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Preface 

Almost 12 years have passed by since we wrote Chaos and Fractals. At the time we were hoping 
that our approach of writing a book which would be both accessible without mathematical sophistication 
and portray these exiting new fields in an authentic manner would find an audience. Now we know it 
did. We know from many reviews and personal letters that the book is used in a wide range of ways: 
researchers use it to acquaint themselves, teachers use it in college and university courses, students use 
it for background reading, and there is also a substantial audience of lay people who just want to know 
what chaos and fractals are about. 

Every book that is somewhat technical in nature is likely to have a number of misprints and errors in 
its first edition. Some of these were caught and brought to our attention by our readers. One of them, 
Hermann Flaschka, deserves to be thanked in particular for his suggestions and improvements. 

This second edition has several changes. We have taken out the two appendices from the first edition. 
At the time of the first edition Yuval Fishers contribution, which we published as an appendix was 
probably the first complete expository account on fractal image compression. Meanwhile, Yuvals book 
Fractal Image Compression: Theory and Application appeared and is now the publication to refer to. 
Moreover, we have taken out the sections at the end of each chapter, which were devoted to a focussed 
computer program in BASIC, which highlighted a fundamental construction in that respective chapter. 
Instead we direct our readers to our web-site 

http://www.cevis.uni-bremen.de/fractals/ 

where we provide 10 interactive JAVA-applets. 
We also like to express our sincere gratitude to the people at Springer-Verlag, New York, who made 

this whole project such a wonderful experience for us. 

Heinz-Otto Peitgen, Hartmut Jiirgens, Dietmar Saupe 

Bremen and Konstanz, August 2003 



Preface of the First Edition 

Over the last decade, physicists, biologists, astronomers and economists have created a new way of 
understanding the growth of complexity in nature. This new science, called chaos, offers a way of seeing 
order and pattern where formerly only the random, erratic, the unpredictable - in short, the chaotic -
had been observed. 

James Gleick1 

This book is written for everyone who, even without much knowledge of technical mathematics, 
wants to know the details of chaos theory and fractal geometry. This is not a textbook in the usual sense 
of the word, nor is it written in a 'popular scientific' style. Rather, it has been our desire to give the 
reader a broad view of the underlying notions behind fractals, chaos and dynamics. In addition, we have 
wanted to show how fractals and chaos relate to each other and to many other aspects of mathematics as 
well as to natural phenomena. A third motif in the book is the inherent visual and imaginative beauty in 
the structures and shapes of fractals and chaos. 

For almost ten years now mathematics and the natural sciences have been riding a wave which, in its 
power, creativity and expanse, has become an interdisciplinary experience of the first order. For some 
time now this wave has also been touching distant shores far beyond the sciences. Never before have 
mathematical insights - usually seen as dry and dusty - found such rapid acceptance and generated so 
much excitement in the public mind. Fractals and chaos have literally captured the attention, enthusiasm 
and interest of a world-wide public. To the casual observer, the color of their essential structures and their 
beauty and geometric form captivate the visual senses as few other things they have ever experienced in 
mathematics. To the student, they bring mathematics out of the realm of ancient history into the twenty
first century. And to the scientist, fractals and chaos offer a rich environment for exploring and modelling 
the complexity of nature. 

But what are the reasons for this fascination? First of all, this young area of research has created 
pictures of such power and singularity that a collection of them, for example, has proven to be one of the 
most successful world-wide series of exhibitions ever sponsored by the Goethe-Institute.2 More impor
tant, however, is the fact that chaos theory and fractal geometry have corrected an outmoded conception 
of the world. 

The magnificent successes in the fields of the natural sciences and technology had, for many, fed 
the illusion that the world on the whole functioned like a huge clockwork mechanism, whose laws were 
only waiting to be deciphered step by step. Once the laws were known, it was believed, the evolution 
or development of things could - at least in principle - be ever more accurately predicted. Captivated 
by the breathtaking advances in the development of computer technology and its promises of a greater 
command of information, many have put increasing hope in these machines. 

But today it is exactly those at the active core of modem science who are proclaiming that this hope 
is unjustified; the ability to see ever more accurately into future developments is unattainable. One 

1J. Gleick, Chaos - Making aNew Science, Viking, New York, 1987. 
2 Alone at the venerable London Museum of Science, the exhibition Frontiers of Chaos: Images of Complex Dynamical Systems 

by H. Jiirgens, H.-O. Peitgen, M. Priifer, P. H. Richter and D. Saupe attracted more than 140,000 visitors. Since 1985 this exhibition 
has travelled to more than 100 cities in more than 30 countries on all five continents. 



Preface vii 

conclusion that can be drawn from the new theories, which are admittedly still young, is that stricter 
determinism and apparently accidental development are not mutually exclusive, but rather that their 
coexistence is more the rule in nature. Chaos theory and fractal geometry address this issue. When we 
examine the development of a process over a period of time, we speak in terms used in chaos theory. 
When we are more interested in the structural forms which a chaotic process leaves in its wake, then 
we use the terminology of fractal geometry, which is really the geometry whose structures are what give 
order to chaos. 

In some sense, fractal geometry is first and foremost a new 'language' used to describe, model and 
analyze the complex forms found in nature. But while the elements of the 'traditional language' - the 
familiar Euclidean geometry - are basic visible forms such as lines, circles and spheres, those of the 
new language do not lend themselves to direct observation. They are, namely, algorithms, which can 
be transformed into shapes and structures only with the help of computers. In addition, the supply of 
these algorithmic elements is inexhaustibly large; and they are capable of providing us with a powerful 
descriptive tool. Once this new language has been mastered, we can describe the form of a cloud as 
easily and precisely as an architect can describe a house using the language of traditional geometry. 

The correlation of chaos and geometry is anything but coincidental. Rather, it is a witness to their 
deep kinship. This kinship can best be seen in the Mandelbrot set, a mathematical object discovered by 
Benoit Mandelbrot in 1980. It has been described by some scientists as the most complex - and possibly 
the most beautiful --: object ever seen in mathematics. Its most fascinating characteristic, however, has 
only just recently been discovered: namely, that it can be interpreted as an illustrated encyclopedia of an 
infinite number of algorithms. It is a fantastically efficiently organized storehouse of images, and as such 
it is the example par excellence of order in chaos. 

Fractals and modem chaos theory are also linked by the fact that many of the contemporary pace
setting discoveries in their fields were only possible using computers. From the perspective of our in
herited understanding of mathematics, this is a challenge which is felt by some to be a powerful renewal 
and liberation and by others to be a degeneration. However this dispute over the 'right' mathematics is 
decided, it is already clear that the history of the sciences has been enriched by an indispensable chapter. 
Only superficially is the issue one of beautiful pictures or of perils of deterministic laws. In essence, 
chaos theory and fractal geometry radically question our understanding of equilibria - and therefore of 
harmony and order - in nature as well as in other contexts. They offer a new holistic and integral model 
which can encompass a part of the true complexity of nature for the first time. It is highly probable that 
the new methods and terminologies will allow us, for example, a much more adequate understanding of 
ecology and climatic developments, and thus they could contribute to our more effectively tackling our 
gigantic global problems. 

We have worked hard in trying to reveal the elements of fractals, chaos and dynamics in a non
threatening fashion. Each chapter can stand on its own and can be read independently from the others. 
Each chapter is centered around a running 'story' typeset in Times and printed toward the outer mar
gins. More technical discussions, typeset in Helvetica and printed toward the inner margins, have been 
included to occasionally enrich the discussion by providing deeper analyses for those who may desire 
them and those who are prepared to work themselves through some mathematical notations. At the end 
of each chapter we offer a short BASIC program, the Program of the Chapter, which is designed to 
highlight one of the most prominent experiments of the respective chapter. 

This book is a close relative of the two-volume set Fractals for the Classroom which was published 
by Springer-Verlag and the National Council of Teachers of Mathematics in 1991 and 1992. While 
those books were originally written for an audience which is involved with the teaching or learning of 
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mathematics, this book is intended for a much larger readership. It combines most parts of the afore
mentioned books with many extensions and two important appendices. 

The first appendix, written by Yuval Fisher, deals with aspects of image compression using funda
mental ideas from fractal geometry. Such applications have been discussed for about five years and 
hopes of new breakthrough technologies have risen very high through the work and announcements of 
the group around Michael F. Barnsley. Since Barnsley has kept his work absolutely secret we still don't 
know what is possible and what is not. But Fisher's contribution allows us to make a fair guess. Anybody 
who is interested in the perspectives of image compression through fractals will appreciate this appendix. 

The second appendix is written by Carl J. G. Evertsz and Benoit B. Mandelbrot and deals with 
multifractal measures, which is one of the hottest subjects in the current scientific discussion of fractal 
geometry. Usually we think of fractals as objects having some kind of self-similarity. The discussion of 
multifractal measures extends this concept to the distributions of quantities (for example, the amount of 
ground water found at a certain location under the surface). Furthermore, it overcomes some shortcom
ings of the fractal dimension when used as a tool for measurement in science. 

Even with these two important contributions there remain many holes in this book. However, fortu
nately there are exceptional books already in print that can close these gaps. We list the following only 
as examples: For portraits of the personalities in the field and the genesis of the subject matter, as well as 
the scientific background and interrelationships, there are Chaos - Making a New Science,3 by James 
Gleick, and Does God Play Dice?,4 by Ian Stewart. For the reader who is more interested in a system
atic mathematical exposition or who is ready to advance into the depths, there are the following titles: 
An Introduction to Chaotic Dynamical Systems5 and Chaos, Fractals, and Dynamics,6 both by Robert 
L. Devaney, and Fractals Everywhere,7 by Michael F. Barnsley. An adequate technical discussion of 
fractal dimension can be found in the two exceptional texts, Measure, Topology and Fractal Geometry,S 
by Gerald A. Edgar, and Fractal Geometry,9 by Kenneth Falconer. Readers more interested in fractals 
in physics will appreciate Fractals,lO by Jens Feder, while readers who look for fractals in chemistry 
should not miss The Fractal Approach to Heterogeneous Chemistry,ll by David Avnir. And last but not 
least, there is the book of books about fractal geometry written by Benoit B. Mandelbrot, The Fractal 
Geometry of Nature .12 

We owe our gratitude to many who have assisted us during the writing of this book. Our students 
Torsten Cordes and Lutz Voigt have produced most of the graphics very skillfully and with unlimited 
patience. They were joined by two more of our students, Ehler Lange and Wayne Tvedt, during part of 
the preparation time. Douglas Sperry has read our text very carefully at several stages of its evolution 
and, in addition to helping to get our English de-Germanized, has served in the broader capacity of copy 
editor. Ernst Gucker, who is working on the German edition, suggested many improvements. Friedrich 
von Haeseler, Guentcho Skordev, Heinrich Niederhausen and Ulrich Krause have read several chapters 
and provided valuable suggestions. We also thank Eugen Allgower, Alexander N. Charkovsky, Mitchell 
J. Feigenbaum, Przemyslaw Prusinkiewicz, and Richard Voss for reading parts of the original manuscript 

3 Viking, 1987. 
4Penguin Books, 1989. 
5 Second Edition, Addison Wesley, 1989. 
6 Addison Wesley, 1990. 
7 Academic Press, 1989. 
8 Springer-Verlag,1990 
9 John Wiley and Sons, 1990. 

lOPlenum, 1988 
11 Wiley,1989 
12W. H. Freeman, 1982. 
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and giving valuable advice. Gisela Grundl has helped us with selecting and organizing third-party art
work. Claus Hosselbarth did an excellent job in designing the cover. Evan M. Maletsky, Terence H. 
Perciante and Lee E. Yunker read parts of our early manuscripts and gave crucial advice concerning the 
design of the book. Finally, we are most grateful to Yuval Fischer, Carl J. G. Evertsz and Benoit B. 
Mandelbrot for contributing the appendices to our book, and to Mitchell Feigenbaum for his remarkable 
foreword. 

The entire book has been produced using the T:sX and IM:sX typesetting systems where all figures 
(except for the half-tone and color images) were integrated in the computer files. Even though it took 
countless hours of sometimes painful experimentation setting up the necessary macros it must be ac
knowledged that this approach immensely helped to streamline the writing, editing and printing. 

Finally, we have been very pleased with the excellent cooperation of Springer-Verlag in New York. 

Heinz-Otto Peitgen, Hartmut JUrgens, Dietmar Saupe 

Bremen, May 1992 
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Foreword 

Mitchell J. Feigenbauml 

The study of chaos is a part of a larger 
program of study of so-called 'strongly' 
nonlinear systems. Within the context of 
physics, the exemplar of such a system is 
a fluid in turbulent motion. If chaos is not 
exactly the study of fluid turbulence, nev
ertheless, the image of turbulent, erratic 
motion serves as a powerful icon to re
mind a physicist of the sorts of problems 
he would ultimately like to comprehend. 
As for all good icons, while a vague 
impression of what one wants to know 
is sensibly clear, a precise delineation 
of many of these quests is not so readily 
available. In a state of ignorance, the 
most poignantly insightful questions are 
not yet ripe for formulation . Of course, 
this comment remains true despite the fact that for technical exigencies, there 
are definite questions that one desperately wants the answers to. 

Fluid turbulence indeed presents us with highly erratic and only partially 
predictable phenomena. Historically, since Laplace say, physical scientists 
have turned to the statistical methods when presented with problems that con
cern the mutual behaviors of innumerably large numbers of pieces. If for no 
other reason, one does so to reduce the number of details that one must mea
sure , specify, compute, whatever. Thus , it is easier to say that 43% of the 
population voted for X than to offer the roster of the behavior of each of mil
lions of voters. Just so, it is easier to specify how many gas molecules there 
are in an easily measurable volume than to write out the list of where and 
how fast each one is. This idea is altogether reasonable if not even the most 
desirable one. However, if one is to work out a theory of these things, so that 
a prediction might be rendered, then as in all matters of statistics, one must 

lMitchell J. Feigenbaum, Toyota Professor, The Rockefeller University, New York. 
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determine a so-called distribution function. This means a theoretical predic
tion of just how often out of uncountably many elections, etc., it is expected 
that each value of this average voter response occurs. For the voter question 
and the density of a gas question, there is just one number to determine. For 
the problem of fluid turbulence, even in this statistical quest, one must ask a 
much richer question: For example, how often do we see eddies of each size 
rotating at such and such a rate? 

For the problem of voters I don't have any serious idea of how to theo
retically determine this requisite distribution; nor with good frequency do the 
polls succeed in measuring it. After all, it might not exist in the sense that 
it rapidly and significantly varies from day to day. However, since physicists 
have long known quite reliably the laws of fluids - that is, the rules that al
low you to deduce what each bit of the fluid will do later if you know what 
they all do now, there might be a way of doing so. Indeed, the main idea of 
the branch of physics called statistical mechanics is rooted in the belief that 
one knows in advance how to do this. The idea is, basically, that each possible 
detailed configuration occurs with equal likelihood. Indeed, the word 'chaos' 
first entered physics in Maxwell's phrase 'state of molecular chaos' in the 
last century to loosely mean this. Statistical mechanics - especially in its 
quantum-mechanical form - works very well indeed, and provides us with 
some of our most wonderful knowledge. However, altogether regrettably, in 
the context of fluid turbulence, it has persisted for the last century to roundly 
fail. It turns out to be a question of truly deducing from the known laws of 
microscopic motion of fluids what this rule of distribution must be, because 
the easy guess of 'everything is as random as possibly' simply doesn't work. 
And when that guess doesn't work, there exists as of today no methodology 
to provide it. Moreover, if in our present state of knowledge we should be 
forced to appraise the situation, then we would guess that an extraordinarily 
complicated distribution is required to account for the phenomena: Should 
it be fractal in nature, then fractal of the most perverse sort. And the worst 
part is that we really don't possess the mathematical power to generally say 
what class of object it might be sought among. Remember, we're not looking 
for a perfectly good quick-fix: If we are serious in seeking understanding of 
the analytical description of Nature, then we demand much more. When the 
subject of chaos and a part of that larger program called strongly nonlinear 
physics shall have been deemed penetrated, we shall know thoroughly how 
to respond to such questions, and readily image intuitively what the answers 
look like. To date, we can now compellingly do so for much simpler problems 
- and have come to possess that capability only within the last decades. 

As I have said earlier, I don't necessarily care about turbulence. Rather, it 
serves as an icon representing a genre of problems. I was trained as a theo
retical high-energy physicist, and grew deeply troubled that no methods save 
for that of successive improvements, so-called perturbation methods, existed. 
Apart from the brilliant effort of Ken Wilson, in his version of the renor
malization group, that circumstance is unchanged. Knowing the microscopic 
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laws of how things move - such schemes are called 'dynamical systems' -
sti11leaves us almost altogether in the dark as to their larger consequences. 
Are the theories no good, or is it that we just can't determine what they con
tain? At the moment it's impossible to say. From high-energy physics to fluid 
physics and astrophysics our inherited ways of thinking mathematically sim
ply fail to serve us. In a way, if perhaps modest, the questions tackled in the 
effort to comprehend what is now called chaos have faced these questions of 
methodology head on. 

Let me now backtrack and discuss nonlinearity. This means first linearity. 
Linearity means that the rule that determines what a piece of a system is 
going to do next is not influenced by what it is doing now. More precisely, 
this is intended in a differential or incremental sense: For a linear spring, the 
increase of its tension is proportional to the increment whereby it is stretched, 
with the ratio of these increments exactly independent of how much it has 
already been stretched. Such a spring can be stretched arbitrarily far, and in 
particular will never snap or break. Accordingly, no real spring is linear. 

The mathematics of linear objects is particularly felicitous. As it happens, 
linear objects enjoy an identical, simple geometry. The simplicity of this ge
ometry always allows a relatively easy mental image to capture the essence of 
a problem, with the technicality, growing with the number of parts, basically 
a detail, until the parts become infinite in number, although often then too, 
precise answers can be readily determined. 

The historical prejudice against nonlinear problems is that no so simple 
nor universal geometry usually exists. Until recently, the general scientific 
perception was that a certain nonlinear equation characterized some particular 
problem. If the specific problem was sufficiently interesting or demanding of 
resolution, then perhaps particular methods could be created for it. But it 
was well understood that the travail would probably be of no avail in other 
contexts. 

Indeed, only one method was well understood and universally learned, 
the perturbation method. If a linear problem was viewed through distorting 
lenses, it qualitatively would do the same thing: If it repeated every five sec
onds it would persist to appear so seen through the lenses. Nevertheless, it 
would now no longer appear to exhibit equal tension increments for the equal 
elongations. After all, the tension is measurably unchanged by distorting 
lenses, whereas all spatial measurements are. That is, the device of distorting 
lenses turns a linear problem into a nonlinear one. The method of perturba
tion basically works only for nonlinear problems that are distorted versions 
of linear ones. And so, this uniquely well-learned method is of no avail in 
matters that aren't merely distortions oflinear ones. 

Chaos is absent in distorted linear problems. Chaos and other such phe
nomena that are qualitatively absent in linear problems are what we call 
strongly nonlinear phenomena. It is this failure to subscribe to the spectrum 
of configurations allowed by distorting a simple geometry that renders these 
problems anywhere from hard in the extreme to impenetrable. How does one 
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ever start to intelligently describe an awkward new geometry? This question 
is for example intended to be loosely akin to the question of how one should 
describe the geometry of the surface of the Earth, not through our abstracted 
perceptual apparatus that allows us to visualize it immersed within a vastly 
larger three-dimensional setting, but rather intrinsically, forbidding this use of 
imagination. The solution of this question, first by Gauss and then extended 
to arbitrary dimensions by Riemann is, as many of you must know, at the 
center of the way of thinking of Einstein's General Theory of Relativity, our 
theory of gravity. What is to be the geometry of the object that describes the 
turbulent fluid's distribution function? Are there intrinsic geometries that de
scribe various chaotic motions, that serve as a unifying way of viewing these 
disparate nonlinear problems, as kindred? I ask the question because I know 
the answer to be affirmative in certain broad circumstances. The moment this 
is accepted, then strongly nonlinear problems appear no longer as each one its 
own case, but rather coordinated and suitable for theorizing upon as their own 
abstract entity. This promotion from the detailed specific to the membership 
in a significant general class is one of the triumphs of the study of chaos in 
the last decade or two. 

An even stronger notion than this generality of shared qualitative geom
etry is the notion of universality, which means no less than that this shared 
geometry is not only one of a qualitative similarity but also one of true quan
titative identicality. After what has been, if you will, a long preamble, the 
fact that strongly nonlinear problems, with surprising frequency, can share a 
quantitatively identical geometry is what I shall pursue for the rest of this dis
cussion, and constitutes what is termed universality in the transition to chaos. 

In a qualitative way of thinking, universality can be seen to be not so sur
prising. There are two arguments to support this. The first part has simply 
to do with nonlinearity. Just as a linear object has a constant coefficient of 
proportionality between, for example, its tension and its expansion, a similar, 
but nonlinear version, has an effective coefficient dependent upon its exten
sion. So, consider two completely different nonlinear systems. By adjusting 
things correctly it is not inconceivable that the effective coefficients of each 
part of each ofthe two systems could be set the same so that then their behav
iors could, at least initially, be identical. That is, by setting some numerical 
constants (properties, so to speak, that specify the environment, mathemati
cally called 'parameters') and the actual behaviors of these two systems, it 
is possible that they can do the identical thing. For a linear problem this is 
ostensibly true: For systems with the same number of parts and mutual con
nections, a freedom to adjust all the parameters allows one to be adjusted to 
be identical (truly) to the other. But, for many pieces, this is many adjust
ments. For a nonlinear system, adjusting a small number of parameters can 
be compensated, in this quest for identical behavior, by an adjustment of the 
momentary positions of its pieces. But then it must be that not all motions 
can be so duplicated between systems. 

Thus, the first part of the argument is that nonlinearity confers a certain 

Foreword 

Universality 



Foreword 

The Monadology of 
Leibniz 

The Scientific Method 

How Universality 
Works 

5 

flexibility upon the adaptability of an object to desirable behavior. Neverthe
less, should the precise adjustment of too many specific and subtle details be 
required in order to achieve a certain universal behavior, then the idea would 
be pedantic at best. 

However, there is a second more potent argument, a paraphrasing of Leib
niz in 'The Monadology' which can render this first argument potent. Let 
us contemplate that the motion we intend to determine to be universal over 
nonlinear systems has arisen by the successive imposition of more and more 
qualitative constraints. Should this growingly large host of impositions prove 
to be generally amenable to such systems (this is the hard and a priori neither 
obvious nor reasonable part of the discussion), then we shall ultimately dis
cover these disparate systems to all be identically constrained by an infinite 
number of qualitative and, if you will, self-consistent, requirements. Now, 
following Leibniz, we ask, 'In how many precise, or quantitative, ways can 
this situation be tenable?' And we respond, following Leibniz, by asserting 
in precisely one possible uniquely determined way. 

This is the best verbalization I know for explaining why such a universal 
behavior is possible. Both mathematics and physical experimentation con
firm its rectitude perfectly. But it is perhaps difficult to have you realize how 
extraordinary this result appeared given the backdrop of physical and mathe
matical thinking in 1976 when it first appeared together with its full concep
tual analysis. As anecdotal evidence, I had been directed to expound these 
results to one of the great mathematicians, who is renowned for his results on 
dynamical systems. I spoke with him at the very end of 1976. I kept trying 
to tell him that there was a complete quantitative universality to these phe
nomena, and he equally often understood me to have duplicated some known 
qualitative results. Finally, he said 'You mean to tell me these are metrical re
sults?' (Metrical is a mathematical code word that means quantitative.) And 
I said 'Yes.' 'Well, then you're wrong!' he asserted, and turned his back on 
me to terminate the conversation. 

Anecdote aside, what is remarkable about all this? First of all, an easy 
piece of methodological insight. As practitioners of a truly analytical sci
ence, physicists were trained to know that qualitative explanations are in
sufficient to base truth upon. Quite to the contrary, it is regarded to be at 
the heart of the 'scientific method' that ever more precise measurements will 
discriminate between rival quantitative theories to ultimately select out one 
as the correct encoding of the qualitative content. (Thus, think of geocen
tric versus heliocentric planetary theories, both qualitatively explaining the 
retrograde motions of the planets.) Here the method is turned on its head: 
Qualitatively similar phenomena, independent of any other ideational input, 
must ineluctably lead to the measurably identical quantitative result. Whence 
the total phenomenological support for this mighty 'scientific method?' 

Second, a new principle of 'economy' immediately emerges. Why put out 
Herculean efforts to calculate the consequences of some particular and highly 
difficult encoding of physical laws, when anything else - however trivial -
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possessing the same qualitative properties will yield exactly the same predic
tions and results? And this is all the more satisfying because one doesn't even 
know the exact equations that describe various of these phenomena, fluid phe
nomena in particular. And that is because these phenomena have nothing to 
do, whatsoever, with the detailed, particular, microscopic laws that happen to 
be at play. This aspect, that is, of substituting easy problems for hard ones 
with no penalty, has been, as a way of thinking and performing research, the 
prominent fruit of the recognition of universality. When can it work? Well, in 
complicated interactions of scores of chemical species, in laser phenomena, 
in solid state phenomena, in, at least partially, biological rhythmic phenomena 
such as apneas and arhythmias, in fluids and, of course, in mathematics. 

But now, as I move towards the end of this claim for virtue, let me discuss 
'chaos' a bit more per se and revisit my opening 'preamble.' Much of chaos 
as a science is connected with the notion of 'sensitive dependence on initial 
conditions.' Technically, scientists term as 'chaotic' those nonrandom com
plicated motions that exhibit a very rapid growth of errors that, despite perfect 
determinism, inhibits any pragmatic ability to render accurate long-term pre
diction. While nomenclaturally speaking this is perforce true, I personally am 
not very intrigued or concerned with this facet of my subject. I've never told 
you what the 'transition to chaos' means, but you can readily guess from the 
verbiage that it's something that starts off not being chaotic, ends up being so, 
and hence somehow passes from one to the next. The most important fact is 
that there is a discernibly precise 'moment', with a corresponding behavior, 
which is neither chaotic nor nonchaotic, at which this transition occurs. Yes, 
errors do grow, but only in a marginally predictable, rather than in an unpre
dictable, fashion. In this state of marginal predictability inheres embryoni
cally all the seeds of the chaotic behavior to come. That is, this transitional 
point, the legitimate child of universality, without full-fledged sensitive de
pendence upon initial conditions, knows fully how to dictate to its progeny in 
tum how this latter phenomenon must unfold. For a certain range of possible 
behaviors of strongly nonlinear systems - specifically, this range surround
ing the transition to chaos - the information obtained just at the transition 
point fully organizes the spectrum of behaviors that these chaotic systems can 
exhibit. 

Now what is it that turns out to be universal? The answer, mostly, is 
a precise quantitative determination of the intrinsic geometry of the space 
upon which this marginal chaotic motion lives together with the full knowl
edge of how in the course of time this space is explored. Indeed, it was 
from the analysis of universality at the transition to chaos that we have come 
to recognize the precise mathematical object that fully furnishes the intrinsic 
geometry of these sort of spaces. This object, a so-called scaling function, 
together with the mathematically precise delineation of universality, consti
tutes one of the major results of the study of chaos. Granted the broad range 
of objects that can be termed fractal, these geometries are fractal. But not 
the heuristic sort of 'dragons', 'carpets', 'snowflakes', etc. Rather, these are 
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structures which are elaborated upon at smaller and smaller scales differently 
at each point of the object, and so are infinitely more complicated than the 
above heuristic objects. There is, in more than just a way of speaking, a ge
ometry of these dynamically created objects, and that geometry requires a 
scaling function to fully elucidate it. Many of you are aware of the existence 
of a certain object called the 'Mandelbrot set'. Virtually none of you, though, 
even having simulated it on your own computers, are aware that its ubiqui
tous existence in those sufficiently smooth contexts in which it appears, is the 
consequence of universality at the transition of chaos. Every one of its details 
is implicit in those embryonic seeds I have mentioned before. 

Thus, the most elementary consequence of this deep universal geome
try is that, in gross organization we notice a set of discs - the largest the 
main cardioid - one abutting upon the next and of rapidly diminishing radii. 
How rapidly do they diminish in size? In fact, each one is 8 times smaller 
that its predecessor, with 8, a universal constant, approximately equal to 
4.6692016 ... , the best known of the constants that characterize universal
ity at the transition of chaos. 

I have now come around full circle to my introductory comments. We 
have, in the last decade, succeeded in coming to know many of the correct 
ideas and their mathematical language in regard to the question, 'What is the 
nature of the objects upon which we see our statistical distributions?' 'Di
mension' is a mathematical word possessing a quite broad range of technical 
connotations. Thus, the theory of universality is erected in a very low (that is, 
one- or two-) dimensional setting. However the information discussed is of 
an infinite-dimensional character. The physical phenomena exhibiting these 
behaviors can appear, for example, in the physical three-dimensional space 
of human experience, with the number of interacting, cooperating pieces that 
comprise the system investigated - also a statement of its dimension - ei
ther merely a few or an infinitude. Nevertheless, our understanding to date 
is of what must be admitted to be a relatively simple set of phenomena -
relatively simple in comparison to the swirling and shattering complexity of 
fluid motions at the foot of a waterfall, phenomena that loom large and deeply 
impress upon us how much lies undiscovered before us. 


