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InAs Quantum Dots of Engineered  
Height for Fabrication of Broadband 

Superluminescent Diodes 
S. Haffouz and P.J. Barrios 

Institute for Microstructural Sciences, National Research Council of Canada, 
Ottawa, Ontario, 

 Canada 

1. Introduction 
Superluminescent diodes (SLDs) are of great interest as optical sources for various field 
applications like fibre-optic gyroscopes (Culter et al, 1980), optical time-domain 
reflectometry (Takada et al, 1987), sensing systems (Burns et al, 1983) (such as Faraday-effect 
electric current sensors and distributed Bragg-grating sensor systems) and short and 
medium distance optical communication systems (Friebele & Kersey, 1994). One of the most 
attractive applications of SLDs has emerged after the successful demonstration of the optical 
coherence tomography (OCT) technique, and identification of its advantages compared to 
other imaging techniques in medical research and clinical practices. OCT is a real time and 
non-invasive imaging technique that uses low-coherence light to generate resolution down 
to the sub-micron-level, two- or three-dimensional cross-sectional images of materials and 
biological tissues. The earliest version of the OCT imaging technique was demonstrated in 
1991 by Huang and co-workers (Huang et al, 1991), by probing the human retina ex vivo. 
Imaging was performed with 15µm axial resolution in tissue using a light source with a 
central wavelength of 830nm. Two years later, in vivo retinal images were reported 
independently by Fercher et al. (Fercher et al, 1993) and Swanson et al (Swanson et al, 1993). 
Although 800nm OCT systems can resolve all major microstructural layers of tissues, image 
quality can be severally degraded by light scattering phenomena. In low-coherence 
interferometry, the axial resolution is given by the width of the field autocorrelation 
function, which is inversely proportional to the bandwidth of the light source. In other 
words, light sources with broadband spectra are required to achieve high axial resolution. 
Although at longer wavelengths the bandwidth requirement increases, there is a significant 
advantage in using light sources of longer central wavelengths for which the light scattering 
is significantly reduced. 

In recent few years, broadband light sources around 1m have received considerable 
attention for their use in medical imaging technologies. It is due to the optimal compromise 
between water absorption and human tissue scattering that the 1000-1100 nm wavelength 
range has been proposed, and demonstrated, to be more suitable for OCT applications as 
compared to those that use a light source with a central wavelength of 800nm (Pavazay et al, 
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2003; Pavazay et al, 2007). There are a myriad of choices in selecting such OCT light sources 
i) femtosecond or fiber lasers that are dispersed to produce super-continuum light and 
swept source lasers (Hartl et al, 2001; Wang et al, 2003), ii) thermal sources, and iii) 
superluminescent diodes (Sun et al, 1999; Liu et al, 2005; Lv et al, 2008; Haffouz et al, 2010). 
Although the reported OCT tomograms with the highest axial resolution (1.8m) were so far 
achieved in research laboratories with a photonic crystal fibre based source (Wang et al, 
2003), superluminescent diodes are considerably lower in cost and complexity as well as 
being smaller in size, which makes them more attractive for mass production. 
Superluminescent diodes utilizing quantum-dots (QDs) in the active region are considered 
to be excellent candidates as light source for an OCT systems. The naturally wide 
dimensional fluctuations of the self-assembled quantum dots, grown by the Stranski-
Krastanow mode, are very beneficial for broadening the gain spectra which enhances the 
spectral width of the SLDs. On the other hand, the three-dimensional carrier confinement 
provided by the dots’ shape results in high radiative efficiency required for the OCT 
applications.  

In this chapter the main governing factors to demonstrate ultrahigh-resolution OCT-based 
imaging tomographs will be reviewed in the second section. Research advances in the 
growth processes for engineering the gain spectrum of the quantum dots-based 
superluminescent diodes will be summarized in the third section of this chapter. Our 
approach for engineering the bandwidth of multiple stacks of InAs/GaAs QDs will be 
presented in the fourth section and demonstration of an ultra wide broadband InAs/GaAs 
quantum-dot superluminescent diodes (QD-SLDs) will be then reported in the last section of 
this chapter. Our approach is based on the use of SLDs where the broad spectrum is 
obtained by a combination of slightly shifted amplified spontaneous emission (ASE) spectra 
of few layers of dots of different heights. Spectral shaping and bandwidth optimization have 
been achieved and resulted in 3dB-bandwidth as high as ~190nm at central wavelength of 
1020nm. An axial resolution of 2.4µm is calculated from our QD-SLDs. 

2. Superluminescent diodes for ultrahigh-resolution optical coherence 
tomography (UHR-OCT) 
Since its invention in the early 1990s (Huang et al, 1991), OCT enables non-invasive optical 
biopsy. OCT is a technique that provides in-situ imaging of biological tissue with a 
resolution approaching that of histology but without the need to excise and process 
specimens. OCT has had the most clinical impact in ophthalmology, where it provides 
structural and quantitative information that can not be obtained by any other modality. 
Cross-sectional images are generated by measuring the magnitude and echo time delay of 
backscattered light using the low-coherence interferometry technique. The earliest versions 
of OCT have provided images with an axial resolution of 10-15µm. OCT has then evolved 
very quickly, with two-dimensional (2D) and three-dimensional (3D) microstructural 
images of considerably improved axial resolution being reported (Drexler et al, 1999). These 
ultrahigh-resolution OCT systems (UHR-OCT) enable superior visualization of tissue 
microstructure, including all intraretinal layers in ophthalmic applications as well as cellular 
resolution OCT imaging in nontransparent tissues. The performance of an OCT system is 
mainly determined by its longitudinal (axial) resolution, transverse resolution, dynamic 
range (sensitivity) and data acquisition speed. Other decisive factors like depth penetration 
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into the investigated tissue (governed by scattering, water absorption) and image contrast 
need to be carefully addressed. In addition, for field application, compactness, stability, and 
overall cost of the OCT system should be considered. 

2.1 Factors governing OCT imaging performance 

In this section we will review the key parameters that are directly or closely related to the 
light source used in the OCT technique. Other limiting factors, related to other optical, 
electronic and/or mechanical components can affect the resolution in OCT system when not 
properly addressed. For more details regarding OCT technology and applications, please 
refer to the book edited by Drexler and Fujimoto (Drexler & Fujimoto, 2008). 

2.1.1 Transverse and axial resolution 

As in conventional microscopy, the transverse resolution and the depth of focus are 
determined by the focused transverse sport size, defined as the 21 / e  beam waist of a 
Gaussian beam. Assuming Gaussian rays and only taking into account Gaussian optics, the 
transverse resolution can be defined by: 

 
4 f

x
d




   (1) 

where f is the focal length of the lens, d  is the spot size of the objective lens and   is the 
central wavelength of the light source. Finer transverse resolution can be achieved by 
increasing the numerical aperture that focuses the beam to a small spot size. At the same 
time, the transverse resolution is also related to the depth of the field or the confocal 
parameter b , which is 2 Rz , or two times the Rayleigh range: 
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Therefore, increasing the transverse resolution produces a decrease in the depth of the field, 
similar to that observed in conventional microscopy. Given the fact that the improvement of 
the transverse resolution involves a trade-off in depth of field, OCT imaging is typically 
performed with low numerical aperture focusing to have a large depth of field. To date, the 
majority of early studies have rather focused on improving the axial resolution. 

Contrary to standard microscopy, the axial image resolution in OCT is independent of 
focusing conditions. In low-coherence interferometry, the axial resolution is given by the 
width of the field autocorrelation function, which is inversely proportional to the bandwidth 
of the light source. For a Gaussian spectrum, the axial (lateral) resolution is given by: 

 
22 (2)Ln

z

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where z is the full-width-at-half-maximum (FWHM) of the autocorrelation function, , and 
 is the FWHM of the power spectrum. 
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Fig. 1. Axial resolution versus bandwidth of light sources for central wavelengths of 830, 
1064, 1300 and 1500nm. 

Since the axial resolution is inversely proportional to the bandwidth of the light source, 
broadband light sources are required to achieve high axial resolution. For a given 
bandwidth, improving the axial OCT resolution can be also achieved by reducing the central 
wavelength of the light source (c.f. Figure 1). It should also be noticed that to achieve a given 
axial resolution the bandwidth requirement is increased at longer wavelengths. For 
example, to achieve an axial resolution of 5µm, the bandwidth required is only 50nm at 
central wavelength of 830nm, and three times higher when a light source of central 
wavelength of 1300nm is chosen. 

2.1.2 Imaging speed-sensitivity in OCT 

Detection sensitivity (detectable reflectivity) has a significant impact on the imaging speed 
capabilities of an OCT system. As the scan speed increases, the detection bandwidth should 
be increased proportionally, and therefore the sensitivity drops. The sensitivity of state-of-
the-art time-domain OCT systems that operate at relatively low imaging speed (~2kHz A-
line rate), ranges between -105 and -110dB. Increasing the optical power of the light source 
should in principle improve the sensitivity; however, the available sources and maximum 
permissible exposure levels of tissue represent significant practical limitations. The potential 
alternative technique for high-imaging speed is the use of Fourier/spectral domain 
detection (SD-OCT) or Fourier/swept source domain detection (SS-OCT) also known as 
optical frequency domain imaging (OFDI). The first approach, SD-OCT, uses an 
interferometer with a low-coherence light source (superluminescent diodes) and measures 
the interference spectrum using a spectrometer and a high-speed, line scan camera. The 
second approach, SS-OCT, uses an interferometer with a narrow-bandwidth, frequency-
swept light source (swept laser sources) and detectors, which measure the interference 
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output as a function of time. Fourier domain detection has a higher sensitivity as compared 
to time domain detection, since Fourier domain detection essentially measures all of the 
echoes of light simultaneously, improving sensitivity by a factor of 50-100 times (enabling a 
significant increase in the imaging speeds). 

2.1.3 Image contrast and penetration depth in OCT 

Tissue scattering and absorption are the main limiting factors for image contrast and 
penetration depth in OCT technology. Indeed, OCT penetration depth is significantly 
affected by light scattering within biological tissue, which scales as 1 / k , where the 
coefficient k is dependent on the size, shape, and relative refractive index of the scattering 
particles. The difference in tissue scattering and absorption provides structural contrast for 
OCT. Since scattering depends strongly on wavelength and decreases for longer 
wavelengths, significantly larger image penetration depth can be achieved with light 
centered at 1300nm rather than 800nm. However, above 1300nm the water absorption 
becomes a problem. So far, the majority of clinical ophthalmic OCT studies have been 
performed in the 800 nm wavelength region. Excellent contrast, especially when sufficient 
axial resolution is accomplished, enables visualization of all major intraretinal layers, but 
only limited penetration beyond the retina. This limitation is mainly due to significant 
scattering and absorption phenomena. 

Water is the most abundant chemical substance in the human body, accounting for up to 
90% of most soft tissues. The most commonly used wavelength window of low water 
absorption (µa<0.1cm-1) for OCT imaging is lying in the 200-900 nm range. Above 900 nm 
the absorption coefficient increases fairly rapidly to reach µa~ 0.5cm-1 at ~970 nm, drops 
back to ~0.13cm-1 at 1064nm, and then continues to increase at longer wavelengths into the 
mid-infrared. The region of low absorption around 1060nm acts as a ‘window’ of 
transparency, allowing near infrared spectroscopic measurements through several 
centimeters of tissue to be made. For this reason, OCT imaging at 1060 nm can achieve 
deeper tissue penetration into structures beneath the retinal pigment epithelium, as well as 
better delineation of choroidal structure. 

2.2 Light source for ultrahigh resolution OCT 

The light source is the key technological parameter of an OCT system. The performance 
characteristic of the light source, such as central wavelength, bandwidth, output power, 
spectral shape, and stability will directly affect the OCT image resolution. For this reason, a 
proper choice of the light source for optimized performance OCT system is imperative. In 
the recent years, there has been considerable interest in the use of broadband light sources 
around 1064nm for use in ophthalmic OCT applications. It is due to the optimal compromise 
between water absorption and human tissue scattering that the 1064nm wavelength 
‘window’ has been proposed, and demonstrated, to be more suitable for OCT applications as 
compared to those that use a light source with a central wavelength of 800nm (Povazay et al, 
2007). There are a myriad of choices in selecting such OCT light sources i) femtosecond or 
fiber lasers that are dispersed to produce super-continuum light and swept source lasers, 
and ii) superluminescent diodes. Highly non-linear air-silica microstructure fibers and 
photonic crystal fibers (PCFs) can generate an extremely broadband continuous light 
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spectrum from the visible to the near infrared by use of low-energy femtosecond pulses 
(Wang et al, 2003; Hartl et al, 2011). Spectral bandwidth up to 372nm was achieved at 1.1µm 
central wavelength. The super-continuum light source also has the advantage of achieving 
faster imaging speed with higher signal-to-noise ratio. 

Although the reported OCT tomograms with the highest axial resolution (1.8m) were so far 
achieved in research laboratories with a photonic crystal fibre based source (Wang et al, 
2003), superluminescent diodes are considerably lower in cost and complexity as well as 
being smaller in size, which makes them more attractive for mass production. 
Superluminescent diodes utilizing quantum-dots in the active region are considered to be an 
excellent candidate as a light source for an OCT system. The naturally wide dimensional 
fluctuations of the self-assembled quantum dots, grown by the Stranski-Krastanow mode, 
are very beneficial for broadening the gain spectra which enhances the spectral width of the 
SLDs. On the other hand, the three-dimensional carrier confinement provided by the dots’ 
shape results in high radiative efficiency required for the OCT applications. 

3. Reported superluminescent diodes for bandwidth widening and their 
performance parameters 
Since the first report in 1993 (Leonard et al, 1993), the formation of strained self-assembled 
quantum dots by heteroepitaxial growth in the Stranski–Krastanow mode has been studied 
extensively for their fundamental properties and applications in optoelectronics. Significant 
breakthroughs occurred over the last two decades with the fundamental understanding of 
the QDs systems and the demonstration of zero-dimensional novel devices. These 
achievements are directly related to the noticeable advances in the epitaxial materials 
deposition. With self-assembled QDs growth process, a certain size inhomogeneity is 
common and typically not less than 10%. It has been predicted (Sun & Ding, 1999) that the 
full width at half maximum of the SLDs output spectrum of the In0.7Ga0.3As/GaAs quantum 
dot system, with a standard deviation in the average size of the QD ensemble of 10%, can be 
as high as 140nm. Increasing further the size variation of the dots to 30% should result in 
bandwidth as high as 160nm. The confinement potential between the dots and the barriers is 
another important factor for modifying the spectral width. With only 10% size variation 
increasing the potential confinement by using higher indium composition in the dots a 
spectral width of 230nm was predicted in the In0.9Ga0.1As/GaAs quantum dot system (Sun 
& Ding, 1999). In general, such inhomogeneous size distribution of self-assembled QDs in 
the active region is disadvantageous for achieving lasing of QD-lasers. However, for the 
designed wide spectrum QD-SLDs it becomes an effective intrinsic advantage for 
broadening the emission spectrum. Experimentally, using five layers of InAs/GaAs QDs 
grown under identical growth conditions in a molecular beam epitaxy system (Liu et al., 
2005), SLDs with full width at half maximum of ~110nm at a central wavelength of 1.1µm 
have been made. For high resolution optical coherence tomography applications around 
1060nm an even wider broadband spectrum is required. Increasing further the bandwidth of 
the emission spectrum of the SLDs is a complicated process and requires more than just 
optimization of the growth conditions of the active region of the device. The precise control 
of the average size distribution of the dots within one layer is a very challenging process 
and is very difficult to reproduce. Very practical and successful ideas based on engineering 
the matrix surrounding the QDs have been also proposed and applied to the fabrication of 
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broadband superluminescent diodes with central wavelength around 1060nm (Li et al, 2005; 
Ray et al., 2006; Yoo et al, 2007; Lv et al, 2008). Figure 2 shows examples of engineered 
energy band diagrams of the active region of QD-SLDs for increasing their spectral width. 

 
(a) (b) (c) (d) 

Fig. 2. Schematic band diagrams of some proposed schemes that have been reported in the 
literature: a) AlGaAs barrier instead of GaAs b) chirped QD structure with InxGa1-xAs strain-
reducing layer (SRL), c) chirped QD structure with InGaAs SRL and InAs dots of different 
size by deposition of different InAs thicknesses, d) QD structure with dots in 
compositionally modulated quantum wells (DCMWELL). 

The use of InAs QDs in Al0.14Ga0.86As matrix instead of GaAs [fig.2 (a)] significantly affects 
the dot size and distribution and results in a light emitting diode with a spectral bandwidth 
of 142nm (Lv et al, 2008). The introduction of aluminum atoms reduces the migration length 
of the indium atoms on the AlGaAs surface. This results in an increase of the nucleation 
centers which favors the formation of smaller dots with higher density and of larger size 
fluctuation. For SLDs made using such approach, output power under pulsed conditions 
was 3mW at 4A driving current.   

Another effective approach for changing the matrix surrounding the QDs was reported by 
Li and co-authors (Li et al, 2005). They have introduced a thin capping InxGa1-xAs strain-
reducing layer (SRL) where the indium composition was increased from 9% to 15% by an 
interval of 1.5% for the five layers of InAs dots of the device [fig. 2 (b)]. QD-SLDs with 
121nm bandwidth were demonstrated. The use of InxGa1-xAs SLR however red-shifted the 
central wavelength to 1165-1286nm range. The maximum achieved output power in these 
devices was limited to only 1.5mW in pulsed mode. 

Introducing an In0.15Ga0.85As SRL for all layers of dots, and changing the dots size from one 
layer to another by depositing different InAs thicknesses [fig. 2 (c)], is another approach that 
was proposed by Yoo et al. for broadening the gain spectrum of the QD-SLDs (Yoo et al, 
2007). The resulted power spectrum was up to 98nm wide centered at ~1150nm. Output 
power of 32mW in continuous-wave operation mode was measured in these devices at 
900mA injection current.  

To control the bandwidth of the emission spectrum of QD-SLDs Ray and co-workers (Ray et 
al., 2006; Ray et al., 2007) proposed to use a dot in compositionally modulated well 
(DCMWELL) structure of different indium compositions within each well [fig. 2 (d)]. The 
indium compositions in this structure were chosen such that the separation of the peak 
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wavelengths resulting from a dot-in-well (DWELL) of different compositions is equal to the 
linewidth of the individual DWELLs. Flat-topped spectral profile of 95nm full-width at half-
maximum centered at 1270nm was demonstrated. The corresponding achieved output 
power in continuous-wave mode was 8mW at 900mA injection current. 

Engineering the energy diagram of the surrounding matrix of the QDs is a precise and 
reproducible technique to manipulate the ground-state (GS) and the excited-states (ESs) 
peak positions for broadening the spectrum gain. Another powerful approach is to use 
external means to manipulate to peak positions of the GS and ESs of the dot. This was 
achieved by using multi-section ridge waveguide QD-SLDs. The multi-section SLDs consists 
of single ridge waveguide divided into three electrically isolated sections: the absorber 
(reverse-biased to eliminate back reflections) and the two gain sections that are 
independently biased at different current to favor either GS or ES emission from each 
section. In this configuration, adjusting the current densities and the lengths of the two SLD 
sections allows a control of the power output and bandwidth related to the GS and ES of the 
dots. Using such an approach, Xin and co-authors (Xin et al, 2007) were the first to use a 
multiple section QD-SLDs as a flexible device geometry that permits independent 
adjustment of the power and spectral bandwidth in the ground-state and the excited-states 
of the QDs. Emission spectrum with full width at half maximum of 164nm and 220nm were 
achieved with central wavelength of 1.15µm and 1.2µm, respectively. The maximum 
achievable output power in continuous-wave mode, at these wavelengths, was about 
0.6mW and 0.15mW, respectively. 

For fabrication of broadband SLDs around 1060nm, optimized postgrowth rapid thermal 
annealing at 750C was also reported (Zhang et al, 2008). Compared to the as-grown 
structure, the bandwidth of the device was increased by a factor of two (to 146nm) with the 
central emission peak blueshift of 54nm (from 1038nm down to 984nm). However, this 
bandwidth increase was obtained at the expense of continuous-wave output power which 
decreased by a factor of six, down to 15mW.  

A bipolar cascade SLD that uses tunneling junctions between distinct multiple quantum 
wells was also reported by Guol and co-authors (Guol et al, 2009) for bandwidth 
engineering. Emitting device with spectral bandwidth of 180nm at central wavelength of 
1.04µm was demonstrated. The corresponding maximum continuous-wave output power 
was 0.65mW. 

4. Spectral broadening using height engineered InAs/GaAs quantum dots 
Tuning the emission properties of QDs assemblies by in-situ annealing after changing the 
growth kinetics during the capping (Garcia et al, 1998, Wang et al, 2006), or by post-growth 
annealing under a GaAs (Leon et al, 1996; Kosogov et al, 1996; Babinski et al, 2001) or SiO2 
proximity cap (Malik et al, 1997; Xu et al, 1998; Yang et al, 2007) have been extensively 
reported. At the National Research Council of Canada (NRC), we have previously reported 
(Wasilewski et al, 1999; Fafard et al, 1999) a growth technique, called indium-flush, to control 
the size and exciton levels of the self-assembled QDs. The indium-flush process consists in 
removing all surface resident indium at a certain position during the overgrowth of the 
GaAs cap layer. Using this process an additional degree of size and shape engineering, 
giving a much improved uniformity of the macroscopic ensemble of QDs with well-defined 
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electron shells, was achieved. The process was also proven to be a very reproducible growth 
technique for improving the uniformity of the dots size distribution of QD ensembles in 
laser structures. In this chapter we will demonstrate that using the indium-flush process, to 
intentionally and precisely tune the GS peak position of dots from one layer to another in a 
superluminescent diode structure, is a controllable and effective approach to fabricate 
broadband emission spectra for ultrahigh resolution OCT applications (Haffouz et al, 2009; 
Haffouz et al, 2010; Haffouz et al, 2012). 

4.1 The epitaxial growth procedure  

The epitaxial growth of the InAs/GaAs QDs was carried out in a V80H VG molecular beam 
epitaxy (MBE) system using an As2 molecular flux with arsenic pressure of ~1e-7 Torr. Solid 
source effusion cells were used for Ga and In elements. All the growths were done using a 
substrate rotation of 3s per turn to obtain uniformity throughout the wafers. The surface 
temperature was monitored by optical pyrometer. GaAs (100) substrate has been used as a 
template. Before introduction in the growth chamber, the GaAs substrates were outgassed 
under vacuum at 450C for 2h. Oxide removal was carried out in-situ by either a thermal 
desorption process in the presence of As flux at high temperature or by first applying Ga 
pulses in the presence of As, partial removal of the oxide at lower temperatures via 
conversion of the stable Ga2O3 surface oxide into a volatile Ga2O oxide, and then the high 
temperature standard oxide removal (Wasilewski et al, 2004). The later oxide removal 
technique was found to reduce the substrate surface roughness. The self-assembled 
InAs/GaAs QD layers were obtained using the spontaneous island formation at the initial 
stages of the Stranski-Krastanow growth mode during the epitaxy of highly strained InAs 
on GaAs. The growth rates of the GaAs and InAs used in these studies were 2Å/s and 
0.23Å/s, respectively. The epitaxial growth procedure of the InAs QDs on GaAs buffer was 
performed as following: after growing the 200nm GaAs buffer layer at 600ºC, the substrate  

 
Fig. 3. Schematic drawing of the evolution of the dots during the overgrowth of the InAs 
with GaAs capping layer. 
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temperature was lowered to 480-505C where an InAs layer of 1.95-ML thick was grown. 
Transition from streaky to spotty pattern measured by reflection high energy electron 
diffraction technique, which indicates the onset of the dot formation, was observed after 
approximately 26s of indium deposition [Fig. 3(a)]. A short anneal for 30 s at the same 
substrate temperature followed by a partial capping of the formed dots by a GaAs layer was 
applied [Fig. 3(b)]. The thickness of the GaAs layer in this case was varied in the range of 
2.5- to 6.5-nm thick, thicknesses that are well below the typical average dots height (10nm). 
Right after the partial capping of the dots, the indium-flush was executed by interrupting 
the growth, raising rapidly the substrate temperature to 610C and annealing for 70 s at that 
temperature. During this step, In/Ga interdiffusion was taking place and the non-protected 
resident indium desorbed [Fig. 3(c)]. The substrate temperature was then reduced to 600C 
to complete the capping of the formed disk-like dots by growing a GaAs layer of total 
thickness of 100nm (Fig. 3(d)). For morphological analysis of the QDs, extra layer of dots 
(surface dots) was grown above the GaAs capping layer and left uncapped. 

4.2 Tuning InAs quantum dots for high areal density  

Epitaxial growth of InAs QD layers of high areal dot density and good optical quality is 
required to fabricate high optical gain devices like lasers, SLDs, SOAs, etc. Particularly, for 
broadband emission SLDs, high areal dot density should improve the optical properties of the 
QD-SLDs, since, unlike QD lasers, emission from QD-SLDs is contributed by QDs of all sizes. 
Size inhomogeneity in QD layers of low density is small compared to QD layers of high density. 
Therefore, the use of high areal dot density should introduce a wider emission energy range. 

Fig.4 shows atomic force microscope (AFM) images of surface dots grown under identical 
growth conditions but different substrate temperature for the deposition of the InAs layer.  
In these QD layers, the indium-flush of the buried layers was executed after partial capping 
of the QDs with GaAs of 4.5nm thickness. When the InAs layer was deposited at substrate 
temperature of 505ºC [fig. 4(a)] an areal dots density of 1.4x1010cm-2 was obtained. 
Decreasing the deposition temperature of the InAs layer to 480C [fig. 4(b)] reduces the 
adatom migration length which led to the formation of new nucleation sites for the 
impinging adatoms, reducing the combination/coalescence with the existing dots. This 
resulted in the formation of denser dots with larger size inhomogeneity. The achieved areal 
dot density was about 1x1011cm-2. 

    
Fig. 4. Atomic Force Microscope (AFM) images of surface InAs QDs on GaAs buffer deposited 
at a substrate temperature of 505ºC (a) and 480C (b). The surface area is 500nm x 500nm. 

(a) (b) 
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Fig. 5 shows the optical properties as measured by photoluminescence (PL) at 77K of a 
single layer of InAs QDs grown at different substrate temperatures. The samples S1, S2, S3 
and S4 correspond to growth temperatures of 505, 495, 485 and 480ºC, respectively. With 
identical monolayer coverage (1.95ML of InAs), the areal dot density can be directly controlled 
by the substrate temperature to achieve a dots density as high as ~1x1011cm-2. At high growth 
temperature (S1), PL spectra with a ground-state (GS) peak position at 1.185eV and with well-
resolved excited states peaks (n=1, 2, 3, 4) were obtained.  Increasing further the dots density 
(S2), the GS peak position remained unchanged (at 1.187eV), however the number of the 
excited-state transition peaks reduced (n=1,2,3). The measured intersublevel energy spacing 
was about 57meV for both samples. No noticeable change in the PL intensity was measured 
between S1 and S2. However, increasing the dot density to 6x1010cm-2 significantly changed the 
PL spectrum which is now consisted in a single wideband centred at 1.222eV with a slightly 
reduced intensity. In sample S4, where the dot density reached ~1x1011cm-2, the PL intensity 
was significantly reduced (by a factor of 100) and the central peak was blueshifted by 31meV. 
The spectra broadening in the case of S3 and S4 can be explained by the lateral coupling 
between the dots, the GS emission from the small dots overlapping with the emission from 
larger dots. However, the noticeable reduction in the PL intensity in S4 was related to the 
formation of defective dots when their density was increased. For broadband SLDs fabrication, 
a compromise between high dot density and good optical properties had to be taken into 
account. For SLD fabrication an areal dot density of about 4-5x1010cm-2 was chosen, using a 
growth temperature for the InAs layer of around 490C. 
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Fig. 5. Photoluminescence spectra measured at 77K of single layers of InAs QDs of different 
areal densities, capped with 100nm GaAs layers.  
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4.3 Height engineering of self-assembled InAs/GaAs QDs for wideband emission 

The indium-flush process is a very reproducible and predictable process to engineer the QD 
height and is therefore a reliable tool for tuning the QD emission energy. By varying the 
thickness of the GaAs cap layer at which the indium-flush process is executed, the ground-
state transition energy of the QDs can continuously be adjusted over a wide emission 
wavelength range. Combining selected layers of QDs with various dot heights offers the 
possibility to reliably broaden the emission bandwidth of the QD-SLD spectrum. With this 
motivation, we have carried out a study on tuning the dot height by growing a single layer of 
dots where the indium flux process was executed at different GaAs partial capping thickness. 
For all the samples a buffer layer of 200nm of GaAs was first deposited at 600C on an un-
doped GaAs (100) substrate before the growth of the InAs layer at a temperature of 490C. 
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Fig. 6. Photoluminescence spectra at 77K (a) and at room-temperature (b) of single layers of 
InAs QDs grown with the indium-flush process that was executed at different thicknesses of 
GaAs capping layer. 
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Fig. 6(a) and (b) show the photoluminescence spectrum, measured respectively at 77K and 
at room-temperature, of a single layer of dots where the indium flux process was executed 
after the deposition of a thin GaAs cap layer between 2.8 and 6.0nm of thicknesses. The areal 
dot density in these layers was in the range of 3-4 x1010cm-2. Due to the high areal dot 
density, only the first intersublevel energy transition (s-shell) is observed. It should be 
noticed that decreasing the average dot height within one layer reduced the 
photoluminescence emission intensity very quickly at room-temperature whereas the 
decrease of the photoluminescence intensity was less pronounced at 77K. The 
photoluminescence intensity drop from one layer of dots to another at room-temperature 
can be explained by the reduction in the carrier confinement due to the reduced potential 
barrier for carriers in smaller dots. However, with suppressed non-radiative recombination 
at 77K, due to the reduced mobility of carriers at lower temperatures, the 
photoluminescence intensity drop from one sample to another was reduced. Nevertheless, 
PL intensity reduction at 77K by ~50% can still be observed in the layer of shorter dots as 
compared to longer ones. 

Fig. 7 shows the variation of the GS and the first ES emission wavelength values at room-
temperature and at 77K for the grown layer of dots as a function of the average dot height. 
From previous transmission electron microscopy studies (Haffouz et al, 2009), we found that 
the average dot height within one layer is approximately the thickness of the GaAs layer 
deposited at low temperature minus 2nm. With increasing dot height, by increasing the 
thickness of the deposited GaAs cap layer at low temperature before the indium-flush 
process, the GS peak wavelength of the emission spectrum shifted towards longer 
wavelength by about 150nm and 169nm at 77K and 300K, respectively. Combining these 
four layers of dots in the active region of a superluminescent diode could be very beneficial 
in generating a broadband emission spectrum. 
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Fig. 7. Variation of the GS and ES peak wavelengths as extracted from the 
photoluminescence spectra as a function of average dot height. 
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5. Ultra wide bandwidth SLDs using InAs QDs of tuned heights: Epitaxial 
growth, fabrication and testing 
Tuning the QD emission energy levels by varying the thickness of the GaAs cap layer (from 
2.5 nm to 6.5 nm) at which the indium-flush process is executed, the ground-state emission 
wavelength peak position at 300K can be precisely adjusted from 990 nm to 1150 nm 
(Haffouz et al, 2009; Haffouz et al, 2012). Therefore, combining selected layers of QDs with 
various dots heights offers the possibility to reliably broaden the emission bandwidth of the 
QD-SLD spectrum. Demonstration of symmetric and regular shape emission spectra is 
required in order to avoid the presence of sidelobes in the OCT interferogram which could 
be a potential source of spurious structures in the OCT images. To maximize the bandwidth 
of the emission spectrum of the device, and in order to avoid the formation of dips in the 
power spectrum, the GS separation energy between adjacent layers of dots should be 
carefully tuned. We have chosen four different heights of dots in such a way that there was 
an overlap between the GS emission line from one layer of dots and the ES from the adjacent 
layer. The chosen average heights of the dots in each layer were about 2.6nm, 3.4nm, 4.8nm 
and 5.8nm. The dot layers were grown in such a way that the dot height was gradually 
increased from 2.6 nm up to 5.8 nm starting from the bottom to top in the epitaxial device 
structure (described in the paragraph hereafter). 

The device structure was grown on an n+-GaAs (100) substrate in a solid-source V80H VG 
molecular beam epitaxy system. To achieve the 1µm emission line, InAs QDs inside a GaAs 
matrix have been grown. The InAs material growth temperature and growth rate were 
490C and 0.023nm/s, respectively. The obtained dots density was ~5x1010dots/cm2. The 
active region of the device consisted in two repeats of four layers of InAs quantum dots with 
GaAs barrier/cap layers, within a 300 nm thick waveguide. 200nm-thick graded index 
AlxGa1-xAs (x=0.1-0.33) layer was grown at 600C around the QD core with a 1.5 m 
Al0.33Ga0.67As:Be (1x1018 cm-3) upper cladding and a 1.5 m Al0.33Ga0.67As:Si (2×1018 cm-3)  
lower cladding layer. After each 97 nm of n-cladding growth, a 3 nm GaAs:Si layer was 
grown to smooth the surface. The top 100 nm GaAs:Be contact layer was doped to a level of 
2×1019 cm-3, while the bottom GaAs:Si buffer layer was doped to 2×1018 cm-3. 

 
   (a)     (b) 

Fig. 8. (a) Schematic structure of the active region of the SLDs where the dot height was 
varied by controlling the thickness of the GaAs cap layers deposited at low temperature. 
The arrows indicate the position where the indium-flush was executed (dx). l4 is the height 
of the dots in layer 4. (b) Schematic diagram of the photoluminescence (PL) spectrum of 
such a stack of quantum dots. 

 

PL 

InAs QDs 

 

d1 

 
d4 

d3 

d2 

1 4 3 2 

 4l

GaAs  



 
InAs Quantum Dots of Engineered Height for Fabrication of Broadband Superluminescent Diodes 

 

17 

Figure 8(a) shows a schematic drawing of the active region of the SLDs used in this study. 
The four layers of InAs QDs were grown using the same amount of InAs materials 
(1.95 ML), whereas the indium-flush was executed respectively at thicknesses equal to 
2.8 nm, 3.6 nm, 4.5 nm and 6.5 nm from bottom to top layers. This resulted in the formation 
of truncated dots with their height typically about 2nm smaller than the corresponding 
indium-flush position. The predicted photoluminescence spectrum is an overlap of four 
spectra, each of which having a ground-state transition energy position inversely 
proportional to the average of the dots height in its corresponding layer [Fig. 8(b)]. 
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Fig. 9. Photoluminescence spectrum at a) 78K and b) room-temperature of the QD-SLD 
structure incorporating four layers of InAs QDs where the indium flushes were executed at 
different thicknesses (2.8 nm, 3.6 nm, 4.5 nm and 6.5 nm). 
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Photoluminescence measurements at low temperature (78K) with various excitation powers 
[Fig. 9(a)] and at room-temperature [Fig. 9(b)] have been carried out on this QD-SLD 
structure after removing the top contact layer and the AlGaAs claddings. As displayed in 
Fig. 9(a), the recorded photoluminescence spectra with varied excitation powers indicates 
that the four peaks at energy wavelengths of 926 nm, 970nm, 1017 nm and 1050 nm 
corresponding to the ground-state transitions wavelengths of the layers of dots with 
indium-flush positions at 2.8 nm,  3.6 nm, 4.5 nm and 6.5 nm, respectively. No state filling 
was observed with power excitation up to 15mW. Moreover, distinguishing the transitions 
related to the excited-states was render difficult by the fact that the combined layers of dots 
were designed in such a way that there was an overlapping between the GS emission peak 
from one layer of dots and the ES from the adjacent layer. Overlapping these four layers of 
QDs with deliberately varied heights has successfully resulted in a broad 
photoluminescence spectrum with a full width at half maximum of 82 nm and peak 
wavelength energy of 1.02 m. Strong room-temperature photoluminescence emission [fig. 
9(b)] was also observed around 1120nm with a full width at half maximum of 80nm. Further 
populating the GSs of the smaller dots, by increasing the power excitation, increased the 
photoluminescence emission intensity from the corresponding energy levels and 
considerably broadened the photoluminescence spectrum of the QDs’ ensemble. A full-
width at half-maximum of 125nm was measured with excitation power of 100mW (Haffouz 
et al, 2009). 

Fig. 10 shows cross-section transmission electron microscopy images of a representative dot 
within each layer of the active region of the QD-SLDs. Truncated shape quantum dots were 
obtained from the indium-flush process. The variation in the dot height from one layer to 
another by varying the thickness of the GaAs layer during partial capping can be observed. 
This is consistent with the observation from the photoluminescence studies that the GS 
energy wavelength peak decreased when reducing the dot height. 

 
Fig. 10. Cross-section transmission electron microscopy images of representative dot from 
each layer where the dots height was deliberately tuned. The corresponding indium-flush 
positions were 6.5nm (a), 4.5nm (b), 3.6nm (c), and 2.8nm (d), respectively. 
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To fabricate a superluminescent diode, a ridge waveguide tilted by 5-8º off the normal facet 
is typically used to avoid lasing. It has been also reported (Koyama et al, 1993; Yamatoya et 
al, 1999) that to lower the effective reflectivity of the device facets, SLED fabricated into a 
tilted and tapered waveguide can be realized. Such a geometry improves the saturation 
output power and the quantum efficiency. A simplified schematic drawing, which we used 
in this study is shown in Fig.11. Devices with various tilt () and and tapered-angles () 
were fabricated and tested. For devices of 1-2mm long, the width of the emitting facets were 
in the range of 35.21 – 176.91 m. The main difference between these waveguides of 
different sizes was reflected in the output power of the device. A deflector of 54.7 made in 
the shape of V-grooves (Middlemast et al, 1997) by wet etch was also implemented in the 
fabrication process in order to avoid the reflected light to re-enter the active region by 
deflecting it  into the substrate. Finally, an unpumped absorption region of 300 m wide 
was implemented at the narrow end of the tapered region just ahead the V-grooves. The 
devices were mounted p-side up on a Au-plated Cu-heatsink and the cooling was set to an 
operation temperature of 20C. The devices were characterized under continueous-wave 
and pulsed operation conditions. 

 
Fig. 11. Schematic drawing of the tilted and tapered waveguide design. L is the length of the 
tapered region. 

Fig. 12 displays the recorded power spectrum of the QD-SLDs at various continueous-wave 
drive currents. The tapered region was 1-mm long whereas the tilt and tapered angles were 
2 and 8, respectively. The resulted width of the output facet was 35.49 m. At very low 
drive current (2mA), a broadband emission centered at 1100nm with a bandwidth of 60nm 
was obtained. By increasing the injection current, the emission spectrum broadened further 
and the central wavelength blue-shifted by ~80nm. This can be explained by the carrier 
transfer effects between the different dots and the energy band filling from low to high 
energy levels. 

Fig.13 summarizes the variation of the emission spectra bandwidth and its corresponding 
peak wavelength as a function of the injection current. The enhancement of the 3dB-
bandwith and the continuous blue-shift of the corresponding peak wavelength with 
increasing injection current from 2mA to 700mA are attributed to the progressive increase of 
contribution of all dots to the emission mechanism. At a low injection current, the carriers 
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excited in small dots, which have smaller exciton localization energies, may escape out of 
the dots and transfer to the large ones, and then radiate. When increasing the injection 
current, GS in larger dots become occupied, thus reducing the transfer of carriers between 
isolated dots. The energy states of small dots then begin to be filled and the shape of the 
emission spectrum slowly approaches that of the QDs’ size distribution. With the further 
increase of injection current, the emission from GS of the QDs’ ensemble saturates, and the 
carriers start to fill the ESs. Because of the ultrawide GS gain spectrum (as demonstrated in 
Fig. 12), the simultaneous contributions from multiple states do not change the spectral 
shape, but only broaden the emission bandwidth. Both effects are more beneficial for 
broadening the spectrum at shorter wavelengths, so that a blue-shift of emission spectra 
occurred simultaneously. Once all the energy levels (GS and ESs) of the different dots have 
been saturated, an emission spectrum fully represented by all dots’ size distributions is 
achieved. A maximum 3dB-bandwidth of 190nm was measured at 700mA injection current, 
with a central wavelength of emission spectrum around 1020nm. Above 700mA drive 
current, the central wavelength of the spectrum did not change but we noticed a narrowing 
of the bandwidth of the spectrum down to 160nm. It should be mentioned that the 
modulation observed in the emission spectra are likely introduced during measurement due 
feedback effects. We have previously noticed that applying anti-reflection coating on the 
emitting facet significantly reduce such modulations. 

It is believed that the engineered dot height was the reason for the ultra wide bandwidths 
observed even at relatively low injection current. The precise control of the dots height by 
controlling the thickness of the GaAs cap layer offers the possibility to precisely manipulate 
the ground-state peak position of each layer of dots and therefore engineer the bandwidth in 
a controlable manner. The calculated OCT axial resolution (Eq. 3) from the achieved 3dB-
bandwidth of 190nm at central wavelength of 1020nm in our devices is about 2.4µm.  
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Fig. 12. Emission spectra of the fabricated device under various injection currents. The 
waveguide was 1mm long, with tilted () and tapered () angles of 8and 2, respectively. 
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Fig. 13. Variation of the emission spectra bandwidth and its corresponding peak wavelength 
as a function of the injection current. The waveguide is 1mm long and with tilted () and 
tapered () angles of 8and 2, respectively. 
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Fig. 14. Light output-injection current curves measured at 20C under continuous-wave 
operation mode. The inset shows the schematic drawing of the tapered waveguide. 

Fig. 14 shows the output power against the injection current density for 1mm and 2mm long 
devices measured at 20ºC under continuous-wave operation conditions. A maximum output 
power of 0.54mW under an injection current of 3kA/cm2 was achieved in 1mm long device. 
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Above 3kA/cm2, the output power decreases due to the thermal effect caused by relatively 
high series resistance as measured in our devices. Increasing the device length resulted in an 
improved performance where an output power of 1.15mW was measured in 2mm-long 
device at injection current density of 1.3kA/cm2. This may indicate that the single pass 
amplification of the spontaneous emission generated along the waveguide did take place in 
our devices under continuous wave operation conditions and it varies with the cavity 
length. However, from these L-I curves, there is no sign of the superluminescent 
phenomenon in our devices. The existence of the amplified spontaneous emission in our 
devices (that is varying with the cavity length) and the bandwidth narrowing are 
characteristics of an SLD but a light-emitting-diode like L-I curves were obtained under 
continuous wave operation mode. We believe that the super-linear behaviour in the L-I 
curve is “masked” by the heating problem which is causing L-I curve going down before 
reaching the injection current range where a super-linear behaviour would appear. To verify 
his, we have also tested the device of 1mm long under different pulse mode operations. 
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Fig. 15. Light output-injection current curve measured at 20C under pulsed mode. The 
pulse width was varied in the range of 5-50µs whereas the duty cycle was 3%. The 
waveguide is 1mm long and with tilted () and tapered () angles of 8and 2, respectively. 

Fig. 15 shows the L-I curves of 1mm long device measured under different pulsed operation 
conditions. A maximum achievable output power of 17mW under an injection current of 2A 
was measured with a pulse with of 5µm and a duty cycle of 3%. The super-linear increase of 
the power with the injection current was observed at threshold current of about 1A. 
However, increasing the pulse width reduces significantly the maximum achievable output 
power and the superlinear phenomenon gets less pronounced for pulse with higher than 
50µs. As a comparison, we plotted the L-I curve under continuous wave mode together with 
the L-I curves measured under pulsed mode. As it can be seen, the device under continuous 
wave suffer from heating problems which causes the L-I curve to go-down (at ~ 500mA) 
well before reaching the injection current range when the super linear phenomenon kicks-in 
(at ~ 1000mA). 
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Fig. 16. a) Emission spectra of the fabricated device at different injection currents under 
pulse mode operation. b) Variation of the 3dB bandwidth of the emission spectrum as a 
function of injection current. The used pulse width and duty cycle is 5µs and 3%, 
respectively. The waveguide is 1mm long and with tilted () and tapered () angles of 8and 
2, respectively. 

Fig. 16 shows the emission spectra of the fabricated device at different injection currents 
under pulse mode operation [Fig. 16(a)] and its corresponding 3dB bandwidth [Fig. 16(b)]. 
Broadband spectrum with 3dB bandwidth of 128nm was measured at injection current of 
600mA. Above this drive current, the bandwidth of the power spectrum decreases rapidly 
down to 53nm at injection current of 1600mA. As it can be seen from Fig. 16(b), the 
bandwidth narrowing above an injection current of 700mA corresponds well to the injection 
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current range where the superlinear behavior was observed in L-I curves in Fig. 15. This 
bandwidth narrowing is caused by the disproportionate increase in gain for different 
wavelengths. 

In summary, the largest 3dB-bandwidth measured in our devices was respectively 190nm 
and 128nm under continuous-wave and pulse-mode operation. The corresponding output 
power under continuous-wave and pulse-mode operation was 0.54mW and 1.2mW, 
respectively. Broadband QD-SLDs operating at central wavelength of 1.2-1.3µm with 3dB 
bandwidth not exceeding 100nm typically can deliver an output power of few tens of 
milliwatts (Yoo et al, 2007, Ray et al, 2007). However, for SLDs with much broader 
bandwidths (wider than 150nm), the amplified spontaneous emission level is reduced 
resulting in lower output power (Xin et al, 2007; Guol et al, 2009). For increasing the output 
power in extremely broadband SLDs, integrating an optical amplifier section has been 
demonstrated to be a very successful approach (Wang et al, 2011). 

6. Conclusion 
Broadband superluminescent diodes with central wavelengths around 1060nm have 
received considerable attention during the last few years due to their potential application in 
ultrahigh resolution OCT imaging systems for microstructural and biological tissues. 
Different approaches were proposed to engineer the bandwidth of the SLDs, using quantum 
wells and/or quantum dot structures. Ultrawide bandwidth emission spectra with output 
power of a few milliwatts were demonstrated. A calculated axial resolution in air of 2.4µm 
(Haffouz et al, 2012) is expected from the SLDs with widest bandwidth and central 
wavelength around 106040nm. This lateral (axial) resolution is approaching that observed 
when using the state of the art but bulky and expensive femtosecond laser sources (Wang et 
al, 2003). To achieve finer axial resolution at central wavelength around 1060nm with the use 
of superluminescent diodes, one needs to further improve the design of the quantum dot 
and/or quantum well active region of the device, for allowing a wider bandwidth and 
higher output power, thus opening possibilities for OCT imaging with 1-2µm axial 
resolution range. 
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1. Introduction  
Accurate theoretical description of optical phenomena in semiconductor quantum dots 
(QDs) depends on the description accuracy of the energy structure of the QD. For the 
energy structure description the existent methods, such as, the tight-binding method, the 
effective bond-orbital model, the first-principles calculations or the multi-band approach 
within pk   theory, have some limitations either in the accuracy of the predicted 
electronic structures or the computation efficiency. In this context, the phonon influence 
on the optical properties makes the theoretical description of the optical phenomena in 
QDs more complex. In this chapter, we introduce several methods and techniques to 
describe the phonon influence on the emission and absorption spectra of semiconductor 
QDs. They are implemented on simplified models of QDs that can capture the main 
physics of the studied phenomena. 

2. Phonons in optical transitions in nanocrystals. Theoretical background  
The problem of the exciton-phonon interaction in zero-dimensional systems has a rich 
history. In principle, strong quantum confinement of the carriers or strong electron–phonon 
interaction induces increasing of the kinetic energy of the charge carriers involved in the 
optical transitions. In such cases, the optical transitions in nanocrystals are properly 
described by an adiabatic approach. On the other hand, if either the dynamic Jahn-Teller 
effect (in case the electronic levels are degenerate) or the pseudo-Jahn-Teller effect (in case 
the electronic inter-level energy is close to the optical phonon energy) is present, the 
electron-phonon system of the nanocrystal is properly described by a non-adiabatic approach. 
In this section, basic information regarding the optical transitions involving LO phonons, 
adapted to nano-crystals, is briefly introduced. 

2.1 Adiabatic and non-adiabatic treatments of the optical transitions 

Chemical compounds or solids, small or large molecules may be represented by an 
ensemble of interacting electrons and nuclei. Such complex systems are usually described by 
the Born-Oppenheimer approximation (Born & Oppenheimer, 1927), which separates the 
electronic and nuclear motions. This separation is made within the adiabatic approach, 
which means the electrons are much lighter and faster moving than the nuclei so they can 
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follow the nuclei around and can adjust practically instantaneously their positions. The 
Hamiltonian of the global system is 

 ),()(),(),( QrTQVQrUTTQrH QrQ H  (1)  

where  r, Q   are the set of the generalised coordinates of electrons and nuclei, respectively, 
and ),( QrH  is the electronic Hamiltonian. ),( QrU  represents the electron-electron plus the 

electron-nucleus interactions and )(QV  represents nucleus-nucleus interactions. The kinetic 

energy operators are   
n nr rmT 2212 2  ,   

   2212 2 QMTQ  , where  n  

and   are indices of individual electronic and nuclear coordinates, respectively; m  and 

M  are the electronic mass and mass of the  -th nucleus, respectively. 

Next, following (Newton & Sutin, 1984), we introduce the diabatic and adiabatic description 
of the electronic system by expanding the vibronic wave functions ),( Qr  in the basis set 

of the orthonormal electronic wave functions,  ),( Qrn , by   n nn QQrQr )(),(),(  , 

where )(Qn  are Q-dependent parameters. The orthonormal electronic wavefunctions are 

found by solving the electronic Schrödinger equation in the Born-Openheimer 
approximation taking Q as a parameter 

 ),()(),( ),( QrQQrQr  EH . (2) 

The solution )(QnE  of Eq. (2) corresponding to certain electronic wave function ),( Qrn  

are the so-called potential energy surfaces (PES). The expansion coefficients   can be found 
by solving the vibronic Schrödinger equation ),(),( ),( QrEQrQrH   , which leads to 

         )( ''')()( )('' QTTQQEQTT n
mn

mnQmnQmnmmmmmQQ   


 HH . (3) 

In Eq. (3)  acquires a new index   which quantifies the nuclear states. The matrix 

elements are defined as   nTmT QmnQ '' , and     kkk kmnQ QnQmMT   12'   

(Dirac notation is used). In Eq. (3) we can write 
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is the so-called Born-Oppenheimer breakdown (nuclear coupling) or non-adiabaticity 
operator. )(QmnH  from Eq. (3) is usually called electronic coupling term. In what follows 

for the clarity, we restrain discussion to only two electronic states. In studying the electron 
transition starting with Eq. (3) one frequently uses two basis sets: 
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i. The diabatic (non-stationary or localised) basis containing  fi  ,  (see Fig. 1). They are 

chosen as set of eigenfunctions of the suitable zeroth-order electronic Hamiltonian, H , 
where the interaction between the two electronic states i  and f  is removed. The 

corresponding PESs are iiQii HH )(  and ffQff HH )( .  

ii. The adiabatic (stationary or delocalised) basis containing  21 ,   (see Fig. 1).  The 

corresponding PES are the non-crossing electronic terms, 11)(11 HH Q  and 

22)(22 HH Q , and     24 2
1

22



















  ifffiiffiimm HH-HHHH  with 2 ,1m  

is relation between the eigenvalues of the two basis sets. The smallest energy difference 
between the two non-intersecting adiabatic PESs is ifH2 . Transitions are classified as 

being adiabatic or non-adiabatic as function of the magnitude of the coupling matrix 
elements. The process is adiabatic if the matrix elements of QT ' , QT ''  can be safely 

neglected, irrespective of basis used, either diabatic or adiabatic; if the adiabatic basis is 
chosen transition does not involve a tunneling between the two adiabatic states 
(surfaces). On the other hand, a reaction is non-adiabatic if there is no basis that permits 
the neglect of  

12
'QT ,  

12
'' QT ; when the adiabatic basis is chosen transition involves a 

tunneling between the two adiabatic states (surfaces).  
 

Configurational (nuclear) coordinate 

Energy 

Fig. 1. Radiative adiabatic process in the diabatic/adiabatic picture.  

Optical transitions can be produced by tunnelling or by overcoming the potential barrier. The 
PESs as function of a representative nuclear coordinate and the vibrational levels are 
sketched in Fig. 1 for the absorption/emission process by an adiabatic process. The 
vibrational levels represent the energy of longitudinal optical (LO) phonons, that have a fast 
relaxation. In this case, the possible tunneling induced by the nuclear coupling terms 'T  and 

"T between the two adiabatic PESs has low probability, and the transition is radiative. The 
adiabatic PESs are drawn as non-intersecting PESs by the dotted line near the crossing point 
of the diabatic PESs (solid line). After photon absorption the nuclei in the material adjust 
position to their new equilibrium positions. The time of adjustment of order s1013  is much 
faster than the spontaneous emission time of order s108  and the system relaxes to the lowest 
vibrational level of the excited state. Then radiative transitions to the vibrational states of the 
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ground state are followed by subsequent relaxations to the lowest vibrational ground state. 
The mechanism explains the presence of LO phonon satellites in the photoluminescence 
(PL) spectra. In this scenario, one considers the transition from adiabatic upper PES to the 
lower adiabatic PES that is triggered by the nuclear coupling is of low probability. This low 
influence of the nuclear coupling on the process gives the adiabatic character of the 
transition. Otherwise, tunneling to the lowest adiabatic PES, which means a non-adiabatic 
process, followed by a non-radiative relaxation by muti-phonon emission is possible.  

2.2 The Huang-Rhys factor 

The Huang- Rhys factor is frequently used as roughly being a measure of the strength of the 
exciton-phonon coupling (Banyai & Koch, 1993; Woggon, 1997). 

 

 
Fig. 2. PESs with the same force constant. 

In a simple way, Huang-Rhys factor is introduced by using the configuration coordinate 
diagram, as sketched in Fig. 2. The PESs, eg EE ,  for the ground and excited states can be 

written for the model of a single frequency,  , of the oscillators as   22
11 qqEEg    

and   22
22 qqEEe   , where 1q , 2q  are the equilibrium dimensionless coordinates. 

According to Fig. 2, we have 

   
  gqqEqEEqEE ge  2

211221 2
)()( , (5) 

and 

   gqEqEqEqE gegeabsem 2)()()()( 2211  , (6) 

where g  is the Huang-Rhys factor. In experiment, the energy difference between the 
maximum absorption peak and the emission peak is usually referred to as the Stokes shift. 
Eq. (6) is an approximate definition of the Stokes shift as well as of relation between the 
Stokes shift and the Huang-Rhys factor g (Ridley, 1988). Large values of g  means a larger 
value between the minima of two PESs, 21 qq  . 
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Next, to make connection with the Hamiltonian of QD, we consider a system with the 
ground state g , and two excited states fi ,  in the diabatic representation. In this 
picture, the total Hamiltonian reads 

  g i f ifH g H g i H i f H f H i f f i       (7) 

where gH  is the ground state, iH  and fH  are the excited states, and ifH  is the interaction 

between the excited states Hamiltonians. We consider for simplicity a single nuclear 
coordinate, the nuclear displacement relative to the equilibrium position, Q,  with origin at 
the minimum of the ground state, and a single frequency of vibration of the phonon,  . 
Assuming iH , fH , and ifH  are linear dependent of Q, and a parabolic shape of the 

potential energy surfaces (PESs), we write     22
2212

lll QQmmPH     (with 

fil , ),   22 2212 QmmPHg   ,   QCmH ifif
2/1/2   , where l  is the zeroth-order 

energy separation between the l-th excited PES and the ground state PES, and ifC  is a 

constant. Note that ifH  is written in non-Condon approximation, that is, the nuclear 

coupling between the two excited states is Q dependent. Next, we introduce the 
dimensionless momentum   Pmp 2/1  , and dimensionless coordinate   Qmq 2/1/ , 

and obtain  22

2
qpHg 


,   22

2 iii qqpH 
 

,   22

2 fff qqpH 
 

, 

qCH ifif 2 . Further progress is achieved by making the replacement   2 aaq , and 

  2 aaip , where a ( a ) are the usual annihilation (creation) boson operators. Thus, 

one obtains  21 aaHg  ,  aaCH ifif   , 

    22/2/1 iiii qqaaaaH    ,     22/2/1 ffff qqaaaaH    . 

With the closure relation g g i i f f   1  one obtains 

      ' 'i f i f ifH a a i i f f M i i M f f a a C i f f i a a             (8) 

where  2' 1 / 2i i iq     , and 2i i iM q g     in which ig  is the Huang-Rhys 

factor of the state i  (similarly for the f  state). In this single frequency model there is a 

simple dependence between the nuclear coupling and the Huang-Rhys factor, namely 

ii gM  . With introduction of the creation annihilation operators of electronic states by 

ii CCii   and fi CCfi   (similarly for the f  state), justified by igCiCC iii   , 

ffiigCfCC ifi   , and ifiiCC fi  0 , Eq. (8) reads 

     
,

'j j j j if i f f i
j i f

H a a C C M a a C C C C C a a      



          (9) 

Eq. (9) describes interaction between an electronic system and phonons. It is of the form of 
the localized defect with several electronic states model, in the case the electronic states are 
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mixed by phonons. The discrete structure of levels in this model is appropriate for 
description of the ‘atomic’ energy structure of QDs, and this Hamiltonian is often adopted in 
QDs problems. Regarding the type of approach, an adiabatic treatment of QD implies 
absence in the Hamiltonian of the nuclear coupling between PESs, that is Cif=0 or 
equivalently a non-mixing of the electronic states by phonons. 

2.3 Absorption and emission spectra in nanocrystals 

Often in experiment the Huang-Rhys factor for the LO phonons is calculated from the 
optical spectra as the ratio of 1LO and 0LO intensity lines, )0(/)1( II . Justification is found 

within the adiabatic model of a localized impurity interacting with a set of mono-energetic 
phonons of frequency 0 (Einstein model, (Mahan, 2000)). Optical absorption spectrum is 

derived by evaluating the imaginary part of the one particle Green’s function. One obtains 
that in limit of low temperatures the intensity ratio for the 1LO and 0LO spectral lines gives 
the Huang-Rhys factor,   q q

2
0

22 Mg , with qM  the electron phonon coupling matrix 

element of the q mode phonon. At 0T  the phonon replicas follow a Poisson distribution, 

!)( negnI gn  , in which n is the number of phonons generated in the transition and 

)0(/)1( IIg  . Thus, calculation of the Huang Rhys factor from the optical spectra as the 

ratio )0(/)1( II  should be cautiously considered as far as it is valid in the limit of an 

adiabatic approach that assumes absence of mixing of the electronic levels by phonons. 

3. Longitudinal optical phonons in optical spectra of defect-free 
semiconductor quantum dots 
The presence of the strong phonon replicas in PL spectra of QDs of weakly polar III-V 
compounds is a striking result since no such strong phonon replicas are usually observed in 
the luminescence of III-V compounds, and not always in the PL spectra of QDs of other 
semiconductor types. The exciton-phonon coupling is already accepted as being strongly 
enhanced in semiconductor QDs, see, e.g., (Fomin et. al., 1998; Verzelen et. al., 2002;  Cheche 
& Chang, 2005), but there are few theoretical reports (Peter et. al., 2004; Axt et. al., 2005) on 
the optical spectra of multiexciton complexes which take into account the phonon coupling. 
For spherical QDs the one-band models by which conduction and valence states are 
computed from single-particle Schrödinger equations in the effective mass approximation 
are a good approximation for type I heterostructures (Sercel & Vahala, 1990). In what 
follows, in Section 3.1 two models built starting with such one-band single-particle states are 
introduced for spherical and cylindrical shapes of QDs. A short discussion about LO 
phonon confinement completes this section. In Sections 3.2 and 3.3 non-adiabatic, and 
adiabatic treatments are introduced to simulate the optical spectra of exciton and biexcton in 
interaction with LO phonons. 

3.1 Quantum dots models 

3.1.1 Spherical quantum dot 

Within the effective mass approximation, following (Cheche, et. al., 2005) a spherical model 
is considered for the case of size-quantized energies of QD (or equivalently, QD with 
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dimension smaller than its corresponding exciton Bohr radius, (Hanamura, 1988)). The 
confinement potential energy is  0)( ee rV  for  0,0 Rre  , and eee VrV 0)(   for 0Rre   

(similar equation is written for holes by replacing er  by hr  ); 0R  is the QD radius. The 

single-particle wave function is the product ),()()(  lmnlnlm YrRr , where )(rRnl  is the 

radial function and ),( lmY  is the spherical harmonics function. By using the second 

quantization language, and disregarding the spin dependence, the electron-hole pair (EHP) 

state may be written as (Takagahara, 1993) 0)( )(  vc
hbeaheab aaddf he

 rrrr  , where 

)( vc aa he
  are the creation (annihilation) fermionic operator of an electron in the conduction 

band at er  (valence band at hr ) and a (b) holds for the set of quantum numbers eee mln ,,  

 hhh mln ,,  of electrons (holes). The single particle states composing the EHPs are obtained 

by optical excitation and we need to find the optical selection rules that dictate the allowed 
transitions. In the linear response theory and long wave approximation the particle-
radiation Hamiltonian for a carrier of charge Q and mass M is given by 

  PA  


1McQH RQ , where c is the speed of light, A  is the vector potential, and P  is the 

carrier momentum. For monochromatic field of frequency  , amplitude 0E , and direction 

of oscillation along the unit polarization vector ε , the semi-classical EHP-radiation 
interaction form of RQH   reads 

     tWtBfBfmEH
f

ffREHP  sinsin00
0

1
00  




 PPεe  (10.a) 

where  i ipP  the total electronic momentum (with ip  the electron momentum) and 
fB  

( fB ) the creation (annihilation) exciton operators. The EHPs are considered as being bosons 

(EHP spin is an integer), a valid approximation in the dilute limit of excitons. Using an 

appropriate definition of the momentum (Takagahara, 1993), .. 0 chaad vc
cv   RRRpP , where 

0
cvp  is the momentum matrix element between the valence-band and the conduction-band at 

the   point and where R  suggests integration over unit cell vectors, one obtains  the optical 
matrix element 

  


0

20 )()(  0 rRrRrdr
hheehehe lnlnmmllcvab  pP  lnnmmcv hehe

A0p , (10.b) 

 with lll he  . Thus, one obtains that the optical selection rule requires he ll  . The model 
takes into account the difference in the effective masses between the nano-sphere and its 
surroundings. Following (Chamberlain et. al., 1995), the expression of orthonormalized 

)(rRnl  and the secular equation of energy are as follows 

  









 
00

00
11

2
11

2
3
0       ,)()(

      ,)()(
)()()()()()(

2
)(

RrRrykxj
RrRrxjyk

xjxjykykykxj
R

rR
ll

ll
llllllnl  (11.a) 

 )()()()( '
1

'
2 ykxyjxjyxk llll    (11.b) 
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where 2
,10 )2( lnERx  , 2

,020 ))(2( ln
c EVRy   ,  lk  is the modified spherical 

Bessel functions, )( 21   is the effective mass in the dot (surrounding medium), cV0  the 

band offset of the carriers, and ln   ,  stand for ee ln   ,  (electrons) or hh ln   , (holes). 

For GaAs microcrystallites embedded in AlAs matrix, the compound discussed as an 
application, we use the parameters of material from (Menéndez et. al., 1997) : the GaAs 
energy gap 5177.1gE eV , the GaAs (AlAs) electron effective mass 0665.00 me  

( 124.00 me ), the hole effective mass 45.00 mh  ( 5.00 mh ), the conduction band 

offset 968.00 eV eV , and the valence band offset 6543.00 hV eV ; 0m   is the electron mass. 

The energy spectrum is obtained from Eqs. (11.a, b), and the EHP energy 

hheehhee lnlnglnln EEEE ,,,;,   is computed as a function of the QD radius and shown in Fig. 

3. Some particular levels are labeled by the set of quantum numbers, ( hhheee mlnmln ,,;,, ) as 

follows: )0,0,1;0,0,1(0Α , ),1,1;0,0,1( hmB - dark level, ),2,1;0,0,1( hmC - dark level, 

)0,0,2;0,0,1(0 D , )0,0,1;,1,1( emE -dark level, ),1,2;0,0,1( hmF -dark level,  

),1,1;,1,1( he mm0G . Based on the distribution of energy levels and taking into account the 

exciton Bohr radius (larger than 100Å), we consider 500 R Å as a reasonable upper-limit 

for neglecting the Coulombic interaction. On the other hand, possible phonon mixing effect 
could manifest starting with 230 R  Å (see the ellipse mark at Fig. 3), between the optically 

active level 0G  and the dark level F . But, the phonon-assisted transition between 0G  and 

0D  is improbable (at least in the low temperature limit) because for the intermediate 

transfer, 0DE ,   37.30  
0DE EE  (the LO phonon energy meV2.360  ). For the 

first two optically active levels, the adiabatic treatment is safe for 220 R  Å and may be 

accepted as satisfactory for 320 R Å, beyond which the dark level C  appears. 
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Fig. 3. The energy spectrum of small spherical GaAs/AlAs QDs. 
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3.1.2 Configurational interaction approach for cylindrical QDs 

The energy levels of the exciton complexes can be obtained by the configurational 
interaction method (Hawrylak, 1999). Following (Cheche, 2009) we will describe a 
configurational interaction-based model for cylindrical semiconductor QDs. In the effective 
mass approximation the electron single particle wave function of QD can be approximated 
as the spin-orbital product (Haug & Koch, 1993) )()()( rrr   u , where r  is the carrier 

position vector. )(r  is the envelope function, and )(ru  is the periodical Bloch function at 

  point with spin dependence included. The same is valid for holes by replacing, notation 
wise, e by h,   by  , and   by  .   and   are the z-projections of the Bloch angular 
momentum, with 2/1  and 2/1  ,2/3  . By disregarding the band-mixing, we 
safely assume that the topmost states are formed from degenerate heavy-hole states, that is, 

2/3 . With  ,, z , cylindrical coordinates, we consider for the conduction electrons the 
confining potential made up of the in-plane parabolic potential  2 2( ) 2e

e eV ρ    II  and 

vertical potential, 0)(  zV e  for 2/Lz   and e
b

e VzV  )(  otherwise. The single-particle 

Hamiltonian, ezee HHH   , has the components 

 
2 1
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e
e

e

H V ρ
   

          


II ,

2 2

2 ( )
2

e
ez

e

H V z
z 


  
 
  (12.a) 

The corresponding Schrödinger equations read, ),(),(  
e

eH  , and 

)()( zzH e
zez   . The electronic envelope wave functions )(r  is given by the product 

)(),( z , and has the concrete expression,   )()(2)( ,
21 zRe e

imn
im

ee
e  


r , where   

holds for the set of quantum numbers ),,( imn ee . For QD sufficiently narrow we may 

consider 1i  level only, and take the approximate wave function of the first state in z 

direction as, )/ cos()/2()( 2/1
1 ee
e LzLz   , where 



 





 e

bee VLLL 2/21   is the 

effective QD height including the band-offset, L  is the QD height (Barker et. al., 1991). Thus, 
for the electron, the envelope wave function reads 

  
)()()2(

)()/(e)/()!/()!2()2()(

1
2/1

1
22122/12/1 2

2

zRe

zlLllmnne
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r  (12.b) 

with e
e

m
nL  denoting Laguerre polynomials, ,...2,1,0en , ,...2 ,1 ,0 em ,  eeel  , 

and   re-denoting the set ),( ee mn  for 1i . The corresponding energy states are obtained 

as ezmn ee 1  , where 
eemn  and ez1 are the quantized  values of e

  and e
z , 

respectively. The quantized energy for the in-plane motion is   eeemn mn
ee

 12  . The 

same considerations are valid for holes, by considering the effective mass in z direction, hz , 

and the in-plane effective mass 
h

. An immediate analysis shows the spin-orbitals set 
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 )(),( rr    is orthonormal. The integrals involving spin-orbitals are solved by the usual 

decomposition in a product of two integrals, one over the space of the unit cells position 
vectors for slowly varying functions, and the other one over the unit cell space for rapidly 

varying functions. Thus, for example, one obtains,   0
0


  uu
spaceall

 

from the orthonormality of the periodical Bloch functions (the indices show the volume of 
integration, with 0  the unit cell volume). For such orthonormal basis set two equivalent 

ways, the language of the second quantization, and the technique of the determinantal states 
can be used to describe the energy structure of the system. 

Next, we adopt the creation (annihilation) fermion operators, )(  cc  for electron in 

conduction band, and )(  hh  for hole in valence band; they create (annihilate) the carrier 

with spin projection   for electrons and   for holes. Considering negligible the 
piezoelectricity and the band-mixing effects, and disregarding the electron-hole exchange 
interaction, the QD Hamiltonian reads 
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, (13) 

where the first, second, third, fourth, and fifth terms of right side stand for electrons,  holes, 
electron-electron, hole-hole, and electron-hole Coulomb interactions, respectively.  

Regarding the significance of terms in Eq. (13), we have (Takagahara, 1999) 
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where V is the volume of QD. Similar expressions hold for  eeV
2413
2211

,
,


  and hhV

2413
2211

,
,


 ; the 

capital bold characters suggest integration over the ‘coarse-grained’ space of the unit cell 
position vectors. In Eq. (14), we considered an in-plane Coulombic interaction, with ρ  the 

in-plane position vector. After integration over z, which gives unity, one obtains an integral 
over ρ  only. Integral from Eq. (14) is solved as follows. The potential is written as a two-

dimensional Fourier transform,    hei
hehe ed ρρqqqρρρρ )(1 v)v( , and the inverse 

Fourier transform reads 
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where   is the angle between q and ρ. Using these expressions we write in Eq. (14) 
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where 0S  is the cylinder base surface. Next, we introduce 
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Similarly, for holes,   
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the angular momentum in z direction requires 11 he mm  , and 22 he mm  . For Eq. (14), 

after an integration over  , we have   12
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mnmn IdqI ; such integrals have analytic solutions. General solutions of 

Coulombic integral for in-plane interaction can be found in (Jacak et. al., 1998). 

The exciton state 1
fX  is written as a linear combination of determinantal states,  

 00 1
,   ,

1   f
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f XhcCX
  , (15.a) 

with 0  standing for the exciton vacuum state (no excitons), the ground state (VS) of the 

sysytem. Similarly, the biexciton 2
fX  state is written as linear combinations of 

determinantal states that differ of the VS by two of the spin-orbitals 

 00 2

,
,

,
,

2

2211
,2211 22112211

2211
,2211

  f
f

f XhhccCX

 


 . (15.b) 

The eigen-problem for exciton and biexcitons is solved through the equations 
  111

fffD XXH  , and   222
fffD XXH  . Their corresponding secular equations allow 

obtaining the eienvalues and eigenfunctions corresponding to the exciton and biexciton 
states. It is worth noting that the electron-electron and hole-hole Hamiltonians from Eq. (13) 
have no contribution to the secular equation associated to the exciton eigen-problem; the 
product of fermionic operators resulting from these Hamiltonians and from the exciton state 
forms sequence of operators which when acting on the VS gives zero.  
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Referring to the determinantal state technique, the VS is written as the ground-state Slater 
determinant  )(),...(),...,(),,...,,...,,( 1110 11 NvNNv NN

rrrrrr   A , where N is the total 

number of electrons in the system, and A  is the antisymmetrizing operator. A single-
substitution Slater determinant is written by promoting an electron from the occupied 
valence state )( vr  to the unoccupied conduction state )( vr  

 )(),...(),...,(),,...,,...,,( 111, 11 NvNNv NN
rrrrrr   A . 

The following equivalence between the single-substitution Slater determinant and 
configurations written in the language of the second quantization holds:  

0),,...,,...,,(   11,
   hcNNv rrr . 

Taking the advantage of the determinantal states, we search for the optical selection rules 
that dictate the optically active pair states to be used in the linear combination from Eqs. 
(15.a, b). The radiation field is modeled as a single mode of polarized plane wave. In the 
limit of linear response theory and long-wave approximation, the semiclassical particle-field 

interaction Hamiltonian, for transitions 1 mm XX  (with 00 X ) is written as 

  mm XRX
mEH Pε  


1

00 e , where the momentum operator is 

  
if

m
f

m
fi

m
f

m
fX

chXXXXm ,
11 ..pP  , with ip  the momentum of the i electron and 

summation is done over all the electrons of the system and (multi)exciton states. Then, by 
using the algebra of determinantal states (Grosso & Parravicini, 2000), we have: 
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. (16.b) 

If we make use of the fact that the envelope functions vary relatively slowly over regions of 
the size of a unit cell,  with  ip , we can write the integral 
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

. (16.c) 

The second integral over unit cell of orthogonal Bloch periodical functions vanishes and Eq. 
(16.c) is in accordance with Eq. (10.b). Passing from the momentum matrix element to the 
dipole matrix element in Eqs. (16.a, b) we obtain the following (multi)exciton-field 
interaction Hamiltonians: 
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and 
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We used the notations:   he
   , and 0  , E  for frequency, amplitude of the 

radiation field, respectively. We also introduced 011
ff XX 


, 022

ff XX 


, 

1212
fifi XXXX 


. The optical selection rules for interband transitions are obtained from 

the rε   matrix element. Thus 

 






spaceall

he duud )()()()(
1 **

0 0

RRRrrrrεrε   , (18) 

By writing: i) the periodical Bloch functions at the   point, ),()()(  jjj aaa
ru r , where  

hej , , and 2/1ea , 2/3ha , as the following spinors (Merzbacher, 1988): 

 ),(),( 0
02/1,2/1  Ye ,  ),(),( 0

02/1,2/1  Ye ,  ),(),( 1
12/3,2/3  Yh , 

 
 ),(),( 1

12/3,2/3  Yh ,  and ii) the position vector for light propagating in z direction, 

 
  εεr ˆˆ 1

1
1
1 YYr  with  εε ˆ,ˆ  the light helicity unit polarization vectors, we obtain the 

spin selection rules for the configurations. Thus, one finds that for linearly polarized light 
propagating in z direction, the only non-vanishing matrix elements involving the heavy-hole 
states correspond to the transitions 2/32/1    and 2/32/1   . This 
result is guiding us in choosing the optically active configurations when using the 
configurational interaction method to obtain the energy structure of QD. 

To obtain spin-polarized excitons, the linearly polarized light is used for photoexcitation. 
The nonequilibrium spin decays due to both carrier recombination and spin relaxation. 
Accordingly to (Paillard et al., 2001), and (Sénès et al., 2005), who studied polarization 
dynamics with linearly polarized light in InAs/GaAs self-assemled QD under 
(quasi)resonant excitation, following excitation the electron and hole spin states remain 
stable during the exciton lifetime for low temperatures. This is the case we assumed for the 
present discussion. Linearly polarized light is a linear combination of circularly polarized 
light with positive and negative helicity (Zutić, et. al, 2004), consequently, the configurations 
are obtained by respecting the optical selection rules for interband transitions for circularly 
polarized light with both positive and negative helicity. 

Accordingly to our assumption that the electron and hole spins remain stable during the 
exciton lifetime the appearance of dark states (states with opposite spins of the electron and 
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hole of a pair) is less probable, and we disregard them. Within the configurational 
interaction method we consider a limited number of states generated by the two lowest 
shells s and p configurations optically active, that is the pair states having ,0 he nn  and 

1,0  he mm , as shown in Fig. 4. In Fig. 4, the filled (empty) triangles represent 

electrons (holes) of Bloch angular spin projection 2/1 ( 2/3 ). The quantum numbers 
( ee mn , ), ( hh mn , ) are shown for the single states. 

 01 0-1 
00 
00 

0-1 01 

       0      1              2          3         4      5              6  

       7      8              9          10         11      12              13  

     14    15          

 
Fig. 4. Vacuum state, exciton and biexciton bright states with linearly polarized light. 

Next, we apply the model to cylindrical InAs/AlAs QD. We use the following material 
parameters taking into account the presence of lattice mismatch strain: a) For InAs 

004.0 me  , 041.0 mhz  , 004.0 mh  , 74.11/0 v , 54.15/  v  ( v  is the vacuum 

dielectric permittivity), meV5.290  , and the energy gap, 0.824eVgE ; b) For the 

InAs/AlAs the band-offsets  are considered as eV5.1e
bV ,  eV75.0h

bV (Vurgaftman et. al., 

2001); c) For the value of QD height L=2.3nm which is considered, we find 1 electron and 3 
hole levels in the quantum-well in the z direction. By setting eV065.0e  and 3he  , 

(according to the literature (Hawrylak, 1999; Shumway et. al., 2001) the exciton and 
biexciton eigenvalues obtained for this material parameters are as follows, 1.5792eV)1(

1  , 

1.6696eV)1(
2  , 1.6736eV)1(

3  (all three two-fold degenerate), 3.1617eV)2(
1  , 

3.2429eV)2(
2  -three-fold degenerate, 3.24345eV)2(

3  , and 3.24719eV)2(
4  -four-fold 

degenerate. Consequently, the inter-level  bi/exciton energy is not close of the LO phonon 
energy and the mixing of the bi/exciton states by phonons is absent. 

3.2 Confined optical phonons in semiconductor quantum dots 

There are several theoretical models which investigates the optical phonon modes in 
semiconductors with low dimensionality. Generally, the LO phonons are considered as the 
main contributors to the electron-phonon coupling in polar semiconductors in the relaxation 
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processes.  Based on the continuum approach for long-wavelength optical phonons of (Born 
& Huang, 1998), macroscopic approaches, such as the dielectric continuum (DC) model 
(Fuchs & Kliewer, 1965; Klein et. al. 1990)), the multimode DC model (Klimin et. al., 1995), 
the mixed mechanical-electrostatic model (Roca et. al., 1994), and the hydrodynamic model 
(Ridley, 1989) have been developed. Microscopic approaches have also been proposed 
(Huang & Zhu, 1988; Rücker et. al., 1991).  

The shape of QD plays a major role in setting the type of confined phonon modes and the 
strength of the exciton-phonon interaction. For spherical QD, the problem of the polaron 
was the most intensive studied case. One of the conclusions of the studies is that the inside 
QD, the electron-surface optical phonon interaction is absent (Melnikov & Fowler, 2001). 
Physically, this can be explained within the adiabatic picture: the electron is fast oscillating 
and in the ground state, which has a spherical symmetry of the charge distribution, the 
average surface ionic polarization charge is zero. For other shapes, the geometry itself brings 
additional complications in the study of the exciton-phonon interaction. Next, we 
extrapolate the above observation regarding the absence of electron-surface LO phonon 
interaction in spherical QD to the cylindrical shape case. The approximation is supported by 
the results obtained by (Cheche et. al., 2011), where calculus shows the exciton-bulk LO 
phonon interaction in such cylindrical QDs is dominant.  Consequently, in the analysis of 
the optical spectra from the next sections, we consider the bulk LO phonons as the main 
contributors to the (multi)exciton-LO phonon interaction.  

3.3 Optical spectra of spherical semiconductor quantum dots. A non-adiabatic 
treatment 

Non-adiabatic treatments, necessary when the electron-hole pair (EHP) level spacing is 
comparable to the LO phonon energy, have been proposed (Cheche et. al., 2005; Fomin et. 
al., 1998; Takagahara, 1999; Vasilevskiy et. al., 2004; Verzelen et. al., 2002). Following 
(Cheche et. al. 2005; Cheche & Chang, 2005) in this section a non-adiabatic treatment of 
optical absorption in QDs is presented. The theoretical tool we develop: i) confirms existence 
of resonances accompanying the LO satellites in the optical spectra; ii) explains the 
temperature effect on the optical spectra. The Hamiltonian of the EHP-LO phonon reservoir 
we use is described by an extension of the Huang-Rhys model of F centers of the type 
described in Section 2.2, 

 phEHPphEHP HHHH  , (19) 

where  
f fffEHP BBEH ,   q qqq bbHph  ,  




 
',, '

' )(
ff ff

ff
phEHP bbBBMH q qqq , 

fB  

( fB ) are the exciton operators already introduced in section 3.1.1, 
qb  ( qb ) are the bosonic 

creation (annihilation) operators of the phonons of mode q , '' fMfM ff
qq   is the 

coupling matrix element, q  is the frequency of the phonon mode with wave vector q , and 

fE  ( f ) are the EHP eigenvalues (eigenstates) of the exciton system. The absorption 

coefficient for a single QD is given by (Mittin et al., 1999) 

 
absR

VncE 0
2
0

2
)(
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where   is the frequency, 0E  is the amplitude of the monochromatic radiation field, n is 
the refractive index of the environment, 0V  is the absorptive volume, and absR  is the 
radiation absorption rate. absR  is calculated with the Fermi Golden Rule as follows. 

   
FG,

FGGF EEWRabs  


2
Av

2
 (20.b) 

The average Av involved by Eq. (20.b) means a quantum average over the finite number of 
the exciton states in the QD and a statistical average over the phonon modes at thermal 
equilibrium. In Eq. (20.b), GE  is the energy of the system in the ground state (no exciton) 

0G  (   is the phonon state), FE  is the energy of the system in one of  the 

exciton+phonons states  ;fF  ( f ,   is the exciton, phonon state, respectively), 

and FGGF WW   is the transition probability between the initial state G  and the final 

state F , with W  from Eq. (10.a). Greek letters are used for phonon states, Latin letters for 

exciton states, and capital handwriting letters for all system. Eq. (20.b) can explicitly be 
written as follows 
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where 


   is the density matrix of the phonons, with  phHE eTre 


   the 

probability of the phonon state   in the equilibrium statistical ensemble of the phonons, 

and    
 

 AAATr ,       AAATrA  0
. The closure 

relation   F GGFF 1  was used in the second equality of Eq. (20.c), where the 

operator  


 00G GG , which has no effect on the matrix element was 

inserted.  If using an adiabatic picture the state F  is written as a product of states, 

 ff  ;F , and the meaning of the closure relation is more transparent: 
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By using the bosonic commutation rules for creation and annihilation of EHP and phonons, 
the operator relation  2/],[ BABABA eeee   , we write Eq. (21.a) as follows: 
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where T̂  is the time-ordered operator, )/exp()/exp()(
~
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  , phEHP HHH 0 , fP f )(00 Pε  , and  i ipP  is the 

total electronic momentum (with ip  the electron momentum).  Further progress is achieved 

by using the cumulant expansion method in Eq. (21.b). For dispersionless LO phonons 
(Einstein model) of frequency 0 , Eq. (21.b) can be approximated by the expression (Cheche 

and Chang, 2005)  
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If the off-diagonal coupling terms in Eq. (19) are disregarded then Eq. (22) is exact and it 
recovers the adiabatic limit (the Franck-Condon progression): 
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where nI  are the modified Bessel functions,  and f
ffad

f gM 0
2

0
22

0  
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q q   is the 

self-energy. The relative intensity of absorption lines is given by the coefficients of the Dirac 
delta functions. 

Next, we adopt the spherical model from section 3.1.1 for spherical GaAs microcrystallites 

embedded in AlAs matrix.  The quantity '''''
120

0'0 3 
hehehehe mmmmlnnlnncvff AAPP  p  in Eq. 

(21.b) is obtained by averaging over all space polarization directions. The Fröhlich coupling 
is written for dispersionless bulk LO phonons (for a spherical QD the interface modes do not 
couple with the exciton states (Melnikov & Fowler, 2002)).  Within the pure-EHP 
approximation the EHP-phonon interaction reads (Voigt et. al., 1979; Nomura & Kobayashi 
,1992) 
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hehbeahbeahe
baabff iiddqfVMM qrqrrrrrrrqq     , where 0f  

is the Fröhlich coupling constant. Explicit expression of 'ffM q for spherical QDs can be found 

in (Cheche and Chang, 2005).  

For the only two optical levels which appear at 200 R  (see Fig. 3), with an inter-level  

energy of approximately 011  , the plot of absorption spectrum centred  on the line 0A  

obtained from Eq. (22) and that given by the adiabatic expression, Eq. (23) are, as expected, 
practically identical. Situation is different for 320 R Å, where the dark level 1D  is located 

between two optical levels 0A  and 0D  (see Fig. 3). Contribution of the optical and dark 

levels to the absorption centered on line 0A  is included in the following expression: 
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with )( 0310    and )( 0310   . The non-adiabaticity effect expressed by Eq. 
(24) is shown in Fig. 5, where the absorption spectra at different temperatures are plotted 
(we dressed the lines by Lorentzians with a finite width of meV15 to simulate the EHP-
acoustic phonons interaction). The adiabatic spectrum obtained with Eq. (23) has no 
temperature-induced shift and its maxima are not significantly changed with temperature. 
The following quantities obtained within the adopted QD model have been used: 

eV8822.11 E ,  eV0738.22 E , eV9496.1E3  , 039.01 g , 234.01221 g , and 
904.01331 g . The stronger accompanying resonances are marked by arrows. The energy of 

some resonances are indicated by factors which multiply the LO phonon energy; they are 
placed to the left of the lines or arrows. The temperature dependence of the spectra, weak in 
the case of adiabatic treatment, becomes important now. Thus, decrease of intensity (by 
37%) and red shift (from 1.87eV to 1.85eV) of the 0PL lines are obtained when temperature 
increases from 10K to 300K. This agrees with the behavior observed experimentally for 
CdTe QDs (Besombes et. al., 2001). On the other hand, the simulated Huang-Rhys factors 
reach values larger by two orders of magnitude than those of the bulk phase (0.0079 
obtained from (Nomura & Kobayashi, 1992)). A similar behavior is reported for small self-
assembled InAs/GaAs QDs by (García-Cristobal et. al. 1999). Thus, by the non-adiabatic 
activated channel at +0.86LO, the simulated Huang-Rhys factor obtained as the ratio of the 
line intensities for this accompanying resonance increases from 0.084 at K10T  to 0.23 at 

K200T . On the other hand, the non-adiabaticity effect manifests by strong resonances at 
2.9LO (see Fig. 5), close to the third LO phonon replica as reported by some experiments, 
see, e.g., (Heitz et. al., 1997). The usual Franck-Condon progression is obtained by the 
adiabatic treatment (see the dotted line in Fig. 5).  

Concluding this section, the non-adiabatic treatment presented, in accordance with the 
experimental observation, predicts: (i) accompanying resonances to the LO phonon satellites 
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in the optical spectra of QDs; (ii) red shift of the 0LO phonon lines and increased intensities 
of the accompanying resonances with temperature in the absorption spectra of QDs. 
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Fig. 5. Simulated absorption spectra of GaAs/AlAs nanocrystal QDs. 

3.4 Phonon effect on the exciton and biexciton binding energy in cylindrical 
semiconductor quantum dots 

In this section we discuss the exciton and biexciton emission spectra of polar semiconductor 
QDs within an adiabatic approach by using the configurational interaction method 
introduced in section 3.1.2. By taking into account the Fröhlich coupling between bi/exciton 
complexes and LO phonons, we simulate the resonantly excited PL spectrum (laser energy = 
detection energy + LOn  energy, with n non-negative integer, (Sénès et. al. 2005)) with 
linearly polarized (LP) light of InAs/AlAs cylindrical QDs. The exciton and biexciton 
binding energy for such QDs is also evaluated. In accordance with Eq. (9), we consider the 
following (multi)exciton-phonon Hamiltonian: 

     )()(

,
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0 )( m

phQDph
m

QD
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m
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m
f

m
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
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 

q
qqq

q
qq   (25) 

where 1m  for exciton, 2m  for biexciton, 
qb  ( qb ) are the bosonic creation (annihilation) 

operators of the phonons of mode q, )(mMq  is the Fröhlich coupling,  
m
fm

m
f

m
f XMXM qq )(  

and *)()( m
f

m
f MM qq   (from Hermiticity of )(mH ), 0  is the frequency of the dispersionless LO 

phonons, and   

f
m
f

m
f

m
f XX  is the (multi)exciton DH  from Eq. (13) written in the language 

of (multi)exciton complexes. According to discussion from section 3.1.3, the Fröhlich 
electron-bulk LO phonon coupling is an acceptable approach for QD with high geometrical 
symmetry, where the interface modes are usually weak. Thus, for the exciton-LO phonon 
coupling (Voigt et. al., 1979; Nomura & Kobayashi, 1992) 
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and for biexciton-LO phonon coupling (Peter et. al., 2004) 
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where  1
0

12
00 2 

   ef  is the Fröhlich coupling constant, and 0V  is the QD volume. 

The emission spectrum of single QD corresponding to exciton and biexciton-exciton 
recombinations is obtained with the Fermi Golden Rule, that should be adapted to the 

composed system, multi(exciton)+phonons. The statistical operator  )()( mm HH eTre    is 

used for the statistical average in the Kubo formula of the optical conductivity. When 
applying the Fermi Golden Rule for the system multi(exciton)+phonons, we need to 
consider a statistical average for phonons and a quantum average for the finite number of 
multi(exciton) states in the QD. On the other hand, within the adiabatic approximation, the 
electronic potential energy surface is the potential for phonons in the QD. We imaginarily 
decompose temporally the absorption process and consider that before switching on the 
electron-phonon interaction, the electron-hole potential energy surface is raised vertically 
from the lowest potential energy surface of the exciton vacuum state to the excited potential 
energy surface (see dotted line parabola in Fig. 6). Then, we consider the electron-phonon 
interaction is switched on and as a result the potential energy surface is further modified to 
the new potential energy surface of the interacting multi(exciton)+phonon system, see upper 
solid line parabola in Fig. 6 and comments in (Odnoblyudov et. al., 1999). 

 

 
 

Fig. 6. Schematic exciton of the potential energy surface involved in transition.  
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Thus, according to its PES, each (multi)exciton state is characterized by its density matrix. To 
take into account the above considerations, we project the statistical operator of the phonon 

system interacting with the (multi)exciton state on the state m
iX  and write 

   )()()( exp m
i

m
iph

m
i ZhH   , with    m

i
m

phQDph
m
i

m
i XHHXTrZ )()( exp   , and 

 
 q qq )()()( bbMh m

i
m

i . The partition function )()( m
i

m
iZ qq Z  is the product of the 

partition functions for each mode having the wave vector q. By dropping all q subscripts, 
the partition function for a single mode reads,    )(exp )(

0
)(   bbMbbTr m

i
m

i  Z . It 

can be evaluated by using a canonical transformation 
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where the anti-Hermitian operator is defined as    0
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in which   q q
2
0

22)()( m
i

m
i Mg  is the Huang-Rhys factor. 

With the Fermi Golden Rule, the exciton emission spectrum is given by 
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where 
11
ii XX is the initial state with energy IE  and G is the ground state with 

energy GE . 
RX

H
1  does not couple the exciton-phonon states, that is relation 

011
1 
 jnRXin H XX  holds, and in Eq. (29) we inserted  




,

11

j
jj XX  to make use of the 
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closure relation  1 1
, j jj     1X X G G . Since (1) (1), 0phQD QD phH H H 
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With Eqs. (30.a, b), Eq. (29) reads 
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where the correlation function is 
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Eq. (32.a) is transformed by using the canonical transformation,  
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where, generally ( 2,1m ), 
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where phZ  is the partition function of the phonon system. By using the interaction 

representation, the correlation function reads 
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where T is the time-ordering operator and 
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Next, to evaluate 
0
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ph  we use the linked cluster expansion (Mahan, 2000) 
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and since )1(~
ih  describes creation or annihilation of a phonon, they are grouped in pairs. 

Thus, 
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By using Wick’s theorem to pair the boson operators for the terms of higher order one 
obtains (Mahan, 2000) 
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and, consequently 
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With Eqs. (32.d) and (33.f), Eq. (29) that gives the exciton emission spectrum reads 
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where iC  is defined in Eq. (17.a). lI  is the modified Bessel function obtained from 

expansion in Eq. (33.f), 




l l ilzIz )exp()(]cosexp[  . Eq. (34) shows the usual phonon 
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progression and comparatively to Eq. (23) in the argument of the Dirac delta function the 
sign of factor for the phonon progression is changed.  

With the Fermi Golden Rule, the biexciton-exciton emission spectrum is given by 
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where 2 2
i iX X  is the biexciton initial state with energy IE , and  1 1

f fX X  is 

the exciton final state with energy FE . 
RX

H
2  does not couple the biexciton-phonon states 

and the ground state to the biexciton-phonon states, that is the relations 

2
2 2 0i jX R
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2 0 0i X R

H  X  hold, and in Eq. (35) we inserted  
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With additional algebra and making use of 1212
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With Eqs. (36), Eq. (35) reads 
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where the correlation function is 
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Given the similarity between expressions of the correlation functions (see Eqs. (32.d) and 
(38.c)), we evaluate 
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With Eqs. (38.c, d), Eq. (37) that gives the biexciton-exciton emission spectrum reads 
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with ifC  defined by Eq. (17.b). ifg  is function of the difference between the coupling of 

phonons to the initial biexciton 2
iX  and the final exciton state, 1

fX ; it influences the 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

54

intensity of the emission line. Note that ifg  cancels out from the argument of the Dirac delta 

function from Eq. (39), instead and a difference of the Huang Rhys factors, )1()2(
fi gg  , is 

present. Eq. (39) has similarity with Eq. (34), and all characteristics of an emission spectrum 
are present. The spectra have 2  dependence. In Eqs. (34) and (39) the argument of the 
modified Bessel functions, lI , plays major role in establishing the emission line intensity; a 

larger Huang-Rhys factor will result in more intense lines.  

Next, we apply the theory to the resonantly excited photoluminescence for high barrier 
heterostructure of InAs/AlAs.  According to the model from section 3.1.2, the mixing of 
the bi/exciton states by phonons is absent, and the formula (34) and (39) are valid. On the 
other hand, the bi/exciton degeneracy could make the dynamical Jahn-Teller effect (Jahn 
& Teller, 1937) to be effective. Accordingly to Eq. (39), the coupling Huang-Rhys factor gif 
makes the degenerate lines to have different intensities. We approximate the intensity of 
emission lines by an average over the intensity of degenerate levels. The values of Huang-
Rhys factors obtained, in accordance with (García-Cristóbal et. al., 1999; Cheche et. al., 
2005) are large as follows: 0.187)1(

1 g , 0.103)1(
2 g , 0.104)1(

3 g , 0.747)2(
1 g ,  

0.364)2(
2 g , 0.365)2(

3 g , 0.364 )2(
4 g , and the ifg  have values between 0.103 and 0.187, 

and larger values of 0.704 for 12g , and 0.706 for 13g . According to the presence of the 

Huang-Rhys factor in the argument of the modified Bessel functions, lI , from Eqs. (34) 

and (39), a large Huang-Rhys factors obtained may be the sign of the appearance of strong 
phonon replicas in the optical spectra. 

There is a variety of results regarding the biexciton binding energy, which reveal 
importance of shape, compounds, and size of QDs. In Fig. 7 the biexciton binding ground 
state (GS) energy, the difference of biexciton and exciton GS lines as given by Eqs. (34) 
and (39), i.e., 0

)2(
1

)1(
1

)2(
1

)1(
1

2 )2(2~  ggXX
b  , is obtained for different values of e  

(with 3he  ). Results from Fig. 7 show that the biexciton binding energy increases 

when the in-plane parabolic potential increases (QD radius decreases or exciton GS 
energy increases). This result is in agreement with the experimental data obtained for the 
same cylindrical shape of QD but with other compounds, InAs/InP (Chauvin et. al., 
2006)), As/GaAsGaIn 0.860.14  (Bayer et. al., 1998) or with theoretical results obtained for 

GaAs. 

QDs (Ikezawa et. al., 1998). An opposite behavior is reported for InAs/GaAs truncated 
pyramidal QDs by (Rodt, 2005). These facts might be related with the actual shape of the 
QDs. On the other hand, the binding character is obtained for smaller QDs ( e  of order 

of tens of meV) and the antibinding character for larger QDs (for example, with 
001.0e  eV, we obtain -0.0011~2 XX

b eV) in agreement with (Stier, 2001). Remarkable 

for the relevance of LO phonon influence on the spectra is the fact that without taking into 
account the self-energy (setting up 0)2(

1
)1(

1  gg  in Eq. (39)), )2(
1

)1(
1

2 2  XX
b  is 

negative (increasing, e.g., from -0.0034 eV for 065.0e eV to -0.0008 eV for 

005.0e eV) and XX
b

2~  becomes positive only by considering the phonon coupling. 
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These observations show that in addition to the shape, size, chemical composition, 
electron-hole exchange interaction, and piezoelectricity, the LO phonon coupling is an 
important factor which influences the anti/binding character of the biexciton. The extent 
to which the LO phonon coupling can not be neglected is a problem which can be 
addressed within a QD model of high enough accuracy. The confidence in the QD model 
we used is supported, in addition to the results obtained for biexciton, by those obtained 
for the exciton complex. As shown in Fig. 7, the magnitude of the exciton GS energy and 
decreasing of the exciton GS energy with QD size agree with other reports, see, e.g., 
(Ikezawa, 2006; Grundmann et. al., 1995). As the piezoelectricity in the case of cylindrical 
QD shape is expected to be less important (Miska, 2002) than for other QD shapes, the 
adopted QD model is suitable for describing the main physics of the bi/exciton-LO 
phonon coupling in cylindrical semiconductor QDs.  
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Fig. 7. The exciton (•) and biexciton (■) binding energies obtained for the simulated 
InAs/AlAs QD. The numbers show the energy of the exciton GS emission line. 

The calculations show that value of exciton and biexciton binding energy is strongly 
influenced by diameter (in-plane confinement) and less by the height (perpendicular 
confinement) of cylindrical QDs. The binding character of the biexciton, with  

0076.0~2 XX
b eV, and the exciton and biexciton GS emission lines of InAs/AlAs QD as 

reported by (Sarkar et. al., 2006) for K9T  are simulated in Fig. 8 by choosing 
eV065.0e  and  eV3/065.0h . Regarding the emission, the emission lines from Fig. 

8 are labeled with three digits for transition from biexciton state (first digit) to exciton state 
(second digit), and with two digits for transition from exciton state (first digit) to the VS 
(reminding to the reader, VS means vacuum state, that is, the no excitons state); the last digit 
corresponds to the phonon replica. The open squares show the experimental results from 
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(Sarkar, 2006). The inset shows schematically the exciton resonant emission we simulated. 
Emission spectra of InAs/AlAs QDs are reported in a range of 1.5-1.9eV (Dawson et. al. 
2005; Offermans et. al., 2005; Sarkar et. al., 2006). Our approach simulates the emission from 
exciton (1, 0) GS and biexciton (1, 1, 0) GS, in the range 1.56-1.68eV. In this interval the 
phonon replicas are predicted in accordance with the experimental data from (Sarkar et. al., 
2005). 

The literature regarding the presence of the excited states in emission spectra of QDs is 
rather scarce (Kamada, 1998; Khatsevich, 2005).  The strong 0LO emission lines from excited 
states might explain the higher energy lines observed in the PL spectra reported by (Dawson 
et. al. 2005; Offermans et. al., 2005; Sarkar et. al., 2005). For small enough InAs/AlAs QDs 
the lowest energy state at Γ  point in InAs moves above the AlAs X band edge, the electrons 
spread in the AlAs barrier, and appearance of high energy lines by this mechanism is 
forbidden. Instead, the exciton line (2, 0) and the biexciton-exciton emission lines (3, 1, 0), 
and (2, 1, 0) are candidates for explaining the high energy lines observed by (Offermans et. 
al., 2005). Accuracy of our QD model is not high enough to explain the fine-structure 
splitting reported by (Sarkar et. al., 2006) and shown in Fig. 8; the fine-structure is assigned 
to the electron-hole exchange interaction, which was neglected in our model. Prediction for 
higher temperatures is not reliable, as far as the possible dissociation of the biexciton with 
temperature had not been taken into by the present considerations. However, at larger, but 
still low temperatures, under 60K, the features of spectra predicted by our approach do not 
change significantly.  
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Fig. 8. The resonant emission spectrum of biexciton and exciton complexes. 

Concluding this section, the theoretical approach we introduced is a useful tool for 
describing the influence of LO phonons on the resonant excitation emission at low 
temperatures. The high energy emission lines, that are obtained by configurational 
interaction calculations for cylindrical InAs/AlAs QDs, are associated to the emission from 



 
Influence of Optical Phonons on Optical Transitions in Semiconductor Quantum Dots 

 

57 

the excited states. One finds, in accordance with the experiment, that the biexciton binding 
energy has a binding character (positive value), which diminishes with decreasing the 
radius of QD, and becomes antibinding (negative value) for flat QDs. The simulated exciton 
and biexciton binding energies obtained, demonstrate that the phonon coupling is an 
essential factor, which should be integrated in the analyses for an accurate description of 
optical transitions in QDs. For the InAs/AlAs QDs, the presence of LO phonon replicas and 
emission from the excited states is explained as the consequence of large Huang-Rhys 
factors. 

4. Outlook  
To introduce the reader the problem of the electron-phonon interaction in QDs, three basic 
aspects are presented in the Sec. 2: i) the adiabatic and non-adiabatic transitions in the 
optical transitions; ii) the Huang-Rhys factor; iii) the Hamiltonian of localized defect with 
several electronic states mixed by phonons. 

In Sec. 3.1, within the effective mass approximation two models describing the electronic 
energy structure of spherical GaAs/AlAs QDs and cylindrical InAs/AlAs QDs are 
introduced. For the optical transitions, the spherical QD model predicts the adiabatic 
treatment is appropriate for QD radius smaller than 32 Å, and a non-adiabatic is needed for 
larger radii.  For the cylindrical QD both excitonic and biexcitonic complexes are considered 
by a configurational interaction method and for QD height of 2.3nm and parabolic 
confinement eV065.0e  and 3he   the model predicts an adiabatic treatment is 

appropriate for describing optical transitions. 

In Sec. 3.2 the Fermi Golden Rule and cumulant expansion method are used within a non-
adiabatic treatment to spherical GaAs/AlAs QDs to obtain the absorption coefficient. In 
accordance with the experiment, we obtain: i) Large Huang-Rhys factors by two orders of 
magnitude than the bulk value with increasing values for smaller radii; ii) Accompanying 
resonances to the LO phonon satellites; iii) Red shift of the 0LO phonon lines and increased 
intensities of the accompanying resonances with temperature. 

In Sec. 3.3 the Fermi Golden Rule and cumulant expansion method are used to describe 
the emission from the exciton and biexciton complexes of the cylindrical InAs/AlAs QDs. 
The presence of LO phonon replicas and emission from the excited states is explained as 
consequence of large Huang-Rhys factors. One finds, in accordance with the experiment, 
that the biexciton binding energy has a binding character (positive value), which 
diminishes with decreasing the radius of QD, and becomes antibinding (negative value) 
for flat QDs.  

In conclusion, the present study emphasizes that the LO phonon coupling in the polar 
semiconductor QDs is an essential factor in understanding at a higher level of accuracy the 
optical transitions. The accordance between our results and experimental results show that 
the approaches we used, the Fermi Golden Rule and cumulant expansion method are useful 
tools in describing optical properties of semiconductor QDs. By the prediction of the Huang-
Rhys factors and of the optical spectra shape, the present work is useful to people working 
in the field of semiconductor QDs optics, both theoreticians, in comparing different models, 
and experimentalists, in comparing theory and experiment. 
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1. Introduction  
Colloidal semiconductor nanocrystals attract worldwide scientific and technological interest 
due the ability to engineer their optical properties by the variation of size, shape, and 
surface properties.1-3 Recent studies revealed new strategies related to composition control 
of the properties, including alloying,4-7 doping,8 and in particular the formation of core/shell 
heterostructures.9-14 Whereas major effort has been devoted to the development of II-VI 
core/shell structures,12-15 there are only a few reports concerning the heterostructures of IV-
VI (PbSe, PbS) colloidal quantum dots (CQDs).16-19  PbSe, PbS and PbSexS1-x alloyed CQDs 
are the focus of widespread interest due to their unique electronic and optical properties, 
with feasibility of applications in near infra-red (NIR) lasers, photovoltaic solar cells, Q-
switches and nano-electronic devices.20 These semiconductors have a simple cubic crystal 
structure with nearly identical lattice constants 5.93 Å and 6.12 Å at 300 K, respectively, 
which facilitates the formation of hetero-structures. Recently, high quality PbSe/PbS 
core/shell16-19 and completely original PbSe/PbSexS1-x core/alloyed shell CQDs structures19 
were produced using a single injection process, offering the potential to tailor the 
crystallographic and dielectric mismatch between the core and the shell, forming a perfect 
crystalline hetero-structure. These structures present higher photoluminescence (PL) 
quantum yield (QY) with respect to those of core CQDs and tunability of the band-edge 
offset with variation of the shell thickness and composition, eventually controlling the 
electronic properties of the CQDs. 

During the past few years, considerable interests have been focused on the thermally 
activated processes of the ground-state exciton emission of PbSe core CQDs.21 The variation 
of the PL properties with temperature showed two thermal activation thresholds: the first in 
the temperature range 1.4–7 K connected with activation of acoustic phonon assisted dark 
exciton decay, and the second in the temperature range 100–200 K, connected with 
activation of bright excitons. This study also shows that the temperature coefficient of the 
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energy gap and the optical phonon coupling were reduced with the decrease of the 
diameter, while the acoustic phonon coupling grew with the decrease of the diameter. Since 
the first report of experimentally prepared PbSe/PbS core-shell CQDs, some simple physical 
properties, such as electronic structure had been studied.22 The previous theoretical work 
predicted a variation of the electronic structure of PbSe/PbS CQDs, pronounced in the 
variation of the carriers’ radial distribution function, with the variation of the core-
radius/shell-thickness ratio, showing a significant separation of the electron and hole wave 
functions only when the shell-thickness becomes equivalent or larger than the core radius. 
However, the electronic structure and optical properties of colloidal IV-VI quantum dots, 
composed of core/shell heterostructures with alloy components still lack systematic and in 
depth study. 

Considering the significant potential of the IV-VI heterostructures the present work 
describes the structural and temperature-dependent optical characterization of PbSe/PbS 
core/shell (c/sh), PbSe/PbSexS1-x core/alloyed-shell (c/a-sh), and newly prepared PbSeyS1-

y/ PbSexS1-x alloyed-core/alloyed shell (a-c/a-sh) CQDs,23 with variable internal diameters 
and a radial gradient composition (when 0 < x <1, 0 < y < 1) with respect to those of pure 
PbSe and PbS CQDs. The investigated CQDs were prepared by colloidal chemistry. The 
structure and composition of the CQDs were characterized by the use of high-resolution 
transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), 
energy-dispersive analysis of X-ray (EDAX). A thorough investigation of the optical 
properties was performed by following the variable temperature continuous-wave (cw) and 
transient (temporal and spectrally resolved) PL spectra, exploring energy shift, band edge 
temperature coefficient, alleviation of a dark-bright splitting (or exchange interaction), 
valley-valley interaction, emission QY, and radiative lifetime of the heterostructures, in 
comparison with the existing properties of the primary PbSe core CQDs21 and PbS CQDs 
with equevalent size.24  

This chapter is organized as follows. Section 2 presens the significant effect of thermally 
activated processes of the ground-state exciton emission of various PbSexS1-x/PbSeyS1-y a-
c/a-sh CQDs structures, suggesting that cw-, temporal and spectrally resolved PL of 
PbSe/PbS (c/sh) , PbSe/PbSexS1-x (c/a-sh) and PbSeyS1-y/PbSexS1-x a-c/a-sh CQDs over a 
wide range of temperatures have distinguished properties in comparison with those of pure 
PbSe core CQDs with equivalent overall size (Rs) and identical core radius (Rc). Section 3 
discusses the thermally activated processes of PL in PbS CQDs, while the theoretical insight 
into the electronic band structure of graded PbSeyS1-y/PbSexS1-x a-c/a-sh QDs structure with 
different composition and/or size using the multiband k p envelope function method is 

given in Section 4. Section 5 presents the colloidal synthesis procedures and experimental 
techniques, used for CQDs structural and spectroscopic characterizations.  

2. Temperature influence on composition-tunable optical properties of 
PbSeySy-1/PbSexS1-x c/sh CQDs.  
The investigated CQDs were prepared by colloidal chemistry, according to the short 
description given below in Section 5.1 and a detailed procedure reported in.19  Figure 1 
represents HR-TEM images of PbSe0.5S0.5/PbSe0.27S0.73 (a) and PbSe/PbS (b) CQDs. 
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Fig. 1. Representative HR-TEM image of: single PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh CQD with 
Rs of 2.0 nm (a), PbSe/PbS c/sh CQD with Rc of 1.3 nm and Rs of 2.5 nm (b), TEM image of 
an ensemble of CQDs shown in (a) (c), SAED image of the CQDs in (c) (d), EDAX spectrum 
of PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh CQDs (e). 

These images reveal distinguished crystal planes, supporting high crystallinity of the a-c/a-
sh CQDs. In most cases the core/shell interface is indistinguishable in 
PbSe0.5S0.5/PbSe0.27S0.73 CQD (Panel (a)) due to the close proximity of the crystallographic 
components of PbSe and PbS semiconductors. However, a boundary is noted in PbSe/PbS 
CQD with a shell width > 3 nm (Panel (b)). A representative TEM image of CQDs shown in 
(a) is presented in Panel (c), exhibiting a size uniformity of ~ 5%. A representative SAED of 
CQDs shown in (c) is shown in Panel (d), confirming a rock-salt crystallographic structure 
(Fm m space group). Similar rock-salt structures appeared in all the investigated samples.      
Representative EDAX spectra are presented in Panel (e). The Pb, Se, and S percentages of 
various samples are listed in Table 1.  

Representative absorption (dashed lines) and cw-PL (solid lines) spectra of a few samples with 
various composition and size, measured at room temperature (RT) are shown in Figure 2.  

5 nm

(b)

20 nm

(c) (d) 

2 nm
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Fig. 2. Absorption (dashed lines) and emission (solid lines) spectra of PbSe core (bottom and 
top curves), PbSe/PbS c/sh, PbSe/PbSe0.68S0.32 c/a-sh and PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh 
CQDs with overall radius, Rs, as labeled in the figure and measured at RT. The core radii of 
the heterostructures presented are in accordance with Table 1. 

The bottom and top curves correspond to the spectra of PbSe core CQDs with average 
radius of RS = 1.5 nm and 2.4 nm, respectively. The middle curves represent different 
heterostructures (c/sh, c/a-sh and a-c/a-sh), with composition and size as labeled in the 
Panel, when Rc = 1.5 nm and Rs up to 2.4 nm. These sets of curves suggest the occurrence of 
a red-shift of the absorption and emission spectra of the heterostructures with respect to 
those of the primary cores with RS = 1.5 nm, but they are blue shifted with respect to that of 
pure PbSe cores with RS = 2.4 nm. This midway shift is related to a quantum size effect 
combined with a composition tuning of the band edge energy.  

The experimental band gap energy (Eg), estimated by the first excitonic absorption band, 
and the corresponding calculated values (discussed below) of the studied materials are 
listed in Table 1. The table also designates the PL quantum yield (η) of a few selected 
samples. The determination of the η is given in detail in the Section 5.3. Systematic 
improvement (up to 88%) of the η was found in c/sh, c/a-sh and a-c/a-sh CQDs versus 
those of the primary core CQDs. The relatively high η might be related to the improved 
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quality of surfaces, e.g., close crystallographic match between PbSe core and PbS or PbSexS1-x 
shell, as well as the increase of the sulfur precentege at the exterior surface, with a lower 
oxidation outcome. The cw-PL spectra shown in Figure 2 were pumped by a nonresonant 
excitation (1.54 eV), showing an asymmetric or a split band, Stokes shifted with respect to 
the first absorption band by an energy, Es, as listed in Table 1.  
 

Molecular formula of CQDs Pb
[%]

Se
[%]

S
[%]

Rc [nm] Rs [nm] Eg exp.
[eV]

Eg calc.
[eV]

η [%] rad 

[μs] 
Es 

[meV] 

PbSe 51.5 48.5 0.0 1.5 1.5 1.17 1.03 48 2.99 112 

PbSe 54.0 46.0 0.0 2.4 2.4 0.93 1.16 83 1.23 34 

PbSe/PbS 55.2 17.1 27.7 1.5 2.1 1.03 1.10 65 2.62 55 

PbSe/PbS 53.8 13.5 32.7 1.5 2.3 0.98 0.95 88 1.72 53 

PbSe/PbSe0.68S0.32 50.0 40.0 10.0 1.5 2.1 1.00 1.14 68 2.21 75 

PbSe0.5S0.5 50.8 25.1 24.2 1.6 1.6 1.18 1.30 27 5.50 103 

PbSe0.5S0.5/PbSe0.24S0.76 49.2 20.3 30.5 1.6 1.9 1.09 1.10 46 2.37 73 

PbSe0.5S0.5/PbSe0.27S0.73 48.8 17.5 33.7 1.6 2.4 1.02 0.97 65 1.96 45 

Table 1. Relevant parameters of the investigated CQDs; Pb, Se, S percentages, core radius 
(Rc), overal radius (Rs), band gap energy (Eg), quantum yield (η), radiative lifetime (rad) 
and Stokes shift (Es), all at RT. 

Figure 3 compares the PL emission Stokes shift energy versus the experimental band gap 
energy, corresponding to the first excitonic absorption band of PbSe (black squares), 
PbSe/PbS c/sh (red circles) with primary Rc of 1.5 nm, PbSe/PbSe0.8S0.2 c/a-sh (green 
triangles) with primary Rc of 1.5 nm and PbSe0.6S0.4/PbSe0.17S0.83 a-c/a-sh (blue diamond’s) 
with PbSe0.6S0.4 core radius of 1.5 nm CQDs at RT. The nonresonant Stokes shift has an 
interesting behavior: (i) a reduction of Es in c/sh heterostructures with respect to their 
primary cores. The Stokes shift is related to a total growth of Rs with respect to Rc , as well as 
to the generation of an exciton fine-structure by valley-valley and electron-hole exchange 
interactions. These interactions may be reduced in c/sh structures, due to a quasi-type-II 
band alignment, as will be discussed below; (ii) Es in c/a-sh and a-c/a-sh CQDs is smaller 
than in the corresponding cores, however, larger than that in core or c/sh CQDs of an 
equivalent size (see Table 1). Similar increase of Es, in alloyed CQDs (in comparison with 
pure cores) was observed before in II-VI5, 25 and III-V26 quantum dots, and was associated 
with a nonlinear effect such as optical bowing, induced by a lattice constant deformation or 
different carriers’ distribution in alloyed materials.5  

Figure 4 illustrates the evolution of the cw-PL spectra of a few samples, excited at 1.54 eV 
and recorded at different temperatures from 1.4 K to 300 K as shown by the ruler in the 
figure. Panels (a) and (e) represent the spectra of reference PbSe cores, with an average 
radius, RS = 1.5 nm and 2.4 nm, respectively. The CQDs were desperse in glass solution 
(GS). The cw-PL spectra correspond to a band edge exciton recombination emission at the L-
point of the Brillouin zone of a PbSe semiconductor. Panels (b) and (c) show the spectra of 
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PbSe/PbS c/sh and PbSe/PbSe0.68S0.32 c/a-sh CQDs, respectively, both with Rc = 1.5 nm and 
Rs = 2.1 nm. Panel (d) exhibits the spectra of PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh CQDs with Rs = 
2.4 nm. Once again, at all temperatures, the emission energy of the heterostructures shows a 
midway shift between the emission energy of small and large reference cores (Panels (a) and 
(e)). The cw-PL spectra of the smallest PbSe cores CQDs are dominated by a single exciton 
band over the entire temperature range, similar to the observation found in Ref.[21]. 
However, the emission spectra of the larger PbSe cores occasionally exhibit a split band at 
elevated temperatures.  

 
Fig. 3. Plot of the emission energy Stokes shift Es versus Eg of the CQDs designated at the 
legend of the Figure, at RT. The full black square correspond to the primary core of the 
PbSe/PbS CQDs and the full green triangle corresponds to the primary core of the 
PbSe/PbSe8S0.2 CQDs. 

Identicaly the cw-PL spectra of the various heterostructures show an asymmetric or a split 
shape at all temperatures, presumably consisting of two overlapping emission bands, where 
the energy split is of the order 30-55 meV, decreasing with the increase of the shell width 
and the S/Se ratio (see Figure 4). For convenience, we fitted the spectra to a sum of two 
Gaussian emission bands as demonstrated in Figure 5 for a PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh 
sample at three representative temperatures (5 K, 150 K and 300 K). Interestingly, the split 
energy closely retains its value upon the increase in temperature, although the high energy 
component is gaining intensity with the increase in temperature. As a simple test of the 
possibility that the split band arises due to traps or defects on the surface of the CQDs, we 
checked the pumping intensity dependence of the spectra, as traps and defects should be 
saturated at high enough energies. We found that the spectrum not only maintained its 
shape but also the relative intensity between the two bands remained constant, while the 
pumping intensity varied over 10 orders of magnitude. The possibility of experimental 
artifacts was also rejected as the dual band still appears after intensity calibration on the 
experimental system and at different energies for different samples (core, c/sh, c/a-sh and 
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a-c/a-sh). We take this evidence as proof that the dual band is an intrinsic property of the 
electronic structure of the samples.  

 
Fig. 4. cw-PL spectra of: PbSe core CQDs with core radius of RS = 1.5 nm (a) and RS = 2.4 nm 
(e); PbSe/PbS c/sh (b) and PbSe/PbSe0.68S0.32 c/a-sh CQDs (c), both with Rc = 1.5 nm and Rs 
= 2.1 nm; PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh CQDs (d) with Rc = 1.6 nm and RS = 2.4 nm. The 
CQDs were dispersed in GS. The data were recorded at various temperatures shown by the 
ruler. (* the PL intensity was multiplied by a factor of 3 at RT). 

 
Fig. 5. PL spectra (black) and its best fit Gaussian curves (green and red) for 
PbSe0.5S0.5/PbSe0.27S0.73 a-c/a-sh CQDs, recorded at 5 K, 150 K and 300 K.  
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The splitting might be related to the occurrence of a recombination emission from two low 
lying excited states based on the following grounds: (i) a break of the four-fold degeneracy 
at the Brillouin L-point minima in IV-VI rock-salt structures, by confinement or valley-valley 
interaction. Indeed, valley-valley interaction, previously reported,27-29 suggested a split of 
the band edge into two manifolds, each composed of bright and dark states induced by 
exchange interaction. The valley-valley split energy is in the range of 20-60 meV, increasing 
with the decrease of the CQDs’ size, close to the experimental values attained in this work, 
which also increased with the reduction of Rs; (ii) simultaneous emission from both a dark 
and bright states, if a Boltzmann distribution at the cryogenic temperatures permits a heavy 
population of the higher energy bright state. This case is less probable, since the observed 
split of a few tenths of meV is substantially larger than a theoretical reported value for an 
exchange splitting between dark and bright states in pure PbSe cores; (iii) two emission 
processes can be related to parallel radiative recombination of a type-I and quasi-type II 
transitions, overlapping in an ensemble of CQDs. Presumably, such a case can be excluded, 
based on the observed uniformity, size and composition; (iv) occurrence of energy transfer 
between subgroups of small and large CQDs. The examined CQDs were dissolved in glass 
solutions, with a relatively low concentration, minimizing the energy transfer process. Thus, 
valley-valley interaction is the most probable mechanism for a split emission band. 

The E between the two bands for different samples are listed in Table 2. The table 
designates a general trend, a decrease of the E with the increase of the Rs of the CQDs as 
well as the similarity in the value of E of core CQDs and c/sh (or c/a-sh) CQDs of similar 
Rs (although their first exciton emission occurs at different energies). 
 

Molecular formula Rc [nm] Rs [nm] ΔE [meV] 
PbSe 1.5 1.5 - 
PbSe 2.0 2.0 53.1 
PbSe 2.2 2.2 53 
PbSe 2.4 2.4 52.6 
PbSe/PbS 1.5 1.8 70.1 
PbSe/PbS 1.5 2.1 59.1 
PbSe/PbS 1.5 2.4 54.9 
PbSe 1.5 1.5 67.3 
PbSe/PbSe0.68S0.32 1.5 2.1 55.3 
PbSe/PbSe0.75S0.25 1.5 2.5 49.2 
PbSe0.5S0.5 1.6 1.6 63.4 
PbSe0.5S0.5/PbSe0.24S0.76 1.6 1.9 43.2 
PbSe0.5S0.5/PbSe0.27S0.73 1.6 2.4 40.1 

Table 2. Splitting energy E of the PL emission spectra in PbSe core, PbSe/PbS c/sh, 
PbSe/PbSexS1-x c/a-sh and PbSeyS1-y/PbSexS1-x a-c/a-sh CQDs at RT. 

The nature of the two emitting states in PbSe CQDs have recently been investigated 
theoretically27, 30 and exsperimentally21, 23, 29, 31-33. These studies have suggested that splitting 
within the exciton fine structure near the band gap may be responsible23, 27, 29. We proposed 
that the problem of two emitting bands need supplementary evidence, which can be gained 
from the temporal and spectrally resolved PL measurements.  
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The transient PL spectra were measured by exciting the sample with 1.17 eV and following 
the decay time (0) of the emission intensity. Figure 6(a) displays decay curves of the 
samples given in the legend, measured at RT, monitoring the low energy PL component. 
Predominantly, the curves exhibit a single exponent behavior, where the value of 0 
decreases upon the growth of a core radius from Rs = 1.5 nm to 2.4 nm. However, the 0 of 
the c/sh CQDs is longer than that of the primary PbSe cores. Spectrally resolved transient 
PL measurements provide more evidence of the two PL band nature. Plots of the values of 0 
measured at various temperatures (as indicated by the arrow), monitored across the PL 
spectrum of PbSe cores and PbSe/PbS c/sh CQDs, are shown in the inset of Figure 6(a).  The 
symbols are the experimental points and the solid lines are to guide the eye. It shows that 
the 0 of the core CQDs is approximately invariant across the PL spectrum. However, there 
is a pronounced decrease of the 0 when moving from the red to the blue side of a PL spectra 
of a c/sh sample, mainly pronounced at low T, but becoming insensitive to the detection 
energy at RT. The variation of 0 across the PL band supports the existence of emission of at 
least two manifold of states in the PL spectrum of the heterostructures, involving different 
radiative transitions, each of which having a distinct dependence on the temperature. 0 is 
correlated to the PL radiative lifetime (rad) by the Eq. rad = 0/ η (η values are given in Table 
1). Considering this relations, Figure 6(b) represents plots of rad versus the measured T of the 
samples given in the legend of Panel (a), monitored only on the low energy PL component.  

These plots reveal a drastic decrease of rad with the increase in T in core and c/sh CQDs, 
related to a dark exciton emission,21 however, only a minor change in c/a-sh and a-c/a-sh 
CQDs. The small variation of rad in the later CQDs is also related to the diminished climax 
in the PL intensity versus 1/T (see Figure 7(b)). Both effects suggests elevation of the dark 
exciton characteristic in alloyed CQDs. Figure 6(c) compares plots of rad versus Rs of core 
and c/sh CQDs at three different T (5 K, 100 K and 300 K). These curves reflect a common 
behavior, characterized by a reduction which is turned into an extension of rad with the 
increase in Rs (called bowing effect). The turning points are mainly pronounced when 
measured at low T. It is important to note that the decay processes in c/a-sh samples resemble 
those of the c/sh materials (not shown), but the turning points in c/sh and c/a-sh CQDs occur 
at a smaller Rs than that of cores of equivalent size. In fact, a turning point in the variation of 
rad with size was already reported in PbSe core CQDs at RT for samples with RS between 2 nm 
to 10 nm. Currently the mechanism of this behavior is not clearly understood, however it was 
previously suggested24, 34 that the initial reduction of rad with increasing size could be 
attributed to the size-dependence of the matrix element for spontaneous emission 

2
ˆf i p  

which governs the recombination rate up to Rs ≈ 2 nm.35 For larger sizes, however, the matrix 
element is expected to become size-independent, so rad becomes proportional to the 
wavelength of emitted radiation, which is consistent with the trend observed in Figure 6(c).  

Figure 7(a) displays the temperature variation of the peak emission of the low energy cw-PL 
band of a few heterostructures, large core and small reference core, as given in the legend. 
The Figure demonstrates the peak energy at T, relative to that at 1.4 K (EPL(T)-EPL(1.4 K)), 
versus T. The plots disclose a blue-shift of the emission energy with increase in T, which is 
largest for PbSe cores; however, they illustrate a moderate change in the heterostructures. 
The symbols designate the experimental points, and the solid lines are best fitted curves. A 
tangent line to the fitted curve evaluates the slope, revealing the temperature coefficient,  
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Fig. 6. Representative PL decay curves of the samples listed in the legend at RT (a); The inset in 
(a) presents plots of the measured 0 versus the detection energy across the PL spectrum, of 
core and c/sh CQDs, measured at different temperatures (5-300 K) as indicated by the arrow; 
Variation of the radiative lifetime versus the temperature of the samples listed in Panel (a) (b); 
Plots of the radiative lifetime versus the radius (Rs) of cores (solid line) and the corresponding 
c/sh (dashed line) CQDs, measured at the various temperatures as indicated in the figure (c). 
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dE/dT. This coefficient is most commonly derived from the temperature dependence of the 
first excitonic transition energy, using Varshni36 relation, however, if the emission Stokes 
shift is invariant under the temperature, the coefficient derived in the present case should be 
relatively close to the band edge value, dEg/dT. The best fitted coefficients of a few samples 
are listed in Table 3, indicating an increase of dE/dT with an increase in size37 approaching 
the bulk value of dEg/dT. Also, those coefficients of the heterostructures are reduced with 
respect to pure cores of equivalent Rs, which are mostly pronounced in a-c/a-sh CQDs. The 
temperature dependence of the coefficient dEg/dT has dominant contributions from crystal 
dilation and electron-phonon interactions, as well as minor contributions from mechanical 
strain and thermal expansion of the wavefunction envelope.37 Since the thermal expansion 
coefficients of bulk PbSe and PbS are almost identical,38 it is expected that the electron-
phonon coupling is the dominating effect responsible for the reduction of dEg/dT in alloyed 
CQDs. A minor contribution might be also assigned to a reduction of a core/shell interface 
strain by a better crystallographic match. In any event, the low value of dE/dT in the alloyed 
CQDs suggests a thermal stability of the band edge properties, with a significant importance 
in various applications and in particular in solar energy panels.   

 
Fig. 7. Plot of the low cw-PL band emission peak energy relative to that at 1.4 K (EPL(T)-
EPL(1.4 K)) versus the temperature T of the samples mentioned in the legend (a). The 
symbols designate the experimental points, while the solid lines are the best fit curves; Plot 
of the integrated PL intensity versus 100/T (b) of the samples presented in Panel (a). The 
solid lines here are drawn to guide the eye. 
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Figure 7 (b) demonstrates plots of the PL integrated intensity of the low energy cw-PL band 
versus 100/T. The plots show a similar tendency, including a plateau at the temperature 
range > 10 K to ~ 150 K, followed by low quenching of the intensity by an exciton-phonon 
interaction at higher temperatures, a typical behavior of a direct band gap semiconductor.39 
However, the trend is interrupted in two distinct points: (i) occurrence of unusual climax in 
the intensity profile at a temperature between 150 K to 250 K, appearing at higher 
temperature in c/sh and c/a-sh, compared with that of the primary cores, but with a very 
small effect in a-c/a-sh CQDs. This abnormal climax was previously explained21 as a 
thermal activation between dark and bright states, with activation energy (Ea) close to the 
LO phonon energy (LO(PbSe) = 16.8 meV, LO(PbS) = 26 meV). The values of Ea of the 
investigated samples are listed in Table 3, spanning a range that is in close agreement to the 
suggested theoretical values of the dark-bright splitting in pure PbSe cores;27 (ii) 
unexplained a minor decrease of the intensity <10 K with an activation energy ~ 0.4 meV, 
way below the acoustic phonon energy (LA, TA ~ 4-6 meV).40 Worth to note, that the best fit 
shown in Panel (a) also show some deviation from perfection > 150 K, in correlation with the 
abrupt climax shown in Panel (b), due to a change in the emission mechanism from a dark 
to a bright state emission. 
 

Molecular formula of CQDs Rs 
[nm] 

dE/dT 
[meV/K] 

Ea 
[meV] 

PbSe 1.5 0.32 15.51 
PbSe/PbS 2.1 0.17 17.23 
PbSe/PbSe0.68S0.32 2.1 0.15 15.51 
PbSe0.5S0.5/ 
PbSe0.27S0.73 

2.4 0.06 - 

PbSe 2.4 0.48 21.54 
Bulk material dEg/dT 

[meV/K] 
PbSe 0.51  
PbS 0.52 

Table 3. An energy band-gap temperature coefficient dE/dT and thermal activation energy 
Ea of PbSe core, PbSe/PbS c/sh, PbSe/PbSexS1-x c/a-sh and PbSeyS1-y/PbSexS1-x a-c/a-sh 
CQDs. 

3. Thermally activated photoluminescence processes in PbS CQDs 
For deeper understanding of the thermally activated emission processes in PbSe yS y-

1/PbSexS1-x hetero-structures we also examined pure PbS CQDs with equevalent sizes. In the 
recent years a progress towards achieving a detailed understanding of emission in PbS has 
been made.41-46 However, important challenges still remain, thus providing a strong 
motivation to study the fundamental physics of fluorescence in this semiconductor. The 
investigated PbS CQDs were prepared by colloidal chemistry, according to the procedures 
given in Ref. 43 and will be described in Section 5.2. The room temperature absorption and 
cw -PL spectra of PbS CQDs, with diameters between 2.2 and 3.5 nm (all dispersed in GS), 
are shown in Figure 8, while a representative HR-TEM image of a single CQD is shown in 
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the Inset. The crystallinity and composition of the materials were investigated by recording 
their HR-TEM images, revealing the formation of spherical CQDs with a high quality rock salt 
structure. The absorption spectra are comprised of the 1Se-1Sh exciton transitions varying 
between 1.55 to 1.2 eV, corresponding to CQDs with a diameter between 2.2 to 3.5 nm and 
blue-shifted upon the decrease of diameter. Also, the 1Se-1Sh exciton bands are blue-shifted 
with respect to that of the bulk exciton at 0.32 eV. The excitonic emission bands have a full 
width at half-maximum (FWHM) of about 200 meV, with Es of 250 meV for the 2.2 nm 
CQDs, which reduces gradually with the increase of the CQDs size. For 3.5 nm CQDs Es is 
50 meV.  

 
Fig. 8. Room temperature absorption (dash lines) and cw-PL spectra (solid lines) of PbS 
CQDs with an average diameter as indicated in the legend; Inset: HR-TEM image of a single 
PbS CQD; scale bar 2 nm. 

This shift is the result of a split of the exciton manifold by the L-valley mixing and by the 
electron-hole exchange interaction, which further splits into dark and bright states. Figure 
9(a) and 9(b) illustrate the cw-PL spectra of 2.6 and 3.5 nm PbS CQDs, respectively, 
dispersed in GS and recorded at various temperatures ranging from 4 K to 300 K.  

At all temperatures the ground states exciton PL spectra of 2.6 nm CQDs are nealy 
symmetric, while PL spectra of 3.5 nm PbS CQDs have an asymmetric shape (like those of 
the equivalent size PbSe and PbSeyS1-y/PbSexS1-x a-c/a-sh hetrostructures), showing 
variations with the change in the temperature of the emission peak energy, FWHM and in 
integrated PL intensity. 

The evolution of the PL peak energy with the increase in temperature of 2.6 and 3.5 nm PbS 
CQDs are shown in Figure 10(a) by the symbols (see legend in the figure) and the solid lines 
which are best fitted curves using Varshni relation.36 The plots reveal a blue shift of the exciton 
emission energy with the increase in the temperature and can mainly attribute to the increase 
in the band gap energy with temperature, typical to the small band-gap IV-VI semiconductors. 
A tangent line to the fitted curve evaluates the slope, revealing the temperature coefficient, α 
=dE/dT. The best fit α parameter for the PbS CQDs vary between - 0.17 meV/K (for the 2.6 nm) 
to 0.22 meV/K (for the 3.5 nm) and are smaller to similar sizes PbSe CQDs.21 
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Fig. 9. Representative cw-PL spectra of PbS CQDs with diameter of 2.6 nm (a), and 3.5 nm 
(b) dispersed in GS and measured at various temperatures as indicated in the legend. 

 
Fig. 10. Plots of the PL peak energy versus the temperature of PbS CQDs with dimensions as 
indicated in the legend (a); The solid lines represent a fit to a Varshni function36 ;Integrated 
PL intensity of 2.6 nm PbS CQDs versus the temperature (b); inset: PL band’s FWHM of PbS 
CQDs shown in Figure 9 versus the temperature. The solid lines represent a fit to the 
modified Bose–Einstein relation.47 

Plot of the integrated PL intensity versus the temperature of 2.6 nm PbS CQDs is 
presented in Figure 10(b) and shows Arrhenius behavior. The activation energy extracted 
from the Arrhenius plot is 14 meV, and is smaller than the thermal activation energy Ea 
obtained for PbSe CQDs’and PbSeyS1-y/PbSexS1-x a-c/a-sh CQDs heterostructures that are 
listed in Table 3. 

The inset of Figure 10(b)  represents a plot of the FWHM of PL spectra of the samples shown 
in Figure 10(a) as a function of temperature. The FWHM decreased with decreasing 
temperature and was best fitted to a modified Bose–Einstein relation given in Ref. [47]. The 
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experimental data reveal a reduction of the ground-state exciton broadening in the 2.6 nm 
CQDs in comparison with that in 3.5 nm PbS CQDs. The best fit curves are shown by the 
solid line in the figure. The values that were obtained by the best fit parameters are: 
inhomogeneous broadening parameter Γinh (taken as Γo(T) at 0 K) varies between 70-90 meV 
depending on the CQDs’ size, acoustic phonon coupling σ=0.016 meV/K , optical phonon 
coupling ΓLO=56 meV. The LO-phonon energy ELO was extracted from Raman measurements 
(not shown here) and is about 23 meV. The values obtained from Bose-Einstein relation are 
with accordance to those presented in the literature.41   

Representative transient PL curves of 3.5 nm PbS CQDs in GS, recorded at various 
temperatures, are shown in Figure 11(a). These curves were fitted to a single exponent decay 
curve, I(t)= A exp(–t/ τ0 ), showing an obvious change with variation of T.  

The best-fit lifetime’s τ0 of 2.6 and 3.5 nm PbS CQDs versus T are plotted in Figure 11(b), 
revealing a moderate decrease of the lifetime from 5.2 to 4.0 μs for 2.6 nm and from 6.5 to 5 
μs for 3.5 nm PbS CQDs when T increases from 2.4 to 100 K. A steeper decrease of the 
lifetime is observed when T increases from 120 to 290 K. At all temperature the τ0 are longer 
than those of 2.6 nm PbS QDs.44 

 
Fig. 11. Transient PL curves of 3.5 nm PbS CQDs dispersed in GS and recorded at various 
temperatures, as indicated in the legend (a); Plots of the lifetime, τ0, versus T of PbS CQDs 
shown in Figure 9. 

Spectrally resolved transient PL of 2.6 and 3.5 nm PbS CQDs measured at three different 
points of the PL band at various temperatures are shown in Figure 12(a) and 12(b).  The 
arrows pointing to three different points of PL energy: red arrow- energy of the PL peak; 
black arrow – energy at the half PL intensity from the blue side of the PL, while the blue 
arrow is the energy at the half PL intensity from the red side of the PL. The obtained results 
reveal two emission bands with different 0 temperature dependent behaviour: the higher 
energy band 0 increase moderate with decrease of T from 290 to 4 K, while the low energy 
band show steeper 0 increase with decrease of T. This behavior suggests that the two band 
composed PL could correspond to bright and dark states induced by exchange interaction or 
to the two lowest valley-valley manifold exitonic states.  
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Fig. 12. Plots of the measured 0 versus the detection energy across the PL spectrum, of 2.6 
(a) and 3.5 nm (b) PbS CQDs, measured at various temperatures (4-290 K) as indicated in the 
legends. The arrows pointing to three different points of PL energy: red arrow- energy of the 
PL peak; black arrow – energy at the half PL intensity from the blue side of the PL, while the 
blue arrow is the energy at the half PL intensity from the red side of the PL. 

4. Theoretical prediction of the electronic properties of heterostructed QDs  
The electronic band structure of the heterostructures (with/without alloy composition) 
quantum dots (QDs) was evaluated, using a k*p model, considering specific features, related 
to the discontinuity of the effective mass, crystal potential and dielectic constant at the 
core/shell, as well as at the shell/surrounding interface. The evaluation also considered 
anisotropy of effective masses, particularly in the IV-VI semiconductors. The evaluations 
explored interesting properties, associated with charge distribution between the core and 
the shell, effective electron-hole spatial separation, probability of transitions, coulomb 
interactions and tunability of band-edge and remote states’ energy.23, 48 Pre-engineering of 
the electronic band structure is done by theoretical consideration (of spherical particles 
alone for the moment), covering all cases, when, either the core or shell or both has alloy 
composition (see scheme in Figure 13).  A few special points should be considered: 
anisotropy in effective mass (typical for IV-VI semiconductors), as well as the fact that each 
physical parameter dependents on its position (r) across the dot, and also may vary 
smoothly at the core/shell and the shell/surrounding interfaces, with a smoothing factor . 
The Hamiltonian was adjusted to the discontinuity at the PbSe/PbS interface by the 
appropriate choice of the kinetic energy term, ensuring probability current conservation and 
continuity of the envelope functions. In addition, the Hamiltonian potential energy term, 
included the heterostructure band offset, abrupt for the c/sh structure, but considered as a 
smooth function for the c/a-sh QDs.49 Presumably, the smooth potential profile reflects the 
nature of the interface region in alloyed materials with gradient composition, being an 
extension of the standard treatment for semiconductor heterostructures. The overall band 
offset was chosen as that of the corresponding bulk PbSe and PbS materials (where the 
valence band maximum of bulk PbS lies 0.025 eV above that of PbSe, while the conduction 
band minimum lies 0.155 eV above that of PbSe). Diagonalization of the envelope function 
Hamiltonian yielded the electron and hole wavefunctions, as well as a good approximation 
of the energy values of the conduction and valence-band’s states. The heterostructures 
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investigated are ternary core or c/sh QDs, having a general formula PbSexS1-x/PbSeyS1-y, 
covering the following cases: (a) x = y = 1 or x = y = 0 refers to a simple core PbSe or PbS, 
respectively; (b) 0 < x = y < 1 is a homogenous alloy core; (c) x = 1 and y = 0 is a simple 
PbSe/PbS c/sh; (d) x = 1 (y = 1) and y  0 (x  0) is a complex c/sh QD, when either the core 
or the shell has a homogenous alloyed composition. A schematic drawing of a ternary QD is 
shown in Figure 13. cR and sR designate the radius of a core and a c/sh QD, respectively.  

  
Fig. 13. Schematic drawing of a spherical c/sh PbSexS1-x/PbSeyS1-y QD. Rc and Rs are the core 
and the total radii, respectively. Radial variation of the bulk material parameters in spherical 
PbSe/PbS QD (Rc=2 nm, Rs=3 nm). 

Three-dimensional plots of the electron and hole distribution functions on (111) cut-plane 
for a pure core (Panel (a)), c/sh QDs (Panels (b) and (c)) and c/a-sh (Panels (d) and (e)) of 
equivalent Rs, are shown in Figure 14. Panels (f) and (g) show the electron and the hole 
distribution for a c/a-sh with Rc=3 nm and Rs=5 nm. In the case of a pure core structure, the 
distribution of electron and hole is virtually identical, thus Panel (a) describes either one of 
the carriers. The choice of the (111) plane is made for the calculation convenience only, and 
is equivalent to choosing any other crystallographic plane for the distribution 
representation, since the ground state wavefunctions are spherically symmetric. These plots 
reveal a distinct trend, in which the lowest energy hole state, 1 /2, 1  (1/2 denotes the total 

angular momentum j of the state, and ±1 corresponds to the parity π), is more delocalized 
with respect to its counter partner, the lowest energy electron state 1 / 2, 1 , in c/sh and 

c/a-sh QDs, characteristic of quasi-type II configuration at the band edge. This electronic 
distribution explains the experimental observations shown in Figure 2 of the gradual red-
shift of the absorption spectra with the increase of the shell width . The electron and hole 
spatial distribution functions in c/sh CQDs shown in Figure 14(b) and 14(c) suggest that the 
distribution of both carriers is similar to that of a c/a-sh structure (Figure 14(d) and 14(e)); 
however, the distribution differs from the case of a simple core QD of comparable total size 
(Figure 14(a)). The calculations show that for heterostructured particles with Rc< 3 nm the 
energies of the lowest lying electron levels exceed the potential barrier height (either abrupt 
or gradual), located at the interface between the core and the shell, thus significantly 
reducing the effect of quantum confinement induced by the shell layer. On the other hand, 
in the case of larger c/sh or c/a-sh particles the electron energy is lower than the barrier 
height, thus enforcing the confinement (and subsequently the localization) of the electron in 
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the core region ( cf. Figure 14(b) and 14(f) ). However, the energy difference between the 
valence band edges of PbSe and PbS is almost an order of magnitude smaller than that 
between the conduction band edges, hence the hole distribution is influenced by the shell to 
a much lesser extent (cf. Figure 14(c) and 14(g) ). 

 
 

 
 

Fig. 14. Probability density on the (111) cut-plane for electron and hole in (a) PbSe QDs, 
Rs=2.4 nm. (b) Electron and (c) hole in PbSe/PbS CQDs, Rc=1.5 nm, Rs=2.4 nm. (d) Electron 
and (e) hole in c/a-sh QDs, Rc =1.6 nm, Rs =2.4 nm. (f) Electron and (g) hole in c/a-sh QDs, 
Rc =3 nm, Rs =5 nm (Both dashed circles, outer and inner, represent the external particle 
boundary and the core/shell interface location, respectively). The insets marked VB (valence 
band) and CB (conduction band) schematically represent the radial potential energy profile 
used in the calculation in each case. (h) Energy as a function of Rs of two lowest states of 
electron and hole in PbSe core and PbSe/PbS c/sh QDs with Rs / Rc =3/2.  
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Figure 14(h) displays the calculated energy of two lowest energy states versus the Rs of core 
and c/sh QDs with Rs / Rc =3/2. This Figure reveals a pronounced influence of the shell on 
the energy levels of the carriers. 

In the case of a c/sh structure, both the electron and hole levels are lowered in energy 
relative to a core structure of the same size, with a larger influence on the hole levels. In the 
framework of this model the energy levels of c/a-sh structures are almost identical to those 
of c/sh, hence are not shown here. This finding is consistent with the experimental 
observation of the red-shift in the emission energy of the c/sh and c/a-sh heterostructures, 
relative to the cores of corresponding size. The theoretical 1 / 2, 1 1 / 2, 1   transition 
energies (which is the first excitonic transition) are listed in Table 1 and are compared with 
the experimental absorption band edge energies, with a close agreement for QDs with Rs> 
1.5 nm (Apparently, the accuracy of the model is not satisfactory for very small sizes due to 
the breakdown of the major assumption that the envelope function is slowly varying on the 
scale of the unit cell). The model reproduced the band edge energies of the QDs with 
relatively close agreement with the experiment, as well as predicted varying delocalization 
extent of the electrons in the lowest conduction band. The explanation of the reported 
variation of various physical properties of c/sh and c/a-sh heterostructures would demand 
further theoretical considerations (e.g., mass anisotropy, exchange interactions), which are 
beyond the scope of the discussed model, however, will be done in the future. 

Evolution of the ten lowest conduction and valence band levels as a function of structure 
and composition of QD with Rs are shown in Figure 15.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Evolution of the energy of the conduction and valence band energy levels through a 
series of composition and structural changes, while maintaining a constant QD radius of 2.5 
nm.  

First, the QD structure evolves from PbS core to PbSe core via the intermediate alloyed 
PbSexS1-x structures (Left Panel). Next, the QD is divided into a 3 nm PbSe core and a 2 nm 
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thick PbSeyS1-y shell (i.e., Rc=3 nm, Rs=5 nm). The shell composition then varies from y=1 to 
y=0, corresponding to a transition from pure PbSe to PbSe/PbS c/sh via intermediate 
PbSe/PbSeyS1-y c/sh structures (middle panel). Finally, the composition of the core 
constituent evolves from x=1 to x=0, corresponding to a transition from PbSe/PbS c/sh to a 
pure PbS core, which completes the cycle (Right Panel). States of even (+) and odd (-) parity 
are marked by purple and green lines, respectively. CB and VB correspond to the 
conduction and valence bands, respectively.  

Figure 16 shows the energy levels (blue) and density of states (DOS) (green) of PbS (left 
panel), PbSe0.5S0.5 (middle panel) and PbSe (right panel) having Rs=2.5 nm. The density of 
states calculated by broadening each energy level by 25 meV Gaussian. The composition is 
found to have a significant impact on the energy spectrum of spherical QDs (apart from the 
band gap energy). For instance, when looking at the all three cases of PbSexS1-x core 
structures of the same size, in PbSe0.5S0.5 the levels are arranged into more dense discrete 
groups, while in PbS and PbSe QDs they are more evenly distributed, as can be seen in 
Figure 16. 

 

 

 
Fig. 16. Single-particle energy levels (blue) and density of states (green) of PbS (left panel), 
PbSe0.5S0.5 (middle panel) and PbSe (right panel) QDs having Rs=2.5 nm. The density of 
states calculated by broadening each energy level by 25 meV Gaussian.  

It is intuitively clear that the origin of this composition-dependent variance of the DOS (that 
even reaches degeneracy in some cases) should be linked to some symmetry property of the 
system. In our case this property is the shape of the energy isosurface (EI) of PbSexS1-x bulk 
materials in the reciprocal space. As mentioned above, in the case of lead chalcogenides the 
general shape of the EI resembles a spheroid, having its principle axis in the L-direction, and 
it varies as a function of energy  E k . 

Calculated values of the fundamental gap energies Eg evaluated for various core and c/sh 
QDs, compared with experimental data are presented in Figure 17 and shows a qualitativly 
agreement between the theoretical and experimental results.  
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Fig. 17. Calculated (empty circles) and the corresponding experimental (filled circles) values 
of the band gap energies evaluated for several core and c/sh QDs. 

5. Synthesis procedures and experimental techniques used for core/shell 
heterostructures with alloy components 
5.1 Synthesis of PbSe, PbSe/PbS c/sh, PbSe/ PbSexS1-x c/a-sh and PbSey  
S1-y/PbSexS1-x a-c/a-sh CQDs  

The synthesis of core PbSe CQDs followed a modified procedure to that given by Murray et 
al.50 , following the procedure given in19 and including the preceding stages: (1) 0.71 gr of 
lead(II) acetate trihydrate [Pb-ac] (Pb[CH3COO]2 · 3H2O, GR, Merck) were dissolved in a 
solution composed of 2 mL diphenyl ether [PhEt] (C6H5OC6H5 , 99%, Aldrich), 1.5 mL oleic 
acid (OA) (CH3(CH2)7 CHCH(CH2)7COOH, 99.8%, Aldrich) and 8 mL TOP ((C8H17)3P, Tech, 
Aldrich), under standard inert conditions in the glove box, and were inserted into a three-
neck flask (flask I); (2) 10 mL of PhEt were inserted into a three-neck flask (flask II) under 
the inert conditions of a glove box; (3) both flasks were taken out of the glove box, placed on 
a Schlenk line and heated under a vacuum to 100 - 120°C for an hour; (4) flask I was cooled 
to 45°C, while flask II was heated to 180 -210°C, both under a fledging of an argon gas; (5) 
0.155 gr of selenium powder (Se, 99.995%, Aldrich) was dissolved in 2.0 mL TOP, forming a 
TOP:Se solution, under standard inert conditions of a glove box. Then, 1.7 mL of this 
solution was injected into flask I on the Schlenk line; (6) the content of flask I, containing the 
reaction precursors, was injected rapidly into the PhEt solution in flask II, reducing its 
temperature to 100 - 130°C, leading to the formation of PbSe CQDs within the first 15 min of 
the reaction. The described procedure produced nearly mono-dispersed CQDs with < 8% 
size distribution, with average size between 3 and 9 nm, controlled by the temperature and 
by the time duration of the reaction. 

The preparation of PbSe/PbS c/sh CQDs by a two-injection process19 begins with formation 
of core PbSe CQDs and their isolation from the initial reaction solution, according to the 
procedure described previolsy. Those core CQDs were re-dissolved in chloroform solution, 
forming a solution of 50 mg/mL weight concentration. The quality of 1.4 mL of TOP was 
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then added to the CQDs solution, while the chloroform molecules were removed by 
distillation under vacuum and heating at 60°C. In parallel, 0.2 gr of a Pb precursor, Pb-ac, 
was dissolved in a mixture of 2 mL PhEt, 1.5 mL of OA, and 8 mL of TOP, heated to 120°C 
for an hour, and then cooled to 45°C. Also, 0.03–0.10 gr of sulphur (S, 99.99 + %, Aldrich) 
was dissolved in 0.3 mL of TOP and was premixed with a PbSe core CQDs in a TOP 
solution. This mixture was injected into the Pb-ac solution. All reagents were then injected 
into a PhEt mother solution and kept on a Schlenk line at 180°C, causing a reduction in 
temperature of the mother solution to 120°C. The indicated chemical portions caused the 
precipitation of 1–3 monolayers of PbS shell over the PbSe core surface within the first 15 
min of the reaction.  

The preparation of PbSe/PbSexS1-x c/a–sh and PbSexS1-x/PbSeyS1-y a-c/a-sh structures19 is 
nearly identical to that of the core PbSe CQDs, described previosly using a single injection of 
the precursors into a single round flask. However, step (5) was altered by the use of an 
alternative chalcogen precursor stock solution. A stock solution of Se and S was prepared by 
mixing 0.15 gr Se dissolved in 1.4 mL TOP, with 0.03–0.10 gr S dissolved in 0.3 mL TOP. The 
amount of S in the new stock solution corresponded to a stoichiometric amount of 1–2 ML of 
the PbS compound. Thus, the mole ratio of the precursors Pb:Se:S ranged from 1:1:0.5 to 
1:1:1.3. Aliquots were drawn periodically from the mother solutions while quenching 
process to RT terminated the CQDs’ growth. They were isolated from the aliquots solution 
by the addition of methanol, and by centrifugation. The isolated CQDs were further purified 
by dissolving them in chloroform, followed by filtering several times through a 0.02 micron 
membrane. A preliminary injection of Pb/Se/S ions ratio of 1/1/0.5 led to the nucleation of 
a pure PbSe core, due to the faster reactivity of the Se precursors at the nucleation stage. 
However, the increase of the S/Se ratio (S/Se> 1.5/1) enabled an immediate integration of 
both elements with the nuclei (monitored already in the first aliquot). Further aliquots 
revealed a gradient increase of the S/Se ratio when moving from the interface toward the 
exterior surface. For simplicity, the samples were labeled as PbSeyS1-y/PbSexS1-x.  

5.2 Synthesis of PbS CQDs 

PbS CQDs were prepared according to literature procedure.43 The lead oleate precursor was 
prepared by heating 0.09 g PbO in 4 ml OA under N2 at 1200C for 1h. A solution of 42 l 
bis(trimethylsilyl)sulfide (TMS ) in 2 ml octadecene (ODE) was injected into the vigorously 
stirring lead oleate solution. The final particle size was controlled by injection temperature 
(120-150 0C), where lower temperature leads to smaller sizes, and by varying the Pb:OA molar 
ratios (2:32 to 2:4, where the total volume of lead oleate solution was kept at 4 ml by dilution 
with ODE). The reaction was quenched by cooling it to RT and the CQDs were precipitated 
with acetone, then subsequently redispersed in chloroform and precipitated again.  

5.3 Experimenthal methods 

The morphology and crystallography of the colloidal CQDs were examined by X-ray 
diffraction, TEM, HR-TEM and SAED. The TEM specimens were prepared by injecting small 
liquid droplets of the solution on a copper grid (300 mesh) coated with amorphous carbon 
film and then dried at room temperature. The elemental analysis were examined by EDAX, 
and inductively coupled plasma atomic emission spectroscopy (ICP-AES).   



Temperature-Dependent Optical Properties of Colloidal IV-VI  
Quantum Dots, Composed of Core/Shell Heterostructures with Alloy Components 

 

85 

The absorption spectra of the samples were recorded on a JASCO V-570 UV-VIS-NIR 
spectrometer. The cw-PL spectra were obtained by exciting the samples with a tunable 
Ti:Sapphire laser, (Eexc = 1.48-1.80 eV). The PL spectra of the materials studied were recorded 
at a temperature range of 1.4 K to 300 K, while immersing the samples in a variable 
temperature Janis cryostat, and detecting the emission with an Acton Spectrapro 2300i 
monochromator, which was equipped with a cooled InGaAs CCD or cooled Ge photo 
detector. The transient PL curves were recorded by exciting the samples with a Nd:YAG 
laser, (Eexc = 1.17 eV). The measurements utilized a laser flux <0.1 mJ/cm2, corresponding to 
a photon fluence of jp~1011 photons/cm2 per pulse. Considering the absorption cross-section 
of 0~10-15 cm2, measured in reference,14 the number of photo-generated excitons is given by 
<N0>= jp . 0, and estimated to be 10-4<<1, ensuring the generation of single excitons. The 
transient-PL curves were monitored by a photon multiplier tube, Hamamatsu NIR-PMT 
H10330-75. The measurements were carried out at temperature range from 1.4 K to 300 K. 
The PL quantum yield was measured utilizing integrating sphere technique described by 
Friend.51 A solution of CQDs was placed inside an integrating sphere and excited by a 
monochromatic light. Luminescence spectra were detected by a fiber-coupled spectrometer 
equipped with a liquid nitrogen-cooled Ge photo detector. The entire system response was 
normalized against a calibrated detector, and care was taken to ensure that the sample 
absorption was more than 20%.  

5.4 Storage conditions 

The PbSeyS1-y/PbSexS1-x a-c/a-sh (0<x<1;0<y<1) CQDs were stored either in a various 
solutions (chloroform, hexane) or were embedded in a polymer film or dissolved in a GS 
(2,2,4,4,6,8,8,-heptamethyl-nonane) for the optical measurements. The polymer-CQDs 
solution was prepared by mixing PbSe CQDs in chloroform solution with poly-methyl-
methacrylate (PMMA) ([–CH 2 C(CH 3 )(CO 2 CH 3 )–] n , analytical grade, Aldrich) polymer 
solution. The resultant mixture was spread on a quartz substrate and dried over 24 h to a 
uniform film. The stability of these CQDs was examined over a period of time by recording 
the absorption spectra and following the consistency of the low exciton energy. Plots of this 
exciton energy versus time suggest that the exciton energy in the core samples is blue-
shifted by ~ 400 meV over a period of days for the CQDs kept in a chloroform solution. Such 
a blue-shift, however, occurs over months for the samples kept as dry powders. On the 
other hand, the energy shift is smaller for the PbSe/PbS c/sh samples, and even nearly 
disappeared for the CQDs coated with three PbS shell monolayers. It is presumed that the 
exciton energy blue-shift is due to oxidation of the surface, and a decrease of the effective 
size of the core. Obviously, the penetration of oxygen through the PbS shell is reduced with 
the growth of the shell width. Furthermore, storage of the CQDs in a nitrogen environment 
nearly eliminates any spectral drift over a period of months, even extending to two or three 
years. It should be noted that most of the optical measurements were carried out at 
cryogenic temperatures, inducing a He gas environment around the samples. But 
unpublished results determined degradation of the samples when exposed to intense pulsed 
UV radiation, which is avoided completely in the current study.  

6. Conclusion and future directions 
Unique alloyed c/sh heterostructures, such as PbSeyS1-y /PbSexS1-x, (0<x≤1; 0<y≤1) were 
developed, offering good crystallographic and dielectric match at the c/sh interface, 
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regulating carriers’ delocalization and/or charge separation by tunability of the band off-set, 
showing an exceptionally high emission quantum yield, chemical stability, and an option to 
stabilize the emission intensity (blinking free behavior), as well as sustain the biexciton 
lifetime over a nanosecond. The last can be of a valuable benefit in the use of CQDs in gain 
devices and photovoltaic cells. 

 A smooth potential at the c/sh interface was applied here for the determination of the 
electronic structure of IV-VI CQDs, using a k p  model, covered a wide physical aspects, 
including an effective mass anisotropy, dielectric variation between the constituents, 
showing a ground for tailoring heterostructures with the desired composition and optical 
properties.  

A thorough investigation of the optical properties was performed by following variable 
temperature cw- and transient spectrally resolved PL spectra, exploring energy shift, band 
edge temperature coefficient, alleviation of a dark-bright splitting (or exchange interaction), 
valley-valley interaction, emission quantum yield, and radiative lifetime of the PbSeyS1-y 
/PbSexS1-x  heterostructures, in comparison with the existing properties of the primary PbSe 
core CQDs. Temporally and spectrally resolved PL spectra provide more-systematic 
evidence of the two emissive centers nature. The results reflect the uniqueness of the 
electronic properties of the heterostructures, controlled by shell width and alloyed 
composition.  

The discussed heterostructures could be of significant importance in applications where the 
CQDs' size is restricted, e.g., biological markers or self-assembled CQDs in opto-electronic 
devices, while at the same time, there are stringent demands regarding the optical 
tunability. We showed that the restriction can be overcome by the discussed new strategies 
gaining property control using: (a) alloyed ternary or quaternary compounds, when all 
elements can be either distributed homogeneously or exhibit a graded composition along a 
selective direction; (b) c/sh heterostructures, comprised of a semiconductor core, covered by 
a shell, of another semiconductor, when the band-edge off-set at the core/shell interface, can 
be tuned from a type-I (when shell band-edge is rapping that of the core), through quasi-
type-II, to a type-II (when, band-edge of the constituents are staggered) alignment. 
Moreover, one of the constituents (core or shell) may have alloyed composition.  

7. Acknowledgment  
The authors thank G. Kventsel for helpful discussions, providing many insightful 
comments, A. Bartnik and F. Wise for helpful discussions and guidance on the theoretical 
model, A. Efros for the useful scientific discussions, and O. Solomeshch for assistance in the 
quantum yield measurements. The authors acknowledge support from the Israel Science 
Foundation (Projects No. 1009/07 and No. 1425/04), the USA-Israel Binational Science 
Foundation (No. 2006-225), and the Ministry of Science (No. 3-896). 

8. References  
[1] Steigerwald, M. L.; Brus, L. E., Semiconductor crystallites: a class of large molecules. 

Accounts of Chemical Research 1990, 23 (6), 183-188. 



Temperature-Dependent Optical Properties of Colloidal IV-VI  
Quantum Dots, Composed of Core/Shell Heterostructures with Alloy Components 

 

87 

[2] Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P., 
Shape control of CdSe nanocrystals. Nature 2000, 404 (6773), 59-61. 

[3] Akamatsu, K.; Tsuruoka, T.; Nawafune, H., Band Gap Engineering of CdTe Nanocrystals 
through Chemical Surface Modification. Journal of the American Chemical Society 
2005, 127 (6), 1634-1635. 

[4] Ma, W.; Luther, J. M.; Zheng, H.; Wu, Y.; Alivisatos, A. P., Photovoltaic Devices 
Employing Ternary PbSxSe1-x Nanocrystals. Nano Letters 2009, 9 (4), 1699-1703. 

[5] Bailey, R. E.; Nie, S., Alloyed Semiconductor Quantum Dots:  Tuning the Optical 
Properties without Changing the Particle Size. Journal of the American Chemical 
Society 2003, 125 (23), 7100-7106. 
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1. Introduction  
The desire to fabricate materials with novel or improved properties is a powerful stimulus 
for the development of materials science. Thermal and electrical conduction, optical 
response, energy conversion and storage are just a few of the large number of properties 
underwent a very fast evolution in the last decade thank to the birth of a new branch of 
materials science and technology defined “Nanotechnology”. Nanotechnology includes the 
totality of the physical, chemical, biological and engineering knowledge involving artificial 
structures whose properties are controlled at the nanometer level. Among the multitude of 
nanomaterials created, a particular class of them is becoming very popular and represents 
nowadays the most fascinating and potentially revolutionary inorganic semiconductor 
structure, which is the family of the colloidal quantum dots. They are often referred to as 
“nanocrystals” and the colloidal definition reveal their chemical origin. Actually, the 
chemical synthesis currently represents the most effective way to obtain high quality (in 
terms of size control, narrow size distribution, good crystalline structure and high optical 
performances) nano-objects on a gram scale which can be handled as ordinary chemical 
substances and implemented in several opto-electronic devices as well as biological ambient. 
Today, colloidal nanocrystals are successfully used as active media in lasers (Chan, et al., 
2004; Klimov et al., 2000, 2007), LEDs (Anikeeva et al., 2009; Caruge et al., 2008), 
photovoltaic (Gur et al., 2005; Huynh et al., 2002; Kim et al., 2003), sensors (Oertel et al., 
2005), biological labelling (Deka et al., 2009; Michalet et al., 2001), photo catalysis (Hewa-
Kasakarage et al., 2010). Chemical syntheses allow for the fabrication of nanocrystals (NCs) 
with nearly atomic precision. They are currently prepared in a variety of compositions as 
nearly spherical particles (Peng et al., 2000), elongated nanorods (Krahne et al., 2011), and 
other more complex structures like tetrapods (Fiore et al., 2009) and octapods (Miszta et al., 
2011; Zhang et al., 2011). Moreover, the sophistication with which inorganic nanoparticles 
can be prepared has inspired the creation of multi-combined nano-systems having different 
compositions ranging from the all-semiconductor to hybrid semiconductor-metal 
nanoparticles possessing on demand properties in terms of electronic levels energy. As a 
consequence, the in-depth knowledge of the electronic structure of nanocrystals became of 
fundamental importance and a huge effort on the theoretical and experimental point of view 
has been made in the two last decades dedicated to their study and comprehension.  
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This chapter wants to provide an overview of the main studies carried out on spherical 
nanocrystals on what concerns their electronic structure and optical properties. Particular 
attention will be devoted to the review of the role played by defect states (especially surface 
states) on the final optical performances by means of steady-state and time-resolved 
spectroscopy. For the sake of clarity, the reported discussions will concern two main kinds 
of nanocrystals, namely CdTe and CdSe. They represent the ideal cases study, since these 
two materials have historically been the most studied in the field of semiconductor 
nanostructures. The reason lies on the fact that they cover great part of the optical properties 
possessed by a number of different other nanocrystals and moreover they present the two 
main crystallographic symmetries, namely cubic (CdTe) and wurtzite (CdSe). 

The chapter is organized as follows: Section 2 will be dedicated to the basic concepts of the 
low-dimensional systems. The idea is to provide a comprehensive overview of the physics at 
the basis of the systems studied. We will start from the most common problem consisting in 
solving the 1-D Schrödinger equation for an electron in a box, extending the discussion to 
the types of confinement (1-D, 2-D, 3-D) a nano-object undergoes. The size dependence will 
be reviewed, by distinguishing the different degrees of confinement. A final part will be 
devoted to the study of the electronic structure of spherical nanocrystals. Section 3 will 
provide an extensive discussion about the most important recombination processes 
occurring in spherical nanocrystals. These processes will be basically separated in two big 
families: radiative and non radiative processes. In the first case we will deal with relaxation 
processes involving the emission of one or more photons due to electron-hole annihilation. 
In the second case the excess energy is released as heat inside the materials and/or by 
excitation of new electron-hole pairs by Auger-like processes. Since great part of the 
potential applications of colloidal nanocrystals concerns with light emitting devices, 
particular emphasis is dedicated to the non radiative pathways limiting their optical 
performances. A review of the main studies reported in literature will be presented, with 
particular attention to the parameters affecting them, which are the size, the temperature, 
the excitation density and the surface quality. About the latter, the impact of surface states 
on the optical properties of CdSe NCs will be treated by means of a four-level model. A last 
section is dedicated to the Conclusions. 

2. Fundamentals of nano-physics 
This first section wants to stress the point that any development in nanoscience necessarily 
requires an understanding of the physical laws governing the matter at the nanoscale and of 
how the interplay of the various physical properties of a nanoscopic system translates into 
some novel behaviour or into a new physical property. In this sense, the section will be an 
overview of the basic physical laws that govern the nanomaterials, with particular emphasis 
on quantum dots, being the subject of the chapter. 

2.1 Quantum confinement on low dimensional systems 

The phenomenon of the quantum confinement (i. e. the size quantization) can be observed 
in systems where the motion of electrons or other particles (holes, excitons, etc.) is restricted 
at least in one dimension by some potential energy profile. Such a system is usually referred 
to as a “low dimensional” system. The energy spectra and the wavefunctions localization 
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depend on the type of restriction in one, two or three dimensions, as well as on the size of 
the nanostructure. In particular, the quantum phenomena start to be noticeable when the 
lateral extension of the potential well becomes comparable to the particle wavelength. In 
order to better understand this concept, let us consider the case of the electrons. As 
elementary particles they exhibit the wave-particle duality of the matter following the “de 
Broglie” relation (de Broglie, 1924,1925). When immersed in a solid the electron is treated as 
a particle having an effective mass m* accounting for the periodicity of the crystal potential. 
Its linear momentum p can be written in terms of its wave-like nature, p k  , where  is 

the Dirac’s constant (the Planck’s constant divided by 2π ) and k represents its 
wavenumber, associated to the de Broglie wavelength λ=2π/k . Electrons in a bulk solid are 
treated as particles not feeling the borders by imposing the periodic boundary conditions, so 
that the wavefunctions and the energies are not affected by the real spatial extension of the 
solid. When the solid dimensions approach the electron wavelength, the permitted 
wavefunctions and energies undergo a series of restrictions in terms of continuity and 
absolute values. In few words, the system starts to be considered as “quantized”. The 
simplest example of quantum confinement is an electron enclosed in a one-dimensional 
quantum box having lateral size a and infinitely high walls. In figure 1 we can see the 
situation in terms of energy and wavefunctions. 

 

Fig. 1. Electron in a potential well. Energy levels and wavefunctions. 

The problem constitutes a classical textbook case that can be approached by solving the 
Schrödinger equation in one dimension (Yoffe, 2001): 

 
2

2 2
2d me

V
dx b

   (1) 

with V = 0, 0<x<a and V = ∞, x≤0, x≥a. The solutions of this second-order linear differential 
equation are in the form: 

 ( ) .ikx ikxx A e B e      (2) 
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For an infinitely high potential barrier, the electron wavefunction must vanish at the borders 
of the potential well, such as φ(0)=0 andφ(a)=0 . The condition φ(0)=0 produces B=-A, such 
that: 

 ( ) ( ) 2 sin( ).ikx ikxx A e e iA kx     (3) 

Substituting φ(x) in the Schrödinger equation one can obtain the following expression for 
the electron energy: 

 
2 2

2
k

E
m




.  (4) 

The condition φ(a) =0 produces the following identity: 

 ( ) 2 sin( ) 0.a iA ka    (5) 

The identity is verified if ka = nπ, with n=1, 2, 3, ... The parameter k, therefore, results 
quantized, and the separation between two consecutive allowed values is Δk=π/a. In terms 
of energy: 

 
2 2 2 2 2

2 .
2 2

k n
E

m ma


 
 

 (6) 

The lowest energy for the electron, called Ground State energy, is obtained for n = 1, 

 
2 2

2 .
2

E
ma





 (7) 

The expression above defines the minimum energy possessed by a quantized system and is 
termed “point-zero energy” and constitutes a fascinating manifestation of the Heisenberg 
Uncertainty Principle. In fact, from 

 
2

x p  


 (8) 

follows 

 
2

p
x a

  

 

 (9) 

since a represents the potential well dimension and Δx ≤ a/2. In terms of averaged kinetic 
energy: 

 
2 2 2

2

( )
.

2 2 2k k
p p

E E
m m ma


   


 (10) 

This expression gives the theoretical lower limit of the possible kinetic energy value for a 
quantum particle confined in a box (one-dimensional, in this case) having size a. In the 
reality we find an actual value about π2 ≈ 10 times larger. 
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The role of the system size on the confinement energy is played by the 1/a2 factor according 
to which larger the size a, smaller both the point-zero energy and the spacing in the k-space. 
This leads to smaller absolute energy spacing, whereas the relative spacing is expressed by 

 
2 2 2 2

2 2
1 2 2( 1) (2 1),

2 2n nE E n n n
ma ma
 

        
 

 (11) 

and increases with increasing n. 

The wavefunctions look like the standing waves on a string. Figure 1 plots the energies of 
the allowed states and the relative wavefunctions. They have increasing number of nodes 
with increasing energy according to the fact that more nodes mean shorter wavelength and 
higher momentum (i.e., energy). 

2.2 Classification of quantum confined systems 

In general, all the quantum confined systems can be classified on the basis of the number of 
dimensions along which the motion of electrons is coerced. The usual terminology refers to 
as 1-, 2-, 3-D confinement, in which the more evident effect consists in the modulation of the 
density of states function and a restriction of the allowed energies. In order to better 
understand what happens to a system when its dimensions start to shrink, one needs to 
begin from a non-confined structure, such as a bulk material. Here, one can assume that N 
electrons are not bound to individual atoms such that they can be considered “free” to move 
in three directions. If we suppose that, as a first approximation, the electron-electron 
interactions and the crystal potential are negligible (free electron gas model) (Pines, 1963) we 
can write the kinetic energy of an electron moving in the solid with velocity x y zv=(v ,v ,v )


: 

 2 2 2 21 1
( ).

2 2 x y zE mv m v v v   
  (12) 

The corresponding wavevector is derived from the relation 

 p mv k 
    (13) 

and the corresponding wavelength λ=2π/ k . 

On the wavefunction point of view the condition of infinite solid is expressed by imposing 
the so called boundary conditions. They consist in the continuity of the wavefunction 
φ(x,y,z)  at the border of the real finite solid of dimensions dx, dy, dz: 

 
( , , ) ( , , )
( , , ) ( , , )

( , , ) ( , , )

x

y

z

x y z x d y z
x y z x y d z

x y z x y z d

 
 

 

  


 
  

. (14) 

The solution of the 3-D Schrödinger equation gives a factored function, written as the 
product of three independent functions: 

 
( , , ) ( ) ( ) ( ) exp( )exp( )exp( )x y zx y z x y z A ik x ik y ik z    

 (15) 
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In the argument of the exponential functions, x,y,zk is such that x,y,z x,y,z±Δk =±n2π/d  with n 

integer. In a bulk (having d much larger than the electronic wavefunction), this condition 
tells us that all the values of allowed k are contained in a sphere in the k-space with a quasi-
continuous distribution of states. At this point, it is useful to introduce the concept of 
Density of States (DOS) function 3dD (k) , intended as the number of states for unitary 

interval of wavenumbers. The electrons in a solid having a wavenumber k included in the 
interval between k and k+Δk belong to the function 3dD (k)Δk . The total number of electrons 

contained in the sphere (having a maximum wavenumber kmax) is 

 
max

3 ( )
k

d
o

N D k dk   (16) 

Since the volume of the sphere is proportional to k3 the number ΔN (k) of electrons inside 
the interval k+Δk is proportional to k2Δk. Therefore 

 2
3

( )
( )d

dN k
D k k

dk
   (17) 

Now, it is possible to give the expression of the number of states in a unitary interval of 
energy D3d (E). Since 2E(k) k , thus k E , dk/dE 1/ E . It follows 

 3
( ) ( )

( ) /d
dN E dN k dk

D E E E E
dE dk dE

     (18) 

In figure 2 we can see the situation in terms of Energy and Density of States. 
 

 

Fig. 2. Evolution of the “Density of States” (DOS) function by varying the degree of 
confinement. Reprinted from Physics Reports, 501, Krahne, R.; Morello, G.; Figuerola, A.; 
George, C.; Deka, S. & Manna, L., Physical properties of elongated inorganic nanoparticles, 
75-221, Copyright (2012), with permission from Elsevier. 

The next step is to consider a system in which just a spatial dimension is reduced down to 
few nanometres, so that the electrons can freely move on a plan giving rise to the so called 
“2-D electron gas” (Davies, 1998). The quantization acts in the shrunk dimension (let us say 
the direction z


) along which the wavenumber assumes discrete values, z z zk =n Δk where 



 
Optical Properties of Spherical Colloidal Nanocrystals 

 

97 

z zΔk =π/d (dz being the size in the z


 direction). On the Density of States point of view, we 
can consider a continuous distribution in the x-y plane and an ensemble of infinite states 
equidistant one to each other. The number of states with k in the interval k k Δk  is now 
proportional to k Δk and the consequent DOS function 

 2
( )

( )d
dN k

D k k
dk

   (19) 

In terms of energy: 

 2
( ) ( )

( ) /d
dN E dN k dk

D E E E C
dE dk dE

    .  (20) 

This expression means that in the motion plane the density of the states is constant. 
Obviously, this holds for a fixed value of kz. By changing kz results in an increasing of the 
density D2d (E) which assumes now a step-like function. 

In a one-dimensional system another direction of confinement is introduced making the 
structure resembling to a long wire. In the long dimension the DOS function becomes 

 1
( )

( )d
dN k

D k C
dk

   (21) 

from which 

 1
( ) ( )

( ) 1 /d
dN E dN k dk

D E E
dE dk dE

   .  (22) 

As in the 2-D case, an energy quantization is present and the function D1d (E) follows a saw-
tooth-like function. In particular, it is characterized by a quasi-continuous distribution of 
states (the hyperbolas in figure 2), but delimited by a series of singularities. 

When the carriers are confined in all the three spatial dimensions the system undergoes a 
triple quantization. As a consequence the wavenumbers of the allowed states (kx, ky, kz) are 
discrete and can be represented by a point in the k-space. In terms of energy, the Density of 
States collapses into a series of discrete values assuming a Dirac’s Delta function, as shown 
in figure 2, resembling to an atomic-like distribution. 

On the optical point of view, the main quantity considered in studying the properties of 
semiconductor materials (either bulk or confined systems) is their energy gap. It represents 
the energy spacing between the last occupied and the first unoccupied electronic state at the 
ideal temperature of 0 K and is defined as 

 0g q CE E E E   . (23) 

Here, E0 represents the energy gap at 0 K of the bulk semiconductor, Eq is the contribution of 
the quantization effect and EC accounts for the Coulomb interaction between the e-h pairs 
present in the semiconductor. The relative contribution of the last two terms determines the 
degree of confinement that a system undergoes. To this purpose, it is useful to introduce the 
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fundamental concept of the “exciton”. An exciton is a bound system composed of an 
electron and a hole experiencing a mutual Coulomb interaction. An important parameter of 
the exciton is the so called Bohr radius. It is a characteristic quantity of each bulk material 
and represents the natural extension of the e-h pair when the carriers are free to orbit one 
around to each other. A parameter linked to the exciton and to its Bohr radius aB is the 
binding energy of the exciton Eb: 

 
2

22b
B

E
a




.  (24) 

where μ is the reduced mass of the exciton, defined as 
e h

1 1 1
= +

μ m m
, me and mh being the 

effective masses of electron and hole, respectively. This energy assumes always negative 
values (being a binding energy) and represents the energy needed to ionize the exciton, that 
is to sustain the electron and the hole as separate entities. The Bohr radius can be expressed 
in terms of some physical parameters, such as the dielectric constant of the semiconductor ε, 
the reduced mass of the exciton μ and the electron charge e: 

 
2

2Ba
e






. (25) 

Such quantity is different for each material and particle (i.e. electrons, holes, excitons, etc.) 
and ranges from a few nm to some tens of nm. Since the confinement acts as a constrainer 
for the e-h wavefunction extension, we can say that each material undergoes proper 
quantization effects, depending on its size and Bohr radius. In few words, the degree of 
confinement of a system expresses a measure of how much the real dimensions of the 
material affect the motion and the lifetime of an exciton in such material. Indeed, comparing 
the Bohr radius and the real size of a nanoparticle makes possible to define three different 
regimes of quantization: weak, intermediate and strong confinement. Let ae, ah and aex be 
the Bohr radii of electron, hole and exciton, respectively; if a is the size of the system 
considered (for instance the radius of a spherical nanoparticle), when a is smaller than ae, ah 
and aex the system is in the strong confinement regime since both the electron and the hole 
strongly feel the boundary of the nanocrystal. In the weak confinement regime, the 
nanocrystal size is larger than the electron and hole Bohr radius but smaller than the exciton 
Bohr radius. If a falls in between ae and ah, then the nanoparticle experiences the 
intermediate confinement effect. It is important to note, this point, that the degree of 
confinement featuring a semiconductor nanocrystal depends on the particular material 
constituting itself, since all the playing quantities are characteristic of each component. 
Therefore, nanocrystals of different materials but having the same size undergo a 
different degree of confinement. As a few examples we can consider three materials: 
CuCl, CdSe, InAs with radius of about 6 nm; their Bohr radii are 0.68 nm (Ohmura & 
Nakamura, 1999), 5.7 nm (Millo et el., 2004) and 34 nm (Kong et al., 2006), respectively. As 
a consequence, the effect of the quantum confinement effect is different in each 
nanocrystal: CuCl experiences a weak confinement, CdSe an intermediate one and InAs 
undergoes a strong confinement regime. 
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2.3 Exciton fine structure of wurtzite CdSe and cubic CdTe nanocrystals 

CdSe and CdTe nanocrystals probably represent the most investigated nanostructures, for 
what concerns both their optical and their electronic properties. About the electronic 
structure of the lowest energy state, we will highlight some of the pioneering works which 
have represented important milestones in the field, namely the theoretical and experimental 
studies of Efros et al. (Efros et al., 1996). The concepts discussed here can be considered as of 
general validity for nanocrystals having hexagonal or cubic crystallographic structure and 
are applicable to nanocrystals of a wide range of dimensions. 

In our discussion, we consider a nanocrystal with dimensions that are much larger than its 
lattice constant, such that the effective mass approximation (Efros et al., 1996) is applicable. 
This condition is practically fulfilled in all cases, since the nanocrystal diameter is hardly 
smaller than 2–3 nm. The notation used to name the quantum states of a nanocrystal closely 
follows that of an atomic system, consistently to the energy expression previously 
determined. Therefore, we define the total angular momentum J=(L+S) as the sum of the 
total orbital angular momentum L and the multiplicity term S, i.e. the electron spin, and the 
relative momentum projections: j, l, and s. The electron ground state has s-symmetry and 
presents a double degeneracy, which is due exclusively to the spin momentum. Thus 
J=0+1/2, its projections are j=±1/2, and the state is conventionally indicated as 1Se. On the 
other hand, the first hole level, having a p-symmetry, is fourfold degenerate, having 
J=1+1/2=3/2 (j=3/2, 1/2, -1/2, -3/2), and is named 1S3/2. The composition of the two 
ground states yields the eightfold degenerate exciton ground state 1S3/21Se. 

 
Fig. 3. (a) The dependence of the hole ground state function φ(β) on the light to heavy hole 
effective mass ratio β; (b) v(β) associated with hole level splitting due to hexagonal lattice 
structure; (c) u(β) associated with hole level splitting due to crystal shape asymmetry; (d) 
χ(β)  associated with exciton splitting due to the electron-hole exchange interaction. 
Reprinted  figure with permission from Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; 
Norris, D. J.& Bawendi, M. Physical Review B, 54,  4843-4856, 1996. Copyright (2012) by the 
American Physical Society. 
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The degeneracy of the ground state is lifted by various effects, such the internal crystal field, 
shape effects and the electron–hole exchange interaction. The first effect arises from an 
intrinsic property of semiconductors having hexagonal lattice structure (like CdSe) and 
therefore manifests itself in both bulk and nanoscale materials. The second effect takes into 
account the deviation from the ideal spherical shape of nanocrystals, while the third effect 
accounts for mixing of electron and hole spins. The first two effects can be grouped together, 
as they arise from the intrinsic asymmetry of the material/nanocrystal. The intrinsic crystal 
field produces a first splitting of the valence band, i.e. the lowest hole state, in the so called 
Kramers doublet, which consists of two doubly degenerate states with j=±1/2 and j=±3/2 
(Efros et al., 1996). Let us define a parameter β as the ratio between the mass of the light hole 
mlh and the mass of the heavy hole mhh (hence β = mlh/mhh). The energetic splitting due to 
the intrinsic crystal field is then expressed as (Efros et al., 1996): 

 1 ( )CF     (26) 

where ΔCF is a parameter related to the crystal field (CF) splitting in a crystal with hexagonal 
structure, contributing to determine the hole ground state with |j|=3/2, while ν (β) is a 
function which is unique for each material (see (Efros et al., 1996) for details). It is worth to 
stress that Δ1 does not depend on the size of the nanocrystal. Moreover, since ν (β) is always 
positive (see figure 3 b), the lowest hole level is fixed with the heavy hole state with 
|j|=3/2. In order to take the shape anisotropy into account, we can model a nanocrystal as 
an axially symmetric ellipsoidal particle (i.e. an ellipsoid with principal axes a = b < c), and 
define the ratio of the major to minor axes as c/b = 1+ε, ε being the ellipticity. The induced 
splitting in this case is: 

 2 3/22 ( ) ( )u E     (27) 

Here, u (β) is a dimensionless function associated with the hole level splitting due to the 
crystal shape (for details see (Efros et al., 1996), figure 3 c) and E3/2 (β) is the hole ground 
state energy which can be written as: 
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where φ2(β) is a term related to the spherical Bessel functions and a is related to the 
nanocrystal size in the sense that for quasi-spherical nanocrystals a = (b2c)1/3. 

Concerning Δ2, an important point is the trend in the function u (β), in particular for what 
concerns its sign. As shown in Figure 3 c, u (β) reverses its sign past a certain value of β, 
meaning that for some materials the shape anisotropy induces a negative splitting resulting 
in a possible inversion of the hole ground state between |j|=3/2 and |j|=1/2, since the 
global energy splitting is the sum of the single asymmetry contributions (Δt = Δ1 + Δ2). A 
negative Δ2 is found, for example, in elongated CdSe nanorods, for which β = 0.28, where a 
possible inversion would depend on the hole ground state energy and on the radius of rods 
(Krahne et al., 2011). 

The exciton ground state results until now split in two fourfold degenerate excitonic states, 
having total angular momentum F=1 and F=2. The exchange interaction further contributes 
to an increase of the splitting of the remaining states, defining the fine structure for 
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nanocrystals having a series of possible shapes, as depicted in figure 4 (Efros et al., 1996). 
The final configuration of the fine structure is based on the definition of the projection f of 
the total angular momentum F. It assumes different values: one state with f=±2, two states 
with f=±1 (named Upper and Lower, depending on the branch they originate) and two 
others with f=0 (Upper and Lower). Three of them are optically active, namely the states 0U, 
±1U and ±1L, and the remaining ±2 and 0L states are passive. The ±2 state is optically 
forbidden because of the restrictions about the angular momentum conservation for photons 
(which cannot have an angular momentum ±2, for example). The 0L has zero optical 
transition probability because of an interference phenomenon between the two 
indistinguishable states with zero angular momentum (Efros & Rosen, 2000), due to the 
influence of the electron–hole exchange interaction. The shape of the nanocrystal plays the 
significant role on defining which of the above states represents the exciton ground state. 
For perfectly spherical nanocrystals the ±2 is the ground state, whereas in prolate 
nanocrystals an inversion of the ±2 with the 0L state can occur, because the state ±2 
originates from the hole state with |j|=3/2, whilst 0L arises from the state |j|=1/2. When 
the conditions for the sign change of Δt are met, the ground state is inverted. A natural 
generalization of this concept can be found in the electronic structure of elongated 
nanocrystals (also named Nanorods (Krahne et al., 2011)) which can be approximated by 
axially symmetric prolate ellipsoids with ellipticity ε defined as ε = (2aB/b)-1 (here, the long 
axis c can be replaced by the Bohr radius), with b being the ellipsoid diameter and aB the 
Bohr radius. In the case of strong lateral confinement (b<2aB), the ellipsoids are subject to a 
possible inversion of the ground state between ±2 and 0L. This can happen because Δ2 
becomes increasingly important in the strong confinement regime, and at some point it 
would cause the light hole state with j=±1/2 to become the hole ground state. The coupling 
with the electron state 1Se yields a fourfold degenerate state, with angular momentum 0 
(two states) and ±1. The hole state with j=±3/2 yields the second doubly degenerate state 
with momentum ±1 and ±2. In practice, the new lowest exciton level would be the state 0L 
and the exciton fine structure resembles that of figure 4 c. For what concerns nanocrystals 
having a cubic structure, we will refer to another case study represented by CdTe nanocrystals. 
Efros et al. (Efros et al., 1996) calculated the size dependence of the band-edge splitting, 
showed in figure 5 for different shapes. In spherical nanocrystals the e-h exchange interaction 
split the exciton ground state into two states. The state at lowest energy is fivefold degenerate, 
presents total angular momentum F=2 and results dark. The higher energy state is threefold 
degenerate, has a total angular momentum F=1 and is bright. Contrary to the wurtzite case, 
the crystal field does not act as splitter, and just the shape anisotropy contributes to determine 
the order of the excitonic states in the real system (Efros et al., 1996). 

On the experimental point of view, the fine structure of CdSe nanocrystals has been 
investigated by a number of experiments, more than CdTe one which presents a lot of 
degeneracy. The main difficulty in studying the fine structure is given by the size 
distribution of a sample of colloidal nanocrystals leading to an inhomogeneous broadening 
of the optical spectra which hides the fine distribution of the states. On the other hand, 
single nanoparticle experiments can provide information only ideally, since several effects 
contribute to destroy the advantages of spectral narrowing, namely intermittent emission 
(blinking) (Schlegel et al., 2002), spectral diffusion (Empedocles & Bawendi, 1999) and 
possible photodegradation (Wang et al., 2003). Fluorescence line narrowing and 
photoluminescence excitation (Norris et al., 1996) experiments are the most useful steady-
state methods to access a subset of the nanocrystals ensemble, whereas the cross polarized,  
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Fig. 4. Size dependence of the exciton ground state of CdSe NCs. (a) spherical NCs; (b) oblate 
NCs; (c) prolate NCs; (d) NCs having a size dependent ellipticity as determined from Efros et 
al., 1996. Solid/dashed lines indicate optically active/passive levels. Reprinted  figure with 
permission from Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.& Bawendi, M. 
Physical Review B, 54,  4843-4856, 1996. Copyright (2012) by the American Physical Society. 

 
Fig. 5. The exciton fine structure of cubic CdTe NCs. (a) spherical NCs; (b) oblate NCs; (c) 
prolate dots NCs; Solid/dashed lines indicate optically active/passive levels. Reprinted  figure 
with permission from Efros, Al. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.& Bawendi, 
M. Physical Review B, 54,  4843-4856, 1996. Copyright (2012) by the American Physical Society. 
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heterodyne detected third-order transient grating (CPH-3TG) method (Kim et al., 2009) has 
been employed to probe ultrafast transient dynamics in the fine structure distribution. On 
the luminescence point of view, the main difficulty is to be able to detect the very fast signal 
arising from the higher energy state of the fine structure. On this regard, a few time resolved 
PL experiments have been reported in the literature, showing emission from higher states 
on the picoseconds time scale (Morello et al., 2007a; Moreels et al., 2011) and only by using a 
streak camera. Also in these experiments the inhomogeneous broadening contributes to hide 
some spectral features and the situation is further complicated by both the possible 
exchange among the states due to the unavoidable asymmetric shape (Moreels et al., 2011) 
and the intermixing between intrinsic and surface states (Califano et al., 2005; Morello et al., 
2007). All these effects participate to the definition of the actual ground state inside the fine 
structure. Indeed, the ideal case of perfectly spherical and pure nanocrystals is often 
replaced by the real situation in which slightly asymmetric and defected nanocrystals are 
investigated. Therefore, it is not rare to assist to the inversion between bright and dark states 
(it is the case of most nanorods systems (Krahne et al., 2011) and some not perfectly 
spherical NCs) or to the mixing between dark and surface states leading to the partial 
brightening of the same (Califano et al., 2005). The role of surface states in terms of quantum 
yield and lifetime will be treated in the last part of the chapter. 

3. Excitation and relaxation processes in colloidal nanocrystals 
After excitation of charge carriers, the system tends to restore the initial equilibrium state 
losing the excess energy. All the processes involved in this action constitute the whole of the 
relaxation processes of the system. Restoring of the initial equilibrium state can occur in 
several ways, and dealing with nanoparticles instead of bulk semiconductor introduces 
some complications that will be analysed in the following paragraphs. The most common 
energetic relaxation process is the heating of the material. It consists in the trigger of an 
emission of phonons (lattice vibrations), mediated by the electron-phonon interaction. This 
kind of interaction does not affect only the decay toward lower energy states (carrier cooling 
(Nozik, 2001)), but it can influence the promotion of charge carriers to higher states through 
the absorption of phonons inducing, in particular cases, the ejection of charges away from 
the material. This particular process, holding for both electrons and holes, is strongly 
dependent on the temperature and is often referred to as “thermal escape” (Valerini et al., 
2005; Morello et al., 2007b). In the following we will give a complete description of thermal 
escape occurring in CdSe (Valerini et al., 2005) and CdTe nanocrystals (Morello et al., 2007b). 
Another phenomenon of electron-hole annihilation is due to carrier-carrier scattering, via 
the so called “Auger effect”. It manifests when more than one e-h pair is present into the 
semiconductor and consists in the transfer of the energy owned by an e-h couple to a third 
particle (another electron, hole, or exciton). This relaxation pathway is strongly dependent 
on both the morphology of the semiconductor (shape and dimensions) and the level of 
charge carrier injection. The alternative way for exciton relaxation is the emission of photons 
that, in general, is less efficient than heating. The reason lies on the fact that the emission 
(likewise absorption) of photons is hindered by the selection rules of the optical transitions: 
the photons can involve states with angular momentum equal to 0, ±1, whereas the branches 
of phonons are distributed on the whole first Brillouin’s region, i.e. they possess all the 
possible electron momenta, thus allowing for connection of states having different angular 
momentum. This condition is particularly favourable in taking place of intraband relaxation 
by means of phonon emission instead of radiative emission.  
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In a semiconductor, the absorption of a photon with energy larger than the energy gap, 
creates an e-h pair. Often, the energy of the exciting photon does not match perfectly the 
energy gap of the material. In particular, this is true in bulk for which the continuum of 
states allows for a continuous distribution of excited electrons in the conduction band. Such 
a distribution, at the thermal equilibrium, follows a Boltzmann’s statistics depending on the 
temperature of the system, with electrons being within kBT from the bottom of the 
conduction band and holes within kBT from the top of the valence band (Nozik, 2001). 
Quantum confinement strongly affects carrier cooling efficiency by phonon scattering. In 
bulk semiconductors, exciton energy relaxation results mainly from cascade LO-phonon 
emissions, whereas interaction with acoustic phonons is less important. In nanocrystals 
smaller than 10 nm, or in general when the discreteness of electron-hole states becomes 
essential, optical phonons cannot provide an efficient relaxation channel. The dispersion 
curve of optical phonons is nearly wavenumber-independent, and LO-phonon energies can 
only be weakly deviated from the bulk ones (Trallero-Giner et al., 1998). Therefore, the 
relaxation via multiple LO-phonon emission requires ΔE1,2≈nELO, where n is an integer 
number. Unlike in bulk crystals where there exists a continuous spectrum for quasi-
particles, in nanocrystals there are not intermediate states between the two lowest excited 
ones. Therefore, the probability of the above process is very low because multiple phonon 
emission should occur via virtual intermediate states. The corresponding relaxation rate is 
lower than the typical electron-hole recombination rates. Thus, the relaxation between the 
excited states in nanocrystals is essentially inhibited. This effect is the so called "phonon 
bottleneck"(Gaponenko, 1998; Nozik, 2001). Phonon bottleneck in nanoparticles has been 
studied in the past years, and the results are controversial (Guyot-Sionnest et al., 1999; 
Klimov & McBranch, 1998; Woggon et al., 1996). The excited carriers should have an infinite 
relaxation lifetime for the extreme, limiting condition of a phonon bottleneck; thus, the 
carrier lifetime would be determined by non radiative processes, and PL would be absent 
(Gaponenko, 1998). In the case that the relaxation times are not excessively long and PL is 
observed, the results are not indicative of a phonon bottleneck, although relatively long hot 
electron relaxation times (tens of picoseconds) compared with what is observed in bulk 
semiconductors are observed. Some researchers (Klimov, 2000) also found very fast electron 
relaxation dynamics on the order of 300 fs from the first-excited 1P to the ground 1S state on 
II-VI CdSe colloidal NCs using interband pump-probe spectroscopy, which was attributed 
to an Auger process for electron relaxation that bypassed the phonon bottleneck. In this 
specific Auger process, the excess electron energy is rapidly transferred to the hole, which 
relaxes through its dense spectrum of states. The final equilibration step results in complete 
relaxation of the system. The electrons and holes can recombine, either radiatively or non 
radiatively, to produce the population densities that existed before photoexcitation. 

A detailed study of the NCs photophysics with a particular attention to non radiative 
processes is not only interesting for fundamental physics, but it is also relevant to the 
exploitation of nanocrystals in practical applications. In this context we will deal with 
relaxation of carriers after they reach the lowest, potentially radiative, excited state. Again, 
the following discussion is based on the properties of CdSe and CdTe nanocrystals. Several 
relaxation processes have been proposed to explain the photophysics of CdSe QDs, 
including the thermally activated exciton transition from dark to bright states (Crooker et 
al., 2003) and carriers surface localization in trap states (Lee et al., 2005). Moreover, it has 
been shown that at room temperature the main non radiative process in CdSe/ZnS 
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core/shell QDs is thermal escape, assisted by multiple longitudinal optical (LO) phonons 
absorption (Valerini et al., 2005), while at low temperature evidence for carrier trapping at 
surface defects was found. Despite these results, the role and the chemical origin (Wang et 
al., 2003b) of the surface defect states in the radiative and non radiative relaxation in 
nanocrystals has not been clarified completely. The existence of surface states due to 
unpassivated dangling bonds has been invoked to explain anomalous red-shifted emission 
bands in colloidal nanocrystals (Lee et al., 2005). On the contrary, it has been shown that 
above-gap trap states (Bawendi et al., 1992) affect the ultrafast relaxation dynamics (Cretì et 
al., 2005) and the single nanoparticle PL spectra of CdSe quantum rods (Rothenberg et al., 
2005) due to charge trapping and local electric field fluctuations. These effects are expected 
to be dependent on the chemical composition of the QDs, on the density of surface defects 
and on the nanocrystals size. In what follows we will review the main processes affecting 
the light emission properties of nanocrystals, namely exciton-phonon coupling, Auger 
interactions and surface quality. 

3.1 Exciton-phonon interaction 

The main features that distinguish nanostructures from bulk materials originate from the 
localized character of the electron and hole wavefunction and the discrete nature of their 
optical transitions. In terms of carrier-phonon coupling, it essentially affects and defines the 
properties of homogeneous broadening of the PL signal. In the bulk, the broadening is 
mainly determined by the polar coupling of both electrons and holes to optical phonons 
(Liebler et al., 1985). The piezoelectric and deformation potential coupling of both carriers to 
acoustic phonons is usually not very important (Takagahara, 1996). This situation is 
different in nanostructures, where the local charge neutrality character of the exciton 
becomes predominant, producing an ideal null polar coupling of the exciton to optical 
phonons (Schmitt-Rink et al., 1987). This holds true for infinite barriers, such that the 
electron and hole wavefunctions are practically identical. In general, in real systems (finite 
barrier) just a decrease of the polar coupling with increasing barrier is expected (Muljarov & 
Zimmerman, 2007; Nomura & Kobayashi, 1992; Schmitt-Rink et al., 1987). On the other 
hand, since the deformation potential coupling is proportional to 1/R2 (R being the radius of 
a spherical dot), the coupling strength to acoustic phonons is increased as the dimensions 
are reduced below the Bohr radius (Gindele et al., 2000; Takagahara, 1996). Also, the 
temperature affects each of these contributions. The temperature dependence of the spectral 
line width can be expressed as (Rudin et al., 1990): 

 0( ) ( )LOT T N T       (29) 

where Γ0 is the inhomogeneous broadening, σ is the exciton-acoustic phonons coupling 
coefficient, γ is the coefficient accounting for the exciton-optical (LO) phonon coupling and 
NLO represents the Bose function for LO phonon occupation: 
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In the expression above ELO is the energy of the longitudinal optical phonon with 
momentum k = 0 (i.e. the phonon that preferably couples to the lowest exciton state) and kB 
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is the Boltzmann’s constant. Due to the different energetic dispersion curves of acoustic and 
optical phonons, the two couplings dominate at different temperature ranges. The acoustic 
phonons, having smaller energies (a few meV) heavily contribute to the broadening at low 
temperature (until 50-70 K), whereas the optical phonons (with energies of a few tens of 
meV) dominate at higher temperature (Morello et al., 2007b). In a general fit procedure, the 
experimental data of the broadening are extracted by fitting the PL spectra to a convolution 
of a number of Gaussian peaks (usually not more than three) from which the broadening of 
the PL is extracted. In order to discern the inhomogeneous and homogeneous components 
the extracted values are fitted to eq. 29. In figure 6, it is shown the case of a set of three 
samples of CdTe NCs having different size whose temperature dependent broadenings have 
been analyzed by eq. 29 (Morello et al., 2007b). 

 
Fig. 6. PL broadening as a function of temperature (symbols) and relative best fit to eq. 29 
(continuous lines) for three different size of CdTe NCs. Reprinted with permission from 
Morello, G.; De Giorgi, M.; Kudera, S.; Manna, L.; Cingolani, R. & Anni, M., Temperature and 
size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe 
quantum dots. J. Phys. Chem. C, 111, 5846-5849. Copyright (2012) American Chemical Society. 

The three samples were called A1 (average diameter of 4.2 nm), A2 (4.9 nm) and A3 (5.9 nm) 
and the relative PL was well fitted by one Gaussian peak. As expected from eqs. 29-30 the 
broadening increases with the temperature by virtue of an increasing probability of 
existence of (optical) phonons. The above mentioned analysis produced the expected size-
dependent behavior of the coupling coefficients between excitons and acoustic/optical 
phonons. In particular, it was found a coupling to acoustic phonons about three orders of 
magnitude larger than in the bulk system and increasing σ with decreasing the NC size, 
consistently with the theoretical prediction of a strong increase of the coupling to acoustic 
phonons in zero-dimensional systems (Valerini et al., 2005). The exciton-LO phonon 
coupling, on the contrary, showed a smaller value respect to the bulk counterpart and 
moreover it was reduced in the smallest NCs, accordingly to an expected ideally null polar 
coupling in zero-dimensional systems. 

An important contribution of the exciton-phonon interaction to the emission properties 
consists in the influence on the temperature dependence of the PL quantum yield. As 
usually observed in colloidal nanocrystals, the PL intensity exhibits a considerable decrease 
with increasing the temperature. Starting from 10 K, the decrease is moderate in the low 
temperature regime (let us say until 100 K) becoming heavier at temperature higher than 
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about 150 K. In general, the temperature-induced quenching includes a number of processes 
that could be identified by analyzing the trend of the PL integrated area as recorded at the 
different temperatures. The plot of the intensity as a function of 1/kBT (where kB is the 
Boltzmann constant and T is the temperature) on a semi-logarithmic scale allows for the 
determination of the activation energy of the thermal processes triggered at high 
temperature, by fitting the experimental data with an Arrhenius law, using the expression  
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Here, n is the number of thermal processes, Ei represents the activation energy of the i-th 
process and ai is a fitting parameter accounting for the relative weight of each exponential 
term.  

 
Fig. 7. Schematic description of thermal escape in CdTe NCs. 

Among the thermal processes affecting the PL quantum efficiency of nanocrystals and 
involving exciton-phonon coupling we recall the “thermal escape”. This process involves 
the carriers occupying the emitting state and consists in the absorption of a number of 
optical phonons such as to cover the energetic spacing between the emitting and the first, 
high energy, allowed state. Since the protagonist physical phenomenon is the absorption of 
phonons, the essential requirement to occur is the nonzero probability of existence of a 
certain number of optical phonons in the material (eq. 30). Figure 7 schematizes the 
mechanism for a CdTe NC: after excitation, electrons and holes undergo ultrafast intraband 
relaxation, until they occupy the lowest permitted energetic level before annihilation. This 
point, the e-h pair can recombine in several ways, among which we find the radiative 
emission, trapping, Auger effects and exciton-phonon coupling. If we consider a high 
degree of purity (neglecting trapping) and a low excitation density level (avoiding Auger 
processes) the photon emission must compete only with carrier-phonon interaction. When 
the latter has a high rate (at high temperature) the absorption of a number of optical 
phonons leads one or both the carriers (the hole, in the case of CdTe) to occupy the higher 
energy level. From such state the further absorption of phonons is facilitated by the reduced 
energetic spacing required to jump into the successive hole level, since a smaller number of 
phonons is needed. The process is iterated until the carrier is ejected from the nanocrystal. 
Therefore, the involved physical quantities are the temperature (according to eqs. 29-30) and 
the energetic spacing between the first two excited states (defining the maximum number of 
absorbed phonons) being the most energetically spaced. A good treatment of the thermal 
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escape on the theoretical and experimental point of view has been provided by Valerini et 
al. (Valerini et al., 2005) and Morello et al. (Morello et al., 2007b). 

We can consider the following rate equation for the carrier density n (Valerini et al., 2005): 
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where g(t) is the generation term, 1/τrad is the radiative recombination rate, and 1/ τesc is the 
thermal escape rate given by 
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where 1/τ0 is a fitting parameter acting as a weight for the probability of carrier–LO-phonon 
scattering, and m is the number of LO phonons involved in the process. The rate of a generic 
thermally activated process is given by 
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where Ea is the activation energy and 1/τa is a fitting parameter acting as a weight for the 
probability of this process. The intensity of the PL emitted per unit time is given by 

 /0( )
( ) t

PL
nn t

I t e 

 
  ,  (35) 

where n0 is the initial carriers population and τ is the temperature-dependent PL decay time 
given by 
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The integrated PL intensity is instead given by 
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Considering only the thermal escape the expression above becomes: 

 0 0

/0

( ) ( ) ( )
1 / 1 ( 1)LO BE k mradrad esc

esc

n n
I T I t I T

e
 





  

  
  (38) 

As a case study, we can consider a set of three samples of CdTe nanocrystals having 
different diameter, namely 4.2 nm, 4.9 nm and 5.9 nm (Morello et al., 2007b). From the 
absorption spectra it is possible to firstly deduce the energetic spacing among the lowest 
quantized states. In CdTe the two lowest absorption peaks arise from absorption of the 



 
Optical Properties of Spherical Colloidal Nanocrystals 

 

109 

lowest degenerate electron state 1Se and the two lowest hole states 1S3/2 and 2S3/2, as shown 
in figure 8. Therefore, their energetic separation determines the jump to be executed by the 
charge carriers (in this case the holes) in order to escape from the nanocrystals. Due to the 
quantization effect, the first two states observed in absorption have the largest energy 
separation, thus they represent the major obstacle to the process. In the specific case of 
figure 8, the separations are 124.5, 96.5 and 82.2 meV for samples A1, A2 and A3, 
respectively. By analysing the PL intensity vs. temperature with an Arrhenius function like 
eq. 38, it is possible to extract a number m of optical phonons involved in the quenching 
process, namely 5.6, 4.9 and 4. Such number is not integer due to both the size dispersion of 
the samples and the statistic character of the physical quantity considered. By multiplying 
this number to the energy separation arising from the absorption spectra one obtains an 
energy value comparable to the separation between the two lowest excited states giving 
evidence for the occurred thermal escape process (see Morello et al., 2007b for details). 

 
Fig. 8. Absorption and emission spectra at room temperature of the three samples of CdTe 
NCs studied by Morello et al, 2007b. Gray lines are the best fit to the convolution of three 
Gaussian curves for the first three absorption peaks. Reprinted with permission from Morello, 
G.; De Giorgi, M.; Kudera, S.; Manna, L.; Cingolani, R. & Anni, M., Temperature and size 
dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe 
quantum dots. J. Phys. Chem. C, 111, 5846-5849. Copyright (2012) American Chemical Society. 

Thermal escape is not the only non radiative process featuring colloidal nanocrystals. We 
have to mention al least two other phenomena contributing to the global lowering of the PL, 
namely trapping at defect surface states and Auger processes. They are just partially 
dependent on the temperature and for this reason they are shifty and difficult to analyse. 

3.2 Auger-like interactions 

While the intrinsic decay of singly excited NCs is generally due to the e-h recombination via 
photon emission, the deactivation of two e-h pairs contemporarily living into the dot is 
dominated by non radiative Auger recombination. In such a case, the excess energy is not 
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released as a photon but is transferred to a third particle (an electron, a hole or an exciton) 
that is re-excited to higher energy states. The efficiency of Auger processes, which are 
mediated by Coulomb electron-electron interactions, differs greatly between the atomic and 
the bulk semiconductor case. In atomic systems (the extreme case of a nanocrystal), for 
which the electron-electron coupling is much stronger than the electron-photon coupling, 
the rates of Auger transitions are significantly greater than the rates of the radiative 
transitions. As a result, the decay of the multi-electron states is dominated by Auger 
processes. Their efficiency is greatly reduced in bulk materials because of the reduced 
Coulomb e-e coupling and kinematic restrictions imposed by energy and momentum 
conservation. As the carriers (electrons and/or holes) occupying higher energy states have 
larger momentum respect to the ones lying at the band edge, the probability of Auger 
recombination is near to zero. In order to be allowed, Auger recombination must involve 
electrons and holes having a high momentum in their lowest energy state, meaning that a 
rapid spatial variation of the wavefunctions is required. Such situation is absent in bulk 
semiconductors which are characterized by negligible Auger recombination rates. The 
situation changes, however, in nanoparticles in which the abrupt truncation of the 
wavefunctions at the borders of the NCs makes possible high momenta also for the lowest 
wavefunctions without nodes. The collapse of the restrictions about the momentum 
conservation makes nanocrystals the ideal candidates for the exploitation of a physical 
phenomenon sought for a long time, namely the “direct carrier multiplication” (DCM). It 
consists in the generation of multiple excitons by using the excess energy possessed by a 
single electron-hole pair excited at higher energy levels (Califano et al., 2004a, 2004b; 
Velizhanin & Piryatinski, 2011). Following the concept of Califano et al. (Califano et al., 
2004a) such process can be considered an inverse Auger recombination for which a highly 
excited carrier decaying into its ground state is able to excite a valence electron, thus 
producing a second e-h pair (see figure 9). In principle, DCM could happen every time the 
excess energy ΔE exceeds the energy gap Eg; in the reality it must compete with phonon 
scattering, radiative recombination and Auger cooling (this latter process foresees the 
transfer of the excess energy of an electron to a hole by Coulomb scattering leading to the 
jump of the hole to deeper valence states as depicted in figure 9) and in general an energetic 
threshold is associated. In the bulk, due to the restrictions of momentum and energy 
conservation such threshold could reach very high values (up to 1 eV (Harrison et al., 1999; 
Wolf et al., 1998)). In nanocrystals, on the contrary, the overcoming of the momentum 
restrictions makes DCM process possible with threshold energy close to Eg. In the last 
four/five years numerous researchers have claimed the reached conditions for carrier 
multiplication in a number of different semiconductor nanomaterials. Since the first studies the 
most promising systems, on this regard, seemed to be PbSe (Velizhanin & Piryatinski, 2011) 
followed by CdSe (Califano et al., 2004a, 2004b; Lin et al., 2011), InAs (Schaller et al., 2007), InP 
(Stubbs et al., 2010), Si (Gali et al., 2011), Sn (Allan & Delerue, 2011). It should be noted, 
however, that the publication of some works reporting several discrepancies among them 
about the exact determination of the efficiency of carrier multiplication, indicated that the 
experimental conditions and managements rather than the actual material type were 
responsible of some higher and/or lower measured thresholds (Nair et al., 2011; Trinh et al., 
2011; McGuire et al., 2010; Rabani & Baer, 2010). Nowadays, the controversies seem to be far 
away to be solved although the publication of recent works which attempt to unify the main 
results. Nevertheless the global significance of the discovery can not be undermined, and the 
great potential of DCM in technological exploitation well justifies the current exited debate. 
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Fig. 9. Schematics of the main hot electron relaxation pathways: Direct Carrier 
Multiplication (1) and Auger Cooling (2). Reprinted with permission from Califano M.; 
Zunger A.& Franceschetti A., Direct carrier multiplication due to inverse Auger scattering in 
CdSe quantum dots. Appl. Phys. Lett., 84, 2409-2411. Copyright (2012), American Institute 
of Physics. 

3.3 Surface-related properties 

The surface plays a nontrivial role in defining the optical properties of NCs, especially for 
what concerns the existence of surface states and their influence on the carrier dynamics. 
The efficiency of the Auger processes, for instance, may be affected by means of trapping at 
such states (Cretì et al., 2007). This has important implications on the carrier cooling from 
higher excited states to the band-edge, which depends on the Auger efficiency, as 
demonstrated by Klimov and co-workers (Achermann et al., 2006). In their study, for 
instance, they showed that in nanorods multicarrier generation can cause an Auger heating, 
consisting in the increase of the energy of an exciton, as a consequence of an energy transfer 
event deriving from a second exciton recombination. The consequent increase in carrier 
temperature competes with the more classic phonon emission as a relaxation channel, and 
decreases the carrier cooling in the high excitation density regime. On the other hand, the 
surface of NCs constitutes the most probable place to be affected by defect and/or charge 
accumulation. The reason lies on the fact that in nanostructures the surface to volume ratio 
is greater with respect to other bulky systems, so that in the strong confinement regime the 
number of atoms on the surface could reach values larger than the internal ones. Moreover, 
these atoms present dangling bonds leading to an unavoidable charge imbalance and then 
to a very high degree of reactivity with the surrounding ambient. As a consequence, the 
surface atoms constitute the real weak point of each nanoparticle on what concerns the 
exciton recombination, and a high quality surface reconstruction (passivation) is mandatory 
in order to obtain good optical performances. The most traditional and easy way to produce 
a good passivation is to cover the bare surface of nanocrystals with an organic capping layer 
with the aim to remove potential charge accumulation sites (Bertoni et al., 2007; Cao et al., 
2007; Kairdolf et al., 2008; Kalyuzhny & Murray, 2007; Puzde et al., 2004; Sharma et al., 
2009;). A major advance in the improving of optical performances has been reached by 
surface passivation with an outer solid state material deposited onto the active one and 
acting as a protective layer (shell). This way, the good choice of the shell could allow for an 
almost complete reconstruction of the superficial atoms thanks to a good lattice constant 
matching between the two materials (Isnaeni et al., 2011; Pandey & Guyot-Sionnest, 2008; 
Zhang et al., 2010; Zheng et al., 2010).  
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It has been shown that the presence of hole surface states can affect the actual order of the 
single states in the fine structure distribution of the ground state (Califano et al., 2005). 
Depending on the energetic range covered we can refer to two kinds surface defect states. 
First, the existence of dangling (unpassivated) bonds on the surface introduces trap states, 
lying in the forbidden band-gap energy, that can be radiative or not. If they radiate, a 
typical red shifted (of some hundreds of meV) shoulder on the main intrinsic PL spectrum 
appears (Landes et al., 2001; Underwood et al., 2001; Lim et al., 2008); if they act as non 
radiative centres, the reduction of the PL quantum yield is the typically observed effect 
(Burda et al., 2001; Baker & Kamat, 2010). The growth of a shell usually overcomes the 
formation of such deep trap states. The second class of traps consists of surface states 
inducing smaller red shift, typically of the order of a few tens of meV (for this reason they 
are referred to as shallow trap states), and it may be correlated to the different atomic 
arrangement of the surface with respect the inside of the dots. All these superficial effects 
also depend on the size of the nanocrystals, since the fraction of superficial atoms 
increases as the size decreases and than they define a lower limit attainable for the size of 
high quality nanocrystals. 

In general, surface states are prevalently studied by means of transient absorption 
measurements (Burda et al., 2001), where the tuning of the probe wavelengths offers the 
possibility to investigate energies over a very broad range (from UV to NIR on the same 
sample). If on one hand pump-probe technique allows for discovering numerous properties 
on what concerns the distribution of trap and intrinsic states, as well as their filling and 
depopulation dynamics, on the other hand it provides few information about their actual 
weight in influencing the optical performances of potential devices having nanocrystals as 
active media. An efficient way to carry out such investigation is to study the dynamics of the 
radiative relaxation of nanocrystals as a function of the surface passivation. In principle, 
such a study requires the analysis of the PL decay on a time scale spanning a broad range 
from picoseconds to microseconds. Great part of the literature regards the analysis of long 
living radiative emission from deep trap states located at energies well below the lowest 
optically allowed one. These states present lifetimes on the order of micro-milliseconds 
depending on their origin and the nature of the host material (Lim et al., 2008). Few works 
report on the role of shallow surface states on the luminescence properties of NCs and most 
of them do not discern the nature of the multiple emissive states characteristic, for instance, 
of nanocrystals having wurtzite structure. As explained in Section 2 the fine structure of 
CdSe spherical nanocrystals presents a manifold of bright states lying at energies higher 
than the lowest dark state, complicating the exact determination of the dynamics of the 
single states. It is obvious that the presence of surface trap states further contributes to 
complicate the situation. Several theoretical studies report the lifetimes expected for the 
dark and the bright states, together with the expected effects resulting from mixing of dark 
and surface states on these lifetimes (Califano et al., 2005). A potentially successful method 
for discerning the different emitting states (either intrinsic or not) would consists in the 
optical characterization at single nanoparticle level. However, some intrinsic limitations 
makes such measurements inadequate. Dynamical intermittent emission and spectral 
diffusion heavily contribute to cancel information about the actual emission energy and the 
decay time.  
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As for the steady-state optical properties, the most complete lifetime studies on colloidal 
nanocrystals regard CdSe. In what follows, we recall a treatment on the impact of shallow 
surface states on the optical properties of CdSe NCs, especially about their radiative 
relaxation properties, as reported by Morello et al. (Morello et al., 2007a). In general, 
radiative relaxation channels in CdSe NCs have been investigated by time resolved 
photoluminescence (TRPL), typically on the nanosecond time scale. These experiments 
usually exhibit bi-exponential decay traces (Javier et al., 2003; Wang et al., 2003). The 
shortest lifetime is of the order of several nanoseconds, whereas the longest one is on the 
time scale of tens of nanoseconds. The origin of these processes (and other longer up to 
microseconds) is still matter of debate. The longest lifetime is usually attributed to surface 
states emission (Wang et al., 2003), whereas non-exponential traces, in the same temporal 
range (Schöps et al., 2006), have been explained in terms of superposition of bright and dark 
states, and of incomplete surface passivation. Relaxation processes on the microsecond time 
scale have also been observed and associated to dark state emission (Crooker et al., 2003). 
Califano et al. (Califano et al., 2005) have shown that the microsecond decay time is actually 
due to dark-bright state emission induced by the presence of surface states, while the dark 
state has been predicted to have a millisecond lifetime. At the single dot level, TRPL on 
CdSe QDs has revealed nanosecond lifetimes (Labeau et al., 2003) (probably, emission from 
dark-bright states) as well as nonexponential decays arising from fluctuating non radiative 
relaxation channels (Fisher et al., 2004; Schlegel et al., 2002).  

An interesting issue concerns the role of the bright states on the temporal dynamics of the 
PL, and their interplay with dark and/or surface states. These properties have been 
investigated for the first time by Wang et al. (Wang et al., 2006) who showed the carrier 
relaxation from bright to dark and surface defect states. Since such kind of relaxation is 
predicted to be faster than the natural radiative emission lifetime (less than 100 ps) the role 
of ± 1U and ± 1L bright intrinsic states (see Section 2 and Efros et al., 1996 for details) in 
presence of emitting surface states has  been only postulated (Bawendi et al., 1992; 
Jungnickel & Henneberger, 1996). As representative examples we can cite Bawendi et al. 
(Bawendi et al., 1992) who have showed transient emission from CdSe QDs involving 
surface states. These authors distinguished both a short lifetime of the order of their time 
resolution (about 100 ps) probably arising from intrinsic emission, and a temperature-
dependent interplay between the band-edge and surface states. Jungnickel and Henneberger 
(Jungnickel & Henneberger, 1996) have found similar transient behaviour on the same time 
scale, stressing the long decay time of radiative surface state emission. de Mello Donegá et 
al. (de Mello Donegà et al., 2006) have investigated the temperature dependence of the 
exciton lifetime in CdSe QDs, finding evidence for a fast component in the time trace in the 
low temperature "radiative regime", again within the temporal resolution of their system 
(700 ps). Such contribution was ascribed to rapid carrier thermalization from bright to dark 
states. A reliable study able to resolve fast emission from bright states (relaxing into the surface 
ones)  can be performed by means of a streak camera (temporal resolution below 10 ps), with 
the possibility to find evidence for the thermal evolution of the population of the single states 
(Morello et al. 2007a). As a case study, we report here a comparative investigation between 
core CdSe and core/shell CdSe/ZnS NCs having the same core dimension by TRPL 
measurements in the temperature range of 15-300 K (Morello et al., 2007a). 

In figure 10 (left panel) the temporal evolution of CdSe/ZnS QDs PL spectra at 20 K is 
shown. After 1.7 ns a small red shift is observed, completed after 12 ns. By analysing the 
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spectrum at 0 ps delay (figure 11) it is possible to discern the single emitting entities 
responsible for the observed PL. In this particular case the PL results as a convolution of 3 
emitting states lying at different energies, as shown in figure 11. The dynamical red shift, 
therefore, reveals the different dynamics the 3 states undergo. In the study of Morello et al. 
(Morello et al., 2007a) two samples of NCs were investigated, namely CdSe and CdSe/ZnS 
(both samples having the same core dimensions). They found the following energetic 
separations among the states: E1,2=21 meV and E2,3=16 meV for core NCs; E1,2=21 meV and 
E2,3=13 meV for core/shell NCs. 

 

 

 

Fig. 10. Left panel: transient PL spectra of CdSe/ZnS NCs at 20 K from 0 ps to 12 ns after the 
pump pulse. Right panel: PL decay trace showing the temporal slices reported in the left panel. 

 

 

 

Fig. 11. PL spectrum at 20 K of CdSe/ZnS NCs taken at 0 ps delay looked as the result of 
three superposed transitions. 
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Fig. 12. Schematics of the radiative and non radiative processes occurring among two 
intrinsic and a surface state in CdSe nanocrystals in the low temperature range (10-70 K). 
Reprinted with permission from Morello, G.; Anni, M.; Cozzoli, P. D.; Manna, L.; Cingolani, 
R. & De Giorgi, M., Picosecond Photoluminescence Decay Time in Colloidal Nanocrystals: 
The Role of Intrinsic and Surface States. J. Phys. Chem. C , 111, 10541– 10545. Copyright 
(2012) American Chemical Society. 

The PL time decay for core and core/shell samples (figure 10, right panel, shows an image 
of the time trace as recorded by the Streak Camera) was well reproduced by a triexponential 
decay function for both the samples studied in a temperature range of 15-300 K: 

 0 1 0 2 0 3( )/ ( )/ ( )/
1 2 3( ) t t t t t t t t tI t A e A e A e            (39) 

where t0 is the delay at which I(t) is maximum, t1, t2, t3 are the lifetimes and A1,A2,A3 are the 
weights of each process, respectively. The time constants t1 and t2 were the typical carrier 
relaxation times from intrinsic bright states of the fine structure of spherical CdSe NCs into 
the surface defect states (Wang et al., 2006), and t3 was comparable with typical lifetime of 
surface-related emission in CdSe NCs (Wang et al., 2006). Moreover, the extracted energy 
splitting E1,2 was the same in core and core/shell sample, similar to the splitting between the 
lowest bright states ±1U and ±1L in CdSe QDs (20 meV) (Efros et al., 1996), whereas E2,3 was 
different in the two studied samples, revealing an extrinsic nature of the reddest transition. 
A credible origin was ascribed to surface states, also considering that the dark state lifetime 
should be of the order of micro-milliseconds. From temperature dependent measurements it 
was possible to analyse the contribution of the single emitting states by integration of the 
single exponential terms of eq. 39: 
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Fig. 13. PL intensity of the three states as a function of temperature for CdSe/ZnS QDs. The 
continuous lines are the fit curves to eqs 42. Reprinted with permission from Morello, G.; 
Anni, M.; Cozzoli, P. D.; Manna, L.; Cingolani, R. & De Giorgi, M., Picosecond 
Photoluminescence Decay Time in Colloidal Nanocrystals: The Role of Intrinsic and Surface 
States. J. Phys. Chem. C , 111, 10541– 10545. Copyright (2012) American Chemical Society. 

Figure 13 shows the temperature dependence of the PL intensities I1, I2 and I3 for the three 
states from which it is clear the existence of several thermal regimes of population and 
depopulation processes. The PL thermal increase for I1 and I2 in the range of 15-70 K 
suggests that thermally induced population of the high energy states occurs, fed by the 
lowest energy state. At higher temperatures, on the other hand, the overall PL intensity 
strongly decreases, indicating the occurrence of thermal activation of non radiative 
relaxation channels, such as thermal escape induced by multiple LO phonons absorption. 
The dynamics occurring at low temperature (up to 70 K) was well explained by considering 
a four-level system, as depicted in figure 12. After laser excitation, carriers relax non 
radiatively into states ±1U, ±1L and into surface states, from which they relax radiatively. The 
lifetime of states ±1U and ±1L is shorter than the intrinsic radiative decay time, because of the 
fast carrier relaxation into the surface state, which instead can emits with its intrinsic 
radiative decay time. According to this picture, the two shortest lifetimes were attributed to 
carriers relaxing from ±1U and ±1L bright states into the surface one. The effectiveness of the 
model could be verified by solving the equation system associated to thermal population 
and depopulation of the states with non radiative lifetime: 
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where n01, n02, and n03 represent the respective initial population of the three states as 
generated by the laser pulse (the latter is treated as a δ function because the pump pulse is 
much shorter than all the processes considered here); τ1, τ2, and τ3 are the intrinsic radiative 
decay times of the states; 1/τ2,1 and 1/τ3,2 are the depletion rates of the state ±1L and the 
surface state, respectively; and E2,1 and E3,2 are the energy separations among the three states 
as indicated in figure 12. By solving the system, we obtain the expressions for the time-
dependent populations n1(t), n2(t), and n3(t) of the states involved in the emission process. 
Thus, the PL integrated areas I1(T), I2(T), and I3(T) are as follows: 

 

2 ,1

2 ,1

3,2

/1 2
1 01 02 03

1 2,10

02 032
2

/220

2,1

3 03
3

/330

3,2

( )
( ) ( ),

( )
( ) ,

1

( )
( ) ,

1

B

B

B

E k T

E k T

E k T

n t
I T dt I e I I

I In t
I T dt

e

n t I
I T dt

e

 
 



















   


 



 








 (42) 

where 
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The three expressions represent the theoretical counterpart of eqs. 40 and could be, thus, 
employed to fit the experimental data of figure 13 in the low temperature range with the 
aim to extract the actual energetic separation among the states and the relative lifetimes. 

4. Conclusion 
The importance of spherical nanocrystals relies of the fact that they represent the perfect 
model of a quantum confined system. This leads to consider these nanoparticles ideal for the 
study of the fundamental physics at the basis of the quantum mechanics and several 
applications in technological field. In the latter context, chemically synthesized 
nanoparticles are the most promising candidates to be used as active media in opto-
electronic devices, due to the relatively easy methods of production and to the versatility of 
the colloidal solution form in which they appear. As pioneering nano-objects, spherical 
nanocrystals have attracted remarkable attention by researchers and constitute the most 
studied systems in terms of opto-electric properties. In this chapter we covered several 
aspects on what concerns their optical properties. We started with an overview of the main 
consequences resulting from the progressive shrinking of the spatial extension of a solid 
system, and of the implications on the modulation of the DOS function and the quantization 
of the energy. Particular attention has been dedicated to the textbook case of the Schrödinger 
equation in one dimension. A brief excursus has been dedicated to the electronic 
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configuration of the fine structure of the ground state in wurtzite and cubic crystal structure. 
As examples of interest we have tackled the cases of CdSe (wurtzite) and CdTe (cubic) 
nanocrystals since they are, in absolute, the most studied systems, following the pioneering 
works of Efros. Regarding the optical properties, we have concentrated our attention to the 
effects deteriorating the optical performances in terms of quantum efficiency (especially 
acting at room temperature), which depend on both intrinsic and extrinsic factors. The firsts 
include all the effects which can not be avoided by any synthesis improvement, because 
they are typical of the physics of the material, such as exciton-phonon coupling and Auger 
effects. The seconds are related to the global purity of the nanocrystals in terms of crystalline 
structure and surface quality. The latter, in particular, constitutes the major contributor to 
the observation of poor emission performances or, sometimes, spurious effects. A review of 
the main studies about this topic has been provided with a particular attention to the 
methods for studying and discerning the role of surface states. The reported examples 
wanted to stress the importance of a critical point in the definition of the optical 
performances of colloidal nanocrystals which is the presence of surface states. Their study is 
constantly evolving as well as the attempts to reduce their negative effects by improving the 
chemical methods. The first is preparatory for the second and often the second contributes 
to complicate the first, such that nowadays the duel seems to be far away to end. 
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1. Introduction 
Correlation between particles in finite quantum systems leads to a complex behavior and 
novel states of matter. One remarkable example of such a correlated system is expected to 
occur in an electron gas confined in a quantum dot (QD), where at vanishing electron 
density the Coulomb interaction between electrons rigidly fixes their relative positions like 
those of the nuclei in a molecule. Unlike real molecules, however, which have sizes and 
properties fixed by their chemical constituents, the size, shape and electronic density of such 
confined electronic structures, referred to as Wigner molecules (WM), can be varied 
experimentally using various combinations of semiconductor materials, types of 
nanostructures, numbers of electrons, electrostatic potentials and magnetic fields. Thus 
these WMs present a novel and compelling field for fundamental and applied research. So 
far, however, the properties of WMs and their underlying fundamental physics have been 
studied primarily by theory; what little experimental evidence there is for their existence 
consists only of measurements of charging energies and light-scattering spectra of 
GaAs/AlGaAs quantum dots created from modulation doped 2D-electron gas 
heterostructures. 

Here we present the results of an experimental study of correlated states of electrons in a 
WM in self-organized InP/GaInP quantum dots. The unique properties of these QDs are 
their relatively large lateral size (~80-200 nm) and their ability to accommodate up to 20 
electrons, providing electron density up to 2x1011 cm-2. The dots have strong emission 
intensity which allows us using photoluminescence spectroscopy for their study. We used a 
high-spatial-resolution low-temperature near-field scanning optical microscopy (NSOM) 
having spatial resolution up to 30 nm in combination with a high magnetic field to resolve 
emission spectra of single QDs. Using emission spectra of single dots we observed crossover 
from a Fermi liquid to WM behavior at a critical density of 5x1010 cm-2. A magnetic-field-
induced molecular-droplet transition has been observed in the Fermi liquid regime. In the 
Wigner molecule regime we observed a rich vibrational structure of the emission spectra, 
which opens way to identify the electron arrangement in the WM. These results are 
discussed in detail and compared with existing literature data.  
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We also present theoretical calculations of electron correlation in quantum dots using an 
accurate configuration-interaction method employing a numerical mean-field basis set and 
analysis of vibrational modes in WMs using the classical limit.  

2. Wigner localization in semiconductor quantum dots  
A Wigner phase is a strongly correlated state of an electron system, in which electrons 
occupy separate sites forming a regular lattice. The possibility of crystallization of an 
electron gas at densities below a certain critical value (ns) was predicted by Wigner in 1934 
(Wigner, 1934). Experimentally such crystallization has been observed in two dimensional 
electron systems on the surface of liquid He (Grimes & Adams, 1979), in a GaAs/GaAlAs 
heterojunction (Andrei et al., 1988) and in Si (Pudalov et al., 1993) using detection of the 
metal-insulator transition. 

 
Fig. 1. Schematic view of the classical electron configurations in a parabolic potential for 
N=5, 6, 10, 15 and 19 (Bolton & Rössler, 1993). 

The electrons confined in traps having volume >1/ns form Wigner Molecules (WMs). 
Wigner localization of electrons in such traps formed by interface fluctuations is responsible 
for the quantum Hall effect in high mobility semiconductor heterostructures (Ilani et al., 
2004; Laughlin, 1983). The Wigner localization regime can be realized in single electron 
transistors (SETs) using GaInAs/AlGaAs quantum dots (QDs) nano-fabricated from 
modulation doped quantum well structures (Kastner, 1993; Ashoori, 1996; Tarucha, 1996). 
Coulomb blockade measurements and theoretical analysis (Maksym et al., 2000; Reimann& 
Manninen, 2002; Szafran et al., 2003 ) have shown that a WM in such SETs can reveal a rich 
set of electron arrangements and spin states, which are controlled by the number of 
electrons present, and by an applied magnetic field. While electron arrangement in WMs 
will depend on the shape of the confinement potential and the number of electrons (N), 
theoretical analysis for the ideal 2D parabolic potential shows that in the classical 
approximation for systems having N<6, simple polygons are formed. The first nontrivial 
configurations are found for N=6 (see Fig.1). In addition to the ground state with five 
electrons surrounding a single electron at the center, metastable states and isomers at very 
similar energies exist, such as the 6-electron hexagon. Further, for N=10, the ground state is 
a “dimer” in the center with eight surrounding electrons. The hexagonal lattice of a Wigner 
crystal is not restored until N~200. In addition to the existence of metastable states, theory 
also predicts that the application of a magnetic field re-arranges the electron distribution in 
a QD and leads to specific phase transitions, which are called molecular-droplet transitions.  
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The effect of Wigner localization on electronic states is characterized by the dimensionless 
density parameter (Wigner-Seitz radius) rs=1/[a*B(π·n)0.5], where a*B is the effective Bohr 
radius and n is the average electron density in the plane of the dot. This parameter is 
approximately equal to the ratio of Coulomb-to-kinetic energy. It can also be expressed 
approximately via the parabolic (harmonic) potential frequency ω0 via rs3=1/[ω02N0.5] ], 
where ω0 is expressed in units of effective Hartrees Ha*, and N is the number of electrons in 
the dot. For rs<1, i.e. in the Fermi liquid regime (strong confinement potential), the electrons 
in a QD behave similarly to the electrons in an atom and their energy spectrum for a 2D 
parabolic potential is EK,L= ħω0(2K+|L|+1), with the K quantum number corresponding to 
the number of radial nodes in the electron wave function and L is the azimuthal quantum 
number. Note that this formula neglects the electron-electron interaction and is modified 
somewhat by the electronic mean-field potential. In the classical limit rs>>10, and the 
electrons behave as point charges (Fig.1). According to the theoretical calculations for small 
numbers of confined electrons (say, up to 10), the onset of electron localization occurs 
gradually as rs increases with partial Wigner localization in distinct WM geometries 
occurring already for rs~4 (Egger et al., 1999). 

The classical regime, resembling the point charge arrangements presented in Fig.1, was 
realized in the macroscopic experiment in which the electrons were represented by 
negatively charged (up to 109 electrons) metallic balls having 0.8 mm diameter and the trap 
(QD) was a positively charged cylindrical electrode having 10 mm in diameter (Saint Jean et 
al., 2001). For III-V semiconductor materials and in particular GaAs, the only semiconductor 
used so far for SETs, the effective Bohr radius having value a*B ~10 nm is relatively large 
and the classical regime requires potentials ħω0<0.2 meV and large QD sizes >500 nm, which 
seems to be hardly achievable experimentally.  

So far experimentally the signatures of formation of WMs were observed using a 
GaAs/AlGaAs heterostructure system with a two-dimensional electron gas. Using 
electrostatically-defined two-electron QDs having ω0~5 meV and rs~1.55, the existence of 
electron correlation was detected by identification of the singlet nature of the lowest excited 
state at finite magnetic field (Ellenberger et al., 2006). Light scattering spectra were used to 
observe spin and charge modes in nanofabricated QDs having two (Singha et al, 2010) and 
four (Kalliakos et al., 2008) electrons. These two and four electron dots have ħω0~1.6 
meV/rs~3.4 and ħω0~3.8 meV/rs~1.7, respectively. The effect of formation of electronic 
molecules in these investigations was revealed from a fit of the observed energies using a 
configuration interaction approach.  

In the present contribution we introduce InP/GaInP QDs as a natural WM system providing 
a great variety of electron occupation and sizes and, using high-spatial resolution nano-
optical methods, we report the observation of emission of different types of WMs.  

3. Excited states in Wigner molecules: Example for N=2 and N=6 
3.1 Rovibrational states for N=2 

In the Wigner localization regime the correlated state is characterized by the separation of 
the center-of-mass (c.m.) motion, having frequency ω0, and a relative (rovibrational-spin) 
electron motion. According to the Kohn theorem this separation is an exact result for a 
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circular parabolic confining potential at any electron density (Jacak et al., 1998). For the 
simplest case of a two-electron molecule (2e-WM) the equations of motions allow an exact 
solution (Yannouleas&Landman, 2000). These solutions have shown that for rs=200 the 
energy spectrum of 2e-WM has a well developed and separable rovibrational contribution 
exhibiting collective rotations, as well as stretching and bending vibrations:  

 EKL,kl=Cl2+(k+1/2)ħωs+(2K+|L|+1) ħωb, (1) 

where the rotational constant C≈0.037, the phonon for the stretching vibration has energy 
1.75ω0 and the phonon for the bending vibration coincides with that of the c.m. motion, i.e. 
ωb= ω0. Note that the bending vibration can itself carry an angular momentum ħL and thus 
rotational angular momentum ħl does not necessary coincide with the total angular 
momentum ħ(L+l). The calculations have shown that the molecule preserves its structure at 
rs =3 (ħω0~1 meV for GaAs), i.e. below the “theoretical” Fermi liquid to WM transition. Here 
the rotational sequence shows nearly equal spacing having value ω0/2 but the stretching 
vibration does not change. 

3.2 Excited states of six-electron Wigner molecules 

3.2.1 Configuration-interaction calculations of spin states  

We used an accurate configuration-interaction (CI) method employing a numerical mean-
field basis set to study the excitation spectrum of a six-electron WM (Blundell & Chacko, 
2011). The CI method (Szabo&Ostlund, 1996; Blundell&Joshi, 2010) is more suitable for the 
systematic study of excited states than other methods such as Hartree-Fock-based methods 
and variational Quantum Monte-Carlo (which can treat only the lowest-energy state of a 
given symmetry). Dots with N ≥ 6 electrons in general have more than one classical isomer 
(see, for example, the [1,5] and [0,6] isomers in Fig. 1) and therefore isomeric states should 
form an important part of the phenomenology of excited states. Now, for a circularly  
 

  
Fig. 2. Electron spatial pair correlation functions for rs=2.75, 4, 8 and 20 (left) and excitation 
energies of the six-electron dot versus Wigner-Seitz radius rs (right). The quantities ∆Erot, ∆Evib, 
and ∆Eiso are approximate rotational, vibrational, and isomeric excitation energies, 
respectively, inferred from a classical model (see text); ∆E(3S) and ∆E(3P) are excitation 
energies to the lowest 3S and 3P states calculated by CI. All excitation energies are scaled by rs. 
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symmetric external potential and a state of definite Lz, the electronic density (in the 
“laboratory” frame) in 2D must also be circularly symmetric (Hirose&Wingreen, 1999) 
and in the Wigner limit the density therefore becomes a series of concentric rings (see, for 
example, Ghosal, et al., 2006). To reveal the Wigner localization, we therefore consider the 
internal many-body correlations by means of the electronic (charge-charge) pair-
correlation functions (PCFs) g(r; r0) (Maksym, 1996; Reimann et al., 2000; 
Yannouleas&Landman, 2000). The quantity g(r; r0) is proportional to the conditional 
probability of finding an electron at the position r given that another (reference) electron 
is present at r0. Calculated g(r; r0) functions are presented for rs = 2.75, 4, 8, and 20 in 
Fig. 2, from which it is seen that a partially correlated state is observed even at rs = 2.75. 
Recall that rs is expressed in units of the effective Bohr radius aB*, where aB* ≈ 8.7 nm for 
the InP/GaInP dots in our experiments. 

Our calculations have shown that the evolution of the excitation energy of the lowest 3S, 5S, 
7S, and 3P states relative to the 1S ground state versus rs yields approximately parallel 
straight lines on a logarithmic plot 6 ≤ rs ≤ 10, the excitation energy ∆E of these states being 
well fit by an expression of the form ∆E = c exp(–m rs), with c(3P) = 0.020 Ha*, c(5S) = 0.028 
Ha*, c(3S) = 0.048 Ha*, c(7S) = 0.054 Ha*, and m ≈ 0.30 (aB*)–1. The energy units Ha* here are 
effective Hartrees, with 1 Ha* ≈ 13.2 meV for the InP/GaInP dots used in our experiments. 

3.2.2 Low-lying excitations in the classical limit  

At large rs the quantum excitation energy of a quasi-2D Wigner molecule may be written 
approximately in a way analogous to that for a planar molecule  

 E(P) = Ecl(P) + Lz2/(2IP) + Σa [Ωa(P)(na+1/2)] + Espin, (2) 

where Ecl(P) is the classical electrostatic energy of isomer P, IP is its moment of inertia, and na 
is the number of vibrational quanta in a normal mode with frequency Ωa(P). The energy Espin 
is the spin-spin interaction energy of the spins of the localized electrons. As an example of a 
typical rotational excitation energy, we note that the ground-state [1,5] isomer has a moment 
of inertia IP = 8.9 rs2N1/3, and it then follows using Eq. (2) that the S- to P-wave excitation 
energy is given in the classical limit by (in effective a.u.) ∆Erot = 0.0309 rs–2. Similarly, noting 
that the frequency of the first classical normal mode of the [1,5] isomer is Ω1 = 0.650ω0 (see 
below), we find that the excitation energy of one vibrational quantum in this mode is (in 
effective a.u.) ∆Evib = 0.415 rs–3/2. For isomeric excitations we found (Blundell &Chacko, 
2011) ∆Eiso = Ecl (0, 6) – Ecl (1, 5) = 0.0714 rs–1. To clarify the role of rotational excitations, we 
show in Fig. 2 the classical estimate of the S- to P-wave excitation energy ∆Erot as a function 
of rs, together with the excitation energy calculated by CI (from the 1S ground state to the 
lowest 3P state, which is the lowest-lying P-wave state).  

We also show a typical spin excitation energy ∆E(3S), defined as the energy of the lowest 3S 
state relative to the 1S ground state, as calculated by CI. From Fig. 2, one sees that the 
smallest rotational excitation for rs <10 is in fact somewhat larger than the classical estimate 
∆Erot. This is simply because a spin excitation is also involved. One also sees in Fig. 2 that for 
rs < 6, the “spin” excitation energy (due to atomic-like exchange and correlation effects) is 
nominally comparable to the isomeric and vibrational energies. Thus, although at these 
values of rs it is possible to find partial Wigner localization in a recognizable geometry, it is 
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not generally possible to discuss isomeric and vibrational excitations separately from spin 
excitations at these densities.  

3.2.3 Vibrational modes  

The classical normal modes for the [1,5] ground-state isomer are shown in Fig. 3. There are 
2N – 1 = 11 normal modes grouped into five doubly degenerate modes and one 
nondegenerate mode, which is a breathing mode at high frequency. The lowest frequency 
mode can be thought of as a dipolar oscillation of the central electron accompanied by a 
distortion of the outer ring. The third and fourth modes, at Ω=1.223ω0 and Ω=1.314ω0, 
correspond to quadrupole and octupole distortions, respectively, of the outer ring, with the 
central electron remaining fixed. The second mode is a collective dipolar oscillation of the 
c.m. of the system at frequency Ω=ω0 (exactly), in which the whole structure remains 
undistorted during the oscillation. The existence of such a classical mode can be shown to be 
a general result for a system in a harmonic confining potential having an interaction 
depending only on the relative coordinates of the particles. The quantum mechanical analog 
of this result is the Kohn theorem, according to which under the same circumstances the 
c.m. motion decouples exactly from the “relative coordinates,” and one can describe the 
system by a wave function in relative coordinates combined with oscillations of the c.m. in 
the harmonic confining potential. Note that the breathing mode of the six electron molecule 
has frequency Ω=1.732ω0, which is nearly the same as the frequency of the breathing mode 
of the two electron molecule considered above.  

 
Fig. 3. Normal modes of the ground-state isomer of the classical six-electron dot. The normal 
mode frequency Ω is indicated as a multiple of the frequency of the parabolic potential ω0. 

3.3 Generalization to larger size N 

We can use the classical arguments that work well for N = 6 to show that aspects of the same 
excited-state phenomenology apply to larger N as well. The classical model yields more than 
one isomer for N = 6 and for N ≥ 9. We have used the “basin hopping” algorithm to generate 
and study the classical isomers in the size range up to N = 20. As N increases, the energy 
separation of isomers tends to become smaller. Thus the excitation energy ∆Eiso(N) for N 
electrons satisfies ∆Eiso(6) = 0.10ω02/3, ∆Eiso(9) = 0.044ω02/3 and ∆Eiso(19) = 0.013ω02/3 (in 
effective a.u.). It is then generally the case that the first excited level (spin multiplet) for fixed Lz 
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at intermediate rs is an isomer rather than a vibrational excitation of the ground state. We thus 
expect low-lying isomeric states to be a generic feature of the excitation spectrum of dots with 
N = 6 and N ≥ 9 electrons at intermediate rs values. Also, the rotational excitation energies ∆Erot 
are generally found to be small compared to ∆Eiso and ∆Evib, similar to Fig. 2 for N = 6. 

4. InP/GaInP quantum dots as natural electronic molecules  
4.1 Structural properties  

Our InP/GaInP QD samples were grown by Metal-Organic Chemical Vapor Deposition 
(MOCVD) in a horizontal AIX200/4 reactor under pressure of 100 mbar. Trimethylgallium 
(TMGa), trimethylaluminium (TMAl) and trimethylindium (TMIn) metalorganic 
compounds were used as the group III element sources. Arsine (AsH3) and phosphine (PH3) 
were used as the group V element sources. (100) GaAs substrates misoriented by 2o towards 
the [110] direction were used. Initially a 50 nm-thick GaAs layer was deposited on the wafer. 
Then 50 nm thick Ga0.52In0.48P (GaInP) lattice-matched with GaAs layer was grown. The QDs 
were grown at 725o C by depositing 7 monolayers (ML) of InP (Vinokurov et al,. 1999; Chu 
et al., 2009,). We studied the structures with uncapped dots and structures having GaInP cap 
layer thickness 5, 20, 40 and 60 nm.  

The dot density (~2*109 cm-2) and their sizes (base ~10-200 nm, height ~5-60 nm) were 
measured using atomic force microscopy (AFM) for the uncapped samples and transmission 
electron microscopy (TEM) for the capped samples. These data are presented in Fig.4a-d. A 
clear bimodal size distribution is seen from AFM images in Fig.4a consisting of large dots 
having size 100-200 nm and density 0.6x109 cm-2 and the small dots having sizes 10-70 nm and 
density 1.2x109 cm-2. From TEM measurements a lens shape of the large dots was revealed (see 
Fig.4c and d). Due to a residual n-type doping of the GaInP layer in the MOCVD growth 
process (n~1016 cm-3) the modulation doping of InP QDs occurs and they can contain up to 20 
electrons (Hessman et al., 2001). Thus these QDs can represent natural WM and for dot sized 
150-200 nm the rs ~4 can be achieved for few electron dots. The electron density can be varied 
from 1010 up to 5x1011 cm-2 and thus these InP QDs offer much more flexibility in varying of 
WM parameters then “conventional” GaAs/AlGaAs QDs used in SETs (Singha et al, 2010).  

 
Fig. 4. Atomic force (a and b, size 2.5x2.5 μm2) and transmission electron (c – plan-view, d –
cross section) microscopy images of InP/GaInP QDs structures. 

We estimated that our InP QDs can contain up to 10% Ga. Pure InP QDs can be grown by 
depositing nominally 0.5 ML of InP at growth temperatures 580 C and using in-situ 
annealing/growth interruption. Such growth conditions suppress Ga and In intermixing 
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and result in the pyramidal dot shape having base ~60 nm and height ~15 nm (Georgsson et 
al., 1995). Even smaller InP QDs having base 30 nm and height 7 nm were grown using 4ML 
InP deposition at 550 C (Ren et al., 1999).  

In Fig.5a we present a cartoon showing the formation of a WM in our InP/GaInP QDs. Nine 
electrons come from the adjacent donor atoms located in the GaInP. The classical 
arrangement of a 9e-WM consists of eight electrons surrounding one electron at the center. 
The corresponding tentative band diagram of this QD is shown in Fig.5b. The barrier is 
formed by GaInP having band gap energy 1.97 eV (Janssens et al., 2003; Pryor et al., 1996). 
The “bandgap” of the QD material includes vertical confinement energy (~150 meV) and 
bandgap increase (~50 mev) due to Ga/In intermixing. We estimated the QD material 
bandgap to be ~1.7 eV, which is nearly 200 meV higher than the bandgap of InP. Due to 
strain effects and Ga/In intermixing we expect type-I band alignment between the QD and 
barrier material (Janssens et al., 2003; Pryor et al., 1997). 

4.2 Photoluminescence of Wigner molecules 

Under photexcitation an electron-hole pair is generated in the dot and it forms a trion with 
the central electron (see in Fig.5a). The formation of trions in a dilute electron gas is well 
established (Finkelstein et al., 1995) and thus we can assume that a radiative recombination 
of the trion also forms the photoluminescence (PL) spectra of the WM. The selection rules 
for radiative transitions of the trion involving the electron having spin ± 1/2 and the hole 
having spin ± 3/2 do not change the electron spin and thus only charge excitations are 
expected to dominate the emission spectra of the WM.  

 
Fig. 5. Arrangement of electrons (classical positions) (a) and corresponding band diagram 
(b) of photo-excited nine-electron InP QD (base ~150 nm); classical positions of the trion and 
electrons in two electron WM before (upper) and after (lower) radiative recombination (c). 
Trion and adjacent ionized donors are also shown in a. Thick(thin) curves in b are the band 
diagrams for filled(empty) dot. 
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In Fig.5c we show classical positions of the trion and the electrons in the 2e-WM before 
(upper cartoon) and after (lower cartoon) the radiative recombination. It can be shown 
(Govorov et al., 2006) using the minimization of the classical energy of the electrons that the 
classical distance die of the electron to the dot center is a factor β= mtrω0tr2/meω02 larger than 
ditr, the corresponding distance for the center of mass of the trion. This is because the trion 
confinement potential and corresponding harmonic frequency ω0tr, is stronger than the 
electron confinement potential and corresponding harmonic frequency ω0. In a similar way, 
we can determine the classical configuration of the two electrons left in the final state after 
photon emission. Their classical coordinate dfe in the ground state obeys relation die > dfe > 
ditr as seen in Fig.5c. The wave functions of the initial and final states are peaked at the 
classical coordinates and decay exponentially along the radial axis away from their peak 
positions (see for example Fig.2). Since β ≠ 1, the classical coordinates for the initial and final 
states are different. This gives a coupling of the radiative recombination transition with 
vibrational modes of the WM which is the origin of the shake-up process in the 
photoluminescence of WM, to be discussed in the experimental part. Such “electron-
phonon” coupling can be expressed via Huang-Rhys factors (Huang&Rhys, 1950).  

From symmetry considerations one can see from Fig.5c that the annihilation of the trion 
induces stretching and center-of-mass distortion along the 2e-WM axis, thus generating the 
stretching and translation modes discussed above. Thus the emission spectra of a 2e-WM 
are expected to have contributions from the “zero-phonon” line (ZPL) and two sets of Stokes 
phonon replicas having energies nħω0 and nħ1.7ω0, where n=1, 2, … . This is similar to the 
vibronic structure of conventional molecules. 

Similar symmetry considerations based on classical electron arrangements shown in Fig.1 
predict weak phonon Stokes emission for WM having a central electron, i.e. for N=6-9, and 
strong phonon Stokes emission for the two electrons at the center, i.e. N=2 and N=10-14.  

5. The near-field scanning optical microscopy (NSOM) technique  
5.1 Optical spectroscopy of quantum dots  

For study of the effects of the electron localization in single InP/GaInP QDs we used the 
near-field scanning optical microscopy (NSOM) technique (Betzig&Trautman, 1993) in 
combination with magneto-PL spectroscopy. The basic principle of NSOM (Synge, 1928), 
providing a way to overcome the diffraction limit of light of conventional optics, is to use 
the coupling of the evanescent electromagnetic field and the radiative electromagnetic 
waves in the vicinity of a nano-probe placed near the boundary between two media. This 
principle was realized nearly three decades ago using nano-apertures (Lewis et al., 1984, 
Pohl et al., 1984), metallic (Fischer and Pohl ,1989) and dielectric (Coutjon et al 1989, Reddick 

at al., 1989) nano-tips, allowing nanometer-scale spatial resolution in optical experiments 
with a wide range of applications including experiments with single semiconductor QDs 
(Flack et al., 1996, Toda et al., 1996). The high spatial resolution, scanning ability and non-
destructive character of the experiment in combination with a high magnetic field and time-
resolved techniques, allows the use of NSOM to study structural parameters (Mintairov et 
al., 2001), the spin structure of exciton states (Ortner et al., 2003, Toda et al., 1998), the 
temporal coherence of the wave functions (Toda et al., 2000), and the mechanisms of carrier 
migration (K. Matsuda et al., 2000) and relaxation (Toda et al., 1999) in semiconductor QDs. 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

134 

Achieving spatial resolution as high as 30 nm allows optical mapping of exciton wave 
functions in a single QD (Matsuda et al., 2003). Such spatial resolution is of the order of the 
electron separation in the Wigner localization regime and thus the NSOM technique opens the 
possibility to probe the position of the individual electrons in the electronic molecules. 
However, present GaAs/AlGaAs SET structures require relatively thick AlGaAs cap layers 
(~70 nm), which provides vertical modulation doping but does not allow achievement of 
spatial resolution below 200 nm (Mintairov et al., 2003). In contrast InP/GaInP QDs, having 
lateral modulation doping (see Fig.5b), can form a WM for cap layer thickness down to zero 
nm (see below). Thus the tip-QD distance separation can be zero and spatial resolution as high 
as 10 nm can be possible, as was demonstrated for single molecules (Hosaka& Saiki, 2001).  

5.2 Experimental details 

5.2.1 NSOM set up 

For our low-temperature magneto-PL measurements we used an Oxford Instruments 
CryoSXP cryogenic scanner together with a liquid helium cryostat with a superconducting 
magnet providing magnetic fields up to 12 T. Shear-force tip-sample distance control and 
scanning are governed by a Vecco AFM controller from Digital Instruments, providing a 
scan range over an area of 3x3 μm2 at 4.2K. For characterization of InP/GaInP structures at 
room temperature we used an NSOM-2000 system from NANONICs Inc. having a scan 
range 90x90 μm2. The near-field photoluminescence (PL) spectra were taken in collection-
illumination mode, i.e. laser excitation and PL emission collection using the same NSOM 
fiber probe. Emission was excited by the 488 nm line of an Ar ion laser and dispersed using 
a 270 mm focal length monochromator. The spectra were measured using a nitrogen-cooled 
CCD detector and 1200 gr/mm grating. Monochromatic NSOM images were measured 
using a 300 gr/mm grating and a GaAs photomultiplier working in the photon-counting 
regime with an accumulation time of 20 ms per pixel. Excitation power density was ~20-100 
and 0.1-1 W/cm-2 for 300 and 10 K, respectively. The spectral resolution of the system is 0.2-
0.4 meV. We measured spectra in a magnetic field up to 10 T. A quarter wave-plate and 
linear polarizer were used for the separation of right- and left-hand circular polarization. 

5.2.2 NSOM probes 

As near-field probes we used tapered single mode fiber tips. We used both metal coated and 
uncoated tips. Coated tips were prepared by electron beam deposition of metal (Al or Au 
in combination with Ti) having thickness ~50-200 nm. The physical structure of the 
aperture and its optical quality were controlled using scanning electron microscopy (SEM) 
imaging, visual observation of the light coming from the tip under a microscope with x100 
objective, and by measuring its far-field transmission for 632.8 nm wavelength (HeNe 
laser). SEM images of typical near-field optical fiber probes are presented in Fig. 6a-f. The 
taper was prepared by using a pulling technique ((Lewis et al., 1984, Pohl et al., 1984). We 
used two pulling regimes in which the taper angle increases towards the tip end (see 
Fig.6a and b). Both regimes give tips (apertures) with diameters 200 nm and aperture 
angles 30-40o (see Fig. 6c) but within a few micrometers from the aperture they have 
different taper angles. To make smaller apertures we used further chemical etching in a 
hydrofluoric acid solution (Otsu, 1998). We also use a focused ion beam milling technique 
to flatten the apertures (Fig.6f). The transmission of our metal coated fiber probes was 10-
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4-10-2. Uncoated fiber tips provide an order of magnitude higher PL signals but in general 
they have poorer spatial resolution. Below, however, we will demonstrate an apertureless 
mode of uncoated tip in which spatial resolution is determined just by the apex diameter 
and thus can be as high as coated ones. 

 
Fig. 6. SEM images of the near-field optical fiber probes: side view of the two types of tapers 
used (a, b); 45o tilt images of apertures having diameters (nm) and coating: c - 280 and Au, d 
- 270 and Al, e - 60 and Al/Ti and f- 120 and Al. The apertures were prepared by pulling (c), 
etching (d-f) and FIB trimming (f). 

5.3 NSOM imaging 

Fig.7a-d presents our results of NSOM imaging of ~ 2 μm long section of a CdSe nanowire 
(NW) having diameter 40 nm taken with an uncoated fiber tip (Mintairov et al., 2010). It shows 
topographic (a) and monochromatic NSOM (b) images together with a set of twelve spectra 
measured along a 400 nm size central section of the wire (c) and a false-color wavelength-
position plot of these spectra (d). Note that the topographic image is taken with the same fiber 
as the NSOM image. For further discussion we will denote the plot in Fig.7d as linear scan 
spectra (LSS) plot (image). Since we use accumulation time up to few seconds for each point of 
LSS image it can be considered as “static” image. The monochromatic NSOM image (see 
Fig.7b), taken at 20 ms per pixel, thus can be considered as a “dynamic” image. 

In the topographic image (Fig.7a) the NW is seen as a vertical stripe having width ~100 nm. 
It has some distortions arising from the noise of the tuning-fork feedback control. We can 
estimate the width (W) and height (H) of the wire in the topography image to be W~100 and 
H~50 nm, respectively, and accounting for the fact that topographical height is equal to the 
wire diameter we can get value of the tip apex size to be TA=W-H~50 nm.  

In the NSOM image (Fig.7b) the wire has a much larger width (~250 nm). It also reveals 
~500 and ~100 nm intensity modulation along the wire. The fine scale modulation ~100 nm 
has the same scale as the topography. The nearly three times larger width of the NW in the 
NSOM image compared to the topography indicates an optical coupling between the wire 
and the tip before their physical contact, and reflects the “apertureless” nature of imaging 
using an uncoated tip. In such an apertureless regime the spatial resolution along the NW 
depends on the tip-wire distance and it is equal to the tip apex size (~50 nm for our tip) 
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when the tip and the wire are in contact. Thus the 100 nm size modulation of the emission 
intensity seen in the contact part of the NSOM image corresponds to an intrinsic uniformity 
of the NW emission of ~50 nm.  

 
Fig. 7. Topography (a) and NSOM (b) images of NW1 at 50 K together with the set of twelve 
spectra taken during linear scan having length 400 nm (c) and their false-color wavelength-
tip-position plot (d). Fiber tip positions for linear scan are marked by dots in (b). Image size 
in (a) and (b) is 0.8x2 μm2. Detection energy in (b) is 1.8 eV 

Comparison of Fig.7b and Fig.7c shows that variations of the intensity of the spectra follow 
the intensity variations in the monochromatic NSOM image. For example, the strong (weak) 
NSOM intensity in Fig.7b at points 9-11 (1-6) corresponds to strong (weak) spectra in Fig.7c 
taken at corresponding points. Some intensity variations seen in the spectra (like the 
intensity increase at point 8 and 4) are not observed in the NSOM image due to photon 
counting noise arising from the “dynamic” character of the image. Analysis of Fig.7c and d 
shows that intensity fluctuations are accompanied by changes of the spectral position and 
the width of the NW emission peak. For neighboring points separated by only 36 nm the 
changes of peak position and width by a few meV can be detected. 

6. NSOM characterization and emission spectra of InP/GaInP structures  
6.1 Room temperature NSOM imaging  

Fig.8a-d shows the results of room temperature NSOM imaging of InP/GaInP QD 
structures having cap layer thickness d=0, 5, 20 and 60 nm. The images were taken at 
detection wavelength 750 nm. NSOM images of our structures (see inserts in Fig.8a and 
Fig.8b-d) show a set of bright spots having density ~20 μm-2 and size ~150-250 nm related to 
single QDs. Clearly-resolved single QD images are observed for 5 and 20 nm capped QDs as 
well as for the uncapped QDs. It is important to note the strong emission intensity for the 
uncapped QDs at room temperature. We believe that this is the first observation of such 
strong emission from uncapped QDs allowing ultra-high spatial-resolution. Accounting for 
the ~100 nm base of the QDs we estimated the tip apex size (spatial resolution) to be 25-75 



Molecular States of Electrons: Emission of  
Single Molecules in Self-Organized InP/GaInP Quantum Dots 

 

137 

nm. For a 60 nm cap the image contrast strongly decreases, which demonstrates the 
expected reduction of the spatial resolution (down to 150 nm) due to increased tip-dot 
separation. By positioning the tip on the bright spots we measured the spectra of individual 
InP/GaInP QDs at room temperature. Three such spectra for the uncapped sample 
presented in Fig.8a show that the spectra of single InP QDs at room temperature consists of 
a single band having wavelength in the range of 710-790 nm (1.75-1.56 eV) and halfwidth γ 
~60 nm (~150 meV).  

 
Fig. 8. Room temperature NSOM spectra (a) together with NSOM (b-d) and AFM (e-g) 
images (size 2.5x2.5 μm2) of InP/GaInP QD structures having cap layer thickness (nm): 0 (b 
and e), 5 (c and f) and 20 (d and g). The ~500 nm diameter dashed circles in b-g outline the 
same area in the NSOM and AFM images. Inserts in 8a show NSOM images of the 
structures having cap layer thickness 0, 5, 20 and 60 nm. 

In Fig.8b-g we present simultaneously measured NSOM (b, c and d) and AFM (e, f and g) 
images for d=0, 5 and 20 nm. The InP QDs having height 20-40 nm are clearly seen in the 
AFM image of the uncapped sample (Fig.8e). However the QD base observed is slightly 
(~50 nm) larger for the AFM image than in the NSOM image (see the encircled 1 dots in 
Fig.8b and e), which demonstrates the effect of electron localization. In the capped 
samples the QD location corresponds to the “valley” of the AFM images; this is seen by 
comparing the AFM and NSOM images (see the encircled dots for both the 5 and 20 nm 
cap) and the QD height decreases to 20-10 nm. Thus we observed the growth of the GaInP 
matrix material at the edges of the QDs. This together with the height reduction 
demonstrates additional growth control of the dot shape and thus confinement potential 
in InP/GaInP QDs. 

We should also note that the use of the topographic images for the uncapped samples (see 
Fig.8b and e) allows the experimental determination of the size of the specific QD, which is 
one of the key parameters determining the electron correlation regime. 

6.2 Low-temperature emission spectra  

Fig.9 shows low-temperature (T=10 K) NSOM emission spectra of an InP/GaInP structure 
taken with spatial resolution ~200 nm at two fiber tip positions centred at two different QDs 
(QD2e and QD3m) separated by 400 nm. (This notation will be clarified below). In the range 
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1.67-2.0 eV (740-620 nm) the spectra are dominated by the bands of the “central” dots, i.e. by 
QD2e in position 1 and by QD3m in position 2, having emission energy ~1.70 eV. Weaker 
bands of neighbouring dots located close to the tip edge are also seen at ~20 meV higher 
energy. The band shape of the large QDs reveals multipeak (manifold) structures, which 
will be discussed in detail below. The spectra also contain sharp lines observed in the 
range 1.85-1.95 eV, which are related to small InP QDs, and a broader band at 1.97 eV 
which is related to the GaInP matrix. The emission energy of our large InP QD is ~50 meV 
higher than the emission energy of the pyramidal InP QDs having base 60 nm, observed 
by other authors (Blome et al., 2000; Hessman et al., 2001), which indicates Ga/In 
intermixing. Using this energy difference we can estimate the value of the Ga composition 
of our InP QDs to be ~10%. Such intermixing resulting in significant increase of the dot 
size is favourable for the WM formation. Using low-temperature NSOM we measured the 
emission spectra of ~50 single InP QDs, allowing us to observe the effects of Wigner 
localization, which will be analysed below. 

 
Fig. 9. 10K–NSOM spectra of InP/GaInP QD structures taken with spatial resolution 200 nm 

7. Experimental study of Wigner molecules 
7.1 Fermi liquid to Wigner molecule transition 

Fig.10a shows an LSS plot, taken over a linear scan of 1.6 μm, for a 60 nm capped sample 
measured at T=10 K using a coated fiber having a 100 nm aperture. Four QDs denoted by 
QD1m, QD2e, QD3m and QD4e are observed in Fig.10a in the spectral range 1.72-1.68 eV. The 
spectra at tip positions 1 and 2 centered at QD2e and QD3m were shown in Fig.9 over a 
wider spectra range. Fig.10b-e compares the spectra of three large dots QD5m, QD1i, QD2e 
and a small lone dot QD1s. The LSS image in Fig.10a demonstrates a drastic difference in 
the fine structure of the emission manifold of the dots having subscript m and e. This 
difference is also clear from the spectra of dots QD5m and QD2e in Fig.10c and e, 
respectively. In the m-type dots (further referred to as metallic) up to three components (s, 
p and d) of the emission manifold are observed and they have an energy splitting (∆E) of 
~4 meV and halfwidth (γ) of 3-5 meV. For the e-type dots (further referred to as excitonic) 
a fine structure of the s and p components consisting of several ultranarrow lines is clearly 
seen in Fig.10a, having γ<0.2 meV and ∆E as small as 1-2 meV. In Fig.10d we present the 
spectrum of a dot having a mixed structure consisting of few sharp lines and wider peaks. 
In contrast, for a small dot (Fig.10b) having ∆E >15 meV a single line related to a neutral 
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exciton is observed (Sugisaki et al., 2002). The manifold structure was also observed for 
∆E values as large as 10 meV (Blome et al., 2000; Hessman et al., 2001) for pyramidal 
InP/GaInP QDs having base 60 nm.  

 
Fig. 10. Low-temperature (10K) NSOM LSS plot of InP/GaInP QD structure (a) and spectra 
of individual dots (b-e) The s-peak energy (in eV) in (b-e) is 1.9241 for QD1s, 1.6994 for 
QD5m, 1.7662 for QD1i, and 1.7073 for QD2e. 

Our measurements of metallic QDs using a magnetic field discussed below have shown that 
the observed multi-peak structure of the emission spectra of InP/GaInP in Fig.10, c-e results 
from the filling of several electron shells. Here the spectral line shape is created by the 
radiative recombination of a photo-excited hole localized inside QD with electrons resulting 
from the “metallic character” of the dot; this is similar to the acceptor-related emission of a 
two-dimensional electron gas (2DEG) (Hawrylak, 1992). However in our QDs, i.e. a confined 
2DEG, the spectral shape is determined by zero-dimensional confinement selection rules, 
and has maxima at the lowest s-state energy due to the s-state hole involved in the 
recombination process (see also the band diagram in Fig.5b), while in the 2DEG the spectral 
shape is determined by the density of the electronic states and is dominated by the high 
energy Fermi edge state (Hawrylak, 1992; Kukushkin et al., 1989).  

The observed number of shells and the shell spacing allows us to estimate the number of 
electrons and the “effective” dot size, assuming a parabolic confinement potential (Jacak et 
al., 1998). The dots QD5m and QD3e in Fig.10c and e have spacing 3.5 and 2.5 meV, giving 
dot sizes ~90 and ~100 nm, respectively. They have three occupied s, p and d shells giving 
the possible number of electrons to be 7-12. Thus the electron density in these QD is ~5-
10x1010 cm-2, which is similar to the density used in 2DEG GaAs/AlGaAs structures. Using 
the values of the dot size and the number of electrons we estimate rs values of the InP QDs 
to be 1.5-2.5. Our observation of the narrowing of shell peaks and their fine structure for 
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excitonic dots indicates a formation of the excitonic/trion emission at a critical electron 
density at or below ~5x1010 cm-2. Such a transition (from a broad Fermi sea emission to 
exciton and trion narrow lines) was observed in a 2DEG at higher densities (Finkelstein et 
al., 1995). Since the formation of the excitonic/trion emission in a many-electron system 
implies exciton/trion localization we can conclude that the multi-shell structure in these QDs 
reflects the formation of a Wigner molecule (WM). We believe this to be the first observation 
of a WM in a semiconductor QD.  

7.2 Electron shell filling in the Fermi liquid regime 

In Fig.11a and b we show the spectra of five metallic dots having varying ∆E and shell 
fillings. The QD7, QD8 and QD9 in Fig.11a have emission from three shells (~10 electrons) 
and show a progressive decrease of ∆E from 5.9 to 4.6 and to 3.5 meV, corresponding to 
sizes of the confining potential changing from ~65 to ~80 and to ~90 nm. On the other hand, 
QD10, QD7, and QD11 in Fig.11b show a progressive increase of the number of the shells 
from two for QD10 to three for QD7 and to four for QD11 (see spectra in a magnetic field 
below), thus demonstrating changes of the number of electrons from ~6 to ~20. The increase 
of electron numbers is accompanied by a decrease of ∆E, as expected. 

 
Fig. 11. Low-temperature (10K) NSOM spectra of five metallic single InP/GaInP QDs . The 
s-peak energy ES is 1.7064, 1.6992, 1.6994 and 1.7041, 1.6981 eV for QD7, QD8, QD9 and 
QD10, QD11, respectively. Peaks * are contributions of neighboring QDs. 

In addition to the shell peaks the spectra of single InP QDs display emission features related 
to so-called shake up or Auger processes denoted in Fig11a and b as SU. These features 
appear as low energy tails of the s-shell peak and for some dots they resolve into a separate 
band shifted by ~∆E/2 (see QD9 and QD10). The scaling of the SU emission energy with ∆E 
is seen in Fig.11b. The SU emission occurs in many-electron systems when a recombining 
electron-hole pair excites surrounding electrons via the Coulomb interaction. In a 2DEG the 
SU emission appears at high magnetic fields via excitation of electrons into higher Landau 
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levels and related magneto-plasmons (Butov et al., 1992; Hawrylak&Potemski, 1997; Nash et 
al., 1993). SU emission from the excited states was also observed in an InAs QD ensemble 
(Paskov et al., 2000). In the Wigner localization regime one can expect a vibronic structure of 
the SU emission, as was discussed in section 4.2.  

To probe Wigner localization in the metallic dots we used a magnetic field which effectively 
increases rs by squeezing the electron motion. With increase of the magnetic field the WM is 
formed above the molecular-droplet transition at magnetic field >4T ((Maksym et al., 2000; 
Reimann&Manninen, 2002; Szafran et al., 2003). Details of this phenomenon follow. 

7.3 Emission spectra of metallic dots in a magnetic field 

7.3.1 Optically induced intra-dot magnetic field 

Fig. 12a and b presents circular polarized emission spectra of QD11 and QD8 measured at 
magnetic field B=0, 1, 2 … 10T.  

The s-shell band in Fig. 12a (QD11) at zero field is not polarized. With increasing magnetic 
field it becomes circularly polarized. The dominant emission of this band is σ+-polarized for 
B=1-3 and 9-10T and σ--polarized for B=5-7T. Zeeman splitting varies from +0.3 meV for 4T 
to -0.3 meV for 8T. The band shifts to higher energies with magnetic field.    

 
Fig. 12. Circularly polarized components (σ- - solid, σ+ - dotted) of emission spectra of QD11 
and QD8 in magnetic field (0, 1, 2, …10 T). Inserts show position of the energy of the s-peak 
versus magnetic field. Dashed lines are drawn for clarity. 

The s-shell band in Fig. 12b (QD8) shows different magnetic field behavior. First, unlike 
QD11, it has strong circular polarization and Zeeman splitting at zero magnetic field. Both 
circular polarization and Zeeman splitting disappear at 2T. Second, the band has a strong 
low energy shift (slope~0.8 meV/T) for magnetic fields 0-2T. For higher fields it has a high 
energy shift with a slope of 0.25 meV/T. Our observations of the circular polarization at 
zero magnetic field and negative magnetic field shift at B=0-2 T for QD8 reflect a strong 
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internal magnetic field. It arises from optical pumping of the nuclear spins (Brown et al., 
1996; Maleinsky et al., 2007; Tratakovskii et al., 2007), inducing an internal magnetic field 
(Bint) of 2T which is anti-parallel to the external field. Such a field can induce the Wigner 
localization even at zero external magnetic field and thus using optical pumping gives 
additional control of WM formation. 

7.3.2 Observation of the molecular-droplet transition  

The measurements of the behavior of the multi-shell peaks in a magnetic field allow 
observation of a magnetic-field-induced phase transition of a WM using magneto-NSOM 
spectroscopy which is similar to that observed in Coulomb blockade measurements using 
nano-lithographically-defined GaInAs/AlGaAs QDs in a SET (Ashoori, 1996; Kastner, 1993; 
Tarucha, 1996). These measurements also confirm a shell type nature of an emission 
manifold of InP/GaInP QDs and estimate “valence” shell filling. In Fig.13a and b we show 
the unpolarized emission spectra versus magnetic field of QD8 and QD11 having ∆E=4.5 
and 3.5 meV and N~10 and 20, respectively (see Fig.11a and b). In Fig.13c and d we compare 
the magnetic-field-induced shifts of the shell peaks for these QDs with the energy levels of 
the Fock-Darwin (FD) Hamiltonian. From Fig.13b and d one can see that for QD11 having 
larger size (i.e. smaller ∆E) than QD8, the f-shell peak is observed. Here the FD levels follow 
the experimentally observed shifts only for field up to 3T indicating filling of all f shell 
states, which gives electron number 19-20. At higher fields peak positions shift slightly to a 
lower energy and the d peak transforms to an x peak. This can indicate a transition of the 
electrons from the third (υ=2) to the second (υ=1) Landau levels. However, FD levels follow 
experiment only approximately and no distinct assignments of the shell peaks can be made 
at B>3T. We should point out that at 10T only a s-shell peak dominates the spectra and all 
other shells strongly suppressed. 

  
Fig. 13. Near-field spectra at 10 K representing shell structure (peaks s-g) of QD8 (a) and 
QD11 (b) at magnetic fields 0, 1,..,10T. Peaks * are contributions of neighboring QDs. Energy 
shift of emission peaks of QD8 (a) and QD11 (b) versus magnetic field (solid circles) are 
shown in (c) and (d), together with calculated Fock-Darwin energy levels (solid curves) and 
Landau levels υ=0 and 1 (dashed lines). In (c) and (d) the abscissa is the net internal magnetic 
field. 
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For QD8 (Fig.13a and c) the observed magnetic-field-induced shell shifts follow the FD 
energy levels remarkably well. Here two magnetic-field induced transitions are observed. 
The first transition occurs at B=2T arising from an internal magnetic field (Bint) of 0T which 
was discussed above (see Fig12.b). In the unpolarized spectra presented in Fig.13a, Bint is 
responsible for the shift to lower energy of the s- and d-shell peaks at B<2. For B>2 (Bint>0) 
the peak positions shift to increasing energy (see Fig.13c). In the range B=2-7 T (Bint=0-5 T) 
the p-shell peak appears. At B>7 T (second transition; Bint=5 T) the p-shell peak transforms 
into a d-shell, and d into g-shell. As can be seen from Fig.13c the second transition (at 7T) 
corresponds to transition of electrons from the second (υ=1, p/d-shells) to the first Landau 
level (υ=0, d/g-shells). Such a transition was previously observed in the magnetic field 
dependence of Coulomb blockade and can be described as a molecular-droplet transition 
(Oosterkamp et al., 1999). It arises from formation of a maximum-density-droplet at B=2, 
and its decomposition is accompanied by a WM formation at B>4 T (Maksym et al., 2000; 
Reimann& Manninen, 2002; Szafran et al., 2003 ). In the spectra the WM formation at a high 
magnetic field corresponds to a strong increase of the intensity of the g-shell peak (in 
contrast to QD11).  

7.4 High-spatial resolution NSOM imaging 

We used the uncapped structure to perform ultra-high-spatial resolution imaging and 
spectroscopy of InP/GaInP QDs using uncoated fiber probes working in an apertureless 
regime. In Fig.14a and b we present monochromatic 5K-NSOM images (detection energy 
1.713 eV) taken for the same area (size 500x500 nm2) in two separate scans. Fig.14c and d 
shows an LSS plot for the dashed line along the dot center shown in Fig.14a, and seven 
selected spectra from this scan (denoted 1-7), respectively. Fig.14e shows classical 
positions of the electrons and the trion for nine (cartoons I and II) and ten (cartoon III) 
electron WMs. In the NSOM image in Fig.14a and b in addition to the bright resonant QD 
denoted Qa (emission energy 1.713 eV), two weaker non-resonant QDs denoted Qb and 
Qc (emission energy 1.701 and 1.695 eV, respectively) appear in the images. Resonant Qa 
dot has ∆E=5.5 meV and three shells are filled, as can be seen from the spectra in Fig.14d. 
The image of Qa has size ~120 nm and it reveals a strong (up to 50%) intensity fluctuation 
on a length scale ~30 nm, which is of the order of the single electron separation in a WM 
in the classical limit. We determined, using LSS in Fig.14c and d, that the photon counting 
detection noise only partly contributes to the spatial intensity fluctuation in Fig.14a and b 
(note that photons are counted only for 20 ms in monochromatic imaging). In the image in 
Fig.14c plotted from spectra measured by a CCD with accumulation time 1 s we observed 
similar spatial fluctuations of the emission intensity. From Fig.14c and d it is seen that 
intensity fluctuations are accompanied by changes of the SU-part of the emission spectra 
and by the spectral diffusion of a few meV. Spectral diffusion indicates the effects of 
rearrangement of the charge distribution inside and/or around the QDs under near- field 
excitation. It is seen from Fig.14c and d that for positions 1, 2, 4 and 7 the SU-emission 
consists of two peaks SU1 and SU2, having energy shift from the s-peak of ~3 and 5 meV, 
respectively. For positions 3 and 6 the SU1 peak reveals a splitting of ~2 meV, and for 
position 5 a SU0 peak having energy shift ~2 meV appears. For position 5 the intensity of 
the SU0 emission peak is very strong: it is nearly the same intensity as the intensity of the 
s-peak. Using the analysis of the “electron-phonon” interaction discussed in section 4.2 
and WM excited states discussed in section 3 we suppose that the SU1 and SU2 peaks can 
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be related to the translational and breathing vibrational modes and that the splitting of 
the SU1 peak is related to a other normal mode of a 9e-WM. We assign the SU0 peak to 
isomeric excitation of a 10e-WM. The appearance of the different (from translational and 
breathing) modes for positions 3 and 6 can be explained by photoexcitation at the edge of 
the dot, in which recombination of an “edge” trion generates the WM rotational motion 
(cartoon II in Fig.14e). For photoexcitation at the center of the dot (position 4), no rotations 
are generated by symmetry (see cartoon I in Fig.14e). Positions 1 and 7 are non-contact 
positions for which the photexcitation can be considered uniform. We can expect that for 
such excitation the emission is generated by the trion bound to the central electron. We 
also suppose that the enhanced coupling to the vibrational mode arises in a 10e-WM due 
to the formation of a two-electron isomeric arrangement at the center see Fig.14e, cartoon 
III). We obtained further evidence of vibronic structure of the SU-emission from analysis 
of spectra of the excitonic dots.  

 
Fig. 14. High-spatial resolution NSOM measurements of InP QDs at 5 K: (a and b) 
monochromatic NSOM image, (c) false-color LSS-plot for a scan along the QD (see dashed 
horizontal line in a); (d) seven selected spectra from LSS (see vertical arrows at the bottom of 
c) from the linear scan; (e) classical arrangements of electrons and trion in photoexcited state 
of nine (upper and central) and ten electron WMs. In (a) and (b) Qa, Qb and Qc dashed large 
circles outline different QDs, while the small circles in dot Qa represent possible WM 
electron positions. 

7.5 Emission spectra of Wigner molecules 

Fig. 15a-d show spectra of four excitonic dots (QD2e, QD3e QD4e and QD5e) having different 
intensity distributions of the shell and SU peaks. The ∆E for these dots have values between 
1 and 1.9 meV. Three shell peaks are observed for QD2e, QD3e, and QD4e and two for QD5e. 
The p-shell peaks for QD2e and QD4e reveal two components having splitting 0.4-0.5 meV 
whereas no components are observed for QD3e and QD5e. The p- and d-shell peaks are 
strong for QD2e, QD4e and QD5e and weak for QD3e. The intensity of the SU emission is 
strong for QD2e, QD3e and QD5e and very weak for QD4e. The energy shift of the SU peaks 



Molecular States of Electrons: Emission of  
Single Molecules in Self-Organized InP/GaInP Quantum Dots 

 

145 

in units of ∆E is equal to 0.2, 0.4 and 1.5 for QD2e, QD3e and QD5e. The right inserts in Fig. 
15 shows our suggestions for the WM structure, which could explain the observed 
differences in the spectra.  

We suppose that QD2e, QD3e, QD4e, and QD5e have ten, ten, nine, and two electrons, 
respectively. Three of the electrons in QD2e are centrally located, whereas only two are 
centrally located in QD3e. For QD2e the optical transition interacts equally with all three 
electrons, giving the high intensity of the p- and d-shells. The SU structure arises from the 
interaction with the other WM arrangement (QD3e ) having two central electrons, and the 
energy 0.2∆E is the splitting between these arrangements, which is the energy difference of 
the isomeric excitations. The intensity distribution for QD3e is similar to the metallic dot Qa 
in Fig.14 (see also Fig16b below).  

The QD4e dot must have electron number between 7 and 9 since the d shell is populated and 
the existence of the central electron suppresses the SU emission. The SU structure of QD5e 
allows us to assume that this is a two electron QD. This is supported from our analysis of 
the SU peak structure presented in Fig.16a.  

 
Fig. 15. Emission spectra of excitonic QDs molecules at 10 K. Right inserts show possible 
classical positions of electrons and trion of corresponding WMs in the excited state. Es 
energy (in eV) is 1.7073 for QD2e, 1.766 for QD3e , 1.687 for QD4e and 1.7438 for QD5e  

7.5.1 Vibronic structure of a two-electron Wigner molecule 

We use six Gaussian peaks to model the SU structure of this QD5e (see Fig.16a). Our analysis 
has shown that the energy of these peaks can be grouped in two sequences – one is n*∆E 
and the other is n*1.5∆E, or nω0 and n*1.5ω0=n*ωS, where n is an integer. These energies are 
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naturally assigned to bending and stretching vibrations of a 2e-WM (see Eq. 1), which 
according to the theoretical calculations have values ω0 and 1.7ω0. The smaller value of the 
frequency of the stretching vibration observed experimentally (1.5ω0 instead of 1.7ω0) can 
result from deviations of the real confinement potential from the ideal 2D potential. The 
anti-Stokes peak ω0 arises from the thermal activation and its relative intensity is well 
described by the thermal factor exp(-∆E/kT), which for T=10K is equal to 0.3. From the 
intensities of the peaks we can estimate Huang-Rhys factors for bending and stretching 
vibrations to be ~0.2 and ~0.1. 

 
Fig. 16. Gaussian contour decomposition of emission spectra of QD5e (a) and comparison of 
emission spectra of two QDs having shell splitting ∆E=1.7 and 5.5 meV (b). The horizontal 
axis in b has reduced units (Es-E)/∆E. 

7.5.2 Size-dependent structure 

Fig. 16b shows the comparison of the emission spectra of the metallic and the excitonic dots 
having similar intensity distributions of the SU peaks. These are the Qa dot (lower spectrum 
in Fig. 16b), the spectrum of which is also shown in Fig.14d for tip position 5, and the QD3e 
dot (upper spectrum), the spectrum of which is shown in Fig.15b. The shell splitting of these 
two dots is 1.7 and 5.5 meV, which corresponds to sizes 120 and ~70 nm, respectively. We 
suppose that these two dots have the same electron occupation equal to ten, which 
corresponds to rs~2 and ~1.2. The horizontal axis in Fig.16b is in reduced units n=(ES-E)/∆E 
or n=(Es-E)/ħω0 and from Fig.16b a very good coincidence of the spectral shape is seen. This 
coincidence is remarkable, accounting for a nearly three times difference in the absolute 
spectral range, which is equal 15.3 and 45.5 meV for QD3e and Qa, respectively, for n values 
from -5 to 4 in Fig.16b. These dots have a strong SU peak having the same intensity as the 
intensity of the “zero-phonon” line, i.e. the s-peak. The weaker structure also observed near 
n=2 for QD3e and n=1 for Qa. The SU peak can be assigned to the isomeric excitation 
between the ground isomer having [2, 8] classical electron geometry and excited isomer 
having [3,7] geometry. This follows from the fact that this is the only excitation which 
linearly scales with rs (see Fig.2). The weaker structure does not scale with rs and it shows 
shrinkage of the energy. Such shrinkage is expected for a transition from partial Wigner 
localization to Fermi liquid discussed in section 3.1 for 2e-WM. For the excitonic dot the 
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energy of the weak structure is ~2ħω0, which fits well to the high frequency vibrational 
modes. These modes include the breathing mode, having frequency 1.7ω0 (see Fig.3). 
Reduction of this energy down to ħω0 for a metallic dot reflects the loosing of the molecular 
character of the electron distribution for rs~ 1.2 and failure of the classical approximation. In 
this Fermi liquid regime the electron motion is described only by translation vibration 
having frequency ω0. 

We should also point out the stronger contribution of p- and d-shell peaks in the smaller Qa 
dot, which reflect stronger overlap of hole and electrons wave functions. 

8. Conclusions 
We presented the results of an experimental (photoluminescence) study of correlated 
states of electrons in a WM in self-organized InP/GaInP quantum dots. The unique 
properties of these QDs are their relatively large lateral size (~80-200 nm) and their ability 
to accommodate up to 20 electrons, providing electron density up to 2x1011 cm-2 and 
strong emission intensity. Using high-spatial-resolution low-temperature near-field 
scanning optical microscopy (NSOM) having spatial resolution up to 30 nm in 
combination with a high magnetic field, we were able to resolve emission spectra of single 
QDs, and to observe crossover from a Fermi liquid to WM behavior at a critical density of 
5x1010 cm-2. A magnetic-field-induced molecular-droplet transition has been observed in 
the Fermi liquid regime. In the Wigner molecule regime we observed a rich vibrational 
structure, which opens the way to identify electron arrangement in WMs. Further 
experiments are in progress. 
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1. Introduction 
The self-assembled InAs quantum dots (QDs) are the subject of substantial interest during 
last fifteen years due to both fundamental scientific and application reasons. In these 
systems, the strong localization of an electronic wave function leads to an atomic-like 
electronic density of states and permits to realize the novel and improved photonic and 
electronic devices. Microlectronic and optoelectronic devices based on quantum wells 
(QWs) with InAs QDs have been the subject of investigation for the applications in 
semiconductor lasers for the optical fiber communication [1-3], infrared photo-detectors [4-
6], electronic memory devices [7,8], as well as single electron devices and single photon light 
sources on the base of single-QD structures for the quantum information applications [9-12]. 
QDs are especially attractive for the applications in semiconductor lasers. For laser or 
photodiode applications the surface density of QDs has to be high, but for single-QD 
devices the QD density has to be low. As a result, there is an extensive effort to manipulate 
and control the position, size, shape and density of QDs [13-19].  

Self-assembled InAs/GaAs QDs in lattice-mismatched systems can be achieved by using the 
Stranski–Krastanow (S–K) growth mode [20-22]. In the process of InAs/GaAs QDs growth 
using the S–K growth mode, the InAs mismatched layer growths two dimensionally on the 
GaAs substrate during the initial stage; then, above a critical thickness, the strain increased 
and the dislocation-free QDs with a three-dimensional shape are formed on a residual two-
dimensional wetting layer (WL) [23,24]. InAs/GaAs QD structures grown using the S–K 
mode have inherent several problems: the density random distribution, the large 
temperature-dependent variation of the photoluminescence (PL) intensity and line width 
resulting from the nonuniform size and density of InAs QDs [25] etc. Precise control of the 
QD size and the homogeneity of InAs QD distribution is necessary for achieving the high-
performance devices.  

2. Advances of InAs QDs in InGaAs/GaAs quantum wells  
InAs/GaAs QDs are especially attractive for the applications in lasers because the QD based 
lasers have a higher differential gain, lower threshold current density, and improved 
temperature performance in comparison with QW lasers [1-3]. The band structures of 
InAs/GaAs QDs are well suited for covering the 1.30 and 1.55 µm spectral ranges, important 
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in optical fiber communications. These wavelengths are impossible to achieve in quantum 
well (QW) InAs/GaAs structures due to the strain-limited thicknesses. It is shown that the 
QD density in laser structures can be enlarged significantly by growing the dots within  
InxGa1-xAs/GaAs QWs, in so called dot–in-a-well (DWELL) structures [3, 4]. In these 
structures photoluminescence has been enhanced due to better crystal quality of the layer 
surrounding QDs and more effective exciton capture into the QW and into QDs. 

A crucial aspect for the realization of efficient light-emitting devices operated at room 
temperature is the understanding of a temperature dependence of QD photoluminescence. 
PL intensity decay in InAs QDs as a rule attributed to thermal escape of carriers from QDs 
into the wetting layer or into the GaAs barrier [5-8], as well as to thermally activated capture 
of excitons by nonradiative defects in the GaAs barrier or at the GaAs/InAs interface [5, 9, 
10]. The unusual variations of emission energy and the full width at half maximum 
(FWHM) of PL bands in the InAs/GaAs self-assembled QDs have been investigated earlier 
as well [11, 12]. A decrease in the FWHM, together with a red shift of the emission 
wavelength were explained by the re-localization of carriers between dots caused by their 
inhomogeneous sizes. A set of theoretical works has been devoted to these questions, which 
described the carrier dynamics in QD systems using a rate equation model [13-19].  

However, it is not still clear the details of exciton capture and thermal escape in high quality 
QD structures. Two main ways are discussed: a) thermal escape (capture) of carriers 
(electron and hole) in/from QDs takes place as an exciton or correlated electron-hole pairs 
[17, 18]; or b) the excitons dissociate and single electrons (holes) thermally escape or capture 
independently [19-21].  

The first mentioned mechanism is the subsequence of the fact that the activation energy of 
ground state PL thermal decay measured in the regime of strong quenching matches the 
difference between the GaAs band gap and QD ground state (GS) energy (the sum of 
barrier heights for electrons and holes) [17-19]. The same effect was earlier revealed in 
strained InGaAs/GaAs QWs, where the activation energy of PL thermal decay 
corresponded to the difference between the GS energies of QW and the GaAs barrier, 
defined as total confinement energy, i.e. the sum of electron and hole potential depths. 
The main conclusion follows from this fact: excitons or electron-hole pairs are emitted 
from QWs into the barrier [22].  

The motivation for the second mechanism was presented in [19-21]. It was shown in [19] at 
the InAs/GaAs QD PL investigation under low excitation and high temperature the ground 
state PL intensity varies quadratically with excitation density. This fact was explained as an 
evidence of independent occupation of QDs by electrons and holes with the probability 
which is proportional to the multiplication of their concentrations (nenp). 

Other evidences for supporting the second approach were shown in [20] at the investigation 
of cathodoluminescence thermal quenching in InAs/GaAs self-assembled QDs at high-
excitation conditions. The significant reductions in the thermal activation energies in the 
230–300oK temperature range for the ground (GS) and excited states (ES) are found. It was 
suggested that excitons dissociate and the thermal reemission of single holes from QD states 
into the GaAs is responsible for the observed temperature dependence. The same 
explanation was supposed in [21] at the joint investigation of InAs QD and InGaAs QW PL 
thermal decays.  
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In DWELL structures the introduction of surrounding InxGa1-xAs/GaAs QWs changes the 
QD density, the elastic strain in structures, the height of potential barriers for exciton 
capture and thermal escape in/from QDs as well as can increase in some cases the density of 
nonradiative (NR) centres. In these structures the mechanism of PL intensity thermal decay 
could depend strongly on parameters of DWELL. Improved understanding of the operation 
and design of InAs/InGaAs QD-based devices could be emanated from studies involving 
the excitation and temperature dependences of PL in such structures. 

Note the highest emission intensity of QDs was achieved in the symmetric wells with the 
composition of quantum well (QW) capping/buffer layers of In0.15Ga0.85As/GaAs [3]. One of 
the best methods of manipulating the InAs QD density and sizes inside of QWs related to 
controlling the QD growth temperatures [3,12-15]. But even for the optimal QD growth 
parameters and capping/buffer layer compositions, the InAs QD structures are 
characterized by photoluminescence (PL) inhomogeneity along the wafers [16-19].  

The inhomogeneity of InAs QD parameters across the wafer due to the size, chemical 
composition and stress variations leads to a broadening of emission spectra. This type of 
problems in QD structures was investigated using scanning PL spectroscopy [23, 26-29], 
high resolution transmission electron microscopy [30], scanning tunneling microscopy [31], 
as well as spatially resolved scanning tunneling luminescence [32]. However, in dot-in-a 
well structures, where the InAs QDs coupled with InGaAs/GaAs QWs, the physical reasons 
of emission inhomogeneity still have to be discussed. The technology of growth of InAs QD 
structures has become more reliable recently enabling the systematic studies their physical 
properties and emission inhomogeneity of QD ensembles.  

3. PL spectra of symmetric GaAs/In0.15Ga0.85As/GaAs QWs with the different 
density of InAs QDs 
The solid-source molecular beam epitaxy (MBE) in V80H reactor was used to grow the 
waveguide structures consisting of the layer of InAs self-organized QDs inserted into 12 nm 
In0.15Ga0.85As/GaAs QWs. The thickness of the buffer In0.15Ga0.85As layer was 2nm, which 
was grown on the 200.nm GaAs buffer layer and the 2 inch (100) GaAs SI substrate (Fig.1). 
Then an equivalent coverage of 2.4 monolayers of InAs QDs were confined by the capping 
(10nm) In0.15Ga0.85As layer and by the 100nm GaAs barrier. Investigated structures are 
grown under As-stabilized conditions at five different temperatures: 470C (#1), 490C (#2), 
510C (#3), 525C (#4) and 535C (#5), during the deposition of the InAs active region and 
InGaAs wells, and at 590-610C for the rest of layers. All layers were grown with the growth 
rate of 0.30 ML/s, but for the QD formation the process provides deposition of 2.4 ML with 
the growth rate of 0.053 ML/s. 

 
Fig. 1. The schematic design of studied QD structures 
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For AFM measurement the process of growth was stopped for satelite samples after the 
formation of QDs. The in-plane density of QDs changed from 1.1x1011 to 1.3x1010cm-2 (Table 
1) when the temperature increases from 470 up to 535 C [4, 33]. The samples were mounted 
in a closed-cycle He cryostat where the temperature is varied in the range of 10 - 300 K. PL 
spectra were measured under the excitation of the 514.5 nm line of a cw Ar+-laser at an 
excitation power density form the range of 10-1000 W/cm2. The setups used for PL and PL 
excitation spectroscopies were presented earlier in [5] and [17], respectively.  
 

Tgr 

(°C) 
NQD 
cm-2 

DQD 
nm 

h 
nm 

h/D single
QDS x 1014, 

cm2 

Surface Area 
of  QDs, cm2 

470 1.11011 12 6 0.50 113.0 0.124 

490 7.01010 14 8 0.57 153.9 0.108 

510 3.41010 18 13 0.72 254.3 0.086 

525 1.81010 24 11 0.46 452.2 0.081 

535 1.31010 28 10 0.36 615.4 0.080 

Table 1. Average parameters of InAs QDs estimated by AFM [33] 

Typical PL spectra of the DWELL structures #2, #3 and #4 measured at different 
temperatures at the excitation light density of 500 W/cm2 are shown in Fig.2. The structures 
#1  and #2 grown at low temperatures 470 and 490C are characterized by one PL band only 
(Fig.2a) with a higher value (Fig.3b) of the full width at half maximum (FWHM). In 
structures #3, #4 and #5 two PL bands appear due to the recombination of excitons localized 
at a ground state (GS) and at first excited state (1ES) in QDs (Fig.2b,c).  
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Fig. 2. Typical PL spectra measured at different temperatures for the DWELL structure 
#2(a),  #3(b) and #4(c) at the excitation light density of 500 W/cm2. 
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The density of QDs decreases monotonically with the rise of QD growth temperatures from 
470 up to 535 oC (Table 1). Thus the PL intensity diminishing can be expected with reducing 
a QD density. The QD diameters in studied structures increase monotonically from 12 up to 
24-28 nm with the rise of QD growth temperatures from 470 up to 535 oC. Thus it is possible 
to expect that the PL peak position in QDs has to shift monotonically to low energy. 

Fig.3 presents the variation of in plane QD densities, estimated by AFM on satelite samples, 
as well as the average GS integrated PL intensities and the  GS peak FWHM measured at 
300K in studied structures.  
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Fig. 3. The average integrated PL intensities measured in DWELLs with QDs grown at 
different temperatures (a) and the FWHM and QD density in DWELLs with QDs grown at 
different temperatures (b). 

However the PL intensity increases (Fig.3a) and the GS peak shifts to low energy in 
structures with QDs grown at 490 and 510oC (Fig.2a,b). On the contrary the QD structures 
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grown at 525 and 535oC are characterized by lower intensities of GS emission (Fig.3a), by 
smallest FWHM (Fig.3b), and the peak position of GS PL bands shifts into higher energy 
(Fig.2b,c). Note that lower PL peak energy corresponds to higher PL intensity (Fig.2b and 
3a). Thus the variation non monotonous the PL intensity ans peak positions versus QD 
density ( QD growth temperature) has been revealed in studied QD structures. 

4. PL excitation spectra of InAs QD structure and PL excitation power 
dependences 
The typical PL excitation spectrum measured at 80K is shown in Fig.4.  

 
Fig. 4. PL excitation spectrum for the structure #3. 

In high excitation energy range the spectrum presents a sharp PL intensity increase due to 
the fundamental light absorption (at 1.51 eV) in the GaAs barriesr. In the low energy region 
the PL excitation spectrum  can be considered as a superposition of the four absorption 
bands: A, B, C and D (Fig.4, Table 2).  
 

Optical 
transitions 

GaAs 
Band gap peak A peak B peak C peak D QD-PL QW-PL 

E, eV 1.51 1.46-1.47 1.44 1.42 1.35-1.36 1.06-1.11 1.32-1.33 

Table 2. Optical transitions in DWELL structures at 80K 

The peak A spectral position (1.46-1.47eV) is close to the GS resonant absorption related to 
the  WL in InAs/GaAs QD structures [17, 24, 25]. Note the authors [25] registrated at 100K  
in PL excitation spectrum two overlapping maxima (1.45-1.47eV) which were attributed to 
the photon absorption in the 2D wetting layer  between the heavy hole and light hole GS 
subbands to the GS electronic subband. In studied DWELL structures the GS resonant 
absorption in the 2 nm buffer In0.15Ga0.85As QW can  contribute in other peaks B and C. Thus 
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both layers (the In0.15Ga0.85As buffer QW and WL) are the same in all studied DWELL 
structures and can be responsible for the peak A, B and C  in the PL excitation spectrum. The 
spectral position of the lowest energy absorption band (1.35 eV, peak D) is close to one of 
the PL band (1.31-1.32eV) caused by GS exciton recombination in the capping InGaAs QW 
(Table 2) [34]. Thus the peak D can be attributed to the GS resonant excitation in the capping 
In0.15Ga0.85As /GaAs QW (Fig.4).  

 
Fig. 5. PL integrated intensity versus excitation power measured for all studied structures  

The dependences of integrated PL intensity versus excitation light power, measured at 12K 
with the aim to avoid the thermal decay process, are presented in Fig.5 for all studied 
structures. The QD structures #2, #3 and #4 with highest emission intensity are 
characterized by the linear dependence of the integrated PL intensity (I) versus excitation 
power (I≈Pn), n=0.95-1.00 (Fig.5). In QD structures with low emission (#1, #5) the integrated 
PL intensity changes sublineary (n=0.72-0.93) with excitation  light power (Fig.5).  

5. Emission inhomogeneity along the QD structures 
5.1 Scanning PL spectroscopy at 300K 

Photoluminescence inhomogeneity of QD ensembles is studied along the scanning line 
crossed the wafers from the periphery of QD structures to the center. In this case PL spectra 
were measured at 300 K in a set of points on the QD structures under the excitation by the 
804 nm line of a solid state IR laser at an excitation power density of 100 W/cm2. PL spectra 
were dispersed by a SPEX 500M spectrometer and recorded by a liquid-nitrogen-cooled Ge 
detector with a standard lock-in technique. 
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The inhomogeneity of QD ensemble emission along the line crossed the structures #1 and #2 
related mainly to the variation of PL intensity (Fig.6). The integrated PL intensity in the 
structure #1 is low in comparison with #2, and the variations of PL peak positions are small 
for both DWELLs (Fig.6): Δhvm ~0.003 eV (#1) and Δhvm ~0.010 eV (#2). Thus in QD 
structures with InAs QDs grown at low temperatures (470-490oC) the less integrated PL 
intensity (Fig.3a), the high dispersion of QD sizes and, as a result, the larger value of FWHM 
(Fig.3b) of GS PL bands, but the low dispersion of QD ensemble parameters along the line 
crossed the structures #1 and #2 have been detected (Fig.6a,b).  

0.96 0.97 0.98 0.99 1.00 1.01 1.02

0

2000

4000

6000

 

 

P
L 

In
te

ns
ity

 (a
rb

. u
n.

)

GS peak energy (eV)

b

#2300K

Tg=490oC

0

200

400

600

800

1000

  

a

#1300K

Tg=470oC

 
Fig. 6. The PL intensity and GS PL peak positions measured along the line scan from the 
center of QD structures #1 (a) and #2 (b) to their periphery. 

As it follows from fig.7 the decrease of integrated PL intensity, measured along the line from 
the center to periphery in QD structures #3, #4 and #5, is accompanied by the ‘‘blue’’ energy 
shift of the PL maximum. The FWHM of GS PL bands in the structures #3, #4 and #5 was 
equal to 35-40 meV (Fig.3b) and it is smaller than those in mentioned above structures #1 
and #2. The inhomogeneity of QD ensemble emission along the lines crossed the structures 
#3, #4 and #5 is characterized by the essential variations of GS peak positions (Fig.7): Δhvm 
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~ 0.02 eV(#3), 0.03 eV(#4) and Δhvm ~0.04 eV(#5), respectively. The integrated PL intensity 
of QD ensembles in the structure #3 in two- or five-fold higher than in #4 and #5, 
respectively. Thus in the structures #3, #4 and #5 the low dispersion of QD sizes and, as a 
result, less values of FWHM, but the essential PL energy shift and the dispersion of QD 
ensemble parameters along the line crossed the structures have been detected (Fig.7). 

The emission inhomogeneity in the QD structures #1 and #2 is related mainly to the change of 
PL intensity owing the density variations of QDs and/or of nonradiative centers (NR) in QD 
structures. At the same time the PL peak positions vary negligibly (3-10 meV) testifying that 
the difference in QD sizes is small. In the structures #3, #4 and #5, as it follows from fig.7, the 
decrease of PL intensity along the line scan is accompanied by the ‘‘blue’’ energy shift of PL 
maximum. This effect leads at the wafer periphery to shallower QD localized states (i.e. 
smallest electron and hole binding energy), poorer carrier localization and a higher probability 
of carrier thermal escape, which reduces the integrated QD PL intensity at 300K. 
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Fig. 7. The PL intensity and GS PL peak positions measured along the line scan from the 
center of QD structures #3 (a), #4 (b) and #5 (c) to their periphery. 
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5.2 Analyses of PL inhomogenouty reasons in studied QD structures at 300K  

The ground state PL intensity (IPL) of InAs/InGaAs QDs is directly proportional to internal 

quantum efficiency   which can be presented as: R

R NR


 




. For QD emission the 

radiative recombination rate is [35]: 
1

D pN e
i i

R
Ri

f f



  , where e

if and p
if  are the occupation 

probabilities for electrons and holes at ground state levels given by the Fermi-Dirac 
distribution functions, fe, fp=(exp[(En,p −µn,p)/kT]+1]−1, where µn,p are the quasi-Fermi-levels 
for the conduction and valence bands, respectively, measured from the QD band edges, En,p 
are the quantized energy levels of an electron and a hole in th conduction and valence bands 
of a QD, measured from the QD band edges, ND is QD density and τR is electron–hole 
radiative recombination time in the QD [36]. At low excitation light intensity (100 W/cm2), 
used during GS PL scanning, which is well below the GS saturation intensity, we can 
present the occupation probabilities using Maxwell -Boltzmann distribution functions fe, f 
p=exp(−En,p+ µn,p /kT). Taking into account that excitation light power is not changed during 
GS PL scanning experiment, we can assume that µn,p are constant along the scanning line 

and the PL intensity variation occurs due to parameters En,p only [35]. Thus ef ≈ exp 
e
locE

kT
 

and pf ≈ exp
p
locE

kT
, where  p

locE  and e
locE  are the binding energy of electron and hole on GS 

levels in a QD. In this case for GS emission intensity at room temperature is possible to 
write:   

 1

1 1

1 1
exp( ) exp( )

pe InGaAs QDN N
loc GSloc GS

PL R
RQD RQD

E E E E
I

kT kT


 
  

    ≈ exp
QD
GSE

kT


  (1) 

where InGaAs
GSE is energy gap between electron and hole quantized levels in narrow-gap 

In0.15Ga0.85As layer and QD
GSE  is energy gap between electron and hole quantized levels in 

QD. Finally the GS PL optical transition energy ( max
GShv  ) is the difference between QD

GSE and 

exciton binding energy ex
binE  in QDs. Exciton binding energies were computed as the function 

of QD size using 8-band k·p approach and are estimated as 22 meV for QDs with the base 
size 14 nm [37]. Thus the ex

binE value is small in comparison with GS PL optical transition 

energy ( max
GShv  ) equal to 1.06-1.11 eV. If the InGaAs composition is the same in any points of 

the capping/buffer layers, the linear dependence of GS PL intensity versus PL peak 
positions in QD ensembles in semi-logarithmic plot follows from Eq.1 (Fig.7). At the same 
time the slope of this linear dependence is proportional to kT. The fitting procedure was 
applied to the analysis of PL intensity data presented in Fig.7 and the slopes of these three 
lines were estimated as ~25 meV that is exactly the value of kT at 300K. Thus the analysis of 
linear dependence in Fig.7 testifies that the variation of GS PL intensity in the QD ensemble 
along the line scan in the structures #3, #4 and #5 is owing to the QD size variation – its 
decreasing from the wafer center to the periphery [38]. The last effect can be connected with 
temperature inhomogeneity along the wafer at the QD growth process. 
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6. Temperature dependences of PL integrated intensities and peak positions 
Two reasons can explain the variation non monotonically of PL peak positions and the PL 
intensity in studied QD structures (Fig.2 and 3a): (i) the change of QD composition due to the 
Ga/In inter diffusion between the InAs QDs and capping/buffer In0.15 Ga0.85As QW layers or 
(ii) the different levels of elastic strains in QD structures due to the difference in QD densities 
and sizes. To distinguish these two reasons PL spectra at different temperatures in the range 
12-300 K have been studied. The temperature dependences of integrated PL intensities and 
peak positions of GS PL bands for the structures #1, #3, #5 are shown in Fig.8. 
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Fig. 8. Temperature dependencies of GS integrated PL intensities (a) and GS peak positions 
(b) measured for the structures #1, #3 and #5. Lines present the fitting results. 

The process of PL thermal decay starts at 80-120 K and it is characterized by different rates 
in the ranges T=100-180 K, T=180-250 K and T=250-300 K. At low temperatures up to 100 K 
the integrated PL intensity does not change, but the energy of GS peak decreases. The 
process of PL intensity decay starts at 100-120K in high quility structures #2, #3 and #4, but 
in structures of low quality (#1, #5) this process appears at 80-90K. 
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7. The analysis of Ga/In interdiffusion in QD structures with different density 
of InAs QDs  
Fig. 9 presents the variation of PL peak positions versus temperature in studied structures. 
PL peaks shift to low energy with increasing temperature due to the optical gap shrinkage. 
The lines in Fig.9 are the fitting results analyzed on the base of Varshni relation that presents 
the energy gap variation with temperature as [39]: 

  
2

o( )=E
+

aT
E T

T b
  (2) 

 

 
 

Fig. 9. The variation of PL peak positions versus temperature. The lines present the Varshni 
fitting results: 1- #1, 2- #2, 3- #3, 4-#4 and 5 - #5. 

The comparison of fitting parameters with the variation of energy band gap versus 
temperature in the bulk InAs and GaAs crystals (Table 3) has revealed that in studied QD 
structures the fitting parameter “a” and ‘b’ in the temperature range 12-250 K are very 
close to their values for the bulk InAs crystal only in the structures #2 and #3. But in other 
QD structures the fitting parameter “a” and ‘b’ are different a little bit from the values in 
the bulk InAs crystal (Table 3). The last fact testifies that the process of Ga/In inter 
diffusion takes place in these QD structures [33,42-44]. Note that the process of Ga/In 
inter diffusion in studied structures passes non monotonically versus QD growth 
temperatures. It means that not only temperature but some other factors discussed below 
are essential as well. 
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 E0 A b 
Structure numbers eV meV/ oK oK 

#1 1.082 0.355 110 
#2 1.089 0.346 98 
#3 1.010 0.300 95 
#4 1.049 0.330 110 
#5 1.079 0.335 130 

            InAs  [40] 0.415 0.276 93 
            GaAs [41] 1.519 0.540 204 

Table 3. The Varshni fitting parameters 

8. Model for the dependence of PL integrated intensity versus temperature  
An analysis of the thermal behavior of QD luminescence indicates  that excitons are the 
dominant electronic particles. Thus to modeling the dependence of the ground state PL 
intensity versus temperature the simple assumption is applied: the carriers are considered to 
behave as excitons or correlated electron-hole pairs. This assumption is a common feature of 
most exiting models [15-18]. The motivation of the choosing this approach in this paper will 
be clear from presented esperimental results as well.  

For InAs/InGaAs structures, the two-stage processes of exciton capture and thermal escape 
in/from QDs have been considered [17, 33]. These processes in QD structures can occur not 
only through the wetting layer (WL) states, as was proposed earlier [16, 18], but also 
through the capping/buffer InGaAs QW layers [17, 33]. However in [17] the localization of 
nonradiative defects was considered in GaAs barrier mainly. In present model two types of 
nonradiative defects: in the GaAs barrier (NR1) and in the capping/buffer In0.15Ga0.85As  
QWs (NR2) are taken into account [33]. To simplify the rate equations, one intermediate 
level, referred as QW, will be considered in the model.  

It is supposed that photo-generated excitons are created in GaAs barrier and in In0.15Ga0.85As 
QWs with generation rates GGaAs and GInGaAs, respectively. The exciton recombination takes 
place in the GaAs barrier, InGaAs QWs and in InAs QDs. In this model all QDs in an 
ensamble are assumed to be identical with the same properties and the process of carrier 
thermal redistribution between QDs is inessential. This is supported by the experimental 
fact that the FWHM of the ground state PL band is measured to be constant in the 
temperature range of 10-300K. The system of rate equations for exciton concentrations in the 
GaAs barrier (Co,), QWs (C1) and QDs (C2) can be written as:  

 0 0
0 1

1
exp

GaAs QW

GaAs QW QW QW GaAs
NR

dC CE
G C N C N

dt kT
 



 
      

 
  (3) 
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
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 2 2
1 2 exp

QW QD

QD QD QD QW
RQD

dC E C
C N C N

dt kT
 



 
     

 
 (5) 

Here 1
QW QWN QW    and 1

QD QDN QD    are exciton thermalization (capture) rates from 

the GaAs barrier into QWs and from QWs into QDs, respectively, QDN , QWN , GaAsN  is the 

density of states in QDs, QWs and in the GaAs barrier, QW , QD  are the exciton capture 

coefficients into QWs and QDs, 1
RQWτ , 1

RQDτ , 1
NR1τ and 1

NR2τ are the radiative exciton 

recombination rates in QWs and QDs as well as the nonradiative  recombination rates in the 
GaAs barrier and in QWs, respectively. The values EGaAs-QW, EQW-QD, EGaAs-QD are the energy 
differences between: (i) the GaAs band gap and the GS energy in QWs, (ii) the GS energy in 
QWs and in QDs, (iii) the GaAs band gap and the GS energy in QDs, respectively. 

The temperature dependence of the exciton escape rates from QWs and QDs is taking into 
account, but temperature dependences of other parameters (trapping and recombination 
coefficients, density of states, exciton thermalization rates) are neglected. This is motivated 
by simplifying the calculation process and by minimization of the number of parameters 
samulteniously with significant progress in understanding the experimental results. Several 
comments deal with the experimental base for such simplifications are discussed below.   

In presented model the variation of the GS PL intensity (I(T)) in QDs versus temperature in 
the stationary state can be described by the formula: 

 

 
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(6) 

Here the radiative lifetime in QDs ( RQDτ ) is assumed to be constant with T as expected 
theoretically for strong confinement in three dimensions [15-18]. The radiative 
recombination rate in InGaAS/GaAs QWs ( RQWτ ), as was shown in [22], is controled 
mainly by nonradiative recombination processes at the T≥100K. The dependence of the 
nonradiative rate in InGaAs/GaAs QWs was investigated as well in [22]. Its value in QWs, 
as a rule, increases at low temperatures and saturates at 120-150K at a constant value 
depending on the quality of the structure. As result it is possible to neglect by temperature 
dependences of the parameters: 1

RQWτ , 1
NR1τ and 1

NR2τ at the T≥120-150K. 

The exciton thermalization (capture) rates from the GaAs barrier into a QW 1
QW   and from a 

QW into QDs, 1
QD  , are the multiphonon-assisted processes deal with the scattering via 

multiple longitudinal optical phonon (LO) emission [41-43]. The values  1
QW   and 1

QD   have 
to increase versus temperature due to the enlargement of the phonon number. However, it 
was shown in [42] that the PL rise time in a QW (dependent on the exciton capture rate into 
QWs, 1

QW  ) for all temperatures from the range 50-300K is the same about 1-2 ps. 

The dominant multiphonon capture mechanism and the InGaAs/GaAs QD capture time 
1

QD   decreasing with temperature were confirmed experimentally in time-resolved 
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experiments [45-47]. It was shown using the investigation of the PL rise time for the GS in 
QDs that its value decreases: from 6.5ps to 3.5ps upon increathing the temperature from 4 to 
300K [45], or from 15ps to 7ps at the temperature rise from 50 to 300K [46]. Thus nearly two-
fold decreasing of the exciton capture time into QDs is revealed experimentally versus 
temperature. It is essential that the temperature dependence of the exciton escape rates from 
QWs and from QDs obviously much stronger and it is taking into account in the model. 

9. Discussion of PL integrated intensity dependences versus temperature  
It is clear from the formula (6), that in high quality QD structures (#2, #3 and #4) with low 
concentrations of the NR1 and NR2 centres the PL intensity I(T) is linearly dependent on 
excitation power (or generation rates, GInGaAs, GGaAs), as it is demonstrated in Fig.5. In low 
quality QD structures (#1 and #5) photo-generated excitons recombine partially via NR1 
and NR2 centres and W (T) changes Sublineary versus power (Fig.5). 

The analysis of PL temperature dependences is resonable to provide for the temeparture 
ranges I – III separately (Fig.8). At low temperature (< 100K) the processes of exciton 
thermal escape from a QW into the GaAs barrier and from QDs into a QW are not essential, 
and the PL intensity I (T) does not change (Fig. 8).  

In the temperature ranges I00-300K following the model the activation energy of PL thermal 
decay has correspond to the values , ,GaAs QW QW QD GaAs QDE E E    . To quantitative 
determination of activation energies the {Imax/I(T) – 1} dependences for the GS and ES PL 
bands were plotted versus temperature in Arrhenius plots (Fig.10). Three distinct linear 
regions (I-III) with the corresponding activation energies Ea (I), Ea (II) and Ea(III) are 
observed for different temperatures (Fig.10).  
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the power density of 500W/cm2 for the structures #3 (1), #2 (2), #1 (3) and #5 (4). 
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In the range I (100-180K) the activation energy (Ea (I) = 48-55 meV) of PL decay measured at 
low excitation power for GS PL bands (Fig.10) is very close to the energy difference between 
the GaAs band gap and the GS energy of the WL and/or the buffer InGaAs  QW layer (peak 
A, B, C in Fig.4, Table 2). It can be supposed that thermal quenching of the GS PL intensity 
in the temperature range I is due to decreasing an exciton flow to QDs caused by thermal 
escape of excitons from the WL (or buffer InGaAs QW) into the GaAs barrier where they are 
lost through subsequent nonradiative recombination. If the above mentioned mechanism 
takes place in QD structures the same activation energy ( GaAs QWE  ) has to be detected in the 
range I for thermal decay of PL bands connected with the GS and ES of QDs, as well as for 
the QW PL band. Actually the results presented in Fig.11 testify that in the range I thermal 
decay of PL bands deal with the GS, four ES in QDs, as well as with a QW is characterized 
by the same  activation energy from the range 48-53meV. 
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Fig. 11. Arrhenius plots for the thermal decay of the  integrated PL intensity  measured at 
the power density of 1000W/cm2 for the QD structures #3   

In the temperature range II (180-250K) the activation energy (Ea (II) = 170-173 meV) of PL 
decay for GS bands (Fig.10 and 11) is very close to the energy difference between the GaAs 
band gap and the GS energy for the capping In0.15Ga0.85As  QW (peak D, Fig.4, Table 2). Thus 
the process of thermal decay of the QD PL intensity in the range II can be attributed to 
diminishing of an exciton flow to QDs caused by thermal escape of excitons from the 
capping In0.15Ga0.85As QW into the GaAs barrier. This explanation is confirmed as well by 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

170 

the thermal quenching of PL bands deal with the GS and 1ES-4ES in QDs, and with the 
capping QW. All PL bands in the range II demonstrate the activation energy from the range 
of 153-177 meV (Fig.11). 

At high temperatures, stage III (250-300K), the activation energy of PL thermal decay 
depends on the quality of DWELL structures (Fig.10). As one follows from the formula (6) 
the activation energy of PL thermal decay will be close to the value GaAs QDE   if the follows 
two relations are correct:  
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or after the simplification of the (7): 
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 (8) 

It means that if the concentration of nonradiative defects in QWs (NR2) is low the activation 
energy of PL thermal decay for the GS PL band in QDs will approach to the value 

GaAs QDE  . Actually for the high quality structures (#2, #3) the activation energies (452 and 
472 meV) in the  range III (Fig.10) are close to the GaAs QDE  . Note this value is the sum of 
the barrier energy for electrons and holes in QDs. It testifies that just excitons thermally 
escape in the range III from QDs into the GaAs barrier with subsequent NR recombination. 
In the case of measurement at the high excittaion power (Fig.11) the decrease of activation 
energy for GS thermal decay deals with exciton re-localization from  the ES to the GS of 
other QDs which slow down the process of GS thermal quenching.  

In low efficient QD structures (#1, #5) the process of GS PL thermal decay is characterized 
by smaller activation energies, 279 and 297 meV (Fig.10). For these structures it is natural to 
supose the high concentration of the NR2 centers in InGaAs QWs. It means the conditions 
(7) and (8) do not satisfy. As one follows from the formula (6) in this case the activation 
energy of GS PL thermal decay will approach to the value QW QDE  .  

Note that obtained experimental results do not present an evidence for the exciton thermal 
dissociation in QWs or in QDs at high temperatures with subsiquent re-localization, thermal 
escape or tunneling of separated electrons or holes. If the process of exciton thermal 
dissociation is realized the activation energy of GS PL thermal decay should be smaller and 
comparative with the value of barriers for electrons or holes in the QD structures that was 
not observed.  

10. Fitting of the data of PL integrated intensity thermal decay 
The fitting procedure was applied to the experimental curves for thermal decay of 
integrated PL intensities presented in Fig.8. As it follows from Eq.6 the integrated PL 
intensity thermal decay can be simulated as: 
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The values Io and the activation energies E1, E2 and E3 for different temperature ranges (I-
III) were taken from the experimental results presented in Fig.10 (Table 4). Parameters K1, 
K2 and K3 have been obtained from the numerical simulation procedure (Table 4) [48,49]. 
As it follows from Eq.6 the coefficients K1 and K3 related to the exciton nonradiative 
recombination rate (τNR1-1) in the GaAs barrier, but the coefficient K2 depends on the 
exciton nonradiative recombination rate (τNR2-1) in InGaAs QWs. Numerical simulation 
results presented in Table 4 have shown that the coefficients K1 and K3 related to the 
exciton nonradiative recombination rate (τNR1-1) in the GaAs barrier of the structure #3 are 
less in comparison with those in #1 and #5 [48-50]. Simultaneously the coefficient K2 
related to the exciton nonradiative recombination rate (τNR2-1) in InGaAs QWs for the 
structure #3 is one order smaller than in #1 and #5. These facts are the reason of fast PL 
thermal decay and lower integrated PL intensities in structures #1 and #5 in comparison 
with the structure #3. 
 

Structure Io E1 
meV 

E2 
meV 

E3 
meV 

K1 K2 K3 

#1 1.1 104 53 174 451 100 2.0 105 6.7 109 

#3 1.7 104 52 175 452 85 2.3 104 6.0 109 

#5 8.9 103 54 173 450 100 2.3 105 109 

Table 4. Fitting parameters estimated from the PL thermal decay  

Thus, it is shown that the excitonic nature of carriers is important for the processes of 
capture and thermal escape in/from QDs in DWELL structures. At low temperatures the GS 
and ES PL thermal decays are attributed to the reduction of exciton flow into the QDs due to 
the exciton thermal escape from the WL or InGaAs buffer layers (100–180 K) or from the GS 
of capping In0.15 Ga0.85 As layers (180–250 K) into the GaAs barrier with subsequent NR 
recombination. At high temperatures (250–300 K) the activation energy of PL thermal decay 
depends on the QD density and the quality of DWELL structures. In DWELL structures 
with high emission (#2,# 3, and #4) the activation energy matches the energy difference 
between the GaAs band gap and the GS level of QDs. In structures with weak emission (#1 
and #5) the activation energy is close to the energy difference between the GS level of QDs 
and the GS energy level in InGaAs/GaAs QWs. The reasons of DWELL quality variation 
versus QD density are discussed below. 

11. X ray diffraction study in InAs QD structures with the different densities 
of QDs 
It is important to discuss the reasons of the quality change in studied QD structures with 
different InAs QD densities. The application of the capping/buffer InxGa1−x As layers in 
the QD structure has been demonstrated as an effective means to the QD density increase 
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[3], to tune the GS PL transition to the 1.3 µm spectral region [3,17, 51] and to narrow a PL 
line width [52]. However, the structural and electronic properties of InAs QDs coupled 
with InxGa1−x As/GaAs QWs are still understood partially. It is generally supposed that 
this type of growth provides the potential to strain engineering of structural and 
electronic properties due to efficient strain relaxation altering the electronic potential of 
capped QDs [51, 53]. Additionally the InxGa1−x As layer reduces the inhomogeneous 
surface stress enhancing the ability to grow a multitude of identical uncorrelated QD 
layers [51]. The majority of publications considered the stress variation in the vicinity of 
QDs or ordered arrays of QDs [52-58]. 

To investigate the strain levels in QD structures the X ray diffraction (XRD) has been 
studied. The XRD experiments were made using the XRD equipment model of D-8 
advanced (Bruker Co.) with  Kα1 line from the Cu source (λ=1.5406Å). Figure 12 present the 
superposition of XRD peaks related to the diffraction of Kα1 and Kα2 lines of Cu source from 
the (400) crystal planes of the cubic GaAs substrate and GaAs layers in studied 
InGaAs/GaAs QWs [59.60].  
 

 (400) (200) 

Material 21 

(degree)
K1 

21 

(degree) 
K 

d1, A 22 
(degree)

K2 

21 

(degree) 
K1 

d2, A 23 
(degree) 

K2 
GaAs 
Bulk 

66.044 59.0165 1.414 66.225 31.63 2.828 31.71 

Table 5. Values of 2 angles  for the diffraction of Kα1, Kα2 and K X-ray beams of Cu source 
from the (400) and (200) cubic GaAs crystal planes [61]. 

As one can see the peaks (66.05o and 66.24o) related to the diffraction of Kα1 and Kα2 lines 
from the (400) crystal planes in GaAs QW structures #2, #3 and #4 with QDs grown at 490-
525 oC locate very close to corresponding XRD peaks (66.044o and 66.225o [61]) of the bulk 
cubic GaAs (Fig.12, Table 5). The last fact testifies that the level of elastic strain in 
InGaAs/GaAs QWs of #2, #3, #4 is minimum. In contrary in the structures with QDs grown 
at 470 and 535 oC the corresponding XRD peaks shift to 66.10o and 66.29o (Fig.12) testifying 
the higher levels of compressive strains in InGaAs/GaAs QWs of these structures. 

Figure 13 presents the additional confirmation of conclusions mentioned above. It shows the 
superposition of XRD peaks related to the diffraction of K line from the same (400) crystal 
planes of cubic GaAs substrate and of GaAs layers in InGaAs/GaAs QWs. As one can see 
the peaks related to the K line diffraction from the (400) crystal plan of GaAs layers in 
DWELLs with QDs grown at 490-525 oC (59.036-59.042o) locate close to the corresponding 
XRD peak in the bulk GaAs (Table 5, Fig.12) for the same (400) crystal plane. Thus the level 
of elastic strain in these DWELLs is minimum. In DWELLs with QDs grown at 470 and 535 
oC the corresponding XRD peaks shift to 59.08o testifing the higher level of compresive 
strain. Note that the partial relaxation of elastic strain can stimulate the creation of  
nonradiative recombination centers and due to this decreasing the PL intensity in the 
structures with QDs grown at 470 and 535 oC.  
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Fig. 12. XRD peaks related to the diffraction of Kα1 and Kα2 lines on (400) cubic GaAs crystal 
plane  for the structures with QDs grown at 470 (1), 490 (2), 510 (3), 525(4) and 535 oC (5). 
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Fig. 13. XRD peaks related to the diffraction of K line on (400) cubic GaAs crystal plane in 
DWELLs with QDs grown at 470 (1), 490 (2), 510 (3), 525(4) and 535 oC (5). 

Figures 14 presents the superposition of XRD peaks related to the diffraction of Kα1 and Kα2 
lines of the X-ray Cu source from the (200) crystal planes of cubic GaAs substrate and GaAs 
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layers in studied In0.15 Ga0.85As /GaAs QWs. As one can see the peaks (31.69-31.70o and 
31.77-31.78o) related to the diffraction of Kα1 and Kα2 lines from the (200) crystal planes in 
GaAs QW layers with QDs grown at 490-525 oC locate more close to the corresponding XRD 
peaks (31.63o and 31.71o [22]) of the bulk cubic GaAs (Fig.14). The last fact indicates that the 
level of elastic strain in In0.15 Ga0.85As/GaAs QWs of #2, #3, #4 is smaller than in the 
structures #1 and #5. 

In the QD structures with QDs grown at 470 and 535 oC the corresponding XRD peaks 
shift to higher angles (31.72o for Kα1 and 31.80o for Kα2)  testifying the higher levels of 
compressive strain in the QWs of structures #1 and #5 (Fig.14). The lowest integrated PL 
intensities have been detected in the QD structures #1 and #5, apparently, due to the high 
concentration of nonradiative (NR) defects. The high level of elastic strain enhances, 
apparently, partial stress relaxation in the structures #1 and #5 that accompanies by the 
appearance of NR defects. 
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Fig. 14. XRD peaks related to the diffraction of Kα1 and Kα2 lines of the X-ray Cu source from 
the (200) crystal planes in the GaAs substrate and GaAs QW layers of studied structures: 1- 
#1, 2- #2, 3- #3, 4-#4 and 5 - #5. 

12. Elastic strain in symmetric InAs QD structures with different QD densities 
Let us to discuss the reason of quality changes in studied DWELL structures. It is essential 
that the application of the buffer and capping InxGa1-xAs layers coupled with InAs QDs 
stimulates the lattice mismatch and stress decreasing in the vicinity of QDs, but 
simultaneously to enhance the lattice mismatch and stress increasing at the InGaAs /GaAs 
interface for the surface area between QDs. With reducing the QD density versus  growth 
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temperature the surface area of QDs reduces (Table 1) and the InGaAs/GaAs interface area 
between the QDs enlarges. The variation non-monotonically of the integrated PL intensity 
versus QD density in studied structures, apparently, is connected with the competition of 
mentioned above two effects.  

 
 
 
 
 
 
 

460 470 480 490 500 510 520 530 540

66.05

66.10

66.15

66.20

66.25

66.30

66.35

66.40

X
R

D
 in

te
ns

ity
, a

rb
.u

n

QD growth temperature, oC

K

K
bulk GaAS

bulk GaAs 1

2

3

4

 
 
 
 
 
 
 

Fig. 15. The 2Θ angles for the diffraction of Kα1 and Kα2 lines from the (400) crystal planes of 
the GaAs substrate and GaAs QW layers in DWELLs with QD grown at different 
temperatures (or with different QD densities). 
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The X-ray difraction results confirm the mentioned explication. It is knom that the value of 
elastic deformation can be estimated by following [62]: 

 ( )coto o      , (10) 

where Θ and Θo are the diffraction angles: in the strained layer (Θ) and in the reference layer 
without strain (Θo). The Θo value in  present cases has been choosen as the diffraction angle 
meaning in the bulk cubic GaAs [61]. Thus in studied structures the elastic deformation (or 
elastic strain) is proportional to the difference between the diffraction angles measured for 
the GaAs QW layers and the bulk GaAs (Fig.15). Actually as it follows from Fig.15 the 
variation of elastic deformation in studied structures versus QD growth temperatures (QD 
densities) has the non monotonous behavior: decreasing in the structures #2, #3 and #4 and 
increasing in the structures #1 and #5 [38].  

Note, that in #3, #4 and #5 the shift of the dependence of PL intensity versus PL peak 
position into the high energy range (Fig.7) can be explained as well by elastic strain 
increasing with the enlargement of QD growth temperatures. The high level of elastic 
strain enhances, apparently, stress relaxation partially in the low quality structures #1 and 
#5 with the appearance of NR defects (NR1 and NR2) in the GaAs barriers and InGaAs 
QWs respectively. Simultaneously the shift of GS PL peak to high energy in #5 with larger 
QD lateral sizes (Table 1) is the subsequence of essential compressive strain in this 
structure. Note that the compresive strain can stimulate the Ga/In inter-diffusion process 
in #1 and #5 that is accompained by the PL peak shift into high energy side as well (Fig.7) 
[63,64]. 

The low PL intensity in #1 can related to coupling and/or the coalescence of QDs (revealed 
by AFM for highest concentration of QDs) which can stimulate the NR defect generation, as 
well as the activation of exciton (or electron/hole) tunneling between the QDs [38]. Finally, 
the structures with less levels of elastic strain (#2, #3 and #4), have been characterized by 
the high PL intensity (Fig.3a) and by the shift of GS PL peak emission in low energy spectral 
range (Fig.2).  

13. Conclusions 
The photoluminescence, its temperature and power dependences as well as PL 
inhomogeneity and X ray diffraction has been studied in the symmetric In0.15Ga1-

0.15As/GaAs quantum wells coupled with InAs quantum dots. The different QD densities 
in DWELLs were achieved by the variation of QD growth temperatures between 470 and 
535 oC. It is shown four reasons for the variation of emission intensities, PL peak 
positions and PL inhomogeneity in studied QD structures: i) the high concentration of 
nonradiative recombination centers in the capping In0.15Ga1-0.15As layer at low QD 
growth temperatures (470oC), ii) the QD density and size distributions along the wafer 
for DWELLs with QD grown at 510-535oC, ii) the high concentration of nonradiative 
recombination centers in the GaAs barrier at the QD growth temperature of 535oC and 
iv) the non monotonous behavior of elastic strain in DWELLs versus QD density. XRD 
testifies that with decreasing the density of QDs from 1.1 1011 cm−2 down to 1.3 1010 cm−2 
the level of compressive strain in DWELLs varies not monotonously. The DWELLs with 
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minimum of elastic strain ( #2, #3 and #4) are characterized by the higher PL intensity 
and by the shift of PL peak to 1.3µm (300K) that is important for the application in 
optical fiber lasers.  
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Photoionization Cross Sections of Atomic
Impurities in Spherical Quantum Dots

C. Y. Lin and Y. K. Ho
Institute of Atomic and Molecular Sciences, Academia Sinica

Taiwan

1. Introduction

With the advances of experimental techniques in fabrication and investigation of nano-scale
structures, confined atomic systems become practical and useful models for the illustration
of interesting phenomena arising from a system in dimensions comparable to the electronic
de Broglie wavelength. The confined atomic models are widely used to study a variety of
physical systems, such as impurities in quantum dots (Lin & Ho (2011)), atoms encapsulated
in fullerenes (Connerade et al. (1999); Dolmatov et al. (2004)), and atoms under high pressure
(de Groot & ten Seldam (1946); Michels et al. (1937)). In this article, we focus on the quantum
confinement occurring in quantum dots. The emphasis is placed on the variation of electronic
structures and photoionization properties of atomic impurities under the spatial confinement
effect of quantum dots.

As a quantum confinement system, the quantum dot has attracted considerable attention
due to not only its theoretical but also practical significance. In addition to the analogies
of discrete structure in their optical and electrical features between a quantum dot and an
atom, the coupled quantum dots provide a model to mimic molecules with tunable bonds
(Alivisatos (1996); Schedelbeck et al. (1997)). On the other hand, the quantum dots also serve
as contrast agents in bioimaging for biotechnological applications (Michalet et al. (2005)). It is
well known that the quantum dot with atomic impurities is a suitable model for studying the
semiconductor heterostructures. Recently, the enhancement of semiconductor nano-crystal
performance due to the impurities has been reported in the literature (Cao (2011)), which
indicates, for instance, that magnetic impurities can be doped to tune optical and magnetic
properties.

The physical properties of confined atomic systems are greatly influenced by confinement
potentials, which are unable to be determined through the direct measurement of experiment.
Although ab initio calculations can comprehensively deal with the interaction in confined
atomic systems, they may not provide a direct and simple physical interpretation. The usage
of semi-empirical model potentials to mimic the interaction of confined atom and surrounding
environment provides an efficient way to study the complex systems. The appropriate
models, which might not treat the system comprehensively but take the important interaction
into account, give a clear physical insight into complex problems. The confinement potentials
associated with the structures of quantum dots are often modelled by the rectangular potential
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well

VRECT(r) =
{−V0 r ≤ R;

0 r > R,
(1)

or the harmonic oscillator (parabolic) potential.

VHO(r) = −V0 +
V0

R2 r2, (2)

where R determines the size of quantum dot, and V0 gives the strength of confinement. The
rectangular potential well has a simple but unrealistic form due to the non-parabolic shape at
the center of quantum dots. Although the harmonic oscillator potential fulfils the parabolic
property, the infinite depth and range of potential restrict the calculation of continuum states
and fail to describe the charging of quantum dots with the finite number of electrons.

The Woods-Saxon potential given as

VWS(r) =
V0

1 + exp [(R− r)/γ]
, (3)

where γ controls the slope of confinement potential, also has been used in the study of
confined quantum system (Costa et al. (1999); Xie (2009)). It should be noted that the
Woods-Saxon potential turns to be the rectangular potential well as γ → 0. Another
confinement potential flexible to model the different type of quantum dots is the so called
power-exponential potential (Ciurla et al. (2002)),

VEP(r) = −V0 exp [−(r/R)p] . (4)

With the change of parameter p, the shape of potential is modified from the Gaussian potential
p = 2 to the rectangular potential well p = ∞.

In this work, the systems of atomic impurities in spherical quantum dots characterized by
finite oscillator (FO) and Gaussian potentials (Adamowski et al. (2000a;b); Kimani et al. (2008);
Winkler (2004)) are investigated using the method of complex-coordinate rotation (Ho (1983);
Reinhardt (1982)) in a finite-element discrete variable representation (FE DVR) (Balzer et al.
(2010); Rescigno & McCurdy (2000)). The finite oscillator potential VFO and Gaussian potential
VG are defined as

VFO(r) = −A
(

1 +
B√
A

r
)

exp(− B√
A

r) (5)

and
VG(r) = −C exp(−r2/D2), (6)

where A and C are the confining strength of potentials, and the radii of dots are characterized
inherently by 1/B and D for FO and Gaussian potentials, respectively. Figure 1 shows
the examples of both potentials. The Gaussian potential being a special case of the
power-exponential potential (Ciurla et al. (2002)) has a soft boundary of the potential. The
one-electron energy spectrum for a Gaussian potential has been calculated by Adamowski
et al. (Adamowski et al. (2000a;b)) using the variational method with Gaussian-type basis
functions. The finite oscillator potentials as weakly confining potentials of quantum dots
have been used to study the two-electron quantum dots by Winkler (Winkler (2004)), and
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later applied to few-electron quantum dots (Kimani et al. (2008)). Both potentials have
r2-dependence near the center of quantum dots, which is the typical character of harmonic
oscillators. It should be noted that the impurity is not taken into account for the quantum
dots in above-mentioned investigations.

Fig. 1. Comparison of finite oscillator potential with Gaussian potential.

For the investigations of electronic structure and optical properties of atomic impurities
in quantum dots, many efforts have been devoted to study hydrogenic impurity states in
spherical quantum dots described by finite and infinite potential wells. The state energies of
hydrogen impurity in spherical quantum dots with the infinite and finite well of rectangular
potentials are explored by Chuu et al. (Chuu et al. (1992)), Yang et al. (Yang et al. (1998)), and
Huang et al. (Huang et al. (1999)). Photoionization cross sections and oscillator strengths
of hydrogenic impurities in spherical quantum dots are also obtained for the infinite and
finite rectangular well models by Ham and Spector (Ham & Spector (n.d.)), Şahin (Şahin
(2008)), and Stevanović (Stevanović (2010)). Recently, Lin and Ho (Lin & Ho (2011)) study the
photoionization of hydrogen impurities in spherical quantum dots using the finite oscillator
and Gaussian potentials. Chakraborty and Ho (Chakraborty & Ho (2011)) adopt the finite
oscillator potential to describe the quantum dot for exploring the autoionization resonance
states of helium impurities in quantum dots. In the present work, the alkali-metal atoms
as impurities in the quantum dots are studied. On the basis of the finite oscillator and
Gaussian models, the energy levels and photionization cross sections subject to the quantum
confinement effect are illustrated.

The chapter is organized as follows. In Sec. 2, the FE DVR approach and complex-coordinate
rotation method associated with the current work are described. The energy spectrum and
photoionization cross sections varying with the different conditions of quantum dots for the
lithium and sodium impurities are presented and discussed in Sec. 3. Section 4 summarizes
this work and gives conclusions. Atomic units are used throughout unless otherwise noted.
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2. Theoretical method

2.1 Finite-element discrete variable representation

The finite-element discrete variable representation (FE DVR) is a hybrid computation scheme
taking advantage of the finite-element approach and the discrete variable representation to
obtain the sparse kinetic-energy matrices and the diagonal representation of potential-energy
matrices. Using this hybrid approach, the kinetic-energy matrix is block diagonal with matrix
elements in compact expressions, and the potential-energy matrix elements are given by
the potential values at grid points. This method has been implemented to investigate a
variety of interesting physical problems, such as quantum-mechanical scattering problems
(Rescigno & McCurdy (2000)), bright solitons in Bose-Einstein Condensates and ultracold
plasmas (Collins et al. (2004)), non-equilibrium Greenąęs function calculations (Balzer et al.
(2010)), and photoionization of impurities in quantum dots (Lin & Ho (2011)).

In the present work, the method of FE DVR which is detailed in references
(Rescigno & McCurdy (2000)) and (Balzer et al. (2010)) is adopted to obtain the Hamiltonian
matrix elements for atoms confined by quantum dots. Within the framework of FE DVR, the
interval [0,Rmax] is divided into ne finite elements, in which each element between [xi, xi+1]
is further subdivided by ng Gauss quadrature points (see Fig. 2). Taking advantage of the
standard Gauss-Lobatto points xm and weights wm (Michels (1963)), we define the generalized
Gauss-Lobatto points,

xi
m =

1
2
[(xi+1− xi)xm + (xi+1 + xi)], (7)

and weights,

wi
m =

wm

2
(xi+1 − xi). (8)

It should be noted that xi
1 = xi and xi

ng
= xi+1 because x1 = −1 and xng = 1. In calculations,

the integrals are approximated by Gauss-Lobatto quadrature,

∫ xi+1

xi
ψ(r)dr � ψ(xi)wi

1 +
ng−1

∑
m=2

ψ(xi
m)w

i
m + ψ(xi+1)wi

ng
. (9)

The wave functions are expanded in terms of local basis functions (see Fig. 2),

χi
m(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ f i
ng
(x) + f i+1

1 (x)]√
(wi

ng + wi+1
1 )

for m=1 (bridge);

f i
m(x)√

wi
m

for else (element),

(10)

where the Lagrange interpolating polynomials or so-called Lobatto shape functions f i
m(x) are

given as

f i
m(x) =

⎧⎪⎨
⎪⎩

∏
m′ �=m

(x− xi
m′ )

(xi
m − xi

m′ )
for xi ≤ x ≤ xi+1;

0 for x < xi or x > xi+1.

(11)

184 Fingerprints in the Optical and Transport Properties of Quantum Dots



Photoionization Cross Sections of Atomic

Impurities in Spherical Quantum Dots 5

The bridge basis function χi
1(x) in Eq. (10) is in charge of connecting the adjacent elements to

ensure the continuity of wave functions at end points of each finite element.

Based on the properties of the Lobatto shape functions and the approximation of
Gauss-Lobatto quadrature for integrals, the matrix elements of kinetic-energy operator, T =

− 1
2

d2

dx2 , in FE DVR are evaluated by analytic formulas,

Ti1,i2
m1,m2

= 〈χi1
m1
|T|χi2

m2
〉 = 1

2
(δi1,i2 + δi1,i2±1)

∫ ∞

0
dx

d
dx

χi1
m1
(x)

d
dx

χi2
m2
(x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

δi1,i2 T̃i1
m1,m2√

wi1
m1 wi2

m2

(m1 > 1, m2 > 1);

1
2

(δi1,i2 T̃i1
ng,m2 + δi1,i2−1T̃i2

1,m2
)√

wi2
m2(w

i1
ng + wi1+1

1 )
(m1 = 1, m2 > 1);

1
2

(δi1,i2 T̃i1
m1,ng + δi1,i2+1T̃i1

m1,1)√
wi1

m1(w
i2
ng + wi2+1

1 )
(m1 > 1, m2 = 1);

1
2

(δi1,i2(T̃
i1
ng,ng + T̃i1+1

1,1 ) + δi1,i2−1T̃i2
1,ng

+ δi1,i2+1T̃i1
ng,1)√

(wi1
ng + wi1+1

1 )(wi2
ng + wi2+1

1 )
(m1 = m2 = 1),

(12)

in which the term T̃i
m1,m2

is defined as

T̃i
m1,m2

= ∑
m

d f i
m1
(xi

m)

dx
d f i

m2
(xi

m)

dx
wi

m. (13)

According to Eq. (11), the first derivatives of the Lobatto shape functions at the quadrature
points are given as

d f i
m1
(xi

m)

dx
=

⎧⎪⎪⎨
⎪⎪⎩

1
(xi

m1 − xi
m)

∏
m′ �=m1,m

(xi
m − xi

m′ )

(xi
m1 − xi

m′ )
for m1 �= m;

1
2wi

m1
(δm1,ng − δm1,1) for m1 = m.

(14)

The matrix of the local potential-energy operator V(x) in FE DVR has a diagonal
representation with matrix element values equal to potential values at grid points, i.e.,

Vi1,i2
m1,m2

=
∫ ∞

0
dxχi1

m1
(x)V(x)χi2

m2
(x) = δi1,i2 δm1,m2Ṽi1

m1
, (15)

with

Ṽi
m =

⎧⎪⎨
⎪⎩

V(xi
m) for m > 1;

V(xi
ng
)wi

ng
+ V(xi+1

1 )wi+1
1

wi
ng + wi+1

1

for m = 1.
(16)
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Fig. 2. Interval between 0 and Rmax divided into ne finite elements with ng Gauss quadrature
points and selected local basis functions (bridge and element functions) distributed in each
finite element.

2.2 The method of complex coordinate rotation

The radial Schrödinger equation for the atomic impurity in spherical quantum dots is given
as [

− 1
2

d2

dr2 + V(r)
]

φ(r) = Eφ(r), (17)

where V(r) is defined as

V(r) =
l(l + 1)

2r2 + Ua(r) + VQD(r), (18)

where Ua is the atomic potential, and VQD is given by VFO for the confinement of finite
oscillator potential (see equation (5)) or VG for the Gaussian potential (see equation (6)).
Within the framework of the complex scaling approach, the real coordinate r is transformed
to complex coordinate z by the mapping

z = reiΘ, (19)
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which turns the generalized Gauss-Lobatto points and weights in Eqs. (7) and (8) to be
complex, i.e.,

xi
m → xi

meiΘ, (20)

and
wi

m → wi
meiΘ. (21)

The integrations of kinetic- and potential-energy matrix elements are performed along the
complex path instead of the real axis. It turns out that the calculations of Eqs. (12) and (16)
by the complex quadrature points and weights are equivalent to the usage of the real points
and weights with the complex scaled operators. In other words, to obtain the complex scaled
matrix elements, we can perform the transformation of the operators in advance,

− 1
2

d2

dr2 → − e−2iΘ

2
d2

dr2 (22)

and
V(r)→ V(reiΘ), (23)

followed by the implementation of integrals in real quadrature points and weights.

Through the standard diagonalization procedure, complex eigenvalues and eigenvectors are
obtained. In the dipole approximation, the photoionization cross sections can be obtained by
the optical theorem

σ(ω) =
4πω

c
Im(α−(ω)), (24)

where ω is the photon energy and c is the speed of light, i.e., the inverse fine-structure
constant. The negative frequency component of the polarizability α−(ω) (Buchleitner et al.
(1994); Rescigno & McKoy (1975)) calculated along the complex path C is given as

α−(ω) =
∫

dϑ
∫

dϕ
∫

C
dz z2ψ†

0(z, ϑ, ϕ)μ(z, ϑ, ϕ)ψ−(z, ϑ, ϕ), (25)

where μ is the component of the dipole operator along the direction of light polarization. The
initial wave function ψ0 with energy E0 and the final scattered wave function ψ− fulfill the
equation

[H(z, ϑ, ϕ)− E0 −ω]ψ−(z, ϑ, ϕ) = μ(z, ϑ, ϕ)ψ0(z, ϑ, ϕ). (26)

3. Results and discussion

3.1 Lithium impurities in quantum dots

The method of complex coordinate rotation combined with the FE DVR approach are applied
to investigate the state energies and photoionization cross sections of lithium impurities in the
spherical quantum dots. The model potentials (Schweizer et al. (1999)), which are given as

Ua(r) = − 1
r

[
Z̃ + (Z− Z̃ exp(−a1r) + a2r exp(−a3r))

]
, (27)

are adopted to simulate the alkali metals for the interaction of multi-electron core with the
single valence electron. The parameters ai (i = 1, 2, 3) of model potentials optimized by
a least-square fit to experimental energies are listed in Table 1 for the lithium and sodium
atoms. The energies of ground and first few excited states obtained by this model potential
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for the lithium atom are compared to the experimental data (Ralchenko et al. (2011)) in Table 2.
Although the calculated ground-state energy of lithium atom is not as precise as the energy of
excited states, the photoionization cross sections of free lithium atom as shown in Table 3 are
in good agreement with other theoretical predictions.

Atom Z̄ Z a1 a2 a3
Li 1 3 3.395 3.212 3.207
Na 1 11 7.902 23.51 2.688

Table 1. Parameters of model potentials for lithium and sodium atoms.

Theory Experiment
Present work Sahoo & Ho NIST

1s22s -0.197331 -0.198141 -0.198142
1s22p -0.130068 -0.130235
1s23s -0.074123 -0.074182
1s23p -0.057232 -0.057236

Table 2. Energies of ground and excited states for lithium model potential are compared with
experimental values. Results of Sahoo & Ho refer to (Sahoo & Ho (2006)). Experimental data
by NIST refer to (Ralchenko et al. (2011)).

ε Present results Sahoo & Ho Peach et al.
0.01 1.568 1.470 1.565
0.03 1.638 1.551 1.640
0.05 1.653 1.575 1.659
0.10 1.557 1.500 1.571
0.50 0.568 0.562 0.580
1.00 0.218 0.217 0.218

Table 3. Photoionization cross sections (in units of Mb) of free lithium atom as functions of
photoelectron energies ε (in atomic units). Results of Sahoo & Ho refer to (Sahoo & Ho
(2006)). Data by Peach et al. refer to (Peach et al. (1988)).

In the present work, the energy levels of lithium impurities with the principal quantum
number n = 2–3 and angular momentum quantum number l = 0–1 for the valence electron
are calculated for the quantum dots modelled by the FO and Gaussian potentials. In Fig. 3,
the 1s22s and 1s23s state energies of lithium impurities varying with the dot radii, 1/B and
D for the FO and Gaussian potential, respectively, from 10−1 to 103 a.u. are displayed for the
several confining strengths of potentials, A and C. Since the cases of 1/B = D = 0 correspond
to the free lithium atoms, the levels belonging to different confining strengths merge into one
of the free lithium levels as the dot radii approach zero. With increasing the dot radii, the
level energies are decreased until reaching a limit, which is equal to the energy of free lithium
atom combined with the confining strength of potential, A or C. In other words, the total
energy is then shifted down by an amount of A or C for the FO and Gaussian potentials,
respectively. As long as the dot radii are small such that the confinement effect is negligible,
the level energies are close to the energies of free atoms. The increased dot radii leading to the
stronger confinement of quantum dots cause the wave function trapped into the inner region
of a deeper potential well. As a result, the corresponding energies are decreased. For a specific
confining strength of potential, A = C = 0.5 a.u., the energy variations of levels 1s22s, 1s22p,
1s23s, and 1s23p with quantum dot radii ranging from 10−1 to 103 a.u. are shown in Fig. 4.
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The rapidly downward shifts in 1s2np levels caused by the confinement effect have analogy
to the 1s2ns levels.

(a) Finite oscillator model (b) Gaussian model

Fig. 3. Energies of 1s22s and 1s23s states as functions of quantum dot radii (1/B or D in
atomic units) for several confining strengths of potentials (A or C in atomic units).

(a) Finite oscillator model (b) Gaussian model

Fig. 4. State energies of 1s2nl (n = 2–3 and l = 0–1) as functions of quantum dot radii (1/B or
D) for the confining strengths of potentials A = C = 0.5 a.u.

The influence of quantum dot size on the photoionization cross sections of ground-state
lithium impurities is demonstrated in Fig. 5 for the FO and Gaussian potentials with the
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confining strengths of potentials A = C = 0.5. The cross sections varying with the selected
radii of quantum dots show the drastic change for photon energies near the ionization
threshold. As observed in Fig. 5 for the both models of quantum dots, the cross sections
of 1/B = D = 0.3 are close to the data of the free lithium case (1/B = D = 0) for high
photoelectron energies, but reduced for low photonelectron energies. With increasing the size
of quantum dot, the cross sections are gradually enhanced, and reach maximum values at
1/B ∼ 1.5 and D ∼ 3.0 for the FO and Gaussian model, respectively. As the dot radius is
further increased, the cross sections are deceased from the maximum values gradually.

(a) Finite oscillator model (b) Gaussian model

Fig. 5. Photoionization cross sections as functions of photoelectron energies for several radii
(1/B and D in atomic units) of quantum dots with confining strengths of potentials
A = C = 0.5.

One of striking properties due to the quantum confinement effect is the appearance of
resonance-like profile in the photoionization cross sections as functions of quantum dot radii
for a given photon energy. In Figs. 6, the cross sections as functions of confining strengths
A and dot radii 1/B of the FO potentials are displayed for photon energies ω = 1 and 3
a.u., respectively. For a given A, the occurrence of resonance-like structure demonstrates the
constructive interference between the ground and continuum states due to the wave functions
altered by the confinement effect of quantum dots. It is noticed that the peak of resonance-like
profile rises with increasing the confining strength of potential. For the Gaussian potentials,
the photoionization cross sections as functions of confining strengths C and dot radii D are
shown in Fig. 7. The variation of cross sections with the confining strengths of potentials and
dot radii resembles the results of the FO potentials, and the resonance-like profile of cross
sections is also revealed. The numerical data of photoionization cross sections varying with
the photoelectron energies are listed in Tables 4 and 5 for the FO and Gaussian potentials,
respectively.

3.2 Sodium impurities in quantum dots

To investigate the state energies and photoionization cross sections of sodium impurities in
the spherical quantum dots, we utilize the model potential in Eq. (27) with parameters given
in Table 1 to describe the interaction of multi-electron core with the single valence electron for
the sodium atom. The energies of ground and first few excited states calculated by this model
potential for the sodium atom are compared to the experimental data (Ralchenko et al. (2011))
in Table 6.
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(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 6. Photoionization cross sections as functions of confining strengths (A in atomic units)
and quantum dot radii (1/B in atomic units) for finite oscillator potentials.

(a) Photon energy ω = 1 a.u.
(b) Photon energy ω = 3 a.u.

Fig. 7. Photoionization cross sections as functions of confining strengths (C in atomic units)
and quantum dot radii (D in atomic units) for Gaussian potentials.

In Fig. 8, the energies of levels 2p63s and 2p64s of sodium impurities varying with the dot
radii, 1/B and D for the FO and Gaussian potential, respectively, in between 10−1 and 103 a.u.
are presented for the several confining strengths of potentials, A and C. The levels associated
with different confining strengths of potentials merge into one of the free sodium levels for the
dot radii approaching zero. On the contrary, the level energies split to different energy limits
corresponding to the combined energy of free sodium atom with the confining strengths of
potential as the radius of quantum dot is large. For a specific confining strength of potential,
A = C = 0.5 a.u., the energy variations of levels 2p63s, 2p63p, 2p64s, and 2p64p with quantum
dot radii ranging from 10−1 to 103 a.u. are shown in Fig. 9.

In Fig. 10, the photoionization cross sections of ground-state sodium impurities in spherical
quantum dots characterized by the FO and Gaussian models of confining strengths A = C =
0.5 are presented. The variation of cross sections with selected radii of quantum dots shows
the influence of quantum confinement on the photoionization. As observed in Fig. 10 for the
both model potentials with small parameters 1/B and D, the photoionization cross sections
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ωp 1/B = 0.8 1/B = 3.0 1/B = 5.0 1/B = 10
0.2 4.79447(-2) 6.26482(-2) 4.75992(-2) 3.13920(-2)
0.4 2.84476(-2) 3.70083(-2) 2.85878(-2) 1.96808(-2)
0.6 1.80247(-2) 2.36864(-2) 1.86717(-2) 1.32830(-2)
0.8 1.21964(-2) 1.61640(-2) 1.29792(-2) 9.46338(-3)
1.0 8.68848(-3) 1.15891(-2) 9.45430(-3) 7.02362(-3)
1.5 4.35280(-3) 5.87191(-3) 4.93428(-3) 3.78125(-3)
2.0 2.52575(-3) 3.43660(-3) 2.94528(-3) 2.29925(-3)
2.5 1.60966(-3) 2.20681(-3) 1.91726(-3) 1.51494(-3)
3.0 1.09482(-3) 1.51144(-3) 1.32609(-3) 1.05669(-3)
3.5 7.81176(-4) 1.08537(-3) 9.59280(-4) 7.69130(-4)
4.0 5.78273(-4) 8.08194(-4) 7.18347(-4) 5.78660(-4)

Table 4. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for finite oscillator potentials of A = 0.3 a.u. and 1/B = 0.8, 3.0, 5.0 and 10 a.u.
a(b) denotes a× 10b .

ωp D = 0.8 D = 3.0 D = 5.0 D = 10
0.2 4.41468(-2) 7.40039(-2) 5.46382(-2) 3.12982(-2)
0.4 2.64195(-2) 4.42053(-2) 3.21495(-2) 1.96037(-2)
0.6 1.67271(-2) 2.81879(-2) 2.06879(-2) 1.32432(-2)
0.8 1.12819(-2) 1.90666(-2) 1.42416(-2) 9.44659(-3)
1.0 8.00689(-3) 1.35329(-2) 1.03097(-2) 7.01908(-3)
1.5 3.97977(-3) 6.70843(-3) 5.34077(-3) 3.78682(-3)
2.0 2.29879(-3) 3.87066(-3) 3.17933(-3) 2.30576(-3)
2.5 1.46226(-3) 2.46429(-3) 2.06729(-3) 1.52060(-3)
3.0 9.94378(-4) 1.67902(-3) 1.42909(-3) 1.06132(-3)
3.5 7.10053(-4) 1.20178(-3) 1.03348(-3) 7.72856(-4)
4.0 5.26265(-4) 8.92958(-4) 7.73777(-4) 5.81669(-4)

Table 5. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for Gaussian potentials of C = 0.3 a.u. and D = 0.8, 3.0, 5.0 and 10 a.u. a(b)
denotes a× 10b .

Theory Experiment
Present work Sahoo & Ho NIST

2p63s -0.188860 -0.188857 -0.188858
2p63p -0.111520 -0.111600
2p64s -0.071672 -0.071578
2p64p -0.050985 -0.050934

Table 6. Energies of ground and excited states for sodium model potential are compared with
experimental values. Results of Sahoo & Ho refer to (Sahoo & Ho (2006)). Experimental data
by NIST refer to (Ralchenko et al. (2011)).

slightly deviate from the data of the free sodium case (1/B = D = 0). With increasing the
size of quantum dots, the humps of cross sections are enlarged. For 1/B and D larger than
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(a) Finite oscillator model (b) Gaussian model

Fig. 8. Energies of 2p63s and 2p64s states as functions of quantum dot radii (1/B or D in
atomic units) for several confining strengths of potentials (A or C in atomic units).

(a) Finite oscillator model (b) Gaussian model

Fig. 9. State energies of 2p6nl (n = 3–4 and l = 0–1) as functions of quantum dot radii (1/B
or D) for the confining strengths of potentials A = C = 0.5 a.u.
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5, the hump disappears and cross sections are reduced with the further increase of quantum
dot radii. The existence of a Cooper minimum in the photoionization cross sections of free
sodium atoms is well known (Cooper (1962); Marr & Creek (1968)). It is particular interesting
to notice that the Cooper minimum is shifted back and forth and vanished eventually from
the threshold energy with the change of quantum dot size.

(a) Finite oscillator model (b) Gaussian model

Fig. 10. Photoionization cross sections as functions of photoelectron energies for several radii
(1/B and D in atomic units) of quantum dots with confining strengths A = C = 0.5.

Although the photoionization cross sections vary enormously and intricately with the size
of quantum dots for photon energies near the threshold energy, the cross sections exhibit
regular variation and resonance-like behavior for higher photon energies. In Figs. 11, the
cross sections as functions of confining strengths A and dot radii 1/B of the FO potentials are
displayed for photon energies ω = 1 and 3 a.u., respectively. For a given confining strength of
potential A, the resonance-like profile can be seen for photoionization cross sections varying
with the dot radii 1/B. The positions of resonance peak are shifted with the change of
confining strength A. Because the photoionization cross sections are increased monotonically

(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 11. Photoionization cross sections as functions of confining strengths (A in atomic units)
and quantum dot radii (1/B in atomic units) for finite oscillator potentials.
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with increasing the confining strength A for a given dot radius 1/B, the peak of resonance
rises with increasing the confining strengths of potentials.

(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 12. Photoionization cross sections as functions of confining strengths (C in atomic units)
and quantum dot radii (D in atomic units) for Gaussian potentials.

For the Gaussian model, the photoionization cross sections as functions of confining strengths
C and dot radii D are shown in Fig. 12. The variation of cross sections with the confining
strengths of potentials and dot radii resembles the results of the FO potentials, and the
resonance-like profile of cross sections is also revealed. To make the comparisons of FO model
to the Gaussian model for the identical confining strengths A = C, the numerical data of
photoionization cross sections varying with the photoelectron energies are listed in Tables 7
and 8 for the selected radii of quantum dots.

ωp 1/B = 0.8 1/B = 3.0 1/B = 5.0 1/B = 10
0.2 3.74494(-3) 7.64326(-3) 7.91640(-3) 5.90620(-3)
0.4 4.44278(-3) 7.25065(-3) 6.51128(-3) 4.71764(-3)
0.6 3.81066(-3) 5.99769(-3) 5.19782(-3) 3.79446(-3)
0.8 3.15905(-3) 4.91032(-3) 4.21919(-3) 3.12203(-3)
1.0 2.64072(-3) 4.07371(-3) 3.50190(-3) 2.62573(-3)
1.5 1.80224(-3) 2.74326(-3) 2.38394(-3) 1.83387(-3)
2.0 1.32701(-3) 2.00153(-3) 1.75935(-3) 1.37624(-3)
2.5 1.02749(-3) 1.54056(-3) 1.36656(-3) 1.08106(-3)
3.0 8.23278(-4) 1.22982(-3) 1.09860(-3) 8.75958(-4)
3.5 6.76071(-4) 1.00775(-3) 9.05143(-4) 7.25869(-4)
4.0 5.65586(-4) 8.42125(-4) 7.59630(-4) 6.11833(-4)

Table 7. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for finite oscillator potentials of A = 0.3 a.u. and 1/B = 0.8, 3.0, 5.0 and 10 a.u.
a(b) denotes a× 10b .
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ωp D = 0.8 D = 3.0 D = 5.0 D = 10
0.2 3.93638(-3) 6.91812(-3) 9.30767(-3) 6.05882(-3)
0.4 4.41554(-3) 7.77475(-3) 7.57303(-3) 4.77588(-3)
0.6 3.70173(-3) 6.76452(-3) 5.94424(-3) 3.82507(-3)
0.8 3.02736(-3) 5.63360(-3) 4.75905(-3) 3.14297(-3)
1.0 2.50772(-3) 4.69180(-3) 3.91035(-3) 2.64251(-3)
1.5 1.68942(-3) 3.13333(-3) 2.62412(-3) 1.84642(-3)
2.0 1.23644(-3) 2.25964(-3) 1.92403(-3) 1.38660(-3)
2.5 9.54678(-4) 1.72367(-3) 1.48954(-3) 1.08981(-3)
3.0 7.64071(-4) 1.36737(-3) 1.19525(-3) 8.83429(-4)
3.5 6.27312(-4) 1.11558(-3) 9.83654(-4) 7.32305(-4)
4.0 5.24941(-4) 9.29355(-4) 8.24908(-4) 6.17421(-4)

Table 8. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for Gaussian potentials of C = 0.3 a.u. and D = 0.8, 3.0, 5.0 and 10 a.u. a(b)
denotes a× 10b .

4. Conclusions

The lithium and sodium impurities in spherical quantum dots are investigated using the
method of complex-coordinate rotation in the finite-element discrete variable representation.
Utilizing the FO and Gaussian potentials to mimic the environment of quantum dots, we
study the energy spectra and photoionization of alkali metal impurities under the influence
of quantum confinement effect. The level energies of impurities in the quantum dots are
calculated for the both FO and Gaussian potentials in a variety of dot radii and confining
strengths of potentials. The downward shift of impurity energy toward the combined energy
of the free atom and the amplitude of the confining strength of potential is exhibited. The
quantum confinement effect on the impurity energies due to the FO model is compared to the
Gaussian model. The photoionization cross sections as functions of photoelectron energies
are presented for the selected dot radii. The sensitivity of cross sections near the threshold
energies to the dot radii demonstrates the significance of quantum confinement effect on
the photoionization. The photoionization cross sections varying with different dot radii and
confining strengths of potentials are given for specific photon energies. The enhancement of
the constructive interference between the ground and continuum states due to the quantum
confinement leads to the resonance-like profile for the cross sections varying with the dot radii
at a given photon energy. The positions of resonance peak are associated with the confining
strength. It is noted that the Cooper minimum existing in the photoionization cross sections
of sodium impurities is shifted back and forth in energy positions and vanished eventually
from the threshold because of the effect of quantum confinement.

This work is financially supported by the National Science Council of Taiwan.
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Şahin, M. (2008). Photoionization cross section and intersublevel transitions in a one- and
two-electron spherical quantum dot with a hydrogenic impurity, Physical Review B
77: 045317.

de Groot, S. R. & ten Seldam, C. A. (1946). On the energy levels of a model of the compressed
hydrogen atom, Physica 12: 669–682.

Dolmatov, V. K., Baltenkov, A. S., Connerade, J. P. & Manson, S. T. (2004). Structure and
photoionization of confined atoms, Radiation Physics and Chemistry 70: 417–433.

Ham, H. & Spector, H. N. (n.d.). Photoionization cross section of hydrogenic impurities in
spherical quantum dots.

Ho, Y. K. (1983). The method of complex coordinate rotation and its applications to atomic
collision processes, Physics Reports 99: 1 – 68.

Huang, Y.-S., Yang, C.-C. & Liaw, S.-S. (1999). Relativistic solution of hydrogen in a spherical
cavity, Physical Review A 60: 85–90.

Kimani, P., Jones, P. & Winkler, P. (2008). Correlation studies in weakly confining quantum
dot potentials, International Journal of Quantum Chemistry 108: 2763–2769.

Lin, C. Y. & Ho, Y. K. (2011). Photoionization cross sections of hydrogen impurities in
spherical quantum dots using the finite-element discrete-variable representation,
Physical Review A 84: 203407.

197Photoionization Cross Sections of Atomic Impurities in Spherical Quantum Dots



18 Will-be-set-by-IN-TECH

Marr, G. V. & Creek, D. M. (1968). The photoionization absorption continua for alkali metal
vapours, Proceedings of the Royal Society A 304: 233–244.

Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu,
A. M., Gambhir, S. S. & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging,
and diagnostics, Science 307: 538–544.

Michels, A., de Boer, J. & Bijl, A. (1937). Remarks concerning molecular interactions and their
influence of the polarizability, Physica 4: 981–994.

Michels, H. H. (1963). Abscissas and weight coefficients for Lobatto quadrature, Mathematics
of Computation 17: 237–244.

Peach, G., Saraph, H. E. & Seaton, M. J. (1988). Atomic data for opacity calculations. ix.
the lithium isoelectronic sequence, Journal of Physics B: Atomic, Molecular and Optical
Physics 21: 3669–3683.

Ralchenko, Y., Kramida, A. E., Reader, J. & Team, N. A. (2011). NIST Atomic Spectra Database
(ver. 4.1.0) .
URL: http://physics.nist.gov/asd3

Reinhardt, W. P. (1982). Complex coordinates in the theory of atomic and molecular structure
and dynamics, Annual Review of Physical Chemistry 33: 223–255.

Rescigno, T. N. & McCurdy, C. W. (2000). Numerical grid methods for quantum-mechanical
scattering problems, Physical Review A 62: 032706.

Rescigno, T. N. & McKoy, V. (1975). Rigorous method for computing photoabsorption cross
sections from a basis-set expansion, Physical Review A 12: 522–525.

Sahoo, S. & Ho, Y. K. (2006). Photoionization of Li and Na in Debye plasma environments,
Physics of Plasmas 13: 063301.

Schedelbeck, G., Wegscheider, W., Bichler, M. & Abstreiter, G. (1997). Coupled quantum dots
fabricated by cleaved edge overgrowth: From artificial atoms to molecules, Science
278: 1792–1795.

Schweizer, W., Faßbinder, P. & González-Férez, R. (1999). Model potentials for alkali metal
atoms and Li-like ions, Atomic Data and Nuclear Data Tables 72: 33–55.
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1. Introduction

Semiconductor quantum dots (QDs), often referred to as "artificial atoms", have discrete
energy levels that can be tuned by changing the QD size and shape. The existence
of zero-dimensional states in QDs has been proved by high spectrally and spatially
resolved photoluminescence (PL) studies Empedocles et al. (1996); Grundmann et al. (1995).
Semiconductor QDs can be divided into two types, (1) epitaxially grown self-assembled
dots (SAQDs) and (2) nanocrystals (NCs) surrounded by a non-semiconductor medium.
Usually, SAQDs are obtained by using appropriate combinations of lattice mismatched
semiconductors, taking advantage of the Stranski-Krastanov growth mode where highly
strained 2D layers relax by forming 3D islands instead of generating misfit dislocations.
SAQDs are robust and already integrated into a matrix appropriate for device applications
Grundmann (2002). However, the size, shape and size distributions of the 3D islands are
determined only by the strain related to the lattice mismatch of the specific heterojunction.
Also, the density and the possibility of obtaining different nanocrystals over a given substrate
have considerable limitations in this method.

Nanocrystal QDs have been produced by colloidal chemistry, melting, sputtering, ion
implantation and some other techniques. An attractive feature of NCs is the possibility to
control their electronic, optical and magnetic properties by varying their size, shape, surface
characteristics and crystal structure, which is most efficiently achieved by using colloidal
chemistry methods. These methods are known for the ability (i) to produce colloidal solutions
of a broad variety of high quality semiconductor NCs of required size, (ii) to limit the size
dispersion, and (iii) to control the NC surface Rogach (2008); Wang et al. (2005). Chemically
grown NCs are more efficient light emitters than their bulk counterpart and even organic dyes.
There are several reasons for this. First, quantum confinement of electronic states in QDs
determines the transition energies and enhances the radiative transitions between conduction
and valence bands. At the same time, it can be used to tune the luminescence wavelength and
intensity, i.e., both the color and the brightness of the emission can be controlled. A second
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Fig. 1. Schematics of bare core (a) and core/shell (b) free standing and embedded (c) NC
quantum dots.

effect, also characteristic of semiconductor nanoparticles, is not related to quantum physics
but is purely geometrical. The spatial influence of defects acting as electronic traps is limited
to the size of the host nanoparticle, whereas in bulk, nonradiative recombination sites can
affect a much larger volume of material.

An obvious shortcoming of colloidal NCs, as compared to SAQDs, is that they are less stable
and are not suitable for direct incorporation into electronic devices. One has to embed them
into an appropriate matrix for device fabrication, especially for applications in the fields of
optoelectronics and integrated optics. A possible approach consists in the integration of
the colloidal chemistry methods with the epitaxial growth technology. The fabrication of
high quality epitaxial films with embedded pre-fabricated NCs is a huge challenge. The
successful integration of optically active colloidal NCs within an epitaxial structure has
been demonstrated by combining the colloidal and molecular beam epitaxy (MBE) methods
Woggon et al. (2005). It has been shown that core/shell nanoparticles (CSNPs) are more
suitable for this purpose than bare core (e.g. CdSe) NCs. The luminescence properties and
stability of CSNPs are generally better than those of single material nanocrystal QDs Rogach
(2008). One of the earliest CSNP structures reported was CdSe/ZnS Dabbousi et al. (1997);
Hines & Guyot-Sionnest (1996), which is at the same time the most intensively studied system
to date. These particles show a very high photoluminescence (PL) quantum yield, which
can be attributed to the better isolation of the electron-hole pair inside the dot from the
surface recombination states. As well as NCs of a single semiconductor material, CSNPs are
traditionally covered with trioctylphosphine oxide (TOPO) in order to prevent them from
oxidation and to passivate dangling bonds at the semiconductor surface (See Fig. 1).

The nature of the medium surrounding a QD influences the quantum confinement effect and,
consequently, the optical properties of these nanostructures. Already for colloidal NCs of a
single II-VI material, the nature of the surface capping layer is important for the energy of the
emitting states Jasieniak et al. (2011). For instance, exchange of TOPO with pyridine resulted
in a a red shift of the order of 20-30 meV for CdSe NCs of 3.5-5.5 nm in diameter Luo et al.
(2011). The transition energy and oscillator strength of the first excited state (2S3/21Se) in
these NCs can be strongly modified by their surface ligands and associated surface atomic
arrangements Chen et al. (2011).

Introducing a shell also changes the energy spectrum of a colloidal QD. For CdSe/ZnS CSNPs,
a red shift of the PL peak position and/or the absorption edge has been observed with
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increasing the thickness of the ZnS shell Baranov et al. (2003); Dabbousi et al. (1997); Talapin
et al. (2001). The value of the red shift usually saturates for the shell thicknesses (ds) above 3
monolayers (MLs) Baranov et al. (2003); Talapin et al. (2001), which may be an indication of the
typical length scale of core wavefunction’s penetration into the shell. Quite interesting results
indirectly confirming this idea have been obtained for ternary core/shell/shell structures with
the outer shell of CdSe. For a thin (1-2 ML) ZnS inner shell, there is a red shift of the PL
peak observed for increasing thickness of the outer shell (dss), while for ds =3 ML the peak
position is practically independent of dss Gaponik et al. (2010). It means that the tail of the
wavefunction inside the barrier (the first shell) is smaller than 3ML. Finally, when NCs are
embedded into an epitaxial semiconductor matrix, a blue shift of the PL peak is observed,
compared to the emission spectrum of the same NCs in organic solvent Rashad et al. (2010);
Woggon et al. (2005). This effect is not straightforward to explain, because, in a simple view,
the replacement of TOPO by a semiconductor matrix with a band structure similar to that
of the QD materials should result in lower barriers at the interface and, consequently, in a
weaker confinement and a red shift of the exciton transition. Therefore, some further effects
have to be included into consideration, such as interface imperfection, surface charge or strain
introduced by the matrix.

The purpose of this chapter is to provide a general yet simple theoretical description of
the effects of surrounding media (shells and matrix) and interface characteristics on the
exciton ground state in nanocrystal QDs that would be able to explain the above mentioned
experimental results and could be applied to more sophisticated semiconductor structures
based on NCs of an approximately spherical shape. Our approach is based on the effective
mass approximation (EMA). Its advantages and shortcomings for calculations of the electronic
properties of nanostructures are well known. On one hand, it reveals the underlying physics
and clearly shows the effect of the material parameters on the observable properties, this
is why it has been used by so many research groups since the beginning of the studies of
nanocrystal QDs in the 80-s Brus (1984); Efros et al. (1996); Fomin et al. (1998); Miranda et al.
(2006); Norris & Bawendi (1996); Pellegrini et al. (2005); Rolo et al. (2008); Vasilevskii et al.
(1998). On the other hand, EMA is believed to overestimate the electron and hole confinement
energies Jasieniak et al. (2011). Also, the scaling laws of these energies with the QD radius (R),
obtained by fitting experimental Yu et al. (2003) and numerically calculated Delerue & Lannoo
(2004) data, differ from the EMA predictions (R−2 in the strong confinement regime). Indeed,
the EMA fails in the limit of very small clusters containing a hundred of atoms which should
not even be called nanocrystals because their properties have more similarity with molecules
than with crystals. Compared to the first version of the EMA theory for QDs Brus (1984),
several improvements have been made, such as the consideration of finite barriers Norris
& Bawendi (1996); Pellegrini et al. (2005) and the complex structure of the valence band of
the underlying material Efros et al. (1996). As a result, it has been possible to assign several
size-dependent transitions in measured optical spectra of CdSe Norris & Bawendi (1996) and
CdTe Vasilevskii et al. (1998) QDs. Further improvement of the analytical description of QDs
can be achieved by considering generalized boundary conditions allowing a discontinuity of
the envelope functions at the interfaces, found to provide a better agreement with the results
of ab initio numerical calculations Flory et al. (2008).

We apply the EMA approach to arbitrary centrosymmetric potentials, such as finite interface
barriers due to band discontinuities or electric charges that can eventually accumulate at the
NC/matrix interface. The EMA equations for electrons and holes (taking into account the
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complex valence band structure) will be formulated in terms of transfer matrices, allowing for
the incorporation of generalized boundary conditions at all interfaces. The resulting matrix
equations are solved numerically providing a rather simple and efficient tool for modeling
different experimental situations and designing new complex QD-based nanostructures and
optoelectronic devices with embedded nanoparticles as active optical components. The
developed open-source software is available at http://sourceforge.net/projects/emaqdot.
Finally, we present some calculated results concerning free-standing and embedded QDs and
check them against experimental trends reported in the literature.

2. Exciton transition energy calculation

2.1 Basic equations

In the strong confinement regime (R � aex, aex is the exciton Bohr radius, and R is the core
radius), the calculation of the lowest (1S3/21Se) transition energy requires the electron ground
state energy, Ee, the hole ground state energy, Eh, and the Coulomb interaction correction, Ec,

Et = Eg + Ee + Eh + Ec

where Eg is the band gap energy of the core material. Ee(Eh) is defined with respect to the
bottom (top) of the conduction (valence) band.

For the spherically symmetric electron state 1Se, the envelope wavefunction can be written
as Ψe = ψ(r)/

√
4πr and the effective Schrödinger equation for ψ(r) reads Efros et al. (1996);

Norris & Bawendi (1996); Vasilevskii et al. (1998):

ψ′′(r) + 2me

h̄2 [Ee −Ve(r)]ψ(r) = 0, (1)

where me is the electron effective mass and Ve(r) is the potential acting on the electron. In
order to obtain the electron ground state energy, we have to solve Eq. (1) together with the
boundary conditions ψ(0) = ψ(∞) = 0 and a matching condition at each interface of the
heterostructure (see below).

Owing to the complex valence band structure of the involved semiconductor materials, the
hole ground state is determined by the Luttinger Hamiltonian Luttinger (1956). In the
centrosymmetric case, the radial part of the wavefunction is determined by two functions,
R0(r) and R2(r), which satisfy the following system of differential equations Gelmont &
Diakonov (1972):

(1 + β)

(
d
dr

+
2
r

)
dR0
dr

+ (1− β)

(
d
dr

+
2
r

)(
d
dr

+
3
r

)
R2 + 4

mlh

h̄2 (Eh −Vh(r)) R0 = 0 (2)

(1− β)

(
d
dr
− 1

r

)
dR0
dr

+ (1 + β)

(
d
dr
− 1

r

)(
d
dr

+
3
r

)
R2 + 4

mlh

h̄2 (Eh −Vh(r)) R2 = 0 (3)

where Vh(r) is the potential acting on the hole,

β =
γ1 − 2γ

γ1 + 2γ
=

mlh
mhh

and
mlh =

m0
γ1 + 2γ

, mhh =
m0

γ1 − 2γ
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are the light and heavy holes masses, respectively. Here, m0 is the free electron mass and γ1
and γ=(2γ2 + 3γ3) /5 are the Luttinger parameters. They are constant within each material.

Finally, the Coulomb interaction energy is given by

Ec = − e2C
εR

(4)

where ε is the static dielectric constant of the QD material 1 and

C =
∫ ∞

0
t2
[
R2

0(t) + R2
2(t)

] {1
t

∫ t

0
ψ2(s)ds+

∫ ∞

t

ψ2(s)
s

ds
}

dt,

assuming that ψ, R0 and R2 are normalized according to:
∫ ∞

0
ψ2(t)dt = 1,

∫ ∞

0

[
R2

0(t) + R2
2(t)

]
t2dt = 1.

2.2 Boundary conditions

The differential equations presented above hold only inside each (e.g. core) material. At
an interface between two materials, the following continuity conditions for the electron
wavefunction should be applied:

Ψe and
1
me

dΨe

dr
continuous. (5)

However, as it has been mentioned in the Introduction, the wavefunction ψ(r) is just an
envelope function and not necessarily must be continuous Flory et al. (2008); Laikhtman
(1992). This issue has been widely discussed in the literature in relation to semiconductor
heterostructures (see references in Laikhtman (1992)). Instead of (5), more general boundary
conditions have been proposed, providing a better agreement with ab initio calculations
for a number of III-V and II-VI compound heterostructures. A simplified version of such
generalized boundary conditions that guarantees the continuity of the probability flux reads
Rodina et al. (2002):

(me)
αΨe and

1
(me)α+1

dΨe

dr
continuous. (6)

where α is a phenomenological parameter. We shall also use these conditions (5) for interfaces
between a semiconductor and TOPO. For α = 0 the wavefunction is continuous while for
α �= 0 it is not because of the difference in effective masses me at the interface.

At an ideal interface of two semiconductor materials of the same symmetry, the following
continuity conditions for the hole envelope functions take place:

R0, R2 continuous;
1

mlh

d
dr

(R0 + R2) continuous; (7)

1
mhh

d
dr

(R0 − R2) continuous.

1 For simplicity, we neglect the difference in the dielectric constant between different materials.
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Although, in principle, these conditions should also be replaced by generalized ones, similar
to Eqs. (6) Laikhtman (1992), we preferred to keep (7) in order to avoid additional free
parameters.

2.3 Solution via transfer matrices

Since the equations are one-dimensional and the boundary conditions are linear, a transfer
matrix formalism can be applied. This approach, borrowed from the optics of multilayer
media Born & Wolf (1989), offers a convenient framework for linear problems and is
straightforward to implement in a computer. If the potentials Ve(r) and Vh(r) are constant
inside each material, Eqs. (1 - 3) can be solved explicitly. Considering one such material, two
linearly independent solutions of (1) are cos(ker) and sin(ker) if

ke =

√
2me

h̄2 (Ee −Ve)

is real. If it is imaginary, ke = iκe, then the solutions are exp(±κer). For holes, if

kh =

√
2mhh

h̄2 (Eh −Vh)

is real, the linearly independent solutions of Eqs. (2, 3) for the 2-vector
(

R0
R2

)
are

(
j0(khr)
j2(khr)

)
,
(

j0(klr)
−j2(klr)

)
,
(

y0(khr)
y2(khr)

)
,
(

y0(klr)
−y2(klr)

)
, (8)

where kl =
√

βkh, and jν, yν are the spherical Bessel functions of the first and second kind,
respectively.

If kh = iκh with κh real, the solutions are:
(

i0(κhr)
−i2(κhr)

)
,
(

i0(κl r)
i2(κl r)

)
,
(

k0(κhr)
−k2(κhr)

)
,
(

k0(κl r)
k2(κl r)

)
, (9)

where κl =
√

βκh, and iν(z), kν(z) are the modified spherical Bessel functions of the first
and third kind, respectively Abramowitz & Stegun (1970). Collecting the above solutions
and combining them by using the boundary and matching conditions, one can obtain some
transcendental equations for Ee and Eh. These transcendental equations are conveniently
expressed in terms of transfer matrices, as shown below. For general centrosymmetric
potentials, Ve(r) and Vh(r), the solutions of Eqs. (1-3) inside each material cannot be found
analytically. The differential equations must be discretized using an appropriate numerical
scheme. Then, our general approach still remains valid.

Let us suppose that Ve(r), Vh(r) = const in the following regions of the heterostructure:
0 < r < A1 (core) and r > AN (matrix far from the NC interface). Then the solutions in
these regions are given by some particular combination of the above expressions (8) or (9).
We consider a 2-vector, composed of the electron wavefunction and its derivative, ze(r) =(

ψ(r)
ψ′(r)

)
, which can be written explicitly for r = A1 and r = AN . These two vectors are
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connected by a transfer matrix, Te, that characterizes the region r ∈ [A1, AN ]. It is constructed
by multiplying the elementary transfer matrices describing the layers Ai ≤ r ≤ Ai+1,
(i = 2, 3, ..., N − 1), and their interfaces. The details are given in Appendix I for a constant
potential profile and in Appendix II for an arbitrary potential. Note that the case of infinite
potential barrier at AN requires a special analysis and is considered in Appendix III. Explicitly,
we have for r = A1:

ze(A1) = c1v1

where

v1 =

(
sin(keA1)

ke cos(keA1)

)
(Ee > Ve),

or

v1 =

(
sinh(κeA1)

κe cosh(κeA1)

)
(Ee < Ve).

For r = AN ,
ze(AN) = c2v2 (Ee < Ve),

v2 =

(
exp(−keAN)

−ke exp(−keAN)

)
.

Connecting the points A1 and AN , we get

c2v2 − c1v3 = 0, (10)

v3 = T(A1, AN) · v1.

The energy Ee is obtained from the equation,

det
([−v3 v2

])
= 0. (11)

Similarly, the corresponding 4-vectors for holes composed of
(

R0
R2

)
and their derivatives, are

connected by a 4× 4 transfer matrix Th (see Appendix I). For r = A1, we have:

zh(A1) = c1v1 + c2v2,

where

v1 =

⎛
⎜⎜⎝

j0(khA1)
j2(khA1)

kh j′0(khA1)
kh j′2(khA1)

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

j0(klA1)
−j2(klA1)
kl j′0(klA1)
−kl j′2(klA1)

⎞
⎟⎟⎠ (Eh > Vh)

or

v1 =

⎛
⎜⎜⎝

i0(κhA1)
−i2(κhA1)
κhi′0(κhA1)
−κhi′2(κhA1)

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

i0(κl A1)
i2(κl A1)

κl i′0(κl A1)
κl i′2(κl A1)

⎞
⎟⎟⎠ (Eh < Vh).

For r = AN ,
zh(AN) = c3v3 + c4v4

where

v3 =

⎛
⎜⎜⎝

k0(κhAN)
−k2(κhAN)
κhk′0(κhAN)
−κhk′2(κhAN)

⎞
⎟⎟⎠ , v4 =

⎛
⎜⎜⎝

k0(κl AN)
k2(κl AN)

κl k′0(κl AN)
κl k′2(κl AN)

⎞
⎟⎟⎠ (Eh < Vh).
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Connecting the points r = A1 and r = AN , we have

c3v3 + c4v4 − c1v5 − c2v6 = 0, (12)

v5 = Th(A1, AN) · v1, v6 = Th(A1, AN) · v2.

The energy Eh is determined by the equation

det
([−v5 −v6 v3 v4

])
= 0. (13)

2.4 Too low barrier for holes

For embedded QDs, it is quite possible that the potential barriers provided by the
semiconductor matrix are not sufficiently high (because of the small valence band-offset
for II-VI semiconductors) to confine the carriers if the core radius is very small. Then one
cannot consider the Coulomb interaction as a perturbation anymore and the confinement of
the exciton as a whole should be considered. However, it can happen that the conduction
band barrier is still quite high and the electrons still are in the strong confinement regime
(i. e., R � ae, ae is the electron Bohr radius for the core material). Then the Coulomb
interaction with the hole is still a small perturbation for the electron. Its ground state energy
Ee and the wavefunction Ψe(r) can be found as before. The above condition has profound
physical consequences. The strongly localized electron shall keep the hole in the vicinity of
the dot (otherwise it would be free to move into the matrix). This case can be called as "weak
localization of the hole". We shall extend our formalism in order to include this case.

The Schrödinger equation for the electron-hole pair (exciton) is written as[
T̂e +Ve(re) + T̂h +Vh(rh) +Veh(re, rh)

]
ψeh = EexΨex

where Ψex = Ψe(re)Ψh(rh) (Ψh is a 2-vector), T̂e (T̂h) represents the electron (hole) kinetic
energy operator and Veh is the electron-hole Coulomb interaction term. Multiplying by Ψ∗e
and integrating over the electron coordinates, re, yields:[

T̂h +Vh(rh) +Veff(rh)
]

Ψh = EhΨh (14)

with
Veff = 〈Ψe |Veh|Ψe〉 .

Using the well-known expansion,

1
|re − rh|

=

⎧⎪⎨
⎪⎩

1
re ∑∞

l=0

(
rh
re

)l
Pl(cos θ) if re ≥ rh

1
rh ∑∞

l=0

(
re
rh

)l
Pl(cos θ) if re < rh

,

where Pl are Legendre polynomials and Ψe(re) = ψ(re)/
√

4πre, we have:

Veff(rh) = −
e2

εrh

∫ rh

0
ψ2(re)dre − e2

ε

∫ ∞

rh

1
re

ψ2(re)dre. (15)

For large rh, the probability to find the electron there is small and Veff(rh) behaves as−e2/εrh.
On the other hand, for small rh we have Veff(rh) = Veff(0) +O(r2

h), where

Veff(0) = −
e2c2

1
2ε

[Γ− Ci(2keR) + ln(2keR)]− e2

ε

∫ ∞

R

ψ2(r)
r

dr,
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Γ is the Euler-Mascheroni constant, Ci(x) is the cos-integral function, and ke, c1 are the electron
parameters inside the core (see above). Figure 2 shows the shape of the effective potential
Veff(rh).
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Fig. 2. Effective potential for holes (Eq. 15) produced by localized electron in 1Se state.

This potential has to be added to Vh in Eqs. (2) and (3). Because of the non-explicit expression
(15) for Veff we have to solve (14) numerically. However, this does not rise any difficulty
because this potential is also centrosymmetric (Appendix II). The asymptotic solutions for
both rh → 0 and rh → ∞ are required. Near the origin, the potential Veff(rh) is almost constant
and the above mentioned solutions, v1 and v2, can be used (by putting Veff(rh) ≈ Veff(0)). In
the same way, for large rh the dominating terms of the asymptotic solutions behave as v3, v4
(replacing Veff(rh) by 0).

Applying the continuity conditions similar to (7) and using the numerical transfer matrices
described in Appendix II, the solutions of Eq. (14) near rh = 0 are connected with the
asymptotic ones at rh = AN , and the energy Eh is obtained.

3. Results and discussion

We applied the formalism described in the previous section to a set of "samples" that mimic
free standing and embedded bare core and core/shell NCs. The parameters used in the
calculations are listed in Table 1. The results are summarized below.

Bare core NCs

Concerning the size-dependent lowest transition energy in bare core NCs covered by TOPO
Fig. 3 shows the results of our calculations in comparison with the experimental data of
Murray et al. (1993); Yu et al. (2003) and those calculated assuming infinitely high barriers.
A good agreement with the experiment is observed only for the calculations performed with
finite barriers Pellegrini et al. (2005). We would like to point out that the complex valence
band structure was neglected in the previous work considering finite barriers Pellegrini et al.
(2005) and, consequently, an unrealistically small effective mass (0.3m0) for heavy holes was
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Parameter CdSe ZnS ZnSe TOPO

me(m0) 0.119 0.22 0.16 1
mhh(m0) 0.82 0.61 0.495 1
mlh(m0) 0.262 0.23 0.177 1
Eg(eV) 1.75 3.78 2.7 5

VBO(eV) 0 0.99 0.22 1.63

Table 1. Parameters used in calculations for CdSe, ZnS, and ZnSe. Notation: VBO , Eg, me,
mhh and mlh refer to the valence band offset, band gap, and effective masses of electrons,
heavy holes and light holes, respectively. These values were taken from Li et al. (2009);
Pellegrini et al. (2005); Schulz & Czycholl (2005); Springer Materials The Landolt-Börnstein
Database (2011).

used. In the present work, we used the correct model for the valence band with realistic mlh
and mhh and introduced an extra parameter αCdSe/TOPO = −0.08 to characterize the electron
envelope function matching at the CdSe/TOPO interface. Barrier’s heights used by Pellegrini
et al. (2005) (1.63 eV) were obtained by subtracting semiconductor’s Eg from the known energy
(5 eV) of a certain electronic transition in TOPO and dividing the result equally between the
CB and VB offsets, yielding the above rather low values. Most of the authors used much
higher values for these barriers Dabbousi et al. (1997); Rashad et al. (2010) in order to obtain
the correct trends for core-shell structures (see below) but then it is not possible to correctly
reproduce the Et(R) dependence for bare core particles. Using the discontinuous envelope
function can help to remedy this difficulty.

0 1 2 3 4 5

2.0

2.4

2.8

3.2

3.6

 

 Murray et al. 1993
 Yu et al. 2003
 Finite Barriers: α = 0
 Finite Barriers: α = - 0.08
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Fig. 3. Comparison between experimental and theoretical results for CdSe/TOPO NCs.
Experimental values were taken from Refs. Murray et al. (1993); Yu et al. (2003). The lowest
transition energy was calculated using finite barriers and either continuous (α = 0) or
discontinuous (α �= 0) boundary conditions for the electron wavefunction at the interface.
For comparison, the results obtained assuming infinitely high barriers for both electron and
hole are also presented.
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Shell thickness effect in CdSe/ZnS CSNCs

As it has been said in the Introduction, the absorption and PL emission peaks in the spectra
of CdSe/ZnS core/shell NCs are redshifted with respect to the bare core CdSe NCs of
the same radius. The shift grows when the shell thickness is increased up to ds=3 ML
and then saturates. This effect has been observed by several groups Baranov et al. (2003);
Dabbousi et al. (1997); Soni (2010). We focus on the absorption peak position because the
emission peak is usually Stokes-shifted with respect to the former mostly because of the
size distribution effects (larger dots emit stronger than the smaller ones in an ensemble of
NCs Efros et al. (1996)). In our calculations of the lowest transition energy, the electron
wavefunction at the CdSe/ZnS interface was considered continuous (α = 0), while the
ZnS/TOPO interface was characterized by an appropriate (non-zero) value of the electron
wavefunction discontinuity parameter, αZnS/TOPO. Fig. 4 shows a good agreement between
the calculated and experimental results, obtained without using an unrealistically large
heights of the ZnS/TOPO barriers (like 10 eV for holes in Ref. Dabbousi et al. (1997)).
For comparison, the case αZnS/TOPO = 0 is also presented, which lead to a blue shift in
the transition energy when the shell thickness is increased, in direct contradiction with the
experiments.
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Fig. 4. Absorption peak shift in CdSe/ZnS CSNC, obtained experimentally by Dabboussi et
al. (points) and calculated using present model with αZnS/TOPO = −0.36 and αZnS/TOPO = 0.
The transition energy for the core/shell NCs is measured with respect to the CdSe bare core
QD. The core size in both cases is R = 2.0 nm.

The effect of surface charge

As it has been pointed out in the Introduction, the utilization of colloidal NCs as active
optical material in optoelectronic devices requires their incorporation into a high quality solid
matrix. This process comprises the casting of the colloidal particles onto a substrate with the
subsequent overgrowth of the matrix. For such embedded structures, it is relevant to consider
the possibility of static charge accumulation at the nanoparticle/matrix interface Baccarani
et al. (1978). Because of the incoherent incorporation of the nanoparticles into the crystalline
matrix, the interface can create electronic trap states. Therefore the surface should be charged
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with a density σ0 and a compensating space charge should be distributed in the matrix in the
vicinity of the particle. The volume density of the latter can be assumed of the form,

ρm(r) = −ρ0 exp
[
− r− r0

l

]
(r > r0), (16)

where r0 = R+ ds is the radius of the particle, l is a characteristic length (of the order of 1-2
nm), and ρ0 is obtained from the charge neutrality condition:

ρ0 =
σ0

l
[
1 + 2l/r0 + 2 (l/r0)

2
] .

Since epitaxial ZnSe normally is intrinsically n-type doped, we assume σ0 < 0.

The electrostatic potential, ϕ(r), is found by solving the Poisson equation with the charge
density ρ(r) = σ0δ(r− r0) + ρm(r). The additional potential energy is:

Uc(r) = −eϕ(r) =

{
AU0

2l/r+1
2l/r0+1 exp

[− r−r0
l
]
(r ≥ r0)

AU0 (r < r0)
, (17)

where A = (l/r0) (2l/r0 + 1)
[
1 + 2l/r0 + 2 (l/r0)

2
]−1

is a dimensionless constant and the
energy U0 = −4πr0σ0e/ε. Then the confinement potentials for electron and hole are obtained
by considering Uc(r) and the conduction and valence band offsets between the different
materials forming each structure. The resulting band diagrams for two heterostructures (for
the case of σ0 < 0) are shown in Figure 5 a, b. Notice that, according to (17), if l � r0 then
the electron confinement decreases while the hole wavefunction becomes stronger localized
owing to the surface charge effect. For large l the surface charge effect on the confinement can
be neglected.

The results obtained for CdSe and CdSe/ZnS nanoparticles embedded in ZnSe are presented
in Figs. 5-c, and 5-d. It can be seen that the surface charge effect on the hole energy is stronger
for the bare core QD than for the CSNP. This is because in the latter, because of the presence
of the ZnS shell, the hole penetrates less into the matrix (see Fig. 5 a, b) and hence a weaker
interaccion with the charged interface is expected 2. As a result, the surface charge effects on
the electron and the hole nearly compensate each other in a bare core NC, while in a core/shell
QD there is a significant net red shift of the exciton transition owing to the presence of the
surface charge.

Free-standing versus embedded NCs

A blue shift in the PL emission when CdSe/ZnS CSNCs were embedded into a ZnSe
crystalline matrix was observed in the work Larramendi (n.d.). Two samples studied in that
work contained nanocrystals with different core size, 2R = 2.5 and 3.0 nm, and ds = 0.5 nm of
ZnSe shell (2 MLs). A shift of the emission peak, of 68 and 33 meV, respectively, was observed
(Fig. 6). We attempted to reproduce this effect in our calculations. Here we used α = 0 for all
(CdSe/ZnS, ZnS/TOPO, and ZnS/ZnSe) interfaces.

2 For r < R the hole does not interact with the charges outside by virtue of the Gauss law.
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Fig. 5. Band energy diagrams for CdSe/ZnSe (a) and CdSe/ZnS/ZnSe (b) structures, with
(full lines) and without (dashed lines) charge at the NC/matrix interface. Notice that the
valence and conduction bands are shifted by a constant value (equal to AU0) inside the
particle. Also shown are the electron and hole probability densities for the case with surface
charge. In panels c) and d) the electron (blue), the hole (red), and the transition (black)
energy shifts (with respect to the case of σ0 = 0) are presented versus the surface charge
parameter U0.

The results of our calculations are presented in Fig. 6. Essentially, the blue shift is obtained
in a natural way, despite the higher barrier for TOPO-covered free-standing NCs. In order
to qualitatively understand this result, we focus on Fig. 7, particularly on the electron
wavefunctions shown in Fig. 7 d, which exemplifies the situation. For the free-standing
NC, the higher barrier results in a smaller penetration length. This would favor larger
energies. However, the larger difference in the effective masses on the left and on the right
of the interface implies an abrupt change in the slope of the wavefunction. For the given
set of parameters, the second effect (i.e. the change in the derivative of Ψe at the interface)
dominates. Despite the longer tail of the electron wavefunction in the case of the embedded
QD, the maximum of the probability density is located at a lower distance from the center and
a blue shift is obtained (except for the smallest radii).

Let us point out that the situation depicted in the right panels of Fig. 7 corresponds to
weak localization of the hole owing to its the Coulomb interaction with the strongly localized
electron. Passing from strong to weak localization should affect the overlap integral between
the electron and hole wavefunctions that determines the transition oscillator strength. In
the ultimate limit of small core radius, the electron becomes delocalized and, consequently,
the hole too. Then the overlap integral should decrease drastically. It could explain why
the luminescence of the bare core NCs is weaker than that of the core shell NCs when they
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are embedded into the matrix Larramendi (n.d.). The threshold (in terms of the core size)
between the different confinement regimes depends on several factors, such as the band
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offsets. These can be affected by the electric charge that can accumulate at the interface
between the embedded QDs and the matrix. For instance, a positive surface charge would
increase the electron barrier and decrease the one for the hole. The charge would also modify
the potential profile seen by the confined electrons and holes, similar to the effect known for
polycrystalline silicon Baccarani et al. (1978). It could bring about the hole confinement in the
vicinity of the CdSe/ZnS interface, similar to what happens to 2D electrons in AlGaAs/GaAs
heterostructures.

4. Conclusions

In summary, we have developed a transfer matrix approach to theoretically describe the
effects of surrounding media and interface charge on the exciton ground state in nanocrystal
QDs. It permits to explain a number of experimentally observed effects, including (i) the
size-dependent lowest transition energy, (ii) the influence of shell thickness on the absorption
and emission spectra of core/shell nanoparticles and (iii) the blue shift of the emission peak
when NCs are embedded into an epitaxial matrix. For this, the utilization of generalized
boundary conditions at nanoparticle/organic-ligand interfaces is required. We also showed
that the Coulomb interaction between the electron and the hole can be important for the
confinement of the latter. This is essential for the interpretation of the experimental results
concerning colloidal CdSe NCs embedded in a semiconductor (e.g. ZnSe) host matrix because
of the small valence band-offset between II-VI semiconductors. Note that, since the colloidal
NCs are buried with random crystalline orientations and, consequently, are non-coherent
to the host epitaxial matrix, the influence of the strain that could result from the lattice
mismatch between the NCs and the matrix is not expected and therefore was not taken
into account in our model. However, it could be incorporated using the standard theory
of strained bulk semiconductors Bir & Pikus (1974). The same applies to the effects of
the electron-hole exchange interaction and crystal field produced by hexagonal structure,
which can be considered as perturbations and lead to the splitting of the 1S3/21Se octet
Efros et al. (1996), and the dielectric polarization effect owing the difference of the dielectric
constant value between the NC material and TOPO, leading to a correction to the electron-hole
Coulomb interaction Brus (1984). Thus, our approach provides a user-friendly tool to study
different combinations of NC and surrounding materials and potential interesting physical
effects, such as the crossover between strong and weak localization regimes for the QD hole.
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6. Appendix

Appendix I. Transfer matrix for a constant potential

Electrons

Let

z(r) =
(

ψ
ψ′
)
= M(r) · c
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where c is a 2-component constant vector, and

M(r) =
[

cos(ker) sin(ker)
−ke sin(ker) ke cos(ker)

]
(Ee > Ve)

or

M(r) =
[

exp(κer) exp(−κer)
κe exp(κer) −κe exp(−κer)

]
(Ee < Ve).

The key idea is to obtain z(r2) given z(r1):

z(r2) = T(r1, r2) · z(r1)

where T(r1, r2) is the transfer matrix. If r1, r2 are in the same material, the transfer matrix is
T(r1, r2) = M(r2) ·M−1(r1). Equivalently,

T(r1, r2) =

[
cos (keΔr) 1

ke
sin (keΔr)

−ke sin (keΔr) cos (keΔr)

]
(Ee > Ve)

or

T(r1, r2) =

[
cosh (κeΔr) 1

κe
sinh (κeΔr)

κe sinh (κeΔr) cosh (κeΔr)

]
(Ee < Ve).

At the interface Σ we have
z(r+) = TΣ · z(r−),

TΣ =

[
β−α
e 0

β−α
e −βα+1

e
r βα+1

e

]
,

and βe = m+
e /m−e .

Holes

In this case

z(r) =

⎛
⎜⎜⎝

R0
R2
R′o
R′2

⎞
⎟⎟⎠ = M(r) · c ,

where c is a 4-component constant vector and

M(r) =

⎡
⎢⎢⎣

j0(khr) j0(klr) y0(khr) y0(klr)
j2(khr) −j2(klr) y2(khr) −y2(klr)

kh j′0(khr) kl j′0(klr) khy′0(khr) kly′0(klr)
kh j′2(khr) −kl j′2(klr) khy′2(khr) −kly′2(klr)

⎤
⎥⎥⎦ (Eh > Vh)

or

M(r) =

⎡
⎢⎢⎣

i0(κhr) i0(κl r) k0(κhr) k0(κl r)
−i2(κhr) i2(κl r) −k2(κhr) k2(κl r)
κhi′0(κhr) κl i′0(κl r) κhk′0(κhr) κl k′0(κl r)
−κhi′2(κhr) κl i′2(κl r) −κhk′2(κhr) κl k′2(κl r)

⎤
⎥⎥⎦ (Eh < Vh).

The transfer matrix is T(r1, r2) = M(r2) ·M−1(r1).

At the interface (Σ) we have:
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TΣ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1

2 (βl + βh)
1
2 (βl − βh)

0 0 1
2 (βl − βh)

1
2 (βl + βh)

⎤
⎥⎥⎦ ,

and βl =
m+

lh
m−lh

, βh =
m+

hh
m−hh

.

Appendix II. Numerical transfer matrix

The solution of the first-order ordinary differential equations

L̂[z(t)] = 0

z(t1) = a

where L̂ is a linear operator, a = (a1, a2, ..., an), and z : � → �n, can be expressed in terms of
the solution of the auxiliary problems:

L̂[ui(t)] = 0

ui(t1) = Ei

where Ei ∈ �n is the i-th canonical vector, and i = 1, 2, ..., n. Since

a =
n

∑
i=1

Eiai,

we have

z =
n

∑
i=1

uiai,

in particular,

z(t2) =
n

∑
i=1

ui(t2)ai.

Taking into account that zi(t1) = ai, and denoting Tji = (ui)j,

z(t2) = T · z(t1).
Hence the transfer matrix T is given by the solutions ui putted as column vectors.

Appendix III. Infinite potential barrier in AN

For electron, the condition is now ϕ(AN) = 0, hence the equation

v3[1] = 0 (18)

instead of (10) determinates the electron energy Ee. The constant c1 can be obtained from
normalization.

For holes, we have now R0(AN) = R2(AN) = 0, hence the equation
[
v5[1] v6[1]
v5[2] v6[2]

]
·
(

c1
c2

)
=

(
0
0

)
(19)
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replaces (12) and Eh is given by

det
([

v5[1] v6[1]
v5[2] v6[2]

])
= 0. (20)
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1. Introduction 
Lead selenide (PbSe) and lead sulfide (PbS) quantum dots (QDs) have many unique 
properties to make them promising materials for optoelectronic devices. Their bandgaps, 
ranging from 0.3~1.1eV, can be easily tuned via size control during synthesis, and their 
photo response in near infrared region promises their broad applications in bio-imaging 
[1], telecommunications [2], LEDs [3], lasers [4],  photodetectors [5],  and photovoltaic 
devices [6-8]. 

QDs are essentially nanocrystals consisting of tens to hundreds of atoms (Fig.1a). Due to 
the nanocrystal’s small size (smaller than the exciton Bohr radius of the bulk 
semiconductor), strong quantum confinement results in discrete energy levels and bigger 
bandgaps compared with the respective bulk semiconductor (Fig. 1b)[9]. E1, E2 and E3 
stand for the first, second and third excitonic transitions, respectively. E1 is the optical 
bandgap of QD, which is correlated with the size of QD, as shown in the absorption 
spectra of a series of PbSe QDs (Fig. 1c). QDs studied here are synthesized by colloidal 
chemistry [10, 11], where the QDs are kept in hexane or toluene as a suspension. The 
transmission electron micrograph (TEM) shows the highly monodisperse PbSe QDs with 
average size of 9.6 nm, and the single crystal structure was clearly shown [50]. The crystal 
structure for PbSe or PbS QDs is rock salt crystal, the same as its bulk semiconductor. The 
lattice constant for bulk PbS is about 5.9 Å, and 6.1 Ǻ for PbSe [12].  In order to prevent 
coalescence of QDs, surface passivation by appropriate ligands/surfactants is necessary. 
Oleic acid is a common ligand for lead chalcogenides such as PbSe or PbS QDs [11]. The 
passivation layer (ligands) can also modify the optical and electronic properties of the 
QDs.   

Unlike in their bulk semiconductors, enhanced Coulomb interaction in QDs results in 
much more tightly bonded excitons, and the fate of excitons in these quantum dots is of 
great relevance to their device applications. Although the properties of excitonic states 
have been thoroughly studied in the past decade, mostly employing transient 
spectroscopies [13-17], relatively less attention has been paid to the states within the 
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quantum dots bandgap. Conventionally, there are two types of in-gap states: one is the 
dark exciton state, which is due to the exchange splitting from confinement-enhanced 
exchange interaction [18, 19]; another type is trap state(s) associated with surface defects 
[20-22].  

 
Fig. 1. (Color online) (a) Rock salt crystal structure of a PbSe quantum dot. (b) Quantized 
energy levels of a PbSe quantum dot (QD). The dashed line represents the gap state energy 
level found on IV-VI quantum dots. (c) Absorption spectra of variously sized PbSe QDs. E1 
is the optical gap of QD.   

These in-gap states are of great importance since they affect the final destiny of excitons. 
We have previously reported a peculiar in-gap state that bears confinement dependence, 
with life time about 2 s [23]. This single gap state (G.S) does not seem to fall into either 
one of the above conventional gap state categories. A detailed analysis of temperature 
dependence of photoluminescence (PL), absorption and photoinduced absorption (PA) 
reveals the unconventional G.S. is a new state of trapped exciton in QD film [24]. The 
importance of such gap state is illustrated below through the analysis of exciton loss 
mechanisms in QDs.  

As can be seen in Figure 2, Auger recombination happens within sub-ps, followed by hot 
exciton cooling on the ps timescale [13]. Radiative recombination was surprisingly slow in 
these QDs, and was detected in the sub-s range [25-27]. In contrast, relaxation to gap 
state(s) occurs much faster (<ns) [28]. Therefore, the final state of photogenerated carriers is 
likely to be the gap state. Due to its long lifetime, this state can be used to monitor charge 
transfer between QDs and polymers, similar to the case seen in conjugated polymer and 
fullerene systems [29, 30]. This feature also enables the investigation of charge transfer in 
hybrid composite of polymers and QDs using continuous wave photoinduced absorption 
(cw-PA) measurements of both constituents, and therefore provides a reliable and accurate 
study of charge transfer within the hybrid composite.  This is especially useful when energy 
transfer is superimposed with charge transfer. As a matter of fact, the interplay of energy 
transfer and charge transfer in such composites has been one of the major obstacles that 
hinder the progress in QD /polymer solar cells. A thorough understanding of the gap state 
will help to identify photoinduced charge transfer between QDs and the polymer host, as 
will be illustrated in 2.3.  
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Fig. 2. (Color online) Schematic drawing of loss mechanism in lead chalcogenide QDs 
(Inspired by [51]). 

2. Experimental observation of in-gap state in lead sulfide quantum dots 
2.1 Experimental methodology 

The main experimental method to study the in-gap state is Continuous Wave Photoinduced 
Absorption (cw-PA) spectroscopy. Continuous Wave Photoinduced Absorption (cw-PA) is 
also called pump & probe or photomodulation spectroscopy (Fig.3). A cw Ar+ laser (pump), 
with its energy larger than the optical gap of the investigated material, excites the sample 
film and generates long-lived photoexcitations; a tungsten-halogen lamp is used to probe 
the modulated changes T in transmission T among the interested energy range, usually the 
subgap regime. A lock-in amplifier is employed with an optical chopper for 
photomodulation. A series of solid-state photodetectors are coupled with light sources and 
optical components to span the detection range from UV to NIR. The advantages of cw-PA 
are that both neutral and charged excitations may be studied and there is no need to 
introduce dopants into the film [31].  
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Fig. 3. (Color online) Continuous wave photoinduced absorption (cw-PA) spectroscopy. A 
regular absorption spectrum of a quantum dot is modified by pump-populating a gap state. 
This gives rise to a new absorption peak ΔE, whose intensity is directly proportional to the 
electron density on the gap state. 

The pump (cw Ar+ laser) excites the semiconductor sample with photons of an energy larger 
than the optical gap of the semiconductor (for example, Eg = 1.07eV for a 4nm PbS QD). The 
excited electrons thermalize into a long lived gap state(s) caused by defects in the 
semiconductors. This changes the absorption spectrum since now the transition ΔE becomes 
possible. A new peak arises in the spectrum at a wavelength commensurable with ΔE (for 
example ΔE = 0.33 eV for a 4nm PbS QD), as being schematically indicated in Figure 3. The 
important feature of this measurement is that the magnitude of this absorption peak is 
linearly proportional to the density of the electrons occupying this gap state: 

  
    e

T
PA d n d

T
 (1) 

with ne the density of photoexcitations, d the sample thickness, and  the excited state 
optical cross section. 

Previously several groups have been using cw-PA to investigate photophysics of CdSe and 
CdS quantum dots [32, 33]. Recently, we have applied this method to PbS and PbSe 
quantum dots system [23, 24, 34]. This methodology is very useful to study long-lived, in-
gap states and their associated photoexcitations.  

2.2 Spectral signature of charged species 

We have measured cw photoinduced absorption (cw-PA) of PbS QD film in an energy range 
of interband electronic transitions at low temperature (10K) [34]. At photon energy near and 
above the QD bandgap, Eg, five photoinduced absorption (PA) peaks are clearly observed, 
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and four photoinduced absorption bleaching (PB) valleys are also present (Fig.4a). Figure 4b 
shows the five interband transitions involved. The close resemblance between PA spectrum 
(Fig. 4a, black circle) and the second derivative of the linear optical absorption (Fig. 4a, red 
line) strongly suggests that these steady state PAs may be caused by photoinduced local 
electric field, and therefore resemble the linear Stark effect [35]. Heretofore, there have been 
reports about QD charging associated with photoexcitation [36-38]. 

 
(a) (b) 

Fig. 4. (Color online) (a) Photoinduced absorption (PA) spectrum (filled circle, black) of 
PbS nanocrystal (4.2 nm in diameter) film at T=10K and modulation frequency 400 Hz. 
Laser excitation is 488 nm with 150 mW/cm2 intensity on film. The second derivative of 
the absorption spectrum (solid line, red) is also shown. PBs stand for photo bleaching 
bands (<0), whereas PAs are for photoinduced absorptions (>0). [Reprinted with 
permission from [34]. J. Zhang et.al., Appl. Phys. Lett. 2008, 92, 14118. Copyright (2008), 
American Physical Society]. (b) A schematic drawing of the five interband transitions 
involved.  

The photoinduced local electric field may be created by the trapped charges at the QD 
surface states. In cw-PA measurement, the laser is being modulated, which is equivalent to 
the modulation of the local electric field. As a result, the excitonic energy levels shifts and 
causes change of linear absorption, similar to that observed in electroabsorption spectrum 
[39]. Therefore, the electroabsorption (EA) feature above the QD bandgap is an indicator of 
charged species.   

2.3 Spectral signature of neutral species 

We have extended the cw-PA measurement to photon energy below the QD bandgap. A 
single PA band (called IR-PA) was observed in the near infrared range. The lifetime of this 
photoexcitation is about several microseconds, and the peak position of this band has 
correspondence with the QD size [23]. This photoexcitation was due to a transition from a 
gap state (G.S) to the second level of exciton excited state 1Pe (Fig. 1b). Two different 
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scenarios could each partially explain our observations. Scenario 1 is that this G.S belongs to 
a certain trap state, and this could explain the large Stokes shift. Trap states in PbS or PbSe 
QDs have been previously observed [20, 40]. However, the characteristics of a conventional 
trap state do not completely go with the confinement-dependence, narrow emission band 
and short lifetime observed here. Furthermore, the temperature dependence of PL intensity 
(Fig. 5) shows no thermal activation behavior typical for trap state emission [40]. The lack of 
thermal activation also indicates there is negligible non-radiative recombination due to 
defects or aggregates in the films. Large Stokes shift from 100 to nearly 300 meV was 
observed [23]. The inset of Figure 5b plots the PL energy, EPL vs. 1st excitonic peak (E1). 
Dotted line shows the zero Stokes line (i.e., EPL = E1), which has a slope of 1.0. The linear 
fitting slope of EPL ~ E1 is 0.75, which is larger than 0.50, meaning the emission state or G.S is 
not fixed with respect to the bottom of the bulk conduction band, as previously reported for 
an in-gap hybrid state [41]. 

 
Fig. 5. (Color online) (a) PL (left) and absorption (right) spectra for four different sizes (2.2-5.3 
nm in diameter) of PbS QD films on sapphire measured at T = 10 K. The baseline of the 
spectrum for each size was shifted vertically for clarity. (b) Temperature dependence of PL 
intensity for a 4.2 nm PbS QD film (black solid circle). The inset plots the PL energy, EPL vs. 
first excitonic absorption, E1 for the four sizes of PbS QDs. The red dotted line is zero Stokes 
shift line, and the blue solid line is a linear fit of experimental data (blue open circle). 
[Reprinted with permission from [24]. J E Lewis et.al., Nanotechnology 2010, 21, 455402. 
doi:10.1088/0957-4484/21/45/455402. Copyright (2010), IOP Publishing Ltd]. 

We also rule out G.S to be a dark exciton state in PbS quantum dots, since the gap state is too 
‘deep’ for dark exciton state from exchange splitting, which was calculated to be less than 10 
meV below the lowest bright exciton for a 4.2 nm PbS QD [18], on the other hand, the 
activation energy of G.S was measured to be about 20 meV [24]. In terms of Stokes shift, 
even counting the total splitting due to exchange and intervalley interactions, the calculated 
value was less than 80 meV, whereas the Stokes shift we measured is 332 meV for this size 
QD [24]. These inconsistencies mean that G.S. is not the dark exciton state.  
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To further validate this claim, we measured the temperature dependences of PL energy, 
EPL (solid circle, black) and the first excitonic absorption, E1 (open triangle, red) of a 4.2 
nm QD film (Fig. 6). Above T =50 K, a linear increase of dE1/dT= 0.05 meVK−1 was 
obtained from fitting of the absorption experimental data. On the other hand, a 
temperature coefficient of dEPL/dT= 0.3 meVK−1 was derived from fitting of EPL data. 
dE1/dT << dEPL/dT indicates that emission is not originated from a band edge splitting 
state such as a dark exciton state.  
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Fig. 6. (Color online) Temperature dependences of PL energy, EPL (solid circle, black) and 
the first excitonic absorption E1 (open triangle, red) of a 4.2 nm QD film. Black line is a linear 
fit for EPL data and red line is a fit for E1, at T > 50 K. [Reprinted with permission from [24]. J 
E Lewis et.al., Nanotechnology 2010, 21, 455402.  doi:10.1088/0957-4484/21/45/455402. 
Copyright (2010), IOP Publishing Ltd]. 

In summary, G.S is not a trap state based on lifetime and confinement dependence, nor it a dark 
exciton state based on its different characteristics as oppose to free excitons, i.e., the energy level 
within the bandgap, its temperature dependence and large Stokes shift.  We therefore assign 
G.S a state for trapped exciton. Such a state, due to its long lifetime (~ several s), is relevant to 
exciton dissociation and carrier extraction processes in QD/polymer composite, a material 
system potentially can be utilized for low-cost high efficiency solar cells [7,42].  

3. Implication of in-gap state for quantum dots solar cells 
Figure 7 is a schematic drawing of a QD/polymer composite. The absorption of photons by 
both moieties create excitons, with favorable type II (‘staggered’) energy level alignment, 
exciton dissociation could happen, with electron being transferred to the QD from the 
polymer, and holes to the polymer from the QD.  
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Fig. 7. (Color online) Schematic drawing of QD/polymer composite. QDs (green balls) were 
shown embedded in polymer matrix (blue). Upper left panel shows the creation of excitons 
upon light absorption; upper right panel shows the charge transfer process with type II 
(‘staggered’) energy level alignment between QDs and polymer. 

Photoluminescence quenching has been primarily used to identify possible charge 
transfer between QD and polymer [32,43]. Figure 8a shows the absorption of a 2nm PbS 
QD film and PL of a poly(3-hexyl)thiophene (P3HT) film, both measured at T=10K. 
Because of the overlap between the absorption of QD (guest material) and the 
photoluminescence of polymer (host material), energy transfer (including Förster energy 
transfer and radiative energy transfer) can occur, which quenches the polymer PL. On the 
other hand, charge transfer between the polymer (host) and QD (guest) can also eliminate 
PL of the polymer (Fig. 8b). Unfortunately PL quenching itself cannot distinguish these 
two mechanisms.  

Figure 8c shows the PL of QD/P3HT composite films with different weight ratio of QDs. It 
is clearly shown that energy transfer is quite efficient at high weight ratio of QDs, and the 
emission from QD came at a price of P3HT photoluminescence quench. However, 
comparing with the case of polymer/C60 composite, where <10% weight ratio of C60 
completely quenches the PL of polymer [30], with 200% of QDs the magnitude of PL of 
P3HT was only reduced by a factor of 5 (inset of Fig. 8c). This indicates that the charge 
transfer (CT) is not efficient in PbS QD/P3HT composite, as previously reported in CdSe 
QD/polymer blend [32].  



 
In-Gap State of Lead Chalcogenides Quantum Dots 

 

227 

 
Fig. 8. (Color online) (a) PL spectrum of P3HT film (red line) and absorption spectrum of a 
2nm PbS QD film (black line) measured at T=10K. (b) schematic drawing of energy transfer 
(ET) and charge transfer (CT) processes in QD/polymer composite when the energy level 
alignment is type II ( staggered, left) and type I (‘straddled’, right). (c) PL spectra of neat 
P3HT film (black hall-filled square) and QD/P3HT composite with various weight ratios of 
QDs. The inset is a blow-up at short wavelength range.  

Unlike in the case of CdSe and CdS QDs, with the spectral features we have discovered in 
PbS QDs, namely, IR-PA and EA (see sections 2.2&2.3 for details), we could qualitatively 
study charge transfer between PbS or PbSe QDs and polymers, without the complications 
from energy transfer which often occur in the composites. This is demonstrated in Figure 9. 
In Figure 9a, when the so-called type I alignment (“straddled”) is present between energy 
levels of QDs and polymers, the energetics would be in favor of energy transfer, IR-PA 
signal should increase since now there are more excitons generated on polymer being 
transferred and eventually trapped on the gap state of QD. In this case, since negligible 
charges are added to the QDs, the EA feature at energy higher than the QD bandgap is 
expected to remain the same.  

On the other hand, in Figure9b, when the energy alignment is type II (“staggered”), charge 
transfer could become more favorable, with hole being transferred to the polymer, the 
number of excitons originally trapped at the gap state would diminish, and therefore IR-PA 
signal is expected to decrease, and EA feature will increase due to enhanced QD charging.   

Noticeably in both cases, PL quenching of polymer would occur, therefore the conventional 
way of measuring PL quenching alone is not sufficient to distinguish between whether or 
not charge transfer has occurred. Furthermore, in the QD/polymer composite, detection of 
the charge transfer process can be determined from PA measurements performed on the 
individual constituents (i.e. QDs and polymer), and the mixed composite. The relative 
change of ΔE in QDs and the change of polaron absorption in polymers would give direct 
insight into the charge transfer within the system. The possible overlap of the lower polaron 
PA band (P1, usually at 0.5 eV) and IR-PA for QDs can be easily avoided by choosing 
different QD size and different polymers.  

The fact that the IR-PA feature has strong temperature dependence does not prevent it being 
used to study relevant device physics at room temperature.  A previous example in 
polymer/fullerene composite has shown polaron absorption, which almost vanishes at 
room temperature, could have implications for organic solar cells efficiency [44].  
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Fig. 9. (Color online) Schematic drawing of how energy transfer and charge transfer affect 
IR-PA and EA (not shown here). (a) When energy transfer dominates, the IR-PA signal 
increases, EA signal remains the same. (b) When charge transfer dominates, the IR-PA signal 
diminishes, accompanied by increased EA signal. 

Figure 10a shows the PA spectra of neat QD and P3HT, as well as the QD/P3HT composite 
with 1:1 weight ratio. As can be seen, the polaron population (P2) in P3HT shows slight 
increase, whereas the density of interchain excitons (IEX) was greatly enhanced due to 
morphology change of P3HT upon adding the QDs [45]. On the other hand, the EA signal of 
QDs remains the same in the composite film comparing with in neat QD film, with a slight 
increase of IR-PA signal, which means that charge transfer was inefficient between QD and 
polymer P3HT, combining with PL quenching (Fig. 11), we can draw the conclusion that 
energy transfer dominates the photoexcitation process in QD/polymer composite film. 
Similar result was recently reported [46]. Further improvement of charge transfer can be 
done by ligands manipulation of QD, i.e., ligand exchange with shorter surfactant groups 
[49], or ligand removal [43, 48, 49], to improve the interfacial properties between QD and 
polymer, and to facilitate charge transfer occurrence.   

+

(a) 

(b) 
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Fig. 10. (Color online) (a) Photoinduced absorption (PA) spectra of P3HT (black line), PbS 
QD (2.5nm) film (half-filled circle, red) and P3HT/PbS QD composite film (black line +red 
half-filled circle) measured at T =10K. The gap state is revealed as the near IR band (IR-PA), 
whereas the polaron absorption from P3HT is marked P2, IEX stands for interchain exciton 
[45]; (b) Molecular structures of P3HT and PbS QD, (Courtesy of Dr. J. Lewis).  

4. Conclusion  
In conclusion, using photoinduced absorption (PA) spectroscopy, we have investigated the 
characteristics of a peculiar gap state (G.S) in films of PbS QDs with different sizes. Large Stokes 
shift was attributed to the difference from first excitonic absorption and emission from a gap 
state (G.S.) which bears quantum confinement dependence. A detailed analysis of temperature 
dependence of PL, absorption and photoinduced absorption reveals the unconventional G.S. is 
a new state of trapped exciton in QD film. This gap state is directly relevant to exciton 
dissociation and carrier extractions in this class of semiconductor quantum dots.  

The spectral features of PA of PbS QD include an induced absorption band (IR-PA) at near 
infrared range, and electroabsorption peaks (EA) above the QD bandgap. Both features can 
be utilized to characterize charge transfer process between QD and conducting polymers 
such as poly (3-hexyl)thiophene (P3HT), a widely used electron donor in organic 
photovoltaics. The methodology developed in our work could separate the contributions of 
energy transfer from that of the charge transfer in QD/polymer composite, therefore solve 
the current difficulty of independently evaluating the role of charge transfer useful in hybrid 
photovoltaic devices built on QD/polymer mixture.  
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1. Introduction  
Remarkable progress has been made in the fabrication of semiconductor quantum dots 
(QDs) using the self-assembling method in lattice-mismatched material systems; they are 
based on the Stranski-Krastanow growth mode (Goldstein et al., 1985). In this process, initial 
two-dimensional growth transforms into three-dimensional growth. Using the self-
assembling technique, it is possible to fabricate semiconductor nanostructures in a 
continuous growth process in a vacuum. The self-assembled QDs grown on a 
semiconductor substrate can offer the possibility of realizing various interesting devices 
such as QD lasers, ultrafast optical switches, and solar cells (Arakawa & Sakaki, 1982; 
Huffaker et al., 1998; Prasanth et al., 2004; Bogaart et al., 2005; Martí et al., 2006; Oshima et 
al., 2008). To realize such QD devices, it is necessary to design the optical properties by 
controlling the exciton characteristics and to fabricate high-quality and high-density QDs. 
From this viewpoint, we have clarified that the photoluminescence (PL) characteristics of 
excitons in multiple stacked QDs fabricated by using the strain compensation technique 
(Akahane et al., 2002, 2008, 2011) can be controlled by changing the QD separations along 
the growth direction (Nakatani et al., 2008; Kojima et al., 2008). In this chapter, we introduce 
the control method of excitonic characteristics by using the overlap of electron envelope 
functions between QDs along the growth direction.  

2. Sample structures 
We used three samples in this study. For each sample, InAs self-assembled QDs with 30 
periods was grown on an InP(311)B substrate, as shown in Fig. 1, by solid-source molecular 
beam epitaxy using a strain compensation technique(Nakatani et al., 2008; Kojima et 
al.,2008, 2010, 2011). After growing a 150-nm thick In0.52Al0.48As buffer layer, 4-ML InAs QDs 
were deposited. The samples have In0.5Ga0.1Al0.4As spacer layers with thicknesses (d) of 20, 
30, and 40 nm. Hereafter, we will call these samples d=X nm sample (X=20, 30, and 40). The 
spacer layer compensates the stress caused by the lattice mismatch to a QD layer. The QD 
density in each layer is 3.4 x 1010/cm2.  

3. Control of optical characteristics of excitons in QD ensembles  
Figure 2 shows the spacer-layer-thickness dependence of the PL spectra at 3.4 K (Kojima et 
al., 2008). The PL measurement was performed by using a mode-locked Ti:sapphire pulse 
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laser. The emitted light was dispersed by a 32 cm single monochromator with a resolution of 
1.0 nm. The PL intensity and peak energy clearly depend on the spacer layer thickness. With 
a decrease in the spacer layer thickness, the PL intensity decreases. The integrated intensity 
of PL band is plotted as a function of d in the inset of Fig. 2 for the clarification of the 
relation between the intensity of the PL band and d. The dotted line indicates the linear 
dependence of the intensity on d. The PL intensity is almost linearly proportional to d. It is 
well known that a decrease in the relative motion of electron and holes in systems of 
quantum wells or QDs causes an increase in the oscillator strength in the strong 
confinement regime because the oscillator strength is proportional to the probability of 
finding an electron and hole at the same position. Namely, since the overlapping of the 
envelope functions of the confined electron and hole is enlarged in each QD, the oscillator 
strength of QD excitons is approximately inversely proportional to the confinement volume 
(Takagahara, 1987; Kayanuma, 1988). 

150 nm In0.52Al0.48As

InP(311)B sub.

InAs 
QDsInGaAlAs

Spacer layer 30 
layers

Buffer layer

 
Fig. 1. Schematic of the sample structure. 

Here, we discuss the origin of the confinement volume change. There are two possible factors 
for causing the expansion: (i) the creation of larger QDs owing to a decrease in d and (ii) the 
growth-direction elongation of the envelope function of confined carriers. It has been reported 
that larger-sized QDs are created in the case of the thinner capping layer (Xie et al., 1995; Saito 
et al., 1998; Persson et al., 2005). Indium atoms have a strong tendency to segregate at the 
surface when GaAs is deposited over InAs at temperature ~ 500 °C (Brandt et al., 1992), so that 
the capped InAs QD size tends to be small by a thick cap layer (Xie et al., 1995; Inoue et al., 
2008). In addition, the thinner cap layer results in less compressive stress in the QDs (Saito et 
al., 1998; Persson et al., 2005), leading the strain-relaxed larger QDs. If a change in d causes this 
QD size variation due to the indium segregation or strain reduction, the magnitude of overlap 
of the envelope functions of confined electron and holes varies according to the change in the 
QD size. Since the oscillator strength depends on the QD size as described above, the PL 
intensity is expected to correspond to the variation of d. However, such possibility of the 
change in the QD size is denied as follows. The indium segregation is suppressed when the 
InAs QDs are capped by the indium alloys (Kim et al., 2003) so that in our samples, InGaAlAs 
spacer layer suppresses the indium segregation. Moreover, we employed the strain 
compensation technique in the QD growth, which means that the compressive strain to QDs is 
independent of d is practically independent. Therefore, we can focus on the growth-direction 
elongation of the envelope functions of confined carriers. 
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Fig. 2. The spacer-layer-thickness dependence of the PL spectrum in the stacked InAs QDs 
with d=20, 30, and 40 nm at 3.4 K. The inset shows the d dependence of the integrated intensity 
of the PL bands. The dotted line denotes the linear dependence of the intensity on d. 

The heavy holes forming excitons are strongly localized in each of QDs (Saito et al., 2005) 
because of the heavier mass. On the other hand, since the effective mass of an electron is less 
than that of a hole, the electron envelope functions are sensitive to the quantum confinement 
effect. When the spacer layer thickness decreases, the electrons approach each other along 
the growth direction, and the electron envelope functions overlap within the spacer layer. 
Consequently, it is considered that the electron envelope functions in the samples with 30 
QD layers separated by thinner spacer layers interconnect weakly along the growth 
direction owing to the overlap. This interconnection results in the lowering of the oscillator 
strength because of the reduction in the magnitude of the overlap integral between the 
electron and hole envelope functions. 

The interconnection of electron envelope functions induces the lower-energy shift and 
broadening of PL band, as shown in Fig. 2. In Fig. 2, since the electrons in the d=40 nm 
sample are practically isolated within each QD, we can conclude that the PL band at around 
0.95 eV in the d=40 nm sample is typical for our QDs. The peak energy shift in the thinner d 
samples comes from the reduction in the confinement effects by the expansion of the 
confinement volume owing to the interconnection of electron envelope functions. In 
addition, the PL band broadens and the shape becomes asymmetric owing to the 
appearance of a new PL band at low energy side below 0.9 eV in Fig. 2. In the d=20 nm 
sample, the PL band clearly shows two components. As described above, the PL band 
around 0.95 eV results from the uncoupled QDs. Thus, the PL band below the energy of 0.9 
eV arises from the interconnection of the electron envelope function. 
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Fig. 3. The PL decay profiles observed at the peak energy in each sample. The dotted curve 
indicates the laser profile. The inset indicates the relation between 1/ and d. The dotted line 
denotes the linear dependence of 1/ on d. 

When the above consideration is correct, the PL decay time should be inversely proportional 
to the spacer layer thickness. The spacer-layer-thickness dependence of the PL decay profile 
observed at a peak energy in each sample is shown in Fig. 3 (Kojima et al., 2008). The PL 
decay profiles were measured by a time-correlated single-photon counting method with a 
time resolution of 0.8 ns. The excitation source was a mode-locked Ti:sapphire pulse laser 
delivering 110 fs pulses with a repetition rate of 4 MHz. We used a pulse picker to reduce 
the laser repetition rate from 80 to 4 MHz. The excitation photon energy was 1.550 eV and 
the excitation density was 0.17 J/cm2. PL was dispersed by a 27-cm single monochromator 
with a resolution of 1.0 nm and detected by a time-to-amplitude converter system with the 
use of a liquid-nitrogen-cooled InP/InGaAsP photomultiplier. All profiles are normalized 
by the PL intensity observed at 0 ns. The dotted curve shows a laser profile. The PL decay 
profile has a single component and it clearly depends on d. The evaluated PL decay times d 
obtained by fitting with a single exponential function are 1.9, 1.1, and 0.8 ns in d=20, 30, and 
40 nm, respectively. This result is very different from that observed in the case of QD 
molecules. In the case of excitons in the QD molecules, the PL decay time decreases with a 
decrease in the interdot distance because of the superradiance effect (Bardot et al., 2005). In 
the inset of Fig. 3, 1/d was plotted as a function of d. The dotted line indicates the linear 
dependence of 1/d on d. d of the QD excitons is inversely proportional to the oscillator 
strength f as described by the following equation (Andreani et al., 1999; Hours et al., 2005): 
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where 0 is the optical transition frequency, n is the refractive index, and m is the free-
electron mass. Hence, the relation between  and d strongly supports our consideration that 
the elongation of the electron envelope function results in the lowering of the oscillator 
strength. 

4. Temperature dependence of excitons in QD ensembles  
The reduced oscillator strength of excitons in QD ensembles with interconnection effects 
may not be suitable for light-emission devices such as LEDs, laser devices, and so on 
without a further increase in the number of the stacking layer. However, some devices such 
as quantum information devices and solar cells require a long exciton lifetime. Thus, the 
controllable long exciton lifetime described in previous section is considered to be a 
noteworthy property of interconnected QDs for realizing novel devices. Here, we focus on a 
carrier dynamics depending on the temperature in order to clarify the effects of the 
interconnection in vertically aligned QD ensembles.  
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Fig. 4. Temperature dependence of the PL spectra in (a) the d= 40 nm and (b) the d=20 nm 
samples. The dip at around 0.9 eV originates from the hydroxy group in the optical fiber. 

Figure 4 (a) and 4 (b) show the temperature dependence of the PL spectra in the d=40 nm and 
20 nm samples, respectively (Kojima et al., 2010). The PL measurement was performed by 
using the 488 nm line of a CW Ar+ laser. The excitation density was kept at 10 W/cm2. The 
emitted light was dispersed by a 32-cm single monochromator with a resolution of 1.0 nm and 
was detected by using a liquid-nitrogen-cooled InGaAs-photodiode array. All spectra were 
normalized by the maximum intensity of the spectra at 13 K in each sample. The dip at around 
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0.9 eV is due to absorption by the hydroxy group in the optical fiber. The decrease in the PL 
intensity with an increase in the temperature in the d=20 nm sample is same as that in the d=40 
nm sample. This result indicates that the nonradiative recombination process induced by an 
increase in the temperature is similar in both the samples. 

In order to clarify the difference between the temperature dependences in both samples, we 
measured the PL decay profiles at various temperatures, as shown in Fig. 5. All the profiles 
were recorded at the PL peak energy. The PL decay times of both samples increase with the 
temperature. In Fig. 5 (c), the PL decay times of both samples are plotted as a function of 
temperature. The increase in PL decay time indicates that the growth by the strain 
compensation technique can suppress the generation of nonradiative centers with QD 
stacking. However, the temperature dependence of the PL decay time in the d=20 nm 
sample is different from that in the d=40 nm sample. 

PL
 In

te
ns

ity
 (a

rb
. u

ni
ts

)

151050
Time (ns)

(a) d = 40 nm

3.4 K

50 K

30 K

80 K

120 K

160 K

Ex. = 1.55 eV
      0.17J/cm

2

   
151050

Time (ns)

(b) d = 20 nm

3.4 K

30 K

50 K

80 K

120 K

160 K
Eenergy

Det. PL Peak

   

3.5

3.0

2.5

2.0

1.5

1.0

0.5

D
ec

ay
 T

im
e 

(n
s)

150100500
Temperature (K)

40 nm
20 nm

(c)
Energy

Det.: PL Peak

 
Fig. 5. Temperature dependence of the PL decay profiles in (a) d=40 nm and (b) d=20 nm 
samples. Each profile was recorded at the PL peak energy. (c) The PL decay times in both 
the samples are plotted as a function of temperature. 

The increase in the PL decay time with the temperature is generally explained by the thermal 
dissociation of excitons into the electron-hole pairs, in which the excitons escape from the QDs 
into the spacer layer and/or the upper subband levels of electron and holes via thermionic 
emission (Wang et al., 1994; Yu et al., 1996; Fiore et al., 2000; Hostein et al., 2008), which is 
described as lateral coupling model. We considered that the temperature dependence of the PL 
decay time in the d=40 nm sample can be explained by this lateral coupling model. However, 
the temperature dependence of the PL decay time in the d=20 nm sample should include 
another factor, namely, the interconnection effect of the electron envelope functions. 
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In Fig. 6, the PL decay times in the low temperature region were plotted as a function of 
temperature. The PL decay time in the d=40 nm sample shows the almost constant value. 
This is the typical result for localized excitons. On the other hand, the PL decay time in the 
d=20 sample indicates the T0.5 dependence as shown by the solid curve, which is similar 
property of the excitons in the quantum wires (Akiyama et al., 1994). This is an evidence of 
the QD interconnection. Therefore, the difference of the temperature dependence of the PL 
decay time in Fig. 5(c) arises from the dimensionality of excitons. 
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Fig. 6. Temperature dependence of the PL decay time around low temperature region. 

Figure 7 shows the detection-energy dependence of the PL decay time in the d=40 nm 
sample measured at various temperatures (Kojima et al., 2011). For reference, the PL 
spectrum at 3.4 K is depicted. Even at 50 K, corresponding to 4.3 meV, the PL decay time 
depends on the detection energy; the lateral coupling occurs. Moreover, the increase factor 
of the decay time is enhanced at 100 K, which indicates the enhancement of the lateral 
coupling due to thermal activation of carriers. 

If the lateral coupling originates only from the exciton/carrier transfer due to the thermal 
dissociation, the 50 K temperature is considered to be insufficiently to cause the lateral 
coupling. Therefore, it was deduced that the hole injection from the spacer layers to QDs 
results in the lateral coupling-like behaviour in the detection-energy dependence at lower 
temperature region. Assuming the strain distribution calculated by Grundmann in and 
around a pyramidal InAs QD (Grundmann et al., 1995), there exist lateral potentials for 
electrons and holes in the vicinity of a QD. The potential for holes increases close to the 
QD and gives rise to a barrier for the capture of holes from the wetting layer (WL) in QD. 
On the other hand, the potential for electrons drops monotonically due to the weak 
influence. Therefore, the excited carriers in the WLs and the spacer layers lead to the 
transfer of an impaired hole into the QDs (Adler et al., 1996). In the lower temperature 
region, lateral coupling-like behaviour arises from the hole injection from the spacer 
layers. In our QD systems, there are two possible reasons causing the lateral coupling at 
lower temperature region: the high QD density and the decrease in the potential height 
due to strain compensation. The high QD density enables to transfer in-plane direction in 
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comparison with the vertical direction, and the strain compensation reduces the potential 
height induced by the lattice-mismatch strain. These two factors will lead the lateral 
coupling in the lower temperature comparably. 
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Fig. 7. Temperature dependence of the PL decay time and PL spectrum at 3.5 K in the 
d=40 nm sample. 

To reveal the effects of the lateral coupling on the intraband transition process, we measured 
the excitation-energy dependence of the PL spectrum systematically. In measurements of 
the excitation-energy dependence, the excitation light was produced by combination of a 
100-W Xe lamp and a 32-cm single monochromator with a resolution of 5 nm. The emitted 
light was dispersed by a 32-cm single monochromator with a resolution of 1.0 nm. In Fig. 8, 
the excitation-energy dependence of the PL intensity monitored at the PL peak energy  
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Fig. 8. Excitation-energy dependence of the PL peak intensity measured at various 
temperatures (circles) in the d = 40 nm sample. The PL spectrum at each temperature is 
also shown. 
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measured at various temperatures is depicted. All the profiles were normalized by the 
maximum intensity. All profiles show the maximum intensity around 1.9 eV. The 
bandgap energy of the InP substrate is 1.424 eV at 1.6 K and the In0.5Ga0.1Al0.4As spacer 
layer is around 1.357 eV at room temperature (Madelung, 2004). Therefore, the maximum 
intensity around 1.9 eV is attributed not to the resonant carrier injection from the spacer 
layers and substrates but to the higher-order excitons in InAs QDs. This demonstrates the 
existence of the above barrier exciton states around these energy regions. The profile of 
the excitation-energy dependence of the PL peak intensity hardly changes with the 
temperature. This result indicates that the lateral coupling is negligible for the intraband 
relaxation process in this sample. 

Next, we discuss the relation between the interconnection effects along the growth direction 
and the lateral coupling. We performed the same experiments in the d=20 nm sample which 
has a longer exciton lifetime due to the interconnection effect as shown in Fig. 9. The 
increase factor of the PL decay time depending on the temperature is much larger than that 
in the d=40 nm sample. This result indicates that the lateral coupling effect affects the carrier 
relaxation process in the d=20 nm sample. Therefore, intraband relaxation process will 
change with temperature. 
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Fig. 9. Temperature dependence of the PL decay time and PL spectrum at 3.5 K in the d=20 
nm sample. 

Figure 10 shows the excitation-energy dependence of the PL peak intensity measured at 
various temperatures in the d=20 nm sample (Kojima et al., 2011). The PL spectrum at each 
temperature is also shown. The profiles show the peak around 1.5 eV. The difference of the 
peak energy between the d=40 nm and d=20 nm samples comes from that of the lowest 
exciton energy. While the dependence of the PL intensity in the d=40 nm sample hardly 
changes, that in the d=20 nm sample clearly changes around the higher energy over 1.6 eV. 
This change is related to the exciton lifetime. As mentioned above, the exciton lifetime in the 
d=40 nm (d=20 nm) sample is 0.8 (1.9) ns. When the exciton lifetime is shorter than the 
transfer time under the lateral coupling conditions, the transfer process does not have a 
sufficient effect on the intraband relaxation process. On the other hand, in the case that the 
exciton lifetime is longer than the transfer time, the transfer process changes the intraband 
relaxation process, because it will be difficult for the transferred carriers to relax into the 
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QDs because of the occupied states. Therefore, the carriers generated in the smaller QDs 
with the larger transition energies strongly affects the larger QDs with the smaller transition 
energies. However, for application of the QDs with longer exciton lifetime to optical devices, 
especially photo receiving devices such as the photodetectors or solar cells, the exciton 
transfer time is considered to be not as fast as the deteriorating carrier extraction.  
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Fig. 10. Excitation-energy dependence of the PL peak intensity measured at various 
temperatures (circles) in the d = 20 nm sample. The PL spectrum at each temperature is 
also shown. 

5. Conclusion 
We have investigated the PL characteristics of excitons in multilayer stacked QDs with 
different spacer layer thicknesses. We found that the intensity of the PL band decreases with 
a decrease in spacer layer thickness. The PL spectra in the thinner spacer layer sample 
indicate the elongation of electron envelope functions along the growth direction. Moreover, 
from the PL decay time, it is revealed that the elongation of the electron envelope functions 
induces the lowering of an oscillator strength, leading to the lengthening of the PL decay 
time. This result suggests the interconnection of QDs along the growth direction via the 
overlap of the electron envelope functions. It is concluded that the PL characteristics of 
stacked QDs can be controlled by altering the spacer layer thickness through the variation of 
the exciton oscillator strength.  

In addition, we have investigated the effects of temperature on the PL characteristics of 
excitons in the d=40 nm and d=20 nm samples. We found that the decrease in the PL 
intensity in the d=20 nm sample with interconnection effect is similar to that in the d=40 
nm sample. To clarify the effect of the interconnection in the d=20 nm sample, we 
examined the temperature dependence of the PL decay time. The PL decay profiles, which 
show the increase in the PL decay time with temperature, indicated the suppression of 
nonradiative recombination paths caused during the QD and spacer layer growth 
processes. The increase in the PL decay time arises from the thermal delocalization. 
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However, the temperature dependence of the PL decay time in the two samples is 
different. In order to reveal the discrepancy in the temperature dependence of the PL 
characteristics, we examined the detection energy dependence of the PL decay time. The 
PL decay times of both samples clearly depend on the detection energy; this indicates the 
lateral coupling between the QDs. As the temperature increases, the excitons transfer 
from smaller QDs to larger ones. This affects the exciton relaxation process. However, in 
the d=20 nm sample, the vertical interaction in addition to the lateral interaction strongly 
affects the excitonic process, and therefore, the temperature dependence of the PL decay 
time differs from that in the d=40 nm sample.  

Finally, we investigated the effect of the lateral coupling, namely the exciton/carrier transfer 
process in the in-plane direction, on the intraband relaxation process of photoexcited 
carriers in d=20 nm and d=40 nm samples. The detection-energy dependence of the PL decay 
time indicates the in-plane interaction between QDs even at 50 K in both the samples. In the 
excitation-energy dependence of the PL intensity, while the transfer process hardly changes 
the intraband relaxation process in the d=40 nm sample, that in the d=20 nm sample changes 
the intraband relaxation process. Because the exciton lifetime in the d=20 nm sample is 
longer than that in the d=40 nm sample, this change depends on the exciton lifetime.  

These findings suggest that the interconnection of QDs along the growth direction via the 
overlapping of electron envelope functions occurs at high temperatures. These may aid the 
development of some functional devices by using QDs. In particular, they will be 
advantageous for the devices based on the so-called QD superlattice. 
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1. Introduction 
In this chapter we explore transport properties of lateral, gate defined quantum dots in 
GaAs/AlxGa1-xAs heterostructures. The term “quantum dot” as defined here refers to small 
regions of charge carriers within a 2-dimensional electron gas (2DEG), established via 
electrically biased surface gates used to isolate the charge carriers from the rest of the 2DEG, 
which are confined to length scales on the order of nanometers. While there are several 
other forms of quantum dots, including colloidal and self-assembled dots, in this chapter, 
however, we consider only gate defined quantum dots. 

Recent advancements in the research areas of quantum dot (QD) and single electron 
transistors (SET) have opened up an exciting opportunity for the development of 
nanostructure devices. Of the various devices, our attention is drawn in particular to 
detectors, which can respond to a single photon over a broad frequency spectrum, namely, 
microwave to infrared (IR) frequencies. Here, we report transport measurements of weakly 
coupled double quantum dots, fabricated on a GaAs/AlGaAs 2-dimensional electron gas 
material, under the influence of external fields at 110GHz. In this experiment, transport 
measurements are carried out for coupled quantum dots in the strong-tunneling Coulomb 
blockade (CB) regime. We present experimental results and discuss the dependence on 
quantum dot size, 2DEG depth, fabrication techniques, as well as the limitations in 
developing a QD photon detector for microwave and IR frequencies, whose noise equivalent 
power (NEP) can be as sensitive as 10-22 W/Hz1/2.  

The charging energy EC of a quantum dot is the dominant term in the Hamiltonian and is 
inversely related to the self capacitance of the dot Cdot according to EC = e2/Cdot. The 
temperature of the charge carriers within the 2DEG must be kept below a certain value, 
namely KBT, so that the thermal energy of the electrons does not exceed the charging energy 
EC of the dot. Keeping the temperature below the KBT limit prevents electrons from entering 
or leaving the dot at random, thereby allowing one to control the number of electrons in the 
dot. In order to raise the operating temperature T of the single photon detector we must also 
raise the charging energy EC, which is accomplished by decreasing Cdot. Since Cdot is directly 
related to the dimensions of the quantum dot our focus was directed at decreasing the 
overall size of the quantum dots. For smaller gate-defined quantum-dots the inclusion of 
shallower 2DEG is necessary.  
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However the experiments that we carried out to determine the effect of 2DEG depth on 
lateral gate indicated that leakage currents within a GaAs/AlGaAs heterostructure 
increased dramatically as the 2DEG depth became shallower. At this moment the leakage 
current in shallower 2DEG materials is one of the most significant technical challenges in 
achieving higher operating temperature of the single photon detector.  

2. Gate-defined quantum-dots 
2.1 2-dimensional electron gas (2DEG) 

In contrast to colloidal and self-assembled quantum dots, which are physically well defined 
small dots separated from other media, the gate-defined quantum dot means charge carriers 
(either electrons or holes) confined in a small region, which is formed by electrically biased 
gates surrounding the region. First the charge carriers are confined within the so-called 2-
dimentional electron gas (2DEG) material, which is typically made of GaAs/AlxGa1-xAs 
heterostructure. Figure 1 shows an example of the vertical profile of a 2DEG heterostructure 
and the corresponding energy-band diagram.  

 
Fig. 1. An example of a the vertical profile of the GaAs/AlGaAs 2DEG heterostructure (Left) 
and the corresponding energy-band diagram (Right).[Ref.1]  Included in the vertical profile 
are the patterned metallic surface gates (Au) that define the nanostructure devices and the 
ohmic contacts (NiAuGe), which when annealed penetrate through the top layers of the 
structure and make electrical contact to the 2DEG. 

One layer of AlGaAs in particular contains a region of n-type dopants, either as a single 
layer (so called -doped layer) or homogeneously doped (modulation doping). In our case 
the dopants are Si atoms, which are deposited within an AlGaAs layer and are separated 
away from the 2DEG by an undoped AlGaAs spacer layer. The spacer layer which is 
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typically 10 – 100 nm thick is to minimize the effect of scattering from the dopants; the 
various layer thicknesses can be modulated to vary the properties of the 2DEG.  

At low temperature each Si atom produces a free electron as the electrons become thermally 
ionized [2, 3]. The offset in the conduction bands between GaAs and AlGaAs results in each 
free electron migrating toward the energetically favorable GaAs substrate layer. The charge 
carriers still feel the electrostatic attractive forces from the ionized donor atoms, however, 
and ultimately become trapped at the interface between the GaAs layer and an undoped 
AlGaAs layer. These trapped electrons are called 2-dimentional electron gas (2DEG). As the 
temperature decreases to very cold temperatures (< 1 K) the thermal smearing of the vertical 
“z” profile of the 2DEG becomes less pronounced as the electrons occupy only the lowest 
energy levels up to the Fermi Energy, resulting in a very clean glass of electrons confined 
within a 2-dimensional plane.  

Because the lattice constants of GaAs and AlGaAs are only slightly different (~7% 
mismatch) the interface is essentially defect free. Because of this defect free interface and the 
separation of the 2DEG from the Si dopants 2DEG can have high electron mobility, e ~ 105 – 
107 cm2V/s, and long mean free paths, l  ~ 1 – 1000 nm. These properties are often exploited 
for quantum dot devices which require coherent and ballistic electron transport behavior.  

2.2 Gate-defined quantum-dot 

The local electron density within the 2DEG can be manipulated by placing electrodes on 
GaAs cap surface, as shown in Figure 1. When a negative bias voltage is applied to the 
electrodes the negatively charged gates repel electrons in the 2DEG. If the negative field 
strength is strong enough all electrons beneath the electrodes will be fully depleted. The 
electrodes can be lithographically arranged over an area with a certain geometric shape, 
such as a circular disk. An example is shown in Figure 2.  

 
Fig. 2. An example of gate-defined quantum dot. The four gates are fabricated by the e-beam 
lithography, and surround a circular disk in the center, which becomes the quantum dot 
when the four gates are negatively biased. The lithographically defined circular-disk size is 
about 250 nm in diameter. However the actual size of the quantum dot depends on the 
strength of the bias voltage. Also the shape of the quantum dot depends on how the bias 
voltage is applied to each gate, and it can be deviated from the disk shape. 
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With strong enough negative bias voltages applied to the electrodes, electrons confined 
inside the area (e.g. circular disk) will be isolated from the rest of the electrons in the 2DEG. 
These isolated electrons in the area (e.g. disk) are called the gate-defined quantum-dot and 
the rest of the electrons in the 2DEG are called the reservoir. While the configuration of the 
gates influence the overall shape and determine the maximum size of quantum dot, actual 
shape and size of the isolated electron puddle (i.e. quantum dot) are dependent upon the 
strength of the negative bias voltage applied to each gate. The gap between gates is often 
called the quantum point contact (QPC) and is typically a few tens of nm. It pinches off 
electrons when the negative bias voltage is applied to the gates. The QPCs can individually 
tune the potential barriers between the dot and the reservoirs, and hence control the 
tunneling rate from the leads and the dot. The transport through a quantum dot can be 
divided into two categories, “open” and “closed,” depending upon the conductance of the 
QPCs. For strong coupling, the conductance G > e2/h, where each QPC passes one or more 
modes, the dot is considered “open.”  In an “open” dot electrons are classically allowed to 
travel through the dot from one reservoir to the other. For weak coupling, G < e2/h, where 
each QPC is set to pass less than one fully transmitting mode, the dot is considered “closed.”   
If the bias voltage is large enough the electrons near the quantum point contacts are 
completely pinched off, making the quantum dot to be “closed” or isolated from the 
reservoir. However electrons can tunnel through the “closed” quantum dot, allowing very 
small currents. Therefore the conductance is orders of magnitude lower than that of 2DEG.  

Quantum Dots are often referred to as zero-dimensional systems, as the electronic motion is 
entirely restricted in all directions. The size of quantum dot is typically smaller than a few 
hundred nano-meters in diameter. As electrons are confined within such a length scale the 
spacing between each quantum energy level of the electron becomes very pronounced when 
the temperature of the quantum dot drops below 4.2 K and thermal smearing is very much 
reduced. Because of these well defined quantum energy levels of electrons within the 
quantum dot the tunneling currents through the quantum dot exhibit the characteristic 
Coulomb blockade effect. 

 
Fig. 3. The conductance G (tunneling current) is measured across a quantum dot device, 
from the source to drain reservoirs. 

G
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The Coulomb blockade occurs due to the fact that conduction through the dot is prevented 
for most settings of the electrostatic gates simply because the available energy levels within 
the dot are not in alignment with the Fermi levels in the source and drain (i.e. reservoir). An 
electron is unable to tunnel into the dot if the energy needed to add an additional electron 
(from N to N + 1 electrons) is above the Fermi Energy in the source. Similarly an electron is 
unable to tunnel out of the dot if the energy carried by that electron is less than the Fermi 
Energy in the drain. If electrons have enough energy to tunnel into the dot and then tunnel 
out of the dot, the measured conductance displays a large conductance spike, which 
indicates tunneling currents. This is known as a Coulomb blockade peak. 

 
Fig. 4. (a) and (b): Coulomb blockade energy diagrams. (a) The energy level in the quantum 
dot allows the electron to tunnel through the dot. The tunneling currents produce a 
Coulomb blockade peak. (b) The energy level in the quantum dot is higher than the 
electron’s energy so that the electron cannot tunnel through the quantum dot. Therefore the 
conductance is zero, and there is no Coulomb blockade peak in (c). As a gate voltage is 
swept the energy levels of the dot are raised and lowered, making the quantum energy 
levels to move in and out of alignment with the chemical potentials (S and D) of the source 
and drain, resulting in large spikes in the conductance. The interval and the sharpness of 
Coulomb blockage peaks are determined by the quantum energy level spacing and the 
finite thermal broadening for a given temperature T. 

For the tunneling currents and the Coulomb blockade five separate energy parameters need 
to be considered, including the source-drain voltage Vsd, the chemical potentials of source S 
and drain D, the charging energy EC and the thermal energy of charge carriers KBT. For the 
conductance measurement a small source-drain voltage Vsd, which is typically limited to be 
less than a few μV so as not to impart energy to the electrons greater than the thermal 
energy, is held across the dot. The source-drain voltage results in the chemical potential 
difference between the chemical potentials of source and drain so that eVsd = S – D. The 
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charging energy EC is an additional Coulomb energy that is needed to add an additional 
electron to the quantum dot, and can be expressed as  

 EC = e2/2Cdot.  (1) 

Here Cdot is the self-capacitance of the quantum dot. At temperature T an electron has the 
thermal energy KBT. If the thermal energy becomes comparable or larger than the charging 
energy it causes the electron randomly to tunnel through the quantum dot, and also results 
in a thermal broadening larger than the energy level spacing . Then the quantum dot will 
not be functional, as the electron is no longer controllable by the gate bias voltage. Hence it 
is very important to keep the quantum dot at very low temperatures so that its thermal 
energy is well below the charging energy (i.e. EC > KBT). 

The quantum dot can manipulate the flow of an individual electron by controlling the gate 
bias voltage. As shown in Figure 5, a quantum dot with a capacitively coupled gate can be 
used as a single electron transistor. The bias voltage applied to the gate raises or lowers the 
energy level of the dot so that each single electron can tunnel through the quantum dot. 
Such a device is called a single electron transistor. We utilized the single electron transistor 
for our quantum dot single photon detector.  

 
  (a)                       (b) 

Fig. 5. (a) A schematic diagram of a single electron transistor made of a quantum dot. (b) An 
equivalent circuit for a single electron transistor. 

3. A single photon detector based on coupled double quantum dots  
The quantum energy levels as well as the level spacing  can be adjusted by controlling 
the physical parameters of the quantum dot. A photon can change the energy level of a 
quantum dot, which leads to electron tunneling through the quantum dot. This is known 
as photon assisted tunneling in a quantum dot. In 2000 Komiyama and his coworkers 
exploited this property and developed a detector, which can detect a single photon at 
far-infrared frequencies. The quantum dot size that they used in the experiments was 
about 500 nm in diameter fabricated on a 100 nm thick 2DEG substrate. Their large 
quantum dots resulted in a large self capacitance Cdot and a small charging energy EC = 
e2/2Cdot. Hence their detectors had to be operated at 100 mK or below, which made the 
detector less practical. We attempted to adopt their quantum dot detector technology 
and raise the charging energy and the operating temperature by reducing the quantum 
dot size. 
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3.1 A shallow 2-dimentional electron gas for quantum dot single photon detector 

For the design of our quantum dot detector we have performed numerical calculations. The 
calculations indicate that our detector should be fabricated on a shallow 2 dimensional 
electron gas (2DEG) substrate in order to achieve an operating temperature above 4 K. [4]  
As shown in Figure 6 the depth of the 2DEG that we have used for the detector is about 40 
nm. This is much shallower in comparison with the Komiyama group's 2DEG, which was 
buried approximately 100 nm beneath the un-doped GaAs cap layer.  

The high-mobility GaAs/Al0.24Ga0.76As heterostructure crystal was grown by molecular 
beam epitaxy in the [001] direction. The heterostructure layers were deposited on an n-type 
GaAs substrate, carried a 5000Å thick GaAs buffer layer, a non-inverted heterostructure (500 
Å thick GaAs/ 140Å thick Al0.24Ga0.76As), a -doped barrier layer (250 Å thick Al0.24Ga0.76As), 
and a -doped GaAs cap layer (10 Å thick). The silicon n-type dopants (level 6×1018/cm3) 
provide the excess charge carriers (target value was 6x1011/cm2 at room temperature), which 
constitute a 2 dimensional electron gas (2DEG) at the hetero-interface 400 Å below the wafer 
surface and 140 Å from the dopant atoms. 

 
Fig. 6. The 2DEG structure we have used for our double-dot detector. For this work the 
2DEG depth was a shallow 40 nm beneath the surface of the wafer. Here, x = 0.24. 

For the characterization of 2DEG as well as for the quantum dot device good ohmic contacts 
should be made on the GaAs cap layer, as illustrated in Figure 1. A good ohmic contact has 

GaAs Substrate 

GaAs buffer layer 5000 Å 

AlxGa1-xAs 140 Å 

Si   AlxGa1-xAs 250 Å 

Si   GaAs 10 - 100 Å 

GaAs 500 Å 

energy 
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a non-zero internal resistance Rc that obeys Ohm’s law for all current densities of interest. 
The contact should work at the lowest temperatures reached in quantum dot experiments 
where thermionic currents are negligible, but tunnel currents are allowed [5-7]. Fabrication 
of good ohmic contacts is not always trivial. The standard process includes depositing 
metals onto the surface and then annealing them into the wafer in order to make electrical 
contact to the 2DEG. We have used GaAs/AlGaAs heterostructures with several different 
2DEG depths ranging from a shallow 40 nm to a deeper 160 nm. In each case a separate 
ohmic recipe had to be developed. 

After several steps of cleaning procedures we carried out acid wet etch in order to remove 
any GaAs oxide layer that has formed on the surface. [8] Then we performed metal 
deposition on the 2DEG substrate. With the following recipes we have achieved low 
resistance, good ohmic contacts at cryogenic temperatures. 

 

 
Table 1. Ohmic contact recipes for two different 2DEG depths that have given low resistance 
(<100 ) at low temperature when annealed above the eutectic point. 

The first Ni layer acts as a wetting layer and enhances the uniformity of the contacts; 5 nm is 
enough as this layer should not be thick. Otherwise it may prevent the other elements from 
penetrating into the wafer. The 2:1 ratio of Au:Ge forms a eutectic mixture, which is the ratio 
of two substances with the lowest melting point (a 2:1 ratio is essentially 88% Au and 12% 
Ge by weight with the melting point of this eutectic at ~ 380 C). Each metal was evaporated 
one at a time. The second Ni layer acts as a barrier for the top layers of metals. The 
metalized 2DEG substrate is then submersed in Acetone for liftoff, and then rinsed with IPA 
and DI-H2O. Finally it was dried by blowing dry N2 gas. 

In order to make electrical contact to the 2DEG the metals must be annealed into the 
substrate after the liftoff process. For the annealing we used AS-One 150 Rapid Thermal 
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Annealer (RTA) from ANNEALSYS with the following annealing procedure: Start with a 
ramp to 260 C at 10% power to drive off any moisture from the chip. The pyrometer target 
is set at 510 C for 100 seconds for the 160 nm deep 2DEG’s, and 450 C for 100 seconds for 
the 40, 43, and 90 nm deep 2DEG’s. 

The resulting Rc resistances for each contact are on the order of tens of k at room 
temperature and decrease to a value on the order of k at 4.2 K for the 160 nm deep 2DEG. 
For the shallower 2DEGs the contact resistances are even lower; they are on the order of k 
at room temperature.  

Low temperature measurements for the ohmic contacts and the 2DEG mobility 
characterizations are carried out using a Physical Property Measurement System (Quantum 
Design). The system is also equipped with a 9 T superconducting magnet and is capable for 
carrying out our Hall Effect measurements. Figure 7 shows the temperature dependence of 
both good and poor Ohmic contacts that were measured at zero field. 

  
Fig. 7. Temperature dependence of resistance for (a) a good ohmic contact and (b) a poor 
ohmic contact. Preferably, the contact resistance is as low as possible at low temperatures.  

After the success in Ohmic contact fabrication the 2DEG was characterized by measuring the 
Hall properties of micron-size Hall bars, which were fabricated on the 2DEG material. A 
standard Hall bar geometry, which is shown in Figure 8, is defined by wet etching and the 
metallic electrodes and ohmic contacts are patterned via optical lithography. Hall 
measurements reported in this paper were taken on a 50 m wide Hall bar with a 700 m 
distance between longitudinal taps. Electrical contact is made with the 2DEG by 
lithographically patterned Ni-Au-Ge Ohmic contacts, which when annealed at temperatures 
above 400 degrees Celsius provide for low resistive transport into and out of the 2DEG at 
cryogenic temperatures.  

Two different Hall bars were fabricated, with and without an overlaying Si3N4 (silicon 
nitride) dielectric layer, which was tested to shield the 2DEG along the mesa edge from 
unwanted field effects caused by voltage biased leads. For the characterization of ohmic 
contacts we used a standard Van der Pauw experimental configuration. As shown in Figure 
6, the resistivity decreased with temperature monotonically indicating the correct Ohmic 
contact behavior.  

(a) 
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           (a)                 (b) 

Fig. 8. SEM and optical images taken of an annealed, low resistance ohmic contact. (a)  The 
cross-sectional SEM image, taken after a Focused Ion Beam (FIB) cut into the contact, shows 
the puncturing of the deposited metal into the host GaAs/AlGaAs wafer. (b)  An optical 
micrograph of a contact measured to have less than 1 k of resistance at 4.2 K. The 
dimensions of the contact are 200 m x 200 m. The smaller gold square is additional metal 
deposited during the last optical lithography step (large gate pads) to help in wire-bonding.  

 
Fig. 9. (a) Optical micrograph of a micron-size Hall bar fabricated on the 2DEG material, and 
(b) the schematic diagram of the Hall bar and its characterization. Note that a magnetic field 
B perpendicular to the Hall bar is applied during the characterization, and a 10 A current 
was used. 

When a magnetic field is applied to 2DEG, electrons moving within the 2-dimensional 
system experience a Lorentz force that pushes them into circular orbits. Since in the  
2-dimensional system only certain orbits (or energy states) are quantum mechanically 
allowed, the energy levels of the circular orbits are quantized, just as in the discrete set of 
allowed energy levels in an atom. These quantized energy states, or Landau levels, can be 
expressed as 

 Ej = (j – ½) h e B / (2  m) (2) 

 
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Here, j is an integer, h the Planck’s constant, e the fundamental electron charge, and m the 
electron mass. Assuming a fixed electron density n for a 2-dimensional system, at low 
temperatures all electrons occupy the lowest allowable energy state, or Landau level, filling 
it only partially. As the field B is swept toward zero the capacity for each Landau level to 
hold each electron decreases according to  

 Ɲ = e B / h (3) 

where Ɲ is the number of orbits that can be packed per Landau level into each cm2 of the 
system. At various points along the magnetic field all electrons fill up an exact number of 
Landau levels with all higher energy states remain empty. When this occurs the B-field is 
quantized and can be expressed as  

 B = (n h / e) / j, (4) 

where n is the electron density for a given state. Then the magneto-resistance -- resistance 
measured along the initially supplied current path -- drops and the Hall resistance RH 
becomes quantized as 

 RH = B / (n e) = h / (j e2). (5) 

The first expression is just the classical Hall resistance while the second expression comes 
from substituting the values for B into the first expression. From this equation it is possible 
to extract the charge carrier density of the material by examining the periodicity of the 
plateaus in the quantum Hall effect measurement.  

Our Hall resistance measurements were carried out on a patterned Hall bar shown in Figure 
9. A drive current of 10 A, which was the minimum current setting available on our 
Physical Properties Measurement System at a frequency of 30 Hz was supplied across  
the length of the Hall-bar, and a magnetic field B was applied along the direction 
perpendicular to both the current path and the measured VH direction. A 9 Tesla 
superconducting magnet was used to generate the field, though for safety purposes the 
magnet was only ramped to 7 T in each direction. The measurements performed at 1.7 K  

 
Fig. 10. (a) The magnetic field dependence of the Hall resistance Rxy measured at T=1.7 K. 
Note the quantized Hall resistance. (b) The Shubnikov-de Haas oscillations in the 
longitudinal resistance Rxx. 
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show that the magnetic field dependence of the Hall resistance is quantized to Rxy = h/je2 in 
our 2DEG material. Also, the longitudinal resistance Rxx measured as a function of magnetic 
field exhibits the characteristic Shubnikov-de Haas oscillations, as shown in Figure 10. 
 

2DEG Property Symbol Value Units 
Charge carrier density n 5.0x1011 cm-2 

Charge carrier 
mobility  x105 cm2/Vs 

Effective mass m* 0.067 me = 9.1x10-28g 
Spin degeneracy gS 2  

Valley degeneracy gV 1  
Density of states (E) = gSgVm*/(h2/2) 2.8x1010 cm-2meV-1 

Landau level spacing 1/(E) 3.57 eVm2 
Fermi wave vector kF = (4n/gSgV)1/2 1.8x106 cm-1 

Fermi Energy EF = (hkF/2)2/2m* 17.88 meV 
Fermi wavelength F = 2/kF 35 nm 

Fermi velocity vF = (hkF/2)/m* 3.07x107 cm/s 
Scattering time  = m* /e 11 ps 
Mean free path lvF  3.5 m 

Cyclotron radius rC = (hkF/2)/eB 26 nm/B1/2 

Table 2. Typical parameters of our 40 nm deep 2DEG formed in a GaAs/AlGaAs 
heterostructure. The unit of B is in Tesla. 

From the periodicity of the plateaus  in Figure 10 (a) and (b), the 2DEG charge carrier 
density n was estimated to be about 5.0 × 1011 charges/cm2 while the charge carrier mobility 
 was estimated to be about 3.0 × 105 cm2V/s. These two parameters were then used to 
obtain for example the Fermi Energy EF, mean free path l, Fermi wavelength F, and effective 
mass m*. Table 2 lists the various properties that were calculated for one of our shallower 
(40 nm thick) 2DEGs.  

3.2 Fabrication of gates on a shallow 2DEG and gate-defined double quantum dots 

As our heterostructure material showed the typical 2DEG behavior, we fabricated quantum-
point-contact (QPC) devices to see further 2DEG behavior in another nano-device form. 
Moreover, we did this to test our device fabrication technique. The gap on the QPC was set 
at 250 nm, shown in Figure 11. We tested the device at 4.2 K using AC lock-in techniques 
and found that the device did indeed exhibit quantized resistance behavior on account of 
the quantized transverse electron momentum through the QPC. 

A Quantum Point Contact is defined as a short one-dimensional channel that is connected 
adiabatically to large source and drain reservoirs and that supports one or more wave 
modes. Our QPCs were made by electron beam lithography where two small metallic 
electrodes are patterned to form a small gap between them (100 nm – 1 m in a typical QPC 
experiment). When the device is very cold and the negative bias voltage applied to it is 
strong enough to fully deplete electrons in the local 2DEG underneath, the electrons within 
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the 2DEG are forced through a narrow constriction having now been permitted to move in 
only one direction. The width of the channel can be controlled by adjusting the gate voltages 
and can be made small enough to be comparable to the Fermi wavelength of the electrons 
(~40 nm). When the wavelength of the electrons is on the order of or greater than the 
characteristic size of the system quantum effects become pronounced. Here, since the Fermi 
wavelength is comparable to the width of the QPC’s narrow constriction quantum effects 
are observable. Figure 11 shows examples of QPC’s while Figure 12 shows a quantized 
resistance obtained from a QPC shown in Figure 11 (a), which indicates the quantization of 
the conductance in the QPC. 

 
         (a)             (b) 

Fig. 11. Two Scanning Electron Micrographs (SEM) of QPC’s used to restrict the electrons in 
the 2DEG to motion in one direction. (a) QPC with a  ~250 nm wide gap. (b) QPC with a 
~300 nm wide gap. Note the slight bend at the edges of the electrodes in (a), which is due to 
the proximity effect, a result of secondary backscattering electrons in the electron beam 
lithography writer. 

If the negative voltages on the QPC electrodes are made sufficiently strong so that the first 
subband is above the Fermi level, then the electrons can only tunnel across from one 
reservoir to the other, and the QPC then acts as a tunnel barrier. A good review of the theory 
regarding quantum point contacts can be found in [9]. The conductance is calculated 
starting with the simple Hamiltonian  

 H = px2/2m* + eV(x) + py2/2m* (6) 

Here, V(x) is the confining potential from the gate electrodes in the lateral direction. In this 
Hamiltonian V(y), the potential in the longitudinal direction that describes the transition 
from the 2DEG reservoirs to the constriction, is not included, assuming the one-dimensional 
electron’s motion in the x-direction. V(x) takes on a parabolic form in the lateral direction 

 V(x) = ½ m*o2x2. (7) 

The solutions to the Schrödinger equation with this V(x) can be written in the Energy 
eigenvalue form 

 En = (n-1/2)ħo + ħ2ky2/2m*.  (8) 
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Here n is an integer (n = 1, 2,...). The conductance of the QPC can be calculated using 
Landauer-Buttiker formalism if the transmission probability are known, and is given by (see 
ref.[9] for details) 

ܩ ൌ 2݁ଶ݄ ෍T୬ሺE୒
୬ୀଵ ሻ (9) 

Essentially, the summation is over all modes of the QPC and Tn(E) represents the 
transmission probability of each individual mode. For small Vsd values this can be simplified 
by making the approximation Tn(E) = Tn(EF). If there is no backscattering from the QPC 
(although this assumption is not realistic), Tn = N, where N is an even number integer (N = 
0, 2, 4,…) for the case of no applied magnetic field, representing each fully occupied 
subband. Then the conductance of a QPC can be written as 

ܩ ൌ 2݁ଶ݄ N (10)

The conductance G of a QPC is quantized in units of 2e2/h depending on the number of 
modes accessible in the device. 

 

 
 

Fig. 12. Quantized resistance obtained from the quantum point contact shown in Figure 11 
(a), which indicates the quantized conductance of the QPC at 4.2K.  

The quantized conductance also can be seen from a quantum point contact formed by a gap 
between the gates, which are fabricated to define the quantum dot. An example of a single 
quantum dot is shown in Figure 2 and also in the inset of Figure 13. The conductance 
measurements at 80 mK through a quantum point contact formed by the gates 4 and 8 
exhibits a well defined quantized conductance. 
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Fig. 13. The conductance G through a quantum point contact between the gates G4 and G8 is 
quantized in units of e2/h, with the multiple of 2 arising from spin degeneracy. Inset: a 
single quantum dot.  

3.3 Weakly coupled double quantum dot for a single photon detection application 

For a small number of electrons in the quantum dot it is possible to calculate many-electron 
wave-functions and energy states. The many-body spectrum at zero magnetic field is then 
governed by the quantum confinement energy Eq and the charging energy Ec. For the 
simplest case of two parabolically confined electrons these parameters may be expressed in 
terms of lo, which is related to a characteristic frequency 0 determined by the electrostatic 
environment, as  

 lo = ( ħ / m 0 ) ½.  (11) 

The confinement length of the harmonic oscillator can be expressed as  

Eq = ħ2 / ( m * lo2 ) 

and the charging energy as  

Ec = e2 / 2C  e2 / ( 4 lo). 

If one uses the quantum dot as a photon detector, the characteristic frequency 0 is related to 
the frequency of the photon absorbed by the quantum dot. This means that the photon 
frequency of the quantum dot detector can be tuned by adjusting the electrostatically defined 
quantum dot size. When a photon is absorbed by the dot its energy level is shifted resulting in 
a pair of excited electrons and holes. The excited charge can tunnel to the electron reservoir 
(i.e. outside of the quantum dots), resulting in the conductance-resonance peak shift. The 
variation of conductance can be detectable when the quantum dot absorbs even a single 
photon. As demonstrated by Komiyama and his coworkers [10, 11], such photon detection can 
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be achieved using a single quantum dot or weakly-coupled double quantum-dots. Since the 
photon detection using double quantum-dots seemed to be more practical than that of a single 
quantum dot, which can be achieved by applying a considerable magnetic field (3.4 – 4.15 
Tesla) to the quantum dot, we adopted the double quantum-dot technique.  

3.4 Double quantum dot photon-detector 

Similar to Komiyama’s double quantum dot detector, our single photon detector consists of 
double quantum dots in a parallel geometry that is defined by metallic electrodes deposited 
on the 2DEG substrate surface. In this experiment we have used several different 2DEG 
substrates with the 2DEG depth ranging from 40 nm to 160 nm, and fabricated more than 
several hundred devices. Figure 14(a) shows the gate electrodes and the Ohmic contacts 
with the quantum dots located at the center of the white frame. Figure 14 (b) shows another 
SEM picture of the double quantum dots, which is a magnified view of the center part of 
Figure 14(a). The lower quantum dot (QD1) acts as a photon absorber and the upper 
quantum dot (QD2) functions as a single electron transistor.  

 
     (a)               (b) 

Fig. 14. (a) Overall SEM view of the NRL double quantum dot detector. (b) SEM picture of 
the electrode defined double quantum dots. 

The gate electrodes were defined via e-beam lithography after which we deposited a 50 Å 
thick Cr layer (acts as a wetting layer) on the surface of a GaAs/AlGaAs heterostructure and 
then a 150 Å thick Au layer on top of the Cr layer. The diameters of QD1 and QD2, as defined 
by the surrounding electrodes, are roughly 250 nm with the diameter of the SET dot (QD2) 
slightly smaller than that of the absorber dot (QD1). As mentioned earlier, the actual size of the 
quantum dot is dependent upon the strength of the negative bias voltage applied to the gates:  
the stronger the bias voltage the smaller the quantum dot. As the capacitance and the 
electrochemical potential of the quantum dot are closely related to the number of isolated 
electrons, one can control the capacitance and the electrochemical potential by adjusting the 
gate voltage. The plunger gate G1 shown in Figure 14 provides experimental control of the SET 
dot's self capacitance (C1) and electrochemical potential (1), and the pair of gates labeled G2 
control the absorber dot's self capacitance (C2) and electrochemical potential (2). The electrodes 
labeled G12 control the potential barrier that couples the SET dot and the absorber dot.  

As the absorber (QD1) and the SET (QD2) are weakly coupled by the voltage on gates G12, 
the excited energy level of the absorber alters the energy levels of the SET. If an energy level 
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of the SET aligns within the energy levels of the source and the drain, electrons begin to flow 
through the SET. These excited energy levels of the absorber and the SET are in what are 
referred to as meta-stable states, which survive typically on the order of or less than a few 
milli-seconds. This short meta-stable state is due to the fact that a finite probability exists 
that an electron from one of the large 2DEG reservoirs “hops” onto the absorber dot. This 
results in a change in the energy of the absorber dot, which can affect the energy level 
matching between the SET dot and source and drain, since the two dots are electrostatically 
coupled. Since the electron mobility is very high (3.0×105 cm2/Vs) and the electron density is 
very large (5.0x1011 cm-2) in the 2DEG, a significantly large number (~106 - 107) of electrons 
can flow through the SET within the short time of a meta-stable state, resulting in electric 
currents on the order of a pico-ampere. By employing a lock-in technique one can readily 
measure such currents. This operating principle is somewhat analogous to the 
photomultiplier tube as a single photon triggers a measureable electron flow in the detector.  

 
Fig. 15. A schematic diagram of our experimental setup to measure low current signals from 
a device. This diagram shows the wiring between the electronic equipment and the gate and 
Ohmic pads on a device. A lock-in sources an AC signal (~ 0.1 V) and a simple voltage 
divider circuit 105:1 is connected to an Ohmic contact on the high side and is used to supply 
the V drop across the device. An Agilent E5270B Mainframe supplies the gate voltages 
through a homemade breakout box. Final data values can be read off of the Keithley digital 
multi-meters (DMM) and oscilloscope. The computer that collects data is housed in a 
separate room and is connected to the equipment via an optical fiber. 
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The electrons (~106 -107) flowing through the SET result in an electric current, which is on 
the order of a pico-Ampere (10-12) or less. [1, 3, 12-14] In order to measure this weak current 
one should carefully design the experimental set up. Since electrical noises can induce 
currents much larger than pico-Ampere, it is necessary to minimize ambient electrical 
noises, which usually can be achieved by carrying out the measurements within a shielded 
room, and also by employing a lock-in technique. [15-17] An example is shown in Figure 15. 
A measurement includes the application of a source-drain voltage (or current source) over 
the device, or part of the device, and measuring the resulting current or voltage signal as a 
function of various parameters, such as the negative voltages applied to the depletion gates, 
temperature, electromagnetic fields, etc.  

During the measurements it is important to keep the current and voltage across a device 
small enough in order to maintain the device temperature sufficiently cold. The energy 
associated with the voltage drop across the source and the drain, Vsd, should not exceed the 
electron thermal energy, KBTe, within the 2DEG. If eVsd > KBTe, then the electrons within the 
Fermi reservoirs may enter or leave the quantum dots at random and/or the higher energy 
charge states may become allowed within the dots. Then the electron flow through the 
quantum dot cannot be controlled. Therefore, it is necessary to limit the voltage drop across 
a device such that eVsd < KBT, where KB is the Boltzmann’s constant. For example, Vsd 
should be less than 345 V for Te = 4 K, or 8.62 V for Te = 100 mK. 

3.5 Photon detection  

A schematic diagram of our photon detection setup is shown in Figure 16. For this 
demonstration we used a double quantum-dot detector fabricated on 100 nm 2DEG, and 
employed an HP 85105 millimeter-wave controller and an HP W85104A test-set module, 
which were attached to an HP8510C Vector Network Analyzer. The millimeter-wave signal 
was sent through micro-coaxial cable (Lakeshore Type C cable). To modulate the signal we 
split the micro-coaxial cable and made two sets of dipole antennae, which face each other 
across an optical beam chopper (Stanford Research SR540) set to produce 1 - 2 Hz 
modulation. However, at the low modulation frequency, the chopper's blade did not rotate 
smoothly resulting in irregular modulation so much that the modulation interval was highly 
irregular. Also, we note that the millimeter-wave signal was highly attenuated through the 
micro-coaxial cables, as well as through the dipole-antenna to dipole-antenna coupling. We 
estimate the attenuation rate was much more than 5dB per foot for the micro-coaxial cable 
and the coupling efficiency through the dipole-antenna coupling to be less than 10%. Since 
the initial mm-wave input from the W85104A was approximately 50 W, and the 
transmission efficiency of the millimeter-wave photon through the coaxial cable and the 
dipole-antenna coupling was extremely poor, we think that the millimeter-wave signal 
radiated onto the double dot detector was sub-microwatts. 

We measured the temperature dependent conductance as well as the bias voltage dependent 
conductance of our double dot device. The experiments indicate that although the 
millimeter-wave signal power was very weak our double dot device could detect the signal 
(Figure 17). However, the results may not indicate single photon detection. We think that 
our double dot detector could detect a few millimeter-wave photons at 100 mK.[18]   
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Fig. 16. Experimental set up for the millimeter-wave photon detection with our double dot 
detector. 

 
Fig. 17. The conductance variation as the double dot device detects millimeter-wave photons 

While experiments indicate that it was possible to detect some photons at 110 GHz with the 
double quantum-dot structure shown in Figure 14, the detection efficient was very poor. We 
suspect that the inefficiency was largely due to the gate G2, which was supposed to function 
as an antenna. With its improper shape as an antenna, it did not efficiently pick up photons. 
Later we modified the double quantum dot detector, implementing bow-tie antenna 
geometry for the gate G2, as shown in Figure 18. 

Also we attempted to reduce the quantum dot size in order to detect photons at an elevated 
temperature. As discussed earlier, a quantum dot detector should be operated at a 
temperature T that has a thermal energy KBT below the charging energy of the quantum dot. 
The charging energy EC is given as EC = e2/Cdot where Cdot is the self capacitance of the 
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quantum dot, which is proportional to the size of quantum dot. Hence, by reducing the 
quantum dot size, one can raise the charging energy EC, as well as the operating 
temperature T of the quantum dot detector.  

 
Fig. 18. SEM images of a modified double quantum-dot detector. (a) Overall view. (b) 
Magnified view of the center of picture (a), showing double quantum dots and a bow-tie 
antenna. The lower quantum dot is coupled to a dipole (bow-tie) antenna fabricated to 
absorb THz frequencies, while the upper dot acts as a single electron transistor. 

As a rule of thumb the depletion length that is the lateral depletion of the electrons around 
the gates is roughly equal to the depth of the 2DEG. This means that, for a smaller quantum 
dot, we need to use a shallower 2DEG substrate. For our experimental demonstration of a 
photon detector at temperatures considerably higher than 100 mK, we have fabricated about 
a hundred double quantum-dot detectors on 2DEG substrates with thickness ranging from 
40 nm to 160 nm.  

4. Leakage currents in GaAs/AlGaAs heterostructures 
Our experiments revealed that the quantum dot detectors fabricated on a shallow 2DEG 
suffered from problems associated with overwhelming leakage currents. Within a 
GaAs/AlGaAs heterostructure the leakage currents increased dramatically as the 2DEG 
depth became shallower. Since the leakage currents dominate, it was not possible to obtain 
any discernible signal from the quantum dot detector. Also the leakage currents caused 
severe damage to the quantum dot gates, often resulting in a short circuit on the gates. 

Measurements were performed to determine the currents that flow between the 2DEG 
and a laterally defined depletion gate on the wafer’s surface. Current is measured as a 
function of the voltage applied to the gate when the gate is biased with respect to the 
2DEG underneath. While we expect that the current should be zero ideally or much less 
than pico-Amperes, the actual leakage current measured is orders of magnitude larger 
than anticipated. Even our numerical calculation, which was performed along with our 
experimental efforts, indicates that the leakage current is substantially larger than 
previously expected for shallow 2DEG wafers. Unless we find a way to prevent this large 
leakage it may lead to a limit for the maximum operating temperature obtainable for our 
quantum-dot photon detector.  

(a) (b) 
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Figure 19 shows a simple setup used to test the leakage currents within our GaAs/AlGaAs 
2DEG substrate. The leakage current measurements were performed for several different 
2DEGs with depths of 40 nm, 43 nm, 90 nm, and 160 nm. As shown in Figure 19, the voltage 
potential is applied directly to a gate and to an Ohmic contact in the reservoir. Any leakage 
current between the gate and the 2DEG is measured by a current amplifier (DL1211). The 
DL1211 converts the measured current signal into a voltage signal, which is read by the 
Keithley multimeter.  

 
Fig. 19. A schematic experimental setup for the measurement of leakage currents in our 
2DEG wafers. The voltage potential is supplied by an Agilent E5270B Precision 
Measurement Mainframe. 

The leakage currents increased 6 orders of magnitude when the 2DEG depth was varied 
from 160 nm to 40 nm. Some of the shallowest (40 nm) 2DEG substrates generated leakage 
currents as high as tens of micro-Amperes, while the leakage current from the thickest one 
was much smaller, less than a pico-Ampere. When leakage currents are as high as several 
micro-Amperes the electron flow in and around the quantum dots cannot be controlled, 
and it is impossible to obtain any meaningful signal from the quantum dot detector. Our 
experiments further revealed that the strength of leakage currents vary depending on the 
individual 2DEG substrate. In other words, when we measure the leakage currents from 
two different 40 nm thick 2DEG substrates, we obtain very inconsistent results. This 
suggests us that the leakage current problem may not be entirely due to the intrinsic 
property of a shallow 2DEG, rather it may suggest that the problem is related to the 
defects in the 2DEG substrate.  

Figure 20 shows an example of our leakage current data obtained from a 43 nm deep 2DEG 
at 4.2 K. The leakage currents increased linearly with the gate potential, and could reach as 
high as several hundred nano-Amperes. In order to investigate the origin of this leakage 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 268 

current we performed numerical simulations, in which we assumed the leakage currents 
were through a 1-dimensional barrier. In this simplified model only the tunneling across a 
Schottky barrier from a metal to a GaAs layer under a reverse gate bias was considered. The 
model is so simplified that we did not include the charge carrier interaction with the 
heterostructure, such as how the charge carriers, after having passed the Schottky barrier, 
travel through several regions of GaAs and AlGaAs, including a heavily doped AlGaAs 
layer, before reaching the 2DEG. The inclusion of these would make the simulations more 
realistic. However it will require implementing a lot more difficult calculations in the 
simulations. So we only considered the problem only the top layer of GaAs. We know that 
this simulation is not realistic, but we think that it will give us some insights about the 
leakage currents.  

 
 

 
 

Fig. 20. Leakage current data taken from a 43 nm deep 2DEG at 4.2 K. Leakage currents for 
this shallow 2DEG structure can be as high as hundreds of nano-Amperes. 

The simulations indicate that a shallower 2DEG leads to a larger leakage current, and the 
leakage current can exceed a thousand nano-Amperes. These results are at least  
qualitatively consistent with our experimental results. A simulated result that shows the 
leakage current as a function of gate voltage is presented in Figure 21. Apparently the 
exponential relationship between the leakage current and the bias voltage is not consistent 
with our experiments. (See Figure 20) The discrepancy may be  due to the fact that our 
model is too simple and does not reflect realistic conditions, for instance the scattering that 
the charge carriers experience, due to the Si dopants, as they pass from the lateral surface 
gates to the 2DEG, and the effect of  lattice mismatching between GaAs and AlGaAs.  
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In order to construct a device using quantum dots, one should minimize the leakage current 
since it not only prevents the proper control of the quantum dot but also sometimes leads to 
physical damage to the quantum dot. The gates surrounding the quantum dot are very 
small, typically less than 20 nm thick and a few tens of nm wide. Around the quantum point 
contacts formed by the gates the cross-sections of these metal-structures can be as small as a 
few tens of nm2. When the leakage current exceeds several hundred nano-Amperes, the 
current density near the quantum point contacts can exceed 1010 - 1011 A/m2. The current 
density may become high enough to fuse metallic structures near the quantum point 
contacts. This is what presumably happened to some of our quantum dot devices. An 
example is shown in Figure 22.  

 
 
 
 

 
 
 
 

Fig. 21. An example of a numerical calculation showing the leakage current across a 
Schottky barrier from a metal to a GaAs layer under a reverse bias.  

Our attempt to raise the operating temperature of a quantum dot photon detector did not 
succeed. The leakage current in shallower 2DEG materials remains one of the most 
significant technical challenges in achieving higher operating temperatures for single 
photon detectors. The origin of leakage currents in 2DEG substrates and a method to avoid 
them are topics for future research. 
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Fig. 22. SEM images of (a) BEFORE and (b) AFTER testing the quantum dots, which 
involves a large leakage current flowing through the device. The damage to the thin 
nanostructure gates near the center of the picture in (b) is due to the large leakage current 
that passes through the very small nanostructure (e.g. quantum point contacts between  
the gates).  
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1. Introduction 
Scanning Tunnelling Microscopy (STM) has been being used for the investigation of the 
morphology and of the atomic structure of the semiconductor nanostructures extensively since 
early 1990-s (Medeiros-Ribeiro et al., 1998). More recently, STM in Ultra High Vacuum (UHV) 
has been applied also to the investigation of the spatial and energy distributions of the local 
density of states (LDOS) in the quantum semiconductor heterostructures. For example, Cross-
Sectional STM (X-STM) has been applied to the visualization of the envelope wavefunctions of 
the quantum confined states in the GaSb/InAs(001) quantum wells (QWs) (Suzuki et al., 2007) 
and in the self-assembled InAs/GaAs(001) quantum dots (ODs) (Grandidier et al., 2000). Also, 
the surface InAs/GaAs(001) QDs grown by Molecular Beam Epitaxy (MBE) have been 
investigated by UHV STM in situ (Maltezopoulos et al., 2003). The peaks related to the 
quantum confined states in the QDs have been observed in the differential conductivity d = 
dIt/dVg spectra of the STM tip contact to the QDs (here It is the tip current and Vg is the gap 
voltage). The d(x, y) images of the ODs (x and y are the tip coordinates on the sample surface) 
recorded at the values of Vg corresponding to the peaks in the d(Vg) spectra correlated with 
the probability density patterns |(x, y)|2 where (x, y) are the lateral components of the 
electron quantum confined states envelope wavefunctions calculated for the pyramidal 
InAs/GaAs(001) ODs defined by the (101) facets (Stier et al., 1999). 

The present chapter is devoted to the investigation of the electronic states in the self-
assembled semiconductor nanostructures [namely, the InAs/GaAs(001) QDs, the 
InGaAs/GaAs(001) quantum rings (QRs), and the GeSi/Si(001) nanoislands] by Tunnelling 
Atomic Force Microscopy (AFM). The samples with the surface self-assembled 
semiconductor nanostructures were scanned across by a conductive Si AFM probe covered 
by a conductive coating (Pt, W2C, or a diamond-like film) in the contact mode. The bias 
voltage Vg was applied between the AFM probe and the sample. Simultaneously with the 
acquisition of the topography z(x, y), the I—V curves of the probe-to-sample contact It(Vg) 
were acquired in each point in the scans.  
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Earlier, Tunnelling AFM has been applied mainly to the characterization of the local 
electrical properties of the thin dielectric films on the conductive substrates (Yanev et al., 
2008). Also, Tunnelling AFM in UHV has been applied to the tunnel spectroscopy of 
individual Au nanoclusters in the ultrathin SiO2/Si films (Zenkevich et al., 2011). The 
present chapter summarizes a series of the original studies where the authors have applied 
Tunnelling AFM to the mapping of the LDOS in the self assembled semiconductor 
nanostructures for the first time (Filatov et al., 2010, 2011, Borodin et al., 2011). The main 
advantage of Tunnelling AFM compared to UHV STM is that the former allows the ex situ 
investigation of the surface semiconductor nanostructures covered by a native oxide layer 
during the sample transfer from the growth setup to the AFM one through the ambient air. 
This makes the STM studies of these samples hardly possible. 

Another distinctive feature of the studies present in this chapter is that the samples with 
InGaAs/GaAs(001) QDs and QRs have been grown by Atmospheric Pressure Metal Organic 
Vapour Phase Epitaxy (AP-MOVPE). In most studies reported in the literature, the QDs 
grown by MBE or by Low Pressure (LP) MOVPE have been investigated. Nevertheless, the 
investigations of the electronic properties of the InAs/GaAs(001) QDs grown by AP MOVPE 
are of a considerable interest because this growth method is more promising for the 
commercial device production due to its lower cost and higher productivity as compared to 
MBE and LP-MOVPE. 

Also, the structures with the self-assembled GeSi/Si(001) nanoislands studied in the present 
chapter were grown by a novel technique of Sublimation MBE (SMBE) in GeH4 ambient. In 
this method, the Si layers are grown from an ordinary sublimation source in UHV. To deposit 
Ge, GeH4 is introduced in the growth chamber at the pressure of ~ 10–2 ÷ 10–4 Torr and 
undergo pyrolysis on the heated substrate. So far, this method is some hybrid between the 
conventional MBE from the sublimation source and LP VPE. Again, in the majority of works, 
the GeSi/Si(001) nanoislands grown by MBE have been studied (Berbezier & Ronda, 2009). 
The main advantage of the hybrid technique of SMBE in GeH4 ambient as compared to the 
ordinary VPE of Si and Ge from silanes and germanes, respectively is that SMBE allows 
growing the Si layers of high crystalline quality and purity at relatively low temperatures (450 
÷ 500C) keeping the high enough growth rates. In addition, SMBE offers a broader choice of 
the doping impurities as well as a wider range of their concentrations achievable than VPE. On 
the other hand, the deposition of Ge from a gaseous precursor provides higher uniformity of 
the nominal thickness of the deposited Ge layer dGe over the substrate surface.  

Having applied Tunnel AFM to the investigation of the LDOS in the self assembled 
semiconductor nanostructures described above, we have observed the patterning of the probe 
current images It(x, y) of the InAs/GaAs(001) QDs and of the InGaAs/GaAs(001) QRs as well 
as the peaks in the d(x, y) spectra of the contact of the AFM probe to the sample surface 
attributed respectively to the spatial and energy distributions of the LDOS in the quantum 
heterostructures.  The results of the LDOS mapping by Tunnelling AFM have been compared 
to the results of the calculations of the probability density patterns |(x, y)|2 reported in the 
literature. The Tunnel AFM data allowed the identification of the quantum confined states in 
the InAs/GaAs(001) QDs grown by AP MOVPE the interband optical transitions between 
which are manifested in the photosensitivity (PS) spectra of the QD structures. Finally, the 
direct measurements of the LDOS spectrum in the self assembled GexSi1–x/Si(001) nanoislands 
demonstrated the type I conduction band alignment in them at x < 0.45. 
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2. Self assembled InAs/GaAs(001) quantum dots 
2.1 Growth and characterization 

In this subsection, the details of the growing the samples for the Tunnelling AFM 
investigation by AP MOVPE and of their characterization are presented. 

The InAs/GaAs(001) QD structures for the tunnel spectroscopy of the LDOS in the 
conduction band were grown on the n+-GaAs(001) substrates by Dr. B. N. Zvonkov in 
Research Institute for Physics and Technology, N. I. Lobachevskii University of Nizhny 
Novgorod, Russia using a homemade setup for AP MOVPE from trimethylgallium, 
trimethylindium, and AsH3. The schematic of the QD structures for the Tunnelling AFM 
investigations is shown in Fig. 1, a. The substrates were misoriented from (001) by 3 ÷ 5 
towards <110>. The donor concentration in the substrate material was ~1018 cm–3. The GaAs 
buffer layers with the thickness db  200 nm were doped by Si heavily up to the donor 
concentration ~ 1018 cm–3 using pulsed laser sputtering of a bulk Si target placed in the 
MOVPE reactor. More detains on this growth technique can be found elsewhere  (Karpovich 
et al., 2004a). The 3 nm thick intentionally undoped GaAs spacer layers were grown 
between the n+-GaAs buffers and the InAs ODs. The latter were grown at the substrate 
temperature Tg = 530C, the nominal thickness of the InAs layers dInAs was  5 monolayers 
(ML).  

The morphology of the grown samples was first examined by ambient air AFM using NT 
MDT® Solver Pro™ instrument in Contact Mode. The NT MDT® CSG-01 silicon AFM 
probes were used. The curvature radii of the probe tips Rp were < 10 nm (according to the 
vendor’s specifications). 

The morphology of the surface QD arrays was characterized quantitatively by the following 
parameters: 

 
 

 
 

 

Fig. 1. The schematic (a) and an ambient air AFM image (b) of a structure with the InAs/n-
GaAs/ n+-GaAs(001)  surface QDs.  
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 The average height of the QDs  <h> 
 The averaged diameter of the QDs <D>. The value of D for given QD was defined as D 

= P/2 where P was the perimeter of the AFM image of the QD measured at the level of 
0.1 <h> above the surface of the wetting layer  

 The surface density of the QDs Ns 

The morphological parameters of the QD arrays listed above were determined by the digital 
processing of the AFM data. In order to identify the QDs on the surface of the wetting layer, 
a threshold particle recognition algorithm has been applied. 

The key issue in the investigations of the morphology of the surface InAs/GaAs(001) QDs 
by AFM was the effect of convolution (Bukharaev et al., 1999) originating from a relatively 
large AFM probe tip radius Rp (~ 10 nm) as compared to the typical sizes of the 
InAs/GaAs(001) QDs defined by the (101) facets (D = 12 ÷ 18 nm, h = 5 ÷ 6 nm). In order to 
extract the actual size and shape of the InAs/GaAs(001) QDs grown by AP MOVPE from 
the AFM data, we have applied the digital processing of the AFM images using an original 
software for the correction of the convolution artifacts (so called “deconvolution”).  This 
software utilizes the “virtual AFM” algorithm (Bukharaev et al., 1998).   

In order to apply this algorithm to the correction of the convolution artifacts, one needs to 
know the exact geometry of the actual probe tip used in the experiment. The specifications 
provided by the AFM cantilevers’ vendors appear to be insufficient often. The actual probe 
tip shape  may be determined by the measuring of a standard sample  with the geometry 
known a priori. However, the theory of the convolution artifacts sets up an essential 
requirement on the geometrical parameters of the standard sample to be close to these ones 
of the samples under study [i. e. the InAs/GaAs(001) QDs in our case]. In order to evaluate 
the AFM tip shape, we have used a structure with the surface self assembled GeSi/Si(001) 
pyramidal-shaped nanoislands (Medeiros-Ribeiro et al., 1998) as a standard sample. The 
structure was grown by Dr. A. V. Novikov, Institute for Physics of Microstructures, Russian 
Academy of Sciences (Nizhny Novgorod, Russia) using standard MBE. The self assembled 
GeSi/Si(001) pyramidal-shaped nanoislands are defined by the (105) facets, their heigt can 
be extracted just from the AFM data directly. Note that the convolution artifacts do not 
affect the acuracy of the measurements of the heights h of the GeSi/Si(001) nanoislands as 
well as of the InAs/GaAs(001) QDs. So far, all the parameters needed to determine the 
actual probe shape can be determined from a single AFM scan of a single GeSi/Si(001) 
pyramidal island. 

Another ulitmate requrement is that the hieght of the topographic elements on the standard 
sample should exceed the heihgts of the invesitgated objects [namely, the InAs/GaAs(001) 
QDs]. The self assembled GeSi/Si(001) pyramid islands satisfy this requirement as thier 
height h may reach ~ 10 nm when grown in the appropriate conditions, that is well enough 
for the InAs/GaAs(001) QDs (typically, h = 5 ÷ 6 nm). So far, the GeSi/Si(001) pyramid 
nanaoislands appear to be a good natural standard for the measurement of the probe shape 
in the particular case of the deconvolution of the AFM images of the self-assembled 
InAs/GaAs(001) QDs.  

The raw images of the QDs seemd round, their lateral sizes D were 30 to 50 nm (Fig. 2, a). In 
the AFM images after the deconvolution (Fig. 2, b) the (101) faceting of the InAs/GaAs(001) 
QDs grown by AP MOVPE is seen clearly.  
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                                 a                                                                   b  
Fig. 2. The AFM images of a surface InAs/GaAs(001) QD grown by AP MOVPE: as 
measured (a) and after the deconvolution (b). 

The base sides were directed along <110>, their length b = 14 ÷ 18 nm like the ones grown by 
MBE (Ledentsov et al., 1999, Maltezopoulos et al., 2003). The top of the pyramid was 
truncated slightly (Fig. 2, b) that could be explained noting that the top of the pyramid is a 
concentrator of the tensile strain. So far, the truncation of the pyramid reduces the overall 
elastic energy of the QD. Similar shape of the QD tops has been observed by UHV STM 
(Maltezopoulos et al., 2003). Therefore, the aspect ratio AR of the InAs/GaAs(001) QDs is 
less than 1:2 slightly.  

The size quantization energy spectrum of the InAs/GaAs(001) QDs grown by AP MOVPE 
has been examined by photoluminescence (PL) spectroscopy at 77K and by the photoelectric 
spectroscopy at 300K. The structures for the PL spectroscopy have been grown on the semi-
insulating GaAs(001) substrates, the buffer layers have been undoped intentionally. The 
InAs QDs in these structures have been capped by a 30 nm thick GaAs cladding layer. The 
structures for the photoelectric measurements had the same design except the substrates 
were form n+-GaAs. The InAs in all three types of the structures (for Tunnelling AFM, for 
PL, and for the photoelectric spectroscopy) have been grown in the same conditions (Tg = 
530C, dInAs = 5 ML). The details of the measurement techniques as well as the analysis of the 
experimental results can be found elsewhere (Karpovich et al., 2004b). 

2.2 The conduction band states 

In this subsection, the results of the Tunnelling AFM investigations of the quantum confined 
electron states in the surface InAs QDs are presented and discussed. Also, the results of the 
studies of the laterally coupled surface InAs QDs are presented. 

The Tunnelling AFM studies were carried out at 300K using Omicron MultiProbe P 
UHV system equipped by Omicron UHV VT AFM/STM. A typical topographic image z(x, 
y) and the probe current one It(x, y)  of an InAs/GaAs(001) QD sample are presented in Fig. 
3, a & b, respectively. An increasing of It every time the AFM tip encounters the QD surface 
had been observed. This observation has been attributed to the electron tunnelling between 
the AFM tip and the conductive buffer layer through the quantum confined states in the 
QDs (a qualitative band diagram of a contact of a Pt coated AFM tip to an InAs/GaAs/n+-
GaAs biased negatively is presented in Fig. 4, b).  
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Fig. 3. The topographic (a) and the probe  current (b) images of the surface InAs/GaAs/n+-
GaAs(001) QDs. Vg = –3.7 V. Reproduced from (Filatov et al., 2010) under license by IoP 
Publishing Ltd. 

The differential conductivity spectra d(Vg) = dIt/dVg of the tunnel contact of a Pt coated 
AFM tip to different points of the surface an InAs/GaAs/n+-GaAs(001) QD are presented in 
Fig. 4. , a. The d(Vg) spectra have been calculated from the measured It(Vg) curves of the 
probe-to-sample contact by the numerical differentiation with the nonlinear smoothing. The 
points on the QD surface where the respective It(Vg) curves had been measured are marked 
in Fig. 5, a. The peaks observed in the d(Vg) spectra were attributed to the tunnelling of the 
electrons between the metallic tip coating and the conductive substrate through the 
quantum confined states in the QDs (Fig. 4. , b). The native oxide on the sample surface 
formed a potential barrier, the second triangle potential barrier was formed by the depletion 
layer of the contract of the metal tip coating to the GaAs/n+-GaAs. In the UHV STM studies 
(Maltezopoulos et al., 2003) the first potential barrier was formed by the vacuum gap 
between the metal STM probe and the sample surface. 
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Fig. 4. The differential conductivity spectra d(Vg) (a) and the qualitative band diagram (b) of 
a negatively biased contact of a metal coated AFM tip to an InAs  QD on the n-GaAs/n+-
GaAs (001) substrate. The curve numbers denote the points of the I—V curves’ 
measurements marked in Fig. 5, a. Reproduced from (Filatov et al., 2010) with permission 
from ©Pleiades Publishing, Ltd. 
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Fig. 5. The UHV AFM (a) and the probe current (b—d) images of an InAs QD on the n-
GaAs/n+-GaAs(001) substrate. Reproduced from (Filatov et al., 2010) with permission from 
©Pleiades Publishing, Ltd. Below, the surfaces of the equal probability density |(x, y, z)|2 = 
0.65 calculated for several quantum confined electron states| n1n2n3> in a pyramidal 
InAs/GaAs(001) QD with the base side length b = 16 nm are presented. Reproduced partly 
from (Stier et al., 1999) with permission from ©American Physical Society. 

The AFM and the probe current images of an individual InAs/n+-GaAs QD are presented in 
Fig. 5. Note that because of the convolution effect, the AFM image of the QD is rounded and 
enlarged as compared to the actual QD size revealed using the deconvolution (b = 14 ÷ 16 
nm, see Sec. 2.1 above).  

Following (Maltezopoulos et al., 2003), the patterns of the It(x, y) images at certain values of 
Vg corresponding to the maxima of the d(Vg) spectra in Fig. 4, a have been related to the 
spatial distribution of the LDOS in the (x ,y) plane: 

    
1 2 3

1 2 3

1 2 3

N N N 2
E n n n

n n n 0

x,y x,y 


  . (1) 

Here the envelope wavefunctions (x, y) were considered to be spin-independent and 
twofold spin-degenerated. The summation in (1) was taken over the states below the Fermi 
level in the probe coating material EF. In other words, in the case of the QDs grown on the n-
GaAs/n+-GaAs(001) substrate the energies of the respective quantum confined states must 
satisfy the following condition:  

 
1 2 3n n n Fs gE E eV  , (2) 

where EFs is the Fermi level in the n+-GaAs buffer ( see Fig. 4. , b). Condition (2) defines the 
upper limits of the summation N1, N2, and N3 in (1).  

Again, following (Maltezopoulos et al., 2003), the tunnel current images of the QDs It(x, y) 
were compared to the probability density patterns |(x, y, z)|2 = const calculated for the 
quantum confined electron states in the pyramidal InAs/GaAs(001) QDs (Stier et al., 1999). 
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The probe current images of the QDs obtained by Tunnelling AFM were more noisy than 
the ones obtained by STM in UHV (Maltezopoulos et al., 2003) that was attributed to the 
nonuniformity of the thickness of the native oxide covering the QDs. Nevertheless, several 
electron quantum confined states in the QDs were identified, the respective images of the 
|(x, y, z)|2 = 0.65 surfaces (Stier et al., 1999) are shown in Fig. 5. 

In order to associate the spectral positions of the peaks in the d(Vg) spectra with the 
quantum confined level energies 

1 2 3n n nE , one must take into account the partial voltage 

drop on the depletion layer between the QDs and the n+-GaAs buffer layer as well as the one 
on the surface states at the semiconductor/native oxide interface. Following (Suzuki et al., 
2007), we have applied a simple one-dimensional model based on the solution of one-
dimensional Poisson’s equation (Feenstra & Stroscio, 1987) to account for the voltage drop 
on the depletion layer of the probe-to-sample contact. In order to account for the surface 
charge density on the surface states on the interface between the sample surface and the 
native oxide, we have applied Hasegawa’s model (Hasegawa & Sawada, 1983).  The 
calculations have shown that approximately ½ of Vg drops on the surface states. 

The InAs/GaAs (001) surface QD structures grown by AP MOVPE are featured by the 
presence of a considerable number of the QDs arranged in the pairs along the growth steps 
in a close proximity to each other (see Fig. 1, b) that may result in a considerable overlap of 
the envelope wavefunctions of the quantum confined states in the adjacent QDs. An 
example of the UHV AFM image as well as a series of the probe current images of a pair of 
the laterally coupled surface InAs/GaAs(001) QDs are presented in Fig. 6.  

 
Fig. 6. The UHV AFM (a, b) and the probe current (c—f) images of the laterally coupled 
surface InAs/GaAs(001) QDs. The symbols in fig. (b) mark the points of the measurement of 
the respective tunnel spectra presented in Fig. 7. 
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Fig. 7. The differential conductivity spectra d(Vg) of the tunnel contact of a Pt coated AFM 
tip to the laterally coupled InAs/n-GaAs/n+-GaAs(001) QDs. The points of measurement of 
the initial I—V curves are denoted in Fig. 6, b by the respective symbols. 

The differential conductivity spectra d(Vg) of the tunnel contact of a Pt coated AFM tip to 
the laterally coupled InAs/n-GaAs/n+-GaAs(001) QDs are presented in Fig. 7. The 
asymmetry of the current images in Fig. 6, c—f (as compared to the ones of the single QDs, 
see Fig. 5, b—d), which had varied with increasing Vg along with the splitting of the peaks 
related to the quantum confined states in the coupled QDs (Fig. 7) were attributed to the 
hybridization of the quantum confined states in the laterally coupled QDs. Similar patterns 
of the tunnel current images and tunnel spectra as well as of their dynamics with varying Vg 
have been observed while studying the hybridization of the quantum confined states in the 
GaSb/InAs(001) double symmetric QWs by X-STM in UHV (Suzuki et al., 2007). 

2.3 The valence band states 

In this subsection, the results of the Tunnelling AFM studies of the hole quantum confined 
states in the InAs/GaAs(001) QDs are presented. It is worth noting that the authors of the 
present chapter had applied Scanning Probe Microscopy technique for the studying of the 
valence band states in the InAs/GaAs(001) self assembled QDs for the first time.  

The InAs/GaAs(001) QD samples for the investigation of the valence band states in the InAs 
QDs by Tunneling AFM have been grown on the p+-GaAs(001) substrates. The GaAs buffer 
layers were also doped heavily by Zn from diethylzinc up to the acceptor concentration NA 
~ 1018 cm–3. The intentionally undoped 3 nm thick GaAs spacer layers were grown prior to 
the deposition of InAs, as in  the InAs/GaAs/n+-GaAs(001) QD structures for the 
investigations of the electron states described in the previous subsection. The technological 
parameters of the process of growing the InAs QDs were the same, as in the case of the 
structures grown on the n+-GaAs substrates: Tg = 530C, dInAs = 5 ML.   

The differential conductivity spectra d(Vg)  of the tunnel contact of a Pt coated AFM tip to 
an InAs  QD on the GaAs/p+-GaAs (001) substrate are presented in Fig. 8, a. The oscillations 
of the d(Vg) spectra have been attributed to the tunneling from the valence band states in 
the p+-GaAs buffer to the free states above the Fermi level in the metal tip coating through 
the quantum confined hole states in the InAs QD (Fig 8, b). 
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Fig. 8. The differential conductivity spectra d(Vg) (a) and the qualitative band diagram (b) of 
the positively biased contact of a Pt coated AFM tip to an InAs  QD on the GaAs/p+-GaAs 
(001) substrate. The curve numbers denote the points of the initial I—V curves’ 
measurements shown in Fig 9, a. Reproduced partly from (Filatov et al., 2010) under license 
from ©IoP Publishing, Ltd. 

Comparing the d(Vg) spectra of the QDs on the p+-GaAs (Fig. 8, a) with the ones of the QDs 
grown on n+-GaAs (Fig 4, a), one can note that the peaks related to the tunnelling via the 
quantum confined electron states in the QDs were well resolved in the case of the InAs/n+-
GaAs QDs while a nearly exponential curves with the weak oscillations only have been 
observed in the InAs/p+-GaAs QDs(Fig. 8, a). This observation could be explained noting 
that according to (Stier et al., 1999), the energy spacing between the electron levels in the 
InAs/GaAs(001) QDs with the base size length b = 15 ÷ 20 nm is ~100 meV while the one for 
the hole levels is 10 ÷ 20 meV only. As a result, the peaks in the d(Vg) spectra related to the 
quatum confined hole states in the InAs QDs were resolved poorly because of the thermal 
and structural broadening. Note also that the spectral spacing between the peaks in the 
d(Vg) spectra ascribed to the quantum confined hole states in Fig. 8, a was much less than 
the one for the conduction band states (Fig. 4, a), that agrees with proposed interpretation of 
the QDs’ tunnel spectra as well. 

The AFM and the  probe current images of an individual InAs QD on the GaAs/p+-
GaAs(001) substrate are presented in Fig. 9. The probe current images It(x, y) of the QD 
measured at different values of Vg were related to the lateral spatial distribution of the 
LDOS of the quantum confined hole states in the QD  E(x, y) at the respective vaules of E. In 
the case of the InAs QDs grown on the GaAs/p+-GaAs(001) substrate, the hole quantum 
confined states, the energy of which satisfies the following condition: 

 
1 2 3Fs g n n n FsE eV E E   , (3) 

where EFs is the Fermi level energy in the p+-GaAs buffer (see the band sketch in Fig. 8, a) 
can manifest themselves in the probe current images It(x, y).  

Again, the maps of the probe current It(x, y) have been compared to the equal probability 
density patterns |(x, y, z)|2 = const calculated for several lower quantum confined hole 
states (Stier et al., 1999). Although the quality of the probe current images was not so good, 
several quantum confined states have been identified (Fig. 9). 



Tunneling Atomic Force Microscopy of  
Self-Assembled In(Ga)As/GaAs Quantum Dots and Rings and of GeSi/Si(001) Nanoislands 

 

283 

 
Fig. 9. The AFM (a) and the  probe current (b—d) images of an InAs QD on the GaAs/p+-
GaAs(001) substrate. Reproduced partly from (Filatov et al., 2010) under license from ©IoP 
Publishing, Ltd. Below the surfaces of equal probability density |(x, y, z)|2 = 0.65 
calculated for several quantum confined hole states| n1n2n3> in a pyramidal 
InAs/GaAs(001) QD with the base side length b = 16 nm are presented. Reproduced partly 
from (Stier et al., 1999) with permission from ©American Physical Society. 

Having identified the quantum confined electron and hole states in the InAs/GaAs(001) 
QDs grown by AP MOVPE, we succeeded to identify the states the interband optical 
transition between which are manifested in the PS spectra of the QD structures grown by 
AP MOVPE.  
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Fig. 10. The photosensitivity spectrum (a) and the band diagram (b) (300K) of an 
InAs/GaAs(001) QD structure grown by AP MOVPE. Reproduced from (Filatov et al., 2010) 
with permission from ©Pleiades Publishing Ltd. 
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An example of the PS spectrum Sph(hv) of an InAs/GaAs(001) QD structure measured by the 
photovoltage spectroscopy in a liquid electrolyte (Karpovich et al., 2004b) is presented in Fig. 
10, a. The QDs in this particular structure were grown in the same conditions as in the samples 
for the Tunnelling AFM investigstions described above. Several peaks related to the interband 
optical transitions between the quantum confined electron and hole states in the QDs are 
present in the PS spectrum. Also, the PS bands related to the transitions from the ground hole 
state in the QD |000> to the ground electron states in the InAs wetting layer |WL> and to the 
conduction band states in GaAs have been observed. The band diagram of an InAs/GaAs QD 
structure with the transitions manifested in the PS spectrum (Fig. 10, a) shown schematically is 
presented in Fig. 10, b. This diagram was based on the best fit between the interband transition 
energies extracted from the PS spectrum in Fig. 10, a and the ones calculated from the data on 
the quantum confined level energies in the pyramidal InAs/GaAs(001) QDs as the function of 
the QD base size b (Stier et al., 1999). The best fit was found at b  16 nm that is consistent with 
the ambient air AFM data obtained using the deconvolution (see Sec. 2.1). Note that many 
possible transitions are not manifested in the PS spectrum, because the overlap integrals 
between the envelopes of the respective electron and hole states are close to zero (Stier et al., 
1999). Only the transitions between the states the overlap integrals for which are close to unity 
are manifested in the PS spectrum. 

We have failed to identify one of the higher energy hole states marked as |---> in Fig. 10 
because the data for the respective hole energy band are not presented in the publication by 
(Stier et al,. 1999). In the other aspects, the data on the morphology, on the electronic 
structure, and on the energy spectrum of the InAs/GaAs(001)QDs grown by AP MOVPE 
provided by ambient air and Tunnelling AFM, by the PL spectroscopy, and by the PS one 
appeared to be consistent with each other as well as with the results of the theoretical 
calculations reported in the literature (Stier et al., 1999). 

3. InGaAs/GaAs(001) quantum rings 
3.1 Growth and characterization  

In this subsection, the details on the growth of the InAsGa/GaAs(001) QRs by AP MOVPE 
as well as of their characterization are presented. 

The procedure of growing the self-assembled InAsGa/GaAs(001) QRs by AP MOVPE was 
different from that used in the standard MBE. Usually, in order to grow the 
InGaAs/GaAs(001) QRs by standard MBE, the InAs/GaAs(001) QDs are capped by a thin 
GaAs cladding layer with dc  <h>, and then the structures are annealed at the temperature 
TA  600 ÷ 630C for several tens of minutes (Lorke et al., 2002). However, the QRs grown by 
AP MOVPE have been proven to form just during capping of the InAs QDs by the GaAs 
cladding layer (Baidus’ et al., 2000). This phenomenon had been attributed to the enhanced 
surface diffusion of In adatoms in the AP MOVPE process as compared to MBE because in 
the former case the surface dangling bonds are passivated by hydrogen residual from the 
cracking of the metal organic compounds and/or arsine. 

The InGaAs/GaAs(001) QR structures for the Tunnelling AFM investigations described in 
the present chapter have been grown on the n+-GaAs(001) substrates misoriented by 5 
towards <110>.  



Tunneling Atomic Force Microscopy of  
Self-Assembled In(Ga)As/GaAs Quantum Dots and Rings and of GeSi/Si(001) Nanoislands 

 

285 

 
Fig. 11. The ambient air AFM image of an InGaAs/GaAs(001) QR structure (a); a liquid AFM 
image of an InGaAs/GaAs(001) QR structure with a 30 nm thick GaAs cladding layer 
removed by selective wet etching. Reproduced from (Filatov et al., 2011) with permission 
from ©Pleiades Publishing, Ltd. 

The 3 nm thick intentionally undoped GaAs spacer layers have been grown on the n+-GaAs 
buffer layers. Then, the InAs/GaAs QDs were grown at Tg = 530C and capped by a GaAs 
cladding layer with the thickness dc = 10 nm at Tg = 600C. The nominal thickness of the 
InAs layerdInAs was  5 ML. The ambient air AFM measurements have demonstrated the 
InGaAs QRs to form during capping the InAs QDs at elevated temperatures (Fig. 11, a). The 
QRs of various diameters D = 150 ÷ 400 nm have been observed on surface (Fig. 11, a). As it 
had been found earlier (Karpovich et al., 2004b), the structures with the surface 
InAs/GaAs(001) QDs grown by AP MOVPE are features by a number of the relaxed InGaAs 
clusters present on the surface (Fig. 12, b). These clusters are formed via the coalescence of 
the smaller InAs coherent QDs during growth, which, in turn, has been attributed to the 
enhanced surface diffusion in the AP MOVPE process. Within this paradigm, the formation 
of the smaller QRs has been attributed to the transformation of the smaller coherent 
InAs/GaAs QDs during capping while the formation of the larger QRs has been attributed 
to the transformation of the larger relaxed InGaAs clusters. 

Also, the structure with dc  30 nm was grown on a semi insulating GaAs(001) substrate in 
order to examine the optical properties of the QRs by PL spectroscopy. In order to reveal the 
morphology of the overgrown QRs, we have employed the removal of the GaAs cladding 
layer by wet selective etching followed by AFM investigation in liquid (Karpovich et al., 
2004a). The application of liquid AFM was to avoid the probe fadeouts due to the residual 
etching solution contamination (Fig. 11, b).  

The PL (77 K) and PS (300 K) spectra of the structures with the thickness of the GaAs 
cladding layer dc ≈ 30 and 10 nm, respectively, are presented in Fig. 12, a. A peak of the edge 
PL of GaAs with the maximum energy hνm ≈ 1.51 eV (GaAs) and a peak with hνm ≈ 1.41 eV 
(WL) originating from the interband radiative transitions between the ground quantum 
confined states in the InAs/GaAs(001) wetting layer are present in the PL spectrum. Also, a 
broad PL band with hνm ≈ 1.2 eV attributed to the ground state transitions in the 
InGaAs/GaAs(001) QRs have been observed. This band has a longer wavelength shoulder 
and can be decomposed into two Gaussian components with hνm ≈ 1.2 and hνm ≈ 1.1 eV 
related to the smaller and larger QRs, respectively.  
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Fig. 12. The PL (77 K) and photosensitivity (300K) spectra of the InGaAs/GaAs(001) QR 
structures with the 30 nm and  10 nm cladding layers, respectively (a). Reproduced from 
(Filatov et al., 2011) with permission from ©Pleiades Publishing Ltd.; an AFM image of a 
surface InAs/GaAs(001) QDs (b).  

Also, the PS bands with the edges at hν ≈ 1.36 eV (WL), 1.29 eV, and 1.09 eV corresponding 
to the above PL peaks have been observed in the PS spectrum (Fig. 12, a). The difference in 
the values of the PL peak energies and the band edges ones in the  PS spectrum could be 
related to the different in dc, and, in turn,   to the difference in the morphology, in the 
composition, and in the elastic strain of the QR material in these structures. Note that since 
the structure was photoexcited through the substrate, playing a role of a low-pass optical 
filter, the PS spectrum was truncated at hv ≈ 1.43 eV that is the optical gap energy of n+-
GaAs. The PS band with the edge at hν ≈ 0.8 eV was related, most likely, to the impurity PS 
from the defect complexes in GaAs (Karpovich et al., 2004b). 

The In molar fraction x in the QR material (InxGa1–xAs) was estimated from the PL and PS 
spectra to be 0.35 ÷ 0.4. The estimates were made by the best fit between the energies of the 
PL peak and of the PS band edges related to the ground state transitions in the QRs and the 
calculated values of the ground state transitions in the QRs E0, x being the fitting parameter. 
The values of Е0 as a function of the QRs’ sizes determined form the AFM images and of x 
were calculated by solving the Schrödinger’s equation in the effective mass approximation 
for a model potential of a flat gasket-shaped ring (rectangular in the cross-section) with 
potential wells of finite height (Barticevic et al., 2000). The ring material was assumed to be 
pseudomorphic to the GaAs matrix. The materials parameters (the effective masses of 
electron and holes masses, the band offsets, etc.) were taken from (Stier et al., 1999). 

3.2 Tunneling AFM investigations 

In this subsection, the results of the investigations of the electronic structure of the self 
assembled InGaAs/GaAs(001) QRs by Tunnelling AFM are presented. Again,  it is worth 
noting that the authors of the present chapter had applied Scanning Probe Microscopy 
technique for the studying of the LDOS in the self assembled semiconductor QRs for the 
first time. 
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Fig. 13. The UHV AFM (a) and the probe  current (b) images of an InGaAs/GaAs(001) QR 
structure. Vg = –1.37 V. The figures (1) and (2) mark the points of measurement of the I—V 
curves (the respective d(Vg) spectra are presented in Fig. 14).  Reprinted from (Filatov et al., 
2010) under license by IoP Publishing Ltd. 

The UHV AFM and the probe current images of an InGaAs/GaAs(001) QR structure are 
presented in Fig. 13. The QRs are manifested in the probe current image It(x, y) by the 
increased probe current It that was related to the tunnelling of the electrons from the probe 
coating material into the n+-GaAs buffer through the quantum confined states in the 
InGaAs/GaAs(001) QRs (Fig 4, b). The differential conductivity spectra d(Vg) of the contact 
of a Pt coated AFM tip to the surface of the InGaAs QRs on the n-GaAs/n+-GaAs (001) 
substrate are presented in Fig. 14. The peaks related to the quantum confined states in the 
QRs are well expressed in the d(Vg)  spectrum of the smaller QR (Fig. 14, b). However, the 
features, which could be related to the quantum size effect are present in the d(Vg) 
spectrum of the larger QR as well (Fig. 14, a). So far, the larger QRs could be classified as the 
quantum size structures as well in spite of their relatively large sizes. The calculations have 
shown that the size quantization in z direction (normal to the substrate) affects the energy 
spectrum of the electrons and holes in QRs most. 
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Fig. 14. The differential conductivity spectra d(Vg) of the contact of a Pt coated AFM tip to 
the surface of the InGaAs QRs  of larger (a) and smaller (b) size on the n-GaAs/n+-GaAs 
(001) substrate. The points of measurement of the initial  I—V curves are marked in Fig. 13, 
a. Reproduced from (Filatov et al., 2011) with permission from ©Pleiades Publishing, Ltd. 
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Fig. 15. The AFM (a) and the inverted probe current (b—d) images of an InGaAs QR on the 
n-GaAs/n+-GaAs(001) substrate. Reproduced partly from (Filatov et al., 2011) with 
permission from ©Pleiades Publishing, Ltd.  

The AFM images and the inverted probe current images of an individual 
InGaAs/GaAs(001) QR measured at different values of Vg are presented in Fig. 15. The 
probe current images of the QR change with increasing Vg. The most important result of the 
studies presented in this section was the observation of the angular patterning in the probe 
current images of the QRs. Ideally, in the circularly symmetric potential (Curie group of 
symmetry C), the angular dependence of the envelope eigenfuntions of the quantum 
confined states is expressed in the polar coordinates (r, ) by the term exp(–il) where i is 
the imaginary unity and l = 0, ±1,... is the angular quantum number. As |exp(–il)|2 = 1 for 
any l and , no angular dependence of It should be observed. 

The observation of the angular patterning in the current images of the QRs has been 
attributed to the asymmetry of the QRs' shape. In addition, one should take into account the 
effect of the piezoelectric field in the strained InGaAs, which also reduces the potential 
symmetry from C downto C2v even in a perfectly round QR (Stier et al., 1999).  

In order to account for the effect of the effect of the strain-induced piezoelectric field on the 
angular pattern of the LDOS in the InGaAs/GaAs(001) QRs, we have applied a simple 
model in the framework of the first-order perturbation theory. The lateral part of the spin-
independent eigenfunction for the model flat gasket finite well height potential (Barticevic et 
al., 2000) can be written in the form: 

      ml mlr, r exp il     , (4) 

where ml(r) is the radial part ofml(r, ) expressed via the Bessel functions and m is the 
radial quantum number. As the perturbation piezoelectric potential has the C2v symmetry, 
an additional integral of motion, parity of states, appears. So, one can write the angular 
components of the correct envelopes of the zero-order approximation as 
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where μ = |l| = 1, 2, …, |m-1|. 
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Fig. 16. The model maps of the spatial distribution of the lateral component of the 
probability density of the envelope wavefunction of the quantum confined states |nl(r, )|2 
in the plane of an In0.35Ga0.65As/GaAs(001) for different values of m and . (a, d): no 
perturbation potential; (b, c, e, f): the perturbation potential V0cos(2) is imposed. 
Reproduced from (Filatov et al., 2011) with permission from ©Pleiades Publishing Ltd. 

The model perturbation potential to account for the effect of the piezoelectric field has been 
selected in the form V()= V0cos(2). Such a model potential satisfies the symmetry C2v and 
is convenient for the calculations of the matrix elements which appeared to be equal to zero 
except the <ml| ml±2> ones.  

The model maps of |nl(r, )|2 calculated for the In0.35Ga0.65As/GaAs(001) QRs with the 
outer and the inner radii of 70 and 140 nm,  respectively, are presented in Fig. 16. When no 
perturbation potential is imposed, no angular patterning of the probability density maps 
takes place (Fig. 16, a&d). However, the model |nl(r, )|2 maps calculated in the first order 
of the perturbation theory for V0 = 5 meV demonstrate well expressed angular patterning. 
Note that the probability density images keep the C2v symmetry regardless to the number of 
knots in the circle, in accordance with Curie’s theorem.  

Comparing the calculated |nl(r, )|2 patterns with the the experimental probe current 
images of the QRs (cf, for example, Fig. 16, c & Fig. 15, b; Fig. 16, f & Fig. 15, d) demonstrate 
that in general the model presented above describes the qualitative features of the 
experimental current images more or less accurately. In turn, this could be considered as an 
evidence for the asymmetry of the quantum confining potential in the QRs as the origin of 
the angular patterning of these ones.  
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4. GeSi/Si(001) nanoislands 
4.1 Growth and characterization 

In this section, the results of the investigation of the LDOS in the self-assembled 
GeSi/Si(001) self assembled nanoislands by Tunnelling AFM are presented. Again, it should 
be stressed here that the authors of the present chapter had applied Scamming Probe 
Microscopy to the investigation of the LDOS in the self-assembled GeSi/Si(001) nanoislands 
for the first time. (Borodin et al., 2011).  

The heterostructures with the surface GeSi/Si(001) nanoislands for the Tunnelling AFM 
investigations had been grown on the p+-Si(001) substrates by SMBE in GeH4 ambient using 
a home-made UHV setup (Svetlov et al., 2001). The qualitative band diagrams of the 
structures for the Tunnelling AFM investigations are presented in Fig. 19, b & c. The buffer 
layers of   200 nm in thickness were doped heavily by boron up to the hole concentration ~ 
1018 cm–3. More details on the growth technique can be found elsewhere (Filatov et al., 
2008a, 2008b).  

The topography of the samples destined to the Tunnelling AFM investigations was 
examined first by ambient air AFM. The AFM images of the structures with the surface 
GeSi/Si(001) nanoislands grown at various growth temperatures Tg are presented in Fig. 
17. A dense array of the pyramid-shaped nanoislands (Ns ~ 1011 cm–2) has been observed 
on the surface of the sample grown at Tg = 500C (Fig. 17, a). The (105) faceting of the 
pyramid nanoislands was resolved poorly, again, due to the convolution effect. A bimodal 
size distribution of the nanoislands took place on the surface of the sample grown at Tg = 
600C (Fig. 17, b). Along with the dome-shaped GeSi islands, a small number of larger so 
called super dome islands (Kamins et al., 1999) has been observed on the surface.  The 
super dome islands originate from the coalescence of the smaller dome ones. It should be 
noted that in the structures grown by MBE the formation of the super dome islands has 
been observed in the process of the post-growth annealing (Kamins et al, 1999). In 
contrary, in SMBE in GeH4 ambient the formation of the super dome islands has been 
observed just during growth (Filatov et al., 2008a, 2008b), that was attributed to Ostwald 
ripening.  

The surface density of the islands Ns decreased and their sizes increased with increasing Tg 
while the bimodal size distribution remained in the structures grown at Tg = 700C and 
800C (Fig. 17, c & d), in accordance with Lifshits-Sloyzov-Wagner theory. 

 
Fig. 17. The ambient air AFM images of the surface GeSi/Si(001) nanoislands grown by 
SMBE in GeH4 ambient  at various growth temperatures Tg.  
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Fig. 18. The UHV AFM (a) and the probe  current (b) images of the GeSi/Si(001) nanoislands. 
Vg = 2.0 V. Reproduced from (Borodin et al., 2011) with permission from ©Pleiades 
Publishing, Ltd. 

The composition of the GeSi/Si(001) nanoislands’ material has been examined by PL 
spectroscopy (Filatov et al., 2008a, 2008b) and by Confocal Raman Microscopy (CRM, 
Mashin et al., 2010). The GeSi/Si(001) structures grown on the p-Si substrates with the 
nanoislands grown in the same conditions as the surface ones  destined to the Tunnelling 
AFM studies but capped with the 40 nm thick cladding Si layers had been used for the 
optical investigations. It has been found that the nanoislands grown within Tg = 600 ÷ 800C 
consisted of GexSi1–x alloy with the Ge molar fraction x decreasing from 0.55 downto  0.25 
with Tg increasing from  600C up to 800C (Filatov et al., 2008b, Mashin et al., 2010).  

4.2 Tunneling AFM investigations 

The UHV AFM and the probe current images of the surface GeSi/Si(001) nanoislands grown 
at Tg = 700C are presented in Fig. 18, a and b, respectively. The GeSi islands of various sizes 
and shapes have been observed on the sample surface (Fig. 18, a). The smaller islands were 
dome shaped while the larger ones (super dome islands) were shaped as the truncated 
pyramids defined by the (101) facets. 

The spots of increased probe current It in the probe current image (Fig. 18, b) were located at 
the places corresponding to GeSi islands. The increased probe current has been related to 
the tunnelling of the electrons from the electronic states in the valence band of the GeSi 
islands into the free states above the Fermi level EF in the Pt AFM tip coating through the 
native oxide layer covering the island surface. The band diagram of a positively biased 
contact between the Pt coated AFM tip and a surface GeSi/p-Si/p+-Si island is shown in Fig. 
19, c. It should be noted that the sizes of the spots of increased It in the probe current image 
(Fig. 18, b) are larger than the sizes of the topographic images of the respective islands in 
Fig. 18, a. This has been attributed to the convolution effect due to the relatively large radius 
of the curvature of the AFM tip Rp. Typical values of Rp for NT MDT NSG-01 Pt coated 
AFM probes are  35 nm, according to the vendor’s specifications. 

The differential conductivity spectra d(Vg) of the contact of a Pt coated AFM tip to the 
structure with the surface pyramid Ge/Si(001) nanoislands grown at Tg = 500C are 
presented in Fig. 19, a.  
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Fig. 19. The differential conductivity spectra d(Vg) of the contact of a Pt coated AFM tip to 
the structure with the surface pyramid Ge/Si(001) nanoislands grown at Tg = 500C (a), the 
qualitative band diagrams of the positively biased contact s of the Pt coated AFM tip to the 
pyramid islands (b) and to the dome-shaped or the super-dome islands (c).  

Again, as in the cases of the InAs/GaAs(001) QDs and of the InGaAs/GaAs(001) QRs (see 
Sec. 2 & 3 above), the differential conductivity spectra d(Vg) have been calculated from the 
measured It(Vg) curves by numerical differentiation with non-linear smoothing.  The spectra 
presented in Fig. 19, a were the results of the averaging of 25 It(Vg) curves measured in the 
different areas on the sample surface 5 × 5 pixels by size. The peaks in the d(Vg) spectra 
were ascribed to the tunneling of the electrons from the valence band states in the p+-Si 
buffer through the quantum confined hole states in the Ge/Si(001) pyramid islands into the 
free states above the Fermi level in the Pt AFM tip coating (Fig. 19, b). 

We have failed to obtain the probe current images, which could be associated to the probability 
density patterns|(x, y)2|  of the quantum confined hole states in the pyramid Ge/Si(001) 
nanoislands. The most probable cause for this, in our opinion, were too small sizes (b = 50 ÷ 80 
nm and h = 5 ÷ 8 nm) and too large surface density (Ns ~ 1011 cm–2) of the Ge nanoislands on the 
surface of this particular sample as compared to the AFM probe tip dimensions (Rp  35 nm).  
As a result, the islands have been resolved poorly in the UHV AFM images due to the 
convolution artifact unlike the ambient air AFM (Fig. 17, a) measured with NT MDT CSG-01 
probes  without metal coating (Rp < 10 nm, according to the vendor’s specifications). 

The differential conductivity spectra d(Vg) = dIt/dVg and the normalized differential 
conductivity spectra (dIt/dVg)/(It/Vg) of the contact of the Pt coated AFM probe tip to the 
GeSi/Si(001) nanoislands grown at various temperatures and to the sample surface between 
the islands (WL) are presented in Fig. 20. The points on the sample surface where the initial 
It(Vg) curves have been measured are marked in Fig. 21. The spectra presented in Fig. 20 
were the results of the averaging of 25 It(Vg) curves measured in the spots on the sample 
surface 5 × 5 pixels by size.  
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Fig. 20. The differential conductivity spectra d(Vg) (a, c, e) and the normalized differential 
conductivity spectra (dIt/dVg)/(It/Vg) (b, d, f) of the contact of the Pt coated AFM probe tip 
to the GeSi/Si(001) nanoislands and to the sample surface between the islands (WL). The 
points on the sample surface where the initial It(Vg) curves have been measured are denoted 
in Fig. 21. Reproduced partly from (Borodin et al., 2011) with permission from ©Pleiades 
Publishing, Ltd. 
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Fig. 21. The AFM (a, e, i) and the  runnel current (b—d, f—h, j—l) images of the individual 
GeSi/Si(001) nanoislands grown by SMBE in GeH4 ambient at various growth temperatures 
Tg. The points of measurements of the It(Vg) curves the derivatives of which are presented in 
Fig. 20 are denoted in the AFM images (a, e, i). Reproduced partly from (Borodin et al., 2011) 
with permission from ©Pleiades Publishing, Ltd. 

According to the theory of the tunnel spectroscopy, the normalized differential conductivity 
spectra (dIt/dVg)/(It/Vg) of the contact of a metal STM tip to a sample is proportional to the 
LDOS at the sample surface. The relationship of the energies in the LDOS spectra to Vg, 
again, has been established taking into account the partial drop of Vg on the depletion layer 
of the tip-to-sample contact on the base of one-dimensional Poisson’s equation (Feenstra  & 
Stroscio, 1987). Unlike the case of the InAs/GaAs(001) QDs considered above in Sec. 2, the 
charge on the surface states on the boundary of the semiconductor with the native oxide has 
been neglected because the SiO2/Si and GeO2/Ge interfaces are known to be featured by 
low density of the surface states. 

As it is evident from Fig. 20, tunnel spectra of the GeSi/Si(001) nanoislands grown at Tg = 
700 and 800C demonstrate the I-type conduction band alignment. Traditionally, the 
GeSi/Si(001) heterostructures had been being considered to be the II-type ones, i. e. the GeSi 
layer had been being treated as a potential barrier for the electrons with respect to the ones 
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in Si (Berbezier & Ronda, 2009). However, there has been an increasing number of 
publications, both theoretical and experimental, where the GexSi1–x/Si(001) heterostructures 
have been reported to be of the I type ones at low enough values of x, i. e. the GeSi layers 
were proven to be the potential wells for the electrons. More recent 30-band kp calculations 
(El Kurdi et al., 2006) have demonstrated the pseudomorphic GexSi1–x/Si(001) heterolayers 
to be the ones of the I type when 0.05 < x < 0.45. In contrary, the GeSi/Si(001) nanoislands 
were reported to be always the II type heterostructures within the whole range of 0 < x < 1 
due to the nonuniform tensile strain of Si near the tops and the bottoms of the islands (El 
Kurdi et al., 2006). Anyway, the magnitude of the conduction band offset Ec do not exceed 
several meV. 

The It(x, y) images of the GeSi/Si(001) islands were found to depend on Vg. At lower Vg 
corresponding to the extraction of the electrons From the electron states near the top of the 
valence band in the GeSi islands (see Fig. 19, b), the probe current images had more or less 
round shape (Fig. 21, b, f, j). At higher Vg the current image patterns transformed into the 
ones having a twofold-like symmetry Fig. 21, c, g, k). With further increasing of Vg, 
corresponding to the extraction of the electrons from the electron states near the Si valence 
band edge, the current images took a 4-fold-like symmetry Fig. 21, d, h, l) that was attributed 
to the elastic strain relaxation at the pyramidal island edges. 

The values of Ec at the GexSi1–x/Si(001) nanoislands’ heterointerface determined from the 
tunnel spectra of the individual islands presented in Fig. 20 are plotted vs the averaged Ge 
molar fraction in the nanoisland material <x> determined by PL spectroscopy and CRM 
(Filatov et al., 2008b, Mashin et al., 2010) in Fig. 22, a. Also, the theoretical dependence of Ec  
on <x> calculated for a strained GexSi1–x/Si(001) heterosturcture at 300K according to 
(Aleshkin & Bekin, 1997) is presented in Fig. 22, a. The theory predicts the strained GexSi1–

x/Si(001) heterostructures to be the ones of the I type when 0 < x < 0.44, the conduction band 
minima in the strained GeSi are related to the 4 valleys. The experimental data of the tunnel 
spectroscopy agree qualitatively with the theory by (Aleshkin & Bekin, 1997) as well as the 
one by (El Kurdi et al., 2006), although the magnitudes of  Ec at the respective values of <x> 
are larger than the ones predicted by the theory.  
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Fig. 22. The dependencies of the conduction band offset Ec (a) and of the valence band one 
Ev (b) in the surface GexSi1–x/Si(001) nanoislands on the averaged Ge molar fraction in the 
island material <>. The theoretical curves have been calculated for the strained GexSi1–

x/Si(001) layers according to (Aleshkin & Bekin, 1997). 
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This disagreement could be attributed probably to the partial strain relaxation in the surface 
GeSi/Si(001) nanoislands as compared to the pseudomorphic GeSi/Si(001) heterostructures 
or to the coherent GeSi/Si(001) nanoislands embedded into the single crystal Si. 

Also, the values of the valance band offsets at the GexSi1–x/Si(001) nanoislands’ 
heterointerface Ev determined from the tunnel spectra presented in Fig. 20 are plotted vs 
<x> along with the ones calculated according to (Aleshkin & Bekin, 1997) in Fig. 22, b. A 
rather good agreement between the calculated and measured values of Ev supports the 
conclusions about the type of the conduction band alignment in the self assembled 
GeSi/Si(001) nanoislands derived out from the tunnel spectroscopy data. Note that unlike 
the tunnel spectra of the Ge/Si(001) pyramid islands (Fig. 19, a), the tunnel spectra of the 
larger GeSi/Si(001) islands with lateral sizes D > 100 nm and height h > 20 nm (Fig. 20) do 
not exhibit any features, which could be attributed to the size quantization. This is not 
surprising taking into account the relatively large sizes of the islands grown at Tg  600C as 
compared to the de Broglie wavelength for the holes in GeSi alloy at 300K.  

5. Conclusion 
The results presented in this chapter demonstrate applicability of Tunneling AFM to the ex 
situ investigations of the LDOS of the quantum confined states in the InGaAs/GaAs and 
GeSi/Si nanostructures covered by the native oxide. The observed patterns of the probe 
current images agree with the results of the quantum confined states eigenfunction 
calculations reported in the literature. Besides, the application of Tunnelling AFM technique 
have brought some fundamental results on the basic properties of various nanostructures. 
Particularly, the angular patterning of the current images of the InGaAs/GaAs(001) 
quantum rings was related to the asymmetry of the confining potential. Also, the self 
assembled GexSi1–x/Si(001) nanoislands have been proven to be the I type heterostructures 
at x < 0.45. 
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Quantum Injection Dots
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1. Introduction

In optoelectronics, quantum dots are essential elements for coupling a device to an
electromagnetic field in the infrared domain of the frequency spectrum. Such a dot is a small
semiconductor region, with a forbidden band specific to a given application, embedded in
the active i-region of the p-i-n junction of a laser structure (1), or in the sensitive i-region of
the p-i-n junction of a photovoltaic structure (2). These quantum dots have the advantage of
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Fig. 1. Quantum injection dot with the energy levels E1 and E0, in a Fabry-Perot resonator
with transmission coefficients of the mirrors T0 = 0 and T > 0. By quantum transitions
between these levels, a super radiant electromagnetic field with two counter-propagating
waves of amplitudes G and

√
1− T G is generated.

being feasible for a large class of applications (transition frequencies). However, they have
the disadvantage that, being embedded in a bulk region, any injection or photovoltaic process
includes transport processes through the active (sensitive) region, which are very dissipative.
In such a system of quantum dots, an injected electron in the bulk active region of a laser
structure has a large probability to recombine with an electron hole before reaching a quantum
dot, where this electron becomes an active one, contributing to the laser field generation.
Similarly, an optically excited electron in a quantum dot of a photo-voltaic bulk active region,
has a large probability to meet another quantum dot, and to decay in the ground state of this

13
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quantum dot before reaching the quasi-neutral zone of the n-region, where this electron brings
its contribution to the generated current.

In this chapter, we deal with a different kind of quantum dots (figure 1), as basic elements of a
new class of power optoelectronic devices, devoted to the conversion of the environmental
heat into usable energy (3–6). Such a quantum dot is substantially different from a bulk
quantum dot (1; 2). These dots are deployed in double arrays of donor-acceptor pairs of
impurity atoms placed in quantum wells at the two sides of the i-region of an n-i-p junction.
The quantum dot density has an appropriate value to include the whole internal field of the
semiconductor junction in the quantum dot region, i.e. between the two impurity arrays
forming this region. Otherwise, spatial or mobile charge layers arise at the external sides of
the two quantum wells, altering the distance E1 − E0 between the two ground energy levels
of these wells. Thus, in a process of current injection, or of an optical current generation, the
electrons traverse the internal field region by quantum transitions between the two levels of
interest (see figure 1).

In section 2, we derive explicit expressions for electric potentials, energy levels in these
potentials, wave-functions, the quantum dot density, and transition dipole moments,
which determine the strength of the coupling of a quantum dot to a quasi-resonant
electromagnetic field, and to the dissipative environment. We obtain operation conditions
for the characteristics of the separation barriers.

In section 3, we consider the dissipative couplings of a quantum injection dot. We describe the
dissipative dynamics of such a quantum dot by a master equation for a system of Fermions,
coupled to a complex environment of other Fermions, Bosons, and the free electromagnetic
field (7). This equation depends on analytic dissipative coefficients, describing correlated
transitions of the system particles with the environmental particles, transitions stimulated
by thermal fluctuations of the self-consistent field of the environmental Fermions, and the
non-Markovian dynamics induced by these fluctuations. We derive explicit expressions of
the dissipation coefficients as functions of universal constants and physical properties of the
semiconductor structure: effective masses of electrons and electron holes, concentrations of
donors and acceptors in the conduction regions, transition frequency, dipole moments, crystal
density, elasticity coefficient, geometrical characteristics of the semiconductor structure, and
temperature.

In section 4, we consider the dissipative dynamics of an electromagnetic field interacting with
the quasi-free electrons of a semiconductor structure. By a method previously used in (7), we
obtain a master equation with coefficients depending on frequency and the effective masses,
transition dipole moments, and densities of states of these electrons. We derive field equations
coupled to the polarizations of the system of active Fermions, with explicit expressions of
the coupling and absorption coefficients, as functions of the physical properties of the active
quantum dot system, and characteristics of the dissipative environment.

In section 5, we derive equations for the density matrix elements of a quantum injection
dot interacting with a quasi-resonant electromagnetic field. We obtain equations for the
amplitude mean-values of the forward and backward electromagnetic waves, propagating
in a Fabry-Perot cavity which includes a system of such quantum dots. We derive optical
equations for a system of quantum injection dots in a resonant Fabry-Perot cavity, with
an additional term in the population equation, for describing a current injection in the
semiconductor structure (3–5).
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In section 6, we present the concept of quantum heat converter, as a device based on systems
of quantum injection dots. This device is conceived in two versions: (1) longitudinal quantum
heat converter, where the electromagnetic field propagates in the direction of the injected
current, i.e. perpendicularly to the semiconductor chip (3; 4), and (2) transversal quantum
heat converter, where the electromagnetic field propagates perpendicularly to the injected
current, i.e. in the plane of the semiconductor chip (3; 5). Any of these versions could be
preferred in specific applications. We derive analytical expressions of the super radiant power,
as a function of the injected current, dissipative coefficients, coupling coefficient, number of
super radiant transistors, transmission coefficient of the output mirror, and the geometrical
characteristics of the device. We get operation conditions for these parameters. We describe
the super radiant dissipative dynamics of a quantum injection dot, when a step current is
injected in the device.

In this chapter, we present an analytical model depending only on material and geometrical
characteristics, temperature, and universal constants.

2. Physical model

The essential problem of any optoelectronic device is the coupling of an electric current to
an electromagnetic field. As a function of the roles played by these physical quantities into
the input-output characteristic, one can conceive two kinds of devices. In the conventional
optoelectronics, a device with the electric current as an input and the electromagnetic field as
an output, if this field is not coherent, is called LED. If the output field is coherent, it is called
laser. Conversely, if the electric current is the output, depending on an input field, the device
is called photodiode, or photovoltaic cell if it is a power device, devoted to the electric energy
production.

The new field of the heat conversion optoelectronics, includes two similar kinds of device. In
this case, the radiant device is called quantum heat converter (3–5), while the photovoltaic
device is called quantum injection system (6). Both kinds of such devices are based on an
electron-field interaction with a potential V in the total Hamiltonian

H = HS
0 + HF + V, (1)

including a term for an electron with the electric charge −e in an electromagnetic field with
the vector potential �A,

HS
0 + V =

(�p + e�A)2

2M
+ U(�r), (2)

and the Hamiltonian of this field which, for the system represented in figure 1, is of the form

HF = h̄ω(a++a+ + a+−a− + 1), (3)

where a+ − a++, a− − a+− are the creation-annihilation operators of the two
counter-propagating waves. In equation (2), we distinguish the Hamiltonian of the
electron in the potential U(�r) of an active quantum dot

HS
0 =

�p2

2M
+ U(�r) = ∑

i
ε ic

+
i ci, (4)
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and the interaction potential

V =
e

M
�p�A, (5)

while the term in �A2 is negligible in the non-relativistic approximation. This potential depends
on the electron momentum

�p = iM ∑
ij

ωij�rijc
+
i cj, (6)

and the vector potential

�A =
h̄
e
�K
(

a+eikx + a++e−ikx + a−e−ikx + a+−eikx
)

, (7)

of the electric field

�E = i
h̄ω

e
�K
(

a+eikx − a++e−ikx + a−e−ikx − a+−eikx
)

. (8)

In these expressions, M is the electron mass, c+i − cj are Fermion operators, ωij are transition
frequencies of the active electron,�rij are dipole moments, ω is the frequency of the field, and

�K =�1y

√
α

λ

V (9)

is a vector in the y-direction of this field, depending on the wavelength λ, the fine structure
constant α = e2

4πε0h̄c ≈ 1
137 , and the quantization volume V .

From (5) and (6), we notice that the electron-field interaction of the system depends on the
transition dipole moment

�r01 =�r10 =
∫
Vs

Ψ0�rΨ1d3�r, (10)

where

Ψ1(x, y, z) = ψ1(x)φ1(y)χ1(z) (11a)

Ψ0(x, y, z) = ψ0(x)φ0(y)χ0(z) (11b)

are eigenfunctions of the Hamiltonian (4), for the ground states of the two quantum wells.
For the potential U(�r), we distinguish seven regions, of four GaAs quantum wells, and three
AlxGa1−x As potential barriers, determined by the impurity concentrations of these regions
(see figure 1). For the two thick conduction regions with the potentials Uc and Uv, we use a
three-dimensional model, with a quantization volume Vn = 1/ND for the n-region of donor
concentration ND , and Vp = 1/NA for the p-region of acceptor concentration NA. In these
quantization volumes, for an electron with the effective mass Mn, and an electron hole with
the effective mass Mp, we consider the densities of states (8)

g(n)(Eα) = Vn

√
2M3/2

n

π2h̄3

√
Eα (12a)

g(p)(Eα) = Vp

√
2M3/2

p

π2h̄3

√
Eα, (12b)
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and the occupation probabilities of these states with the kinetic energies Eα:

f (n)(Eα) =
1

e(Uc+Eα)/T + 1
≈ e−(Uc+Eα)/T (13a)

f (p)(Eα) =
1

e(−Uv+Eα)/T + 1
≈ e−(−Uv+Eα)/T, (13b)

where approximate expressions are taken into account for the usual case of a non-degenerate
semiconductor. Considering the integral of the number of particles occupying the states of a
quantization volume, one gets the two potentials

Uc(T) = T ln
Nc(T)

ND
, Nc(T) = 2

(√
MnT/2π

h̄

)3

(14a)

Uv(T) = −T ln
Nv(T)

NA
, Nv(T) = 2

(√
MpT/2π

h̄

)3

. (14b)

For the very thin layers of the quantum wells and potential barriers, we use a two-dimensional
model. For a quantization area Ae, in n and p regions, one gets the densities of states

g(1) = Ae
Mn

πh̄2 (15a)

g(2) = Ae
Mp

πh̄2 . (15b)

By using the Fermi-Dirac distribution in the particle number integral, we obtain expressions
similar to (14) for the potentials of the two GaAs quantum wells, as a function of the surface
quantum dot density Ne

U1(T) = −T ln
(

e
πh̄2 Ne
Mn T − 1

)
(16a)

U2(T) = T ln
(

e
πh̄2 Ne
Mp T − 1

)
. (16b)

Similar expressions are obtained for the separation barriers, as functions of the donor and
acceptor arrays with concentrations N3, N4 embedded in the very thin AlxGa1−x As-layers of
these barriers,

U3(T) = −T ln
(

e
πh̄2 N3
Mn T − 1

)
(17a)

U4(T) = T ln

(
e

πh̄2 N4
Mp T − 1

)
, (17b)

and for the potential barrier U0 between the two quantum wells,

U0(T) = −T ln
(

e
πh̄2 N0
Mn T − 1

)
, (18)
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with a slight donor concentration N0, controlling this potential. For these wells, we consider
harmonic wave-functions with exponential tails in the neighboring barriers

ψ1(x) = A1 cos
[

k1(x0 − x)− arctan
α1
k1

]
, x1 ≤ x ≤ x0 (19a)

ψ1(x) = A1

√
E1 −U1
U0 −U1

e−α1(x−x0), x0 ≤ x ≤ x2 (19b)

ψ1(x) = A1

√
E1 −U1
U3 −U1

e−α3(x1−x), x3 ≤ x ≤ x1 (19c)

and

ψ0(x) = A0 cos
[

k0(x− x2)− arctan
α0

k0

]
, x2 ≤ x ≤ x4 (20a)

ψ0(x) = A0

√
U2 − E0

U2 −U00
e−α0(x2−x), x0 ≤ x ≤ x2 (20b)

ψ0(x) = A0

√
U2 − E0

U2 −U4
e−α4(x−x4), x4 ≤ x ≤ x5, (20c)

while the tails beyond these barriers are neglected. These wave-functions depend on the
wave-numbers

k1 =
1
h̄

√
2Mn(E1 −U1) (21a)

k0 =
1
h̄

√
2Mp(U2 − E0), (21b)

attenuation coefficients

α1 =
1
h̄

√
2Mn(U0 − E1) (22a)

α0 =
1
h̄

√
2Mp(E0 −U00) (22b)

α3 =
1
h̄

√
2Mn(U3 − E1) (22c)

α4 =
1
h̄

√
2Mp(E0 −U4), (22d)

and normalization coefficients

A1 =
√

2
[

x0 − x1 +
h̄√

2Mn

(
1√

U0 − E1
+

1√
U3 − E1

)]−1/2
(23a)

A0 =
√

2

[
x4 − x2 +

h̄√
2Mp

(
1√

E0 −U00
+

1√
E0 −U4

)]−1/2

, (23b)
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while the energy eigenvalues are given by the equations:

E1 −U1 =
h̄2

2Mn(x0 − x1)2

(
arctan

√
U0 − E1
E1 −U1

+ arctan

√
U3 − E1
E1 −U1

)2

(24a)

U2 − E0 =
h̄2

2Mp(x4 − x2)2

(
arctan

√
E0 −U00

U2 − E0
+ arctan

√
E0 −U4
U2 − E0

)2

. (24b)

We take the two energy eigenvalues as E1 = Uc, E0 = Uv. In this case, the whole internal
potential of the n-i-p junction is included on the distance d between the two charge layers of
the quantum dot region, which means a quantum dot surface density

Ne = ε
E1 − E0

e2d
, (25)

while this distance can be approximated as

d =
1
2
(x2 − x0 + x4 − x1). (26)

The energy levels E1 = Uc and E0 = Uv can be obtained from (14), as functions of the donor
and acceptor concentrations ND and NA of the conduction regions. By choosing appropriate
values for the separation and quantum dot barriers, from (17) and (18) one gets the surface
concentrations N3, N4 and N0 of these barriers. With the widths x1 − x3 and x5 − x4, the
separation barrier must have a higher penetrability P than the necessary value to provide the
injected current I through the device area AD, which means that the density of this current
must be smaller than the thermal current 1

6 eNDvTP emergent from a unit volume with the
thermal velocity vT =

√
T/Mn, and crossing the barrier. We get the conditions

α3(x1 − x3) <
1
2

ln

(
eND AD

6I

√
T

Mn

)
(27a)

α4(x5 − x4) <
1
2

ln

(
eNA AD

6I

√
T

Mp

)
. (27b)

Thus, a quantum injection dot is a two-level system, with the energy levels E0 and E1, in a
quantization volume shaped as a parallelepiped with the basis area A = 1

Ne
and the height

x5 − x3. In this volume, we consider the two wave-functions (19)-(20) for the coordinate x,
while, for the coordinates y and z in the plane of the quantum dot array, we consider the
wave-functions φ1(y), φ0(y) and χ1(y), χ0(y), describing a thermal motion with an energy
mean-value T. For a longitudinal device, when the electromagnetic field propagates in the
direction x of the injected current, the electric component Ey of this field is coupled with the
component y01 of the transition dipole moment of the system between thermal states. For a
transversal device, when the electromagnetic field propagates in a direction y perpendicular
to the direction x of the injected current, i.e. in the plane of the quantum dot array, the electric
component Ex of this field is coupled with the transition dipole moment x01 between the two
states (19)-(20) of the system. These dipole moments also determine the dissipative couplings
of the quantum dot. They essentially depend on the width x2 − x0 of the quantum dot barrier
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of height U0, which determines the overlap of the two wave-functions ψ1(x) and ψ0(x). When
this width is chosen for reasonable values of the electron-field and dissipative couplings, and
N3, N4 for reasonable values of the separation barriers satisfying the conditions (27), from
equations (16) and (24)-(26) the geometrical characteristics x0x1, x2, x3, x4 are obtained.

As an example, for a concentration ND = NA = 3.16× 1016 cm−3 of a super radiant junction,
working at temperature T = 10 0C, we get a transition frequency E1 − E0 = 0.1866 eV. A
quantum dot Al0.37Ga0.63As-barrier of U0 = 0.5 eV is obtained for a surface concentration of
N0 = 6.4243 × 106 m−2 donors, and separation barriers of U3 − Uc = Uv − U4 = 0.05 eV
are obtained for the surface concentrations of these barriers N3 = 8.01× 1013 m−2 and N4 =
2.552× 1013 m−2. For a width x2 − x0 = 5.5 nm of the quantum dot barrier, we get a quantum
dot surface concentration Ne = 1.476 × 1016 m−2 and the widths of the two quantum dot
wells x0 − x1 = 4.189 nm and x4 − x2 = 1.576 nm, while separation barriers with widths
x1− x3 = 10 nm and x5− x4 = 3 nm satisfy the conditions (27) for an injected current I = 45 A
in a device with an area AD = 4 cm2.

3. Dissipative dynamics of quantum injection dots

We consider a quantum injection dot with two energy levels E1, E0, coupled to a super radiant
field and a complex dissipative environment of a semiconductor structure as it is represented
in figure 1: (1) the quasi-free electrons of the n-conduction region x < x3, (2) the quasi-free
holes of the p-conduction region x > x5, (3) the phonons of the crystal at temperature T, and
(4) the photons of the free electromagnetic field existing at temperature T (see figure 2). In (3)

−Ln/2 0 Ln/2 −Lp/2 0 Lp/2

n-region
- quasi-free electrons

p-region
- quasi-free holes

quantum
dots

�

�R0

�
�kP

��kFEF〈α0|V(n)(�R0)|β1〉 〈α0|V(p)(�R0)|β1〉
Eβ

Eα

Eα

Eβ

E1
E0

Vn

Vn

Vp

Vp

Fig. 2. Dissipative couplings of a quantum injection dot to the environment. A decay
|1〉 → |0〉 of the active electron is correlated with: (1) a transition |β〉 → |α〉 of a quasi-free
electron in a quantization volume Vn, (2) a transition |β〉 → |α〉 of a quasi-free hole in a
quantization volume Vp, (3) a phonon creation with a wave vector�kP, and (4) a photon
creation with a wave vector�kFEF .

we showed that, for a semiconductor structure with the characteristics mentioned at the end of
the preceding section, the decay rate corresponding to the phonon environment is dominant,
the decay rate due to the conduction electrons and holes is smaller, while the decay rate given
by the free electromagnetic field is negligible.
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We consider a system of interest, including a system of Fermions S with the Hamiltonian HS
0

and an electromagnetic field F with the Hamiltonian HF , in a dissipative environment with
the Hamiltonian HE. Taking into account a potential of interaction V between the Fermion
system S and the field F, and a system-environment potential VE, the dynamics of the total
system is described by an equation of motion of the form:

d
dt

χ̃(t) = − i
h̄

[
εṼ(t) + εṼE(t), χ̃(t)

]
. (28)

In this equation, tilde denotes operators in the interaction picture, e.g.

χ̃(t) = e
i
h̄ (HE+HS

0 +HF)tχ(t)e−
i
h̄ (HF+HS

0 +HE)t. (29)

According to a general procedure disclosed in (9), we take a total density of the form

χ̃(t) = R⊗ ρ̃(t) + εχ̃(1)(t) + ε2χ̃(2)(t) + ... , (30)

where ρ(t) is the reduced density matrix of the system of interest, while R is the density matrix
of the dissipative environment at the initial moment of time, t = 0, the time-evolution of the
environment being described by the higher-order terms χ̃(1)(t), χ̃(2)(t), .... The parameter ε is
introduced to handle the orders of the terms in this series expansion, and is set to 1 in the final
results. The reduced density of the system is

ρ̃(t) = TrE{χ̃(t)}, (31)

while the higher-order terms of the total density have the property:

TrE{χ̃(1)} = TrE{χ̃(2)} = ... = 0. (32)

If initially the environment is in the equilibrium state R, the density matrix of the total system
is of the form χ(0) = Rρ(0). We suppose that at time t = 0, due to the interaction V of the
system of Fermions with the electromagnetic field, or due to a non-equilibrium initial state
ρ(0) 	= ρT, a time-evolution begins, while the reduced density satisfies a quantum dynamical
equation of the form

d
dt

ρ̃(t) = εB̃(1)(ρ̃(t), t) + ε2B̃(2)(ρ̃(t), t) + ... . (33)

From the dynamic equation (28), with expressions (30)-(33), we obtain the quantum master
equation

d
dt

ρ(t) = − i
h̄
[H, ρ(t)]− i ∑

ij
ζij[c

+
i cj , ρ(t)]

+ ∑
ij

λij([c
+
i cjρ(t), c+j ci] + [c+i cj, ρ(t)c+j ci])

+ ∑
ijkl

ζijζkl

∫ t

t−τ
[c+i cj, e−i[φ(t′)+ 1

h̄ HS
0 (t−t′)][c+k cl , ρ(t′)]ei[φ(t′)+ 1

h̄ HS
0 (t−t′)]]dt′,

(34)

where the coefficients

ζij =
1
h̄

√
1

YF

∫
(α)
〈αi|(VF)2|αj〉 f F

α (εα)gF
α (εα)dεα (35)
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describe transitions stimulated by the thermal fluctuations of the self-consistent field of the
YF environmental Fermions in a certain quantization volume - hopping potential (10), φ(t′) is
a phase fluctuation operator, while the coefficients

λij = λF
ij + λB

ij + γij (36)

describe correlated transitions of the system Fermions with environment particles, including
explicit terms for Fermions, Bosons, and photons of the free electromagnetic field. These terms
depend on the dissipative two-body potentials VF , VB, the densities of the environment states
gF(εα), gB(εα), the occupation probabilities of these states f F(εα), f B(εα), and temperature T.
For a rather low temperature, T � ε ji, j > i, these terms become

λF
ij =

π

h̄
|〈αi|VF |βj〉|2[1− f F(ε ji)]g

F(ε ji) (37a)

λF
ji =

π

h̄
|〈αi|VF |βj〉|2 f F(ε ji)gF(ε ji), (37b)

for the Fermion environment,

λB
ij =

π

h̄
|〈αi|VB|βj〉|2[1 + f B(ε ji)]g

B
α (ε ji) (38a)

λB
ji =

π

h̄
|〈αi|VB|βj〉|2 f B(ε ji)gB

α (ε ji) (38b)

for the Boson environment, and

γij =
2α

c2 h̄3

∣∣∣�rij

∣∣∣2 ε3
ji(1 +

1

eε ji/T − 1
) (39)

for the Boson environment of the free electromagnetic field, where�rij are the transition dipole
moments. The dissipative terms of the master equation (34) with coefficients (36)-(39) describe
correlated transitions of the system and the environment particles, with energy conservation,
ε ji = εαβ, in agreement with the quantum-mechanical principles and the detailed balance
principle (11). The non-Markovian part of this equation takes into account the fluctuations of
the self-consistent field of the environment Fermions, with the coefficients (35).

A significant component of the dissipative dynamics comes from the Coulomb interaction of
the active electrons, mainly located in the interval (x3, x5), with the conduction electrons and
holes in the conduction regions (−∞, x3) and (x5,+∞), respectively (figure 1). We use the
notations �r for the position vector of an active electron, and �R0 + �R for the position vector
of a dissipative electron (hole), where �R0 is the position vector of an arbitrary n (p) cluster,
and �R = �1xX +�1yY +�1zZ is the position of an electron (hole) in this cluster (figure 3). In
this case, the Coulomb potential in a first-order approximation of the two-body term �R�r =
Xx + Yy + Zz is

VC(�R,�r) =
αh̄c

|�R0 + �R−�r| ≈
αh̄c

|�R0|

(
1 +

Xx + Yy + Zz
�R2

0

)
. (40)

From this expression, only the second term, bilinear in the coordinates of an active electron
and of an electron (hole) of the environment, yields contributions in the two-body transition
matrix elements of the decay (excitation) rates (37):

VF(�R0,�R,�r)=̇V(n)(�R0, �R,�r) = −V(p)(�R0,�R,�r) =
αh̄c

|�R0|3
(Xx + Yy + Zz). (41)
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Quantum dot

n-dissipative clusters p-dissipative clusters

�
0x3−RD x5 RA

N−1/3
D N−1/3

A

��r

�
�R0�

�R

Fig. 3. The electron of a quantum injection dot is coupled to the quasi-free electrons of the
n-dissipative clusters (n-region) and quasi-free holes of the p-dissipative clusters (p-region)
by an electric dipole-dipole interaction: VF( �R0,�R,�r) = αh̄c

|�R0|3
�R�r.

From the wave-functions derived in the preceding section, we obtain the dipole moment of a
quantum dot:

x(Ψ)
01 = c(x)

01

(
x2 − x0

2
− 1

α0 − α1

)
(42a)

y(Ψ)
01 = z(Ψ)

01 = c(x)
01

h̄
2
√

MnT
(42b)

y(Ψ)
10 = z(Ψ)

10 = c(x)
01

h̄
2
√

MpT
, (42c)

as a product of the overlap function

c(x)
01 =

A1 A0

α0 − α1

√
(E1 −U1)(U2 − E0)

(U0 −U1)(U2 −U00)

(
e−α1(x2−x0) − e−α0(x2−x0)

)
. (43)

and a quantity that we call the state separation distance. At the same time, with the initial and
the final energies Eβ = T/2, Eα = Eβ + ε10, we obtain the dipole moments for the n-zone

X(n)
αβ = Y(n)

αβ = Z(n)
αβ =

h̄
ε10

√
2ε10 + T

Mn
≈

√
2h̄

Mnω0
, (44)

and for the p-zone,

X(p)
αβ = Y(p)

αβ = Z(p)
αβ =

h̄
ε10

√
2ε10 + T

Mp
≈

√
2h̄

Mpω0
, (45)
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where we used the notations ε10=̇h̄ω0=̇E1 − E0. With the quantum dot dipole moments
(42), and the environment dipole moments (44)-(45), we calculate the matrix elements of the
two-body potential (41). With these matrix elements, from (37) with the densities of states (12)
and the occupation probabilities of these states (13), one obtains the dissipative coefficients
for the coupling of a quantum dot with a dissipative cluster. By integration over all clusters of
both hemispheres of the n and p conduction regions, with the quantization volumes Vn = 1

ND

and Vp = 1
NA

as differential volumes in these integrals, we obtain the dissipation coefficients
(3):

λ
(n)
01 =

4α2c2√2Mn(ε10 +
T
2 )|c(x)

01 |2μ2
01

3
(

N−1/3
D
2 − x3

)3
ε3/2

10 (e−(Uc+ε10)/T + 1)

(46a)

λ
(n)
10 =

4α2c2√2Mn(ε10 +
T
2 )|c(x)

01 |2μ2
01

3
(

N−1/3
D
2 − x3

)3
ε3/2

10 (e(Uc+ε10)/T + 1)

(46b)

λ
(p)
01 =

4α2c2√2Mp(ε10 +
T
2 )|c(x)

01 |2μ2
01

3
(

N−1/3
A
2 + x5

)3
ε3/2

10 (e−(−Uv+ε10)/T + 1)

(46c)

λ
(p)
10 =

4α2c2√2Mp(ε10 +
T
2 )|c(x)

01 |2μ2
01

3
(

N−1/3
A
2 + x5

)3
ε3/2

10 (e(−Uv+ε10)/T + 1)

, (46d)

where

μ2
01 =

(
x2 − x0

2
− 1

α0 − α1
+

h̄√
MnT

)(
x2 − x0

2
− 1

α0 − α1
+

h̄√
MpT

)
. (47)

is the square of the separation distance of the two states Ψ0(�r) and Ψ1(�r). From (35), by similar
calculations we obtain the fluctuation coefficients of a quantum dot in the self-consistent field
of dissipative clusters:

[
ζ
(n)
11

]2
=

α2c2 M3/2
n T3/2

360π
√

2πh̄3 · N1/3
D [A2

1(x
3
0 − x3

1) +
1

Ne ]

Ne Nc

(
N−1/3

D
2 − x3 +

x0+x1
2

)5 (48a)

[
ζ
(p)
11

]2
=

α2c2 M3/2
p T3/2

360π
√

2πh̄3 · N1/3
A [A2

1(x
3
0 − x3

1) +
1

Ne ]

Ne Nv

(
N−1/3

A
2 + x5 − x0+x1

2

)5 (48b)

[
ζ
(n)
00

]2
=

α2c2 M3/2
n T3/2

360π
√

2πh̄3 · N1/3
D [A2

0(x
3
4 − x3

2) +
1

Ne ]

Ne Nc

(
N−1/3

D
2 − x3 +

x4+x2
2

)5 (48c)

[
ζ
(p)
00

]2
=

α2c2 M3/2
p T3/2

360π
√

2πh̄3 · N1/3
A [A2

0(x
3
4 − x3

2) +
1

Ne ]

Ne Nv

(
N−1/3

A
2 + x5 − x4+x2

2

)5 . (48d)
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The Markovian dissipative coefficients (46) describe a very strong, exponential decrease of
the decay rate with the width x2 − x0 of the quantum dot barrier, given by the square of the
overlap function (43), and a strong decrease with the distances x3 and x5 of the quantum dot
separation from the two conduction regions, which enter at the denominators with power 3.
The non-Markovian coefficients (48) describe a very strong decrease of the fluctuation rate
with the separation distances x3 and x5, which enter at the denominators with power 5.

The coupling of a quantum dot electron with a vibrational mode α is described by the potential
matrix element (3):

VEP
01α = VEP

10α = −h̄ω3/2
0

M�r01�1α√Mh̄/2
, (49)

whereM is the mass of the phonon quantization volume VP . For the density of phonon states
of energy h̄ω0, we obtain an expression similar to (12):

gP(h̄ω0) = VP
√

2M3/2

π2h̄3

√
h̄ω0. (50)

We consider the sound velocity v from the phonon wavelength expressions

λP =
v
ν
=

2πv
ω

=
2πh̄v

ε10
, λP ≡ 2π

kP
=

2πh̄√
2Mε10

, (51)

and the crystal density

D ≡ M
VP =

2π2h̄2

VPλ2
Pε10

. (52)

With (49)-(52), from (38) we obtain the decay (excitation) rates

λP
01 =

E2
e ε5

10

πh̄6c4v3D
· |c

(x)
01 |2μ2

01
1− e−ε10/T (53a)

λP
10 =

E2
e ε5

10

πh̄6c4v3D
· |c

(x)
01 |2μ2

01
eε10/T − 1

, (53b)

where Ee = Mc2 is the rest energy of the electron, and v is the sound velocity, which can be
calculated from the Young elasticity coefficient E and the crystal density D:

v ≈
√

E
D

. (54)

We notice that both systems of dissipation coefficients (46) and (53) are proportional to the
squares of the state separation distance and overlap function. Expressions (53) describe a very
strong dependence of the decay rates on the transition energy ε10, being proportional to this
energy with power 5. However, they are valid for phonon wavelengths much larger than the
distance between the atoms of the crystal lattice. Otherwise, the number of the density modes
can no more be treated as a quasi-continuous function of frequency, and the probability of any
non-resonant interaction vanishes (Mösbauer effect). We also found that for the rather low
transition energies specific to the quantum injection dots, the decay rate due to the phonon
coupling is rather low, e.g. for the structure presented at the end of the preceding section
with ε10 = 0.1866 eV, we got λP

01 = 2× 107 s−1. As we found by direct calculations (3), for
the quantum injection dots, which are separated by potential barriers from the conduction
electrons, the decay rate due to these electrons is much lower than the decay rate due to the
coupling to the phonons of the crystal lattice vibrations.
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4. Dissipative dynamics of electromagnetic field

The operation of a semiconductor device with quantum dots interacting with a quasi-resonant
electromagnetic field is based on the transparency of the host semiconductor structure, with
a band to band transition frequency much higher than the quantum dot transition frequency.
That means that this electromagnetic field is absorbed by the host semiconductor structure
mainly by intra-band transitions, essentially depending on overlap functions of thermal states
with excited states populated (depopulated) by these transitions.

The dynamics of this electromagnetic field, with a potential Ṽ(t) of interaction with a quantum
dot and a potential ṼE(t) of interaction with a conduction electron (hole), is described by a
system of equations of the form (28), (30), (31) (33), which, in the second-order approximation,
provides

d
dt

ρ̃(t) = B̃(1)[ρ̃(t), t] + B̃(2)[ρ̃(t), t] (55a)

B̃(1)[ρ̃(t), t] = − i
h̄

TrE[Ṽ(t) + ṼE(t), R⊗ ρ̃(t)] (55b)

χ̃(1)(t) =
∫ t

0

{
− i

h̄
[Ṽ(t′) + ṼE(t′), R⊗ ρ̃(t′)]− R⊗ B̃(1)[ρ̃(t′), t′]

}
dt′ (55c)

B̃(2)[ρ̃(t), t] = − i
h̄

TrE[Ṽ(t) + ṼE(t), χ̃(1)(t)]. (55d)

The interaction potential Ṽ(t) is obtained from (5)-(6), while the dissipative potential ṼE(t) is
given by the similar expressions

VE =
e

M
�P�A (56)

and
�P = iM ∑

αβ

ωαβ
�Rαβc+α cβ. (57)

From (5)-(7) and (56)-(57), we derive expressions of these potentials depending only on the
positive transition frequencies ωji(j > i) and ωαβ(α > β), and take into account the so called
"rotating-wave approximation", which includes only conservative processes, when an electron
excitation is correlated only with a photon annihilation, while an electron decay is correlated
only with a photon creation:

V = i ∑
j>i

h̄ωji�K�rij

[
c+j ci

(
a+eikx + a−e−ikx

)
− c+i cj

(
a++e−ikx + a+−eikx

)]
(58)

VE = i ∑
α>β

h̄ωαβ
�K�Rαβ

[
c+α cβ

(
a+eikx + a−e−ikx

)
− c+β cα

(
a++e−ikx + a+−eikx

)]
. (59)

We consider the time-dependent expressions of these operators in the interaction picture,

ã(t) = ae−iωt, ã+(t) = a+eiωt (60)

c̃+i (t)c̃j(t) = c+i cje
−iωjit, c̃+j (t)c̃i(t) = c+j cie

iωjit (61)

c̃+β (t)c̃α(t) = c+β cαe−iωαβt, c̃+α (t)c̃β(t) = c+α cβeiωαβt, (62)

and take equations (55) for the mean-values of the electron operators. We retain only the
slowly time varying terms, obtained from the resonance condition ωαβ = ω, while the rapidly
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varying terms are neglected. We consider the summations over the environmental states as
integrals over a quasi-continuum of states, with the densities g(εα) and g(εβ) and occupation
probabilities f (εα) and f (εβ), and neglect the thermal energies εβ ∼ T in comparison with the
transition energy h̄ω. We obtain the quantum master equation

d
dt

ρ(t) =− iω[a++a+ + a+−a−, ρ(t)]

+ ∑
j>i

ωji�K�rij

[
〈c+j ci〉(a+eikx + a−e−ikx)− 〈c+i cj〉(a++e−ikx + a+−eikx), ρ(t)

]

+ Λ
{
[a+ρ(t), a++] + [a+, ρ(t)a++] + [a−ρ(t), a+−] + [a−, ρ(t)a+−]

}
,

(63)

with the dissipation coefficient

Λ = πh̄ω2g(h̄ω)(�K�Rαβ)
2, (64)

depending on quantities which, according to (9), (44), and (12), are of the form

K =

√
α

λ

V (65)

Rαβ =

√
2h̄

Mω
(66)

g(h̄ω) = VS
√

2M3/2

π2h̄3

√
h̄ω. (67)

Unlike the master equation for an electromagnetic field mode derived in (12), we considered
explicit expressions of the electron-field potential of interaction, and neglected the thermal
energy in comparison with the transition energy. With (65)-(67), the dissipation coefficient
(64) takes a form

Λ = Ω
VS

V (68)

depending on the quantity

Ω = 4α

√
2Mc2ω

h̄
, (69)

and the two quantization volumes, V of the electromagnetic field and VS of the dissipative
electron system. We consider a quantization volume VS = Vn = 1

ND
for an n-type region,

or VS = Vp = 1
NA

for a p-type region. From physical point of view, a quantization volume
of the electromagnetic field V means a measuring process corresponding to a confinement in
this volume. The electromagnetic field can not be quantized in a volume VS, but in a much
larger one, with much larger dimensions than the field wavelength λ. For an electromagnetic
field, we consider a unit quantization volume V = 1V = 13

L = 1m3, because, in this case,
the radiation density is equal to the electromagnetic field density times the light velocity, S =

wEc [W/m2], where wE = ε0E2

2 [J/m3] is calculated with this quantization volume in the
expression (8)-(9) of the field.

We notice that the master equation (63) describes an electromagnetic field quantized in a unit
volume V = 1m3 in interaction with an electron system occupying a much smaller volume
VS = V(n), V(p). A system of N dissipative electrons can be taken into account by multiplying
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the dissipative coefficient Λ with N. However, in such a description, the electromagnetic
field is considered of a constant amplitude inside the quantization volume V = 1V , while,
in fact, this amplitude undertakes a spatial variation due to the interaction with the system
quantized in a volume VS � V , i.e. propagation characteristics as the absorption coefficient
and the refractive index inside the field quantization volume are not taken into account. We
take into account the spatial variation of the electromagnetic field by considering this field
as being given by an x dependent density matrix, as product of density matrices for the two
counter-propagating waves, ρ(x, t) = ρ+(x, t)ρ−(x, t), and taking the dissipative terms as
integrals over the paths traveled by these waves. Considering a distribution of ND dissipative
clusters over the the thickness LD of the device, from the master equation (63), we get

d
dt

ρ+(x, t)=−iω[a++a+, ρ+(x, t)]+∑
j>i

ωji�K�rij

[
〈c+j ci〉a+eikx−〈c+i cj〉a++e−ikx, ρ+(x, t)

]
(70a)

+
ΩD

1L

∫ x

0

{
[a+ρ+(x′, t′), a++] + [a+, ρ+(x′, t′)a++]

}
e−ik(x−x′)dx′

d
dt

ρ−(x, t)=−iω[a+−a−, ρ−(x, t)]+∑
j>i

ωji�K�rij

[
〈c+j ci〉a−e−ikx−〈c+i cj〉(a+−eikx, ρ−(x, t)

]
(70b)

+
ΩD

1L

∫ LD

x

{
[a−ρ−(x′, t′), a+−] + [a−, ρ−(x′, t′)a+−]

}
e−ik(x′−x)dx′,

depending on the dissipative coefficient

ΩD = Ω
12

LLD

13
L

= Ω
LD

1L
, (71)

obtained by summation over the dissipative clusters with the volume 12
LLD in the quantization

volume 13
L. The exponential factors in the integrals describe the delay of the field propagating

from the coordinate x′ of a dissipative element to the coordinate x of the density matrix of
this field at this coordinate. These equations describe the dissipative dynamics of a forward
electromagnetic wave, propagating from x′ = 0 to x′ = x, and of a backward electromagnetic
wave, propagating from x′ = LD to x′ = x < LD. With these equations, we calculate the
mean-values of the field operators

a+(x, t) = 〈a+〉 = Tr {a+ρ+(x, t)} = A+(x, t)e−iωt (72a)

a−(x, t) = 〈a−〉 = Tr {a−ρ−(x, t)} = A−(x, t)e−iωt. (72b)

For an array of two-level systems with the coordinate x, interacting with the electromagnetic
field with the frequency ω ≈ ω0, we define the time slowly-varying amplitude of the
polarization S(x, t) by the relations

〈c+i cj〉 = ρji(x, t) =
1
2
S(x, t)e−iωt, (73)

S(x, t) = S+(x, t)eikx + S−(x, t)e−ikx, (74)

where S+(x, t),S−(x, t) are slowly-varying in space and time amplitudes of the polarization
induced by the two counter-propagating waves of the field. Having in view Heisenberg’s
uncertainty principle

ΔkΔx ≥ 1
2

, ΔωΔt ≥ 1
2

, (75)
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we notice that, in equations (70), this relation selects only the close terms, with x′ ≈ x, while
the farer terms in x− x′ are washed up by the uncertainty Δk in the oscillating functions under
the x′-dependent integrals. By definition, these x-dependent integrals describe the attenuation
of an electromagnetic wave squeezed in the x-domain, Δx = 0. We take into account a finite
uncertainty Δx, in the vicinity of x, by extending these x′-integrals with the half-width Δx/2.
We obtain the field equations

d
dt
A+(x, t) = − 1

2
ω0�K�r01S+(x, t)− ΩD

1L

∫ x−Δx/2

0
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ (76a)

−ΩD

1L

∫ x+Δx/2

x−Δx/2
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]dx′

d
dt
A−(x, t) = − 1

2
ω0�K�r01S−(x, t) +

ΩD

1L

∫ LD

x+Δx/2
A−(x′, t′)e−i[k(x′−x)−ω(t−t′)]dx′ (76b)

+
ΩD

1L

∫ x+Δx/2

x−Δx/2
A−(x′, t′)e−i[k(x′−x)−ω(t−t′)]dx′.

We notice that these are non-local in space equations including retarded contributions of the
dissipation processes along the distance |x− x′|, and absorption processes in the vicinity Δx of
the coordinate x. We consider the quantities under these integrals as spectral lines integrated
over half-widths, kΔx−ωΔt = (k+ Δk)Δx− (ω+ Δω)Δt = ΔkΔx−ΔωΔt = π

6 + π
6 > 1

2 +
1
2 .

By integrating the first integral of the first equation two times by parts, for a large distance
x− x′ we obtain

∫ x−Δx/2

0
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ = 1

ik
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]

∣∣∣x−Δx/2

0

− 1
ik

∫ x−Δx/2

0

d
dx′ A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]dx′

=

[
− i

k
A+(x, t) +

1
k2

d
dx
A+(x, t)

] [
cos

(
kΔx−ωΔt

2

)
− i sin

(
kΔx−ωΔt

2

)]

= − 1 + i
√

3
2k

A+(x, t) +

√
3− i
2k2

d
dx
A+(x, t),

(77)

while, taking into account that on a vary short distance Δx the field amplitude is practically
constant, the second integral of this equation takes a simple form

∫ x+Δx/2

x−Δx/2
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]dx′ = 1

ik
A+(x′, t′)e−i[k(x−x′)−ω(t−t′)]

∣∣∣∣
x+Δx/2

x−Δx/2

=
2
k
A+(x, t) sin

(
kΔx−ωΔt

2

)
=

1
k
A+(x, t).

(78)

These terms describe a slight variation of the wave-vector k, k′ = k + κ, which means that the
amplitude of the mean-value of the field operator takes a form

A+(x, t) = Ã+(x, t)eiκx . (79)

Taking into account that ΩD
ck21L

� 1, while κ = k

1+ 2ck21L√
3ΩD

� k, we get a field equation

∂

∂t
A+(x, t) + c

[
∂

∂x
A+(x, t) + α′A+(x, t)

]
= − 1

2
ω0�K�r01S+(x, t), (80)
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with an absorption coefficient

α′ = 2αc
1L

√
2M
h̄ω

LD

1L
. (81)

In the following calculations, we are interested in a form of this equation in a cavity with the
length LD,

d
dt
A+(x, t) = −γFA+(x, t)− 1

2
ω0�K�r01S+(x, t), (82)

with a field decay rate

γF = cα′ = 2αc2

12
L

√
2M
h̄ω

LD, or 1LγF =
2αc2

1L

√
2M
h̄ω

LD , (83)

which we call field decay velocity. In section 6, it will be shown that the field decay velocity
1LγF describes the field loss by dissipation, as the quantity T c describes the electromagnetic
energy loss by radiation through the output mirror with the transparency T . We notice that
the decay rate of an electromagnetic field in a cavity is proportional to the length of this cavity.
For a semiconductor chip with the thickness LD = 2 mm, we considered in our calculations
in (3), from (83) we get a field decay rate γF = 2.05 × 107 s−1, which is in agreement with
the empirical values γF = 107, 108 s−1, we considered in these calculations. It is interesting
that, in this model, the decay rate does not depend on the concentration of the dissipative
clusters, since an increase of this concentration means a decrease of the density of states in
every cluster, which, in this way, becomes smaller. These two variations cancel exactly one
another in the final result. By taking into account the spreading of a dissipative electron
wave-function beyond the the boundaries of its cluster due to the thermal motion, one obtains
a lower value of the decay rate, but with an increase with the concentration of these clusters.

5. Optical equations for a system of quantum injection dots

From the quantum master equation (34), we derive optical equations for a two-level system.
In the approximation of the slowly varying amplitudes, we consider the non-diagonal matrix
elements

ρ10(t) = ρ∗01(t) =
1
2

[
S+(t)eikx + S−(t)e−ikx

]
e−iωt, (84)

and the population difference

w(t) = ρ11(t)− ρ00(t), with the normalization condition (85a)

1 = ρ11(t) + ρ00(t). (85b)

Calculating the matrix elements of the two-level system, and averaging over the field states,
from the master equation (34) we get:

d
dt

ρ10(t) = −[λ01 + λ10 + i(ω0 + ζ11 − ζ00)]ρ10(t) (86a)

+�K
[
(〈a+〉+ 〈a+−〉)eikx + (〈a++〉+ 〈a−〉)e−ikx

]
ω0�r10[ρ00(t)− ρ11(t)]

+(ζ11 − ζ00)
2
∫ t

t−τ
ρ10(t

′)e−i[φ10(t′)+ω(t−t′)]dt′

d
dt

ρ11(t) = − d
dt

ρ00(t) = 2[λ10ρ00 − λ01ρ11] (86b)

+�K
[
(〈a+〉+ 〈a+−〉)eikx + (〈a++〉+ 〈a−〉)e−ikx

]
ω0�r10[ρ10(t) + ρ01(t)].
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From the expression (8) of the quantized electric field �E in the plane-wave approximation, and
mean-values of the annihilation operators of the form

〈a+〉 = ā+(t)e−iωt (87a)

〈a−〉 = ā−(t)e−iωt, (87b)

we get the mean-value of this field,

〈�E〉 = 1
2

[
�E(t)e−iωt + �E∗(t)eiωt

]
, (88)

with the time slowly-varying amplitude

�E(t) = �E+(t)eikx + �E−(t)e−ikx, (89)

while the amplitudes of the two counter-propagating waves are

�E+(t) = 2i
h̄ω

e
�Kā+(t) (90a)

�E−(t) = 2i
h̄ω

e
�Kā−(t). (90b)

In this description we neglect the variation of the amplitudes inside the cavity, by taking into
account these two amplitudes only as mean-values over the space coordinate, related by the
boundary condition for the output mirror of transmission coefficient T :

�E−(t) = −
√

1− T �E+(t). (91)

With the notations
�g =

e
h̄
�r10 (92)

for the coupling coefficient,
γ⊥ = λ01 + λ10 (93)

for the dephasing rate,
γ‖ = 2(λ01 + λ10) (94)

for the decay rate,
γn = |ζ11 − ζ00| (95)

for the fluctuation rate of the self-consistent field, and

wT = −λ01 − λ10
λ01 + λ10

, (96)

from (84)-(91) we obtain equations for the slowly-varying amplitudes

d
dt
S+(t) = −[γ⊥+ i(ω0 + γn −ω)]S+(t) + i�g�E+(t)w(t) (97a)

+γ2
n

∫ t

t−τ
S+(t′)e−i[φ10(t′)+ω(t−t′)]dt′

d
dt

w(t) = −γ‖[w(t)− wT ] + (2− T )i�g
1
2

[
�E∗+(t)S+(t)− �E+(t)S∗+(t)

]
. (97b)
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In equation (97b) we have taken into account that the term

Φ+(t) = i�g
1
2

[
�E∗+(t)S+(t)− �E+(t)S∗+(t)

]
(98)

is a particle flow due to the forward electromagnetic wave propagating in the cavity, while

Φ−(t) = i�g
1
2

[
�E∗−(t)S−(t)− �E−(t)S∗−(t)

]
(99)

is a particle flow due to the backward electromagnetic wave, which means that the two flows
satisfy the boundary condition for the energy flow of the electromagnetic field

Φ−(t) = (1− T )Φ+(t). (100)

At the same time, calculating the mean-value of the field operator a, averaging over the states
of the two-level system, and taking into account the relation

〈c+i cj〉 = ρji(t), (101)

from equation (34) we get the field equation

d
dt
〈a+〉 = −iω〈a+〉+ �Kω0�r10[ρ10(t)− ρ01(t)]e

−ikx. (102)

Thus, with (84), (87) and (90), we get a field equation for slowly-varying amplitudes

d
dt

�E+(t) = −iω0
h̄ω

e
�K(�K�r10)S+(t). (103)

We consider this equation for the components u(t) and v(t) of the polarization amplitude

S+(t) = u(t)− iv(t), (104)

and F (t) and G(t) of the electromagnetic field

E+(t) = F (t) + iG(t), (105)

and take into account the field dissipation described by the dissipation rate γF. We get

d
dt
F (t) = −γFF (t)− g

h̄ω0

2εV v(t) (106a)

d
dt
G(t) = −γFG(t)− g

h̄ω0

2εV u(t). (106b)

We consider these equations for the electromagnetic energy in the quantization volume V , and
introduce the energy flow through the surface A of this volume:

d
dt

[
V 1

2
εF 2(t)

]
= −T c

1
2

εF 2(t)A− γFVεF 2(t)− g
h̄ω0

2
Fv(t) (107a)

d
dt

[
V 1

2
εG2(t)

]
= −T c

1
2

εG2(t)A− γFVεG2(t)− g
h̄ω0

2
Gu(t). (107b)
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At the same time, from (97b) with (104) and (105), we derive the equation for the population
difference (85a), and introduce the particle flow I in a two-level system, due to the electric
current I = eAD NeI injected in the device:

d
dt

w(t) = −γF[w(t)− wT ] + 2I + (2− T )g[F (t)v(t) + G(t)u(t)] (108)

From (107) and (108) with (85), we get an equation of energy conservation:

h̄ω0I =
d
dt

{
h̄ω0ρ11(t) + (2− T )V 1

2
ε[F 2(t) + G2(t)]

}
+ γ‖

[
ρ11(t)− 1 + wT

2

]
h̄ω0

+(2− T )(T c
A
V + 2γF)V 1

2
ε[F 2(t) + G2(t)].

(109)

This equation describes the transition power h̄ω0I of the active system providing the energy
transfer processes involved in the dissipative super radiant decay: (1) the energy variation of
the electron-field system, (2) the dissipative decay of the electron energy, proportional to γ‖,
(3) the radiation of the field energy, proportional to the light velocity c and the transmission
coefficient T of the output mirror, and (4) the dissipation of the field energy, proportional to
γF . In this equation, both waves leaving the quantum system and propagating in the cavity,
the forward wave with an amplitude coefficient 1 and the backward wave with an amplitude
coefficientR = 1− T , are taken into account with the coefficient 1 +R = 2− T .

From the polarization equation (97a) with (104) and (105), the population equation (108), and
the field equations (107), we obtain the equations of the slowly varying amplitudes of the
system:

d
dt

u(t) = −γ⊥[u(t)− δωv(t)]− gG(t)w(t) (110a)

+γ2
n

∫ t

t−τ

{
u(t′) cos[φn(t′) + (ω−ω0)(t− t′)] + v(t′) sin[φn(t′) + (ω −ω0)(t− t′)]

}
dt′

d
dt

v(t) = −γ⊥[v(t) + δωu(t)]− gF (t)w(t) (110b)

+γ2
n

∫ t

t−τ

{
v(t′) cos[φn(t′) + (ω −ω0)(t− t′)]− u(t′) sin[φn(t′) + (ω −ω0)(t− t′)]

}
dt′

d
dt

w(t) = −γ‖[w(t)− wT] + 2I + (2− T )g[G(t)u(t) +F (t)v(t)] (110c)

d
dt
F (t) = − 1

2
T c
A
V F (t)− γFF (t)− g

h̄ω0

2εV v(t) (110d)

d
dt
G(t) = − 1

2
T c
A
V G(t)− γFG(t)− g

h̄ω0

2εV u(t), (110e)

where φn(t′) ≡ φ01(t′) ≡ −φ10(t′) is the phase fluctuation with a fluctuation time τn = 1/γn,
and

δω =
ω −ω0− γn

γ⊥
(111)

is the relative atomic detuning. In these equations, the coupling of the electron system to the
electromagnetic field is described by a coupling coefficient for the dipole interaction g = �g�1E.
These equations also describe a dissipative decay of the electron system by the coefficients γ‖
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and γ⊥, non-Markovian effects by time-integrals proportional to the fluctuation coefficient γ2
n

in the polarization equations (110a) and (110b), a decrease of the electron-field coupling due to
the field radiation by the term proportional to the coefficient (2− T ) in (110c), and a decrease
of field by the radiation terms proportional to the product cT in (110d) and (110e), and by the
terms proportional to the decay rate γF.

6. Superradiant quantum injection dots and heat conversion

The dynamic equations (110) take a simpler form in a stationary regime when the derivatives
with time become zero and the polarization variables can be taken out from the integrals.
Considering an integration over a fluctuation time τn = 1/γn, we get a time oscillating term,
generated by the fluctuations of the environment particles. In the Markovian approximation,
when these oscillations are neglected, we get the steady-state equations:

−γ⊥[u− δωv]− gGw = 0 (112a)

−γ⊥[v + δωu]− gFw = 0 (112b)

−γ‖(w− wT) + 2I + (2− T )g(Gu +Fv) = 0 (112c)

−ΓFF − Gv = 0 (112d)

−ΓFG − Gu = 0, (112e)

where

G = g
h̄ω0

2εV (113a)

ΓF =
1
2
T c
A
V + γF . (113b)

From the system of equations (112), for the resonance case (δω = 0), we calculate the flow
density of the electromagnetic energy radiated by the device:

S = T c
1
2

ε(F 2 + G2). (114)

We get

S =

h̄ω0
(2−T )A

1 + 2γFV
T cA

⎡
⎣I −

⎛
⎝−wT

γ‖
2

+
1
2T cAV + γF

g2 h̄ω0
γ⊥γ‖εV

⎞
⎠
⎤
⎦ . (115)

This expression of the flow density S has a nice physical interpretation, being proportional to
the product of the transition energy h̄ω0, divided to the radiation area of a quantum dot A,
with the difference between the particle flow I and a threshold value depending on coupling,
radiation, and dissipation coefficients. This expression is valid when the quantization volume
V of the field corresponds to the electromagnetic energy delivered by the whole system of
Ne Nt quantum dots to a volume unit, which means

V [m3] =
1

Ne[m−2]Nt[m−1]
, (116)

where Ne[m−2] is the number of quantum dots per area unit, and Nt[m−1] is the number of
super radiant junctions per length unit.
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In a first approximation, we neglect the temperature variation due to the heat transfer through
the semiconductor structure. To take into account this temperature variation, one has to make
corrections of the parameters, to obtain the same transition frequency on the whole chain of
super radiant junctions.

Such a device can be realized in two versions schematically represented in figure 4: (a) a
longitudinal device, with the two mirrors M1 and M2 made on the two surfaces in the plane
of the chip, of transmission coefficients T0 = 0 and T > 0, which form a Fabry-Perot cavity
coupling a super radiant mode that propagates in the x-direction of the injection current; (b) a
transversal device, with the two mirrors M1 and M2 made on two lateral surfaces of the chip,
of transmission coefficients T0 = 0 and T > 0, which form a Fabry-Perot cavity coupling a
super radiant mode that propagates in the y-direction, perpendicular to the injection current.
While in version (a) the roles of the mirrors M1 and M2, and of the injection electrodes E1 and
E2, are played by the same metalizations, made on the two surfaces in the plane of the chip, in
version (b) the mirror metalizations M1 and M2, which are made on two lateral surfaces, are
different from the electrode metalizations E1 and E2.

The two devices have the same structure, including layers of GaAs, with a narrower forbidden
band and a heavier doping, for the quantum wells, and layers of AlxGa1−x As, with a larger
forbidden band and a lighter doping, for the potential barriers. The margins of these bands are
determined by the concentrations of the donors (acceptors) embedded in the semiconductor
layers. For a longitudinal device (figure 4a), the N̄t (dimensionless) quantum dots in the

x-direction, radiate through an area
1

Ne[m−2]
, which means

AL[m
2] =

1
Ne[m−2]N̄t

, (117)

while for a transversal device (see figure 4b), the
√

Ne[m−2]AD[m2] quantum dots in the

y-direction, radiate through an area
LD[m]

N̄t

1√
Ne[m−2]

, which means

AT [m
2] =

LD[m]

Ne[m−2]N̄t
√

AD[m2]
. (118)

With the radiation area AL (AT) of a quantum dot, from (115) we derive the flow density SL
(SD), and the total flow of the electromagnetic field radiated by the device in the two versions:

ΦL = ADSL (119a)

ΦT = LD
√

ADST. (119b)

We obtain

ΦL =
N̄t

(2− T )
(
1 + 2 1LγF

T c

) · h̄ω0

e
(I − I0L) (120a)

ΦT =
N̄t

(2− T )
(
1 + 2 1LγF

T c
A1/2

D
LD

) · h̄ω0

e
(I − I0T), (120b)
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(a) Longitudinal super radiant device with the Fabry-Perot cavity oriented in the x-direction of the injected
current I = Ie = Ih , i.e. perpendicular to the semiconductor layers.
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(b) Transversal super radiant device with the Fabry-Perot cavity oriented in the y-direction, perpendicular
to the injected current I = Ie = Ih , i.e. in the plane of the semiconductor layers.

Fig. 4. Dissipative super radiant n-i-p device with two injection electrodes E1 and E2 and a
Fabry-Perot cavity with the mirrors M1 and M2 of transmission coefficients T0 = 0 and T ,
respectively, in two possible versions (a) and (b).

as a function of the injected current I and the threshold currents

I0L =
1
2

eNe ADγ‖

[
−wT +

εγ⊥
g2

Lh̄ω0Ne N̄t
(T c + 2 · 1LγF)

]
(121a)

I0T =
1
2

eNe ADγ‖

[
−wT +

εγ⊥
g2

Th̄ω0Ne N̄t
(T c

LD

A1/2
D

+ 2 · 1LγF)

]
, (121b)
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which depends on the field decay velocity (83). The threshold current is proportional to the
threshold population, which includes three terms for the three dissipative processes that must
be balanced by current injection for creating a coherent electromagnetic field: (1) a term −wT,
for a population inversion, (2) a term proportional to the light velocity c and the transmission
coefficient T , for the field radiation, and (3) a term proportional to decay rate γF, for the field
dissipation.

From (112c) and (120), we notice that when the injection current I = eNe ADI is under the
threshold value I0L (I0T), the radiation field is F + iG = 0, while the population difference
w increases with this current. When the injection current I reaches the threshold current I0L
(I0T), the population difference w reaches the radiation value

wR =
T cAV + 2γF

g2h̄ω0
γ⊥εV

. (122)

Increasing the injection current I beyond the threshold value I0L (I0T), the population
difference keeps this value, while the super radiant field and the polarization (u =
− g

γ⊥ wRG , v = − g
γ⊥ wRF ) increases. However, the polarization (u, v) can not increase

indefinitely, being constrained by the condition of the Bloch vector length (2 − T )(u2 +
v2) + w2 ≤ w2

T. For the maximum value (uM, vM) of the polarization, while u2
M + v2

M =

(w2
T − w2

R)/(2− T ), the super radiant field reaches its maximum flow density

SM =
T cε

2(2− T )

⎡
⎢⎣w2

T
g2 h̄2ω2

0
ε2V2(

T cAV + 2γF

)2 −
γ2
⊥

g2

⎤
⎥⎦ . (123)

From this equation with equation (115) for S = SM, we get the value IM = eNe ADIM of
the injection current producing the maximum flow of the electromagnetic energy. Increasing
the injection current beyond this value, the polarization (u, v) will not increase any more,
but the population will increase, leading to a rapid decrease of the polarization. Neglecting
the current increase from IM to the value I ′M when the polarization vanishes, from equation
(112c) with w = −wT and u = v = 0, we get a simple, approximate expression IM ≈ I ′M =
1
2 eNe ADγ‖ (−wT − wT), which can be compared with (121). From the operation condition
I0L, I0T < IM, we get conditions for the coupling, dissipation, and radiation coefficients:

wIL =
ε0γ⊥

g2
Lh̄ω0Ne N̄t

(T c + 21LγF) < −wT ≈ 1 (124a)

wIT =
ε0γ⊥

g2
Th̄ω0Ne N̄t

(T c
LD

A1/2
D

+ 21LγF) < −wT ≈ 1. (124b)

From equations (46) and (53), with (47) and (43), we notice that the dephasing and decay rates
(93) and (94) strongly depend on the i-layer thickness x2 − x0. In figure 5a, we represent
the decay rates γP

‖ , γE
‖ , γEM

‖ for the three dissipative couplings, with the phonons of the
crystal vibrations, the conduction electrons and holes, and the free electromagnetic field,
γ‖ = γP

‖ + γE
‖ + γEM

‖ . We also represent the fluctuation rate (95) with the components (48)

for the two neighboring conduction regions n and p, γ2
n =

[
γ
(n)
n

]2
+

[
γ
(p)
n

]2
. In figure
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5b, we represent the coupling coefficients for a longitudinal and a transversal structure.
For all these coefficients, we get quasi-exponential variations with the i-layer thickness
x2 − x0. We notice that, in these structures, the phonon decay rate γP

‖ , which is unavoidable,

dominates the electric decay rate γE
‖ , which depends on the separation barriers, while the

electromagnetic decay rate γEM
‖ is negligible. It is remarkable that the decay rate of a quantum
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Fig. 5. (a) The dependence of the dissipative coefficients on the i-zone thickness; (b) The
dependence of the coupling coefficients on the i-zone thickness, for a longitudinal and a
transversal structure.

injection dot, with a value around 107s−1, is significantly lower than the decay rates of other
GaAs structures, which are at least somewhere around 1012s−1 (13). From figure 5b, we
notice that, although the two coupling coefficients are calculated with completely different
dipole moments, gL with (42b)-(42c), and gT with (42a), the values of these coefficients are
approximately equal for small values of x2 − x0, and keep near values for thicker i-zones.
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Fig. 6. The dependence of the threshold currents on the thicknesses of the i-zone for two
values of the transmission coefficient of the output mirror: (a) T = 0.1; (b) T = 0.5.

From equations (121), we notice that the dissipative rates γ‖, γ⊥ and the coupling coefficient
gL (gT), determine the threshold current I0L (I0T). In figure 6a we represent the dependence
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of these currents in comparison with the maximum current IM, for two values of the output
transmission coefficient T . We notice that the operation condition I0L, I0T > IM is satisfied
for both values of these coefficients. This property can be understood from the analytical
expressions (121) or (124), having in view that the dephasing rate γ⊥ and the square of
the coupling coefficient gL (gT) are proportional to the square of the dipole moment, which
means that the operation condition does not depend on this moment. Since the quantum
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Fig. 7. Quantum heat converter, as a packet of super radiant transistors, thermally coupled to
a heat absorbent. While a current I is injected in the device, an electromagnetic flow is
obtained, mainly on the account of the heat absorption.

dot density Ne is determined by physical conditions, according to (25), the threshold current
(121) can be controlled only by the number of super radiant transistors N̄t in the structure.
In our calculations we considered a number of superadiant transistors N̄t = 1045. While
the heat propagates from the heat absorbent (see figure 7) throughout the semiconductor
structure, a portion of this heat is absorbed by every super radiant transistor, producing a
temperature decrease from the front electrode to the rear one. In figure 8a we represent the
electric power and the radiation power as functions of the injected current, for a longitudinal
and a transversal configuration of the device. A radiation power arises only when the
injection current exceeds a threshold value. From (121a) and (121b), we notice that, due to
the factor LD

A1/2
D

in the radiation term of the population inversion, the threshold current of a

transversal device is lower than that of a longitudinal one. However, due the same factor at
the denominator of (120b), the increase of the radiation power with the injection current is
lower for a transversal device than for a longitudinal one. In figure 8b the total temperature
variation in the semiconductor structure is represented. We notice that a rather high power
of 200 W, that means 0.500 MW from an active area of 1 m2, can be obtained at a rather low
temperature difference of about 7 0C.

The radiation power of a transversal device becomes much higher by increasing the
transmission coefficient from T = 0.1 to T = 0.5 and the transition dipole moment by
diminishing the thickness of the i-zone from x2 − x0 = 6.5 nm to x2 − x0 = 6 nm as is
represented in figure 9. In this case, the threshold current of the transversal device becomes
significantly lower than that of the longitudinal one. The threshold current of the longitudinal
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device is sgnificantly lowered by decreasing the transmission coefficient from T = 0.5 to
T = 0.2 as is represented in figure 10.
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Fig. 8. (a) The radiation powers ΦL and ΦT and the electric power PE as functions of the
injection current I, for x2 − x0 = 6.5 nm, T = 0.1, and γF = 107 s−1; (b) The temperature
variations ΔTL, ΔTT as functions of the injection current I.
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Fig. 9. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ΔTL, ΔTT as functions of the injection current, for x2 − x0 = 6 nm, T = 0.5, and
γF = 107 s−1.

It is remarkable that in the three cases represented in figures 8-10 the electric power dissipated
in the device by the injection current I is much lower than the super radiant power. This is
because, as one can notice also from (120), the super radiant power produced by the injected
current corresponds to the high transition energy h̄ω0 between the two zones n and p, while
the power electrically dissipated by this current corresponds to a very low potential difference
Uc − Uc1, necessary for carrying this current through the two rather thin highly conducting
zones n and p (figure 7b). The difference between these two powers is obtained by heat
absorption, when the electrons are excited from the lower potential of the p-zone to the higher
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Fig. 10. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ΔTL, ΔTT as functions of the injection current, for x2 − x0 = 6 nm, T = 0.2, and
γF = 107 s−1.

25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

I [A]

[W
]

Φ
L
 

P
E
 

Φ
T
 

(a)

25 30 35 40 45
0

5

10

15

20

25

30

I [A]

[0 C
]

ΔT
T
 

ΔT
L
 

(b)

Fig. 11. The radiation powers ΦL and ΦT, the electric power PE, and the temperature
variations ΔTL, ΔTT as functions of the injection current, for x2 − x0 = 5.5 nm, T = 0.5, and
γF = 108 s−1.

potential of the n-zone of the base-collector junction. In figure 11 we consider a much larger
decay rate of the electromagnetic field, γF = 108 s−1 instead of γF = 107 s−1, when the
operation conditions (124) are also satisfied. In this case, we also obtain a high radiation
power, but with a higher injection current, which, however, does not produce an important
electrical power PE, dissipated in the device.

We study the time evolution of a quantum heat converter, by solving the time dependent
system of equations (110), for a step current injected at the initial t = 0, and a fluctuation that
arises at a certain time t > 0. Non-Markovian fluctuations are time-evolutions of polarization,
population and field due to the self-consistent field of the environment particles that, in our
case, are the quasi-free electrons and holes in the conduction regions of the device. In figure
12, we represent the dynamics of a longitudinal device with a thickness of the i-zone x2 −
x0 = 5.5 nm and a transmission coefficient of the output mirror T = 0.1, while the threshold
current is I0L = 24.1149 A and the maximum current is IM = 46.0995 A. We consider a step
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current I = 45 A injected at time t = 0. In the Markovian approximation, the super radiant
power ΦL(t) of a longitudinal quantum heat converter is generated as in figure 12a, while the
population w(t) and polarization variables u(t), v(t) have the time-evolutions represented
in figure 12b. The sudden jumps of the polarization variables in figure 12b, are detailed in
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Fig. 12. Dynamics of a longitudinal super radiant device with x2 − x0 = 5.5 nm and T = 0.1
when a step current of I = 45 A is injected in the device: (a) super radiant power; (b)
polarization and population; (c) polarization fluctuation in a short timescale.

figure 12c, in a short timescale. At t = 0, the population increases from the equilibrium value
wT for the temperature T, to w(0) = wT + 2I/(eNe ADγ‖) and, after that, while the radiation
field increases, the population decreases tending to an asymptotic value. With an appropriate
choice of the phase of the initial polarization, v(0) = 0, u(0) takes a value corresponding

to the maximum value −wT of the Bloch vector, which is u(0) =
√
[w2

T − w2(0)]/(2− T ).
In the Markovian approximation, the electromagnetic power is growing to a certain value,
and after a short oscillation tends to the asymptotic value that according to (120a) is ΦL =
1.2843 × 103 W. However, in the non-Markovian approximation, random fluctuations of the
polarization, population, and field arise. These fluctuations are described by the time integrals
in the polarization equations (110a) and (110b) depending on the time-dependent phase term
φn(t′), with a mean-value of the fluctuation time τn = 1/γn. From figure 5a, we notice that the
fluctuation rate γn is four orders higher than the decay rate γ‖, corresponding to the timescale
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of the Markovian processes. In equations (110a) and (110b), we take a positive fluctuation with
a duration tn τn = 2.6305 × 10−12s, followed by a negative one with the same duration. In
figure 12c such a fluctuation is represented in a short timescale, specific to the non-Markovian
fluctuations, while in figures 12a and 12b it is represented in a long timescale specific to the
Markovian processes. We notice that, while the polarization variables u(t) and v(t), which
depend on the transition elements of the density matrix, undertake considerable variations in
a fluctuation time, for population and super radiant field these variations only initialize long
time oscillations.
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Fig. 13. Dynamics of a transversal super radiant device with x2 − x0 = 5.5 nm and T = 0.1
when a step current of I = 45 A is injected: (a) Superradiant power; (b) Population and
polarzation.

In figure 13, we represent the dynamics of the transversal device with the same semiconductor
structure and injected current, while the threshold current takes a lower value I0T =
23.4528 A. This decrease of the threshold current for a transversal device, in comparison
with a longitudinal one with the same semiconductor structure, is obtained due to the field
amplification on the longer path of the field propagation in the plane of the quantum dot
layers, which is described by the term cT LD

A1/2
D

in equations (121). However, this small

difference is not very significant, since, according to equation (83), a longer propagation
path leads also to a higher decay rate of the field, i.e. to an increase of the dissipative term
1LγF . We notice that, while the radiation power is lower, this device is much less sensitive
to the thermal fluctuations described by the non-Markovian term. This decrease of the
radiation power for a transversal device, in comparison with a longitudinal one with the same

semiconductor structure, is obtained due to the factor A1/2
D

LD
at the denominator of equation

(120b). An essential advantage of a transversal quantum heat converter, in comparison with
a longitudinal one, consists in injection electrodes as zero-transmission mirrors, i.e. these
electrodes are thick metalizations, providing an uniform current injection in the device. For
an uniform current injection, a longitudinal quantum heat converter needs a special output
structure, as a high transmission output Fabry-Perot cavity (4). Although for a transversal
device we obtained a lower radiation power than a longitudinal one, it could be advantageous
for some applications: for instance to obtain a powerful radiation device, as a stack of many
transversal quantum heat converters. Another application could be an electric generator with
the three semiconductor devices of the system, transversal quantum heat converter, quantum
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injection system, and total quantum injection system, in the same plane, eventually stuck on
the same pad.

In figures 12 and 13, we considered a positive fluctuation followed by a negative one, which
means an integration over a first interval of time τn = 1/γn with a phase φn = 0 followed
by an integration over a second interval of time τn with a phase φn = π in the polarization
equations (110a) and (110b).
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Fig. 14. Dynamics of a longitudinal super radiant device with a negative fluctuation
(φn = π), followed by a positive one (φn = 0).
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Fig. 15. Dynamics of a transversal super radiant device with a negative fluctuation (φn = π),
followed by a positive one (φn = 0).

Changing the phases of the fluctuations, i.e. taking a negative fluctuation followed by a
positive one (figures 14 and 15), we get similar evolutions but with opposite signs. Obviously,
the realistic evolution of a device is the result of the random phases φn, arising during the
whole evolution of the system. Thus, the system dynamics takes a noisy form, with the
polarization undertaking rapid variations during a fluctuation time, while the population and
the super radiant field are only initialized into slow oscillations.
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7. Conclusions

We presented a new kind of quantum dots, with a quantum well for electrons in the n-region
of an n-i-p heterostructure, and a quantum well for holes in the p-region of this structure.
These quantum wells are separated from the two n and p conduction regions by transparent
potential barriers, and separated from one another by the potential barrier of the i-region.
Such a quantum dot, we call "quantum injection dot", can be compared with a conventional
quantum dot, as a small semiconductor region with a narrower forbidden band in a much
larger i-region of an n-i-p semiconductor structure. Quantum injection dots have mainly been
conceived for conversion of environmental heat into usable energy, while the conventional
quantum dots are mainly used in information technology. A quantum injection dot differs
in many respects from a conventional quantum dot, where the quantum well for holes
is placed under the quantum well for electrons, as conduction and valence bands of the
same semiconductor region: (1) while a quantum injection dot is supplied with electrons
and holes from the two conduction regions by quantum tunneling through the n and p
separation barriers, without any energy increase, a conventional quantum dot is supplied
with electrons and holes only by providing a substantial energy, necessary to raise these
electrons and holes from the n and p conduction regions to the conduction and valence bands
of the i-region, from where they fall in the two potential wells of the quantum dot; (2) a
quantum injection dot provides the electron transfer from the n-region to the p-region only
by quantum transitions, while the electron transfer provided by a conventional quantum dot
includes additional transport processes from the two n and p regions to the i-region where
this quantum dot is located; (3) a quantum injection dot is a one-electron normalized two-level
quantum system, while a conventional quantum dot is a confinement semiconductor region
where many electrons and holes are simultaneously present to provide a larger probability
for the super radiant transitions. In comparison with a conventional quantum dot, a quantum
injection dot is much less dissipative, and, due to its simpler structure, enables a much higher
packing degree in a semiconductor structure.

We studied a system of quantum injection dots by using the available means of quantum
mechanics: (1) we calculated wave-functions, dipole moments, and eigenvalue equation for
energy; (2) we derived equations for the dissipative super radiant dynamics of the system; (3)
we obtained analytical coefficients depending only on physical characteristics and universal
constants, without any phenomenological parameter. In the dynamics of a quantum dot
system, we distinguish five dissipative processes: (1) correlated transitions with phonons
of the crystal lattice vibrations, which is the dominant dissipation process (2) correlated
transitions with quasi-free electrons and holes in the conduction regions, (3) correlated
transitions with the quasi-free electromagnetic field, which are negligible, (4) transitions
stimulated by the thermal fluctuations of the self-consistent field of the electrons and holes in
the conduction regions, (5) non-Markovian processes induced by these fluctuations. However,
we found that the fluctuation time is much shorter than the decay time, which means
that the system is in fact quasi-Markovian, while the non-Markovian fluctuations manifest
themselves only as a noise. For the propagation of the electromagnetic field throughout the
semiconductor structure, by taking into account the dissipative interaction with the quasi-free
electrons an holes in the conduction regions, we obtained an analytical expression of the field
decay rate as a function of effective masses, frequency, and propagation path.

We studied a device converting environmental heat into coherent electromagnetic energy
in two versions: (1) longitudinal quantum heat converter, with the electromagnetic
field propagating in the direction of injected current, i.e. emerging from the surface
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the semiconductor structure, and (2) transversal quantum heat converter, with the
electromagnetic field propagating in a perpendicular direction to the injected current, i.e.
emerging from a lateral surface of the semiconductor structure. We found operation
conditions for the physical characteristics of the semiconductor structure. We studied the
dependence of the dissipative rates, coupling coefficients, and threshold currents as functions
of the i-region thickness, which enables the control of these quantities in a large field of
values. We found that the operation conditions do not depend on the i-layer thickness. When
this thickness is decreased, the injected current and the corresponding super radiant power
increase. However, these quantities of interest can not be indefinitely increased, especially
due to the temperature variation induced by the heat propagation throughout the structure,
which tends to produce an atomic detuning of the quantum dot layers. We highlighted the
super radiant dissipative dynamics under a step current injection, and thermal fluctuations of
the conduction electrons and holes.
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1. Introduction  
The progress of semiconductor physics in the decade 1970-1980 is connected with gradual 
deviation from the electronic band structure of ideal crystal of Bloch picture (Bloch, 1928) 
where, unlike atomic world with its discrete and precisely defined, in the limits of 
uncertainty relation, energy levels, energy of bound electron is a multivalued function of 
momentum in the energy band and density of states are continuous (For the earlier short but 
comprehensive survey see (Alferov, 1998)). 

In principle, Bloch theory deals with infinite extension of lattice, with the understandable 
(and important) surface effects. The decreasing of the size of the object to a few micrometers 
principally does not change the picture of the extended crystal qualitatively. It takes a place 
until one reaches the scale where the size quantization essentially enters the game and we 
can speak about microscopic limit of matter. What generally divides macroscopic limit of 
the solid state from the microscopic one? It is defined by some correlation length (or, more 
generally, all such relevant lengths)): for carriers it is mean free path length l  or Broglie 
length /Bl h p  ( p -momentum), which is smaller. One may say that the quantum 
mechanical properties of matter clearly reveal if / 1l a  , where a  is the size of the lattice 
constant. In the opposite limit / 1l a  , matter is considered macroscopically. 

In this light, it is worthy to remind that as long as 1962, L. V. Keldysh (Keldysh, 1962 as cited 
in Bimberg et al., 1999) considered electron motion in a crystal with periodic potential with 
the period that is much larger than the lattice constant. In this limit he discovered so called 
minizones and negative resistance. Just in this limit / 1l a   we expect the size quantization 
with its discrete levels and coherence in the sense that electron can propagate across the 
whole system without scattering, its wave function maintains a definite phase. In this limit, 
mesoscopic (term coined by van Kampen (1981) relates to the intermediate scale dividing 
the macro and micro limits of matter) and nanoscopic objects (Quantum Wells (QW), Wires 
and Dots (QD)) shown very interesting quantum mechanical effects. In this limit many 
usual rules of macroscopic physics may not hold. For only one example, rules of addition of 
resistance both in series and parallel are quite different and more complicated (Landauer, 
1970; Anderson et al., 1980; Gefen, et al., 1984). 

Closing this brief introduction concerning some aspects of genuine quantum objects (QW, Q 
Wires, QD) we would like to emphasize the conditional sense of the notion of dimensions in 
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this world: in the limit / 1l a   dimensions are defined as difference between real spatial 
dimension (in our world D =3) and numbers of the confined directions: Quantum Well: D
=2, Quantum Wire: D =1, Quantum Dot: D =0. However, for example, QD which will be 
one of our subject for study, has very rich structure with many discrete levels, their structure 
define the presence or absence of Chaos, as we will see below, inside QD. Minimal size of 
QD is defined by the condition to have at least one energy level of electron (hole) or both: 

min / 2 *a m E   4 nm, where E  is average distance between neighboring energy 

levels. Maximal size of QD is defined by the conditions that all three dimensions are still 
confined. It depends, of course, on temperature: at room temperature it is 12 nm (GaAs), 20 
nm (InAs) ( 3E kT  ). The lower temperature, the wider QD is left as quantum object with 
D =0 and the number of energy levels will be higher. 

2. Effective model for semiconductor quantum dots 
The effective potential method has been developed (Filikhin et al., 2006) to calculate the 
properties of realistic semiconductor quantum dot/ring (QD/QR) nanostructures with the 
explicit consideration of quantum dot size, shape, and material composition. The method is 
based on the single sub-band approach with the energy dependent electron effective mass. 
In this approach, the confined states of carriers are formed by the band gap offset potential. 
Additional effective potential is introduced to account for cumulative band gap 
deformations due to strain and piezoelectric effects inside the quantum dot nanostructure. 
The magnitude of the effective potential is selected in such a way as to reproduce 
experimental data for a given nanomaterial. Additionally, an analog of the Kane formula 
(Kane, 1957) is implemented in the model to take into account the non-parabolicity of the 
conduction/valence band. The resulting nonlinear eigenvalue problem for the Schrödinger 
equation is solved by means of the iterative procedure with the adjusted effective electron 
mass and non-parabolicity parameter, where in each iteration step the Schrödinger equation 
is numerically linearized and solved by the finite element method. 

At present, simulations based on this approach are performed for the InGaAs/GaAs quantum 
dots and quantum rings of different sizes and configurations under different external 
conditions. The obtained results show that the residual strain and conduction band non-
parabolicity effects greatly affect the device related properties of semiconductor quantum dots. 
The results are in good agreement with available experimental data, closely matching energy 
level and effective mass data extracted from capacitance–voltage experiments. The method 
also allows one to accurately simulate spin-orbital coupling effects for the electrons in excited 
states, as well as the presence of admixtures, such as Ga. Our calculations of the Coulomb 
shifts of the exciton complexes (positively and negatively charged trions, biexcitons) in the 
InGaAs/GaAs quantum dots with 22%-25% Ga fraction match very well both capacitance-
voltage and photoluminescence measurements. To best reproduce the experimental data, Ga 
fraction in the InGaAs/GaAs quantum dots should not exceed 25%. 

Commonly used numerical approaches, such as the 8-band kp-theory, density functional 
theory, or atomistic pseudo-potential technique, take into account inter-band interactions, 
strain and piezoelectric effects in quantum dots in an ab initio manner. Such methods are 
very computationally intensive and time-consuming. The important advantage of the 
effective model is that the high accuracy of calculations is obtained at a very low 
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computational cost – calculations can typically be completed using a 3 GHz PC with 1 GB of 
memory in less than 20 minutes. The effective potential method satisfactorily reproduces the 
results of the realistic simulations, thus offering an independent evaluation of the electronic 
confinement effects calculated within others models. 

2.1 Formalism  

2.1.1 Schrödinger equation and effective mass approximation  

In the present review a semiconductor 3D heterostructure (QD or QR) is modeled utilizing a 
kp-perturbation single sub-band approach with quasi-particle effective mass (Harrison, 
2005; Manasreh, 2005; Yu & Cardona, 2005). The energies and wave functions of a single 
carrier in a semiconductor structure are solutions the Schrödinger equation: 

 ( ( )) ( ) ( )kp cH V r r E r   
  

 (1) 

Here kpH  is the single band kp-Hamiltonian operator, 
2

2 * ( )kpH
m r

  

 , *m  is the  

electron/hole effective mass for the bulk, which may depend on coordinate, and ( )cV r


 is the 
confinement potential. The confinement of the single carrier is formed by the energy 
misalignment of the conduction (valence) band edges of the QD material (index 1) and the 
substrate material (index 2) in the bulk. ( )cV r


 is so called “band gap potential”. The 

magnitude of the potential is proportional to the energy misalignment. The band structure 
of the single band approximation can be found in many textbooks (see, for example, 
(Harrison, 2005; Manasreh, 2005; Yu & Cadona, 2005). * (see the input below) ( )r


 and its 

derivative 1 / * ( , ) ( )m n r 
 

 on interface of QD and the substrate are continues. 

2.1.2 The non-parabolicity of the conduction band. The Kane formula 

Traditionally applied in the macroscopic scale studies parabolic electron spectrum needs to 
be replaced by the non-parabolic approach, which is more appropriate to nano-sized 
quantum objects (Wetzel et al., 1996; Fu et al., 1998). The Kane formula (Kane, 1957) is 
implemented in the model to take into account the non-parabolicity of the conduction band. 
The energy dependence of the electron effective mass is defined by the following formula:  

 
2

0 0
* 2

2 2 1
.

3 g g

m m P
E E E Em

 
  
     

 (2) 

Here 0m  is free electron mass, P  is Kane’s momentum matrix element, gE  is the band gap, 
and   is the spin-orbit splitting of the valence band. 

Taking into account the relation (2) the Schrödinger equation (1) is expressed as follows 

 ( ( ) ( )) ( ) ( )kp cH E V r r E r   
  

. (3) 

Here ( )kpH E  is the single band kp-Hamiltonian operator 
2

( )
2 * ( , )kpH E

m E r
  


 ,  
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* ( , )m E r


 is the electron/hole effective mass and ( )cV r


 is the band gap potential. As a result, 
we obtain a non-linear eigenvalue problem. 

Solution of the problem (3)-(2) results that the electron/hole effective mass in QD (or QR) 
varies between the bulk values for effective mass of the QD and substrate materials. The 
same it is given for the effective mass of carriers in the substrate. The energy of confinement 
states of carries is rearranged by the magnitude of the band gap potential cV . 

The Schrödinger equation (1) with the energy dependence of effective mass can be solved by 
the iteration procedure (Li et al., 2002; Voss, 2005; Filikhin et al., 2004, 2005). 

 
1( * ) ( ) ( ),

* ( ),

k k k k
kp i

k k
i i

H m r E r

m f E

   



 
 (4) 

where k  is the iteration number, i  refers to the subdomain of the system; 1i   for the QD, 

2i   for the substrate. ( * )kH mkp i  is the Hamiltonian in which the effective mass does not 

depend on energy and is equal to the value of *k
im , if  is the function defined by the relation 

(2). For each step of the iterations the equation (1) is reduced to Schrödinger equation with the 
effective mass of the current step which does not depend on energy. At the beginning of 
iterations the bulk value of the effective mass is employed. Obtained eigenvalue problem can 
be solved numerically (by the finite element method, for example). After that, a new value for 
effective mass is taken by using Eq. (2) and procedure is repeated. The convergence of the 
effective mass during the procedure has a place after 3-5 steps. As an example, the typical 
convergences for election effective mass and confinement energy of single electron are 
displayed in Fig. 1 for the InAs/GaAs QR (Filikhin et al., 2005). Description of other methods 
for the solution of the problem (3)-(2) can be found in (Betcke & Voss, 2011). 

Remarks: at the first, in the present review the consideration was restricted by the electron 
and heavy hole carriers, and, the second, the Coulomb interaction was excluded. Often the 
linear approximation for the function 0* / ( , )im m f E r  is used. We also will apply the linear 
fit in the present chapter.  

2.1.3 Effective approach for strained InAs/GaAs quantum structures: Effective 
potential 

Here we propose the effective potential method to calculate the properties of realistic 
semiconductor quantum dot/ring nanostructures with the explicit consideration of 
quantum dot size, shape, and material composition. The method is based on the single 
sub-band approach with the energy dependent electron effective mass (Eq. (3)). In this 
approach, the confined states of carriers are formed by the band gap offset potential. 
Additional effective potential is introduced to simulate the cumulative band gap 
deformations due to strain and piezoelectric effects inside the quantum dot nanostructure. 
The magnitude of the effective potential is selected in such a way that it reproduces 
experimental data for a given nanomaterial.  

We rewrite the Schrödinger equation (3) in the following form: 

 ( ( ) ( ) ( )) ( ) ( )kp c sH E V r V r r E r    
    . (5) 
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Here ( )kpH E , as before, is the single band kp-Hamiltonian operator 
 

2

*( )
2 ,kpH E

m E r
  


 .  

As previously,  * ,m E r


 is the electron (or hole) effective mass, and ( )cV r


 is the band gap 
potential,  sV r


 is the effective potential.  cV r


 is equal zero inside the QD and is equal to 

cV  outside the QD, where cV  is defined by the conduction band offset for the bulk (see 
Section 1.22). The effective potential ( )cV r


 has an attractive character and acts inside the 

volume of the QD. This definition for the effective potential is schematically illustrated by 
Fig. 2 for the conduction band structure of InAs/GaAs QD. In the figure, the confinement 
potential of the simulation model with effective potential sV  is denoted as “strained”. The 
band gap potential for the conduction band (valence band) can be determinate as cV =0.594 
eV ( cV =0.506 eV). The magnitude of the effective potential can be chosen to reproduce 
experimental data. For example, the magnitude of sV  for the conduction (valence) band 
chosen in (Filikhin et al., 2009) is 0.21 eV (0.28 eV). This value was obtained to reproduce 
results of the 8-th band kp-calculations of (Schliwa et al., 2007) for InAs/GaAs QD. To 
reproduce the experimental data from (Lorke et al., 2000), the sV  value of 0.31 eV was used 
in (Filikhin, et al. 2006) for the conduction band. 

 

Fig. 1. Convergence of the iterative procedure (4) for the confinement energy E  (solid line) 
and electron effective mass 0* /im m  calculated for InAs/GaAs QR (dashed line) and GaAs 

substrate (dotted line). Here the height of QR is H , radial width is R  and inner radius is 

1R ( 1R =17 nm), cV =0.77 eV. 
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Possibility for the substitution of the function describing the strain distribution in QD and 
the substrate was firstly proposed in (Califano & Harrison, 2000). Recent works (Zhao & 
Mei, 2011; Li, Bin & Peeters, 2011) in which the strain effect taken into account rigorously 
applying the analytical method of continuum mechanics allow us to say that the 
approximation of the effective potential is appropriate.  

In the next sub-section of the section 2 we will review the results obtained in both these 
approximations as the non-parabolic one as well as the effective potential method.  

 
Fig. 2. Effective potential sV and band gap structure of the conductive band of InAs/GaAs QD. 

2.2 Electron energy in quantum rings with varieties of geometry: Effect of non-
parabolicity  

In this section a model of the InAs/GaAs quantum ring with the energy dispersion defined 
by the Kane formula (2) (non-parabolic approximation) based on single sub-band approach 
is considered. This model leads to the confinement energy problem with three-dimensional 
Schrödinger equation in which electron effective mass depend on the electron energy. This 
problem can be solved using the iterative procedure (4). The ground state energy of 
confined electron was calculated in (Filikhin et al., 2004, 2005, 2007a) where the effect of 
geometry on the electron confinement states of QR was studied and the non-parabolic 
contribution to the electron energy was estimated. The size dependence of the electron 
energy of QR and QD was subject of several theoretical studies (Li & Xia, 2001; Li et al., 
2002). We present here, unlike the previous papers, a general relation for the size 
dependence of the QR energy. 

Consider is semiconductor quantum ring located on the substrate. Geometrical parameters 
of the semi-ellipsoidal shaped QR are the height H , radial width R  and inner radius 1R . 
It is assumed that /H R  << 1 which is appropriate technologically. QR cross section is 
schematically shown in Fig. 3. The discontinuity of conduction band edge of the QR and the 
substrate forms a band gap potential, which leads to the confinement of electron. 

The band gap potential ( )cV r


 is equal to zero inside the QR ( ( )cV r


=0) and it is equal to the 

confinement potential cE  outside of the QR: The spatial dependence of the electron effective 

mass is given as * *( , ) ( )im E r m E


, i =1,2,3, where *
1m  is the effective mass in the material of 

QR ( r


  E1), and *
2( )m E , *

3m  are the effective mass of the substrate material ( r

  E2 and 
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E3). Within each of the regions E1, E2 and E3 *
im  does not depend on the coordinates. The 

effective mass *
3m  is equal to a constant bulk value. The energy dependence of the electron 

effective mass from the E1 and E2 subdomains is defined by the formula (2) (Kane, 1957). 
The equation (1) satisfies the asymptotical boundary conditions: ||( )| 0rr  

, r



substrate and ||( )| 0r Sr  
, where S  is free surface of QR. On the surface of boundaries 

with different materials the wave function and the first order derivative *( , ) / in m


 are 

continuous (the surface normal n


).  

 
Fig. 3. Profile of cross section of quantum ring (E1) and substrate (E2 and E3). Cylindrical 
coordinates   and z shown on axis. 

The Schrödinger equation (3) was numerically solved by the finite element method and 
iterative procedure (4). The following typical QR/substrate structures with experimental 
parameters were chosen: InAs/GaAs and CdTe/CdS. The parameters of the model are 
given in Tabl. 1 for the each hetero-structure.  

QR/Substrate 1/ 2* *m m  1/ 2* *m m  

(eV) 

2 2
0 1 0 2
2 2

2 2
/

m P m P
 

 1 2/   

InAs/GaAs 0.024/0.067 0.77 22.4/24.6 0.34/0.49 
CdTe/CdS 0.11/0.20 0.66 15.8/12.0 0.80/0.07 

Table 1. Parameters of the QR and substrate materials 

It has to be noted that the effective mass substrate calculated for the InAs/GaAs and 
CdTe/CdS QRs is slightly differ from the bulk values within area E2. One can consider a 
simpler model when the properties of the area E2 and E3 are similar. It means that the wave 
function of electron does not penetrated by surface of QR (area E1) essentially. The simple 
model does not change qualitative results of these calculations. 
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Analysis of the results of numerical calculations shows that the ground state energy of QR 
can be best approximated as a power function of the inverse values of the height and the 
radial width: 

 ( )E a R bH     , (6) 

where the coefficients  =3/2 and  =1 were obtained numerically by the least square 
method. An example of this relation is illustrated in Fig. 4 for InAs/GaAs QR. Parameters a 
and b remain constant except for extremely low values of H  and R . Our analysis also 
reveals a significant numerical difference between the energy of QR electron ground states, 
calculated in non-parabolic and parabolic approximations. The results of the calculation 
with parabolic approximation are represented in the Fig. 4 by the dashed lines. 
Computation of the electron confinement energy of QRs for different materials shows that 
the non-parabolic contribution is quite significant when chosen QR geometrical parameters 
are close to those of the QRs produced experimentally: H < 7 nm, R  < 30 nm for 
InAs/GaAs, H  < 5 nm, R < 20 nm for CdTe/CdS. Magnitude of this effect for InAs/GaAs 
can be greater than 30%. According with this fact the coefficients a  and b  in Eq. (6) also 
depend on the approximation used: /a b =3.4/1.9 for the non-parabolic and /a b =6.2/3.0 
for parabolic approximation. 

 
 a)      b) 

Fig. 4. a) Normalized electron ground state energy of semi-ellipsoidal shape InAs/GaAs QR 
with parabolic (dashed line) and non-parabolic (solid lines) approximation as function of the 
QR size ( 1R =17 nm). b) Normalized electron confinement energy of QRs of various 

materials in the parabolic (dashed line) and non-parabolic (solid lines) approximation. 

As it can be seen from the Fig. 4b), coefficients   and   in the relation (6) do not depend on 
QR/substrate materials. Their values are defined by geometry and by the boundary 
conditions of the applied model. The model described above corresponds to the boundary 
condition as “hard wall at one side” (top side of the QR). For the model without the walls 
when the QR embedded into the substrate one can obtain  =1, and  =1/3. In contrast 
with it, the coefficients a and b  depend on the QR/substrate material set essentially.  

Concluding, we have shown that for wide QR sizes the non-parabolicity effect does 
considerably alter the energy of the electron states, especially when the height or width of 
QR is relatively small. 
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2.3 The C-V measurements and the effective model: Choosing the parameters  

The well-established process of QDs formation by epitaxial growth and consecutive 
transformation of QDs into InAs/GaAs quantum rings (QR) (Lorke et al., 2000) allows the 
production of 3D structures with a lateral size of about 40-60 nm and a height of 2-8 nm. In 
produced QDs and QRs it is possible directly to observe discrete energy spectra by applying 
capacitance-gate-voltage (CV) and far-infrared spectroscopy (FIR). In this section we will show 
how the effective model works using as an example the CV data. We use results of the CV 
experiment from (Lorke et al., 2000; Emperador et al., 2000; Lei et al., 2010) for QD and QR. 

The effective mass of an electron in QD and QR is changing from the initial bulk value to the 
value corresponding to the energy given by the Kane formula (2). Results of the effective 
model calculations for the InAs/GaAs QR are shown in Fig. 5. The effective mass of an 
electron in the InAs QR is close to that of the bulk value for the GaAs substrate. Since the 
effective mass in the QD is relatively smaller, as it is clear from Fig. 5, for QD the electron 
confinement is stronger; the s -shell peak of the CV trace is lower relative upper edge of 
conduction band of GaAs. The lower s -shell peak corresponds to the tunneling single 
electron into the QD. The pictures is a starting point for the choosing the parameters of the 
effective potential model. In this section we follow the paper (Filikhin et al., 2006a) where 
the semi-ellipsoidal InAs/GaAs QD has been considered. The average sizes of InAs/GaAs 
QD reported in (Lorke et al., 2000) were: H =7 nm (the height) and R =10 nm (the radius). A 
cross section of the quantum dot is shown in Fig. 6a). The quantum dot has rotation 
symmetry. Thus the cylindrical coordinate was chosen in Eq. (5) which defines the effective 
model. For each step of iterative procedure (4) the problem (3-2) is reduced to a solution of 
the linear eigenvalue problem for the Schrödinger equation. 

 
Fig. 5. Calculated (circle) and experimentally obtained by (Lorke et al., 2000; Emperador et 
al., 2000) (squares) values for the electron effective mass and the confinement energies of the 
electron s - and p -levels of QD and QR. The solid line is obtained by the Kane formula (2), 
and the dashed line connects the bulk values of the effective mass. The insert: the 
capacitance-gate voltage traces (Lorke et al., 2000).  

Taking into account the axial symmetry of the quantum dot (ring) considered, this equation 
may be written in the cylindrical coordinates ( , , )z   as follows: 
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The wave function is of the form: ( ) = ( , ) ( )r z exp il   , where l =0,  1,  2… is the 
electron orbital quantum number. For each value of the orbital quantum number l , the 
radial quantum numbers 0,1,2,...n  are defined corresponding to the numbers of the 
eigenvalues of (4) which are ordered in increasing. The effective mass *m  must be the mass 
of electron for QD or for the substrate depending on the domain of the Eq. (3) is considered.  

The wave function ( , )z , and its first derivative in the form 
2

*2m


( , )n  


, have to be 

continuous throughout the QD/substrate interface, where n


 is the normal vector to the 

interface curve. The Neumann boundary condition ( , ) 0z


 


 is established for 0  .  

The asymptotical boundary conditions is ( , ) 0z  , when   , | |z   (QD is located 
near the origin of z-axes).  

When quantum dots are in an external perpendicular magnetic field, as it will be considered 
below, the magnetic potential term must be added to the potentials of Eq. (7) 

(Voskoboinikov et al., 2000) in the form 
2

2
*

1
( ) = ( ),

42mV l
m

    where = eB , B  is the 

magnetic field strength, and e  is the electron charge. We consider the case of a magnetic field 
normal to the plane of the QD and do not take into account the spin of electron because the 
observed Zeeman spin-splitting is small.The confinement potential in Eq. (7) was defined as 
follows: cV  = 0.7( S QD

g gE E ); cV  0.77 eV. The parameters of the QD and substrate materials 

were * *
,1 ,2/bulk bulkm m =0.024/0.067,  /QD S

g gE E =0.42/1.52,  
2 2

0 1 0 2
2 2

2 2
/

m P m P
 

=20.5/24.6,  

1 2/  =0.34/0.49. The magnitude of the effective potential sV  was chosen as 0.482 eV. 

There are three electron confinement states: the s , p , and d , as shown in the Fig. 6b). The 
energy of the s  single electron level measured from the top of the GaAs conduction band 
can be obtained from CV experimental data. To explain it, in Fig. 6c) the capacitance-gate-
voltage trace from (Miller et. al., 1997) is shown. The peaks correspond to the occupation 
of the s  and p  energy shells by tunneled electrons. The Coulomb interaction between 
electrons results to the s -shell splits into two levels and the p -shell splits into four levels 
taking into account the spin of electron and the Pauli blocking for fermions. The gate 
voltage-to-energy conversion coefficient f  7 ( /gE e V f   ) was applied to recalculate 

the gate voltage to the electron energy. The value of the effective potential sV  was chosen 
in order to accurately reproduce the observed s -wave level localization with respect to 
the bottom of GaAs conduction band. The approximate size of this energy region is 180 
meV. 

The non-parabolic effect causes a change in the electron effective mass of QD with respect to 
the bulk value. According to the relation Eq. (2), the effective electron mass for InAs is 
sufficiently increased from the initial value of 0.024 0m  to 0.054 0m , whereas for GaAs 
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substrate it is slightly decreased from 0.067 0m  to 0.065 0m  within the region where the 
wave function is out of the quantum dot. The obtained value of the electron effective mass 
of InAs in QD is close to the one (0.057 0m  0.007) extracted in (Miller et. al., 1997) from the 
CV measurements of orbital Zeeman splitting of the p  level. 

Appling the obtained effective model, one can take into account the effect the Coulomb 
interaction between electrons (the Coulomb blockade). The goal is to reproduce the C-V data 
presented in Fig. 6 for the InAs QD. The calculations (Filikhin et al., 2006a) have been carried 
out using the perturbation procedure, proposed in (Warburton et al., 1998). The Coulomb 
energy matrix elements were calculated by applying single electron wave functions 
obtained from the numerical solution of Eq. (7). Both the direct terms of c

ijE  and the 
exchange terms x

ijE  of the Coulomb energy between electron orbitals with angular 
momentum projection of i  and j  were calculated (notation is given in (Warburton et al., 
1998)). The results of calculations of the electron energies of the s , p  and d  levels are 
shown in Fig. 7 ( .Cal 2). The s  shell Coulomb energy was found to be close to the 
experimental value which is about 20 meV.  

 
Fig. 6. a) A cross section of the quantum dot. The dimensions are given in nm. b) 
Localization of the s , p  and d  single electron levels relatively to the bottom of the GaAs 
conduction band. cV  is the band-gap potential, sV  is the effective potential simulating the 
sum of the band-gap deformation potential, the strain-induced potential and the 
piezoelectric potential. c) The capacitance-gate-voltage trace (Miller et. al., 1997). The peaks 
correspond to the occupation of the s  and p  energy shells by tunneled electrons. The 
arrows denote the s  level ( 0E ) and the bottom of the GaAs conduction band.  

Returning to the Fig. 5 we have to note that the effective potential obtained for InAs/GaAs 
QD has to be corrected for the case of the InAs/GaAs quantum rings. The reason is the 
topological, geometrical dependence of the depth of the effective potential. This dependence 
is weak for the considered QD and QR. The corresponding sV  potentials have the 
magnitude of 0.482 eV and 0.55 eV for QD and QR, respectively. Accordingly to the 
experimental data the electron effective mass in quantum dots and rings is changing from 
0.024 0m  to (0.057  0.007) 0m  (Miller et. al., 1997) and 0.063 0m  (Lorke et al., 2000), 
respectively. The Kane's formula describes these variations well as it is shown in Fig. 5. The 
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calculated values for the effective masses for quantum dots and rings are 0.0543 0m  and 
0.0615 0m , respectively (Filikhin et al., 2006). 

Correct choice of the average QD profile is important for an analysis of the C-V data. It was 
shown in (Filikhin et al., 2008), where the calculation of the energy shifts due to the 
Coulomb interaction between electrons tunneling into the QD was performed for 
comparison with the C-V experiments. 

One can see in Fig. 7 that the agreement between our results and the experimental data is 
satisfactory well. Slight disagreement can be explained by uncertainty in the QD geometry 
which has not been excluded by available experimental data. In (Filikhin et al., 2008) it 
was shown that small variations of the QD cross section lead to significant changes in the 
levels presented in Fig. 7. The variations of the QD profile we considered are shown in 
Fig. 8a, and the results of calculations for the electron energies are presented in Fig. 8b) for 
s , p  and d  –shell levels. The results of the calculations shown in Fig. 8 reveal rather high 
sensitivity to these variations of the QD profile. In particular, the spectral levels shift is 
noticeable due to a small deformation of the QD profile. Thus, we have seen that the 
average QD profile is important when we are comparing the result of the calculations and 
the experimental data.  

 
 
 
 
 

 
 
 
 
 
 

Fig. 7. Energies of the electrons occupying a few first levels of the quantum dot at zero 
magnetic field. The calculations .Cal 1 are that of parabolic model (Warburton et al., 1998). 
Our calculations are denoted by .Cal 2. The splitting of the single electron levels of a 
corresponding energy shell is presented. CV experimental data are taken from (Warburton 
et al., 1998). 
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Fig. 8. a) Cross sections of the QD. The dimensions are given in nm. b) Excitation energies of 
the electrons occupying s  and p  -energy shells of the InAs/GaAs quantum dot for various 
QD profiles are shown in Figure 7a). CV experimental data are taken from (Warburton et al., 
1998). Here   is the excitation energy (0,0) (0,1)E E   , where ( , )n lE  is a single electron 
energy of the ( , )n l  state.  

Finally, we may conclude that the effective model of QD/substrate semiconductor structure 
with the energy dependent effective mass and realistic 3D geometry taken into account, can 
quantitatively well interpret the CV spectroscopy measurements.  

2.4 Electron effective mass in the InAs/GaAs QD  

In this section we present the effective model based on another version of the band structure 
model for InAs/GaAs QDs proposed in (Filikhin et al., 2008). The cross section of the semi-
ellipsoidal shaped InAs QD embedded in a GaAs substrate is shown in Fig. 6a). Band gap 
structure model was defined by choosing for the conduction band CB =0.54, and for the 
valence band VB =0.46 (Duque et al., 2005). Using experimental values ,1gE =0.42 eV, ,2gE
=1.52 eV we obtain cV =0.594 eV for the conduction band and. cV .=0.506 eV for the valence 
band. The band structure model for InAs/GaAs QDs is shown in Fig. 9. 

 
Fig. 9. Band structure model for InAs/GaAs QDs. CB (VB) is conduction (valence) band. 
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Bulk effective masses of InAs and GaAs are *
0,1m =0.024 0m  and *

0,2m =0.067 0m , respectively. 
For the effective mass of the heavy hole, a value of *m =0.4 0m  for both the QD and the 
substrate was used. The band gap model just described is for “unstrained” InAs/GaAs 
structures. Realistic models for QDs must take into account the band-gap deformation 
potential, the strain-induced potential, and the piezoelectric potential, in addition to the band-
gap potential. These effects can be included by introducing an effective potential sV . The 
magnitude of the potential has been chosen (Filikhin et al., 2006) to reproduce experimental 
data and the value of 0.31 eV was used for sV . The effect of non-parabolicity, taken into 
account in the effective model, leads to a change of the effective electron mass in the QD 
relative to its bulk value. For the QD under study, the effective mass for InAs increases from 
the initial bulk value of 0.024 0m  to 0.057 0m  which coincides with the experimental value 

0 00.057 0.007m m , obtained in CV measurements through the Zeeman splitting of p -shell 
levels. This result is shown in Fig. 10. In accordance with Eqs. (2)-(3), the effective electron 
masses in the s , p and d states are different. The value of the effective mass, mentioned 
 

 
Fig. 10. Effective mass of electron and single electron energy of s , p , d -levels in InAs/GaAs 
QD. Dashed line corresponds to the experimental value. The grey color stripe shows the 
experimental uncertainty. 

above, corresponds to the one for the p -state. The effective mass for s -shell is slightly less and 
is equal to 0.054 0m . The differences of the effective masses are small and cannot be extracted 
from this experiment due to the large experimental uncertainties (Miller et al., 1998).  

2.5 Experimental data for InAs/GaAs QR and the effective model  

In this section we continue the description of the effective model use on the example of 
InAs/GaAs quantum ring. The geometry of the self-assembled QRs, reported in (Lorke et 
al., 2000), is shown in Fig. 11 (Geometry 1). The InGaAs QRs have a height of about 2 nm, an 
outer diameter of about 49 nm, and an inner diameter of about 20 nm. Also, three-
dimensional QR geometry (Geometry 2), which follows from the oscillator model (Lei et al., 
2010) is used. The confinement of this model is given by the parabolic potential:  

2
0

1
( ) * ( )

2
U r m r r  , where  , 0r  are parameters (Chakraborty & Pietiläinen, 1994). The 

QR geometry is dictated by the relation between the adopted oscillator energy and a length 
l  as follows (Szafran & Peeters, 2005): 
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 2 / *l m   . (8) 

Here the width d  for the considered rings is defined by 2d l . The obtained geometry with 
the parameters m * and   from (Lei et al., 2010) is shown in Fig. 11 (Geometry 2); m *=0.067

0m  and  =15 meV. The center radius of QR is 20 nm.  

Results of the effective model calculations for the ground state energy of electron in a 
magnetic field are shown in Fig. 12. (Filikhin et al. 2011a) The picture of the change of the 
orbital quantum number of the ground state is similar to that obtained in (Lei et al., 2010) 
with the oscillator model. The change occurred at 2.2 T and 6.7 T. The obtained energy fits 
the experimental data rather well.  

It has to be noted here that one cannot reproduce this result using the geometry proposed 
in (Lei et al., 2010) (Geometry 1) for this QR. The correspondence between the 
confinement potential parameters of the oscillator model and the real sizes of quantum 
objects has to be established by Eq. (8). Only using the geometry followed from Eq. (8) we 
reproduce result of (Lei et al., 2010), as is shown in Fig. 12. The strength parameter of the 
effective potential, in the case of the Geometry 2, was chosen to be 0.382 eV, which is close 
to that for QD from (Filikhin et al., 2008), where sV =0.31 eV. The difference is explained 

by the topology dependence of the effective potentials (see section above and also 
(Filikhin et al., 2006)).  

Note that the considered QRs are the plane quantum rings with the condition H <<D (for 
height and diameter of QR), which enhances the role of the lateral size confinement effect. 
To qualitatively represent the situation shown in Fig. 12, one can used an approximation for 
the 3D QR based on the formalism of one dimensional ideal quantum ring. Additional 
electron energy, due to the magnetic field, can be calculated by the relation: 

2 2 2
0/(2 * )( / )E m R l    (see for instance (Emperador et al., 2000)), where fluxes are 

2R B  , 0 /h e  .. ( 0 4135.7   T nm2); R  is radius of the ideal ring. The Aharonov-

Bohm (AB) (Aharonov & Bohm, 1959) period B (Aronov & Sharvin, 1987) is given by the 

relation: 2
0 / /B R   . Using the root mean square (rms) radius for R  ( R =20.5 nm), one 

can obtain / 2B =1.56 T and / 2B B   =4.68 T for the ideal ring. This result is far from 
the result of 3D calculations shown in Fig. 12 where / 2 2.2B  T and / 2B B    6.7 T are 
determined. Note here that the electron root mean square radius ,n lR  is defined by the 

relation  2 2 3
, ,| , |N

n l n lR z d dz    , where  , ,N
n l z is the normalized wave function 

of electron state described by the quantum numbers ( ,n l ).  

One can obtain better agreement by using the radius for the most probable localization of 
the electron .locR , defined at the maximum of the square of the wave function. The electron 
is mostly localized near 17.1 nm, for B =0. With this value, the ideal ring estimation leads to 
the values for / 2B and / 2B B    as 2.25 T and 6.75 T, respectively. That agrees with the 
result of the 3D calculations (see Fig. 12). Obviously, the reason for this agreement is the 
condition H D , for the considered QR geometry as it was mentioned above. The mostly 
localized position of the electron in QR depends weakly on the magnetic field. We present .. 
as a function of the magnetic field B  in Fig. 13. .( )locR B  is changed in an interval of 1  nm 
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around the mean value .(0)locR  of 17 nm. It is interesting to note that the magnetization of a 
single electron QR demonstrates the same behavior as it does for .( )locR B  if the one 
dimensional ring is used (see (Voskoboynikov et al., 2002) for details).  

 
Fig. 11. QR cross section profile corresponding to Geometry 1 and Geometry 2; sizes are in nm. 

 
Fig. 12. Additional energy of an electron in QR in a magnetic field B . The C-V experimental 
energies (circles) were obtained in (Lei, et al. 2010) by using a linear approximation 

/gE e V f   , with the lever arm 7.84f  . The curves 0, 1, 2l     are the results of our 

calculations multiplied by a factor of 1.18 (Lei, et al. 2010). 

Additionally we compare the results of calculations for the QR geometry parameters 
corresponding to Geometry 1 and Geometry 2 in Fig. 11 with the far-infrared (FIR) data, 
reported in (Emperador, et al. 2000). The results are presented in Fig. 14. One can see that 
the QR geometry proposed in (Lei et al., 2010) leads to a significant difference between 
the FIR data and the effective model calculations (see Fig. 14a), whereas the results 
obtained with Geometry 2 are in satisfactory agreement with the data (Fig. 14b). Again 
we conclude that the QR geometry of (Lei et al., 2010) does not provide an adequate 
description of electron properties of the InAs/GaAs QRs measured in (Lorke et al., 2000; 
Lei et al., 2010).  

To summarize, we wish to point out that the problem of reliable theoretical interpretation of 
the C-V (and FIR) data for InAs/GaAs quantum rings is far from resolved. Obtained geometry 
can be considered as a possible version of geometry for experimentally fabricated QR. 
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Fig. 13. The radius ( .locR ) of the most localized position of an electron as a function of a 
magnetic field B . The electron of the ground state is considered. The circles indicate the 
calculated values and the solid line indicates the result of the least squares fitting of the 
calculated values. The orbital quantum number of the ground state is shown. 

 
Fig. 14. Solid squares represent the observed resonance positions (Emperador, et al. 2000) of 
the FIR transmissions at various magnetic field B . Calculated energies of the excited states 
with | l |=1 are marked by the circles. a) QR with shape given by Geometry 1, b) QR with 
shape given by Geometry 2. The orbital quantum number of the ground state is 0l  . The 
quantum number n  is changed as shown. 

2.6 Material mixing in InGaAs/GaAs quantum dots 

The fabrication process of nano-sized self-assembled InAs/GaAs quantum dots and 
quantum rings may be accompanied by the material mixing in the initially pure InAs QDs 
due to interdiffusion of the QD/substrate materials. This mixing cannot be precisely 
controlled, resulting in QDs with spatially inhomogeneous Ga fractions that are not well 
specified. In this section we show an application of the effective model to study InxGa1-xAs 
QDs with significant Ga fractions.  

InAs QDs having a semi-ellipsoidal shape embedded into the GaAs substrate are considered 
(see Fig. 6a)). The effective potential sV =0.31 eV, which was found in (Filikhin et al., 2008) 
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for pure InAs QDs, reproduces the capacitance-gate-voltage experiments satisfactory well 
(in Table 2 these results described in the column “0% Ga ( sV =0.31eV)”). It was assumed that 

a realistic approach must therefore take into account material mixing. The results of the 
effective model calculations for Ga fractions of 10%, 20% and 25% are listed in Table 2 
(Filikhin et al., 2009). The calculations was performed varying the Ga fraction in QDs for 
strength parameters e

sV =0.21 eV and h
sV =0.28 eV of the potential. The effective electron 

mass, the band gap and the effective potential for In x Ga 1 x As changed linearly with 

respect to the value of the Ga fraction, assuming a homogeneous distribution of Ga in the 
QD volume. The experimental value of the transition energy for recombination of an exciton 
pair ( exE ) in the ground state is matched by calculations corresponding to a Ga fraction of 

approximately 22% in the QDs. Thus we conclude that the data obtained in CV and 
PLexperiments to this QD may be related with mixing in QD of 22%. It has to note that 
calculations with the 22% in the QDs ( sV =0.21eV) and pure InAs QDs (used sV =0.31eV) 

demonstrate some uncertainties in the QD geometry and the Ga fraction and may lead to 
non-unique descriptions of the same experimental data.  

 

Ga fraction 10% 20% 25% 
0%

( sV =0.31eV) Exp. 

0* /m m  0.050 0.056 0.057 0.057 0.057  0.007 

( )E e ( )E h  238
245 

205
217 

188
151 

185
206 

 
204 

1 0e e 2 1e e  50
55 

48
53 

46
52 

46
52 

44 
49 

0 1h h  

1 2h h  
10 
12 

10 
11 

9 
11 

10 
11 

 

0 0
c

e eE  21.0 20.9 20.8 20.8 
21.5 (or 

18.9) 

0 1
c

e eE  18.1 18.0 17.9 18.0 24 (or 13.0) 

1 1
c

e eE  17.0 17.0 16.9 17.0 ~18.0 

0 0
c

h hE  25.1 24.9 24.7 25.1 24 

0 0
c

e hE  22.8 22.6 22.5 22.7 33.3 

exE  1014 1075 1160 1106 1098 

00d  0.08 0.08 0.08 0.08 0.4  0.1 

Table 2. Calculated single electron (hole) energy-level spacing ( )e h , electron (hole) binding 

energy ( )E e ( ( )E h ), electron-electron, electron-hole and hole-hole Coulomb energies 
cE   ( , ,e h   ), excitonic band gap exE  (in meV), exciton dipole moment 00d  (in nm) and 

effective mass of the QD material for semi-ellipsoidally shaped InGaAs QDs (Ga fraction in 
%) embedded in GaAs. Electron (hole) energy of the ground state is measured from the 
GaAs conduction (valence) band. The value of the effective mass is given for the p -wave 

electron level.  
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In (Filikhin et al. 2009) it was brought argument for existence of the essential mixing of the Ga-
fraction in QD. The effective model with the material mixing was tested by comparison with 
available experimental data for the Coulomb shifts of the transition energies for positive ( X ) 
and negative ( X ) charged trions and biexcitons ( XX ) as a function of the neutral exciton ( X ) 
recombination energy. Results of these calculations for various base size parameters of QDs are 
depicted in Fig. 15, along with experimental data. The root mean square fit of the experimental 
data from (Rodt et al., 2005) shown by the dashed lines in Fig. 15. The vertical line shows the 
transition energy that corresponds to the limit of the QD sizes for which there are only two 
electron and two heavy hole levels. In this case the Coulomb shifts are calculated by 
combinations of the Coulomb energies of electron-electron, electron-hole and hole-hole pairs:  

 ( ) ( ) c c c c
ee eh hh ehE XX X E E E E     , ( ) ( ) c c

ee ehE X X E E    , ( ) ( ) c c
hh ehE X X E E    .  

 
Fig. 15. Coulomb shifts of transition energies for positively ( X ) and negatively ( X ) 
charged trions and biexcitons ( XX ) as a function of neutral exciton ( X ) recombination 
energy. Results of the calculations for various base size parameters of QDs are marked by 
solid triangles ( X , X ) and dots ( XX ). The dashed lines correspond to root mean square 
fits to experimental data from (Rodt et al., 2005). The solid lines correspond to root mean 
square fits to the calculated results. The vertical line shows the transition energy, which 
corresponds to the limit of the QD sizes for which there are only two electrons and two 
heavy holes levels. The amount of the Ga fraction in our calculations is equal to 25%.  

When there are several interacting carrier pairs, the calculations must be performed with 
more intricate scheme using perturbation theory. The value of the Ga fraction in our 
calculations was 25%. Calculations were performed for three QD geometries. A lens-shaped 
geometry with a height of 3.5 nm and base sizes of 9 nm, 10 nm and 11 nm were used. The 
effective model results in Fig. 15 demonstrate qualitative agreement with the experimental 
data for the aforementioned confinement region. The calculated results are very sensitive to 
the value of the Ga fraction. In particular, increasing the fraction shifts the X and X

energies to the region of large exciton energies ( X ). At the same time, the Coulomb shifts 
decrease in absolute value within the region of the X -energies with hN =2. Decreasing the 
Ga fraction gives the opposite results. 
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We can conclude that in the framework of an effective model one can reproduce the CV and 
PL experimental data for InGaAs/GaAs QDs. In these calculations the amount of the Ga-
fraction was taken to be about 22%. Taking into account this value for Ga-fraction we also 
reproduce the measured transition energies and Coulomb shifts for excitonic complexes 
( X , X , XX ) in the limit of two interacting pairs of carriers in the QDs.  

3. Quantum chaos in single quantum dots 
3.1 Quantum chaos 

Quantum Chaos concerns with the behavior of quantum systems whose classical 
counterpart displays chaos. It is quantum manifestation of chaos of classical mechanics. 

The problem of quantum chaos in meso - and nano-structures has a relatively long history 
just since these structures entered science and technology. The importance of this problem is 
related to wide spectrum of the transport phenomena and it was actively studied in the last 
two decades (Beenakker & van Houten, 1991; Baranger & Stone, 1989; Baranger et al., 1991). 
One of the main results of these studies, based mainly on the classical and semi-classical 
approaches, is that these phenomena sensitively depend on the geometry of these quantum 
objects and, first of all, on their symmetry: Right - Left (RL) mirror symmetry, up-down 
symmetry and preserving the loop orientation inversion symmetry important in the 
presence of the magnetic field (Whitney et al., 2009; Whitney et al., 2009a). 

These results are well -known and discussed widely. There is another, actively studied in 
numerous fields of physics, aspect which ,in essence, is complimentary to the above 
mentioned semi classical investigations: Quantum Chaos with its inalienable quantum 
character , including, first of all, Nearest Neighbor level Statistics (NNS ) which is one of the 
standard quantum-chaos test.  

Mathematical basis of the Quantum Chaos is a Random Matrix Theory (RMT ) developed by 
Wigner, Dyson, Mehta and Goudin (for comprehensive review see book (Beenakker & van 
Houten, 1991)). RMT shows that the level repulsion of quantum systems (expressed by one 
of the Wigner-Dyson -like distributions of RMT) corresponds to the chaotic behavior and, 
contrary, level attraction described by Poisson distribution tells about the absence of chaos 
in the classical counterpart of the quantum system. This theorem-like statement checked by 
numerous studies in many fields of science. For the completeness, we add that there are 
other tests of Quantum Chaos based on the properties of the level statistics: 3  statistics 
(spectral rigidity 3( )L ), Number variance 2( )L ), spectral form-factor, two- and multipoint 
correlation functions, two level cluster function 2( )Y E  etc. They play an important 
subsidiary role to enhance and refine the conclusions emerging from the NNS. 

The present review surveys the study of the NNS of nanosize quantum objects - quantum 
dots (QD) which demonstrate atom-like electronic structure under the regime of the size 
confinement. To use effectively NNS, we have to consider so called weak confinement 
regime where the number of levels can be of the order of several hundred. QD of various 
shape embedded into substrate are considered here under the effective model (Filikhin et 
al., 2010). We use the sets of QD/substrate materials ( Si/SiO2, GaAs/Al0.7Ga0.25As, 
GaAs/InAs). 
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3.2 The nearest neighbor spacing statistics 

For the weak confinement regime (for the Si/SiO 2  QD, the diameter D  10 nm), when the 
number of confinement levels is of the order of several hundred (Filikhin et al. 2010), we 
studied NNS statistics of the electron spectrum. The low-lying single electron levels are 
marked by iE , 0,1,2,...i N . One can obtain the set 1i i iE E E    , 1,2,3,...i N  of energy 
differences between neighboring levels. An example of the energy spectrum and set of the 
neighbor spacings for Si/SiO2 QD are in Fig. 16. We need to evaluate the distribution 
function ( )R E , distribution of the differences of the neighboring levels. The function is 
normalized by ( ) 1R E d E   . For numerical calculation, a finite-difference analog of the 
distribution function is defined by following relation:  

 / /j j ER N H N , 1,...j M ,  

where jN N  represents total number of levels considered, 1(( ) ( ) ) /E NH E E M      is 
the energy interval which we obtained by dividing the total region of energy differences by M  
bins. jN  ( 1,2,...j M ) is the number of energy differences which are located in the j -th bin. 

 
 a)      b)  

Fig. 16. a) The energy levels and b) the neighbor spacings 1i i iE E E    , 1,2,..i N ,of the 

spherical Si/SiO2 QD with diameter D=17 nm. 

The distribution functions ( )R E is constracted using the smoothing spline method. If jR , 

1,2,..j M , are calculated values of the distribution functions corresponding to jE , the 

smoothing spline is constructed by giving the minimum of the form 
2 2

=1
( ( )) ( ) ( ) /M

j jj
R R E R E d E       . The parameter > 0  is controlling the concurrence 

between fidelity to the data and roughness of the function sought for. For    one 
obtains an interpolating spline. For 0   one has a linear least squares approximation. 

We studied neighbouring level statistics of the electron/hole spectrum treated by way 
considered above. The Si quantum dots having strong difference of electron effective mass 
in two directions is considered as appropriate example for the study of role of the effective 
mass asymmetry. In this study we do not include the Coulomb potential between electrons 
and holes. The shape geometry role is studied for two and three dimensions. 
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3.3 Violation of symmetry of the QD shape and nearest neighbor spacing statistics 

Distribution functions for the nearest neighboring levels are calculated for various QD 
shapes (Filikhin et al., 2010). Our goal here to investigate the role of violation of the 
symmetries of QD shape on the chaos. The two and three dimensional models are 
considered. Existing of any above mentioned discrete symmetry of QD shape leads to the 
Poisson distribution of the electron levels. 

In Fig. 17 the numerical results for the distribution functions of Si/SiO2 QD are presented. 
The QD has three dimensional spherically shape. We considered the two versions of the 
shape. The first is fully symmetrical sphere, and the second shape is a sphere with the cavity 
damaged the QD shape. The cavity is represented by semispherical form; the axis of 
symmetry for this form does not coincide with the axis of symmetry of the QD. In the first 
case, the distribution function is the Poisson-like distribution. The violation symmetry in the 
second case leads to non-Poisson distribution. 

We fit the non-Poissonian distribution function ( )R E  using the Brody distribution (Brody 
et al., 1999): 

 1( ) (1 ) exp( ),R s bs bs      (9) 

with the parameter  =1.0 and 1( [(2 ) /(1 )] / )b D       , D  is the average level 

spacing. Note that for the Poisson distribution the Brody parameter is equal zero.  

If the QD shape represents a figure of rotation (cylindrical, ellipsoidal and others) then the 
3D Schrödinger equation is separable. In cylindrical coordinates the wave function is written 
by the following form ( ) ( , )exp( )r z il   


, where 0, 1, 3,...l    is the electron orbital 

quantum number. The function ( , )z  is a solution of the two dimensional equation for 
cylindrical coordinates  and z . 

 
Fig. 17. Distribution functions for electron neighboring levels in Si/SiO2 QD for spherical-
like shape with cut. The Brody parameter  =1.0. The geometry of this QD is shown in 3D. 
The QD diameter is 17 nm (inset).  
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Our results for the distribution function for the ellipsoidal shaped Si/SiO2 QD are presented 
in Fig. 18a) (left). In the inset we show the cross section of the QD. The fitting of the 
calculated values for ( )R E  gives the Poisson-like distribution. For the case of QD shape 

with the break of the ellipsoidal symmetry (Fig. 18b) (left)) by the cut below the major axis 
we obtained a non-Poisson distribution.  

Fig. 18 (right) shows the that slightly deformed rhombus-like shape leads to the NNS with 
Brody parameter  =1 (10). It is obvious why systems with different discrete symmetries 
reveal Poisson statistics: the different levels of the mixed symmetry classes of the spectrum 
of the quantum system are uncorrelated. 

 
Fig. 18. (Left) Distribution functions for electron neighboring levels in Si/SiO2 QD for 
different shapes: a) ellipsoidal shape, b) ellipsoidal like shape with cut. Brody parameter   
is defined to be equal 1.02 for the fitting of this distribution. The 3D QD shape has rotation 
symmetry. Cross section of the shapes is shown in the inset.  
(Right). Violation of the shape Up-Down symmetry for Si/SiO2 QD. Distribution functions 
for electron neighboring levels in Si/SiO2 QD for different shapes: a) with rhombus cross 
section, b) with slightly deformed rhombus cross section. The 3D QD shape has rotation 
symmetry. The Brody parameter   for the curve fitting this distribution is shown. Cross 
section of the shapes is shown in the inset.  

In Schrödinger equation (7) in the asymptotical region of   one can neglect the two terms 

1
 




 and 
2

2
l


 of this equation. The solution of Eq. (7) can demonstrate the same 
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properties of the solution of the Schrödinger equation for 2D planar problem in Cartesian 
coordinates with the same geometry of QD shape in the asymptotical region. We illustrate 
this fact by Fig. 19. In this figure the violation of the shape Up-Down symmetry for 2D 
Si/SiO2 QD is clarified. We compare the distribution functions for QD with "regular" semi-
ellipsoidal shape (dashed curve in Fig. 19 a) and for QD with the semi-ellipsoidal shape 
having the cut (solid curve) as it are shown in Fig. 19 b). In the first case there is Up-Down 
symmetry of the QD shape. Corresponding distribution functions is Poissonian type. In 
second case the symmetry is broken by cut. The level statistics become non Poissonian. We 
have qualitative the same situation as for QD having rotation symmetry in 3D, presented in 
Fig. 18 (left) for the QD shape with rotation symmetry in cylindrical coordinates. The 
relation between the symmetry of QD shape and NNS is presented by Fig. 20 where we 
show the results of calculation of NNS for the 2D InAs/GaAs quantum well (QW). The two 
types of the statistics are presented in Fig. 20(left). The Poisonian distribution corresponds to 
shapes shown in Fig. 20 (b)-(d)(left) with different type of symmetry. The non-Poissonian 
distribution has been obtained for the QW shape with cut (a) which violated symmetry of 
initial shape (b), which is square having left-right symmetry, up-down symmetry, and 
diagonal reflection symmetry. The shape of the Fig. 20c) has only diagonal reflection 
symmetry. In Fig. 20d) the left-right symmetry of the shape exists only. The electron wave 
function of the high excited state, which contour plot is shown with the shape contour in 
Fig. 20(left), reflects the symmetry properties of the shapes. 

Concluding, we can note that, obviously, the topological equivalent transformations of QD 
shape (keeping at least one discrete symmetry) do not lead to the non Poissonian 
distribution of the levels. 

 
 
 

 
 
 
 

Fig. 19. Violation of the shape Up-Down symmetry for two dimensional Si/SiO2 QD. a) 
Distribution functions for electron neighboring levels for the "regular" semi-ellipsoidal 
shape (dashed curve), for the semi-ellipsoidal shape with the cut (solid curve). b) The shape 
of the QD with cut (in Cartesian coordinates). 



 
Quantum Mechanics of Semiconductor Quantum Dots and Rings 

 

357 

 

 
Fig. 20. Shape of the 2D InAs/GaAs quantum dots (Left). The black curves mean the 
perimeters. The electron wave function contour plots of the excited state (with energy about 
0.5 eV are shown). The corresponding types of the level statistics are shown (Right). The 
shape a) leads to non-Poissonian statistics (solid curve). The shapes b)-d) result to the 
Poissonian statistics (dashed curve). 

4. Double quantum dots and rings: New features 
4.1 Disappearance of quantum chaos in coupled chaotic quantum dots  

In the previous section, we investigated the NNS for various shape of the single quantum 
dots (SQD) in the regime of the weak confinement when the number of the levels allows to 
use quite sufficient statistics. Referring for details to (Filikhin et al., 2010), we briefly sum up 
the main conclusions of previous section: SQDs with at least one mirror (or rotation) 
symmetry have a Poisson type NNS whereas a violation of this symmetry leads to the 
Quantum Chaos type NNS.  

In this section we study quantum chaotic properties of the double QD (DQD). By QD here 
we mean the three dimensional (3D) confined quantum object, as well its 2D analogue - 
quantum well (QW). In three dimensional case we use an assumption of the rotational 
symmetry of QD shape. The presented effective approach is in good agreement with the 
experimental data and previous calculations in the strong confinement regime (Filikhin et 
al., 2010). Here, in the regime of weak confinement, as in (Filikhin et al., 2010), we also do 
not consider Coulomb interaction between electron and hole: Coulomb effects are weak 
when the barrier between dots is thin leading to the strong interdot tunneling and dot sizes 
are large enough. In these circumstances, studied in detail in (Bryant, 1993) (see also for 
short review a monograph (Bimberg et al., 1999), one may justify disregard of the Coulomb 
effects. The physical effect, we are looking for, has place just for thin barriers; to have 
sufficient level statistics, we need large enough QDs (100 nm for InAs/GaAs QW). 
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Thus, we consider tunnel coupled two QDs with substrate between, which serves as barrier 
with electronic properties distinct from QD. Boundary conditions for the single electron 
Schrödinger equation are standard. We take into account the mass asymmetry inside as well 
outside of QDs (Filikhin et al., 2010). To avoid the complications connected with spin-orbit 
coupling, s-levels of electron are only considered in the following. We would like to remind 
that the selection of levels with the same quantum numbers is requisite for study of NNS 
and other types of level statistics. 

Whereas at the large distances between dots each dot is independent and electron levels are 
twofold degenerate, expressing the fact that electron can be found either in one or in the 
other isolated dot, at the smaller inter-dot distances the single electron wave function begins 
to delocalize and extends to the whole DQD system. Each twofold degenerated level of the 
SQD splits by two, difference of energies is determined by the overlap, shift and transfer 
integrals (Bastard, 1990). Actually, due to the electron spin, there is fourfold degeneracy, 
however that does not change our results and below we consider electron as spinless. Note 
that the distance of removing degeneracy is different for different electron levels. This 
distance is larger for levels with higher energy measured relative to the bottom quantum 
well (see Fig. 23 below). By the proper choice of materials of dots and substrate one can 
amplify the "penetration" effects of the wave function.  

Below we display some of our results for semiconductor DQDs. The band gap models are 
given in (Filikhin et al., 2010). Fig. 21 shows distribution function for two Si/SiO2 QDs of the 
shape of the 3D ellipsoids with a cut below the major axis. Isolated QD of this shape, as we 
saw in the previous section, is strongly chaotic. It means that distribution function of this 
QD can be well fitted by Brody formula with the parameter which is close to unity (Filikhin 
et al, 2010). We see that the corresponding up-down mirror symmetric DQD shows Poisson-
like NNS. Note that these statistics data involved 300 confined electron levels, which filled 
the quantum well from bottom to upper edges. We considered the electron levels with the 
orbital momentum l=0, as was mentioned above. The orbital momentum of electron can be 
defined due to rotational symmetry of the QD shape.  

 
Fig. 21. The electron wave function of the ground state is shown by the contour plot. (The 
lower figure) Distribution functions for energy differences of the electron neighbori between 
QDs in InAs/GaAs DQD.  
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In Fig. 22, SQD (2D quantum well) without both type of symmetry reveals level repulsion, 
two tunnel coupled dots show the level attraction. From the mirror symmetry point of view, 
the chaotic character of such single object is due to the lack of the R-L and up-down mirror 
symmetries. The symmetry requirements in this case, for the coupled dots are less 
restrictive: presence of one of the mirror symmetry types is sufficient for the absence of 
quantum chaos.  

Dependence NNS on the interdot distance shows a gradual transition to the regular 
behaviour with intermediate situation when Poisson-like behavior coexists with chaotic one: 
they combine but the level attraction is not precisely Poisson-like. Further decreasing 
distance restores usual Poisson character (see Fig. 22). Fig. 23 shows how the degeneracy 
gradually disappears with the distance b  between QDs in InAs/GaAs DQD.  

Finally, we would like to show the disappearance of the Quantum Chaos when chaotic 
QW is involved in the "butterfly double dot" (Whitney, 2009) giving huge conductance 
peak in the semi-classical approach. Fig. 24 shows the NNS for chaotic single QW of 
(Whitney, 2009) by dashed line. Mirror (up-down and L-R) symmetry is violated. The 
NNS for an L-R mirror symmetric DQW is displayed by solid line in Fig. 24. It is clear that 
Quantum Chaos disappears.  

We conjecture that the above mentioned peak in conductance of (Whitney, 2009) and 
observed here a disappearance of Quantum Chaos in the same array are the expression of 
the two faces of the Quantum Mechanics with its semi-classics and genuine quantum 
problem of the energy levels of the confined objects, despite the different scales (what seems 
quite natural) in these two phenomena (several micrometers and 10–100 nm, wide barrier in 
the first case and narrow one in the second). We have to emphasize here that the transport 
properties are mainly the problem of the wave function whereas the NNS is mainly the 
problem of eigenvalues. Similar phenomena are expected for the several properly arranged 
coupled multiple QDs and QD superlattices. In the last case, having in mind, for simplicity, 
a linear array, arranging the tunnel coupling between QDs strong enough, we will have 
wide mini-bands containing sufficient amount of energy levels and the gap between 
successive mini-bands will be narrow. Since the levels in the different mini-bands are 
uncorrelated, the overall NNS will be Poissonian independently of the chaotic properties of 
single QD. We would like to remark also that our results have place for 3D as well as for 2D 
quantum objects. It is important to notice that the effect of reduction of the chaos in a system 
of DQD could appear for interdot distances larger than considered, for instance in figure 22, 
if an external electrical field is applied. By properly designed bias the electric field will 
amplify wave function "penetration" effectively reducing a barrier between QDs.  

Thus, we have shown that the tunnel coupled chaotic QDs in the mirror symmetric 
arrangement have no quantum chaotic properties, NNS shows energy level attraction as 
should to be for regular, non-chaotic systems. These results are confronted with the huge 
conductance peak found by the semi-classical method in (Whitney, 2009). We think that our 
results have more general applicability for other confined quantum objects, not only for the 
quantum nanostructures, and may be technologically interesting. Concerning the last issue, 
problem is what easer: try to achieve regular, symmetric shape of SQDs, or, not paying 
attention to their irregular, chaotic shape arrange more or less symmetric mutual location 
(Ponomarenko et al., 2008).  
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Fig. 22. Distribution functions for energy differences of the electron neighboring levels in the 
2D InAs/GaAs DQW calculated for various distances b  between QWs. Dashed (solid) line 
corresponds to b =4 nm ( b =2 nm). Distribution functions of single QW is also shown by the 
dot-dashed line. The DQW shape is shown in inset (sizes are in nm). 

 
Fig. 23. (The upper figure) Doublet splitting E  of single electron levels dependence on the 
distance b  between QDs in InAs/GaAs DQD. The ground state ( E =0.23 eV) level splitting is 

E expressed by dashed line. The solid line corresponds to doublet splitting of a level which is 
close to upper edge of the quantum well ( E =0.56 eV). The shape of DQD is the same as in  
Fig. 21 (The lower figure). The electron wave functions of the doublet state: the ground state 
(left) and first excited state (right), are shown.  
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Fig. 24. Distribution functions for electron neighboring levels in InAs/GaAs single QW 
(dashed line) and DQW (solid line). Shape of DQW is shown in the inset. The electron wave 
function of the ground state is shown by the contour plot in the inset. Data of the statistics 
include 200 first electron levels.  

4.2 Electron transfer between pair of concentric quantum rings in magnetic field 

Quantum rings are remarkable meso- and nanostructures due to their non-simply connected 
topology and attracted much attention last decade. This interest supported essentially by the 
progress in the fabrication of the structures with wide range of geometries including single 
and double rings. This interest rose tremendously in the connection to the problem of the 
persistent current in mesoscopic rings (Buttiker et al., 1983) Transition from meso - to nano -
scale makes more favorable the coherence conditions and permits to reduce the problem to 
the few or even to single electron. 

Application of the transverse magnetic field B  leads to the novel effects: Whereas the 
quantum dots (QDs) of the corresponding shape (circular for two dimensional (2D), 
cylindrical or spherical for 3D ) has degeneracy in the radial n  and orbital l  quantum 
numbers, QR due to the double connectedness in the absence of the magnetic field B  has 
degeneracy only in l , and the nonzero B  lifts the degeneracy in l , thus making possible the 
energy level crossing at some value of B , potentially providing the single electron transition 
from one state to the another.  

Use the configurations with double concentric QR (DCQR) reveals a new pattern: one can 
observe the transition between different rings in the analogy with atomic phenomena. For 
the DCQR, the 3D treatment is especially important when one includes the inter-ring 
coupling due to the tunneling. The dependence on the geometries of the rings (size, shape 
and etc.) becomes essential. 

We investigate the electron wave function localization in double concentric quantum rings 
(DCQRs) when a perpendicular magnetic field is applied. In weakly coupled DCQRs can be 
arisen the situation, when the single electron energy levels associated with different rings 
may be crossed. To avoid degeneracy, the anti-crossing of these levels has a place. In this 
DCQR the electron spatial transition between the rings occurs due to the electron level anti-
crossing. The anti-crossing of the levels with different radial quantum numbers (and equal 
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orbital quantum numbers) provides the conditions when the electron tunneling between 
rings becomes possible. To study electronic structure of the semiconductor DCQR, the single 
sub-band effective mass approach with energy dependence was used (see section 2 of this 
Chapter). Realistic 3D geometry relevant to the experimental DCQR fabrication was 
employed taken from (Kuroda et al., 2005; Mano et al., 2005). The GaAs QRs and DQRs 
rings, embedded into the Al0.3Ga0.7As substrate, are considered (Filikhin, et al., 2011). The 
strain effect between the QR and the substrate materials was ignored here because the lattice 
mismatch between the rings and the substrate is small. Due to the non-parabolic effect taken 
into account by energy dependence effective mass of electron in QR, the effective mass of 
the electron ground state is calculated to be the value of 0.074 0m  that is larger than the bulk 
value of 0.067 0m . For the excited states, the effective mass will increase to the bulk value of 
the Al0.3Ga0.7As substrate. Details of this calculation one can find in (Filikhin, et al. 2011).  

Electron transfer in the DCQR considered is induced by external factor like a magnetic or 
electric fields. Probability of this transfer strongly depends on the geometry of DCQR. The 
geometry has to allow the existing the weakly coupled electron states. To explain it, we note 
that DCQR can be described as a system of double quantum well. It means that there is 
duplication of two sub-bands of energy spectrum (see (Manasreh, 2005) for instance) relative 
the one for single quantum object. In the case of non-interacting wells (no electron tunneling 
between wells) the each sub-band is related with left or right quantum well. The wave 
function of the electron is localized in the left or right quantum well. When the tunneling is 
possible (strong coupling state of the system), the wave function is spread out over whole 
volume of the system. In a magnetic field, it is allowed an intermediate situation (weak 
coupled states) when the tunneling is possible due to anti-crossing of the levels. Anti-
crossing, of course, is consequence of the impossibility to cross of levels with the same space 
symmetry (von Neumann & Wigner, 1929; Landau & Lifshitz, 1977). 

There is a problem of notation for states for DCQR. If we consider single QR (SQR) then for 
each value of the orbital quantum number | | 0,1,2...l   in Eq. (7) we can definite radial 
quantum number n =1,2,3,… corresponding to the numbers of the eigenvalues of the 
problem (7) in order of increasing. One can organize the spectrum by sub-bands defined by 
different n . When we consider the weakly coupled DCQR, in contrast of SQR, the number 
of these sub-bands is doubled due to the splitting the spectrum of double quantum object 
(Bastard, 1990). Electron in the weakly coupled DCQR can be localized in the inner or outer 
ring. In principle, in this two ring problem one should introduce a pair of separate sets of 
quantum numbers ( , )in l  where index i =1,2 denoted the rings where electron is localized. 
However, it is more convenient, due to the symmetry of the problem, to have one pair ( , )n l  
numbers ascribed to both rings (inner or outer), in other words, we use a set of quantum 
numbers ( , ),n l p  where p  is dichotomic parameter attributed to the electron localization 
(“inner“ or “outer“ ). 

Since we are interested here in the electron transition between rings and, as we will see 
below, this transition can occur due to the electron levels anti-crossing followed a tunneling, 
we concentrate on the changing of the quantum numbers n . The orbital quantum numbers 
must be equal providing the anti-crossing of the levels with the same symmetry (see Landau 
& Lifshitz, 1977). Thus, the anti-crossing is accompanied by changing the quantum numbers 
n  and p  of the ( , ),n l p  set. 
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Strongly localized states exist in the DCQR with the geometry motivated by the fabricated 
DCQR in (Kuroda et al., 2005; Mano et al., 2005). The wave functions of the two s -states of 
the single electron with n =1,2 are shown in Fig. 25, where the electron state n =1 is 
localized in outer ring, and the electron state n =2 is localized in inner ring. Moreover all 
states of the sub-bands with n =1,2, and | |l =1,2,3… are well localized in the DCQR. The 
electron localization is outer ring for n =1, | |l =0,1,2,…, and inner ring for n =2, | |l =0,1,2….  

 
Fig. 25. The squares of wave functions for the a) (1,0) ,outer ( 0.072E   eV) and b) (2,0)
,inner ( 0.080E   eV) states are shown by contour plots. The contour of the DCQR cross-
section is given. The sizes are in nm. 

The difference of properties of the two sub-bands can be explained by competition of two 
terms of the Hamiltonian of Eq. (7) and geometry factor. The first term includes first 
derivative of wave function over   in kinetic energy; the second is the centrifugal term. For 
| |l  0 the centrifugal force pushes the electron into outer ring. One can see that the density 
of the levels is higher in the outer ring. Obviously, the geometry plays a role also. In 
particular, one can regulate density of levels of the rings by changing a ratio of the lateral 
sizes of the rings. 

Summarizing, one can say that for B =0 the well separated states are only the states (1, ),l p  
and (2, ),l p . Thus, used notation is proper only for these states. The wave functions of the 
rest states ( 2, )n l  are distributed between inner and outer rings. These states are strongly 
coupled states.  

Crossing of electron levels in the magnetic field B are presented in Fig. 26 There are 
crossings of the levels without electron transfer between the rings. This situation is like 
when we have crossing levels of two independent rings. There are two crossings when the 
orbital quantum number of the lower state is changed due to the Aharonov-Bohm effect. It 
occurs at about 0.42 T and 2.5 T. There are two anti-crossings: the first is at 4.8 T, another is 
at 5.2 T. These anti-crossings are for the states with different n ; the first are states (1,0) and 
(2,0) and the second are states (1,-1) and (2,-1). In these anti-crossings the possibility for 
electron tunneling between rings are realized. In Fig. 27 we show how the root mean square 
(rms) of the electron radius is changed due to the tunneling at anti-crossing. One can see 
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from Fig. 26 that the electron transition between rings is only possible when the anti-crossed 
levels have different radial quantum numbers and equal orbital quantum numbers, in 
accordance of (von Neuman & Vigner, 1929). 

 
Fig. 26. Single electron energies of DCQR as a function of magnetic field magnitude B . 
Notation for the curves: the double dashed (solid) lines mean states with l =0 ( l =-1) with n
=1,2. The quantum numbers of the states and positions of the electron in DCQR are shown. 
The cross section of the DCQR is given in the inset. 

Transformation of the profile of the electron wave function during the process of anti-
crossing with increasing B  is given in Fig. 28. The electron state (1,-1), outer is considered as 
“initial” state of an electron ( B =0). The electron is localized in outer ring. Rms radius is 
calculated to be R =39.6 nm. For B =5.2 T the second state is the tunneling state 
corresponding to the anti-crossing with the state (0,-1). The wave function is spreaded out in 
both rings with R =32.7 nm. The parameter p  has no definite value for this state. The 
“final” state is considered at B =7 T. In this state the electron was localized in inner ring 
with R =17.6 nm. Consequently connecting these three states of the electron, we come to an 
electron trapping, when the electron of outer ring ("initial" state) is transferred to the inner 
ring ("final" state). The transfer process is governed by the magnetic field.  

Note that the energy gap between anti-crossed levels which one can see in Fig. 26 can be 
explained by the general theory for double interacting quantum well (Bastard, 1990). The 
value of the gap depends on separation distance between the rings, governed by the 
overlapping wave functions corresponding to the each ring, and their spatial spread which 
mainly depends on radial quantum number of the states (Filikhin et al., 2011). 

Other interesting quantum system is one representing QR with QD located in center of QR. 
The cross section of such heterostructure (GaAs/Al0.3Ga0.7As) is shown in Fig. 29a. In Fig. 
29b we present the results of calculations for electron energies of the (1,0) and (3,0) states in 
the magnetic field B  (Filikhin et al., 2011). Once more we can the level anti-crossing (for 
about of 12.5 T). This anti-crossing is accompanied by exchange of electron localization 
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between the QD and the QR. In other words if initial state (for B <12.5 T) of electron was the 
state (1,0),outer, then the "final" state (for B  >12.5 T) will be (1,0),inner. It can be considered 
as one of possibilities for trapping of electron in QD. 

 
Fig. 27. Rms radius of an electron in DCQR as a function of magnetic field for the states a) 
(( 1,2), 0)n l   and b) (( 1,2), 1)n l    near point of the anti-crossing. The calculated 
values are shown by solid and open circles. The dashed (solid) line, associated with states of 

0l   ( 1l   ), fits the calculated points.  

 
Fig. 28. Profiles of the normalized square wave function of electron in the states a) (1, 1)
,outer; b) (1, 1) ,n/a and c) (1, 1) ,inner for different magnetic field B . The a) is the 
“initial” state ( B =0) with R =39.6 nm, the b) is the state of electron transfer ( B =5.2 T) with 
R =32.7 nm, the c) is the “final” state ( B =7 T) with R =17.6 nm. The radial coordinate   is 
given in nm (see Fig. 26 for the DCQR cross section).  

One can see from Fig. 29b that the energy of the dot-localized state grows more slowly than the 
envelope ring-localized state. At the enough large B  the dot-localized state becomes the 
ground state (Szafran et al., 2004). In other words, when the Landau orbit of electron becomes 
smaller then dot size, electron can enter the dot without an extra increase of kinetic energy.  

Concluding, we made visible main properties of this weakly coupled DCQD established by 
several level anti-crossings that occurred for the states with different radial quantum 
number n  ( n =1,2) and equal orbital quantum number l . One may conclude that the fate of 
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the single electron in DCQRs is governed by the structure of the energy levels with their 
crossing and anti-crossing and is changing with magnetic field. The above described 
behavior is the result of the nontrivial excitation characteristic of the DCQRs. Effect of the 
trapping of electron in inner QR (or QD) of DCQR may be interesting from the point of view 
of quantum computing.  

 
Fig. 29. a) Cross section of the QR with QD system. Sizes are given in nm. b) Energies of the 
(1,0) and (3,0) states in the magnetic field B  for the QR with QD system. The open symbols 
show that the electron is localized in the ring. The solid squares show that the electron 
localized in QD. 
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1. Introduction  
In the quantum field theory with the vacuum being the ground state the Green functions are 
the vacuum expectation values of the chronological, retarded or advanced products of the 
field operators (Bjoken & Drell, 1964; Itzykson & Zuber, 1985; Peskin & Schroeder, 1995). 
They are the generalized functions of the real time variables ti (and also other spatial 
coordinates). For the application of the Green function technique to the study of the time-
independent phenomena in equilibrium many-body systems at a finite temperature, the 
Matsubara imaginary time Green functions were introduced and widely used (Abrikosov et 
al., 1975; Bruuns & Flensberg, 2004; Haken, 1976). They are the mean values over a statistical 
ensemble at a finite temperature of the chronological products of the imaginary time-
dependent operators. Both these types of Green functions are inadequate for the application 
to the study of the time-dependent phenomena in the many-body systems with a finite 
density and at a finite temperature, in particular the non-equilibrium systems. For the 
application to the study of the time-dependent dynamical processes in non-equilibrium 
many-body systems Keldysh (Keldysh, 1965) has introduced a more general class of time-
dependent Green functions at finite temperature and density. They are the mean values of 
the time-ordered products of quantum operators in the Heisenberg picture over statistical 
ensembles of many-body systems with finite densities and at finite temperatures (which 
may be non-vanishing). The simplest example is the two-point Green function 

 
{ [ ( ) (0)]}

( ) [ ( ) (0)]
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H

ab H

Tr e T a t b
G t i T a t b i
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    , (1.1) 

where a(t) and b(t) are two quantum operators in the Heisenberg picture, H is the total 
Hamiltonian of the system, β and T are the Boltzmann constant and the temperature. 

Having shown that the Green functions at finite density and temperature of the form (1.1) can 
be analytically continued with respect to the time variable t to become the functions of a 
complex variable z analytical in the stripe –β < Im z < 0 parallel to the real axis, Keldysh 
(Keldysh, 1965) has proposed to consider these functions as the quantum statistical averages of 
the linear combinations of the products of ordered operators depending on complex variables 
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as complex times. For the definition of the ordering of the complex variables z, z’ it was 
proposed to use some contour C in above-mentioned stripe with some initial point t0 on the 
real axis and the final point 0t i   such that all the complex numbers z, z’… belong to this 
contour. Then the “chronological” ordering TC of the complex times z, z’ … is defined as the 
ordering along the contour C. The complex time-dependent operators a(z), b(z) and ( ), ( )a z b z , 
for example, are defined in the analogy with the operators in the Heisenberg picture 
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 (1.2) 

As the generalization of formula (1.1) one defines the two-point Green function of two 
operators a(z) and b(z’), for example, depending on two complex times ,z z C , as follows: 
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       (1.3) 

TC denoting the “chronological” ordering along the contour C. The Green functions of the 
form (1.3), usually called the Keldysh complex time-dependent Green functions at finite 
density and temperature, some time also simply called non-equilibrium Green functions, are 
widely used in quantum statistical physics and many-body theories (Chou et al., 1985; 
Kapusta, 1989; Le Bellac, 1996). 

In practice we need to know the Green functions at the real values of the time variables. For 
the convenience we chose the contour C to consists of four parts 1 2 3 ,C C C C C     C1 
being the part of the straight line over and infinitely close to the real axis from some point 

0t io  to infinity io  , C2 being the part of the straight line under and infinitely close to 
the real axis from infinity io   to the point 0t io , C3 and C being the segments 

0 0[ , ]t t i   and [ , ]io io      parallel to the axis Oy (figure 1).  

The contributions of the segment [ , ]io io      to all physical observables are negligibly 
small, because of its vanishing length. Therefore this segment plays no role, and the contour 
C can be considered to consist of only three parts C1, C2 and C3. Then the function 

( )ab CG z z  with the complex time variables z and z’ on the contour C effectively becomes a 
set of nine functions of two variables, each of which has the values on one among three 
segments C1, C2 and C3. When both variables z and z’ belong to the line C1, the function (1.3) 
is the quantum statistical average of the usual chronological product of two quantum 
operators a(t) and b(t’) in the Heisenberg picture over a statistical ensemble of a many-body 
system at finite density and temperature, and can be denoted by 11( )abG t t . When both 
variables z and z’ belong to the line C3, the function (1.3) is reduced to the Matsubara 
imaginary time Green function and can be denoted 33( )abG i i     . 

In the study of stationary physical processes one often uses the complex time Green functions 
of the form (1.3) in the limit 0t  . Because the interaction must satisfy the “adiabatic 
hypothesis” and therefore vanishes at this limit, the segment C3 also gives no contribution to 
the stationary physical processes. In this case the contour C can be considered to consist of 
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only two segments C1 and C2, and the complex time Green function (1.3) effectively becomes a 
set of four functions of real variables 11( )abG t t , 12( )abG t t , 21( )abG t t , 22( )abG t t .  

 
Fig. 1. Contour C consists of four parts 1 2 3C C C C C    . 

The electrons transport through a single-level quantum dot (QD) connected with two 
conducting leads has been the subject for theoretical and experimental studies in many 
works since the early days of nanophysics (Choi et al., 2004; Costi et al., 1994; Craco & Kang, 
1999; Fujii & Ueda, 2003; Hershfield et al., 1991; Inoshita et al., 1993; Izumida et al., 1997, 
1998, 2001; Konig & Gefen, 2005; Meir et al., 1991, 1993; Ng, 1993; Nguyen Van Hieu & 
Nguyen Bich Ha, 2005, 2006; Nguyen Van Hieu et al., 2006a, 2006b; Pustilnik & Glasman, 
2004; Sakai et al., 1999; Swirkowicz et al., 2003, 2006; Takagi & Saso, 1999a, 1999b; Torio et 
al., 2002; Wingreen & Meir, 1994; Yeyati et al., 1993). Two observable physical quantities, 
which can be measured in experiments on electron transport, are the electron current 
through the QD and the time-averaged value of the electron number in the QD. Both can be 
expressed in terms of the single-electron Green functions. In the pioneering theoretical 
works (Meir et al., 1991, 1993) on the electron transport through a single-level QD, the 
differential equations for the non-equilibrium Green functions were derived with the use of 
the Heisenberg equations of motion for the electron destruction and creation operators. Due 
to the presence of the strong Coulomb interaction between electrons in the QD, the 
differential equations for the single-electron Green functions contain multi-electron Green 
functions, and all the coupled equations for these Green functions form an infinite system of 
differential equations. In order to have a finite closed system of equations, one can assume 
some approximation to decouple the infinite system of equations. Moreover, since the 
electron transport is a non-equilibrium process, one should work with the Keldysh 
formalism of non-equilibrium complex time Green functions. 

As the simplest explanation of the calculation methods for establishing the differential 
equations of non-equilibrium Green functions and deriving their exact solutions, in Section 
2 we present the theory of non-equilibrium Green functions of free electron in a single-level 
quantum system. In Section 3 we study non-equilibrium Green functions of interacting 
electron in an isolated single-level QD. The elaborated calculation methods are then applied 
in Section 4 to the study of non-equilibrium Green functions of electrons in a single-level QD 

t0+io 

t1  io 

C1 t1+io 

C2 t0  io 

z

C3 

t0  i 

t1  

1 2 3C C C C C   

C 
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connected with two conducting leads. Due to the electron tunneling between QD and 
conducting leads there does not exist a closed finite system of differential equations for 
some finite number of Green functions. In order to truncate the infinite system of differential 
equations for the infinite number of Green functions we can apply some suitable 
approximation. In Section 5 the mean-field approximation was used to truncate the infinite 
system of differential equations for the Green functions. As the result we establish a closed 
system of Dyson equations for a finite number of Green functions. This system of 
differential equations can be exactly solved. The asymptotic analytical expressions of these 
Green functions at the resonances, Kondo and Fano resonances, are derived in Section 6. 
Section 7 is the Conclusion. 

2. Non-equilibrium Green function of free electrons in a single-level quantum 
system 
For the demonstration of the calculation methods to derive the differential equations and the 
expressions of the non-equilibrium Green functions let us consider a simplest quantum 
system – that of free electrons at a single energy level E. Denote by c  and c

  the 
destruction and creation operators of the electron with the spin projection ,    in the 
Schrödinger picture and by H0 the Hamiltonian of this system. We have  

 0H E c c 


  . (2.1) 

The non-equilibrium Green function of electron system with Hamiltonian (2.1) is defined as 
follows:  

 
0

0

{ [ ( ) ( )]}
( ) [ ( ) ( )] ,

{ }

H
E C

C C H

Tr e T c z c z
S z z i T c z c z i

Tr e


 

   




  


       (2.2)  

where  

 
0 0

0 0

( ) ,

( ) .

iH z iH z

iH z iH z

c z e c e

c z e c e
 

 



 



 
  (2.3)  

Note that at the real values t of the time variable we have ( ) ( ) ( ) .c t c t c t 
     Complex 

time-dependent operators ( )c z  and ( )c z  satisfy Heisenberg quantum equation of motion  

 
0

0

( )
[ , ( )] ,

( )
[ , ( )] .

dc z
i H c z

dz
dc z

i H c z
dz







 

 
 (2.4)  

From the canonical anti-commutation relations  

 
 
   

, ,

, , 0

c c

c c c c


   

 
    

 

 
 (2.5) 

it follows that 
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( )
( ) ,

( )
( ) .

dc z
i Ec z

dz
dc z

i Ec z
dz









 

 (2.6) 

Green function ( )E
CS z z

  with both variables z and z’ ranging over contour C is a set of 
nine functions ( )E

ijS z z
 with the variable z(z’) ranging over the segment Ci(Cj). All they 

have the form 

 
( ) ( ) ,

( ) ( ) .

E E
C C

E E
ij ij

S z z S z z

S z z S z z
  

  

    
    

 (2.7)  

First consider three cases when both variables z and z’ belong to one and the same segment 
Ci, i = 1, 2, 3. For 1,, , , , ,z z C z t io z t io        TC is the usual chronological ordering T of 
the real times t and t’:  

[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ).T c t c t t t c t c t t t c t c t  
       
           

Using one of equations (2.6) and one of anti-commutation relations (2.5), we derive the 
differential equation for 11 11( ) ( )E ES z z S t t  

     and obtain  

 11( ) ( ).Ed
i E S t t t t
dt

         
 (2.8.1)  

For 2 ,, , , , ,z z C z t io z t io        TC is the anti-chronological ordering T-1 reverse to the 
usual chronological ordering T of the real times t and t’:  

1[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ).T c t c t t t c t c t t t c t c t   
       
           

In this case we have the differential equation  

 22( ) ( ).Ed
i E S t t t t
dt

         
 (2.8.2)  

For 3, 0 0, , , , ,z z C z t i z t i          TC becomes the usual chronological ordering T of the 
real values τ and τ’ in the imaginary times iτ and iτ’, 0 ,      , and we have  

 33 33( ) ( ) ( ),E E ES z z S i i i    
            S  (2.9)  

where ( )E


  S is the Matsubara imaginary time-dependent two-point Green function in 
statistical physics  

  ( ) ( ) ( ) ( ) ,E E T      
              S S  (2.10)  

where  

 
0 0

0 0

( ) ,

( )

H H

H H

e c e

e c e

 
 

 
 

 

 








 (2.11) 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

376 

and  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T         
                           (2.12) 

The Heisenberg quantum equation of motion for imaginary time-dependent operators (2.11) 
has the form 

 
0

0

( )
[ , ( )],

( )
[ , ( )] .

d
H

d
d

H
d







 
  


 

  


 (2.13)  

From the anti-commutation relations (2.5) it follows that  

 

( )
( ),

( )
( ) ,

d
E

d
d

E
d







 
   


 

  


 (2.14)  

and therefore  

 ( ) ( ).Ed
E

d
             

S  (2.15)  

In the analogy with relations (2.9) we set  

 33( ) ( )E ES i i i         S  (2.16)  

and rewrite equation (2.15) in the form similar to equations (2.8.1) and (2.8.2):  

 33( ) ( ).
( )

Ed
i E S i i i
d i

 
             

 (2.17)  

Now consider six other cases when two variables z and z’ belong to different segments Ci 
and Cj with i ≠ j. For 1z t io C    and 2z t io C     the values of z always precede those of 
z’ with respect to the ordering along the contour C and therefore  

[ ( ) ( )] ( ) ( ).CT c t io c t io c t io c t io    
        

Similarly, for 1z t io C    or 2z t io C   and 0 3z t i C     we have 

0 0[ ( ) ( )] ( ) ( ).CT c t io c t i c t i c t io             

On the contrary, for 2z t io C    and 1z t io C     the values of z’ always precede those 
of z with respect to the ordering along the contour C and therefore 

[ ( ) ( )] ( ) ( ).CT c t io c t io c t io c t io    
       

Similarly, for 0 3z t i C    and 1z t io C     or 2z t io C     we have  
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0 0[ ( ) ( )] ( ) ( ).CT c t i c t io c t i c t io    
         

In all six later cases the differential equations for corresponding functions ( )E
ijS z z , i j , 

are six homogeneous ones:  

 

12 21

0 13 0 23

0 31 0 32

( ) ( )

( ) ( )

( ) ( ) 0.
( ) ( )

E E

E E

E E

d d
i E S t t i E S t t
dt dt

d d
i E S t t i i E S t t i
dt dt

d d
i E S t i t i E S t i t
d i d i

              
                  
   

                   

 (2.18) 

By introducing a new notation  

 

for
for
for

for

1

2

3

( ) , ,
( ) , ,

( )
( ) , ,

0 , ,

C

i j

t t z z C
t t z z C

z z
i z z C

z C z C i j

   
             
   

 (2.19) 

we rewrite equations (2.8.1), (2.8.2), (2.17) and (2.18) in the unified form 

 ( ) ( ) .E
C C

d
i E S z z z z
dz

         
  (2.20) 

From above presented reasonnings and relations determining nine functions ( )E
ijS z z , and 

formula (2.1) for total Hamiltonian, it is straightforward to derive explicit expressions of 
these functions. They depend on the average electron number with a definite spin projection 

 
0

01

H

H
e

n n c c
e



   




   


  (2.21) 

We obtain following results: 

 ( )
11( ) [ ( ) ] ,iE t tES z z i t t n e          (2.22.1)  

 ( )
22( ) [ ( ) ] ,iE t tES z z i t t n e           (2.22.2) 

 ( )
33( ) [ ( ) ] ,EES z z i n e             (2.22.3) 

 ( )
12( ) ,iE t tES z z ine      (2.22.4)  

 ( )
21( ) (1 ) ,iE t tES z z i n e        (2.22.5)  

 0( )
13 23( ) ( ) ,iE t tE E ES z z S z z ine e        (2.22.6)  

 0( )
31 32( ) ( ) (1 ) .iE t tE E ES z z S z z i n e e           (2.22.7) 
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They satisfy above presented differential equations (2.8.1), (2.8.2), (2.17) and (2.18), 
respectively.  

For concluding this Section we consider the Fourier transformation of the functions 
( )E

ijS z z :  

 ( )1
( ) ( ) , , 1,2,

2
i t tE E

ij ijS z z d e S i j      
 

  (2.23.1)  

 0( )
3 3

1
( ) ( ) , 1,2,

2
i t t iE E

i iS z z d e S i  


       (2.23.2) 

 0( )
3 3

1
( ) ( ) , 1,2,

2
i t t iE E

i iS z z d e S i  


       (2.23.3)  

 ( )
33

1
( ) ,iE ES z z i e S 




  


  (2.23.4)  

(2 1) , 0, 1, 2,...


       


 

From the expressions (2.22.1)-(2.22.7) of the functions ( )E
ijS z z  it follows that  

 
11

1
( ) 2 ( )

1 1
( ),

1

E

E

E

S i n E
E io

e
P i E

E e





     
 


    

 


 (2.24.1)  

 
22

1
( ) 2 ( )

1 1
( ),

1

E

E

E

S i n E
E io

e
P i E

E e





      
 


     

 


 (2.24.2)  

where P means the principal value, 

 12( ) 2 ( ),ES i n E       (2.24.3)  

 21( ) 2 (1 ) ( ),ES i n E         (2.24.4)  

 3( ) 2 ( ), 1,2,E
iS i n E i       (2.24.5)   

 3( ) 2 (1 ) ( ), 1,2,E
iS i n E i          (2.24.6)  

 
1ES

i E



 
 

   (2.24.7)  
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The explicit expressions of Green functions of free electrons presented in this Section are 
often used in the theoretical studies of non-equilibrium processes by means of the 
perturbation theory. 

3. Non-equilibrium Green functions of electrons in isolated single-level 
quantum dot 
The calculation methods and reasonnings presented in the preceding Section are now 
applied to the study of the Keldysh non-equilibrium Green functions of interacting electrons 
in the simplest nanosystem – the isolated single-level quantum dot (QD) with total 
Hamiltonian 

 ,H E c c UN N
   



    (3.1) 

where U is the value of a potential energy, ,    denotes the spin projection (if    then 
   and vice versa) and 

 N c c    (3.2) 

is the number of electrons with the spin projection σ. The second term in Hamiltonian (3.1) 
is the potential energy of the Coulomb electron-electron interaction (two electrons with 
different spin projections in one and the same energy level). The interacting nanosystem 
with total Hamiltonian (3.1) is an exactly solvable model. There are four exactly determined 
eigenstates and eigenvalues of H: the vacuum with vanishing energy, two degenerate 
single-electron states with two different spin projections and the same energy E, and a two-
electron state with total energy 2E+U. The Keldysh complex time-dependent two-point 
Green function of two operators ( )c z and ( )c z is defined as follows 

 
{ [ ( ) ( )]}

( ) [ ( ) ( )]
{ }

H
C

C C H

Tr e T c z c z
G z z i T c z c z i

Tr e


 

    


        (3.3) 

with total Hamiltonian (3.1). They have the form 

 ( ) ( ) .C CG z z G z z  
       (3.4) 

As in the preceding Section, we choose the contour C to consist of three segments C1, C2 and 
C3. Then ( )CG z z  becomes the set of nine functions ( )ijG z z , , 1,2,3i j  . The calculations 
of these functions are straightforward, as they have been done in the preceding Section for 
free electrons at a single energy level. We obtain following results: 

 


( ) ( )( )
11

( ) (2 ) ( )( )

( ) ( )[ ]

( )[ ] ,

iE t t i E U t tE

iE t t E U i E U t tE

i
G z z t t e e e

Z
t t e e e e

     

       

     

  
  (3.5.1) 

 




( ) ( )( )
22

( ) (2 ) ( )( )

( ) ( )[ ]

( )[ ] ,

iE t t i E U t tE

iE t t E U i E U t tE

i
G z z t t e e e

Z
t t e e e e

     

       

     

  
 (3.5.2) 
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 


33

( )

( ) ( )( )

( ) ( ),
1

( ) [ ( ) ( ) ]

[ ( ) ( ) ] ,

EE

E U E UE

G z z i

e e
Z

e e e

 

    

     

      

     

G

G  (3.5.3) 

  ( ) ( 2 ) ( )( )
12( ) ,iE t t E U i E U t tEi

G z z e e e e
Z

            (3.5.4) 

  ( ) ( )( )
21( ) ,iE t t i E U t tEi

G z z e e e
Z

          (3.5.5) 

  0 0

13 23

( ) ( )( )(2 ) ( )

( ) ( )

,iE t t i E U t tE U E UE E

G z z G z z
i

e e e e e e
Z

         

   

 
  (3.5.6) 

and 

  0 0

31 32

( ) ( )( )( )

( ) ( )

.iE t t i E U t tE UE E

G z z G z z
i

e e e e e
Z

        

   

  
  (3.5.7) 

In the study of non-equlibrium dynamical processes by means of the perturbation theory 
one often needs to use the Fourier transformation of four functions ( )ijG z z  with ,i j =1,2: 

 ( )1
( ) ( ) ( ) .

2
i t t

ij ij ijG z z G t t d e G        
 

   (3.6) 

We have following exact expressions of their Fourier transforms: 

 

(2 )

11

( ) ( )

1 1
( )

1 1
1 1 ( )

1
1 1 ( ) ,

E UE E

E E

E U E UE E

e e e
G

Z E io E io E U io E U io

e P i e E
Z E

e e P i e e E U
E U

  

 

    

     
          

             
                



  (3.7.1) 

 



(2 )

22

( ) ( )

1 1
( )

1 1
1 1 ( )

1
1 1 ( ) ,

E UE E

E E

E U E UE E

e e e
G

Z E io E io E U io E U io

e P i e E
Z E

e e P i e e E U
E U

  

 

    

      
          
             

              



 (3.7.2) 

  12

2
( ) ( ) ( ) ,Ei

G E e E U
Z


         (3.7.3) 
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  (2 )
21

2
( ) ( ) ( )E UEi

G e E e E U
Z

 
          (3.7.4)  

with 

 (2 )1 2 .E UEZ e e      

Now we derive the system of differential equations for two-point Green functions 
( )ijG t t

 . Consider first the function with i = j = 1: 

 11( ) [ ( ) ( )]G t t i T c t c t   
    . (3.8) 

We have  

 11( ) ( )
( ) ( )

dG t t dc t
i t t i T i c t

dt dt
 

  

          
 (3.9)  

From the Heisenberg quantum equation of motion  

 
( )

[ , ( )]
dc t

i H c t
dt


   (3.10) 

with total Hamiltonian (3.1) it follows that  

 ( )
( ) ( ).

dc t
i Ec t UN c t

dt


     (3.11) 

Substituting this expression of 
( )dc t

i
dt
  into the r.h.s. of equation (3.9), we obtain  

 
11( ) ( ) ( ) ,

d
i E G t t t t UH t t
dt     

             
 (3.12) 

where 

 11( ) [ ( ) ( )]

( ) [ ( ) ( )] ( ) [ ( ) ( )] .

H t t i T N c t c t

i t t N c t c t i t t c t N c t
    

      

    

        
 (3.13) 

Thus the differential equation for 11( )G t t
 contains a new Green function 11( )H t t

 . In 
order to derive the differential equation for this new Green function it is necessary to 
calculate the time derivatives of both sides of equation (3.13). Note that N-σ commutes with 
H and therefore does not depend on t. Moreover, it has following property 

2 .N N   

Multiplying both sides of relation (3.11) with N  and using these two above-mentioned 
properties of N , we obtain  

    ( ) ( ) ( )
d

i N c t E U N c t
dt       . (3.14) 
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Differentiating both sides of equation (3.13) and using relation (3.14), we derive following 
differential equation for the new Green function 11( )H t t

 : 

 ( ) ( ) ( ).
d

i E U H t t n t t
dt   

           
  (3.15)  

Thus both 11( )G t t
  and 11( )H t t

  have the common form  

 11 11

11 11

( ) ( ) ,
( ) ( ) ,

G t t G t t
H t t H t t

  

  

    
    

  (3.16) 

where 11( )G t t  and 11( )H t t  must satisfy differential equations  

 11 11( ) ( ) ( ) ,
d

i E G t t t t UH t t
dt

            
  (3.17) 

 11( ) ( ) ( ).
d

i E U H t t n t t
dt

          
  (3.18) 

In preceding Section we have shown that  

11( ) ( )Ed
i E S t t t t
dt

         
 

(equation (2.8.1)). Therefore  

 11( ) ( ) ( ).E Ud
i E U S t t t t
dt

          
  (3.19) 

Equations (3.18) and (3.19) show that 11

1
( )H t t

n
  satisfies the same inhomogeneous 

differential equation as ( )E US t t   does. It follows that  

 11 11( ) ( ) ,E UH t t nS t t      (3.20) 

and the differential equation for 11( )G t t  becomes 

 11 11( ) ( ) ( ) .E Ud
i E G t t t t nS t t
dt

            
  (3.21) 

Similarly, it can be shown that the Green function 

  22( ) ( ) ( ) ( ) ( ) ( ) ( )G t t i t t c t c t t t c t c t      
              (3.22) 

has the form  

 22 22( ) ( ) ,G t t G t t  
       (3.23) 
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and 22( )G t t satisfies differential equation  

 22 22( ) ( ) ( )E Ud
i E G t t t t nUS t t
dt

            
  (3.24)  

etc. In general, Keldysh complex time Green function  

 ( ) [ ( ) ( )C CG z z i T c z c z  
      (3.25) 

has the form 

 ( ) ( ) ,C CG z z G z z  
       (3.26) 

and ( )CG z z  satisfies differential equation  

 ( ) ( ) ( ) .E U
C C C

d
i E G z z z z nUS z z
dt

            
  (3.27) 

4. Non-equilibrium Green functions of electrons in single-level quantum dot 
connected with two conducting leads 
Consider the single-electron transistor (SET) consisting of a single-level quantum dot (QD) 
connected with two conducting leads through two potential barriers. The electron transport 
through this SET was investigated experimentally and studied theoretically in many works 
(Choi et al., 2004; Costi et al., 1994; Craco & Kang, 1999; Fujii & Ueda, 2003; Hershfield et al., 
1991; Inoshita et al., 1993; Izumida et al., 1997, 1998, 2001; Meir et al., 1991, 1993; Ng, 1993; 
Pustilnik & Glasman, 2004; Sakai et al., 1999; Swirkowicz et al., 2003, 2006; Takagi & Saso, 
1999a, 1999b; Torio et al., 2002; Wingreen & Meir, 1994; Yeyati et al., 1993). It was assumed 
that the electron system in this SET has following total Hamiltonian  

 
 

 
k

k
k k k k k kk k k k k k k k( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

a b

a a b b

H E c c UN N E a a E b b

V a c V c a V b c V c b

  
      

 

     
       



   

   

 


  (4.1) 

In order to define the complex time-dependent Green functions we introduce the complex 
time-dependent quantum operators  

 ( ) , ( ) ,iHz iHz iHz iHzc z e c e c z e c e  
        

 k k k k( , ) ( ) , ( , ) ( ) ,iHz iHz iHz iHza z e a e a z e a e  
       (4.2) 

 k k k k( , ) ( ) , ( , ) ( ) .iHz iHz iHz iHzb z e b e b z e b e  
       

The Keldysh non-equilibrium Green functions of electrons are defined as follows: 

 ( ) ( ) [ ( ) ( ) ,cc cc
C C CG z z G z z i T c z c z     

          (4.3) 

 ( ) ( ) [ ( ) ( ) ( ) ,cc cc
C C CH z z H z z i T N z c z c z      

         (4.4) 
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 ( ; ) ( ; ) [ ( ; ) ( )] ,ac ac
C C CG z z G z z i T a z c z     

       k k k  (4.5) 

 ( ; ) ( ; ) [ ( ) ( ; ) ( )] ,ac ac
C C CH z z H z z i T N z a z c z      

       k k k  (4.6) 

  
( ; ) ( ; )

[ ( ; ) ( ) ( ) ( )] ,

accc accc
C C

C

G z z G z z

i T a z c z c z c z
  

   

    
 

k k
k

  (4.7) 

 
( ; ) ( ; )

[ ( ) ( ) ( ; ) ( )] ,

ccac ccac
C C

C

G z z G z z

i T c z c z a z c z
  

   

    
 

k k
k

  (4.8) 

 
( ; ) ( ; )

[ ( ; ) ( ; ) ( ) ( )] ,

aacc aacc
C C

C

G z z G z z

i T a z a z c z c z
  

   

    
 

k,l k,l
k l

  (4.9) 

 
( ; ) ( ; )

[ ( ; ) ( ) ( ; ) ( )] ,

acac acac
C C

C

G z z G z z

i T a z c z a z c z
  

   

    
 

k,l k,l
k l

  (4.10) 

and similarly for the others ( ; ) ,bc
CG z z

k  ( ; ) ,bc
CH z z

k  ( ; ) ,bccc
CG z z

k  ( ; ) ,ccbc
CG z z

k  
( ; ) ,abcc

CG z z
k,l  ( ; )acbc

CG z z
k,l  etc. 

Because there is no magnetic interaction, all Green functions (4.3)-(4.10) and other ones are 
proportional to  . From Heisenberg quantum equations of motion and equal-time 
canonical anti-commutation relations for the electron destruction and creation operators it 
follows the differential equations for these operators: 

 
( )

( ) ( ) ( ) ( ) ( ; ) ( ) ( ; ) ,a b

dc z
i Ec z UN z c z V a z V b z

dz
 

         
k

k k k k   (4.11) 

 
( )

( ) ( ) ( ) ( ) ( ; ) ( ) ( ; ) ,a b

dc z
i Ec z UN z c z V a z V b z

dz


    
      

k

k k k k  (4.12) 

 
( ; )

( ) ( ; ) ( ) ( ),a a

da z
i E a z V c z

dz


  
k k k k   (4.13) 

 
( ; )

( ) ( ; ) ( ) ( )a a

da z
i E a z V c z

dz


   
k k k k  (4.14) 

and similarly for ( ; )b z k  and ( ; )b z k .  

By using differential equation (4.11) and the equal-time canonical anti-commutation relation 
between ( )c z  and ( )c z , it is easy to derive the differential equation for the Green function 

( )cc
CG z z

  

 
( ) ( ) ( )

( ) ( ; ) ( ) ( ; ) ,

cc cc
C C

ac bc
a C b C

d
i E G z z z z UH z z
dz

V G z z V G z z

    

 
  

             
      

k

k k k k
  (4.15) 
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which contains Green functions ( )cc
CH z z

 , ( ; )ac
CG z z

k  and ( ; )bc
CG z z

k . These new 
functions must satisfy following differential equations which can be also derived by using 
differential equations (4.11)-(4.14): 

 



( ) ( ) ( )

( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ) ,

cc
C C

ac bc
a C b C

ccac ccbc
a C b C

d
i E U H z z n z z
dz

V H z z V H z z

V G z z V G z z

  

 
  

  

           
    

    


k

k k k k

k k k k

 (4.16) 

where 

  ,n c c c c 
   

    (4.17) 

 ( ) ( ; ) ( ) ( )ac cc
a C a C

d
i E G z z V G z z
dz   

        
k k k   (4.18) 

and similarly for ( ; )bc
CG z z

k .  

In Section 2 we have established the differential equation (2.20) for the Keldysh non-
equilibrium Green function of a free electron. If the free electron has energy ( )aE k , then it is 
denoted by ( )( )E

C
aS z zk  and must satisfy differential equation 

 ( )( ) ( ) ( ) .E
a C C

ad
i E S z z z z
dz

         
kk   (4.19) 

Using this function, we obtain following expression of the solution of equation (4.18) 

 
( )( ; ) ( ) ( ) ( )Eac cc

C a C C
aG z z V dz S z z G z z  

        kk k  (4.20) 

and similarly for ( ; )bc
CG z z

k . Substituting the expression of the form (4.20) for 
( ; )ac

CG z z
k  and ( ; )bc

CG z z
k  into the r.h.s. of differential equation (4.15) for ( )cc

CG z z
 , 

we rewrite this equation in a new form 

 
(1)

( ) ( ) ( )

( ) ( ) ,

cc cc
C C C

cc
C C

C

d
i E G z z z z UH z z
dz

dz z z G z z

    



             
      

  (4.21) 

where (1)( )Cz z   is following self-energy part  

 [ ]2 2( ) ( )(1)( ) ( ) ( ) ( ) ( ) .E E
C a C b C

a bz z V S z z V S z z        k k

k

k k  (4.22) 

The differential equation for ( )cc
CH z z

  contains new functions ( ; )ac
CH z z

k , 
( ; )bc

CH z z
k , ( ; )accc

CG z z
k , ( ; )bccc

CG z z
k , ( ; )ccac

CG z z
k  and ( ; )ccbc

CG z z
k , which 

must satisfy following differential equations 
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 ( ) ( ; ) ( ) ( )ac cc
a C a C

d
i E H z z V H z z
dz   

        
k k k   (4.23) 

and similarly for ( ; )bc
CH z z

k ,  

 

        

     
       

       

* *

; ,

; ;

; ; ,

accc
a C C

cc cc
a C C

aacc abcc
a bC C

acac acbc
a bC C

d
i E G z z a c c c z z
dt

V H z z G z z

V G z z V G z z

V G z z V G z z

 
     

  

  

  

         
      

      

      




l

l

k k k

k

l k,l l k,l

l k,l l k,l

  (4.24) 

and similarly for  ;bcccG z z
k , 

  

        

     
     

      

*

*

*

2 ; ,ccac
a C C

cc cc
a C C

acac caac
a C C

bcac cbac
b C C

d
i E E U G z z c c a c z z
dt

V H z z G z z

V G z z G z z

V G z z G z z

 
     

  

  

  

              
       

      

      


l

k k k

k

l l,k; l,k;

l l,k; l,k;

 (4.25) 

and similarly for  ccbc

C
G z z

k; .  

The presented calculations for deriving differential equations of Green function showed that 
there does not exist a closed system of a finite number of differential equations for a finite 
number of Green functions. Some approximation should be used for truncating the infinite 
system of all differential equations at some step. The mean-field approximation is the most 
appropriate one. In order to apply this approximation we rewrite equations (4.23)-(4.25) in 
the form of integral equations: 

          ; Eac cc
aC C C

C

aH z z V dz S z z H z z  
       kk k   (4.26) 

and similarly for  ;bc

C
H z z

k , 

 

        
         

           
       

* *

; ,

; ;

;

Eaccc

C C

E cc cc
a C C C

C

E aac c abcc
a bC C C

C

E acac
aC C

C

a

a

a

a

G z z a c c c S z z

V dz S z z H z z G z z

dz S z z V G z z V G z z

dz S z z V G z z

 
     

  

  



   

           

           

     







k

k

k

l

k

k k

k

l k,l l k,l

l k,l    ; ,acbc
b C

V G z z
    

l

l k,l

   (4.27) 

and similarly for  ;bccc

C
G z z

k , 
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        
         

         
   

2

2*

2 *

*

; ,

; ;

;

E U Eccac

C C

E U E cc cc
a C C C

C

E U E acac caac
aC C C

C

bcac
b C

a

a

a

G z z c c a c S z z

V dz S z z H z z G z z

dz S z z V G z z G z z

V G z z G

  
     

 
  

 
  

 

   

           

            

   





k

k

k

l

k k

k

l l,k l,k

l l,k   ; ,cbac

C
z z
   l,k

  (4.28) 

and similarly for  ;ccbc

C
G z z

k . Substituting these solutions into the r.h.s. of the differential 
equation (4.16) for  cc

C
H z z

 , we rewrite this equation in the new form  

 

           

        
          

           

1

*

2

* * *

,

;

cc cc

C C C C
C

E
a C

E cc cc
a C C C

C

E aacc
a a bC C

C

a

a

a

d
i E U H z z n z z dz z z H z z
dz

V a c c c S z z

V dz S z z H z z G z z

dz V S z z V G z z V G

    

 
   

  



                   

 

           

      









k

k

k

k

k

k k

k

k l k,l l  

             

        
          

 

*

2

2 2

;

; ;

,

abcc

C

E acac acbc
a a bC C C

C

E U E
a C

E U E cc cc
a C C

C

a

a

a

a

z z

dz V S z z V G z z V G z z

V c c a c S z z

V dz S z z H z z G t t

dz V S



  

  
   

 
  

   

           

 

          





 







l

k

k l

k

k

k

k

k,l

k l k,l l k,l

k k

k

k           
           

2 *

2 *

; ;

; ;

E U E acac caac
aC C C

C

E U E bcac cbac
a bC C C

C

a

a

z z V G z z G z z

dz V S z z V G z z G z z

 
  

 
  

         

           



 

k

l

k

k l

l l,k l,k

k l l,k l,k

 (4.29) 

 + similar terms with suitable interchange  a b .   

5. Dyson equations for non-equilibrium Green functions of electrons in 
single-level quantum dot connected with two conducting leads and their 
solutions 

The r.h.s. of equation (4.29) for Green function  cc

C
H z z

  contains multi-electron Green 
functions  ;aacc

C
G z z

k,l ,  ;abcc

C
G z z

k,l ,  ;acac

C
G z z

k,l ,  ;acbc

C
G z z

k,l , 
 ;caac

C
G z z

k,l ,  ;bcac

C
G z z

k,l ,  ;bcac

C
G z z

k,l  and similar ones with suitable 
interchange (a  b). In order to decouple this equation from those for other multi-electron 
Green functions we apply the mean-field approximation to the products of four operators. 
For example 

                ; ; ; ;C CT a z a z c z c z a z a z T c z c z        
        l k l k  (5.1) 

with  
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          ; ; ,aa z a z a a n      kl kll k k k k   (5.2)  

where  an k  is the density of electrons with momentum k and spin projection   or   in 
the lead “a” at the given temperature 

  
 

 1

E

a E

a

a

e
n

e



 


k

kk   (5.3) 

Note that  

    ( ) .cc
C CT c z c z iG z z   

       

As the result we have 

      ; 1 ( )acac cc
aC C

G z z n G z z  
     klk,l k  (5.4)  

and similarly for  ;bcbc

C
G z z

k,l . Applying the mean-field approximation to each of others 
above-mentioned multi-electron Green functions in any manner, we always obtain the 
vanishing mean value in the lowest order the perturbation theory with respect to the 
effective tunnelling coupling constants  ,a bV k . Note that these functions enter the r. h. s. of 
the equation (29) with the coefficients of the second order with respect to the effective 
tunnelling coupling constants. This means that in this second order they do not give 
contributions. Thus in the second order approximation the equation (4.29) is simplified and 
becomes  

   
       

           2 3 ,

cc

C C C

cc cc

C C C C
C C

d
i E U H z z n z z z z
dz

dz z z H z z dz z z G z z

  

  

               
               

  (5.5) 

where  

 
          

          

*

2

,

, ,

E
aC C

E U E
a C

a

a

z z V a c c c S z z

V c c a c S z z a b

 
   

  
   

    

    

 k

k

k

k k

k k
  (5.6) 

                 22 22 E E U E
aC C C

a az z V S z z S z z a b             k k

k

k ,  (5.7)  

                   23 2E E U E
a aC C C

a az z n V S z z S z z a b             k k

k

k k . (5.8) 

Note that in the r.h.s. of equations (5.6)-(5.8), there appear the crossing terms containing 
   2E U E

C
aS z z  k . They must disappear in the non-crossing approximation. Two equations 

(4.21) and (5.5) form the closed system of Dyson equations for two Green functions 
 cc

C
G z z

  and  cc

C
H z z

 .  

To proceed further we note that 
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    

    

, ,

, ,

a c c c a c

c c a c a c

  
       

  
       

  

  

k k

k k
  (5.9) 

where  a c
 k  is a limiting value of the Green function  11

;acG t k : 

    
11

; 0aca c iG
   k k .  (5.10)  

For evaluating the vertex (5.6) in the second order with respect to the tunnelling coupling 
constants  ,a bV k  we calculate the limiting value (5.10) in the first order. Introduce the 
Fourier transformations of the Green functions, for example  

    1
; ;

2
ac i t ac

ij ij
G t d e G


 



  
 

k k ,  

        1
2

E Ei t

ij ij
a aS t d e S


 



  
 

k k ,  (5.11) 

    1
2

cc i t cc

ij ij
G t d e G


 



  
 

  for i, j = 1, 2.   

From the equation (4.20) it follows that  

          11 11 11
; Eac cc

a
aG V S G     kk k .  (5.12) 

For deriving  11
;acG  k  in the first order with respect to the constant  aV k  it is enough to 

use the expression of  11
ccG   in the case of the vanishing tunnelling coupling constant and 

have  

   
     

 
 
 

 

11

2

11
;

1
,

a aac
a

a a

E UE E

n n
G V

Z io E io E

e e e
io E io E U io E io E U

 


 

   

  

 
  

     
 

    
           

 k k
k k

k k
   (5.13) 

 21 2 E UEZ e e    . 

It is easy to calculate the limit 

    11 110

1
; 0 lim ;

2
ac i acG d e G


 




   
 

k k   (5.14) 

by using the residue theorem and obtain 

      a aa c V
   k k k ,  (5.15) 

where  
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    
 

     
 

111
E U E UE E

aa E
a

a a

e e ne e n
e

Z E E E U E

    


             

    

kk
k

k k
 (5.16) 

The formula (5.6) becomes 

                 2 2 .E E U E
a aC C C

a az z V S z z S z z a b              k k

k

k k  (5.17)  

 The system of Dyson equations (4.21) and (5.5) is the mathematical tool for the 
study of the electron transport through a single-level QD. Since this is a stationary process 
one can apply the Keldysh non-equilibrium Green function formalism in the limit 0t  . 
Because the interaction vanishes at this limit, the contour C can be considered to consist of 
only two segment 1 [ , ]C io io      and 2 [ , ]C io io     . In this case each complex 
time-dependent Green function  E

C
S z z ,  cc

C
G z z ,  cc

C
H z z ,  ( )

C
z z   , 1,2,3   

or  C
z z   becomes a set of four real time-dependent functions  E

ij
S t t ,  cc

ij
G t t , 

 cc

ij
H t t ,  ( )

ij
t t   , 1,2,3   or  ij

t t   with their Fourier transforms  E

ij
S  , 

 cc

ij
G  ,  cc

ij
H  ,  ( )

ij

  , 1,2,3   or  ij
  with , 1,2i j  . Considering them as the 

elements of corresponding 2 2  matrices  ˆ ES  ,  ˆ ccG  ,  ˆ ccH  ,  ( )ˆ   , 1,2,3   or 
 ̂  , and setting  

 1 0
ˆ

0 1
 

    
,  (5.18)  

we rewrite the system of Dyson equations (4.21) and (5.5) in the matrix form  

          (1)ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ( ) ( )E E EG S US H S G             ,  (5.19)  

          
     

(2 )

(3)

ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ ˆ( ) ( )
ˆ ˆˆˆ ˆ .

E U E U E U

E U

H nS S S H

S G

  



            

     
  (5.20)  

From these matrix equations we derive two systems of algebraic equations, each of which 
consists of four equations for four functions   1i

G   and   1i
H   or   2i

G   and   2i
H  , 

1,2i  . The observable physical quantities are expressed in terms of these functions. 

For the application let us calculate the Green function  11
G  . By solving the system of 

equation (5.19) and (5.20) we obtain following result: 

 11

( )
( ) ,

( )
Z

G
Y


 


   (5.21) 

 
   
   

(1)
22 22 11 1

(1)
12 12 21 2

( ) ( )[1 ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

E

E

Z B UD B S UC

B UD B S UC

          

         




  (5.22) 

 
   
   

(1) (1)
11 11 22 22

(1) (1)
12 12 21 21

( ) ( )[1 ( )] ( ) ( )[1 ( )] ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

Y B UD B UD

B UD B UD

           

          
 (5.23) 



Non-Equilibrium Green Functions of Electrons 
in Single-Level Quantum Dots at Finite Temperature  

 

391 

 (2 ) (2 ) ( 2 ) (2 )
22 11 12 21( ) [1 ( )][1 ( )] ( ) ( ) ,B              (5.24) 

 
 
 

(2 ) (2 )
1 22 2 21 11

(2 ) ( 2)
1 12 2 11 21

( ) ( ) [1 ( )] ( ) ( ) ( )

( ) ( ) ( ) [1 ( )] ( ),

E E
i i i

E E
i i

C S S

S S

          

         

 

 
  (5.25) 

i = 1,2 

 
 
 

( 2) (2 ) (3)
1 22 2 21 1

( 2 ) (2 ) (3)
1 12 2 11 2

( ) ( ) [1 ( )] ( ) ( ) ( )

( ) ( ) ( ) [1 ( )] ( ),

E E
ij i i j

E E
i i j

D S S

S S

           

         

 

 
 (5.26) 

 

(1) (1) (1)
1 1 2 2

(2 ) (2 ) (2 )
1 1 2 2

(3) (3) ( 3)
1 1 2 2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

E E
ij i j i j

E U E U
ij i j i j

E U E U
ij i j i j

S S

S S

S S

 

 

         

         

         

  

  

  

  (5.27) 

 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ,E U E U E U
ij ij i j i jnS S S                  (5.28) 

1,2, 1,2.i j   

The expressions (5.21)-(5.28) of  11
G   and similar ones for the Fourier transforms of other 

Green functions contain the self-energies ( )( ) , 1,2,3ij
    . Because the tunnelling coupling 

constants ( )aV k and ( )bV k have small values, the contributions of these self-energies, in 
general, give small corrections to the Green functions. However, the self-energies may be 
divergent at some special values of . At some points near these special values the 
denominator Y() may vanish and the Green functions have the resonances. The formulae 
(5.23)-(5.28) would be used for the rigorous study of the behaviour of  11

G  at the 
resonances. This will be done in the subsequent Section.  

6. Kondo and Fano resonances in electron transport through single-level 
quantum dot 
In this Section we study the appearance of the resonances in the expressions of the Fourier 
transforms of the Green functions when the denominator Y() is vanishing. The expression 
of Y() consists of the terms of two types: the finite terms which do not depend on the 
Fourier transforms ( )( )ij

   of the self-energies and those proportional to ( )( ) , 1,2,3ij
    . 

The functions ( )( )ij
   contain the small tunnelling coupling constants ( )aV k and ( )bV k . 

They are determined by following formulae: 

  2 ( )(1)Σ ( ) ( ) ( ) ( ) ,E
ij a ij

aV S a b      k

k

k  (6.1) 

  2 ( ) 2 ( )( 2 )Σ ( ) ( ) [2 ( ) ( ) ] ( ) ,E E U E
ij a ij ij

a aV S S a b          k k

k

k   (6.2) 

  2 ( ) 2 ( )( 3)Σ ( ) ( ) ( ) [ ( ) ( ) ] ( ) ,E E U E
a a ij ij

a an V S S a b          k k

k

k k  (6.3) 
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Introducing the spectral functions  

 
( )

2( )
, , ,( )

,

,( ) ( ) [ ( )] ,
1

E

a b a b a bE

a b

a b
e

V E
e






 
      

 
k

k

k

k k   (6.4)  

  α = 0, 1, 2,   

we rewrite them in the new form convenient for the study of their divergence: 

 
(1) (0) (0)

11

(0) (0) (1) (1)

1 1
( ) Γ ( ) Γ ( )

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) ,

a b

a b a b

P d

i

           

         


 (6.5)  

 (1) (1) (1)
12( ) 2 Γ ( ) Γ ( ) ,a bi          

 (1) (0) (0 ) (1) (1)
21( ) 2 Γ ( ) Γ ( ) Γ ( ) Γ ( ) ,a b a bi               

 
(1) (0) (0)

22

(0) (0) (1) (1)

1 1
( ) Γ ( ) Γ ( )

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) .

a b

a b a b

P d

i

            

         


  

 

( 2 ) (0) (0 )
11

(0) (0) (1) (1)

(0) (0 )

(1) (1)

1 2 1
( ) Γ ( ) Γ ( )

2

2 Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( )

Γ (2 ) Γ (2 )

2Γ (2 ) 2Γ (2 ) ,

a b

a b a b

a b

a b

P d
E U

i

i E U E U

E U E U

                      

          
      

       



 (6.6)  

 ( 2 ) (1) (1) (1) (1)
12( ) 4 Γ ( ) Γ ( ) 2 Γ (2 ) Γ (2 ) ,a b a bi i E U E U                 

   

 

( 2 ) (0) (0) (1) (1)
21

(0) (0)

(1) (1)

( ) 4 Γ ( ) Γ ( ) Γ ( ) Γ ( )

2 Γ (2 ) Γ (2 )

Γ (2 ) Γ (2 ) ,

a b a b

a b

a b

i

i E U E U

E U E U

             
      

       



  

 

( 2 ) (0) (0)
22

(0) (0) (1) (1)

(0) (0)

(1) (1)

1 2 1
( ) Γ ( ) Γ ( )

2

2 Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( )

Γ (2 ) Γ (2 )

2Γ (2 ) 2Γ (2 ) .

a b

a b a b

a b

a b

P d
E U

i

i E U E U

E U E U

                      

          
      

       


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( 3) (1) (1)
11

(1) (1) ( 2 ) (2 ) (1)

(1) (2 ) ( 2 )

1 1 1
( ) Γ ( ) Γ ( )

2

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) Γ (2 )

Γ (2 ) 2Γ (2 ) 2Γ (2 ) ,

a b

a b a b a

b a b

P d
E U

i E U

E U E U E U

                     

          
          



  (6.7) 

 ( 3) ( 2) (2 ) (2 ) (2 )
12( ) 2 Γ ( ) Γ ( ) 2 Γ (2 ) Γ (2 ) ,a b a bi i E U E U                 

    

 
( 3) (1) (1) (2 ) (2 ) (1)

21

(1) (2 ) (2 )

( ) 2 Γ ( ) Γ ( ) Γ ( ) Γ ( ) Γ (2 )

Γ (2 ) Γ (2 ) Γ (2 ) ,

a b a b a

b a b

i E U

E U E U E U

             
         


  

 

( 3) (1) (1)
22

(1) (1) (2 ) ( 2 ) (1)

(1) (2 ) (2 )

1 1 1
( ) Γ ( ) Γ ( )

2

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) Γ (2 )

Γ (2 ) 2Γ (2 ) 2Γ (2 ) .

a b

a b a b a

b a b

P d
E U

i E U

E U E U E U

                      

          
          



  

The integrals in the r.h.s. of formulae (6.5)–(6.7) may be divergent at definite values of the 
frequency  which will be called the divergence points. Although the functions ( )( )ij

  , i, 
j = 1, 2, contain the small tunnelling coupling constants ( )aV k and ( )bV k , near each 
divergence point some of them may become comparable with the finite terms in Y(). 
When Y() vanishes due to the cancellation between the finite terms and those containing 
divergent integrals, there appear the resonances. Therefore in order to study the 
resonances it is necessary to investigate the divergence of the integrals in the r.h.s. of the 
formulae (6.5)–(6.7). 

The functions ( )
11( )   and ( )

22( )   contain the dispersion integrals with the spectral 
functions ( )

, ( )a b
  . Denote a and b the chemical potentials of the systems of conducting 

electrons in the leads “a” and “b”. From the definition (6.4) with 

 (0)
, , ,( ) ( ) ,a b a b a bE E  k k   

where (0)
, ( )a bE k  are the kinetic energies of the conducting electrons in the leads, (0)

, ( ) 0a bE k , it 
follows that ( )( )a

   vanishes at a   and similarly for ( )( )n
b  . Therefore the dispersion 

integrals in formulae (6.5)-(6.7) have the form  

 
,

,

( )
( ) ,

,

( )a b

a b

n
n a b

a bK P d





 








     (6.8)  

and  

 
,

,

( )
( ) ,

,
( )

,
2

a b

a b

n
n a b
a bL P d

E U



 







      (6.9)  
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where a  is the top of the energy band of the conducting electrons in the leads “a” and 
similarly for b . For the study of the divergence of the integrals we replace approximately 
the values of ( )( )a

   in the interval a      by a constant a  and similarly for ( )( )n
b  . 

Then at zero temperature  
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, , ,

(1) (2 )
, , , ,

(0 )
, , ,

(1) ( 2 )
, , , ,

,

,

,

,

a b a b a b

a b a b a b a b

a b a b a b

a b a b a b a b

K I

K K I

L J

L L J

 

  

 
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  (6.10) 

with  
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,

,
1

,
a b

a b

a bI P d



 




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   (6.11) 
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a bI P d



 
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   (6.12) 
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2
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a bJ P d
E U


 






     (6.13) 

 
,

0

,
1

2
a b

a bJ P d
E U


 

  
     (6.14) 

Usually ( )a b  is very large in comparison with ( )a b  and ω. Therefore we have  

 ,
,

, ,

ln ,a b
a b

a b a b

I
 


 

  (6.15)  

 ,
, ln ,a b

a bI
 

 
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  (6.16) 

 , ,
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,

ln ,
2

a b a b
a b

a b

J
E U

 


  
  (6.17) 

 ,

,

2
ln

2a b

a b

E U
J

E U
   

   
  (6.18) 

It is obvious that Ia is divergent at a  , aI  is divergent at a   and 0 , Ja is 
divergent at 2 aE U     and aJ  is divergent at 2 aE U     and 2E U  . For 

, ,b b bI I J  and bJ  we have similar results.  
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If the temperature T of the system is low enough, but does not vanish, 

, 0 ,a b kT    

then instead of the divergence of ,a bI  at the Fermi surface 0  we have the limit 

 ,
,0

2
lim ln ,a b

a b

e
I

kT


    (6.19)  

and, similarly, instead of the divergence of ,a bJ at 2E U   we have the limit  

 ,
,2

2
lim ln a b

a bE U

e
J

kT 


       (6.20)  

For the simplicity we set a a     . 

From the results of the study of resonances of Green function 11( )ccG   and the explicit 
expressions (5.21)-(5.28) determining this function we obtain its asymptotic behavious at the 
divergence points of ( )( )ij

  : 

a. As    and at low temperature 0T  , the Green function in equation (5.21) has 
asymptotic form: 

 

11

1
1 ( )

12( )
1 22 ( ) ln 2
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1 ( )
1

22 ( ) ln 2

cc

n E U
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E U E i

E n E U U

E U E U i

        
         
 

           
          
 



  (6.21)  

If 0E    , then 11( )ccG   has two resonances at two points 

 
( )( ) 4

1

E
e


        (6.22) 

and two resonances at two points 

 
( )( ) 2

2 .
E U

e


          (6.23) 

Between these four resonances there are the dips. If 0E     but 0E U    , then 
11( )ccG   has only two resonances at the points ( )

2
 . If 0E U    , then in the 

neighbourhood of the point    , the Green function 11( )ccG   has no resonance. All four 
points ( )

1
 and ( )

2
 are very close to the point     and the resonances at ( )

1
 and ( )

2
  

look like a resonance at    . The origin of these resonances is the presence of the Fano 
quasi-bound state at the lower edge of the energy band of the conducting electrons. If they 
exist, they would be called the Fano resonances.  



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

396 

b. As 0  and at 0T  , the Green functions 11( )ccG   has asymptotic form 

 
11

(1 )
( )

2
( ) ln 2 (3 2 )

cc E n U
G

U
E E U i E U

 
   

 
    

 

    (6.24)  

If ( ) 0E E U  , then 11( )ccG   has two resonances at the points 

 ( )
3

( )
exp

2

E E U
U

       
  

 ,  (6.25) 

which are very close to the point  = 0. At 0   and 0 KT T  , 

 ( )1
exp ,

2K

E E U
T

k U
     

  
  (6.26) 

where k is the Boltzmann constant, instead of formula (6.24) we have 

 11

(1 ) 1
(0)

2 ln (3 2 )
cc

K

E n U
G

U T T i E U
 

 
    

   (6.27) 

The resonances in the neighbourhood of the point 0   have the same physical origin as 
the Kondo effect due to the scattering of electrons by a magnetic impurity. They are the 
Kondo resonances.  

c. As 2E U   and at 0T  , the Green function 11( )ccG   has asymptotic form: 

 
11( )

2
( ) ln 2

2

cc E nU
G

U
E E U iE

E U


  

 
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  

   (6.28) 

Therefore if ( ) 0E E U  , then 11( )ccG   has also two resonances at the points 
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( ) 2
4 2

E E U
UE U e

 
        (6.29) 

which are very close to the point 2E U   . At 2E U    and 0 KT T  ,  
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exp ,
2K

E E U
T

k U
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 
  (6.30)  

instead of formula (6.28) we have  
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E nU
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

  
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   (6.31) 

The resonances in the neighbourhood of the point 2E U    are the Kondo resonances of 
the crossing terms.  
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d. As 2E U     and at low temperature 0T  , the Green functions 11( )ccG   has 
asymptotic form:  

 11

1 ( )
( )

2 2
( ) ln 2

cc
n E U U

G
E U EE U i


    

  
           
 

  (6.32) 

If 0E U    , then 11( )ccG   has two resonances at the points 

 ( ) 2
5 2

E U

E U e
  

         ,  (6.33) 

which are very close to the point 2E U     . They are the Fano resonances of the 
crossing terms. 

7. Conclusion  
The present Chapter is an introductory review of the Keldysh non-equilibrium Green 
functions of electrons in simplest nanosystems: isolated single-level QD and single-level QD 
connected with two conducting leads. In the case of an isolated single-level QD the closed 
system of a finite number of differential equations for a finite number of Green functions 
was established by using the Heisenberg quantum equations of motion for the electron 
destruction and creation operators. The exact expressions of the Green functions were 
derived. In the case of the nanosystem consisting of a single-level QD connected with two 
conducting leads there does not exist a finite closed system of differential equations for 
some finite number of Green functions. In the differential equations for n-point Green 
functions there appear the contributions from (n+2)-point Green functions. Therefore, the 
exact system of differential equations contains an infinite number of equations for an infinite 
number of Green functions. In order to truncate this infinite system of differential equations 
we have applied the mean-field approximation to the products of four electron quantum 
operators and limited at the terms of the second order with respect to the effective 
tunnelling coupling constants. As the result we have derived a closed system of Dyson 
equations for two types of 2-point Green functions. All the crossing terms are included into 
the equations. The exact solution of the system of Dyson equations may have the resonances 
of four types in the dependence on the physical parameters of the system: the Kondo 
resonances at the Fermi surface, whose origin is similar to that of the Kondo effect in the 
scattering of electrons on magnetic impurities, the Fano resonances due to the presence of 
the electron quasi-bound state at the lower edge of the energy band of the conducting 
electrons, the Kondo resonances in the crossing terms and the Fano resonances in the 
crossing terms. The analytical asymptotic expressions of the single-electron Green function 
at these resonances were derived. These results agree well with the numerical calculations in 
references on the electron Green functions in QD (Yeyati et al., 1993; Costi et al., 1994; 
Izumida et al., 1997, 1998, 2001; Sakai et al., 1999; Torio et al., 2002).  

The theoretical study of the non-equilibrium Green functions of electrons in QDs would 
signify the beginning of the development of the quantum dynamics of physical processes in 
QD-based nanodevices. The next step would be the elaboration of the theory of non-
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equilibrium Green functions of phonons in QDs as well as of electrons and phonons of 
interacting electron-phonon systems in QDs. The quantum dynamical theory of QD-based 
optoelectronic and photonic nanodevices necessitates also the study of non-equilibrium 
Green functions of electrons and phonons confined in QDs in the presence of the electron-
phonon interactions as well as the interaction of photons with confined electron-phonon 
systems. The methods and reasonnings presented in this Chapter could be generalized for 
the application to the study of all above-mentioned non-equilibrium Green functions.  

8. Acknowledgment 
I would like to express the gratitude to Institute of Materials Science and Vietnam Academy 
of Science and Technology for the support to my work on the subject of this review during 
many years. I thank also Academician Nguyen Van Hieu for suggesting the main ideas of 
the series of publications on this subject.  

9. References  
Abrikosov, A. A; Gorkov, L. P. & Dzyaloshinski, I. E. (1975). Methods of Quantum Field Theory 

in Statistical Physics, Dover Publications, ISBN 0486632288, New York  
Bjoken, J. D & Drell, S. D. (1964). Relativistic Quantum Mechanics, Mc Graw-Hill, ISBN 

0070054932, New York 
Bruus, H. & Flensberg, K. (2004). Many-Body Quantum Theory in Condensed Matter Physics, 

Oxford University Press, ISBN 0198566336, Oxford New York  
Choi, M.-S.; Sánchez, D. & López, R. (2004). Kondo effect in a quantum dot coupled to 

ferromagnetic leads: A numerical renormalization group analysis, Physical Review 
Letters, Vol. 92, No. 5, p. 056601 (4 pages); ISSN 0031-9007 (print), 1079-7114 (online)  

Chou, K. C.; Su, Z. B.; Lao, B. L. & Yu, L. (1985). Equilibrium and nonequilibrium 
formalisms made unified, Physics Reports, Vol. 118, Nos. 1&2, pp. 1-131, ISSN 0370-
1573  

Costi, T. A.; Hewson, A. C. & Zlatic, V. (1994). Transport coefficients of the Anderson model 
via the numerical renormalization group, Journal of Physics: Condensed Matter, Vol. 
6, No. 13, p. 2519 (1994), ISSN 0953-8984 (print), 1361-648X (online) 

Craco, L & Kang, K. (1999). Perturbation treatment for transport through a quantum dot, 
Physical Review B, Vol. 59, No. 19, pp. 12244–12247; ISSN 1098-0121 (print), 1550-
235X (online)  

Fujii, T. & Ueda, K. (2003). Perturbative approach to the nonequilibrium Kondo effect in a 
quantum dot, Physical Review B, Vol. 68, No. 15, p.155310 (5 pages); ISSN 1098-0121 
(print), 1550-235X (online) 

Haken, H. (1976). Quantum Field Theory of Solids: An Introduction, North-Holland Pub. Co., 
ISBN 0720405459, Amsterdam  

Hershfield, S.; Davies, J. H. & Wilkins J. W. (1991). Probing the Kondo resonance by 
resonant tunneling through an Anderson impurity, Physical Review Letters, Vol. 67, 
No. 26 , pp. 3720-3723; ISSN 0031-9007 (print), 1079-7114 (online) 

Inoshita, T.; Shimizu, A.; Kuramoto, Y & Sakaki, H. (1993). Correlated electron transport 
through a quantum dot: The multiple-level effect, Physical Review B, Vol. 48, No. 19, 
pp. 14725–14728; ISSN 1098-0121 (print), 1550-235X (online) 



Non-Equilibrium Green Functions of Electrons 
in Single-Level Quantum Dots at Finite Temperature  

 

399 

Itzykson, C. & Zuber, J. B. (1987). Quantum Field Theory, Mc Graw-Hill, ISBN 0070320713, 
New York  

Izumida,W.; Sakai, O. & Shimizu, Y. (1997). Many body effects on electron tunneling 
through quantum dots in an Aharonov-Bohm circuit, many body effects on 
electron tunneling through quantum dots in an Aharonov-Bohm circuit, Journal of 
the Physical Society of Japan, Vol. 66, No. 3, pp. 717-726; ISSN 0031-9015 (print), 1347-
4073 (online)  

Izumida, W.; Sakai, O. & Shimizu, Y. (1998). Kondo effect in single quantum dot systems – 
Study with numerical renormalization group method, Journal of the Physical Society 
of Japan, Vol. 67, No. 7, pp. 2444-2454; ISSN 0031-9015 (print), 1347-4073 (online) 

Izumida, W.; Sakai, O. & Suzuki, S. (2001). Kondo effect in tunneling through a quantum 
dot, Journal of the Physical Society of Japan, Vol. 70, No. 4, pp. 1045-1053; ISSN 0031-
9015 (print), 1347-4073 (online) 

Kapusta, J. I. (1989). Finite Temperature Field Theory, Cambridge University Press, ISBN 0-521-
35155-3, Cambridge (UK) 

Keldysh, L. V. (1965). Diagram technique for nonequilibrium processes, Soviet Physics- JETP, 
Vol. 20, No. 4, pp. 1018-1026, ISSN 0038-5646  

Konig, J. & Gefen, Y. (2005). Nonmonotonic charge occupation in double dots, Physical 
Review B, Vol. 71, No. 20, p. 201308(R) (4 pages), ISSN 1098-0121 (print), ISSN 1550-
235X (online) 

Le Bellac, M. (1996). Thermal Field Theory, Cambridge University Press, ISBN 0-521-65477-7, 
Cambridge (UK) 

Meir, Y.; Wingreen, N. S. & Lee, P. A. (1991). Transport through a strongly interacting 
electron system: Theory of periodic conductance oscillations, Physical Review Letters, 
Vol. 66, No. 23, pp. 3048-3051; ISSN 0031-9007 (print), 1079-7114 (online) 

Meir, Y.; Wingreen, N. S. & Lee, P. A. (1993). Low-temperature transport through a quantum 
dot: The Anderson model out of equilibrium, Physical Review Letters, Vol. 70, No. 
17, pp. 2601-2604; ISSN 0031-9007 (print), 1079-7114 (online) 

Ng, T. K. (1993). Nonlinear resonant tunneling through an Anderson impurity at low 
temperature, Physical Review Letters, Vol. 70, No. 23, pp. 3635-3638; ISSN 0031-9007 
(print), 1079-7114 (online)  

Nguyen Van Hieu & Nguyen Bich Ha (2005). Quantum theory of electron transport through 
single-level quantum dot, Advances in Natural Sciences, Vol. 6, No. 1, pp. 1-18, ISSN 
0866-708X 

Nguyen Van Hieu & Nguyen Bich Ha (2006). Time-dependent Green functions of quantum 
dots at finite temperature, Advances in Natural Sciences, Vol. 7, No. 2, pp.153-165, 
ISSN 0866-708X 

Nguyen Van Hieu; Nguyen Bich Ha & Nguyen Van Hop (2006a). Dyson equations for 
Green functions of electrons in open single-level quantum dot, Advances in Natural 
Sciences, Vol. 7, No. 1, pp. 1-12, ISSN 0866-708X 

Nguyen Van Hieu; Nguyen Bich Ha; Gerdt, V. P.; Chuluunbaatar, O.; Gusev, A. A.; Pali, Yu. 
G. & Nguyen Van Hop (2006b). Analytical asymptotic expressions for the Green's 
function of the electron in a single-level quantum dot at the Kondo and the Fano 
resonances, Journal of the Korean Physical Society, Vol. 53, No. 96, pp. 3645-3649, ISSN 
0374-4884 (print), 1976-8524 (online) 



 
Fingerprints in the Optical and Transport Properties of Quantum Dots 

 

400 

Peskin, M. E. & Schroeder, D. V. (1995). An Introduction to Quantum Field Theory, Addison-
Wesley, ISBN 0201503972, New York 

Pustilnik, M. & Glasman, L. (2004). Kondo effect in quantum dots, Journal of Physics: 
Condensed Matter, Vol. 16, No. 16, p. R513; ISSN 0953-8984 (print), 1361-648X 
(online) 

Sakai, O.; Suzuki, S.; Izumida, W. & Oguri, A. (1999). Kondo effect in electron tunneling 
through quantum dots - Study with quantum Monte Carlo method, Journal of the 
Physical Society of Japan, Vol. 68, No. 5, pp. 1640-1650; ISSN 0031-9015 (print), 1347-
4073 (online) 

Swirkowicz, R.; Barnas, J. & Wilczynski, M. (2003). Nonequilibrium Kondo effect in 
quantum dots, Physical Review B, Vol. 68, No. 19, p. 195318 (10 pages); ISSN 1098-
0121 (print), 1550-235X (online)  

Swirkowicz, R.; Wilczynski, M. & Barnas, J. (2006). Spin-polarized transport through a 
single-level quantum dot in the Kondo regime, Journal of Physics: Condensed Matter, 
Vol. 18, No. 7, p. 2291; ISSN 0953-8984 (print), 1361-648X (online) 

Takagi, O. & Saso, T. (1999a). Magnetic field effects on transport properties of a quantum 
dot studied by modified perturbation theory, Journal of the Physical Society of Japan, 
Vol. 68, No. 6, pp.1997-2005; ISSN 0031-9015 (print), 1347-4073 (online)  

Takagi, O. & Saso, T. (1999b). Modified perturbation theory applied to the Kondo-type 
transport through a quantum dot under magnetic field, Journal of the Physical Society 
of Japan, 68, No. 9, pp. 2894-2897; ISSN 0031-9015 (print), 1347-4073 (online)  

Torio, M. E.; Hallberg, K.; Ceccatto, A. H. & Proetto C. R. (2002). Kondo resonances and 
Fano antiresonances in transport through quantum dots, Physical Review B, Vol. 65, 
No. 8, p. 085302 (5 pages); ISSN 1098-0121 (print), 1550-235X (online) 

Wingreen, N. S. & Meir, Y. (1994). Anderson model out of equilibrium: Noncrossing-
approximation approach to transport through a quantum dot, Physical Review B, 
Vol. 49, No. 16, pp. 11040–11052; ISSN 1098-0121 (print), 1550-235X (online)  

Yeyati, A. L.; Martin-Rodero, A. & Flores, F. (1993). Electron correlation resonances in the 
transport through a single quantum level, Physical Review Letters, Vol. 71, No. 18 , 
pp. 2991–2994; ISSN 0031-9007 (print), 1079-7114 (online)  



0

Electron Scattering Through a Quantum Dot

Leonardo Kleber Castelano1, Guo-Qiang Hai2 and Mu-Tao Lee3

1Departamento de Física, Universidade Federal de São Carlos
2Instituto de Física de São Carlos, Universidade de São Paulo

3Departamento de Química, Universidade Federal de São Carlos
Brazil

1. Introduction

Electron scattering and transport through quantum dots (QDs) in a semiconductor
nanostructure have been intensively studied (Engel & Loss, 2002; Fransson et al., 2003;
Konig & Martinek, 2003; Koppens et al., 2006; Qu & Vasilopoulos, 2006; Zhang et al., 2002).
The spin-dependent transport properties are of particular interest for its possible applications,
e.g., the QD spin valves (Konig & Martinek, 2003), the quantum logic gates using coupled
QDs, as well as the spin-dependent transport in single-electron devices (Seneor et al., 2007),
etc.. In such systems, the electron-electron exchange potential and the electron spin states
have been utilized and manipulated (Burkard et al., 2000; Gundogdu et al., 2004; Sarma et al.,
2001; Wolf et al., 2001). A thorough quantitative understanding of spin-dependent transport
properties due to electron-electron interaction is therefore important for a successful
construction of these devices. Theoretically the transport through QDs has been studied
by different approaches such as transfer matrix, nonequilibrium Green’s functions, random
matrix theory, as well as those methods built on the Lippmann-Schwinger (L-S) equation
(Castelano et al., 2007a;b).

In this chapter, we develop a theoretical method to study electron scattering through
a quantum dot (QD) of N-electrons embedded in a semiconductor nanostructure. We
construct the scattering equations including electron-electron interaction to represent the
process of a free electron scattered by the QD confined in a two-dimensional (2D) or
in a quasi-one-dimensional (Q1D) semiconductor system. The generalized multichannel
Lippmann-Schwinger equations(Bransden & McDowell, 1977; Joachain, 1975) are solved for
these systems by using the method of continued fractions (MCF). As an example, we
apply this method to a one-electron QD case and obtain scattering cross-sections in 2D and
conductances in Q1D systems resulting from both the singlet- and triplet-coupled continuum
states of two electrons (incident and QD electron) during the electron transport.

This chapter is organized as follows. In Sec. 2 we present our general theoretical approach and
numerical method. In Sec. 3, we describe the electron scattering through a quantum dot in a
2D system. The scattering for a quantum dot confined in a Q1D system is presented in Sec. 4.
In Sections 5 and 6, we show our numerical results for the scattering through a one-electron
QD within both the one-channel and the multichannel models. We conclude in Sec. 7.
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2. Theoretical approach

2.1 The system: Incident electron + quantum dot

The system under investigation consists of an incident free electron and a quantum dot of N
electrons as shown schematically in Fig. 1. The incident electron is scattered by both the QD
potential and by the confined electrons inside the QD. The Schrödinger equation of the system
is given by

(H− Ei)Ψi(τ; rN+1, σN+1) = 0 , (1)

where τ represents collectively the spatial and spin coordinates of the N electrons localized
in the QD and rN+1 = (xN+1, yN+1) and σN+1 denote the spatial and spin coordinates of
the incident electron. The total energy of the system is Ei, where the subscript i represents a
set of quantum numbers required to uniquely specify the initial quantum state of the system.
Explicitly, the total Hamiltonian of the system can be written as

H = H0(rN+1) + HQD(τ) + Vint(r1, r2, ..., rN , rN+1) , (2)

where H0(rN+1) = −h̄2∇2
N+1/2m∗ + VQD(rN+1), HQD(τ) is the Hamiltonian of the QD of N

electrons, and Vint is the interaction potential between the incident electron at rN+1 and the N
electrons in the QD

Vint(r1, r2, ..., rN , rN+1) =
e2

ε∗0

N

∑
i=1

1
|rN+1− ri| , (3)

where ε∗0 is the dielectric constant of the semiconductor material and m∗ is the electron
effective mass. The Hamiltonian for an unperturbed QD is given by

HQD(τ) =
N

∑
i=1

(
− h̄2

2m∗ ∇
2
i + VQD(ri)

)
+

e2

ε∗0

N

∑
i �=j

1
|ri − rj| , (4)

where the first term in the rhs of Eq. (4) describes N independent electrons in the QD of
confinement potential VQD(r) and the second term gives the Coulomb interactions among
these electrons. The eigenenergy and eigenfunction of this N-electron QD are denoted by εn
and Φn, respectively. They are determined by the following Schrödinger equation

HQD(τ)Φ
n = εnΦn, (5)

Fig. 1. Representation of the incident electron and the target, which in this case is a quantum
dot containing 3 electrons.
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Electron Scattering Through a Quantum Dot 3

with n = 0, 1, 2, 3... . The ground state of the QD is labeled by n = 0 and the excited states
by n ≥ 1. The eigenstates of the QD can be obtained using, e.g., the restricted or unrestricted
Hartree-Fock (HF) methods (Szabo & Ostlund, 1982).

2.2 Scattering equations including electron-electron interaction

In order to extract scattering properties of the system (QD + incident electron), we can write
the total wave-function Ψi of the system as a superposition of the QD wave-function Φn and
the incident electron wave-function,

|Ψi〉 =
∞

∑
n=0

|A(Φnψni)〉, (6)

where ψni describes the wave-functions of the incident (scattered) electron in the continuum
states corresponding to a quantum transition from an initial state i to a final state n. The
operator A warrants the antisymmetrization property between the QD electrons and the
incident electron, defined by,

A =
1√

N + 1

N+1

∑
p=1

(−1)N+1−pPN+1,p (7)

where PN+1,p is the permutation operator which exchanges the electrons at rN+1 and rp. From
Eqs. (1), (2) and (6), we obtain

∞

∑
n=0

(
− h̄2

2m∗ ∇
2
N+1 + VQD + HQD + Vint

)
|A(Φnψni)〉 = Ei

∞

∑
n=0

|A(Φnψni)〉. (8)

The total energy of the system Ei is composed of two parts. The first part is the kinetic energy
of the incident (scattering) electron and the second is the energy of the N-electron QD in a

particular configuration, i.e., Ei =
h̄2k2

i
2m∗ + ε i = h̄2k2

n
2m∗ + εn, for different eigenstates of the QD

(i, n = 0, 1, 2, ...) or different scattering channels. These different channels appear because the
incident electron can probably be scattered inelastically, leaving the QD in a different state
from its initial. A projection of Eq. (8) onto a particular QD state |Φm〉 leads to the following
scattering equation for the incident electron,

h̄2

2m∗
(
∇2 + k2

m

)
ψmi(r) =

∞

∑
n=0

Vmn(r)ψni(r) (9)

for i, m = 0, 1, 2, ..., where r = rN+1 and Vmn = Vst
mn + Vex

mn with Vst
mn the static potential and

Vex
mn the exchange potential due the nonlocal interaction, giving by

Vst
mn(r) = VQD(r)δmn +

e2

ε∗0

N

∑
j=1
〈Φm| e

−λ|r−rj|
|r− rj| |Φ

n〉, (10)
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and

Vex
mn(r)ψni(r) = (H0(r)− h̄2k2

m
2m∗ )〈Φ

m|A′(Φnψni)〉+ e2

ε∗0

N

∑
j=1
〈Φm| 1

|r− rj| |A
′(Φnψni)〉, (11)

respectively, where A′ = ∑N
p=1(−1)N+1−pPN+1,p. In Eq. (10) we have introduced a screening

e−λ|r−r′| on the direct Coulomb potential for two reasons: (i) the ionized impurities in
the semiconductor nanostructure and/or the external electrodes screen the direct Coulomb
potential and (ii) at |r| → ∞ limit the scattering potential should decay faster than 1/|r|.
The screening length is given by λ−1. Notice that we do not consider the screening on the
exchange potential because this potential is non-zero inside the QD only. Inclusion of the
screening on the exchange potential in Eq. (11) is possible but it will not affect much our
results and considerably complicates the numerical calculation. The scattering equation is a
system of coupled integro-differential equations. The corresponding generalized L-S equation
for such a multichannel scattering problem is given by

ψmi(r) = ϕi(r)δmi +
∞

∑
n=0

∫
dr′G(0)(km, r, r′)Vmn(r′)ψni(r

′), for i, m = 0, 1, 2 . . . (12)

with an incident plane wave ϕi(r) = eiki.r = eikix in the x-direction.

2.3 Method of continued fractions

The method of continued fractions (MCF) (Horacek & Sasakawa, 1984) is an iterative method
to solve the L-S equation. To apply this method for a multi-channel scattering we have firstly
to rewrite Eq. (12) in a matrix form:

Ψ̃ = ϕ̃ + G̃(0)ṼΨ̃. (13)

In the first step to start the MCF, we use the scattering potential Ṽ = V(0) and the free electron
wave-function ϕ̃ = |ϕ(0)〉 in Eq. (13). Afterwards, we define the nth-order weakened potential
as

V(n) = V(n−1) − V(n−1)|ϕ(n−1)〉〈ϕ(n−1)|V(n−1)

〈ϕ(n−1)|V(n−1)|ϕ(n−1)〉 , (14)

where
|ϕ(n)〉 = G̃(0)V(n−1)|ϕ(n−1)〉. (15)

The nth-order correction of the T matrix can be obtained through

T(n) = 〈ϕ(n−1)|V(n−1)|ϕ(n)〉+ 〈ϕ(n)|V(n)|ϕ(n)〉

×
[
〈ϕ(n)|V(n)|ϕ(n)〉 − T(n+1)

]−1 〈ϕ(n)|V(n)|ϕ(n)〉. (16)

Hence, we can stop the iteration when the potential V(N) becomes weaker enough. In the
numerical calculation, we start with T(N+1) = 0 and evaluate T(N), T(N−1), ..., and T(1).
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Therefore the T matrix is given by

T = 〈ϕ(0)|V(0)|ϕ(0)〉+ T(1) 〈ϕ(0)|V(0)|ϕ(0)〉
〈ϕ(0)|V(0)|ϕ(0)〉 − T(1)

. (17)

3. Quantum dot embedded in a two-dimensional system

The Green’s function G(0)(k, r, r′) in 2D is given by

G(0)(k, r, r′) = − 2m∗

h̄2 (i/4)H(1)
0 (k|r− r′ |), (18)

where H(1)
0 is the usual zero order Hankel’s function (Morse & Feshbach, 1953).

At |r| → ∞ limit, the asymptotic form of Eq. (12) for the scattered wave-function in a 2D
system is given by

ψmi(r) −→
|r|→∞

eikixδmi +
2m∗

h̄2

√
i

km

e+ikmr
√

r
fkm,ki

(θ), (19)

where fkm,ki
(θ) is the scattering amplitude

fkm,ki
(θ) = − 1

4

√
2
π

< km|T(E)|ki > (20)

with

< km|T(E)|ki >=
∞

∑
n=0

∫
dr′e−ikm.r′Vmn(r′)ψni(r

′).

The momenta of the initial and final states of the incident (scattered) electron are ki and km,
respectively, and θ is the scattering angle between them. It is evident from Eq. (12) and its
boundary condition Eq. (19) that the different scattering channels are coupled to each other
through the interaction potential Vmn.

In the above procedure in dealing with the electron scattering through a QD, both the
electron-electron exchange and correlation interactions are present in this system. However,
a complete correlation effect is difficult to include in a practical calculation. In order to do so,
besides an exact solution for the N-electron QD, a full sum over all the intermediate states n
in the scattering equation [Eq. (9)] is needed, which is a formidable task in a self-consistent
calculation. In an alternative way, the correlation effects can be considered by adding an
effective correlation potential in the scattering equation (Joachain, 1975). In the present
work, we focus on the exchange effects on the scattering process and limit the sum over
n to a few lowest energy levels of the QD. For this reason, we prefer to call the nonlocal
interaction potential Vex

mn in Eq. (11) as exchange potential, though the correlation can be
partially included.

The differential cross-section (DCS) for a scattering from initial state i (i.e. the incident electron

of kinetic energy Ei =
h̄2k2

i
2m∗ and the QD in the state ε i) to final state m (i.e. Em = h̄2k2

m
2m∗ and the

QD in the state m) is given by

σmi(θ) =
km

k2
i
| fkm,ki

(θ)|2. (21)
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The integral cross-section (ICS) which is an energy dependent quantity can be found by

Γmi(Ei) =
∫ 2π

0
σmi(θ)dθ. (22)

When the incident electron is scattered to a state of the same energy and the QD keeps in
the same state (m = i), the scattering is called elastic. Otherwise, the scattering is inelastic.
A possible scattering is the so-called super-elastic scattering (Em > Ei) where the incident
electron is scattered out with a higher energy by an QD initially in an excited state. Because
the different scattering channels are coupled to each other, we have to solve the multichannel
L-S equation to obtain the scattering probabilities through different channels simultaneously
for the same total energy of the system.

3.1 Partial wave expansion

In two dimensions the angular momentum basis is given by (Adhikari, 1986),

Θl(φ) =

√
κl
2π

cos(lφ) (23)

where l = 0, 1, 2, ..., κl = 2 for l �= 0 and κl = 1 for l = 0. In applying the partial
wave expansion in the multi-channel scattering problem Eq. (12), we expand all functions,
i.e., the incident free electron wavefunction ϕi(r), the Green’s function G(0)(km, r, r′), and the
scattered electron wavefunction ψmi(r), in the angular momentum basis as follows,

ϕi(r) =
∞

∑
l,l ′=0

√
κl
2π

il Jl(kr)δll ′Θl(φr)Θl ′(φk), (24)

and

ψmi(r) =
∞

∑
l,l ′=0

ψl,l ′
mi (k, r)Θl(φr)Θl ′(φk), (25)

where φr and φk are the variables due to expansion on the position r and momentum k,
respectively. The expansion on the Green’s function yields the following expression,

G(0)(km, r, r′) = − iπ
2

∞

∑
l=0

√
κl
2π

Jl(kmr<)H(1)
l (kmr>)Θl(φr)Θl(φr′), (26)

where k = ki, r< = min(r, r′), r> = max(r, r′), Jl(kmr) (Yl(kmr)) is the Bessel (Neumann)

function and H(1)
l (kmr) = Jl(kmr)+ iYl(kmr) is the Hankel function (Morse & Feshbach, 1953).

Using the partial wave expansion the Lippmann-Schwinger equation can be reduced to a set
of radial equations. The radial Lippmann-Schwinger equation corresponding to Eq. (12) is
given by,

ψl,l ′
mi (k, r) =

√
κl
2π

il Jl(kr)δll ′δmi +
∞

∑
l ′′=0

∞

∑
n=0

∫ ∞

0
r′dr′gl

0(km, r, r′)Vl,l ′′
mn (r

′)ψl ′′,l ′
ni (r′), (27)

where

gl
0(km, r, r′) = −iπ

2

√
κl
2π

Jl(kmr<)H(1)
l (kmr>) (28)
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and

Vl,l ′′
mn (r

′) =
∫ 2π

0
dφr′Θl(φr′ )Vmn(r′)Θl ′′(φr′). (29)

We see that, when the partial wave method is used, there is a change in the continuum variable
φ to a partial wave l. Consequently, the wave function ψmi(r) becomes a matrix function with
elements ψl,l ′

mi (k, r).

The partial wave expansion for the exchange potential is a little subtle due to its non-locality.
Here, we show some details about how the partial wave expansion is applied in this case. We
take as an example the exchange potential which couples the channels n and m for a single
electron spin-orbital α [see Eq. (11)],

Vex
mn(r)ψni(r) = − e2

ε∗0
ζn

α(r)
∫

dr1ζm∗
α (r1)

1
|r− r1|ψni(r1). (30)

The partial wave expansion of the spin-orbital function is given by

ζn
α(r) =

∞

∑
l=0

ζ l
nα(r)Θl(φr). (31)

The product of two different functions can also be expanded in the angular momentum basis
as follows,

ψni(r)ζ
m∗
α (r) = ∑

l,l ′
Πl,l ′

ni;mα(r)Θl(φr)Θl ′(φk), (32)

where

Πl,l ′
ni;mα(r) = ∑

λ,λ′

ψλ,l ′
ni (k, r)ζλ′∗

mα (r)

2
√

2π

√
κλκλ′

κl

(
δl,λ+λ′ + δl,|λ−λ′|

)
. (33)

Using the above relation, we obtain Eq. (30) in the partial wave expansion form,

Vex
mn(r)ψni(r) = − e2

ε∗0
ζn

α(r)∑
l,l ′

Θl(φr)Θl ′ (φk) (34)

×
∫ ∞

0
r1dr1Πl,l ′

ni;mα(r1)
∫ 2π

0

Θl(θ)dθ√
r2 + r2

1 − 2rr1 cos(θ)
,

where θ = φr − φr1 . To solve the angular integral we use the generating function of the
Legendre Polynomials (Morse & Feshbach, 1953),

1√
r2 + r2

1 − 2rr1 cos(θ)
=

∞

∑
j=0

rj
<

rj+1
>

Pj(cos θ), (35)

where r< = min(r, r1), r> = max(r, r1) and Pj(cos θ) are the Legendre Polynomials. Thus the
angular integral that we need to solve is

cl,j =
∫ 2π

0
dθΘl(θ)Pj(cos θ). (36)

407Electron Scattering Through a Quantum Dot
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Substituting the Eqs. (35) and (36) into Eq. (34) we finally obtain the exchange potential

Vex
mn(r)ψni(r) = − e2

ε∗0
ζn

α(r)∑
l,l ′

Θl(φr)Θl ′(φk)
∞

∑
j=0

∫ ∞

0
r1dr1Πl,l ′

ni;mα(r1)cl,j
rj
<

rj+1
>

. (37)

In the numerical calculations, we firstly evaluate the coefficients cl,j given by Eq. (36). Then
the integration on r1 in Eq. (37) is performed for each iteration in the MCF. Finally we multiply
the result by − e2

ε∗0
ζn

α(r).

Within the one-channel approximation (i = m = n = 0), the calculations can be further
simplified by using the concept of phase shift. Considering a central potential V(r) (l = l ′ =
l ′′), Eq. (27) becomes

ψl(k, r) =
√

κl
2π

il Jl(kr) +
∫ ∞

0
r′dr′gl

0(k, r, r′)V(r′)ψl(k, r′) (38)

where ψl(k, r) = ψl,l
00(k, r). To define the phase-shift we write the asymptotic form of the above

equation as

ψl(k, r) −→
r→∞

Al

√
1
kr

cos(kr− lπ
2
− π

4
− Δl), (39)

where Δl is the phase-shift. Comparing the coefficients of eikr and e−ikr of Eq. (39) with the
asymptotic form of Eq. (38) one can obtain the following relations

Al = 2
√

κl
π

ileiΔl , (40)

and
eiΔl sin Δl =

−π

2il

∫ ∞

0
r′dr′ Jl(kr′)V(r′)ψl(r′). (41)

On the other hand, from the definition of the scattering amplitude in Eq. (19), we can express
the scattering amplitude fk0,k0

in terms of the phase-shift (Adhikari, 1986) Δl ,

fk0,k0(θ) = 2
∞

∑
l=0

√
κl
π

eiΔl sin ΔlΘl(θ). (42)

The corresponding DCS is σ00(θ) =
∣∣ fk0,k0(θ)

∣∣2 /k and the ICS is given by

Γ00 =
4
k

∞

∑
l=0

κl sin2 Δl . (43)

4. Quantum dot confined in a quasi-one-dimensional structure

In this section, we study the electron scattering through a QD confined in a
quasi-one-dimensional structure. The quantum dot is considered to be confined in the
y-direction and the incident (scattered) electron moves in the x-direction. Far from the QD,
the electron is free to propagate in the x-direction. In this limit, the Schrödinger equation in
the y-direction is given by [

− h̄2

2m∗
d2

dy2 + Vc(y)

]
χn(y) = εnχn(y). (44)
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We choose the confining potential as being parabolic Vc(y) = 1
2 m∗ω2

yy2. The solution of
equation (44) for this potential is given by (Merzbacher, 1970):

χn(y) =
e
− y2

2l2y

(πl2
y)1/4

Hn(
y
ly
)

√
2n!

(45)

where Hn are the Hermite’s polinomials (Morse & Feshbach, 1953), εn = h̄ωy(n + 1/2), and
ly =

√
h̄/m∗ωy. The eigenfunctions χn(y) are also called transversal modes.

As the basis composed of χn(y) is complete, we are able to expand the wave-function in such
a system on this basis,

Ψi(r) =
∞

∑
n=0

χn(y)ψni(x), (46)

where i refers to the incident wave-vector. By introducing this result into the Schrödinger
equation, multiplying it by χ∗m(y), and integrating in the y-direction, we find the following
coupled equations: (

h̄2

2m∗
d2

dx2 +
h̄2k2

n
2m∗

)
ψni(x) =

∞

∑
m=0

Vm,n(x)ψmi(x), (47)

where h̄2k2

2m∗ = h̄2k2
n

2m∗ + εn and

Vm,n(x) =
∫

dyχ∗m(y)V(r)χn(y). (48)

The Green’s function is defined as being the solution of the equation:(
h̄2

2m∗
d2

dx2 +
h̄2k2

n
2m∗

)
Gn(x, x′) = δ(x− x′), (49)

which allows to rewrite the solution of Eq. (47) as a Lippmann-Schwinger equation in
one-dimension,

ψni(x) = ϕn(x) +
2m∗

h̄2

∞

∑
m=0

∫
dx′Gn(x, x′)Vm,n(x′)ψmi(x

′), (50)

where ϕn(x) = exp(iknx)δn,i/
√

kn. The Green’s function to each sub-band in a Q1D system is
equal to:

Gn(x, x′) = −i
2kn

eikn|x−x′|. (51)

Because the energy of the incident electron is h̄2k2

2m∗ = h̄2k2
n

2m∗ + εn, there is the possibility of εn >
h̄2k2

2m∗ and of kn being a pure imaginary number. In such a situation, we must replace kn by i|kn|
in Eq. (50) and the eigenfunctions ψni(x) are not localized anymore.

Taking the limit x → ∞ in Eq. (50), we obtain:

ψni(x) −→
x→∞

eiknx
√

kn

[
δni +

m∗

ih̄2

∞

∑
m=0

∫
dx′ e

−iknx′

√
kn

Vm,n(x′)ψmi(x
′)
]

. (52)
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The scattering matrix T can be found through the following result

Tni =
∞

∑
m=0

∫ ∞

−∞
dx′ e

−iknx′

√
kn

Vm,n(x′)ψmi(x
′). (53)

Another quantity that we can obtain is transmission probability tni, which by definition
satisfies the following equation (Vargiamidis et al., 2003):

Ψi(r) −→
x→∞

∞

∑
n=0

tni
eiknx
√

kn
χn(y). (54)

Multiplying Eq. (52) by χn(y), then adding n = 0 to ∞, and comparing the resulting equation
to Eq. (54) we obtain the following expression for tni:

tni = δni +
m∗

ih̄2

∞

∑
m=0

∫ ∞

−∞
dx′ e

−iknx′

√
kn

Vm,n(x′)ψm(x′). (55)

So we can relate the matrix T with the scattering transmission probability tni by:

tni = δni +
m∗

ih̄2 Tni. (56)

These quantities are useful to determine the conductance (Fisher & Lee, 1981;
Imry & Landauer, 1999). In the Q1D system with multiple scattering channels, the
conductance can be obtained by using the Landauer-Büttiker equation (Buttiker et al., 1985;
Landauer, 1957; 1970; 1975),

G =
e2

πh̄
Tr(tt†), (57)

where t is the matrix whose elements are exactly given by Eq. (55).

5. Applications and numerical results

In the previous sections, we presented a theoretical model that describes the quantum
scattering through a quantum dot with N-electrons confined. However, we apply this model
to the case where only one electron is confined in the quantum dot. Although this is the
simplest case, it reveals basic information for a more complicated system. In this section, we
describe the details of this particular case considering the elastic and inelastic scattering in the
2D system in sub-sections 5.1 and 5.2, respectively. The scattering through a confined QD in
the Q1D system will be discussed in sub-section 5.3.

5.1 Elastic scattering

Here we describe in details how the elastic scattering can be accounted for. To do so, we start
by considering the electron in the ground state of energy ε1. The total Hamiltonian for this
system (incident electron + confined electron) is given by:

H(r1, r2) =
−h̄2∇2

2
2m∗ + VQD(r2) + HQD(r1) + V(r1, r2) (58)

where HQD is the QD Hamiltonian and V(r1, r2) is the Coulomb interaction potential between
the pair of electrons. The total wave function should be written as linear combination of
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Slater determinants, as shown in sub-section 2.2. There are four possible combinations for
two electrons,

|Φ1, ψ11 >=
1√
2

∣∣∣∣ Φ1(r1)β(1) ψ11(r1)β(1)
Φ1(r2)β(2) ψ11(r2)β(2)

∣∣∣∣ , (59)

|Φ1, ψ11 >=
1√
2

∣∣∣∣ Φ1(r1)α(1) ψ11(r1)α(1)
Φ1(r2)α(2) ψ11(r2)α(2)

∣∣∣∣ , (60)

|Φ1, ψ11 >=
1√
2

∣∣∣∣ Φ1(r1)α(1) ψ11(r1)β(1)
Φ1(r2)α(2) ψ11(r2)β(2)

∣∣∣∣ , (61)

|ψ11, Φ1 >=
1√
2

∣∣∣∣ ψ11(r1)α(1) Φ1(r1)β(1)
ψ11(r2)α(1) Φ1(r2)β(2)

∣∣∣∣ , (62)

where Φ1(r) is the wave function of the confined electron in the QD, α(i) and β(i) correspond
to spin-up (↑) and spin-down (↓), respectively. The index (i) denotes to which electron the
spin refers to.

Because the total Hamiltonian (Eq. (58)) commutes with the total spin operator (S2) and its
component in the z-direction (Sz), the Hamiltonian eigenfunctions must be eigenfunctions of
both Sz and S2. The first two determinants of Slater in equations (59 and 60) are eigenfunctions
of Sz and S2, but the equations (61 and 62) are not eigenfunctions of S2. Thus, we have to
construct linear combinations between these Slater determinants (Eqs. (61 and 62)) in order to
obtain eigenfunctions of Sz and S2. These combinations can be written as follows:

|Ψs >=
1√
2

[
|Φ1, ψ11 > +|ψ11, Φ1 >

]
=

=
1√
2

[
ψ11(r1)Φ1(r2) + ψ11(r2)Φ1(r1)

] ( | ↓, ↑> −| ↑, ↓>√
2

)
(63)

and

|Ψt >=
1√
2

[
|Φ1, ψ11 > −|ψ11, Φ1 >

]
=

=
1√
2

[
ψ11(r1)Φ

1(r2)− ψ11(r2)Φ1(r1)
] ( | ↓, ↑> +| ↑, ↓>√

2

)
. (64)

Equation (63) corresponds to the wave function of the singlet state and Equation (59, 60 and
64) correspond to wave functions of the triplet states. Since the Hamiltonian (Eq. (58)) does
not have a explicit spin-dependent potential, the state of total spin is conserved before and
after the collision. In such a way, the total wave function of the system (incident electron +
confined electron) can be written as:

Ψ(r1, r2) = Φ1(r1)ψ11(r2)±Φ1(r2)ψ11(r1), (65)

where the positive (negative) sign refers to the spin singlet (triplet) state. In order to determine
the potential for the scattered electron, we have to calculate the following equation:

< Φ1(r1)|H(r1, r2)|Ψ(r1, r2) >= E < Φ1(r1)|Ψ(r1, r2) >, (66)

where

E = ε1 +
h̄2k2

1
2m∗ . (67)
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The left hand side of Eq. (66) can be rewritten as:

< Φ1|H|Ψ >=< Φ1|H1
QD|Ψ > + < Φ1|H2

QD|Ψ > + < Φ1|V1,2|Ψ >, (68)

where the superscript is related to each electron the operator is operating on. The first term of
Equation (68) is equal to:

< Φ1|H1
QD|Ψ >= ε1

[
< Φ1|Φ1 > ψ11± < Φ1|ψ11 > Φ1

]
. (69)

While the second term of Eq. (68) is given by

< Φ1|H2
QD|Ψ >=< Φ1|Φ1 > H2

QDψ11 ± ε1 < Φ1|Φ1 > ψ11. (70)

The third term of Eq. (68) can be written as:

< Φ1|V1,2|Ψ >=< Φ1|V1,2|Φ1 > ψ11± < Φ1|V1,2|ψ11 > Φ1. (71)

By substituting Eqs.(69, 70, and 71) into Eq. (68), we obtain the following result:

(H2
QD −

h̄2k2
1

2m∗ )ψ11+ < Φ1|V1,2|Φ1 > ψ11 ±

±
(
< Φ1|V1,2|ψ11 > Φ1 + (ε1 −

h̄2k2
1

2m∗ ) < Φ1|ψ11 > Φ1

)
= 0. (72)

The previous equation can be further simplified as

− h̄2

2m∗ (∇
2 + k2

1)ψ11(r) +
[
Vst(r)±Vex(r)

]
ψ11(r) = 0, (73)

where

Vst(r) =< Φ1|V1,2|Φ1 > +VQD(r), (74)

and

Vex
11 (r)ψ11(r) = Φ1(r)

[
< Φ1|V1,2|ψ11 > +(ε1 −

h̄2k2
1

2m∗ ) < Φ1|ψ11 >

]
. (75)

Finally, the Lippmann-Schwinger equation corresponding to Eq. (73) is given by

ψ11(r) = ϕ1(r) +
∫

dr′G(0)k1, r, r′)
[
Vst(r′)±Vex(r′)

]
ψ11(r

′), (76)

which can be numerically solved by the method of continuous fractions.

From Eq. (76), we observe that the exchange potential is different when the two electrons
form a singlet spin state (plus sign) or triplet spin state (minus sign). In order to calculate
the spin-dependent scattering, we have to calculate separately the scattering considering the
singlet state and the triplet state. Moreover, the cross sections are given by

σs
11(θ) =

1
k1
| f s

11(θ)|2, (77)
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for the singlet state, and

σt
11(θ) =

1
k1
| f t

11(θ)|2, (78)

for the triplet state, where

f s
11(θ) = −

1
4

√
2
π

∫
d2r′e−ik′1.r′ [Vst(r′) + Vex(r′)]ψ11(r

′), (79)

f t
11(θ) = −

1
4

√
2
π

∫
d2r′e−ik′1.r′ [Vst(r′)−Vex(r′)]ψ11(r

′). (80)

A quantity that we can obtain is the spin-unpolarized cross section (su-ICS), which is given
by the statistical average of possible configurations, i.e.,

σsu
11 (θ) =

1
4k1

(| f s
11(θ)|2 + 3| f t

11(θ)|2) (81)

where the factor three that multiplies the squared modulus of the scattering amplitude of
the triplet state is due to the existence of three different triplet states, which are scattered with
equal probability. Another quantity that we can extract from the calculation is the spin-flip (sf)
cross-section (da Paixão et al., 1996; Hegemann et al., 1991), which measures the probability of
the incident electron changes its spin after being scattered,

σ
s f
11 (θ) =

1
4k1
| f t

11(θ)− f s
11(θ)|2 (82)

In the last expression the factor three does not appear because only one of the triplet states can
change its spin 1√

2
(| ↑↓> +| ↓↑>).

5.2 Multi-channel scattering

A very important process that we can study by using the previous formalism is the
multi-channel scattering, which reveals the probability of an incident electron to promote an
excitation or the decay of electrons within the quantum dot. A priori the number of channels of
excitation and decay are infinite, but obviously when doing calculations, this number must be
truncated. In the case of the parabolic potential of a 2D quantum dot, the first excited energy
level is doubly degenerate with an angular momentum l = ± 1. To consider the possible
channels of scattering described by the ground state ε1 and by the first excited state ε2, we
must consider three coupled channels because the degeneracy of the first excited energy level
must be included in the calculation. As the probability of finding the electron in the ground
state initially is higher and as the excitation to the first excited state is more likely, we consider
only three coupled channels. The calculation details can be found in Ref.(Castelano, 2006).
Here we will present some numerical results in Section 6.2.

5.3 Scattering through the QD confined in the Q1D structure

As already discussed in Section 4, the Lippmann-Schwinger equation for the confined QD
includes several sub-bands. However, as a first example, we consider only the lowest
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transversal sub-band due to the confinement in the y-direction. Thus, the L-S equation for
a single sub-band is given by:

ψ1(x) =
eik1x
√

k1
+

2m∗

h̄2

∫
dx′G1(x, x′)V1,1(x

′)ψ1(x
′), (83)

where h̄2k2

2m∗ =
h̄2k2

1
2m∗ + ε1. The potential and Green’s function for the one sub-band case are

respectively given by

V1,1(x) =
∫

dyχ∗1(y)V(r)χ1(y), (84)

and

G1(x, x′) = −i
2k1

eik1|x−x′|. (85)

We also consider only one confined electron in the QD. The electron wave function of the
ground state of the QD can be approximated as

Φ1(x, y) =
1√

πlxly
exp

(
− x2

2l2
x
− y2

2l2
y

)
, (86)

where lx =
√

h̄/m∗ωx and ly =
√

h̄/m∗ωy. Here we consider the QD confining potential in
the x-direction as a finite parabolic one with confinement frequency ωx. The calculation of
the exchange potential is more complicated in the Q1D system. However, when we use the
wave function of the harmonic oscillator, we can partially obtain analytical expressions for the
exchange potential.

Just as in the elastic scattering in the 2D case without extra confinement, the exchange
potential is different when the two electrons form a singlet or a triple spin state. So, we have to
calculate separately the scattering for the different spin sates. The T matrices can be obtained
by the following equations:

Ts
11 =

∫ ∞

−∞
dx′ e

−ik1x′

√
k1

[
Vst

1,1(x
′) + Vex

1,1(x
′)
]

ψ11(x
′), (87)

and

Tt
11 =

∫ ∞

−∞
dx′ e

−ik1x′

√
k1

[
Vst

1,1(x
′)−Vex

1,1(x
′)
]

ψ11(x
′), (88)

where

Vst
1,1(x) =

∫
dyχ∗1(y)V

st(r)χ1(y), (89)

and

Vex
1,1(x)ψ11(x) =

∫
dyχ∗1(y)V

ex(r)χ1(y)ψ11(x). (90)

The static potential Vst
1,1(x) and the exchange potential Vex

1,1(x) are analog to the Eqs. (10) and
(11). The transmission probability for the electrons behaving as singlet and triplet states can
also be obtained, see Section 4.

414 Fingerprints in the Optical and Transport Properties of Quantum Dots



Electron Scattering Through a Quantum Dot 15

6. Results and analysis

In this section, we present the numerical results of scattering of the incident electron through a
quantum dot containing just one confined electron. The first step we have to do is to calculate
the eigenfunctions and the eigenenergies of the Hamiltonian Eq. (4) for N = 1, which has the
following form: [

− h̄2

2m∗ ∇
2 + VQD(r)

]
Φn = HQDΦn = εnΦn, (91)

where

VQD(r) =
{ 1

2 m∗ω2
0(r

2 − R2
0), r < R0,

0, r > R0.
(92)

Usually, the QD is modeled by an infinite parabolic potential VQD(r) =
1
2 m∗ω2

0r2. However,

(a) Energy Levels (b) Wave Functions

Fig. 2. (a) Energy levels and (b) wave functions of the infinite (black dashed curves) and
finite (blue solid curves) parabolic potential for R0 =2.37 a0. The indexes (k, l) denote the
radial and angular quantum numbers, respectively.

we are dealing with the scattering processes of an incident electron through the QD, we must
employ a potential that goes to zero at the infinity. Therefore, we use the finite parabolic
potential (Eq. (92)) as the QD potential. We solve Eq. (91) by expanding the wave function Φn

in the Fock-Darwin basis (Darwin, 1930; Fock, 1928). The eigenenergies and eigenfunctions are
determined by diagonalizing the matrix within the Fock-Darwin basis. Figure 2 (a) compares
the energy levels of the infinite and finite parabolic potential. From Figs. 2 (a) and (b) we
can see that the ground state (0, 0) and the first excited state (0,±1) of the finite parabolic
potential are not very different from the infinite parabolic potential for R0 =2.37 a0, where
a0 =

√
h̄/m∗ω0. However, the state (1, 0) is quite different for the two potentials. We also see

that the finite parabolic potential with R0 = 2.37a0 supports three discrete levels only.

6.1 Elastic scattering

The differential cross sections (DCS) for elastic scattering are shown in Figs. 3 (a), (b), and
(c) for different incident electron energies E0 = h̄2k2

0/2m∗= 0.6 meV, 1.7 meV, and 4.2 meV,
respectively . In order to understand the role of the electron spin in the scattering, we compare
the DCS due to the static potential (blue solid curve) with the spin unpolarized scattering
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Fig. 3. The elastic DCS’s obtained within the one-channel model for electron scattering by the
one-electron QD of h̄ω0 = 5 meV and r0 = 35 nm. The incident electron energies are
indicated in the figures. (a) The spin-unpolarized DCS with (the dashed curves) and without
(the solid curves) the exchange potential; (b) The DCS due to the singlet state (the dashed
curves) and the triplet state (the solid curves); and (c) The spin-flip DCS.

(black dashed curve) in Figure 3 (a). It is evident that the electron spin is of significant
contribution to low energy (E0=0.6 meV) and/or small scattering angles. The exchange effect
on the scattering originates from the two different coupling states between the incident and
the QD electron (i.e., the singlet and the triplet states) during the collision. The difference due
to the spin states for low-energy and small scattering angles is evident in Figure 3 (b), which
compares the DCS of the singlet (orange dashed curve) to that of the triplet (green solid curve)
state. For higher energies E0=1.7 meV and E0=4.2 meV, the DCS for singlet and for triplet are
similar. We observe that the spin-flip DCS in Figure 3 (c) reaches to maximum for angles close
to π/2 for E0=0.6 meV, while for E0=1.7 meV and E0=4.2 meV its maximum appears at angles
close to zero.

Figure 4 (a) shows the integral cross section (ICS) for the elastic scattering by static potential
(blue solid curve) and spin unpolarized (black dashed curve). Once again, the importance
of the dependence on the spin emerges at low energies. The ICS without including the
exchange potential is very different from that considering the electron exchange effects for
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Fig. 4. The elastic ICS as a function of the incident electron energy. (a) The spin-unpolarized
ICS with (the dashed curves) and without (the solid curves) the exchange potential; (b) The
ICS due to the singlet state (the dashed curves) and the triplet state (the solid curves); and (c)
The spin-flip ICS. The parameters for the QD are h̄ω0 = 5 meV and r0 = 35 nm

small incident electron energy. However, the ICS is dominated by the static potential at higher
energies.

The integral cross section for the singlet (orange dashed curve) and for the triplet (green solid
curve) are shown in Figure 4 (b). Note that in the both cases, as well as in the ICS of the static
potential (Fig. 4 (a)), a resonant scattering occurs. These resonances can be explained by the
analyzing the phase shifts as shown in Figs. 6 (a), (b), and (c). Generally, the phase shifts are
functions that smoothly vary as a function of energy. However, under certain circumstances
a sudden change of the phase shifts happens in a energy range and a dramatic change in
the cross section takes places for these energies, as can be verified by Eq.(43). A physical
explanation to this fact can be found when we consider the Schrödinger equation for a central
potential, in the basis of angular momentum (equivalent to Eq. (38)),

[
1
r

d
dr

(
r

d
dr

)
+

l2

r2 +
2m∗

h̄2 V(r)
]

ψl,l(k, r) + k2ψl,l(k, r) = 0. (93)

We may identify in Eq. (93) an effective potential Ve f = l2

r2 + 2m∗
h̄2 V(r), for each different

angular momentum l. Figure 5 shows this effective potential as a function of r for V(r) =
VQD(r). By assuming that there is a metastable state with energy Er, as sketched in Figure
5, one can prove that when the electron energy E0 reaches Er, a rapidly varying phase shift
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Fig. 5. The effective potential as a function of r is represented by the solid curve. Also, we
plot the QD potential (dotted curve) and centrifugal barrier (dashed curve).

occurs and a resonance appears in the ICS (Joachain, 1975). Because this resonance depends
on the potential’s shape V(r), it is usually called shape resonance.

So, the resonance that appears in the ICS for the static potential (Fig. 4 (a)) with energy E0 =
1.22 meV corresponds to the rapid fluctuation of the phase shift Δ2 shown in Figure 6 (a). In
this case Δ2 ≈ π/2 for the value of the energy E0 = 1.22 meV. We also note the appearance of
another broader resonance at E0 = 6.14 meV, which corresponds to the rapid increasing of Δ3
seen in Figure 6 (a). The singlet resonance (E0 =1.72 meV) and the triplet resonance (E0 =0.57
meV) shown in Fig. 4 (b) are also resulting from the rapidly varying Δ2 plotted in Figs.6 (b)
and (c).

In Figure 4 (c) we present the integral elastic spin-flip cross section. The spin-flip cross section
depends on the scattering amplitudes of the singlet and the triplet as shown by equation (82).
As the ICS modulus (the square of the scattering amplitudes) of singlet and triplet states are
very distinct at small energies, the spin-flip cross section is of maximum at the same energy
range, as shown in Figure 4 (c).

Figure (7) shows the elastic ICS varying the size of the QD, for the scattering by the static
potential (Coulomb without exchange). When the radius R0 is increased, the potential of QD
becomes more negative and the resonance energy Er (Fig. 5) decreases. Thus, we see that
the resonance peak in Fig. (7) shifts to lower energy values when R0 increases. Therefore,
the potential becomes deeper and the metastable state Er decreases, consequently, the shape
resonance shifts to lower energies. The shape resonance may disappear when the radius
is further increased. In this situation, the state Er becomes a real bound state instead of a
metastable sate.

6.2 Multi-channel scattering

When we consider the three-channel scattering, we have nine possibilities of scattering, i.e.,
the incident electron has initially energy E0 = h̄2k2

i /2m∗ and can be scattered with the energy

418 Fingerprints in the Optical and Transport Properties of Quantum Dots



Electron Scattering Through a Quantum Dot 19

(a) Static potential (b) Singlet state

(c) Triplet state.

Fig. 6. The phase shift Δl as a function of the incident electron energy for the partial waves
with angular momentum l =0, 1, 2, 3, and 4.

h̄2k2
f

2m =
h̄2k2

i
2m + ε i − ε f , with i and f =1, 2, and 3. If ε f = ε i the scattering is elastic and if ε f > ε i

there is a excitation. Finally, if ε f < ε i there is a decay.

In our case, as ε2 = ε3 the probability of exciting or decaying for either of one of these
two states is exactly the same. Thus, we calculate the cross section considering elastic and
inelastic scattering ε1 → ε2. Fig. 8 shows the ICS for the elastic channel (a) and for the
excitation channel (b). The black (blue) solid curve represents the spin-unpolarized potential
(static), while the dashed curves represent the respective ICS when only one channel is
considered. For E0 ≈7 meV, we notice that the ICS for the excitation channel in Fig. 8 (b)
has a maximum, while the elastic channel in Fig. 8(a) exhibits a minimum, which is obvious
from the probability current conservation. For E0 >8 meV, the behavior of the ICS shown in
Fig. 8 (a) is very similar to the results considering the elastic scattering (dashed curves).

In Figure 9, the ICS is shown for scattering by three-channels, where the green (orange) solid
curve represents the scattering by the potential of the triplet (singlet) and the dashed curves
represent their ICS when only one channel is considered. In the case of scattering for the triplet
state, we verify that when E0 >9 meV the elastic scattering (Figure 9 (a)) for three-channels
is equal to one-channel and therefore, the probability of excitation is practically null (Figure
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Fig. 7. The elastic ICS as a function of the incident electron energy, considering the static
potential for different sizes (R0) of the QD with h̄ω0 = 5 meV.

Fig. 8. The ICS for the three-channel scattering as a function of electron energy (R0 =35 nm
and h̄ω0 = 5 meV). (a) Elastic channel and (b) excitation channel from the ground state to the
first excited state (l = ±1). Black (blue) curve shows the ICS for the spin-unpolarized (static)
scattering. Dashed curves are the respective ICS within the one-channel scattering
approximation.
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Fig. 9. The same as Fig.8 but now the orange (green) curve shows the ICS for the triplet
(singlet) spin state. Dashed curves are the respective ICS within the one-channel scattering
approximation.

Fig. 10. The same as Fig.8 but now for the spin-flip ICS. The dashed curve is the respective
spin-flip ICS within the one-channel approximation.

9 (b)). In the case of the singlet state, the behavior is contrary, i.e., when E0 >9 meV the
excitation probability begins to increase (Fig 9 (b)), thus showing that the scattering may be
completely different depending on the spin state of electrons.
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In Figure 10, the spin-flip ICS is shown considering three-channels of scattering, where the
solid curve represents the scattering from (a) elastic and (b) excitation channel. The dashed
curve represents the spin-flip ICS considering only one channel of scattering. The spin-flip
ICS for one-channel presents a maximum for E0 ≈ 8 meV and a minimum in the same energy
range for the excitation channel. We also found that for E0 > 9 meV, the spin-flip cross section
of three-channels is similar to the elastic scattering (dashed curve).

6.3 Scattering in the quasi-one-dimensional system

In this section, we apply the MCF to solve the Lippmann-Schwinger equation for the electron
scattering through the QD confined in the Q1D structure. The convergency of MCF is very
accurate in this case and achieves a precision of 10−4 for the transmission probability in
approximately 20 interactions. To probe our numerical method, we consider one electron
confined in the QD with radius R0=45 nm. Moreover, two different cases for confined
potential in x-direction with h̄ωx =5 meV and h̄ωx =3 meV are tested. The obtained
results are shown in Fig. 11. In both cases, the screening length is fixed as λ−1 = lx and
the confinement frequency the y-direction is set different from that in the x-direction with
ωy = 1.7ωx. In Fig. 11 (a) and (b), we plot the transmission probability as a function of
the incident electron energy assuming different scattering situations: (i) the QD potential
only (black dotted curve), (ii) the static potential (red dash-dotted curve), (ii) the singlet state
(orange dashed curve), and (iv) the triplet state (green solid curve). From the results, we see
that the confinement potential (or frequency ωx) of the QD strongly affects the transmission
probability through the QD. Furthermore, the Coulomb potential alters considerably the
scattering. The electron-electron exchange potential splits the resonant peak into two due to
different spin states of the system. It shows that, when the incident electron has anti-parallel
(parallel) spin with the confined electron in the QD, the transmission probability is enhanced
(suppressed) significantly at low energy. This is a kind of spin filter effect if we could control
the spin state of the confined electron.

(a) h̄ωx = 3 meV (b) h̄ωx = 5meV.

Fig. 11. Transmission probability as a function of the incident electron’s energy assuming
different scattering situations: only the QD potential (black dotted curve), the static potential
(red dash-dotted curve), the singlet state (orange dashed curve), and the triplet state (green
solid curve).
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7. Conclusion remarks

We presented a theoretical approach to calculate the electron scattering and transport
through an N-electron QD embedded in a 2D and a Q1D semiconductor structure. The
multichannel L-S equations are solved numerically using the iterative method of continued
fractions considering the electron-electron interactions. From this method, we can study the
multichannel scattering including the excited states of the QD. The electron transport property
due to elastic and inelastic scattering, as well as its dependence on the spin states of the system
can be obtained in great precision.

We applied this method to the case where only one electron is confined in the QD. The results
indicate a rapid convergency of the numerical method for the electron scattering in both 2D
and 1D systems. We found that the electron-electron exchange effects are relevant when the
kinetic energy of incident electron is small. For a QD of more electrons, we need firstly to
find the eigenstates of the QD with electron-electron interactions. In principal, the scattering
processes can be calculated according to the total wave-function defined by Eq. (6).
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1. Introduction

As the dimension of devices reduces to nano-scale regime, the spin-dependent transport (SDT)
and spin effects in quantum dot (QD) based systems become significant. These QD based
systems have attracted much interest, and can potentially be utilized for spintronic device
applications. In this chapter, we consider nano-scale spintronic devices consisting of a QD
with a double barrier tunnel junction (QD-DTJ)(schematically shown in Fig. 1). The DTJ
couples the QD to two adjacent leads which can be ferromagnetic (FM) or non-magnetic (NM).

Fig. 1. QD-DTJ system consists of a QD coupling to two electrodes via double tunnel
junctions. Vb is the bias voltage, under which the electrons tunnel through the QD one by
one.

In a QD-DTJ system, the electron tunneling is affected by the quantized energy levels
of the QD, and can thus be referred to as single electron tunneling. The single
electron tunneling process becomes spin-dependent when the leads or the QD is a spin
polarizer, where the density of states (DOS) for spin-up and spin-down electrons are
different. The interplay of SDT with quantum and/or single electron charging effects
makes the QD-DTJ systems interesting. In such QD-DTJ systems, it is possible to observe
several quantum spin phenomena, such as spin blockade (Shaji et al. (2008)), Coulomb
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blockade (CB) (Bruus & Flensberg (2004)), cotunneling (Weymann & Barnaś (2007)), tunnel
magnetoresistance (TMR) (Rudziński & Barnaś (2001)), spin transfer torque (Mu et al. (2006))
and Kondo effect (Katsura (2007); Lobo et al. (2006); Potok et al. (2007)). The complex spin
and charge transport properties of QD-DTJ systems have attracted extensive theoretical
(Bao et al. (2008); Braig & Brouwer (2005); Jauho et al. (1994); Kuo & Chang (2007); Ma et al.
(2008); Meir & Wingreen (1992); Meir et al. (1991; 1993); Mu et al. (2006); Qi et al. (2008);
Qu & Vasilopoulos (2006); Souza et al. (2004); Zhang et al. (2002); Zhu & Balatsky (2002))
and experimental ((Deshmukh & Ralph, 2002; Hamaya et al., 2007; Pasupathy et al., 2004;
Potok et al., 2007)) investigations recently. These studies may ultimately lead to the utilization
of such devices in diverse applications such as single spin detector (Wabnig & Lovett (2009))
and STM microscopy (Manassen et al. (2001)).

The theoretical study of the SDT through these DTJ systems are mainly based on two
approaches, namely the master equation (ME) approach and the Keldysh nonequilibrium
Green’s function (NEGF) approach. For coherent transport across QD-DTJ devices, quantum
transport methods are applied, such as the linear response (Kubo) method applicable for small
bias voltage, and its generalization, the NEGF method for arbitrary bias voltage. Since the
objective of the study in this Chapter is for device application over a wide voltage range,
we focus on the latter. The NEGF method has been employed to analyze various transport
properties of QD-DTJ systems, such as TMR, tunneling current (Weymann & Barnaś (2007))
and conductance. These analyses were conducted based on the Anderson model (Meir et al.
(1993); Qi et al. (2008)), for collinear or noncollinear (Mu et al. (2006); Sergueev et al. (2002);
Weymann & Barnaś (2007)) configurations of the magnetization of the two FM leads, or in
the presence of spin-flip scattering in the QD (Lin & D.-S.Chuu (2005); Souza et al. (2004);
Zhang et al. (2002)).

In this Chapter, based on the NEGF approach, we study the SDT through two QD-DTJ
systems. In Section. 2, the electronic SDT through a single energy-level QD-DTJ is theoretically
studied, where the two FM leads enable the electron transport spin-dependent. In the study,
we systematically incorporate the effect of the spin-flip (SF) within the QD and the SF during
tunneling the junction between the QD and each lead, and consider possible asymmetry
between the coupling strengths of the two tunnel junctions. Based on the theoretical model,
we first investigate the effects of both types of SF events on the tunneling current and TMR;
subsequently, we analyze the effect of coupling asymmetry on the QD’s electron occupancies
and the charge and spin currents through the system (Ma et al. (2010)).

In Section. 3, we studied the SDT through a QD-DTJ system with finite Zeeman splitting (ZS)
in the QD, where the two leads which sandwich the QD are NM. The spin-dependence of the
electron transport is induced by the ZS caused by the FM gate attached to the QD. A fully
polarized tunneling current is expected through this QD-DTJ system. The charge and spin
currents are to be analyzed for the QD-DTJ systems with or without ZS.

2. Single energy level QD

The QD-DTJ device under consideration is shown in Fig. 2. It consists of two FM leads
and a central QD in which a single energy level is involved in the electron tunneling
process. The SDT through the QD-DTJ is to be theoretically modeled via the Keldysh NEGF
approach (Caroli et al. (1971); Meir & Wingreen (1992)). In the transport model, the limit of
small correlation energy is assumed, in the case where the energy due to electron-electron
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interaction in the QD is much smaller than the thermal energy or the separation between the
discrete energy levels in the QD (Fransson & Zhu (2008)).

2.1 Theory

For the QD-DTJ device shown in Fig. 2, the full Hamiltonian consists of the lead Hamiltonian
Hα, the QD Hamiltonian Hd, and the tunneling Hamiltonian Ht. The explicit form of the
Hamiltonian is given by

H = ∑
α

Hα + Hd + Ht, (1)

where

Hα = ∑
kσ

εαkσa†
αkσaαkσ, (2)

Hd = ∑
σ

εσσa†
σaσ + ∑

σ
εσσ̄a†

σaσ, (3)

Ht = ∑
αkσ

(
tαkσ,σa†

σaαkσ + t∗αkσ,σa†
αkσaσ

)
+ ∑

αkσ

(
tαkσ,σ̄a†

σaαkσ + t∗αkσ,σ̄a†
αkσaσ

)
. (4)

In the above, εσσ is the single energy level in the QD, εσσ̄ denotes the coupling energy of the
spin-flip within quantum dot (SF-QD) from spin-σ to spin-σ̄ state, tαkσ,σ (tαkσ,σ̄) is the coupling
between electrons of the same (opposite) spin states in the lead and the QD. α = {L, R} is the
lead index for the left and right leads, σ = {↑, ↓} stands for up- and down-spin, and k is the
momentum, εαkσ represents the energy in the leads. The operators a†

ν (aν) and a†
σ (aσ) are the

creation (annihilation) operators for the electrons in the leads and the QD, respectively.

2.1.1 Tunneling current and tunnel magnetoresistance

The tunneling current through the QD-DTJ system can be expressed as the rate of change of
the occupation number N = ∑σ a†

σaσ in the QD,

I = eṄ =
ie
h̄
〈[H, N]〉. (5)

Without loss of generality, we can calculate the tunneling current in Eq. (5) by considering the
tunneling current IL through the left junction between the left lead and the QD. Evaluating
the commutator in Eq. (5) in terms of creation and annihilation operators gives

I = IL =
ie
h̄ ∑

Lkσ,σ′

(
tLkσ,σ′〈a†

Lkσaσ′ 〉 − t∗Lkσ,σ′〈a†
σ′aLkσ〉

)
. (6)

In Eq. (6), one may replace the creation and annihilation operators by the lesser Green’s
functions, which are defined as G<

σ′,Lkσ(t) = i〈a†
Lkσaσ′(t)〉 and G<

Lkσ,σ′(t) = i〈a†
σ′aLkσ(t)〉

(Meir & Wingreen (1992)). Eq. (6) then takes the form of

IL =
e
h̄ ∑

Lkσ,σ′

(
tLkσ,σ′G

<
σ′,Lkσ(t)− t∗Lkσ,σ′G

<
Lkσ,σ′(t)

)
. (7)

After performing a Fourier transform on Eq. (7), G<
Lkσ,σ′(ε) can be expressed in form

of the left lead’s and QD’s Green’s functions, under the assumption of non-interacting
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Fig. 2. (a) Schematic diagram of the QD-DTJ structure consisting of a QD sandwiched by
two FM leads; (b) the schematic energy diagram for the system in (a). In (a), the arrows in the
leads indicate magnetization directions, which can either be in parallel (solid) or antiparallel
(dashed) configuration, Vb denotes the bias between the two leads, λ characterizes the
strength of the SF-QD, tLk↑,↓ describes the SF-TJ from the up-spin state in left lead and the
down-spin state in the QD, tLk↑,↑ shows the coupling between the same electron spin states
in left lead and QD, and β = tRkσ,σ/tLkσ,σ represents the coupling asymmetry between the
left and right tunneling junctions. In (b), μL and μR are the chemical potentials of left and
right leads respectively, and εd (εd0) denotes the single energy level of the QD with or
without bias voltage.
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leads. Taking into account the contour-ordered integration over the time loop, the
corresponding Dyson’s equations for G<

Lkσ,σ′(ε) can then be obtained (Mahan (1990)),

i.e., G<
Lkσ,σ′(ε) = ∑σ′′ tLkσ,σ′′[gt

Lkσ,Lkσ(ε)G
<
σ′′,σ′(ε) − g<Lkσ,Lkσ(ε)G

t
σ′′,σ′(ε)] and G<

σ′,Lkσ(ε) =

∑σ′′ t
∗
Lkσ,σ′′ [g

<
Lkσ,Lkσ′(ε)G

t
σ′′,σ′(ε) − gt

Lkσ,Lkσ(ε)G
<
σ′′σ′(ε)], where Gt = θ(t)G> + θ(−t)G< and

Gt = θ(−t)G> + θ(t)G< are the time-ordered and anti-time-ordered Green’s functions
respectively, G<

σ′′,σ′(t) = −i〈a†
σ′aσ′′(t)〉, and the g’s are the corresponding unperturbed Green’s

functions of the leads, whose lesser Green’s function and greater Green’s function are in form
of g<Lkσ,Lkσ(ε) = i2π fLσ(ε)δ(ε − εLσ) and g>Lkσ,Lkσ(ε) = −i2π[1− fLσ(ε)]δ(ε − εLσ), where

fLσ(ε) = (1 + exp( ε−μL
kBT ))−1 is the Fermi-Dirac function, μL is the chemical potential, εLσ is

the energy for electrons with spin σ in the left lead, kB is the Boltzmann constant and T is the
temperature of the device. With this, the current in Eq. (7) can be expressed in terms of the
Green’s functions wholly of the leads and the QD, i.e.,

IL =
e
h̄ ∑

Lkσ,σ′

∫ ∞

−∞

dε

2π
{tLkσ,σ′ ∑

σ′′
t∗Lkσ,σ′′[g

<
Lkσ,Lkσ′(ε)G

t
σ′′,σ′(ε)− gt

Lkσ,Lkσ(ε)G
<
σ′′σ′(ε)]

−t∗Lkσ,σ′ ∑
σ′′

tLkσ,σ′′[g
t
Lkσ,Lkσ(ε)G

<
σ′′,σ′(ε)− g<Lkσ,Lkσ(ε)G

t
σ′′,σ′(ε)]}. (8)

By applying the identities Gt + Gt = G< + G> and G> − G< = Gr − Ga to Eq. (8), we obtain
after some algebra (Mahan (1990)):

IL =
ie
h̄ ∑

Lkσ,σ′

∫ ∞

−∞

dε

2π
tLkσ,σ′|ε=εν t∗Lkσ,σ′′|ε=εν{ fν(ε)[Gr

σ′,σ′′(ε)− Ga
σ′,σ′′(ε)] + G<

σ′,σ′′(ε)}. (9)

We now introduce the density of states for the electrons in the FM leads, denoted by ρασ(ε).
For the electrons in the left FM lead, the density of states is ρLσ(ε) =

[
1 + (−1)σ pL

]
ρL0(ε),

while for the electrons in the right FM lead, it is ρRσ(ε)=
[
1 + (−1)a+σ pR

]
ρR0(ε), where σ =

{0, 1} for spin-up/down electrons, a = {0, 1} for parallel/antiparallel alignment of the two
FM leads’ magnetization, ρα0 =

(
ρα↑ + ρα↓

)
/2, and pα is the polarization of the lead α. For

the summation over k in Eq.(9), one may apply the continuous limit approximation ∑{Lkσ} →
∑{Lσ}

∫
dε ρLσ(ε). The current then can be expressed as

IL =
ie
h̄ ∑

ν={Lσ}

∫
dε tr

{
fν(ε)Γν [Gr(ε)−Ga(ε)] + ΓνG<(ε)

}
, (10)

where Γν and G(r,a,<)(ε) are (2× 2) coupling and Green’s function matrices, given by

ΓLσ(ε) = 2πρLσ(ε)

( |tLσ,σ(ε)|2 |t∗Lσ,σ(ε)tLσ,σ̄(ε)|
|t∗Lσ,σ̄(ε)tLσ,σ(ε)| |t∗Lσ,σ̄(ε)tLσ,σ̄(ε)|

)
, (11)

G(r,a,<)(ε) =

⎛
⎜⎝

G(r,a,<)
σ,σ (ε) G(r,a,<)

σ̄,σ (ε)

G(r,a,<)
σ,σ̄ (ε) G(r,a,<)

σ̄,σ̄ (ε)

⎞
⎟⎠ . (12)
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In Eq.(11), tLσ,σ(tLσ,σ̄) applies for the case of spin-σ electron tunneling to the spin-σ
(σ̄) state with (without) spin-flip. In low-bias approximation, ΓLσ(ε)=2πρLσ(ε)|t∗Lσ,σ′(ε)

tLσ,σ′′(ε)| is taken to be constant (zero) within (beyond) the energy range close to the
lead’s electrochemical potential where most of the transport occurs, i.e., ε ∈ [μα −
D, μα + D], where D is constant (Bruus & Flensberg (2004)). Based on the kinetic equation
(Meir & Wingreen (1992)), the lesser Green’s function G<

σ′,σ′′(ε) can be written as G<
σ′,σ′′(ε) =

iGr
σ′,σ′′(ε)G

a
σ′,σ′′(ε)[ΓLσ fLσ(ε) + ΓRσ fRσ(ε)], where Gr

σ′,σ′′(t) = −iθ(t)〈{aσ′ ,† aσ′′(t)}〉 and the
advanced Green’s function Ga

σ,σ(ε) = [Gr
σ,σ(ε)]

∗. Γασ is the aforementioned coupling strength,

and fασ =
(

1 + exp( ε−μασ

kBT )
)−1

is the Fermi-Dirac function of lead α, with μασ being the
chemical potential of that lead. When a bias voltage of Vb is between the two leads, the leads’
electrochemical potentials are, respectively, given by μLσ = 0 and μRσ = −eVb.

Considering that the current from the left lead to the QD is equal to the current from the QD
to the right lead, one may calculate the current in a symmetric form, i.e., I = IL+IR

2 . The final
form for the total current is then given by

I =
e
h ∑

σ

∫
dε [ fLσ(ε)− fRσ(ε)] tr{GaΓRσGrΓLσ}. (13)

In this QD-DTJ system, there exists the tunnel magnetoresistance (TMR) effect, which is
caused by the difference between the resistance in parallel and antiparallel configurations
of the two FM leads’ magnetization. The TMR is given by

TMR =
RAP − RP

RP =
IP − IAP

IAP , (14)

where IP (IAP) is the tunneling current in parallel (antiparallel) configuration of the two leads’
magnetization.

During the course of analyses, we would also consider the state of the QD, which is
characterized by its occupancy. The QD’s occupancy with electrons of spin-σ can be obtained
by considering the lesser Green’s function of the QD, i.e.,

〈nσ〉 = 1
2π

Im
∫

dεG<
σ,σ(ε). (15)

2.1.2 Retarded Green’s function

To calculate the tunneling current in Eq. (13), one has to obtain the explicit expression
for the retarded Green’s functions Gr

σσ′(ε) of the QD. This can be done by means of the
(equation-of-motion) EOM method. By definition, the general form of a retarded Green’s
function is given by Gr

σ,σ′(t) = −iθ(t)〈{aσ(t), a†
σ′ }〉. In the EOM method, the analytical

expression for Gr
σ,σ′(t) is obtained by firstly differentiating Gr

σ,σ′(t) with respect to time. This
yields

i∂tGr
σ,σ′(t) = δ(t− t′)δσσ′ − iθ(t− t′)〈{i∂taσ(t), a†

σ′ }〉

= δ(t− t′)δσσ′ − iθ(t− t′)〈{−[H, aσ], a†
σ′ }〉. (16)
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Based on Eq. (16), for the QD-DTJ system with Hamiltonian in Eq. (1), one may obtain a
closed set of equations involving Gr

σ,σ′(ε) after Fourier transform,

1 = (ε + iη− εσσ)Gr
σ,σ − ∑

ν={α,k,σ′}
tν,σGr

ν,σ − εσ̄σGr
σ̄,σ, (17)

0 = (ε + iη− εσ̄σ̄)Gr
σ̄,σ − ∑

ν={α,k,σ′}
tν,σ̄Gr

ν,σ − εσσ̄Gr
σ,σ, (18)

0 = (ε + iη− εν)Gr
ν,σ − ∑

σ′={σ,σ̄}
t∗ν,σ′G

r
σ′,σ, where ν = {α, k, σ}, (19)

0 = (ε + iη− εν)Gr
ν,σ − ∑

σ′={σ,σ̄}
t∗ν,σ′G

r
σ′,σ, where ν = {α, k, σ̄}. (20)

By solving the equation array of Eqs. (17) to (20), one reaches the explicit expressions for the
retarded Green’s functions (those in Eq. 12) of the QD:

Gr
σ,σ =

1

ε + iη− εσσ − Σσ
σσ(ε)− Σσ̄

σσ(ε)−
∏

σ′={σ,σ̄}

(
εσ̄′σ′ + Σσ′

σ′σ̄′(ε) + Σσ̄′
σ̄′σ′(ε)

)

ε + iη − εσ̄σ̄ − Σσ
σ̄σ̄(ε)− Σσ̄

σ̄σ̄(ε)

, (21)

Gr
σ̄,σ =

1

−εσ̄σ − Σσ
σσ̄(ε)− Σσ̄∗

σσ̄(ε) +

∏
σ′={σ,σ̄}

(
ε + iη− εσ̄′σ′ − Σσ′

σ̄′σ̄′(ε)− Σσ̄′
σ̄′σ̄′(ε)

)

εσσ̄ + Σσ
σ̄σ(ε) + Σσ̄∗

σσ̄(ω)

, (22)

where the self energy Σσ
σ′σ′′(ε) = ∑{α,k}

tαkσ,σ′ t∗αkσ,σ′′
ε+iη−εαkσ

, Σσ∗
σ′σ′′(ε) = ∑{α,k}

t∗
αkσ,σ′ tαkσ,σ′′
ε+iη−εαkσ

, with
σ, σ′, σ′′ ∈ {↑, ↓}.

2.2 Results and discussion

Based on the electron transport model developed in Sec. 2.1, one may analyze the SDT
properties, such as the spectral functions, the tunneling charge current, spin current, the TMR
and the electron occupancies of the QD. The SDT model enables one to investigate the effects
of the SF-QD and SF-TJ events and the effect of the coupling asymmetry (CA) on the SDT
properties as well.

To focus on the above effects, one may assume that, i) proportional and spin independent
lead-QD coupling across the two junctions, i.e., tαk↑,↑=tαk↓,↓=tαkσ,σ=tα, and tR=βtL=t; ii)
junction and spin independent strength of SF-TJ, i.e., tαk↑,↓=tαk↓,↑=tαkσ,σ̄=vα, and vR=βvL = v;
and iii) spin independence of SF-QD, i.e., ε↑↓=ε↓↑=λ, iv) the chemical potential of the left
and right leads are μL=0, μR = −eVb; and v) spin independence of the energy level of the

QD, i.e., εσσ=εσ̄σ̄=εd= εd0 − eVb
β2

1+β2 , where εd0 is the QD’s energy level without bias voltage.
Based on the assumptions i)-v) and Eq. (22), one can readily deduce the spin symmetry of
the off-diagonal Green’s functions, i.e., Gr

↑,↓ = Gr
↓,↑ = Gr

σ,σ̄. For simplicity, in the following
discussion, the form of Gr

σσ′ is used to replace the form of Gr
σ,σ′ for retarded Green’s function.
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2.2.1 Spin-flip effects

Firstly, one may evaluate the four elements of the retarded Green’s function (GF) matrix [given
in Eq. (12)], Gr

↑↑, Gr
↑↓, Gr

↓↑ and Gr
↓↓. Based on Eqs. (21) and (22), one may obtain the respective

spectral functions, −2ImGr
↑↑, −2ImGr

↑↓, −2ImGr
↓↑, and −2ImGr

↓↓. Spectral functions provide
information about the nature of the QD’s electronic states which are involved in the tunneling
process, regardless whether the states are occupied or not. The spectral functions can be
considered as a generalized density of states.

If one neglects the SF-QD or SF-TJ events in the QD-DTJ system, there is no mixing of
the spin-up and spin-down electron transport channels. In such QD-DTJ system, the two
off-diagonal Green’s functions, Gr

σσ̄(σ = {↑, ↓}) become zero [this can be confirmed by
considering Eq. (22)], and so are their respective spectral functions. Thus, we focus on
the spectral functions corresponding to the diagonal components of the retarded GF matrix.
Those spectral functions are analyzed as a function of energy under both parallel and
antiparallel configuration of the two FM leads’ magnetization, in Figs. 3(a) to (d). A broad
peak is observed corresponding to the QD’s energy level (ε = εd). The broad peak can be
referred to as “QD resonance". The broadening of the QD resonance is caused by the finite
coupling between the QD and the leads, since the QD resonance is a δ function for an isolated
QD with no coupling to leads. The width of the QD resonance reflects the strength of coupling
between QD and leads; the stronger the coupling is, the broader the energy spread is, hence,
a wider peak.

Under zero-bias [shown in Figs. 3 (a) and (b)], one may note three distinct features of the
spectral functions:

1. A second resonance peak which corresponds to the leads’ potentials, μL = μR = 0 eV. The
peak can be referred to as the “lead resonance".

2. The lead resonance for the spin-up spectral function (−2ImGr
↑↑) has a broader and lower

profile compared to that of the spin-down spectral function, when the QD-DTJ system is in
the parallel configuration. This indicates that the excitation at the lead energy has a larger
energy spread for spin-up carriers due to the polarization of the lead.

3. The spin-up and spin-down spectral functions are identical in the antiparallel alignment,
due to the spin symmetry of the system in antiparallel configuration.

The spectral functions under an finite bias voltage (Vb = 0.2 eV) are shown in Figs. 3 (c) and
(d). It is observed that,

1. the lead resonance splits into two peaks at the respective left lead and right lead potentials,
ε = μL = 0 and ε = μR = −eVb = −0.2 eV.

2. In the parallel configuration, the lead resonance of the spin-down electrons is higher
(lower) than that of the spin-up electrons at μL (μR). This is due to the spin-dependence of
the electron tunneling between leads and QD.

3. The antiparallel alignment of leads’ magnetization gives rise to similar magnitude of
the two lead resonances for both spin-up and down spectral functions, due to the spin
symmetry of the two spin channels.

Next, one may investigate the SF-TJ effects on the electron transport through the QD-DTJ
system, where the SF-TJ strength v 
= 0. Figure 4 shows the effect of SF-TJ on the spectral
function of diagonal GFs. With the SF-TJ effects, both the QD resonance and the lead
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Fig. 3. Spectral functions for spin-up (solid line) and spin-down (dashed line) retarded
Green’s functions, as a function of electrons’ energy, in parallel and antiparallel case. Other
parameters are t=0.5 eV, υ=0, εd0 = 0.3eV, ρ0 = 0.7(eV)−1, pL = pR = 0.7, λ = 0, β = 1, T =
0.3 K.

resonance at ε = 0 are enhanced while the lead resonance at ε = −eVb is suppressed. This
indicates that the increasing SF-TJ helps the tunneling to proceed primarily in the vicinity of
the QD’s energy level, resulting in an effective decrease in the coupling between the same spin
states in leads and QD.

Based on the SDT model, one may analyze the effects of the SF-QD events (denoted by λ)
on the spectral functions of the diagonal retarded GFs( Gr

↑↑ and Gr
↓↓) of the QD-DTJ system,

for both parallel and antiparallel alignments, as shown in Figure 5. At the QD energy level
εd = 0.2 eV, the presence of the SF-QD causes a symmetric split of the QD resonance, resulting
in the suppression of tunneling via the lead resonances. The splitting of the QD resonance
indicates that the two effective energy levels within the QD are involved in the tunneling
process. This split translates to an additional step in the I − V characteristics, which will be
discussed later in Fig. 7.

Considering the off-diagonal GF’s (Gr
σσ̄), the spectral functions are ploted in Figure 6, for both

parallel and antiparallel alignment, under varying SF-TJ strengths (ν) and SF-QD strengths
(λ). As shown in Figs. 6(a)-(d), without SF-TJ or SF-QD effects, the off-diagonal spectral
functions vanish (the solid lines), i.e., the transport proceeds independently in the spin-up
and spin-down channels. The presence of either the SF-TJ (ν > 0) or the SF-QD (λ 
= 0)
enhances the magnitudes of the off-diagonal spectral functions monotonically, indicating
stronger mixing of the tunneling transport through the two spin channels.
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Fig. 4. Spectral functions for the diagonal retarded Green’s functions, as a function of
electrons’ energy, with varied SF-TJ strength (υ) between leads and QD, in (a)-(b) parallel and
(c)-(d) antiparallel alignment of two leads’ magnetization, where λ = 0 eV, Vb=0.2 V. Other
parameters are the same with those in Fig. 3.

The individual effects from SF-TJ or SF-QD on the tunneling current and the TMR are then
investigated, as shown in Figs. 7.

The I−Vb characteristics in Figs. 7(a)-(b) and Figs. (d)-(e) show a step at the threshold voltage
Vth , which is required to overcome the Coulomb blockade (CB). The threshold voltage is given
by Vth = 2εd0. Considering the bias voltage regions, one may find the following features of
the I −Vb characteristics,

1. Within the sub-threshold bias range (V < Vth), the current is still finite due to thermally
assisted tunneling at finite temperature.

2. The sub-threshold current is particularly large in the parallel configuration, due to the
stronger lead-QD coupling and hence a greater energy broadening of the QD’s level.

3. Overall, the parallel current exceeds the antiparallel current for the entire voltage range
considered, due to the nonzero spin polarization of the FM lead.

4. Beyond the threshold voltage (i.e. Vb � Vth), the tunneling current saturates since only a
single QD level is assumed to participate in the tunneling transport.

In the presence of SF-TJ, the tunneling currents in the parallel and antiparallel configurations
are found to be significantly enhanced for bias voltage exceeding the threshold (Vb > Vth), as
shown in Figs. 7(a) and (b). The enhancement in current stems from the overall stronger
coupling between the lead and the QD. Additionally, the degree of enhancement of the
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Fig. 5. Spectral function as a function of electrons’ energy, with varied SF-QD strength (λ), in
(a)-(b) parallel and (c)-(d) antiparallel cases, where υ = 0 eV. Other parameters are the same
with those in Fig. 3.

tunneling current is more pronounced for the parallel alignment of the FM leads. This results
in an enhancement of the TMR for the voltage range above the threshold, as shown in Fig.
7(c).

When SF-QD events are present in the system, two new features show up in the I − Vb
characteristics, in Figs. 7 (d) and (e). First, the current step at the threshold bias Vth splits into
two, at Vb = Vth ± λ, respectively. The presence of the additional step is due to the splitting
in the QD resonances observed in the spectral functions of Fig. 5. Secondly, the presence of
SF-QD suppresses the current saturation value at large bias voltage (i.e., Vb � Vth + λ). The
decrease is more pronounced in the antiparallel configuration, resulting in the enhancement
of the TMR with the increasing SF-QD probability, as shown in Fig. 7(f).

When both SF processes (Fig. 8) exist in the QD-DTJ system, the two types of SF have
competing effects on the tunneling current at large bias voltage exceeding the threshold.
The SF-TJ (SF-QD) tends to enhance (suppress) the tunneling current within the bias voltage
region exceeding the threshold voltage. This competitive effect is shown for the overall I-Vb
characteristics in Figs. 8 (a)-(b). Evidently, the effect caused by one SF mechanism is mitigated
by the other for both parallel and antiparallel alignments. However, both SF mechanism
contribute to the asymmetry of tunneling current between the parallel and antiparallel cases,
leading to an additive effect on the TMR for voltage bias region beyond the threshold voltage,
as shown in Fig. 8 (c). The competitive effect on current and collaborative effect on TMR make
it possible to attain simultaneously a high TMR and tunneling current density.
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Fig. 6. (a),(b): Off-diagonal spectral functions as a function of energy, for varying SF-TJ
strength (υ) between leads and QD, in the absence of SF-QD (i.e., λ = 0
eV).(c),(d):Off-diagonal Spectral functions as a function of electrons’ energy, with varied
SF-QD strength (λ), in parallel (left) and antiparallel (right) case, where υ=0 eV. Other
parameters are the same with those in Fig. 3.

2.2.2 Coupling asymmetry effects

Recent experimental studies (Hamaya et al. (2009; 2007)) of QD-DTJ structures revealed that
the SDT characteristics are strongly dependent on the coupling asymmetry (CA) between the
two junctions. Such asymmetry is inherent in the sandwich structure, given the exponential
dependence of the coupling strength on the tunnel barrier width.

One may study the effect of the junction CA on the overall spin and charge current
characteristics of the QD-DTJ system. The degree of the CA is characterized by the ratio of
the right and left junction coupling parameter. The CA is denoted by β and β = tRkσ,σ/tLkσ,σ.
The spin-up (spin-down) components of the tunneling current can be represented as I↑

(
I↓
)
,

based on which the spin current is defined to be the difference between the two components,
Is = I↑ − I↓. In the following, one may focus on the parallel alignment of the magnetization
of the two leads of the QD-DTJ system, since the magnitude of the spin current is the greatest
in this case (see Mu et al. (2006)).

For simplicity but without loss of generality, one may assume β to be spin-independent, i.e,
β = tRk↑,↑/tLk↑,↑ = tRk↓,↓/tLk↓,↓ = tRkσ,σ/tLkσ,σ. In Sec. 2.1, the coupling strength is defined as

436 Fingerprints in the Optical and Transport Properties of Quantum Dots



Coherent Spin Dependent Transport in QD-DTJ Systems 13

 

                           

                      
 

                     
            
 
 

 
 

0
1
2
3
4
5
6
7
8
9

0 0.5 1
0

0.5

1

1.5

2

0 0.5 1

0

0.5

1

1.5

2

2.5

0 0.5 1
0

0.5

1

0 0.5 1

0
0.5

1
1.5

2
2.5

3

0 0.5 1
0

0.5

1

1.5

2

0 0.5 1

(a) 

IP
(

A
) 

Vb (V) 
(b) 

IA
P
(

A
) 

Vb (V) 

(c) 

TM
R

 

Vb (V) 

(d) 

IP
(

A
) 

Vb (V) 

(e) 

IA
P
(

A
) 

Vb (V) 

(f) 

TM
R

 

Vb (V) 

   (eV)           0              0.02             0.03   (eV)             0              0.01             0.03 

Fig. 7. Current as a function of bias voltage, with varying SF-TJ strength (υ) between the lead
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(d) parallel and (e) antiparallel cases. (c)/(f): Tunnel magnetoresistance (TMR ) as a function
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and in plots (d)-(f), υ=0, while other parameters are the same with those in Fig. 3.

Γασ =2πρασ|t∗αkσ,σ tαkσ,σ| =[1 + (−1)σ pα] 2πρα0|t∗αkσ,σ tαkσ,σ| = [1 + (−1)σ pα] Γα0. If assuming
identical intrinsic electron density of states and identical polarization of the two leads, i.e.,
ρα0 = ρ0, pα = p, one may obtain that β =

√
ΓRσ/ΓLσ =

√
ΓR0/ΓL0.

We consider the I-V characteristics for the charge current and spin current, shown in Fig.
9 for two different CA values. These two values were chosen so that β1 = 1/β2, meaning
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√
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ΓL0 = 0.012 eV and ΓR0 = ΓL0× β1
2 for β1 case, ΓL0 = 0.006 eV and ΓR0 = ΓL0 × β1

2 for β2
case, εd0 = 0.3eV, pL = pR = 0.7, T = 100 K, υ=0 eV, λ=0 eV.
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parameters are the same with those Fig. 9.

that the left (right) junction in β1 system is the right (left) junction for β2 system. It is found
that when the coupling strength of the right junction is four times as strong as that of the
left junction, i.e., β = 2, both the magnitude of the charge and spin currents beyond the
threshold voltage are the same as those for the reverse case (β = 0.5). This is due to the fact
that the total resistance of the two QD-DTJ system is maintained regardless of the coupling
asymmetry reversal. However, the CA affects the threshold voltage Vth. This is due to the
different shifts of the QD energy level under positive and negative bias voltage, i.e., Vth = 2εd,

where εd = εd0− β2

1+β2 eVb. The CA effect on the charge current I-V characteristics is consistent
with the experimental results observed by K. Hamaya et al. for an asymmetric Co/InAs/Co
QD-DTJ system (Fig. 2(a) of Ref. Hamaya et al. (2007)).

Next, one may investigate the CA effect on the QD occupancies, which are obtained by
integrating the spectral function in Eq. (15). The QD occupancies for both spin-up and
spin-down electrons are shown in Fig. 10. The occupancies for spin-up and spin-down
electrons in the QD actually coincide since the QD-DTJ system is operated in the parallel
configuration of the leads’ magnetization. Moreover, as β is increased from 0.5 to 2, the QD
occupancies of both spin orientations decrease. This decrease is reasonable since as ΓL is
decreased with respect to ΓR, the coupling which allows the electron to tunnel to the QD from
the source (left lead) is reduced, while the coupling which allows the electron to tunnel out
of the QD to the drain (right lead) is enhanced. In this circumstance, electrons start to have a
higher occupancy in the QD for β < 1 case, where ΓL > ΓR.

2.3 Summary

In summary, the SDT through a QD-DTJ system is theoretically studied. In the SDT model
described in Sec.2.1, well-separated QD levels are assumed such that only a single energy
level are involved in the SDT process, and the correlation between different energy levels is
then neglected. The spectral functions, QD electron occupancies, tunneling charge current,
spin current as well as TMR are evaluated based on the Keldysh NEGF formulism and EOM
method, with consideration of the effects of the SF-TJ events, SF-QD events, and the CA
between the two tunnel junctions on the SDT of the system.
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3. QD with Zeeman splitting

In the last section, the SDT is studied for the QD-DTJ system where the spin dependence
of the electron transport is caused by the spin polarization in the FM leads. In this section,
one may analyze the SDT through the QD-DTJ system where the leads sandwiching the
QD are non-magnetic (NM), and a FM gate is applied above the QD. The electron transport
through this QD-DTJ system is spin-dependent due to the Zeeman splitting (ZS) generated in
the QD. In this QD-DTJ system, one may expect a fully polarized current to tunnel through
(Recher et al. (2000)). A fully spin-polarized current is important for detecting or generating
single spin states (Prinz (1995; 1998)), and thus is of great importance in the realization of
quantum computing (Hanson et al. (2007); Kroutvar et al. (2004); Loss & DiVincenzo (1998);
Moodera et al. (2007); Petta et al. (2005); Wabnig & Lovett (2009)).

The QD-DTJ system is schematically shown in Fig. 11. The magnetic field generated by the
FM gate is assumed to be spatially localized such that it gives rise to a ZS of the discrete energy
levels of the QD, but negligible ZS in the energy levels of the NM electrodes. When the bias
voltage Vb between the two NM electrodes, and the size of the ZS in the QD are appropriately
tuned, a fully polarized spin current is observed in this QD-DTJ system. The polarization of
the current depends on the magnetization direction of the FM gate. Here, the down (up)-spin
electrons have spins which are aligned parallel (antiparallel) to the magnetization direction of
the FM gate.

3.1 Theory

The Hamiltonian of the QD-DTJ system is in form of

H = ∑
α

Hα + Hd + Ht, (23)

where

Hα = ∑
kσ

εαkσa†
αkσaαkσ, (24)

Hd = ∑
σ

εσa†
σaσ + Un↑n↓, (25)

Ht = ∑
αkσ

(
tαkσ,σa†

σaαkσ + t∗αkσ,σa†
αkσaσ

)
, (26)

where α = {L, R} is the lead index for the left and right leads, k is the momentum, σ = {↑, ↓}
is the spin-up and spin-down index, a† and a are the electron creation and annihilation
operators, εσ is the energy level in the QD for electrons with spin-σ, U is the Coulomb
blockade energy when the QD is doubly occupied by two electrons with opposite spins, and
tαkσ,σ describes the coupling between the electron states with spin-σ in the lead α and the QD.

In our model, we consider only the lowest unoccupied energy level of the QD εσ since most
of the overall transport occurs via that level. With the presence of an applied magnetic field B,
the lowest unoccupied energy level is given by εσ = εd +

(−1)σ

2 gμBB, where σ = 0 (σ = 1) for
up-spin (down-spin) electrons, g is the electron spin g-factor, μB is the Bohr magneton, and
gμBB is the ZS between the two spin states ε↓ and ε↑. Under an applied bias Vb between the
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Fig. 11. (a) Schematic diagram of the QD-DTJ set up, which consists of two NM electrodes,
one QD and one FM gate. (b) schematic energy diagram of the QD-DTJ system in (a), where
Vb is the bias voltage, ε↓ = εd − gμBB/2 (ε↑ = εd + gμBB/2) is the energy level for
spin-down(up) electrons, respectively, gμBB is the Zeeman splitting between ε↓ and ε↑, g is
the electron spin g-factor, μB is the Bohr magneton, B is the applied magnetic field generated
by the FM gate, and εd = εd0 − eVbβ2/(1 + β2) is the single energy level of the QD without
applied magnetic field, with εd0 being the single energy level under zero bias voltage and β
being the coupling asymmetry between the two tunnel junctions. We assume a symmetrical
QD-DTJ system where β = 1.

leads and in the absence of B-field, the QD’s energy level is modified as εd = εd0− eVbβ2/(1+
β2), where εd0 is the energy level at zero bias voltage, and β = tRkσ,σ/tLkσ,σ denotes the
asymmetry of the coupling in the left and right tunnel junctions. In the following, a symmetric
QD-DTJ system is assumed where β = 1.

Based on the Hamiltonian, the tunneling current is evaluated via the NEGF formalism
introduced in Section. 2.1. The charge and spin current are defined as Ic = I↓ + I↑ and
Is = I↓ − I↑, respectively, where the tunneling current of spin-σ electron tunneling through
the QD-DTJ system is given by

Iσ =
e
h

∫
dε [ fLσ(ε)− fRσ(ε)] Ga

σ,σΓRσGr
σ,σΓLσ. (27)

Here, Γασ(ε) = 2πρασ(ε)tασ,σ(ε)t∗ασ,σ(ε), Ga
σ,σ(ε) = [Gr

σ,σ(ε)]
∗, Gr

σ,σ(t) = −iθ(t)〈{aσ(t), a†
σ}〉.

The explicit form of Gr
σ,σ(ε) is given by

Gr
σ,σ (ε) =

1− nσ̄

ε + iη− εσ − Σ(ε)
+

nσ̄

ε + iη− εσ̄ − Σ(ε)
, (28)
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where the self energy terms are Σ(ε) = ∑{α,k}
tαkσ,σt∗αkσ,σ
ε+iη−εαkσ

. The coupling coefficients tαkσ,σ and
t∗αkσ,σ are spin-independent since the two leads are NM.

Based on Eqs. (27) and (28), one can then calculate the spin-σ current I↑ and I↓, and hence the
charge and spin current, which are defined as Ic = I↓ + I↑ and Is = I↓ − I↑, respectively.

In the EOM method, the following Hartree-Fock decoupling decoupling approximation of
(Lacroix (1981); Sergueev et al. (2002)) is applied,

〈{
a†

kασaσakασ̄, a†
σ̄

}〉
=

〈
a†

kασaσ

〉 〈{
akασ̄a†

σ̄

}〉
, (29)〈{

a†
σakασakασ̄, a†

σ̄

}〉
=

〈
a†

σakασ

〉 〈{
akασ̄a†

σ̄

}〉
, (30)

〈{
aσa†

kασaσ̄, a†
σ̄

}〉

 0, (31)〈{

akασa†
σaσ̄, a†

σ̄

}〉

 0, (32)〈

a†
kασaσ

〉
=

〈
a†

σakασ

〉

 0. (33)

3.2 Spin polarized current

Based on the SDT model in Sec. 3.1, one may obtain the I −V characteristics of the system for
both spin current Is and charge current Ic, as shown in Fig. 12.
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Fig. 12. Charge current (Ic) and spin current (Is) as a function of the bias voltage, with
(B 
= 0) or without (B = 0) ZS. Vg = 0. The following parameters are assumed: lowest
unoccupied energy level in the QD under zero bias voltage εd0=0.2eV, the Coulomb blockade
energy U = 0.26 eV, the Zeeman splitting due to the FM gate is gμBB = 0(0.36 meV) for
B = 0 (B 
= 0) case, the gate voltage Vg = 0, and temperature T = 3 K.

In the absence of a FM gate, i.e., with zero magnetic field (B = 0) applied to the QD, the
magnitude of the charge current Ic is the same as that of the system with a FM gate, within
the bias region μR < ε↓ < μL < ε↑ + U. In this region, the spin current Is is zero for the
system without a FM gate, where the device is spin-symmetric and the transport across it is
spin-independent.
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For the system with a FM gate, both the charge current Ic and spin current Is of the system
show the three distinct regions with respect to the bias voltage,

1. μR < μL < ε↓ < ε↑, where both Ic and Is are negligible due to the suppression of electron
tunneling by Coulomb blockade;

2. μR < ε↓ < μL < ε↑ + U, where due to spin blockade, only the spin-down channel
contributes to the transport across the system, resulting in a fully spin-down polarized
current with Is = Ic;

3. and μR < ε↓ < ε↑ + U < μL, where it is energetically favorable for both types of spins to
tunnel across the device, leading to zero spin current.

The sign of the spin polarization of the tunneling current can be electrically modulated, i.e., by
means of a gate voltage Vg . The gate voltage modulation of the QD energy level εd can result in
the switching of the spin polarization of current, without requiring any corresponding change
to the magnetization of the FM gate. If the energy diagram of the system satisfies ε↓ − eVg <
μR < ε↑ − eVg < μL, a fully spin-up polarized current will thus flow continuously through
the system.

3.3 Summary

In summary, the SDT through a QD-DTJ system is analyzed with NM leads and FM gate.
Under the applied magnetic field from the FM gate, the energy level in the QD splits to two
due to ZS effect. The two energy levels can be modulated by the gate voltage applied to the
FM gate. Based on the SDT model developed by NEGF formulism and EOM method, the
I − Vb characteristics is analyzed, and a fully spin-down polarized current is obtained when
the system is operated under a proper bias voltage between the two leads. Additionally, by
utilizing the gate voltage modulation instead of switching the magnetization of the FM gate,
the polarization of the current can be reversed from spin-down to spin-up by electrical means.

4. Conclusion

In conclusion, the SDT is theoretically studied for the QD-DTJ systems where a QD is
sandwiched by two adjacent leads. The tunneling current through the systems is shown to
be rigorously derived via the Keldysh NEGF approach and EOM method. The SF events, CA,
ZS and FM gating are systematically incorporated in the SDT models. Considering these
effects, one may analyze the SDT properties of QD-DTJ systems, including the tunneling
current (charge current and spin current), the TMR, the spectral functions and the occupancies
of the QD. The SF-TJ and the SF-QD events are found to have competitive effects on the
tunneling current. The presence of CA effectively modifies the threshold voltage, and gives
rise to additional bias voltage dependence of the QD’s electron occupancy and the charge
and spin currents. The FM gate attached to the QD can be utilized to generate a bipolar spin
polarization of the current through QD-DTJ systems. The above investigations done have
yielded a better understanding of the SDT in QD-DTJ systems.
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6. List of Abbreviations

CA coupling asymmetry

CB Coulomb blockade

DOS density of states

DTJ double tunnel junction

EOM equation of motion

FM ferromagnetic

GF Green’s function

ME master equation

NEGF nonequilibrium Green’s function

NM non-magnetic

QD quantum dot

SDT spin dependent transport

SF spin-flip

TMR tunnel magnetoresistance

ZS Zeeman splitting
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1. Introduction

With the progress in nanofabrication technique and nanometer scale materials, research
on electron transport properties of mesoscopic systems has become a very active field in
condensed matter physics. Considerable researches have been mainly focused on charge
transport in nanostructures and nanodevices. Besides the charge transport, a detailed
understanding of heat transport through mesoscopic systems is of equally importance
(Afonin, 1995; Small, 2003) because they can provide additional information on the kinetics
of carriers not available in the measurement of current voltage characteristics (Heremans,
2004). For instance, thermoelectric properties are very sensitive to dimensionality, the
electronic spectrum near the Fermi level, scattering processes (Koch, 2004), electron-phonon
coupling strength (Yang1, 2010) and electron-hole symmetry (Small, 2003). There have been
several theoretical studies on the thermopower S, which mainly focused on quantum dot
(QD) coupled to the normal Fermi liquid (FL) leads (Boese, 2001; Dong, 2002; Kim, 2003;
Krawiec, 2007; Yang1, 2010), denoted hereafter as FL-QD-FL. As for systems containing a
quantum dot coupled to one-dimensional (1D) interacting electron leads, although their
charge transport phenomena have been investigated (Yang2, 2001; Yang3, 2010), yet there
have been much less efforts devoted to the thermoelectric properties of them (Kane, 1996;
Krive, 2001; Romanovsky, 2002). It is well known that the 1D interacting electron systems
can be described by the Luttinger liquied (LL) theory (Luttinger, 1963), which holds some
unique features such as spin-charge separation, suppression of the electron tunneling density
of states, power-law dependence of the electrical conductance on temperature and bias
voltage, etc.. The LL behaviour has been experimentally reported in single- and multi-wall
carbon nanotubes (Bockrath, 1999; Kanda, 2004; Yao, 1999) and fractional quantum Hall edge
states (Chang, 1996). Recently, the use of carbon nanotubes as a thermoelectric material has
gained great interest due to their 1D structure. The thermopower of single-walled carbon
nanotubes have been measured in experiments (Bradley, 2000; Choi, 1999; Collins, 2000; Hone,
1998; Kong, 2005; Small, 2003). For example, Kong et al. have shown a linear temperature
dependence of the thermopower at low temperature (Kong, 2005). Small et al. have
observed strong modulations of thermopower as the function of gate voltage Vg in individual
Carbon nanotubes (Small, 2003). Dresselhaus et al. have found that the low-dimensional
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2 Quantum-dot

thermoelectric materials performed better than bulk ones (Dresselhaus, 1999). Several
theoretical works have been developed to predict the enhancement of thermopower in
nanoscaled materials by the intralead electron interaction (Kane, 1996; Krive, 2001; Krive2,
2001; Romanovsky, 2002). Krive et al. (Kane, 1996; Krive, 2001) used a phenomenological
approach to investigate the thermopower of a LL wire containing an impurity. In spite of
the above work, an explicit thermopower formula in the LL leads was not given out. In the
following, we use the notation S to denote the thermopower S of systems comprosing LL and
S0 to those comprising noninteracting FL. Theoretically, the thermopower S of a LL with an
impurity can be represented by the thermopower S0 multiplied by an interaction-dependent
renormalization factor. Alternatively, one may intentionally introduce a QD into the LL,
denoted as LL-QD-LL. Thus, he may attach a QD, instead of an impurity atom, to the end
of a carbon nanotube. A quantum dot is experimentally more controllable than an impurity.
For instance, the energy of a quantum dot can be tuned by the gate voltage Vg.

In this chapter, we will first give the stationary thermopower formula of a QD coupled
to LL leads through tunneling junctions, a system of LL-QD-LL (see Fig.1) by applying
the nonequilibrium Green function technique (Haug, 1996) instead of phenomenal theories.
And then we later turn our attention to the time-dependent phenomena. The generalized
thermopower formula is obtained under time-dependent gate voltage. Although there
are many studies on time-dependent nonequilibrium transport, the research on the
time-dependent thermopower and the formula under the ac field are still lack. Here we will
fill the blanks for the low dimension system.

Fig. 1. The two-terminal electron transport through a single-level quantum dot weakly
coupled to the Luttinger liquid leads with the chemical potentials μL and μR. Electrons
tunnel from one lead to another by hopping on and off the dot level with the energy ε. The
position of the dot levels with respect to the Fermi energy can be uniformly shifted by
applying a voltage Vg to the gate electrode.

2. The Model

In the considered LL-QD-LL system, the QD is weakly connected with semi-infinite LL
electrodes. The Hamiltonian of this system includes three parts:

H = Hleads + Hdot + HT , (1)

which represents the Hamiltonians of the left and right LL leads (Hleads = HL + HR), the
central dot and the tunneling interactions between them HT , respectively. Firstly, we present
a detailed discussion of bosonization for a continuum model of length L with open boundary
conditions (Eggert0, 1992; Fabrizio, 1995; Furusaki0, 1994) and electron-electron interaction.
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The specify Hamiltonian of the LL leads can be easily written

HL/R = H0L/R + HintL/R, (2)

where the first term represents the kinetic energy,

H0 = ∑
σ=↑,↓

∫ L

0
dxψ†

s (x)ε(−i∂x)ψs(x), (3)

and the second one describes the electron-electron interaction,

Hint =
1
2 ∑

σσ′

∫
dxdyψ†

σ(x)ψ†
σ′ (y)Uσσ′ (x− y)ψσ′ (y)ψσ(x), (4)

εk is the dispersion law of the 1D band, and ψσ(x) is the spin σ electron annihilation operator
subject to the open boundary conditions:

ψσ(0) = ψσ(L) = 0. (5)

We apply the boundary conditions Eq.(5) to expand electron annihilation operator ψ which
takes the form

ψσ(x) =

√
2
L ∑

k
sin(kx)cσk, (6)

with k = πn/L, n being a positive integer. Usually a 1D system with periodic boundary
conditions has two Fermi points ±kF. Here we only have single Fermi point given by k = kF.
The 1D fermion field ψσ can be expanded about the Fermi point kF in terms of the left moving
and right moving fields as

ψσ(x) = eikF xψσR(x) + e−ikF xψσL(x). (7)

In the case of periodic boundary conditions (Haldane, 1981), these left moving and right
moving fields are not independent and satisfy

ψσL(x) = −ψσR(−x). (8)

Then the fermion fields automatically satisfy the boundary conditions

ψσ(0) = 0, (9)

whereas the condition
ψσ(L) = 0 (10)

implies that the operator ψσR(x) should obey

ψσR(−L) = ψσR(L). (11)

Therefore, we can actually work with the right moving field only, the left moving one is then
defined by the above relation. Thus the field ψσR(x) can be defined for all x, and obeying the
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periodicity condition with the period 2L:

ψσR(x + 2L) = ψσR(x). (12)

In terms of the right moving field, the kinetic energy terms in the Hamiltonian Eq.(1) takes the
form

H0 = vF ∑
σ

∫ L

−L
dxψ†

σR(x)(−i∂x)ψσR(x) (13)

where we have linearized the electron spectrum. The single fermion operators for
right-moving electrons with spin σ on lead α can be bosonized in the position representation
by applying the periodic boundary condition Eq.(12) as

ψσR(x) ≈ ησ√
2L

eikF xeiφσ(x). (14)

The operator ησ is real fermion and satisfies the anti-commutation relations

{ησ, η′σ} = δσσ′ , (15)

with δ is Delta function. Eq.(15) assure the correct anti-commutation rules for electron
operators with different σ. In order to calculate the correlation function, a method of dealing
with this was suggested by Luther and Perchel (Luther, 1974). It used a limiting process,
where the wave function contained s parameter α′, and the limit α′ → 0 is taken at the end
of the calculation of the correlation function. Using the parameter α′, we can represent the
electron operator ψσR(x) as

ψσR(x) ≈ lim
α′→0

1√
2πα′

eikF xeiφσ(x). (16)

Where α′ is a short-distance cutoff of the order of the reciprocal of the Fermi wave number kF.
The phase field φσ(x) satisfies periodic boundary condition:

φσ(x + 2L) = φσ(x) (17)

and can be expressed as follows

φσ(x) = ∑
q>0

√
π

qL
eiqx−α′q/2aq + H.c, (18)

here, a†
q and aq are the creation and annihilation operators of bosons. These operators satisfy

the canonical bosonic commutation relations [aq, a†
q′ ] = δ(q− q′). q = πn/L , n is an integer.

The density of right moving electrons is given by

ρσR(x) ≈ ∂xφσ(x)
2π

(19)

Applying the boundary conditions Eq.(8), we have

ρσL(−x) = ρσR(x). (20)
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The bosonized form of the kinetic energy is

H0 = πvF ∑
σ

∫ L

−L
dx : ρσR(x)ρσR(x) := vF ∑

σq>0
qb†

σqbσq, (21)

where colon represents the normal order form of the operators.

In order to deal with electron-electron interacting terms in Hamiltonian Eq.(1), we continue
to make use of the above bosonization procedure expressing the electron interaction
Hamiltonian in terms of the right moving Fermi field ψσR only.

Before we turn to the interaction effects, we introduce the bosonic variables corresponding to
charge and spin excitations:

bρ(σ)q =
1√
2
(b↑q ± b↓q) (22)

and
ρρ(σ) =

1√
2
(ρ↑q ± ρ↓q). (23)

The interaction part of the Hamiltonian contains several terms classified as: the diagonal
terms in the electron densities and the mixing left and right densities term. Consequently,
the Hamiltonian becomes

H = ∑
ν=ρ(σ)

{∑
q>0

v0
νq[b†

νqbνq − g2ν

4π
(bνqbνq + b†

νqb†
νq)] (24)

where
vνq = vF +

g4ν + g2ν

2π
, (25)

where vF is the Fermi velocity, g4 and g2 represent forward scatterings; in our work, we will
not consider the backscattering interaction. In the absence of backscattering, the Luttinger
Hamiltonian, HLL, is exactly soluble using the technique of bosonization. In order to express
the Hamiltonian in diagonal form, we introduce the canonically conjugate Boson operators,
in a standard way by the Bogolubov rotation,

bνq = cosh(ϕν)b̃νq − sinh(ϕν)b̃†
νq (26)

where

tanh(2ϕν) = − g̃ν

2πv0
ν

(27)

The Hamiltonian can be achieved by the canonical transformation in terms of b̃νq and b̃†
νq

H̃ = UHU† = ∑
νq>0

vνqb†
νqbνq, (28)

where

vν =
v0

ν

cosh(2ϕν)
. (29)
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The unitary operator U is defined by

U = exp{1
2 ∑

ν,q>0
ϕν(b†

νqb†
νq − bνqbνq)} (30)

In the next step we find how the Fermi operators transform by applying U. Employing the
method of Mattis and Lieb (Mattis, 1964), after lengthy but straightforward calculations, we
arrive at the expression for the electron annihilation operator in terms of free bosons for the
case of the interacting Fermi system with open boundaries:

UψσR(x, t)U† ≈ ησ√
2πα′

exp{i ∑
ν

ενσ[
cν√

2
φν(x− vνt)

− sν√
2

φν(−x− vνt)]} (31)

where ενσ is +1 unless σ =↓ and ν = σ when its value is −1. We have defined

cν = cosh(ϕν), sν = sinh(ϕν). (32)

In the continuum limit, the Hamiltonian can be expressed

HL/R = h̄vc

∫ ∞

0
ka†

k akdk. (33)

This Hamiltonian describes the propagation of the charge density fluctuations in the leads
with renormalized velocity vc. From Krönig’s relation (Krönig, 1935), the kinetic term has
been written in a quadratic form of the density operators, because the bosons are defined as
excitations above an N particle ground state, Hamiltonian must include terms that include the
energy of the different bosonic ground states. These terms are not required for the calculations
in this chapter, and are hence omitted.

The Hamiltonian of the single-level QD takes the form of

Hdot = εd†d, (34)

where ε is the energy of the electron on the dot, and d† and d are fermionic creation and
annihilation operators satisfying canonical commutation relation {d, d†} = 1.

The tunneling Hamiltonian is given by the standard expression:

HT = ∑
α
(tαd†ψα + h.c.), (35)

where tα is the electron tunneling constant and ψ†
α, ψα (α = L/R) are the Fermi field operators

at the end points of the left/right lead. The operator ψα could be written in a "bosonized" form
(Furusaki, 1998)

ψα =

√
2

πα′ exp

[∫ ∞

0
dq

e(−α′q/2)√
2Kραq

(aqα − a†
qα) + σ

∫ ∞

0
dq

e(−α′q/2)√
2q

(bqα − b†
qα)

]
, (36)
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where and Kρα = e2ϕν is the interaction parameter in the "fermionic" form of the LL
Hamiltonian (33), which restricts the LL parameter g to vary between 0 and 1. The
noninteracting case corresponds to vc = vF and Kρα = 1. For repulsive interactions,
Kρα < 1. Because of the SU(2) spin symmetry under no magnetic filed, Kσ = 1. Thus the
correlation functions the end point of the left LL lead without the coupling to the quantum
dot 〈ψ†

σ(0, t)ψσ(0, 0)〉 can be obtained after long calculation

〈ψ†
σ(0, t)ψσ(0, 0)〉L =

cA
α′ {

iΛ
πT

sinh[
πT(t− iδ)

h̄
]}−1/gL . (37)

Where cA is a dimensionless constant of order 1, Λ is a high-energy cutoff or a band width, δ is
positive infinitesimal, and g−1

L = 1
2 (1/KρL + 1). ψσ(0, t) = eiHLt/h̄ψσ(0, 0)e−iHLt/h̄. Similarly,

the correlation function at the end point of the the right lead is obtained as the above method.
The electron-electron interaction parameters of the left and right LL leads are assumed equal
gL = gR = g for convenience.

3. The thermopower formula under no ac field

The charge current JL flowing from the left lead L into the quantum dot can be evaluated as
follows:

JL(t) = − e
h̄

〈
d
dt

NL

〉
=

ie
h̄

〈
tLd†(t)ψL(t)− h.c.

〉
. (38)

We introduce the time-diagonal parts of the correlation functions: G<
dL(t, t′) = i〈ψ†

L(t
′)d(t)〉

and G<
Ld(t, t′) = i〈d†(t′)ψL(t)〉. With the help of the Langreth analytic continuation rules

(Haug, 1996). By means of them, it is easy to express the current as JL = 2eRe(t∗LG<
Ld(t, t′)).

After applying Langreth theorem of analytic continuation, the average current can then be
expressed as

JL =
e

2π
|tL|2

∫
dωRe[Gr

d(ω)g<L (ω) + G<
d (ω)ga

L(ω)]. (39)

In terms of a long derivation, we can easily establish an expression for the expectation value
of the electric current

JL =
e

2π
|tL|2|tR|2

∫
dωGr

dGa
d
[
g<L (ω)g>R (ω)− g>L (ω)g<R (ω)

]
, (40)

where Gr(a)
d is retarded (advanced) Green function of the quantum dot and ΓL/R, proportional

to |tL/R|2, describes the effective level broadening of the dot. g<(>)
α (ω) is the Fourier

transform of the lesser (greater) Green function at the end point of the left (right) LL lead
without the coupling to the QD, which has been obtained by (Furusaki, 1998):

g<,>
α (ω) = ±i

Tα

|tα|2 exp[∓(ω− μα)/2Tα]γα(ω− μα), (41)

Now we define the Luttinger liquid distribution functions F<,>
L/R as

F<,>
α (ω) =

1
2π

e
∓(ω−μα )

2Tα

(
πTα

Λ

)1/g−1 |Γ[ 1
2g + i ω−μα

2πTα
]|2

Γ(1/g)
(α = L/R). (42)
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The function F<(ω) is the electron occupation number for interacting electrons which is
analogous to the Fermi distribution function f (ω) of noninteracting electrons and F>(ω) is
analogous to 1− f (ω) of FL leads. TL/R is temperature and μL/R the chemical potential of
the left or right lead where μL = μ + ηV and μR = μ + (η − 1). Γ(z) is the Gamma function.
Following the derivation in Ref. (Yang3, 2010), the current can be obtained as

JL =
e

2π

∫
dωT(ω)

[
F<

L (ω)F>
R (ω)− F>

L (ω)F<
R (ω)

]
, (43)

with T(ω) = ΓLΓRGr
d(ω)Ga

d(ω) is the transmission probability. If g = 1, Eq. (43) will degrade
to the usual well-known current expression for a FL-QD-FL system.

Our goal is to find the general thermopower formula of the model described by the
Hamiltonian Eq. (62). The thermopower S is defined in terms of the voltage V generated
across the quantum dot when temperature gradient ΔT = TL − TR is much less than TL and
TR and when current J is zero (Cutler, 1969):

S ≡ − lim
ΔT→0

V
ΔT
|J=0 = − 1

eT
L12
L11

. (44)

where L12 and L11 are linear response coefficients when the current JL is presented by small
bias voltages and small temperature gradients ΔT:

JL = L11
δμ

T
+ L12

δT
T2 =

e
2π

∫
dωT(ω)

{[
∂F(ω)

∂μ

]
T

δV +

[
∂F(ω)

∂T

]
μ

δ(ΔT)

}
, (45)

where F(ω) = F<
L (ω)F>

R (ω)− F>
L (ω)F<

R (ω). Comparing both sides of the Eqs.(78) (let e =
1, h̄ = 1), we obtain

L11 =
T

2π

∫
dωT(ω)

[
∂F(ω)

∂μ

]
T

, (46)

L12 =
T2

2π

∫
dωT(ω)

[
∂F(ω)

∂T

]
μ

. (47)

The formulas Eqs.(46) and Eqs.(47) are independent of the approximation adopted in deriving
the retarded (advanced) Green function. However, the partial derivatives ∂F

∂μ and ∂F
∂T are not

yet expressed evidently. In the following we will show the explicit expression for L11 and L12.
The linear expansion of the Luttinger liqiud distribution function becomes

Fα(ω) = F(ω) +
∂Fα(ω)

∂μα
|μα=μ,Tα=T(μα − μ) +

∂Fα(ω)

∂Tα
|μα=μ,Tα=T(Tα − T). (48)

In order to achieve a compact expression, we define F1 = F<
L F>

R and F2 = F<
R F>

L , and expand
them to the first order derivatives:

F1 = F1(μ, T) +
∂F1
∂V
|TδV +

∂F1
∂(ΔT)

|μδ(ΔT) (49)

and
F2 = F2(μ, T) +

∂F2
∂V
|TδV +

∂F2
∂(ΔT)

|μδ(ΔT), (50)
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where F1(μ, T) and F2(μ, T) are the equilibrium LL distribution functions, and F1(μ, T) =
F2(μ, T). Then

F1 − F2 =
∂(F1 − F2)

∂V
|TδV +

∂(F1 − F2)

∂(ΔT)
|μδ(ΔT)

=
∂F
∂V
|TδV +

∂F
∂(ΔT)

|μδ(ΔT). (51)

Substituting of Eq.(51) into Eq.(43)enables one to obtain the expressions of ∂F
∂V and ∂F

∂(ΔT)
required in Eqs. (46) and (47). We arrive at that

∂F<,>
L

∂V
= η

{
± 1

2T
F<,> − i

2πT
Ψ(

1
2g

+ i
ω− μ

2πT
)F<,> +

i
2πT

Ψ(
1

2g
− i

ω− μ

2πT
)F<,>

}
, (52)

and

∂F<,>
R

∂V
=(η−1)

{
± 1

2T
F<,>− i

2πT
Ψ(

1
2g

+i
ω− μ

2πT
)F<,>+

i
2πT

Ψ(
1

2g
−i

ω− μ

2πT
)F<,>

}
, (53)

In derivation we have used the relation |Γ(x+ iy)|2 = Γ(x+ iy)Γ(x− iy) and Γ′(z) = ψ(z)Γ(z)
with ψ(z) is the Digamma function. Then substituting the Eqs.(52) and Eqs.(53) into the Eq.
(51), we obtain

∂F
∂V

=
1
T

F>F<. (54)

With the same deriving process, we obtain the partial derivation with respect to temperature
as

∂F
∂(ΔT)

=
ω− μ

T2 F>F<. (55)

It follows from Eqs. (54), (55), (46) and (47) that

L11 =
T
h

∫
dωT(ω)

1
T

F>F< (56)

and

L12 =
T2

h

∫
dωT(ω)

ω− μ

T2 F>F<, (57)

with T(ω)|δV=0,δ(ΔT)=0. And they become functions related to the QD density of states and
LL distribution function. We stress that Eqs. (56) and (57) are the linear response coeffcients
in a LL-QD-LL system. These equations will naturally degrade to those of a FL-QD-FL system
if g = 1. The thermopower can be obtained by the equation Eq. (44) in which the current
equals to zero. Substituting Eqs. (56) and (57) into Eq. (44), we have

S =
1
T

∫
dω(ω− μ)T(ω)F>F<∫

dωT(ω)F>F<
. (58)
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As shown in Eq. (78), when temperature difference between the leads is zero, conductance is
then given by G = e2L11/T. Comparison of the explicit expressions of the conductance G and
thermopower S exhibits that the latter contains information different from the former.

In calculation, the Green functions of the QD are required as shown in Eq. (40). The retarded
Green function is defined by Gr(t) = −iθ(t)〈{d(t), d†(0)}〉 and can be derived by means of
the equation of motion method. Its analytical expression is

Gr
d(ω) =

1
ω− ε− Σr(ω)

, (59)

where the retarded self-energy is originated from the tunneling into the leads and is given by:

Σr(ω) = − i
2 ∑

α=L,R
Γα[F<

α (ω) + F>
α (ω)]. (60)

In the next section we will give our numerical results and discuss the thermoelectric
properties.

4. Numerical results

The expressions (56) and (57)enable us to calculate numerically the conductance and
thermopower as functions of the applied voltage and temperature. It is assumed that the
system is of structural symmetric: ΓL = ΓR = Γ. In calculation we take the coupling strength
Γ as the energy unit and set the Fermi level of the lead to be zero. Then the energy level ε of
the QD represents the gate voltage Vg. No other bias is applied, i.e., we always consider the
zero bias case.

Figures 1(a) and (b) show the gate voltage dependence of the conductance and thermopower,
respectively. The conductance varies smoothly, which is in agreement with the previous
scanning gate microscopy experiments (Small2, 2003; Woodside, 2002). The thermopower
S varies rapidly with the variation of the gate voltage and can reach a large absolute value at
low temperature. Obviously, the gate voltage violates electron-hole asymmetry and its value
tunes the thermopower. Experiments did show the features (Small, 2003; Small3, 2004).

From Fig. 1 it is seen that the conductance is an even function of ε , while the thermopower
is an odd function: S(ε) = −S(−ε) , which is coincide to experiments (Staring, 1993). It
is easily understood that the Hamiltonian in this paper possesses electron-hole symmetry:
as Vg is changed to −Vg, the form of the Hamiltonian remains unchanged if the electrons
are simultaneously converted to holes. This is the foundation of discussing the symmetry
relations for the dependence of the G and S on Vg. When both bias voltage V and the
current JL change their signs, the sign of the conductance G = dJL/dV remains unchanged.
Subsequently, G(−ε) = G(ε). On the other hand, the temperature difference is irrelevant to
the change of the current carriers, i.e., the kinetic coefficient L12 = dJL/d(δT) , changes sign:
L12(ε) = −L12(−ε) when Vg changes sign. Thus we conclude that G(−ε) = G(ε). Note that
G is proportional to L11. Therefore, the thermopower is also an odd function S = − 1

e2T
L12
L11

of
the gate voltage: S(ε) = −S(−ε). The result is qualitative agreement with the experiments
(Dzurak, 1997; Egger, 1997; Moller, 1998) where there was no evidence of other significant
contributions of transport mechanisms, such as phonon drag, to the observed thermopower.
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Comparing the curves G in Fig. 1(a) and S in Fig. 1(b), we find that the sign of S coincides with
dG/dVg. The reason of the lowering of the conductance with the energy level increasing of the
quantum dot is ascribed to the change of the electron tunneling from the resonant tunneling
to sequential behavior.

Now we turn to the effect of temperature on the conductance and thermopower. Figure 2
plots their curves. Figure 2(a) shows that at low temperature the conductance scales as power
laws with respect to temperature, G(T) ∝ Tα where α = 2/g− 2 (g < 1). This functional form
and the power index are in good agreement with experimental results (Bockrath, 1999; Kong,
2005; Yao, 1999). Some theoretical works with respect to impurity-contained systems gained
the same conclusion (Dresselhaus, 1999; Krive, 2001; Krive2, 2001; Romanovsky, 2002). The
temperature-dependent power-law scalings of conductance is associated with the suppression
of tunneling to a LL in which the density of states vanishes as a power law in the energy of
the tunneling electron, and the suppression becomes stronger with the decrease of g, which
manifests a signature for electron-electron correlations (Harman, 2002; Kane, 1996). With
increasing temperature, the mechanism of electron transport gradually turns from a resonant
tunneling-like process to a sequential process. At higher temperature, the conductance is
inverse to the temperature. This reflects that the effect of the electron-electron interaction on
transport mechanism decays. In the temperature range between, there appears a conductance
peak.

Fig. 2. The schematic picture of the two-terminal electron transport through a single-level
quantum dot weakly coupled to the Luttinger liquid leads with the chemical potentials μL
and μR . The position of the dot levels with respect to the Fermi energy can be uniformly
shifted by applying a voltage Vg to the gate electrode.

In Fig. 2(b), the thermopower S shows linear behavior as temperature rises from zero. This is
because in the low temperature regime electron tunneling transport mechanism is dominant.
This behavior is the same as that of a LL containing an impurity (Krive2, 2001) and in
agreement with experiments (Hone, 1998; Kong, 2005). With the electron-electron interaction
enhancement, the thermopower is also increased, which has been proved in experiment
(Lerner, 2008). We fit numerically the thermopower relation between the thermopower
S of the LL and S0 of Fermi liquid at low temperature with S = ( 3

2g − 1
2 )S0(T) where

S0(T) ∝ T. The electron-electron interaction in LL systems enhances and renormalizes the
thermopower. In the limit of strong interaction g << 1, this thermopower S can be expressed
as S(T) ∝ S0(T)/g. In this case, the thermopower of the LL is enhanced by a factor of order
of magnitude of 3/(2g). Figure 2(b) reveals that at a fix temperature, a smaller g results in a
lager S value. Hence, a larger slope of the S− T curve at low temperature means a stronger
interaction in LL leads. It is worth to note that the thermopower S of LL is much greater
than the value S0 of FL (g = 1), which reflects that the intralead electron interactions in the
LL enhance the electron-hole asymmetry. With further increasing temperature a peak-like
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structure emerges. This is due to the mechanism at low temperature of electron transport
switching from a tunnelling process to a diffusive process at high temperature. It is worth
mentioning that the result is qualitatively agreement with the works (Romanovsky, 2002) with
respect to an impurity in the LL lead connected to noninteracting electrons or a FL. At low
temperature, a small potential barrier can strongly influence the transport properties of a LL
system, so that the thermopower induced by electron backscattering dominates. This behavior
is similar the case of an impurity (Romanovsky, 2002), where the impurity backscattering
is considered to be a main origin of the thermopower. The impurity can also be modeled
as tunnelling junctions between two decoupled semi-infinite LLs (Collins, 2000), and the
tunneling junction between impurity and the LL is described by the tunneling Hamiltonian
(Barnabe, 2005; Goldstein, 2010)[45-47].

At high temperature, the thermomotion of electrons become predominant and the interaction
between them will be less important. Thus discrepancy between the LL and FL systems will
disappear. As a result, in the high temperature limit, S becomes identical to S, as shown
in Fig. 2(b). We recall that in a weak interaction system, the thermopower SM is related to
conductance G by Mott’s formula (Kane, 1996):

SM = −π2

3
k2

BT
e

∂lnG
∂μ

, (61)

which was originally derived for bulk systems. Note that this approximation is independent
of the specific form of the transmission probability T(ω) . The quantity SM is different from S0
of a noninteraction FL. Dependence of the zero bias conductance G on the chemical potential
can be in practice measured under the variation of the gate voltage Vg. Since the gate voltage
shifts the energy levels of the QD, one may assume that ∂lnG

∂μ , ∂lnG
∂Vg

. Then Eq. (26) becomes

SM = −π2

3
k2

BT
e

dlnG
dVg

|EF . Figure 3 shows the variation of the thermopower S obtained from Eq.
(23) and SM from Mott relation Eq. (26) at T = 1.0 for four electron-electron interactions. It is
seen that the relation between and G holds qualitatively for weak electron-electron interaction
(Appleyard, 2000; Kane, 1996; Krive, 2001). However, even in the noninteraction case g = 1,
there is some quantitative difference between S and SM. The difference is obviously enhanced
by the strong electron-electron interaction. Experiments (Bockrath2, 2001) evidenced the
deviation from the Mott formula Eq. (26). We interpret it as a manifestation of many-body
effects in the 1D electron gas. The intralead electron interactions affect the thermopower
through the dependence of the transmission probability on electron-electron interaction.

From the above numerical results, we can observe that both the thermopower and
conductance manifest linear temperature-dependent power-law scaling, a behavior the
same as that of an impurity-contained LL system (Kane, 1996) at low temperature.
The electron-electron interaction in the leads brings a significant improvement of the
thermopower, a conclusion similar to that of a LL with an impurity (Krive, 2001; Krive2,
2001). As is well known, in a perfectly electron-hole symmetric system, the thermopower
S = 0. The strong suppression of thermopower arises from the exact counteraction of
the currents of electrons and holes induced by temperature gradient, which results in a
zero net electric current. Only when the electron-hole symmetry is broken, the nonzero
thermopower emerges. Our numerical fittings show that at low temperature the thermopower
S can be expressed by the thermopower S0 of noninteracting electrons multiplied by an
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Fig. 3. The dependence of the conductance G and thermopower S on the gate voltage with
T = 1.0 for g=0.2, 0.5, 0.8 and 1.0. The thermopower is strongly modulated by the gate
voltage.

interaction factor as: S = (3/2g − 1/2)S0(T) . In the limit of the strong intralead electron
interaction, we have S(T) ≈ 3S0(T)/2g which has an additional 3/2 factor compared to
S(T) ≈ S0(T)/g of the impurity-induced thermopower in 1D systems (Romanovsky, 2002).
A slight deviation from the electron-hole symmetry will cause a considerable thermopower.
In low-dimensional materials, the electron-hole asymmetry is usually strong and can be
modulated experimentally by tuning external parameters, such as gate voltage and magnetic
field. Our results reveal that how the thermopower of a LL system containing a QD is
modulated by tuning the gate voltage.

5. The thermopower formula with a time-dependent gate voltage

The thermopower formula has been derived at the stationary system. Below we will derive an
expression for the time-dependent thermopower for the Luttinger liquid leads connected to
the central region. It is well known that more rich physics could be exploited if the QD device
is subject to a microwave irradiation field. The perturbations of ac fields can give rise to some
very interesting phenomena, such as photon-electron pumping effect, the turnstile effect, the
sideband effect, and photon-assisted tunneling (Blick, 1995; Kouwenhoven et al., 1997; Tien,
1963). It has been reported that the microwave spectroscopy is a possible tool to probe the
energy spectrum of small quantum systems (Wiel, 2002). So the photon-assisted tunneling
could provide a new way of understanding the electron-electron influence on the transport
properties of the dot. Indeed, the influence of the ac field on the current-voltage characteristics
in the strongly correlated interaction model was discussed by some authors. The essential
effect of photon-assisted tunneling on transport properties is that the electrons tunneling
through the system can exchange energy with microwave fields, opening new inelastic
tunneling channels and introducing many effects. The measurement of the thermopower at ac
field frequency in the order of GHz regime may offer more value information on the electron
interaction. However, the explicit thermopower formula under the time-dependent gate has
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been still lacking. Here we will fill the blanks. We start out by introducing a model for a QD
coupled to the LL leads under a time-dependent gate voltage. The Hamiltonian of the system
(see Fig.2) can be described as follows

H = Hleads + HD + HT. (62)

where Hleads = HL + HR represents the Hamiltonians of the left and right LL leads and its
standard form is given as above, HD = ε(t)d†d is the Hamiltonian of the QD, with {d†, d}
the creation/annihilation operators of the electron in the QD, ε(t) = ε + ΔcosΩt, ε is the
time-independent single electron energy of the QD without microwave fields, Δ and Ω are the
amplitude and frequency of the ac gate voltage, respectively. It causes an alternating current
through the dot. HT is the tunneling Hamiltonian and can be written as

HT = ∑
α
(tαd†ψα + h.c.)). (63)

by applying a time-dependent canonical transformation (Bruder, 1994)(hereafter h̄ = 1) to
Hamiltonian HD

U1(t) = exp
[

i
∫ t

−∞
dt′Δ cos(Ωt′)d†d

]
. (64)

Under this transformation, we obtain H′D(t) = U1(t)H(t)U−1
1 (t) − iU1(t)∂tU−1

1 (t) = εd†d,
the time-dependence of the gate voltage ε is removed. Instead, the electron tunnel coupling

tα(t) = tα exp
[
−i

∫ t

−∞
dt′Δ cos(Ωt′)

]
. (65)

is now time-dependent. The current operator which describes tunneling from the L lead into
the QD at time t is found to be: (in units of h̄ = 1))

JL(t) = ie
[
tL(t)ψ†

Ld− t∗L(t)d†ψL

]
. (66)

Using nonequilibrium-Green-function technique and Langreth theorem of analytic
continuation, the current can then be expressed as:

JL(t) = −2eRe
∫

dt1tL(t)[Gr(t, t1)g<L (t1, t) + G<(t, t1)ga
L(t1, t)]t∗L(t1). (67)

where Gr(t, t1) and G<(t, t1) are the Green’s function of the QD. The retarded Green function
Gr(t, t1) and lesser Green function G<(t, t1) can be calculated from the following Dyson
equation:

Gr(t, t1) = gr(t, t1) +
∫ ∫

dτdτ′gr(t, τ)Σr(τ, τ′)Gr(τ′, t1). (68)

and the Keldysh equation

G<(t, t1) =
∫ ∫

dτdτ′Gr(t, τ)Σ<(τ, τ′)Ga(τ′, t1). (69)

where gr(t, t1) is the free retarded Green function of isolated dot which depends only on the
time difference t− t1. Σr/a,<(τ, τ′) = ∑α=L,R t∗α(τ)gr/a,<

α (τ, τ′)tα(τ′) is the self-energy.
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We now make Fourier transformation over the two times t and t′ which switches from the
time-domain into energy representation through a double-time Fourier-transform defined as
(Wang, 1999; Xing, 2004)

F(ω, ω1) =
∫

dtdt1F(t, t1)eiωte−iω1t1 (70)

and
F(t, t1) =

∫ dω

2π

dω1
2π

F(ω, ω1)e−iωteiω1t1 . (71)

And with the help of the above equation with respect to τ = (t + t1)/2 and let t′ = t− t1.

〈F(t, t1)〉 = lim
T→∞

1
2T

∫ T

−T
F(τ + t′/2, τ − t′/2)dτ, (72)

we finally obtain following expression for Dyson equation

Gr(ω) = gr(ω) + +gr(ω)Σr(ω, ω1)Gr(ω1, ω). (73)

and the following expression for the lesser Green function from Eq. (69)

G<(ω) = Gr(ω)Σ<(ω)Ga(ω). (74)

Where the time-average greater (lesser)self-energy Σ>(ω) (Σ<(ω)) is which can be obtained
by the time-average double-time self energy

Σ>,<(ω) = ∑
α=L/R,n

J2
n(

Δ
Ω
)|tα|2g>,<

α (ω + nΩ). (75)

After using Langreth theorem of analytic continuation, and taking Fourier transformation
over the current equation Eq. (67) and the time-averaged tunneling current can be expressed
as,

IL =
e

2π ∑
m,n

J2
m J2

n|tL|2|tR|2
∫

dωGr
dGa

d
[
g<Ln(ω)g>Rm(ω)− g>Ln(ω)g<Rm(ω)

]
. (76)

with gLm/Rm(ω) = gL/R(ω + mΩ).

As the above step, we also introduce the electron occupation number for interacting electrons
F(ω), then we finally obtains the photon-assisted tunneling current

J = e ∑
m,n

J2
m J2

n

∫ dω

2π
ΓLΓRGrGa(F>

Rm(ω)F<
Ln(ω)− F<

Rm(ω)F>
Ln(ω)), (77)

where Jm(z) is the mth-order Bessel function and FLm/Rm(ω) = FL/R(ω + mΩ). The more
detail derivation process of the time-dependent current formula Eq. (77) can be found in the
work (Yang3, 2010).

In the next we only give the time-dependent thermopower formula using the above
procedure. Under the small bias voltages and small temperature gradients and with the help
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of the linear expansion, we have

JL = L11
δμ

T
+ L12

δT
T2 =

e
2π ∑

m,n
J2
m J2

n

∫
dωT(ω)

{[
∂F(ω)

∂μ

]
T

δV +

[
∂F(ω)

∂T

]
μ

δ(ΔT)

}
, (78)

where Fmn(ω) = F<
Ln(ω)F>

Rm(ω) − F>
Ln(ω)F<

Rm(ω). omparing both sides of the Eqs.(78) (let
e = 1, h̄ = 1), we obtain

L11 =
T

2π ∑
m,n

J2
m J2

n

∫
dωT(ω)

[
∂Fmn(ω)

∂μ

]
T

, (79)

L12 =
T2

2π ∑
m,n

J2
m J2

n

∫
dωT(ω)

[
∂Fmn(ω)

∂T

]
μ

, (80)

where the partial derivatives ∂Fmn
∂μ and ∂Fmn

∂T are not yet expressed evidently. In the following
we will show the explicit expression for L11 and L12. In order to obtain L11 and L12, we

must arrive at ∂F<,>
Lm

∂V and ∂F<,>
Lm

∂T . With the help of the linear expansion of the Luttinger liqiud
distribution function and expand them to the first order derivatives, the Luttinger liqiud
distribution function becomes

∂F<,>
Lm

∂V
= η

{
± 1

2T
− i

2πT
Ψ+m + Ψ−m

}
F<,>

Lm , (81)

and
∂F<,>

Rm
∂V

= (η − 1)
{
± 1

2T
− i

2πT
Ψ+m + Ψ−m

}
F<,>

Rm , (82)

where Ψ±m ≡ Ψ( 1
2g ± i ω+mΩ−μ

2πT ). Substituting of Eq.(81) and Eq.(82) into Eq.(77) enables

one to obtain the expressions of ∂Fmn
∂V and ∂Fmn

∂(ΔT) required in Eqs. (79) and (80). After a long
calculation using the same steps above we finally obtain

∂Fmn

∂V
=

∂[F<
LmF>

Rn − F>
LmF<

Rn]

∂V

= F<
m F>

n (
1
T
+

i
2πT

(Ψ−m −Ψ+m −Ψ−n + Ψ+n)), (83)

With the same deriving process, we obtain the partial derivation with respect to temperature
as

∂Fmn

∂V
=

∂[F<
LmF>

Rn − F>
LmF<

Rn]

∂T

= F<
m F>

n [
(ωm + ωn)

2T2 − iωm

2πT2 (Ψ+m −Ψ−m) +
iωn

2πT2 (Ψ+n −Ψ−n)], (84)
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with ωm = ω + mΩ and Fm = F(ω + mΩ). In terms of the linear expansion of the
time-dependent current formula, The coefficients L11/12 of the linear response theory can be
determined from the corresponding correlation functions.

L11 =
T
h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

Δ
Ω
)J2

n(
Δ
Ω
)F<

m F>
n

[
1
T

+
i

2πT
(Ψ−m −Ψ+m −Ψ−n + Ψ+n)

]
(85)

and

L12 =
T2

h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

Δ
Ω
)J2

n(
Δ
Ω
)F<

m F>
n

[
(ωm + ωn)

2T2

− iωm

2πT2 (Ψ+m −Ψ−m) +
iωn

2πT2 (Ψ+n −Ψ−n)

]
. (86)

From the expression of the coefficients L11/12, we can see the coefficients L11/12 containing a
additional term caused by the time-dependent gate voltage.

The time-dependent zero bias conductance is then given by G(0) = e2

T L11, and the
time-dependent thermopower can be obtained from the ratio between voltage gradient ΔV
and and temperature gradient ΔT between the two reservoirs, when both left and right
time-dependent electric currents cancel

S = −ΔV
ΔT
|<I(t)=0>. (87)

Thus the conductance and thermopower take the form

G =
1
h

∫
dωT(ω)

∞

∑
m,n=−∞

J2
m(

Δ
Ω
)J2

n(
Δ
Ω
)F<

m F>
n

[
1
T

+
i

2πT
(Ψ−m −Ψ+m −Ψ−n + Ψ+n)

]
, (88)

and

S =

∫
dωT(ω)∑∞

m,n=−∞ J2
m(

Δ
Ω )J2

n(
Δ
Ω )F<

m F>
n ( 1

T + i
2πT ψmn)

T2
∫

dωT(ω)∑∞
m,n=−∞ J2

m(
Δ
Ω )J2

n(
Δ
Ω )F<

m F>
n [ (ωm+ωn)

2T2 − iωm
2πT2 ψ±m + iωn

2πT2 ψ±n]
, (89)

where ψmn = Ψ−m − Ψ+m − Ψ−n + Ψ+n, ψ±m = Ψ+m − Ψ−m and ψ±n = Ψ+n − Ψ−n.
When no ac filed, the above formula return to the equation (58). This formula describes
the time-averaged thermopower through the LL-QD-LL system in the presence of ac fields
which contains more information than the equation (58). The numerical results of the
time-dependent thermopower will be published in the future.
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Fig. 4. The conductance (a) and thermopower S (b) as a function of temperature with ε = 2.0
for g=0.2, 0.5, 0.8 and 1.0. At low temperature, the conductance exhibits a power-law
dependence of the temperature and the thermopower manifests the linear and positive
temperature dependence, respectively. The interaction factor g can be inferred from the
slopes of thermopower. With the enhancement of the electron-electron, the thermopower is
increased.

Fig. 5. Thermopowers S calculated by Eq. (23) (dash lines) and SM calculated by Mott
relation Eq. (26) (solid lines) at T=1.0 for (a) g=1.0, (b) g=0.8, (c) g=0.5 and (d) g=0.2.
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