
i
2 (ϕ−ω)

z2 = s sin

(

θ

2

)

e
i
2 (ϕ+ω). (56)

Note that the angles in these equations are divided by two. However, in 3D, the angles are

not divided by two, viz., ρ3 = ρcos2( θ

2 )− ρsin2( θ

2 ) = ρcosθ. Indeed, from (54) and (56), we
obtain

ρ1 = ρ sin θ cos ϕ, ρ2 = ρ sin θ sin ϕ, ρ3 = ρ cos θ (57)

and also that

ρ =
{

ρ
2
1 + ρ

2
2 + ρ

2
3

}
1
2
=

{

(ρ1 + iρ2)(ρ1 − iρ2) + ρ
2
3

}
1
2

=
{

(2z∗1z2)(2z1z∗2) + (z∗1z1 − z∗2z2)
2
}

1
2

= (z1z∗1 + z2z∗2) =
4

∑
i=1

y2
i = s2. (58)

The complex form of the Kustaanheimo-Stiefel transformation was given by Cornish [27].

Thus, the expression for HB
osc in (51) can be written in the form
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H
B
osc

= −

1

2

(

∂
2

∂s
2
+

3

s

∂

∂s

)

−

2

s
2

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin
2θ

∂
2

∂ϕ2
+

1

sin
2θ

(

2cosθ
∂

∂ϕ
+

∂

∂ω

)

∂

∂ω

]

+
1

2
s

2. (59)

We obtain a constraint by projection (or "dimensional reduction") from four to three

dimensional. Note that ψ
B
osc

is independent of ω provides the constraint condition

∂

∂ω
ΨB

osc
(s, θ, ϕ) = 0, (60)

imposed on H
B
osc

, the expression for this restricted Hamiltonian, which we continue to call as

H
B
osc

, becomes

H
B
osc

= −

1

2

(

∂
2

∂s
2
+

3

s

∂

∂s

)

−

2

s
2

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2
θ

∂
2

∂ϕ2

]

+
1

2
s

2. (61)

Identifying the expression in bracket in (61) with L
2, the square of the orbital angular

momentum operator in 3D, since we always have

L
2 = (~σ ·~L)(~σ ·~L + 1), (62)

which is valid for any system, where σ
i
(i = 1, 2, 3) are the Pauli matrices representing the

spin 1
2 degrees of freedom, we obtain for H

B
osc

the final expression

H
B
osc

=
1

2

[

−

(

∂
2

∂s
2
+

3

s

∂

∂s

)

+
4

s
2
(~σ ·~L)(~σ ·~L + 1) + s

2

]

. (63)

Now, associating H
B
osc

with the bosonic sector of the super Wigner system, Hw, subject to the
same constraint as in (60), and following the analogy with the Section II of construction of
super Wigner systems, we first must solve the Schrödinger equation

HwΨw(s, θ, ϕ) = EwΨw(s, θ, ϕ), (64)

where the explicit form of Hw is given by
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Hw(2~σ ·~L +
3

2
) =





−
1
2 (

∂

∂s
+ 3

2s
)2 + 1

2 s
2 +

(2~σ·~L+ 1
2 )(2~σ·

~L+ 3
2 )

2s
2 0

0 −
1
2 (

∂

∂s
+ 3

2s
)

2
+ 1

2 s
2 +

(2~σ·~L+ 3
2 )(2~σ·

~L+ 5
2 )

2s
2



 .(65)

Using the operator technique in references [9, 10], we begin with the following super-realized
mutually adjoint operators

a
±

w ≡ a
±(2~σ ·~L +

3

2
) =

1
√

2

[

±

(

∂

∂s

+
3

2s

)

Σ1 ∓
1

s

(2~σ ·~L +
3

2
)Σ1Σ3 − Σ1s

]

, (66)

where Σ
i
(i = 1, 2, 3) constitute a set of Pauli matrices that provide the fermionic coordinates

commuting with the similar Pauli set σ
i
(i = 1, 2, 3) already introduced representing the spin

1
2 degrees of freedom.

It is checked, after some algebra, that a
+ and a

− of (66) are indeed the raising and lowering
operators for the spectra of the super Wigner Hamiltonian Hw and they satisfy the following
(anti-)commutation relations of the WH algebra:

Hw =
1

2
[a−w, a

+
w]+

= a
+
wa

−

w +
1

2

[

1 + 2(2~σ ·~L +
3

2
)Σ3

]

= a
−

wa
+
w −

1

2

[

1 + 2(2~σ ·~L +
3

2
)Σ3

]

(67)

[Hw, a
±

w]− = ±a
±

w (68)

[a−w, a
+
w]− = 1 + 2(2~σ ·~L +

3

2
)Σ3, (69)

[Σ3, a
±

w]+ = 0 ⇒ [Σ3, Hw]− = 0. (70)
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Since the operator
(

2~σ ·~L + 3
2

)

commutes with the basic elements a±, Σ3 and Hw of the WH

algebra (67), (68) and (69) it can be replaced by its eigenvalues (2ℓ+ 3
2 ) and −(2ℓ+ 5

2 ) while
acting on the respective eigenspace in the from

Ψosc(s, θ, ϕ) =

(

ΨB
osc(s, θ, ϕ)

ΨF
osc(s, θ, ϕ)

)

=

(

RB
osc(s)

RF
osc(s)

)

y±(θ, ϕ) (71)

in the notation where y±(θ, ϕ) are the spin-spherical harmonics [43],

y+(θ, ϕ) = y
ℓ

1
2 ;j=ℓ+ 1

2 ,mj
(θ, ϕ)

y−(θ, ϕ) = y
ℓ+1 1

2 ;j=(ℓ+1)− 1
2 ,mj

(θ, ϕ) (72)

so that, we obtain: (~σ ·~L + 1)y± = ±(ℓ+ 1)y±, (2~σ ·~L + 3
2 )y+ = (2ℓ+ 3

2 )y+ and (2~σ ·~L +
3
2 )y− = −[2(ℓ+ 1) + 1

2 ]y−. Note that on these subspaces the 3D WH algebra is reduced to

a formal 1D radial form with Hw(2~σ ·~L + 3
2 ) acquiring respectively the forms Hw(2ℓ+ 3

2 )
and

Hw

(

−2ℓ−
5

2

)

= Σ1HW

(

2ℓ+
3

2

)

Σ1. (73)

Thus, the positive finite form of Hw in (67) together with the ladder relations (68) and
the form (69) leads to the direct determination of the state energies and the corresponding
Wigner ground state wave functions by the simple application of the annihilation conditions

a−(2ℓ+
3

2
)

(

RB(0)

osc(s)

RF(0)

osc(s)

)

= 0. (74)

Then, the complete energy spectrum for Hw and the whole set of energy eigenfunctions

Ψ
(n)
osc(s, θ, ϕ)(n = 2m, 2m + 1, m = 0, 1, 2, · · · ) follows from the step up operation provided

by a+(2ℓ+ 3
2 ) acting on the ground state, which are also simultaneous eigenfunctions of the

fermion number operator N = 1
2 (1−Σ3). We obtain for the bosonic sector Hamiltonian HB

osc
with fermion number n f = 0 and even orbital angular momentum ℓ4 = 2ℓ, (ℓ = 0, 1, 2, . . .),
the complete energy spectrum and eigenfunctions given by

[

EB
osc

](m)

ℓ4=2ℓ
= 2ℓ+ 2 + 2m, (m = 0, 1, 2, . . .), (75)
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[

ΨB
osc(s, θ, ϕ)

](m)

ℓ4=2ℓ
∝ s2ℓ exp

(

−

1

2
s2

)

L
(2ℓ+1)
m (s2)

{

y+(θ, ϕ)
y−(θ, ϕ)

(76)

where Lα
m(s

2) are generalized Laguerre polynomials [9]. Now, to relate the mapping of the 4D
super Wigner system with the corresponding system in 3D, we make use of the substitution
of s2 = ρ, Eq. (60) and the following substitutions

∂

∂s
= 2

√

ρ
∂

∂ρ
,

∂
2

∂s2
= 4ρ

∂
2

∂ρ2
+ 2

∂

∂ρ
, (77)

in (65) and divide the eigenvalue equation for Hw in (64) by 4s2 = 4ρ, obtaining









−
1
2

(

∂
2

∂ρ2 +
2
ρ

∂

∂ρ

)

−
1
2

[

−
1
4 −

~σ·~L(~σ·~L+1)
ρ2

]

0

0 −
1
2

(

∂
2

∂ρ2 +
2
ρ

∂

∂ρ

)

−
1
2

[

−
1
4 −

(~σ·~L+ 1
2 )(~σ·

~L+ 3
2 )

ρ2

]









(

ΨB

ΨF

)

=
1

4ρ
Ew

(

ΨB

ΨF

)

. (78)

The bosonic sector of the above eigenvalue equation can immediately be identified with the
eigenvalue equation for the Hamiltonian of the 3D Hydrogen-like atom expressed in the
equivalent form given by

{

−

1

2

(

∂
2

∂ρ2
+

2

ρ

∂

∂ρ

)

−

1

2

[

−

1

4
−

~σ ·~L(~σ ·~L + 1)

ρ2

]}

ψ(ρ, θ, ϕ) =
ℓ

2ρ
ψ(ρ, θ, ϕ), (79)

where ΨB = ψ(ρ, θ, ϕ) and the connection between the dimensionless and dimensionfull
eigenvalues, respectively, ℓ and Ea with e = 1 = m = h̄ is given by [43]

ℓ =
Z

√

−2Ea
, ρ = αr, α =

√

−8Ea, (80)

where Ea is the energy of the electron Hydrogen-like atom, (r, θ, ϕ) stand for the spherical
polar coordinates of the position vector ~r = (x1, x2, x3) of the electron in relative to the
nucleons of charge Z together with s2 = ρ. We see then from equations (75), (76), (79) and
(80) that the complete energy spectrum and eigenfunctions for the Hydrogen-like atom given
by

λ

2
=

EB
osc

4
⇒ [Ea]

(m)
ℓ

= [Ea]
(N) = −

Z2

2N2
, (N = 1, 2, . . .) (81)
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and

[ψ(ρ, θ, ϕ)]
(m)
ℓ;æ,mj

∝ ρ
ℓ exp (−

ρ

2
)L

(2ℓ+1)
m

(ρ)

{

y+(θ, ϕ)
y−(θ, ϕ)

(82)

where E
B

osc
is given by Eq. (75).

Here, N = ℓ+m+ 1 (ℓ = 0, 1, 2, · · · , N − 1; m = 0, 1, 2, · · · ) is the principal quantum number.
Kostelecky and Nieto shown that the supersymmetry in non-relativistic quantum mechanics
may be realized in atomic systems [44].

5. The superconformal quantum mechanics from WH algebra

The superconformal quantum mechanics has been examined in [35]. Another application
for these models is in the study of the radial motion of test particle near the horizon of
extremal Reissner-Nordström black holes [35, 37]. Also, another interesting application of
the superconformal symmetry is the treatment of the Dirac oscillator, in the context of the
superconformal quantum mechanics [39–42, 46].

In this section we introduce the explicit supersymmetry for the conformal Hamiltonian in
the WH-algebra picture. Let us consider the supersymmetric generalization of H, given by

H =
1

2
{Qc, Q

†
c
}, (83)

where the new supercharge operators are given in terms of the momentum Yang
representation

Qc =

(

−ipx +

√

g

x

)

Ψ†,

Q
†
c

= Ψ

(

ipx +

√

g

x

)

, (84)

with Ψ and Ψ† being Grassmannian operators so that its anticommutator is {Ψ, Ψ†
} = ΨΨ† +

Ψ†Ψ = 1.

Explicitly the superconformal Hamiltonian becomes

H =
1

2
(1p

2
x
+

1g +
√

gB(1 − cP)

x
2

) (85)

where B =
[

Ψ†, Ψ
]

−
, so that the parity operator is conserved, i.e., [H, P]

−
= 0.

When one introduces the following operators
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S = xΨ†,

S† = Ψx, (86)

it can be shown that these operators together with the conformal quantum mechanics
operators D and K

D =
1

2
(xpx + pxx),

K =
1

2
x2, (87)

satisfy the deformed superalgebra osp(2|2) (Actually, this superalgebra is osp(2|2) when we
fix P = 1 or P = −1.), viz.,

[H, D]
−
= −2ıH,

[H, K]
−
= −ıD,

[K, D]
−
= 2ıK,

[

Qc, Q†
c

]

+
= 2H,

[

Qc, S†
]

+
= −ıD −

1

2
B(1 + cP) +

√

g,

[

Q†
c , S

]

+
= ıD −

1

2
B(1 + cP) +

√

g,
[

Q†
c , D

]

−

= −ıQ†
c ,

[

Q†
c , K

]

−

= S†,
[

Q†
c , B

]

−

= 2Q†
c ,

[Qc, K]
−
= −S,

[Qc, B]
−
= −2Qc,

[Qc, D]
−
= −ıQc,

[H, S]
−
= Qc,

[

H, S†
]

−

= −Q†
c ,

[

B, S†
]

−

= −2S†, [B, S]
−
= 2S,

[D, S]
−
= −ıS,

[

D, S†
]

−

= −ıS†,
[

S†, S
]

+
= 2K, (88)
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where, H, D, K, B are bosonic operators and Qc, Q
†
c
, S, S

† are fermionic ones. The
supersymmetric extension of the Hamiltonian L0 (presented in the previous section) is

H0 =
1

2
(H+ K), [H0, P]

−
= 0. (89)

In general, superconformal quantum mechanics has interesting applications in
supersymmetric black holes, for example in the problem of a quantum test particle moving
in the black hole geometry.

6. Summary and conclusion

In this chapter, firstly we start by summarizing the R-deformed Heisenberg algebra
or Wigner-Heisenberg algebraic technique for the Wigner quantum oscillator, based on
the super-realization of the ladder operators effective spectral resolutions of general
oscillator-related potentials.

We illustrate the applications of our operator method to the cases of the Hamiltonians of an
isotonic oscillator (harmonic plus a centripetal barrier) system and a 3D isotropic harmonic
oscillator for spin 1

2 embedded in the bosonic sector of a corresponding Wigner system.

Also, the energy eigenvalues and eigenfunctions of the hydrogen atom via
Wigner-Heisenberg (WH) algebra in non-relativistic quantum mechanics, from the
ladder operators for the 4-dimensional (4D) super Wigner system, ladder operators for
the mapped super 3D system, and hence for hydrogen-like atom in bosonic sector, are
deduced. The complete spectrum for the hydrogen atom is found with considerable
simplicity by using the Kustaanheimo-Stiefel transformation. From the ladder operators for
the four-dimensional (4D) super-Wigner system, ladder operators for the mapped super 3D
system, and hence for the hydrogen-like atom in bosonic sector, can be deduced. Results of
present investigations on these ladder operators will be reported separately.

For future directions, such a direct algebraic method considered in this chapter proves highly
profitable for simpler algebraic treatment, as we shall show in subsequent publications,
of other quantum mechanical systems with underlying oscillator connections like for
example those of a relativistic electron in a Coulomb potential or of certain 3D SUSY
oscillator models of the type of Celka and Hussin. This SUSY model has been reported in
nonrelativistic context by Jayaraman and Rodrigues [10]. We will also demonstrate elsewhere
the application of our method for a spectral resolution complete of the Pöschl-Teller I and
II potentials by virtue of their hidden oscillator connections using the WH algebra operator
technique developed in this chapter.

In the work of the Ref. [46], we analyze the Wigner-Heisenberg algebra to bosonic systems in
connection with oscillators and, thus, we find a new representation for the Virasoro algebra.
Acting the annihilation operator(creation operator) in the Fock basis | 2m+ 1, c

2 > (| 2m, c

2 >)
the eigenvalue of the ground state of the Wigner oscillator appears only in the excited states
associated with the even(odd) quanta. We show that only in the case associated with one
even index and one odd index in the operator Ln the Virasoro algebra is changed.
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Recently, we have analyzed the connection between the conformal quantum mechanics and
the Wigner-Heisenberg (WH) algebra [46]. With an appropriate relationship between the
coupling constant g and Wigner parameter c one can identify the Wigner Hamiltonian with
the simple Calogero Hamiltonian.

The important result is that the introduction of the WH algebra in the conformal
quantum mechanics is still consistent with the conformal symmetry, and a realization of
superconformal quantum mechanics in terms of deformed WH algebra is discussed. The
spectra for the Casimir operator and the Hamiltonian L0 depend on the parity operator.
The ladder operators depend on the parity operator, too. It is shown, for example, that the
eigenvalues of Calogero-type Hamiltonian is dependent of the Wigner parameter c and the
eigenvalues of the parity operator P. When c=0 we obtain the usual conformal Hamiltonian
structure.

We also investigated the supersymmetrization of this model, in that case we obtain a new
spectrum for the supersymmetric Hamiltonian of the Calogero interaction’s type.

In this case the spectra for the super-Casimir operator and the superhamiltonian depend
also on the parity operator. Therefore, we have found a new realization of supersymmetric
Calogero-type model on the quantum mechanics context in terms of deformed WH algebra.
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1. Introduction

Supersymmetric quantum mechanics (SUSY-QM) has been developed as an elegant analytical
approach to one-dimensional problems. The SUSY-QM formalism generalizes the ladder
operator approach used in the treatment of the harmonic oscillator. In analogy with
the harmonic oscillator Hamiltonian, the factorization of a one-dimensional Hamiltonian
can be achieved by introducing “charge operators”. For the one-dimensional harmonic
oscillator, the charge operators are the usual raising and lowering operators. The SUSY
charge operators not only allow the factorization of a one-dimensional Hamiltonian but also
form a Lie algebra structure. This structure leads to the generation of isospectral SUSY
partner Hamiltonians. The eigenstates of the various partner Hamiltonians are connected
by application of the charge operators. As an analytical approach, the SUSY-QM approach
has been utilized to study a number of quantum mechanics problems including the Morse
oscillator ([16]) and the radial hydrogen atom equation ([24]). In addition, SUSY-QM has
been applied to the discovery of new exactly solvable potentials, the development of a more
accurate WKB approximation, and the improvement of large N expansions and variational
methods ([7, 11]). Developments and applications of one-dimensional SUSY-QM can be
found in relevant reviews and books ([7, 9, 11, 15, 26, 32, 33]). Recently, SUSY-QM has
been developed as a computational tool to provide much more accurate excitation energies
using the standard Rayleigh-Ritz variational method ([5, 19, 20]).

The harmonic oscillator is fundamental to a wide range of physics, including the

electromagnetic field, spectroscopy, solid state physics, coherent state theory, and SUSY-QM.

©2012 Chou et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Chou et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

The broad application of the harmonic oscillator stems from the raising and lowering ladder

operators which are used to factor the system Hamiltonian. For example, canonical coherent

states are defined as the eigenstates of the lowering operator of the harmonic oscillator,

and they are also minimum uncertainty states which minimize the Heisenberg uncertainty

product for position and momentum. In addition, several different approaches have been

employed to study generalized and approximate coherent states for systems other than the

harmonic oscillator ([3, 12, 17, 18, 27–31, 34, 37]). Furthermore, algebraic treatments have

been applied to the extension of coherent states for shape-invariant systems ([1, 4, 8, 10]).

The lowering operator of the harmonic oscillator annihilates the ground state, and the

ground state minimizes the Heisenberg uncertainty product. Conventional harmonic

oscillator coherent states correspond to those states which minimize the position-momentum

uncertainty relation. However, these harmonic oscillator coherent states are also constructed

by applying shift operators labeled with points of the discrete phase space to the ground

state of the harmonic oscillator, termed the “fiducial state” ([18]). Indeed, Klauder and

Skagerstam choose to define coherent states in the broadest sense in precisely this manner

([21]). Analogously, the charge operator in SUSY-QM annihilates the ground state of the

corresponding system. We therefore expect that the ground state wave function should

provide the ideal fiducial function for constructing efficient, overcomplete coherent states

for computations of excited states of the system.

In our recent study ([6]), we construct system-specific coherent states for any bound quantum

system by making use of the similarity between the treatment of the harmonic oscillator and

SUSY-QM. First, since the charge operator annihilates the ground state, the superpotential

that arises in SUSY-QM can be regarded as a SUSY-displacement operator or a generalized

displacement variable. We show that the ground state for any bound quantum system

minimizes the SUSY-displacement-standard momentum uncertainty product. Then, we

use the ground state of the system as a fiducial function to generate new system-specific

dynamically-adapted coherent states. Moreover, the discretized system-specific coherent

states can be utilized as a dynamically-adapted basis for calculations of excited state energies

and wave functions for bound quantum systems. Computational results demonstrate

that these discretized system-specific coherent states provide more rapidly-converging

expansions for excited state energies and wave functions than the conventional coherent

states and the standard harmonic oscillator basis.

The organization of the remainder of this chapter is as follows. In Sec. 2, we briefly review

the harmonic oscillator, conventional coherent states, and SUSY-QM. We also show that the

ground state of a quantum system minimizes the SUSY-displacement-standard momentum

uncertainty product. We then construct system-specific coherent states by applying shift

operators to the ground state of the system. In Sec. 3, the discretized system-specific coherent

state basis is developed for and applied to the Morse oscillator, the double well potential,

and the two-dimensional anharmonic oscillator system for calculations of the excited state

energies and wave functions. In Sec. 4, we summarize our results and conclude with some

comments.
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2. Theoretical formulation

2.1. Harmonic oscillator and conventional coherent states

The Hamiltonian of the harmonic oscillator is expressed by

H = −

h̄2

2m

d2

dx2
+

1

2
mω

2x2, (1)

where m is the particle’s mass, ω is the angular frequency of the oscillator. The Hamiltonian
can be written in terms of the raising and lowering operators as

H = h̄ω

(

â† â +
1

2

)

, (2)

where â† is the raising operator and â is the lowering operator. These two operators can
be expressed in terms of the position operator x̂ and its canonically conjugate momentum
operator p̂x by

â =

√

mω

2h̄
x̂ +

i p̂x
√

2mh̄ω
, (3)

â† =

√

mω

2h̄
x̂ −

i p̂x
√

2mh̄ω
. (4)

Without loss of generality, we set h̄ = 2m = 1 throughout this study and ω = 2 for this
case. In particular, the ground state of the harmonic oscillator is annihilated by the lowering
operator

âψ0 =
1
√

2
(x̂ + i p̂x)ψ0 = 0. (5)

By solving this differential equation in the position representation, we obtain the ground
state wave function

ψ0(x) = 〈x|0〉 = Ne−x2/2, (6)

where N is the normalization constant.

One of the important properties for the ground state of the harmonic oscillator is that the
ground state is a minimum uncertainty state, which minimizes the Heisenberg uncertainty
product ∆x̂∆ p̂x. The usual derivation of the Heisenberg uncertainty principle makes use of
Schwarz’s inequality ([25])

〈ψ|x̂2
|ψ〉〈ψ| p̂2

x|ψ〉 ≥ |〈ψ|x̂ p̂x|ψ〉|
2, (7)
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where zero expectation values of the position and momentum operators are assumed for
convenience. The equality holds for the state |ψ〉, which satisfies the condition

x̂|ψ〉 = −iσ2 p̂x|ψ〉, (8)

where σ
2 is real and greater than zero. As noted in Eq. (5), the ground state of the harmonic

oscillator satisfies the relation with σ
2 = 1, and hence it is a minimum uncertainty state . In

fact, the ground state corresponds to a state centered in the phase space at x = 0 and k = 0.
Harmonic oscillator coherent states can be constructed by applying shift operators labeled
with points of the discrete phase space to a fiducial state, which is taken as the ground state
of the harmonic oscillator ([18, 21]). In this sense, harmonic oscillator coherent states are
generated by |α〉 = D̂(α)|0〉. The shift operator is given by

D̂(α) = eαâ†
−α

∗ â, (9)

where

α =
1
√

2

[ x

σ
+ ikσ

]

. (10)

Here α is a complex-number representation of the phase point x and k, and the quantity σ

is a scaling parameter with the dimensions of length. Thus, the harmonic oscillator coherent
states can be constructed by applying the shift operator to the ground state of the harmonic
oscillator.

2.2. Supersymmetric quantum mechanics

For one-dimensional SUSY-QM, the superpotential W is defined in terms of the ground state
wave function by the Riccati substitution

ψ
(1)
0 (x) = N exp

[

−

∫ x

0
W1(x′)dx′

]

, (11)

where N is the normalization constant. The index “(1)” indicates that the ground state wave
function and the superpotential are associated with the sector one Hamiltonian. It is assumed
that Eq. (11) solves the Schrödinger equation with energy equal to zero

−

d2
ψ
(1)
0

dx2
+ V1ψ

(1)
0 = 0. (12)

This does not impose any restriction since the energy can be changed by adding any constant
to the Hamiltonian. From Eq. (11), the superpotential can be expressed in terms of the ground
state wave function by
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W1(x) = −

d

dx
ln ψ

(1)
0 (x). (13)

Substituting Eq. (11) into the Schrödinger equation in Eq. (12), we obtain the Riccati equation
for the superpotential

dW1(x)

dx
− W2

1 (x) + V1(x) = 0. (14)

On the other hand, if W1(x) is known, then V1(x) is given by

V1(x) =

(

W1(x)2
−

dW1(x)

dx

)

. (15)

Obviously, the Schrödinger equation in Eq. (12) is equivalent to

−

d2
ψ
(1)
0

dx2
+

(

W2
1 −

dW1

dx

)

ψ
(1)
0 = 0. (16)

Analogous to the harmonic oscillator, the Hamiltonian operator can be factorized by
introducing the “charge” operator and its adjoint

Q1 =
d

dx
+ W1 = W1 + i p̂x, (17)

Q†
1 = −

d

dx
+ W1 = W1 − i p̂x, (18)

where p̂x = −i(d/dx) is the coordinate representation of the momentum operator.
Throughout this study, the ground state wave function ψ0(x) is assumed to be purely real;
hence, the superpotential W(x) is self-adjoint. Then, the sector one Hamiltonian is defined

as H1 = Q†
1Q1. Since E

(1)
0 = 0 for n = 0, it follows from the Schrödinger equation that for

n > 0

Q†
1Q1ψ

(1)
n = E

(1)
n ψ

(1)
n , (19)

where ψ
(1)
n is an eigenstate of H1 with E

(1)
n 6= 0. Applying Q1 to this equation, we obtain

H2

(

Q1ψ
(1)
n

)

= Q1Q†
1

(

Q1ψ
(1)
n

)

= E
(1)
n

(

Q1ψ
(1)
n

)

, (20)

where the sector two Hamiltonian is defined as H2 = Q1Q†
1. Thus, Q1ψ

(1)
n is an eigenstate of

H2 with the same energy E
(1)
n as the state ψ

(1)
n . Analogously, we consider the eigenstates of

H2
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H2ψ
(2)
n

= Q1Q
†
1ψ

(2)
n

= E
(2)
n

ψ
(2)
n

. (21)

Applying Q
†
1 to this equation, we notice that Q

†
1ψ

(2)
n

is an eigenstate of H1

H1

(

Q
†
1ψ

(2)
n

)

=
(

Q
†
1Q1

) (

Q
†
1ψ

(2)
n

)

= E
(2)
n

(

Q
†
1ψ

(2)
n

)

. (22)

It follows that the Hamiltonians H1 and H2 have identical spectra with the exception of the

ground state with E
(1)
0 = 0. For the ground state, Q1ψ

(1)
0 = 0, and this shows that the

quantity Q1ψ
(1)
0 cannot be used to generate the ground state of the sector two Hamiltonian.

Because of the uniqueness of the ground state with E
(1)
0 = 0, the indexing of the first and

second sector levels must be modified. It is clear that the eigenvalues and eigenfunctions of
the two Hamiltonians H1 and H2 are related by

E
(2)
n

= E
(1)
n+1, E

(1)
0 = 0,

ψ
(2)
n

=
Q1ψ

(1)
n+1

√

E
(1)
n+1

, ψ
(1)
n+1 =

Q
†
1ψ

(2)
n

√

E
(2)
n

.

Analogously, starting from H2 whose ground state energy is E
(2)
0 = E

(1)
1 , we can generate

the sector three Hamiltonian H3 as a SUSY partner of H2. This procedure can be continued
until the number of bound excited states supported by H1 is exhausted.

2.3. SUSY Heisenberg uncertainty products

It follows from Eq. (13) that the charge operator annihilates the corresponding ground state

Qψ0 =
(

Ŵ + i p̂x

)

ψ0 = 0. (23)

Because we concentrate only on the sector one Hamiltonian in the present study, we suppress
the sector index. For the harmonic oscillator, the charge operators correspond to the raising
and lowering operators for the harmonic oscillator with W(x) = x. From the similarity,
the superpotential Ŵ can be regarded as a “SUSY-displacement” operator although such a
displacement would, in general, not be generated by the standard momentum operator p̂x.
In fact, Ŵ and p̂x are not canonically conjugate variables.

The ground state of the harmonic oscillator is a minimum uncertainty state, which minimizes
the Heisenberg uncertainty product ∆x̂∆ p̂x. Analogously, it is expected that the ground
state for a bound quantum system minimizes the SUSY Heisenberg uncertainty product
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∆Ŵ∆ p̂x. For an arbitrary normalized wave function, we consider the square of the
SUSY-displacement-standard momentum uncertainty product

(

∆Ŵ∆ p̂x
)2

= 〈ψ|W̃2
|ψ〉〈ψ| p̃2

x|ψ〉, (24)

where W̃ = Ŵ − W0 and p̃x = p̂x − p0. The quantities W0 = 〈W〉 and p0 = 〈 p̂x〉 correspond
to the averaged SUSY-displacement and momentum values, respectively. In order to obtain
a lower bound on the uncertainty product in Eq. (24), we employ the Cauchy-Schwarz
inequality

〈ψ|W̃2
|ψ〉〈ψ| p̃2

x|ψ〉 ≥ |〈ψ|W̃ p̃x|ψ〉|
2. (25)

The equality is satisfied when the two vectors W̃|ψ〉 and p̃x|ψ〉 are collinear. From this
condition, we obtain W̃|ψ〉 = λ p̃x|ψ〉. Rearranging this equation yields

(Ŵ − λ p̂x)|ψ〉 = (W0 − λp0)|ψ〉. (26)

As a special case for λ = −i, this equation becomes

(Ŵ + i p̂x)|ψ〉 = (W0 + ip0)|ψ〉. (27)

It follows from Eq. (23) that (W0 + ip0) = 〈ψ0|Ŵ + i p̂x|ψ0〉 = 0 for the ground state
of the system. Thus, Eq. (23) implies that the ground state satisfies the condition
in Eq. (27). Therefore, the ground state of a bound quantum system minimizes the
SUSY-displacement-standard momentum uncertainty product ∆Ŵ∆ p̂x.

We present some properties of the averaged SUSY-displacement and standard momentum
values for the ground state. The averaged SUSY-displacement for the ground state is
evaluated by

W0 = 〈ψ0|W|ψ0〉 =
∫ ∞

−∞
ψ
∗

0 (x)W(x)ψ0(x)dx = −

∫ ∞

−∞
ψ
∗

0 (x)
dψ0(x)

dx
dx, (28)

where Eq. (13) has been used. The averaged momentum for the ground state is given by

p0 = 〈ψ0| p̂x|ψ0〉 = −i
∫ ∞

−∞
ψ
∗

0 (x)
dψ0(x)

dx
dx. (29)

Again, from Eqs. (28) and (29), W0 + ip0 = 0 for the ground state of the system, as indicated
in Eq. (23). Furthermore, when the ground state wave function is purely real, it follows from
integration by parts that the integral in Eqs. (28) and (29) is equal to zero. Thus, the averaged
SUSY-displacement and momentum values for the real-valued ground state wave function
are equal to zero, W0 = p0 = 0.

The ground state of a quantum system is the minimizer of the SUSY Heisenberg uncertainty
product. We can derive the minimum value for the SUSY Heisenberg uncertainty product
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in Eq. (25). For the real-valued ground state wave function, W̃ = Ŵ − W0 = Ŵ and p̃x =
p̂x − p0 = p̂x. The right side of the uncertainty product in Eq. (25) becomes

〈ψ0|Ŵ p̂x|ψ0〉 = i〈ψ0|Ŵ
2
|ψ0〉, (30)

where p̂x|ψ0〉 = iŴ|ψ0〉 from Eq. (23) has been used. Thus, the right side of the uncertainty
product in Eq. (25) is given by

|〈ψ0|Ŵ p̂x|ψ0〉|
2 = 〈Ŵ2

〉
2. (31)

Similarly, the left side of the uncertainty product in Eq. (25) is given by

〈ψ0|Ŵ
2
|ψ0〉〈ψ0| p̂

2
x|ψ0〉 = 〈Ŵ2

〉〈Ŵ2
〉. (32)

Therefore, the equality in Eq. (25) holds for the ground state, and the SUSY Heisenberg
uncertainty product is equal to ∆Ŵ∆ p̂x = 〈Ŵ2

〉.

The expectation value of Ŵ2 for the ground state is evaluated by

〈Ŵ2
〉 =

∫ ∞

−∞
ψ0(x)W(x)2

ψ0(x)dx = −

∫ ∞

−∞
ψ0(x)W(x)

dψ0(x)

dx
dx, (33)

where Eq. (13) has been used. From integration by parts, the integral can be expressed by

∫ ∞

−∞
ψ0(x)W(x)

dψ0(x)

dx
dx = −

1

2

∫ ∞

−∞
ψ0(x)

dW(x)

dx
ψ0(x)dx. (34)

Thus, the expectation value of Ŵ2 for the ground state is equal to one half of the expectation
value for the derivative of the superpotential

〈Ŵ2
〉 =

1

2

〈

dŴ

dx

〉

. (35)

Moreover, the commutation relation of the SUSY-displacement and the momentum operator
is given by

[

Ŵ, p̂x
]

= i
dŴ

dx
. (36)

Therefore, the SUSY Heisenberg uncertainty product for the ground state becomes

∆Ŵ∆ p̂x = 〈Ŵ2
〉 =

1

2

〈

dŴ

dx

〉

=
1

2i

〈[

Ŵ, p̂x
]〉

. (37)
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For the harmonic oscillator, W(x) = x and dW/dx = 1. We recover the conventional
Heisenberg uncertainty product for the ground state ∆x̂∆ p̂x = 1/2. As a special case, a
similar derivation has been employed to determine exact minimum uncertainty coherent
states for the Morse oscillator ([8]).

2.4. System-specific coherent states

Analogous to the harmonic oscillator coherent state, the analysis of a bound quantum
system in terms of the SUSY Heisenberg uncertainty principle suggests the construction of
system-specific coherent states based on the SUSY-QM ground state. Similarly, the procedure
for creating an overcomplete set of such coherent states is to apply the shift operator to the
ground state as a fiducial function ([18, 21])

ψα(x) = 〈x|α〉 = 〈x|D̂(α)|ψ0〉 = Neik0(x−x0)e−x0(d/dx)
ψ0(x)

= Neik0(x−x0)ψ0(x − x0), (38)

where N is the normalization constant. The raising and lowering operators for the shift

operator are given by â† = (x̂ − i p̂x)/
√

2 and â = (x̂ + i p̂x)/
√

2, respectively. The quantity

α = (x0 + ik0)/
√

2 is a point in the phase space which completely describes the coherent
state. Thus, the functions ψα form an overcomplete set of the coherent states in the standard
phase space which are specifically associated with the quantum-mechanical system described
by the SUSY-displacement W(x).

We now consider a coordinate transformation given by x′ = x − x0 for the system-specific
coherent states in Eq. (38). The system-specific coherent state becomes

ψα(x′) = eik0x′

ψ0(x′), (39)

where ψ0(x′) is the normalized real-valued ground state wave function, and thus ψα(x′) is
also normalized. The momentum operator is invariant under the coordinate transformation
(i.e., p̂x′ = p̂x). It is straightforward to show that

(Ŵ(x′) + i p̂x′ )|ψα〉 = ik0|ψα〉. (40)

The averaged SUSY-displacement for the system-specific coherent state is given by

W0,α = 〈ψα|W|ψα〉 =
∫ ∞

−∞
ψ
∗

α(x′)W(x′)ψα(x′)dx′

= −

∫ ∞

−∞
ψ0(x′)

dψ0(x′)

dx′
dx′. (41)
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Again, it follows from integration by parts that W0,α = 0 for all system-specific coherent
states. Analogously, the averaged momentum for the system-specific coherent state is given
by

p0,α = 〈ψα| p̂x′ |ψα〉 = k0 − i
∫ ∞

−∞
ψ0(x′)

dψ0(x′)

dx′
dx′. (42)

Because the integral is equal to zero, p0,α = k0. Thus, Eq. (40) can be written as

(Ŵ(x′) + i p̂x′ )|ψα〉 = (W0,α + ip0,α)|ψα〉. (43)

Analogous to the uncertainty condition for the ground state in Eq. (27), this equation implies
that the system-specific coherent state |ψα〉 minimizes the SUSY-displacement-momentum
uncertainty product ∆Ŵ∆ p̂x′ for the displaced coordinate x′ = x − x0.

2.5. Discretized system-specific coherent states

A discretized SUSY-QM coherent state basis can be constructed by discretizing the

continuous label α = (q + ik)/
√

2 and setting up a von Neumann lattice in phase space
with an appropriate density D. The discretized system-specific coherent state basis is given
by

ψαi (x) = 〈x|αi〉 = Neiki(x−qi) exp

[

−

∫ x−qi

0
W(x′)dx′

]

, (44)

where i = 1, . . . , M and M is the number of basis functions. The phase space grid points are
defined as ([2])

{(qi, ki)} =

{(

m∆x

√

2π

D
,

n

∆x

√

2π

D

)}

m, n ∈ Z (45)

where m and n run over all integers, hence i can be thought of as a joint index consisting
of m and n. The quantity D is the density of grid points in units of 2πh̄. As discussed in
Klauder and Skagerstam’s book ([18]), generalized coherent states constructed by applying
displacement operators to a fiducial state are overcomplete; however, completeness of the
discretized system-specific coherent states in Eq. (44) has not been established here.

Since the ground state solves the time-independent Schrödinger equation for the
corresponding Hamiltonian, the system-specific coherent states build in the dynamics
of the system under investigation. This property leads to the expectation that these
dynamically-adapted and system-specific coherent states will prove more rapidly convergent
in calculations of the excited state energies and wave functions for quantum systems using
variational methods.
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E0 E1 E2 E3

Exact -56.25 -42.25 -30.25 -20.25

SSCS (M = 9) -56.25 -42.2499824 -30.2270611 -19.52261
SSCS (M = 15) -56.25 -42.2499999 -30.2499343 -20.23502

HOCS (M = 9) -54.95 -37.00 -21.08 -10.22
HOCS (M = 15) -56.13 -41.62 -28.61 -17.62

HO (M = 9) -53.79 -33.34 -16.45 -6.40
HO (M = 15) -55.54 -39.03 -23.84 -12.30

Table 1. Comparison of the energy eigenvalues for the Morse oscillator obtained by the system-specific coherent states

(SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis functions (HO) with the exact results.
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Figure 1. Logarithm of the relative error, versus grid spacing ∆x, of the first (◦), second (⋄), and third (�) excited state energies

for the Morse oscillator using the system-specific coherent states (—) and the harmonic oscillator coherent states (- - -) with 15

basis functions.

To use the Rayleigh-Ritz variational principle, we construct a trial wave function in terms of
a linear combination of the system-specific coherent states

|ψ〉 =
M

∑
i=1

c
i
|α

i
〉, (46)

where c
i

are the coefficients. Because of the non-orthogonality of the system-specific coherent
states, the energy eigenvalues and wave functions are determined by solving the generalized
eigenvalue problem ([36])

HC = ESC, (47)

whereH
ij
= 〈α

i
|H|α

j
〉 is the matrix element of the Hamiltonian, S

ij
= 〈α

i
|α

j
〉 is the overlap

matrix, and C is a vector of linear combination coefficients for the eigenvector. Therefore,
solving Eq. (47) yields the variational approximation to the eigenvalues and eigenvectors of
the Hamiltonian operator.
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3. Computational results

3.1. Morse oscillator

In order to demonstrate features of system-specific coherent states, computational results
will be presented for three quantum systems. The first of these concerns the Morse oscillator.
The Hamiltonian of the Morse oscillator is given by

H = −

d2

dx2
+ V(x) = −

d2

dx2
+ 64

(

e−2x
− 2e−x

)

. (48)

The exact energy eigenvalues are En = −(n − 15/2)2 where n = 0, . . . , 7, and the analytical
expression of the ground state wave function is given by

ψ0(x) = N exp

[

−8e−x
−

15

2
x

]

, (49)

where N is the normalization constant. In this case, the superpotential and its derivative are
given by W(x) = 15/2 − 8 exp(−x) and dW/dx = 8 exp(−x), respectively. The minimum
SUSY Heisenberg uncertainty product in Eq. (37) is equal to ∆Ŵ∆ p̂x = 15/4. In addition,
the discretized system-specific coherent state basis functions in Eq. (44) are expressed by

ψαi (x) = Neiki(x−qi) exp

[

−8e−(x−qi)
−

15

2
(x − qi)

]

. (50)

The phase space grid in Eq. (45) used for the coherent states was m = −1, 0, 1 and n = −1, 0, 1
for M = 9 basis functions and m = −1, 0, 1 and n = −2, . . . , 2 for M = 15 basis functions. The
phase space density was set to be D = 1. In contrast with the present system-specific coherent
states in Eq. (50), different coherent states for the Morse oscillator defined as eigenstates of
the charge operator and minimum uncertainty states have been constructed ([8]).

Table 1 presents the computational results for the energy eigenvalues obtained by solving
the generalized eigen-equation in Eq. (47) using the discretized system-specific coherent state
basis functions with ∆x = 0.5. Since the basis includes the exact ground state wave function,
the computational result yields the exact ground state energy. As shown in this table, higher
accuracy can be achieved when we increase the number of the basis functions from M = 9 to
M = 15. In addition, Table 1 presents the computational results obtained using the harmonic
oscillator coherent state basis and the standard harmonic oscillator basis. The discretized
harmonic oscillator coherent state basis functions are readily determined by substituting
W(x) = x into Eq. (44)

ψαi (x) = Neiki(x−qi)e−(x−qi)
2/2. (51)

The standard harmonic oscillator basis is given by
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Figure 2. The ground state wave function of the double well potential obtained by the imaginary time propagation method is

shown with the scaled potential Vs(x) = V(x)/20.

φn(x) =
1

√

2n
n!
√

π
Hn(x)e−x

2/2, (52)

where Hn(x) is the Hermite polynomial. Compared with the results obtained from
these two basis sets, the computational results from the system-specific coherent states
achieve significantly higher accuracy using a small number of basis functions. Thus, the
system-specific coherent states provide more accurate approximations of the excited state
energies for the Morse oscillator.

Figure 1 displays the logarithm of the relative error of the excited state energies for the
system-specific coherent states and the harmonic oscillator coherent states with different
values for ∆x with 15 basis functions. The relative error is defined by

Err =
E

numerical
− Eexact

|Eexact|

. (53)

As shown in this figure, the system-specific coherent states yield excellent results for the
excited state energies. The relative error of the first-excited state energy can even reach 10−9

for a wide range of ∆x. Additionally, compared with the harmonic oscillator coherent states,
the system-specific coherent states give much more accurate results for the first three excited
state energies. Also, the system-specific coherent states yield stable computational results for
a wide range of ∆x.

3.2. Double well potential

As an example of quantum systems without exact analytical solutions, we consider a
symmetric double well potential given by

V(x) = 3x
4
− 8x

2. (54)
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E0 E1 E2 E3

DVR -2.169693 -1.406472 3.102406 7.087930

SSCS (M = 9) -2.169697 -1.375254 3.106359 7.807534
SSCS (M = 15) -2.169697 -1.406417 3.102440 7.088186

HOCS (M = 9) -2.1223 -1.3214 3.3931 7.5166
HOCS (M = 15) -2.1688 -1.4048 3.1088 7.0992

HO (M = 9) -2.1246 -1.0650 3.5063 8.6640
HO (M = 15) -2.1543 -1.3930 3.1555 7.4491

Table 2. Comparison of the energy eigenvalues for the double well potential obtained by the system-specific coherent states

(SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis functions (HO) with the discrete

variable representation (DVR) results.
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Figure 3. Logarithm of the relative error, versus grid spacing ∆x, of the first (◦), second (⋄), and third (�) excited state energies

for the double well potential using the system-specific coherent states (—) and the harmonic oscillator coherent states (- - -)

with 15 basis functions.

In order to construct the discretized system-specific coherent state basis functions in Eq. (44),
we numerically obtain the ground state wave function. We employed the split-operator
method ([35]) to integrate the imaginary time Schrödinger equation from t = 0 to t = 2
([36]). The computational grid extends from x = −8 to x = 8 with 213 grid points, and the
integration time step was ∆t = 0.01. The initial state is a Gaussian wave packet given by

ψ(x) =

(

2

π

)1/4

e
−x

2
, (55)

where the wave packet is centered at the origin. Figure 2 presents the resulting ground state
wave function of the double well potential with the ground state energy E0 = −2.169694.

From the computational result for the ground state, we can construct the approximate
discretized system-specific coherent states in Eq. (44) used to determine the excited state
energies of the double well potential by solving the generalized eigen-equation in Eq. (47).
In order to assess the accuracy of the computational results, accurate results were obtained
with a Chebyshev polynomial discrete variable representation (DVR) variational calculation
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E0 E1 E2 E3

DVR 0.000000 4.751807 6.646349 8.679575

SSCS (M = 81) 0 4.754974 6.647358 8.684308
SSCS (M = 225) 0 4.751812 6.646353 8.679596

HOCS (M = 81) 0.0762 5.3029 6.9378 10.4334
HOCS (M = 225) 0.0029 4.7915 6.6554 8.8479

HO (M = 81) 0.0870 5.3587 7.0307 10.5626
HO (M = 225) 0.0144 4.8953 6.6967 9.2190

Table 3. Comparison of the energy eigenvalues for the two-dimensional anharmonic oscillator system obtained by the

system-specific coherent states (SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis

functions (HO) with the discrete variable representation (DVR) results.
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Figure 4. Logarithm of the relative error, versus grid spacing ∆x = ∆y, of the first (◦), second (⋄), and third (�) excited state

energies for the two-dimensional anharmonic oscillator system using the system-specific coherent states (—) and the harmonic

oscillator coherent states (- - -) with 225 basis functions.

using 1000 grid points on the computational domain extending from x = −4 to x = 4
([23]). Table 2 presents the computational results for the energy eigenvalues with ∆x = 0.5.
Again, computational results for the first three excited state energies with significantly
higher accuracy were achieved using a small number of the basis functions with M = 15.
In addition, compared with the harmonic oscillator coherent state basis and the standard
harmonic oscillator basis, the system-specific coherent states yields more accurate excited
state energies for the double well potential. Moreover, Fig. 2 displays the logarithm of the
relative error of the excited state energies for the system-specific coherent states and the
harmonic oscillator coherent states with different values for ∆x with 15 basis functions. As
shown in this figure, the system-specific coherent states generally yield much more accurate
results for the excited state energies than the harmonic oscillator coherent states except for
small ∆x.
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3.3. Two-dimensional anharmonic oscillator system

As an example of multidimensional systems, we consider a nonseparable nondegenerate

two-dimensional anharmonic oscillator system ([19]). The Hamiltonian is given by

H1 = −∇
2 + V(x, y)

= −

∂
2

∂x2
−

∂
2

∂y2
+
(

4xy2 + 2x
)2

+
(

4x2y + 2
√

2y
)2

− 4
(

x2 + y2
)

−

(

2 + 2
√

2
)

. (56)

The exact ground state energy of the system is zero and the analytical expression of the

ground state wave function is given by

ψ
(1)
0 (x, y) = N exp

(

−2x2y2
− x2

−

√

2y2
)

, (57)

where N is a normalization constant. Analogous to the one-dimensional case, the discretized

system-specific coherent state basis functions are expressed by

ψαi (x, y) = Neikxi(x−qxi)eikyi(y−qyi)ψ0(x − qxi, y − qyi). (58)

In addition, the two-dimensional separable discretized harmonic oscillator coherent state

basis functions are given by

ψαi (x, y) = Neikxi(x−qxi)eikyi(y−qyi)e−(x−qxi)
2/2e−(y−qyi)

2/2. (59)

The phase space grid points for these two basis sets are defined by

{(qxi, qyi, kxi, kyi)} =

{(

m∆x

√

2π

D
, m∆y

√

2π

D
,

n

∆x

√

2π

D
,

n

∆y

√

2π

D

)}

m, n ∈ Z (60)

where m and n are integers. For computational results, we chose m = −1, 0, 1 and n = −1, 0, 1

for M = 81 basis functions and m = −1, 0, 1 and n = −2, . . . , 2 for M = 225 basis functions.

The phase space density was set to be D = 1.

Table 3 presents the computational results for the energy eigenvalues obtained using the

discretized system-specific coherent states and the harmonic oscillator coherent states with

∆x = ∆y = 0.4. Compared with the DVR results using 50 grid points in x and in y (for a total

of 2500 basis functions), the computational results obtained by the system-specific coherent

states achieve higher accuracy than the harmonic oscillator coherent states. In addition,

Table 3 presents the computational results obtained from the standard harmonic oscillator
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basis of the direct product of the eigenstates of a harmonic oscillator in each dimension

with frequency ω = 2
√

2. These results were obtained by a (Nx, Ny) = (9, 9) basis set

calculation with 81 basis functions and a (Nx, Ny) = (15, 15) basis set calculation with

225 basis functions. Again, compared with the results obtained from the other two basis

sets, the computational results from the system-specific coherent states achieve significantly

higher accuracy using a small number of basis functions. Furthermore, Figure 4 displays the

logarithm of the relative error of the excited state energies for the system-specific coherent

states and the harmonic oscillator coherent states with different values for the grid spacing

with 225 basis functions. As shown in this figure, the system-specific coherent states yield

much more accurate results for the excited state energies than the harmonic oscillator

coherent states for different grid spacings, and the relative errors reach around 10−6 for

a wide range of the grid spacings.

4. Discussion and perspectives

The application of SUSY-QM to non-relativistic quantum systems generalizes the powerful

ladder operator approach used in the treatment of the harmonic oscillator. The lowering

operator of the harmonic oscillator annihilates the ground state, while the charge operator

annihilates the ground state of the corresponding ground state for other quantum systems.

The similarity between the lowering operator of the harmonic oscillator and the SUSY charge

operator implies that the superpotential can be regarded as a system-specific generalized

displacement variable. Analogous to the ground state of the harmonic oscillator which

minimizes the Heisenberg uncertainty product, the ground state of any bound quantum

system was identified as the minimizer of the SUSY Heisenberg uncertainty product.

Then, system-specific coherent states were constructed by applying shift operators to

the ground state of the system, which serves as a fiducial function. In addition, we

employed the discretized system-specific coherent states as a dynamically-adapted basis

set to determine the excited state energies and wave functions for the Morse oscillator, the

double well potential, and the two-dimensional anharmonic oscillator system. Variational

calculations in terms of the discretized system-specific coherent states demonstrated that

these dynamically-adapted coherent states yield significantly more accurate excited state

energies and wave functions than were obtained with the same number of the conventional

coherent states and the standard harmonic oscillator basis.

As presented in the current study, the ladder operator approach of the harmonic oscillator

and the SUSY-QM formulation share strong similarity. This observation suggests that the

connection of the SUSY-QM with the Heisenberg minimum uncertainty (µ−) wavelets

should be explored ([13, 14, 21, 22]). The SUSY-displacement with the SUSY Heisenberg

uncertainty product can lead to the construction of the SUSY minimum uncertainty wavelets

and the SUSY distributed approximating functionals. These new functions and their potential

applications in mathematics and physics are currently under investigation. In addition,

this study presents a practical computational approach for discretized system-specific

coherent states in calculations of excited states. The issue of completeness of discretized

system-specific coherent states should be examined. These relevant studies will be reported

elsewhere in the future.
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1. Introduction

Quantum algorithms have proven to be faster than the fastest known classical algorithms.
Clearly, such a superiority means counting on a real quantum computer. Although this
essential constraint elimination is in development process, many people is working on that
and interesting advances are being made [1–3]. Meanwhile, new algorithms and applications
of the existing ones are current research topics [4, 5]. One of the main goals of quantum
computing is the application of quantum techniques to classical troubleshooting: the Shor
algorithm [6], for example, is a purely quantum-mechanical algorithm which comes to solve
the classical factoring problem, also the contribution of Lov Grover [7, 8] to speed up the
search for items in an N-item database is very important. Both mathematical finds are the
cornerstones of quantum computation, so, considerable amount of work on diverse subjects
make use of them. Other algorithms which has been very important for quantum computing
progress are Simon’s and Deutsch-Jozsa’s. Through the quantum games, Meyer in [9] and
Eisert in [10], among other, showed that quantum techniques are generalizations of classical
probability theory, allowing effects which are impossible in a classical setting. These and
many other examples, show that there is no contradiction in using quantum techniques to
describe non-quantum mechanical problems and solve hard to solve problems with classical
tools. Adding, decision theory and game theory, two examples where probabilities theory is
applied, deal with decisions made under uncertain conditions by real humans. Basically, the
former considers only one agent and her decisions meanwhile the other considers also the
conflicts that two or more players cause to each other through the decisions they take. Due
to their inherent complexity this kind of problems results convenient to be analyzed by mean
of quantum games models.

Widely observed phenomena of non-commutativity in patterns of behavior exhibited in
experiments on human decisions and choices cannot be obtained with classical decision
theory [11] but can be adequately described by putting quantum mechanics and decision
theory together. Quantum mechanics and decision theory have been recently combined

©2012 Arizmendi and Zabaleta, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Arizmendi and Zabaleta; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

[11–13] to take into account the indeterminacy of preferences that are determined only when
the action takes place. An agent is described by a state that is a superposition of potential
preferences to be projected onto one of the possible behaviors at the time of the interaction.
In addition to the main goal of modeling uncertainty of preferences that is not due to lack of
information, this formalism seems to be adequate to describe widely observed phenomena
of non-commutativity in patterns of behavior.

Within this framework, we study the dating market decision problem that takes into account
progressive mutual learning [14, 15]. This problem is a variation on the Stable Marriage
Problem introduced by Gale and Shapley almost four decades ago [16], that has been recently
reformulated in a partial information approach [17, 18]. Specifically, perfect information
supposition is very far from being a good approximation for the dating market, in which
men and women repeatedly go out on dates and learn about each other.

The dating market problem may be included in a more general category of matching
problems where the elements of two sets have to be matched by pairs. Matching problems
have broad implications in economic and social contexts [19, 20]. As possible applications
one could think of job seekers and employers, lodgers and landlords, men and women who
want to date, or solitary ciliates courtship rituals [21]. In our model players earn an uncertain
payoff from being matched with a particular person on the other side of the market in each
time period. Players have a list of preferred partners on the other set. Quantum exploration
of partners is compared with classical exploration at the dating set. Nevertheless dating is
not just finding, but also being accepted by the partner. The preferences of the chosen partner
are important in quantum and classic performances.

Recently [22], we introduced a quantum formulation for decision matching problems,
specifically for the dating game that takes into account mutual progressive learning. This
learning is accomplished by representing women with quantum states whose associated
amplitudes must be modified by men’s selection strategies, in order to increase a particular
state amplitude and to decrease the others, with the final purpose to achieve the best possible
choice when the game finishes. Grover quantum search algorithm is used as a playing
strategy. Within the same quantum formulation already used in [22], we will concentrate
first on the information associated to the dating market problem. Since we deal with mixed
strategies, the density matrix formalism is used to describe the system. There exists a
strong relationship between game theories, statistical mechanics and information theories.
The bonds between these theories are the density operator and entropy. From the density
operator we can construct and understand the statistical behavior about our system by using
statistical mechanics. The dating problem is analyzed through information theory under a
criterion of maximum or minimum entropy. Even though the decisions players make are
based on their payoffs, past experiences, believes, etc., we are not interested in that causes
but in the consequences of the decision they take, that is, the influence of the strategies they
apply on the quantum system stability. In order to identify the conditions of stability we
will use the equivalence between maximum entropy states and those states that obey the
Collective Welfare Principle that says that a system is stable only if it maximizes the welfare
of the collective above the welfare of the individual [23].

Interesting properties merge when entanglement is considered in quantum models of social
decision problems [24]. People decisions are usually influenced by other people actions,
opinions, or beliefs, to the extent that they may proceed in ways that they would rarely or
never do if moved by their own benefit. Love, hate, envy, or a close friendship, which encase
a bit of everything, are examples of relationships between people that may correlate their
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decisions. So, as driven by a no local force, people may make an inconvenient choice in
the heat of a competence. In order to formulate in a mathematical way this sort of problem
we remodel the quantum dating between men and women with the inclusion of quantum
entanglement between men decision states.

The chapter organization is as follows: First of all, to ease game theory unfamiliar readers
comprehension a brief introduction to game basics is presented. In the course of the next
sections the quantum dating game is particularly studied. In section 3 the Grover quantum
search algorithm as a playing strategy is analyzed. In section 5, the system stability is under
study. Finally, section 6 explores entangled strategies performance. At the end of each
section the results and the consequent section discussions are set. The chapter ends with a
final conclusion.

2. Quantum games

Game theory [25] is a collection of models (games) designed to study competing agents
(players) decisions in some conflict situation. It tries to understand the birth and development
of conflicting or cooperative behaviors among a group of individuals who behave rationally
and strategically according to their personal interests. Although the theory was conceived
in order to analyze and solve social and economy problems, existing applications go beyond
[26]. Furthermore, the models reach not only individuals but also governments conflicts,
institutions trades or smart machines (phones, computers) access management.

Before starting to explain quantum games basics, the classic games notation is presented. The
game can be set in strategic (or normal) form or in extensive form, in any of them it has three
elements: a set of players i ∈ J which is taken to be a finite set 0, ..., N − 1, the set of pure
strategies S

i
= {s0, s1, ..., s

N−1}, i = 0, ..., N − 1 which is the set of all strategies available
to the player, and the payoffs function u

i
(s0, s1, ..., s

N−1), i = 0, ..., N − 1, where s
i
∈ S

i
. In

the strategic form, the game can be denoted by G(N, S, u), where S = S0 × S1 × ... × S
N−1

and u = u0 × u1 × ... × u
N−1. Extensive form representation is useful when it is wanted to

include not only who makes the move but also when the move is made. Players apply pure
strategies when they are certain of what they want, but such condition is not always possible,
so mixed strategies must be considered. A mixed strategy is a probability distribution over
S which corresponds to how frequently each move is chosen.

As an example, we can mention the well-known Prisoners Dilemma (PD) : Two suspected of
committing a crime are caught by the police. As there is insufficient evidence to condemn
them, the police place the suspects into separate rooms to convince them to confess. If one of
the prisoners confesses, and help the police to condene his partner, he gains his freedom and
the other prisoner must serve of 10 years. But if both confess, they must serve a sentence of
3 years. In other case, if both refuse to confess, they both will be convicted of a lesser charge
and will have to serve a sentence of only one year in prison. In summary, they can choose
between two possible strategies “Confess” (C) or “Not Confess” (N). However, observe that
the luck of each player depends both on his election as that of the other. As consequence,
confessing is a dominant strategy because regardless the other player decision the one who
chooses it avoid the worst conviction. The prisoners know that if neither confesses they must
serve a minimum sentence. However, as no one knows the other strategy to do not confess
is very risky, specially because camaraderie is not a common quality between criminals. It
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is very common to represent in a bimatrix the possible strategies combinations with their
respective reward. The corresponding bimatrix for the prisoners game is 1.

S1 \ S2 C N

C 3,3 0,10

N 10,0 1,1

Table 1. Prisoners Dilemma: C ≡ confess; N ≡ do not confess. The number on the left is for the years the prisoner S1 prisoner

must serve.

Quantum game theory is a classic game theory generalization. That is, quantum game
strategies and outcomes include the classical as particularities, but also quantum features
let the application of new strategies which leads to solutions classically imposible. The N

players quantum game si denoted by G(N,H, ρ, S(H), u), where H is the Hilbert space of
the physical system and ρ ∈ S(H) is the system initial condition, being S(H) the associated
space state. In quantum games, players strategies are represented by unitary operators,
which in quantum mechanics are also known as evolution operators related to the system’s
Hamiltonian [27]. If we call U

i
the operator corresponding to player i strategy, the N-players

strategies operator results U = U0
⊗

U1...U
i

⊗

...
⊗

U
N−1. Starting from the initial pure state

|Ψ0〉 of the system, players apply their strategies U in order to modify it according to their
preferences, that is modifying the probability amplitudes associated with each base state.
As a consequence, evolution from the initial system state to some state |Ψ1〉 is given by
|Ψ1〉 = U|Ψ0〉. Quantum games provide new ways to cooperate, to eliminate dilemmas, and
as a consequence new equilibriums arise. As can be seen in [10], for example, the dilemma is
avoided in the quantum Prisoner’s game. That is, the system equilibrium is not longer (C,C)
to be (N,N).

3. Quantum search strategy

In the classic dating market game [28, 29], men choose women simultaneously from N

options, looking for those women who would have some “property" they want. Unlike
the traditional game, in the quantum version of the dating game, players get the chance to
use quantum techniques, for example they can explore their possibilities using a quantum
search algorithm. Grover algorithm capitalizes quantum states superposition characteristic
to find some “marked" state from a group of possible solutions in considerably less time than
a classical algorithm can do [8]. That state space must be capable of being translatable, say
to a graph G where to find some particular state which has a searched feature or distinctive
mark, throughout the execution of the algorithm. By “distinctive mark" we mean problems
whose algorithmic solution are inspired by physical processes. Furthermore it is possible to
guarantee that the searched node is marked by a minimum (maximum) value of a physical
property included in the algorithm.

Let agents be coded as Hilbert space base states. As a result, men are able to choose from
Nw women set W = {|0〉, |1〉, ..., |Nw − 1〉}. Table 1 displays four women states in the first
column and some feature that makes them unique in the second column which we will code
with a letter for simplicity.

If a player is looking for a woman with a feature “d", the table must be searched on its second
column and when the desired “d" is found, look at the first column where the corresponding
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woman feature

|0〉 a
|1〉 b
|2〉 c
|3〉 d

Table 2. Sample woman database. Left column contains women states and right column displays a letter representing some

feature or a feature set that characterizes each woman on the left.

chosen woman state is: |3〉 in this example. The procedure is very simple if the table has
just a few rows, but when the database gets bigger, the table in the best case would have
to be entered Nw/2 times [30]. Under this framework we propose to use Grover algorithm
in order to achieve man’s decision in less time. Without losing generality let Nw = 2n

being n the qubits needed to code Nw women. Quantum states transformation are made
by applying Hilbert space operators U to them, following Ψ1 = U1Ψ0 is a new system
state starting from Ψ0. As a consequence any quantum algorithm can be thought as a set
of suitable linear transformations. Grover algorithm starts with n qubits in |0〉, resulting
ψini = |00..00〉 ≡ |0〉

⊗

n the system initial state, where
⊗

symbol denotes Kronecker tensor
product. Initially, the woman identified by state |0〉 is chosen with probability one. The
next step is to create superposition states and like many other quantum algorithms Grover
uses Hadamard transform to do this task since it maps n qubits initialized with |0〉 to a
superposition of all n orthogonal states in the |0〉, |1〉,.. |n − 1〉 basis with equal weight,

ψ1 = Hψini =
1

√

Nw
∑

Nw−1
i=0 |i〉. As an example, when Nw = 4, the state results ψ1 = H|00〉 =

1
2 ∑

3
i=0 |i〉 =

|00〉+|01〉+|10〉+|11〉
2 . One-qubit Hadamard transform matrix representation is (1),

and n-qubits extension is H
⊗

n, see [27],

H =
1
√

2

(

1 1
1 −1

)

(1)

Another quantum search algorithms characteristic, is the “Oracle", which is basically a black
box capable of marking the problem solution. We call U f the operator which implement the
oracle

U f (|w〉|q〉) = |w〉|q ⊕ f (w)〉, (2)

where f (w) is the oracle function which takes the value 1 if w correspond to the searched
woman, f (w) = 1, and if it is not the case it takes the value 0, f (w) = 0. The value of f (w)
on a superposition of every possible input w may be obtained [27]. The algorithm sets the
target qubit |q〉 to 1

√

2
(|0〉 − |1〉). As a result, the corresponding mathematical expression is:

|w〉(
|0〉 − |1〉

√

2
) 7−→U f (−1) f (w)

|w〉(
|0〉 − |1〉

√

2
) (3)

Observe that the second register is in an eigenstate, so we can ignore it, considering only the
effect on the first register.
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Uf H HUR

{ G

Figure 1. Grover Iteration

{H
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1/2

|00...0>

Figure 2. Grover Quantum searching algorithm

|w〉 7−→
U f (−1) f (w)

|w〉 (4)

Consequently, if f (w) = 1 a phase shift is produced, otherwise nothing happens. As we
already stated our algorithm is based on the classical Gale-Shapley (GS) algorithm which
assigns the role of proposers to the elements of one set, the men say, and of judges to the
elements of the other.

Actually, for a more symmetric formulation of the algorithm where both sets are, at the same
time, proposers and judges, it would be necessary another oracle which evaluates women
features matching by means of another function g(x) [31], but we will not go into that. As
far as we are concerned up to now the Oracle is a device capable of recognizing and “mark"
a woman who has some special feature, said hair color, money, good manners, etc. Oracle
operator U f makes one of two central operations comprising of a whole operation named
Grover iterate G (Fig.1), and a rotation operator UR, or conditional phase shift operator
represented by equation (5).

UR and U f , together with Hadamard transformations represented by H blocks (1), in the
order depicted by (Fig. 1), make the initial state vector asymptotically going to reach the
solution state vector amplitudes. The symbol I in UR equation is the identity operator.

UR = 2|0〉〈0| − I (5)

Furthermore, after applying Grover iterate, G, O(
√

Nw) times, the man finds the woman he
is looking for. In Figure 1 Grover iterate is shown and Grover quantum algorithm scheme is
depicted in 2.
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Figure 3. Evolution of the probability to find the chosen woman and the probability to find other woman as a function of the

iteration number with Grover’s algorithm.

As the number of iterations the algorithm makes depends on the size of the options set, this
must be known at the beginning of simulations. Every operator has its matrix representation
to be used in simulations. We suppose the player chooses a woman who has some specific
particularity that would distinguish her from any other of the group, so we construct matrix
U

f
and other matrixes for that purpose. The evolution of the squared amplitude with the

iteration number is shown in Figure 3. The searched state amplitude is initially the same for
all possible states |i > in the Ψ1 expression. The fast increasing of the probability to find
the preferred state on each iteration contrasts with the decreasing of the probability to find
every other state. The example displayed is for Nw = 1024 women and as the can be seen in
Figure 3, the number of iterations needed to get certainty to find the preferred woman are
25. Classically, a statistical algorithm would need approximately Nw = 1024 iterations.

Thus when a given man who wants to date a Nw size set selected woman, he must set his
own U

f
operator out, according to his preferences, and then let the algorithm do the job. The

case of Nm men may be obtained generalizing the single man case: every one of them must
follow the same steps. Nevertheless, achieving top choice is hard because of competition
from other players and your dream partner may not share your feelings. If all players play
quantum, the time to find woman is not an issue and the N stable solutions will be the same
as for the classic formulation [32].

4. Quantum vs classic

To compare the quantum approach efficiency with the classical one we will consider some
players playing quantum and others playing classic. Let us follow the evolution of agents
representative from each group, Q and C respectively.
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Q, that plays quantum can keep his state as a linear combination of all the prospective results
when unitary transforms such as the described above for Grover’s algorithm are applied,
provided no measurement producing collapse to any of them is done. On the other hand,
the only way C has to search such a database is to test the elements sequentially against the
condition until the target is found. For a database of size Nw, this brute force search requires
an average of O(Nw/2) comparisons [7].

Two different games where both men want to date with the same woman are presented: In
the first one player Q gives player C the chance to play first and both have only one attempt
per turn, which means only one question to the oracle. The second game, in order that Q

plays handicapped, is set out in the way that C can play Nw/2 times while Q only once, and
player C plays first again. For the last case we analyzed two alternatives for the classic player:
in the first one he plays without memory of his previous result and therefore, in every try
he has 1/Nw probability to find the chosen woman to date, the other alternative permits the
classic player to discard previous unfavorable outcomes at any try in order to avoid choosing
them again and diminish the selection universe.

The player who invites the chosen woman first has more chances to succeed, as well as
that who asks the same woman more times. Nevertheless the woman has the last word,
and therefore the dating success for each player depends on that woman preferences. So,
let us define P

i

c
as the probability that woman i accepts dating the classic player C and P

i

q

as the probability that she accepts the quantum player Q proposal. In order to compare
performances, we consider T = 1000 playing times on turns and count the dating success
times, then calculate the mean relative difference between Q and C success total number as
D/T = Qsuccess−Csuccess

T
, for different woman acceptation probabilities.

Initially, both players begin with the system in the initial state ψ1 = 1
√

Nw

∑
Nw−1
i=0 |i〉, therefore

the probability to select any woman is the same for both, p(w
i
) = 1/N. In the next step the

Oracle marks one of the prospective women state according men preferences.

The results are highly dependent on the women set size Nw because, as mentioned above,

Grover algorithm needs O(
√

(Nw)) steps to find the quantum player’s chosen partner while
the classic player must use O(Nw) for the same task. In the case of only one woman and one
man, for example, classic and quantum will not have any advantage on searching and the
dating success difference for the first game will depend only on that woman preferences, that
is, if Pc > Pq then D/T < 0 and the quantum player will do better when Pq > Pc . Similar
chances for both players is not usual in most quantum games, such as, for example the coin
flip game introduced by Meyer [9] where the quantum player always beats the classic player
in a “mano a mano" game. For a two women set Q uses only one step, but C needs two steps
to find the right partner. In this case Q does better when Pq > Pc/4. Winning conditions
improve for the quantum player for increasing Nw, but not in a monotonous way, because the
number of steps used by Grover algorithm in Q search is an integer that increases in discrete
steps.

In order to facilitate comprehension the set size in the simulations results shown is Nw = 8,
that is the biggest Nw (taken as 2n) in which Q uses only one step in Grover algorithm.

Under the first game conditions both players have only one attempt by turn. Since C cannot
modify state ψ1 amplitudes, he has 1/8 chance to be right. On the other hand player Q,
using Grover algorithm as his strategy, can modify states amplitudes in order to increase
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Figure 4. First game: One attempt for both players. Mean relative difference between Q and C success total number as

D/T = Qsuccess−Csuccess

T
, for different woman acceptation probabilities P

i

c
and P

i

q
. Q outperforms C in all shown cases. The

small region where C prevails is not shown.

his chances to win, reaching 0.78 as the probability to find his preferred woman in only one
iteration. Figure 4 shows that situation outcomes for different P

i

c
and P

i

q
combinations. The

vertical axis depicts D/T values as a function of P
i

c
and P

i

q
respectively. D/T is positive for all

P
i

c
and P

i

q
values used in the simulation, which means that even at extremes where P

i

c
>> P

i

q
,

the quantum player performs better. However there is a very small region where P
i

c
≈ 1 and

P
i

q
≈ 0 not shown in the figure that corresponds to a prevailing C.

Under the second game conditions player C have Nw

2 = 4 attempts before Q plays. After each
C attempt the system is forced to collapse to one base state, so a third party, that could be
the oracle, arrange the states again and mark the solution. As we explained above, to mark
a state means to change its phase but nothing happens to the state amplitude, consequently,
for the classic player C, the probability that state results the one the Oracle have signaled is,

marked or not, 1/Nw = 1/8, even though, due to his “insistence", he tries Nw

2 = 4 times, his
dating success chances increase considerably with respect to the first case. Figure 5 shows the
corresponding results, where it is possible to see that classic player C begins to outperform
Q when P

i

c
>> P

i

q
, that is, when woman has a marked preference for player C.

Player C probability to find the chosen woman can increase to 1
2 when using a classical

algorithm like “Brute-Force algorithm". As shown in figure 5, when C has Nw

2 = 4 tries while
Q has only one, C’s odds of success in dating increases, and there are zones on the graph
where D/T < 0. This implies that player C outperforms player Q. Nevertheless, to achieve
that, the chosen woman preferences must be considerably greater for the classic player, that
is P

i

c
> 2P

i

q
.
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c
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4.1. Section discussion

In this section we have introduced a quantum formulation for decision matching problems,
specifically for the dating game. In that framework women are represented with quantum
states whose associated amplitudes must be modified by men’s selection strategies, in order
to increase a particular state amplitude and to decrease the others, with the final purpose to
achieve the best possible choice when the game finishes. This is a highly time consuming
task that takes a O(N) runtime for a classical probabilistic algorithm, being N the women
database size. Grover quantum search algorithm is used as a playing strategy that takes

the man O(
√

N) runtime to find his chosen partner. As a consequence, if every man uses
quantum strategy, no one does better than the others, and stability is quickly obtained.

The performances of quantum vs. classic players depend on the number of players N. In
a “one on one” game there is no advantage from any of them and the woman preferences
rule. Similar chances for quantum and classic players in “one on one” situation is not usual
in most quantum games. Winning conditions improve for the quantum player for increasing
N and the same number of attempts, but not in a monotonous way. The comparison
between quantum and classic performances shows that for the same numbers of attempts,
the quantum approach outperforms the classical approach. If the game is set in order that
the classic player has N

2 opportunities and the quantum player only one, the former player
begins to have an advantage over the quantum one when his probability to be accepted by
the chosen woman is much higher than the probability for the quantum player.
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5. Stability of couples

There is a group of Nm men and Nw women playing the game. Be Si = {|0〉, |1〉, ..., |Nw − 1〉}
the states in a Hilbert space of man i decisions, where {0, 1, ..., Nw − 1} are indexes in decimal
notation identifying all the women he may choose. As a result each man has been assigned
log2(Nw) qubits in order to identify each woman. Generally, the state vector of one man

decisions will be in quantum superposition of the base states, Ψi = ∑
Nw−1
j=0 αj|j〉, where |αj|

2

is the probability that man i selects woman j when system state is Ψi so must satisfied the

normalization condition ∑
Nw−1
j=0 |αj|

2 = 1. If there is no correlation between players, the state

space of all men decision system is represented through SM = S0
⊗

S1
⊗

...
⊗

SM−2
⊗

SM−1,
where

⊗

is the Kronecker product. Note that the SM extends to any possible combination
of men elections. On the other side there are the women who receive men proposals and
must decide whether to accept or not one of them. With greater or lesser probability they
will receive the all men’s proposals, so following the same argument used with the men, be

Ψj = ∑
M−1
i=0 αi|i〉 the woman j acceptation state and be SW = S0

⊗

S1
⊗

...
⊗

SNw−2
⊗

SNw−1

the women acceptances space state. Finally, to close the circle, we define the couples possible
states which must include so all possible men’s elections as all possible women’s acceptances.
Accordingly, state space of the couples emerge from the Kronecker product of the men and
women spaces,i.e. SC = SM

⊗

SW .

5.1. Strategies

In quantum games, players strategies are represented by unitary operators, which in
quantum mechanics are also known as evolution operators related to the system’s
Hamiltonian [27]. If we call Ui the operator corresponding to player i strategy, the N-players
strategies operator results U = U0

⊗

U1...Ui
⊗

...
⊗

UN−1. Starting from the initial pure state
|Ψ0〉 of the system, players apply their strategies U in order to modify it according to their
preferences, that is modifying the probability amplitudes associated with each base state.
As a consequence, evolution from the initial system state to some state |Ψ1〉 is given by
|Ψ1〉 = U|Ψ0〉. Note that, following the reasoning of the preceding paragraph, when Ψ0 is
the initial state and Ψ1 is the final state of the couples system, U arises from men and women
strategies UM and UW respectively through U = UM

⊗

UW . That is, UM is applied by men
to the qubits that identify the women states, meanwhile the women action on the qubits that
identify men states is given by UW .

5.2. Density matrix and system entropy

Often, as in life, players are not completely sure about which strategy to apply, that is, by the
way of example, the case where someone chooses between the strategy Ua with probability
pa and Ub with probability pb = 1 − pa, that situation is referred in a mixed strategies game.
Despite the complete system can be represented by its state vector, when it comes to mixed
states the density matrix is more suitable. It was introduced by von Neumann to describe a
mixed ensemble in which each member has assigned a probability of being in a determined
state. The density operator, as it is also commonly called, represents the statistical mixture
of all pure states and is defined by the equation

Quantum Dating Market
http://dx.doi.org/10.5772/53842

531



12 Quantum Mechanics

ρ = ∑
i

pi|Ψi〉〈Ψi|, (6)

where the coefficients pi are non-negative and add up to one. From the density operator we
can construct and understand the statistical behavior about our system by using statistical
mechanics and a criterion of maximum or minimum entropy. Continuing the example, if it is
supposed that the system starts in the pure state ρ0 = |Ψ0〉〈Ψ0|, after players mixed actions
density matrix evolution is

ρ1 = paUaρ0U†
a + pbUbρ0U†

b . (7)

Entropy is the central concept of information theories, [33]. The quantum analogue of entropy
was introduced in quantum mechanics by von Neumann,[34] and it is defined by the formula

S(ρ) = −Tr{ρ log2 ρ}. (8)

5.3. N = 2 Model

In order to set up the notation let us look at the following example of two men and two
women that interact for T times periods. Let define Ψi

0 = α|0〉+ β|1〉 as the initial decision
state of men i which is a linear superposition of the two possible options he has, they are
woman 0 or 1. Without losing generalization consider α = 1 and β = 0 which is consistent
with thinking that they both have preference for the most popular, the most beautiful, the
richest, or any superficial feature that most of the time makes men desire a woman at first
glance. Consequently, the men’s initial state vector is ΨM

0 = Ψ0
0

⊗

Ψ1
0 = |00〉, where the

first qubit represent man’s 0 choice and the second is man’s 1 choice. As we explain above,
the initial quantum pure state is not stable, so during the game the state will change to

the general form ΨM
a = ∑

1
i=0,j=0 αij|ij〉 with probability pa and ΨM

b = ∑
1
i=0,j=0 βij|ij〉 with

probability pb. As women have the last decision, they must evaluate men proposals and

decide to accept one of them or reject all. We consider, just for the example that woman 0
chooses man 0 with p0m and man 1 with probability 1 − p0m, similar condition for woman
1 but in this case being p1m the probability to choose man 0. That condition doesn’t affect
system stability but depending on the probabilities values does affect the maximum and
minimum of the couple system’s entropy. Equation 9 shows the women density matrix
which has no off diagonal elements.

ρw0=p0m p1m |00〉〈00|+p0m(1−p1m)|01〉〈01|+(1−p0m)p1m |10〉〈10|+(1−p0m)(1−p1m)|11〉〈11|. (9)

The direct product of all possible men proposals with all possible women decisions generates

a possible partners state vector which in decimal notation is ΨP
0 = ∑

15
i=0 |i〉. Index i is a

four qubits number, the first two qubits represent men 0 and 1 choices respectively and the
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Figure 6. Quantum entropy corresponding to the situation where player 0 varies the probability p to apply strategy U0
0

other two are the two women possible selections, then 16 are the possible couples states.
For example, the state |0101〉 corresponds to the case that man 0 chooses woman 0 and
she accepts him and the same occurs with man 1 and woman 1. Note that not all states
corresponds to possible dates, some of them are considering the cases where there are no
date, or the ones where only one couple is formed, the state |0001〉 is an example of the last
case where the man man 0 chooses woman 0 and she accepts but on the other hand man
1 also chooses woman but she doesn’t and woman 1 does not receive any proposition. As
the game progress, probability amplitudes associated with mismatches must decrease, that
because it is considered that people prefer to be coupled.

Single players moves or strategies are associated with unitary operators Ui(θ), with 0 ≤ θ ≤

π, applied on each one of their qubits, that in the general case where players have 2n options,
each pure strategy U is composed by n different Ui(θk), being k each state qubit. The general
formula of Ui is 10, that are rotation operators, as explained in [27] any qubit operation can
be decomposed as a product of rotations. In this work we consider γ = 0, therefore in what
follows U(θ, 0) is always replaced by the simplest notation U(θ).

U(θ, γ) =

(

eiγ
· cos(θ/2) sin(θ/2)

−sin(θ/2) e−iγ
· cos(θ/2)

)

(10)

Let p0 be the probability of player 0 to apply strategy U0
0 and 1 − p0 the probability to apply

strategy U0
1 to the initial state Ψi

0, while U1
0 and U1

1 are the strategies the man 1 applies with
probability p1 and 1 − p1 respectively. The strategies operators used in the examples are
defined below, equations 11 and 12 are applied by man 0. Both of them transform the initial
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Figure 7. Quantum entropy corresponding to the situation where player 1 varies the probability p to apply strategy U
1
0

state |0〉 into states that are linear superpositions of 0 and 1, representing states with different
probabilities of choosing one woman or the other. On the other hand, strategies applied by
man 1 are presented in 13 and 14.

Figures 6 and 7 show two situations where the system entropy varies considerably as a
function of the strategies the players use. Figure 2, for example, shows the case where the
man 1 applies his strategies with fixed probability, just varying the angle θ while the other
man (0) varies both strategies angle and the probability p. In all the cases we present here, in
order to simplify the outcomes display, women density matrix doesn’t change as explained
above.

U
0
0 = U(θ) (11)

U
0
1 = U(θ)U(π) (12)

U
1
0 = U(θ) (13)

U
1
1 = U(−θ) (14)

For example, if both men choose the same woman with probability one, this is represented
in Fig. 1 with p = 0. This situation is completely unstable because it is impossible for the
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woman to choose both of them at the same time (we assume). This correspond to minimum
entropy as can be easily seen in Fig. 1. Depending on the strategies applied by men, the
whole system entropy, that is the couple system entropy changes reaching maximum and
minimum limits. As p increases, the mixing of the strategies also increases producing an
increase in entropy that indicates a tendency to stability. The mixing of the strategies means
that the men proposals are less focused on one woman. Fig. 2 shows the case where men’s
role change, that is man 0 fixes his strategies probabilities while 1 varies his own. Although
for fixed θ angle, as expected, the minimum entropy points are located where player is
applying a pure strategy (p = 0), for θ = π/2 the entropy value does not change regardless
of the value of p, because U0

0 and U0
1 are equivalent and therefore player 1 is applying a pure

strategy. A result not shown in the figures is that entropy maxima increase when women
preferences are the same for every men.

In this way, maxima and minima entropy points may be used to find stable states.
Nevertheless, these stable states may not correspond to equilibria states of the game, because
the players utilities has not been considered. In order to find Nash equilibria states, these
utilities must be considered. This is beyond this chapter goals.

5.4. Section discussion

As a continuation of the analysis of a quantum formulation for the dating game that takes
into account mutual progressive learning by representing women with quantum states whose
associated amplitudes must be modified by men’s selection strategies. we concentrate on the
information associated to the problem. Since we deal with mixed strategies, the density
matrix formalism is used to describe the system. Even though the decisions players make are
based on their payoffs, past experiences, believes, etc., we are not interested in that causes
but in the consequences of the decision they take, that is, the influence of the strategies
they apply on the quantum system stability by means of the equivalence between maximum
entropy states and those states that obey the Collective Welfare Principle that says that a
system is stable only if it maximizes the welfare of the collective above the welfare of the
individual. Maxima and minima entropy points are used to find characteristic strategies that
lead to stable and unstable states. Nevertheless, in order to find Nash equilibria states, the
players utilities must be considered.

Maxima and minima entropy do not depend only on the strategies of men but also on women
preferences, reaching the highest value when they have no preferences, that is when they
choose every man with equal probability. On the other hand, minimum entropy correspond
to men betting all chips to a single woman, without giving a chance to other woman.

6. Entangled strategies

The quantum dating market problem has been formulated as a two-sided bandit model [28],
where in one side there are the men who must choose one “item" from the other side, which
unlike the one side bandit, is composed by women able to reject the invitations.

The quantum formulation, which was presented in previous section, proceeds by assigning
one basis of a Hilbert state space to each woman. As a consequence, if Nw is number of
women playing, Si = {|0〉, |1〉, ..., |Nw − 1〉} are the states in the Hilbert space representing a
man i decisions, therefore every man needs at least log2(Nw) qubits to identify each woman.

Quantum Dating Market
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The state of man i decisions is a quantum superposition of the base states, Ψi = ∑
Nw−1
j=0 αj|j〉,

where |αj|
2 is the probability that man i selects woman j when system state is Ψi and |·〉 is

known as Dirac’s notation. The normalization condition is ∑
Nw−1
j=0 |αj|

2 = 1. On the other side

of the market, women receive men proposals and must decide which is the best, accept it and

reject the others. Thus, Ψj = ∑
Nm−1
i=0 αi|i〉 is woman j acceptation state. Finally, combining

proposals and acceptances the couples space which is the Kronecker product of all men’s
and all women’s spaces is defined, i.e. SC = SM

⊗

SW .

Men decision states are separable when there is no connection among players, that is,
for instance, no man has any emotional bond with some other that could condition their

actions, thus all men decision state, ψM, is defined as ψM =
⊗M−1

i=1 ψi. The same reasoning
corresponds to women states. On the other hand, if there is some relationship between two
or more men, their actions are non-locally correlated, that is, their decisions are far from
being independent. John Stuart Bell shown in 1966 that systems in entangled states exhibit
correlations beyond those explainable by local “hidden" properties, or in other words, a
non-local connection appears when two quantum particles are entangled, [35]. Therefore, we
will study the case with correlation between agents by means of quantum entanglement, in
other words, how harmful or beneficial can be for players knowing each other in advance.

As we mention in the previous section, players strategies are represented by unitary operators
in quantum games. Starting the system in some state |Ψ0〉 at time t0, players apply their
strategies U in order to modify it according to their preferences, that is modifying the
probability amplitudes associated with each base state. Thus, evolution from the initial
system state to some state |Ψ1〉 in time t1 is given by |Ψ1〉 = U|Ψ0〉. The strategy operator
U arises from men and women preferences operators UM and UW respectively through
U = UM

⊗

UW , where UM is applied by men to the qubits that identify the women states,
meanwhile the women action on the qubits that identify men states is given by UW .

In order to understand the problem we analyze here a simple example of two men and
two women. Single players moves or strategies are associated with 2 × 2 unitary rotation
operators Ui(θ, γ) applied on each one of their qubits (15), where 0 ≤ θ ≤ π and 0 ≤

γ ≤ π/2. Men choices are coded by states |w0〉 = |0〉 and |w1〉 = |1〉, meanwhile women
must decide between men |m0〉 = |0〉 and |m1〉 = |1〉. Since any qubit operation can be
decomposed as a product of rotations, strategies combinations and possible outcomes are
infinite. As a consequence, focusing on men relationship, we study three relevant cases. We
suppose, as a measure of satisfaction, that men receive some payoff pwi if accepted by woman
wi, so for the example we have considered that pw0 = 2 and pw1 = 5.

U(θ, γ) =

(

eiγcos(θ/2) sin(θ/2)
−sin(θ/2) e−iγcos(θ/2)

)

(15)

6.1. Results

For the first case, let us consider ψ0 =
√

2
2 (|01〉+ |10〉) as the initial state of men decisions

system, where the left qubit of ψ0 is representing man 0 election while the right one

represents man 1 choice. As men states are entangled, it is not possible to uncouple their
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single actions. Therefore judging on the probability amplitudes, there is 50% probability that

man 0 chooses woman 0 while man 1 chooses woman 1 and the other 50% for the other case.

Since there is no way that men choose the same woman it is a state of mutual cooperation.

Women acceptation state is initialized to ψw = 0.5(|00〉+ |01〉+ |10〉+ |11〉), implying that

there is initially 25% chance that they choose the same man. In order to analyze the effect

of woman behavior on men payoffs, for this and the following two cases, we consider that

men decision state ψ0 is invariant, while women strategies and their acceptation state ψw

change. Figure 8 shows the payoff for man 0 as a function of women strategies which are

set as U
i
= (t · π, t · π/2) for t ∈ [−1, 1] and i = 0, 1. Different strategies imply changes on

women preferences, so some change in U
i
(θ, γ) implies that woman i acceptation probability

distribution is modified. Following [9], equation 16 represents man 0 payoff, where P00 and

P01 are his chances to be accepted for a date with woman 0 and 1 respectively.

$m0 = 2 · P00 + 5 · P01 (16)

In the second example we introduce competition between men. The initial men state is

given by ψ0 =
√

2
2 (|00〉+ |11〉). Figure 9 depicts again the resulting payoffs for man 0 as a

function of women strategies. Finally a third case is considered where men decision state

is ψm = 0.5(|00〉+ |01〉+ |10〉+ |11〉). In this case men make independent choices choosing

one of four possible options with equal probability. Figure 10 show the resulting payoffs as

a function of woman strategies.

As the figures show, the different scenarios present significant differences on payoff topology

and maximum payoff values.

The cooperative situation presents the highest payoff compared with the competitive and the

independent ones as shown in figure 8. Figures 9 and 10 show that a better payoff may be

obtained in the competitive setup compared to the independent one, but on the other hand,

also a much lower payoff for other women strategies may be available. The independent

decision scenario is thus characterized by lowest maxima and less variation on payoffs.

6.2. Section discussion

We have considered the dating market decision problem under the quantum mechanics point

of view with the addition of entanglement between players states. Women and men are

represented with quantum states and strategies are represented by means of unitary operator

on a complex Hilbert space. Men final payoff, considering payoff as a measure of satisfaction,

depends on the woman he is paired with. If men decision states are entangled, their actions

are non-locally correlated modeling competition or cooperation scenarios. Three examples

are shown in order to illustrate the more usual scenarios. In two of them the men strategies

are correlated in a cooperative and a competitive way respectively. In the other example

men strategies are independent. Although cooperative and competitive strategies can drive

to higher payoffs, changing of women preferences on those scenarios can lead to very low

payoffs. The independent decision scenario is characterized by less variation on payoffs.

Quantum Dating Market
http://dx.doi.org/10.5772/53842

537



18 Quantum Mechanics

Figure 8. Payoff for man 0 if men never choose the same woman, as function of women acceptation strategies. For the

example γ varies as θ/2.

Figure 9. Payoff for man 0 if men always choose the same woman, as function of women acceptation strategies. For the

example γ varies as θ/2.
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Figure 10. Payoff for man 0 if men choose without restrictions, states are not entangled, as function of women acceptation
strategies. For the example γ varies as θ/2.

7. Final remarks

The dating market problem may be included in a more general category of matching
problems where the elements of two sets have to be matched by pairs. Matching problems
have broad implications not only in economic and social contexts but in other very different
research fields such as communications engineering or molecular biology, for example. The
main goal of this chapter is to introduce and analyze a quantum formulation for the dating
market game, whose nearest classical antecedent is the Stable Marriage Problem. Players
strategies are represented by unitary operators, which in quantum mechanics are also known
as evolution operators related to the Hamiltonian of the system. Significant outcomes arise
when classic players play against quantum ones. For instance, when a quantum player
uses Grover search algorithm as her strategy, her winning probabilities grow with increasing
number of players, but none leads in a “one on one” game. Besides, from stability point
of view, maxima and minima entropy points are used to find characteristic strategies that
lead to unstable and stable states, resulting the highest entropy values when women have no
preferences, that is, when they choose every man with equal probability. On the other hand,
minimum entropy correspond to men betting all chips to a single woman, without giving a
chance to other woman. Finally, to model relationships between people that may correlate
their decisions, our model consider the situation when men decision states are entangled and
their actions are non-locally correlated modeling competition or cooperation scenarios. One
of the main outcomes is for example that, although cooperative and competitive strategies
can drive to higher payoffs, changing of women preferences on those scenarios can lead to
very low payoffs.

Quantum Dating Market
http://dx.doi.org/10.5772/53842

539



20 Quantum Mechanics

Author details

C. M. Arizmendi and O. G. Zabaleta

Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Argentina

References

[1] P.I. Hagouel and I.G. Karafyllidis. Quantum computers: Registers, gates and algorithms.
In Microelectronics (MIEL), 2012 28th International Conference on, pages 15 –21, may 2012.

[2] D.C. Marinescu. The promise of quantum computing and quantum information theory
-quantum parallelism. In Parallel and Distributed Processing Symposium, 2005. Proceedings.
19th IEEE International, page 112, april 2005.

[3] H. Haffner, C.F. Roos, and R. Blatt. Quantum computing with trapped ions. Physics
Reports, 469(4):155–203, 2008.

[4] Chao-Yang Pang, Ri-Gui Zhou, Cong-Bao Ding, and Ben-Qiong Hu. Quantum search
algorithm for set operation. Quantum Information Processing, pages 1–12, 2012.

[5] B. Criger, O. Moussa, and R. Laflamme. Quantum error correction with mixed ancilla
qubits. Phys Rev A, 85(4):5 pp, 2012.

[6] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. arXiv:quant-ph/9508027v2, 1996.

[7] M. Boyer, G. Brassard, P. Hoeyer, and Tapp A. Tight bounds on quantum searching.
Fortsch.Phys, 46:493–506, 1998.

[8] L.K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings,
28th Annual ACM Symposium on the Theory of Computing (STOC), pages 212–219, May
1996.

[9] D.A. Meyer. Quantum strategies. Phys. Rev. Lett., 82:1052–1055, 1999.

[10] J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and quantum strategies.
Phys. Rev. Lett., 83:3077–3080, 1999.

[11] A. Lambert-Mogiliansky, S. Zamir, and H. Zwirn. Type indeterminancy: a model of
kt-man. J. Math. Psych., 53:349–361, 2009.

[12] V.I. Yukalov and D. Sornette. Quantum decision theory as quantum theory of
measurement. Physics Letters A, 372(46):6867–6871, 2008.

[13] T. Temzelides. An uncertainty principle for social science experiments. Available at
http://www.owlnet.rice.edu/ tl5, 2005.

[14] C. M. Arizmendi and O. G. Zabaleta. Stability of couples in a quantum dating market.
special IJAMAS issue "Statistical Chaos and Complexity, 26:143–149, 2012.

Advances in Quantum Mechanics540



Quantum Dating Market 21

[15] O.G. Zabaleta and C.M Arizmendi. Quantum decision theory on a dating market.
Advances and Applications in Statistical Sciences (AASS), 6:489, 2011.

[16] D. Gale and L.S. Shapley. College admissions and the stability of marriage. Am. Math.
Monthly, 69:9–15, 1962.

[17] Y. Zhang and J Leezer. Simulating human-like decisions in a memory-based agent
model. Computational and Mathematical Organization Theory, 16(4):373–399, 2009.

[18] P. Laureti and Y.C. Zhang. Matching games with partial information. Physica A,
324:49–65, 2003.

[19] A.E. Roth and M. Sotomayor. Two-sided matching: A study in game-theoretic modeling
and analysis. Econometric Society Monograph Series, 324, 1990.

[20] R. V. Mendes. The quantum ultimatum game. Quantum Information Processing, 4(1):1–12,
2005.

[21] K.B. Clark. Origins of learned reciprocity in solitary ciliates searching grouped
’courting’ assurances at quantum efficiencies. Biosystems, 99:27–41, 2010.

[22] O.G. Zabaleta and C.M Arizmendi. Quantum dating market. Physica A, 389:2858–2863,
2010.

[23] Esteban Guevara Hidalgo. Quantum games entropy. Physica A, 383:797–804, 2007.

[24] B Arfi. Quantum social game theory. Physica A, 374:794–820, 2007.

[25] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press Cambridge,
Massachusetts, England, 1998.

[26] Staphane Vialette. On the computational complexity of 2-interval pattern matching
problems. Theoretical Computer Science, 312(23):223 – 249, 2004.

[27] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, England, 2000.

[28] S. Das and E. Kamenica. Two-sided bandits and the dating market. In
Alessandro Saffiotti Leslie Pack Kaelbling, editor, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence,IJCAI-2005, pages 947–952,
Edinburgh, Scotland, UK, August 2005.

[29] C.M Arizmendi. Paradoxical way for losers in a dating game. In Proc. AIP Nonequilibrium
Statistical Mechanics and Nonlinear Physics, pages 20–25, Mar del Plata , Argentina,
December 2006.

[30] A. Romanelli. Quantum games via search algorithms. Physica A, 379:545–551, 2007.

[31] Chao-Yang Pang, Cong-Bao Ding, and Ben-Qiong Hu. Quantum pattern recognition of
classical signal. quant-ph-arXiv:0707.0936v2, 2007.

Quantum Dating Market
http://dx.doi.org/10.5772/53842

541



22 Quantum Mechanics

[32] M.-J. Omero, M. Dzierzawa, M. Marsili, and Y.-C. Zhang. J. Physique, 7:1723, 1997.

[33] C Shannon. A mathematical theory of communication. Bell System Tech. Jour., 27:379–423,
1948.

[34] J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag
[translated by R. T. Beyer as Mathematical Foundations of Quantum Mechanics
(Princeton University Press, Princeton, 1955)], Berlin, 1932.

[35] James D. F. V. and P. G. Kwiat. Quantum state entanglement. Los alamos Science, 27:52–57,
2002.

Advances in Quantum Mechanics542



Chapter 23

Quantization as Selection
Rather than Eigenvalue Problem

Peter  Enders

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53847

1. Introduction

The experimental, in particular, spectroscopic results about atoms brought Bohr [3] to the
following “principal assumptions” for a theory of atoms.

1. That the dynamical equilibrium of the systems in the stationary states can be discussed
by help of the ordinary mechanics, while the passing of the systems between different
stationary states cannot be treated on that basis.

2. That the latter process is followed by the emission of a homogeneous radiation, for which
the relation between the frequency and the amount of energy emitted is the one given by
Planck’s theory.” (p. 7)

Assumption (1) states a strange contraposition of the conservation and of the changes of
stationary states. Indeed, the conservation of energy - a generalization of Newton’s Law 1 -
holds true quite general, while the change of stationary states along Newton’s Law 2 is
restricted to classical mechanics (CM). A smooth transition from representations of CM, which
axiomatically fix not only the conditions of conservation, but also the manner of change of
stationary states and the equation(s) of motion, respectively (Newton, Lagrange, Hamilton),
is impossible, as observed also by Heisenberg [30] and Schrödinger [43]. However, in Leonhard
Euler’s representation of CM [24][25], only the conditions of conservation of stationary states
are fixed, while their change has to be described according to the situation under consideration.
This makes it suitable to serve as starting point for a smooth transition from classical to
quantum mechanics (QM). Euler’s principles of the change of stationary states of bodies will
be generalized to classical conservative systems as well as to quantum systems. The latter will
be used for deriving the time-dependent from the time-independent Schrödinger equation.

© 2013 Enders; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In his pioneering papers ‘Quantization as Eigenvalue Problem’ [43], Schrödinger has posed
four requirements.

1. The “quantum equation” should “carry the quantum conditions in itself” (Second
Commun., p. 511);

2. There should be a special mathematical method for solving the stationary Schrödinger
equation, which accounts for the non-classical character of the quantization problem, ie,
which is different from the classical eigenvalue methods for calculating the (eigen)modes
of strings, resonators and so on (ibid., p. 513);

3. The derivation should uniquely decide, that the energy rather than the frequency values
are discretized (ibid., pp. 511, 519), since only the former means true quantization, while
the latter corresponds to the classical discretization mentioned in requirement 2;

4. The use of the classical expressions for the kinetic and potential energies should be
justified (Fourth Commun., p. 113).

Schrödinger’s requirements 1 and 2 mean, that - contrary to the very title of the papers -
quantization is actually not an eigenvalue problem. For in the latter the discretization is
imposed not by the differential equation itself, but by the boundary conditions, and this is the
classical discretization for standing waves in organ pipes etc. I will fulfill all four requirements
by treating quantization as a selection problem. The number of stationary states of a quantum
system is smaller than that of a classical system [6]. I will describe, (i), the selection of quantum
systems out of the set of all mechanical systems and, (ii), the selection of their stationary states
out of the continuum of classical stationary states. Earlier arguing [19][10] is improved and
extended in several essential points.

2. Elements of an Eulerian representation of classical mechanics

2.1. Euler’s axioms

Leonhard Euler [20-25] was the first to apply the calculus to all areas of mathematics and
mechanics of his time, and he developed novel methods, such as the calculus of variations and
topology. Moreover, he worked out an axiomatic of mechanics, where only Newton’s Law
(axiom) 1 concerning the conservation of stationary states is retained as an axiom, while
Newton’s Laws (axioms) 2 and 3 concerning the change of stationary states are treated as
problems to be solved (for a detailed account, see [19][10][45]). This allows for introducing
alternative equations of motion without loosing the contact to CM.

The existence of stationary states is postulated in the following axioms (as in Newton’s axioms,
rotatory motion is not considered).

Axiom E0: Every body is either resting or moving.

This means, that the subsequent axioms E1 and E2 are not independent of each other; they
exclude each other and, at once, they are in harmony with each other [22].
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Axiom E1: A body preserves its stationary state at rest, unless an external cause sets it in motion.

Axiom E2: A body preserves its stationary state of straight uniform motion, unless an external
cause changes this state.

The stationary-state variable is the velocity vector, v (the mass of a body is always constant).
The equation of stationary state reads v=0 for the state at rest and v=const for the state of straight
uniform motion. The position, r, is variable of the state of motion, but not of stationary states,
because it changes during straight uniform motion, ie, in the absence of (external) causes for
changing the stationary state [50].

2.2. Eulerian principles of change of state for single bodies

Following [21], the changes of position, r, and velocity, v, of a body of mass m subject to the
(external) force, F, during the time interval dt are

1 1
dt

d dt dt
dt

m m

æ ö æ öæ ö æ öæ ö æ ö æ ö æ öç ÷ ç ÷= = + º +ç ÷ ç ÷ç ÷ ç ÷ ç ÷ ç ÷ç ÷ ç ÷ç ÷ ç ÷è ø è øè ø è ø è ø è øè ø è ø

v 0 0r 0 1 r 0 r 0
U U

v 0 0 v F v FF 0 1 int ext (1)

The internal transformation, Uint, describes the internal change, dr=vdt, that is independent of
the external force. The external transformation, Uext, describes the external change, dv=(F/m)dt,
that depends on the external force. These matrices do not commute: UintUext≠UextUint. This
means, that the internal and external transformations are not reducible onto another; the
internal and external changes are independent each of another.

Thus, up to order dt,

CB1) The changes of stationary-state quantities (dv) are external changes; they explicitly
depend solely on external causes (F), but not on state-of-motion quantities (r);

CB2) The change of the stationary-state quantities (dv) do not explicitly depend on the
stationary-state quantities (v) themselves;

CB3) The change of state-of-motion quantities (dr) are internal changes; they explicitly depend
solely on stationary-state quantities (v) ;

CB4) The change of stationary-state (dv) and of state-of-motion quantities (dr) are independent
each of another;

CB5) As soon as the external causes (F) vanish, the body remains in the stationary state assumed
at this moment: Z(t)=const=Z(t1)=v(t1) for t≥t1, if F(t)=0 for t≥t1.

Accounting for ddt=0 and dF=0, one obtains from eq. (1)
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1

1dd d dt dt dtm
m
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0 0r 0 1 r 0 1 0 F
v 0 0 v 0 0 F0 1 0

(2)

Thus, the principles CB1...CB5 are compatible with Newton’s equation of motion (published
first in [20]). For their relationship to Descartes’ and Huygens’ principles of motion, see [10][45].

2.3. Eulerian principles of change of state for Hamiltonian systems

According to Definition 2 and the axioms, or laws of motion (Laws 1 and 2, Corollary 3), the
momentum is the stationary-state variable of a body in Newton’s Principia. The total momen‐
tum "is not changed by the action of bodies on one another" (Corollary 3). The principles
CB1...CB5 remain true, if the velocity, v, is replaced with the momentum, p. For this, I will use
p rather than v in what follows.

For a free body, any function of the momentum, Z(p), is a conserved quantity. If a body is
subject to an external force, its momentum is no longer conserved, but becomes a state-of-
motion variable like its position. Correspondingly, Z(p)≠const. Suppose, that there is never‐
theless a function, Z0(p,r), that is constant during the motion of the body. It describes the
stationary states of the system body & force. External influences (additional forces) be
described through a function Zext(p,r,t) such, that Z(p,r)=Z0(p,r)+Zext(p,r,t) takes over the role
of the stationary-state function.

The following principles - a generalization of CB1...CB5 - will shown to be compatible with
Hamilton’s equations of motion. Up to order dt,

CS1) The change of stationary-state quantities (dZ) depends solely on the external influences
(Zext), but not on state-of-motion quantities (p, r);

CS2) The change of the stationary-state quantities (dZ) is independent of the stationary-state
quantities (Z) themselves;

CS3) The changes of state-of-motion quantities (dp, dr) directly depend solely on stationary-
state quantities (Z); the external influences (Zext) affect the state-of-motion quantities (p, r)
solely indirectly (via stationary-state quantities, Z);

CS4) The changes of stationary-state (dZ) and of state-of-motion quantities (dp, dr) are
independent each of another;

CS5) As soon as the external influences (Zext) vanish, the system remains in the stationary state
assumed at this moment: Z(t)=const=Z(t1) for t≥t1, if Zext=0 for t>t1.

These principles imply the equation of change of stationary state to read

extZZ Z ZdZ d d dt dt
t t

¶¶ ¶ ¶
= × + × + =
¶ ¶ ¶ ¶

p r
p r (3)
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This equation is fulfilled, if

;Z d Z da a
dt dt

¶ ¶
= = -

¶ ¶
r p

p r (4)

Compatibility with Newton’s equation of motion yields a=1 and Z(p,r)=H(p,r), the Hamiltonian
of the system; (4) becoming Hamilton’s equations of motion.

;d H d H
dt dt

¶ ¶
= - =

¶ ¶
p r

r p (5)

It may thus be not too surprising that these principles can cum grano salis be applied also to
quantum systems. Of course, the variables, which represent of stationary states and motion,
will be other ones, again.

3. Quantization as selection problem — I. Derivation of the stationary
Schrödinger equation

The usual foundations of QM consider CM to be not sufficient and, consequently, need
additional or novel assumptions, for instance,

• to restrict the energy spectrum to the values nhν [41][6] or to (n/2)hν [3];

•
to “distinguish” [31] or to “select” [39][36] the values nħ of the action integral,∮pdq (n -

integer; in contrast to CM, the action integral is not subject to a variational principle);

• to suppose the existence of h and to abandon the classical paths [30];

• to suppose the existence of h and of a wave function being the solution of an eigenvalue
problem [43];

• to suppose the existence of a quantum logic [2][28] and of a Hilbert space for its represen‐
tation;

• to suppose the existence of transition probabilities obeying the Chapman-Kolmogorov
equation (as in wave mechanics) [27].

All these approaches have eventually resorted to CM in using the classical expressions and the
interpretations of position, momentum, potential and kinetic energies, because ‘it works’. In
contrast, I will present a concrete realization of Schrödinger’s 4th requirement.
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3.1. The relationship between CM and non-CM as selection problem

In his Nobel Award speech, Schrödinger ([44] p. 315) pointed to the logical aspect, which is
central to the approach exposed here.

“We are faced here with the full force of the logical opposition between an

either – or (point mechanics)

and a

both – and (wave mechanics)

This would not matter much, if the old system were to be dropped entirely and to be replaced by the new.“

This ”logical opposition“ consists in a hierarchy of selection problems.1

3.1.1. Selection problem between Newtonian and non-Newtionian CM

Consider a linear undamped oscillator. For each stationary state of total energy E, Newton’s
equation of motion confines its position, x, to the interval between and including the classical
turning points: xmin≤x≤xmax. Its momentum is confined as pmin≤p≤pmax. More generally speaking,
a system obeying Newton’s equation of motion moves within the sets CNewton={r|V(r)≤E} and
PNewton={p|T(p)≤E}.2

Alternatively, a classical, though non-Newtonian mechanics is conceivable, where dp/dt=-F
and E=V-T. A linear oscillator would move beyond the turning points: x≤xmin or/and x≥xmax. In
general, the set of possible configurations equals Cnon-Newton={r|V(r)≥E}. The momentum
configuration is no longer limited: Pnon-Newton=Pall={p}.

Thus, a conservative CM system obeys either the laws of Newtonian CM, where dp/dt=+F and
V(r(t))≤E, or the laws of non-Newtonian CM, where dp/dt=-F and V(r(t))≥E. In both cases, the
system moves along paths, r(t).

3.1.2. Einsteinian selection problem between CM and non-CM

For both Newtonian and non-Newtonian classical systems, the set of possible energies (the
energy spectrum) is continuous. Einstein [6] has observed that this leads to a temperature-
independent specific heat (Dulong-Petit’s law) for an ensemble of classical oscillators. In
contrast, the discrete set of possible energies of a Planck oscillator yields a specific heat that
decreases with decreasing temperature, in agreement with then recent experiments. He

1 I will deviate from the exposition in [19][10] to make it shorter, though clearer and to correct few statements about the
momentum configurations.
2 V(r)≥0, since it equals the “disposable work storage of a system“ [33]. ‘r’ stays for all configuration variables, ‘p’ stays
for all momentum configuration variables of a system.
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concluded, “that the set of possible energies of microscopic systems is smaller than that for
systems of our everyday experience.“

Thus, the set of possible energies of a mechanical system is either continuous, or discrete.3

3.1.3. Selection problem between CM and non-CM in terms of allowed configurations

Einstein’s alternative does not follow from purely mechanical arguing. For this, I continue the
reasoning of subsection 3.1.1. The harmony between Newtonian and non-Newtonian CMs
consists in that they both build an alternative to a non-CM mechanics, in which the set of
allowed configurations comprises the whole configuration space, Call = CNewton ⋃ Cnon-Newton = {r}.
Since the motions along paths in CNewton and Cnon-Newton are incompatible each to another, the
motion of non-CM systems does not proceed along paths.

Thus, a mechanical system either moves along paths (CM), or it moves not along paths (non-
CM). The configuration of a non-CM system can assume any element of Call even in the
stationary states.

3.1.4. Selection problem between mechanics and non-mechanics

For completeness I note that a system is either a mechanical, or a non-mechanical one.

Like Euler’s axioms E1 and E2, these alternatives exclude each other and, at once, are “in
harmony each with  another”.  They dialectically  determine each another  in  the  sense  of
Hegel [29].

The question thus is how a linear oscillator without turning points is to be described?

3.2. Non-classical representation of the potential and kinetic energies

V(r) [T(p)] is no longer the contribution of the (momentum) configuration r (p) to the total
energy, E, since it is unbounded in the domain Call (Pall). For this, I define ‘limiting factors’,
FE(r) and GE(p), such, that

( ) ( ) ( ) ;
( ) ( ) ( ) ;

ncl all
E E
ncl all
E E

V F V E C
T G T E P

= £ Î

= £ Î

r r r r
p p p p

(6)

The contribution of the (momentum) configuration r (p) of a non-classical system to its total
energy, VE

ncl(r) [TE
ncl(p)], depends on the energy, because the inequality is no longer realized

through the restriction of the (momentum) configuration space.

FE(r) and GE(p) are non-negative. FE(r)<0 would mean, that VE
ncl(r) is attractive (repulsive), while

V(r) is repulsive (attractive). GE(p)<0 would mean, that TE
ncl(p) becomes negative. For simplic‐

ity, I chose the one-dimensional representation of unity and set

3 Because of the finite resolution of measurement apparatus, the set of rational numbers is physically equivalent to the
set of real numbers.
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2 2( ) ( ) ; ( ) ( )E E E EF f G g= =r r p p (7)

“ψψ̄ [≡|ψ|2] is a kind of weight function in the configuration space of the system. The wave-
mechanical configuration of the system is a superposition of many, strictly speaking, of all
kinematically possible point-mechanical configurations. Thereby, each point-mechanical
configuration contributes with a certain weight to the true wave-mechanical configuration, the
weight of which is just given through ψψ̄. If one likes paradoxes, one can say, the system resides
quasi in all kinematically thinkable positions at the same time, though not ‘equally strongly’.
“ ([43] 4th Commun., p. 135)

Correspondingly, I call FE and GE weight functions, fE and gE - weight amplitudes. Since FE(r)
and GE(p) are dimensionless, there are reference values, rref and pref, such, that actually,
FE(r)=FE(r/rref) and GE(p)=GE(p/pref). In other words, each such system has got a characteristic
length in configuration and in momentum configuration space.

33

3 3( ) ( ) 1
all all

E E
ref refref refC P

d pd rF G
r pr p

= =òòò òòò
r p

(8)

In order to simplify the notation, I will omit rref and pref wherever possible.

3.3. The stationary Schrödinger equation

Within CM, the balance between potential, V(r), and kinetic energies, T(p), to yield V(r)
+T(p)=E=const is realized through the common path parameter time, t: r=r(t), p=p(t); E=V(r(t))
+T(p(t)). This common parameterization through t is absent for non-classical systems not
moving along paths, r(t). Consequently, the balance between the potential, VE

ncl(r), and kinetic
energies, TE

ncl(p), is not point-wise: p(t)↔r(t), but set-wise: {p}↔{r}. Set-wise relations are
mediated through integral relations.4

( ) ( )
3 3

3 3
2 2

1 1( ) ( ) ; ( ) ( )
2 2

ref ref ref ref

all all

i i
p r p r

E E E E
C P

ref ref ref ref

g e f d r f e g d p
p r p rp p

× ×
-

= =òòò òòò
p r r p

p r r p (9)

In view of the symmetric normalization (8) I have chosen symmetric normalization factors.

Alternatively, it is possible to avoid complex-valued weight amplitudes (wave functions)
through using 2-component vectors for them and the Hartley transform in place of the Fourier

4 The most general symmetric Fourier transform contains a free complex-valued parameter [49]. It appears to be merely
a rescaling of rref and pref, respectively.
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transform. The operators become 2x2 matrices. It remains to explore whether their free
components can be exploited for the description of new effects.

Lacking orbits, such a system does not assume a definite configuration, say, r1, and momentum
configuration, p1, at a given time, t1, with E=VE

ncl(r1)+TE
ncl(p1). Instead, they all contribute to the

stationary state, E. The partial contribution of the single (momentum) configuration, r (p), is
determined by the weight function according to eq. (6). The total energy thus becomes

3 3

3 3

( ) ( ) ( ) ( )

( ) ( )
all all

all all

E E
C P

E E
C P

F V d r G T d p
E

F d r G d p
= +
òòò òòò

òòò òòò

r r p p

r p
(10)

The denominators have been added for dimensional reasons. The classical representation is
obtained through setting

3 3( ) ( ( )); ( ) ( ( ))E ref E refF r t G p td d= - = -r r r p p p (11)

The occurrence of E on the r.h.s. makes eq. (10) to be an implicit equation for E. This suggests
E to be an internal system parameter being determined solely by system properties like the
oscillation frequency of an undamped harmonic oscillator [19]. However, as in CM, the value
of E is given by the initial preparation of the system.

The Fourier transform (9) enables me to eliminate one of the weight amplitudes from eq. (10).

3

3

3

3

ˆ( ) ( ) ( )
ˆ; ( ) ( ) ( )

( ) ( )

ˆ( ) ( ) ( )
ˆ; ( ) ( ) ( )

( ) ( )

all

all

all

all

E E
C

ref ref
E E

C

E E
P

ref ref
E E

P

f H f d r
E H V T ip r

f f d r

g H g d p
H V ir p T

g g d p

¶
= º + -

¶

¶
= º +

¶

òòò

òòò

òòò

òòò

r r r
r r

rr r

p p p
p p

pp p

(12)

(Other positions of the weight amplitudes lead to the same results.) Since, in general, f̄ Eand
ḡ E  are linearly independent of fE and gE, respectively, necessary conditions for fulfilling these
equations are

ˆ ˆ( ) ( ) ( ); ( ) ( ) ( )E E E EEf H f Eg H g= =r r r p p p (13)
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Moreover, these equations hold true for the minimum of the r.h.s. of eq. (12), ie, for the ground
state. There is no indication for a difference between the stationary-state equation for the
ground state and for the states of higher energy.

A comparison with experiments reveals, that rrefpref=ħ, which I will use in what follows. Thus,
with f E (r)= rref

3/2ψE (r) and gE (p)= pref
3/2ϕE (p), eqs. (13) are the stationary Schrödinger equations

in configuration and momentum configuration spaces.

4. Quantization as selection problem — II. Non-classical solution to the
stationary Schrödinger equation

As observed by Schrödinger himself (!), the eigenvalue method used by himself does not
properly account for the quantum nature of quantum systems, because it applies to (and had
been developed for) classical systems like strings and pipes. In what follows, I will describe a
solution method being free of that deficiency.

4.1. The linear oscillator

The stationary Schrödinger equation for a linear undamped harmonic oscillator reads

2 2
2 2

2
ˆ ˆ( ) ( ) ( ); ( )

2 2E E
ref ref

x x mH x f Ef H x x
r r m x

w ¶
= = -

¶

h
(14)

To see its essentials I introduce dimensionless variables as5

; ; ( ) ( );
2
ref ref

ref a E
ref ref ref

r px Er y f a
r m r p

x x x
w w

= = = = - (15)

to obtain

2
2

2
( ) 1 ( ) 0

4
a

a
d y

a y
d

x
x x

x
æ ö

- + =ç ÷
è ø

(16)

This is Weber’s equation [48] being one of the equations of the parabolic cylinder [1]. Despite
of the reference length, rref, the stationary states are determined solely through the energy
parameter, -a. In contrast to the classical oscillator, where E~ω2, the quantum oscillator exhibits

5 This yields pref=2mωrref; the classical maximum values are interrelated as pmax=mωrmax. I deviate from the exposition in
[19][10] to make the following clearer.
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E~ω. Since ω does not occur as a self-standing parameter, the quantization is not affecting it;
Schrödinger’s 3rd requirement is fulfilled.

4.2. The mathematically distinguished solutions

For and only for the values a=±½ the l.h.s. of eq. (16) factorizes.6

1 1
2 2

1 1 1 1( ) 0; ( ) 0
2 2 2 2

d d d dy y
d d d d

x x x x x x
x x x x+ -

æ öæ ö æ öæ ö
+ - = - + =ç ÷ç ÷ ç ÷ç ÷

è øè ø è øè ø
(17)

Therefore, the values a=±½ are mathematically distinguished against all other a-values. The
corresponding solutions, y±½(ξ), are mathematically equivalent, but physically different. y-½

(ξ)=y-½(0)×exp(-ξ2/4) is a limiting amplitude, while y+½(ξ)=y+½(0)×exp(+ξ2/4) is not. This
distinguishes physically the value a=-½ over the value a=+½.

If there would be no other distinguished a-values, there would be only one state (a=-½).
However, a system having got just one state is not able to exchange energy with its environ‐
ment. In order to find further distinguished a-values, I examine two recurrence relations for
the standard solutions of eq. (16) ([1] 19.6.1, 19.6.5).

1 1 1 1( , ) ( 1, ) 0; ( , ) ( 1, ) 0
2 2 2 2

d dU a a U a V a a V a
d d

x x x x x x
x x

æ ö æ öæ ö æ ö
+ + + + = - - - - =ç ÷ ç ÷ç ÷ ç ÷

è ø è øè ø è ø
(18)

Such recurrence relations can be obtained without solving the differential equation, viz, from
Whittaker’s representation of the solutions as contour integrals ([52] 16.61; [1] 19.5). This
representation has been developed well before the advance of QM; it is thus independent of
the needs of QM.

The recurrence relations

• are not related to the usual, classical solution methods;

• interrelate solution functions with a finite difference between their a-values, viz, Δa=±1 (this
becomes ΔE=±ħω later on);

• reflect the genuine discrete structure wanted; in particular, this structure has nothing to do
with boundary conditions, since all solutions exhibit this discrete structure, not only
Schrödinger’s eigensolutions;

• realize the “conviction“, that “the true laws of quantum mechanics would consist not of
specific prescriptions for the single orbit; but, in these true laws, the elements of the whole
manifold of orbits of a system are connected by equations, so that there is apparently a
certain interaction between the various orbits.“ ([43] Second Commun., p. 508)

6 These factors are closely related to the variables that factorize the classical Hamiltonian.
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Moreover, the recurrence relations divide the set of a-values as follows.

Set (1) a =..., −5/2, −3/2, −1/2; the 2nd relation (18) breaks at a=−½ being one of the two mathe‐
matically distinguished values found above;

Set (2) a =..., 5/2, 3/2, 1/2; the 1st relation (18) breaks at a=+½ being the other mathematically
distinguished value found above;

Set (3) a = {..., -2+ς, -1+ς, ς, ς+1, ς+2...|-½ < ς < +½}; there is no break in the recurrence relations
(18) for this set.

The smallest interval representing all solutions is the closed interval a=[-½,+½], all other
solutions being related to it through the recursion formulae. The values a=-½ (set (1)) and a=
+½ (set (2)) are mathematically distinguished, again; this time as the boundary points of that
interval. All inner interval points, -½<a<+½ (set (3)), are mathematically equivalent among each
another and, consequently, not distinguished. The physically relevant set of a-values is a
mathematically distinguished set.

4.3. The physically distinguished solutions

The mathematically distinguished set (1) contains the physically relevant value a=−½, while
the mathematically distinguished set (2) contains the unphysical value a=+½. The recurrence
relations (18) show, that all functions U(a,ξ) with a-values from set (1) are limiting amplitudes,
while all functions V(a,ξ) with a-values from set (2) are not. For the a-values of set (3), neither
U(a,ξ), nor V(a,ξ) is a limiting amplitude.

Moreover, set (1) exhibits a finite minimum of total energy, E=½rrefprefω, while sets (2) and (3) do
not. A system of sets (2) or (3) can deliver an unlimited amount of energy to its environment,
it is a perpetuum mobile of 1st kind. This makes set (1) to be physically distinguished against sets
(2) and (3).

Hence, starting from the ground state, y-½(ξ)=y-½(0)×exp(-ξ2/4), and using the recursion formula
(18) for U(a,ξ), the physically relevant solutions are obtained as

21
4

1
2
( ) ( ); 0,1,2,nny e He nxx x-

- - = = K (19)

where

2 21 1
2 2( ) ( 1)

n
n

n n
dHe e e

d
x xx

x
-= - (20)

is the nth Hermite polynomial ([1] 19.13.1). Schrödinger’s boundary condition (the wave
function should vanish at infinity) is fulfilled automatically.

Since ([1] 22.2)
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21
2 2( ) 2 !ne He d nx x x p

+¥
-

-¥

=ò (21)

the normalized solutions [see eq. (8)] read

21
4

1
2 2

1( ) ( ); 0,1,
!

2,nny e He
n

nxx x
p

-
- - = = K (22)

4.4. The non-classical potential energy and the tunnel effect

The observation of quantum particles crossing spatial domains, where V>E, has led to the
notion ‘tunnel effect’ [34][38]. Being a nice illustration, this wording masks the fact, that the
actual contribution of a configuration, r, to the total energy is not V(r), but VE

ncl(r)<E, see eq. (6).

In terms of the dimensionless variables (15) the dimensionless non-classical potential energy
of the oscillator above equals

21
2

1
2

2 2 2 21 1( ) ( ) ( )
2 2 2

ncl
n nnv y e He

n
-

- -= = xx x x x x
p

(23)

Using the recurrence formula ξHen(ξ)=Hen+1(ξ)+nHen-1(ξ)  ([1]  22.7.14)  and the inequality |
Hen(ξ)|<exp(ξ2/4)√(n!)k, k≈1.086435 (ibid., 22.14.17), one can prove, that

1
2

2 2 1
2

1( ) ( ) ; ; 0,1,2,
2

ncl
n nv y n nx x x x- -= < + -¥ < < +¥ = K (24)

Hence, the inequalities (6) are fulfilled.

The occurrence of the ‘smaller than’ sign means, that - in contrast to the classical oscillator -
there are no stationary states with, (i), vanishing potential energy (in particular, the ground
state is not a state at rest) and, (ii) vanishing kinetic energy (there are no turning points).

The picture of the tunnel is partially correct, in that the classical turning points are points of
inflection such, that beyond them, in the forbidden domains of Newtonian CM, the wave
function decreases exponentially.

Notice that these results follow solely from the most general principles of state description
according to Leibniz [35], Euler, Helmholtz and Schrödinger, without solving any stationary-
state equation or equation of motion and without assuming particular boundary conditions.
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5. The time dependent case

While Heisenberg [30] and Schrödinger [43] started from a time-dependent equation7, I have
worked so far with the set of all possible (momentum) configurations of systems in their
stationary states, where time plays no role. In order to incorporate time, I will proceed as
Newton and Euler did in the classical case and will consider first the time-dependence of the
stationary states, then, the change of these states, and, finally, I will arrive at the time-
dependent Schrödinger equation as the equation of motion.

5.1. The time dependence of the stationary states

According to their definitions (6), the stationary weight functions, FE(r) and GE(p), are time
independent. Hence, if there is a time dependence of the stationary weight amplitudes, and
correspondingly of the wave functions, it is of the form

( ) ( )( , ) ( ); ( , ) ( )E Ei t i t
E E E Et e t ef fy y j j= =r r p p (25)

The phase, φE(t), is the same for both functions, since the Fourier transform (9) is time-
independent.

For a free particle,

{ }
2 2

( , ) exp ;
2

E
E E E

k
t i i t E

m
× - =r k r

h
:y w (26)

The group velocity equals the time-independent particle velocity.

2

2
E E E

g E
E

d k E
d m m
w

w= = Þ = =
k

v
k

h h
h

(27)

Therefore,

( , ) ( ); ( , ) ( )
E Ei t i t

E E E Et e t ey y f f
- -

= =r r p ph h (28)

For later use I remark that this can be written as

7 In fn. 2, p. 489, of the 2nd Commun., Schrödinger has distanced himself from the time-independent approach of the 1st

Commun.
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ˆ ˆ( ) ( )
( , ) ( ); ( , ) ( )

i iH t H t
E E E Et e t ey y f f

- -
= =

r p
r r p ph h (29)

5.2. The equation-of-state-change

The analog to the Hamiltonian as classical stationary-state function is the function

3 3

3 3

ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
all all

all all

ncl C P

C P

f t H t f t d r g t H t g t d p
Z

f t f t d r g t g t d p
= =
òòò òòò

òòò òòò

r r r p p p

r r p p
(30)

The analog to the classical principles of change of state, CS1...CS5, reads as follows. Up to first
order in dt,

QS1) the change of stationary-state quantities (dZ) depends solely on the external causes (Zext),
but not on state-of-motion quantities (f, g);

QS2) the changes of the stationary-state quantities (dZ) are independent of the stationary-state
quantities (Z) themselves;

QS3) the changes of state-of-motion quantities (df, dg) depend directly solely on stationary-
state quantities (Z);

QS4) the changes of stationary-state (dZ) and of state-of-motion quantities (df, dg) are inde‐
pendent each of another;

QS5) as soon as the external causes (Zext) vanish, the system remains in the (not necessarily
stationary8) state assumed in this moment.

Hence, writing

3ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , )f t H t f t d r f t H t f t=òòò r r r r r r (31)

the equation of state change becomes

!
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( , ) ( , )
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f t f t

f t H t f tdf t f t f t df t
f t f t f t f t

f t dH t f t

f t f t

+ +
=

+
-

=

r r r r r r r r r

r r

r r rr r r r
r r r r

r r r

r r

(32)

8 The modification against CS5 is a consequence of the discreteness of the energetic spectrum.
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5.3. Derivation of the time-dependent Schrödinger equation

The requirement in eq. (32) implies two conditions.

ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

df t H t f t f t H t df t

df t f t f t df t d f t f t

+ =

+ = =

r r r r r r

r r r r r r
(33)

The second condition means that there is a unitary time development operator,

† 1
2 1 1 2 2 1 2 1

ˆ ˆ ˆ( , , ) ( , ) ( , ); ( , , ) ( , , )U t t f t f t U t t U t t -= =r r r r r (34)

such, that

2 2 2 1 1 2 1 1 1 1
ˆ ˆ( , ) ( , ) ( , , ) ( , ) ( , , ) ( , ) ( , ) ( , )f t f t U t t f t U t t f t f t f t= =r r r r r r r r (35)

Now I insert eq. (34) into the first requirement (33).

ˆ ˆ ˆ ˆ ˆ ˆ( , ,0) ( ,0) ( , ) ( , ,0) ( ,0) ( , ,0) ( ,0) ( , ) ( , ,0) ( ,0) 0dU t f H t U t f U t f H t dU t f+ =r r r r r r r r r r (36)

The unitary solution to this equation reads dÛ (r , t , 0)= iu(Ĥ (r , t))dt , where u(Ĥ ) is a real-
valued rational function of the self-adjoint Hamiltonian, Ĥ . Compatibility with the stationary

case (29) yields u(Ĥ )= −
1
ℏ Ĥ . Hence,

0

ˆ ˆ ˆ( , ,0) exp ( , ') '
tiU t P H t dt

æ öì ü-ï ïç ÷= í ýç ÷ï ïî þè ø
òr r

h
(37)

where P̂  denotes Dyson’s time-ordering operator [4]. The time-dependent Schrödinger
equation for f(r,t) follows immediately.

The momentum representation can be derived quite analogously.

Both representations of the time-dependent Schrödinger form two equivalent equations of
motion. As in the classical case, the equation of motion is a dynamic equation for non-
stationary-state entities.

6. Summary and conclusions

I have presented a relatively novel approach to quantization, viz, quantization as selection
rather than eigenvalue problem. It starts from Euler’s rather than Newton’s axiomatic and
exploits Helmholtz’s [32][33] treatment of the energy conservation law. It fulfills all four of
Schrödinger’s methodical requirements quoted in the Introduction.
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It is often assumed, that the difference between classical and quantum systems is caused by
the existence of the quantum of action. I have shown that this assumption is not necessary. It
is sufficient to make different assumptions about the set of (momentum) configurations a
mechanical system can assume in its stationary states.

The “logical opposition“ between CM and QM observed by Schrödinger [44] is actually a
dialectic relationship, which resembles that between the Finite and the Infinite. Each determi‐
nation draws a Limit, where each Limit involves the existence of something beyond it (cf [29]
Logik I p. 145). The notion of the Finite does not exist without the notion of the Infinite (ibid.
pp. 139ff.). The Infinite is the Other of the Finite - in turn, the Finite is the Other of the Infinite.
Now, the Finite and the Infinite are not simply opposites; a border between them would
contradict the very meaning of infinity. The True Infinite includes the Finite, it is the unity of
the Finite and the Infinite (cf ibid. p. 158).

The solution of the stationary Schrödinger equation without using boundary conditions shows,
that it actually does “carry the quantum conditions in itself” (Schrödinger’s 1st requirement, see
Introduction). Hence, it has got “maximum strength” in the sense of Einstein [8].

CM contains the necessary means for going beyond its own frame. This way, the relationship
between CM and non-CM becomes well defined, and the physical content of non-CM is
formulated on equal footing with the mathematical method (and vice versa). An example for
this is the reformulation of Einstein’s criterion (the number of stationary states) in terms of
recurrence relations.

Ad-hoc assumptions, which may be suggested by experimental results, but are not supported
by the axiomatic of CM, can be avoided. The wave and particle aspects can be obtained from
the time-dependent Schrödinger equation and its solutions [10]. The classical path in phase
space is replaced with the wave functions in space and momentum representations. The wave
functions take also the role of the initial conditions, which “are not free, but also have to obey
certain laws” [7].

The dynamics in space and in momentum space are treated in parallel. As a consequence, the
Schrödinger equation in momentum representation is obtained at once with the one in position
representation. This, too, enables one to keep maximum contact to CM and to explain, why
QM is a non-classical mechanics of conservative systems, where the classical potential and
kinetic energy functions and, consequently, the classical Lagrange and Hamilton functions still
apply. This includes a natural explanation of “the peculiar significance of the energy in
quantum mechanics” [51].

Modern representations of CM favor equations of motion as the foundation (the variational
principles belong to this class). The state variables are position and velocity (Lagrange,
Laplace), or position and momentum (Hamilton). Hence, there are 6 state variables for a single
body. In contrast, there are only 3 quantum numbers for a spinless particle. And there are only
3 stationary-state variables for a single body within Newton’s (the 3 components of the
momentum vector) and Euler’s (the 3 components of the velocity vector) representations of
CM, respectively.9 This is another indication for the fact, that the latter are more suitable for
the transition from CM to QM than Lagrange’s and Hamilton’s representations.
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For the quantization of fields, finally, this approach yields an explanation for the fact, that,
within the method of normal-mode expansion, only the temporal, but not the spatial part of
the field variables is concerned (cf [42]). Indeed, only those variables are subject to the
quantization procedure, the possible values of which are restricted by the energy law. The
spatial extension of the normal modes is fixed by the boundary conditions and thus not subject
to quantization. The classical field energy (density) is determined by the normal-mode
amplitudes and thus limits these. As a consequence, the time-dependent coefficients in the
normal-mode expansion are quantized. When formulating this expansion such, that these
expansion coefficients get the dimension of length, their quantization can be performed in
complete analogy to that of the harmonic oscillator, without invoking additional assumptions
or new constants [10]. Moreover, one could try to quantize a field in the space spanned by
independent dynamical field variables. This could separate the quantization problem from the
spatial and temporal field distributions and, thus, simplify the realization of Einstein’s
imagination of a “spatially granular” [5] structure of the electromagnetic field.
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1. Introduction

Entanglement has been considered by E. Schrödinger [1] as: The most characteristic trait of
Quantum Mechanics, the one which enforces its entire departure from classical lines of thought.
Actually, the just mentioned unavoidable departure from the classical worldview raises
some serious problems when entanglement of far away quantum systems is considered
in conjunction with the measurement process on one of the constituents. These worries
have been, once more, expressed with great lucidity by Schrödinger himself [1]: It is rather
discomforting that the theory should allow a system to be steered or piloted into one or the other type
of state at the experimenter‘s mercy, in spite of his having no access to it.

All those who are familiar with quantum theory will have perfectly clear the formal and
physical aspects to which the above sentences make clear reference: they consist in the fact
that, when dealing with a composite quantum system whose constituents are entangled and
far apart, the free will choice of an observer to perform a measurement at one wing of the
apparatus and the quantum reduction postulate imply that the far away state “jumps“ in
a state which depends crucially from the free will choice of the observer performing the
measurement and from the random outcome he has got. Just to present a quite elementary

case, let us consider a quantum composite system S = S(1) + S(2), in an entangled state
|ψ(1, 2)〉:

|ψ(1, 2)〉 = ∑
i

pi|φ
(1)
i 〉 ⊗ |γ

(2)
i 〉, pi ≥ 0, ∑

i

pi = 1. (1)

In this equation (the Schmidt biorthonormal decomposition) the sets {|φ
(1)
i 〉} and {|γ

(2)
i 〉}

are two orthonormal sets of the Hilbert spaces of system S(1) and S(2), respectively, and,
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2 Quantum Mechanics

as such, they are eigenstates of appropriate observables Φ(1) and Γ(2) of such subsystems.

Suppose now that subsystem S(2) is subjected to a measurement of the observable Γ(2)

and suppose that in the measurement the outcome (one of its eigenvalues) Γ(2) = gr is

obtained. Then, reduction of the wave packet leads instantly to the state |φ
(1)
r 〉 ⊗ |γ

(2)
r 〉 for

which one can claim that if system S(1) is subjected to a measurement of the observable

Φ(1) the outcome Φ(1) = fr will occur with certainty. Since this outcome, before the

measurement on system S(2), has a nonepistemic probability p2
r of occurrence, one can

state that the observation of Γ(2) has caused the instantaneous emergence at-a-distance of a
definite property (which, according to quantum mechanics, one cannot consider as possessed

in advance) of subsystem S(1), i.e. the one associated to the eigenvalue fr of the observable

Φ(1). An analogous argument can obviously be developed without making reference to the

Schmidt decomposition but to an arbitrary measurement on subsystem S(2), and will lead,

in general, to the emergence of a different property of subsystem S(1) (typically the outcome
of another appropriate measurement on this system becomes certain).

The just described process makes perfectly clear the nonlocal character of quantum
mechanics, a fact that subsequently has been precisely identified by the illuminating work of
J.S. Bell [2].

The situation we have just described will allow the reader to understand how it has given rise
to the so called problem of faster-than-light signaling. If my action on system B, which takes
place and is completed at a space like separation from system A, affects this system making
instantaneously actual one of its potentialities, I can hope to be able to take advantage of this
quantum peculiarity to make the observer A aware of the fact that I am performing some
precise action on subsystem B at a space-like separation from him.

And, actually, this is what happened. From the seventies up to now, an innumerable
set of proposals of taking advantage of entanglement and the reduction of the wave
packet to achieve superluminal communication between distant observers appeared in the
literature, proposals aiming to exploit this exciting possibility and to put into evidence the
incompatibility of quantum mechanics with special relativity. Fortunately, as I will show in
this paper, all proposal advanced so far, and, in view of some general theorems I will discuss
below, all conceivable proposals of this kind, can been proven to be basically flawed in a way
or another.

This chapter is devoted to discuss this important and historically crucial aspect of modern
physics. As such, it has more an historical than a research interest. However, I believe that
the reconsideration of the debate about this issue will be useful for the reader since many
not so well known and subtle aspects of quantum mechanics will enter into play.

Before coming to a sketchy outline of the organization of the whole paper I would like to call
the attention of the reader to a quite peculiar fact. When the so-called quantum measurement
problem arose and was formalized by J. von Neumann [3], the attention of the scientific
community was not concentrated on the possible conflicts between quantum mechanics and
relativity; quantum mechanics was considered as a fundamentally nonrelativistic description
of natural processes. Obviously, everybody had clear that the problem of its relativistic
generalization had to be faced, but the debate concerned the nonrelativistic aspects of the
theory and nobody had raised the question of possible conflicts between the two pillars of
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modern science1. In spite of that, the cleverly devised prescription of wave packet reduction,
which was elaborated without having in mind relativistic potential oddities, turned out to
be such that, in spite of its nonlocal nature and instantaneity, it did not allow to violate the
basic relativistic request of no-faster-than-light signaling.

A brief outline of the organization of the chapter follows. After recalling the relevant aspects
of the way in which quantum mechanics accounts for natural processes, we will describe
various proposals for achieving faster-than-light signaling which have been put forward,
and point out the reasons for which they are basically incorrect. To conclude this part we
will present a general theorem showing that quantum mechanics, in its standard version,
cannot in principle lead to superluminal communication.

However, the most interesting part of the debate is not the one we have just mentioned.
In 1982 an analogous but quite different proposal of faster-than-light signaling has been
put forward by N. Herbert [4]. The idea consisted in taking, as usual, advantage of the
entanglement of far away subsystems and of wave packet reduction, but a new device was
called into play: an hypothetical machine which could perform the task of creating many
copies of an arbitrary state of a quantum system (a sort of “quantum xeroxing machine"). The
interesting point is that at that time no general argument had been developed proving this
task impossible. So, the mistaken suggestion of Herbert triggered the derivation of a theorem,
the so-called no-cloning theorem, which was not known and which represents a quite
relevant achievement which stays at the very basis of many important recent developments
and which, besides proving that Herbert’s proposal was unviable, plays a fundamental role
for quantum cryptography and quantum computation.

As it is obvious, an hypothetical quantum device allowing faster-than-light communication
would give rise to a direct and serious conflict with the special theory of relativity. As
already stated, such a device is excluded by quantum mechanics. This, however, does not
eliminate completely the potential tension of the nonlocal nature of quantum theory with
the basic principles of relativity theory. The central issue is that the instantaneous collapse
of the statevector of the far away system, even if it cannot be used to transfer energy or
information at a superluminal speed, indicates that, in a way or another, an action performed
in a given space-time region has some “effect" on systems at a space-like separation. Einstein
has qualified this aspect of the theory as “a spooky action at-a-distance" which he could
not accept. A. Shimony, by stressing the fact that the theory cannot be used to actually
communicate superluminally has expressed his opinion that there is some sort of “peaceful
coexistence of quantum mechanics and relativity" and has suggested to speak, in place of an
“action" of a “passion" at-a-distance, to stress the peculiar nature of the perfect correlations
of the outcomes, which, before any measurement process, individually have a fundamentally
random nature, i.e., only a certain probability of occurrence.

Recently, the just mentioned problem has seen a revival due to the elaboration of the
so-called “collapse models", i.e., modifications of quantum mechanics which, on the basis of a
unique, universal dynamical principle account both for the quantum evolution of microscopic

1 For this one should wait the celebrated EPR paper, which appeared, just as Schödinger’s paper [1] in which the
instantaneity of the reduction is seen as problematic, 2 years after von Neumann’s precise formalization of the effect
of a measurement.
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systems as well as for the reduction process when macroscopic systems enter into play. Such
theories, the best known of which is the one presented in ref.[ 5] usually quoted as “The
GRW Theory", have been worked out with the aim of solving the macro-objectification or
measurement problem at the nonrelativistic level, and the fact that they get the desired result
in a clean, mathematically rigorous and conceptually precise way has raised the interest
of various scientists, among them the one of Bell [6-8]. After the complete formalization
of such approaches, it has been natural to start investigating whether they admit relativistic
generalizations. Since they, agreeing with the quantum predictions concerning microsystems,
exhibit (essentially) the same nonlocal aspects as standard quantum mechanics, the question
of wether they actually can be made compatible with relativity has attracted a lot of attention.
The serious work of various physicists in recent years has made clear that the program
can be pursued, which means that one can have a theory inducing instantaneous collapses
at-a-distance which does not violate any relativistic request. We consider it interesting to
devote the conclusive part of this chapter to outline the investigations along these lines and
to discuss their compatibility with the principles of special relativity.

2. The relevant formal aspects of the theory

2.1. The general rules

As is well known, quantum mechanics asserts that the most accurate specification of the
state of a physical system is given by the statevector |Ψ〉, an element of the Hilbert space
H associated to the system itself. When one deals with a statistical ensemble of identical
systems, an equivalent and practical mathematical object is the statistical operator ρ which is
the weighted sum of the statistical operators |ψi〉〈ψi| corresponding to the pure states |ψi〉 of
the members of the ensemble: ρ = ∑i pi|ψi〉〈ψi|, with pi ≥ 0, ∑i pi = 1. For an homogeneous
ensemble or an individual system in a pure state |Ψ〉, the statistical operator is a projection
operator: ρ = |Ψ〉〈Ψ|.

The observables of the theory are represented by self-adjoint operators of the Hilbert space
H, which are characterized by their eigenvalues and eigenvectors. For the observable Ω one
writes its eigenvalue equation as 2:

Ω|ωk,α〉 = ωk|ωk,α〉, (2)

where the index α is associated to the possible degeneracy of the eigenvalue ωk. A crucial
feature implied by the assumption of self-adjointness of the operators representing physical
observables is that their spectral family, i.e. the projection operators Pr = ∑α |ωr,α〉〈ωr,α|

on their eigenmanifolds, correspond to a resolution of the identity: ∑r Pr = I, I being the
identity operator on H.

For what concerns the physical predictions, it is stipulated that in the case of a system in a
pure state |Ψ〉 one has to express it as a linear combination of the eigensates of the observable
(let us call it Ω) corresponding to the microscopic physical quantity which one intends to

2 For simplicity we will deal with observables with a purely discrete spectrum, the changes for the continuous case
been obvious.
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measure: |Ψ〉 = ∑k,α c
k,α|ωk,α〉. Then the theory asserts that the probability P(Ω = ωr|Ψ) of

getting the outcome ωr in the measurement of Ω when the system is in the pure state |Ψ〉, is
given by ∑α |cr,α|

2, a quantity which coincides with the square of the norm ||Pr|Ψ〉||
2 of the

projection of the state onto the relevant eigenmanifold . This rule becomes, in the statistical
operator language, P(Ω = ωr|ρ) = Tr[Prρ], where the symbol Tr means that the sum of the
diagonal elements of the quantity in square brackets in an arbitrary orthonormal complete
basis of H must be taken (this sum is easily proved not to depend on the chosen basis). Note
that, using the complete set of the eigenstates of an operator Ω to evaluate the Trace, one
immediately sees that its quantum average can be simply expressed as 〈Ω〉 = Tr[Ωρ]. It is
an important mathematical fact that the Trace operation is linear and enjoys of the following
formal feature: given two arbitrary (bounded) operators Λ and Γ of H, Tr[ΛΓ] = Tr[ΓΛ].

Before concluding this subsection we must also mention the effect on the statevector of
performing a measurement process. Actually, two kinds of measurements can be carried
out: the nonselective and the selective ones, i.e. those in which one measures an observable
without isolating the cases in which a precise eigenvalue is obtained or, alternatively, those
in which one is interested only in a definite outcome. They are represented, in the statistical
operator language, by the two following formal expressions:

ρ
be f ore

→ ρ
a f ter

= ∑
k

P
k
ρ

be f ore
P

k
, (3)

ρ
be f ore

→ ρ
a f ter

= P
k
ρ

be f ore
P

k
/Tr[P

k
ρ

be f ore
], (4)

with obvious meaning of the symbols.

2.2. Composite systems

From now on we will be mainly interested in dealing with quantum systems S composed

of two constituents, S
(1) and S

(2). Accordingly, their statevector |Ψ(1, 2)〉 is an element

of the tensor product H
(1)

⊗ H
(2) of the Hibert spaces of the constituents. As is well

known, in the considered case two radically different situations may occur: in the first
one the statevector is simply the direct product of precise statevectors for the constituents
|Ψ(1, 2)〉 = |φ(1)〉 ⊗ |γ(2)〉, and in such a case both constituents possess precise physical
properties; alternatively, the statevector is entangled, i.e., it cannot be written in this form but
it involves the superposition of factorized states, typically |Ψ(1, 2)〉 = ∑i

c
i
|φ

i
(1)〉 ⊗ |γ

i
(2)〉.

An extremely important point concerning composite systems is the following. Suppose one
has a composite system and he is interested only in the outcomes of perspective measurement
processes on one of the constituents. Then, one can easily convince himself that the simplest
way of dealing with this problem is to consider the reduced statistical operator ρ̃(1), obtained
by taking the partial trace of the full statistical operator on the Hilbert space of the subsystem

S
(2) one is not interested in. At this point, to evaluate the probability of the outcomes of

measurements of observables of the system of interest S
(1), one can use the reduced statistical
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operator and the same prescriptions we have used for the general case 3 :

ρ̃(1) = Tr(2)[ρ(1, 2)]; P(Φ(1) = fr|ρ(1, 2)) = Tr(1+2)[P
(1)
r ρ(1, 2)] ≡ Tr(1)[P

(1)
r ρ̃(1)];

〈Φ(1)
〉 = Tr(1)[Φ(1)

ρ̃(1)]. (5)

It goes without saying that the operator P
(1)
r in the previous equation is the projection

operator onto the linear eigenmanifold associated to the eigenvalue fr of Φ(1).

2.3. von Neumann’s ideal measurement scheme and its limitations

For the subsequent analysis it is important to briefly recall the so-called Ideal Measurement
Scheme introduced by von Neumann in his celebrated book, ref.[3], and its limitations. The
idea is quite simple: we are interested in “measuring" a microscopic observable, which is

not directly accessible to our senses. Suppose then we have a microsystem s in a state |ϕ
(s)
i 〉

which is in an eigenstate of a micro-observable Σ(s) pertaining to the eigenvalue si. How
can one ascertain such a value, which, if a measurement is performed, according to the
quantum rules will be obtained with certainity ? Von Neumann assumed that there exists
a macroscopic object M which can be prepared in a ready state |m0〉 and can be put into
interaction with the microsystem. The interaction leaves unaltered the microstate while it
induces, in a quite short time interval, the following evolution of the microsystem+apparatus:

|ϕi〉 ⊗ |m0〉 → |ϕi〉 ⊗ |mi〉, (6)

where the states |mi〉 are assumed to be orthogonal (〈mi|mj〉 = δi,j), macroscopically and
perceptively different (typically they are associated to different locations of the pointer
of the macro-apparatus). Then, an observer, by looking at the measuring apparatus gets
immediately the desired information concerning the value (si) of the microvariable.

The scheme is usually qualified as ideal because, in practice, the final apparatus states are not
perfectly orthogonal and because very often the state of the microsystem is disturbed (or even
the system is absorbed) in the measurement. The just mentioned scheme has an immediate
important implication; the validity of Eq.(6) and the linear nature of Schrödinger’s evolution
equation imply that if one triggers the macroapparatus in its ready state with a superposition

of the eigenstates of Σ(s), one has:

∑
i

ci|ϕi〉 ⊗ |m0〉 → ∑
i

ci|ϕi〉 ⊗ |mi〉, (7)

which is an entangled state of the microsystem and the macroapparatus.

3 An elementary way to see this is to evaluate the probabilities of the joint outcomes of the measurement of a pair of

observables, one for system S(1) and one for S(2) , and then to sum on all possible outcomes of the measurement on
the system we are not interested in.
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Eq.(7) has given rise to one of the most debated problems of quantum mechanics, the

so-called measurement or macro-objectification problem. In fact its r.h.s. corresponds to

an entangled state of the system and the apparatus and in no way whatsoever to a state

corresponding to a precise outcome4 . The orthodox way out from this puzzle consists

in resorting to the postulate of wave packet reduction: when a superposition of different

macrostates emerges, a sudden change of the statevector occurs, so that one has to replace

the r.h.s. of the previous equation with one of its terms, let us say |ϕj〉 ⊗ |mj〉. This

specific reduction occurs with probability |cj|
2. We will not enter, here, in this deep

debate, we simply mention that it amounts to accept (as many scientists did) that the linear

character of the theory is violated (the reduction process is nonlinear and stochastic while the

quantum evolution is linear and deterministic) at an appropriate ( but not precisely specified)

macroscopic level. Incidentally, von Neumann himself has proposed that the transition from

the superposition to one of its terms occurs when a conscious observer becomes aware of

the outcome (reduction by consciousness). Recently, various proposals of theories which, on

the basis of a unique dynamical principle, account both for the linear nature of the evolution

at the microscopic level as well as for the discontinuous changes (collapses) occurring when

macrosystems are involved, have been put forward. We refer the reader to ref.[10] for an

exhaustive analysis of such model theories.

2.3.1. Limits to the ideal scheme due to additive conservation laws

There are limitations to the von Neumann ideal scheme that we must mention because they

have played a role in the refutation of some proposals of faster-than-light communication.

Such limitations have been identified by Wigner [11], Araki and Yanase [12,13] in a series of

interesting papers and subsequently they have been generalized in refs.[14,15]. The analysis

by these authors takes into account the existence of additive conserved quantities for the

system+apparatus system to derive precise conditions on a process like the one of Eq.(6)

which stays at the basis of the von Neumann treatment. Let us summarize the procedure

in a sketchy way. The process described by Eq.(6) represents the unitary evolution of the

system+apparatus during the measurement process of the observable Σ(s) with eigenstates

|ϕi〉. Let us therefore write it as: U|ϕi, m0〉 = |ϕi, mi〉. Let us suppose that there exists an

additive conserved quantity Γ = γ
(s)

⊗ I(A) + I(s) ⊗ γ
(A) of the whole system and let us

evaluate the matrix element of Γ, 〈ϕi, m0|Γ|ϕj, m0〉 by taking into account that Γ commutes

with U, which implies :

〈ϕi, m0|(γ
(s)

⊗ I(A) + I(s) ⊗ γ
(A))|ϕjm0〉 = 〈ϕi, m0|U

†(γ(s)
⊗ I(A) + I(s) ⊗ γ

(A))U|ϕjm0〉. (8)

4 Note that in ref.[9] it has been proven that the occurrence of the embarrassing superpositions of macroscopically
different states does not require that the measurement proceeds according to the ideal scheme of von Neumann. The
same conclusion can be derived as a consequence of the necessary request that quantum mechanics governes the
whole process and that one can perform a reasonably reliable measurement ascertaining the microproperty of the
measured system.
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We then have:

〈ϕi, m0|(γ
(s)

⊗ I(A) + I(s) ⊗ γ
(A))|ϕjm0〉 = 〈ϕi|γ

(s)
|ϕj〉+ δij〈m0|γ

(A)
|m0〉 =

〈ϕi, m0|U
†(γ(s)

⊗ I(A) + I(s) ⊗ γ
(A))U|ϕjm0〉 = 〈ϕi, mi|(γ

(s)
⊗ I(A) + I(s) ⊗ γ

(A))|ϕj, mj〉 =

δij〈ϕi|γ
(s)

|ϕj〉+ δij〈mi|γ
(A)

|mj〉. (9)

Comparison of the final expression with the one after the equality sign in the first line shows

that, in the considered case, one must have, for i 6= j, 〈ϕi|γ
(s)

|ϕj〉 = 0 which amounts

to the condition that the observable Σ(s) which we want to measure on the microsystem

must commute with the microsystem part γ
(s) of the conserved additive quantity. If this

is not the case (as it happens when Σ(s) is a component of the angular momentum of the
system which does not commute with the other components), a process like the one of Eq.(6)
turns out to be impossible; terms must be added to the r.h.s. involving other states of the
microsystem besides |ϕi〉 and also other states of the apparatus. In refs.[13-15] it has been
shown that in order to go as near as possible to the ideal case one must make more and more

large the square of the norm of the state γ
(A)

|m0〉. In the case of an angular momentum
measurement this means to make the mean value of the square of the angular momentum
component extremely large. Actually, in the case of the measurement of the spin component
of a spin 1/2 particle, the “distorsion" of the state by the measurement, a quantity which can
be estimated by the squared norm ǫ

2 of the state which has to be added to the r.h.s. of Eq.(6),
must satisfy: ǫ

2
≥ h2/32π

2
〈m0|L

2
|m0〉, where L2 is the square of the angular momentum

operator of the apparatus: to make the error extremely small one has to make extremely
large 〈m0|L

2
|m0〉 .

2.4. More realistic formalizations of the measurement process

Up to this point, when accounting for the occurrence of measurement processes, we have
always made reference to the projection operators on the eigenmanifolds of the operators
associated to the measurement. However, in practice, it is quite difficult to have apparatuses
whose effect on the statevector can be accounted precisely by a projection operator. A
simple example is the one of a detector of the position of a particle in a given interval ∆

which has different efficiency in different portions of the interval ∆ so that it detects for
sure a particle impinging on its central region but only with a certain probability a particle
which is detected near its extreme points. Another example is given by a measurement
process which corresponds to two different successive measurements of two noncommuting
observables, the outcome being represented by the pair of results which have been obtained.
Also in this case the probability of “an outcome" cannot be expressed in terms of a single
projection operator. The appropriate consideration of situations like those just mentioned
has led to the consideration of more general processes affecting the statistical operator
than the one of Eq.(3). One can then take advantage of a fundamental theorem by Kraus
[16] asserting that the most general map of trace class and trace one semipositive definite
operators onto themselves which respects also the condition of complete positivity (which
has strong physical reasons to be imposed5) has the form:

5 For a definition and a discussion of completely positive maps we refer the reader to ref.[16]
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ρ → ∑
i

A†
i ρAi, ∑

i

Ai A
†
i = I. (10)

When considering measurement processes we will make reference to Eq.(3) or to the just
written equation as expressing the effect of the measurement on the statistical operator.

3. Proposals of faster-than-light communication and their rebuttal

As already anticipated, after the clear cut proof by J.S. Bell of the fundamentally nonlocal
nature of physical processes involving far away constituents in an entangled state, many
proposals have been put forward, either in private correspondence or in scientific papers,
suggesting how to put into evidence superluminal effects. We will begin by reviewing a
series of proposal whose rebuttal did require only to resort to the standard formalism or to
well established facts, such as those put into evidence by the Wigner-Araki-Yanase theorems.

3.1. Proposals taking advantage of the conservation of angular momentum

In the year 1979 various papers appeared asserting the possibility of superluminal
communication by taking advantage of the change in the angular momentum of a far
away constituent due to a measurement performed on its partner. The scientific and social
context of these first investigations aiming to take advantage of quantum nonlocality have
been described in the interesting and funny book [17] by D. Kaiser How the hippies saved
physics, which intends to point out how the actions of a peculiar community of scientists and
non scientists trying to justify various sort of paranormal effects on the basis of quantum
nonlocality have drawn, in the US, the attention of the scientific community to Bell’s
fundamental theorem and its implications. The three papers [18-20] that I intend to consider
in this section have some strict links with the just mentioned context.

Let us start with refs.[18,19]. Their argument is quite straightforward: one considers two
far away spin 1/2 particles in the singlet state which interact with 2 apparatuses aimed to
measure the spin z-component and are in their “ready" states |A0〉 and |B0〉, so that the initial
state is:

|Ψ〉 =
1
√

2
[|1+, 2−〉 − |1−, 2+〉]⊗ |A0, B0〉. (11)

Here the indices + and - denote the values (in the usual units) of the z-component of the spin
of the particles. Suppose now that the interaction of particle 2 with the apparatus B takes
place before the other particle reaches A (A and B being at rest in a given inertial frame).
Wave packet reduction occurs, and we are left, with the same probability, with one of the
two states |1+, 2−, A0, B−〉 and |1−, 2+, A0, B+〉, where |B±〉 are the states of the apparatus
B after the measurement. We can now evaluate the mean value of the square of the spin
angular momentum when the state is the one of Eq.(11) and when it is one of the states of
the mixture. In the first case we get: 〈S2

〉singlet = 0, while in the second case we get the value

h̄2. Now one takes advantage of the conservation of the angular momentum L = M + S
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where M is the angular momentum of the apparatus6. Since 〈M · S〉 = 0 in all above states,

one concludes that the measurement induces a change of h̄2 in the apparatus which performs
the measurement. This is not the whole story. If one, subsequently, leaves the second particle
to interact with the apparatus measuring the spin state of the particle, the expectation value
of L

2 does not change any more. So, actually, the angular momentum of the apparatus which
is the first to perform the measurement changes of the indicated amount, while the one of the
other remains unchanged. Now if Alice and Bob, sitting near A and B, have at their disposal
a source of entangled particles in the singlet state, Bob, who interacts first with his particle,
can choose to perform or not the measurement; correspondingly he can choose whether to
leave unchanged or to change the angular momentum of the apparatus at A. If Alice can
detect this change she can get information about the choice made, in each single instance, by
Bob7. Superluminal communication becomes possible.

According to the above analysis and the remark in the footnote, the key ingredient which
allows to draw the conclusion is the occurrence of an ideal nondistorting measurement of
the spin component. This implies that the argument of refs.[18,19] is based on contradictory
assumptions, since, as discussed in the previous section, the Wigner-Araki-Yanase theorem
asserts that the occurrence of an ideal nondistorting measurement of a spin component of
a subsystem contradicts the conservation of total angular momentum. Actually, to have an
ideal measurement process one needs apparatuses with a divergent mean value of the square
of the angular momentum, but then no change of this quantity can be detected. Alternatively,
one should consider nonideal measurements which are compatible with angular momentum
conservation, but then the previous argument does not work, just because Eq.(6) has to be
modified.

Precisely in the same year in which the above described arguments were presented, N.
Herbert circulated a paper [20] which made resort to the functioning of a half wave plate
to get the same result. His proposal was stimulated by his reading of a paper [21] written in
1936 by R. Beth and included by the American Association of Physics Teachers in a collection
of papers published as Quantum and Statistical Aspects of Light. Beth managed to measure the
angular momentum of circularly polarized light due to the fact that when right-circularly
polarized light is shone on the half-wave plate it sets the plate spinning in one direction, while
left-circularly polarized light spun the half-wave plate in the opposite direction. Moreover,
the plate flips the light polarization from left to right and viceversa. Beth had measured the
effect for circularly polarized light waves, i.e., by using a huge collection of photons all acting
together. Herbert, inspired by this work, suggested, in the paper he called QUICK, to play a
similar game with the angular momentum of individual photons to get superluminal effects.

Once more the idea is quite simple: one imagines a source emitting pairs of entangled
photons in two opposite directions, their state being the analogous of the singlet state, i.e.

the rotationally invariant state: |Ψ(1, 2)〉 = [1/
√

2][|H1, H2〉+ |V1, V2〉] ≡ [1/
√

2][|R1, L2〉+
|L1, R2〉]. Here, the symbols H, V, R and L make reference to the states of horizontal, vertical,
right and left circular polarizations, respectively. Bob can freely choose whether to perform

6 Here, we disregard the orbital angular momentum of the particles, but the argument holds true also without this
limitation.

7 It is interesting to remark that the same argument can be developed if one does not take into account the reduction
process, i.e., if one assumes that the interactions simply take place in accordance with the von Neumann scheme.
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a measurement of either plane (H,V) or circular (L,R) polarization. As a consequence of
his measurement the far away photon is projected either onto a state of plane or of circular
polarization. Subsequently, this photon impinges on a half-wave plate (near Alice). Since the
photon when plane polarized crosses the plate without transmitting any angular momentum
to it, while, when circularly polarized, it imparts a change of ±2h̄ to the angular momentum
of the plate, if Alice is able to check whether his plate has not changed or has changed its
angular momentum she can know what kind of measurement (H,V) or (L,R) Bob has chosen
to perform in any single case. Once more, entanglement and reduction of the wave packet
allow superluminal transmission of information.

To prove why also this suggestion is inviable one has to analyze the functioning of the
half-wave plate. The nice fact is that, as proved in ref.[22], one can develope precisely an
argument analogous to the one of Wigner-Araki-Yanase, to prove that a half-wave plate can
work as indicated only if a violation of the angular momentum conservation occurs. But such
a conservation is necessary for the argument, so, once more, the proposal is contradictory.
No superluminal communication is possible by resorting to the QUICK device.

Herbert and the Fundamental Fysiks Group made all they could do to spread out Herbert’s
conclusions. The debate involved scientists like H. Stapp and P. Eberhard. In june 1979, Stapp
challenged the idea, building on Eberhard’s argument that statistical averages would wash
out any non local effect. But Herbert had worked out his reasoning for individual photons,
and the above objection turned out to be not relevant for setting the issue. In the same
year we (T. Weber and myself), became acquainted with Herbert’s, as well as with Selleri’s
and others proposals. Accordingly, we wrote the paper [22] which presents the conclusions I
have just described concerning refs.[18-20]. Beth’s important experiment worked just because
the experimenter sent an enormous number of photons at the half-wave plate. But, at the
single-photon level, to get the same result, the half-wave plate would have to be infinitely
massive, and, as such, it could not be put into rotation by the passage of an individual
photon. This conclusion can be made rigorous with a little of mathematics, as we did in
ref.[22].

3.2. Popper enters the game

Mention should also be made of the position of K. Popper concerning the problem of
faster-than-light communication. In some previous writings, but specifically in his famous
book [23] Quantum Theory and the Schism in Physics he raised the question of the conflict
between quantum theory and special relativity theory, due to his alleged claim that “if
quantum mechanical predictions are correct", then one would be able to send superluminal
signals putting into evidence a conflict between the two pillars of our conception of the
world. Unfortunately he was (mistankingly) convinced that the quantum rules would imply
an effect that they actually exclude (a fact which he missed completely to understand), and,
consequently, in his opinion they would allow superluminal signaling in an appropriate
experimental situation.

The idea is quite simple (see Fig1, a,b): we have two perfectly correlated (in position) particles
propagating towards two arrays of detectors placed at left (L) and right (R) of the emitting
source at almost equal distances from it. Two slits, orthogonal to the direction x in the figure,
are placed at both sides, along the y-axis, before the array of the counters, and, initially,
only the counters lying behind the opening of the slits get activated. Subsequently, the slit
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at R is narrowed so as to produce an uncertainty principle scatter of the momentum py,
which appreciably increases the set of counters which are activated with a non-negligible
probability (see Fig.1b). Popper then argues: If quantum mechanics is correct, any increase
in the knowledge of the position y at R like the one we get by making more precise the
location along the y-axis of the particle which is there, implies an analogous increase of the
knowledge of the position of the particle at L. As a consequence also the scatter at L should
increase even though the width of the slit at this side has not been narrowed. This prediction
is testable, since new counters would be activated with an appreciable probability, giving
rise to a superluminal influence: Alice can know (with an appreciable probability) whether
Bob has chosen to narrow or leave unchanged his slit. The conclusion of Popper is quite
emblematic: in his opinion the increase of the spread at L would not occur and this would
show that quantum theory is wrong. He also contemplates the other alternative: if the scatter
at left would increase, then superluminal communication would be possible and relativity
theory would be proven false; in both cases, a quite astonishing conclusion.

Figure 1. The set up and functioning of Popper’s ideal experiment.

Unfortunately, in this passage of his important work, Popper shows his lack of understanding
the quantum principles governing the unfolding of the considered experiment. In fact, it
can be easily proved that quantum mechanics predicts precisely that no scatter at left will
be induced by the narrowing of the slit at right. We do not consider it useful to enter in
all technical details of the argument. The reader can look at ref.[24] or to Chapter 11 of
ref.[25] for a detailed and punctual discussion. Here, we simply outline the argument: if the
positions of the particles are really 100% correlated (and therefore associated to a Dirac delta
like unnormalized state), then they are in a state which implies that, even when the two slits
are fully opened, all counters are activated with large probabilities, while, if their correlations
are only approximate (even with an extremely high degree of accuracy) the action at R by
Bob does not change in any way whatsoever the outcomes at L. So, the argument is basically
wrong.

4. The general proof of the impossibility of faster-than-light

communication

To present a completely general proof [26,27] of the fact that instantaneous wave-packet
reduction does not allow superluminal signaling we must start by reconsidering all possible
actions [3,16] which are permitted, by standard quantum mechanics, on a constituent of a
composite system. Quite in general, quantum mechanics allows the possibility of:
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• A unitary transformation describing the free evolution of the system at R under
consideration and/or possibly of its interactions with other systems lying in a space-time
region which is space like with respect to the one at L.

• A transformation corresponding to a non selective projective measurement (with wave
packet reduction as described by Eq. (3)) of the considered subsystem.

• A transformation like the one summarized in Eq.(10) corresponding, essentially, to the
occurrence of a non ideal measurement.

• A transformation like the one of Eq.(4), corresponding to a selective measurement. To
be strict, one should also consider the analogous of this transformation in the case of a
non-ideal measurement, but, for the reasons which we will make clear below, this case
does not have a physical relevance for faster-than-light signaling.

Now we can proceed to outline our proof, which represents a generalization and a more
accurate formulation of some ideas put forward by P. Eberhard [28] about one year before
we wrote our paper [26] (see also A. Shimony [29] for an enlightening discussion).

To start with we recall that all probabilistic predictions concerning a subsystem of a
composite system can be obtained by considering the reduced statistical operator of the

subsystem of interest. We suppose now to have a composite quantum system S = S
(1) + S

(2)

associated to the statistical operator ρ(1, 2) and to be interested in predictions concerning

prospective measurements on subsystem S
(1). As already remarked, the physics of this

subsystem is fully described by the reduced statistical operator ρ̃
(1) = Tr

(2)
ρ(1, 2). We can

now consider the following set of equations:

ρ̃
(1) = Tr

(2)
ρ(1, 2),

Tr
(2)[U(2)†

ρ(1, 2)U(2)] = Tr
(2)[U(2)

U
(2)†

ρ(1, 2)] = Tr
(2)

ρ(1, 2) = ρ̃
(1),

Tr
(2))[∑

i

P
(2)
i

ρ(1, 2)P
(2)
i

] = Tr
(2)[∑

i

[P
(2)
i

]2ρ(1, 2)] = Tr
(2)

ρ(1, 2) = ρ̃
(1)

Tr
(2))[∑

i

A
(2)†
i

ρ(1, 2)A
(2)
i

] = Tr
(2)[∑

i

A
(2)
i

A
(2)†
i

ρ(1, 2)] = Tr
(2)

ρ(1, 2) = ρ̃
(1). (12)

In these equations we have made use of the cyclic property of the trace over the Hilbert

space H(2) when operators of the same Hilbert space are involved, of the unitarity relation

U
(2)

U
(2)† = I

(2), of the propery [P
(2)
i

]2 = P
(2)
i

and of the fact that the sum of the operators

P
(2)
i

in the case of a projective measurement, as well as of the operators A
(2)
i

A
(2)†
i

of the
Kraus theorem [16], must equal the identity operator of the same space. We call the attention

of the reader to the fact that in all considered cases, i.e., i). no action on S
(2), ii). a unitary

evolution of S
(2), or iii). the fact that it is subjected to an operation corresponding to a

(ideal or non-ideal) nonselective measurement process, the reduced statistical operator ρ̃
(1) of

subsystem S
(1) does not change in any way whatsoever, and, accordingly, Alice, performing

measurements on such a subsystem cannot get any information about the fact that Bob is

making some specific action on subsystem S
(2).
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Up to now, we have not considered explicitly the case of selective ideal or non-ideal
measurement processes, accounted for by Eq. (4) or by its analogue referring to processes
like those governed by Eq.(10). If one considers the modifications to the general statistical
operator in these cases and one uses the reduced statistical operator to evaluate the

probabilities of the measurement outcomes on subsystem S(1), one would easily discover
that the physics of such a system is actually changed by the action on its far-away partner.
But the probabilistic changes depend crucially on the outcome that Bob has obtained in his
measurement, so that Alice might take advantage of this fact only if she would be informed
of the outcome obtained by Bob. This implies that Bob must inform Alice concerning his
outcome and this can be done only by resorting to standard communication procedures
which require a subluminal communication between the two. Accordingly, these cases can
safely be disregarded within our context.

It should be clear that the general validity of our theorem implies that all previously
discussed attempts to get faster-than-light signaling taking advantage of the instantaneous
reduction at-a-distance of the statevector in the case of entangled states of far-away systems,
were doomed to fail. We have discussed them in some detail to present an historically
complete perspective of the debate on this fundamental issue, i.e. the one of the compatibility
of quantum mechanics with relativistic requirements concerning the communication between
far-away observers.

5. A radical change of perspective

5.1. Herbert’s new proposal

In 1981 N. Herbert submitted for publication to Foundations of Physics a paper [4] by the
title: FLASH–A superluminal communicator based on a new kind of quantum measurement in which
he added a new specific device to his previous proposal we have discussed in sect.3.1. The
stimulus to do so came probably from our paper, ref.[26], as remarked by D. Kaiser in his
book [17]: From Ghirardi’s intervention, Herbert came to appreciate the importance of amplifying
the tiny distinction between various quantum states, to evade fundamental limits on signaling. The
crucial device which, in his opinion, could do the game, was a Laser gain tube exhibiting
the following characteristics: if the laser was stimulated by a single photon in any state
of polarization (the states which mattered were actually those of plane (V and H) and of
circular (R and L) polarization) it would emit a relevant number, let us say 4N with N large,
of identical copies (in particular with the same polarization) of the impinging photon. If we
summarize the process by means of an arrow leading from the initial photon state to the
bunch of final photons, Hebert’s Laser gain tube has to work in the following way:

|V, 1〉 → |V, 4N〉, |H, 1〉 → |H, 4N〉, |R, 1〉 → |R, 4N〉, |L, 1〉 → |L, 4N〉, (13)

with obvious meaning of the symbols. Here 1 denotes the photon propagating towards Alice.

By resorting to this machine Herbert’s game becomes quite simple. One starts, as in his
first proposal, with a source emitting pairs of entangled photons in two opposite directions,

their state being the rotationally invariant state: |Ψ(1, 2)〉 = [1/
√

2][|H1, H2〉+ |V1, V2〉] ≡

[1/
√

2][|R1, L2〉 + |L1, R2〉]. Obviously, Bob can freely choose whether to perform a
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measurement of either plane (H,V) or circular (L,R) polarization. As a consequence of his
measurement the far away photon is projected either onto a state of plane or of circular
polarization. At this point the far away photon is injected in the Laser gain tube which
emits 4N photons with the same polarization, which, in turn, depends on the measurement
performed by Bob and the outcome he has got. The 4N photons are then separated into
4 beams of N photons each, directed towards 4 detectors of V,H,L and R (mind the order)
polarization, respectively. To see the game coming at an end we have now simply to recall
that a detector registers for sure a photon with the polarization it is devised to measure, it
does not detect a photon into an orthogonal state and detects with probability 1/2 a photon
in a state of polarization which is the equal superposition of the state that it is devised to
detect and of the state orthogonal to it.

We analyze the situation in detail specifying the measurements which Bob chooses to
perform, the outcomes he gets and the records by the counters near Alice.

• Suppose Bob chooses to perform a polarization measurement aimed to ascertain whether
the photon (2) reaching him has vertical or horizontal polarization and that he finds the
photon vertically polarized. In this case, the process goes as follows:

a). Initial state: |Ψ(1, 2)〉 = [1/
√

2][|H1, H2〉+ |V1, V2〉]; b). Measurement with outcome
Vertical; c). Reduction of the state: |V1, V2〉; d). Amplification: |V, 4N; V2〉; e). Number
of photons detected by the far away detectors (near Alice) for the 4 beams: N,0,N/2,N/2.

• a). Initial state: |Ψ(1, 2)〉 = [1/
√

2][|H1, H2〉+ |V1, V2〉]; b). Measurement with outcome
Horizontal; c). Reduction of the state: |H1, H2〉; d). Amplification: |H, 4N; H2〉; e).
Number of photons detected by the far away detectors on the 4 beams: 0,N,N/2,N/2.

• a). Initial state: [1/
√

2][|R1, L2〉 + |L1, R2〉]; b). Measurement with outcome Right; c).
Reduction of the state: |L1, R2〉; d). Amplification: |L, 4N; R2〉; e). Number of photons
detected by the far away detectors on the 4 beams: N/2,N/2,N,0.

• a). Initial state: [1/
√

2][|R1, L2〉 + |L1, R2〉]; b). Measurement with outcome Left; c).
Reduction of the state: |R1; L2〉; d). Amplification: |R, 4N; L2〉; e). Number of photons
detected by the far away detectors on the 4 beams: N/2,N/2,0,N.

Now, one has simply to remark that in the cases listed under the two first items (i.e. when
Bob chooses to measure linear polarization) the detector which does not register any photon
is either the first or the second, while, in the alternative case in which Bob chooses to measure
circular polarization, it is either the third or the fourth detector which does not register any
photon. Accordingly, Alice can become aware, instantaneously, of the choice made by Bob:
they can communicate superluminally.

5.2. The no-cloning theorem

The FLASH paper was sent for refereeing to A. Peres and to me. Peres’ answer [30] was
rather peculiar: I recommended to the editor that this paper should be published. I wrote that it
was obviously wrong, but I expected that it would elicit considerable interest and that finding the
error would lead to significant progress in our understanding of physics. I also was rather worried
for various reasons. I was not an expert on Lasers and I was informed that A. Gozzini
and R. Peierls were trying to disprove Herbert’s conclusion by invoking the unavoidable
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noise affecting the Laser which would inhibit its desired functioning. On the other hand,
I was convinced that quantum theory in its general formulation and not due to limitations
of practical nature would make unviable Herbert’s proposal. After worrying for some days
about this problem I got the general answer: while it is possible to devise an ideal apparatus
which clones two orthogonal states with 100% efficiency, the same apparatus, if the linear
quantum theory governs its functioning, cannot clone states which are linear combinations
of the previous ones. Here is my argument, on the basis of which I recommended rejection
of Herbert’s paper. The assumption that the cloning machine acts as follows:

|V〉 → |V, 4N〉 and |H〉 → |H, 4N〉, (14)

when the linear nature of the theory is taken into account, implies:

R ≡

1
√

2
[i|V〉+ |H〉] →

1
√

2
[i|V, 4N〉+ |H, 4N〉], (15)

and analogously for the left polarization. Now, the state at the r.h.s. of the last equation is
by no means the state |R, 4N〉 which Herbert had assumed to occur in the case in which the
Laser gain tube is triggered by a right polarized photon. But this is not the whole story: how
it has been shown in ref.[31] the very linear nature of the theory implies that no difference in
the detections of Alice occurs in dependence of the free will choice of Bob.

This is an account of how Herbert’s ingenious, but mistaken, proposal has led me to be the
first to derive the no-cloning theorem 8. About one and half year later Wootters and Zurek
[32] and Dieks [33] derived independently the same result and published it9. The theorem
is of remarkable importance in quantum theory, it has become known as “The no cloning
theorem" and it has been quoted an innumerable number of times. Only subsequently I
realized that it had been a mistake on my part not to publish my result. I discussed my
precise argument with Gozzini and Peierls, by sending them a draft which was a sort of
repetition of my referee report and I subsequently published it [31] in collaboration with my
collaborator, T. Weber.

5.2.1. More on quantum cloning

In a paper like the present one, we believe it useful to mention that E.P. Wigner [34], in an
essay of 1961 had already argued that the phenomena of self-replication of biological systems
contradict the principles of quantum mechanics. His argument is quite straightforward.
Following his notation let us suppose we have a living system in a state ν and an environment
(assimilated to “food") in a state w, so that, the initial statevector of the system, organism +

8 I have chosen to attach at the end of the paper, a document - a letter by A. van der Merwe - which officially attests
this fact, since it is known only to a restricted community of physicists.

9 I must confess that I have never understood why A. Peres, in mentioning my derivation, has stated that it was a
special case of the theorems in refs. [32] and [33]. Comparison even only of the short page by A. van der Merwe
with the just mentioned papers makes clear that the argument is precisely the same and has the same generality.
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nutrient, is: Φ = ν × w. When replication takes place the statevector will have the form:
Ψ = ν × ν × r, i.e. two organisms each in the statevector ν will be present, while the vector
r describes both the rest of the system, the rejected part of the nutrient and also the other
coordinates (positions, etc.) of the two organisms. One assumes that the system lives in an

N-dimensional Hilbert space H
(N ), the part r in an R-dimensional Hilbert space H

(R), while

the “food" state w belongs to a N · R dimensional Hilbert space H
(NR), so that Φ and Ψ live,

as they must, in the same space. Suppose we do not know the state of the living system;

however, since it belongs to H
(N ) his knowledge requires to know N complex numbers.

Analogously we do not know the state r, and the state w, which require the specification
of R and NR complex numbers. We now assume, with Wigner, that the collision matrix
which gives the final state resulting from the interaction, which will be denoted as S, of the
organism and the nutrient is a random matrix, which, however, even though unknown to us
explicitly, is completely determined by the laws of quantum mechanics. Obviously S must
satisfy:

Ψ = SΦ. (16)

Choosing a basis for the whole Hilbert space and projecting Eq. (16) on such a basis one
gets N2R equations. And now the conclusion follows: our unknown quantities are the
components of the states ν, r and w on their respective bases and are therefore N + R + NR
in number. Thus, according to Wigner, the question is: given the matrix corresponding to S, it
is possible to find vectors ν,r and w such that their components satisfy the above mentioned
N2R equations? Since N2R ≫ N + R + NR, for extremely large N and R, according to
him: it would be a miracle if such equations could be satisfied. In other words, a self-replicating
quantum unit does not exist. One might state that Wigner has “derived" (with the proviso
he is making - see below) the no-cloning theorem for a quantum system whose Hilbert space
has an extremely high dimensionality N, while we have shown that it holds also for N=2.

Wigner was perfectly aware that the argument is not fully rigorous and cannot be taken too
seriously because of the many assumptions on which it is based. However, he seems inclined
to attach a certain value to it. This is not surprising because at the time in which he wrote
his paper he was adhering to von Neumann’s idea that consciousness is responsible for the
reduction of the wave packet, so that, in a certain sense, the fact that quantum mechanics
is not able to account for the basic property of living organism (the self-reproduction)
supported his view that such a theory cannot be used to describe the conscious perceptions of
such organisms. In 1971 Eigen [36] responded to Wigner claiming that his choice of resorting
to a typical unitary map to account for the process did not take into account the instructive
functions of informational macromolecules.

Strictly connected with Wigner argument, even though derived through a much more
rigorous and general procedure is the proof of the no-cloning theorem presented in a
beautiful paper by R. Alicki [35]. He considers a dynamical transformation T from an
initial state ϕ ⊗ ω, where ϕ is the state of the organism and ω the fixed initial state of
the environment designed as “food":

ϕ ⊗ ω → T(ϕ ⊗ ω) = ϕ ⊗ ϕ ⊗ σ. (17)

As before, σ represents the state of the “food" after the replication. Alicki assumes that
any dynamical process of a closed system (typically the one given by T) cannot reduce the
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indistinguishability of two states ϕ and ψ, which can be quantified by the “overlap" (ϕ|ψ)
of the two states10, i.e., (T(ϕ)|T(ψ)) ≥ (ϕ|ψ) (which in Alicki’s spirit can be considered as
a form of the second law of thermodynamics: indistinguishability cannot decrease with the
evolution). Then one has:

(ϕ|ϕ
′) = (ϕ ⊗ ω|ϕ

′
⊗ ω) ≤ (T(ϕ ⊗ ω)|T(ϕ

′
⊗ ω))

= (ϕ ⊗ ϕ ⊗ σ|ϕ
′
⊗ ϕ

′
⊗ σ

′) = (ϕ|ϕ
′)2(σ|σ′) ≤ (ϕ|ϕ

′)2, (18)

implying (ϕ|ϕ
′) = 1 or (ϕ|ϕ

′) = 0.

It is interesting to note that if, taking a strictly quantum perspective (which means to replace
the round brackets in the above equation by Dirac’s bras and kets), one identifies (as it is
quite reasonable) the general concept of overlap≡indistinguishability with the scalar product
of the Hilbert space and one assumes that the unfolding of the process is governed by a
unitary transformation (which as such does not change the overlap), the above proof (slightly
modified to take into account the complex nature of the scalar product) corresponds to
a modern version of the no-cloning theorem which, in place of using the linearity of the
evolution as we and the authors of refs.[32,33] did in deriving the theorem, makes resort to
unitarity.

6. Further recent proposals which require new impossibility proofs

6.1. A proposal by D. Greenberger

In spite of the lively debate and the many precise results which should have made fully clear
why quantum mechanics does not allow superluminal communication, new papers claiming
to have found a new way to achieve this result continue to appear. The first we want to
mention is a proposal [37] of D. Greenberger which has been considered as inspiring even
quite recently. Actually, in ref.[38] it is claimed that the proposal of Greenberger has not yet
been refused and calls into question the universality of the no-signaling theorem, and, accordingly,
it represents a stimulus to pursue the investigations on this line.

Greenberger proposal involves the simoultaneous emission of two photons by a source along
two different opposite directions (a, a′) and (b, b′), so that the initial state is the entangled
state:

|ψ〉1,2 =
1
√

2
[|a〉1 ⊗ |a′〉2 + |b〉1 ⊗ |b′〉2] (19)

Subsequently, the two photons impinge on a series of beam splitters, as shown in figure 2.
The horizontal gray boxes represent the beam splitters which are assumed to both reflect and
transmit half the incident light, and produce a phase shift of π/2 upon reflection and none

10 Here , the expressions (α|β) must not be identified with the Hilbert scalar product, since Alicki is taking a much
more general perspective, which, however, requires to quantify the idea of distinguishability and its fundamental
properties. He does this by introducing his symbol for the overlap which he takes, for simplicity, to be a real number
between 0 and 1.
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upon transmission. On the path of the photon emitted along b, after it goes through the first
beam splitter, there is a phase-shifter A that shifts the phase of any photon passing through
it by π, and that can be inserted or removed from the beam at will.

S

A/B

a

b

a’

b’

c’

d’

d

c

e

f

h

g

Figure 2. Illustration of Greenberger’s proposal as depicted in his paper.

At this point the first crucial assumption of the paper enters into play:

i). The phase shifter can be prepared not only in the states |A〉 and |B〉, corresponding to
its being inserted or removed from the path of the photon, but also in their orthogonal linear
combinations:

|u〉3 =
1
√

2
[|A〉+ |B〉], |v〉3 =

1
√

2
[|A〉 − |B〉]. (20)

According to the author of [37], one can also switch on the Hamiltonian H for this
macroscopic object, whose eigenstates are |u〉3 and |v〉3, corresponding to slightly different
energies, implying the development in time of relative phases with respect to each other.

We will not go through the subsequent elementary calculations of the paper; we limit
ourselves to mention that the above assumptions lead to the conclusion that, as the photons
are nearing their final detectors represented in the figure by the 4 black squares, they will be
in the following entangled photon-phase shifter state:

|ψ〉1,2,3 =
1

2

[

(−eiα
|h〉1|d

′
〉2 + e−iα

|g〉1|c
′
〉2)e

iβ
|u〉3 + (eiα

|g〉1|c
′
〉2 − e−iα

|h〉1|d
′
〉2)e

−iβ
|v〉3

]

,

(21)
the phase factors e±iα and e±iβ being due to the evolution of the states |u〉3 and |v〉3.

At this point Greeneberger puts forward his really crucial assumption. In his words:

ii). In accordance with our assumption that one can manipulate these Cat states, one can turn
off H for the state |v〉, while leaving it in place for the state |u〉. This will rotate the state |v〉
into the state eiγ

|u〉, where γ is the accumulated phase difference during this process.

As it is obvious this amounts to accept that a nonunitary transformation T can be performed:

T|u〉3 = |u〉3, T|v〉3 = eiγ
|u〉3. (22)
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The conclusion follows. After this transformation the state becomes:

|ψ f inal〉1,2,3 = eiγ/2
[

− cos(α + β − γ/2)|h〉1|d
′
〉2 + cos(β − α − γ/2)|g〉1|c

′
〉2

]

|u〉3. (23)

And now the game is over: by appropriately choosing the angles α, β and γ, one can, at his
free will, suppress one of the two terms of the superposition of the photon states, i.e. one can
make certain either the firing of the detector in d′ or the one in c′ (and correspondingly the
one in h or the one in g) allowing in this way a superluminal transfer of information from
the phase shifter, which acts as the signaler, to the photon detectors.

The paper, since nobody had discussed it in spite of its revolutionary character, deserved
some attention; we have reconsidered it in ref.[39]. Its weak points are:

• The assumption that one can prepare the linear superposition of two macroscopically
different states, corresponding to different locations of the macroscopic phase-shifter. This
is impossible to get in practice.

• However, even ignoring the above critical feature of the hypothetical experiment, the
really crucial and unacceptable fact is the one embodied in its second assumption, i.e.,
the possibility of implementing a nonunitary transformation.

We will not go on analyzing all the details of ref.[37] and of the punctual criticisms of ref.[39].
We believe that to show where it fails the simplest way is to resort to an example that we
have devised in our paper. We consider an elementary EPR-Bohm like setup for two far away
spin 1/2 particles in the singlet state:

|ψ−〉 =
1
√

2
[| ↑1〉| ↓2〉 − | ↓1〉| ↑2〉]. (24)

In strict analogy with what has been assumed by Greenberger, suppose now we can rotate
only one of the two spin states of particle 2 making it to coincide, apart from a controllable
phase, with the other one:

T| ↓2〉 = | ↓2〉, T| ↑2〉 = eiγ
| ↓2〉. (25)

Under this transformation the state [25] becomes a factorized state of the two particles:

|ψT〉 =
1
√

2
[| ↑1〉 − eiγ

| ↓1〉]| ↓2〉 (26)

In (26), the state referring to particle 1 is an eigenstate of σ · d for the direction d =
(cos γ, sin γ, 0) pertaining to the eigenvalue −1. This means that a measurement of this
observable by Alice (where particle 1 is) will give with certainty the outcome −1 if Bob has
performed the transformation T on his particle, while, if Bob does nothing, the probability
of getting such an outcome equals 1/2. Having such a device, one can easily implement
superluminal transfer of information. Concluding: if assumption ii) were correct, one would
not need all the complex apparatus involved in Greenberger’s proposal which, at any rate,
cannot work as indicated due to the nonlinear nature of T.

Advances in Quantum Mechanics584



Entanglement, Nonlocality, Superluminal Signaling and Cloning 21

http://dx.doi.org/10.5772/CHAPTERDOI

6.2. A proposal involving a single system

Another proposal that has to be mentioned is the one [40] by Shiekh. His suggestion is
different from all those which have appeared in the literature since the author does not
make resort to an entangled state of two systems but he works with a single particle in
a superposition of two states corresponding to its being in two far-away regions, and the
measurement process involves only one of the two far-away parts of the wave function. So, in
a sense, the argument of ref.[40] does not fall under the no-go theorems considered here and
requires a separate comment. The author is inspired by the fact that when a single particle
is associated to a wavefunction as the one just mentioned, any attempt to test whether it is
“here" (at right), or “there" (at left) changes instantaneously the wavefunction on the whole
real axis by making it equal to zero or enhancing it “there" according to whether we detect or
we do not find the particle “here". The process seems to exhibit some nonlocal aspects due
to the instantaneous change at-a-distance. Obviously, that this might lead to superluminal
signaling is something that nobody can believe, but it is instructive to show that also in
this case, to achieve the desired result, one has to resort to a nonunitary evolution. The
elementary analysis which follows will lead once more to the conclusion that the process
cannot be used to send superluminal signals.

We briefly review the argument by Shiekh. He considers a particle which is prepared, at
time t = 0, in an equal weights superposition of two normalized states, |h+〉 and |h−〉,
propagating in two opposite directions, respectively, starting from the common origin of the
x-axis:

|ψ, 0〉 =
1
√

2
[|h+〉+ |h−〉]. (27)

Subsequently the state |h+〉 is injected in an appropriate device behaving in a way rather
similar, apart from the final stage, to a Mach-Zender interferometer. One also assumes that
an observer, located near to it, can choose, at his free will, to insert or not a phase-shifter along
one of the two paths of the interferometer. The two wave functions are then recombined by
appropriate deflectors so that, by deciding whether or not to insert the phase-shifter, one
can produce a constructive (no phase-shifter in place) or a destructive (the phase-shifter is
present) interference of the two terms in which the impinging state |h+〉 has been split.
Finally, a detector is placed along the direction of propagation of the final state and it
induces wave packet reduction, since it either detects or fails to detect the particle. We
have summarized the situation for the two considered cases in Figs. 3a,b.

O

|h+,t>|h-,t>

mirror

mirror

beam
splitter

O

|h+,t>|h-,t>

mirror

mirror

beam
splitter

phase
shifter

a) b)

Figure 3. The experimental arrangement of ref.[40]. The two cases refer to no Phase-shifter inserted or phase shifter inserted,

respectively.

The author then concludes: If the sender (the guy who can choose to insert or not the phase
shifter), arranges for constructive interference, then some of the particles will be "taken up" by the
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sender, but none if destructive interference is arranged; in this way the sender can control the intensity
of the beam detected by the receiver (the observer located far away where the evolved of |h−〉 is
concentrated). So, a faster than light transmitter of information (but not energy or matter) might be
possible.

We believe that all readers will have clear the trivial mistake of the paper. In fact, what
one can govern by deciding whether to insert or not the phase-shifter, is the interference at
the central region of the final detector. Let us concentrate our considerations only on the
normalized state |h+〉. If triggered by such a state when it exhibits constructive interference,
the counter will register (practically) for sure the particle described by such a state (the
wavefunction has a peak just there), while, if there is destructive interference, the counter
will not register the particle. But this does not mean that the wavefunction associated to |h+〉

disappears, as claimed by the author, it simply means that its support lies outside the interval
covered by the counter. Actually, no one will doubt that if one places an array of counters
covering all the line orthogonal to the final direction of propagation, one of them, different
from the one of the experiment, will fire for sure. If one combines these considerations with
the fact that actually the whole state of the particle is the superposition of |h−〉 and |h+〉

one realizes that the statements we have just made concerning what is going on at right have
only probability 1/2 of occurrence, since the particle can be not detected in the right region.
Accordingly, the probability that the particle is found at left remains equal to 1/2, as if no
specific action would be made at right.

It seems rather peculiar that the author introduces an hypothetical process which can make
zero a wavefunction (i.e. the normalized state |h+〉), and as such it does not preserve
unitarity, and, at the same time, he resorts to the overall conservation of probability (i.e.
to unitarity) to claim that the action at right can change the norm of the state at left.

This concludes our analysis of the many proposals which have been presented to send
superluminal signals.

7. Nonlocality and relativistic requirements

As already stated, quantum mechanics suffers of an internal inconsistency, the one between
the linear and deterministic evolution induced by Schrödinger’s dynamics and the nonlinear
and stochastic collapse of the state in a measurement. Many scientists, among them Einstein,
Schrödinger, Bell and many others have been disturbed not only by the formal inconsistency
between the two dynamical principles, but especially by the fact that the borderline between
what is classical and what is quantum, what is reversible and what is irreversible, what is
micro and what is macro is to a large extent ambiguous. Accordingly, many serious attempts
to overcome this difficulty have been presented, inspired by the conviction that Bell has
expressed [6] so lucidly:

Either the wavefunction, as given by the Schrödinger equation is not everything or it is not
right.

7.1. Bohmian mechanics

The first alternative corresponds to the idea that the specification of the state of a physical
system given by the statevector has to be enriched or replaced by new variables (the
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so-called hidden variables). The best known and rigorous example of this line is represented
by Bohmian mechanics [42], a deterministic theory such that the assignement of the
wavefunction and of the hidden variables (i.e. the initial positions of all particles which
are chosen to be distributed according to the quantum probability |ψ(r1, r2, ..., r

N
, t0)|

2)
determines uniquely their positions at any subsequent time. The predictions of the theory
concerning the probability distribution of the particles coincide with those of standard
quantum mechanics and the theory overcomes the measurement problem in a clean and
logically consistent way.

I will spend only few words on the locality issue within Bohmian mechanics. Since
this theory agrees with quantum mechanics in general and typically in an EPR-like
situation, it must exhibit a specific sort of nonlocality. It has been proved [43] that
any deterministic hidden variable theory equivalent to quantum mechanics admits only
relativistic generalizations which must resort to a specific foliation of space-time. In other
words, such theories are characterized by a preferred reference frame which, however,
remains unaccessible. Accordingly, as stressed by Bell [8], they require a change of attitude
concerning Lorentz invariance: the situation resembles the one of the theory of relativity
in the Fitzgerald, Larmor, Lorentz and Poincaré formulation in which there is an absolute
aether, but the contraction of space and the dilation of time fooled the moving observers
by allowing them to consider themselves at rest. In spite of this remark, explicit and
interesting relativistic generalizations of Bohmian mechanics have been presented. In
particular bohmian-like relativistic models have been worked out both in first quantized
versions [44] as well as in the framework of quantum field theories [45].

7.2. Collapse theories

The second alternative corresponds to assuming that Schrödinger’s equation has to be
changed in such a way not to alter the well established predictions of quantum mechanics
for all microscopic systems while leading to the collapse of the statevector with the desired
features and probabilities when macroscopic systems enter into play. The first explicit
example of this kind is the so called GRW theory [5] which we summarize in a very sketchy
way.

The central idea is to modify the linear and deterministic evolution equation of standard
quantum mechanics by adding nonlinear and stochastic (i.e. sharing the features of
the reduction process) terms to it. As it is obvious, and as it has been stressed by
many scientists, since the situations characterizing macro-objects correspond to perceptually
different locations of their macroscopic parts (e.g. the pointer) the change in the dynamics
must strive to make definite the positions of macroscopic bodies. The model is based on the
following assumptions:

• A Hilbert space H is associated to any physical system and the state of the system is
represented by a normalized vector |ψt〉 of H,

• The evolution of the system is governed by Schrödinger’s equation. Moreover, at random
times, with mean frequency11

λ, each particle of any system is subjected to random

11 Actually this frequency must be made proportional to the mass of the particles entering into play. The value we will
choose below refers to nucleons.
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spontaneous localization processes as follows. If particle i suffers a localization then
the statevector changes according to:

|ψt〉 →
Li(x)|ψt〉

‖ Li(x)|ψt〉 ‖
; Li(x) = (

α

π
)3/4e[−

α

2 (x̂i−x)2], (28)

where x̂i is the position operator of particle i,

• The probability density for a collapse at x is p(x) =‖ Li(x)|ψt〉 ‖
2, so that localizations

occur more frequently where the particle has a larger probability of being found in a
standard position measurement.

The most relevant fact of the process is its “trigger mechanism", i.e. the fact that, as one can
show by passing to the centre-of-mass and relative coordinates, the localization frequency
of the c.o.m. of a composite system is amplified with the number of particles, while the
internal motion, with the choice for α we will make, remains practically unaffected. We have
summarized the situation for a micro (at left) and macroscopic (at right – a pointer) system
in Fig.4.

Here There

Localization function

Ensuing situation

The hit occurs
Here

+

Here There

+

Here There

+

+
Localize this
individual (black)
particle Here

Figure 4. The localization of a single particle and of a macro-object according to GRW.

With these premises we can now make the choice for the parameters α (note that 1
√

α
gives

the localization accuracy) and λ of the theory. In ref.[5] we have chosen:

α ≃ 1010cm−2, λ ≃ 10−16sec−1. (29)

Note that with these choices a microscopic system suffers a localization about every 107 years,
and this is why the theory agrees with quantum mechanics for such systems, a macroscopic
body every 10−8sec (due to the trigger mechanism in the case of an Avogadro number of
particles the frequency becomes 1024

· 10−16 = 108sec−1). As commented [6] by J. Bell: The
cat is not both dead and alive for more than a split second.
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The conclusion should be obvious. A universal dynamics has been worked out which leaves
(practically) unaltered all quantum predictions for microsystems but it accounts for wave
packet reduction with probabilities in agreement with the quantum ones and for the classical
behaviour of macroscopic systems, as well as for our definite perceptions concerning them.

Few remarks: i). The model has been generalized and formulated in a mathematically much
more satisfactory but physically equivalent way [46,47] by resorting to stochastic dynamical
equations of the Ito or Stratonowich type, ii) The model is manifestly phenomenological
but it gives some clear indications concerning the fact that the macro-objectification or
measurement problem admits a consistent solution, iii). The model, even though it almost
completely agrees with quantum mechanics at the microscopic level qualifies itself as a rival
theory of quantum mechanics, one which can be tested against it. Accordingly, it suggests
where to look for putting into evidence possible violations of linearity. In recent years a lot
of work in this direction is going on.

Obviously, also Collapse theories exhibit nonlocal features. However for them there is no
theorem forbidding to get a generalization which does not resort to a preferred reference
frame. Lot of work has been done along these lines; I will limit myself to mention some
relevant steps. Before doing this, I consider it interesting to stress that the problem of having
a theory inducing instantaneous reduction at-a-distance is a quite old one which has seen a
lively debate and important contributions by Landau and Peierls [48], Bohr and Rosenfeld
[49], Hellwig and Kraus [50] and Aharonov and Albert [51,52].

Soon after the GRW theory has been formulated, P. Pearle [53] has presented a field theoretic
relativistic generalization of it which has subsequently [54] been shown to be fully Lorentz
invariant. Unfortunately, the model had some limitations arising from the occurrence of
divergences which were not easily amendable. In 2000 the author of the present chapter has
presented [55] a genuinely relativistic toy model of a theory inducing reductions. The model
satisfies all the strict conditions identified in refs.[51,52]. F. Dowker and collaborators [56]
have presented, in 2004, a relativistic collapse model on a discrete space that does not require
a preferred slicing of space-time.

The really important steps, however, occurred starting from 2007. R. Tumulka has presented
[57] a fully satisfactory and genuinely relativistic invariant dynamical reduction model for
a system of noninteracting fermions. Another important contribution [58] came from D.
Bedingham. Finally, few month ago, a convincing proof of the viability of the Collapse
theories in the relativistic domain has been presented [59]. The nice fact is that the conceptual
attitude which underlies this attempt is that what the theory assumes to be true of the world
around us is the mass density of the whole universe. In this way one recovers a unified,
general picture of a quantum universe both at the micro and macro levels.

I believe that the best way to conclude this Chapter, which has dealt in detail with the
compatibility of quantum effects and relativistic requirements, is to quote a clarifying
sentence from R. Tumulka [57], who has studied in great detail both the Bohmian as well
as the Collapse approaches to this fundamental problem:

A somewhat surprising feature of the present situation is that we seem to arrive at the following
alternative: Bohmian mechanics shows that one can explain quantum mechanics, exactly and
completely, if one is willing to pay with using a preferred reference slicing of space-time; our
model suggests that one should be able to avoid a preferred slicing if one is willing to pay with
a certain deviation from quantum mechanics.
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1. Introduction

The Husimi distribution, introduced by Kôdi Husimi in 1940 [1], is a quasi-probability distribution

commonly used to study the correspondence between quantum and classical dynamics [2]. Also, it

is employed to describe systems in different areas of physics such as Quantum Mechanics, Quantum

Optics, Information Theory [3–8]. Additionally, in nanotechnology it is possible to obtain a clear

description of localization –which corresponds to classicality– and is crucial to determine correctly

the size of systems when the particle dynamics takes into account mobility boundaries [9]. Among

its properties, it is always positive definite and unique, conversely it cannot be considered as a true

probability distribution over the quantum-mechanical phase space, reason why it is often considered as

a quasi probability distribution. Although it possesses no correct marginal properties, its usefulness is

to allow the assessment of the expectation values in quantum mechanics in a way similar to the classical

case [10]. The semiclassical Husimi probability distribution refers to a special type of probability, this

is for simultaneous but approximate location of position and momentum in phase space.

The Husimi distribution may be obtained in several ways; the strategy that we choose here is to derive

it as the expectation value of the density operator in a basis of coherent states [11]. Therefore, the line

of working in this chapter is illustrated in the following sequence:

Coherent states
︸ ︷︷ ︸

⇓

︷ ︸︸ ︷

Husimi Distribution
︸ ︷︷ ︸

⇓

︷ ︸︸ ︷

Information measures,

©2012 Curilef and Pennini, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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2 Quantum Mechanics

where the transcendence of defining correctly a set of coherent states and the Husimi distribution is

evident, being the calculation of measures as Wehrl entropy and/or Fisher information a consequence

of this procedure.

Coherent states provide a close connection between classical and quantum formulations of a given

system. They were introduced early by Erwin Schrödinger in 1926 [12], but the name coherent state

appeared for first time in Glauber’s papers [13, 14]– see a detailed study about this in Ref. [15]. It is

known that is difficult to construct coherent states for arbitrary quantum mechanical systems. Klauder

shows an elegant method for construct it in Ref. [16]. Furthermore, in Ref. [11] Gazeau and Klauder

consider essential, among other things, to discuss what an appropriate formulation of coherent states

needs [11]. For instance, they suggest a suitable set of requirements. Then, the main interest in this

chapter is to discuss, starting from a well defined set of coherent states, some interesting problems

related to the Husimi distribution applied to important systems in physics, such as, the harmonics

oscillator [5], the Landau diamagnetism model [17, 18] and, the rigid rotator [6, 18]. Also, we will

discuss some properties related to systems with continuous spectrum [19]. In each case, the Wehrl

entropy is calculated as a possible application.

This chapter is organized as follows. In section 2 we start presenting the background material and

methodology that will be employed in the following chapters. In section 3 we revise the Husimi

distribution and the Wehrl entropy for the problem of a particle in a magnetic field. In section 4 we

discuss phase space delocalization for the rigid rotator within a semiclassical context by recourse to the

Husimi distributions of both the linear and the 3D−anisotropic instances. In section 5 we propose

a procedure to generalize the Husimi distribution to systems with continuous spectrum. We start

examining a pioneering work, by Gazeau and Klauder, where the concept of coherent states for systems

with discrete spectrum was extended to systems with continuous one. Finally, some concluding remarks

and open problems are commented in section 6 .

2. Background material and methodology

In this section we center our attention in 3 topics that we consider relevant to understand the problems

that will be discussed in the following sections. These are i) the Husimi distribution and the most direct

application, i.e., Wehrl entropy, ii) a special basis to formulate a suitable set of coherent states and iii) a

generalization of this concepts to systems with continuous spectrum.

2.1. Husimi distribution and Wehrl entropy

The standard statistical mechanics starts conventionally using the Gibbs’s canonical distribution, whose

thermal density matrix is represented by

ρ̂ = Z−1e−βĤ , (1)

where Z = Tr(e−βĤ ) is the partition function, Ĥ is the Hamiltonian of the system, β = 1/kBT the

inverse temperature T , and kB the Boltzmann constant [20].

The Husimi distribution is obtained as the expectation value of the density operator in a basis of coherent

states as follows [1]

µ(z) = 〈z|ρ̂|z〉, (2)
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where {|z〉} denotes the set of coherent states, which are the eigenstates of the annihilation operator â,

i.e., â|z〉= z|z〉 defined for all z ∈ C [11]. This distribution is normalized to unity according to

1

π

∫
d2zµ(z) = 1, (3)

where the integration is carried out over the complex z plane and the differential is a real element of

area proportional to phase space element given by d2z = dxdp/2h̄.

For an arbitrary Hamiltonian Ĥ, with the discrete spectra {En}, being n a positive integer, the Husimi

distribution takes the form

µ(z) =
1

Z
∑
n

e−βEn
|〈z|n〉|2, (4)

where {|n〉|} is the set of energy eigenstates with eigenvalues En [4, 5].

The Wehrl entropy is a direct application that we introduce here, which is a useful measure of

localization in phase-space [21, 22], whose pertinent definition reads

W = −

1

π

∫
d2zµ(z) lnµ(z), (5)

The uncertainty principle manifests itself through the inequality W ≥ 1 which was first conjectured by

Wehrl [21] and later proved by Lieb (see, for instance Ref. [4]).

In the special case of the Harmonic Oscillator –whose Hamiltonian is Ĥ = h̄ω[â†â+ 1/2]– its set of

Glauber’s coherent states is defined in the form [14]

|z〉= e−|z|2/2
∞

∑
n=0

zn

√

n!
|n〉, (6)

where {|n〉} are a complete orthonormal set of phonon-eigenstates, that is,

〈n|n′〉= δn,n′ (7)

where δn,n′ is the Kronecker delta function, and the energy-spectrum is given by En = h̄ω(n+ 1/2),
with n = 0,1, . . . By definition, Hermitian operator Ĥ is an observable if this orthonormal system of

vectors forms a basis in the state space. This can be expressed by the closure relation

∞

∑
n=0

|n′〉〈n|= 1̂, (8)

where 1̂ stands for the identity operator in the space formed by eigenvectors.
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In this situation one conveniently resorts to

µHO(z) = (1̂− e−βh̄ω)e−(1−e−βh̄ω)|z|2 , (9)

WHO = 1− ln(1− e−βh̄ω). (10)

which respectively are the useful analytical expressions for Husimi distribution and Wehrl entropy [4].

2.2. Gazeau and Klauder’s coherent states

Now, we go back to the set of coherent states defined in Eq. (6). Certainly, it is known that coherent

states can be constructed in several ways by recourse to different techniques being its formulation of

a not unique character. Nevertheless, contrary to this idea and in order to get a unifying perspective,

Gazeau and Klauder have suggested that a suitable formalism for coherent states should satisfy at least

the following requirements [11]:

1. Continuity of labeling refers to the map from the label space L into Hilbert space. This condition

means that the expression ‖|z′〉− |z〉‖ → 0 whenever z′ → z.

2. Resolution of Unity: a positive measure τ(z) on L exists such that the unity operator admits the

representation

∫
L

|z〉〈z|dτ(z) = 1, (11)

where |z〉〈z| denotes a projector, which takes a state vector into a multiple of the vector |z〉.

3. Temporal Stability: the evolution of any coherent state |z〉 always remains a coherent state, which

leads to a relation of the form

|z(t)〉= e−iĤt/h̄
|z〉, (12)

where z(0) = z, for all z ∈ L and t.

4. Action Identity: this property requires that

〈z|Ĥ|z〉= h̄ω|z|2. (13)

At this point, we remark that requirements (3) and (4) are directly satisfied when the spectrum of the

Hamiltonian Ĥ of the system, has the form En ∼ nh̄ω, where n is the quantum number and ω is the

frequency of the oscillator [11]. In addition, there are some shortcomings about these requirements;

for instance, Gazeau and Klauder states cannot be used for degenerate systems. Furthermore, it is

questionable that action identity leads to the classical action-angle variable interpretation [23].

2.3. Continuous spectrum

Gazeau and Klauder proposed in Ref. [11] a formulation of coherent states for systems with continuous

spectrum. They introduced a Hamiltonian Ĥ > 0, with a non-degenerate continuous spectrum, thus

Ĥ|ε〉= ωε|ε〉, 0 < ε < εM (14)
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where {|ε〉} stands for a basis of eigenstates, which we can generalize replacing suitably discrete

parameters by continuous ones, sums by integrals and Kronecker by Dirac delta function [46]. In

such a case, we can always chose a normalized basis of eigenvectors to rephrase Eqs. (7) and (8) in the

following manner [46]

〈ε|ε′〉= δ(ε− ε′), (15)

and

∫ εM

0
|ε′〉〈ε|= 1̂, (16)

where εM ≤ ∞ [11]. In the section 5 and here we use units in which h̄ = 1.

If we set M(s) = e|z|
2
/2 and z = se−iγε into coherent states (6), we find

|s,γ〉= M(s)−1
∫ εM

0
dε

sεe−iγε

√

ρ(ε)
|ε〉, (17)

where s > 0. Since {|s,γ〉} are orthonormals, the normalization factor M(s) is given by

M(s)2 =
∫ εM

0
dε

s2ε

ρ(ε)
, (18)

for M(s)2
< ∞.

Coherent states (17) must satisfy resolution of identity. In this case, it was introduced in Ref. [11] the

following relation

ρ(ε) =
∫ s

0
ds′ s′2εσ(s′), (19)

where s′ is a variable of integration with 0 ≤ s′ < s ≤ ∞. In addition, a non-negative weight function

σ(s′) ≥ 0 was introduced in order to satisfy the second requirement. Then, the measure of integration

takes the form [11]

dτ(s,γ) = σ(s)M(s)2 ds
dγ

2π
. (20)

Gazeau and Klauder shown that resolution of unity is satisfied for systems with continuous spectrum

in the present formulation of coherent states [11]. In Ref. [19] the authors have proposed a continuous

appearance of Eq. (4), replacing the discrete form by the continuous version of variables, functions and

operators involved in the formalism. Hence, we are ready to define the Husimi distribution for systems

with continuous spectrum in the following manner:

µQ(s,γ) =
1

Z

∫ εM

0
dε e−βωε

|〈s,γ|ε〉|2, (21)
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where ε stands for a continuous parameter. The Husimi distribution is normalized according to

∫ ∞

0

∫ ∞

−∞
dτ(s,γ)µQ(s,γ) = 1, (22)

where the measure dτ(s,γ) is given by Eq. (20).

We see easily from Eq. (17) that, the projection of eingensatates of the Hamiltonian over coherent states,

is given by

〈s,γ|ε〉= M(s)−1 sεe−iγε

√

ρ(ε)
, (23)

where we have considered from Eq. (15) the orthogonality of the continuous states {|ε〉}. Introducing

the above expression into Eq. (21) we finally arrive to [19]

µQ(s) =
M(s)−2

Z

∫ εM

0
dε

e−βωεs2ε

ρ(ε)
, (24)

where we have dropped out the dependence on γ. The continuous partition function obviously is [20]

Z =
∫ εM

0
dε e−βωε. (25)

It is important to note that Eq. (24) is consistently normalized in accordance with

∫ ∞

0
dτ(s)µQ(s) = 1, (26)

and in this case, the measure is dτ(s) = σ(s)M(s)2 ds.

3. Landau diamagnetism: Charged particle in a uniform magnetic field

Diamagnetism was a problem firstly appointed by Landau who showed the discreteness of energy levels

for a charged particle in a magnetic field [24]. By the observation of the diverse scenarios in the

framework provided by the Landau diamagnetism we can study some relevant physical properties [25–

27] as thermodynamic limit, role of boundaries, decoherence induced by the environment. The main

motivation for several specialists work even today it is to make an accurate description of its theoretical

and practical consequences.

In the past the appropriate partition function for this problem was calculated by Feldman and Kahn

appealing to the concept of Glauber’s coherent states as a set of basis states [28]. This formulation

allows the use of classical concepts to describe electron orbits, even containing all quantum effects [28].

In a previous effort, this approach was used to obtain the Wehrl entropy [21, 22] and Fisher

information [29] with the purpose of studying the thermodynamics of the Landau diamagnetism

problem, namely, a free spinless charged particle in a uniform magnetic field [7]. In such contribution
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the authors focussed only in the transverse motion of a particle. For this reason, it was necessary to

normalize the Husimi distribution in order to arrive to a consistent expression for semiclassical measures

[7, 8, 32].

Certainly, because the relevant effects seem to come only from the transverse motion, several efforts are

made to describe this problem in two dimensions [7, 8, 27, 28, 32-34]. Furthermore, since the discovery

of interesting phenomena, as the quantum Hall effect, there has been much interest in understanding

the dynamics of electrons confined to move in two dimensions in the presence of a magnetic field

perpendicular to the motion plane [31]. The confinement is possible at the interface between two

materials, typically a semiconductor and an insulator, where a quantum well that traps the particles is

formed, forbidding their motion in the direction perpendicular to the interface plane at low energies.

However, we propose here to discuss this problem in the most complete form (three dimensions), some

results related to the behavior of the Wehrl entropy. From the present line of reasoning, it is concluded

that the two-dimensional formulation is sufficient unto itself to explain the problem whenever the length

of the cylindrical geometry of the system is large enough. Nevertheless, as suggested before, electronic

devices are based in interfaces. Thus, this fact theoretically imposes a natural lower temperature bound

that emerges from the analysis when three dimensions are considered [18].

3.1. The model of one charged particle in a magnetic field

We enter the present application by revisiting the complete set of coherent states of a spinless charged

particle in a uniform magnetic field. Consider the classical kinetic momentum

−→π = −→p +
q

c

−→

A , (27)

of a particle of charge q, mass mq, and linear momentum −→p , subject to the action of a vector potential
−→

A . These are the essential ingredients of the well-known Landau model for diamagnetism: a spinless

charged particle in a magnetic field B (we follow the presentation of Feldman et al. [28]). The

Hamiltonian reads [28]

H =
−→π ·

−→π

2mq
, (28)

and the magnetic field is
−→

B =
−→

∇ ×

−→

A . The vector potential is chosen in the symmetric gauge as
−→

A = (−By/2,Bx/2,0), which corresponds to a uniform magnetic field along the z−direction.

By using the quantum formulation of the step-ladder operators [28], one needs to define the step

operators as follows [28]

π̂± = p̂x ± ip̂y ±
ih̄

2ℓ2
B

(x̂± iŷ), (29)

where the length

ℓB = (h̄c/qB)1/2 (30)
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is the classical radius of the ground-state Landau orbit [28]. Motion along the z−axis is free [28]. For

the transverse motion, the Hamiltonian specializes to [28]

Ĥt =
π̂+π̂−

2mq
+

1

2
h̄Ω1̂, (31)

where an important quantity characterizes the problem, namely,

Ω = qB/mqc, (32)

the cyclotron frequency [33]. The eigenstates |N,m〉 are determined by two quantum numbers: N

(associated to the energy) and m (to the z− projection of the angular momentum). As a consequence,

they are simultaneously eigenstates of both Ĥt and the angular momentum operator L̂z [28], so that

Ĥt |N,m〉=

(

N +
1

2

)

h̄Ω |N,m〉= EN |N,m〉 (33)

and

L̂z|N,m〉= mh̄|N,m〉. (34)

We note that the eigenvalues of L̂z are not bounded by below (m takes the values −∞, . . . ,−1,0,1, . . . ,N)

[28]. This agrees with the fact that the energies (N + 1/2)h̄Ω are infinitely degenerate [33]. Such a

fact diminishes the physical relevance of phase-space localization for estimation purposes, as we shall

see below. Moreover, Lz is not an independent constant of the motion [33].

There exists a analogous formulation of an charged particle in a magnetic field by Kowalski that takes

into account the geometry of a circle [30] (and for a comparison with the Feldman formulation see

Ref.[8]), but at this point, we choose the Feldman formulation to work because the measure is easily

defined and the normalization condition and other semiclassical measures are well described.

3.2. Husimi distribution and Wehrl entropy

We will start our present endeavor defining the Hamiltonian Ĥ = Ĥt + Ĥl for a particle of mass mq and

charge q in a magnetic field B, where Ĥt = h̄Ω(N̂ +1/2) describes the transverse motion, being Ω the

cyclotron frequency as defined by the Eq. (32) and N̂ the number operator. In addition, the Hamiltonian

Ĥl = p̂2
z /2mq represents a longitudinal one-dimensional free motion. After constructing a coherent

state basis, a possible way to define the Husimi function η, for the complete motion, is given by

η(x, px;y, py; pz) = 〈α,ξ,kz|ρ̂|α,ξ,kz〉, (35)

where ρ̂ is the thermal density operator and the set {|α,ξ,kz〉} represents the coherent states for

the motion in three dimensions. Taking the direct product |α,ξ,kz〉 ≡ |α,ξ〉
⊗

|kz〉, the set {|α,ξ〉}
corresponds to the coherent states of the transverse motion and {|kz〉} to the longitudinal motion.

Therefore, the thermal density operator is given by

ρ̂ =
1

Z
e−β(Ĥl+Ĥt ), (36)
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where β= 1/kBT , kB the Boltzmann constant and T the temperature. Besides, Z is the partition function

for the particle total motion. If Z is separated in a similar way as other physical properties are separated,

it is possible to assure that Z = ZlZt , where Zt is the contribution for the transverse motion and Zl the

contribution for the one-dimensional free motion. Thus, the Husimi function [1] is written as

η =
e−βp2

z /2mq

ZlZt
∑
n,m

e−βh̄Ω(n+1/2)
|〈n,m|α,ξ〉|2. (37)

where

Zl = (L/h)(2πmqkBT )1/2 and (38)

Zt = AmqΩ/(4πh̄sinh(βh̄Ω/2)), (39)

being L the length of the cylinder, A = πR2 the area for cylindrical geometry [28]. In addition, the

matrix element |〈n,m|α,ξ〉|2 represents the probability of finding the charged particle in the coherent

state |α,ξ〉 and we can find its expression as defined previously [34].

It should be noticed that the distribution η can be written as follows

η = ηl(pz)ηt(x, px;y, py), (40)

where η has been separated as a function of two distributions, namely, ηl = ηl(pz) and ηt =
ηt(x, px;y, py). The dependence on the variable z has been missed due to the explicit form of the

hamiltonian Ĥl . Accordingly, after summing in Eq. (37) we find

ηl =
e−βp2

z /2mq

Zl

, (41)

ηt =
2πh̄

AmqΩ
(1− e−βh̄Ω)e−(1−e−βh̄Ω)|α|2/2ℓ2

B , (42)

where the length ℓB is defined by the Eq. (30). From expressions (41) and (42), we emphasize again

that ηl(pz) describes the free motion of the particle in the magnetic field direction and ηt(x, px;y, py)
the Landau levels due to the circular motion in a transverse plane to the magnetic field, similar to the

harmonic oscillator of Eq. (9) since |z|2 → |α|2/2ℓ2
B. Consequently Eqs. (40), (41) and (42) together

contain the complete description of the system. We noticed both distributions are naturally normalized

in a standard form, i.e.,

∫
dzdpz

h
ηl(pz) = 1, (43)

and

∫
d2αd2ξ

4π2ℓ4
B

ηt(x, px;y, py) = 1. (44)
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In consequence, both Eqs. (41) and (42), under conditions (43) and (44), bring a promising way to get

the exact form of the Wehrl entropy. Furthermore, using the additivity as the most basic property of the

entropy, we can state Wtotal =Wl +Wt . Hence,

Wl=−

∫
dzdpz

h
ηl(pz) lnηl(pz), (45)

Wt=−

∫
d2αd2ξ

4π2ℓ4
B

ηt(x,px;y,py) lnηt(x,px;y,py), (46)

where, as before, the subindex l stands for the longitudinal motion and t the transverse.

After evaluating the respective integrals in Eqs. (45) and (46), it is feasible to identify the two particular

entropies

Wl =
1

2
+ ln

(

L

λ

)

, (47)

Wt = 1− ln
(

1− e−βh̄Ω
)

+ ln (g) , (48)

where λ = h/(2πmqkBT )1/2 is the mean thermal wavelength of the particle and g = A/2πℓ2
B stands

for the degeneracy of a Landau level [35]. Indeed, Eq. (47) coincides with the classical entropy for a

free particle in one dimension. Eq. (48) is the Wehrl entropy for the transverse motion and possesses a

form for the one close to the harmonic oscillator entropy given by the Eq. (10), with the exception of a

term associated with the degeneracy.

3.3. Semiclassical behavior and consequences

Although the total Wehrl entropy is expressed simply as follows

Wtotal =
3

2
− ln(1− e−βh̄Ω)+ ln (g)+ ln

(

L

λ

)

, (49)

we notice that some of its properties are directly derived from Eqs. (47) and (48). First, as we

commented before, Wl coincides with the classical entropy for the free motion in one dimension. From

this glance, we can add that Wl has to be nonnegative, Wl ≥ 0 at all temperatures. This last condition

imposes a minimum temperature, given by

T0 =
h2

2πmqekBL2
, (50)

where e = 2.718281828. The standard behavior of Wl obligates the system to take high values of

temperature, wherever the temperature T ought to be greater than T0, in such case the conduct of the

system is classical. This is equivalent to assert that, if T /T0 ≥ 1, the length of a thermal wave λ lower

than the average of the spacing among particles and quantum considerations are not relevant [36].

In addition, T0 only depends on the size of the system and does not depend on other external or
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internal physical parameters such as transverse area, external magnetic field, charge of the particle,

etc. If the system is large then the minimum temperature is low. However, modern electronic systems

has junctions where L is practically zero. In such case the required minimum temperature to make

applicable our description is numerically high enough [39].

Nevertheless, the entropy associated with transverse motion satisfies Wt ≥ 1+ ln(g) for all temperatures

in the system of a particle in a magnetic field where the symmetry is polar, which is almost the Lieb

condition for systems in one dimension [37] with an additional term associated with the degeneracy g.

Roughly speaking, the transverse motion is bi-dimensional, but in the Landau approach the quantum

motion of the particle in a magnetic field is reduced to a degenerate spectrum in one dimension. This

degeneracy essentially recovers the physics of the missing dimension. Resuming the discussion of the

behavior of the Wehrl entropy, it is not plausible to adventure any conclusion about the applicability of

the present treatment because the Lieb condition is always satisfied. This is the main problem stems

from the restricted vision presented in other contributions over this topic which only put its emphasis on

the transverse motion [8, 28, 30] and represent the main difference from the vision obtained in that other

contributions that discuss this topic. From the combined reasoning of both motions we conclude that

the present description, this is the calculation of Wt , has sense when the imposition over the temperature

is satisfied. Under T0 the behavior is intrinsically anomalous and the present proposal is not applicable.

If we consider kBT ≫ h̄Ω, we can apply the first order of approximation as ln(g/(1− e−βh̄Ω)) ≈
ln(AT /T0L

2). Indeed, taking into account that the thermal wave length can be rewritten in terms of

the temperature T0 this way λ = L(eT0/T )1/2, the expression (49) after a bit of algebra reduces to

W
(1)
total ≈

3

2
ln

(

T

T0

)

+ ln

(

A

L2

)

. (51)

Considering that V = AL in Eq. (51), the total Wehrl entropy can be expressed as follows

W
(1)
total =

3

2
+ ln

(

V

λ3

)

. (52)

This is a particular expression for the entropy of a free particle in three dimensions related to the motion

of a charged particle into a region of the magnetic field making mention of some geometrical properties

of the system.

In second order of approximation for high temperatures, considering the special condition A ∼ L
2,

Wehrl entropy is expressed as follows

W
(2)
total ≈

T0

T
g+

3

2
+

3

2
ln

(

T

T0

)

=
T0

T
g+W

(1)
total. (53)

As explained before, the Wehrl entropy takes values that are permitted by the Lieb condition, namely,

W ≥ 1. According to Eq. (53) the slope decreases as temperature increases. This fact illustrates why

the disorder slowly increases as the magnetic field increases too. Consequently, at extremely high

temperatures as expected, the slope of the present linear dependence tends to zero apparently taking a

constant value close to the corresponding classical entropy of the free particle in three dimensions.
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The lower bound of temperature is related to T /T0 → 1+, because this approach does not consider

temperature values under T0. The total Wehrl entropy is reduced to logarithm behavior of the magnetic

field.

To study what occurs close to zero temperature, in accordance with Eq. (50), we need to take systems

with L → ∞ and after this consideration the transverse entropy of Eq. (48) can be seen as follows

W T→0+

t = 1+ ln (g) . (54)

As we discussed before, this Wehrl entropy is also a kind of harmonic oscillator entropy and the lower

bound complies with being greater than a bound limiting value of the temperature, which has been

suggested by Wehrl and shown by Lieb, W ≥ 1 [37]. Starting from this condition it must arrive to the

following inequality for the magnetic field

g ≥ 1, (55)

where g = qAB/hc also accounts for the ratio between the flux of the magnetic field AB and the

quantum of the magnetic flux given by hc/q = 4.14×10−7[gauss/cm2] [17]. Then the inequality (55)

adopts the form

B ≥

1

A

hc

q
= B0. (56)

Therefore, the quantity B0 = hc/Aq becomes a bound limiting field that represents the minimum value

for the external magnetic field. To study what occurs close to zero magnetic field we need to take

systems with A → ∞.

For finite values of A and B lower than B0 is manifested the Haas-van Alphen effect, which describes

oscillations in the magnetization because at temperatures low enough the particles will tend to occupy

the lowest energy states. Whereas if the value of the magnetic field decreases a less number of particles

can be in the lowest state due to degeneracy is directly proportional to B [35]. Then, the transverse

Wehrl entropy Wt is well defined for values of the magnetic field over B0, this is B/B0 ≥ 1 and/or

g → 1+.

We can assert that this description of the system is not quantum, we say that it is semiclassical; for

instance, it does not contain the Haas-van Alphen effect, the same condition marks the beginning of one

description and the ending of the other.

Other relevant effect that emerges from the Landau quantization [38] is the quantum Hall effect [39]

which is a quantum-mechanical version of the Hall effect [31], observed in two-dimensional electron

systems subjected to low temperatures and strong magnetic fields. The degeneracy is given by [17]

φ = νφ0, (57)

where φ0 = hc/q is the quantum of the magnetic flux. The factor ν is related to the “filling factor" that

takes integer values (ν = 1, 2, 3, . . . ). The discovery of the fractional quantum Hall effect [32] extend

these values to rational fractions (ν = 1/3, 1/5, 5/2, 12/5, . . . ). The integer quantum Hall effect is simply

explained in terms of the conductivity quantization σ = νq2
/h. However, the fractional quantum Hall

effect relies on other phenomena related to interactions. Consistently, we see that the degeneracy is
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equal to ν, which must be greater than 1 due to the inequality (55) obtaining an infinite family of Wehrl

entropies

Wt = 1− ln(1− e−βh̄Ω)+ lnν. (58)

Again, Eq. (55) provides the limiting value of ν and, as before, the transverse entropy always

satisfies the Lieb bound for all temperatures and large enough systems when the quantum Hall effect is

manifested at least for the integer quantum Hall effect. Conversely, fractional values of ν less than 1 are

left out the present approach.

4. Description of the molecular rotation: Rigid rotator

The rigid rotator is a system of a single particle whose quantum spectrum of energy is exactly known.

Therefore, the study of typical thermodynamic properties can be analytically derived [40]. Applications

lead to the treatment of important aspects of molecular systems [41] and several applications to

materials [42].

4.1. Linear rigid rotator

We start the present study by exploring a simple model, the linear rigid rotator, based on the excellent

discussion concerning the coherent states for angular momenta given in Ref. [43]. The Hamiltonian of

the linear rigid rotator is [20]

Ĥ =
L̂2

2Ixy
, (59)

where L̂2 = L̂2
x + L̂2

y is the angular momentum operator and Ix and Iy are the associated moments of

inertia. We have assumed that Ixy ≡ Ix = Iy. Calling |IK〉 the set of H-eigenstates, we recall that they

verify the relations

L̂2
|IK〉 = I(I + 1)h̄2

|IK〉

L̂z|IK〉 = Kh̄|IK〉, (60)

with I = 0,1,2 . . . , for −I ≤ K ≤ I, the eigenstates’ energy spectrum being given by

εI =
I(I + 1)h̄2

2Ixy
. (61)

Coherent states are constructed in Ref. [44, 45] for the lineal rigid rotator, using Schwinger’s oscillator

model of angular momentum, in the fashion

|IK〉=
(â†

+)
I+K(â†

−
)I−K

√

(I +K)!(I −K)!
|0〉, (62)
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with â+, â− the pertinent creation and annihilation operators, respectively, and |0〉 ≡ |0,0〉 the vacuum

state. The states |IK〉 are orthogonal and satisfy the closure relation, i.e.,

〈I
′

K
′

|IK〉= δ
I
′

,IδK
′

,K , (63)

∞

∑
I=0

I

∑
K=−I

|IK〉〈IK|= 1̂. (64)

Since we deal with two degrees of freedom the ensuing coherent states are of the tensor product form

(involving |z1〉 and |z2〉) [43, 46]

|z1z2〉= |z1〉⊗ |z2〉, (65)

where

â+|z1z2〉= z1|z1z2〉, (66)

â−|z1z2〉= z2|z1z2〉. (67)

Therefore, the coherent state |z1z2〉 writes [43]

|z1z2〉= e
−

|z|2

2 e
z1â

†
+e

z2â
†
−
|0〉, (68)

with

|z1〉 = e
−

|z1 |
2

2 e
z1â

†
+ |0〉, (69)

|z2〉 = e
−

|z2 |
2

2 e
z2â

†
−
|0〉. (70)

We have introduced the convenient notation

|z|
2 = |z1|

2 + |z2|
2. (71)

Using Eqs. (62) and (68) we easily calculate |z1z2〉 and, after a bit of algebra, find

|z1z2〉= e
−

|z|2

2 ∑
n+ ,n−

z
n+

1
√

n+!

z
n−

2
√

n−!
|IK〉 (72)
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where n+ = I+K and n− = I−K. Therefore, the probability of observing the state |IK〉 in the coherent

state |z1z2〉 is of the form

|〈IK|z1z2〉|
2 = e−|z|2 |z1|

2n+

n+!

|z2|
2n−

n−!
. (73)

The present coherent states satisfy resolution of unity

∫
d2z1

π

d2z2

π
|z1z2〉〈z1z2|= 1. (74)

Furthermore, z1 and z2 are continuous variables.

Following the procedure developed by Anderson et al. [4], we can readily calculate the pertinent Husimi

distribution [1]. For our system this is defined, from Eq. (4), as

µ(z1,z2) = 〈z1,z2|ρ̂|z1,z2〉, (75)

where the density operator is

ρ̂ = Z−1
2D exp (−βĤ). (76)

The concomitant rotational partition function Z2D is given in Ref. [20]

Z2D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ
T , (77)

with Θ = h̄2
/(2IxykB). Remark that in the present context, speaking of the “trace operation" entails

performing the sum Tr ≡ ∑∞
I=0 ∑I

K=−I . Inserting now the closure relation into Eq. (75), and using

Eq. (73), we finally get our Husimi distribution in the fashion

µ(z1,z2) = e−|z|2
∑∞

I=0
|z|4I

(2I)!
e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)e−I(I+1) Θ

T

. (78)

It is easy to show that this distribution is normalized to unity

∫
d2z1

π

d2z2

π
µ(z1,z2) = 1, (79)

where z1 and z2 are given by Eqs. (66), (67), and (71). Note that we must deal with the binomial

expression (|z1|
2 + |z2|

2)4I firstly and then integrate over the whole complex plane (in two dimensions)

in order to verify the normalization condition (79). The differential element of area in the z1(z2) plane

is d2z1 = dxdpx/2h̄ (d2z2 = dydpy/2h̄) [13]. Moreover, we have the phase-space relationships
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|z1|
2 =

1

4

(

x2

σ2
x

+
p2

x

σ2
px

)

, (80)

|z2|
2 =

1

4

(

y2

σ2
y

+
p2

y

σ2
py

)

, (81)

where σx ≡ σy =
√

h̄/2mω and σpx
≡ σpy

=
√

mωh̄/2.

The profile of the Husimi function is similar to that of a Gaussian distribution.

The Wehrl entropy is a semiclassical measure of localization [21] (so is Fisher’s one [5] as well). Indeed,

Wehrl’s measure is simply a logarithmic Shannon measure built up with Husimi distributions. For the

present bi-dimensional model this entropy reads

W = −

∫
d2z1

π

d2z2

π
µ(z1,z2) lnµ(z1,z2), (82)

where µ(z1,z2) is given by Eq. (78).

4.2. Rigid rotator in three dimensions

In the present section we consider a more general problem, the model of the rigid rotator in three

dimensions, whose Hamiltonian writes [47]

Ĥ =
L̂2

x

2Ix
+

L̂2
y

2Iy
+

L̂2
z

2Iz
, (83)

where Ix, Iy, and Iz are the associated moments of inertia. A complete set of rotator eigenstates is

{|IMK〉}. The following relations apply

L̂2
|IMK〉 = I(I + 1)h̄2

|IMK〉

L̂z|IMK〉 = Kh̄|IMK〉 (84)

Ĵz|IMK〉 = Mh̄|IMK〉,

where I = 0, . . . ,∞,−I ≤ K ≤ I, and −I ≤ M ≤ I. The states |IMK〉 satisfy orthogonality and closure

relations [47]

〈I
′

M
′

K
′

|IMK〉= δI
′

,IδM
′

,MδK
′

,K (85)
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∞

∑
I=0

I

∑
M=−I

I

∑
K=−I

|IMK〉〈IMK|= 1̂. (86)

If we take L̂2 = L̂2
x + L̂2

y + L̂2
z and assume axial symmetry, i.e., Ixy ≡ Ix = Iy, we can recast the

Hamiltonian as

Ĥ =
1

2Ixy

[

L̂2 +

(

Ixy

Iz
−1

)

L̂2
z

]

, (87)

where L̂2 is the angular momentum operator and L̂z is its projection on the rotation axis z. The

concomitant spectrum of energy becomes

εI,K =
h̄2

2Ixy

[

I(I + 1)+

(

Ixy

Iz
−1

)

K2

]

, (88)

where I = 0,1,2, · · · and it represents the eigenvalue of the angular momentum operator L̂2, the numbers

m =−I, · · ·,−1,0,1, · · ·, I stand for the projections on the intrinsic rotation axis of the rotator. All states

exhibit a (2I + 1)−degeneracy. The parameters Ix = Iy ≡ Ixy and Iz are the inertia momenta. Different

“geometrical" instances are characterized through the Ixy/Iz−ratio. For example, the value Ixy/Iz = 1

corresponds to the spherical rotator. Limiting cases can also be considered. This is, Ixy/Iz = 1/2 and

Ixy/Iz → ∞, that correspond to the extremely oblate- and prolate cases, respectively.

4.2.1. Coherent states for the rigid rotator in three dimensions

In order to obtain the Husimi distribution for this problem we need first of all to have the associated

coherent states. Morales et al. have constructed them in Ref. [47] and discussed their mathematical

foundations. First, they introduced the auxiliary quantity

XI,M,K =
√

I!(I +M)!(I −M)!(I +K)!(I −K)!, (89)

and then write [47]

|z1z2z3〉= e−
|u|2

2 ∑
IMK

[(2I)!]2z
(I+M)
1 zI

2z
(I+K)
3

XI,M,K
|IMK〉, (90)

where the following supplementary variable were introduced by Morales et al. in Ref. [47]

|u|2 = |z2|
2(1+ |z1|

2)2(1+ |z3|
2)2. (91)

All coherent states share at least two requirements. Continuity of labeling and resolution of unity. In

relation to the last property we add

∫
dΓ|z1z2z3〉〈z1z2z3|= 1 (92)
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where dΓ is the measure of integration given by [47]

dΓ = dτ

{

4[(1+ |z1|
2)(1+ |z3|

2)]4|z2|
4
−8[(1+ |z1|

2)(1+ |z3|
2)]2|z2|

2 + 1

}

(93)

with

dτ =
d2z1

π

d2z2

π

d2z3

π
, (94)

and, of course, in this case we have three degrees of freedom. The present formulation satisfy the

weaker version of the second requirement, because the measure is defined non positive [47].

4.2.2. Husimi function, Wehrl entropy

Using now Eq. (90) we find

|〈IMK|z1z2z3〉|
2 =

e−|u|2

X2
I,M,K

[(2I)!]2|z1|
2(I+M)

|z2|
2I
|z3|

2(I+K) (95)

and determine that, in this case, the rotational partition function reads

Z3D =
∞

∑
I=0

I

∑
K=−I

I

∑
M=−I

e−βεI,K , (96)

i.e.,

Z3D =
∞

∑
I=0

(2I + 1)e−I(I+1) Θ
T

I

∑
K=−I

e
−

(

Ixy

Iz
−1

)

K2 Θ
T . (97)

Remark that if we take the “extremely prolate" limiting case Ixy/Iz → ∞ just one term that survives in

the right sum of the right side in Eq. (97), that for K = 0, while all terms for K 6= 0 vanish. In this

special instance case Z2D is recovered from Z3D. The pertinent Husimi distribution becomes

µ(z1,z2,z3) =
e−|u|2

Z3D

∞

∑
I=0

(2I)!

I!
|v|2I e−I(I+1) Θ

T ×g(I), (98)

where

g(I) =
I

∑
K=−I

|z3|
2(I+K)

(I +K)!(I −K)!
e
−

(

Ixy

Iz
−1

)

K2 Θ
T , (99)

with

|v|2 = (1+ |z1|
2)2

|z2|
2, (100)
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|u|2 = |v|2(1+ |z3|
2)2. (101)

We can easily verify that µ(z1,z2,z3) is normalized in the fashion

∫
dΓµ(z1,z2,z3) = 1, (102)

We compute now (i) the Wehrl entropy in the form

W =
∫

dΓµ(z1,z2,z3) lnµ(z1,z2,z3). (103)

In the special instance Ixy/Iz = 1, that corresponds to the spherical rotator, we explicitly obtain

µ(z1,z2,z3) = e−|u|2 ∑∞
I=0

|u|2I

I!
e−I(I+1) Θ

T

∑∞
I=0 (2I + 1)2 e−I(I+1) Θ

T

. (104)

Having the Husimi functions the Wehrl entropy is straightforwardly computed.

In order to emphasize some special cases associated to possible applications we consider several

possibilities.

1. The spherical rotator Ixy = Ix = Iy = Iz, thus Ixy/Iz = 1 (e.g. CH4).

2. The oblate rotator Ixy = Ix = Iy < Iz, specifically 1/2 ≤ Ixy/Iz < 1 (e.g. C6H6).

3. The prolate rotator Ixy = Ix = Iy > Iz, which corresponds to Ixy/Iz > 1 (e.g. PCl5).

4. The extremely prolate rotator is equivalent to the linear case (all diatomic molecules, Iz = 0, this is

Ixy/Iz → ∞ (e.g. CO2, C2H2).

5. Husimi distribution for systems with continuous spectrum

In this section we propose a procedure to generalize the Husimi distribution to systems with continuous

spectrum. We start extending the concept of coherent states for systems with discrete spectrum to

systems with continuous one. In the present section, we see the Husimi distribution as a representation

of the density operator in terms of a basis of coherent states. We specially discuss the problem of the

continuous harmonic oscillator [20].

5.1. The exponential weight function: Harmonic oscillator

From the ρ(ε) definition expressed in Eq. (19), we can take a non-negative weight function like σ(s′) =
exp(−s′). However, this choice is not fully arbitrary, because it relies on , at least, two reasons: 1) it is

related to the harmonic oscillator and, 2) it is a useful function that permits exactly to solve the integral

(19). The latter reason allows to express such integral in the following way
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ρ(ε) =
∫ s

0
ds′s′2ε exp(−s′),

= e−s/2 sε

2ε+ 1
M (ε,ε+ 1/2,s) (105)

where M (a,b,x) is the Whittaker function [48]. Besides, in relation to the first reason, when we

consider ε = n, where n is integer, in the limit s → ∞; the Eq. (105) drops into the known quantum

result for the harmonic oscillator, ρ(n) = n! [11].

Moreover, the measure in phase space can be explicitly expressed from Eq. (20) as follows

dτ(s) = dse−s/2
∫ εF

0
dε

(2ε+ 1)sε

M (ε,ε+ 1/2,s)
. (106)

Although obtaining this explicit form of the measure, a most general expression for the integral of

Eq. (106) strongly depends on the particular spectrum of the system. In the present case, a spectrum

like ε ∝ ω, the harmonic oscillator in the continuous limit, is considered.

5.2. s → 0 approximation for the Husimi distribution

In order to know the shape of the Husimi distribution in s = 0, we need to calculate some important

quantities. First, we evaluate ρ(ε) given by Eq. (105) expanding the exponential which appears inside

the integral, as follows

ρ(ε) ≈ lim
s→0

∫ s

0
ds′s′2ε(1− s′+ · · · ), (107)

≈

s2ε+1

2ε+ 1

(

1−
2ε+ 1

2ε+ 2
s+ · · ·

)

. (108)

But, we are interested in evaluating the inverse of ρ(ε), therefore

1

ρ(ε)
≈

2ε+ 1

s2ε+1

(

1+
2ε+ 1

2ε+ 2
s+ · · ·

)

. (109)

Second, we show easily that, in the limit s → 0, the Husimi distribution is given by

µQ(0) =
1

Z

∫ εM

0 dε (2ε+ 1)e−βωε

∫ εM

0 dε (2ε+ 1)
. (110)

Now, after integrating Eq. (25) the partition function is expressed as follows

Z =
1− exp(−βωεM)

βω
. (111)
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Then, the substitution of the Eq. (111) into (110) leads us to the appearance

µQ(0) =
(2e−βωεM βωεM + 2e−βωεM + e−βωεM βω−2−βω)

βωεM(e−βωεM −1)(εM + 1)
. (112)

In the high temperature limit, this becomes

µQ(0) ≈
1

εM
−

βωεM

6(εM + 1)
. (113)

If we take into account a kind of particles filling a band in the lowest continuous levels of energy (for

instance, εM → 1), we find µQ(0) = 1−βω/12.

5.3. Asymptotic behavior of the Husimi function

In this part of the work, we are considering a particular range for ε; i.e., 0 ≤ ε ≤ εM = 1 and we study

the asymptotic behavior of the Husimi distribution. This trend might be obtained from the limiting case

of the Whittaker function [48] defined for s → ∞, as follows:

lim
s→∞

e−s/2sε
M (ε,ε+ 1/2,s)

2ε+ 1
= Γ(2ε+ 1). (114)

If we replace this result into Eq. (124) we obtain

M(s)2 = es/2
∫ εM

0
dε

s2ε

Γ(2ε+ 1)
, (115)

and, from Eq. (24) we write

µQ(s) =
M(s)−2

Z
es/2

∫ εM

0
dε

e−ωβεs2ε

Γ(2ε+ 1)
. (116)

Now, we follow expanding to third order the inverse of the gamma function, 1/Γ(2ε+ 1), around its

maximum [48]

1

Γ(2ε+ 1)
≈

3

∑
n=0

Anεn, (117)

where A0 = .9963530195, A1 = 1.221909147, A2 = −3.108524622, and A3 = 1.333217620.

From Eq. (115), we derive a approximate result for M(s)2, which is given by

M(s)2 = es/2 s

2

3

∑
n=0

An

M
(

n
2 , n

2 +
1
2 ,−2ln(s)

)

(n+ 1)(−2ln(s))1+n/2
, (118)
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and combining all above expressions, we have finally found an expression to third order of

approximation for Husimi distribution given by

µQ(s) =
M(s)−2

Z
es/2−βω/2 s

2

3

∑
n=0

An

M
(

n
2 , n

2 +
1
2 ,βω−2ln(s)

)

(n+ 1)(βω−2ln(s))1+n/2
, (119)

where M (a,b,c) is again the Whittaker function [48].

In the high temperature approximation, Eq. (119) is given by

µQ(s) ≈ βω
exp(−βω/2)

1− exp(−βω)
≈ exp(−βω/2). (120)

The present result does not depend on the values of the parameter s. Furthermore, this approximation

is valid whenever 0 ≤ ε ≤ 1. We notice that the asymptotic trend of the Husimi distribution approaches

to the Boltzmann weight in the ground state of the harmonic oscillator.

5.4. Some applications and consequences

In Ref. [11], the mean value of energy is obtained from the expectation value of the classical

Hamiltonian H in a coherent state as follows H (s) = 〈s,γ|H |s,γ〉, therefore they arrive to the relation

H (s) = s∂ lnM(s)/∂s.

However, it is our interest here to calculate the mean value of energy in a different way, integrating in

the variable s with µQ(s) as a weigh function. Hence, we have

〈H 〉=
∫

dτ(s)µQ(s)H (s), (121)

where H , expressed in terms of the variable s, denotes the classical Hamiltonian of the system. Inserting

the Husimi distribution (24) into Eq. (121) and making use the relation (19) we finally get

〈H 〉=
1

Z

∫ εM

0
dεe−βε

H (ε), (122)

that is the classical mean energy [20]. We emphasize that the Husimi distribution, for a system with

continuous spectrum, conduces in a natural way to the classical mean value of energy. Obviously, this

is not true when the spectrum is discrete.

An extra motivation consists in extending the formulation of coherent states to systems with continuum

spectrum considering its explicit form; for instance, we can take a spectrum whose appearance is E =
Aεν, where A and ν are constant. The values ν = ±1 and ν = 2 might define the continuous limit of

three remarkable cases in physics. Certainly, in a general study other values of the parameter ν may

be conveniently considered as an interesting analytical extension. Thus, for ν = 1 and A = ω we have

the continuous limit of a particle in a harmonic potential; this case is being in detail discussed in the

present work. For ν = 2 we have the continuous limit of a particle in a box. For ν = −1 we have the
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continuous limit of a particle in a Coulomb potential. Therefore, it is necessary to introduce a density

of states g(E) in the formulation of continuous coherent states (17) and immediately get the following

modification

|s,γ〉= M(s)−1
∫

EM

0
dE g(E)

sE/Ae−iγE/A

√

ρ(E)
|ε〉, (123)

where the function M(s)

M(s)2 =
∫

EM

0
dE g(E)2 s2E/A

ρ(E)
(124)

represents the normalization factor.

6. Final remarks

We have included in the current work some motivational elements to develop possible future

applications to information theory and condensed matter. We have focused attention primarily

upon Husimi distribution and its analytical results, beyond the numerical, graphical, or approximate

calculations. A semiclassical description undertaking can be tackled, (i) trying to estimate phase-space

location via measures as Fisher information and (ii) evaluating the semiclassical Wehrl entropy. A

crucial point, in such an estimation, is to define the Husimi distribution in a convenient set of coherent

states. Hence, we introduce a formal view of general requirements for formulations of coherent states in

the context of the Gazeau and Klauder formalism for the harmonic oscillator – we have included some

mathematical details in order to make it easy to follow and instructive in courses of quantum mechanics

for graduates– we show some practical elements to apply the present formalisms to specific calculations

of semi-classical measures.

By using a suitable formulation of coherent states in every case, we show explicitly the form

of the Husimi distribution for i) a spinless charged particle in a uniform magnetic field (Landau

diamagnetism), (ii) the linear and the three dimensional rotator (molecular rotation) and (iii) a case

of the limiting harmonic oscillator (continuous spectrum).

In addition, we can calculate the probability by projecting the states over the coherent states as a function

of a variable related to the coherent states. We see that the localization of probability, in the phase space

decreases as temperature increases. Also, as always, the localization of the Husimi distribution in the

phase space decreases as temperature increases. The present derivation of Husimi distributions is based

on the evaluation of the mean value of the density operator in the basis of a single-particle coherent

state. While the Husimi function takes into account collective and environmental effects, the coherent

states are independent-particle states. Thus, if the Husimi distribution is delocalized, we need many

wave packets (independent-particle states) to represent the state. Furthermore, the thermodynamics

of particles in systems, which come from environmentally induced effects, does not depend on the

formulation of the coherent states. In this manner, we expect this behavior to become general.

In conclusion, quantal distributions in the phase space, such as the Husimi distribution, have long been

recognized as powerful tools for studying the quantum-classical correspondence and semi-classical

aspects of quantum mechanics, since they provide a phase-space picture of the density matrix. We
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Chapter 26

The Quantum Mechanics Aspect of Structural
Transformations in Nanosystems

M. D. Bal’makov

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/53704

1. Introduction

Theoretical and experimental investigations of size effects have made a substantial contribu‐
tion to the development of nanophysics and nanochemistry. However, a great deal needs to
be done in this field. Experimental results are not necessarily consistent with the traditional
concepts. In particular, the melting temperature of small nanoparticles unexpectedly turned
out to be higher than the melting temperature of a macroscopic sample of the same chemical
composition [1].

It is this chemical composition of a macroscopic system that determines its melting temperature
Tm, the specific heat of melting Qm, and the entropy of melting Sm. These quantities do not
depend on the number M of atoms (in the limit, M→∞). This statement ceases to be valid for
relatively small systems. In the given case, it is necessary to take into account the dependences
of the quantities Tm, Qm, and Sm on the number M of atoms. Moreover, as the size of the system
decreases, the interpretation of the physical quantities Tm, Qm, and Sm should be refined. Indeed,
one molecule, for example, the hydrogen molecule, cannot melt, because its dissociation occurs
with an increase in the temperature. In this respect, it is advisable to analyze the structural
transformations in nanosystems within a unified approach of the first principles of quantum
mechanics and statistical physics.

2. Quasiclosed ensembles

In the framework of classical physics each structural modification is set by the vector

( )1 2 , ,  ... , ... ,i M=R r r r r (1)

© 2013 Bal’makov; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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where ri are the radius vectors of all atomic nuclei of the polyatomic system. But the atomic
nucleus is not a mathematical point whose position is unambiguously determined by the vector
ri. The motion of microparticles is not characterized by the trajectory ri(t). One can speak solely
about the sites of their localization. In the case of condensed systems the size of the sites of atomic
nucleus localization is much smaller than the interatomic distances and is a tenth-hundredth
of an angstrom. Therefore, one of the ways to make a brief quantum-mechanical description of
the structure R consists in setting the coordinates ri (1) of the centers of these sites.

As a rule, numerous quantum states forming a quasiclosed ensemble correspond to each
memorized macrostate (to each structural modification of Rk). This raises the question about
the number G(0) of different quasiclosed ensembles.

The magnitude of G(0) cannot be evaluated without application of quantum-mechanical
methods. The point is that the components ri of the vector R (1) can vary continuously, i.e.
there exists a continuum of various structures (different vectors Rk), which cannot even be
numbered with the help of the index k, if it has solely integer values. This hampers the
determination of the number G(0) of different structural modifications. In a quantum-mechan‐
ical description of a structure the superfluous detailing is useless altogether since according
to quantum mechanics, a system is usually localized not at one point Rk but in a certain volume
(cell Ωk). The set of all cells Ωk is countable. It is this circumstance that allows one to speak
about the number G(0) of different structural modifications of the condensed system with a
fixed chemical composition.

In order to find the numerical value of G(0) it is necessary to consider primarily the problem of
distribution of quantum states over different quasiclosed ensembles. Some of these are formed
by the microstates corresponding to one of the free energy minima. The latter holds only for
stable and metastable systems. In the overwhelming majority of cases we are dealing however
the with nonequilibrium systems, the thermodynamic potentials of which are far from being
extreme.

Thus structural modifications of the vitreous state are not characterized by the Gibbs energy
minimum. Each of them is described by its intrinsic quasiclosed ensemble. Their macroscopic
properties are invariable because a quite definite structural modification corresponds to each
ensemble. It is for this reason that glasses are kinetically frozen nonequilibrium systems, the
properties of which virtually do not change over the long time interval tmax. The same may also
be said about the overwhelming majority of noncrystalline substances, many of which are
already widely used for recording information.

The class of various quasiclosed ensembles (different macrostates memorized by the system
with a fixed chemical composition) is extraordinarily broad. Their number is substantially
larger than the number of Gibbs energy minima.

All atomic configurations Rk (1) of an ideal monatomic gas are equiprobable. Condensed
systems are characterized by the totally opposite situation. Therefore, it is not surprising that
some of their structural modifications may be frozen (memorized) for a long time interval tmax.
Let us illustrate what has been said above in the framework of the adiabatic approximation.
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3. Adiabatic approximation

The adiabatic approximation [2] is based on the considerable differences in the masses of electrons
and nuclei, which makes it possible to describe their motions separately well. Being light particles,
the electrons `succeed' in adapting themselves to the instantaneous configuration R (1) of the
atomic nuclei, the latter in turn `notice' only the averaged disposition of electrons.

In the zero approximation the atomic nuclei are regarded to be at rest [R = const (1)]. In this
case, the wave function Φj(R, X) of the j-th stationary quantum state of the electron subsystem
satisfies the equation [3]

µ ( ) ( ) ( )( ),  , ,j
j M jH UF = FR X R R X (2)

where Ĥ  is the Hamiltonian of electrons at fixed nuclei, which represents the sum of the total
Coulomb energy of the interaction of atomic nuclei and electrons, the operator of the spin-
orbital interaction of electrons and the operator of the kinetic energy of electrons; X is the sum
of spatial and spin variables of all electrons of the system under consideration; U

M
( j) (R) is the

adiabatic electron term (Fig. 1), which in the case of a polyatomic system (M>3) usually has a
great number of different physically non-equivalent minima Rk [4]. The Hamiltonian Ĥ  does
not contain any operator of the kinetic energy of atomic nuclei and, consequently, is the
operator of the energy of the system under consideration for the fixed atomic configuration R.

When the motion of atomic nuclei does not induce any transitions between different electronic
states, the function U

M
( j) (R) (2) may be interpreted as the potential energy of the nuclei

corresponding to the j-th electronic state. In this case their motion takes place in the potential
field of U

M
( j) (R).

Therefore, the nuclear wave function χj(R, E) satisfies the Schrödinger equation [3]

µ ( ) ( ) ( )( )  ,( )    ,  ,j
j

M j ET EU Ec c=+ R R R (3)

in which in contrast to (2), there is no variable X corresponding to the electron subsystem. Here,
T̂ is the operator of the kinetic energy of atomic nuclei; E is the energy of the stationary quantum
state. The chemical composition n determines unequivocally the explicit form of equations
(2) and (3). The components of the vector n are the relative concentrations of atoms of each
species which form the system under consideration.

Their different solutions describe various modifications of a substance with a fixed composi‐
tion. This can serve as the basis for classification of these solutions. Thus in the case of selenium
some solutions may be attributed to the fluid state, others - to definite crystalline modifications,
to amorphous modifications, to the vitreous state, to films, etc. However, it is most advisable
to base the discussed classification of solutions of equations (2) and (3) on the structure R (1)
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because the information about individual peculiarities of a polyatomic system is eventually
stored in the mutual disposition of its atomic nuclei. Any structural modification (e.g., the k-
th modification) which is preserved at least over the time interval tmax is described by the
wave functions Φj(R, X) (2) and χj(R, E) (3) localized near the point Rk. (Fig. 1). The diversity
of the latter actually determines all the states belonging to the k-th quasiclosed ensemble.

Usually one or a series of potential Rk minima correspond to the points U
M
( j) (R), near which

the motion of one or other structural modification takes place. In order to estimate the number
of such points (the number G(0) of different quasiclosed ensembles), it is, as a rule, sufficient to
consider only the minima of the adiabatic electron term U

M
(0) (R) corresponding to the ground

(j = 0) state of the electron subsystem1. 

The point is that the lifetimes τe of most excited states of the electron subsystem are relatively
short (τe << tmax). Therefore, these states alone cannot form a quasiclosed ensemble, in the
framework of which the k-th structural modification can be described over a long time interval
tmax. Its preservation is favored by the potential barriers surrounding the minimum Rk of the
adiabatic electron term U

M
(0) (R) (Fig. 1). If they are sufficiently high, then even the low-energy

quasi-steady [5] states localized in the potential well Rk under consideration have larger
[compared to tmax ] lifetimes τl which satisfy the inequalities

 

 

 

)(
MU

0 (R) 

R1 Ri Rk 

Figure 1. Adiabatic electron term U
M
(0) (R). This figure is rather conditional because for polyatomic systems (M > 3) the

function U
M
(0) (R) is set, in conformity with (1), in the multidimensional space.

   r max lt tt << << (4)

where τr is the relaxation time of the phonon subsystem, which is usually appreciably shorter
than the time tmax required for the preservation of structural modifications.

1 Each minimum of the function U
M
(0) (R) sets one of the equilibrium configurations Rk. Crystalline nanoparticles

correspond to the deepest minima (potential wells). Most minima correspond to different noncrystalline structures.
Transition from one potential well to another (Ri → Rk) means in the general case the rearrangement of all of the M atomic
nuclei of the system. The adiabatic electron term U

M
(0) (R) does not depend either on temperature or on the thermal

prehistory, etc. According to (2), it is unequivocally determined only by the chemical composition. Various scenarios of
the system behavior consist in the sequence of passage over potential wells [the minima of the function U

M
(0) (R)].
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Consequently, quasiclosed ensembles may be formed by the stationary and quasi-steady [5]
states with large lifetimes τl (4). Usually these are low-energy states, which describe vibrational
motion of atomic nuclei near one of the minima of the adiabatic electron term U

M
(0) (R).

Transitions between these states are not accompanied by any substantial changes in the Rk

structure [6]. The k-th structural modification is preserved when only such transitions take
place.

Thus, in order to preserve a polyatomic system, an exact copy and also the recorded informa‐
tion, it is sufficient that all changes occurring in the system do not extend outside the limits of
one and the same quasiclosed ensemble. It is this ensemble that characterizes the properties
of the system displayed during informational interaction [7].

The magnitude of G(0). can be estimated proceeding from the number J(n, M ) of different
minima of the potential U

M
(0) (R). This approach allows a relatively simple derivation of

numerical estimates as the function J(n, M ) depends on only two arguments and, in addition,
its determination is actually based on equation (2) when j= 0. This unambiguous mathematical
definition is useful not only for the problem of information copying and recording but also for
considering a wide range of other issues [4].

4. Estimation of the number G(0) of different quasiclosed ensembles

For the number J(n, M ) of different physically non-equivalent local minima of the adiabatic
electron term U

M
(0) (R), which corresponds to the ground electronic state of the electroneutral

system consisting of M atoms, the following asymptotic formula [4] is valid as M→∞

( ), ~ ,1   lnJ M
M

ann (5)

where αn is the positive parameter dependent solely on the chemical composition n. The
components n

i
 of the vector n are the relative concentrations of atoms of each type.

It follows from (5) that

J (n, M ) =  exp(αnM  +  о(M ) ) ,  (6)

the function о(M) satisfying the condition lim
M →∞

о(M)/M = 0. In other words, the number J(n, M )

of different physically nonequivalent minima of the U
M
(0) (R) potential exhibits a rapid expo‐

nential growth with the increasing number M of atoms forming the system with a fixed (n =
const) chemical composition. The numerical values of αn in relationship (6) usually differ from
ln2 ≈ 0.69 by smaller than one order of magnitude.
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This fact is not surprising because the magnitude J(n, M ) (6) takes into account all potentially
possible structural modifications Rk (1) of a polyatomic system. These are structures of
nanoparticles, liquid, glass, perfect crystal, crystals with different concentrations of particular
defects, polycrystals, amorphous substances, amorphous and vitreous films, glass-ceramics
and many others, including the structures of microheterogeneous materials storing the
recorded information. These structures differ from each other not only in the location of
particular defects, holes, etc. There exist other differences. For example, there are six equili‐
brium positions for each oxygen atom in the structure of β cristobalite (Fig. 2, positions 1–6) [6].

 14

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

6

1

45

Si O, 

r1

r2 

rk 

2

3

1

 

Figure 2. Structural fragment of β cristobalite (ri are the radius vectors of equilibrium atomic positions).

The transitions between them are not accompanied by the formation (disappearance) of
defects, holes, dangling chemical bonds, etc. Each structure thus formed is not an exact copy
of other structures [7]. These configurations are also taken into account by relationship (6).

The diversity of elementary configurational excitations particularly involves small structural
transformations. As a result of these transformations, the transition from one minimum of the
adiabatic electronic term U

M
(0) (R) to another minimum occurs through a correlated rearrange‐

ment of many atoms involved in a particular nanofragment. In this case, the distances between
any pair of neighboring atoms change insignificantly as compared to the interatomic distances
(Fig. 3) and, as a consequence, the short-range order is retained.

Specifically, small structural transformations occur in the glass transition range [4] (upon
softening of a glass and melting of a crystal) when the coordination numbers remain virtually
unchanged. Uncorrelated small structural transformations that proceed in different nanofrag‐
ments of the melt upon its rapid cooling lead to generation of internal stresses in the resulting
glass.
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The diversity of minima of the function U
M
(0) (R) makes it possible to explain the possibility to

vary properties of a material of the same chemical composition through preparation of its
various modifications described by different quasiclosed ensembles.

Number G(0) of different quasiclosed ensembles satisfies the following relations :

lnG (0)(tmax, n, M )≤ lnJ (n, M ) =  (αnM + о(M ) )≤ (В ×M + о(M ) ),   (7)

where constant B is determined by the identity

sup
n

B aº n (8)

It would not be particularly difficult to find the exact value of constant B (8) if the solutions of
equation (2) at j=0 were known for the systems of various chemical compositions. Since this is
not the case, one has to use model approaches. In their frameworks it is possible to calculate
numerical values of the parameter αn (5), (8) for specific systems. The results of such compu‐
tations [4] support the following estimate:

3B » (9)

It is difficult to investigate thoroughly all configurations of the polyatomic system, because
their number is exponentially large [see relationship (6)]. In this respect, it is necessary to use
model approaches. A model based on the Gaussian distribution is convenient for constructing
the statistical thermodynamics of melting and softening of nanoparticles.

 

 
 
 
 
 
 
 

Figure 3. Schematic diagram illustrating a small structural transformation: ○initial and ●final positions of sites of
atomic nuclei in a nanofragment.
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5. Model spectrum for the description of configurational excitations

In order to describe any equilibrium process, including the melting, in the framework of
statistical thermodynamics [8], it is sufficient to know the time dependence of the statistical
sum Z, which is uniquely determined by the temperature T, the energies Ej of stationary
quantum states, and the multiplicity gj of their degeneracy; that is

( )/  .j
j

jZ exp E Tg k= -å (10)

Here, k is the Boltzmann constant and E j < Ej +1.. This holds true for any system with a fixed
number of particles from one elementary particle to inhomogeneous (specifically, multiphase)
media.

The energy spectrum {Ej, gj} depends on the number M of atoms. Since the energy spectrum
of a macroscopic system ( M ≥ 1020 ) differs from that of a nanoparticle (108 ≥ M ≥ 10), the
processes accompanying the melting of a macroscopic sample and a nanoparticle of the same
chemical composition cannot not be completely identical. However, the specific features of
these processes have much in common: in both cases, upon melting, the structure undergoes
transformations, the system becomes microscopically labile, and the entropy and the internal
energy increase abruptly.

In expression (10), the summation is performed over all possible configurations corresponding
to relationship (6) and different vibrational states. By using the known analytical expression
for the statistical sum of an oscillator [8], the sum of all terms associated with the i-th config‐
uration Ri can be represented in the form g̃ iexp(E

i
/kT).

This enables us to change over to the model partition function with due regard only for the
configurations in which each configuration is included g̃ i/g̃1 times, where g̃1 corresponds to
the configuration with a minimum energy2. The ratios g̃ i/g̃1actually take into account the role
of the phonon subsystem in the melting.

The energies Ei=U
M
(0) (Ri) of the equilibrium configurations (2) of the polyatomic system are

conveniently calculated per atom; that is,

/   i iE Me = (11)

The spectrum of numerical values of the energies εi (fig.4) depends on the number of atoms
M. The level with the minimum energy E1 = 0 is assumed to be nondegenerate: g1 = 1. The
distribution of levels located in the energy range between Mεg and Mεc is approximated by the
Gaussian distribution

2 In this case, the number of configurations can be determined from formula (6), in which the numerical value of the
parameter αn changes insignificantly.
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N (Е)  ~
σ(E −E0)

γ 2πM
exp{M αn –  0.5(

E −M h
γ M

)
2}     (12)

Here, E0 is the minimum energy necessary for transforming the system from the ground state
into the excited state, σ(E – E0) is the step function,

1/2 0.5 – )2(  ) / (c g ng e e a= (13)

( 0.5 .)g ch e e= + (14)

From the distribution density N(E) (12), we derive the following analytical expression for the
statistical sum (10) (statistical integral)

Z =1 + {expM (αn –
h

kT +
0.5γ 2

(kT )2 )}Ф(
M h−E0

γ M
−

γ M
kT ) / Ф(

M h−E0

γ M
), (15)

where Φ(x) = 
1
2π ∫

−∞

x

exp(−0.5x 2)dx is the normal distribution function. The analytical expres‐

sion (15) permits us to analyze not only the dependence of the statistical sum on the number
M of atoms. The corresponding dependences can be obtained for all quantities that are
uniquely defined by the statistical sum Z. In particular, these are the melting temperature, the
heat of melting, and the entropy of melting.

In the limit M→ ∞, the melting temperature Tm is given by the expression [4]

2) 4  ( /g cmT kae e= + n (16)

In the same limit, the stepwise increments of the energy Δε (fig.4) and the entropy Δs upon
melting per atom are represented by the formulas

1/2 ,( )g ce e eD = (17)

1/2 2( ) ( 4 .)gn cg cs k e e ke ea a-+D = £ n (18)

It should be noted that, at the melting temperature Tm, the following inequalities are satisfied:
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1/2
 /    / ,   / 4  ( ) }.{  c n m g c n ck T max k ke a e e a e a³ ³ n (19)

Before melting, the energy is minimum. Without loss of generality, this energy can be taken
equal to zero. In the course of melting, there occurs a stepwise transition within the energy
band [εg, εc], which involves energies of the majority of the equilibrium configurations (fig.4).
The width (εc - εg) of this band is proportional to the root-mean-square deviation of the
numerical values of the energies ε of different configurations.

Upon melting, the structure undergoes transformations. Furthermore, the nanoparticle
becomes labile. In particular, the nanoparticle changes in shape, because, after melting, there
occur spontaneous transitions between the structural modifications with close energies in the
energy band [εg, εc] (fig.4).

The notion of the “melting of nanoclusters” has already been used [1]. It is obvious that the
processes accompanying the melting of a macroscopic sample and a nanoparticle cannot not
be completely identical. However, the specific features of these processes have much in
common. In both cases, upon melting, the structure undergoes transformations, the system
becomes labile, and the entropy and the internal energy increase abruptly.

According to relationships (16-18), the melting temperature Tm can be described by one more
expression

/ ,mT se= D D (20)

which coincides with the known expression that relates the heat Δε, the entropy Δs, and the
temperature Tm of the transition [9]. Note that, in the case of the macroscopic system, the heat
of melting Δε and the entropy of melting Δs per atom in relationship (20) are independent of
the number M of atoms forming the macroscopic system, whereas the opposite situation is
observed for the nanoparticle. The spectrum of energies ε of equilibrium configurations can
even radically change (fig.4).

For example, the two-atom system (M = 2) has only one equilibrium configuration J(n, 2 )=1
and the energy band [εg, εc] is absent. Since the structure should change upon melting (there
should occur a transition from one equilibrium configuration to another equilibrium config‐
uration), the melting of two-atom systems, in principle, is impossible.

However, the above concept is inapplicable to relatively small nanoclusters consisting of 13
atoms with J(n, 13 )= 1478 different configurations (different energy levels) [10]. In this case,
the energy spectrum can be described by the Gaussian distribution but with parameters
different from those used for the macroscopic system.

Relationships (16)–(20) are also valid in the mesoregion where the number of atoms M is larger
than two but is not sufficient for the applicability of the asymptotic relationship (5), which
allows one to estimate the number of equilibrium configurations of the macroscopic system.
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For nanoclusters, relationships (16) and (18) should contain the parameter α̃ = {lnJ(n, М)-1} /
M instead of the parameter αn involved in relationship (5). In the case of a two-atom system,
we have the parameter α̃ = {ln(J(n, 2) – 1)}/2 = – ∞. For a nanocluster consisting of 13 atoms, we
should use the parameter α̃ = {ln(J(n, 13) – 1)}/13 ≈ 0,56. The change in sign of the parameter α̃
indicates that, for a relatively small number of atoms M, which satisfies the inequality M > 2,
the parameter α̃ can turn out to be close to zero.

Therefore, the numerical value of the parameter in the mesoregion can appear to be consid‐
erably smaller than the parameter αn involved in relationship (5) and used for calculating the
melting temperature of the macroscopic sample according to relationship (16). This circum‐
stance is responsible for the observed increase in the melting temperature of sufficiently small
nanoparticles as compared to the macroscopic sample.

Since the parameter αn(α̃) is equal to the natural logarithm of the number of energy levels
(equilibrium configurations) in the energy band [εg, εc] (fig.4), the product kαn in relationship
(18) gives an estimate from above for the jump Δs in the configurational entropy upon melting.
In the case where αn(α̃) → 0, we have Δs → 0. In other words, the decrease in the parameter
αn(α̃), according to relationship (18), leads to a decrease in the entropy of melting Δs and,
consequently, to an increase in the melting temperature Tm in accordance with relationship (20).

Therefore, generally speaking, the melting temperature of macroscopic samples can be lower
than the melting temperature of nanoclusters of the same chemical composition. Moreover,
there are other specific features of melting of nanoparticles. Particularly, this refers to the
melting temperature range ΔTm, which, unlike the corresponding range for macroscopic
systems, is not a small quantity.

6. On the temperature ranges of melting and softening

A decrease in the number of atoms M results in an increase in the temperature range ΔTm of
the phase transition [10]; that is,

( ) °( )2 10  /  .m mT T nln MaD » (21)

Here, n is a natural number which, at the boundaries of this range, determines a low probability
p = 10−n that the system is in the liquid state before melting and in the solid state after melting,
respectively.

At n = 3 and α̃= ln2, expression (21) can be represented in the form

20.m

m
M

T
T

»
D

(22)
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As follows from formula (22), the quantities ΔTm and Tm for nanoparticles containing of the
order of ten atoms are comparable in magnitude. By contrast, the temperature range ΔTm for
macroscopic systems (M ~ 1023) is nearly equal to zero.

According to relationship (22), the temperature range ΔTm is relatively small

210 .m

m

T
T

-<<
D

(23)

only for systems involving a considerable number of atoms

 2000.M >> (24)

Otherwise, the quantity ΔTm should not be ignored. Therefore, specific analogy can be drawn
between the melting of nanoparticles and the softening of glasses.

Actually, the microscopic mechanism of glass softening is associated with the independent
structural excitations in medium-range order nanofragments. Their initial structures, as a rule,
are not exact copies of each other [7]. As a consequence, since the glass softening is a thermo‐
dynamically nonequilibrium irreversible process, it occurs in a specific temperature range ΔTg

rather than at a fixed temperature Tg.

Therefore, the glass softening and the transition of the nanoparticle to the microscopically
labile state proceed in a particular temperature range rather than at a fixed temperature. Both
these phenomena are responsible for the inelastic compliance of the system. This manifests
itself as a viscous flow for macroscopic systems and a possibility of changing the shape due to
the spontaneous transitions between different structural modifications with close energies
within the band [Mεg, Mεc] (Fig. 4) for nanoparticles.

The transition of the nanoparticle to the microscopically decrease in the temperature, the
nanoparticle structure does not always revert to the initial state and, as in the case of the glass
transition, one of the intermediate structures can turn out to be frozen. The question arises of
whether the transition of the nanoparticle to the microscopically labile state in similar situa‐
tions can be always interpreted as softening.

7. Admissible states

The freezing is a thermodynamically nonequilibrium process. The concept of “admissible
states” [8] is useful when constructing the statistical thermodynamics of these processes. Not
all states can occur for the observation time of a specific system. The states in which SiO2 has
a crystalline form are inadmissible at low temperatures if the object was initially in the vitreous
form: this compound in experiments at low temperatures does not transform into quartz
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during our life. We assume that all quantum states are admissible if they are not excluded
according to the definition of the system or the chosen time scale [8].

Generally speaking, the spectrum of admissible states changes depending on the prehistory
of the formation of the polyatomic system. The same holds true for numerical values of the
parameters γ, h, αn, εc, and εg (12)–(14) used for approximating the spectrum of admissible
states. Let us assume that the initial state of the nanoparticle is in the band [Mεg, Mεc] (Fig. 4)
and the state with the minimum energy ε = 0 is inadmissible3. Then, the spectrum of admissible
states is approximated only by distribution (12). In this case, we have εg = 0 and the heat of
melting Δε according to relationship (17) is equal to zero. As a consequence, we cannot speak
about the melting, even though the thermodynamically nonequilibrium transition to the
microscopically labile state is possible upon heating. This transition occurs in the temperature
range ΔTg at the softening temperature Tg, which can be estimated as follows [4]:

1/2~ / 2( ( ) )g nT kg a (25)

The softening temperature Tg and the boundaries of the softening range ΔTg are kinetic
parameters and depend on the prehistory of the compound. By contrast, the melting is a
thermodynamically equilibrium process, which proceeds at a fixed temperature. As a result
of melting, the structure of the macroscopic system is radically changed from crystalline to
disordered. Upon softening, the short-range order in the atomic arrangement is retained.
Consequently, the structure undergoes an insignificant transformation. Correspondingly, a
change in the internal energy is also small and, therefore, the notion of “the heat of softening”
does not exist.

3 The lower level corresponds to the crystal. This level is excluded when constructing the statistical thermodynamics of
glasses and glass-forming melts. This level is not used for describing the softening and glass transition.
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Figure 4. Spectrum of energies ε per atom for equilibrium configurations of the polyatomic system.
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In the case of macroscopic systems, the above criteria allow us to distinguish rather simply the
melting from softening. By contrast, not all transitions of the nanoparticle from the solid state
to the microscopically labile state can be uniquely interpreted as melting or softening, because
there are intermediate situations.

Specifically, these situations involve a thermodynamically equilibrium transition that results
in an insignificant change in the structure (the short-range order is retained). In this case, the
jump Δε (17) in the internal energy

–2 10 eVeD << (26)

is small as compared to the heat of melting of the macroscopic system of the same chemical
composition per atom. It is unlikely that this transition should be treated as melting. However,
since the transition under consideration is thermodynamically equilibrium, it is not advisable
to identify this transition with the softening.

Eventually, it is important to know the spectrum of admissible states and the parameters γ,
h, αn, εc, and εg (12)–(14). This makes it possible to reveal the energy characteristics of elemen‐
tary structural excitations of the nanoparticle. In particular, the transitions between the
equilibrium configurations closest in energy in the band [Mεg, Mεc] (Fig. 4) are accompanied
by the absorption (emission) of longwavelength photons [4]. Their frequencies can be esti‐
mated from the relationship

( ) ( )14 ~  2 .10 –  – .c gHz M exp Mn e e aé ùë û n (27)

According to relationship (27), at M = 100, αn = 0.1, and (εc – εg) = 0.1 eV, we obtain a frequency
~1011 Hz, which corresponds to the microwave range of electromagnetic radiation.

It follows from relationship (27) that the elementary structural excitations of nanoparticles can
be attended by emission (absorption) of photons with frequencies in the microwave, radio-
frequency, and low-frequency ranges. It was experimentally demonstrated that the microwave
radiation can accelerate chemical reactions by a factor of several tens and even several
hundreds [11]. The microscopic mechanism of this phenomenon is not clearly understood.
However, it is unquestionable that this mechanism is not reduced only to heating.

8. Conclusions

A detailed (on the microscopic level) analysis of the processes that occur upon transition of
nanoparticles to the microscopically labile state stimulates consideration of a number of
fundamental problems. Their solution provides a deeper insight into the specific features of
the nanoworld. Indeed, the melting and softening cannot proceed in the absence of an
exponentially large number of various structural modifications (6). However, up to now, most
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attention has been focused on relatively stable structures. The number of these structures for
a nanocluster composed of 13 atoms is considerably smaller than 1478 [10].

The other structural modifications have not been adequately investigated, even though their
role is important not only for the transition of the nanoparticle to the microscopically labile
state. Many chemical transformations represent a sequence of transitions between unstable
modifications. They should be taken into account when developing methods for synthesizing
nanostructured functional materials with controlled properties.

The majority of nanoparticles of the same chemical composition exhibit similar additive
properties. It is sufficient to investigate one of these nanoparticles in order to judge the
properties of the other nanoparticles. However, there are “special” nanoparticles. Their
properties differ noticeably from the statistical-mean properties and can be unique as com‐
pared to those of macromolecules and compact materials. Owing to this uniqueness, it is these
nanoparticles that are of most interest for the nanotechnology.

Certainly, special nanoparticles are small in number. Among an exponentially large number
(6) of various nanoparticles of the same chemical composition, the choice of a special nano‐
particle with required properties is not a simple problem. Moreover, it is not a priori known
whether there exists this nanoparticle in principle.

Furthermore, the potential possibility of occurring a large number of similar structural
modifications different from the required modification complicates the reproduction of an
exact copy [7] of the nanoparticle under consideration. That is why the reproducibility is one
of the key problems of the nanotechnology.

In actual practice, the special nanoparticle cannot be synthesized in an accidental way. The
traditional methods are not necessarily effective because the vast majority of the currently used
chemical reactions belong to “disorganized” reactions in which particles (molecules, ions,
atoms, radicals) react as a result of random collisions.

In order to solve many problems of nanotechnologies, it is required to control chemical
processes on the microscopic level. It is necessary to design nontraditional methods based on
nonequilibrium processes [12].

In particular, it seems likely that the use of electromagnetic radiation holds considerable
promise. The methods of microwave chemistry have already been used to produce nanopow‐
ders [11].

The problem associated with the synthesis of special nanoparticles would be completely solved
if the technique for preparing any controlled equilibrium configuration Ri of atomic nuclei
(Fig. 1) would be developed. In general, for this purpose, it is necessary to know how to operate
not with one atom but with many atoms according to a special program [13], which represents
algorithmic information. It should be noted that the information aspect of microscopic
processes [14] has come under the scrutiny of science only in recent years.
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1. Introduction

Physical theories often start out as theories which only embrace essential features of the
macroscopic world, where their predictions depend on certain parameters that have to be
either assumed or taken from experiments; as a result these parameters cannot be predicted
by such theories. To understand why the parameters have the values they do, we have to go
one level deeper—typically to smaller scales where the easiest processes to study are the ones
at the lowest level. When the deeper level reduces the number of unknown parameters, we
consider the theory to be complete and satisfactory. The level below conventional molecular
biology is spanned by atomic and molecular structure and by quantum dynamics. However,
it is also true that at the lowest level it becomes very difficult to grasp all the features of the
molecular processes that occur in living systems such that the complexity of the numerous
parameters that are involved make the endeavour a very intricate one. Information theory
provides a powerful framework for extracting essential features of complicated processes of
life, and then analyzing them in a systematic manner. In connection to the latter, quantum
information biology is a new field of scientific inquiry in which information-theoretical tools
and concepts are permitting to get insight into some of the most basic and yet unsolved
questions of molecular biology.

Chirality is often glossed over in theoretical or experimental discussions concerning the origin
of life, but the ubiquity of homochiral building blocks in known biological systems demands
explanation. Information theory can provide a quantitative framework for understanding the
role of chirality in biology. So far it has been thought that the genetic code is “unknowable”

© 2013 Esquivel et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



by considering DNA as a string of letters only (... ATTGCAAGC...) and likewise by considering
proteins as strings of identifiers (... DYRFQ...), we believe that this particular conclusion might
be probably wrong because it entirely fails to consider the information content of the molecular
structures themselves and their conformations.

On the other hand, according to molecular biology, living systems consist of building blocks
which are encoded in nucleic acids (DNA and RNA) and proteins, which possess complex
patterns that control all biological functions. Despite the fact that natural processes select
particular building blocks which possess chemical simplicity (for easy availability and quick
synthesis) and functional ability (for implementing the desired tasks), the most intriguing
question resides in the amino acid selectivity towards a specific codon/anticodon. The
universal triplet genetic code has considerable and non-uniform degeneracy, with 64 codons
carrying 21 signals (including Stop) as shown in Table 1. Although there is a rough rule of
similar codons for similar amino acids, no clear pattern is obvious.

Information theory of quantum many-body systems is at the borderline of the development
of physical sciences, in which major areas of research are interconnected, i.e., physics, mathe‐
matics, chemistry, and biology. Therefore, there is an inherent interest for applying theoretic-
information ideas and methodologies to chemical, mesoscopic and biological systems along
with the processes they exert. On the other hand, in recent years there has been an increasing
interest in applying complexity concepts to study physical, chemical and biological phenom‐
ena. Complexity measures are understood as general indicators of pattern, structure, and
correlation in systems or processes. Several alternative mathematical notions have been
proposed for quantifying the concepts of complexity and information, including the Kolmo‐
gorov–Chaitin or algorithmic information theory (Kolmogorov, 1965; Chaitin, 1966), the
classical information theory of Shannon and Weaver (Shannon & Weaver, 1948), Fisher
information (Fisher, 1925; Frieden, 2004), and the logical (Bennet, 1988) and the thermody‐
namical (Lloyd & Pagels, 1988) depths, among others. Some of them share rigorous connections
with others as well as with Bayes and information theory (Vitanyi & Li, 2000). The term
complexity has been applied with different meanings: algorithmic, geometrical, computation‐
al, stochastic, effective, statistical, and structural among others and it has been employed in
many fields: dynamical systems, disordered systems, spatial patterns, language, multielec‐
tronic systems, cellular automata, neuronal networks, self-organization, DNA analyses, social
sciences, among others (Shalizi et al., 2004; Rosso et al., 2003; Chatzisavvas et al., 2005; Borgoo
et al., 2007).

The definition of complexity is not unique, its quantitative characterization has been an
important subject of research and it has received considerable attention (Feldman & Crutch‐
field, 1998; Lamberti et al., 2004). The usefulness of each definition depends on the type of
system or process under study, the level of the description, and the scale of the interactions
among either elementary particles, atoms, molecules, biological systems, etc.. Fundamental
concepts such as uncertainty or randomness are frequently employed in the definitions of
complexity, although some other concepts like clustering, order, localization or organization
might be also important for characterizing the complexity of systems or processes. It is not
clear how the aforementioned concepts might intervene in the definitions so as to quantita‐
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tively assess the complexity of the system. However, recent proposals have formulated this
quantity as a product of two factors, taking into account order/disequilibrium and delocali‐
zation/uncertainty. This is the case of the definition of López-Mancini-Calbet (LMC) shape
complexity [9-12] that, like others, satisfies the boundary conditions by reaching its minimal
value in the extreme ordered and disordered limits. The LMC complexity measure has been
criticized (Anteonodo & Plastino, 1996), modified (Catalán et al., 2002; Martin et al., 2003) and
generalized (López-Ruiz, 2005) leading to a useful estimator which satisfies several desirable
properties of invariance under scaling transfromations, translation, and replication (Yamano,
2004; Yamano, 1995). The utility of this improved complexity has been verified in many fields
[8] and allows reliable detection of periodic, quasiperiodic, linear stochastic, and chaotic
dynamics (Yamano, 2004; López-Ruiz et al., 1995; Yamano, 1995). The LMC measure is
constructed as the product of two important information-theoretic quantities (see below): the
so-called disequilibrium D (also known as self-similarity (Carbó-Dorca et al., 1980) or infor‐
mation energy Onicescu, 1996), which quantifies the departure of the probability density from
uniformity (Catalán et al., 2002; Martinet al., 2003) (equiprobability) and the Shannon entropy
S, which is a general measure of randomness/uncertainty of the probability density (Shannon
& Weaver, 1948), and quantifies the departure of the probability density from localizability.
Both global quantities are closely related to the measure of spread of a probability distribution.

The Fisher-Shannon product FS has been employed as a measure of atomic correlation (Romera
& Dehesa, 2004) and also defined as a statistical complexity measure (Angulo et al., 2008a; Sen
et al., 2007a). The product of the power entropy J -explicitly defined in terms of the Shannon
entropy (see below)- and the Fisher information measure, I, combine both the global character
(depending on the distribution as a whole) and the local one (in terms of the gradient of the
distribution), to preserve the general complexity properties. As compared to the LMC
complexity, aside of the explicit dependence on the Shannon entropy which serves to measure
the uncertainty (localizability) of the distribution, the Fisher-Shannon complexity replaces the
disequilibrium global factor D by the Fisher local one to quantify the departure of the proba‐
bility density from disorder (Fisher, 1925; Frieden, 2004) of a given system through the gradient
of the distribution.

The Fisher information I itself plays a fundamental role in different physical problems, such
as the derivation of the non-relativistic quantum-mechanical equations by means of the
minimum I principle (Fisher, 1925; Frieden, 2004), as well as the time-independent Kohn-Sham
equations and the time-dependent Euler equation (Nagy, 2003; Nalewajski, 2003). More
recently, the Fisher information has been employed also as an intrinsic accuracy measure for
specific atomic models and densities (Nagy & Sen, 2006; Sen et al., 2007b)), as well as for general
quantum-mechanical central potentials (Romera et al. 2006; Dehesa et al., 2007). The concept
of phase-space Fisher information has been analyzed for hydrogenlike atoms and the isotropic
harmonic oscillator (Hornyak & Nagy, 2007), where both position and momentum variables
are included. Several applications concern atomic distributions in position and momentum
spaces have been performed where the FS complexity is shown to provide relevant information
on atomic shell structure and ionization processes (Angulo et al., 2008a; Sen et al., 2007a;
Angulo & Antolín, 2008b; Antolín & Angulo, 2009).
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In line with the aforementioned developments we have undertaken multidisciplinary research
projects so as to employ IT at different levels, classical (Shannon, Fisher, complexity, etc) and
quantum (von Neumann and other entanglement measures) on a variety of chemical process‐
es, organic and nanostructured molecules. Recently, significant advances in chemistry have
been achieved by use of Shannon entropies through the localized/delocalized features of the
electron distributions allowing a phenomenological description of the course of elementary
chemical reactions by revealing important chemical regions that are not present in the energy
profile such as the ones in which bond forming and bond breaking occur (Esquivel et al., 2009).
Further, the synchronous reaction mechanism of a SN2 type chemical reaction and the non-
synchronous mechanistic behavior of the simplest hydrogenic abstraction reaction were
predicted by use of Shannon entropies analysis (Esquivel et al., 2010a). In addition, a recent
study on the three-center insertion reaction of silylene has shown that the information-
theoretical measures provide evidence to support the concept of a continuum of transient of
Zewail and Polanyi for the transition state rather than a single state, which is also in agreement
with other analyses (Esquivel et al., 2010b). While the Shannon entropy has remained the major
tool in IT, there have been numerous applications of Fisher information through the “narrow‐
ness/disorder” features of electron densities in conjugated spaces. Thus, in chemical reactions
the Fisher measure has been employed to analyze its local features (Esquivel et al., 2010c) and
also to study the steric effect of the conformational barrier of ethane (Esquivel et al., 2011a).
Complexity of the physical, chemical and biological systems is a topic of great contemporary
interest. The quantification of complexity of real systems is a formidable task, although various
single and composite information-theoretic measures have been proposed. For instance,
Shannon entropy (S) and the Fisher information measure (I) of the probability distributions
are becoming increasingly important tools of scientific analysis in a variety of disciplines.
Overall, these studies suggest that both S and I can be used as complementary tools to describe
the information behavior, pattern, or complexity of physical and chemical systems and the
electronic processes involving them. Besides, the disequilibrium (D), defined as the expectation
value of the probability density is yet another complementary tool to study complexity since
it measures its departure from equiprobability. Thus, measuring the complexity of atoms and
molecules represents an interesting area of contemporary research which has roots in infor‐
mation theory (Angulo et al., 2010d). In particular, complexity measures defined as products
of S and D or S and I have proven useful to analyze complexity features such as order,
uncertainty and pattern of molecular systems (Esquivel et al., 2010f) and chemical processes
(Esquivel et al., 2011b). On the other hand, the most interesting technological implications of
quantum mechanics are based on the notion of entanglement, which is the essential ingredient
for the technological implementations that are foreseen in the XXI century. Up to now it
remains an open question whether entanglement can be realized with molecules or not and
hence it is evident that the new quantum techniques enter the sphere of chemical interest.
Generally speaking, entanglement shows up in cases where a former unit dissociates into
simpler sub-systems, the corresponding processes are known quite well in chemistry. Al‐
though information entropies have been employed in quantum chemistry, applications of
entanglement measures in chemical systems are very scarce. Recently, von Neumann measures
in Hilbert space have been proposed and applied to small chemical systems (Carrera et al.
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2010, Flores-Gallegos and Esquivel, 2008), showing than entanglement can be realized in
molecules. For nanostructures, we have been able to show that IT measures can be successfully
employed to analyse the growing behaviour of PAMAM dendrimers supporting the dense-
core model against the hollow-core one (Esquivel et al., 2009b, 2010g, 2011c).

In the Chapter we will present arguments based on the information content of L- and D-
aminoacids to explain the biological preference toward homochirality. Besides, we present
benchmark results for the information content of codons and aminoacids based on informa‐
tion-theoretical measures and statistical complexity factors which allow to elucidate the coding
links between these building blocks and their selectivity.

2. Information-theoretical measures and complexities

In the independent-particle approximation, the total density distribution in a molecule is a
sum of contribution from the electrons in each of the occupied orbitals. This is the case in both
r-space and p-space, position and momentum respectively. In momentum space, the total
electron density, (p) , is obtained through the molecular momentals (momentum-space
orbitals) ϕi(p) , and similarly for the position-space density, ρ(r) , through the molecular
position-space orbitals ϕi(r) . The momentals can be obtained by three-dimensional Fourier
transformation of the corresponding orbitals (and conversely)

3
2( ) (2 ) exp( ) ( )i id ij p f

-
= - ×òp r p r r (1)

Standard procedures for the Fourier transformation of position space orbitals generated by ab-
initio methods have been described (Rawlings & Davidson, 1985). The orbitals employed in
ab-initio methods are linear combinations of atomic basis functions and since analytic expres‐
sions are known for the Fourier transforms of such basis functions (Kaijser & Smith, 1997), the
transformation of the total molecular electronic wavefunction from position to momentum
space is computationally straightforward (Kohout, 2007).

As we mentioned in the introduction, the LMC complexity is defined through the product of
two relevant information-theoretic measures. So that, for a given probability density in
position space, ρ(r) , the C(LMC) complexity is given by (Feldman & Crutchfield, 1998;
Lamberti et al., 2004; Anteonodo & Plastino, 1996; Catalán et al., 2002; Martin et al., 2003):

( ) rS
r r r rC LMC D e D L= = (2)

where Dr is the disequilibrium (Carbó-Dorca et al., 1980; Onicescu, 1966)
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2( )rD dr= ò r r (3)

and S is the Shannon entropy (Shannon & Weaver, 1949)

3( )ln ( )rS dr r= -ò r r r (4)

from which the exponential entropy L r = e Sr  is defined. Similar expressions for the LMC
complexity measure in the conjugated momentum space might be defined for a distribution
γ(p)

It is important to mention that the LMC complexity of a system must comply with the following
lower bound (López-Rosa et al., 2009):

( ) Sp
p p p pC LMC D e D L= = (5)

The FS complexity in position space, Cr(FS), is defined in terms of the product of the Fisher
information (Fisher, 1925; Frieden, 2004)

( ) 1C LMC ³ (6)

and the power entropy (Angulo et al. 2008a; Sen et al., 2007a) in position space, Jr

2 3( ) ln ( )rI dr r= Ñò r r r
r

(7)

which depends on the Shannon entropy defined above. So that, the FS complexity in position
space is given by

2
31 ,

2
rS

rJ e
ep

= (8)

and similarly

( )r r rC FS I J= × (9)

in momentum space.
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Let us remark that the factors in the power Shannon entropy J are chosen to preserve the
invariance under scaling transformations, as well as the rigorous relationship (Dembo et
al., 1991).

( )p p pC FS I J= × (10)

with n being the space dimensionality, thus providing a universal lower bound to FS com‐
plexity. The definition in Eq. (8) corresponds to the particular case n=3, the exponent containing
a factor 2/n for arbitrary dimensionality.

It is worthwhile noting that the aforementioned inequalities remain valid for distributions
normalized to unity, which is the choice that it is employed throughout this work for the 3-
dimensional molecular case.

Aside of the analysis of the position and momentum information measures, we have consid‐
ered it useful to study these magnitudes in the product rp-space, characterized by the proba‐
bility density f (r , p)=ρ(r)γ(p) , where the complexity measures are defined as

( )C FS n³ (11)

and

( ) ( ) ( ),rp rp rp r pC LMC D L C LMC C LMC= = (12)

From the above two equations, it is clear that the features and patterns of both LMC and FS
complexity measures in the product space will be determined by those of each conjugated
space. However, the numerical analyses carried out in the next section, reveal that the the
momentum space contribution plays a more relevant role as compared to the one in position
space.

We have also evaluated some reactivity parameters that may be useful to analyze the chemical
reactivity of the aminoacids. So that, we have computed several reactivity properties such as
the ionization potential (IP), the hardness (η) and the electrophilicity index (ω). These prop‐
erties were obtained at the Hartree-Fock level of theory (HF) in order to employ the Koopmans'
theorem (Koopmans, 1933; Janak, 1978), for relating the first vertical ionization energy and the
electron affinity to the HOMO and LUMO energies, which are necessary to calculate the
conceptual DFT properties. Parr and Pearson, proposed a quantitative definition of hardness
(η) within conceptual DFT (Parr & Yang, 1989):

( ) ( ) ( ),rp rp rp r pC FS I J C FS C FS= = (13)
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where ε denotes the frontier molecular orbital energies and S stands for the softness of the
system. It is worth mentioning that the factor 1/2 in Eq. (14) was put originally to make the
hardness definition symmetrical with respect to the chemical potential (Parr & Pearson, 1983)

1
2 2

LUMO HOMO
S

e e
h

-
= » (14)

although it has been recently disowned (Ayer et al. 2006: Pearson, 1995). In general terms, the
chemical hardness and softness are good descriptors of chemical reactivity. The former has
been employed (Ayer et al. 2006: Pearson, 1995; Geerlings et al., 2003) as a measure of the
reactivity of a molecule in the sense of the resistance to changes in the electron distribution of
the system, i.e., molecules with larger values of η are interpreted as being the least reactive
ones. In contrast, the S index quantifies the polarizability of the molecule (Ghanty & Ghosh,
1993; Roy et al., 1994; Hati & Datta, 1994; Simon-Manso & Fuentealba, 1998) and hence soft
molecules are more polarizable and possess predisposition to acquire additional electronic
charge (Chattaraj et al., 2006). The chemical hardness η is a central quantity for use in the study
of reactivity through the hard and soft acids and bases principle (Pearson, 1963; Pearson,
1973; Pearson, 1997).

The electrophilicity index (Parr et al., 1999), ω, allows a quantitative classification of the global
electrophilic nature of a molecule within a relative scale. Electrophilicity index of a system in
terms of its chemical potential and hardness is given by the expression

( ) 2
LUMO HOMO

r

E
N n

e e
m

+æ ö¶
= =ç ÷¶è ø

(15)

The electrophilicity is also a good descriptor of chemical reactivity, which quantifies the global
electrophilic power of the molecules -predisposition to acquire an additional electronic charge-
(Parr & Yang, 1989).

3. Aminoacids

The exact origin of homochirality is one of the great unanswered questions in evolutionary
science; such that, the homochirality in molecules has remained as a mystery for many years
ago, since Pasteur. Any biological system is mostly composed of homochiral molecules;
therefore, the most well-known examples of homochirality is the fact that natural proteins are
composed of L-amino acids, whereas nucleic acids (RNA or DNA) are composed of D-sugars
(Root-Bernstein, 2007; Werner, 2009; Viedma et al., 2008). The reason for this behavior
continues to be a mystery. Until today not satisfactory explanations have been provided
regarding the origin of the homochirality of biological systems; since, the homochirality of the
amino acids is critical to their function in the proteins. If proteins (with L-aminoacids) had a
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non-homochiral behavior (with few D-enantiomers in random positions) they would not
present biological functionality It is interesting to mention that L-aminoacids can be synthe‐
sized by use of specific enzymes, however, in prebiotic life these processes remain unknown.
The same problem exists for sugars which have the D configuration. (Hein and Blackmond,
2011; Zehnacker et al., 2008; Nanda and DeGrado, 2004).

On the other hand, the natural amino acids contain one or more asymmetric carbon atoms,
except the glycine. Therefore, the molecules are two nonsuperposable mirror images of each
other; i.e., representing right-handed (D enantiomer) and left-handed (L enantiomer) struc‐
tures. It is considered that the equal amounts of D- and L- amino acids existed on primal earth
before the emergence of life. Although the chemical and physical properties of L-and D amino
acids are extremely similar except for their optical character, the reason of the exclusion of D-
amino acids and why all living organisms are now composed predominantly of L-amino acids
are not well-known: however, the homochirality is essential for the development and main‐
tenance of life (Breslow, 2011; Fujii et al., 2010; Tamura, 2008). The essential property of α-
aminoacids is to form linear polymers capable of folding into 3-dimensional structures, which
form catalytic active sites that are essential for life. In the procees, aminoacids behave as hetero
bifunctional molecules, forming polymers via head to tail linkage. In contrast, industrial nylons
are often prepared from pairs of homo-bifunctional molecules (such as diamines and dicar‐
boxylic acids), the use of a single molecule containing both linkable functionalities is somewhat
simpler (Cleaves, 2010; Weber and Miller, 1981; Hicks, 2002).

The concept of chirality in chemistry is of paramount interest because living systems are
formed of chiral molecules of biochemistry is chiral (Proteins, DNA, amino acids, sugars and
many natural products such as steroids, hormones, and pheromones possess chirality). Indeed,
amino acids are largely found to be homochiral (Stryer, 1995) in the L form. On the other hand,
most biological receptors and membranes are chiral, many drugs, herbicides, pesticides and
other biological agents must themselves possess chirality. Synthetic processes ordinarily
produce a 50:50 (racemic) mixture of left-handed and right-handed molecules (so-called
enantiomers), and often the two enantiomers behave differently in a biological system.

On the other hand, a major topic of research has been to study the origin of homochirality. In
this respect, biomembranes have played an important role for the homochiraility of biopoly‐
mers. One of the most intriguing problems in life sciences is the mechanism of symmetry
breaking. Many theories have been proposed on these topics and in the attempt to explain the
amplification of a first enantiomeric imbalance to the enantiopurity of biomolecules (Bombelli
et al., 2004). In all theories on symmetry breaking and on enantiomeric excess amplification
little attention has been paid to the possible role of biomembranes, or of simple self-aggregated
systems that may have acted as primitive biomembranes. Nevertheless, it is possible that
amphiphilic boundary systems, which are considered by many scientists as intimately
connected to the emergence and the development of life (Avalos et al. 2000; Bachmann et al.,
1992), had played a role in the history of homochirality in virtue of recognition and compart‐
mentalization phenomena (Menger and Angelova, 1998). In general, the major reason for the
different recognition of two enantiomers by biological cells is the homochirality of biomole‐
cules such as L-amino acids and D-sugars. The diastereomeric interaction between the
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enantiomers of a bioactive compound and the receptor formed from a chiral protein can cause
different physiological responses. The production technology of enantiomerically enriched
bioactive compounds one of the most important topics in chemistry. There is great interest in
how and when biomolecules achieved high enantioenrichment, including the origin of
chirality from the standpoint of chiral chemistry (Zehnacker et al., 2008; Breslow, 2011; Fujii
et al., 2010; Tamura, 2008; Arnett and Thompson, 1981)

3.1. Physical and information-theoretical properties

Figure l illustrates a Venn diagram (Livingstone & Barton, 1993; Betts & Russell, 2003) which
is contained within a boundary that symbolizes the universal set of 20 common amino acids
(in one letter code). The amino acids that possess the dominant properties—hydrophobic, polar
and small (< 60 Å3)—are defined by their set boundaries. Subsets contain amino acids with
the properties aliphatic (branched sidechain non-polar), aromatic, charged, positive, negative
and tiny (<35 Å 3). Shaded areas define sets of properties possessed by none of the common
amino acids. For instance, cysteine occurs at two different positions in the Venn diagram. When
participating in a disulphide bridge (CS-S), cysteine exhibits the properties 'hydrophobic' and
'small'. In addition to these properties, the reduced form (CS-H) shows polar character and fits
the criteria for membership of the 'tiny' set. Hence, the Venn diagram (Figure l) assigns multiple
properties to each amino acid; thus lysine has the property hydrophobic by virtue of its long
sidechain as well as the properties polar, positive and charged. Alternative property tables
may also be defined. For example, the amino acids might simply be grouped into non-
intersecting sets labelled, hydrophobic, charged and neutral.

Figure 1. Venn diagram (Livingstone & Barton, 1993; Betts & Russell, 2003) of boundaries that symbolizes the univer‐
sal set of 20 common amino acids (b). The Venn diagram in Fig. (1a) may be simply encoded as the property table or
index shown here where the rows define properties and the columns refer to each amino acid.
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In order to perform a theoretical-information analysis of L- and D-aminoacids we have
employed the corresponfing L-enantiomers reported in the Protein Data Bank (PDB), which
provide a standard representation for macromolecular structure data derived from X-ray
diffraction and NMR studies. In a second stage, the D-type enantiomers were obtained from
the L-aminoacids by interchanging the corresponding functional groups (carboxyl and amino)
of the α-carbon so as to represent the D-configuration of the chiral center, provided that steric
impediments are taken into account. The latter is achieved by employing the Ramachandran
(Ramachandran et al, 1963) map, which represent the phi-psi torsion angles for all residues in
the aminoacid structure to avoid the steric hindrance. Hence, the backbone of all of the studied
aminoacids represent possible biological structures within the allowed regions of the Rama‐
chandran. In the third stage, an electronic structure optimization of the geometry was per‐
formed on all the enantiomers for the twenty essential aminoacids so as to obtain structures
of minimum energy which preserve the backbone (see above). In the last stage, all of the
information-theoretic measures were calculated by use of a suite of programs which have been
discussed elsewhere (Esquivel et al., 2012).

In Figures 2 through 4 we have depicted some selected information-theoretical measures and
complexities in position space versus the number of electrons and the energy. For instance, it
might be observed from Fig. 2 that the Shannon entropy increases with the number of electrons
so that interesting properties can be observed, e.g., the aromatic ones possess more delocalized
densities as the rest of the aminoacids (see Figure 1B) which confer specific chemical properties.
On the other hand, the disequilibrium diminishes as the number of electron increases (see Fig.
2), which can be related to the chemical stability of the aminoacids, e.g., cysteine and metionine
show the larger values (see Fig. 2) which is in agreement with the biological evidence in that
both molecules play mutiple functions in proteins, chemical as well as structural, conferring
the higher reactivity that is recognized to both molecules. In contrast, aromatic aminoacids
(see Fig 1B) are the least reactive, which is in agreement with the lower disequilibrium values
that are observed form Fig 2.

 
fig 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Figure 2. Shannon entropy (left) and disequilibrum (right), both in position space, versus the number of electrons, for
the set of 20 aminoacids.
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(a) (b) 

Figure 3. LMC- (left) and FS-complexities (right), both in position space, versus the number of electrons, for the set of
20 aminoacids.

 

 
fig 4 
  

(a) (b) 

Figure 4. LMC- (left) and FS-complexities (right), both in position space, versus the total energy, for the set of 20 ami‐
noacids.

In Figures 3 we have plotted the LMC and FS complexities versus the number of electrons for
the twenty aminoacids where we can observe that LMC complexity disntinguishes two
different groups of aminoacids, where the more reactive (met and cys) hold larger values. In
contrast, FS complexity behaves linearly with the number of electrons where the aromatic
aminoacids possess the larger values and hence represent the more complex ones. Furthemore,
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the behavior of the LMC and FS complexities with respect to the total energy is analyzed in
Figures 4, to note that LMC complexity characterizes two different groups of aminoacids where
the most reactive (cys and met) possess the largest values, which incidentally hold the largest
energies (negatively). A different behavior is observed for the FS complexity in that the smaller
values correspond to the less energetic aminoacids. It is worthy to mention that the FS
complexity is related to the Fisher information measure (Eq. 7) which depends on the local
behavior of the position space density, i..e., simpler molecules present more ordered chemical
structures, and hence these kind of aminoacids are expected to be less complex, e.g., the small
and the tiny ones (Ser, Ala, Thr).

3.2. Homochirality

In Figures 5 through 8 we have analyzed the homochiral behavior of all aminoacids by plotting
the difference between the L and the D values of several physical properties (energy, ionization
potential, hardness, electrophilicity) and some relevant information-theoretical measures
(Shannon entropy, Fisher, LMC- and FS-complexity). From Figures 5 and 6 one can readily
observe that none of the physical properties studied in this work show a uniform enantiomeric
behavior, i.e., it is not possible to distinguish the L-aminoacids from the D-ones by using an
specific physical property. In contrast, the L-aminoacids can be uniquely characterize d from
the D-ones when informatic-theoretical measures are employed (see Figures 7 and 8) and this
is perhaps the most interesting result obtained from our work. To the best of our kowledge no
similar observations have been reported elsewhere, showing strong evidence of the utility of
Information Theory tools for decoding the essential blocks of life.

 

 
fig 5 
  

(a) (b) 

Figure 5. Differences (L-property – D-property) for the energy (in a.u., left) and the ionization potential (in a.u., right)
for the set of 20 aminoacids.
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Figure 6. Differences (L-property – D-property) for the hardness (in a.u., left, Eqn. 14) and the electrophilicity (in a.u.,
right, Eqn. 16) for the set of 20 aminoacids.

Figure 7. Differences (L-property – D-property) for the Shannon entropy (Eqn. 4, left) and the Fisher information
(right, Eqn. 7), both in position space, for the set of 20 aminoacids.
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Figure 8. Differences (L-property – D-property) for the LMC (left, Eqn. 2) and the FS-complexities (right, Eqn. 9), both
in position space, for the set of 20 aminoacids.

4. Genetic code

4.1. Codons

The genetic code refers to a nearly universal assignment of codons of nucleotides to amino
acids.  The  codon  to  amino  acid  assignment  is  realized  through:  (i)  the  code  adaptor
molecules of transfer RNAs (tRNAs) with a codon’s complementary replica (anticodon) and
the corresponding amino acid attached to the 3’ end, and (ii) aminoacyl tRNA synthetas‐
es (aaRSs), the enzymes that actually recognize and connect proper amino acid and tRNAs.
The origin of the genetic code is an inherently difficult problem (Crick, 1976). Taking into
a count that the events determining the genetic code took place long time ago, and due to
the relative compactness of the present genetic code. The degeneracy of the genetic code
implies  that  one  or  more  similar  tRNA can  recognize  the  same codon on  a  messenger
mRNA. The number of amino acids and codons is fixed to 20 amino acids and 64 codons
(4 nucleotides,  A.C.U.G per three of  each codon) but the number of  tRNA genes varies
widely 29 to 126 even between closely related organisms. The frequency of synonymous
codon use differs between organisms, within genomes,  and along genes,  a phenomenon
known as CUB (codon usage bias) (Thiele et al., 2011).

Sequences of bases in the coding strand of DNA or in messenger RNA possess coded instruc‐
tions for building protein chains out of amino acids. There are 20 amino acids used in making
proteins, but only four different bases to be used to code for them. Obviously one base can't
code for one amino acid. That would leave 16 amino acids with no codes. By taking two bases
to code for each amino acid, that would still only give you 16 possible codes (TT, TC, TA, TG,
CT, CC, CA and so on) – that is, still not enough. However, by taking three bases per amino
acid, that gives you 64 codes (TTT, TTC, TTA, TTG, TCT, TCC and so on). That's enough to

Decoding the Building Blocks of Life from the Perspective of Quantum Information
http://dx.doi.org/10.5772/55160

655



code for everything with lots to spare. You will find a full table of these below. A three base
sequence in DNA or RNA is known as a codon.

Table 1. Various combinations of three bases in the coding strand of DNA are used to code for individual amino acids
- shown by their three letter abbreviation

The codes in the coding strand of DNA and in messenger RNA aren't, of course, identical,
because in RNA the base uracil (U) is used instead of thymine (T). Table 1 shows how the
various combinations of three bases in the coding strand of DNA are used to code for indi‐
vidual amino acids - shown by their three letter abbreviation. The table is arranged in such a
way that it is easy to find any particular combination you want. It is fairly obvious how it works
and, in any case, it doesn't take very long just to scan through the table to find what you want.
The colours are to stress the fact that most of the amino acids have more than one code. Look,
for example, at leucine in the first column. There are six different codons all of which will
eventually produce a leucine (Leu) in the protein chain. There are also six for serine (Ser). In
fact there are only two amino acids which have only one sequence of bases to code for them -
methionine (Met) and tryptophan (Trp). Note that three codons don't have an amino acid but
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"stop" instead. For obvious reasons these are known as stop codons. The stop codons in the
RNA table (UAA, UAG and UGA) serve as a signal that the end of the chain has been reached
during protein synthesis. The codon that marks the start of a protein chain is AUG, that's the
amino acid, methionine (Met). That ought to mean that every protein chain must start with
methionine.

4.2. Physical and information-theoretical properties

An important goal of the present study is to characterize the biological units which codify
aminoacids by means of information-theoretical properties. To accomplished the latter we
have depicted in Figures 9 through 13 the Shannon entropy, Disequilibrium, Fisher and the
LMC and FS complexities in position space as the number of  electron increases,  for the
group of the 64 codons. A general observation is that all codons hold similar values for all
these properties as judging for the small interval values of each graph. For instance, the
Shannon entropy values for the aminoacids (see Figure 2) lie between 4.4 to 5.6, whereas
the corresponding values for the codons (see Figure 9) lie between 6.66 to 6.82, therefore
this information measure serves to characterize all these bilogical molecules, providing in
this way the first benchmark informational results for the building blocks of life. Further,
it is interesting to note from Figures 9 and 10 that entropy increases with the number of
electrons (Fig. 9) whereas the opposite behavior is observed for the Disequilibrium measure.
Besides,  we may note from these Figures an interesting codification pattern within each
isolelectronic  group of  codons where one may note  that  an exchange of  one nucleotide
seems  to  occur,  e.g.,  as  the  entropy  increases  in  the  440  electron  group  the  following
sequence  is  found:  UUU  to  (UUC,  UCU,  CUU)  to  (UCC,  CUC,  CCU)  to  CCC.  Similar
observations can be obtained from Figures 10 and 11 for D and I, respectively. In particu‐
lar, Fisher information deserves special analysis, see Figure 11, from which one may observe
a more intricated behavior in which all codons seem to be linked across the plot, i.e., note
that for each isoelectronic group codonds exchange only one nucleotide,  e.g.,  in the 440
group codons change from UUU to (UUC, UCU, CUU) to (UCC, CUC, CCU) to CCC as
the Fisher measure decreaes. Besides, as the Fisher measure and the number of electrons
increase linearly a similar exchange is observed, eg., from AAA to (AAG, AGA, GAA) to
(AGG, GAG, GGA) to GGG. We believe that the above observations deserve further studies
since a codification pattern seems to be apparent.

In Figures 12 and 13 we have depicted the LMC and FS complexities, respectively, where we
can note that as the number of electron increases the LMC complexity decreases and the
opposite is observed for the FS complexity. It is worth mentioning that similar codification
patternsm, as the ones above discussed, are observed for both complexities. Furthermore, we
have found interesting to show similar plots in Figures 14 and 15 where the behavior of both
complexities is shown with respect to the total energy. It is observed that as the energy increases
(negatively) the LMC complexity decreases whereas the FS complexity increases. Note that
similar codification patterns are observed in Figure 15 for the FS complexity.
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Figure 9. Shannon entropy values in position spaces as a function of the number of electrons for the set of 64 codons.
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Figure 10. Disequilibrium in position spaces (Eqn. 3)as a function of the number of electrons for the set of 64 codons
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Figure 11. Fisher information in position spaces (Eqn. 7) as a function of the number of electrons for the set of 64
codons
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Figure 12. LMC-complexity in position spaces (Eqn.12) as a function of the number of electrons for the set of 64 co‐
dons
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Figure 13. FS-complexity in position spaces (Eqn. 7) as a function of the number of electrons for the set of 64 codons

Advances in Quantum Mechanics662



 16.4

 16.5

 16.6

 16.7

 16.8

 16.9

 17

 17.1

 17.2

-4100 -4050 -4000 -3950 -3900 -3850 -3800 -3750 -3700 -3650 -3600

Energy

UUA
UUG
CUA
CUC
CUG
CUU
CGA
CGC
CGG
CGU
AGA
AGG
UCA
UCC
UCG
UCU
AGC
AGU
UAA
UAG
UGA
AUG

GUA
GUC
GUG
GUU
GCA
GCC
GCG
GCU
GGA
GGC
GGG
GGU
CCA
CCC
CCG
CCU
ACA
ACC
ACG
ACU
GAC
GAU

GAA
GAG
AAU
AAC
CAA
CAG
UUC
UUU
UAC
UAU
UGC
UGU
CAC
CAU
AAA
AAG
AUA
AUC
AUU
UGG

Figure 14. LMC-complexity in position spaces as a function of the total energy for the set of 64 codons.
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fig 15 
 Figure 15. FS-complexity in position space as a function of the total energy for the set of 64 codons.

5. Concluding remarks

We have shown throughout this Chapter that information-theoretical description of the
fundamental biological pieces of the genetic code: aminoacids and codons, can be analysed in
a simple fashion by employing Information Theory concepts such as local and global infor‐
mation measures and statistical complexity concepts. In particular, we have provided for the
first time in the literature with benchmark information-theoretical values for the 20 essential
aminacids and the 64 codons for the nucleotide triplets. Throughout these studies, we believe
that information science may conform a new scientific language to explain essential aspects of
biological phenomena. These new aspects are not accessible through any other standard
methodology in quantum chemistry, allowing to reveal intrincated mechanisms in which
chemical phenomena occur. This envisions a new area of research that looks very promising
as a standalone and robust science. The purpose of this research is to provide fertile soil to
build this nascent scientific area of chemical and biological inquiry through information-
theoretical concepts towards the science of the so called Quantum Information Biology.
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Chapter 28

The Theoretical Ramifications of the Computational
Unified Field Theory

Jonathan Bentwich

Additional information is available at the end of the chapter
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1. Introduction

Four previous articles (Bentwich, 2012: a-d) have postulated the existence of a novel 'Compu‐
tational Unified Field Theory' (CUFT) which is a candidate 'Theory of Everything' (Brumfiel,
2006; Ellis, 1986; Greene, 2003) – i.e., has the potential of unifying between quantum (Born,
1954) and relativistic models of physical reality (and moreover also possesses the potential of
opening new 'vistas' for scientific examination connected with its discovery of a new hypo‐
thetical 'Universal Computational Principle which carries out an extremely rapid computation,
c2/h of a series of Universal Simultaneous Computational Frames, 'USCF's, which give rise to
all 'apparent' secondary computational 'physical' properties of 'space', 'time', 'energy' and
'mass'); Indeed, the primary focus of the current manuscript is precisely to explore the potential
theoretical ramifications of this novel CUFT – based on the recognition that the (singular)
Universal Computational Principle ('י') solely produces all (apparent) secondary computa‐
tional 'physical' properties of 'space, 'time', 'energy' and 'mass', and hence comprises the sole
"reality" (which produces all exhaustive hypothetical inductive and deductive phenomenon
through a higher-ordered 'a-causal' computational framework; this may subsequently bear
significant theoretical ramifications for all (key) 'material-causal' scientific paradigms as well
as point at the discovery of a (new) 'Universal Consciousness Principle Computational Program',
as well as outline potential resolutions of major Physical 'enigma's;

Hence, the current manuscript traces the potential theoretical ramifications of:

a. An 'a-causal' computational framework of the (CUFT's) singular Universal Consciousness
Principle's ('י') responsible for the (higher-ordered) computation of all exhaustive hypo‐
thetical (e.g., empirically knowable) inductive or deductive 'x-y' pairs series – which leads
to the discovery of a-causal 'Universal Consciousness Principle Computational Program'.

© 2013 Bentwich; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



b. An exploration of the CUFT's Universal Consciousness Principle's ('י') and Duality
Principle's (Bentwich, 2003c, 2004, 2006) reformalization of all (apparent inductive or
deductive) major SROCS computational paradigms (e.g., including: Darwin's 'Natural
Selection Principle' (Darwin, 1859) and associated Genetic Encoding hypothesis, Neuro‐
science's Psychophysical Problem of human Consciousness and all inductive and deduc‐
tive Gödel-like SROCS paradigms).

c. Theoretical Ramifications of the Universal Consciousness Principle.

2. A singular 'a-causal' universal consciousness principle computation of
all inductive and deductive 'x-y' relationships

We thus begin with an exploration of three potential theoretical ramifications of the CUFT's
description of the operation of the (singular) Universal Consciousness Principle ('י') which has
been shown to compute an extremely rapid series of Universal Simultaneous Computational
Frames (USCF's);

The Universal Computational/Consciousness Principle was (previously) shown to encapsulate
a singular higher-ordered 'D2' computation of an 'a-causal' computation of the "simultaneous
co-occurrences" of all exhaustive hypothetical inductive or deductive (e.g., empirically
knowable) 'x-y' pairs series; Therefore, the acceptance of the CUFT's description of the
Universal Consciousness Principle necessarily implies that throughout the various (inductive
or deductive) disciplines of Science we need to shift from the current basic (Cartesian)
"material-causal" scientific theoretical towards a singular (higher-ordered 'D2') 'Universal
Consciousness Principle's a-causal computation':

This means that the current (Cartesian) 'material-causal' scientific framework assumes that any
given 'y' element (or value) can be explained as a result of its (direct or indirect) 'causal' interaction/
s with another (exhaustive hypothetical inductive or deductive) series of 'x' factor/s – which
determines whether that 'y' element (or value) "exists" or "doesn't exist", thereby comprising a
'Self-Referential Ontological Computational System' (SROCS) (Bentwich: 2012a-d):

SROCS: PR{x,y}→ ['y' or 'not y']/di1…din.

But, since it was previously shown that such SROCS computational structure inevitably leads
to both 'logical inconsistency' and 'computational indeterminacy' that were shown to be
contradicted by robust empirical findings indicating the capacity of the major scientific SROCS
paradigms to be capable of determining the "existence" or "non-existence" of the particular 'y'
element, see Bentwich 2012b) – then the CUFT's 'Duality Principle' asserted the existence of
the singular 'Universal Consciousness Principle' ('י') which is capable of computing the
"simultaneous co-occurrences" of any particular (exhaustive hypothetical) 'x-y' pairs series
which are embedded within the Universal Computational/Consciousness Principle's rapid
series of USCF's.

What this means is that both specifically for each of the (previously identified) key scientific
SROCS paradigms as well as more generally for any hypothetical ('empirically knowable')
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inductive or deductive ('x-y') phenomenon, we must reformulate our scientific understanding
in such a way which will allow us to present any such 'x-y' relationship/s as being computed
by the singular Universal Consciousness Principle (e.g., as the computation of an exhaustive-
hypothetical "co-occurring" 'x-y' pairs' series); In that respect, this (novel) 'Universal Con‐
sciousness Principle's' scientific framework shifts Science from its current basic (Cartesian)
assumption wherein all natural phenomena can be described as 'material-causal' ('x→y')
relationships (e.g., comprising the apparent SROCS computational structure contradicted by
the computational Duality Principle) – to an 'a-causal' singular Universal Consciousness
Principle which computes the simultaneous "co-occurrences" of any inductive or deductive 'x-
y' pairs series comprising the various 'pixels' of the USCF's frames (e.g., produced by this
Universal Consciousness Principle).

Finally, it should be noted that a key principle underlying this shift from the current 'material-
causal' (Cartesian) scientific framework towards the CUFT's (proven) higher-ordered singular
Universal Consciousness Principle's ('י') 'a-causal' theoretical framework is the acceptance of
the impossibility of the existence of any such 'material-causal' ('x-y') relationship/s – i.e., due
to the impossibility of any 'physical' entity, attribute (or property) being transferred across any
(two subsequent) 'USCF's frames: Thus, apart from the (previously shown) conceptual
computational proof of the 'Duality Principle' wherein due to the inevitable 'logical inconsis‐
tency' and 'computational indeterminacy' arising from the SROCS computational structure
(which is contradicted by empirical evidence indicating the capacity of these key scientific
SROCS paradigms to compute the "existence" or "non-existence" of any particular 'y' element
or value) – which points at the existence of the higher-ordered (singular) 'Universal Compu‐
tational/Consciousness Principle that computes the "simultaneous co-occurrences" of any
(exhaustive-hypothetical) 'x-y' pairs' series; it is suggested that the inclusion of this computa‐
tional Duality Principle as one of the (seven) theoretical postulates of the CUFT (e.g., specifi‐
cally alongside the CUFT's 'Computational Invariance' and 'Universal Consciousness'
postulates) unequivocally asserts that there cannot (in principle) exist any 'material-causal'
effect/s (or relationship/s) being transferred across any (two subsequent) USCF's frames! This
is because the CUFT's very definition of all four 'physical' properties of 'space', 'time', 'energy'
and 'mass' – as secondary computational by-products of the (singular) Universal Computa‐
tional Consciousness' computation of (an extremely rapid series of) 'Universal Simultaneous
Computational Frames' (USCF's); and moreover the CUFT's 'Computational Invariance'
postulate indication that due to the 'computational variance' of these four (secondary compu‐
tational) 'physical' properties (e.g., as existing only "during" the appearance of the USCF frames
but 'non-existence' "in-between" any two such subsequent frames, see Bentwich, 2012:c-d) as
opposed to the 'computational invariance' of the 'Universal Consciousness Principle' ('י'), we
need to regard only this singular (computationally invariant) 'Universal Consciousness
Principle' as "real" whereas all four (secondary computationally variant) 'physical' properties
must be regarded as merely 'phenomenal' (i.e., as being comprised in reality only from the
singular Universal Consciousness Principle); Therefore, the CUFT's 'Universal Consciousness
Principle' advocated that none of these four (secondary computationally variant) 'physical'
properties (e.g., of 'space', 'time', 'energy' or 'mass') "really" exists – but rather that there is only
this one singular Universal Consciousness Principle which exists (solely) "in-between" any
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(two subsequent) USCF's frames and also solely produces each of these USCF's derived four
'phenomenal physical' properties; Hence, it was evinced (by the CUFT's Universal Conscious‐
ness Principle) that there cannot be any 'transference' of any hypothetical 'material' or 'physical'
entity, effect, or property across any (two subsequent) USCF's frames! We therefore reach the
inevitable theoretical conclusion that the current scientific (Cartesian) ''material-causality'
basic assumption underlying all key scientific SROCS paradigms as well as all (empirically
knowable) 'Gödel-like' (inductive or deductive) SROCS 'x-y' relationships, wherein there exists
a 'material-causal' effect/s (or relationship/s) between any given 'x' element and any (exhaus‐
tive hypothetical) 'y' series which determines the "existence" or "non-existence" of that
(particular) 'y' element (or value) – is untenable! Instead, we must accept the CUFT's assertion
that there can only exists one singular 'Universal Consciousness Principle' ('י') which both
(solely) produces- all (apparent) secondary computational 'physical' properties (of 'space',
'time', 'energy' and 'mass'), as well as computes the "simultaneous co-occurrences" of any
(particular) exhaustive-hypothetical inductive or deductive 'x-y' pairs series (e.g., comprising
the exhaustive USCF's frames).

3. The "universal consciousness principle's computational program"

Therefore, it follows that based on the recognition of the singularity of the Universal Con‐
sciousness Principle's 'a-casual' computation of the "simultaneous co-occurrences" of all
(inductive or deductive) 'x-y' pairs' series (as comprising the exhaustive USCF's frames) – we
need to be able to reformulate all of the previously mentioned key scientific SROCS paradigms
(Bentwich, 2012b-d), including: Darwin's 'Natural Selection Principle' and associated 'Genetic
Encoding' hypothesis, Neuroscience's Psychophysical Problem of human Consciousness, as
well as all (exhaustive hypothetical) 'Gödel-like' (apparent) inductive or deductive SROCS
computational paradigms based on this singular (higher-ordered) Universal Consciousness
Principle's ('י') 'a-causal' USCF's computation;

Hence, what follows is a description of the principle theoretical ramifications of reformulating
each of these key scientific (apparent) SROCS computational paradigms, as well as a more
generalized description of a tentative 'Universal Consciousness Principle Program' (e.g., which
may offer a successful alternative for 'Hilbert's Mathematical Program' to base all of our human
scientific knowledge upon the foundations of the operation of the singular Universal Con‐
sciousness Principle). First, it may be worthwhile to rearticulate the reformalization of each of
these key scientific (apparent) SROCS paradigms in terms of the operation of the singular
Universal Consciousness Principle (as previously outlined: Bentwich, 2012b):

S.:D2: [{E{1...n}, o}st1; {E{1...n}, o}st2... {E{1...n}, o}stn].

G.F – P.S.:D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti;...{G{1...n}, 'phn(o)' }stn].

G.E. – P.S.:D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ; Ge{1...n}, pn-
synth (o-phi)}stn]

Psychophysical:D2: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }]
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Functional: D2: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)]

Phen.: D2: [{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)]

Self: D2: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} st-(i+n)]

GIT:D2: ([{S{1...n}, t}i … {S{1...n}, t}z], or [{x{1...n}i, yi} … {x{1...n}z, yz}])

Indeed, what may be seen from this singular description of all of these key scientific SROCS
paradigms, is that it recognize the fact that all of these major (apparent) SROCS paradigms are
computed simultaneously as different "co-occurring" 'x-y' pairs embedded within the same
(single or multiple) USCF frame that is produced by the singular Universal Consciousness
Principle ('י'); What this means is that the recognition of the singularity of this Universal
Consciousness Principle as the sole "reality" which computes the "simultaneous co-occurrenc‐
es" of all of these (particular) exhaustive hypothetical 'x-y' pairs series, and which also exists
(solely) "in-between" any two such USCF's – forces us to transcend the 'narrow constraints' of
the (current) Cartesian 'material-causal' theoretical framework (e.g., which assumes that any
given 'y' entity (or phenomenon) is "caused" by its (direct or indirect) physical interaction/s
with (an exhaustive hypothetical 'x' series); Instead, this singular Universal Consciousness
Principle 'a-causal' computation asserts that it is the same singular Universal Consciousness
Principle which computes- produces- retains- and evolves- all of these particular scientific
(apparent) SROCS 'x-y' pairs series across a series of USCF's…

In other words, instead of the existence of any "real" material-causal relationship between any
of these (particular SROCS) 'x→y' entities (e.g., Darwin's Natural Selection Principle's assumed
'material-causal' relationship between an organism's Environmental Factors, 'x', and own traits
or behavior 'y'; or between any exhaustive hypothetical Genetic Factors and any given
phenotypic behavior; or between Neuroscience's Psychophysical Problem of Human Con‐
sciousness' psychophysical stimulation, 'x', and Neural Activation, 'y'; or in fact between any
hypothetical inductive or deductive Gödel-like SROCS 'x-y' factors); the CUFT's Universal
Consciousness Principle offers an alternative singular (higher-ordered) computational
mechanism which computes the "simultaneous co-occurrences" of any of these (exhaustive
hypothetical) 'x-y' pairs' series – which are all produced- and embedded- within the Universal
Consciousness Principle's computed USCF's frames… Indeed, the shift from the current
'material-causal' (Cartesian) scientific framework towards the Universal Consciousness
Principle's singular computation of the "simultaneous co-occurrences" of all exhaustive
hypothetical (inductive or deductive) 'x-y' pairs' series may lead the way for reformulating all
of these key scientific SROCS paradigms (as well as any other hypothetical inductive or
deductive 'x-y' series) within a basic "Universal Consciousness Principle Computational
Program";

Essentially, such a 'Universal Consciousness Principle's Computational Program' is based upon
the foundations of the CUFT's (abovementioned) three postulates of the 'Duality Principle',
the 'Computational Invariance' principle and the 'Universal Consciousness Principle' – all
pointing at the fact that all empirically computable (inductive or deductive) 'x-y' relationships
must necessarily be based upon the singular (conceptually higher-ordered) Universal Con‐
sciousness Principle which is solely responsible for the computation of the "simultaneous co-
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occurrences" of all such (exhaustive hypothetical) inductive or deductive 'x-y' pairs series
comprising the totality of the USCF's (single or multiple) frames…. Moreover, this singular
Universal Consciousness Principle ('י') was also shown to exist independently of any (secon‐
dary computational) 'physical properties' (e.g., of 'space', 'time', 'energy' and 'mass') and
therefore constitute the only "reality" that exists invariantly (i.e., both as giving rise to the four
'phenomenal' physical properties and as existing solely "in-between" any two such subsequent
USCF's frames).

In order to appreciate the full (potential) theoretical significance of such a 'Universal Con‐
sciousness Principle Computational Program' it may be worthwhile to reexamine Hillbert's
famous 'Mathematical Program' to base Mathematics upon the foundations of Logic (e.g., and
by extension also all of Science upon the foundations of Mathematics and Logic), and more
specifically, to revisit 'Gödel's Incompleteness Theorem' (GIT) which delivered a critical blow
to Hilbert's 'Mathematical Program'; It is a well-known that Hilbert's Mathematical Program
sought to base Mathematics (e.g., and by extension also the rest of inductive and deductive
Science) upon a logical foundation (e.g., of certain axiomatic definitions); It is also well known
that Gödel's Incompleteness Theorem (GIT) has failed Hillbert's Mathematical Program due
to its proof that there exists certain 'self-referential' logical-mathematical statements that
cannot be determined as "true" or "false" (e.g., or logically 'consistent' or 'inconsistent') from
within any hypothetical axiomatic logical-mathematical system… Previously (Bentwich,
2012c,d) it was suggested that perhaps scientific Gödel -like SROCS computational systems
may in fact be constrained by the Duality Principle's (generalized) format, thus:

i. SROCS: PR{x,y}→['y' or 'not y']/di1…din

ii. SROCS CR{S,t}→ ['t' or 'not t']/di1…din

wherein it was shown that both inductive ('i') and deductive (ii) SROCS scientific computa‐
tional systems are necessarily constrained by the Duality Principle (e.g., as part of the broader
CUFT). In other words, the Duality Principle's (generalized format) was shown to constrain
all (exhaustive hypothetical) Gödel -like (inductive or deductive) scientific SROCS paradigms,
thereby pointing at the existence of a singular (higher-ordered) Universal Consciousness
Principle ('י') which is solely capable of computing the "simultaneous co-occurrences" of any
(exhaustive hypothetical) 'x-y' pairs series. It is important to note, however, that the conceptual
computational constraint imposed upon all (Gödel -like) inductive or deductive scientific
SROCS paradigms was shown to apply for all of those inductive or deductive (apparent)
scientific SROCS paradigms – for which there is an empirically known (or 'knowable') 'x-y'
pairs series results!

This latter assertion of the Duality Principle's (generalized proof) may be significant as it both
narrows- and emphasized- the scope of the 'scientifically knowable domain'; In other words,
instead of the current 'materialistic-reductionistic' scientific framework which is anchored in
a basic (inductive or deductive) SROCS computational format (see above) which inevitably
leads to both 'logical inconsistency' and 'computational indeterminacy' that are contradicted
by robust empirical findings (e.g., pertaining to the key scientific SROCS paradigms); The
Duality Principle (e.g., as one of the postulates within the broader CUFT) proves that the only
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means for computing the "simultaneous co-occurrences" of any (exhaustive hypothetical) 'x-
y' pairs series is carried out by the singular (higher-ordered) Universal Consciousness Principle
Moreover, the (generalized format of the) Duality Principle goes farther to state that for …('י')
all other (exhaustive hypothetical) inductive or deductive computational SROCS paradigms –
for which there exists a proven empirical capacity to determine the values of any particular 'x-y' pairs
(e.g., empirically "known" or "knowable" 'x-y' pairs results)- any of these (hypothetical) scientific
SROCS computations must be carried out by the CUFT's identified singular Universal
Consciousness Principle ('י')!

The (potential) significance of this generalized assertion made by the Computational Unified
Field Theory's (CUFT): 'Duality Principle', 'Computational Invariance' principle and Universal
Consciousness Principle ('י') is twofold:

a. First, it narrows down the scope of (inductive or deductive) determinable scientific
phenomena – to only those (inductive or deductive) 'x-y' relationships for which there is
an empirical capacity to determine their "simultaneously co-occurring" values; essentially
the 'Universal Consciousness Principle's Computational Program' anchors itself in the Duality
Principle's focus on only those inductive or deductive 'x-y' relationship/s or phenomenon
for which there is an empirically 'known' or 'knowable' capacity to determine these 'x-y'
pairs values. It is perhaps important to note (in this context) that all of the 'other' inductive
or deductive 'x-y' relationship/s which cannot be (empirically) known – "naturally" lie
outside the scope of our human (scientific) knowledge (and therefore should not be
included, anyway within the scope of Science)… Nevertheless, the strict limitation
imposed by the 'Universal Consciousness Principle Computational Program' – may
indeed be significant, as it clearly defines the boundaries of "admissible scientific knowl‐
edge" to only that scientific knowledge which is based on empirically known or knowable
results pertaining to the "simultaneous co-occurrences" of any 'x-y' relationship or
phenomenon; (Needless to say that the strict insistence of the Universal Consciousness
Computational Program upon dealing only with

b. Second, based on this strict definition of Science as dealing solely with 'empirical know‐
able' (simultaneously co-occurring) 'x-y' relationship/s or phenomenon – the 'Universal
Consciousness Computational Program' may in fact offer a broader alternative to GIT
(failing of Hilbert's 'Mathematical Program'); This is because once we accept the Universal
Consciousness Principle's Computational Program's (above) strict 'empirical constrains',
we are led to the Duality Principle's (generalized) conceptual computational proof that
any (exhaustive hypothetical) inductive or deductive scientific SROCS' 'x-y' relationship
must be determined by the singular Universal Consciousness Principle ('י') computation
of the "simultaneous co-occurrences" of any (exhaustive hypothetical) 'x-y' pairs series.
This means that instead of GIT assertion that it is not possible (in principle) to construct
a consistent Logical-Mathematical System which will be capable of computing any
mathematical (or scientific) claim or theorem, the Universal Consciousness Computa‐
tional Program asserts that based on a strict definition of Science as dealing solely with
empirically knowable 'x-y' relationship/s or phenomenon, we obtain a singular (higher-
ordered) Universal Consciousness Principle which is solely responsible for computing the
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"simultaneous co-occurrences" of any (exhaustive hypothetical) inductive or deductive 'x-
y' pairs series (e.g., which were shown by the CUFT to comprise the totality of any single
or multiple USCF's frames that are solely produced by this Universal Consciousness
Principle). In that sense, it may be said that the Universal Consciousness Principle
Computational Program points at the existence of the singular (higher-ordered) Universal
Consciousness Principle as constraining- and producing- all inductive or deductive
scientific relationship/s or phenomena (e.g., which was also shown earlier and previously
to constitute the only "reality" which both produces all USCF's derived secondary
computational 'physical properties and also solely exists "in-between" any two such
USCF's).

4. Theoretical ramifications of the universal consciousness principle

The discovery of the singular Universal Consciousness Principle (alongside its 'Universal
Consciousness Computational Program') may bear a few significant theoretical ramifications:

1. The Sole "Reality" of the Universal Consciousness Principle: As shown above, all
scientific (inductive and deductive) disciplines need to be reformulated based on the
recognition that there exists only a singular (higher-ordered) Universal Consciousness
Principle ('י') which solely produces- sustains- evolves (and constrains) all (apparent)
SROCS (inductive or deductive) 'x-y' relationships; Moreover, this Universal Conscious‐
ness Principle is recognized as the sole "reality" that both produces- sustains- and evolves-
any of the apparent (four) 'physical' properties of 'space', 'time', 'energy' and 'mass', as
well as exists independently of any such 'physical' properties – and is therefore recognized
as the only singular "reality", whereas these apparent 'physical' properties are seen as
merely 'phenomenal' (secondary computational) manifestations of this singular (higher-
ordered) Universal Consciousness Principle "reality".

2. The Transcendence of 'Material-Causality' by the Universal Consciousness Principle
'A-Causal' Computation: As shown (above), the acceptance of the Universal Conscious‐
ness Principle ('י') as the sole "reality" which both produces- (sustains- and evolves-) all
USCF's (secondary computational) 'physical' properties, as well as exists independently
"in-between" any (two subsequent) USCF's; (Alongside the Duality Principle's negation
of any apparent SROCS' 'causal' relationships and the 'Computational Invariance'
principle indication that only the 'computationally invariant' 'Universal Consciousness
Principle' "really" exists whereas the secondary 'computationally variant' physical
properties are only 'phenomenal'.) – point at the negation of any "real" material-causal ('x-
y') relationships, but instead indicate that there can only exist a singular (higher-ordered)
Universal Consciousness Principle 'a-causal' computation of the "simultaneous co-
occurrences" of any exhaustive hypothetical inductive or deductive 'x-y' pairs' series…
(As shown earlier, the strict negation of the existence of any "real" 'material-causal' 'x→y'
relationships was evinced by the simple fact that according to the CUFT's model there
cannot exist any "real" computationally variant 'physical' or 'material' property that can
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"pass" across any two subsequent USCF's, but only the computationally invariant "real"
Universal Consciousness Principle which exists singularly – as solely producing all
apparent secondary computational 'physical' properties as well as existing independently
"in-between" any two such subsequent USCF's frames.) Indeed, the need to replace all
apparent 'material-causal' 'x-y' SROCS relationships by a singular (higher-ordered)
Universal Consciousness Principle computation of the 'simultaneous co-occurrences' of
all possible inductive or deductive 'x-y' pairs series was shown to apply to all of the key
(apparent) scientific SROCS paradigms (including: Darwin's Natural Selection Principle
and associated Genetic Encoding hypothesis, Neuroscience's Psychophysical Problem of
human Consciousness as well as to all Gödel-like hypothetical inductive or deductive
SROCS paradigms; what this implies is that for all of these apparent SROCS scientific
paradigms the sole "reality" of the Universal Consciousness Principle forces us to tran‐
scend each of the (particular) 'material-causal' x-y relationships in favor of the Universal
Consciousness Principle's singular computation of all (exhaustive hypothetical) 'x-y' pairs
series; Thus, for example, instead of Darwin's current 'Natural Selection Principle' SROCS
material-causality thesis, which assumes that it is the direct (or indirect) physical inter‐
action between the organism and its Environmental Factors that causes that organism to
'survive' or be 'extinct', the adoption of the Universal Consciousness Principle (and Duality
Principle) postulates brigs about a recognition that there is only a singular (Universal
Consciousness based) conceptually higher-ordered 'a-causal' computation of the "simul‐
taneous co-occurrences" of an exhaustive hypothetical pairs series of 'organism' and
'Environmental Factors' (e.g., which are computed as part of the Universal Consciousness
Principle's production of the series of USCF's frames).

3. Possible Resolution of Physical (and Mathematical) Conundrums: It is suggested that
certain key Physical (and Mathematical) Conundrums including: Physics "dark energy",
"dark matter" and "arrow of time" enigmas may be potentially resolved through the
application of this singular 'Universal Consciousness Principle'; this is because according
to the CUFT, all (four) 'physical' properties of 'space', 'time', 'energy' and 'mass' are (in
reality) solely produced by the Universal Consciousness Principle (e.g., as secondary
computational 'phenomenal' properties); Hence, the key enigma of "dark energy" and
"dark matter" (e.g., the fact that based on the calculation of the totality of 'mass' and
'energy' in the observable cosmos the expansion of the universe should not be as rapid as
is observed – which is currently interpreted as indicating that approximately 70-90% of
the "energy" and "mass" in the universe in "dark", that is not yet observable) – may be
explainable based on the CUFT's delineation of the Universal Consciousness Principle's
(extremely rapid) computation of the series of USCF's. This is due to the fact that according
to the Universal Consciousness Principle's (previously discovered: Bentwich, 2012a)
'Universal Computational Formula' the production of any "mass" or "energy" ("space" or
"time") 'physical' properties – are entirely (and solely) produced through the Universal
Consciousness Principle's computation of the degree of 'Consistency' (e.g., 'consistent' or
'inconsistent') across two other Computational Dimensions, i.e., 'Framework' ('frame' vs.
'object') and 'Locus' ('global' vs. 'local'): Thus, for instance it was shown that any "mass"
measurement of any object in the universe is computed by the Universal Consciousness
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Principle ('י') as the degree of 'consistent-object' measurement (of that particular) object
across a series of USCF frames.

Hence, by extension, the totality of the "mass" measured across the entire physical universe
should be a measure of the degree of consistent-object/s values across a series of USCF's! Note,
however, that based on the abovementioned recognition that in "reality" – only the Universal
Consciousness Principle ('י') "exists" (e.g., both as producing any of the USCF's derived four
secondary computational 'physical' properties as well as existing independently "in-between"
any two such USCF's frames), and therefore that only this Universal Consciousness Principle
"really" produces all of the (apparent) "mass" and "energy" in the 'physical' universe (e.g., rather
than the "energy" and "mass" in the 'physical' universe being "caused" by the "material" objects
in the cosmos)… Hence, also all of the "energy" in the physical universe is solely produced by
this (singular) Universal Consciousness Principle, e.g., as a measure of the degree of 'incon‐
sistent-frame' (changes) of all of the objects (I the universe) across a series of USCF's frames.
Therefore, according to the CUFT, the explanation of all of the "mass" and "energy" values
observed in the 'physical' universe – should be solely attributed to the operation of the
Universal Computational Principle, i.e., through its (extremely rapid) computation of the rapid
series of USCF's (respective secondary computational measures of the abovementioned degree
of 'consistent-object': "mass", or 'inconsistent-frame': "energy"). We therefore obtain that the
(accelerated) rate of expansion of the physical universe – should be explained (according to
the CUFT) based on the Universal Consciousness (extremely rapid) computation of the USCF's
(e.g., which gives rise to the apparent secondary computational 'physical' measures of
'consistent-object': "mass" or 'inconsistent-frame': "energy"), rather than arise from any
'material-causal' effects of any (strictly hypothetical) "dark mass" or "dark energy"… (Once
again, it may be worth pointing at the abovementioned conceptual computational proof that
there cannot be any transference of any "physical" property (entity or effect etc.) across any
(two subsequent) USCF's frames, but only the retention- or evolution- of all of the spatial pixels'
"physical" properties by the singular Universal Consciousness Principle across the series of
USCF's – which therefore also precludes the possibility of any "real" "material" effects exerted
by any "dark" mass or energy on the expansion of the 'physical' universe across a series of
USCF frames.)

Similarly, the "arrow of time" conundrum in modern Physics, e.g., which essentially points at
the fact that according to the laws of Physics, there should not be any difference between the
physical pathways of say the "breaking of a glass cup into a (thousand) small glass' pieces"
and the "re-integration of these thousand glass' pieces into a unitary glass cup"! In other words,
according to the strict laws of Physics, there should not be any preference for us seeing "glasses"
break into a thousand pieces – over our seeing of the thousand pieces become "reintegrated"
into whole glass cups (again), which is obviously contradicted by our (everyday) phenomenal
experiences (as well as by our empirical scientific observations)… Hence, according to the
current state of (quantum and relativistic) models of Physical reality – there is no reasonable
explanation for this "arrow of time" apparent empirical "preference" for the "glass breaking
into pieces" scenario over the "reintegration of the glass pieces" scenario…
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However, it is suggested that according to one of the CUFT critical empirical predictions
(previously outlined: Bentwich, 2012b) this "arrow of time" Physical conundrum may be
resolved: This is because one (of three) critical empirical predictions of the CUFT assert the
possibility of reversing any spatial-temporal sequence associated with any given 'electromag‐
netic spatial pixel' through the appropriate manipulation of that object's (or event's) electro‐
magnetic spatial pixel values (across a series of USCF's): It was thus indicated that if we were
to accurately record the spatial electromagnetic pixels' values of any particular object (e.g.,
such as an amoeba or any other living organism for instance) across a series of USCF's frames
(e.g., or even through a certain sampling from a series of USCF's), and to the extent that we
could appropriately manipulate these various electromagnetic spatial pixels' values in such a
manner which allows us to reproduce that objects' electromagnetic spatial pixels' values (across
the measured series of USCF's) – in the reversed spatial-temporal sequence, then it may be
possible to reverse the "flow of time" (e.g., spatial-temporal electromagnetic pixels' sequence).
In this way it should be possible (according to one of the critical predictions of the CUFT) to
actually "reverse" the "arrow of time" (e.g., at least for particular object/s or event/s: such as for
instance, bring about a situation in which a "broken glass cup may in fact be reintegrated"…)
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1. Introduction

During the last decade, researchers around the world have shown that Information Theory [7]
is probably one of the most important models in modern science. This model has given rise to
applications and reinterpretations of concepts in Physics, Chemistry, Biology, Mathematics,
Telecommunications and many other areas that are not, in principle, related to Information
Theory. In the 90’s, E. R. Frieden showed that important results such as the Schrödinger
equation, the Maxwell-Boltzmann and Boltzmann distributions, the Dirac equation can be
derived from principles of Information Theory [1–5].

Indded, information is a general concept that is perfectly applicable to any case. It is possible
to ask what is the importance of the concept of information measure in quantum mechanics?
What do they have in common the codes used to send messages from a communications’
satellite have in common with the bases in a DNA molecule? How does the second law
of Thermodynamics relate to Communication, to the extent that it is possible to speak of
the entropy of a musical theme? How do the intricate problems of probability relate to the
way we express ourselves orally or in writing? The answer to these questions can be found
in information, and the fact that this concept can link very different ideas reveals its great
generality and power.

In Chemistry, Information Theory has been applied to the characterization of chemical
systems and chemical processes [10–13]. It has been shown that it is possible to use
informational entropies to characterize processes such as bond breaking and bond formation.
Shannon’s entropy can be regarded as a general measure of information that can be used to
obtain the Fukui function, which is a parameter of chemical reactivity in atomic and simple
molecular systems [6]. In practice, the formal development of applications of Shannon’s
entropies in Density Functional Theory (DFT) is a fertile area of research. In this context the

©2012 Flores-Gallegos, licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Flores-Gallegos; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

maximum entropy method has been applied to DFT [33]. Following this line of research, we
have initiated a new investigation to derive formal relationships between Information Theory
concepts and Theoretical Chemistry.

In this work, we consider the idea that Shannon’s entropy can be directly related to some
fundamental DFT concepts. To show this, we present some simple mathematical derivations
to prove that the first derivative of the Shannon entropy is directly related to DFT reactivity
parameters such as the Fukui function, the hardness, softness, and chemical potential and
that it might even be possible to obtain a formal relationship between Shannon’s entropy and
the electron energy. Finally, chemical applications are presented in which the relationships
obtained in this work are used in two case studies involving a simple chemical reaction and
a conformational analysis.

2. The first derivatives of Shannon’s entropy and their relationship to

chemical reactivity

For purposes of this chapter we take as a starting point the definition of the unnormalized
Shannon’s entropy in terms of the electron density in position space, which is defined as:

s(r) = −

∫

ρ(r) ln ρ(r)dr, (1)

If normalized electron densities are used,
ρ(r)
N

, Shannon’s entropy becomes positive: S(r) ≥ 0

and the normalized Shannon entropy is

S(r) = −

∫

ρ(r)

N

ln
ρ(r)

N

dr, (2)

where N is the number of electrons. This expression can be rewritten as:

S(r) = −

1

N

∫

ρ(r) ln

(

ρ(r)

N

)

dr

= −

1

N

∫

ρ(r) [ln ρ(r)− ln N] dr

= −

1

N

∫

ρ(r) ln ρ(r)dr +
1

N

ln N

∫

ρ(r)dr
︸ ︷︷ ︸

=N

= −

1

N

∫

ρ(r) ln ρ(r)dr + ln N

= −

s(r)

N

+ ln N. (3)

Differentiating the entropy S(r) with respect to N at constant external potential ν(r):
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(

∂S(r)

∂N

)

ν(r)
= −

s(r)

N
2
−

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)
ln ρ(r)dr +

1

N

, (4)

The term
(

∂ρ(r)
∂N

)

ν(r)
, is the Fukui function, which is a chemical reactivity parameter in DFT

[33].

Also, we can set up the follow relationship

(

∂ρ(r)

∂µ

)

ν(r)
=

(

∂ρ(r)

∂N

)

ν(r)

(

∂N

∂µ

)

ν(r)
, (5)

and obtain the variation of Shannon’s entropy with respect to the chemical potential:

(

∂S(r)

∂N

)

ν(r)

(

∂N

∂µ

)

ν(r)
= −

s(r)

N
2

(

∂N

∂µ

)

ν(r)
−

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)

(

∂N

∂µ

)

ν(r)
ln ρ(r)dr

+
1

N

(

∂N

∂µ

)

ν(r)
(6)

simplify,

(

∂S(r)

∂µ

)

ν(r)
=

[

1

N

−

s(r)

N
2

] (

∂N

∂µ

)

ν(r)
−

1

N

∫

(

∂ρ(r)

∂µ

)

ν(r)
ln ρ(r)dr, (7)

In this expression, we recognize the term
(

∂ρ(r)
∂µ

)

ν(r)
which is the local softness.

Also, is it interesting to obtain the variation of Shannon’s entropy with respect to the electron
density,

(

∂S(r)

∂ρ(r)

)

ν(r)
= −

1

N

∫

1 + ln ρ(r)dr. (8)

A similar procedure can be used to obtain the above relations in momentum space as well as
for the total Shannon entropy [14], which is defined as

S
T
= S(r) + S(p), (9)

where S(r) and S(p) are Shannon’s entropies in position and momentum spaces, respectively.
The variation of the total Shannon entropy with respect to electron number would be:
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dS
T

dN

=

(

∂S(r)

∂N

)

ν(r)
+

(

∂S(p)

∂N

)

ν(p)
, (10)

this permit us, open a door, to the study of this kind of derivatives and chemical descriptors,
in momentum space. Results about, the chemical reactivity parameters in momentum space,
will be present in other work.

Summarizing, the relations obtained are:

i)

(

∂S(r)

∂N

)

ν(r)
= −

s(r)

N
2
−

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)
ln ρ(r)dr +

1

N

. (11)

ii)

(

∂S(r)

∂µ

)

ν(r)
=

[

1

N

−

s(r)

N
2

] (

∂N

∂µ

)

ν(r)
−

1

N

∫

(

∂ρ(r)

∂µ

)

ν(r)
ln ρ(r)dr. (12)

iii)

(

∂S(r)

∂ρ(r)

)

ν(r)
= −

1

N

∫

1 + ln ρ(r)dr. (13)

In the formalism of DFT, the reactivity parameters are defined as:

Chemical potential = µ =

(

∂E

∂N

)

ν(r)
. (14)

Hardness = η =

(

∂µ

∂N

)

ν(r)
=

(

∂
2
E

∂N
2

)

ν(r)
. (15)

Softness = s =

(

∂N

∂µ

)

ν(r)
=

(

∂ρ(r)

∂µ

)

ν(r)
. (16)

Fukui function = f (r) =

(

∂ρ(r)

∂N

)

ν(r)
. (17)

where µ is the Chemical potential, η is the Hardness, s is the Softness and f (r) is the
Fukui Function. Each one of these equations has a specific interpretation in Chemistry. The
Chemical potential, µ, is a measure the escaping tendency of an electron, which is constant,
through all space, for the ground state of an atom, molecule, or solid [16]. The Hardness, η, is

related to the polarizability [15] and the Fukui function [23–25],
(

∂ρ(r)
∂N

)

ν(r)
, is interpreted as

a measure of the sensitivity of the chemical potential with respect to an external perturbation
at a particular point. These properties have been included in the chemical vocabulary since
the early 1950s.
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2.1. The second derivatives of Shannon’s entropy

In this section we obtain the second derivatives of the Shannon entropy respect to the electron
density, how a first case, we take the Eq. (11),

(

∂
2
S(r)

∂ρ(r)∂N

)

ν(r)
=

∂

∂ρ(r)

{

−

s(r)

N
2
−

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)
ln ρ(r)dr +

1

N

}

= −

1

N
2

∫

1 + ln ρ(r)dr

−

1

N

∫

(

∂ f (r)

∂ρ(r)

)

ν(r)
ln ρ(r) +

f (r)

ρ(r)
dr. (18)

where f (r) is it the Fukui function.

How a second case, consider the Eq. (12),

(

∂
2
S(r)

∂ρ(r)∂µ

)

ν(r)
=

∂

∂ρ(r)

{

[

1

N

−

s(r)

N
2

] (

∂N

∂µ

)

ν(r)
−

∫

(

∂ρ(r)

∂µ

)

ν(r)
ln ρ(r)dr

}

= −

1

N
2

(

∂N

∂µ

)

ν(r)

∫

1 + ln ρ(r)dr

−

∫

(

∂s

∂ρ(r)

)

ν(r)
ln ρ(r) +

s

ρ(r)
dr. (19)

where s is the softness.

Finally, for Eq. (13),

(

∂
2
S(r)

∂ρ(r)2

)

ν(r)

= −

1

N

∫

∂

∂ρ(r)
(1 + ln ρ(r)) dr

= −

1

N

∫

dr

ρ(r)
. (20)

2.2. The change of Shannon entropy respect to the electron energy using
Parr-Gadre-Bartolotti model

Now, we obtain the variation of the Shannon entropy respect to the energy, in this case,

consider the chemical potential µ =
(

∂E

∂N

)

ν(r)
and the Eq. (4),
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(

∂S(r)

∂N

)

ν(r)

(

∂N

∂E

)

ν(r)
= −

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)

(

∂N

∂E

)

ν(r)
ln ρ(r)dr

+

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)

= −

1

N

∫

(

∂ρ(r)

∂E

)

ν(r)
ln ρ(r)dr

+

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)
, (21)

note the importance of this relation, we can establish a formal relation between the Shannon
entropy with the electronic energy1.

In a similar way, we can obtain the second derivative of the last equation respect to electron
density.

(

∂
2
S(r)

∂ρ(r)∂E

)

ν(r)
=

∂

∂ρ(r)

{

−

1

N

∫

(

∂ρ(r)

∂E

)

ν(r)
ln ρ(r)dr +

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)

}

= −

1

N

∫

(

∂µ(r)

∂ρ(r)

)

ν(r)
ln ρ(r) +

µ(r)

ρ(r)
dr

−

1

N
2

(

∂N

∂E

)

ν(r)

∫

1 + ln ρ(r)dr. (22)

where µ(r) it is a local chemical potential.

For obtain a direct application of the last result in the DFT model, we selected the
Parr-Gadre-Bartolotti model [26], PGB, this is a local model based in the Thomas-Fermi
model [17, 18]. The expression for the energy in the PGB model is,

d [E]
PGB

= Cρ(r)5/3 + ρ(r)ν(r) + BN
2/3

ρ(r)4/3
dr, (23)

where B = 0.7544 and C = 3.8738.

Considering Eq. (21), and Eq. (23), the first step is it obtain
(

∂ρ(r)
∂E

)

ν(r)
, for do this, consider

(

∂ρ(r)

∂E
PGB

)

−1

ν(r)
=

(

∂E
PGB

∂ρ(r)

)

ν(r)
(24)

1 A more complete study about of the formal relation between electron energy and Shannon entropy will present in
other work.
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with this and the Eq. (23),

(

∂E
PGB

∂ρ(r)

)

ν(r)
=

∂

∂ρ(r)

{

Cρ(r)5/3 + ρ(r)ν(r) + BN
2/3

ρ(r)4/3
}

=
5

3
Cρ(r)2/3 + ν(r) +

4

3
BN

2/3
ρ(r)1/3 (25)

and,

(

∂ρ(r)

∂E
PGB

)

ν(r)
=

1
5
3 Cρ(r)2/3 + ν(r) + 4

3 BN
2/3ρ(r)1/3

, (26)

now consider the Eq. (21),

(

∂S(r)

∂E
PGB

)

ν(r)
= −

1

N

∫

ln ρ(r)
5
3 Cρ(r)2/3 + ν(r) + 4

3 BN
2/3ρ(r)1/3

dr +

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)
.

(27)

The importance of this results, resides in that for the first time we prove that there exist a
formal relationship between concepts of the information theory and the chemical reactivity,
based on a formal derivation rather than on a phenomenological interpretation.

2.3. The variation of Shannon’s entropy with respect to the electron kinetic
energy

In this case, we consider the famous Thomas-Fermi kinetic energy functional, defined as

dE
TF

k
[ρ(r)] = C

F
ρ(r)5/3

dr, C
F
=

3

10
(3π

2)2/3, (28)

first we use the property (24)

(

∂E
TF

k

∂ρ(r)

)

ν(r)

= C
F

5

3
ρ(r)2/3, (29)

now, we use the Eq. (21)

(

∂S(r)

∂E
TF

k

)

ν(r)

= −

1

N

∫

ln ρ(r)

C
F

5
3 ρ(r)2/3

dr +

[

1

N

−

s(r)

N
2

]

1

µ
,

= −

3

5NC
F

∫

ln ρ(r)

ρ(r)2/3
dr −

1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

. (30)
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2.4. The variation of Shannon’s entropy with respect to the exchange energy in
LDA

For simplicity we take only the exchange energy, in the Local Density Approximation (LDA),
in this approximation the total energy of a system can be write as the sum of the correlation
and exchange energy: εcx = εx + εc. The correlation part, εc has been calculated and the
results obtained were expressed like complicated expression of ρ(r) [27]. In our case, we
only consider the exchange term, defined as

dE
LDA

x
[ρ(r)] = −

3

4

(

3

π

)1/3

ρ(r)4/3
dr (31)

again,

(

∂E
LDA

x

∂ρ(r)

)

ν(r)

= −

(

3

π

)1/3

ρ(r)1/3, (32)

and

(

∂S(r)

∂E
LDA

x

)

ν(r)

= −

1

N

∫

ln ρ(r)
(

3
π

)1/3
ρ(r)1/3

dr +

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)

= −

1

N

∫

ln ρ(r)
(

3
π

)1/3
ρ(r)1/3

dr −
1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

. (33)

2.5. Variation of Shannon‘s entropy with respect to the energy, considering the
kinetic and exchange effects.

Now, we can take the previous results to obtain the variation on Shannon’s entropy
considering the kinetic and exchange effects using local models. This derivative will be

(

∂S(r)

∂E
TF,LDA

k,x

)

ν(r)

=

(

∂S(r)

∂E
TF

k

)

ν(r)

+

(

∂S(r)

∂E
LDA

x

)

ν(r)

= −

3

5NC
F

∫

ln ρ(r)

ρ(r)2/3
dr −

1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

−

1

N

∫

ln ρ(r)
(

3
π

)1/3
ρ(r)1/3

dr −
1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

=






−

3

5NC
F

∫

ln ρ(r)

ρ(r)2/3
dr −

1

N

∫

ln ρ(r)
(

3
π

)1/3
ρ(r)1/3

dr
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−

1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

= −

1

N

(

3

5C
F

+
1

(3/π)1/3

)

∫

(

1 + ρ(r)1/3

ρ(r)2/3

)

ln ρ(r)dr

−

1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

= −

∫

[

A

(

1 + ρ(r)1/3

ρ(r)2/3

)

− Bρ(r)

]

ln ρ(r)dr + BN, (34)

where

A =
3

5NC
F

+
1

N(3/π)2/3
,

and

B =
1

µN
2

.

2.6. Summary of relationships obtained

Finally, we present a summary of the different relations obtained in this work. Whit this
results, is possible say that the information theory is a model that is subjacent to the Density
Functional Theory.

In the follow section we show some results of this relations applied to some chemical process.

(

∂S(r)

∂N

)

ν(r)
= −

s(r)

N
2
−

1

N

∫

(

∂ρ(r)

∂N

)

ν(r)
ln ρ(r)dr +

1

N

. (35)

(

∂S(r)

∂µ

)

ν(r)
=

[

1

N

−

s(r)

N
2

] (

∂N

∂µ

)

ν(r)
−

1

N

∫

(

∂ρ(r)

∂µ

)

ν(r)
ln ρ(r)dr. (36)

(

∂S(r)

∂ρ(r)

)

ν(r)
= −

1

N

∫

1 + ln ρ(r)dr. (37)

(

∂S(r)

∂E

)

ν(r)
= −

1

N

∫

(

∂ρ(r)

∂E

)

ν(r)
ln ρ(r)dr +

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)
. (38)

(

∂
2
S(r)

∂ρ(r)∂N

)

ν(r)
= −

1

N

∫

(

∂ f (r)

∂ρ(r)

)

ν(r)
ln ρ(r) +

f (r)

ρ(r)
dr. (39)

(

∂
2
S(r)

∂ρ(r)∂µ

)

ν(r)
= −

∫

(

∂s

∂ρ(r)

)

ν(r)
ln ρ(r) +

s

ρ(r)
dr. (40)

(

∂
2
S(r)

∂ρ(r)2

)

ν(r)

= −

1

N

∫

dr

ρ(r)
. (41)
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(

∂
2
S(r)

∂ρ(r)∂E

)

ν(r)
= −

1

N
2

(

∂N

∂E

)

ν(r)

∫

1 + ln ρ(r)dr. (42)

(

∂S(r)

∂E
TF

k

)

ν(r)

= −

3

5NC
F

∫

ln ρ(r)

ρ(r)2/3
dr −

1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

. (43)

(

∂S(r)

∂E
LDA

x

)

ν(r)

= −

1

N

∫

ln ρ(r)
(

3
π

)1/3
ρ(r)1/3

dr −
1

µN
2

∫

ρ(r) ln ρ(r)dr +
1

µN

. (44)

(

S(r)

E
TF,LDA

k,x

)

ν(r)

= −

∫

[

A

(

1 + ρ(r)1/3

ρ(r)2/3

)

− Bρ(r)

]

ln ρ(r)dr + BN. (45)

(

∂S(r)

∂E
PGB

)

ν(r)
= −

1

N

∫

ln ρ(r)
5
3 Cρ(r)2/3 + ν(r) + 4

3 BN
2/3ρ(r)1/3

dr

+

[

1

N

−

s(r)

N
2

] (

∂N

∂E

)

ν(r)
. (46)

3. Description of a simple chemical process

3.1. Reaction CH2CHF + CH3 → CH3CHFCH2

To show the application of the relations obtained, we have selected the following
radical-molecule chemical reaction: CH2CHF + CH3 → CH3CHFCH2.

Structures and energies have been obtained along the reaction path using
m062x/6-311++G(d,p) density functional method with Gaussian 09 [31]. The electron
density was calculated with Pérez-Jordá’s algorithms [8] and a D-Grid 4.6 [9]. Molecular
Electrostatic Potential (MEP) isosurfaces were obtained with Molden 5.0
[22]. The Fukui function condensed was calculated using natural atomics orbitals obtained
in a Natural Population Analysis [28].

The condensed Fukui function were calculated according to the following approximations:

f (r)+ = |φ(r)LUMO|
2 +

n

∑
i=1

∂

∂N

|φ(r)|2 . (47)

f (r)− = |φ(r)HOMO|
2 +

n

∑
i=1

∂

∂N

|φ(r)|2 . (48)

f (r) =
1

2

(

f (r)+ + f (r)−
)

. (49)

where φ(r)LUMO correspond to LUMO electron density and φ(r)HOMO to HOMO electron
density. When a molecule accepts electrons, the electrons tend to go to places where f (r)+

is large because it is at these locations that the molecule is most able to stabilize additional
electrons. Therefore a molecule is susceptible of a nucleophilic attack at sites where f (r)+
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is large. Similarly, a molecule is susceptible of an electrophilic attack at sites where f (r)−

is large, because these are the regions where electron removal destabilizes the molecule the
least. In chemical density functional theory, the Fukui functions are the key regioselectivity
indicators for electron-transfer controlled reactions. In order to use these expressions we have
chosen the Natural Population Analysis, NPA, which involves only matrix diagonalization of
small subsets of the density matrix, and also requires a negligible amount of computer time.
Although it is more involved than a Mulliken or Löwdin analysis, for a theoretical analysis
using von Neumann entropies, NPA is an attractive method [29, 30, 34].

In Figure (1(a)) we present the electron energy profile of the reaction as a function of the
reaction coordinate RX in Å. Trends in the condensed Fukui function are shown in Figure
(1(b)). Analogously, trends in Hardness and chemical potential are shown in Figures (1(c))
and (1(d)), respectively.

In Figures (2(a)) and (2(b)) we present the trends in the kinetic and exchange energies as a
function of the reaction coordinate.

Energy values show that the reaction is exothermic, with the following energy values at
stationary points: E(reactants)=-217.629652 A.U.; E(transition state)= -217.615808 A.U. and
E(products)= -217.674564 A.U. One of the main points of interest for our purposes is the
analysis of the structures along the reaction path in terms of descriptors that are related to
chemical reactivity. In this specific case, we consider the kinetic and exchange energies (see
Figs. (2(a)) and (2(b))). For the kinetic energy we note that there exists a region limited by a
maximum at RX = −0.64230 and a minimum at RX = 1.44550, in which important chemical
changes occurs. It is associated with bond forming, in the Figures (2(c))-(2(l)) present the
Molecular Electrostatic Potential of this process, probably this result permit us establish a
kinetically classification criteria of this reaction, that is, the principal parameter that govern
this process it is the kinetic. The minima in RX = 1.44550 is it in relation to important
chemical changes that occurs in the frontier orbitals, see the Figures (2(m)), (2(n)) (2(o)) and
(2(p)) where present the isosurfaces of the HOMO and LUMO orbitals.

In the case of the Hardness, we note that not are a correspondence between the maximum
or minima of the electron, kinetic or exchange energy with the minimum and maximum of
the Hardness. This points, again are related at with the structural changes that occurs in
this zone, also, of course, this changes involved important changes in the frontier orbitals. A
similar aspect occurs with the condensed Fukui functions, Figure (1(b)), where we note that
in the point RX = 0.32119 exist a equality f (r)+ ≃ f (r)− ≃ f (r) ≃ 0.5 with this numerical
result we can note a parallelism with the relation of a hard/soft acids/basis, proposed by
Pearson. That in terms of the condensed Fukui functions would be, when a chemical process
occurs, exist a point where the active sites of the structures have a equalization of a kind of
chemical attack, nucleophilic or electrophilic. See, the Figures (3(a)), (3(b)) and (3(c)).

In this sense, is important to note that, in this case we suspect that the more important
changes in the parameters and their equalization occurs in the transition state, this can be
suspect by chemical intuition, but how we can see in the different graphics this not occurs,
in fact, the hardness, Fig. (1(c)), that exist a minima in RX = −0.64230 and a maximum in
RX = 3.21128 this zone permit us define as a zone where the process occurs via nucleophilic
attack.
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In Figure (3(e)) and (3(d)) we present, the tendencies of Shannon entropy and the electron

energy with the LDA approximation, E
LDA. In this case, the E

LDA increase basically in a

linear way, but in the point RX = 2.73035 have a maximum, this maximum appears to in

the chemical potential tendency. Respect to the Shannon entropy we note more structure

than E
LDA, and in this case, we note than the Shannon entropy have a similar tendency than

the electron energy, in the same form than the energy the Shannon entropy can detect the

transition state, see the Figure (3(f)).

By comparison between the Shannon entropy and electron energy profiles we can note that

the Shannon entropy, have a zone delimited in the region −0.5 ≤ RX ≤ 0.5, see Figure (3(f)),

that have a correspondence with the transition state zone, this is an important observation,

because, the Shannon entropy can detect a transition state zone, where occurs a transfer and

redistribution of electron density. Comparing, the tendencies of condensed Fukui function,

with the Shannon entropy tendency, we note that this zone, have a relation with a charge

transfer between the methyl and the molecule and is in this zone where occurs the process

of bond forming. In the same way that the condensed Fukui function, this zone is where the

subtle interactions among frontier orbitals occurs, and permit to the molecular system start

a complex process of the chemical bond forming, in Figure (4(a)) we present the tendency of

a normal mode of vibration, and we note that, the zone predicted by the Shannon entropy

exhibit a correspondence with a zone of the negative values of the frequencies, consequently,

is possible that we can not speak of a specific point in the reaction path where occurs a bond

breaking or bond forming. A similar argumentation, can be applied to the description of

the transition state zone. Note the importance of this, is possible that, still with the modern

techniques of the experimental chemistry, such the femtochemistry [19–21], we can not detect

just a transition state structure, or else, a zone of transition. This zone of transition, is accoted

by a zone where the Shannon entropy tendency have a slope approximately to zero, see the

Figure (4(b)) accordingly, we can say that the Shannon entropy can detect and predict the

zone where the most important chemical changes will be occurs, so, this kind of entropy

permit us reveals some chemical aspects that are subjacent in a chemical process. Other

important, observation is that the maximum of the electron energy, not correspond to the

minimum of the frequencies, it is represents, probability, a conflict between the convectional

interpretation, in the sense that the maximum of the energy correspond at one possible

transition state structure that, in general, have the most negative value of the frequencies,

but how we show in this case, this not occurs, by other hand, the minimum value of the

frequencies it is related at one equality with the condensed Fukui functions, see the Figure

(4(c)).

In general terms, is important to note, that the frequencies tendencies have a tree zones

of negative frequencies, these Hessian values represent the transition vector which show

maxima at the vicinity of the transition state. Several features are worth mentioning, the TS

corresponds indeed to a saddle point, maxima at the Hessian correspond to high kinetic

energy values (largest frequencies for the energy cleavage reservoirs) since they fit with

maximal values in the entropy profile, and the Hessian is minimal at the TS, where the kinetic

energy is the lowest (minimal molecular frequency) and it corresponds to a saddle point. In

this case, the analysis of frequencies can give us, a general idea about that this mechanics

occurs in tree steps, in each one, occurs some structural rearrays at expense of a decrease in
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energy exchange and increased kinetic energy. It is relevant note, that the Shannon entropy,

see Figure (4(b)), can detect three zones where the frequencies are negative, the first of them

is between −3.5 ≤ RX ≤ −2.2 the second in −0.5 ≤ RX0.5 and the last in 3.8 ≤ RX ≤ 4.0. In

the first and third zone, the Shannon entropy exhibits a change in their curvature, also, note

that this last observation have a correspondence with the other parameters such, hardness,

softness, chemical potential and with some Shannon entropy derivatives.

In Figure (5(b)) we compare the trend of the derivative of Snannon’s entropy with respect

to the number of electrons:
(

∂S(r)
∂N

)

ν(r)
as a function of RX, with that of the DFT chemical

reactivity descriptor:
(

∂µ

∂N

)

ν(r)
, which is associated to hardness. Even though absolute values

are not the same everywhere, there is a perfect coincidence in the region close to the transition

state, in terms of the RX position as well as in the absolute values.

A similar situation occurs with the derivative of Shannon’s entropy with respect to the

chemical potential:
(

∂S(r)
∂µ

)

ν(r)
, and the inverse of the Exchange energy,

1

E
LDA

i

= −

1
(

3
π

)1/3 ∫
ρ(r)4/3

dr

,

see Figure (5(d)).

Finally, a plot of the derivative of Shannon’s entropy with respect to the electronic energy
(

∂S(r)
∂E

)

ν(r)
as a function of RX, behaves in a manner that is remarkably similar to that of the

DFT descriptor for softness:
(

∂N

∂µ

)

ν(r)
(Figure (5(f)).

The relations that were suggested above based on numerical evidence can be summarized

as:

(

∂S(r)

∂N

)

ν(r)
≃

(

∂µ

∂N

)

ν(r)
. (50)

(

∂S(r)

∂µ

)

ν(r)
≃ −

3

4

(

3

π

)1/3 ∫

ρ(r)4/3
dr. (51)

(

∂S(r)

∂E

)

ν(r)
≃

(

∂N

∂µ

)

ν(r)
. (52)

From the numerical results obtained from Eqs. (50) and (52), we have been able to establish

a linear relationship between the parameters involved, and the following expressions have

been obtained:
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Hardness =

(

∂µ

∂N

)

ν(r)
= 28.3141

(

∂S(r)

∂N

)

ν(r)
+ 0.0226, (53)

Softness =

(

∂N

∂µ

)

ν(r)
= 24.1088

(

∂S(r)

∂E

)

ν(r)
+ 0.5876, (54)

Thus, the hardness and softness values of this chemical reaction can be obtained with a good

level of accuracy from the derivatives of Shannon’s entropy.
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Figure 1. Trends of the reaction CH2CHF + CH3 → CH3CHFCH2.
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Figure 3. Trends of the reaction CH2CHF + CH3 → CH3CHFCH2.
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Figure 5. Trends of the first derivatives of Shannon entropy.

3.2. Ethane conformational analysis

In this section we present a conformational analysis of ethane, as a function of the dihedral
rotation angle between the two methyl groups. The initial point corresponds to the eclipsed
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conformer, and an Intrinsic Reaction Coordinate analysis (IRC) has been performed, with ten
degrees steps in the dihedral angle. This system was calculated in Gaussian 03 [32], using
B3LYP/cc-pVTZ.

In Figure (6(a)) we present the electron energy and Shannon entropy profiles. An excellent
agreement is observed between the two curves. Furthermore, a clear similarity is also
observed between the behavior, along the reaction path, of the hardness and of the first
derivative of Shannon’s entropy with respect to the number of electrons. This is shown in
Figure (6(b)).

In Figure (6(c)) we show the kinetic and exchange energies as a function of RX. Both
quantities exhibit inverse behaviors,the position of the minima in one of them coinciding
with the maxima of the other.

One of the most important results is shown in Figure (6(d)), where the exchange energy is
plotted against Shannon’s entropy along the reaction path. A perfect linear correlation is
observed between these apparently unconnected quantities, leading to conclude that

i) The Shannon entropy in position space can be used as a measure of the exchange effects
in molecular systems.

ii) There exists a direct relationship between the Shannon entropy and the exchange energy.

Based in these conclusions and results, a new research line is being developed, to construct
a functional based on an entropic criterion.

The numerical results obtained above cab be summarized in the following manner:

(

∂S(r)

∂N

)

ν(r)
≃

(

∂N

∂µ

)

ν(r)
. (55)

S(r) ≃ −

3

4

(

3

π

)1/3 ∫

ρ(r)4/3
dr. (56)

The last equation suggests that there may be a fundamental connection between Chemical
Density Functional Theory and Information Theory. In Table (1), we present the numerical
results of Shannon’s entropy and exchange energy. Using these results and a least square
regression, is it possible to obtain the following linear relation between Shannon entropy and
exchange energy:

Ee = AS(r)− B, (57)

where A = 2.2127 and B = 21.0061. With this equation, we can reproduce the Exchange
Energy with a precision of 1 × 10−6.
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Angle S(r) E.E. Ee = AS(r)− B precision
[nats] [A.U.] [A.U.]

0 4.5902766 -10.849190 -10.8492232214 0.9999
10 4.5901580 -10.849449 -10.8494856465 0.9999
20 4.5898836 -10.850050 -10.8500928087 0.9999
30 4.5895363 -10.850815 -10.8508612761 0.9999
40 4.5892201 -10.851516 -10.8515609289 0.9999
50 4.5890276 -10.851953 -10.8519868718 0.9999
60 4.5889557 -10.852113 -10.8521459642 0.9999
70 4.5890276 -10.851953 -10.8519868718 0.9999
80 4.5892201 -10.851516 -10.8515609289 0.9999
90 4.5895363 -10.850815 -10.8508612761 0.9999

100 4.5898836 -10.850050 -10.8500928087 0.9999
110 4.5901580 -10.849449 -10.8494856465 0.9999
120 4.5902766 -10.849190 -10.8492232214 0.9999
130 4.5901580 -10.849449 -10.8494856465 0.9999
140 4.5898836 -10.850050 -10.8500928087 0.9999
150 4.5895363 -10.850815 -10.8508612761 0.9999
160 4.5892201 -10.851516 -10.8515609289 0.9999
170 4.5890276 -10.851953 -10.8519868718 0.9999
180 4.5889557 -10.852113 -10.8521459642 0.9999

Table 1. Numerical values of Shannon’s entropy and Exchange Energy, in the ethane conformational analysis, where

A = 2.2127 and B = 21.0061.
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Figure 6. Tendencies obtained for the Ethane Conformational Analysis.
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4. Conclusion

In this work, I have derived relationships that connect Shannon’s entropy and its derivatives,
with well-known concepts in Density Functional Theory. Numerical applications of these
relationships have been performed for two simple problems.

This has been permit us start a new investigation line about it, and with some this results
we continue whit the study of the formalism for the construction of a functional based in
a principles of physics, and the information theory, also, we pretend continue the develop
of the some models that permit us find the direct relation between electron energy with the
Shannon entropy.

By other hand, the application of the concepts of the information theory permit do a
description more accurate than the description based in only a energetically criteria, and
continue with the spirit of some works of Frieden, we speculate that is possible define
or found a form that derived the DFT from some fundamental expression, that come
form the Information Theory, as Frieden derivations of the fundamental equations of the
Thermodynamics, or the derivation of the Scrhödinger equation.

Finally, with this example we have tried to link information from a system that is subjected
to a process with the physical and chemical changes. Thus, we have linked the concept of
information, which is an epistemological concept completely with ontological concepts and
the solution concepts or interpretation of the results allows us feedback on these concepts in
ontological terms, according to the author, abstract and more general.

By other part, is probable that today do not exist a ortodoxical definition of what
actually is the information, beyond that presented by Shannon and its guidelines, criteria,
characterization of it, among other things, the interpretation and the relationship with other
concepts such as: energy, electron density, chemical reactivity parameters and many others
need be discussed to try of establish a formal relation between concepts.

So, there is no doubt that both knowledge and the praxis and reality as knowledge
scientific understanding and also, is it clear that information concept and the model itself is
interdisciplinary or transdisciplinary. The concept and moreover, the model itself, promotes
a systematic relation with causal analogies and parallelism with scientific knowledge, which
transcends the framework of the source domain and extend in various directions, thus
making the knowledge acquires an unusual resonance, as this, we believe it is feasible to
complement the explanations of natural processes and natural systems.

This model is not intended that the manner of the old school, that using metaphysical
substance, the particularities of the processes reveal themselves to us in the end as a
progressive manifestation of homogeneous order or a unitary whole and absolute. It is
simply to promote and implement a partnership scheme which promises analog route and
cover knowledge in a way easier.
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1. Introduction

Supersymmetric quantum mechanics (SUSYQM) has turned out to be surprisingly fertile
field which is also able to successfully address challenges in traditional quantum mechanics
and beyond. It has its roots in the works of Schrödinger, Infeld and Hull [1] on factorization
methods of the Schrödinger equation. The term supersymmetric is due to a work by Witten
[2] which brought these methods in contact with contemporary ideas in high energy physics.
He showed in particular that the a factorized one-dimensional Schrödinger equation can
accompany a super-Lie algebra thus providing a rich toy-model where features and concepts
in supersymmetric quantum field theories can be studied in a greatly simplified context.
A key ingredient in supersymmetric theories is that every bosonic state has a fermionic
superpartner with all properties equal except the spin. In SUSYQM these states emerge
as bosonic doublet states. The bosonic and the fermionic states are described in terms
of the Schrödinger equation, but they interact with different physical potentials. These
potentials are called partner potentials. Not completely surprising, knowing in advance the
energy-eigenvalues and functions of the bosonic (fermionic) states the theory provides a map
to the fermionic (bosonic) states with exactly the same energy-eigenvalues. Of key interest to
us is that the physical partner potentials are expressed in terms of the same superpotential.
These expressions are in general not unique. Different superpotentials can give rise to a
particular physical potential in the fermionic (bosonic) sector. This does not imply that when
the superpotential is changed (deformed) in such a way that the physical potential in the
fermionic (bosonic) sector stays unchanged that the physical potential stays invariant in the
bosonic (fermionic) sector. Whenever we deform a superpotential in the fermionic (bosonic)
sector such that the fermionic (bosonic) potential is invariant the bosonic (fermionic) potential
will generally change, but the theory nevertheless assures that the energy-eigenvalues in
the bosonic (fermionic) sector stays the same. Such deformations are called isospectral
deformations. They are the subject of this chapter.

©2012 Jensen, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Jensen; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Quantum Mechanics

Isospectral transformations in the context of SUSYQM has a long history exhibiting methods
dating all the way back to Darboux [3]. The dominating approach is to study isospectral
Hamilton operators. Different operator methods exist, but the main ones was brought under
a single unifying principle by Pursey [4] with the use of isometric operators. A second
approach to the study of isospectral transformations is what has been called deformation
theory (see [5], e.g.). This is a more direct approach compared with the operator approach
in that one studies deformations of the superpotential as described briefly above. It is
rather surprising to note that this second approach has not been given much attention in the
literature. To the knowledge of this author only one of the simplest deformations possible
has been discussed to some extend. In a previous work [6] we initiated a work with the aim
to remedy this situation. In [6] we showed that the isospectral deformation which has been
considered in previous works is part of a more general deformation scheme. In this work we
extend our results in [6]. We explicitly construct an in principle infinite recursively defined
isospectral deformation chain where the deformation scheme in [6] emerges as the root of
the chain.

This chapter is organized as follows. In the next section we very briefly review some of
the basics of SUSYQM, mainly in order to fix notation. We define the notions of partner
potentials, superpotential, isospectrality and supersymmetry. In section 2 we briefly remain
ourselves about the results in [6]. In section 3 we define the recursive deformation scheme.
We also discuss other various deformation schemes but show that a number of other
canonical deformation schemes defined along the lines of our recursive scheme either do
not allow a recursive structure or either reduces to our scheme. We apply our apparently
rather unique recursive deformation scheme to the Coulomb potential and calculate several
novel potentials. We summarize our findings and conclude in the last section. No attempt
has been made to give an in depth review of the relevant literature due to its immense size.
The works which have been acknowledged in the list of references have been so only because
of their utility to this author.

2. SUSYQM - A very brief introduction

SUSYQM can in its most basic formulation be thought of as the following two factorizations
of the Hamiltonian in the stationary Schrödinger equation in appropriate units

{

(−∂ + W(x))(∂ + W(x)) ≡ A
+

A
−
≡ H− ,

(∂ + W(x))(−∂ + W(x)) ≡ A
−

A
+
≡ H+ .

(1)

Here ∂ is short hand for differentiation with respect to the single spatial coordinate x, and
W(x) is the so called superpotential. Both of these factorizations give rise to a Schrödinger
equation, but with different potentials V−(x) and V+(x) (the so called superpotentials) given
by

V±(x) = W
2(x)± ∂W(x) . (2)

Let us denote the energy-eigenvalues and eigenstates associated with H± by E
±

n
and ψ

±

n
(x),

respectively. Let n = 0 denote the ground state. We note that

A
±

ψ
±

0 (x) = 0 ⇒ H±ψ
±

0 (x) = 0 . (3)
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The ground state eigenfunction is thus simply given by

ψ
±

0 (x) ∼ e
±

∫

x

W(x)dx
∼

1

ψ
∓

0 (x)
. (4)

The factorization in Eq.(1) carries a symmetry which is not manifestly present in the usual
form of the Schrödinger equation. This symmetry is made manifest when Eq.(1) is brought
to a matrix form. Defining

Q
−
≡

(

0 0
A
− 0

)

, Q
+
≡

(

0 A
+

0 0

)

(5)

we find that we naturally can construct a matrix-valued Hamiltonian H given by

H ≡

(

H− 0
0 H+

)

=

(

A
+

A
− 0

0 A
−

A
+

)

. (6)

It is straightforward to verify that

H = Q
−

Q
+ + Q

+
Q
−
≡ {Q

−, Q
+
} , [Q±, H] = 0 , (Q±)2 = 0 . (7)

This constitutes what is called a super-Lie algebra in contrast to an ordinary Lie algebra
which only contains commutators. The commutator in Eq.(7) shows that Q

± are generators
of a symmetry which is left intact under time-translations generated by H. We call this
symmetry the supersymmetry of the system.

The matrices above naturally act on a two-dimensional vector space with the natural
representation

(

ψ
−

n
(x)

ψ
+
n−1(x)

)

. (8)

It is clear that

Q
−

(

ψ
−

n
(x)
0

)

=

(

0
ψ
+
n−1(x)

)

, (9)

Q
+
(

0
ψ
+
n
(x)

)

=

(

ψ
−

n+1(x)
0

)

. (10)

Hence, Q
± relate states with the same eigenvalue of H; the energy states are in other words

degenerate. An orthogonal basis can naturally be taken to be states on the form

(

α(x)
0

)

,

(

0
β(x)

)

. (11)
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4 Quantum Mechanics

It is customary, due to the intimate relation to supersymmetric quantum field theory, to say
that the first vector belongs to the bosonic sector and the other to the fermionic sector, even
though no fermions appear in this theory. That Q

± relate states corresponding to the same
energy eigenvalue of the H-operator can also be seen on the level of the H± operators by
noting that

H+(A
−

ψ
−

n
) = E

−

n
(A

−
ψ
−

n
) . (12)

Hence, given an eigenstate ψ
−

n
of H− with energy eigenvalue E

−

n
, the state A

−
ψ
−

n
is an

eigenstate of H+ with energy eigenvalue E
−

n
. There is thus a one-to-one correspondence

between bosonic and fermionic states with the same energy eigenvalue (Eq.(9-10) above). We
call this property the isospectrality of SUSYQM. Much more can be said about SUSYQM, such
as the role played by the vacuum in connection with isospectrality. However, for the purpose
of this chapter this very brief exposition of some of the basics of SUSYQM is sufficient to fix
notation and certain concepts.

3. A novel isospectral deformation chain

In [6] we introduced within the framework of SUSYQM an isospectral deformation on the
form

W(x) → Ŵ0(x) = F0(x)W(x) , (13)

where W(x) is some known superpotential and F0(x) some function to be determined by the
isospectrality condition

V̂+(x) ≡ Ŵ
2
0 (x) + Ŵ

′

0(x) = W
2(x) + W

′(x) ≡ V+(x) . (14)

It was shown that Eq.(13) includes the only previously explored deformation of this kind,
which has the form [5]

W(x) → Ŵ0(x) = W(x) + f (x) . (15)

f (x) is some function which is determined by Eq.(14). In this work we expand the
deformation Eq.(13) in various directions and study the implications drawn from the
isospectrality condition. We show in particular that the deformation Eq.(13) is the root of an
infinitely long and recursively generated chain of deformations. Let us next briefly review
some of the findings in [6].

3.1. Base deformations

The deformation Eq.(1) implies the following differential equation for F0(x) [6]1

d

dx

F0(x) + (
d

dx

ln W(x))F0(x) + W(x)F
2
0 (x) = W(x) +

d

dx

ln W(x) . (16)

1 We will often rewrite fractions on the form W
′(x)/W(x) as the logarithmic derivative of W(x) as a formal tool.

Caution must of course be exercised when using the corresponding expressions in actual computations.
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This is the generalized Riccati equation [7] . If one particular solution F00(x) of Eq.(16) is
known another solution is given by [8]

F0(x) = F00(x) +
1

X0(x)
, (17)

where X0(x) solves the equation

d

dx
X0(x)− (

d

dx
ln W(x) + 2F00(x)W(x))X0(x) = W(x) . (18)

Eq.(18) can be solved by elementary means. The resulting superpotential Ŵ0(x) is given by
[6]

Ŵ0(x) = (F00(x) +
1

X0(x)
)W(x) ≡ Ŵ00(x) +

1

X0(x)
W(x) =

= F00(x)W(x) +
e−2

∫ x
F00(t)W(t)dt

C01 +
∫ x

e−2
∫ u

F00(t)W(t)dtdu
. (19)

C01 is an integration constant, which we will assume to be real. We have explicitly introduced
upper integration limits in Eq.(19) in order to avoid sign ambiguities. This explains the
difference in the sign in the denominator in Eq.(19) compared with Eq.(2.5) in [6] where the
reverse order of integration in one of the integrals was implicitly assumed. We do not specify
the lower integration limits in Eq.(19). These are not important, of course, since the values of
the integrals there can essentially be absorbed into C01. We can by simple inspection see that
the particular solution F0(x) = 1, the identity deformation, solves Eq.(16). With F00(x) = 1 we
identically rederive Eq.(15) and the corresponding expression discussed in [5]. The identity
deformation corresponds to the limit C01 → ∞ in Eq.(19) with F00(x) = 1. In the limit
C01 → ∞ we generally get Ŵ0(x) = Ŵ00(x). This deformation will play a pivotal role in
this work; it will represent the base of a recursive scheme for generating novel isospectral
deformations. We will therefore refer to a particular Ŵ00(x) as a base deformation in the
following.

In order to expand the space of concrete isospectral deformations further we transform
Eq.(16) into an ordinary second order differential equation by the substitution

F0(x) =
1

W(x)

d

dx
ln U0(x) . (20)

This substitution gives rise to the following linear homogeneous second order differential
equation

−

d2

dx2
U0(x) + V+(x)U0(x) = 0 . (21)
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This equation coincides of course with the zero-energy eigenfunction equation. However,
keep in mind that U0 is not in general to be identified with the eigenfunction of the system.
This is of particular importance to remember in light of Eq.(16). The special solution F0(x) =
1 is generated by the solution

U0(x) ∼ e

∫

x

W(t)dt . (22)

The particular solutions for F0(x) stemming from Eq.(21) can be fed into Eq.(19) (as F00(x))
and thus expand the space of available concrete deformations. The physical potential V̂−(x)
generated by Ŵ0(x) can in general thus be written [6]2

V̂−(x) ≡ Ŵ
2
0 (x)− Ŵ

′

0(x) = Ŵ
2
00(x)− Ŵ

′

00(x) +

+
4Ŵ00(x)e−2

∫

x

Ŵ00(t)dt

C01 +
∫

x

e
−2

∫

u

Ŵ00(t)dt
du

+ 2

[

e
−2

∫

x

Ŵ00(t)dt

C01 +
∫

x

e
−2

∫

u

Ŵ00(t)dt
du

]2

(23)

with

Ŵ00(x) =
d

dx

ln U0(x) . (24)

3.2. Recursive linear deformations

Although the Riccati equation can be transformed into an ordinary second order differential
equation the non-linearity of the Riccati equation allows for a solution space which is larger
than the one associated with linear differential equations of second order, as became evident
in the previous section. It is therefore natural to ask whether the non-linearity of the Riccati
equation implies even more isospectral deformations than the ones we already have deduced
[6]. We will explore this question in this and the next section.

3.2.1. The sum

Let us entertain the following idea. Assume that we have derived a particular base
deformation Ŵ00(x) from an explicitly given superpotential W(x). Then assume that we
add another term F1(x)W(x) (possibly multiplied with a constant) to that deformation such
that we in principle get a novel deformation on the form Ŵ(x) = F10(x)W(x) + Ŵ00(x).
After determining F10(x) from the isospectrality condition Eq.(14) add yet another term of
this kind to the deformation. Let us assume that this process can be repeated indefinitely.
Will terms added in this manner give rise to novel deformations? We will in the following
show that they do. This represents a recursive deformation scheme.

Following the basic idea, after m iterations we thus have the general recursive linear (in W(x))
deformation

Ŵm0(x) = (
m

∑
i=0

λ
i
F

i0(x))W(x) = λmFm0(x)W(x) + Ŵ(m−1)0(x) , λ0 ≡ 1 . (25)

2 Note that the corresponding expression in [6] ((2.14)) is misprinted.
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The λi’s are assumed to be independent real constants. Starting with a known superpotential
m consecutive applications of the isospectrality condition yields the following set of equations











































F′

00(x) + [ln W(x)]′F00(x) + W(x)F2
00(x) = W(x) + (ln W(x))′ ,

F′

10(x) + [(ln W(x))′ + 2F00(x)W(x)]F10(x) + λ1W(x)F2
10(x) = 0 ,

F′

20(x) + [(ln W(x))′ + 2(F00(x) + λ1F10(x))W(x)]F20(x) + λ2W(x)F2
20(x) = 0 ,

...

...

F′

m0(x) + [(ln W(x))′ + 2Ŵ(m−1)0(x))]Fm0(x) + λmW(x)F2
m0(x) = 0 .

(26)

The first equation in Eq.(26) coincides of course per definition with Eq.(16). Note that
Fj0(x) = 1 only solves the first equation in Eq.(26). Let us consider an arbitrary iteration
level n ( 6= 0) and make the following substitution in Eq.(26)

Fn0(x) =
1

W(x)
(ln Un(x))′ . (27)

The equation for Fn(x) can then be written

U′′

n (x) + (λn − 1)
[U′

n(x)]2

Un(x)
+ 2Ŵ(n−1)0(x)U′

n(x) = 0 . (28)

This equation corresponds to Eq.(21) in the case when n = 0. It reduces in general to an
ordinary linear differential equation only when λn = 1 , ∀n 6= 0. We will focus on this
special case in this work.

The general solution of Eq.(28) for arbitrary n 6= 0, and with λn set to unity, can be found by
elementary means, and we deduce that

Fn0(x)W(x) =
Cn2e−2

∫ x
Ŵ(n−1)0(t)dt

Cn1 + Cn2

∫ x
e−2

∫ u
Ŵ(n−1)0(t)dtdu

=

=
d

dx
ln(Cn1 + Cn2

∫ x
e−2

∫ u
Ŵ(n−1)0(t)dtdu) . (29)

Cn1 and Cn2 are integration constants, which we assume to be real. We can reduce the
number of integration constants to one at each iteration level, but we will stick to the habit of
explicitly writing down the actual number of constants in order to make it easier to compare
the various formulas we deduce, which stem from both second and first order differential
equations. We also note that the structure of Fn0(x) implies that previous deformations are
not regenerated in general. Of course, this does not exclude this possibility to arise, as we
will see in Section 5. Hence, m in Eq.(25) has in principle no natural upper bound. From
Eq.(25) and Eq.(29) we get the following expression for the superpotential at iteration level m
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Ŵm0(x) = Ŵ00(x) +
m

∑
j=1

d

dx
ln(Cj1 + Cj2

∫ x
e−2

∫ u
Ŵ(j−1)0(t)dtdu) =

= Ŵ00(x) +
d

dx
ln

m

∏
j=1

(Cj1 + Cj2

∫ x
e−2

∫ u
Ŵ(j−1)0(t)dtdu) ≡

≡ Ŵ00(x) +
d

dx
ln Pm(x) . (30)

From Eq.(30) we deduce that

e−2
∫ x

Ŵ(j−1)0(t)dt = P−2
j−1(x)e−2

∫ x
Ŵ00(t)dt ; P2

0 (x) ≡ 1 , j 6= 0 , (31)

such that






































P1(x) = C11 + C12

∫ x
e−2

∫ u
Ŵ00(t)dtdu ,

P2(x) = P1(x)(C21 + C22

∫ x
P−2

1 (u)e−2
∫ u

Ŵ00(t)dtdu) ,
...
...

Pm(x) = Pm−1(x)(Cm1 + Cm2

∫ x
P−2

m−1(u)e
−2

∫ u
Ŵ00(t)dtdu) .

(32)

Hence,

Pn(x) =
n

∏
j=1

(Cj1 + Cj2

∫ x
P−2

j−1(u)e
−2

∫ u
Ŵ00(t)dtdu) . (33)

This last form of the Pn(x) functions neatly exhibits how the base deformation Ŵ00(x)
generates the higher order deformations. Some of the details we have deduced so far are
presented in Figure 1.

Make the following substitution at each iteration level in Eq.(25)

Fn0(x) → Fn0(x) +
1

Xn(x)
. (34)

This implies (with the λm’s reinstated in Eq.(25)) a generalized form Ŵm(x) of the
superpotential Ŵm0(x)

Ŵm0(x) =
m

∑
i=0

λiFi0W(x) ⇒ Ŵm(x) = Ŵm0(x) +
m

∑
i=0

λi

Xi(x)
W(x) . (35)
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W
×F0=F00
−−−−−→ Ŵ00

+F10W
−−−−→ Ŵ10 = Ŵ00 + (ln P1)

′
+F20W
−−−−→ · · ·

+Fm0W
−−−−→ Ŵm0

W
×F0=1
−−−−→ Ŵ00 = W

+F10W
−−−−→ Ŵ10 = W + (ln P1)

′
+F20W
−−−−→ · · ·

+Fm0W
−−−−→ Ŵm0

Figure 1. The upper line depicts the solvable deformation chain Eq.(25) to iteration level m. There is no upper bound on m.
The Fj0(x) functions are given in Eq.(29). The Pj(x) functions are given in Eq.(30) and Eq.(32). They are functions of a base

deformation Ŵ00(x). A base deformation Ŵ00(x) is generated by the zero-energy Schrödinger equation interacting with the
partner potential V+(x), Eq.(21). The second line depicts the important special case when F0(x) = 1. This particular solution
can be derived as a special case of Eq.(19) with X−1

0 = 0, which can be achieved by C01 → ∞, and F00(x) determined by

Eq.(20) and the solution Eq.(22). Ŵ10(x) then coincides with Eq.(19) (when F00(x) = 1 and C01 is finite in Eq.(19)); Eq.(19) is

thus in this particular case regenerated by the scheme at the next recursion level, i.e.

From Eq.(26) we find that Xn(x) satisfies the equation

d

dx
Xn(x)− (

d

dx
ln W(x) + 2Ŵn0(x))Xn(x) = λmW(x) . (36)

This equation is a generalization of Eq.(18). The n’th deformation term Eq.(29) thus changes
into

Fn0(x)W(x) → Fn0(x)W(x) +
d

dx
ln(Cn3 + λn

∫ x
e−2

∫ u
Ŵn0(t)dtdu) . (37)

Cn3 are integrations constants, which we assume to be real. Eq.(37) implies that the more
general expression for the superpotential in Eq.(35) can be written as

Ŵm(x) = Ŵm0(x) +
d

dx
ln Qm(x) , (38)

where

Qm(x) ≡
m

∏
i=0

(Ci3 + λi

∫ x
e−2

∫ u
Ŵi0(t)dtdu) . (39)

m = 0 in Eq.(38) (λ0 ≡ 1) reproduces Eq.(19). In the special case when λm = 1 , ∀m in Eq.(25)
we get

Ŵm(x) = Ŵ00(x) +
d

dx
ln Pm(x) +

d

dx
ln Qm(x) . (40)

When we compare the expressions for (Pm(x))′ and (Qm(x))′ we find that they differ by just
the last term in (Qm(x))′.
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3.2.2. The product

What happens if we in Eq.(25) assume a product structure instead of a sum structure ? Let
us assume that we have determined a base deformation. Let this be the seed superpotential
for the deformation

Ŵ00(x) → Ŵ10(x) = F10(x)Ŵ00(x) = F10(x)F00(x)W(x) , (41)

where F10(x) is some function to be determined by the isospectrality condition. This product
scheme can of course in principle be repeated an arbitrary number m times

Ŵm0(x) = (
m

∏
i=0

Fi0(x))W(x) = Fm0(x)Ŵ(m−1)0 . (42)

This structure gives rise to the following set of equations







































F′

00(x) + (ln W(x))′F00(x) + W(x)F2
00(x) = W(x) + (ln W(x))′ ,

F′

10(x) + (ln Ŵ00(x))′F10(x) + Ŵ00(x)F2
10(x) = 1

F00(x)
(W + (ln W(x))′) ,

...

...

F′

m0(x) + (ln Ŵ(m−1)0(x))′Fm0(x) + Ŵ(m−1)0(x)F2
m0(x) = W(x)

Ŵ(m−1)0(x)
(W(x) + (ln W(x))′) .

(43)
Clearly, each iteration level depends on all the previous ones, and at each level we are
dealing with a non-homogenous non-linear differential equation. Interestingly, by making
the following substitution at an arbitrary iteration level n 6= 0

Fn0(x) =
1

Ŵ(n−1)0(x)
(ln Un(x))′ , (44)

where Un(x) is some function, the equations Eq.(43) all reduce to Eq.(21). Hence, attempting
to generate novel deformations recursively via a product structure, of the kind above, fails.
This conclusion was also reached in [6], but at the level of the second order linear differential
equation Eq.(21).

3.3. Recursive non-linear deformations

We have so far only considered linear (in the superpotential) deformations. In this section we
will briefly consider two non-linear deformation schemes. Let us first consider a polynomial
kind of deformation. That is, given a superpotential Ŵ(i−1)0(x) which we will assume is

derived, in some way or another, from some seed superpotential W(x). Consider then the
polynomial deformation

Ŵi0(x) = Fi0(x)Wk(x) + Ŵ(i−1)0(x) ; k ∈ {1, 2, 3, . . .} . (45)
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The isospectrality condition then implies

F
′

i0(x) + [k(ln W(x))′ + 2Ŵ(i−1)0(x)]F
i0(x) + W

k(x)F
2
i0(x) = 0 . (46)

This is a Riccati type equation of the kind we have met earlier in this work. Apparently,
different k-values give rise to very different equations to solve. However, and rather
intriguingly, all the possible k-values implies the same deformation. This is seen by making
the following substitution

F
i0(x) =

1

W
k(x)

U
′

k
(x)

U
k
(x)

, (47)

where U
k
(x) is some function. This expression inserted into Eq.(46) gives

U
′′

k
(x) + 2Ŵ

i−1(x)U′

k
(x) = 0 . (48)

Hence, Ŵ
i0(x) is independent of k and we are essentially left with a linear deformation.

Clearly, the range of values of k can be expanded to the real numbers.

Another canonical generalization of our work is to consider deformations on the form

Ŵ(x) = H0(x)F (W) , (49)

where F is any functional of the seed superpotential W(x). The isospectrality condition then
implies

H
′

0(x) + (lnF (W))′H0(x) +F (W)H
2
0(x) = F (W)−1(W2(x) + W

′(x)) . (50)

Note that H0(x) = 1 does not solve this equation unless F (W) = W, since Eq.(50) with
H0(x) = 1 implies F ′(x) +F

2(x) = V+(x). Since V+(x) is uniquely given in Eq.(2) any other
choice of functional will fail to satisfy the isospectrality condition. Hence the conclusion. The
particular solution H0(x) = 1 is not forced upon us. We can in principle do without it. It is
easily verified that Eq.(50) can be cast into the form Eq.(21) by the substitution

H0(x) =
1

F (W)
(ln U(x))′ . (51)

We can also look for an expanded solution by writing

H0(x) = H00(x) +
1

Z0(x)
, (52)

where H00(x) is a particular solution of Eq.(50). We then get the equation

d

dx

Z0(x)− (
d

dx

lnF (W) + 2H00(x)F (W))Z0(x) = F (W) , (53)
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which is a generalized form of Eq.(18). The reciprocal solution has the general form

1

Z0(x)
=

e−2
∫ x

H00(t)F (W)dt

F (W)(C +
∫ x

e−2
∫

H00(t)F (W)dtdu)
. (54)

C is an integration constant, which we assume to be real. Utilizing that H00(x) =
F

−1(x)(ln U(x))′ the resulting deformation coincides with Eq.(19). We thus therefore
conclude that non-linear deformations on the form Eq.(49) does not generate additional
deformations to the ones already generated by Eq.(13).

3.4. Deforming the Coulomb potential

As a relatively simple application of the linear deformation scheme let us briefly consider
deformations of the Coulomb potential. This potential has, within the framework of
SUSYQM, been treated in several previous works [5]. The superpotential and the partner
potential for the Coulomb potential are given by [5]

W(x) =
q2

2(l + 1)
−

(l + 1)

x
, (55)

V+(x) =
1

4
(

q2

l + 1
)2

−

q2

x
+

(l + 1)(l + 2)

x2
. (56)

q and l in these expressions are the electric charge and the angular momentum quantum
numbers, respectively. These potentials result in the following general solution for U0(x) in
Eq.(21) [6]

U0(x) = C1 Ml+1,l+ 3
2
(

q2x

l + 1
) + C2Wl+1,l+ 3

2
(

q2x

l + 1
) . (57)

The M(x)- and W(x)-functions are the Whittaker functions. The solution Eq.(22) is given by
[6]

U0(x) ∼ e
q2 x

2(l+1)−(l+1) ln(2x)
. (58)

We will for simplicity assume this solution in the following. We will let C01 → ∞ in Eq.(19)
such that we deal with the identity deformation Ŵ0(x) = Ŵ00(x) = W(x). We will also
ignore the Qj(x) contributions in the following. Define A ≡ q2/(2(l + 1)) and B ≡ l + 1. It
then follows that

P1(x) = C11 + C12

∫ x
t2Be−2Atdt , (59)

such that

Ŵ10(x) = A −

B

x
+

C12x2Be−2Ax

C11 + C12

∫ x
t2Be−2Atdt

. (60)
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Let us consider the s-state with l = 0 in order to get a better grasp on the content buried in
Eq.(60). We also set q ≡ 1. The expression for Ŵ10(x) then reduces to

Ŵ10(x) =
1

2
−

1

x
+

C12x2e−x

C11 − C12(x2 + 2x + 2)e−x
(61)

after redefining C11 such that the lower integration limit of the integral in Eq.(60) does
not appear explicitly in the expression for the potential. We will automatically do such
redefinitions in the following when it is appropriate. The corresponding physical potential
V̂
−1(x) can either be derived from the definition V̂

−1(x) ≡ Ŵ2
10(x)− Ŵ ′

10(x) or from Eq.(23)

with Ŵ00(x) = W(x) and C01 finite. This is a consequence of a regeneration of Eq.(19) by the
recursion scheme which was noted in Figure 1. From the definition it follows that

V̂
−1(x) =

1

4
−

1

x
+

C12x(2x − 4)e−x

C11 − C12(x2 + 2x + 2)e−x
+

2C2
12x4e−2x

(C11 − C12(x2 + 2x + 2)e−x)2
. (62)

In the special case when we set C11 = 0 the last term in Eq.(61) becomes independent of the
exponentials (and C12) and thus reduces to a pure rational function. The physical potential
V̂
−1(x) generated by Ŵ10(x) is then given by

V̂
−1(x) =

1

4
−

1

x
+

4x(x + 2)

(x2 + 2x + 2)2
≡ V−(x) +

4x(x + 2)

(x2 + 2x + 2)2
. (63)

Let us go to the second iteration level starting from the expression for Ŵ10(x) in Eq.(61) with
C11 = 0, for convenience. It then follows that

Ŵ20(x) = Ŵ1(x) +
C22x2ex

C21(x2 + 2x + 2)2 + C22(x2 + 2x + 2)ex
. (64)

Note that when C21 = 0 we get Ŵ20(x) = W(x). Hence, the deformation scheme allows
in general for the possibility that additional iterations in particular cases may regenerate
previous potentials in a nontrivial fashion. The expression for the corresponding physical
potential is given by

V̂−2(x) = V̂
−1(x) +

[

C22x2ex

C21(x2 + 2x + 2)2 + C22(x2 + 2x + 2)ex

]

×

×

[

−4(
1

x
+

1
2 x2

x2 + 2x + 2
) +

2(C21(2x + 2) + C22ex)

C21(x2 + 2x + 2) + C22ex

]

. (65)
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Figure 2. Generic plots depicting V̂−(x), V̂−1(x) and V̂−2(x). The plots for V̂−2(x) show how drastic the nature of a potential
might change as the values of the integration constants change.

The superpotential stemming from the third iteration with Ŵ20(x) in Eq.(64) as the starting
point is given by

Ŵ30(x) = Ŵ20(x) +

(

C32x
2
e

x

C21(x
2 + 2x + 2)2 + C22(x

2 + 2x + 2)e
x

)

(

C31 +
C32

C22
ln

∣

∣

∣

∣

C21(x
2 + 2x + 2) + C22e

x

x
2 + 2x + 2

∣

∣

∣

∣

)
. (66)

This superpotential introduces the possibility for a logarithmic singularity away from the
origin when C22/C21 < 0. We note that setting C31 = 0 does not regenerate a previous
potential as was possible at the previous iteration level when we correspondingly put C21 =
0. From Eq.(66) we can deduce the physical potential V̂−3(x) at the third iteration level. We
do not reproduce it here due to its complexity. Due to the complicated integrals appearing
we are not able to provide the analytical expression for Ŵ40(x). We leave detailed studies of
the Coulomb potential for the future.
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4. Conclusion

In a previous paper we showed that isospectral deformations on the form Eq.(15) are
contained in the space of deformations generated by isospectral deformations on the form
Eq.(13). In this work we have shown that Eq.(13) can be considered as the initial, or base,
deformation of a novel infinite recursive isospectral deformation chain. This thus answers
to some extend the question by which we ended our previous paper [6]; how does the
most general isospectral deformation of the kind considered there (Eq.(13) in this paper)
look like. The results in this work do obviously only give a partial answer. We deduced in
particular that a class of recursive deformations exists which is generated by the solutions of
the non-linear differential equations in Eq.(28).

We briefly discussed various ways to construct alternative recursive deformation structures.
We considered a linear product structure, polynomial deformations and completely
generalized base deformations. They all either failed to provide a recursive structure or
they turned out to be identical to the deformation scheme developed in this work.

We applied the linear recursive scheme to the Coulomb potential. We derived novel
superpotentials which all per construction satisfy the isospectrality condition. It is
straightforward, although very tedious, to check that the corresponding physical potentials
V+ at the various iteration levels all satisfy the isospectrality condition Eq.(26). This
application did also demonstrate how easily novel isospectral deformations can be generated
in this approach. It did also demonstrate an increased relative complexity of the generated
potentials with the number of iterations, as one also naively would expect from the
expression Eq.(33).

The results in this work is obviously only a starting point for further research. One issue
which needs clarification is the more general implications which can be drawn from Eq.(28).
Another obvious issue is the behaviour of the transmission T and reflection R coefficients
when the deformation chain is applied to some known initial scattering process. It is known
that T and R are invariant under the simple deformation in Eq.(15) [5]. However, it is unclear
whether this property is also a property of the general deformation chain. It is also of great
interest to study the relation between our chain construction and the conventional operator
approaches. One possible strategy one might follow in order to cast some light on this
issue is to study the relation between the deformation chain and the concept of intertwining
operators. It is known that many exactly solvable potentials are related by intertwining
operator transformations including the Darboux transformations which also appear in our
context [6]. Clearly, key to our construction in this work is the non-linearity of the Riccati
equation. One could contemplate studying the associated JET-space and its deformations.
Furthermore, an analysis of the intertwining of the hierarchy of the JET-spaces associated
with the system of equations in Eq.(26) might also cast new light on our subject.
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Chapter 31

Quantum Effects Through a Fractal Theory of Motion

M. Agop, C.Gh. Buzea, S. Bacaita, A. Stroe and M. Popa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54172

1. Introduction

Scale Relativity Theory (SRT) affirms that the laws of physics apply in all reference systems,
whatever its state of motion and its scale. In consequence, SRT imply [1-3] the followings:

i. Particle movement on continuous and non-differentiable curve (or almost nowhere
differentiable), that is explicitly scale dependent and its length tends to infinity, when
the scale interval tends to zero.

ii. Physical quantities will be expressed through fractal functions, namely through
functions that are dependent both on coordinate field and resolution scale. The
invariance of the physical quantities in relation with the resolution scale generates
special types of transformations, called resolution scale transformations. In what
follows we will explain the above statement.

Let F (x) be a fractal function in the interval x∈ a, b  and let the sequence of values for x be:

0 1 0 0 0, , ,a k n bx x x x x x k x x n xe e e= = + = + = + = (1)

We can now say that F (x, ε) is a –scale approximation.

Let us now consider  as a ε̄-scale approximation of the same function. Since F (x) is everywhere
almost self-similar, if ε and ε̄ are sufficiently small, both approximations F (x, ε) and  must
lead to same results. By comparing the two cases, one notices that scale expansion is related
to the increase dε of ε, according to an increase dε̄ of ε̄. But, in this case we have:

d d de e r
e e

= = (2)

© 2013 Agop et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



situation in which we can consider the infinitesimal scale transformation as being

' d de e e e e r= + = + (3)

Such transformation in the case of function F (x, ε), leads to:

( ) ( ), ' ,F x F x de e e r= + (4)

respectively, if we limit ourselves to a first order approximation:

( ) ( ) ( ) ( ) ( ) ( ), ,
, ' , ' ,

F x F x
F x F x F x d

e e
e e e e e e r

e e
¶ ¶

= + - = +
¶ ¶

(5)

Moreover, let us notice that for an arbitrary but fixed ε0, we obtain:

( ) ( )0 0ln ln ln 1e e e e
e e e

¶ ¶ -
= =

¶ ¶
(6)

situation in which (5) can be written as:

( ) ( ) ( )
( ) ( ) ( )

0 0

,
, ' , 1 ,

ln ln
F x

F x F x d d F x
e

e e r r e
e e e e

é ù¶ ¶
= + = +ê ú

¶ ¶ê úë û
(7)

Therefore, we can introduce the dilatation operator:

( )0ln
D

e e

Ù ¶
=
¶

(8)

At the same time, relation (8) shows that the intrinsic variable of resolution is not ε, but
ln(ε / ε0).

The fractal function is explicitly dependent on the resolution (ε / ε0), therefore we have to solve
the differential equation:

( ) ( )
0ln

dF P F
d e e

= (9)
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where P(F ) is now an unknown function. The simplest explicit suggested form for P(F ) is
linear dependence [2]

( ) , , .P F A BF A B const= + = (10)

in which case the differential equation (9) takes the form:

( )0ln
dF A BF

d e e
= + (11)

Hence by integration and substituting:

,B t= - (12)

0
A F
B

- = (13)

we obtain:

0
0

0
1F F

t
ee

e e

é ùæ ö æ öê ú= +ç ÷ ç ÷ç ÷ ê úè øè ø ë û
(14)

We can now generalize the previous result by considering that F is dependent on parameter‐
ization of the fractal curve. If p characterizes the position on the fractal curve then, following
the same algorithm as above, the solution will be as a sum of two terms i.e. both classical and
differentiable (depending only on position) and fractal, non-differentiable (depending on
position and, divergently, on ε / ε0)

( ) ( )
( )

0
0 0( , ) 1

p

F p F p p
t

e
e e x

e

é ùæ öê ú= + ç ÷ê úè øë û
(15)

where ξ(p) is a function depending on parameterization of the fractal curve.

The following particular cases are to be considered:

1. in asymptotic small scale regime ε ε0, τ is constant (with no scale dependence) and
power-law dependence on resolution is obtained:
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( )

( ) ( ) ( )

0
0

0

( , ) a

b

F p T p

T p F p Q p

t
e

e e
e

æ ö
= ç ÷

è ø
=

(16)

2. in the asymptotic big scale regime ε ε0, τ is constant (with no scale dependence) and, in
terms of resolution, one obtains an independent law:

( ) ( )0 0,F p F pe e ® (17)

Particularly, if F (p, ε / ε0) are the coordinates in given space, we can write

( ) ( ) 0
0( , ) 1X p x p p

t
e

e e x
e

é ùæ öê ú= + ç ÷ê úè øë û
(18)

In this situation, ξ(p) becomes a highly fluctuating function which can be described by
stochastic process while τ represents (according to previous description) the difference
between fractal and topological dimensions. The result is a sum of two terms, a classical,
differentiable one (dependent only on the position) and a fractal, non-differentiable one
(dependent both on the position and, divergently, on ε / ε0). This represents the importance of
the above analysis.

By differentiating these two parts we obtain:

dX dx dx= + (19)

where dx is the classical differential element and dξ is a differential fractal one.

iii. There is infinity of fractal curves (geodesics) relating to any couple of points (or
starting from any point) and applied for any scale. The phenomenon can be easily
understood at the level of fractal surfaces, which, in their turn, can be described in
terms of fractal distribution of conic points of positive and negative infinite curvature.
As a consequence, we have replaced velocity on a particular geodesic by fractal
velocity field of the whole infinite ensemble of geodesics. This representation is
similar to that of fluid mechanics [4] where the motion of the fluid is described in
terms of its velocity field v =(x(t), t), density ρ =(x(t), t) and, possibly, its pressure.
We shall, indeed, recover the fundamental equations of fluid mechanics (Euler and
continuity equations), but we shall write them in terms of a density of probability (as
defined by the set of geodesics) instead of a density of matter and adding an addi‐
tional term of quantum pressure (the expression of fractal geometry).
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iv. The local differential time invariance is broken, so the time-derivative of the fractal
field Q can be written two-fold:

( ) ( )

( ) ( )
0

0

lim a

lim b

t

t

Q t t Q td Q
dt t

Q t Q t td Q
dt t

+

-

+

D ®

-

D ®

+ D -
=

D
- - D

=
D

(20)

Both definitions are equivalent in the differentiable case dt → −dt . In the non-differentiable
situation, these definitions are no longer valid, since limits are not defined anymore. Fractal
theory defines physics in relationship with the function behavior during the “zoom” operation
on the time resolution δt, here identified with the differential element dt (substitution princi‐
ple), which is considered an independent variable. The standard field Q(t) is therefore replaced
by fractal field Q(t,dt), explicitly dependent on time resolution interval, whose derivative is
not defined at the unnoticeable limit dt →0. As a consequence, this leads to the two derivatives
of the fractal field Q as explicit functions of the two variables t and dt,

( ) ( )

( ) ( )
0

0

, ,
lim a

, ,
lim b

t

t

Q t t t Q t td Q
dt t

Q t t Q t t td Q
dt t

+

-

+

D ®

-

D ®

+ D D - D
=

D
D - - D D

=
D

(21)

Notation “+” corresponds to the forward process, while “-” to the backward one.

v. We denote the average of these vectors by d x±
i, i.e.

1,2,i idX dx i± ± == (22)

Since, according to (19), we can write:

i i idX dx dx± ± ±= + (23)

and it results:

0idx± = (24)

vi. The differential fractal part satisfies the fractal equation:
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( )1/ FDi id dtx l± ±= (25)

where λ±
i are some constant coefficients and DF is a constant fractal dimension. We note that

the use of any Kolmogorov or Hausdorff [1, 5, 6-8] definitions can be accepted for fractal
dimension, but once a certain definition is admitted, it should be used until the end of analyzed
dynamics.

vii. The local differential time reflection invariance is recovered by combining the two
derivatives, d+ / dt  and d− / dt , in the complex operator:

ˆ 1
2 2

d d d dd i
dt dt dt

+ - + -æ ö æ ö+ -
= -ç ÷ ç ÷

è ø è ø
(26)

Applying this operator to the “position vector”, a complex velocity yields

ˆ 1ˆ
2 2 2 2

d d d dd i i i
dt dt dt

+ - + - + - + -æ ö æ ö+ - + -
= = - = - = -ç ÷ ç ÷

è ø è ø

X X X X V V V VXV V U (27)

with:

a
2

b
2

+ -

+ -

+
=

-
=

V V
V

V V
U

(28)

The real part, V, of the complex velocity V̂ , represents the standard classical velocity, which
does not depend on resolution, while the imaginary part, U, is a new quantity coming from
resolution dependant fractal.

2. Covariant total derivative

Let us now assume that curves describing particle movement (continuous but non-differen‐
tiable) are immersed in a 3-dimensional space, and that X  of components X i(i =1, 3̄) is the
position vector of a point on the curve. Let us also consider a fractal field Q( X, t ) and expand
its total differential up to the third order:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= +Ñ × + + +
¶ ¶ ¶ ¶ ¶ ¶

X (29)

Advances in Quantum Mechanics728



where only the first three terms were used in Nottale’s theory (i.e. second order terms in the
motion equation). Relations (29) are valid in any point both for the spatial manifold and for
the points X on the fractal curve (selected in relations 29). Hence, the forward and backward
average values of these relations take the form:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= + Ñ × + +

¶ ¶ ¶ ¶ ¶ ¶
X (30)

The following aspects should be mentioned: the mean value of function f  and its derivatives
coincide with themselves and the differentials d±X i and dt  are independent; therefore, the
average of their products coincides with the product of averages. Consequently, the equations
(30) become:

2 31 1
2 6

j ji i k
j ji i k

Q Q Qd Q dt Q d d X d X d X d X d X
t X X X X X± ± ± ± ± ± ±

¶ ¶ ¶
= +Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

X (31)

or more, using equations (23) with characteristics (24),

( )
( )

2

3

1
2

1
6

j ji i
ji

j ji k i k
ji k

Q Qd Q dt Q d d x d x d d
t X X
Q d x d x d x d d d

X X X

x x

x x x

± ± ± ± ± ±

± ± ± ± ± ±

¶ ¶
= +Ñ × + + +
¶ ¶ ¶

¶
+

¶ ¶ ¶

X
(32)

Even if the average value of the fractal coordinate d±ξ
i is null (see 24), for higher order of fractal

coordinate average, the situation can still be different. Firstly, let us focus on the averages
d+ξ

id+ξ
j  and d−ξ

id−ξ
j . If i ≠ j, these averages are zero due to the independence of d±ξ

i and

d±ξ
j. So, using (25), we can write:

( )( )2 1FDj ji id d dt dtx x l l
-

± ± ± ±= (33)

Then, let us consider the averages d±ξ
id±ξ

jd±ξ
k . If i ≠ j ≠k , these averages are zero due to

independence of d±ξ
i on d±ξ

j and d±ξ
k . Now, using equations (25), we can write:

( )( )3 1FDj ji k i kd d d dt dtx x x l l l
-

± ± ± ± + ±= (34)

Then, equations (32) may be written as follows:
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( )( )

( )( )

2 2 2 1

3 3 3 1

1 1
2 2

1 1
6 6

F

F

Dj ji i
j ji i

Dj ji k i k
j ji k i k

Q Q Qd Q dt d Q d x d x dt dt
t X X X X
Q Qd x d x d x dt dt

X X X X X X

l l

l l l

-
± ± ± ± ± ±

-
± ± ± ± ± ±

¶ ¶ ¶
= + ×Ñ + + +
¶ ¶ ¶ ¶ ¶

¶ ¶
+

¶ ¶ ¶ ¶ ¶ ¶

x
(35)

If we divide by dt  and neglect the terms containing differential factors (for details on the
method see [9, 10]), equations (38a) and (38b) are reduced to:

( )( ) ( )( )2 32 1 3 11 1
2 6

F FD Dj ji i k
j ji i k

d Q Q Q QQ dt dt
dt t X X X X X

l l l l l
- -±

± ± ± ± ± ±
¶ ¶ ¶

= + ×Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

V (36)

These relations also allow us to define the operator:

( )( ) ( )( )2 32 1 3 11 1
2 6

F FD Dj ji i k
j ji i k

d
dt dt

dt t X X X X X
l l l l l

- -±
± ± ± ± ± ±

¶ ¶ ¶
= + ×Ñ + +
¶ ¶ ¶ ¶ ¶ ¶

V (37)

Under these circumstances, let us calculate (∂∧ Q / ∂ t). Taking into account equations (26), (27)
and (37), we shall obtain:

( )( ) ( )( )

( )( ) ( )( )

2 32 1 3 1

2 32 1 3 1

1
2

1 1 1 1
2 2 4 12
1 1 1 1
2 2 4 12

2

F F

F F

D Dj ji i k
j ji i k

D Dj ji i k
j ji i k

d Q d Q d Q d QQ i
t dt dt dt dt

Q Q QQ dt dt
t X X X X X

Q Q QQ dt dt
t X X X X X

i Q

l l l l l

l l l l l

Ù

+ - + -

- -
+ + + + + +

- -
- - - - - -

é ùæ ö¶
= + - - =ê úç ÷¶ ê úè øë û
¶ ¶ ¶

= + ×Ñ + + +
¶ ¶ ¶ ¶ ¶ ¶
¶ ¶ ¶

+ + ×Ñ + + + -
¶ ¶ ¶ ¶ ¶ ¶
¶

-
¶

V

V

( )( ) ( )( )

( )( ) ( )( )

( )( )
( )

2 32 1 3 1

2 32 1 3 1

2 1

2 2 12

2 2 2 12

2 2 4

F F

F F

F

D Dj ji i k
j ji i k

D Dj ji i k
j ji i k

D
j j ji i i

i i Q i QQ dt dt
t X X X X X

i Q i i Q i QQ dt dt
t X X X X X

dtQ i Q i
t

l l l l l

l l l l l

l l l l l l

- -
+ + + + + +

- -
- - - - - -

-

+ - + -
+ + - - + +

¶ ¶
- ×Ñ - - +

¶ ¶ ¶ ¶ ¶
¶ ¶ ¶

+ + ×Ñ + + =
¶ ¶ ¶ ¶ ¶ ¶

æ ö+ -¶
= + - ×Ñ + + - -ç ÷¶ è ø

V

V

V V V V ( )
( )( )

( ) ( )

( )( )
( ) ( )

( )( )
( )

2

3 1 3

2 1 2

3 1

12

4

12

F

F

F

ji
ji

D
j j j ji k i k i k i k

ji k

D
j j j ji i i i

ji

D
j j ji k i k i k i

Q
X X

dt Qi
X X X

dtQ QQ i
t X X

dt
i

l l

l l l l l l l l l l l l

l l l l l l l l

l l l l l l l l l l l

- -

-

+ + + - - - + + + - - -

-
Ù

+ + - - + + - -

-

+ + + - - - + + + - -

¶é ù +ê úë û ¶ ¶

¶é ù+ + - - =ê úë û ¶ ¶ ¶

¶ ¶é ù= + ×Ñ + + - - +ê úë û¶ ¶ ¶

+ - -

V

( )
3

j k
ji k

Q
X X X

l-
¶é ù

ê úë û ¶ ¶ ¶

(38)
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This relation also allows us to define the fractal operator:

( )( )
( ) ( )

( )( )
( ) ( )

2 1 2

3 1 3

ˆ ˆ
4

12

F

F

D
j j j ji i i i

ji

D
j j j ji k i k i k i k

ji k

dt
i

t t X X
dt

i
X X X

l l l l l l l l

l l l l l l l l l l l l

-

+ + - - + + - -

-

+ + + - - - + + + - - -

¶ ¶ ¶é ù= + ×Ñ + + - - +ê úë û¶ ¶ ¶ ¶

¶é ù+ + - -ê úë û ¶ ¶ ¶

V
(39)

Particularly, by choosing:

_ 2j ji il l l l d+ + -= - = ijD (40)

3 2
_ 2 2j ji k i kl l l l l l d+ + + - += - = ijkD (41)

the fractal operator (39) takes the usual form:

( )( ) ( )( )2 1 3 13 2 3ˆ 2ˆ
3

F FD Di dt dt
t t

- -¶ ¶
= + ×Ñ - D + Ñ

¶ ¶
V D D (42)

We now apply the principle of scale covariance and postulate that the passage from classical
(differentiable) to “fractal” mechanics can be implemented by replacing the standard time
derivative operator, d / dt , with the complex operator ∂

^
/ ∂ t  (this results in a generalization of

Nottale’s [1, 2] principle of scale covariance). Consequently, we are now able to write the
diffusion equation in its covariant form:

( )( ) ( )( )3 22 1 3 1 32 0
3

F FD DQ Q Q i Q dt Q
t t

Ù
Ù - -æ ö¶ ¶

= + ×Ñ - D + Ñ =ç ÷ç ÷¶ ¶ è ø
V D Ddt (43)

This means that at any point on a fractal path, the local temporal ∂t Q, the non-linear (convec‐

tive), (V∧ ⋅∇ )Q, the dissipative, ΔQ, and the dispersive, ∇3 Q, terms keep their balance.

3. Fractal space-time and the motion equation of free particles in the
dissipative approximation

Newton's fundamental equation of dynamics in the dissipative approximation is:
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m
t

Ù Ù
¶

= -ÑF
¶
V (44)

where m is the mass, V
∧

 the instantaneous velocity of the particle, Φthe scalar potential and

( )( )2 1FDi
t t

Ù
Ù -æ ö¶ ¶

= + ×Ñ - Dç ÷ç ÷¶ ¶ è ø
V D dt (45)

is the fractal operator in the dissipative approximation.

In what follows, we study what happens with equation (44), in the free particle case (Φ = 0), if
one considers the space-time where particles move changes from classical to nondifferentiable.

According to Nottale [11], the transition from classical (differentiable) mechanics to the scale
relativistic framework is implemented by passing to a fluid-like description (the fractality of
space), considering the velocity field a fractal function explicitly depending on a scale variable
(the fractal geometry of each geodesic). Separating the real and imaginary parts, (44) becomes:

D

0
t

¶
+ ×Ñ =

¶
×Ñ = - D

V V V

U V V
(46)

where V̂ =V − i U  is the complex velocity defined through (27) and D defines the amplitude of
the fractal fluctuations (D=D(dt)(2/DF )−1).

Let us analyze in what follows, the second equation (46) which, one can see, may contain some
interesting physics. If we compare it with Navier-Stokes equation, from fluid mechanics [12]

2D
Dt t

n¶
= + ×Ñ = Ñ
¶

v v v v v (47)

we can see the left side of (46) gives the rate at which V is transported through a 'fluid' by
means of the motion of 'fluid' particles with the velocity U; the right hand side gives the
diffusion of V, (D which is the amplitude of the fractal fluctuations, plays here the role of the
'cinematic viscosity' of the 'fluid'). One can notice, in those regions in which the right hand side

of (47) is negligible, Dv/Dt = 0. This means that in inviscid flows, for instance, V
∧

 is frozen into
the 'particles of the fluid'. Physically this is due to the fact that in an inviscid 'fluid' shear stresses

are zero, so that there is no mechanism by which V
∧

 can be transferred from one 'fluid' particle
to another. This may be the case for the transport of V by U in the second equation (II.3).
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If we consider the flow of V induced by a uniform translational motion of a plane spaced a
distance Y above a stationary parallel plane (Fig. 1), and if the 'fluid' velocity increases from
zero (at the stationary plane) to U (at the moving plane) like in the case of simple Couette flow,
or simple shear flow, then

rate of shear deformation d U
dy Y

= =
V

(48)

Figure 1. Uniform translational motion of a plane spaced a distance Y above a stationary parallel plane.

For many fluids it is found that the magnitude of the shearing stress is related to the rate of
shear proportionally:

dT
dy Y

h h= =
V U

(49)

Fluids which obey (49) in the above situation are known as Newtonian fluids, which have a very
small coefficient of viscosity. When such 'fluids' flow at reasonable velocities it is found that
viscous effects appear only in thin layers on the surface of objects or surfaces over which the
'fluid' flows. That is, if one continues the analogy, and questions how is V transported by the
motion of 'fluid' particles with the velocity U, in second equation (46), one can assume that the
mechanism of transfer of V from one particle of 'fluid' to another is achieved over small
distances (in thin layers, as stated above).

We study an important case, of the one-dimensional flow along the Ox axis :

( )  xz=V k (50)

To resume, the model considered here consists in analyzing the transport of V, along a small
elementary distance Λ, by the 'particles' of a Newtonian fluid moving with velocity U, where
the stress tensor obeys (49), i.e.

Quantum Effects Through a Fractal Theory of Motion
http://dx.doi.org/10.5772/54172

733



( ) ( )d x x
dx
z z

=
L

(51)

like in the case of simple Couette flow, or simple shear flow.

Consequently, the second eq. (46) reduces to the scalar equation

( ) ( ) ( )2 0x K x xz z¢¢ + = (52)

which is the time independent Schrödinger equation, and

( ) ( )2 1K x U x=
LD

(53)

with Λ and D having the significance of a small elementary distance and of the 'cinematic
viscosity' (or amplitude of the fractal fluctuations), respectively, and U(x) is the velocity of the
'Newtonian fluid', which is nothing but the imaginary part of the complex velocity [13]. In
what follows, we solve this equation accurately by means of the WKBJ approximation method
with connection formulas.

3.1. Solving the Schrödinger type equation by means of the WKBJ approximation method

Let us re-write (53) in the form

( ) ( ) ( )( )
2

2
2

1 2m cK x U x xc g= = -
L hD

(54)

where we take D =ℏ / 2m and consider the small elementary distance the Compton length
Λ =ℏ / mc [14]. Therefore, the Schrödinger equation (52) splits into:

( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2
2 20,    or 0,    d dx k x x x x x

dx dx
z z c g z r z c g+ = > - = < (55)

where

( ) ( )( ) ( ) ( )( ) 2
2 2

2 2
, with

x x
k x x m c

m c g m g c
r m

- -
= = =

h h
(56)

χ is a limit velocity and γ(x) a 'velocity potential'.
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Let us try a solution of the form ζ(x)=A exp ((i/ħ)S(x)). Substituting this solution into the time-
independent Schrödinger equation (52) we get:

2 22 2
2 2 2 2

2 20 or 0d S dS d S dSi k i
dx dxdx dx

ræ ö æ ö
- + = - - =ç ÷ ç ÷
è ø è ø

h h h h (57)

Assume that ħcan, in some sense, be regarded as a small quantity and that S(x) can be expanded
in powers of ħ, S(x) = S0(x)+ ħ S1(x) +....

Then,

2
2 20 01 1... ... 0 ,     ( ( ))

dS dSdS dSdi k x
dx dx dx dx dx

c g
é ù æ ö

+ + - + + + = >ç ÷ê ú
ë û è ø

h h h h (58)

We assume that | dS0
dx | > > |ℏ

dS1
dx |  and collect terms with equal powers of ħ.

( )
2

2 20
00        

x

dS
k S k x dx

dx
é ù

¢ ¢- + = Þ = ±ê ú
ë û

òh h (59)

( )
2

0 0 1
12

12 0        ln
2

d S dS dS
i S i k x

dx dxdx
- = Þ = (60)

We have used:

0 0 1 1
1

dk2  ,    i 2 ,    
dx 2

dS dS dS dSd i dki k dS
dx dx dx dx dx k

æ ö
= = =ç ÷

è ø
(61)

Therefore, for χ>γ(x)

( )
( )1

2 x
i k x dx

x Ak ez
¢ ¢±- ò

= (62)

In the classically allowed region S0 = ± ∫
x

ℏk (x ′)d x ′ counts the oscillations of the velocity wave

function. An increase of 2π ħ corresponds to an additional phase of 2π.
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Similarly, in regions where χ<γ(x) we have:

( )
( )1

2 x
x dx

x A e
r

z r
¢ ¢±- ò

= (63)

For our first order expansion to be accurate we need that the magnitude of higher order terms

decreases rapidly. We need | dS0
dx | > > |ℏ

dS1
dx |  or |k | > > | 1

2k
dk
dx | . The local deBroglie

wavelength is λ = 2π/k. Therefore, | λ
4π

dλ
dx | < <λ , i.e. the change in λ over a distance λ/4π is

small compared to λ. This holds when the velocity potential γ(x) varies slowly and the
momentum is nearly constant over several wavelengths.

Near the classical turning points the WKBJ solutions become invalid, because k goes to zero
here. We have to find a way to connect an oscillating solution to an exponential solution across
a turning point if we want to solve barrier penetration problems or find bound states.

3.2. Velocity potential γ (x) and the bound states

We want to find the velocity wave function in a given velocity potential well γ(x). Assuming
that the limit velocity of the particle isχ and that the classical turning points are x1 and x2,
x1<x2, i.e. we have a velocity potential well with two sloping sides (Fig. 2).

Figure 2. Bound state problem.

For x < x1 the velocity wave function is of the form:

( )
( )1

2
1 1

x
x dx

x A e
r

z r
¢ ¢- ò

= (64)

For x > x2 the velocity wave function is of the form:

( )
( )1

2
3 3

x
x dx

x A e
r

z r
¢ ¢-- ò

= (65)
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In the region between x1 and x2 it is of the form:

( )
( ) ( )1 1

2 2
2 2 2

x x
i k x dx i k x dx

x A k e A k ez
¢ ¢ ¢ ¢+ -- -ò ò

¢= + (66)

At x = x1 and x = x2 the velocity wave function ζ and its derivatives have to be continuous. Near
x1 and x2 we expand the velocity potential well γ(x) in a Taylor series expansion in x and neglect
all terms of order higher than 1. Near x1 we have γ(x)=χ −K1(x − x1), and near x2 we have
γ(x)=χ + K2(x − x2).

In the neighborhood of x1 the time-independent Schrödinger equation then becomes:

( )
2

1
12 2

2
0

Kd x x
dx

mz z+ - =
h

(67)

and in the neighborhood of x2 the time-independent Schrödinger equation becomes:

( )
2

2
22 2

2
0

Kd x x
dx

mz z- - =
h

(68)

Let us define z = − ( 2μK1

ℏ2 ) 1
3 (x − x1). Then we obtain 

d 2ζ
d z 2 − zζ =0 near x1. The solutions of this

equation which vanish asymptotically as z → ∞ or x → -∞ are the Airy functions. They are
defined through:

( )
3

0

1 cos
3
sAi z sz ds

p

¥ æ ö
= +ç ÷ç ÷

è ø
ò (69)

which for large |z| has the asymptotic form

( )
3
2

1
4

1 2~ exp  ,     ( 0)
3

2
Ai z z z

zp

æ ö
ç ÷- >
ç ÷
è ø

(70)

and

( )
( )

( )
3
2

1
4

1 2~ sin  ,     ( 0)
3 4

Ai z z z
z

p

p

æ ö
- + <ç ÷ç ÷

è ø-
(71)
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If the limit velocity χ is high enough, the linear approximation to the velocity potential well
remains valid over many wavelengths. The Airy functions can therefore be the connecting
velocity wave functions through the turning point at x1.

If we define z =( 2μK2

ℏ2 ) 1
3 (x − x2) then we find 

d 2ζ
d z 2 − zζ =0 near x = x2 and the Airy functions can

also be the connecting velocity wave functions through the turning point at x2. Here z → ∞ or
x → ∞.

In the neighborhood of x1 we have

( )
1 1
3 32 2 1 1

12 2
2 2K K

k x x z
m m

r
æ ö æ ö

= - = - = -ç ÷ ç ÷
è ø è øh h

(72)

Therefore

1 1

1
331 2

2
0

2 2
3

x x x

x x

K
dx zdx z dz z

m
r

æ ö
¢ ¢ ¢ ¢= = - = -ç ÷

è ø
ò ò òh

(73)

Similarly

( )
1 1

1
331 2

2
0

2 2
3

x x x

x x

K
kdx zdx z dz z

mæ ö
¢ ¢ ¢ ¢= - = - - = -ç ÷

è ø
ò ò òh

(74)

By comparing this with the asymptotic forms of the Airy functions we note that

( )
( )

( )1

1
2

11 1

x

x
x dx

x xx A e
r

z r
¢ ¢+

- ò
<=

(75)

must continue on the right side as

( ) ( )
1

2 1 1

1
22 sin

4

x

x
x A k kd x xx pz

- æ ö
ç ÷¢= +
ç ÷

ø
>

è
ò (76)

In the neighborhood of x2we similarly find that
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( )
( )

( )2

1
2

23 3

x

x
x dx

x xx A e
r

z r
¢ ¢-

- ò
>=

(77)

must continue in region 2 as

( ) ( )
21

2
2 232 sin

4

x

x
x A k kd x xx pz

- æ ö
ç ÷¢= +
ç ÷

ø
<

è
ò (78)

Both expressions for ζ2(x) are approximations to the same eigenfunction. We therefore need

2

1

1 1
2 2

1 32 sin 2 sin
4 4

xx

x x
A k kdx A k kdxp p- -æ ö æ ö

ç ÷ ç ÷¢ ¢+ = +
ç ÷ ç ÷

è øè ø
ò ò (79)

For (79) to be satisfied, the amplitudes of each side must have the same magnitude, and the
phases must be the same modulo π :

2

1

1 3

4 4

xx

x x

A A

kdx kdx np p p

=

¢ ¢+ = - - +ò ò
(80)

Knowing that ∫
x1

x2

= ∫
x1

x

+ ∫
x

x2

, we have

2

1

1 ,        1,2,3,...
2

x

x
kdx n npæ ö¢ = - =ç ÷

è ø
ò (81)

This can be re-written as

2

1

1 1or
2 2 2

x

x

hdx n dx n hæ ö æ ö
P = - P = -ç ÷ ç ÷

è ø è ø
ò òÑ (82)

with
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( )( ) ( ) ( ) 1 2
1 2 1 2

2 2 2
U x

x U x mc
c

m c g m
é ù

é ù é ùP = - = = ê úë ûë û ê úë û
(83)

Here ∮ denote an integral over one complete cycle of the classical motion. The WKBJ method

for γ(x) velocity potential well with soft walls, therefore, leads to a Wilson-Sommerfeld type
quantization rule except that n is replaced by n-1/2. It leads to a quantization of the complex
velocity U(x).

The factor of π/2 arises here due to the two phase changes of π/4 at x1 and x2. In case where
only one of the walls is soft and the other is infinitely steep the factor of 1/2 is replaced by 1/4
in (81). If both walls are infinitely steep, the factor of 1/2 in (81) is replaced by 0.

WKBJ approximation is a semi classical approximation, since it is expected to be most useful
in the nearly classical limit of large quantum numbers. The method will not be good for, say,
lowest limit velocity states χ, so in order to overcome this shortcomings there is a need for a
modified semi classical quantization condition. For oscillations between the two classical
turning points x1 and x2, we obtain the semi classical quantization condition by requiring that
the total phase during one period of oscillation to be an integral multiple of 2π; [15] such that

2

1

1 22 2
x

x
kdx nf f p¢ + + =ò (84)

where ϕ1 is the phase loss due to reflection at the classical turning point x1 and ϕ2 is the phase
loss due to reflection at x2. Taking ϕ1 and ϕ2 to be equal to π/2leads to the modified semiclassical
quantization rule, i.e.

2

1
4

x

x

mkdx n pæ ö¢ = -ç ÷
è ø

ò (85)

where mis the Maslov index [15], which denotes the total phase loss during one period in units
of π/2. It contains contributions from the phase losses ϕ1and ϕ2 due to reflections at points x1

and x2, respectively. It is pertinent to note that taking ϕ1 = ϕ2 = π/2 and an integer Maslov index
m = 2 in (85), we have the familiar semi classical quantization rule, i.e. (81).

Let us apply the constraint equation (81) to an harmonic oscillator. The condition then is
(passing without loss of generality to the limits -a to +a)
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( ) 1 2 12  
2

a

a
x dx nm c w p

+

-

æ öé ù- = -ç ÷ë û è ø
ò h (86)

where the energy Wc of the oscillator U(x) with the pulsation ωwrites

( )2 2 21 1
2 2cW m x m xw g= = (87)

and we get the expression for the x dependence of the velocity term, γ(x)=ωx.

Theleft side term of (86) is an elementary integral and we find:

( ) ( )
( )

1 2

3 2 3 2 3 1
22 2

n
a

pc u c u u
m

æ ö
+ - - = -ç ÷

è ø
h (88)

where υ =ω a is the liniar velocity (see the graphic in Fig. 3).

Figure 3. Dependence of the limit velocity χ on the linear velocity υ.
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We try to estimate a value for the limit velocity χ. Let us expand the left side term of (88) in
series and keep the first term. If we replace μ from (56) and take a = Λ (the Compton length),
we get:

( )
22 2 2 2 2 22

2
1 2 1 ,   9 ,   25 ,  . . . 
2 32 32 32 328

n n c c c c
a

p p p p pc
m

ì üæ ö ï ï» - = - = í ýç ÷
è ø ï ïî þ

h
(89)

It is interesting to note that only the first velocity in (89) is less than the velocity of light, c.

Let us analyze now, one more bound state, the velocity wave function in a given velocity
double well potential γ(x).

We begin by deriving a quantization condition for region 2 analogous to (81). Again, applying
the boundary condition for region 1 leaves only the exponentially growing solution. Applying
the connection formula at x1 then gives an expression for the velocity wave function in region
2 :

( )
1

1 2
1 2 sin '

4

x

x
x Ak kdx pz -

é ù
ê ú= +
ê úë û
ò (90)

However, the solution in region 3 must have both growing and decaying solutions present.
Considering the region 3 solutions in terms of x2 and letting BL and CL be the amplitudes of
the decaying and growing solutions respectively, the connection formulas give another
expression for the velocity wave function in region 2:

( ) 1 2 1 2
2 2 cos sinL Lx B k C kz q q- -= + (91)

with

2

'
4

x

x
kdx pq = -ò (92)

We equate the two expressions (90), (91) for the velocity function in region 2 and cancel
common factors giving

1

2 sin ' 2 cos sin
4

x

L L
x

A kdx B Cp q q
é ù
ê ú+ = +
ê úë û
ò (93)
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Using trigonometric identities to simplify the right hand side, gives

( )
1

1 22 22 sin ' 4 sin
4 2

x

L L L
x

A kdx B Cp pq f
é ù æ öê ú+ = + + -ç ÷ê ú è øë û
ò (94)

where

( )
1

1 22 2

2
cos

4
L

L

L L

B

B C
f -

é ù
ê ú

= ê ú
ê ú+
ë û

(95)

The magnitude of the sin function must be equal, and the magnitude of the phases must be
equal modulo π :

2 2 24 4 L LA B C= + (96)

2

1

' '
4 4

xx

L
x x

kdx kdx np p f p+ = - - + +ò ò (97)

Simplifying and combining the integrals gives the quantization condition for region 2:

2

1

12
1
2

x

L
x

kdx nq p fæ ö
º = - +ç ÷

è ø
ò (98)

with n = 1, 2,....

A similar treatment for the turning point x3 yields the condition for region 4:

4

3

34
1
2

x

R
x

kdx mq p fæ ö
º = - +ç ÷

è ø
ò (99)

with m = 1, 2,... and ϕR given by:

( )
1

1 22 2

2
cos

4
R

R

R R

C

C B
f -

é ù
ê ú

= ê ú
ê ú+
ë û

(100)
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where BR and CR are the amplitudes of the decaying and growing region 3 solutions in terms
of x3.

We now have the quantization conditions (98, 99) for regions 2 and 4, but they contain the free
parameters ϕL and ϕR. To eliminate these free parameters, we consider the WKBJ solution in
region 3. The coefficients BL, CL, BR, CR define two expressions for solution, which must be
equal:

2 2

1 2 1 2
3 exp ' exp '

x x

L L
x x

B dx C dxz r r r r- -
é ù é ù
ê ú ê ú= - +
ê ú ê úë û ë û
ò ò (101)

3 3
1 2 1 2

3 exp ' exp '
x x

R R
x x

B dx C dxz r r r r- -
é ù é ù
ê ú ê ú= + -
ê ú ê úë û ë û
ò ò (102)

Equations (101) and (102) each contain a term that grows exponentially with x and a term that
decays exponentially with x. Equating the growing terms from each equation and the decaying
term from each equation gives two constraints:

3

2

exp ' exp '
xx

L R
x x

B dx B dxr r
é ù é ù
ê ú ê ú- =
ê ú ê úë ûë û
ò ò (103)

3

2

exp ' exp '
xx

L R
x x

C dx C dxr r
é ù é ù
ê ú ê ú= -
ê ú ê úë ûë û
ò ò (104)

Combining the integrals in these constraints gives

( )23expL R

R L

B C
B C

q= = (105)

with

3

2

23 '
x

x
dxq rº ò (106)
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The constraints (98, 99, 105) may be combined to give a single quantization condition for the
allowed WKBJ velocity limits χ for a double-well velocity potential γ(x). Applying trigono‐
metric identities to (95) and (100), and plugging into (105) gives

( )23
1tan tan exp 2

2 2 4
L R

L R
L R

C B
B C

f f q
æ öæ ö

= = -ç ÷ç ÷ç ÷ç ÷
è øè ø

(107)

Equation (107) may be combined with (98) and (99) to give the WKBJ quantization condition
for a double-well potential in terms of the phase integrals θ12 and θ34 :

( )12 34 23
1 exp 2
4

ctg ctgq q q= - (108)

confirming the results given in [16].

Equation (108) is a nonlinear constraint approximately determining the allowed velocity levels
χ of a double-well velocity potential γ(x) (see Fig. 4) and can be written (taking ϕR = ϕL = π/4
in (98) and (99), i.e. the velocity quarter-wave shift in the connection formulas, which is known
to optimize the tunneling effect between two oscillating waves [17] ) as :

( )
3

2

1 2
1 21 1 12 ( ) ln 4 ln 2     m,n 1, 2, 3, ...

2 2

x

L R
x

x dx ctg n ctg mm g c p f p f
-

ì üé ù é ùæ ö æ öï ïé ù- = × - + × - + = - =í ýê ú ê úç ÷ ç ÷ë û è ø è øï ïë û ë ûî þ
òh (109)

Figure 4. Tunneling potential barrier.

In terms of the momentum Π we have :
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3

2

ln 2 or 2 ln 2
x

x
dx dxP = - P = -ò òh hÑ (110)

where ∮ denotes an integral over one complete cycle of the classical motion, this time

( )( ) ( ) ( ) 1 2
1 2 1 2

2 2 2
U x

x U x mc
c

m g c m
é ù

é ù é ùP = - = = ê úë ûë û ê úë û
(111)

since γ(x)>χfor the integration limits, i.e. region 3 (see Fig. 5). We get again a quantization of
the complex velocityU(x), where the levels are equally spaced at a value of ħ ln2.

Figure 5. Schematic diagram of a double-well potential with three forbidden regions (1, 3, 5) and two allowed re‐
gions (2, 4).

In 1961, Landauer [18] discussed the limitation of the efficiency of a computer imposed by
physical laws. In particular he argued that, according to the second law of thermodynamics,
the erasure of one bit of information requires a minimal heat generation kBT ln2, where kBis
Boltzmann’s constant and T is the temperature at which one erases. Its argument runs as
follows. Since erasure is a logical function that does not have a single-valued inverse it must
be associated with physical irreversibility and therefore requires heat dissipation. A bit has
one degree of freedom and so the heat dissipation should be of order kBT. Now, since before
erasure a bit can be in any of the two possible states and after erasure it can only be in one
state, this implies a change in information entropy of an amount −kBln2.

The one-to-one dynamics of Hamiltonian systems [19] implies that when a bit is erased the
information which it contains has to go somewhere. If the information goes into observable

Advances in Quantum Mechanics746



degrees of freedom of the computer, such as another bit, then it has not been erased but merely
moved; but if it goes into unobservable degrees of freedom such as the microscopic motion of
molecules it results in an increase of entropy of at least kBln2.

Inspired by such studies, a considerable amount of work has been made on the thermody‐
namics of information processing, which include Maxwell’s demon problem [20], reversible
computation [21], the proposal of the algorithmic entropy [22] and so on.

Here, considering a double-well velocity potential γ(x) and the velocity quarter-wave shift in
the connection formulas, a quanta of ħ ln2 for the complex velocityU(x) of the moving
Newtonian 'fluid' occurs. It can be argued that it can be put into a one-to-one correspondence
to the quanta of information Landauer and other authors discussed about [23, 24].

Furthermore, one gets an interesting result when taking ϕR = ϕL = π/2, i.e. the velocity half-
wave shift in the connection formulas, when singularities occur in (II.66). We try to solve this
case by making use of the vortices theory. Benard in 1908 was the first to investigate the
appearance of vortices behind a body moving in a fluid [12]. The body he used was a cylinder.
He observed that at a high enough fluid velocity (or Reynolds number based on the cylinder
diameter), which depends on the viscosity and width of the body, vortices start to shed behind
the cylinder, alternatively from the top and the bottom of the cylinder.

Consequently, we write (109) in the form

( ) ( )1 2
02 ( ) ln 2 ln

x
x dx tg x x

l
pm g c

ì üé ùï ïé ù- = - - -í ýê úë û ï ïë ûî þ
ò h h (112)

where we use ctg(α + π/2) = - tg(α), take m = n, make the notations x =nl , x0 = l / 2 and consider
again the one-dimensional case, motion along the Ox axis.

Solving (112) one gets

( ) ( )2
0

21U x c ctg x xpæ öé ù
= + -ç ÷ê úLë ûè ø

(113)

where we assume l = Λ (the Compton length), U(x) = [γ(x) - χ]/2π2 and replace μ =m 2c, where c
is the velocity of light. When plotting (113) (see Fig. 6) we see that indeed, singularities are ob‐
tained for x - x0 = Λ/2 and for x - x0 = Λ/4we get for U(x) minima of value the velocity of light, c.

Usually, at some distance behind a body placed in a fluid, vortices are arranged at a definite
distance l apart and with a definite separation h between the two rows. The senses of the
rotation in the two rows are opposite (see Fig. 7).
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Figure 7. Von Karman vortex streets.

In 1912 von Karman expounded a theory of such vortex streets and the drag which a cylinder
would experience due to their formation [12]. Since we considered here the one-dimensional
case, we get the solution of a single row of rectilinear vortices, which has already been referred
to as characterizing a surface of discontinuity (see Fig. 8).

A typical bound state in a double-well velocity potential has two classically allowed regions,
where the velocity potential γ(x)is less than the limit velocity χ. These regions are separated
by a classically forbidden region, or barrier, where the velocity potential is larger than the limit
velocity. As we can see, quantum mechanics predicts that a velocity wave ζ(x) travelling in
such a potential is most likely to be found in the allowed regions. However, unlike classical
mechanics, quantum mechanics predicts that this velocity wave can also be found in the

-2 -1 1 2

2

4

6

8

10

Figure 6. The complex velocity U(x) singularities' distribution along the Ox axis.
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forbidden region. This uniquely quantum mechanical behavior allows a velocity wave, initially
localized in one potential well, to penetrate through the barrier, into the other well (as we will
see in what follows).

3.3. Velocity potential γ (x) and the quantum barrier

We already know at the points where χ −γ(x)=0, special treatment is required because k is
singular. The way of handling the solution near the turning point is a little bit more technical,
but the basic idea is that we have a solution to the left and to the right of the turning point, and
one needs a formula that interpolates between them. In other words, in the vicinity of the

turning point one approximates 2μ(χ −γ(x)) / ℏ2 by a straight line over a small interval and
solves TISE (time independent Schrodinger equation) exactly. This leads to the following
connection formulas:

Barrier to the right ( x = b turning point )

( )
( )2 1cos

4

x

b

b x dx

x
k x dx e

k

rp
r

-é ù ò
- Ûê ú

ê úë û
ò (114)

( )
( )1 1sin

4

x

b

b x dx

x
k x dx e

k

rp
r

é ù ò
- Û -ê ú

ê úë û
ò (115)

Barrier to the left ( x = a turning point )

Figure 8. Single row of rectilinear vortices.

Quantum Effects Through a Fractal Theory of Motion
http://dx.doi.org/10.5772/54172

749



( )
( )2 1cos

4

a

x

x x dx

a
k x dx e

k

rp
r

-é ù ò
- Ûê ú

ê úë û
ò (116)

( )
( )1 1sin

4

a

x

x x dx

a
k x dx e

k

rp
r

é ù ò
- Û -ê ú

ê úë û
ò (117)

The connection formulas enable us to obtain relationships between the solutions in a region
at some distance to the right of the turning point with those in a region at some distance to the
left [25-27].

One of the most important problems to which connection formulas apply is that of the
penetration of a potential barrier. The barrier is shown in Fig. 4 and the limit velocity χ is such
that the turning points are at x = a and x = b.

Suppose that the motion is incident from the left. Some waves will be reflected and some
transmitted, so that in region III we will have:

( ) 4
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The phase factor is included for convenience of applying the connection formulas.

In region II (using (114) and (115) on (118)) we have:
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Now using

b a b x
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dx dx dx dxr r r r a= + = - +ò ò ò ò (120)

we can write
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Again, using the connection formulas for the case barrier to the right (using (116) and (117) on
(121)), we get for region I:
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Hence
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Having obtained the expression for ζ1
inc(x) and ζ1

ref(x) we are now in position to calculate the
transmission coefficient using:
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To summarize, for a barrier with large attenuation e-2α→0, the tunneling probability equals
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The reflection coefficient is:
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and also in the same large attenuation limit, we have:

( )( ) 1 22 2 21 1 exp 1 exp 2
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One can see from (125) and (127) thatthe velocity wave ζ(x) on small distances, with the same
order of magnitude as Λ, may be influenced by U(x),i.e. it can be transmitted, attenuated or
reflected at this scale length. In other words, we get from the calculus, that the velocity field V
is indeed transported by the motion of the 'Newtonian fluid' particles with the velocity U(x)
(the imaginary part of the complex velocity [13]).

4. Casimir type effect in scale relativity theory

In recent years, new and exciting advances in experimental techniques [28] prompted a great
revival of interest in the Casimir effect, over fifty years after its theoretical discovery (for a
recent review on both theoretical and experimental aspects of the Casimir effect, see Refs.
[29-31]). As is well known, this phenomenon is a manifestation of the zero-point fluctuations
of the electromagnetic field: it is a purely quantum effect and it constitutes one of the rare
instances of quantum phenomena on a macroscopic scale.

In his famous paper, Casimir evaluated the force between two parallel, electrically neutral,
perfectly reflecting plane mirrors, placed a distance L apart, and found it to be attractive and
of a magnitude equal to:

2

4240C
c AF

L
p

=
h (128)

Here, A is the area of the mirrors, which is supposed to be much larger than L2, so that edge
effects become negligible. The associated energy EC

2

3720C
c AE

L
p

= -
h (129)

can be interpreted as representing the shift in the zero-point energy of the electromagnetic
field, between the mirrors, when they are adiabatically moved towards each other starting
from an infinite distance. The Casimir force is indeed the dominant interaction between neutral
bodies at the micrometer or submicrometer scales, and by modern experimental techniques it
has now been measured with an accuracy of a few percent (see [28] and references therein).

Advances in Quantum Mechanics752



Since this effect arises from long-range correlations between the dipole moments of the atoms
forming the walls of the cavity, that are induced by coupling with the fluctuating electromag‐
netic field, the Casimir energy depends in general on the geometric features of the cavity. For
example, we see from (129) that, in the simple case of two parallel slabs, the Casimir energy
ECis negative and is not proportional to the volume of the cavity, as would be the case for an
extensive quantity, but actually depends separately on the area and distance of the slabs.
Indeed, the dependence of ECon the geometry of the cavity can reach the point where it turns
from negative to positive, leading to repulsive forces on the walls. For example [29], in the case
of a cavity with the shape of a parallelepiped, the sign of ECdepends on the ratios among the
sides, while in the case of a sphere it has long been thought to be positive. It is difficult to give
a simple intuitive explanation of these shape effects, as they hinge on a delicate process of
renormalization, in which the finite final value of the Casimir energy is typically expressed as
a difference among infinite positive quantities. In fact, there exists a debate, in the current
literature, whether some of these results are true or false, being artifacts resulting from an
oversimplification in the treatment of the walls [33].

There are three well-known technical types of derivation of the Casimir force for different
geometries including the simplest geometry of two parallel, uncharged, perfectly conducting
plates firstly explored by Casimir. One modern method is the quantum field theoretical
approach based on the appropriate Green's function of the geometry of problem [34]. The other
technical type is the dimensional regularization method that involves the mathematical
complications of the Riemann zeta function and the analytical continuation [34]. The last (the
most elementary/the simplest) method is based on modes summation by using the Euler-
Maclurian integral formula [35-37].

The problem of finding the Casimir force, not only for the simplest geometry of two plates or
rectangular prism, that we want to study here, but also for other more complicated geometries,
indispensably/automatically involves some infinities/irregularities; thus, one should regula‐
rize the calculation for arriving at the desired finite physical result(s). In the Green' function
method, one uses the subtraction of two terms (two Green's functions) to do the required
regularization. In the dimensional regularization method, although there isn't an explicit
subtraction for the regularization of the problem, as is clear from its name, the calculation is
regularized dimensionally by going to a complex plane with a mathematically complicated/
ambiguous approach. In the simplest method in which the Euler-Maclurian formula is used,
the regularization is performed by the subtraction of the zero-point energy of the free space
(no plates) from the energy expression under consideration/calculation (e.g. summation of the
interior and exterior zero-point energies of the two parallel plates).

Navier-Stokes equations in scale relativity theory predict that the (vector) velocity field V and/
or the (scalar) density field ρ, on small distances (the same magnitude as the Compton length)
behave like a wave function and are transported by the motion of the Newtonian fluid with
velocity U.

Furthermore, when considering vacuum from the Casimir cavity, a non-differentiable,
Newtonian, 2D non-coherent quantum fluid whose entities (cvasi-particles) assimilated to
vortex-type objects, initially non-coherent, become coherent (the coherence of the quantum
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fluid reduces to its ordering in vortex streets) due to the constraints induced by the presence
of slabs. Casimir type forces are derived which are in good agreement with other theoretical
results and experimental data, for both cases: two metallic slabs, parallel to each other, placed
at a distance d apart, that constitute the plates of the cavity and a rectangle of sides d1, d.

In other words, non-differentiability and coherence of the quantum fluid due to constraints
generate pressure along the Ox and Oy axis.

For viscous compressible fluids, Navier-Stokes equations

( )2

3
D p
Dt

mr r m= -Ñ + Ñ + Ñ Ñ ×
v X v v (130)

together with the equation of continuity

0,D
Dt
r r+ Ñ × =v (131)

where ρ is the density, ν the velocity of the fluid, X the body force, p the pressure, μ the shear
viscosity and D / Dt ≡d / dt +ν ⋅∇  the Eulerian derivative, apply to Newtonian (or near) fluids,
that is, to fluids in which the stress is linearly related to the rate of strain (as will be assumed
further in this section) [12].

Let us see first, what happens with the set of equations (130) and (131), if one considers that
the space-time, where particles move, changes from classical to non-differentiable.

We already know, according to Nottale [11], that a transition from classical (differentiable)
mechanics to the scale relativistic framework is implemented by passing to a fluid-like
description (the fractality of space), considering the velocity field a fractal function explicitly
depending on a scale variable (the fractal geometry of each geodesic) and defining two fractal
velocity fields which are fractal functions of the scale variable dt (the non-differentiability of
space).

Consequently, replacing d/dt with the fractal operator (42) and solving for both real and
imaginary parts, (130) and (131) become, in a stationary isotropic case, taking the body force
X = 0 (constant gravitational field) and ∇U = 0 (assuming a constant density of states for the
“fluid particles” moving with the velocity U – see further in this section):

2

2
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0 b

p
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r
Ñ
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×Ñ + Ñ =

V V V

U V VD 

(132)

and

Advances in Quantum Mechanics754



2

0 a
0 b

r r

r r

×Ñ + Ñ × =
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V V

U D 
(133)

where V represents the standard classical velocity, which does not depend on resolution,
while the imaginary part, U, is a new quantity coming from resolution dependant fractal, υ =
μ/ρ the kinematic viscosity and D =ħ/2m defines the amplitude of the fractal fluctuations.

The causes of the Casimir effect are described by quantum field theory, which states that all
of the various fundamental fields, such as the electromagnetic field, must be quantized at
each and every point in space. In a simplified view, a "field" in physics may be envisioned as
if space were filled with interconnected vibrating balls and springs, and the strength of the
field can be visualized as the displacement of a ball from its rest position. Vibrations in this
field propagate and are governed by the appropriate wave equation for the particular field
in question. The second quantization of quantum field theory requires that each such ball-
spring combination to be quantized, that is, that the strength of the field to be quantized at
each point in space. Canonically, the field at each point in space is a simple harmonic oscilla‐
tor, and its quantization places a quantum harmonic oscillator at each point. Excitations of
the field correspond to the elementary particles of particle physics. However, even the vac‐
uum has a vastly complex structure, so all calculations of quantum field theory must be
made in relation to this model of vacuum. The vacuum has, implicitly, all of the properties
that a particle may have: spin, or polarization in the case of light, energy, and so on. On
average, all of these properties cancel out: the vacuum is, after all, "empty" in this sense. One
important exception is the vacuum energy or the vacuum expectation value of the energy.

Let us consider here, vacuum, as a non-differentiable, Newtonian, 2D non-coherent quan‐
tum fluid whose entities (cvasi-particles) assimilate to vortex-type objects [38] (see Fig.9)
and are described by the wave function Ψ [39, 40]
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and K, K’ complete elliptic integrals of the first kind of modulus k [41], form a vortex lattice of
constants a, b.

Figure 9. The vacuum from a Casimir cavity whose entities (cvasi-particles) are assimilated to vortex-type objects.

Applying in the complex plane [42], the formalism developed in [13] by means of the relation
Ψ = e F (z)/Γ =cn(u

¯
;k ) one introduces the complex potential

( ) ( ) ( ) ( ), , ln ;F z G x y iH x y cn u ké ù= + = G ë û (136)

with Γ the vortex constant. In the general case Γ = cΛ = ħ/m [38-40], the interaction scale being
specified through Γ ’s value (Λ being considered as the Compton length).

Based on the complex potential (136), one defines the complex velocity field of the non-
coherent quantum fluid, through the relation:

( ) ( ) ( )
( )

; ;
;x y

dF z sn u k dn u kKv iv
dz a cn u k

G
- = = - (137)

or explicitly, using the notations [41, 42]:
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Having in view that cn(u
¯

+ Ω
¯

)=cn(u
¯
), where Ω

¯
=2(2m + 1)K + 2niK ′and m,n = ±1, ±2..., for k→

0 and k’→ 1 limits, respectively, the quantum fluid, initially non-coherent (the amplitudes and
phases of quantum fluid entities are independent) becomes coherent (the amplitudes and
phases of quantum fluid entities are correlated [43]). In this context, from Fig. 10a,b of the
equipotential curves G(xr,yr) = const., for k2 = 0,1, it results that the coherence of the quantum
fluid reduces to its ordering in vortex streets - see Fig. III.2a for vortex streets aligned with the
Ox axis and Fig. 10b for vortex streets aligned with the Oy axis. This process of ordering is
achieved by generation of quasi-particles. Indeed, in the usual quantum mechanics the
imaginary term ( iΘ ) from the energy, i.e. E= E0 + iΘ, induces elementary excitations named
resonances (for details see the collision theory [44]). Similarly, by extending the collision theory
to the fractal space-time [1, 45], will imply that the presence of the imaginary term H(xr,yr) in
the potentialF (z

¯
)will generate quasi-particles, as well.

Now, writing the Navier-Stokes equation (132a) and the equation of continuity (133a) in scale
relativity theory for constant density (incompressible fluids) in two dimensions, one gets
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where the shear viscosity υ is replaced by D since we are dealing here with a non-differentiable
quantum fluid.

Then, after some rather long yet elementary calculus one gets from (140a,b) through the
degenerations :
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Figure 10. The equipotential curves G(xr,yr) = const., a) for vortex streets aligned with the Ox axis and b) for vortex
streets aligned with the Oy axis.
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Here, ρis the quantum fluid’s density, M the mass of the quantum fluid entities, d and d1 are
the elementary space intervals considered along the Oy and Ox axis, respectively.

In other words, non-differentiability and coherence of the quantum fluid due to constraints,
generate pressure along the Ox and Oy axis.

Moreover, one can show that the equation of continuity (141) is identically satisfied for both
cases of degeneration.

Let us consider a Casimir cavity consisting of the vacuum with the vortex lattice depicted above
and two metallic slabs, that constitute the plates of the cavity, placed at a distance d apart,
parallel to each other and to the xOz plane (see Fig. III.1). According to the analysis from the
previous section, one can see that if the quantum fluid is placed in a potential well with infinite
walls (the case of the Casimir cavity analyzed here, where the two plates are the constraints
of the quantum fluid), along a direction perpendicular to the walls (the Oy axis here) a coherent
structure, a vortex street forms (see Fig. III.2b). Consequently, by integrating (144a,b) with
(145a-c) over αr and βr, and using the result in the quantization rule:
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where d1 ~ m π a,d ~ n π b, with m, n = 1,2,...., one gets
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Graphically this is presented in Fig. III.3a,b for different values of the parameters m, n = 1, 2,....
and r.
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If the plates were in the yOz plane the constraints being along the Ox axis, vortex streets would
form along this axis and the result in (142a,b) with (143a-c) would have been applied, i.e. the
cases i) or ii) are identical, yet they depend on the geometry chosen.

Firstly, one can notice that the pressure py on the plates, given by (147a), stabilizes for great r
values, is always negative and an attractive force results (see Fig. 11 a), as is the case of the
Casimir force (128).

Secondly, the theory predicts, that besides the pressure py acting on the plates, there must be
yet another pressure, px (see Fig. 11 b), acting along the Ox axis and given by (147b). One can
see that this pressure annuls for great r values, and has a minimum for some values of the
parameters m, n. This result is new and should be checked by experiments.

Moreover, if one tries to compute the order of magnitude of this force, and replaces in (144a) :
ħ = 1.054 10-34 J.s, m = 9.1 10-31 kg, ρ~ 1021 cm-3, b = 1Ǻ (values specific to a bosonic gas, i.e. found
in high-Tc superconductors [46]) and d ~ 5 b (the distance between the plates), gets a value for
py ≅6.18 1010 N m-2 the same order of magnitude as the value calculated using (128), FC≅ 2.08
1010 N m-2.

As a final test, let us study the case of a Casimir cavity, as a rectangle of sides d1, d. Now, the
plates induce constraints along both Ox and Oy axis, thus correlations (vortex streets) form
along these directions and one should use the degenerations i) and ii), simultaneously.
Consequently, from (142a,b) with (143a-c) and (144a,b) with (145a-c) one gets
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Figure 11. a) Plot of the pressure py on the plates, versus the parameter r for different values of parameters m, n; b)
Plot of the pressure px versus the parameter r for different values of parameters m, n.
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At every point (x, y) there is a pressure formed of the two constraints. Consequently, adding
the pressures in (149) and (151) and using again the result in (146) (i.e. d1 ~ m π a,d ~ n π b,
where m, n = 1,2,....) one gets:
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where
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h (154)

Furthermore, we integrate (153) over xr and yr, respectively, in order to find a value of the
pressure acting on the sides of the rectangular enclosure. After some long, yet elementary
calculus, one finds:
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Plots of (155) for various values of parameters m, n = 1, 2,.... and r are depicted in Fig. III.4a,b.
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Figure 12. a) Plots of prect versus the parameter r for various values of parameters m, n = 1,2,...; b) the same plot, yet we
present here a magnification of the domain of r for highly asymmetric values of m, n (1,5 and 5,1).
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One can notice that if the two parameters m and n have close values, the force acting on the
Casimir rectangle is always negative and decreases exponentially for increasing r. For pa‐
rameters m and n (1,5 and 5,1, i.e. very asymmetric) the force has negative and positive do‐
mains (see Fig. 12 b) and increases exponentially for increasing r. Moreover, if one tries to
find the positive and negative domains, and solve (155) for m = 5, n = 5 finds prect< 0 for
0.45753 ≤r≤ 2.18565 and prect> 0 for r> 2.18565 and r< 0.45753. This result is in agreement with
the calculus of regularization using the Abel-Plana formula where E< 0 for 0.36537 ≤L/l≤
2.73686 and E> 0 for L/l> 2.73686 and L/l< 0.36537 [47].

5. Fractal approximation of motion in mass transfer: release of drug from
polimeric matrices

Polymer matrices can be produced in one of the following forms: micro/nano-particles, micro/
nano capsules, hydro gels, films, patches.Our new approach considers the entire system (drug
loaded polymer matrix in the release environment) as a type of “fluid” totally lacking inter‐
action or neglecting physical interactions among particles. At the same time, the induced
complexity is replaced by fractality. This will lead to particles moving on certain trajectories
called geodesics within fractal space. This assumption represents the basis of the fractal
approximation of motion in Scale Relativity Theory (SRT) [1, 2], leading to a generalized fractal
“diffusion” equation that can be analyzed in terms of two approximations (dissipative and
dispersive).

5.1. The dissipative approximation

In the dissipative approximation the fractal operator (42) takes the form [48, 49]:

( )( )2 1FDi
t t

Ù
Ù -¶ ¶

= + ×Ñ - D
¶ ¶

DV dt (156)

As a consequence, we are now able to write the fractal “diffusion” type equation in its covariant
form:

( ) ( )( )2 1ˆ 0FDQ Q Q i dt Q
dt t

Ù
-¶ ¶

= + ×Ñ - D =
¶

V D (157)

Separating the real and imaginary parts in (157), i.e.

∂Q
∂ t + V ⋅∇Q =0
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( )( )2 1FDQ Q-
- ×Ñ = DDU dt (158)

we can add these two equations and obtain a generalized “diffusion” type law in the form:

( ) ( )( )2 1FDQ Q Q
t

-¶
+ - ×Ñ = D

¶
DV U dt (159)

5.1.1.Standard “diffusion” type equation. Fick type law

The standard “diffusion” law, i.e.:

D Q Q
t

¶
= D

¶
(160)

results from (159) on the following assertions:

i. the diffusion path are the fractal curves of Peano’s type. This means that the fractal
dimension of the fractal curves is DF = 2.

ii. the movements at differentiable and non-differentiable scales are synchronous, i.e.
V =U ;

iii. the structure coefficient D, proper to the fractal-nonfractal transition, is identified
with the diffusion coefficient, i.e.

D ≡D.

5.1.2. Anomalous “diffusion” type equation. Weibull relation

The anomalous diffusion law results from (IV.4) on the following assumptions:

i. the diffusion path are fractal curves with fractal dimension DF ≠2;

ii. the time resolution, δt, is identified with the differential element dt, i.e. the substitu‐
tion principle can be applied also, in this case;

iii. the movements at differentiable and non-differentiable scales are synchronous, i.e.
V =U .

Then, the equation (IV.4) can be written:

( )( )2 1FDQ Q
t

-¶
= D

¶
D dt (161)

In one-dimensional case, applying the variable separation method [50]
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( ) ( ) ( ),Q t T t X= ×x x (162)

with the standard initial and boundary conditions:

( ) ( ) ( ) ( ),0 0, , 0, 0, ,0Q t Q t L Q x F x x L= = = £ £ (163)

implies:

( )( ) ( )
( )

( )
( ) 22

2
22 1

1 , 21 1,  1
FD

dT t d X x nm
dt LT t X x dx

np
-

æ ö
= = - = -ç ÷

è ø
=

D dt
(164)

where L is a system characteristic length, m a separation constant, dependent on diffusion order
n.

Accepting the viability of the substitution principle, from (164), through integration, results:

( )
22ln FDT m= - òD dt (165)

Taking into consideration some results of the fractional integro-differential calculus [51, 52],
(165) becomes:
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Moreover, (166a,b) can be written under the form:
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2

22
exp

1

FDmT t t
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The relative variation of concentrations, time dependent, is defined as:
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( ) tQ Q
T t

Q
¥

¥

-
= (168)

where Qt  and Q∞ are cumulative amounts of drug released at time t and infinite time.

From (167) and (168) results:
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equation similar to Weibull relation 
Qt
Q∞

=1−exp(−at b), a and b representing constants specific

for each system that are defined by:
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We observe that both constants, a and b, are functions of the fractal dimension of the curves
on which drug release mechanism take place, dimension that is a measure of the complexity
and nonlinear dynamics of the system. Moreover, constant a depends, also, on the “diffusion”
order n.

5.1.3. The correspondence between theoretical model and experimental results

The experimental and Weibull curves for HS (starch based hydrogels loaded with levofloxacin)
and GA (GEL-PVA microparticles loaded with chloramphenicol) samples are plotted in Fig. 13.

The experimental data allowed to determine the values of Weibull parameters (a and b), and
implicitly, the value of the fractal dimension from the curve on which release takes place [55].

These values confirmed that the complexity of the phenomena determines, also, naturally, a
complex trajectory for the drug particles. Most values are between 1 and 3, in agreement with
the values usually accepted for fractal process; higher values denotes the fact that, either fractal
dimension must be redefined as function of structure “classes”, or the drug release process is
complex, involving many freedom degrees in the phase space [56]. Another observation that
can be made based on this results is that the samples with DF 2 manifests a “sub-diffusion”
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and, in the other, with DF 2, the release process is of super-diffusion, classification in con‐
cordance with the experimental observation that this samples exhibit a ”faster” diffusion, with
a higher diffusion rate, in respect with the other samples [55].

5.2. The dispersive approximation

Let us now consider that, in comparison with dissipative processes, convective and dispersive
processes are dominant ones. In these conditions, the fractal operator (42) takes the form:

( ) ( )( )3 1 32ˆ
3

FDD

dt t

Ù
-¶ ¶

= + ×Ñ + Ñ
¶

V D3 2 dt (171)

Consequently, we are now able to write the diffusion equation in its covariant form, as a
Korteweg de Vries type equation:

( ) ( )( )3 1 32ˆ 0
3

FDDQ Q Q Q
dt t

Ù
-¶ ¶

= + ×Ñ + Ñ =
¶

V D3 2 dt (172)

If we separate the real and imaginary parts from Eq. (172), we shall obtain:

( )( )3 1 32 0 a
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0 b

FDQ Q dt Q
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¶
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DV

U

3 2
(173)

By adding them, the fractal diffusion equation is:
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By adding them, the fractal diffusion equation is: 
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From Eq. (173b) we see that, at fractal scale, there will be no Q field gradient. 
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Figure 13. Experimental and Weibull curves for HS (left plot) and GA samples (right plot).
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( ) ( )( )3 1 32 0
3

FDQ Q dt Q
t

-¶
+ - ×Ñ + Ñ =

¶
DV U 3 2 (174)

From Eq. (173b) we see that, at fractal scale, there will be no Q field gradient.

Assuming that |V −U | =σ ⋅Q with σ =constant (in systems with self structuring processes,
the speed fluctuations induced by fractal - non fractal are proportional with the concentration
field [55]), in the particular one-dimensional case, equation (174) with normalized parameters:

0

, a
, b
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t
kx
Q
Q

t w

x

=

=

F =
(175)

and normalizing conditions:

( )( )3 12 3
0 2 1

6 3

FDdt kQ ks
w w

-

= =
D3 (176)

take the form:

6 0t x xxxf f f f¶ + ¶ + ¶ = (177)

In relations (175a,b,c) and (176) ω corresponds to a characteristic pulsation, k  to the inverse of
a characteristic length and Q0 to balanced concentration.

Through substitutions:

( ) ( ), , a

b

w

u

q f t x

q x t

=

= -
(178)

eq.(177), by double integration, becomes:

( )2 3 21
2 2

uw F w w w gw hæ ö¢ = = - - - -ç ÷
è ø

(179)
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with g, h two integration constants and u the normalized phase velocity. If F (w) has real roots,
equation (177) has the stationary solution:

( ) ( )
( )

2
0, , 2 1 2 ;

2
E s a us a a cn s

sK s
f x t x t x

é ùæ ö æ ö
= - + × - +ç ÷ ê úç ÷ç ÷ç ÷ ê úè øè ø ë û

(180)

where cn is Jacobi’s elliptic function of s modulus [41], a is the amplitude, ξ0̄ is a constant of

integration and
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are the complete elliptic integrals [41].
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Figure 14. One-dimensional cnoidal oscillation modes of the field Φ
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Parameter s represents measure characterizing the degree of nonlinearity in the system.
Therefore, the solution (180) contains (as subsequences for s =0) one-dimensional harmonic
waves, while for s →0 one-dimensional wave packet. These two subsequences define the non-
quasi-autonomous regime of the drug release process [48, 49, 55], i.e. the system should receive
external energy in order to develop. For s =1, the solution (180) becomes one-dimensional
soliton, while for s →1, one-dimensional soliton packet will be generated. The last two imply
a quasi-autonomous regime (self evolving and independent [48]) for drug particle release
process [48, 49, 55].

The three dimensional plot of solution (180) shows one-dimensional cnoidal oscillation
modes of the concentration field, generated by similar trajectories of the drug particles (see
Fig. 14). We mention that cnoidal oscillations are nonlinear ones, being described by the el‐
liptic function cn, hence the name (cnoidal).

It is known that in nonlinear dynamics, cnoidal oscillation modes are associated with non‐
linear lattice of oscillators (the Toda lattice [56]). Consequently, large time scale drug particle
ensembles can be compared to a lattice of nonlinear oscillators which facilitates drug release
process.

5.2.1. The correspondence between theoretical model and experimental results

In what follows we identify the field Φ from relation (180) with normalized concentration
field of the released drug from micro particles.

For best correlation between experimental data and the theoretical model (for each sample)
we used a planar intersection of the graph in Fig. 14 [57], in order to obtain two-dimensional
plots.

The highest value of the correlation coefficient (for two data sets: one obtained from the pla‐
nar intersection, the other from experimental data) will represent the best approximation of
experimental data with the theoretical model.

Our goal was to find the right correlation coefficient which should be higher than 0.6−0.7,
in order to demonstrate the relevance of the model we had in view. Figs. 15 show experi‐
mental  and theoretical  curves that  were obtained through this  method,  where R2  repre‐
sents  the  correlation  coefficient  and  η  a  normalized  variable  which  is  simultaneously
dependent on normalized time and on nonlinear degree of the system (s parameter). Geo‐
metrically, η  represents the congruent angle formed by the time axis and the vertical in‐
tersection plane.
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Figure 15. The best correlations among experimental and theoretical curves (blue line – experimental curve, red line –
theoretical curve).
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6. Conclusions

i. Scale relativistic framework is implemented by passing to a fluid-like description (the
fractality of space), considering the velocity field a fractal function explicitly depend‐
ing on a scale variable (the fractal geometry of each geodesic) and defining two fractal
velocity fields which are fractal functions of the scale variable dt (the non-differenti‐
ability of space).

An application of these principles to the motion equation of free particles leads to the
occurence of a supplementary TISE (time independent, Schrödinger-type equation)
and the following interesting results :

• ζ(x) behaves like a wave function on small distances (the same magnitude as the
Compton length);

• for γ(x) a velocity potential well, U(x) is quantified;

• for the harmonic oscillator case, the limit velocity χ has discrete values, and only
the first value is less than the velocity of light, c;

• in the double-well velocity potential, the complex velocity U(x) is again quantized,
this time the levels are equally spaced at a value of ħ ln2;

• if one takes ϕR = ϕL = π/2, singularities are obtained for x - x0 = Λ/2 and for x - x0 =
Λ/4 one gets minima for U(x)= c in a double-well velocity potential;

• since we considered here the one-dimensional case we get the solution of a single
row of rectilinear vortices, which has already been referred to as characterizing a
surface of discontinuity;

• a typical bound state in a double-well has two classically allowed regions, where
the velocity potential is less than the limit velocity; these regions are separated by
a classically forbidden region, or barrier, where the velocity potential is larger than
the limit velocity;

• for tunneling case, there is a nonzero transmission, reflection coefficient, which leads
to the proof of the transport of the V field by the motion of the Newtonian fluid with
velocity U(x), on small distances (of the order of magnitude of Compton length).

ii. We analyzed vacuum from the  Casimir  cavity,  considered a  non-differentiable,
Newtonian, 2D non-coherent quantum fluid, by writing the Navier-Stokes equations
in scale relativity theory’s framework. As a result the following results may be extracted:

• the (vector) velocity field V and/or the (scalar) density field ρ behave like a wave
function on small distances (the same magnitude as the Compton length);

• the (vector) velocity field V and/or the (scalar) density field ρ are transported by
the motion of the Newtonian fluid with velocity U, on small distances (the same
magnitude as the Compton length);

Also, the entities assimilated to vortex-type objects from the Casimir cavity, initially
non-coherent, become coherent due to constraints induced by the presence of walls
and generate pressure along the Ox and Oy axis, thus one can stress out :
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• the pressure py on the plates, is negative and an attractive force results, as is the
case of the Casimir force;

• besides the pressure py acting on the plates, there must be yet another pressure, px,
acting along the Ox axis;

• the order of magnitude of this force, py ≅ 6.18 1010 N m-2 is the same with the value
of the classical Casimir force calculation, FC ≅ 2.08 1010 N m-2;

• in the case of the Casimir cavity from inside a rectangular enclosure of sides d1, d,
the plates induce constraints along both Ox and Oy axis, and one can notice that if
the two parameters m and n have close values, the force acting on the Casimir
rectangle is always negative and for parameters m and n very asymmetric the force
has negative and positive domains, in agreement with the calculus of regulariza‐
tion using the Abel-Plana formula.

iii. Using fractional calculus, the fractal “diffusion” equation give rise to Weibull relation,
a statistical distribution function of wide applicability, inclusively in drug release
studies. In this approach, we consider all the simultaneous phenomena involved,
equivalent with complexity and fractality, offering, in this way, a physical base to this
equation and for its parameters. They are functions of fractal dimension of the curves
on which drug release mechanism takes place, dimension that is a measure of the
complexity and nonlinear dynamics of the system, dependent on the diffusion order.

This theory offers new alternatives for the theoretical study of drug release process (on large
time scale) in the presence of all phenomena and considering a highly complex and implicitly,
non linear system. Consequently, the concentration field has cnoidal oscillation modes,
generated by similar trajectories of drug particles. This means that the drug particle ensemble
(at time large scale) works in a network of non linear oscillators, with oscillations around
release boundary. Moreover, the normalized concentration field simultaneously depends on
normalized time non linear system (through s parameter).
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