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1. - Strongly correlated lattice electrons.

1'1. Introduction. — Condensed-matter physics involves the study of inter-
acting many-particle systems. Due to the structure of matter it is, therefore, to
a large extent the physics of many-electron systems. Their theoretical investi-
gations are notoriously difficult—particularly in the dimensions most interest-
ing to us, i.e. d =2 and 3. Henee many fundamental questions are still open.
These difficulties are well known from a long time already, and exactly five
years ago, in the introduction of his lectures here in Varenna, ANDERSON{1]
presented an authoritative and fascinating account of the development of the
theory of strongly correlated electron systems during 1937-87.

Due to the discovery of high-T, superconductivity and the unprecedented
activity triggered by it, the entire community suddenly realized that, in spite of
many years of research, some of the most basic problems in condensed-matter
physics were not yet understood. In particular, it soon became clear that high-
T, superconductivity had to be the result of an interplay between various differ-
ent phenomena which were not yet sufficiently understood even by themselves.
These phenomena include i) the generation of magnetic correlations as a conse-
quence of strong interactions between electrons and the influence of mobile va-
cancies on.such magnetic states, ii) the particular behaviour of electrons in the
vicinity of a Mott-Hubbard metal-insulator transition, iii) the effect of (static)
disorder on the correlated behaviour of electrons, iv) the peculiarities of two-di-
mensional Fermi systems, and, of course, v) the preconditions for superconduc-
tivity in a strongly correlated system. In this respect the discovery of high-T,
superconductivity had a sobering effect. Suddenly the new motto was «back to
the roots», and there was general consensus about the need for controlled ap-
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proximations, etc. The ensuing concerted research efforts during the last five
years have provided significant new insight into some of these fundamental
questions, although we are still far away from a satisfactory situation.

Most of the questions listed above involve the presence of intermediate or
strong interactions between the electrons. Consequently, a large part of recent
theoretical investigations of correlated electron systems—perhaps the largest
part—dealt with strong-coupling approaches. In view of the plethora of avail-
able material the title of my lectures is bound to lead to false expectations. It is
clearly impossible to present in four lectures a half-way adequate account of all
the concepts, ideas, techniques and physical results developed in the course of
even the most recent investigations—in particular since these lectures are sup-
posed to have pedagogical value. I am, therefore, bound to limit myself to a pre-
sentation of only a few strong-coupling approaches. By this selection I do not
wish to imply that these approaches are necessarily the most important, reli-
able, potent or promising ones—it is simply a limitation by necessity. The two
recent books on correlated electron systems by FRADKIN [2] and FULDE [3] pro-
vide extensive discussions of several strong-coupling approaches from quite dif-
ferent perspectives, and I refer the reader to these books for some approaches
not discussed by me, e.g. effective field-theoretical models and gauge field theo-
ries[2], or Liouville projection techniques[3]. '

To elucidate the typical problem involved in strong-coupling approaches I
will concentrate on the Hubbard model and its generalization, since it is the
generic model for correlated lattice fermions. I will try to point out and clarify,
using different perspectives and methods, why it is precisely the Hubbard in-
teraction which makes the strong-coupling approach so difficult. For pedagogi-
cal reasons I will first discuss the problem of a single vacancy in a quantum-me-
chanical spin background and will then present a discussion of variational wave
functions, especially Gutzwiller-type wave functions, because they are explicit,
conceptually simple and physically intuitive and provide immediate insight into
almost all fundamental questions of the strong-coupling problem, without de-
manding a solid background of rather complicated techniques. These two topics
have been addressed already five years ago by RICE[4]; however, since then
considerable new insight has been gained which I wish to present, too. I will
then discuss a projection method which employs auxiliary («slave») particles to
enforce the local constraints in the strong-coupling limit. We will find intimate
connections between the mean-field results for slave bosons and Gutzwiller-
type wave functions. Finally, I will discuss the concept of a dynamical mean-
field theory for strongly correlated electrons, i.e. a nonperturbative approach,
as obtained by an exact solution in the limit of high spatial dimensions (d — «).
This will lead us to an effective, dynamical single-site problem of considerable
complexity. Although the topies of the four lectures are all different, the
emerging physics is closely related. It is my intention to stress these connec-
tions, i.e. the common features, as much as possible.
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12. Weak vs. strong. — I will begin with some very elementary points which
are none the less important enough to warrant recapitulation. For the notion of
- «strong» vs. «weak» coupling to be meaningful one needs a model consisting of
at least two parts, e.g.

1.1 H=H, + H;

(a hat always refers to an operator). Here Hy, is a kinetic part, which is of pure-
ly quantum-mechanical origin, and H; = AV is the interaction part, with X as a
dimensionless coupling parameter; A = 0 is supposed to correspond to the non-
interacting case. In the ground state we refer to |A| <1 as the «weak-coupling
limit» and to |A| > 1 as the «strong-coupling limit». Note that in the case of a
model with only one term, e.g. the Heisenberg model

1.2) H=-J X &8
(R;, R;)

which describes a nearest-neighbour (nn) interaction between localized spins,
the coupling constant J can always be set +1, depending on the sign of J. Here a
distinction between weak and strong coupling makes no sense. While the kinet-
ic energy of noninteracting particles is only simple in momentum space, the
physical origin of the interaction usually implies that the interaction term is
only simple in position space. Hence the generic case is [Hyy,, H;] # 0, i.e. there
is a nontrivial competition between the two terms. It is then clear that in the
weak-coupling limit the k (i.e. «<band») aspects dominate, while for strong cou-
pling the positional order of itinerant quantum-mechanical particles is
stressed. This is the origin of the main difficulties arising in any strong-cou-
pling approach.

18. The Hubbard model. — The generic model for interacting lattice
fermions of the type (1.1) is the one-band, spin-1/2 Hubbard model[5-7] (for
historical remarks, see[1]), where

(1.30) Hap=—t 2 D ee, =2 cxlipe,
(R; Rj) g k,o

(1.35) Bi=UX iy =U 2 fetpony -

Here ¢;; (C;,) are creation (annihilation) operators of electrons with spin ¢ at site
R;, and n;, = ¢;} C;,. The corresponding quantities in k-space are @ (Gx,) and
k.. The Fourier transform of the kinetic energy in (1.3a) involves the disper-
sion i, and pg, = L ™' X G,%4 .Gy, , is the Fourier transform of #;,, with L as
the number of lattice siteg. As mentioned above, Hy, is simple in k-space, while
H; is only simple in position space. With

(14a) D; = fi; 1 i |
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as the number operator for double occupancy of a lattice site, the Hubbard
model takes the form

(1.4b) H=k§: ekﬁkc-l' Uz ﬁi .

Here the kinetic energy is diagonal in k-space (#f, = 7ix,) and the interaction
energy is diagonal in position space (D? = D;). Considering the ground state, it
would be energetically favourable to introduce constraints in real space (i.e.
(D;) =0) to minimize the interaction energy. However, the kinetic energy
prefers maximal mobility of the particles, i.e. the absence of constraints. This
clearly expresses the fact that {7, D;1#0.

In the weak-coupling limit (U << t) the starting point is the Fermi gas in k-
representation. In principle, a perturbation expansion in U/t can be performed,
using standard techniques, since Hy, is a one-particle operator and Wick’s theo-
rem is applicable. (The range of validity of such an expansion is a different mat-
ter[8].) On the other hand, in the strong-coupling limit, where double occupan-
cy of lattice sites is suppressed, a real-space picture is more helpful. Indeed, in
position space the Hilbert space for the Hubbard model may be simply written
as a tensor product over the four possible states at a lattice site R;

(L5) ] % = & span{[0), [T), [1) IT )k

A strong-coupling approach should, therefore, take the U = « limit, where
D; = 0, as a starting point, or else the «atomic limit», i.e. t = 0. (Note that these
limits are in general very different, since ¢ = 0 is not a priori related to strong
coupling.) However, there exist some well-known difficulties, caused precisely
by the structure of the Hubbard interaction, which make a straightforward ap-
plication of these approaches impossible: namely, at U = o the ground state
has an infinite degeneracy (2 in the case of a half-filled band, i.e. N =L).
Hence the ground state cannot simply be obtained by degenerate perturbation
theory in t/U, since this requires first the exact solution of an effective Hamilto-
nian for U>t (the «t-J model»; see below) which, however, is not much simpler
than the Hubbard model itself. It is, therefore, necessary to work with a re-
stricted Hilbert space % ™%, where doubly occupied sites are excluded. This is
very difficult to incorporate if one starts from the noninteracting case (where
particles obey simple commutation rules). One must, therefore, project onto
F™"  the allowed part of 9. However, projected operators usually do not
obey canonical commutation rules; besides that Wick’s theorem is generally not
applicable.

The requirement of projection and the ensuing problems are the central
theme of any strong-coupling approach.

1'4. The t-J model. - We now want to derive an «effective» model which is
equivalent to the Hubbard model in the limit U>>t; naturally we expect this
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model to be simpler than the full Hubbard model and thus easier to investigate.
The corresponding transformation can be obtained in several ways. Perhaps the
most intuitive method is to use a straightforward projection onto the Hilbert
space without doubly occupied sites («d-sites») as first discussed by Bu-
LAEVSKII, NAGAEV and KHOMSKII[9]; for details see ref.[3] and[10].-In the ex-
treme limit U = » the effective Hamiltonian is simply given by

(1.6a) AY~=H,=PH.P,

where

(1.6b) p=I15,, B,=1-D,,
R;

is the projection operator (P? = P) eliminating all states with d-sites, i.e.
D;P = PD; = 0. Equation (1.6a) says that we first project with P, then apply H
(i.e. Hy,) and then project again with P to eliminate those new states with a d-
site which were generated by the action of the kinetic-energy operator. Due to
P =(1—#;_,)¢ =Xt one obtains

(1.7a) H=-t 2 21— )cwc],(l Boj—0)s
(R;, R]) 4

(1.7b) =-t > XXX,
(R;, R;) ©

where the remaining projection operators P,,, m # i, j, are omitted for clarity;
so we have to keep in mind that H, acts only on the subspace of states without
d-sites. H, describes the hopping of a o-electron to an empty site as shown in
fig. 1.1a); equivalently, this may be viewed as the hopping of an empty site («e-
site») or «hole» in opposite direction. This requires that the number of electrons
N=N;y +N <L, ie 8=1-n>0, with n=N/L. It is a remarkable fact
that in the limit of U = « a single hole can move at all. This is a consequence of
the purely local nature of the Hubbard interaction!

The representation of H, in (1.7b) in terms of the composite operator X;, is
particularly concise. However, X;, does not have canonical commutation rules
and hence the apparent simplicity has no immediate advantage. We will come
back to such a representation in sect. 3.

In the limit of large, but finite U (U >>1t) d-sites will exist, too. Since «real»
d-sites carry an energy U, they are strongly suppressed and hence can be ne-
glected. Double occupancies may, therefore, only exist as virtual (i.e. interme-
diate) states: creation and consecutive destruction of a d-site must occur in the
same process. The effective Hamiltonian is then given by

3
(18) AU = P| By - B —U—Ii th]P + a( lt] )
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Fig. 1.1. - Hopping processes of a spin in the Hubbard model at U>>¢; a) hopping at
U= o; b) and ¢) spin exchange process; d) and e) three-site contributions.

1

The second term in the parenthesis describes precisely the virtual process dis-
cussed above (the minus sign indicates that thereby energy is gained): first we
project onto states without any d-sites, then we apply H (i.e. Hy,) which leads
to states with exactly one d-site. We now project onto these latter states (the
ones without d-sites are already included in the first term in (1.8)) by applying
1 — P, and then use Hy;, once more to annihilate the d-site again; the intermedi-
ate energy of this process is U and appears in the denominator. Finally, Pis ap-
plied to make sure that we are again in the subspace without double ocecupancy.
The second term in (1.8) is then clearly of order ¢*/U small and describes the
hopping processes shown in fig. 1.16)-¢). The ones in b), c¢) are possible even
for ¢ = 0 and describe spin exchange (including a spin flip in ¢)), while those in
d), e) require the presence of an e-site for the d-site to relax («three-site contri-
bution»); for ¢<< 1 the energy gain due to the latter process is, therefore, a fac-
tor ¢ smaller than that due to the exchange process. The figures clearly express
the fact that for U>>t we deal with the creation of a virtual pair of d-e-sites
(«vacuum polarization»). They also elucidate the procedure of degenerate per-
turbation theory required to calculate the ¢ /U contribution. For ¢ = 0 the spin
exchange contributions correspond to a nearest-neighbour antiferromagnetic
coupling of S = 1/2 Heisenberg spins. An explicit evaluation of (1.8) in the limit
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8«1, therefore, leads to the effective Hamiltonian[9-12]

-~ st 8
J= + — 1.
H+ J(R%J)[S 8- n,n,] o( T Uz)

(1.9) e(é»t

This is the so-called «t-J model», where J = 4t? /U (the summation is supposed
to extend over nearest-neighbour bonds) and §; = (1/2) 2 €3 ()5 &y I8 the
spin operator, with & as the vector of Pauli matrices. The term n;N;, where n; =
=m;1 +7; | ,is usually discarded, since (%;) = 1 for ¢ = 0. In (1.9) we did not in-
clude the three-site contributions (see, for example, [18]); indeed they are al-
most always neglected—purely for reasons of convenience. However, the mere
fact that they are an order ¢ smaller than the J-term in (1.9) does not guarantee
that they are actually unimportant. This point is still open.

An equivalent derivation of the ¢-J model makes use of a unitary transforma-
tion as in the Schrieffer-Wolff transformation[14] for the single-impurity An-
derson model, namely[10-12]

(1.10) Hy=expliS1Hexp[—-iS1=H + S, H1+ ....

Here S is determined by the requirement that the application of Hy, on states
without d-sites only leads to virtual d-sites and not to a real mixing of Hubbard
bands with different numbers of d-sites.

The derivation of the t-/ model may lead to the following question: how can
the t-J model, which works in the subspace without d-sites, be equivalent to the
large-U Hubbard model for which the number of doubly occupied sites (D) is
clearly finite for all U < «? The answer can be deduced by considering the
ground-state energy expressions

. 1 .
(1.11) Eo=(Pum |H|Vum) =(Petr | Hete | Tesr) -

Here |¥yy) and |¥e) are supposed to represent the exact ground-state wave
functions for the Hubbard model at U>>t (which contains states with d-sites)
and for the ¢{-J model (without d-sites), respectively. These are different wave
functions, but they are related by |¥) = exp [i8] |¥uy), where the factor
exp [iS] removes the contributions with d-sites from IY”HM) Hamiltonian and
wave function are hence closely linked. Working with H implies that E, is al-
ways determined by spin and density correlations in |¥yy), while working
with H.¢ means that, at least for ¢ = 0, E, is determined only by the spin corre-
lations in | ¥ ). Although for ¢ > 0 density correlations become important even
in |¥ ), they still do not involve d-sites. This stresses again the advantage of
an effective model.

Unfortunately the {-J model is not really significantly simpler than the Hub-
bard model itself. Its structure is simple, reflecting the local character of the
underlying Hubbard interaction. But it is precisely the absence of a more re-
strictive interaction that leads to complications. In particular, it implies that i)
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there is a macroscopic spin degeneracy, ii) even at U = « a single hole can
move, iii) virtual states involve only 2 particles. It is instructive to compare this
with the situation for a considerably simpler model, namely spinless fermions
with nearest-neighbour interaction[15-17]
(1.12) Byp= 2 (—t&" &+ Vi),
(R, R;)

Such a model may be used to describe ferro (or ferri)-magnetic electronic sys-
tems where, for example, the down-spin bands are filled and only an up-spin
band needs to be considered, as is the case of magnetite (Fe; 0,)[18]. The effec-
tive model for V = o is again given by (1.6a) where now the operator P projects
onto the subspace of states without particles at nearest-neighbour positions.
Hence P tests the entire neighbourhood of every site which is obviously much
more restrictive than (1.65). For the ground state on a hypercubic lattice in d
dimensions it is then easy to see that i) for » = 1/2 the particles assume a
checkerboard structure, i.e. there is only a twofold degeneracy; ii) for n < 1/2 it
takes at least 2d — 1 vacancies for motion to be possible at all; iii) for V>> ¢ inter-
mediate states involve 2d particles, and the form of the exchange term corre-
sponding to the spin-spin interaction in (1.9) is quite complicated. Although the
effective large-V model has a much more complicated form than H,;, we will lat-
er see that the physics involved is considerably simpler, since for d —» « the
Hartree approximation becomes exact. This is a direct consequence of the non-
Hubbard interaction.

The t-J model, (1.9), has been derived from the Hubbard model in the limit
J «<t. It may, however, also be viewed as an interesting new model with arbit-
rary J. For ¢t = 0 it corresponds to the Heisenberg model, which is quite well
understood. For J = 0 it deseribes hopping of holes and can be solved exaectly in
d =1, since in this case the holes correspond to moninteracting, spinless
fermions [19, 20]. For other dimensions, or even on a Bethe lattice, no exact sol-
utions of H, for thermodynamically relevant situations exist. The full {-J model
is then even more difficult and analytic investigations have to resort to limiting
cases, e.g. to d =1 (see Haldane’s lectures during this school) or to the dy-
namics of a single hole (see below), ete. In general, approximations have to be
employed. One possiblity is to make use of the simplifications that oeccur when
some parameter (e.g., the length of a spin S, the spin degeneracy N, the spatial
dimension d, etc.) is taken to be large (in fact, infinite). Investigations in such
limits may provide valuable insight into the fundamental properties of a system
even when this parameter is not large. Another possibility is to introduce new
constituents or composites of the original electrons. By «lumping» the (hopeful-
ly) essential physics into new entities, decoupling approximations are hoped to
be accurate enough to describe important aspects of the problem correctly. The
usual strategy is, therefore, to perform some approximation, compare with ex-
periment and, if consistent, go on (and only ask later why the approximation
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was good), and otherwise work out a new approximation scheme. This is a pure-
ly pragmatic approach, enforced by the complexity of quantum-mechanical
many-body systems.

1'5. Hole motion in the t-J model. — The spin exchange term in (1.9) may be
written as

(1.13a) H=J 2 &8,
(R;, R;)
Qz Qz 1 o+ Q- O~ Qg+
(1.13b) = > (188 + ST, (5 87 + 5878 )].
(R0, R;) 2

The first term in (1.13b) describes Ising spins, while the second contains the
spin-flip terms. In the {-J model one has J, = J, . However, in the limit of large
spin S or large dimensions d (see below) the spin-flip terms disappear, which ef-
fectively corresponds to J, = 0 (indeed, for the Heisenberg model both limits
lead to the classical case[21]). Neglecting quantum spin fluctuations, there are
three basic types of spin configurations possible for the ¢-J model:

1) antiferromagnetic, i.e. Néel (N), for T, &-t<J and §<<1in d = 3;

2) random (R), for T>>¢é-t,J such that all spin configurations appear
with the same probability;

3) ferromagnetic (F), for T = 0, J = 0 and a single hole; this is the Nagao-
ka state[22], i.e. the saturated ferromagnet. For a finite concentration of holes,
8> 0, the stability of the ferromagnetic state is far from clear (see below).

The effects of spin fluctuations have, for example, been considered by
KANE, LEE and READ[23] and DaGorTO €t al. [24].

To leading order in ¢ hole-hole correlations may be expected to be negligibly
small. In this case the simplest, nontrivial problem is to study the behaviour of
a single hole in a given spin background and calculate quantities such as the
density of states (DOS) N(E), the spectral function g, (F), the conductivity o(w),
ete. (For concise summaries of the results obtained so far see, for example, the
introductory sections of the articles by ELSER, HUSE, SHRAIMAN and SIG-
GIA[25] and L1u and MANOUSAKIS[26].) This restricted problem is still physical-
ly relevant, since single-particle excitations in magnetic insulators can actually
be studied by photoemission and inverse-photoemission spectroscopy. It should
be noted, however, that, with the exception of the ferromagnetic background,
none of the above quantities can be calculated exactly in 1 < d < . One of the
problems is that the dynamics of a hole and the structure of the spin background
are not independent aspects, but are self-consistently linked: the spin back-
ground determines the motion of the vacancy, which in turn affects this back-
ground. The latter effect is rather subtle. For example, on the basis of a semi-
classical analysis SHRAIMAN and S1GGIA[27] found that the motion of a vacancy
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Fig. 1.2. - Three circulations are necessary for a hole to restore the Néel configuration on
a square.

in a quantum antiferromagnet generates a transverse distortion of the back-
ground spins with dipolar symmetry. This long-range distortion may be viewed
as a «twist» in the direction of the staggered order parameter of the spin back-
ground. It leads to a dipolar backflow of magnetization in close analogy to the
roton excitation in superfluid ‘He.

On an approximate level the self-consistency between the vacancy motion
and the structure of the spin background may be decoupled. In the following
the hole dynamics will, therefore, be investigated for a given background (e.g.,
a Néel state). We first consider the hole dynamics in the extreme limit U = o,
i.e. J = 0. Even this restricted problem cannot be solved exactly. The reason
for the difficulty is that the motion of the hole scrambles up the spins! Indeed, a
hole is not a simple Bloch state, and thus its motion leads to a complicated
many-body problem. This is illustrated in fig. 1.2 for a hole in a Néel back-
ground on a square lattice. The hole has to circulate around a square three
times, i.e. has to hop 12 times, to restore the spin background. Any motion of a
hole, therefore, produces a «string» of flipped spins along its path. By contrast,
in the ferromagnetic background the hole is effectively free.

To calculate the DOS of a hole for a fixed spin configuration we need to know
its single-particle Green function

(L.14) G5 @) = Z(Xlei —=—.1X),
- Hy
which is the probability amplitude for the hopping from R; to R;. Here z is the
complex frequency and |X) describes the spin configuration (here X = N, F, R).
The spectral function and the DOS are then given by
(1.15a) X = - L ImGF(w+i0%),
(1.15b) NX(w) = pE(w).
As shown by NAGAOKA([22], this Green function may be written as

where Af ,, is the number of distinct paths of a hole from R; to R;, consisting of n
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Fig. 1.3. — Self-retracing path.

steps, which leave |X) unchanged (except for R; and R; themselves, of course).
The calculation of (1.16) hence requires the investigation of «background-
restoring paths». We first consider the case i = j, i.e. when the hole returns to
its starting point.

In a ferromagnetic background every path is background restoring. Up to a
phase factor in the case of odd %, a hole, therefore, shows Jree-particle be-
haviour and the DOS is given by

1.17) NF(w) = N(w),

where N(w) is the free DOS. By contrast, for the Néel and random background
and general » the calculation of A , is not possible, because the contribution of
loops is too complicated. Consequently, BRINKMAN and RICE [28] introduced an
approximation in which loops are neglected altogether. In this «retraceable-
path approximation» (rpa) a hole moves into the spin background and returns to
its starting point by exactly retracing its path as shown in fig. 1.3. These paths
are naturally background restoring for all spin configurations. Hence the rpa
becomes exact in d = 1 and on a Bethe lattice where loops do not exist by con-
struction. Within the rpa the local Green function is found to be given by

1 o(Z —2)— Z[w? - 4Z — 1)t2]/2

rpa = =
(1.18) Gl‘l (Cl)) 2 Z2t2 _ CU2

’

where Z is the number of nearest neighbours (coordination number); this imme-
diately yields N™ (w). A comparison with a moment expansion [28] of the DOS
shows that the rpa is particularly accurate for a Néel background. In fact, in
this case the contribution of loops is strongly suppressed by the requirement of
background conservation. The leading correction to the rpa enters only at order
(t/w)"? since on the smallest loop (a square as shown in fig. 1.2) the hole must
circulate three times to restore the configuration (see below). For the condue-
tivity of a hole in the Néel background and, in particular, other backgrounds
where loops are important, the rpa is less satisfactory. The main disadvantages
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of the rpa are that i) the results do not depend on the spin background at all, i)
there is no Hall effect or magnetoresistance, iii) the conducticity ¢(w) does not
fulfil the f~sum rule

-

2,2
(1.19) ] f dwRea(w) = — &Va‘l‘— (H,),
where (H,) = (H)/d is the average kinetic energy in one direction a, with a and
V as the lattice constant and total volume, respectively.

The conductivity o(w) in (1.19) is given by the Kubo formula

© B
(1.20) a(w) = % j dt f dz(j,(0)7,(t + i7)), exp[iwt],
¢ 0
where j, is the current operator in a specific direction a (|a| =1)
121) 7.(0) = —ieat R}: ey aGiyo = E oG o)

and (...}, is the thermal average over all single hole states. The latter can again
be expressed as a sum over closed paths. RICE and ZHANG [29] showed that, for
a Néel (N) background, at T = 0 the rpa yields

2,2:2 NN(w — wy)
(1.22) ReoN(w) = 2"9‘;” e,

where «, corresponds to the lower band edge of N N(w). So far we only consid-
ered the case J = 0, where spins are completely decoupled. We now include the
antiferromagnetic spin exchange between nearest-neighbour spins. As a first
step we take J, >0, J, =0 in (1.13) («Ising limit»)[23,30]; spin flips, i.e. quan-
tum fluctuations, are, therefore, still neglected. As already mentioned, the mo-
tion of a vacancy in an otherwise perfect Néel background leads to a «string» of
overturned spins. (In fact, it is more appropriate to speak of a d-dimensional
«tube» of diameter twice the lattice spacing a.) This obstructs the hole motion
since it produces intermediate states of higher energy. Let us assume the mo-
tion of the hole to be such that the corresponding tube never intersects with it-
self (this rules out any loops, i.e. the hole moves only on self-retracing paths;
furthermore, no segment of this path is allowed to run parallel to itself at a dis-
tance less than 2a). As pointed out by BULAEVSKII et al. [9] the motion is then a
strictly one-dimensional problem. In particular, the energy of the tube is pro-
portional to its length, and the hole moves in a linear potential. It is well known
that in this case the bound states are described by Airy functions and hence the
discrete energy levels are proportional to #(J,/t)**[9]. This implies «confine-
ment», i.e. localization of a vacancy at its individual origin, and the correspond-
ing energy band Ey, (k) is dispersionless. However, TRUGMAN [31] showed that
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f

Fig. 1.4. — Trugman path[31] for a hole in an antiferromagnet.

even in the Ising limit there exist possibilities for a hole to move such that its
energy is not proportional to the length of its path. Namely, when a hole moves
around a closed path twice except for the last two steps, it will find itself trans-
lated by two lattice spacings, with the background completely restored. In par-
ticular, for the motion around a square (see fig. 1.2) this means that after 1 +
+ 1/2 circulations the hole has effectively moved across the diagonal, this state
having the same energy as the initial one. The hole can, therefore, propagate by
performing a spiraling motion as shown in fig. 1.4. This leads to a finite (but
small) band width of the hole eigenstates and hence to a finite mobility of the
holes.

In the realistic case J, =J, > 0 the quantum spin fluetuations will sponta-
neously flip, <.e. <heal», the unfavourable string states (or at least parts of a
string), and hence vacancies are naturally expected to be mobile. Coherent ex-
citations of the vacancy are then possible which show up in the hole Green func-
tion. Indeed, sharp peaks in the spectral function g4 (w) at certain momenta k
were found in several approaches[23,24,26,31,32]. Their positions as a funec-
tion of w determine the hole band, from which one obtains the effective mass of
the quasi-particles.

We saw that analytic investigations of the hole motion in terms of the ¢-J
model are only possible under certain approximations, e.g. the retraceable-path
approximation, the neglect of quantum spin fluctuations (Ising limit, J, = 0)
and the assumption of a string with a linear potential. An assessment of the val-
idity and reliability of these approximations is not a priori possible, and hence
it is not clear how one should go on to improve them systematically. Now, in the
most ideal situation it is possible to identify a small, external parameter which
controls an approximation systematically. Fortunately this is the case in our
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problem: the small parameter turns out to be 1/d, where d is the number of spa-
tial dimensions. We will see that all three approximations mentioned above be-
come exact for d — ®, i.e. 1/d — 0, and hence can be derived and improved sys-
tematically by an expansion in a single small parameter.

1'6. The limit d —  for itinerant quantum-mechanical lattice models. — In
a perfectly crystalline system every lattice site has the same number of nearest
neighbours Z. In three dimensions (d = 3) one has Z = 6 for a simple cubic lat-
tice (Z = 2d for a hypercubic lattice in general dimensions d), Z = 8 for a b.c.c.
lattice and Z = 12 for an fec.c. lattice. The dimensionality of a lattice system is
directly described by the number Z, rather than by the somewhat more abstract
«number of dimensions d». Since Z ~ @#(10) is already quite large in d = 8, such
that 1/Z is rather small, it is only natural and in the general spirit of theoretical
physics to consider the extreme limit Z — « first, and then use 1/Z as a small
expansion parameter to reach finite Z.

In the case of classical spin models (e.g., Ising, Heisenberg) the Z — « limit
is very well known (see, for example, ref.[33]). It leads to the results of the
Weiss molecular-field theory and may be viewed as the prototypical method for
constructing a mean-field theory (MFT). In the limit Z — o the coupling par-
ameter J in (1.13) has to be rescaled as

J*
(1.23) J— 7 * = const,
for the energy density to remain finite. A

It is natural to ask whether the limit Z — « can also be employed in the case
of lattice models with itinerant, quantum-mechanical degrees of freedom, such
as the Hubbard model, (1.13), and whether this is again a useful limit. This
question was recently addressed by METZNER and VOLLHARDT[34]. The main
question is whether the energy parameters in the Hubbard model can be scaled
in such a way that the model remains nontrivial in the limit Z — «. By «non-
trivial> we mean that both Hy, and Hj stay finite, such that the competition be-
tween these terms, expressed by [Hyn,, Hy] # 0, remains. (Note: it is not guar-
anteed that such a scaling exists at all; for example, in the well-known approach
where the spin degree of freedom in the Hubbard model, (1.4b), is allowed to
take arbitrary values (¢ =1, ..., N), the strict N — « limit always leads to the

INd

INd

Fig. 1.5. - Contribution to the irreducible self-energy for the Hubbard model in second or-
der in U, and its collapse in the limit d — .
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trivial atomic limit—hence there exists no scaling in this case for which Hy,
and Hy remain finite [35].) For the Hubbard model a nontrivial Z — o limit can
indeed be found [34]. The Hubbard interaction, (1.8b), is purely local and inde-
pendent of its surrounding; hence it is independent of the spatial dimension and
U need not scale with Z at all. On the other hand, for a hypercubic lattice with
unit lattice spacing, the kinetic energy has a dispersion

d d— @
(1.24) e = —2t D, cosk; ~ OVd),
i=1

which in the limit d —» «, and for randomly chosen momentum k, is of order
t\/ﬁ (since cos k; e [ — 1, 1]) according to the law of large numbers. Hence for the
kinetic energy E\i, = 2, ¢, to remain finite in d = o the only possible scal-
ing of ¢ is[34] ko

t*
Vvad '

The central-limit theorér’n tells us furthermore that the DOS, which is the prob-
ability distribution of the quantity E = ¢, for a random choice of k, is given by a
Gaussian

(1.25) t— t* = const.

(1.26) N.(E) = —2 exp[—l(ﬁ)z].

Vert* 2\t*

The scaling of the nearest-neighbour hopping matrix element ¢ in (1.25) implies
that the corresponding one-particle Green function («propagator») of the nonin-
teracting system has the same d-dependence, i. e. for R;, R; at nearest-neigh-
bour positions we have([36,37]

(1.27) G, ~ L.

Vd

It is the property (1.27) which is the origin of all simplifications arising in
the limit d — . In particular, it implies the collapse of all connected, irre-
ducible perturbation-theoretical diagrams in position space[34,36,37). This is
illustrated in fig. 1.5, where a contribution in 2nd-order perturbation theory to
the irreducible self-energy, ¥, is shown. Usually X will only enter in a sum
over R; and R;. Then it becomes apparent that ¥ §j2) is only of order 1 /\/ﬁ small,
unless ¢ = j. Namely, for nearest-neighbour sites R;, R; the three lines, corre-
sponding to G, ,, contribute a factor 1/d3/2, while the sum over R; relative to R;
contributes a factor d. Only for i = j is the value of £ independent of d. Hence
in the limit d — « the diagram on the Lh.s. of fig. 1.5 is equivalent to the «col-
lapsed», petal-shaped diagram on the r.h.s. provided i = j; otherwise it is zero.
More generally, any two vertices which are connected by more than two separ-
ate paths will collapse onto the same site. (Here a «path» is any sequence of
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lines in a diagram; they are «separate» when they have no lines in common.) In
particular, the external vertices of any irreducible self-energy diagram are al-
ways connected by three separate paths and hence always collapse. As shown
by METZNER and VOLLHARDT[34] and MULLER-HARTMANN [36], the full, irre-
ducible self-energy then becomes a purely local quantity:

(1.284) 0@ 2724 ()85 .

The Fourier transform of X; , is hence seen to become momentum-indepen-
dent:

(1.28b) 3.k, ) 2" 3, ().

This leads to tremendous simplifications in all many-body calculations for the
Hubbard model and related models. Indeed, in the limit d — « the Hubbard
model reduces to a nontrivial (and yet unsolved) effective single-site problem in
a fermionic bath[38-41], which will be addressed in the last section.

It is interesting to note that in many respects our real, three-dimensional
world seems to be already a high-dimensional world. In particular, a large num-
ber of standard approximations, which are routinely used to make contact with
experiments, are only correct in d = ©. For a more comprehensive presenta-
tion I refer to short reviews by MULLER-HARTMANN [41] and myself[42] and, in
particular, to my recent lecture notes([43] on the large-d limit, of which parts
are also used here.

1'7. Hole motion in the t-J model: exact results in the d = o limit. — In the
limit d — o the problem of a single vacancy in a quantum antiferromagnet, as
described by the t-J model, can be solved exactly, and I will only summarize the
results (for details, see[44] and [45], and ref.[43]).

1) In d = » quantum spin fluctuations, i.e. the spin-flip contributions in
(1.13b), vanish (J, =0) and the quantum antiferromagnet becomes a Néel
state.

2) As explained in subsect. 14, it takes three circulations, i.e. 12 hop-
ping processes, for a hole moving around a square to restore the Néel order (see
fig. 1.2). For d — o, using (1.25), this process is of order (1/Vd)*? xd?=1/d*
small (the factor d? comes from the number of possibilities to embed a square in
d dimensions). Loops are, therefore, suppressed and the hole can only move on
self-retracing paths: in d = « the retraceable-path approximation (rpa)[28] be-
comes exact for the Néel state[44], and the Green function is given by

(1.29) GN(2) = == [z — VP — 4t7]0, .

2t*2

The DOS has the shape of a half-ellipse. Since Gg is purely local, its Fourier
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Fig. 1.6. - a) Reo(w) vs. w/t* for a Néel background in d < ® at various temperatures
T=1/kgB: - B=38,----- g=6, — — - =12, — B = «; b) frequency-dependent
conductivity as measured by THoMAS et al.[46] on YBa, CuzO;_;.

transform, and hence the spectral function p; (w), is k-independent—there exist
no quasi-particle peaks.

3) The full rpa expression for Gig‘ , (1.18), can be derived systematically
by a self-consistent 1/d expansion around d = o [45].

4) By using the DOS obtained from (1.29) even in finite dimensions, the
d = o limit may be employed to derive a self-consistent approximation for o(w)
in d < «, which—in contrast to the rpa—fulfills the f~sum rule (1.19)[44]. In
particular, for U = © and T = 0 one finds from (1.22)

N()= e [t* 1
(1.30) Rec" (w) Vd o 1

This result is shown in fig. 1.6a) together with numerical results for 7 > 0. A
qualitatively rather similar frequency dependence of o(w), shown in fig. 1.6b),
has been observed in some high-T, materials, e.g. YBa,CuzOq_;, by THOMAS et
al. [46] using reflectivity measurements (for a very readable introduction
see[47]). The structure at low » that emerges as T is approached from above,
cannot, of course, be described within the theory presented above.

5) For J > 0 the assumption of a linear potential, generated by the string
of overturned spins [9, 23], is exact up to order 1 /d2 , since in d = » loops do not
contribute and a string does not interact with itself (both effects come in at or-
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der 1/d?). The exact expression for the local propagator in d = » is[45]

J
(1.31) G (w) = — -t!; 7 _52) ,

where v = —2wJ*, 2 = 4t* /J* and J,(2) are Bessel functions of the first kind.
The poles of (1.31) are found at discrete energies

J*

(1.32) E,= —ant*(Zt*

2/3

) + const ,

where the a, are the zeros of the Airy function Ai(z). It is interesting to note
that (1.32) agrees exactly with the result from a continuum approximation
based on a Schrédinger equation with a linear potential V = rJ* /2, where r is
the length of the string[9]. The DOS corresponding to (1.81) is very different
from that for J* = 0, i.e. is given by a series of ¢-peaks. For T = 0 the conduc-
tivity o(w) is again given by (1.22), with w, replaced by w, — J* /2, and hence is
also given by a series of &-peaks. The d.c. conductivity is then always zero for fi-
nite J*, since Trugman paths[31] (fig. 1.4) contribute only at higher orders in
1/d.

6) The inclusion of local disorder to the model, which still allows an exact
solution in d = «, gives rise to new effects, too[45). As expected, the é-peaks
are broadened by the disorder. For T — 0, very small J* and weak disorder and
for not too small w, ¢(w) reduces to the result shown in fig. 1.6a), but has more
or less pronounced «wiggles». Interestingly enough, one finds that the inclu-
sion of weak disorder favours the d.c. conductivity since it acts like an addition-
al kinetic energy (fig. 1.7).
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Fig. 1.7. - D.c. conductvity vs. disorder strength of a hole in the ¢-J model with local disor-
der in d = w0 [45], J* /t* =1, kg T/t* = 0.1.
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One of the main advantages of the d — « limit is that it allows one to include
important physical effects (e.g., disorder, next-nearest-neighbour hopping,
ete.), which are absent in the original ¢-J model, in a systematic and consistent
way.

2. — Projected wave functions.

Variational wave functions are among the very few theoretical tools that
allow straightforward, conceptually simple investigations of interacting many-
body systems. They are used to describe correlations among quantum-mechani-
cal objects in an approximate, but explicit and physieally intuitive, manner.
They are particularly valuable in situations where standard perturbation the-
ory fails or is not tractable. The problems in which variational wave functions
have been employed include such diverse examples as rotons in superfluid ‘He,
the plasma state of electrons in metals, the quantum liquids *He and ‘He, nu-
clear physies, superconductivity and the (fractional) quantum Hall effect. Of
these the BCS wave function is certainly the most famous. Variational wave
functions have also been used to study possible magnetic order of lattice elec-
trons, i.e. ferromagnetism and antiferromagnetism. They have recently re-
ceived a particular attention in the study of heavy fermions and high-T,
superconductivity [48].

The general strategy in this approach is to construct an explicit wave func-
tion of the form

2.1) | P ) = C| Fo),

where |¥,) is a simple one-particle starting wave function on which a projec-
tion, or «correlation» operator C(%, ..., A,) acts. The latter depends on varia-
tional parameters A; and has to describe the microscopic interaction between
the particles in a more or less detailed way. This wave function is then used to
calculate the expectation value of some operator @

- lp‘var & ~T‘V&l’
z2) (@)= QT'“L—Q :

In particular, by calculating and minimizing the ground-state energy E.,,, =
= (H), where H is the Hamiltonian, the variational parameters 2; contained in C
(and perhaps also in |¥,)) can be determined. These parameters are used to
suppress those configurations in | ¥'y) which for a given interaction strength are
energetically unfavourable. The variational principle guarantees that E,, pro-
vides a rigorous upper bound for the exact ground-state energy.

2'1. The Gutzwiller wave function. — For the Hubbard model, (1.4), the sim-
plest variational wave function of the form (2.1) is the so-called Gutzwiller wave

4 - Rendiconti S.IF. - CXXI
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function (GWF)[6,49], with C = exp[xH;],
2.3a) |¥)=gP |FS),
(2.3b) =1;I[1—(1—9)Di]IFS)'

Here D = H; /U = Z D; is the number operator for doubly occupied sites, A =

=1Ing/Uand |¥,) is the Fermi sea (= |FS)). Hence C globally reduces the ampli-
tude of those spin configurations in |¥,) with too many doubly occupied sites.
The limit g = 1 -corresponds to'the noninteracting case, while g — 0, implying
(D) — 0, corresponds to the limit I/ — . Indeed, for g — 0, g” reduces exactly
to the projection operator P, (1.6b), which eliminates all configurations with d-
sites. While in the derivation of the ¢-J model in subsect. 1'3 the projection was
applied to the Hamiltonian itself, it appears here in conjunction with a wave
function, which is used to calculate expectation values. The fully projected
Gutzwiller wave function

24) |¥e) = P|FS)

is a wave function from the restricted Hilbert space % ™ where sites are only
singly occupied. However, it is no longer a variational wave function, since it
no longer contains free parameters. Hence the correlations in (2.4) are com-
pletely determined by those already contained in |FS) and cannot be further
controlled. On the other hand, by replacing |FS) with a more general starting
wave function this problem may be avoided. Even states with broken symme-
try can be described, e.g., by choosing an antiferromagnetic Hartree-Fock
wave function («spin density wave»)

2.50) |SDW) = ,[[ [y G, + o0 Gi'vq, 01 10),

where @ is half a reciprocal-lattice vector and |0) is the vacuum, or a BCS wave
function

(2.5b) |BCS) = I’:I[uk +vedgy @2y 110)

to obtain resonating-valence bond states[50,51] (for a discussion of the latter
see ref.[2]).

Exact analytic evaluations in terms of Gutzwiller-type wave functions have
recently become possible in d =1 and d = © due to techniques developed by
METZNER and the author[34,52] (see also subsect. 2'4). These wave functions
are now quite well understood [53]. In particular, for » = 1 and U>>t the GWF,
(2.3), in d =1 leads to the ground-state energy density [52]

z2 42 1
Ulnﬁ’

2.6) Bg= —(i)

T
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where U = U/8|e,|, with ¢o as the energy of the noninteracting particles.
Hence the exact result, E ~ —t2 /U, obtained from 2nd-order perturbation the-
ory (see sect. 1), is found to be multiplied by a nonanalytic factor (this is the
case even in dimensions d > 1[54]); thus the ground-state energy E for the
Hubbard model is not very good, as first noted by KaprLaN, HORSCH and
FULDE [55]. Does this automatically imply that |¥g) is a bad wave function in
the strong-coupling limit? The answer is quite subtle: while it is true that the
wave function is not very good for the Hubbard model at U >>t, it is neverthe-
less an excellent wave function in d = 1 for the effective model at large U, i.e.
the {-J model, where d-sites have been projected out. This can be seen from the
spin-spin correlation function CS(n, g), with j = |R; |, which was evaluated ex-
actly in terms of the GWF in d = 1 by GEBHARD and VOLLHARDT[56]. For n = 1,
g = 0 one finds

Si(rj) i== (=1)

@27 CEo=(-1y i %

where Si(xj) is the sine integral. The asymptotic behaviour implies a logarith-
mic divergence at momentum @, i.e. is of antiferromagnetic origin. Comparison
with the exact result for the spin correlation function for the Heisenberg model
in the case of j = 1, 2 and for large j, where [57] C® ~ (—1)7 j 7 (In 5)'/2, shows
that |¥'& ) yields excellent results in d = 1[56]. The same is true for hole-hole
correlations in the limit <1 and U = ». Subsequently HALDANE[58] and
SHASTRY [69] recognized that (2.7) is, in fact, the exact result for a spin-1/2
Heisenberg model with an antiferromagnetic exchange coupling that falls off as
1/42, and that | 7§ ) is the exact ground-state wave function for this model. This
peculiar exchange coupling leads to a partial frustration of the spin orientation,
and hence the antiferromagnetic correlations are weaker than in the original
Heisenberg model. Recently KURAMOTO and Yokovama[60] showed that |¥'&)
is exact even for n < 1, i.e. for the t-J model with t; ~ 1/|¢ — j|® at t = J. The in-
vestigation of the GWF thus led, and continues to lead [61,62], to very interest-
ing, new developments in the field of strongly correlated fermions.

We may now understand why the GWF, (2.3), which does not lead to a good
energy for the Hubbard model at large but finite U, can nevertheless be an ex-
cellent wave function for the Heisenberg model[53]. Using the notation of
(1.11) we have for n =1

(2.8@) |WHM>= 'W‘eff>+ %ﬁml?m)"‘ (9(t2/U2),

where « is some constant. | ¥'yy ) has precisely one d-site, with one e-site next
to it. By contrast, the GWF for g — 0 has the form

(2.8b) |7a(@) = |FE)+ g0 |TP)+ Ogd),

where |#7V) are the wave functions in |FS) with a single d-site (and one e-site
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somewhere), and g, = (U In U)"!. The spatial correlation between d- and e-
sites, described by the second terms in (2.8a), (2.8b), is seen to be strict in
(2.8a), but is quite unspecific in (2.8b). But it is precisely | ¥ ) which deter-
mines the ground-state energy of the Hubbard model at large but finite
U (|7 &) only yields zero energy). The logarithmic correction in (2.6) is, there-
fore, a consequence of the insufficient density correlations in | ¥ )[583,55]. On
the other hand, the calculation of the ground-state energy via the effective
model using (2.8b) only involves |¥'&), i.e. is determined by the spin correla-
tions which were found to be excellent in d = 1. Why are they so good? It seems
that this is mainly a consequence of the spatial constraints caused by the low di-
mensionality. In d = 1 spatial correlations are even pronounced in the Fermi
gas and the projector P enhances them further. In higher dimensions the (spin)
correlations in the GWF become weaker and weaker. Nevertheless, the main
virtue of the GWF is its simplicity and explicitness. It is widely used in analyti-
cal and numerical treatments since it provides a straightforward starting point
for investigations in the large-U limit. For example, the (in)stability of the Na-
gaoka state may be investigated by means of a fully projected wave function
|78 ), (24), where |FS) is replaced by a ferromagnetic state with a single
flipped spin. In this way SHASTRY, KRISHNAMURTHY and ANDERSON [63] ob-
tained a value of ¢ = 0.49 as an upper limit on the critical hole concentration
3. above which the Nagaoka state is unstable on a square lattice. This approach
has since been considerably refined. In particular, extensive numerical studies
by voN DER LINDEN and EDWARDS[64] led to an improved estimate of &P =
= 0.29. It appears that even this value can still be lowered considerably [65], such
that the region of stability of the Nagaoka state becomes very small.

22. The Gutzwiller approximation. — Besides introducing the wave function
(2.3), GUTZWILLER [6,49] constructed a nonperturbative approximation scheme
that allowed him to obtain an explicit expression for the ground-state energy of
the Hubbard model in terms of (2.3). We will later see that this «Gutzwiller ap-
proximation» (GA), when used to calculate matrix elements in terms of the
GWF, yields the exact result for d = «. The idea behind the GA may be easily
understood [66] and will be illustrated below by calculating the norm (¥'¢ | ¥¢).
Working in configuration space the Fermi sea can be written as

2.9) |FS) = % {;} AiD [0,

where |¥;)) is a spin configuration with D doubly occupied sites, with A, as the
corresponding amplitude. The sum extends over the whole set {ip} of different
configurations with the same D and over all D. For a system with L lattice sites
and N, c-electrons, the number Nj, of different configurations in {ip} is simply
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given by
R / S
2.10) No= 707z, D

where L,=N,-Dand E=L—-N; -N| + D are the number of singly occu-
pied and empty sites, respectively. Since D is an eigenoperator of |¥'; ), the
norm of |¥¢) takes the form

2.11) (Fe|¥e)= %: 9?0 {iE} |4, 1.

If now |A,, |? is assumed td be independent of the specific spin configuration
(whereby spatial correlations are neglected), this quantity is given by the clas-
sical probability of finding any one of the possible spin configurations {ip} at
U=0, ie

@2.12) {Z} |A;,|12=Py P Ny,
0]

where P,(L, N,) = 1/[

] =nN:(1 — n, )%, with n, = N, /L. Hence (2.11) re-
duces to

L
N,

g

2.13) (¥o|Pe)=P1 P, %} 9’ Np.
In the thermodynamic limit the sum in (2.13) is dominated by its largest term
corresponding to a value D = D, where D is determined by (d = D/L)
dl-ny —mn, +d)
@.14) g% = UL
(n, —d)ny —d)

The result (2.14), obtained within the above «quasi-chemical approximation», is
just the law of mass action, where g2 (instead of the Boltzmann factor) regulates
the dynamical equilibrium between the «concentrations» [n{ — d] and [n| — d]
of singly occupied sites, on one side of this «chemical reaction», and that of
doubly occupied sites, [d], and holes, [1 —~n1 — % + d], on the other side. (It
is interesting to note that (2.14), with g2 replaced by exp[ —gU], is indeed an ex-
act result in the case of the Hubbard model with infinite-range hopping [67].)
Equation (2.14) uniquely relates d and g, such that g may be replaced by the
quantity d. The calculation of the expectation values of the kinetic and the in-
teraction energy of the Hubbard model proceeds similarly[66]. The ground-
state energy density as a function of the variational parameter d(g) is then
found as

(2.15) Eld(g)l/L = 2 ¢.(d,ny,n e, + Ud,

which has to be minimized with respect to d. Here g9, - is the energy of noninter-
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acting o-electrons and ¢ <1 is an explicit function of d and n,, which may be
viewed as a reduction factor of the hopping amplitude due to correlations; for
ny =n, onehasq,=q¢=2(1-8-2d)(Vd+8+ VA2 /(1 - é2), where 6 = 1 —
— n. BRINKMAN and RICE [68] showed that in the special case n, = 1/2 (half-filled
band) the minimization of (2.15) yields

(2.160) g=1-T7?,
(2.16b) d= % 1-1y,
2.16¢) E/L=—|e|(1-T2,

where U = U/8|¢y | and ¢ =¢o1 + ¢, ; . Equation (2.16¢) says that the energy
increases with U and vanishes at a finite critical value U, = 8¢, |, since the
density of doubly occupied sites d (and hence the reduction factor g) vanishes at
this point. The fact that B\, Ey— 0 for U — U, means that the particles be-
come localized, such that a charge current can no longer flow. So the GA, when
used in conjunction with the GWF, describes a metal-insulator transition at a
finite interaction strength («Brinkman-Rice transition»). This transition is due
to a correlation-induced band narrowing and hence describes a Mott-Hubbard
metal-insulator transition.

The Brinkman-Rice transition only occurs for =, =1/2; for n, = 1/2 the
quantities q and d, and hence E, are finite for all U < ® and only vanish in the
limit U — . Clearly, the transition to a localized state with E = 0 at a finite
U., found in the case % = 1, does not describe the entire physics. We already
know from sect. 1 that for U>>t the localized spins are coupled antiferro-
magnetically, which leads to a lowering of the energy £ =0 by an amount
Exr x —t2/U. This effect is not included in the GA, since spatial correlations
were explicitly neglected. (However, this approximation can be improved by
using the antiferromagnetic Hartree-Fock starting wave function |¥,) in
(2.3).) Of course, the magnetic coupling is an additional effect (after all, it is ob-
tained by 2nd-order perturbation theory from the localized state), i.e. is a con-
sequence of the underlying correlation effects which lead to the localized state in
the first place. Therefore, as long as one is not too close to U = U,, the overall
results of the GA are not invalidated by the appearance of magnetic coupling,
and give important insight into the correlation-induced approach to the local-
ized state. :

2'3. Connection to Fermi-liquid theory. — The fact that the results of the GA
describe a correlated, normal-state (i.e. paramagnetic) fermionic system allows
one to make contact with Landau’s Fermi-liquid theory [66,68]. For example, a
closer examination of the GA reveals that the «reduction factor» ¢ in (2.15) is, in
fact, the discontinuity of the momentum distribution =, at the Fermi level and
may thus be identified with the inverse effective-mass ratio (m* /m)~!. Since
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m* /m=¢q '< » for U< U,, the system is a Fermi liquid, i.e. is a metal, in
this regime. At U = U, the effective mass diverges and the system becomes an
insulator. This conclusion confirms the reasoning in subsect. 22, which was
based on the vanishing of d at U = U.,.

One can also use (2.15) to calculate the spin susceptibility y, and compres-
sibility x within the GA[66,68). For n, =1/2, where m* /m =1+ (1/3)F} =
=1/(1 — U?), the corresponding Fermi-liquid parameters are found as

1
2.17a Foe —14 ——r
( ) 0 1+ 07

1
(2.17b) F= ——— — y
T a-o2
s 302
2.17c) F = =

Expanding (2.17) to second order in U, we find F¢(U) = —2U + 8U?, F§(U) =
= 2U + 3U%. This clearly shows the importance of two-particle correlation ef-
fects, which first enter at order UZ2: they characteristically change the linear U
behaviour suggested by Hartree-Fock theory. For U — U,, F¢ levels off and
saturates at = —3/4, while F§ increases much stronger than linearly and
eventually diverges. Qualitatively this behaviour is identical to the one found
within self-consistent 2nd-order perturbation theory for the Hubbard model in
d = o [41]. Furthermore, for U — U, the Wilson ratio

]
(2.18) Xs/Xs — 1

= t.
m*m =~ 1+ T — cons

So the strong increase of y, as a function of U for U — U, is mainly due to the
strong increase of m* /m and not due to an incipient ferromagnetic instability,
which would demand F§ — —1.

It was first pointed out by ANDERSON and BRINKMAN [69], and discussed in
detail by VOLLHARDT[66], that the behaviour expressed by (2.17) and (2.18) is
indeed observed in normal liquid ®He, which is an isotropic, strongly correlated
fermionic system of high density (the ®He atom behaves as a spin-1/2 fermion
due to the spin of the nucleus!). Namely, the effective mass m* and the spin
susceptibility y, are strongly enhanced, while the compressibility « is strongly
reduced. Normal liquid ®He has, therefore, been called an «almost-localized»
Fermi liquid [66, 69, 70].

A generalization of the above model to a lattice gas («cell») model, where the
energy expression (2.15) is supplemented by a pressure term so that it allows
for a variable density n, was developed by VOLLHARDT, WOLFLE and ANDER-
SON [71] and applied to *He. In the case that the underlying lattice is taken as in-
compressible one finds that the particle density actually tends towards half-fil-
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ling as the localization transition is approached (this was tacitly assumed in the
above model). In this limit the compressibility now stays finite. If the lattice is
given a finite compressibility itself (after all, even the solid is compressible),
then the spurious localization transition disappears altogether. Thereby the
(unphysical) singular features of the result of the model are removed, while the
essential dependences of m* and F§, F§ on pressure, which are in good agree-
ment with experiment, remain[71]. In particular, the high-magnetic-field be-
haviour is no longer singular, i.e. the magnetization m(H) increases smooth-
ly [72], but stronger than found in the experiment[73]. The static properties are
nevertheless still determined by the «almost-localized» character of the
system. ‘

To model the entropy RICE et al [74] and SEILER et al.[75] extended the
Gutzwiller result (2.15) to finite temperatures T, using essentially phenomeno-
logical arguments. Within the model considered, there are two important tem-
perature regimes: i) for T<< Ty the system is a Fermi liquid, while ii) for
Ty <T=<U it shows classical behaviour, but is still strongly correlated. In the
second temperature regime the entropy of the almost-localized fermions (d = 0)
is bounded by kg In 2 per ®He atom, because the lattice sites are essentially
singly occupied. However, due to the large effective mass m* /m of the parti-
cles the entropy increases sharply at low temperatures

2.19) S(T) =T, T<Ty,

where y « m* /m. Hence the entropy reaches the bound ks In 2 already at some
low temperature T, << Ty, such that at higher temperatures Ty < T < U its in-
crease must go on much slower. Consequently there must be a kink in $(T) and
in the specific heat ¢,(T) at T = T,,. This feature, which is indeed observed in
liquid ®*He at about 200 mK[76], is even more pronounced in two-dimensional
films of 3He at certain filling fractions[77] and seems to be a natural conse-
quence of the almost-localized character of the particles.

2'4. Derivation of the Gutzwiller approximation in d = . — To evaluate the
expectation values (Hy,) and (H;) in terms of the GWF without using the GA,
we have to expand the product operator in (2.3b) as a sum. Since D, is a purely
local operator, the expectation value of an operator @ may be written as a sum
over different lattice sites only and takes the form

(2.20) (@)= §=)0 O (1 = g%,

where 1 — g2 < 1 is the expansion parameter. In the case of Hy;, and Hy the coef-
ficients @, are given by expressions like (D ...D; Yo,(D;, ...¢: &, ...D; ),
which now have to be evaluated in the noninteracting state (notation {...),). In
the two limits d = 1 and d = « they can be calculated explicitly [34,52]. This in-
volves a diagrammatic theory which, in fact, is identical with the usual many-
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body, Feynman-diagram perturbation theory for the Hubbard model (i.e. a ¢*
theory). The lines in a diagram correspond to the one-particle density matrix
99 - =(C €. )o, rather than the Green function G} .(w), and vertices correspond
to g2 — 1, rather than U. The important point is that in the limit d — ® the dis-
tance dependence of g , is identical to that of G} . (w), (1.27). Hence the simpli-
fications discussed in subsect. 1'5 for diagrams in terms of G, ,(w) occur here,
too. In particular we have the same collapse phenomenon: if two vertices are
connected by more than two separate paths they collapse, as shown in fig. 1.5.
At the same time an additional simplification occurs, which is due to the fact
that we are working with a ground-state variational wave function: there is no
dynamics involved! So the nontrivial problem that remains in the many-body
perturbation theory for the Hubbard model in d = «, namely the dynamics (ex-
pressed by the frequency dependence of G, ,(w)), is absent here: 94, , does not
depend on w at all. As a consequence, the irreducible self-energy 2y . (or,
rather, the diagrammatic quantity corresponding to X , in the present context)
not only obeys (1.28a), i.e. is a local quantity, but is even frequency-indepen-
dent. Using skeleton diagrams (i.e. fully dressed lines where self-energy inser-
tions are included) the self-energy X; , is then given by a sum of collapsed,
flower-shaped diagrams with m =1, 8, 5, ete. «petals» (see fig. 1.5 for m =
= 3)[34,78]. This sum is a closed, self-consistent equation for X; ,, which in prin-
ciple can be solved for arbitrary starting wave function |¥). In the simplest
case, i.e. that of the translational invariant GWF, (2.3), 24 o is translational in-
variant, too, and may easily be determined. For example, in the special case
n, =1/2 one finds X; , = 1 — g. This yields n, and d, which functionally depend
on X .. The ground-state energy E/L is then found to be given by (2.15), with
d = d(g), i.e. by the result obtained within the GA. So we discover that in the
limit d — « the Gutzwiller approximation yields the correct evaluation of ex-
pectation values calculated in terms of the Gutzwiller wave function[34,37].
Why? The answer lies in the large-d behaviour of the Fermi gas on which the
GWF is based: already for nearest neighbours is its density-density (or spin-
spin) correlation function of order 1/d small. This justifies the neglect of corre-
lations in d =  as assumed by the GA. It also shows that, in contrast to d = 1,
the GWF does not describe correlations adequately in high dimensions. A de-
tailed analysis of the correlation functions for large separations in dimensions
1 <d < » by vaN DONGEN et al [79] shows that the Brinkman-Rice transition
(t.e. the transition at a finite U,) only occurs in d = o, but not in any finite di-
mension. Indeed, finite orders of perturbation theory in 1/d do not remove the
transition. On the other hand, for d = 3 the results of the GA are found to be ex-
cellent if one is not too close to the transition [80]. Hence, in spite of the spuri-
ous transition, the results of the GA can be expected to be valuable even for fi-
nite-dimensional systems. This has been explicitly confirmed by its success in
the description of liquid *He outlined in the previous subsection.-

The equation for X;; , given by the sum of collapsed, flower-shaped diagrams
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becomes quite difficult to solve—or even untractable—when it comes to calcu-
lating with generalized Gutzwiller-correlated wave functions of the form

2.21) |¥e) =92 |¥),

where |¥) is a somewhat more refined starting wave function. That has to do
with the fact that, in spite of the considerable simplifications arising from the
diagrammatic collapse in d = «, diagrams do survive. GEBHARD [80] showed
that these problems vanish altogether when |¥,) in (2.21) is written in the
form

2.22) [¥o) =g~ Zrete |Fy),

where |¥,) is again an arbitrary, normalized one-particle wave function and
the u;, are explicit functions of g and the local densities 7;, = (¥ | %, | 7). The
operator in (2.22) corresponds to a gauge transformation by which the local
chemical potentials (i.e. the local fugacities) can be chosen such that all Hartree
bubbles disappear in d = «. With this reinterpretation all diagrammatic calcu-
lations remain identical to the earlier ones—only the vertices are given a new
value and lines now correspond to

2.23) G%,. = 94,.(1 = 85),

where now g5 , = 0, and hence X;; , = 0. Consequently, in d = © diagrams van-
ish completely and results are obtained without the calculation of a single graph.
So what remains in d = « at all? First of all one finds that the «law of mass ac-
tion», (2.14), is valid even locally and for arbitrary |¥,) (even for those with
long-range order). Secondly, the expectation value of the Hubbard Hamiltonian
(1.4) in terms of (2.21), (2.22) assumes a general form for arbitrary |§"0 ), ie.

2.24) Hy=-t 2 2V Va9, +U2 4,

(R;,R;) ¢

where d; = (D;) and g,, is given by g, in (2.15) with n, replaced by #;,. In the
simple, translationally invariant case |¥,) = |FS) the two wave functions | ¥,)
and |7,) are the same up to a trivial factor, and g¢;, = ¢;; thus (2.15) is
rederived.

The result (2.24) is identical with the saddle point solution of a slave-boson
approach to the Hubbard model introduced by KoTLIAR and RUCKENSTEIN [81]
(see sect. 3). In fact, one finds that in d = ® the general set of Gutzwiller-corre-
lated wave functions (2.21) with (2.22) reproduce the full set of static saddle
point equations of that approach. This provides a direct connection between two
seemingly different approaches. So the results of this slave-boson approach are
now known to obey the variational prineiple and to be valid for arbitrary |¥,),
i.e. not only for a paramagnetic or antiferromagnetic state[81]. Given an arbit-
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rary | ¥, ) the local densities 7;, are provided, too. This immediately leads to the
ground-state energy (H) in d = ». Finally we note that the simple «Gutzwiller
counting» of spin configurations described in subsect. 2'2 may be used for arbit-
rary GWFs, including those with long-range order, provided that the latter is
written in the form (2.22)[80]; of course, for |¥,) = |FS) this is unimpor-
tant.

The formalism may be extended to finite dimensions d < © by reversing the
collapse of diagrams (1/d expansion)[78,80]. In this way the large-d limit can
be employed to obtain accurate variational results even for low dimensions (d =
=1, 2). For this it is sometimes enough to simply insert the d-dimensional DOS
into the d = o result (whereby an infinite class of 1/d corrections is automati-
cally included), as will be discussed in the next subsection.

2'5. Projected wave functions for the periodic Anderson model. — The ap-
proach described above is equally applicable to any other Hubbard-type model,
e.g. the Anderson lattice model, which is referred to as the periodic Anderson
model (PAM). This model is used to investigate basic properties of heavy-
fermion and intermediate-valence systems. In its simplest form it is given by

(225) Hppy = 2 €M, +
k,o

+ 2 |egif + Lafal, + L ;(exp[ik-Ri]Ek’;fic+h. e,
R, o

2 VE

which describes a band of noninteracting conduction electrons (¢, ), that hy-
bridize via the matrix element V with static felectrons (ﬂ,); the latter interact
with each other by a Hubbard interaction and have a global energy <. In (2.25)
only an (unrealistic) twofold spin degeneracy has been assumed. The PAM is a
straightforward generalization of the original single-impurity Anderson model
(SIAM)[82] to a lattice of «impurities», i.e. localized f-electrons. It can be reob-
tained from (2.25) by restricting the sum over R; to a single site, e.g. R; =0,
such that f;, — f,. The SIAM is a model for an impurity in a metal which can de-
velop a magnetic moment. In the so-called Kondo limit, 7.e. for small hybridiza-
tion V, strong repulsion U and an ¢, level well below the Fermi energy Ey such
that ¢,< 0, ¢+ U > 0, a Schrieffer-Wolff transformation[14] of (2.25) leads to
the famous Kondo model (for details see ref.[3]). In this model the spin of the
conduction electrons at site R; = 0, Sy, interacts with the spin §™ of the mag-
netic impurity at R; = 0 via the exchange interaction term —2JS,-S™, where
J = V2/5f< 0. The scattering of conduction electrons by an impurity whose
spin can flip up and down, depending on the spin of the incoming conduction
electron, leads to a genuine many-body problem, where all electrons enter via
the Fermi distribution. Since J < 0, the conduction electrons and the impurity
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spin wish to align antiferromagnetically at low temperatures («Kondo singlet»).
Hence for T'<< T, where Tx = (W/2kg)exp[—1/|J|N(0)] is the «Kondo tem-
perature», the impurity spin has disappeared («Kondo screening»). Here W and
N(0) are the band width and the density of states at the Fermi energy of the
conduction electrons, respectively. The energy kg T'x corresponds to the binding
energy of the Kondo singlet. Hence, this singlet formation leads to a lowering of
the ground-state energy of the system by a nonanalytically small amount
kB TK .

For the periodic model, (2.25), RiCE and UEDA[83] and BRANDOW [84] intro-
duced a correlated wave function in direct analogy with the GWF for the Hub-
bard model as

(2.26a) | ¥pam) = 9 i | ¥'pam,0)»

where D/ refers to the double occupancy of f-electrons and
(2.265) 1#ea,0) = L1011+ 0, 75,6, [FS)

is the ground-state wave function of the PAM for U = 0. Here |cFS) is the Fer-
mi sea of conduction electrons and
2V,

(2.27 ag, =
! o m et (k= e + AT

is a measure of the hybridization strength V, (which is here taken to be k-de-
pendent for generality); ¢, is the dispersion of the c-electrons. The choice of the
wave function (2.26) is also inspired by the wave functions used in the case of
the single-impurity model [85,86]. Since the number of f-electrons is not con-
served, the suppression of double oecupancy would favour the transfer of f~elec-
trons into the conduction band, thus changing the effective hybridization.
Therefore, not only g but also the entire function a?,, (2.27), are used as varia-
tional quantities to optimize |¥pay)-

Within the Gutzwiller approximation (GA) the ground-state energy of Hpay
in terms of (2.26) is found as[83,87]

EgM u_w uw

(2.28) L —so—E—?exp[—W].
Here ¢, is the average energy of the noninteracting c-electrons, and we as-
sumed the «symmetric case» e+ U= —¢;, te. eg= —U/2, with n°=n'=1
and hence the total density of electrons is given by » = 2 (half-filled band). The
appearance of a nonanalytic term in the ground-state energy, i.e. of a binding
energy that has the form known from the single-impurity Kondo problem, is
remarkable. (In fact, the exponent differs by a factor 2 from the single-site ex-
ponent; this has been shown to be a genuine lattice effect[88].) The result in
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Fig. 2.1. - Evaluation of the spin-spin (C®) and density-density (C™N) correlation fune-
tions of the f-electrons for the 1-dimensional PAM, using (3.30)[89]; the numerical
data of Shiba[90] are shown for comparison; CS8(d = o result ind =1), -+-++ css
(VMCind =1),----- C™"N(d = ® resultind = 1), 00e CNN(VMCind = 1),n=175U=
=w©,e=0,V=051¢t=1

(2.28) agrees with that obtained by the exact evaluation of (Hpay) in terms of
| ¥pan) in d = o, i.e. the GA once again yields the correct evaluation for high
dimensions [80].

It turns out that the d =  result may even be used to obtain accurate re-
sults in the extreme opposite limit, i.e. d =1, by simply evaluating them with
the one-dimensional DOS[89]. This is evident from fig. 2.1, where the results
for the spin-spin and density-density correlation functions of the J-electrons in
the PAM obtained in this way are shown in comparison with numerical data for
d =1 by SHIBA[90]. The agreement is found to be excellent, particularly if ¢, is
not too low. Even details like the Umklapp discontinuity at ¢ = 2(x - kp) are
borne out.

These results clearly indicate that the expectation values derived in the d =
=  limit may even be used to obtain quantitatively accurate results for low-di-
mensional systems. The reason for this appears to lie in the nature of the VWF's
under investigation: they are usually rather simple, being characterized by only
a small number of variational parameters, with the symmetry of the wave func-
tion more or less determined by construction. Therefore, a practical strategy
for any investigation in terms of Gutzwiller-correlated wave functions is to first
evaluate the quantities of interest in d = » (which is always possible) and then
use the exact d-dimensional DOS to obtain a good approximation for the expec-
tation values in this particular dimension.

So far we have only shown that the d-dimensional ground-state properties of
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Fig. 2.2. — Ground-state energy E of the periodic Anderson model vs. interaction U, plot-
ted as (E — U/2)/(—E,) with Ey = E(U =0), in d = 1: a) comparison of the results ob-
tained from the paramagnetic Gutzwiller wave function (2.26a) and the spin density wave
(2.32) with and without Gutzwiller projection: —.—.— Gutzwiller (paramagnetic), -----
SDW, —— Gutzwiller-correlated SDW, V/2¢ = 0.375; b) comparison of the results ob-
tained from the projected spin density wave with quantum Monte Carlo results by
BLANKENBECLER et al. [91]: 0 MC, —— Gutzwiller-correlated SDW, V/2t = 0.375.

the PAM, when calculated in terms of the wave function (2.26), can be deter-
mined accurately down to d = 1 by employing the limit d = «. This does not ad-
dress the point of how good the results obtained with (2.26) are in absolute
terms, ie. in comparison with the exact ground-state wave function. In
fig. 2.2a) the ground-state energy of the PAM in d = 1, measured relative to
e;= — U/2, as obtained with the paramagnetic Gutzwiller wave function (2.26),
is shown. It is compared with the results for a spin density wave function (see
below) which becomes exact in the limits U — 0 and U — «. Obviously (2.26)
yields good results only for low U, while at large U the energy is much higher
than the exact asymptotic result. The origin for this discrepancy at large U is
easily found: it is mainly due to the absence of the (negative!) contribution to
the energy from second-order perturbation theory in the hybridization V. In-
deed, in the symmetric case and for large U perturbation theory in V
yields [91-93]

EAY U _ v 1
(2.290) B — - ;0 05T e + O(V®),
=2
2.298) =0 — % - 3[? U e .

This result does not depend on the explicit configuration of f-electrons when
double occupancy is excluded. In fact, the term « —V?2/U is even present for a
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single f~spin and hence is not specific for the periodic model. Hence the second-
order shift in (2.29a) does not contain any information about the magnetic state
of the system—this only comes in at higher order, ie. V*/U?. SHiBA and
FAZEKAS [92] showed that the second-order contribution is automatically gener-
ated by a Schrieffer-Wolff transformation [14] that leads from (2.25) to an effec-
tive Hamiltonian (the Kondo lattice with antiferromagnetic coupling).

The overall features of the result for the ground-state energy of the PAM as
obtained with the Gutzwiller-type wave function (2.26) are similar to those ob-
served in the case of the Hubbard model [58]. Since the wave function intro-
duces correlations into the noninteracting state, the energy comes out very
well for weak interactions (U <3t), but starts to deviate at larger values of U,
where the wave function is no longer controlled by some exact limit. In both
cases nonanalytic contributions are obtained for large U. The fact that the wave
function (2.26) for the PAM does not yield the second-order shift « —VZ/U
(which is energetically important, but conceptually rather trivial) and only
leads to a nonanalytically small, Kondo-like energy contribution (which is ener-
getically unimportant, but conceptually significant) raises the question about
the reliability of this wave function. In particular, it is not clear whether the ex-
ponentially small energy shift in (2.28) is a genuine feature of the finite-dimen-
sional lattice model (PAM) at all, or whether it is simply an artefact of the ap-
proximation, i.e. is a residual feature of the single-impurity model on which the
construction of the wave function is based. In spite of some indications support-
ing the Gutzwiller results[94], this is still an open question at present.

The failure of the Gutzwiller-type wave function |¥psy) to describe the
large-U limit of the ground-state energy (2.29a) correctly must cbviously be at-
tributed to the inadequacy of the starting wave function |¥pay o). Any im-
provement, therefore, has to begin at the level of this starting wave function.
For this purpose we will discuss a new type of (projected) wave function which
yields a very good ground-state energy already by itself, such that the
Gutzwiller projection only leads to a final improvement. Recently STRACK and
the author[93] proposed a non-Gutzwiller-type wave function to describe the
PAM with an antiferromagnetically ordered state of felectrons. (Indeed we
know from experiment[95] that there exist heavy-fermion systems, e.g. YbP,
Uy Zny7, UCdy;, UCus, which exhibit antiferromagnetic order in the ground
state; due to the existence of a magnetic energy gap the exponentially small
Kondo-like terms of the form discussed above will not be relevant then.) This
projected wave function is given by

(2.30) |78y ) =C|cFS)® |fSDW).
It has the general form (2.1) where the starting wave function is a product state

of a Fermi sea of conduction electrons and a spin density wave of f-electrons
(the product in (2.5a) extends over all k with ¢, < 0), and the correlation opera-
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tor C = C,C, is given by

2.31a) - G= exp[kz Vie (i G + Ektﬂc)],
2315) C; = exp [kZ H ﬁ;{,)]

with V, and &, as k-dependent variational functions. In contrast to (2.26) the in-
teractions are more or less already incorporated in the starting wave function,
while the correlation operator C; introduces the hybridization and C, controls
the quantum-mechanical motion of the f-electrons in |f SDW) (note that In Cy
has the form of a kinetic energy for the f-electrons). Since (2.30) is a two-par-
ticle product state, all expectation values in terms of | ) can be calculated
analytlcally for arbitrary dimension d. The variational quantities u; and v,
with u + v =1, &, and V, have to be determined from the minimum of the
ground-state energy. It is easy to see that the ground-state energy for the PAM
obtained with |¥" ) has the correct limiting behaviour at large U, i.e. con-
tains the term « —V?/U, as well as for small U[93]. However, at intermediate
U-values the energy is higher than that found numerically [91]. BRENIG and
MULLER-HARTMANN [96] noted that the wave function (2.30) can be improved
by introducing an additional term so that the k-dependence of the c- and f-elec-
trons is made symmetric. In this way they constructed the most general two-
particle product state of the form (2.30). For the symmetric PAM it can be writ-
ten in the form of a single Slater determinant SDW ground state

232) |78u)=

. | .
=11 H Hl[ak,nékfa+ﬂk,nfkfa+G(Yk,n5k++q,a+3k,nfk++q,n)]|0>,
G q=

e <0

where ag ., Bk, n> Tk, n» Ok, » are variational functions and n = 1, 2 labels two or-
thogonal combinations. The expectation value of Hpay in terms of (2.32) can be
expressed in closed form and the minimization can be performed in any dimen-
sion [96]. This provides an exact upper limit for the energy. The result for d =1
obtained from the SDW, (2.32), is shown in fig. 2.2a). In comparison with the
results obtained from |¥ {{y) (not shown in the figure) the energy is found to
be quite a bit lower at intermediate U-values. Its good overall agreement with
the quantum Monte Carlo calculations by BLANKENBECLER et al.[91] is quite
remarkable in view of the fact that (2.32) is only a single-particle wave function
without true two-particle correlations.
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tor C = C,C, is given by

@23la) - CG=ew [; Vie (i Go + G f‘kc)],
(2.31b) C;=exp [kE €k ﬁ:fa)]

with V, and &, as k-dependent variational functions. In contrast to (2.26) the in-
teractions are more or less already incorporated in the starting wave function,
while the correlation operator C; introduces the hybridization and C, controls
the quantum-mechanical motion of the felectrons in |fSDW) (note that In C,
has the form of a kinetic energy for the f-electrons). Since (2.30) is a two-par-
ticle product state, all expectation values in terms of | ") can be caleulated
analytically for arbitrary dimension d. The variational quantities u; and v,
with w2+ vZ =1, & and V, have to be determined from the minimum of the
ground-state energy. It is easy to see that the ground-state energy for the PAM
obtained with | % {{y) has the correct limiting behaviour at large U, i.e. con-
tains the term « —V? /U, as well as for small U[93). However, at intermediate
U-values the energy is higher than that found numerically [91]. BRENIG and
MULLER-HARTMANN [96] noted that the wave function (2.30) can be improved
by introducing an additional term so that the k-dependence of the c- and f-elec-
trons is made symmetric. In this way they constructed the most general two-
particle product state of the form (2.30). For the symmetric PAM it can be writ-
ten in the form of a single Slater determinant SDW ground state

232) |7fu)=

2
= l;[ Hltak,nakfﬁﬁk,nﬁ:,ﬁa(n,na,,++q,,+a,,,nfkuq,nn|o>,
¢ p=
e s0

where ag ., Bk, n> Tk, n» Ok, » are variational functions and n = 1, 2 labels two or-
thogonal combinations. The expectation value of Hpay in terms of (2.32) can be
expressed in closed form and the minimization can be performed in any dimen-
sion [96]. This provides an exact upper limit for the energy. The result for d = 1
obtained from the SDW, (2.32), is shown in fig. 2.2a). In comparison with the
results obtained from |¥ {{y) (not shown in the figure) the energy is found to
be quite a bit lower at intermediate U-values. Its good overall agreement with
the quantum Monte Carlo calculations by BLANKENBECLER et al.[91] is quite
remarkable in view of the fact that (2.32) is only a single-particle wave function
without true two-particle correlations.
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Fig. 2.3. - Square of the local magnetization, m2, of the f-electrons in the periodic Ander-
son model vs. interaction in d = 1: the variational results[96,97] (see fig. 2.2a)) are
compared with Monte Carlo (MC) results[91]: —.—-- Gutzwiller (paramagnetic), o0 MC,
----- SDW, —— Gautzwiller-correlated SDW, V/2t = 0.375.

One may now proceed even further by considering |7 &) as a starting
wave function itself, on which the Gutzwiller projector is applied. This leads to
yet another improvement, namely the projected wave function [97]

(2.33) 17 B = 9% |7 Bw)

where ¢ is an additional variational parameter. Now exact analytic evaluations
in terms of (2.33) can only be performed in d = «. However, from our earlier
experience we may expect that, by evaluating the d = « result with the d-di-
mensional DOS, accurate results can even be obtained down to d = 1, which is
the most unfavourable limit for the d = » approach. The results by GULACSI et
al.[97] in fig. 2.2a),b) (full line) obtained in this way show that this is indeed
the case. Of course, the improvement mainly concerns the intermediate U
regime. In fact, the U? contribution, which is due to genuine two-particle corre-
lations and hence is absent in the wave function (2.32), is now found to agree
well with perturbation theory. Other, more sensitive, quantities like the local
magnetization m, of the f-electrons, where m? = ((#; 1 — 7; | ), can also be cal-
culated. In these cases the correlation factor in (2.33) is found to be impor-
tant[97] and even leads to significant qualitative changes of the results ob-
tained with the uncorrelated wave function (2.32)[96], as shown in fig. 2.3.

In view of the accuracy of the d = » approach in dimensions as low as d =1,
one can be sure that the results for d = 2, 3 will be excellent [97]. These results
may serve as a benchmark for future analytic or numerical works, such as quan-
tum Monte Carlo calculations, which are very demanding in d > 1.

5 - Rendiconti S.LF. - CXXI
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3. — Projection with auxiliary particles under slave conditions.

3'1. Hubbard operators. — The fact that in the strong-coupling limit the local
constraints are stressed, forcing one to work in a restricted Hilbert space with-
out doubly occupied sites, is clearly expressed in the projected Hubbard model
(1.7). The use of projected local operators X, as in (1.7c) leads to a seemingly
simple form of the Hamiltonian. To exploit this simplicity HUBBARD [98] formu-
lated an «atomic representation» of the Hubbard model in terms of local opera-
tors by starting from the atomic limit (f = 0), where

(3-1) ﬁt=0=gﬁi7 f&i'__p'z /ﬁ'ia+UDi9

and the chemical potential has been explicitly included. The eigenstates of h;
are given by {|ix)}, where « =0, o, d corresponds to an empty site (« =0), a
simply occupied site (x =¢= 1, |) or a doubly occupied site (« = d, or « = 2).
The eigenvalue equation is defined by k; |ia) = ¢4, |iz). The atomic limit may be
used as a starting point for a perturbation theory in the hopping ¢, which has re-
cently been formulated in a systematic and computer-tractable way by
METZNER [99].

The eigenstates |ix) lead to the definition of the so-called Hubbard or X
operators

3.2) Xz = |ia)Bil

which cause a transition from a state 3 to a state « of the «atom» at site R;, while
leaving all other sites unchanged. These operators have the properties

3.30) Xeh)t = Xf=,

(3.3) R =0, X0,

(3.3¢) (X, X ) = 0500,p X0 £ 8,0 X2P],
(3.3d) S xe-1.

Clearly the X-operators obey a complicated, noneanonical algebra and are pro-
jection operators (X2 = X) only if « =p. The completeness relation (3.3d) allows
one to express any local operator & as

(3.4) G = Zﬂ (ix| O, | piY X2?

e.g. 6, =X"+ oX; %, #;, = X7° + X¢? and D; =X{%. In particular, the pro-
jected c-operator in (1.7) is precisely given by Pt = X7°. In this representa-
tion the Hubbard interaction term H; reduces to a sum over X%¢. In the limit
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U= o, where d-sites are absent, the Hubbard model then takes the simple
form

3.5) H=-t 2 XXX,

(R Rj) @
Of course, the simple form is deceptive in view of the complicated algebra for
the X-operators.

Using this representation, HUBBARD [98] attempted to study the excitation
spectrum of the model by linearizing the equation of motion for the X-operators.
However, this decoupling is uncontrolled and leads to a violation of sum rules as
has been explained by RUCKENSTEIN and SCHMITT-RINK[100]. These authors
also showed that by introducing an N-fold spin degeneracy, ¢ =1, ..., N, con-
serving approximations of the equation of motion can be performed in the limit
of large N (see also ref.[35]). -

32. Slave bosons. — The X-operators are based on a purely fermionic repre-
sentation in terms of the original c-operators, e.g. |ic) = ¢; |i0), the reference
state being the empty state |i0). Unfortunately the latter state cannot serve as
a convenient starting point: there is no Wick’s theorem for such states and
hence the usual quantum field-theoretical methods cannot be applied. How-
ever, it is possible to express X exactly in terms of products of fermion and bo-
son operators which obey canonical commutation rules, as first discussed by
BARNES[101] and CoLEMAN[102] in the context of the single-impurity Ander-
son model (SIAM). (The idea of a bosonic representation is quite old and origi-
nates in the work of Holstein and Primakoff and, of course, Schwinger on spin
models; see Mattis’ book [103].) In particular, the empty site itself is now creat-
ed from a new, total vacuum |vac) by application of a boson operator ;' as

(8.6a) |0) = &;* |vac),
(3.6b) lic) = fi |vac),
(3.6¢) lid) = d;* |vac),

while singly occupied sites, having fermionic character, are described by
fermion operators f; as before and the d-sites, with their two electrons of oppo-
site spin and total spin zero, are also created by bosonic operators d;* . Accord-
ingly, we have, for example,

3.7 i Pi = XY = &;* |vacKvac| ff =& f,
and the original electrons are represented by
3.8) Cio =& fio t ofitod; .

This shows that by the construction (8.6) the Hilbert space has been consider-
ably enlarged. It now contains a bosonic part, leading to many unphysical
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states. Since &;, d; and f;, are supposed to obey canonical bosonic and fermionic
commutation rules, (8.8) implies that these auxiliary operators must fulfil the
local constraint (3.3d), i.e.

(3.9) Qi=wf+ 2l +af-1=0,

where 7{ = &;" ¢;, etc. Equation (3.9) guarantees that the site R; is either emp-
ty, singly occupied or doubly occupied. Through this constraint the bosons are
«slaved»—hence their name «slave bosons». In particular (3.9) does not allow
them to form a macroscopic condensate as in the case of free bosons.

The ¢-J model, (1.9), then becomes

(3.10) Ht,,— Z E i fobief" %Zﬁt Fo £ Fior|-

Since the ¢-J model is defined on the Hilbert space without d-sites, the con-
straint (3.9) reduces to #¢ + E #f,=1 in this case.

Taking a lattice with one electron per site as a reference state, the creation
of an empty site, &;* |vac), may also be viewed as the creation of a kole with spin
zero and charge (+e¢) («holon»); in this case f; |vac) corresponds to the creation
of a spin ¢ with charge zero («spinon»). The projected electron, (3.7), is, there-
fore, a composite object obtained by first removing a spin o with zero charge
and then creating a hole with charge (+e) from the vacuum. Spin and charge
degrees of freedom of the «real» electron are thus carried by separate fields and
it is only through the constraint (3.9) that the necessary confinement of these
fields for each physical electron is guaranteed. However, this separation is not
unique since the above slave-boson representation is not the only one possible
(see below); in fact, a «slave representation» may equally use Schwinger bosons
for |ic) and spinless fermions for |i0) and |id)[104,105].

It is clear that the rewriting of H and H,, in terms of slave bosons does not
solve (or even simplify) the actual many-body problem described by these mod-
els. (This is easily seen in the solution of a toy model, e.g. a single site without
kinetic energy, which is simple to solve by standard methods[3] but becomes
quite cumbersome in the slave-boson representation[106].) Indeed, one has
traded a problem involving complicated operators by one that involves canoni-
cal operators tied by complicated constraints. One can only hope that, in analo-
gy with the single-impurity Anderson model [82] discussed in sect. 2 (see[107]),
reliable approximations now also become possible for these lattice models, t.e.
that an approximation of the constraints involving many new particles (in par-
ticular the bosons, which are sometimes simpler to treat than fermions) is less
radical and damaging than an approximation of the original fermionic prob-
lem.
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It should be mentioned that approximate treatments of the ¢-J model,
(3.10b), usually start from one of several possible mean-field decoupling
schemes of the J-term and then include fluctuations around the mean-field sol-
ution. The relevant low-energy fluctuations are described by gauge fields; this
important approach will not be discussed here and we refer the reader to ref.[2]
and the work by IoFFE and LARKIN[108] and LEE and NAGA0SA[109].

33. Application to the periodic Anderson model at U = w. — Expressing
the strongly correlated f-electrons in the PAM, (2.25), in terms of the auxiliary
particles e;, fw, d;, while leaving the conduction electrons ¢;, unchanged, one
finds in the limit U = «

(3.11) Hppy = Hi + X [efif, + V(&5 f, 6 +hee.)],
R;, o

where the local constraint (8.9) with #f = 0 has to be fulfilled. This constraint
guarantees that a conduction electron can turn into an f-electron only if the f-
level is empty. It may be included into (3.11) by introducting Lagrange multi-
pliers 2; (real scalar quantum fields) for each site as

(312) H}I’AM = FIPAM + ; )A\iQi .

The constraint is enforced by demanding %; to be time-independent. We ob-
serve that Hpay — thb, where thb is the hybrldlzatlon term in (3.11), only de-
pends bilinearly on é,,, fw, é;. and can hence be immediately diagonalized. In-
deed, the canonical commutation rules for these fields make the application of
Wick’s theorem possible in spite of the existence of strong interactions. How-
ever, the complications have only been shifted to flhyb. It is now a three-particle
interaction term, where ¢- and f-electrons are coupled by a bosonic field. As dis-
cussed in detail by AUERBACH and LEVIN[110], MiLLIS and LEE [111] and COLE-
MAN [112], one may start to extract information from (8.11) by performing a
mean-field approximation in analogy with the single-impurity model [107]. The
bosons e; are then assumed to be classical variables, which are replaced by their
space- and time-independent expectation values, i.e. & — (g;) = \/;n_ and simi-
larly X, — (2;) = A for the Lagrange multipliers. This means that the local con-
straint Q; = 0 is replaced by the much weaker, global one (Q;)=n"+n*—1=0
for the overall particle densities of bosons and fermions.

We note that, while the original Hamiltonian was symmetric under a simul-
taneous gauge transformation

3.13) fa—fae', &g,

the above mean-field assumption breaks this symmetry. Hence the bosons now
do form a macroscopic condensate: the relaxation of the local constraint to a
global one «breaks the chains» of the slave bosons and hence allows them to
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Bose-condense. At some temperature T2 there will then exist a transition to a
normal state with #° =0 and the c¢- and f-electrons become completely decou-
pled. This is clearly an artefact of the mean-field approach where the (large!)
fluctuations around (¢;) are neglected. This will make it impossible to describe
the crossover to high temperatures correctly. To introduce and control the fluc-
tuations one may generalize the above model to include an arbitrary spin degen-
eracy —J <o < J, with N =2J + 1 states. For N — « fluctuations are sup-
pressed, i.e. the mean-field theory becomes exact, while 1/N corrections de-
stroy the spurious long-range order by fluctuations[113]. Most recently KRroOHA,
HIRSCHFELD, MUTTALIB and WOLFLE [114] showed that the unwanted Bose con-
densation is naturally inhibited if the Bose spectral function 4,(w) is allowed to
acquire spectral weight at o < 0, where it becomes negative itself, i.e.

o 0

@14  n=1 J do A, (@) fog (@) 3 -1 I dwA,(w) > 0

T
with fzg as the Bose-Einstein distribution. Thereby the authors are able to sep-
arate the constraint problem from that involving the actual intrinsic dynamies.
Using a self-consistent, conserving perturbation theory for the slave particles,
they are then able to obtain a correct description of the single-impurity problem
at low and high temperatures, including the crossover, for all degeneracies N.
Under the mean-field assumption the Hamiltonian (3.12) becomes

(3.15) HYE, = He, + RE (50l + V(& fio +hc)] + AL0S

which is precisely the noninteracting model (U = 0) with renormalized parame-
ters ;= es+ A and V =V1 - %/V. It should be stressed that (3.15) may equally
be obtained without the use of slave bosons. Indeed, on a pure mean-field level
the latter are not essential here. The renormalization of V is just that given by
Fermi’s golden rule for the transition rate I' between c- and f-states when the
average probability for finding an unoccupied f-level is given by 1 — ny, i.e. I' =
= 7V2 N(0). The mean-field Hamiltonian (8.15) may easily be diagonalized (for de-
tails see ref.[3]). One obtains two renormalized quasi-particle bands

(3.16) B = % {ep + 3= [(ef — 57 + 4VE]2},

where &, —p = V2 /(ey, — #) = AE and p = Ej; is the chemical potential. Hence
the renormalized f-level is found to lie slightly above x. Minimization of the free
energy FME; determines A and n” as A = 2N(0) V2 In(u/AE) = |e;— u| and n/ =
=1- AE/2N(0) V2. The characteristic energy scale is then given by

(3.17) AE = ky To = pexpl — |y — | /2N(0) V21,

For large negative ¢; — 1 and small V' the associated characteristic temperature



STRONG-COUPLING APPROACHES TO CORRELATED FERMIONS 71

T, is, therefore, seen to be much smaller than the Fermi temperature, Ty < Ty,
and can be viewed as the analogue of the Kondo temperature for the case of a
lattice of impurities. In the ground state the system is hence found to gain an
exponentially small energy, namely kpT,, by the hybridization. This ground
state may be interpreted as one given by Kondo-screened spins, where the
screening must necessarily be a collective effect:

The above results essentially reproduce those obtained from a (slave-boson)
mean-field theory for the single-impurity model [107). They become exact in the
limit of large spin degeneracy, N — o [110-112]. Hence lattice effects appear to
be suppressed in the large-N limit and enter explicitly only via a 1 /N expan-
sion. GEBHARD[88] showed that the ground-state results can equally be ob-
tained from a Gutzwiller wave function, (2.26a), with spin degeneracy N — =,
which proves that the energy obeys variational bounds.

By caleulating thermodynamic properties within the slave-boson approach
one finds[110-112] that the linear specific-heat coefficient y and the magnetic
susceptibility x, are strongly enhanced by an effective-mass factor m* /m ~
~ T /Ty > 1, while the Wilson ratio, (2.18), is equal to unity (in the N —» o lim-
it). This is, of course, just what is found in heavy-fermion systems, whose prop-
erties show many similarities with those of normal liquid 3He discussed in sect.
2. Hence the above results seem to give a qualitative explanation of these strik-
ing features of heavy-fermion systems.

As far as the transport properties of heavy-fermion systems are concerned,
it is a well-known experimental fact that the temperature dependences of the
resistivity of individual heavy-fermion (HF) and intermediate-valence (IV) sys-
tems can be quite different, the two most characteristic dependences being
schematically shown in fig. 8.1a). Both dependences are found in HF as well as
IV systems. Hence a resistivity maximum, followed by a decrease of e(T) for
higher temperatures, is not characteristic for HF systems (where it is often in-
terpreted as a remnant of the Kondo effect), but is also seen in IV systems.
Similarly, the temperature dependence of the thermopower of individual
HF/IV systems has any one of the typical dependences shown in fig. 3.1b).

(D) } QM

a) b)

Fig. 8.1. - Typical temperature dependence of @) the resistivity and b) the thermopower of
heavy-fermion and intermediate-valence systems.
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(However, Q(T) always has a large absolute value, always shows an extremum
at some low temperature and may even change sign.) Hence the different T-de-
pendences of ¢(T) and Q(T) observed do not distinguish between HF and IV
systems.

In the above slave-boson mean-field theory the limit U = » was taken from
the beginning, and the strong renormalization of m* /m etc. resulted from a
Kondo-type screening of f-electrons. On the other hand, YAMADA and YosI-
DA[115) showed that large mass enhancements m* /m etc. are already obtain-
able in 2nd-order perturbation theory in U relative to the nonmagnetic Hartree-
Fock state. Hence even the weak-coupling limit can lead to considerable insight
into properties of (2.25) at large U. Employing self-consistent 2nd-order pertur-
bation theory, so that Luttinger’s sum rules are fulfilled, and exploiting the
simplifications occurring in the large-dimension limit, SCHWEITZER and Czy-
CHOLL[116] recently caleulated the d.c. conductivity o(7T) and (T) in d =
from the Kubo formula. Current vertex corrections vanish in the limit d =
(the current is odd in parity, while Z(w), which is purely local, is even[117]).
Therefore, the two-particle propagator entering in the Kubo formula (1.20) re-
duces to a product of two one-particle propagators. The conductivity in a fixed
direction and the thermopower are then given by

(3.18a) o(T) = S5 e’ I dE’( i )L(E‘),

—

1 of of
(8.180) QT)= 7 I ( )(E w) L(E)/ f ( )L(E),
where

(3.19) L(E)—Z 2 ZImGu ,(E+w+)1m e (B +i0%).

Here fis the Fermi function, a is the lattice constant and G, , is the Green func-
tion of the conduction electrons. (Note that because of the scaling (1.25) ¢ is for-
mally of order (1/d) small, since it is a two-point correlation function; however,
o/t? is finite.) For ¢;,= — 0.5, U=1 and V = 0.4 (in units of ¢t*) and setting d =3
in ¢2 = t*2 /2d there remains only one free parameter, n, by which o(T) and
(T) can be changed. The authors[116] then found that the limiting tempera-
ture dependences shown in fig. 3.1, as well as the full intermediate range, can
be reproduced by only a slight variation of n,. Even the absolute magnitude
comes out correctly in this way. These results show that the PAM can indeed
account for the overall temperature dependence of transport properties of
HF /IV systems. They also indicate that the relevant scattering mechanism re-
sponsible for this T-dependence is mainly due to scattering of conduction elee-
trons from the correlated f-electrons (i.e. scattering from local spin fluctua-
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tions). Clearly the large-d limit captures the essential aspects of transport phe-
nomena even in three-dimensional systems.

Within the slave-boson theory the charge susceptibility is found to be almost
unrenormalized. Furthermore, since the magnetic coupling (RKKY) between
spins does not yet enter at order 1/N in a 1/N expansion (one has to include 1/N?
correction for that), the important interplay between Kondo screening and spin
interaction can only enter at order 1/N*, a = 8. It is not clear whether such an
expansion is tractable at all and, if so, whether it is sufficient to describe actual
systems where N = 2. In fact, it seems reasonable to assume that an infinite
number of 1/N corrections have to be included for that. This may, for example,
be achieved within a self-consistent approach as worked out by KroHA et al. [114]
(see eq. (3.14)). Thereby the authors are able to arrive at a correct description of
the single-impurity model at all temperatures and all N.

3'4. Labelling of fermionic spin and charge degrees of freedom with slave
bosons. — The origin for the asymmetry in the treatment of spin and charge fluc-
tuations within a straightforward 1/N expansion may be traced back to the fact
that, while charges are described by bosons, spins are exclusively decribed by
fermions. This fundamental difference will generally come to light in an approx-
imate treatment. A formulation without the above asymmetry, i.e. a represen-
tation of fermionic charge and spin degrees of freedom completely in terms of
bosonic labels, was introduced by KoTLIAR and RUCKENSTEIN [81]. It was in-
spired by the ideas entering the Gutzwiller approximation (see subsect. 2°2)
and the simplicity and quality of the results of this approximation for the
ground-state energy (2.16) of the Hubbard model in terms of the Gutzwiller
wave function. In this representation four auxiliary bosons €;, p;,, d; are intro-
duced to label each one of the four local states |ix) as

(3.20a) |i0) = &;* |vac),
(3.20b) lic) = fit Bit |vac),
(3.20¢) lid) = £ £, di* |vae)

with £, as (pseudo)fermion states. The squares of the classical values of these
fields are supposed to give the occupation probabilities for the four states. Now
one has even more auxiliar particles than in the Barnes/Coleman formulation
presented in subsect. 3'3, i.e. the Hilbert space becomes even larger, and hence
it is necessary to enforce more constraints to eliminate the unphysical states. In
fact now there exist two local slave conditions

(321a) AV =AE+ 2 AP +AE—1=0,

(8.21b) QP =af, - nf —nf =

The first constraint, (3.21a), involves only bosons and may be viewed as their
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completeness relation: a site is either empty, singly occupied or doubly occupied.
The second constraint, (3.21b), links bosons with fermion states and expresses
the fact that a site carrying an electron with spin ¢ can either be singly or doubly
occupied. The physical electron described by ¢;, is then represented by

(8.22) Cio— Zicfior 2= & Pin+ Pitod;,
where Z;, makes sure that the annihilation of a spin o either leads to a state with
a (—o)-spin or to an empty site.

3'5. Application to the Hubbard model. — Using (3.21), (3.22) the Hubbard
model (1.4) takes the form[81]

823 H=- t(RER) D FiFeiit g+ U %‘, A+ ; (ig”Q}” + A Qg)),
i» Rj) © i i o

where the local constraints are enforced by three Lagrange multipliers A{", A%
per site (again real scalar quantum fields) which are required to be time-inde-
pendent. We note that the complicated Hubbard interaction now has a very
simple form (as in (3.10¢)). The prize one has to pay for that is a complicated ki-
netic energy where fermions and bosons are coupled. However, the fermions feo
are seen to appear only bilinearly in (3.23), i.e. they do not interact with each
other any more, since their interaction is carried entirely by bosonic fields. The
fermions can, therefore, be eliminated from the problem («integrated out») as is
easily done in a functional-integral formulation[81]. In this way the partition
function £ for the d-dimensional Hubbard model—a model for interacting
fermions—has been expressed exactly in terms of purely bosonic variables with
a complicated interaction originating from the kinetic-energy operator. Since,
loosely speaking, bosons are in general simpler to treat than fermions, one may
now hope that, on an approximate level, the strong-coupling limit becomes
more tractable.

We start again with a mean-field approximation, corresponding to a para-
magnetic saddle point of the corresponding functional integral[81]. All bosons
are replaced by real, site- and time-independent c-numbers as

(3.24a) & @)=Vr'=Vi-n+d,
(3.24) Pio—> (Piz) = VP =V, — d,
(3.24¢) d— (&) = Vnt=V4,

and the same for the Lagrange multipliers: A0 — M, 1% - 2? In (3.24) we
used the notion for the density of doubly occupied sites, d, ete. introduced in
subsect. 2'2. The loecal constraints are thereby again relaxed to global con-
straints: QY > (Q{") =0, @ —(Q?) = 0. In particular, the constraint fac-
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tors in the kinetic energy become

(3.25) 7, —(3,) = V2d(1 - 2d),

where we assumed %, = 1/2 for simplicity. At U = 0, where d=1 /4, one, there-
fore, finds that the renormalization is given by (Z;,) = 1/2, instead of unity.
This is obviously an error caused by the decoupling approximation in which con-
straints are only fulfilled on average. This problem my be cured by noting that
in the enlarged Hilbert space there exist many different Hamilton operators H
which in the physical subspace all have the same properties [81]. Hence, by in-
troducing additional normalization factors into the kinetic energy as

1 1

\/1 - n, - n,, \/1 - 'nz z—a

the eigenvalue problem for H, (3.23), is not changed, since in the physical sub-
space the additional factors in (3.26) have eigenvalues 1 and, therefore, play no
role in any exact treatment of the constraints. This liberty may be exploited to
ensure that on a mean-field level, where

(3.26) 2y — 2, =

= s 8d(1 — 2d)
3.27) Zi>(Ze) = Vo =\ gy

for n, =n/2, one has (Z;,) =1 for U= 0. Of course, the exact kinetic energy,
i.e. the interaction between the bosons, is now exceedingly complicated.

The paramagnetic saddle point is seen to be identical to the result of the
Gutzwiller approximation, (2.15), which becomes exact in d = « [34,80]. More
generally, the set of all saddle point solutions is identical to the ground-state re-
sult (2.24) obtained with an arbitrary Gutzwiller wave function (2.21){80,88].
This conclusion is also valid for the PAM. Hence there is a direct connection be-
tween the above slave-boson representation and Gutzwiller wave functions: the
saddle point solution with a given, built-in broken symmetry agrees with the
results obtained in d = « from the Gutzwiller wave function with the same bro-
ken symmetry. Both results may be applied to a d-dimensional system by eval-
uating the results with the d-dimensional density of states. This connection is
not entirely surprising since the slave-boson formalism by KOTLIAR and RUCK-
ENSTEIN [81] was modelled after the Gutzwiller results. We now learn that i) the
Gutzwiller results can be obtained even without explicit wave functions (which,
in principle, allows one to improve the theory systematically, and extend the
theory to finite temperatures), and ii) in the ground state the saddle point sol-
ution satisfies variational bounds. From our experience with Gutzwiller-pro-
jected wave fucntions we can expect the quality of the mean-field results to be
good. Indeed, LiLLY, MURAMATSU and HANKE [118] found that for the Hubbard
model in d = 2 the saddle point solution with broken A-B symmetry is in very
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good agreement with quantum Monte Carlo results for local observables over a
wide range of interactions (0 < U =<20t) and particle densities (0 < » < 1). Sim-
ilarly, STRACK and VOLLHARDT[89] showed that the limit of high dimensions
can be used to obtain accurate variational results even for low-dimensional (d =
=1, 2) fermionic systems such as the Hubbard model and the PAM (see
sect. 2).

The saddle point solution may also be used at 7' > 0 to obtain the correspond-
ing partition function Zgp = % exp[—pBE, ], and thereby the free energy Fgp.

The quality of Zgp was elucidated by GEBHARD [88], who showed that the en-
ergies E, in the sum correspond to the energy expectation values
(r@ |H|PE) .

(3.28) E,= W =<’I"n|Heﬁ|‘I"n>,

where | ¥®)=g¢?|¥,) (n=0,1,2...) with |¥,_,) as the exact ground state
of the noninteracting effective Hamiltonian H°%, and | ¥, ) are excited states of
He®. The problem is that the | ") are not orthogonal (see also ref.[75]). Only
low-lying excitations may be described in this way, while higher excitations (in
particular charge excitations which are always suppressed by the correlation
operator) cannot be deseribed adequately. Hence the saddle point free energy
is, at best, applicable at low 7' (Fermi-liquid regime)[88]. WOLFLE and L1[119]
showed that one-loop corrections to the saddle point solution provide a 73 In T
spin fluctuation contribution to the specific heat. In this and other calculations
it is important to employ a manifestly spin-rotation-invariant formulation of the
Kotliar-Ruckenstein slave-boson theory[120], which in its original formula-
tion[81] depends on the choice of the quantization axis (for a clear exposition, as
well as a detailed derivation and discussion, see[121]). In particular, it requires
the replacement of p;, by a scalar (spin 0) boson and a vector (spin 1) boson as

3
(3'29) ﬁi: _)ﬁi:c' = L 2 Ty. g0’y

where 7, are the Pauli matrices.

3'6. Local gauge symmetry. — We wish to determine the symmetry of the
Hubbard model, (3.28), under local gauge transformations of the four bosonic
variables

(3.30) b;— be®® | b=e,d,p,.

Both the interaction term and the constraints are determined by pure densities
b b; and are thus invariant under this transformation, implying a U(1) X
x U(1) x U(1) x U(1) = U(1)®* symmetry. However, the kinetic energy does
not have this invariance and the substitution (3.30) leads to additional terms.
JoLICOEUR and LE GUILLOU[122] noted that the latter can be absorbed into the
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Lagrange multipliers A{V, 2{? as

3.31a) }\(1)_,)\(1) 395: ’

(3.31b) PN A(2)+z ~ (97— ¢9).

However, since there are only three Lagrange multipliers, this requires that
the phases obey the constraint ¢¢ + ¢? = 2 2. Hence the Hamiltonian (or the
corresponding action) is only symmetric under the group U(1)®3. This implies
that the phases of the bosonic fields cannot all be chosen at wish (e.g., zero) but
only in the case of three of the bosons, while the fourth, e.g. d;, must remain
complex[121,122]. This is in contrast to the PAM at U = =, (3.11), where only
a single U(1) gauge symmetry exists which can then be used to eliminate the
phase of the single boson ¢;. The above findings are not important for the saddle
point mean-field solution itself. This approximation breaks the gauge symme-
tries anyway, i.e. assumes a Bose condensate at low T. (Note that this feature,
t.e. the mean-field solution itself, again becomes exact in the limit of large spin
degeneracy, N — «, where fluctuations are suppressed[119].) However, they
become crucial in the calculation of corrections to the saddle point, which now
turn out be very complicated [122].

It should be stressed that for a given model of mteractmg electrons the re-
sults obtained by taking the N — o limit of an assumed spin degeneracy ¢ =
=1, ..., N greatly depend on the specific representation in terms of auxiliary par-
ticles. For example, in the case of the Hubbard model the N — « limit leads to
different results depending on whether it is applied to the usual fermionic rep-
resentation (1.4) or to the slave-boson version with N — « fermion fields f,,
(3.23). (In fact eq. (1.4) always becomes trivial for N — », i.e. there exists no
scaling of the parameters such that the kinetic and the interaction terms remain
finite [35].) Only the exact solution for N = 2 of the model in the different repre-
sentations will coincide. Hence, while an N-orbital slave-particle model does
not necessarily correspond to a physical model of electrons, it nevertheless rep-
resents a well-defined model of quantum statistical mechanies [121].

4. - Construction of a comprehensive, dynamical mean-field theory for
correlated fermions.

In the statistical theory of classical and quantum-mechanical systems mean-
field theories (MFTs) play an extremely important role, since they are often
able to provide a rough, overall description of the properties of a model. Such a
nonperturbative approximation is particularly helpful when, as usual, exact
solutions are not available. In the first three sections we already discussed sev-
eral quite different MFTs. Although the term MFT is frequently used, the ac-
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tual meaning of what a MFT is (or should be) is rather vague, because there is
no unique preseription of how to construct such a theory. Hence every time one
encounters the term «MFT», one should inquire about the potential reliability
of this approximation, i.e. about its range of validity with respect to the input
parameters (e.g., the interaction strength, particle density, temperature, mag-
netic field, ete.), its thermodynamic consistency and, in particular, whether
there exists a limit in which it becomes exact.

One of the best-known MFTs is the Weiss molecular-field theory for the
Ising model. It is a prototypical single-site theory which becomes exact for infi-
nite-range interaction, as well as in the limit d — «. In the latter case the quan-
tity 1/d is a small parameter which can be used to improve the MFT systemati-
cally. This MFT contains no unphysical singularities and is applicable for all
values of the input parameters J, T and the magnetic field H. It is also diagram-
matically controlled[33]. Insofar it is a very respectable approximation which
sets very high standards for other MFTs.

Itinerant quantum-mechanical models, such as the Hubbard model and its
generalizations, are naturally much more complicated than classical, Ising-type
models. This is due to the additional energy transfer between the particles and
the nontrivial algebra needed to describe these particles. Generally there do not
even exist semi-classical approximations for such models that might serve as a
promising starting point for further investigations. Under such circumstances
the construction of a MFT with the comprehensive properties of the Weiss
molecular-field theory for the Ising model will necessarily be much more com-
plicated, too. There do exist useful, established mean-field approximation
schemes, e.g. Hartree-Fock, random-phase approximation (RPA), saddle point
evaluations of path integrals (see sect. 3), decoupling of operators, etc. How-
ever, these approximations are not MFTSs in the spirit of statistical mechanics,
since, on the pure mean-field level, they are not able to give a reliable, global
description of a given model (e.g., the phase diagram, thermodynamics, ete.) in
the entire range of input parameters. In this situation the exact solution of a
fermionic lattice model in the limit d = © provides an ideal mean-field solution
for these models which has all the desired features of a comprehensive MFT: it
is a self-consistent, conserving approximation which is valid for all input pa-
rameters and can be systematically improved by taking 1/d corrections into ac-
count. In contrast to Hartree-Fock it is a dynamical MFT where two-particle
correlations are explicitly included.

4'1. Coherent potential approximation for disordered systems. — To gain a
deeper understanding of the mean-field features of the d = « limit for interact-
ing electrons, we first want to discuss the «coherent potential approximation»
(CPA), which is known to provide a reliable, comprehensive mean-field approx-
imation for single-particle quantities of noninteracting, disordered sys-
tems [123]; for reviews see ref.[124]. To be specific let us consider Anderson’s
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tight-binding Hamiltonian for electrons with local, i.e. «diagonal», disor-
der [125]

+2 Ving,
\/Z(R;n g 2 "

where V; is a random variable drawn from some distribution function P(V;). The
electrons described by (4.1) do not interact. Therefore, we deal with the prob-
lem of a single particle moving through a random medium. (Since there is no
spin dependence one can suppress the spin index here and simply work with a
spinless fermion as in (1.12).) The problem is made complicated by the random-
ness. It requires one to calculate the average of a physical quantity X (which is a
function of all site energies V;) with respect to P(V;) as

4.1) H,=

42) (X )y 1= l;[ j av, P(V)X(Vy, ..., V1).

One may now proceed as follows:

1) The actual random medium, given by the local potentials V;, is thought
to be replaced exactly (I) by an (unknown) effective medium, described by a
complex, frequency-dependent self-energy; this defines the self-energy.

2) Since the effective medium is required to yield an exact description of
the random medium, we may remove the medium at a site R;, replace it by an
actual potential V; and then demand that, upon averaging, the scattering caused
by the perturbation of the medium due to V; vanishes identically. The self-con-
sistency condition expressed in the last step actually determines the previously
unknown self-energy.

Let G;(z) = G be the Green function of the electron in the random medium,
with z as a complex frequency and G, as the unperturbed Green function; we
suppress site indices for the moment[126]. The Lippmann-Schwinger equation
for G is given by

(4.3) G= Go + G()VG or GO—IG =1+ VG.

We now introduce a self-energy X;;(z) =X into (4.3), which plays the role of an
additional, unknown potential

44) Gy '-2)G=1+(V-2)G.
We choose X such that

(4.5) (G>av = (Go_l - 2)_1 .
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Multiplication of (4.4) by (G),, yields
(4.6) G =(G)y + (G (V-2)G.

Here V — X is a new scattering potential, whose effect can be described, as usu-
al, by a T-matrix via

4.7 G= <G>av + (G)av T(G)av ’
where
4.8) T V-2

IR (W,
Averaging of (4.7) yields
4.9 (T)ey =0,

which is a self-consistent equation for ¥. Equation (4.9) demands that X is deter-
mined in such a way that the scattering due to the perturbation V — X vanishes.
If (4.9) could be solved exactly, the entire problem would be solved! However,
an exact solution is usually not possible, so that an approximation has to be
made to proceed further. At this stage CPA assumes the self-energy to be site
diagonal

(4.10) Zi(w) =Xw)dy,

i.e. to be homogenous. Equation (4.10) is equivalent to a single-site approxima-
tion and corresponds to step 2) in the description of CPA below (4.2). Since ()
is homogeneous, it is a k-independent, but frequency-dependent potential and
thereby only adds to the frequency dependence of (G,)™ !, i.e. the averaged lo-
cal propagator is simply given by the unperturbed propagator with shifted
frequency:

@.11) (Gii)w =GR (z - 2),
where
" N(E)
[1] —
4.12) Ga(2) = I € ——%

-

is the local, unperturbed propagator, with N(E) as the DOS of the unperturbed
system. For all sites R; the condition (4.9), therefore, reduces to (T; ), = 0, i.e.

(4.13) et -
. 1-(V; - Z@) 6 - 2@) |,

Equation (4.13) implies that in the effective medium the average scattering
from a single site («impurity») with potential V; — X vanishes. The single-site
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L ] L] L]
= e oV
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a) av
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Fig. 4.1. — a) The random medium, described by local potentials V;, is replaced by an un-
known, but exact, effective potential X. b) By demanding the average scattering from a
single site with potential V; — ¥ to vanish X is determined self-consistently.

aspect underlying the CPA may, -therefore, be visualized as shown in
fig. 4.1[124].

The CPA and its results have many attractive features: i) CPA is a nonper-
turbative, but very simple and self-consistent theory; i) it may be considered
as the best single-site approximation for the disorder problem as ean be in-
ferred from the above derivation; iii) it has the so-called «Herglotz properties»,
te. X(z) = X*(2*) and Im (z — 2(z)) Z 0 for z = 0[127], which implies that it has
the correct analytic properties (positive DOS, etc.); iv) it leads to very good
qualitative and even quantitative results for the one-particle properties of dis-
ordered systems. The latter is true even in dimensions d <3 and for parameter
values of the disorder strength and the impurity concentration where CPA can-
not be linked to perturbation theory. These properties have made CPA the ap-
proximation scheme for disordered systems although it cannot describe Ander-
son localization.

The single-site aspect of the CPA outlined above and, in particular, the
property (4.10), which is identical with (1.28) for interacting lattice systems in
d = o, suggest that the CPA will become exact in the limit of high coordination
numbers Z. Using the scaling of ¢ given by (1.25), which leads to identical dia-
grammatic simplifications as described in subsect. 1'6, VLAMING and VOLL-
HARDT [128] recently showed that this is indeed the case, irrespective of the lat-
tice structure. In other words, CPA solves the disorder Hamiltonian (4.1) ex-
actly in the limit Z — . This finding explains why for Z < «, e.g. finite dimen-
sions on a regular lattice, the CPA can be so successful even for intermediate
values of the input parameters (disorder strength, impurity concentration), i.e.
in regions of parameter space where this ean no longer be justified by perturba-

6 - Rendiconti S.LF. - CXXI



82 D. VOLLHARDT

tion theory in these two parameters. We now see that there is an additional
small parameter, namely 1/Z, which allows for a perturbation expansion that is
independent of the values of the input parameters. It is, therefore, not surpris-
ing that the CPA may give qualitatively and quantitatively correct results even
in dimensions d <3.

The CPA can also be derived variationally within a field-theoretical ap-
proach first discussed by JANIS[38,129]. In this case the coherent potential, i.e.
the self-energy, is determined from a stationary condition for the averaged
free-energy functional of the corresponding single-site problem. This field-the-
oretical approach has the great advantage that it can be generalized to treat in-
teracting lattice models, such as Hubbard-type models, and disorder models on
the same basis. Furthermore, the physical idea behind this single-site theory is
very transparent and may be explained in terms of the following simple pic-
ture [130]. To calculate the averaged free energy corresponding to a single site
R; of the system, we have to determine the energy density

4.14) (D) = (Q)ay = Q) /L,

where densities are indicated by a tilde. To this end we consider the second step
of the CPA strategy outlined below eq. (4.2) and drawn schematically in fig. 4.2:
i) we start from the homogeneous, effective medium with free-energy density
Q ned; i) we remove the medium at site R;, i.e. subtract a corresponding en-
ergy density Q;, and iii) replace it by a site with a bare potential V;, i.e. add a
corresponding averaged energy density (Q%¢),,; so we have

4.15) Q= Qmed -Q;+ <Q%)are )av .

To calculate the contributions in (4.15) we make use of the trace-log formula
Indet A = tr In A (see, for example, ref.[2]) for the free energy, which in the
noninteracting case can be written as

(4.16) Qo= —-Ttr Ek‘, In[GP (iw,)] ! .

a) b) c)

Fig. 4.2. - Steps to construct the exact averaged free-energy functional in d = «: a) ho-
mogeneous effective medium, b) medium is removed at site R;, ¢) hole in medium at site R;
is filled with the actual potential V;; the amplitude for a particle from the medium to be at
site R; is given by the local propagator G;.
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Here Gy, the propagator of the undisturbed system, is given by

1

0 —
(4.17) G = = ol

where w, = (2n + 1) =T are the Matsubara frequencies and the trace operation
implies summation over all » and spin o; in the present problem the spin is
unimportant. Using (4.11), we find

418) Qpea= —Ttr D, n[GY(iw, — £)] ' =
k

©

= —LTtr I dEN(E) In[iv, — X+ —E]

-

and

(4.19) Q;= - Ttr m[Gl(iw, — )] = - Ttr MGy ) 1",
where ¥ = 3(iw,). Finally, (Q%),, can be obtained from

(4.20) QY= —Tln Zbee,

where the local partition function is determined by the action Af*® as[131]
(4.21) Z;bare = J DY DY * exp[AP=™{¥, r*}].

Here ¥, ¥'* are Grassmann (anticommuting) variables. (It is not really neces-
sary to use Grassmann variables in this problem, but they are very convenient
because they make everything very simple; any reader who is not familiar with
this technique can easily learn it by reading a few pages in the books by
Popov[131] or FRADKIN[2].) The action has the form of a Lagrangian

(4.22) AP =tr P X (Gy)w) P ¥ —tr ¥V, =)V,

where the two terms correspond to the kinetic and potential energy, respect-
ively. Since (4.22) is the expression for a noninteracting system (bilinear depen-
dence on ¥ and ¥ *), the functional integral in (4.21) is trivial. The trace-log for-
mula yields

(4.23a) In 2" = tr n {(Gyi)u) ' = Vi + 2},
(4.23b) =trin(¢& ' -V),

where we introduced an effective local propagator & by
(4.23¢) G =(Gu)) T+ 3.

The & propagator describes the coupling between the medium and the site R;.



84 D. VOLLHARDT

The averaged free energy, which is a functional of & ~1(X), then follows as

424) (D = _LTtr“ dEN(E) In[iw, + u -2 —E]—In(& 1 -2+

+{In (& = V) | -

By taking the variational derivative of (4.28) with respect to X, i.e. using the
stationarity condition

3{Q),y
4.25 =0,
425) 35!
we obtain
1 1
4.26 ={- )
(4.26) g l-3 <§"1—Vi>av

which, together with (4.11) and (4.23c¢), is seen to be identical with the self-con-
sistent equation (4.13) for X. Given a value & ~! we obtain X from (4.26), which
determines a new value & ~* = [G2(z — X)]"! + X, etc. Equation (4.26) express-
es particularly clearly the single-site aspect of the CPA, as well as the role of ¥
as a homogeneous effective potential that describes the effect of the original
random potential V; in the averaged system.

42, CPA for interacting systems: exact solution of the Hubbard model in
d = . - The CPA was extensively used in the 1970’s—mostly in the investiga-
tion of disordered systems[124]. As such, it was also applied to interacting
models, e.g. the Hubbard model, by first transforming the model (approximate-
ly) to a random-alloy problem («alloy analogy»). A new approach to the CPA,
which makes use of field-theoretical functional-integral techniques in connec-
tion with explicit diagrammatic perturbation theory, was initiated by Ja-
NIS [38,129]. Thereby the range of applicability of the CPA was extended to in-
clude interacting lattice systems (spin systems and itinerant systems) as well.
Due to the insight gained from the investigation of fermionic lattice systems in
the large-d limit[34,41-43] we are now able to conclude that this generalized
CPA approach becomes exact in d = =, just as the disorder CPA and the Weiss
molecular-field theory become exact in this limit. In particular, this field-theor-
etical approach can be used to derive the exact free energy for fermionic models
in d = ». This leads to a comprehensive mean-field theory for interacting
fermionic models. Of course, this theory is necessarily much more complicated
in detail than the previous MFTs since we now deal with a dyrnamical single-
site problem in a fermionic bath.

The physical idea behind the approach is the same as that entering in the
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CPA. Let us consider the motion of a particle on a lattice in d = . The interac-
tion with the other particles affects the motion. This change is exactly (!) de-
scribed by a yet unknown complex, dynamical field ¥, (w). (For simplicity we
take X (w) to be homogeneous, e.g. consider the paramagnetic phase; in the
case of an antiferromagnetic phase we would have to introduce sublattices, e.g.
X,— X2 B[38]) Hence the original system with its bare interactions has been
exactly replaced by an effective medium; the latter is simply a system of nonin-
teracting, itinerant electrons moving in a complex, homogeneous coherent po-
tential X, (w).

We will now use the generalized CPA described above[38,40] to construect
an exact expression for the free energy of the Hubbard model in d = . We pro-
ceed as in the case of disordered systems (see subsect. 41 and fig. 4.2), with V;
replaced by v;, = Un; _,—but, of course, we do not have to perform any impuri-
ty average now. The single-site free-energy density  =Q/L is then deter-
mined by

4.27) Q= 0peq — Q; + Q0

The three terms in (4.27) are given by (4.18)-(4.21), where now the propagators,
the effective potential and the Grassmann numbers carry a spin index and the
single-site action (4.22) has the form

428 APy, ¥¥ '} =
8
=tr¥*, 0 'Y, — UJ de¥v% () ¥y (DY ()P, ().
0

An identical expression for the action A2 of the effective single-site problem
was obtained by GEORGES and KOTLIAR[39] within a rather different approach.
They view the problem as an auxiliary impurity problem whose action is pre-
cisely given by (4.28) (see below); this equivalence was also pointed out by
OHKAWA[132] and JARRELL[133].

The partition function Z;®*® may be transformed[40] into a conventional
functional integral over real, commuting variables by rewriting the Hubbard
interaction in (4.28) using the Hubbard-Stratonovich transformation

(429a) exp —Ujdr?’"'f (T)Y"T(T)W'”i (¥, ()=
0

B
= f Dy PDeexp| — i d7 [ n%(7) + £2(7) —
0
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—iV2UB{E(¥ % (D) ¥ ¢ () + T"'i ¥, (7] -

— G (D F 1 () - ¥ (D ¥ (D]} ]
This is equivalent to the standard operator identity
(4.298) it ) = 5 [y + 7y = Gy =y ]
for the Hubbard interaction, where the two terms on the r.h.s. correspond to
charge and spin fluctuations, respectively. In (4.29a) the fluctuations are de-
scribed by real fluctuating fields &) and »(7), respectively. Now that the inter-
action problem has been rewritten in terms of noninteracting particles in the
presence of infinitely many fluctuating fields, the integration over the Grass-

mann variables in the expression for the partition function can be performed ex-
plicitly, yielding

(4.30) Z;bare = J’ QDﬁ Deexp[AP™{n, & &, '},

where now [40]

y=— 0

@3 AP{n507=-2 3 (E?+n§)+trln[«¢3"—\/%(c?ﬁﬁ)]

with (g)mn = Em—na(;])mn Sm-n and ('éc_l)mn = amn[*(/oa(iwn)]‘l'
The total free energy (4.27) is then given by

432) Q= —LTtr“ dEN(E) Inliw, +u —2,— E} - In(&,! —-2’,)} -

~LT In Z;>e
The stationarity condition (4.25), 82/8¢,™! = 0, leads to

1

4.33 =
U380 G e = 5.

-1 j@mvf*m,nsrf:uexp[A}’"e{m,w:;f,-l}]=

zibare
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(433) = Zlbm J Dn Dt ;] exp[AP™{n, & 4,7 N1 =
i s-1_ (U /-,
g, 25 (o9 +18) _
433¢) = 1
.(;1—1_\/22(0;7”3)
ﬁ nn .,],5

with (X), ;= J Dy DEX exp[AP*™@])/ 2", Of course, the r.h.s. of (4.33a) is

nothing but the very definition of the local propagator G;; ,(iw,) in terms of the
action AP™®. Equation (4.33), together with

4.39) [C. @] =[G .z - Z,(D] + 2,(2),

provides an exact, self-consistent set of equations for X, (or &,) for the Hubbard
model in d = o [38-40,133]. In contrast to Hartree-Fock this thermodynamical-
ly consistent MFT is valid for arbitrary values of the interaction parameter U
and particle density » and explicitly contains two-particle correlation effects.
Although it is mathematically much more complicated than the analogous ex-
pression (4.26) for the disorder problem without interactions, it can, in princi-
ple, again be solved by iteration: for given &,! we obtain X, from (4.33), which
yields a new &, via (4.34), ete. The exact local propagator is then provided by
Gii,» = (9,"' = 2,)\. As in the disorder case Gy , is completely expressed in
terms of effective averaged quantities.

The expression used in (4.33¢) brings out particularly clearly the similarities
and differences between the (on-site) interaction problem and the analogous ex-
pression (4.25) for the disorder case without interactions: i) on the lLh.s. of
(4.33) the self-energy ¥ appears again as a (homogeneous) effective medium,
which is obtained exactly from the original system by some averaging process;
ii) however, this average is very different in the two cases: in the disorder prob-
lem it involves an integration over the actual disorder potentials V; with a given
disorder distribution P(V;), while in (4.33) it demands an integration over in-
finitely many fluctuating (random) fields », £, which simulate the actual interac-
tion; iii) the latter integration leads to a highly nontrivial coupling of the en-
ergies, i.e. Matsubara frequencies w,, (note that this coupling even exists in the
static limit, i.e. for n, = £, = 0 for v # 0), while in the disorder problem the cor-
responding equation (4.25) is diagonal in the frequency. This shows clearly
that, although the interaction between electrons on different lattice sites has
been reduced to an interaction of electrons with a mean field, the dynamics of
the latter interaction is still nontrivial. Once more we observe that the many-
body nature of the Hubbard model survives even in d = », making an analytic
evaluation of the local propagator G , from (4.33), (4.34) impossible.

It was pointed out by GEORGES and KOTLIAR[39,134], as well as
OHKAWA[132] and JARRELL[133], that the single-site problem emerging in the
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limit d — o, i.e. the fact that one obtains an effective problem of a single site
with Hubbard interaction immersed in a noninteracting fermionic bath, is
equivalent to an actual single-site problem, such as the Anderson impurity
model [82] (see subsect. 2'5) or the Wolff model[135], supplemented by a self-
consistency condition. (We note that such a connection, but without a self-con-
sistency condition for the self-energy X, i.e. without a renormalization of the
medium itself, was discussed already by EVENSON, WANG and SCHRIEF-
FER[136].) In the Wolff model

(4.35) A HWM Hkm+Unorno¢p

where the kinetic energy Hkm is given by (1. 3a), the conductlon electrons C;; can
only interact on a single site Ry. The Hubbard model (1.4b) is then a lattice gen-
eralization of (4.35) in analogy with the periodic Anderson model (2.25) which is
a generalization of the single-impurity Anderson model to a lattice of f-orbitals.
The mapping of the Hubbard model in d = © onto one of the two models has the
advantage that the form of the effective propagator &, is already known in
these cases, namely

(4.36a) [Goam @] =2 — e+ V2 J dE :1_(_13%_ ,
where AE) = % 8(E — &), and

" AE)
(4.36b) [‘f/"WM(z)]'l1 = I dE z(_;, .

- 00

In the present case the function A(E) has to be determined self-consistently.
This relation, together with the extensive numerical experience that has accu-
mulated in the treatment of impurity models, makes a numerical solution of the
self-consistency problem (4.33), (4.34) tractable. Indeed, it is exciting to see
that at this very moment the first explicit, numerically exact results for the
phase diagram obtained by quantum Monte Carlo techniques become avail-
able[137-139]; they all find evidence for a Mott-Hubbard insulating state above
a critical value of U.

The generalized CPA approach can also be used to derive the exact averaged
free energy of Hubbard-type models with local disorder[130]. On the level of 2-
particle (and higher) correlation functions the simultaneous existence of inter-
actions and disorder leads to a new coupling of quantum degrees of freedom
which have no counterparts in noninteracting, disordered, or pure, interacting
systems. This coupling requires the self-energy for the nonrandom model to be
frequency-dependent. Hence it is a genuine correlation effect which is lost in
any Hartree-Fock treatment.
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4'3. The Falicov-Kimball model. — An exact evaluation of the free energy Q
and hence of the phase diagram becomes possible in the absence of the Hubbard
interaction (as in the case of spinless fermions, (1.12), with or without disor-
der[17]) or when there is no coupling between the frequencies, e.g. when one
species of particles is decoupled from the surrounding medium. This is the case
in the so-called «simplified Hubbard model», where only one of the two spin
species is allowed to hop (eg., t1 = —¢,¢t, = 0). This simplification was first
discussed by HUBBARD [5] and GUTZWILLER [49] as an approximation to the full
model. It was then considered by FALicov and KIMBALL[140] as a model for a
semiconductor-metal transition in systems like SmBg, V,0; and Ti, 05, taking
the mobile and fixed particles to be spinless d- and f-electrons, respectively.
Later LIEB and KENNEDY[141] investigated it as a model for crystallization in
terms of mobile electrons and immobile nuclei. The Hamiltonian for this «sim-
plified Hubbard model« (which is referred to as «Falicov-Kimball model» in the
rare-earth community) may, therefore, be written in different forms:

4370)  Hump= =t 2 &Mt +U 2 il figy — 2w,
‘ (R;, R;) R; R;, o

(4.37b) — & d+ U 2 08 af — 2 (ugd + ppal).
(R;, R;) R; R;

Due to the immobility of one of the fermion species there is no energy transfer
between the two species T, | (or d, f), i.e. they are dynamically uncoupled.
(Note that, although the immobile spins have no explicit dynamics, they are not
fixed at given positions; hence an ensemble average over all particles will de-
cide on the optimal spatial distribution of the fixed particles—this is similar to
the case of Ising spins.)

In spite of the additional simplification involved in (4.37) this model
is still complicated—especially away from half-filling. However, an exact
solution is possible in d = o, which was first obtained by BRANDT and
MieLSCH([142]. The free energy for the model can also be derived within
the generalized CPA approach[38]. The effective propagator for the fixed
spins in (4.32) is now given by &, = (iw, +« | )" and the static approximation
becomes exact! This is due to the separation of the dynamics of the two
spin species, as can be demonstrated in a diagrammatic perturbation expansion.
There is no energy transfer at vertices between up and down spins due
to the J-function dispersion of fixed electrons. Effectively this means that
closed loops factorize and thus contribute only globally. The perturbation
theory can then be summed explicitly to all orders. For the special case
of half-filling the phase diagram of the simplified Hubbard model in d = »
is shown in fig. 4.3. For values of T and U below the curve, the system
is in an ordered state (charge density wave), above that it is in a homogeneous
phase. For U>>t one has T, ~t%/U as in the full Hubbard model (in fact,
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homogeneous

ordered

o

U
Fig. 4.8. — Phase diagram of the Falikov-Kimball model at half-filling.

the two models coincide for half-filling and large U). The phase boundary
is very similar to that in d < o [141].

As mentioned at the end of subsect. 42, the addition of disorder to Hub-
bard-type models leads to a new, nontrivial coupling of the quantum degrees of
freedom. This can be shown explicitly in the case of the Falikov-Kimball
model [130], since the exact solution of the nondisordered model is known. In
particular one finds that in the ordered phase the average free energy depends
on (nf; In nf )., where a = A, B refers to the sublattice, i.e. depends on in-
finitely many averaged quantities ((n#; }*)u, k=1, 2,3, ete. Such a depen-
dence is reminiscent of the configuration-dependent mean-field free energy of
Thouless, Anderson and Palmer[143] in the classical spin glass problem. This
enables one now to investigate the transition to phases with broken ergodicity
even in quantum systems.
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