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                 I.  CONSERVATION OF ENERGY: THE FIRST LAW 
 
The First Law of Thermodynamics is simply a statement of the law of conservation of 
energy, which follows from the basic principles of mechanics and electrodynamics.  
The law applies to closed systems, i.e. for a given amount of matter, and is usually 
expressed in the form of an energy balance equation: 
   
 dU = đq + đw 
  
which pertains to an arbitrary small change (indicated by the symbols d and đ) in the state 
of the system. The system may be a gas or liquid contained in a vessel (cylinder) which is 
closed at one end by a movable piston. The meanings of the symbols are as follows:  
dU represents a small change in the internal energy U, which is the sum of kinetic and 
potential energies due to molecular interactions and should, strictly speaking, also include 
the effects of external fields, like the potential energy in the Earth’s gravitational field. 
This latter contribution is usually neglected in applications to Chemistry, when we are 
dealing with relatively small systems. The SI unit for energy is the Joule (J, 1 J =              
1 Newton meter = 1 Nm). Although the quantity U by itself has no absolute significance, 
due to the arbitrary choice of the zero level of energy for a given amount of matter, 
energy differences do have an absolute, unambiguous meaning.  
đq is a small amount of heat supplied to the system, and may thus be positive or negative. 
Heat is the flow of internal energy down a temperature gradient.  
đw denotes work performed on the system. Unlike the heat term, the work term can 
assume many different forms, depending on the type of action to which the system is 
subjected. Here, we will be mainly concerned with the work done by applying an external 
pressure pext (unit Nm-2 = Pa) which causes a change in volume dV. The amount of work 
done on the system is then đw dVpext−= , where the – sign is added because dV < 0 for 
compression, when đw should be positive.  
Depending on the circumstances, other work terms must be added. For example, if the 
system contains an interface between two bulk phases (e.g. liquid and vapour), or if 
bubbles or droplets are present, a change in surface area, dA, gives rise to a change in U 
equal to γdA where γ is the surface tension.  
Electrochemistry provides an example of a system, the galvanic cell, which can exchange 
electrical work with its surroundings. The corresponding work term in the energy balance 
is then –EdQ where E is the cell EMF and dQ is a small quantity of charge that is passed 
through the cell and external circuit.  
In this course we will only be concerned with “pV-work”, however, in which case the 
First Law reads as  
  
 dU = đq – pextdV  
 
dV will be > 0 or < 0, depending on whether the internal pressure, pint, of the system is 
higher or lower than pext, respectively. In particular, if pext = pint ≡ p, the piston will not 
move spontaneously but may be displaced reversibly. A reversible process is one that can 
be retraced completely without effecting any permanent change in the surroundings.  
This concept will be further elaborated as we come to discuss the Second Law (Ch. 2).  
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The quantities U, p, V introduced above are examples of so-called “functions of state” or 
“state variables”. Another very important one is the absolute temperature T (in K). These 
variables generally belong to either one of two categories: (1) Extensive functions of 
state, those that are proportional to the size or quantity (e.g. the number of moles, n) of a 
system or substance , for example U and V; and (2) Intensive functions of state like T and 
p, which are independent of system size. Also, the molar volume nVV /=  and molar 
energy nUU /=  are to be regarded as intensive variables. 
Furthermore, for any substance that is uniform in composition and physical properties, it 
has been established empirically that the macroscopic state of the system is uniquely 
determined by specifying two intensive variables, e.g. T and p, so that we can write 
  
 ),( pTUnU =  and ),( pTVnV =  
 
The expression for V  as a function of T and p for a pure substance has special 
significance: it is called the equation of state. Examples include the Boyle-Gay Lussac 
equation of state for an ideal gas (approximated by all real gases for high enough T and 
sufficiently low p): 
 
 pRTVnV // ==  
 
and the more sophisticated Van der Waals equation: 
 

 RTbV
V
ap =−





 + )(2  

 
which includes the effects of finite size of the molecules (through b) and attractive 
(dispersion) forces (via 2/Va ) and correctly predicts the liquid/vapour phase transition. 
From the ideal gas model it furthermore follows that U  depends exclusively on T (i.e. it 
is independent of p): 
 
 )(TUU =  (ideal gas) 
 
An equation of state may be conveniently represented in a pV-diagram where, for each T, 
the p-V relationship describes a curve, called an isotherm (for a given quantity n of the 
substance). In addition, the pV-diagram can be used to represent a reversible change of a 
system. Each point (V,p) corresponds to definite values of both T and U. For a finite 
change of state, going from say A to B along the curve indicated in the figure, the net 
amount of pV-work is equal to the area under the curve:  
 

 ∫=
B

A
w đ revw pdVpdV A

B

B

A

V

V

V

V ∫∫ +=−=  

 
Clearly, the value of w depends on the path leading from A to B, i.e. w is not a function of 
state! This is why we used the symbol đw, and not dw, in the energy balance equation.  
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In mathematical jargon, a quantity such as dU is known as a complete or exact 
differential, expressing the fact that any change in U, in this case AB UUU −=∆ , 
depends only on the initial and final states, not on the path connecting them or upon 
whether the process is reversible or not.  
For the above process the First Law can be stated as  
 
 wqU +=∆  
 
from which it is evident that q, like w, is a path-dependent quantity (hence the notation đq 
used earlier).  
It frequently occurs that a process (e.g. a chemical reaction) takes place at constant 
pressure p (when the piston is free to move). In that case, Vpw ∆−= and VpqU ∆−=∆  
or, equivalently, 
 
 qH p =∆ )(  
 
defining the enthalpy (or “heat content”) H as 
 
 pVUH +=  
 
(N.B.: A thermodynamic quantity appearing as a subscript, like p in the above formula, 
always indicates that it is held constant for the change under consideration).  
From its definition it is obvious that H is an extensive function of state.  
In many applications it is desirable to have a way of describing the effect of heat added 
reversibly to a (chemically inert) system upon its temperature. A useful quantity in this 
regard is the heat capacity,C, defined as  
 
 C = đqrev/dT 

A

p 

V 

T1 

dV 

T2 

B 

T3 

VB VA

p 
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(molar heat capacity, C , when referred to 1 mol). 
Clearly, this definition is ambiguous since đqrev depends on the conditions under which it 
is supplied. The most common cases are V = constant ( 0=∴dV ) and p = constant. 
The first gives rise to the isochoric heat capacity, CV : 
  

 
V

V
V T

U
dT
dq

C 






∂
∂

==  

 
(the symbol ∂  is used here because U depends on more than one variable, and it is 
differentiated with respect to one of these, T, while the other, V, is kept fixed). The 
second condition leads to the isobaric heat capacity, Cp: 
 

 
pp

p
p T

H
dT

pdVdU
dT
dq

C 






∂
∂

=





 +

==  

 
For an ideal gas, )(TUU =  and RTVp = , hence RTTUTH += )()(  and therefore  
 

 RCR
dT
Ud

dT
HdC Vp +=+==  

 
In general, however, VC and pC  will be dependent on both T and p.  
Let us now consider a special and very important class of processes, viz., those where the 
initial and final states are identical, so-called cyclic processes. A reversible cyclic process 
for a pure substance may be represented in a pV-diagram by a closed loop, C. Clearly,  

∫ ==∆
C
dUU 0  for such a process, hence revrev wq −= , where wrev = area enclosed by C;    

wrev > 0 if C is traversed in counter-clockwise sense (the cross-hatched area does not 
contribute since it is swept out twice in opposite directions).  
  
 
 
 
 
 
 
 
 
 
 
 
 

p 

V 

C 

qrev 

wrev 
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Of course, the result ∫ =
C
dX 0 , for any function of state X, like U or H, is true for any 

cyclic process, no matter how complex or practically unfeasible. In particular, during 
certain stages of the process chemical reactions may proceed to a given extent. The 
mixture before reaction will be denoted by R, after reaction by P. Pressure and 
temperature throughout the reaction are maintained at p and T, respectively. The heat of 
reaction is ),(),( pTHpTq rxnrxn ∆=  (since p = constant). At a slightly higher temperature 
T + dT, but at the same p, it is equal to ),(),( pdTTHpdTTq rxnrxn +∆=+ .  
Next, consider the isobaric thermodynamic cycle shown below.  
 
 
 
 
 
 
 
 
 
 
The isobaric heat capacities of the mixture before and after reaction are R

pC  and P
pC , 

respectively. Then, since ∫ = 0)( pdH  (which is basically one statement of Hess’ law),  
 

0),(),( =−+∆++∆− dTCpdTTHdTCpTH P
prxn

R
prxn  

 
This rearranges to 
 

 p
R
p

P
p

p

rxn CCC
T

H
∆≡−=








∂
∆∂

 

 
This expression relates the temperature coefficient of the heat of reaction to the 
difference between the heat capacities of reactants and products. It is known as 
Kirchhoff’s equation (N.B.: The equation can be obtained more quickly if we take the 
temperature derivative of RP

rxn HHH −=∆ and use the formula for Cp).  
 
 
     II.  SPONTANEOUS PROCESSES: THE SECOND LAW AND ENTROPY. 
 
II.1 Entropy. 
 
From our everyday experience we know that most, if not all, processes in Nature are 
spontaneous and irreversible, e.g. chemical reactions proceed in one direction, heat only 
flows from high to low temperature but never in the opposite direction, even though this 
would not violate the First Law. Another example is the so-called Joule expansion, where 

R(T+dT) 

 p = constant 

P(T+dT) 

R(T) P(T) 

)( dTTH rxn +∆

)(TH rxn∆−

dTC R
p  dTC P

p−
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a gas is initially confined to one of two bulbs that are connected by means of a capillary 
equipped with a valve. The other bulb is evacuated. When the valve is opened, the gas  
 
 
 
 
 
 
 
 
 
will distribute itself evenly between the bulbs. No external work is done in the process 
and if the bulbs are thermally insulated then U will be constant. If furthermore the gas 
behaves ideally, T will remain constant as well, since U = U(T) in that case. The reverse 
process will never happen spontaneously, however. Phenomena like these show a 
universal trend toward increased randomisation, or dissipation, of energy. It is the 
purpose of the Second Law of Thermodynamics to express this tendency in a unifying, 
quantitative manner.  
Many different statements of the Second Law have been put forward, all of them 
essentially equivalent. For example, Lord Kelvin postulated that  
 
“No process is possible whose sole result is the conversion of heat (from a single source) 
to an equivalent amount of useful work” 
 
Work can of course always be converted to heat, for example in the form of frictional 
losses, but Kelvin’s statement tells us that it is impossible to retrieve this heat and convert 
it back entirely to work. In the following we shall see that this simple fact of experience 
captures the essence of the unidirectional character of all spontaneous processes that 
occur in Nature.  
To understand the consequences of the Second Law we shall investigate in detail one 
particular cyclic process known as the Carnot cycle. A Carnot cycle consists of four 
reversible steps: two isothermal and two adiabatic strokes carried out by a simple heat 
engine.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T1 

T2 

ideal  gas 
(n  moles) 

p 

V 

T2 

T1 
q=0

q=0

A

B

C 

D 

q1

q2

pB

pC
pA

pD

VB  VA VC VD
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It requires therefore two heat reservoirs (thermostats of “infinite” heat capacity) of 
temperatures T1 and T2, with T1 > T2, and a cylinder containing the working substance 
which will be assumed to be n moles of a perfect gas.  
The process can be represented in a pV-diagram, as shown. Suppose the cycle starts at 
point A (temperature = T2), where the cylinder is not connected to either T1 or T2. The gas 
is then slowly and adiabatically compressed until its temperature reaches T1, at which 
point it is brought in thermal contact with reservoir T1. Then follows a reversible 
isothermal expansion along BC, during which heat q1 is absorbed from the reservoir, and 
an adiabatic expansion along CD. At that point, contact is made with reservoir T2 and 
during the subsequent isothermal compression back to point A, heat –q2 is lost by the gas 
and absorbed by the reservoir. According to the First Law, the amount of pV work, w, 
performed by the gas on the surroundings (which could be used to lift a weight, for 
example) must be equal to q1 + q2. Of course, this cycle could also be reversed in which 
case w, q1 and q2 would get opposite signs (refrigeration cycle!).  
Remember that along an isotherm the internal energy of a perfect gas is constant so that 
any heat absorbed (evolved) should exactly match the pV work done (absorbed). Thus, 
 

 







=== ∫∫

B

CV

V

V

V V
V

nRT
V
dVnRTpdVq C

B

C

B

ln111   

 
and similarly 
 

 







−=

A

D

V
V

nRTq ln22      (< 0) 

 
To find the relationship between AD VV /  and BC VV /  we need to digress a little on the 
mathematical properties of the adiabatics in the pV-diagram.  
To this end, consider an infinitesimal adiabatic compression or expansion of the gas. 
Since đq = 0, dU = –pdV. At the same time, this change brings about a change in 
temperature, dT, which is related to dU by a formula that was derived earlier: 

dTCdU V= .  
At each point in the pV-diagram, pV = nRT, so that small, simultaneous changes in p, V 
and T  will be interrelated by the equation 
 

nRdTVdppdV =+  
 
Substituting VV CpdVCdUdT // −==  gives 
 

            pdV
C
nRVdppdV

V

−=+   

 
or, equivalently,  
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 pdVpdV
C
C

pdV
C

nRC
pdV

C
nRVdp

V

p

V

V

V

γ−≡−=






 +
−=








+−= 1 , 

 
defining Vp CC /=γ . 
Comparing the first and last members of the above equation gives, after dividing both 
sides by pV,  

V
dV

p
dp

γ−= , so that γ−= Vdpd lnln , or 0)ln( =γpVd . 

Thus, along a reversible adiabatic, 
 
 =γpV  constant 
 
Since γ is obviously > 1, adiabatics are always “steeper” than isotherms, for which =pV  
constant. The equation for an adiabatic in the case of a perfect gas can now be used to 
write  
 
 γγ

BBAA VpVp =   and  γγ
CCDD VpVp =  

 
Dividing the first equation by the second yields 
 

 
γγ









=









C

B

C

B

D

A

D

A

V
V

p
p

V
V

p
p

 

 
Note that A and D lie on the same isotherm, and so do B and C, so that ADDA VVpp // =  
and BCCB VVpp // = . Hence 
 

 
11 −−









=








γγ

C

B

D

A

V
V

V
V

 

 
or BCAD VVVV // = .  
Returning to the expressions for q1 and q2 we see that the logarithmic factors are in fact 
equal, and we conclude that 
 

 
2

2

1

1

T
q

T
q

−=  

 
for perfect gases. This result is known as the Carnot-Clausius theorem.  
Now consider a body, no longer an ideal gas, undergoing an arbitrary cyclic process 
which is not necessarily reversible. The body is a closed system that may possess any 
degree of complexity, but will henceforth be regarded as a “black box” to keep the 
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argument as general as possible. It is not always feasible to represent this process in a pV-
diagram, even if the cycle is reversible, as different forms of work may be involved.  
Imagine that the heat absorbed or ejected during the various stages of the cycle is 
supplied or drained off by an auxiliary Carnot engine containing an ideal gas as working 
substance. This engine operates reversibly between the body and a large heat reservoir at 
temperature T0 and carries out a very large number of infinitesimal Carnot cycles until the 
main cycle C is completed. One of these infinitesimal cycles is depicted symbolically in 
the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each such cycle, đq’ = T0đq/T if T is the momentary, local temperature at which heat 
đq is absorbed by the body (which is not necessarily uniform in temperature). Upon 
completion of the main cycle C the total amount of heat dispensed by the reservoir equals  
 

 ∫∫ =
CC T

dqTdq 0'  

  
According to the First Law, since both the body and the Carnot engine will have returned 
to their respective original states after completion of the cycle C, the net amount of work 
performed in the main cycle and the Carnot cycles together should be equal to   
 
 ∫ ∫ ∫=−+=

C C C
dqdqdqdqw ')'(  

 
that is, w equals the net amount of heat absorbed from the reservoir.  
But then the Second Law demands that ∫C dq'  cannot be positive, and hence  

 

 0≤∫C T
dq  for any cyclic process 

 

X 

x 

C 

T 

T0 

đq

đq’ 
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In particular, if C is a reversible cycle, driving the process backwards would lead to the 
additional requirement ∫ ≥

C
Tdq 0/ . Both conditions can only be met simultaneously if  

 

 0=∫C
rev

T
dq

 for any reversible cycle 

 
Note that this implies that the Carnot-Clausius theorem is valid for all Carnot cycles, 
irrespective of the nature of the working substance.  
The above property is the hallmark of a function of state with exact differential  
 

 
T

dq
dS rev=  

 
This new function of state, S, is called the entropy of the system. It is an extensive 
quantity, expressed in J K-1.  
The difference in the entropy of a system between two states A and B can thus be 
calculated by considering any reversible path connecting them and evaluating the integral 
 

 ∫ ∫==−
B

A

B

A

rev
AB T

dq
dSSS  

 
An important corollary is the following: 
For a reversible change in a closed system the First Law can now be reformulated as 
 
 dU = TdS + đwrev   
 
If only pV work can be exchanged with the surroundings, this becomes 
 
 dU = TdS – pdV  
 
The heat capacities CV and Cp can likewise be written in “entropy form”, as follows: 
 

 
V

V T
STC 






∂
∂

=  and  
p

p T
STC 






∂
∂

=  

  
For an irreversible cycle, on the other hand, it is evidently true that 
 

 ∫C T
dq  < 0 

 
Assume that some cycle C consists of an irreversible process leading from A to B (see 
figure, dashed line) followed by a reversible process leading from B back to A. Then 
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 ∫∫∫ +=
A

B

revB

A

irrev

C T
dq

T
dq

T
dq  < 0 

 
which is equivalent to 
 

 ∫=−
B

A

rev
AB T

dq
SS  > ∫

B

A

irrev

T
dq

 

 
If A and B are infinitesimally close, this result can be formulated as  
 

 dS  > 
T

dqirrev  

 
Summarising, we have shown that, in general,  
 

 
T
dqdS ≥   

 
where the equality only holds for a small reversible change and the inequality for an 
irreversible change of state in a material body (R. Clausius, 1865).  
In particular, for an adiabatic change (đq = 0), 0≥dS . 
This last result always applies when we are dealing with a (closed) system in combination 
with its surroundings, with which it can exchange heat and work. This constitutes an 
isolated system, with constant total energy Ut = U + Usurr and total volume Vt = V + Vsurr. 
The entire system is thought of as being enclosed by an insulating rigid wall. A change in 
the total entropy St = S + Ssurr then always has to obey the inequality 
 
 ( ) 0, ≥∆

tt VUtS  
 
The Second Law may now be stated as follows: 
 

x 

X

A 

B 

C 
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During a spontaneous process, the total entropy of an isolated system increases. It 
remains constant for reversible changes of state.  
 
In fact, any isolated system will spontaneously evolve in such a way that its entropy 
continuously increases, until it reaches the maximum possible value compatible with the 
given constraints (Ut , Vt constant). In this final state of maximum entropy the system is 
in thermodynamic equilibrium and no further observable changes will occur.  
A process is reversible if, and only if, it consists of a continuous sequence of equilibrium 
states during which the system plus its surroundings maintain a constant entropy value.  
 
 
 
 
 
 
 
 
 
 
 
 
On a philosophical note, the above statement can be understood to imply that entropy 
gives direction to time, in the sense that past states of the Universe (an isolated system!) 
are distinguished from later ones by their lower entropy. But, paradoxically perhaps, time 
itself does not figure explicitly in thermodynamic relationships! 
Kelvin’s formulation of the Second Law indicates that the irreversibility essentially 
comes about as a result of work being dissipated, or wasted, as heat. For this reason the 
Second Law is sometimes paraphrased as the “law of degradation of energy”.  
Since S is a state variable, it is always possible, in principle at least, to calculate the net 
entropy change accompanying an irreversible process by constructing an alternative route 
between initial and final states. The first part of this alternative process is entirely 
reversible (with 0=∆ tS ), and is followed by a completely irreversible step in which 
(some of the) work produced in the first step is dissipated directly as heat at some 
temperature T, thus TwS disst /=∆ . This procedure will be illustrated by explicitly 
calculating the entropy increase in two irreversible changes that have been mentioned 
previously, viz. the Joule expansion and spontaneous heat transfer. 
 
(i) Joule expansion. 
 
n moles of a supposedly ideal gas are confined to one compartment (volume Vi) of a rigid 
vessel (volume Vf) by a partition. The other compartment is empty. After removing the 
partition, the gas expands spontaneously, uniformly filling the vessel. T remains constant, 
without the need for heat exchange with the surroundings. To calculate the accompanying 
increase in St (“universal entropy”), imagine the partition being replaced by a piston 
while T is maintained through a thermal contact with an auxiliary heat reservoir. The gas 
is thus allowed to expand reversibly and isothermally.  

surroundings 

closed system

U,V 

Usurr ,Vsurr 

đq 

đw 
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Since U remains constant (because T does), dU = 0 and đqrev = –đwrev = pdV. Overall, 
 

rev
i

fV

Vrev w
V
V

nRTpdVq f

i

−=







== ∫ ln  

 
The same amount of heat was lost by the reservoir at the same T, so in this first step the 

total entropy change is zero: 0=−=∆+∆
T

q
T

q
SS revrev

reservoir ,as for any reversible process 

in an isolated system (gas + reservoir + the object on which the work is done, e.g. a 
weight that is lifted). Now the gas has reached the same final state as in the spontaneous 
expansion process, but the heat reservoir has lost a quantity of heat qrev while an 
equivalent amount of work has been done (lifting a weight). To reach the same final state 
as in the spontaneous process, the energy of the weight must be dissipated as heat and 
delivered to the reservoir, generating an amount of entropy equal to 
          









==∆

i

fdiss
t V

V
nR

T
w

S ln  > 0 

 
This is of course also equal to the entropy change S∆  of the gas itself, since the 
surroundings were not involved in the spontaneous expansion. 
 
(ii) Heat transfer  
 
Two bodies with different temperatures T1 and T2  (T1 > T2) are temporarily brought in 
contact as a result of which heat q is transferred between them, presumably flowing from 
T1 to T2. The resulting increase in universal entropy, tS∆ , can be calculated by using an 
auxiliary, reversibly operating, Carnot engine which extracts the heat q from “heat 

reservoir” T1, and delivers heat q
T
T

q
1

2'=  at “heat reservoir” T2. During this process, no 

change in entropy occurs. After completion of the cycle, the working substance of the  
 

đwrev 

đqrev 

T 
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Carnot engine returns to its original state and need not be considered further.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The difference 







−=−

1

21'
T
T

qqq  has been converted into work, e.g. a weight has been 

raised, and to get to the final state of the spontaneous heat flow process this energy 
should be dissipated at T2, producing an amount of entropy  
 

           
1222

'
T
q

T
q

T
qq

T
w

S diss
t −=

−
==∆  

    
which is > 0 only if T2 < T1. This result confirms the well-known fact that heat will only 
flow spontaneously from a hotter to a colder body.                                         
Alternatively, one could write tS∆  as )( 2121 SSSS +∆=∆+∆ where 11 / TqS −=∆  
represents the entropy loss of reservoir T1 and 22 / TqS +=∆  the entropy gain of reservoir 
T2, which reconfirms the important fact that S is an extensive, that is, additive, quantity. 
Apparently, this remains true even if T is not uniform.  
 
At this point, it may be instructive to mention an alternative approach to the entropy 
concept, which uses the fact that matter is actually composed of atoms and molecules (It 
should be stressed that throughout the preceding discussion there never was any need for 
this assumption!). This formulation is due to L. Boltzmann, who proposed that         
 
           WkS ln=      
                                                                                                            
where  k = R/L (L = Avogadro’s constant) is called the Boltzmann constant, and W is the 
number of microstates (“complexions”) that are compatible with a given macrostate. 
This formula provides the basis for the development of Statistical Thermodynamics. The 
appearance of a logarithm can be justified by considering a combination of two systems, 
with numbers of complexions W1 and W2, say. The total number of microscopic 
realisations is then W = W1W2, so that the total entropy equals 
 

T1 

T2 

T1 

T2

q 

q 

q’ 

wrev = q - q’ 
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           212121 lnln)ln(ln SSWkWkWWkWkS +=+===       
 
Thus it is seen that the logarithm ensures the additivity property of S, and it is in fact the 
only way in which this can be realised. Increase of entropy in a spontaneous process is 
now interpreted in a statistical sense as the system striving to a state with maximum W, 
or, loosely speaking, maximum “disorder”. It should be emphasized that this is a “global” 
property of entropy: Locally, entropy may actually decrease, but this decrease must 
always be offset by a (larger) increase in the entropy of the surroundings. This is exactly 
what happens in living organisms, which possess a high degree of order, or “self-
organisation”, which feeds on the entropy production in the environment via the intake of 
low-entropy nutrients and excretion of high-entropy waste products (including heat). 
 
II.2 Further consequences of the Second Law. Free energy. 
 
As stated in the previous section, a system and its surroundings (“atmosphere”) combine 
to form an isolated system for which always 0≥tdS . Yet, it may be possible to 
reformulate the Second Law in terms of properties of the system alone in a manner that 
depends on how the system (which will be assumed closed throughout the following 
discussion) interacts with its surroundings. Several possibilities exist, and the two most 
important cases will be dealt with next.  
 
 
 
 
 
 
 
 
 
 
 
 
 
A very common situation is that in which the system is contained in a vessel equipped 
with a freely movable piston (or something to the same effect) and diathermal walls, 
allowing mechanical and thermal equilibrium to be established with its surroundings, i.e. 
p and T are uniform. System and surroundings can exchange heat and pV work only, 
subject to the constraints  
 
           dUdU surr −= and   dVdVsurr −=  
 
If no irreversibility occurs in the surroundings we may write for an arbitrary small change 
of state 
 
           surrsurrsurr pdVTdSdU −=  

T,V,U 

p

p

T,Vsurr,Usurr 

đw 

đq
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and 
 
           0≥+= surrt dSdSdS  
 
which, after substitution for surrdS , can also be written as  
 

           0≥
−+

−=
+

−=
T

TdSpdVdU
T

pdVdUdSdSt  

 
Since in the present case T and p are constants the inequality can be reorganised to 
 

        0
)()( ,, ≥−=

−+
−=

T
dG

T
TSpVUd

dS pTpT
t  

 
hence 
 
           0)( , ≤pTdG  
 
where we have defined the Gibbs (free) energy of the system as  
 
           TSHTSpVUG −=−+=  
 
Thus, the Second Law implies that during a spontaneous isobaric/isothermal change in a 
closed system the Gibbs energy always decreases. This continues until G reaches a 
minimum as the system settles in its equilibrium state. This is represented schematically 
in the figure (α  could be any parameter characterising the state of the system, for 
example a measure for the progress of a chemical reaction; see Ch. VI).  
 
 
 
 
 
 
 
 
 
 
 
 
As a consequence, 
 
          0)( , =pTGδ  
 

ααeq 

G 

Gmin 
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for arbitrary infinitesimal excursions from the state of minimum G, as symbolised by 
δ (this symbol is used rather than d to indicate that these are virtual, as opposed to actual 
changes). Elaboration of this equation then leads to the equilibrium conditions.   
Examples will be given in subsequent chapters.  
 
A second case of practical interest is that where the system is contained in a rigid vessel 
(constant V, e.g. a bomb calorimeter) and is only in thermal contact with the 
surroundings, so T is uniform. Following a similar argument as in the previous paragraph, 
we may now write  
 
           dUdU surr −=  ,   0== surrdVdV  
 
hence surrsurr TdSdU =  and 
 

           0≥
−

−=−=+=
T

TdSdU
T

dUdSdSdSdS surrt   if  T and V are constant 

 
Equivalently,  
 
           0)( , ≤− VTTSUd  
 
or 
 
           0)( , ≤VTdA  
 
defining the Helmholtz (free) energy of the system as  
 
           TSUA −=  
 
Under the present conditions, a system undergoing a spontaneous change strives to 
minimise its Helmholtz energy until, in equilibrium,  
 
           0)( , =VTAδ  
 
where δ has the same meaning as before. The equilibrium conditions that follow from 
this equation are identical to the ones that follow from 0)( , =pTGδ . Note that both G and 
A are extensive functions of state, i.e. the total G (or A) of a system equals the sum of the 
G’s (or A’s) of its parts if T and p (or just T in the case of A) are uniform.  
In particular, for n moles of a homogeneous substance we can write ),( pTGnG =  and 

),( pTAnA = , or ),( VTGG =  , ),( VTAA = , etc.  
 
N.B.: The above inequalities could also have been derived more directly via substitution 
of Clausius’ inequality for the system into the First Law expression  
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           dU = đq – pdV pdVTdS −≤  
 
This inequality immediately gives rise to 0)( , ≤pTdG  if T and p are constant, and 

0)( , ≤VTdA  at constant T and V. Admittedly, this is a much more economical method 
than the somewhat circuitous argument presented above. However, the latter is more 
instructive as it brings out the role of the surroundings explicitly.  
  
Because of their tendency to attain a minimum, functions like G and A are sometimes 
called thermodynamic potentials, by analogy with potentials in the theory of mechanics. 
The condition of minimum free energy bears out the fact that a thermodynamic 
equilibrium is always the result of a compromise between two opposing tendencies. 
Firstly, the system tends to settle in a state of lowest (potential) energy, while on the other 
hand the randomising effect of the thermal motion of the molecules at finite T leads to 
occupation of higher energy states and increased entropy. This is the reason why S 
appears with a “weight factor” T.  
 
II.3 Miscellaneous results. Mathematical aspects of Thermodynamics. 
 
For an arbitrary reversible change in the state of a closed system the accompanying 
change in Gibbs energy may be written as  
 
           VdppdVSdTTdSdUpVTSUddG ++−−=+−= )(  
 
Substituting pdVTdSdU −=  this simplifies to the following important differential 
relation 
 
           VdpSdTdG +−=  
 
Analogously, the corresponding change in A is  
 
           SdTTdSdUTSUddA −−=−= )(  
 
or  
 
           pdVSdTdA −−=  
 
The expressions for dU, dG and dA share the same mathematical form which is that of 
the differential of a function f(x,y) of two independent variables, 
 

           dy
y
fdx

x
fdf

xy








∂
∂

+






∂
∂

=  

 
Each partial derivative is itself a function of x and y.  
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If U is regarded as a function of S and V, its partial derivatives can be identified from the 
above formula for dU as  
 

           T
S
U

V
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Likewise we find 
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Of course, one can always construct higher order derivatives like yxf )/( 22 ∂∂ , 

xyf )/( 22 ∂∂  or mixed derivatives like 
yx x

f
yxy

f







∂
∂









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∂

≡
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∂ 2

 and 
xy y

f
xyx

f








∂
∂








∂
∂

≡
∂∂

∂ 2

. 

An important theorem of calculus states that the order of differentiation in mixed 
derivatives has no effect on the outcome, thus  
 

           
xy
f

yx
f

∂∂
∂

=
∂∂

∂ 22

 

 
When applied to the function U(S,V), for example, this means that  
 

           
SV

U
VS

U
∂∂

∂
=

∂∂
∂ 22

 

 
or, using the results for SVU )/( ∂∂  and VSU )/( ∂∂  given above,  
 

           
SV V

T
S
p




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This procedure is called “cross-differentiation” and the type of thermodynamic 
relationship that is obtained in this manner is known as a Maxwell relation. The validity 
of such formulae ultimately rests on the fact that S is a state variable.  
Similarly, application of this theorem to dG and dA produces two more Maxwell 
relations, viz.  
 

           
pT T

V
p
S
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respectively, where the right-hand sides can be evaluated from a knowledge of the 
equation of state.  
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For example, for one mol of an ideal gas S  can be regarded as a function of p and T, 
with differential  
 

           TdCpRddT
T

C
dp

T
VdT

T
Sdp

p
SSd p

p

ppT

lnln +−=+
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∂
∂

=  

 
where, in the second equality, we have used a Maxwell relation and the definition of pC .  

In the last step, the fact was used that, for an ideal gas, pRTV p /)/( =∂∂ .  
Integrating this differential expression leads to the following functional form of the molar 
entropy of a perfect gas in terms of p and T: 
 
           TCpRSTpS p lnln),( 0 +−=  
 
with 0S  an integration constant.  
An important corollary to the above equations for the partial derivatives of G is obtained 
by differentiating the function G/T with respect to T while keeping p constant: 
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∴      
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∂
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−=
)/(2  

 
which tells us that H can be obtained from a knowledge of the function ),( pTGnG =  
(dividing the equation on both sides by the constant n gives the molar enthalpy H ). 
This expression is known as the Gibbs-Helmholtz equation.  
It may be observed from the foregoing that G can be used, in principle, to “generate” all 
other state functions such as S, V, H, pVHU −= , pVGA −= , CV and Cp by simple 
differentiation with respect to T or p. 
 
 
                 III.  PHASE EQUILIBRIA OF A PURE SUBSTANCE. 
 
The system under consideration is a fixed amount (n moles) of a single chemical 
component (e.g. water), distributed between two phases in equilibrium: liquid (L) and 
vapour (V), say, and contained in a cylinder with freely movable piston. The cylinder 
plus contents are maintained at ambient pressure p and temperature T (the latter through a 
thermal contact with a heat reservoir).  
The general principles of Thermodynamics will now be brought to bear on this two-phase 
equilibrium.  
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Two conditions for phase equilibrium are immediately obvious: Thermal equilibrium 
between L and V requires that TL = TV = T (for otherwise heat would flow spontaneously 
between L and V, leading to a further increase in surrVLt SSSS ++= ).  
Likewise, mechanical equilibrium is ensured if pL = pV = p. If this were not the case, the 
pressure difference could be utilised to perform work which, when dissipated, would also 
generate entropy.  
 
 
 
 
 
 
 
 
 
 
 
Still, this is not enough to ensure phase equilibrium. This is a dynamic equilibrium for 
which: rate of evaporation from L = rate of condensation from V.  
To see how Thermodynamics deals with this, imagine a reversible process in which one 
mol of liquid is transferred to the vapour phase by slowly raising the piston while 
simultaneously absorbing heat qrev from the reservoir. For this closed system the energy 
balance can be put in the form  
 
           VpSTU ∆−∆=∆  
 
where LV UUU −=∆ , LV SSS −=∆ , LV VVV −=∆  (since one mol of liquid is replaced 
by one mol of vapour at the same T and p).  

VSU ,,  are molar quantities with a different functional dependence on T and p for L and 
V phases. Note that the energy balance may also be written as  
 
           )()( revpvap qSTH =∆=∆  
 
which defines the latent heat or molar enthalpy of vaporisation.  
Substitution for SU ∆∆ , , V∆  and subsequent rearrangement leads to the sought 
condition of material equilibrium 
 
           LLLVVV STVpUSTVpU −+=−+  
 
or 
 
           ),(),( pTGpTG LV =  
 

L 

V 

p 

T qrev 

1 mol 

V 
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Henceforth, a different symbol for the molar Gibbs energy G will be used: µ , which is 
termed the chemical potential. Thus the above condition becomes  
 
           ),(),( pTpT LV µµ =  
 
This is an equation in terms of T and p, which could be solved, in principle, to give p as a 
function of T, where p is the saturation pressure: psat(T) at a given T.  
In the p-T plane, or phase diagram, this relationship defines a coexistence line for L/V 
equilibrium.  
 
 
 
 
 
 
 
 
 
 
 
 
 
An alternative approach to the problem of material equilibrium is based on the fact that 
the G of a closed system is at a minimum if p and T are held fixed: 0)( , =pTGδ , and may 
serve to illustrate the use of this minimum principle.  
G can be written alternatively as  
 
           VVLLVL nnGGG µµ +=+=  
 
where, in the first equation, use is made of the fact that G is an extensive function of 
state, and in the second the definition of µ  has been used (nL,V = number of moles in L 
and V phases). The infinitesimal variation δ  is conceived of as the transfer of a small 
amount Vnδ  moles from L to V, such that VL nn δδ −=  (since in this closed system n = nL 
+ nV = constant). Noting that Lµ  and Vµ  are both constant during this change, because T  
and p are constant, the effect on G is given by  
 
           VLVpT nG δµµδ )()( , −=  
 
and for this to be = 0 we obviously need VL µµ = .  
The formula for Gδ  also contains some information about the fate of non-equilibrium 
states, like when T and p are uniform but VL µµ ≠ . If  VL µµ >  then 

0)()( , <−= VLVpT dndG µµ  if 0>Vdn , i.e. G decreases if liquid evaporates, which will 
therefore occur spontaneously and continues until all liquid has been converted to vapour. 

p 

T 

µL =µV 

µL <µV 

µL >µV 

L 

V
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This situation arises for (T, p) combinations below the saturation curve in the diagram; 
here, V is more stable than L. Conversely, above this curve, VL µµ <  and so L is the 
more stable phase. Thus, the )(Tpsat  curve divides the p-T plane into stability regions. 
This example is illustrative of a more general principle which states that whenever µ  is 
not uniform, matter will flow spontaneously from places with the higher to places with 
the lower µ  (hence the name: chemical potential).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Now let us return to the coexistence curve and see what general conclusions may be 
drawn regarding its functional form. To this end, suppose that the system moves from 
point A with coordinates T and p to a nearby point B, also on the curve, at T + dT, p + dp. 
Since equilibrium is maintained it is obviously true that VL dd µµ =  for this change of 
state. From earlier mathematical considerations it follows that a small change in 

VLVLVL nG ,,, /=µ  consequent upon small variations of T and p is given as  
 
          dpVdTSd VLVLVL ,,, +−=µ  
 
Substituting this into the above equation yields the relationship  
 
           dpVdTSdpVdTS VVLL +−=+−  
 
or, equivalently,  
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which can also be written as  
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This is the Clausius-Clapeyron equation, which relates the slope of the tangent to the psat 
vs. T curve at each point to the volume and latent heat of vaporisation at the same point. 
It applies generally to so-called first-order phase transitions, i.e. those with 0≠∆S  and 

0≠∆V , which is the case for most phase equilibria of chemical interest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
What has been said about the L/V equilibrium applies equally to solid/liquid (S/L) and 
solid/vapour (S/V) equilibria. For each case, a Clausius-Clapeyron equation can be 
formulated with vapH∆  replaced by the latent heat of fusion )( fusH∆  and sublimation 

)( subH∆ , respectively, and similarly for the molar volumes of transformation. These 
equilibria are also represented by coexistence lines in a p-T diagram. The three curves 
meet at one point, the triple point, t(Tt, pt), where all three phases coexist. Two 
equilibrium conditions, 
 
           ),(),(),( ttSttVttL pTpTpT µµµ ==  
 
should be obeyed simultaneously at this point, which determine its position 
unambiguously (for water, atmpKT tt

3106,298 −×=≅ ).  
Another important feature of a p-T diagram is the critical point (c), which marks the 
temperature Tc above which vapour can no longer be condensed, no matter how high the 
applied pressure. Only a homogeneous gas phase (G) can exist for T > Tc.  
For most substances, the coexistence lines have positive slopes. A notable exception is 
water, where the melting line has a negative slope because 0<∆ fusV  (ice has a lower 
density than water, that is why it floats), so that increasing the pressure on ice at constant 
T will eventually cause it to melt. This can be explained as being the result of the collapse 
of the diamond-like ice structure to form water, which is more compact. Explicit 
formulas for the vapour and sublimation lines can be obtained if the vapour is assumed to 
behave approximately as an ideal gas, so that satV pRTV /≅  while furthermore the fact 
that SLV VVV ,>>  allows V∆  to be approximated by VV . Substitution into the Clausius-
Clapeyron equation gives  
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           2RT
Hp

dT
dp satsat ∆
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Rearranging, 
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which is equivalent to  
 

           
R
H

Td
pd sat ∆

−=
)/1(

ln
 

 
If vapH∆  or subH∆  can be regarded as constant (this is often a good approximation within 
a broad range of temperatures), this result implies that a plot of ln psat vs. 1/T should 
produce a straight line with negative slope RH /∆− .  
If subvap HH ∆∆ ,  and fusH∆  are constant, knowledge of any two of them allows the third 
to be calculated based on the argument that, at the triple point, sublimation of 1 mol of 
solid can either take place directly or proceed in two steps, namely as melting followed 
by evaporation:  
 
           1 mol S → 1 mol L → 1 mol V 
 
The net H∆  is the same in each case (Hess’ law), therefore  
 
           vapfussub HHH ∆+∆=∆  
 
It should be pointed out that the phase diagram by itself does not contain sufficient 
information to help us understand the process of phase transformation. It often happens 
that a phase transition does not occur when one would expect it based on the phase 
diagram: A liquid may persist in a metastable superheated or supercooled state, or a 
vapour may be cooled below the boiling point without condensing (supersaturated 
vapour). These phenomena occur because a new phase never appears in bulk form all at 
once, but rather emerges from the “parent” phase in the form of small bubbles, crystals or 
droplets which initially have a high, energetically unfavourable, area-to-volume ratio. 
The result is that a relatively high surface (free) energy creates a nucleation barrier 
against the onset of phase transformation, an effect that we have hitherto neglected. This 
barrier may be overcome by agitation or by “seeding”, i.e. providing a rough surface to 
kick-start the nucleation of the new phase (for instance, this is the reason for adding solid 
chips to a liquid prior to boiling, so as to prevent overheating and “bumping”).  
Otherwise, nucleation is a purely random (“stochastic”) process.  
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                 IV.  THERMODYNAMICS OF OPEN SYSTEMS. 
 
IV.1 Homogeneous one-component system. 
 
Next, the restriction n = constant will be dropped. The effect on G of an arbitrary 
reversible variation in the state of a homogeneous pure substance, that is, of a change in 
the parameters T, p and n, can be found most easily starting from the definition of µ , 
 
           ),( pTnG µ=  
 
from which we derive  
 
           dndpVdTSndnndnddG µµµµ ++−=+== )()(  
 
hence 
 
           dnVdpSdTdG µ++−=  
 
If n = constant (dn = 0), this expression simplifies to the familiar result for a closed 
system. If T, p constant, dndG µ= , which is a formula that we used earlier when 
discussing phase equilibria (remember that each phase by itself is to be regarded as an 
open system since it can exchange matter with the other phase!).  
Corresponding formulas for dU and dA can be easily derived using their definitions:  
 
           VdppdVSdTTdSdGpVTSGddU −−++=−+= )(  
 
from which follows, after substitution for dG,  
 
           dnpdVTdSdU µ+−=  
 
Similarly we find  
 
           dnpdVSdTdA µ+−−=  
 
In each case, an extra term dnµ  is added to the corresponding expression for a closed 
system.  
From the above equations, three alternative (but equivalent) expressions for µ  can be 
formulated:  
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Of these, the third is the least useful and will not be considered further. Based on the 
form of dU, the new term dnµ  can be interpreted as a contribution involving the 
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reversible work of inserting dn moles into the phase at constant V and S. This raises a 
rather subtle issue of physical interpretation: How does one keep S constant while adding 
molecules? And what is the energy carried into the system by these molecules? The only 
way out of this problem is to define a reference state for the type of molecule under 
consideration, with 0≡U  and 0≡S . This point will not be pursued further, however, as 
it will be of little or no consequence to subsequent discussions and applications. This is 
especially so since, in practice, only chemical potential differences have physical 
significance. As an example, the condition for L/V phase equilibrium given in the 
previous chapter could be written as 0=− LV µµ .  
 
IV.2 Homogeneous mixtures. 
 
The results of the preceding section can be readily extended to the case of a 
homogeneous mixture of C components for which the differentials dU and dG, 
corresponding to reversible changes, are now written as  
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respectively, defining the chemical potential for each constituent alternatively as  
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or as  
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The latter definition expresses iµ  as the so-called partial molar Gibbs energy of 
component i . Chemical potentials are intensive functions of state, depending on T, p and 
the composition of the mixture, expressed in terms of a suitable set of concentration 
variables. The natural choice for thermodynamic purposes is the set of mol fractions, 
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be chosen independently. Together with T and p they constitute 1+C  independent 
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intensive variables (provided that the mixture is non-reactive) or degrees of freedom 
(d.f.). We can therefore write formally  
 
           ),...,,,( 11 −= Cii xxpTµµ        ),...,2,1( Ci =  
 
The reason why iµ  is sometimes referred to as a partial molar Gibbs energy will now be 
explained. We imagine the mixture to be formed by a process of successive addition of 
small amounts idn  to an (initially empty) container in which constant T and p are 
maintained in the usual manner (thermostat T, external atmosphere p, movable piston). 
After each such addition, the increment of G equals  
 
           i

i
ipT dndG ∑= µ,)(  

 
If these idn  are added in ratios that reflect the mol ratio in the final mixture, i.e.  
 
           CC nnndndndn :...:::...:: 2121 =  
 
then throughout this process not only T and p but also all the xj, and hence the iµ , remain 
constant. Thus, the total Gibbs energy can be evaluated by simple integration  
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The reason for naming iµ  the “partial molar Gibbs energy of component i” should now 
be clear. Thus, we have two alternative expressions for G:  
 
           i

i
inpVTSUG µ∑=+−=  

 
Correspondingly, for an arbitrary (reversible) change of state, dG can be expressed in two 
different ways:  
 
          i

i
i dnVdpSdTdG ∑++−= µ  
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from which immediately follows one of the most important equations of chemical 
Thermodynamics,  
 
           i

i
i dnVdpSdT µ∑=+−  
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the so-called Gibbs-Duhem relation which tells us that, in a homogeneous mixture, the 
intensive variables T, p and the C iµ ’s can not be varied independently but that any 
change in 1+C  of them automatically fixes the last one. This is of course consistent with 
the previously established fact that the system possesses 1+C  d.f.  
It is important to realise that the argument which led to the new formula for G was very 
general and could have been applied to any extensive quantity X = U, V, S, A, H, CV or 
Cp, each one of these being a function of the variables T, p, n1, n2,…, nC . Thus,  
 
           i

i
ipT dnXdX ∑=,)(  

 
where  
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(an intensive quantity) is the partial molar energy, volume, entropy,… 
Integration yields, as before,  
 
           ∑=

i
ii XnX  

 
In the special case of a binary mixture of molecules A and B we get  
 
           BBAApT dnXdnXdX +=,)(  
 
At the same time, since  
 
           BBAA XnXnX +=  
 
we also have that  
 
           BBAABBAA XdnXdndnXdnXdX +++=       
 
and therefore  
 
           0=+ BBAA XdnXdn     (T, p constant) 
 
which is a generalised form of the Gibbs-Duhem relation with 0== dpdT . At T, p 
constant, any change in BAX ,  can only result from a change in composition xx A ≡  

)1( xxB −=∴ . We now define )/( BA nnXX += , which is then also equal to  
 
           BA XxXxX )1( −+=  
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whence, BABA XdxXxddxXXXd )1()( −++−= , where the last two terms add up to zero 
on account of the Gibbs-Duhem relation, so that  
 

           BA XX
dx
Xd

−=  

 
From these last two equations, AX  and BX  can be solved formally in terms of X  and 

dxXd / :  
 

           
dx
XdxXX A )1( −+=  

           
dx
XdxXX B −=  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
If X  is plotted as a function of x, )(xX A  and )(xX B  may be found from the graph by 
drawing the tangent to the curve at the point ))(,( xXx , which has a slope dxXd / , and 
evaluating its intercept with the vertical lines x = 1 and x = 0, respectively. In this manner 
one could, for example, obtain partial molar volumes from the experimental V  vs. x 
relationship, or if X = G, the intercepts would yield Aµ  and Bµ  as functions of x.  
This graphical technique is appropriately called the method of intercepts.  
 
IV.3 General properties of the µi. 
 
Since we now have two alternative expressions for G, its partial derivative with respect to 
T at constant p and {nj} can be written in two forms:  
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as well as  
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The nj are arbitrary, so comparison of the right-hand sides of the above equations gives  
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Similarly, by taking the p-derivative of the two forms of G, we obtain  
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It is worthy of notice that these relationships could also have been derived from  
 
           k

k
k dnVdpSdTdG ∑++−= µ  

 
by cross-differentiation between the SdT−  and ii dnµ  terms and the Vdp  and ii dnµ  
terms, respectively, so that the above formulae can in fact be regarded as examples of 
Maxwell relations (Section II.3).  
A general variation of iµ  can now be expressed in terms of the variations of its 
arguments, as follows  
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which is an obvious generalisation of the equation dpVdTSd +−=µ  for a one-
component system (x = 1).  
Substitution of this formula for idµ  in the Gibbs-Duhem relation, and division by 

∑=
k

knn , yields another perfectly general relationship  
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This equation provides a strong criterion for the internal consistency with respect to the 
composition-dependence of any set of theoretical iµ ’s.  
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                 V.  HETEROGENEOUS MIXTURES: THE PHASE RULE. 
 
We shall now generalise our treatment of mixtures to a consideration of a heterogeneous, 
but still non-reactive, system consisting of P phases. By a “phase” is meant a (part of a) 
system which is uniform in both composition and physical properties. For example, an 
aqueous solution that is saturated with two salts, like KCl and Na2CO3, both of which are 
present in excess, comprises a three-phase system with one liquid phase (the solution) 
and two solid phases (the excess KCl and Na2CO3) in equilibrium with each other.  
In Chapter IV we have dealt exhaustively with the Thermodynamics of individual phases.  
The question is now under what conditions the P phases containing C chemical 
components can coexist.  
As before, thermal and mechanical equilibria require that T and p be the same in all of the 
P phases. Since the system as a whole is closed, the general criterion for equilibrium 

0)( , =pTGδ  applies here. If components are indicated by subscripts i  ),...,1( Ci =  and 
phases by bracketed superscripts (j) ),...,1( Pj = , the fact that the system is closed means 
that  
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The total Gibbs energy is  
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Imagine that the small virtual departure from equilibrium,δ , consists of a small amount 

inδ  of component i  being transferred from phase (1) to phase (2), all other )( j
kn  

remaining constant (see figure, where P = 4 with phase (1) a liquid, (2) a vapour and two 
solid phases, (3) and (4)). The variation only affects )1(G  and )2(G , with ii nG δµδ )1()1( −=  
and ii nG δµδ )2()2( = , hence  
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           iiipT nGGG δµµδδδ )()( )1()2()2()1(

, −=+=  
 
which = 0 only if )2()1(

ii µµ = . The same argument can be repeated for any pair of phases, 
leading to the following conditions for material equilibrium,  
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j
i µµ =)( , independent of j ),...,1( Ci =  

 
Written out in full, the equilibrium conditions are 
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Here, it has been tacitly assumed that each one of the C components is present in every 
phase, a situation that usually does not prevail in practice.  
Now recall that )( j

iµ  is a function of the set of intensive variables ),...,,,( )(
1

)(
1

j
C

j xxpT − . 
The above conditions are therefore a set of equations relating a total of )1(2 −+ CP  
variables. For each component i  there are 1−P  independent equations (the number of = 
signs in each line), so in all we have )1( −PC  equations. These are used to successively 
eliminate )1( −PC of the )1(2 −+ CP  variables (by expressing any one of them in terms 
of the remaining variables), thus leaving PCPCCP −+=−−−+ 2)1()1(2  independent 
intensive variables,  
 
∴     PCF −+= 2  

 
F is called the variance (that is, the d.f.) of the system, i.e. the number of intensive 
variables that can be chosen arbitrarily while preserving the P-phase equilibrium.  
This simple formula expresses the celebrated phase rule (J. Willard Gibbs, 1875).  
If one component, i , is absent from one phase, (j), there is obviously one variable less to 
be considered, namely )( j

ix . At the same time, we have to remove )( j
iµ  from the 

equations, so that their number is also less by one. Clearly, F is left unaffected by this and 
so the phase rule still applies even if not every component occurs in each phase.  
Some examples: 
(1) A homogeneous mixture has P = 1 and F = C + 1, as we saw before. 
(2) One-component, two-phase system: P = 2, C = 1, and hence F = 1 (see Ch.III, where 

T was chosen as independent variable, which uniquely determines psat). 
(3) One-component, three-phase equilibrium (L/V/S): C = 1, P = 3, F = 0 (triple point). 
(4) Two-component, two-phase system (e.g. chloroform (x)/acetone )1( x−  mixture in 

equilibrium with its vapour): C = 2, P = 2, F = 2 (e.g. p and xL determine T and xV).  
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                 VI.  CHEMICAL REACTIONS AND EQUILIBRIUM.  
 
The final constraint left to be removed is that on the reactivity of homogeneous and 
heterogeneous mixtures. Formally, a reactive mixture is an open system in the 
thermodynamic sense, where certain components “appear” or “disappear” in fixed 
stoichiometric ratios.  
Consider a chemical equilibrium of the form 

Suppose that the equilibrium is perturbed slightly by allowing δανδ AAn =−  moles of A 
and δανδ BBn =−  moles of B to react, producing δανδ CCn =  moles of C. δα  is a small 
change in a parameter α , which measures the advance of a reaction, away from its 
equilibrium value, eqα . As T and p are held fixed, pTG ,)(δ  should vanish for this virtual 
change. In this case, we have that  
 
           0)()( , =−−=++= δαµνµνµνδµδµδµδ BBAACCCCBBAApT nnnG  
 
and therefore  
 
           0=−−≡∆ BBAACCrxnG µνµνµν  
 
where we have defined the Gibbs energy of reaction, rxnG∆ (≡  minus the chemical 
affinity).  
Note that the µ ’s no longer carry the phase superscripts since these are superfluous for a 
system in equilibrium. Consequently, the above equilibrium condition applies to 
homogeneous and heterogeneous chemical equilibria alike.  
This equilibrium condition can be immediately generalised to any type of reaction and 
written as  
 
           0==∆ ∑ r

r
rrxnG µν  

 
where r labels the participants in the reaction and the stoichiometric coefficients rν  are 
understood to be > 0 for “products” and < 0 for “reactants”. Of course, in equilibrium it is 
entirely immaterial whether a set of reagents on one side of the arrows is designated as 
reactants or as products. The above equation is essentially the thermodynamic expression 
for the law of mass action.  
If there are a number, say R, of independent chemical equilibria present simultaneously in 
a heterogeneous system of P phases and C components, the corresponding equilibrium 
conditions add a further R, algebraically independent, constraints to the )1( −PC  
conditions for material equilibrium between phases. This reduces the variance F by R so 
that we finally get  
 

νAA+νBB νCC
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           PRCF −−+= 2  
 
which is the most general form of the phase rule.  
As an example, consider the heterogeneous equilibrium  

with C = 3, P = 3, R = 1, hence F = 1. The system is therefore monovariant, which means 
that 

2COp  is a unique function of T.  
 
 
In a non-equilibrium reactive system, a reaction will only occur spontaneously in a given 
direction at the prevailing T and p if 0)( , <∆ pTrxnG  (for example, in a temporarily short-
circuited galvanic cell). The accompanying changes in other thermodynamic properties 
can be readily obtained from the corresponding rxnG∆  by means of the general 
relationships derived earlier, e.g. the entropy change of the reaction mixture is  
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while the enthalpy of reaction can be evaluated using the Gibbs-Helmholtz equation  
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In writing these formulae, it has been assumed that the extent of the conversion is such as 
to leave the mixture’s composition {xj} practically unchanged.  
 
N.B.: rxnST∆  is to be interpreted as the reversible heat of reaction, i.e. the heat absorbed 
by the mixture if the reaction were to proceed reversibly in some controlled manner while 
converting the free energy change rxnG∆−  into useful (non-pV) work. This is what 
actually takes place in a reversibly operating galvanic cell, where electrical work is 
extracted from the reactants that are kept in separate compartments (half-cells).  
Without this intervention, rxnG∆−  is simply dissipated as heat, generating an amount of 
(universal) entropy equal to  
 

           0>
∆−

==∆
T
G

T
w

S rxndiss
t  

 
In that case, rxnrxnrxn STGH ∆+∆=∆  represents the total amount of heat absorbed by the 
mixture during the spontaneous reaction. If 0>∆ rxnH  the reaction is endothermic, and 
exothermic if 0<∆ rxnH . If 0=∆ rxnH , the reaction is said to be athermal.  

CaCO3(s) CaO(s)+CO2(g)
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                 VII.  MIXTURES OF PERFECT GASES. 
 
VII.1  Thermodynamics of mixing. Chemical potentials.  
 
The general results obtained in the previous chapters will now be applied to ideal gas 
mixtures. It should by now be clear that the most useful concept in Chemical 
Thermodynamics is the chemical potential, iµ . Once the explicit dependence of the iµ  
on T, p and the composition variables is known, all equilibrium thermodynamic 
properties of a mixture can be derived from its Gibbs energy i

i
inG µ∑= .  

First, consider an ideal gas composed of molecules of a single chemical species, for 
which the p-dependence of ),( pTµ  can be easily found from the relation  
 

           pRTV
p T

/==
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
∂
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via integration between =θp 1 atm and p atm: 
 

           pRT
p

dpRTTpT
p

ln)(),(
1

==− ∫θµµ  

 
or  
 
           pRTTpT ln)(),( += θµµ  
 
where )(Tθµ  is the chemical potential at temperature T and at a “standard” pressure, 
arbitrarily chosen as 1 atm.  
 Next, we shall investigate the effect of composition upon the iµ  in a binary gas mixture 
of molecular species A and B. To this end, the thermodynamics of the process of mixing 
will be dealt with in some detail.  
 
 
 
 
 
 
 
Suppose that nA moles of A and nB moles of B are initially kept separated in two 
compartments with volumes VA and VB by a freely movable diathermal partition, so that T 
and p are the same on both sides. The Gibbs energy in this initial state is then given by  
 
           *** BBAA nnG µµ +=  
 

spontaneous 
mixing

T,p constant

VA VB V 

A B A+B 
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where the asterisks refer to the gases in their pure form. When the partition is removed, 
the gases spontaneously interdiffuse until they form a uniform mixture with the same T 
and p as initially (because A and B are perfect gases), filling the volume BA VVV += . 
Since neither the total energy U nor the total volume V change during the mixing process, 
we can write 0=∆ mixU  and 0=∆ mixV , and hence  
 
           mixmix STG ∆−=∆  
 
The Gibbs energy in the final state is thus  
 
           mixmix STGGGG ∆−=∆+= **  
 
It is now left to evaluate the entropy of mixing, mixS∆ . This is most easily accomplished 
by considering mixing as the result of two free expansions, one of gas A from VA to V, 
and a second of gas B from VB to V. The corresponding entropy changes have been 
calculated before, at the end of section II.1. This yields  
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Using the equation of state, the volume ratios can be rewritten as  
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where BA nnn += , and similarly BB xVV =/ . This gives  
 
           0)lnln( >+−=∆ BBAAmix xnxnRS  
 
as well as  
 
           0)lnln( <+=∆ BBAAmix xnxnRTG      (T, p constant) 
 
so that mixing is indeed spontaneous. This is always true for gases, for which 0≅∆ mixH , 
but not necessarily for liquids. For example, water and oil do not mix at ordinary T 
because 0>∆−∆=∆ mixmixmix STHG  due mainly to the fact that 0<∆ mixS , as a result of 
increased ordering of the water molecules in the presence of hydrocarbons. 
Of course, mixS∆  is only 0≠  if A and B are different, say if A = N2 and B = O2. If both 
compartments contain the same gas, O2 say, it would not be reasonable to speak of 
mixing, even though individual O2 molecules now have a larger volume, V, to move 
around in. From a macroscopic viewpoint, however, the initial and final states are 
indistinguishable and we should therefore set 0=∆ mixS  if A = B. This apparent failure of 
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the above formula is commonly referred to as the Gibbs paradox. Now, of course 
molecules are either identical or they are not, so there is no real problem in practice.  
The formula for mixS∆  may be readily generalised to mixtures of more than two 
components, as follows  
 
           i

i
imix xnRS ln∑−=∆  

 
while the Gibbs energy of the mixture can be written as  
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i
i

i
iimix xnRTpTnSTGG ln),(** ∑∑ +=∆−= µ  
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According to the general theory of mixtures this is also equal to i

i
inG µ∑= . 

Comparison of these two expressions for G leads us to conclude that  
 
           iii xRTpT ln),(* += µµ  
 
It is important to note that the x-dependence of iµ  complies with the Gibbs-Duhem 
relation, as it should, for T, p constant. After division by ∑=

i
inn  this equation becomes  
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An alternative expression for iµ  is obtained after substitution of the explicit form 
pRTTpT ii ln)(),(* += θµµ  given at the beginning of this section, leading to  

 
         )ln()( pxRTT iii += θµµ  
 
Now, according to Dalton’s law for a mixture of perfect gases,  
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from which it follows that the partial pressure exerted by component i  equals  
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so that iµ  can  be written simply as  
 
           iii pRTT ln)( += θµµ  
  
(with ip  expressed in atm), a direct generalisation of the formula for *iµ  ( 1=ix ). 
 
 
VII.2  Chemical equilibrium in gas mixtures. 
 
For the sake of argument, let us consider a gas-phase equilibrium of the form  

           
The general equilibrium condition ( 0=∆ rxnG ) reads as  
 
           CCBBAA µνµνµν =+  
 
where we can now substitute the explicit expressions for the rµ   
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This is equivalent to  
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Defining the standard Gibbs energy of reaction as  
 
           θθθθ µνµνµν BBAACCrxn TG −−=∆ )(  
 
and the equilibrium constant Kp as  
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which is a function of T only according to the above equation, the law of mass action  
thus takes the more concise form  
 
           RTTGTK rxnp /)()(ln θ∆−=  
 

νAA+νBB νCC
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One arrives at another useful form of this equation after substituting pxp ii = ,  
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If we define BAC νννν −−=∆  (the change in the number of molecules if the reaction 
proceeds from left to right), and a new equilibrium constant Kx as  
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then the equilibrium constants are related as follows  
 
           ν∆−= pTKpTK px )(),(  
 
or  
 
           pTKpTK px ln)(ln),(ln ν∆−=  
 
The effect of temperature on the position of the equilibrium is established by taking the 
partial derivative pT )/( ∂∂  of xKln :  
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where, in the last step, use has been made of the Gibbs-Helmholtz equation, introducing 
the standard enthalpy of reaction θ

rxnH∆  (pertaining to a mixture in which all reactants 
exert partial pressures = 1 atm). It is not hard to show, however, that rxnH∆  only depends 
on T and not on the rp . This is so, because at constant T, p:     rxnrxnrxn VpUH ∆+∆=∆ =  

RTTU rxn ν∆+∆ )( , which is obviously independent of the rp ’s. Therefore, 
)()( THTH rxnrxn ∆=∆ θ  where all eqrr pp ,= , for example. Thus,  
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which is the celebrated Van’t Hoff isobar. In particular, it implies that if the reaction is 
endothermic going from left to right, i.e. 0>∆ rxnH , then Kx increases with increasing T, 
and vice versa. Hence, upon increasing temperature, a chemical equilibrium always shifts 
in the direction in which the reaction is endothermic. This result is consistent with a 
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general statement, known as Le Châtelier’s principle, concerning the effect of an 
externally applied stress upon chemical equilibria.  
 
 
 

 
 
 
 
 
 
 
 
 
The heat of reaction rxnH∆ for an equilibrium mixture may be measured using a flow 
reactor, which is basically a rigid vessel fitted with semi-permeable membranes M, one 
for each reactant )(r , and cylinders containing the reactants/products as shown in the 
diagram. Note that rxnH∆  is measured as reversible heat: rxnrevrxnrxn qSTH ,=∆=∆  
because 0=∆ rxnG . The gases in the cylinders and in the reaction chamber will only be in 
equilibrium if rµ  is the same on both sides of membrane Mr, i.e. if   

rrr pRTT ln)( += θµµ  is uniform, which means that each rp  should be uniform.  
)(TH rxn∆  is equal to the heat absorbed from the surroundings if the pistons are slowly 

pushed/pulled toward the right such as to supply Aν  moles of A and Bν  moles of B which 
(reversibly) react to produce Cν  moles of C, which are subsequently drained off through 
membrane MC.  
 
The effect of pressure on the equilibrium is similarly found by taking the partial 
derivative Tp)/( ∂∂  of ),(ln pTK x , which equals  
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This means that if 0<∆ν , Kx will increase with increasing p, and the equilibrium shifts 
to the right, and vice versa. In other words, an increase in pressure will cause a shift 
towards the side with the smallest number of molecules. This is again in agreement with 
Le Châtelier’s principle, which therefore turns out to be a logical consequence of the laws 
of Thermodynamics. If 0=∆ν , the equilibrium is indifferent with respect to pressure 
changes.  
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                 VIII.  LIQUID MIXTURES. 
 
VIII.1 Ideal solutions.  
 
VIII.1.1 Raoult’s law. p-x and T-x diagrams. 
 
A suitable starting point for a general discussion of solutions is a hypothetical mixture 
called an ideal solution, where the interaction forces between any pair of molecules 
(attractive Van der Waals-London forces) is taken to be independent of the chemical 
nature of the molecules. This situation is approximated in a benzene/bromobenzene 
mixture, for example, and holds nearly exactly for isotopic mixtures such as 
12CCl4/13CCl4.  
Consider an ideal binary liquid mixture of compounds A and B, in equilibrium with its 
vapour. Both A and B are assumed to be volatile, and the vapour is approximately an 
ideal gas mixture with total pressure BA ppp += .  
As we saw before, this is a bivariant system (F = 2), so for specified T and p the 
compositions of liquid ( L

A
L
B

L
A xxx −=1, ) and vapour ( V

A
V
B

V
A xxx −=1, ) are uniquely 

determined. According to Dalton’s law,  
 
           pxp V

AA =    ,   pxp V
BB =  

 
The equilibrium vapour pressures of pure A and B at the same T as the mixture will be 
denoted by *Ap  and *Bp , respectively. *p  can be considered as a measure of the 
tendency of molecules to escape from the liquid, i.e. of the volatility, at a given T.  
Because in an ideal mixture the A-A, B-B and A-B interactions are identical, an A 
molecule has the same tendency to escape from an A/B mixture as from the pure A liquid. 
The rate at which molecules A leave a unit of surface area at temperature T is therefore 

L
Ax  times the rate at which molecules A evaporate from the surface of pure A liquid at the 

same T (p has hardly any effect on this rate). To maintain equilibrium with the vapour 
phase, the partial pressure pA (which is a measure of the rate of condensation of A) should 
then be equal to the same fraction L

Ax  of the vapour pressure of pure A, *Ap . Similar 
considerations apply to component B, and we thus arrive at Raoult’s law,  
 
           *A

L
AA pxp =    ,   *B

L
BB pxp =   

 
Although the above discussion provides no more than a plausibility argument, Raoult’s 
law has been confirmed experimentally in a large number of cases.  
Raoult’s law can be expressed graphically in a p vs. L

Ax  diagram, corresponding to the 
prevailing temperature T, as shown (A is assumed to be more volatile than B).  
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Remember that we now have two alternative expressions for the partial vapour pressures,  
 

           
*

*

B
L
B

V
BB

A
L
A

V
AA

pxpxp

pxpxp

==

==
 

 
where the first equality expresses Dalton’s law, the second Raoult’s law.  
The information contained in these equations can be summarised conveniently in a 
diagram, where we plot pressure against compositions LL

A xx ≡  and VV
A xx ≡ of both 

liquid (L) and vapour (V) (for a given T!), using the p vs. L
Ax  plot as a basis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The abscissa is now simply labelled x, and could denote either xL or xV, depending on 
which line or curve is considered. The p vs. xV curve is constructed by first choosing a 
pressure p, and reading off the corresponding xL and pA. To find xV, draw an auxiliary line 
from (0,0) to (1,p). The horizontal projection of the point (xL,pA) onto this line leads to xV 
on the x-axis, as shown. One easily checks that this construction is in agreement with 
Dalton’s law. Repeating this procedure for all p between *Bp  and *Ap , the p vs. xV 
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curve is obtained. Thus, for a given T and p, the compositions of liquid and vapour can be 
readily found from this p-x phase diagram.  
 
Next, consider a L/V equilibrium at T, p with compositions xL, xV as shown in the 
diagram. We imagine a hypothetical state of this system, where A and B are thoroughly 
mixed, forming a uniform mixture of composition x. If the total number of moles of 
liquid and vapour are nL and nV, respectively, the total number of moles of A can be 
written alternatively as  
 
           # moles A xnnxnxn VL

L
L

V
V )( +=+=  

 
This can be rearranged into  
 
           )()( xxnxxn V

V
L

L −=−  
 
or  
 

           L

V

V

L

xx
xx

n
n

−
−

=  

 
Since 0, ≥VLn , we must have that VL xxx ≤≤ . In other words, an L/V equilibrium will 
only form spontaneously from a homogeneous mixture of composition x at a certain p 
and T if the point (x,p) lies somewhere in the region bounded by the liquid and vapour 
lines in the p-x diagram. The relative amounts of the two phases are then given by the 
above formula, which is an example of a lever rule. This is also the ratio of the segments 
into which the point (x,p) divides the horizontal tie line joining the boundaries of the L 
and V stability regions across the L/V coexistence region.  
For practical purposes, however, the p-x diagrams are rarely useful since most 
experimental studies are performed at constant p and varying T, rather than the other way 
around. The same information can be represented more conveniently, therefore, in terms 
of T-x, or boiling point, diagrams (one for each p). A typical example of this type of 
phase diagram is shown in the figure below (note that if A is more volatile than B, then 

** BA TT < ).  
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The general layout is similar to that of the p-x diagram, only now the L-region occupies 
the lower part and the V-region the upper part of the T-x plane. In particular, all 
considerations about tie lines apply equally to this case.  
These T-x diagrams are particularly useful to describe what happens during the process of 
fractional distillation.  
Suppose we want to extract a specimen of nearly pure A from a liquid A/B mixture in a 
state characterised by the point X. The liquid is first heated (1) until the vapour forms. 
Heating continues until enough vapour has formed (assuming that xL is not noticeably 
affected by the evaporation), which is then drawn off (2) and subsequently condensed (3) 
to a liquid enriched in A. From the diagram it can be inferred how many times this 
sequence should be repeated to obtain a sample of the desired purity. Conversely, one 
could distill off B from the mixture by going in the opposite direction, i.e. evaporate most 
of the sample, retain the liquid (which is now enriched in B), and continue in this manner.  
 
VIII.1.2  Thermodynamic properties of ideal solutions. 
 
Again, consider an L/V equilibrium of the ideal binary A/B mixture at T, p. Material 
equilibrium with respect to A requires that  
 
           V

A
L
A µµ =  

 
Using the explicit form of V

Aµ  as well as Raoult’s law, this can be written alternatively as  
 
           ),(ln)( pTpRTT AA

L
A += θµµ  

 
                 ),(ln)(*ln)( pTxRTTpRTT L

AAA ++= θµ  
 
The sum of the first two terms in the last expression is equal to the chemical potential of 
pure A liquid in equilibrium with its vapour, which allows us to write  
 
           L

AA
L
A

L
A xRTpT ln*),(* += µµ  

 
It can be shown that the error that is introduced by replacing *Ap  by p in the argument 
of *L

Aµ  is negligible in comparison to the logarithmic term so that, to a very good 
approximation, for a component of an ideal mixture,  
 
           ii

id
i xRTpT ln),(* += µµ  

 
where the superscripts L have been dropped (Note the similarity with the corresponding 
formula for perfect gas mixtures; in particular, this means that these id

iµ  are also 
consistent with the Gibbs-Duhem relation). This result is simply extrapolated to arbitrary 
combinations of T, p and xj’s.  
Changes in thermodynamic quantities that occur as a result of mixing can now be 
evaluated by using the standard methods.   
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 First, the Gibbs energy of mixing (T, p constant) equals  
 
           0ln*)(* <=−=−=∆ ∑∑ i

i
ii

id
i

i
i

idid
mix xnRTnGGG µµ  

 
so mixing occurs spontaneously under conditions of constant T and p.  
The ideal entropy of mixing is  
 

           0ln
}{,

>−=







∂
∆∂

−=∆ ∑ i
i

i

np

id
mixid

mix xnR
T
G

S
j

 

 
The volume change consequent upon mixing is  
 

           0
}{,

=







∂
∆∂

=∆
jnT

id
mixid

mix p
G

V  

 
while for the enthalpy (heat) of mixing we find  
 
           0=∆+∆=∆ id

mix
id
mix

id
mix STGH  

 
i.e., an ideal mixture is athermal.  
The mathematical form of each thermodynamic function of mixing is obviously identical 
to that of the corresponding function pertaining to the mixing of ideal gases.  
 
VIII.2 Non-ideal solutions. 
 
VIII.2.1 Phase diagrams. Activity.  
 
Deviations from Raoult’s law in binary mixtures may be classified as belonging to either 
one of two categories, according to whether the A-B interaction is weaker than both A-A 
and B-B interactions (1), or stronger than both of them (2).  
 
(1) (A-B) < (A-A), (B-B). In this case we say that the mixture shows positive deviation 

from Raoult’s law, with 0>∆ mixH  in general (mixing is endothermic).  
The weaker interactions in solution lead to increased volatility of both A and B as 
compared with the ideal case. This is shown schematically in the p-x diagram on the 
next page. Note that the curves for pA and pB asymptotically approach Raoult-type 
behaviour as 1→Lx  and 0, respectively. This is not surprising as in these limits the 
mixture is essentially a dilute solution consisting almost entirely of A or B , 
respectively, which then plays the role of solvent, while the other component should 
be regarded as the solute. Clearly, the tangent of the slope to the pA curve at 0=L

Ax  
will differ from *Ap  and will depend on temperature as well as on the nature of B. 
The same is true for B as 0→L

Bx .  
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This limiting behaviour of dilute solutions is expressed by the linear relation  
 
           L

BABABA xTKp ,,, )(=    if 1, <<L
BAx  

 
This relation is called Henry’s law.  

 
(2) (A-B) > (A-A), (B-B). Similar considerations apply to this case, which is characterised     

by 0<∆ mixH , i.e. exothermic mixing. Here, of course, evaporation of both A and B is 
suppressed by the stronger A-B interaction, and we now observe negative deviation 
from Raoult’s law (see figure).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For non-ideal solutions we can again construct p-x and T-x diagrams in the usual manner, 
which contain all the information on the variation of liquid and vapour composition, xL 
and xV, with p or T, at some constant T or p, respectively.  
For example, in the case of strong positive deviation from Raoult’s law, these diagrams 
typically look like the ones shown on the next page, where the boundaries of the L and V 
regions touch at the maximum in the p-x diagram or at the minimum in the T-x diagram. 
This is a pictorial representation of the so-called Gibbs-Konovalov theorem. Clearly, the 
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point of contact has to be an extremum, for otherwise tie lines could be drawn that 
connect two liquid states, which would be meaningless. This point corresponds to an 
azeotrope, with VL xx = . An azeotrope behaves like a pure compound (C = 1) with well-
defined boiling point. An azeotropic equilibrium is therefore monovariant (F = 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is obvious that a mixture that shows strong (positive or negative) deviation from 
Raoult’s law can not be separated by means of fractional distillation when the azeotropic 
point is approached, unless we vary p, for example, or add a third component.   
The treatment of mixtures that exhibit (strong) negative deviations from ideal behaviour 
is entirely analogous, the difference being that now the L curve seems to “press down” 
against the V curve in the p-x diagram and “pushes up” against it from below in the T-x 
diagram.  
 
The effect of non-ideality on the chemical potentials and other quantities can be treated 
empirically or on the basis of some microscopic model, such as the regular mixture 
model, which takes into account the interactions between molecules in direct contact 
(nearest-neighbour interactions). A generic form of iµ  has been defined which formally 
includes these effects, as follows  
 
           iii aRTpT ln),(* += µµ  
 
where we have introduced the activity ia  (a function of T, p and the xj), and which itself 
is often written as the product of ix  and a so-called activity coefficient iγ : 
 
           iii xa γ≡  
 
where iγ  tends to 1 if ix  approaches 1, in accordance with Raoult’s law.  
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We may now write  
 
           E

i
id
iiiii RTxRTpT µµγµµ +≡++= lnln),(*  

 
where i

E
i RT γµ ln=  describes the departure from ideality and is called the excess 

chemical potential of i . At constant T and p these E
iµ  must satisfy the Gibbs-Duhem 

relation  
 
           0=∑ E

i
i

i dx µ  

 
since the id

iµ  do so already.  
In particular, the Gibbs energy of mixing is now written as the sum of an ideal and an 
excess contribution,  
 
           E

mix
id
mixmix GGG ∆+∆=∆  

 
with E

i
i

i
E
mix nG µ∑=∆ , the excess Gibbs energy of mixing. This E

mixG∆  can subsequently  

be used to calculate the other excess functions of mixing, E
mixS∆ , E

mixV∆  (= mixV∆ ) and 
E
mixH∆  (= mixH∆ ), in the usual way.  

 
VIII.2.2 Incomplete miscibility. 
 
In binary mixtures that exhibit a positive deviation from Raoult’s law one typically 
observes the phenomenon of phase separation. Here, for any T below a certain critical 
(or consolute) temperature Tc there is a range of x values for which the mixture 
spontaneously splits into two liquid phases, L1 and L2, of different composition. 
 
 
 
 
 
 
 
 
 
This partial de-mixing can be understood by analysing the molar Gibbs energy of mixing,  
 
           )()(),( xSTxHxTG mixmixmix ∆−∆=∆  
 
where 0, >∆∆ mixmix HS  for 10 ≤≤ x , and presumably independent of T.  
If T > Tc, the mixture is stable for all 10 ≤≤ x  (figure (a)).  
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For any x, the chemical potential of A or B can be obtained from mixGGG ∆+= *  via 
differentiation with respect to nA or nB, respectively, so that we can formally write  
 
           )(*)( xx iii µµµ ∆+=       ),( BAi =  
 
where ii aRT ln=∆µ  represents the “mixing part” of iµ . The latter can be found by 
applying the method of intercepts (section IV.2) to the mixG∆  vs. x plot, as shown. 
If T < Tc, a “hump” appears on the )(xGmix∆  curve (b). This means that there are two 
points, at x1 and at x2, which share the same bitangent. Therefore, )()( 21 xx AA µµ ∆=∆  
and )()( 21 xx BB µµ ∆=∆ , hence )2()1(

AA µµ =  and )2()1(
BB µµ = . The phases L1 and L2 with 

compositions x1 and x2, can therefore coexist, provided that the Gibbs energy of mixing 
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for the two-phase system, )2()1(
mixmix GG ∆+∆ , is less than that of the uniform mixture with 

composition x, )(xGmix∆ , from which it emerges. Following the same argument that led 
to the formulation of the lever rule (section VIII.1.1) one can easily show that this 
situation can only arise if 21 xxx ≤≤ . It can also be shown that, within this range, 

nGG mixmix /)( )2()1( ∆+∆  is represented geometrically by the bitangent, which obviously lies 
below the )(xGmix∆  curve so that the two-phase system is indeed more stable than the 
homogeneous mixture. The interval 21 xxx ≤≤  is called the miscibility gap 
corresponding to the given temperature T < Tc.  
In a T-x phase diagram (c) the coexistence region is demarcated by a curve (called the 
binodial curve) in the shape of an inverted parabola with a maximum at the point (xc, Tc), 
where xc is the critical composition. The binodial curve is virtually independent of p.  
Relative amounts of phases L1 and L2 corresponding to some x between x1 and x2 can 
again be determined by drawing a horizontal tie line at the appropriate T and applying the 
lever rule.  
For binary mixtures that display a positive deviation from Raoult’s law, the complete 
(L/V part of the) T-x phase diagram will look similar to the one depicted below, for those 
cases where the consolute temperature lies below the azeotropic boiling point.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T 

TA* 

TB* 

Tα 

Tc 

x 

xc xα 0 1 

V 

L 

L+V 

L+V 

L1+L2 

p 



 53

 
                 IX.  DILUTE SOLUTIONS. 
 
IX.1 Chemical potentials. 
 
A dilute solution consists of one major component, the solvent (s), with 1≅sx  and one or 
more solutes (labelled by subscripts i ) with 1<<ix . Volatile solutes obey Henry’s law 
(see section VIII.2.1)  
 
           iii xTKp )(=  
 
where ip  is the partial pressure of solute i  in the equilibrium vapour and ix  is its mol 
fraction in solution. The factor )(TK i  also depends on the nature of the solvent.  
To calculate the chemical potential of i  in solution, we again utilise the L/V equilibrium 
condition  
 
           ii

V
i

L
i pRTT ln)( +== θµµµ  

                           iii xRTTKRTT ln)(ln)( ++= θµ  
                           ii xRTpT ln*),(0 += µ , with p* the vapour pressure at T for the solvent 
 
In general, for arbitrary p,  
 
           iii xRTpT ln),(0 += µµ  
 
if 1<<ix  (N.B.: *!0

ii µµ ≠ ). 
It is customary to replace ix  with a different measure of concentration, the molarity 
(expressed in mol dm-3)  
 

           Vx
V
n

n
n

V
n

c i
ii

i /===  

 
or, to a good approximation *sii Vcx ≅ .  
Substitution for ix  in the formula for iµ  gives  
 
           iii cRTpT ln),( += ⊕µµ  
 
where ),( pTi

⊕µ  is the standard chemical potential, that is, the value of iµ  in a 
hypothetical standard state with ic  = 1 mol dm-3 and no interactions among solutes, as in 
the case of extreme dilution (the interactions are “switched off”, so to speak).  
The solvent, on the other hand, obeys Raoult’s law  
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           sss xRTpT ln),(* += µµ  
 
which, using ∑∑ −≅−=

i
i

i
is xxx )1ln(ln , equals, to a good approximation,  

 
           ∑−≅

i
iss xRTpT ),(*µµ  

 
Thus, adding solutes to the solvent reduces the chemical potential of the latter, thereby 
increasing its thermodynamic stability.  
 
IX.2 Colligative properties.  
 
The effects of non-volatile solutes on various equilibria involving the solvent are 
collectively referred to as colligative phenomena. Here, four of these will be discussed: 
(1) Osmosis, (2) elevation of boiling point, (3) depression of freezing point and (4) 
lowering of vapour pressure.  
 
(1) Osmosis. 
 
Consider a two-compartment osmotic cell where the partition contains a selective 
membrane M that only lets through solvent molecules. Initially, pure solvent is present in 
both compartments (1) and (2). Assume that (2) is much larger than (1).  
 
 
 
 
 
 
 
 
 
 
Addition of solute i  to compartment (1) lowers sµ  and causes an influx of s (osmosis) 
from (2). This in turn leads to a rise in the fluid level in (1) and a concomitant increase in 
pressure to the left of M, restoring sµ  to the constant value imposed by the solvent in (2).  
The result is an osmotic (membrane) equilibrium.  
The Gibbs-Duhem relation will now be applied to the solution in (1) to calculate the 
pressure increase consequent upon the addition of a small amount of solute. The equation 
is simplified by the conditions T = constant and sµ  = constant, i.e. 0== sddT µ :  
 
           i

i
i dnVdp µ∑=  

 
or 

i 

s 

h 

1 2 1 2 

M M 

p p Π+p
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           i

i
i dcdp µ∑=  

 
Integrating between the initial pressure p and the final pressure Π+p , where Π  denotes 
the osmotic pressure across the membrane, we find  
 

           i

p

p
i

i dcdp µ∫ ∑∫
Π+

==Π  

 
If we assume that *sV  is independent of p (the solvent is incompressible), idµ  equals  
 
           iiii cRTdcdpVd /+=µ  
 
from which  
 

           
i

i

i

c

i
i

p

p ii c
dc

cRTdpVc i

/
/+=Π ∑∫∑∫

Π+

0
 

 
The first term on the right-hand side is of second order in the ic  and can be neglected.  
This leaves  
 
           ∑=Π

i
icRT   

  
a result known as Van’t Hoff’s law for the osmotic pressure of a dilute solution.  
 
It is possible to derive Van’t Hoff’s law in yet another way. In this case, we make direct 
use of the equilibrium condition 0=sdµ , which can be written more explicitly, using the 
approximate form of sµ  given previously, as  
 
           0*),(* =−=−= ∑∑

i
is

i
iss dxRTdpVdxRTpTdd µµ  

 
The last equality, after rearrangement and integration, yields  
 

           ∑∑∫∫ ===Π
Π+

i
i

si

x

i

p

p
s

x
V
RTdx

V
RTdp i

** 0
 

 
This is indeed identical to the above formula for osmotic pressure.  
 
Van’t Hoff’s law looks very similar to the formula for the pressure of a mixture of ideal 
gases. However, this resemblance is deceptive: The pressure is exerted by the solution as 
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a whole, that is, almost entirely by the solvent. With a fluid head h the osmotic pressure 
can be identified with the hydrostatic pressure  
 
           ghρ=Π  
 
where ρ  = density of the solution (practically equal to sρ ) and g = acceleration of 
gravity.  
It is important to note that if a solute dissociates in solution, its dissociation products 
contribute separately to the sum ∑

i
, so for example, if NaCl is dissolved in water to a 

concentration c, then the resulting osmotic pressure is RTc2=Π .  
 
(2) Elevation of boiling point. 
 
Suppose that the pure solvent (indicated by *) is heated to its boiling point *bT  at the 
constant ambient pressure p. Equilibrium is attained if  
 
           ** L

s
V
s µµ =  

 
 
 
 
 
 
 
 
 
 
 
 
Adding a small quantity of non-volatile solutes to the liquid phase (to mol fractions ix ) 
lowers sµ  and causes the vapour to condense. To restore the L/V equilibrium (make the 
solution boil), the temperature needs to be raised to bbib TTxpT ∆+= *),( , at which point 

V
s

L
s µµ = . Writing L

s
L
s

L
s µµµ ∆+= *  and V

s
V
s

V
s µµµ ∆+= * , the equilibrium condition is 

equivalent to  
 
           V

s
L
s µµ ∆=∆  

 
Now  
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and  
 

           ∑∑ −∆−=−∆

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where a second order term  ∑∆−

i
ib xTR  has been neglected.  

From these equations it follows that  
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i
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or, substituting */** bvap

L
s

V
s THSS ∆=− ,  

 

           ∑∆
=∆

i
i
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b
b x

H
RT

T
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In this formula, ix  is usually approximated by si nn / . 
 
(3) Depression of freezing point. 
 
Adding solute to the pure solvent at the freezing point *fT  lowers L

sµ  and results in 
melting of the solid (“antifreeze”). The S/L equilibrium can be restored if we lower the 
temperature by fT∆ . It can be shown by an argument entirely analogous to that used in 
deriving bT∆  that  
 

           ∑∆
−=∆

i
i

fus

f
f x

H
RT

T
2*

 

 
where it has been assumed that no solutes are incorporated into the solid.  
The effects of solute on bT  and fT  can be represented in a p-T phase diagram as a shift of 
the L/V and S/L coexistence lines, as shown on the next page. The increased stability of s 
is evidenced by the expansion of the L region. Evidently, the sublimation line is left 
unaffected by the presence of solute. The triple point has shifted along it to the left, and 
has thus acquired one degree of freedom.  
 
(4) Lowering of vapour pressure. 
 
From the phase diagram it is obvious that a third colligative effect occurs if *bTT =  is 
held fixed, rather than p, while solute is added to a solvent in equilibrium with its vapour.  
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The L/V equilibrium is now recovered by lowering the pressure by p∆ , which can be 
calculated most easily by noting that the solvent follows Raoult’s law,  
 
           pppxpxp

i
isvap ∆+=−== ∑ **)1(*  

        
 ∴     ∑−=∆

i
ixpp *  

 
It is seen that all colligative effects follow a similar pattern, as they are all proportional to 

1<<∑
i

ix  and independent of the chemical identity of the solutes, whereas the 

proportionality factors depend exclusively upon properties of the solvent component, s.  
 
An obvious application of colligative effects is the determination of molecular weights of 
unknown compounds. If a small purified sample of the (non-dissociating) compound is 
dissolved in a known quantity of a suitable solvent, the magnitude of the effect is 
measured and used to find the mol equivalent. The preferred technique is osmometry, in 
view of its relative accuracy and practical convenience.  
 
IX.3 Chemical equilibrium in dilute solutions. Solubility. Activity.  
 
For a chemical equilibrium, the general condition  
 
           0=∑ r

r
rµν  

 
applies, where  
 
           rrr cRTpT ln),( += ⊕µµ  
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if r is a solute, and  
 
           ),(* pTss µµ ≅       (ideal dilute solution) 
 
if the solvent takes part in the reaction (e.g. hydrolysis, if water is the solvent).  
Of course, strictly speaking the solvent is always a participant in any reaction that takes 
place in solution, which in any case involves (de)solvation steps.  
Substitution into the equilibrium condition yields the well-known form of the law of mass 
action  
 
           RTGK rxnc /ln ⊕∆−=  
 
with equilibrium constant  
 

           
eqr

rc
rcK 







= ∏ ν  

 
Here, r only labels the solutes participating in the process. If a term *ssµν  occurs in the 
equilibrium condition, it should be included in ⊕∆ rxnG :  
 
           *ssr

r
rrxnG µνµν +=∆ ⊕⊕ ∑  

 
The effect of temperature on the position of the equilibrium is expressed in terms of the 
T-derivative, at constant p, of cKln :  
 

           2

ln
RT
H

T
K rxn

p

c ∆
=








∂

∂
 

 
where the Gibbs-Helmholtz equation has been employed, as usual, and also the fact that 
in an ideal solution rxnH∆  does not depend on concentration, so that the superscript ⊕  
can be deleted. This formula is called the Van’t Hoff equation, and is analogous to the 
Van’t Hoff isobar for gas-phase equilibria. Evidently, this result is again in accordance 
with Le Châtelier’s principle. It is to be noted that pressure usually has negligible effect 
on equilibria in solution, so that the subscript p in the above formula is actually 
redundant. 
 
The theory outlined above also applies to heterogeneous equilibria, involving both solid 
and solution phases. The simplest example is the dissolution equilibrium of a sparingly 
soluble salt, such as AgCl:  

 

AgCl(s) Ag+(aq)+Cl-(aq)
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The law of mass action now assumes the form  
 
           ),(*ln2),(),( pTsRTpTpT saltµµµ =++ ⊕

−
⊕
+  

 
where s is the solubility of AgCl at the given T, which can be solved from this equation,  
 
           }2/)*exp{( RTs salt

⊕
−

⊕
+ −−= µµµ  

 
At elevated concentrations, the formulae for the rµ  obviously are no longer valid as 
interactions between solutes become more important. To account for departures from 
ideality, once again the notions of activity and activity coefficient are invoked:  
 
           iii aRT ln+= ⊕µµ  
 
where iii cya ≡ , such that 1→iy  if 0→∑

j
jc .  

For the solvent,  
 
           sss aRT ln*+= µµ  
 
where 1→sa  if 0→∑

j
jc .  

sa  depends on the iy  via the Gibbs-Duhem relation which, for constant T and p, reads as  
 
           0)ln(ln =+∑ ii

i
iss cydxadx  

 
When dealing with chemical equilibria in concentrated solutions, one obviously needs to  

replace the equilibrium constant cK  by the activity product, 
eqr

r
raK 







= ∏ ν , where the 

r should now include s. 
  
The effects of solute-solute interactions are particularly strong in electrolyte solutions, 
due to the long range of electrostatic forces. As a result, signs of non-ideality already 
show up at low concentrations. The Debye-Hückel theory accounts for these effects in 
dilute electrolyte solutions. Essentially, this theory provides us with an approximate 
analytical expression for the iy . This will be discussed in more detail in the C33J course 
on Electrochemistry.  
 
Another type of non-ideality arises as a result of a vast difference in size between solute 
and solvent molecules, as is the case with polymer solutions. Here, the change in 
conformational entropy of polymer coils that occurs upon mixing is largely responsible 
for the departure from ideal behaviour (see also the C33K course on Polymer Chemistry).  


