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1. Introduction 

Speaking in a very broad sense, the Fourier transform (FT) can be treated as a systematic 

way to decompose arbitrary function into a superposition of harmonic (“symmetrical”) 

functions. It is a fundamental tool for studying of various processes and for this reason it is 

present in basically every scientific discipline. In last decades, the Fourier transformation 

was used in distinctive fields such as geophysics (Maus 1999, Skianis et al. 2006), image 

decomposition in neuroscience (Guyader et al. 2004), imaging in medical applications 

(Lehmann et al., 1999) just to mention a few. Recently, FT was successfully applied in wood 

sciences (Fujita et al. 1996; Midorikawa et al. 2005, Midorikawa and Fujita 2005). For 

example, Fujita and co-workers (Midorikawa et al. 2005, Midorikawa and Fujita 2005) used 

two-dimensional Fourier transform method to analyze the cell arrangements within the 

xylem ground tissues. In our recent papers (Csoka et al. 2005, Csoka et al. 2007), we made 

one step forward and try to analyze the wood anatomy via FT of the density function of the 

tree. Method is based on a forwarded Fourier transformation of the absolute amplitude 

spectra. Since the comprehensive literature survey of the accessible studies did not reveal 

any similar results based on this method, in this chapter we will discuss the basic theorem of 

FT of an absolute amplitude spectrum and a possibility to generate higher order FT  

defined as, 

 ( ) ( ) th
F f x k⎡ ⎤⎣ ⎦ . (1) 

 

The discussion also includes a brief description of the theory of the forwarded FT of the 

complex and absolute amplitude spectrum found in the literature. In the second part of the 

chapter, it will be shown how the presented theory can be applied to the analysis of the 

wood anatomy, specifically to determination of the transition point between juvenile and 

mature wood. 
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2. Problem statement 

We will start these theoretical considerations with familiar one-dimensional Fourier 

transform (FT) of a given function ( )f x , 

 2( ) [ ( )]( ) ( ) ,i x kF k F f x k f x e dxπ∞ −
−∞= = ∫  (2) 

where ( )F k  is referred to as the spectrum of ( )f x . The absolute amplitude spectrum of 

( )F k  is defined as, 

 2 2{ ( )} { ( )} { ( )}F k F k F k= ℜ + ℑ . (3) 

Depending on the particular problem, the amplitude spectrum of a signal can be treated as 
complex or absolute function.  

As it was stated in the introduction, the main topic of this chapter is the Fourier transform of 

the absolute amplitude spectrum and its application to analysis of the wood anatomy. For 

this reason, we will first consider two basic methods for calculation of the forwarded FT of 

the amplitude function. The first method is to transform the complex amplitude spectrum ( )[ ]F f x  again according to Eq. (2). The second approach is to calculate Fourier transform on 

the absolute amplitude spectrum via so-called Wiener-Khinchin theorem.  

2.1 Fourier transform of the complex amplitude spectrum 

In the case when the complex amplitude spectrum is transformed the result is a time/space 
function which has been mirrored with respect to the y-axis, or, 

 ( ) ( )FTf x F k⎯⎯→  then ( ) ( )FTF k f x⎯⎯→ − .  (4) 

The theoretical exposition of Eq. (4) in discrete considerations is as follows. Let the basic 
finite interval be [0,1]. If we divide that interval in N equal parts, we will obtain 

: 0,..., 1
k

k N
N

⎧ ⎫= −⎨ ⎬⎩ ⎭  points. Let the value at k point be ( )f k . From the practical reasons we 

will select the discrete basis{ }: 0,..., 1je j N= − , where 

 ( ) 21
k

ij
N

je k e
N

π= . (5) 

The 
1

N
coefficient is necessary, because of the normalization. Now, the discrete FT of f  is, 

 ( )( ) ( ) ( )1 2

0

1
0,..., 1

kN ij
N

k

F f j f k e j N
N

π− −
=

= = −∑ . (6) 

Performing the FT on the obtained ( )F f :  

 ( )( )( ) ( )( )1 2

0

1
kN il
N

j

F F f l F f j e
N

π− −
=

= =∑   (7) 
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 ( )1 1 2 2

0 0

1 1
k kN N il il
N N

j k

f k e e
N N

π π− − − −
= =
⎛ ⎞⎜ ⎟= =⎜ ⎟⎝ ⎠∑ ∑   (8) 

 ( )1 1 2 2

0 0

1
k kN N ij il
N N

k j

f k e e
N

π π− − − −
= =

= =∑ ∑   (9) 

 ( )1 1 2

0 0

1
j lN N ik
N

k j

f k e
N

π +− − −
= =

= ∑ ∑ ( )0,..., 1j N= −   (10) 

The sum of a geometric series of the first N member, 

 
1 2

0

i lN ik
N

j

e
π +− −

=∑   (11) 

is 0, if  

 0.j l+ ≠  (12) 

If  

 0,j l+ =  (13) 

that is 

 j l= − , (14) 

then,  

 ( )( )( ) ( )F F f l f l= − .  (15) 

2.2 Fourier transform of the absolute amplitude spectrum 

The estimation of the Fourier transform of the absolute values of the amplitude spectrum, 

{ ( )}F k , requires different approach. In order to find the FT of the absolute spectrum, 

 (| ( )|)( )kF F k ` ,  (16) 

it is necessary to use the Wiener-Khinchin theorem, 

 2[| ( )| ]( ) ( ) ( ) ,kF F k f f dτ τ τ∞
−∞= +∫` `   (17) 

where f  denotes the complex conjugate of f (by definition Eq. (17) is a relationship 

between FT and its autocorrelation function).  

Using Eq. (17), ( )F k  can be expressed as, 

 22| ( )| [| ( )| ]( ) i kF k F F k e dπ∞
−∞ ⎡ ⎤= =⎣ ⎦∫ `` `  (18) 
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 2( ) ( ) i kf x f x dx e dπ∞ ∞
−∞ −∞
⎡ ⎤= +⎢ ⎥⎣ ⎦∫ ∫ `` ` .  (19) 

Therefore, the Fourier transform of the absolute amplitude spectrum is 

 2[| ( )|]( ) | ( )| i kF F k F k e dkπ∞ −
−∞= ∫ ``   (20) 

 2 2( ) ( ) i k i kf x f x dx e d e dkπ π∞ ∞ ∞ −
−∞ −∞−∞
⎡ ⎤= +⎢ ⎥⎣ ⎦∫ ∫ ∫ #̀ `# #` `   (21) 

Spectrum presented by Eq. (21) is essentially different from that of Eq. (4). However, neither 
Eq. (21) nor Eq. (4) was suitable in our attempt to draw additional information from the 
experimentally determined density function of the tree stem e.g. to determine the transition 
point between juvenile and mature wood. As it will be seen below, it turned out that in this 
practical case it is necessary to perform additional forwarded FT to the positive half of the 
absolute amplitude spectrum only. In the following section we will consider the forwarded 
FT of the absolute amplitude spectrum which originates from the superposition of a 
multitude of harmonic signals. 

3. The forwarded FT of the absolute amplitude spectrum which consists of a 
multitude of harmonic signals  

We will start the analysis of the forwarded FT of the absolute amplitude spectrum by 

considering monochromatic functions obtained by Dirac delta segment sampling of a 

continuous signal. If ( )x t is a original continuous signal then the sampled discrete function, 

( )sx t , is given by  

 ( ) ( )( ( ))s Tx t x t T t= Δ ,  (22) 

where ( )T tΔ is the sampling Dirac delta operator and T is the period. Taking that Fourier 

series of ( )T tΔ is, 

 2 si k f t

k

e π∞
=−∞∑ ,  (23) 

Eq. (22) can be written as: 

 2( ) ( ) si k f t
s

k

x t x t e π∞
=−∞

= ∑ , (24) 

where sf  is the sampling frequency and the principle frequency of the periodicity of ( )T tΔ . 

The amplitude spectrum of monochromatic function given by Eq. (24) can be represented by 

one dimensional Dirac delta function pair: 

 ( ) ( )s sf f f fδ δ− + + .  (25) 

If the signal is sampled at sf  samples per unit interval, the FT of the sampled function is 

periodic by a period of sf . 
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Let us consider a finite length segment of ( )sx t  by performing an L  length rectangle 

window function ( )x∏ , which is 0 outside the L  interval and unity inside it. The FT of a 

rectangle window function is given by 

 2[ ( )]( ) ( ) sin ( )i k x
xF x k e x dx c kπ π∞ −

−∞∏ = ∏ =∫ . (26) 

Fourier transform of the ( )sx t  ( )x∏ product is a convolution operation, which allows us to 

calculate the spectrum of the windowed, finite function: 

 [ ( ) ( )] [ ( )] [ ( )] ( ) sin ( )s s sF x t x F x t F x f f c kδ π∏ = ∗ ∏ = ± + .  (27) 

It can be clearly seen that this convolution spectrum consists of a sin ( )c kπ  set at the 

impulse-position of the Dirac delta function. If the ( )x∏  is positioned between / 2L−  and 

/2L+  then the convolution’s spectrum will contain real amplitude values only. Let us 

chose the length of the original ( )x∏  in such way that it contains the whole period of ( )sx t . 

In that case the convolution amplitude spectrum will be reduced to a Dirac delta function 

pair ( )sf fδ −  and ( )sf fδ + . For further considerations the positive frequency interval 

[0, / 2]Sf  is taken which contains single Dirac delta function ( )sf fδ − . That is achieved by 

multiplication of the amplitude spectrum in the frequency space with window ( )k∏  

function. The ( )k∏ function is not symmetric at the centre; it is shifted to positive direction 

by one quarter of the original sampling frequency. Finally, the Fourier transform of the 

obtained ( )sf fδ −  function is an exponential function:  

 2 2[ ( )] ( ) s si f k i f k
s sF f f f f e eπ πδ δ − −− = ∑ − =   (28) 

and its amplitude spectrum is unity, 

 02
0cos(2 ) 1i ff x e ππ −⇒ =` .  (29) 

When, however, ( )sx t  is a superposition of more harmonic signals, the sum, 

 02
0cos(2 ) | |ji f

j
j j

f x e
ππ −⇒∑ ∑ ` ,  (30) 

is generally not unity, but it exhibits oscillations. The former result suggests the presence of 
the complex interaction between amplitude waves which can be used in order to draw the 
additional information from the original signal. It should be noted that the performing of 
the FT on the absolute amplitude spectrum will give the spectrum with an argument that is 
expressed in the same dimensional units as the variable of the original spectrum. For this 
reason, we believe that the interference peaks in the forwarded FT of the absolute spectrum 
carry information about the specific positions where certain processes were activated, 
which, otherwise, can not be observed directly in the original spectrum. Reciprocate of Eq. 
(30) was further used to determine the FT spectrum of the absolute amplitude spectrum 
from a density function of a tree. Similarly to Eq. (30) we can generate formula for two 
dimensional signals (pictures) as, 

 0 02 2
0 0cos(2 )cos(2 ) | |m ni f i f

m n
m n m n

f x f x e eπ ππ π − −⇒∑∑ ∑∑ ` ` . (31) 
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It should also be emphasized that if the sum in Eq. 30 is different from unity then it will be 
possible to generate higher order FT of the absolute amplitude spectrum.  

4. Examples and discussion 

Timber is a biosynthetic end product so the making of wood is a function of both gene 
expression and the catalytic rates of structural enzymes. Thus, to achieve a full 
understanding of wood formation, each component of the full set of intrinsic processes 
essential for diameter growth (i.e. chemical reactions and physical changes) must be known, 
investigate in complex form and information on how each one of those components is 
affected by other processes (Savidge et al., 2000).  
The younger juvenile wood produced in the crown has features which distinguish it from 
the older, more mature wood of the bole (Zobel and Sprague, 1999). Variations within a 
species are caused by genetic differences and regional differences in growth rate. 
Differences also occur between the juvenile and mature wood within single trees, and 
between the earlywood (springwood) and latewood (summerwood) within each annual 
growth ring. Juvenile wood is an important wood quality attribute because depending on 
species, it can have lower density, has shorter tracheids, has thin-walled cells, larger fibrial 
angle, and high – more than 10% – lignin and hemicellulose content and slightly lower 
cellulose content than mature wood (Zobel and van Buijtenen, 1989, Zobel and Sprague, 
1999). Wood juvenility can be established by examining a number of different physical or 
chemical properties.  
Juvenile wood occupies the centre of a tree stem, varying from 5 to 20 growth rings in size, 

and the transition from juvenile to mature wood is supposed to gradual. This juvenile wood 

core extends the full tree height, to the uppermost tip (Myers et al., 1997). It is unsuitable for 

many applications and has great adverse economic impact. Juvenile wood is not desirable 

for solid wood products because of warpage during drying and low strength properties and 

critical factors in producing high stiffness veneer (Willits et al., 1997). In the other hand, in 

the pulp and paper industry juvenile wood has higher than mature wood in tear index, 

tensile index, zero-span tensile index, and compression strength. For the same chemical 

pulping conditions, pulp yield for juvenile wood is about 25 percent less than pulp yield for 

mature wood (Myers et al., 1997).  

It is, therefore, important from scientific as well as from practical reasons to determine the 

demarcation line between juvenile and mature wood. The advantage of the present 

approach that this boundary line can be determined by analysis of density spectrum which 

was obtained by non-invasive X-ray densitometry method.  

4.1 Materials and methods 

Twelve selected trees were investigated, which were planted in Akita Prefectures, Japan. 
The name of the tree is sugi (Cryptomeria japonica D. Don). The trees were harvested in 
different ages between 71 and 214 years (Table 1). Tracheid lengths, annual ring structure, 
were also determined from those samples. 

4.2 X-ray densitometry 

Bark to bark radial strips of 5 mm thickness were prepared from the air-dried blocks cut 
from the sample disks. After conditioning at 20 °C and 65% RH, without warm water 
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extraction, the strips were investigated by using X-ray densitometry technique, with 340 
seconds of irradiation time. The current intensity and voltage were 14 mA and 17 kV, 
respectively. The distance between the X-ray source and the specimen was 250 cm. The 
developed films were scanned with a densitometer (JL Automation 3CS-PC) to obtain 
density values across the growth rings (Figure 1) and with a table scanner (HP ScanJet 4C) to 
obtain digital X-ray picture for image processing. 
 

 

Fig. 1. X-ray image of a sugi sample  

The growth ring parameters of ring width (RW), minimum density within a ring (Dmin), 
maximum density within a ring (Dmax) and ring density (RD: average density within a ring) 
were determined for each growth ring by a special computer software. The latewood is 
categorized by Mork’s definition, as a region of the ring where the radial cell lumens are 
equal to, or smaller than, twice the thickness of radial double cell walls of adjacent tracheids 
(Denne, 1989). A threshold density, 0.55 g/cm3 was used as the boundary between 
earlywood and latewood (Koizumi et al., 2003). 

4.3 FT of the density function of the sugi tree 

Figure 2 shows density function of the sugi tree obtained by laser scanning of the x-ray 
image. It can be seen that the signal is periodic and its amplitude FT spectrum is shown in 
Figure 3. The amplitude spectrum shows a strong peak at frequency 0.4 mm-1 which shows 
that the most frequent annual ring is about 2.5 mm. However, after reciprocate of the Eq. 
(34) was used in order to determine the spectrum of the absolute amplitude spectrum some 
additional information were obtained (Figure 4). While the amplitude spectrum shows the 
frequency structure of continuous or discrete signals, the forwarded FT of the absolute 
amplitude spectrum can provide the information about the complex effect of the interaction 
among these waves.  
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Fig. 2. The density function of a sugi tree (obtained by laser scanning of the X-ray image) 
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Fig. 3. The amplitude spectrum of the density function 

As it can be noticed in Figure 4, the second FT spectrum shows spikes at certain positions. 
These peaks suggest the locations in the original complex function where the superposition 
of two or more periodic curves takes place. The highest peak has been assigned to the 
transition point between juvenile and mature wood (Csoka et al., 2007). Note that FT 
changes the dimension of the independent variable according to the input signals. The 
dimension of the variable of the second FT spectrum is the same as the dimension of the 
original variable. It should also be emphasized that the obtained values for the transition 
between juvenile and mature wood calculated from the second FT spectrum were in 
agreement with the values obtained from segmented model of tracheid lengths (Zhu et al., 
2005). 
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Fig. 4. The forwarded FT of the amplitude spectrum of a density function 
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The variables and typical parameters of the density function, its amplitude spectrum and 
the Fourier transform of the amplitude spectrum are given in Table 1. In that table L 
represents the actual length of the sample which depends of the age of the wood. However, 
increment between discrete points is kept constant to 0.015 mm. It should be also pointed 
out that one annual ring is represented by 200-400 points. 
 

Properties of spectrums 

density function Amplitude spectrum FT of amplitude spectrum 

length of x axis length of the x axis length of the x axis 

[ ]L mm  .

/ 2 33.33 [1 / ]sf mm=   [ ]
2

L mm  

increment between points increment between points increment between points 

0.015 [ ]Ll mm
N

Δ = =  1

1

L
l

N
Δ =  2

2

L
l

N
Δ =  

number of points  number of points number of points 

N  
2

N  
4

N  

Table 1. The variables and typical parameters of the density function, its amplitude 
spectrum and the Fourier transform of the amplitude spectrum 

4.4 FT of the X-ray image 

X-ray image (Figure 1) was first processed by using a spatial grey level method. After the 
determination of the grey level at each point in the image, a 2D power spectrum that 
represents image in the frequency domain was calculated via Fourier transformation. Figure 

5 shows the obtained power spectrum in a 3D representation. The amplitude spectrum of an 
X-ray image expresses a function (which is a point in some infinite dimensional vector space 
of functions) in terms of the sum of its projections onto a set of basis functions. The 
amplitude spectrum of the image carries information about the relative weights with which 

frequency components (projections) contribute to the spectrum, while the phase spectrum 
(not shown) localizes these frequency components in space (Fisher et al., 2002). It should be 
noted that in the Fourier domain image, the number of frequencies corresponds to the 

number of pixels in the spatial domain image, i.e. the image in the spatial and Fourier 
domains are of the same size (Castleman 1996). 

The 3D representation of the power spectrum in Figure 5 is related to the rate at which 
gradual brightness in the X-ray image varies across the image. The frequency refers to the 

rate of repetitions per unit time i.e. the number of cycles per millimetre. Therefore, the 
intensive peaks observed in Figure 5 indicate the basic frequencies of the annual ring pattern 

in the frequency domain. The forwarded FT of the amplitude spectrum of the image is 

shown in Figure 6. With a closer look at the original image, a strong relationship between 
the annual ring texture and the spectrum in Figure 6 can be noticed, with could also justify 

our approach of using forwarded Fourier transformation of the absolute spectrum for 
determination of the demarcation zone between juvenile and mature wood. The texture of 

the 3D picture obtained from the forwarded FT of the absolute spectrum exhibit obvious 
annual ring pattern.  

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

10 

 
 
 

 
 
 
 

Fig. 5. The power spectrum of the X-ray image (Figure 1) in 3D representation 

 
 
 

 
 
 

 

Fig. 6. The forwarded FT of the amplitude spectrum of the X-ray image 

In order to analyze to transition between juvenile and mature wood from the forwarded 
FT of the amplitude spectrum of X-ray image, horizontal intensity line slices have been 
took through the spectrum in Figure 6. This pixel slice contains information about 
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possible interactions between certain modes in the amplitude spectrum. The spectrum in 
Figure 7 was obtained by taking the sum of the slices from the bottom to the top of the 
image. The highest peak in the spectrum refers to the transition point of juvenile and 
mature wood. 
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Fig. 7. The sum of pixel slices from the bottom to the top of the forwarded FT of the 
amplitude spectrum presented in Figure 6 

5. Conclusions 

Since the determination of the boundary zone between juvenile and mature wood is a 

subject of great practical importance in the area of wood anatomy, a various methods were 

suggested to address this problem. However, most of these methods considered only a 

limited number of characteristic features of the wood stem (one or two). For example, for a 

long time, the researchers were focused on the measurements of the annual ring width, the 

specific gravity, tracheid length and microfibril angle (Fujisaki 1985, Fukazawa 1967, Matyas 

and Peszlen 1997, Ota 1971, Yang et al. 1986, Zhu et al. 2000). The method based on the 

nonlinear, segmented regression method of tracheid length and microfibril angle (Cook and 

Barbour 1989, Zhu et al. 2005) has provided a common and simple tool for analyzing of the 

growth variation, while at the same time it was not restricted to certain groups of species or 

types of data. Unfortunately, all these different approaches did not take the complexity of 

the stem into account. The global nature of the above mentioned processes hides local 

density-distribution information, and makes the determination of the changes related to the 

distance from the pith impossible. 
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In this chapter we presented the FT of an amplitude spectrum theorem that can find direct 

application in studying of a wood anatomy. In spite of its simplicity, to our best knowledge 

there is no reference in the literature regarding the use of forwarded FT of the absolute 

amplitude spectra of an arbitrary vibration in the way we suggested. The suggested 

theoretical approach was used in order to determine the demarcation zone between juvenile 

and mature wood within a tree stem from the experimentally obtained density spectrum. 

The main advantage of the present method is that it enables simultaneous study of the 

changes in the density of annual rings and their distances from the pith, while they were, so 

far, studied as independent properties. The density function contains inherent information 

about changes in successive annual rings that may, after an appropriate mathematical 

analysis procedure, be used to describe the microstructure of the wood. It is assumed that 

the variation in the biological and physical characteristics of the cell (i.e. the cell dimension, 

the thickness of cell wall, the cellulose and lignin contents in the cell wall, and the growth 

rate) will be reflected in the sequences of wood density in the radial direction. The 

forwarded FT of the absolute amplitude spectrum provides information about the 

interaction of the amplitude waves, which can be further used to characterize the physical 

growth of the trees.  
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1. Introduction  

The Gaussian and Fourier Transform (GFT) method is a first-principles quantum 
chemistry approach based on the Gaussian basis set, which can take into account the 
periodic boundary condition (PBC).(Shimazaki et al. 2009 a) The quantum chemistry 
method has mainly concentrated on isolated molecular systems even if target system 
becomes large such as DNA molecules and proteins, and the periodic nature does not 
appear. However, chemists have been recently paying much attention to bulk materials 
and surface, which cover electrochemical reaction, photoreaction, and catalytic behaviour 
on the metal or semiconductor surfaces. The periodic boundary condition in the first 
principles (ab-initio) approach is a strong mathematical tool for handling those systems. In 
addition to this, the momentum (k-space) description for the electronic structure helps us 
to understand essential physical and chemical phenomena on those systems. Therefore, it 
is an inevitable desire to extend the ordinary quantum chemistry method toward the 
periodic boundary condition. The crystal orbital method is a straight-forward extension 
for the purpose.(Hirata et al. 2010; Ladik 1999; Pisani et al. 1988) However, the crystal 
orbital method naturally faces a challenging problem to calculate the Hartree term due to 
the long-range behavior of the Coulomb potential. The method requires for infinite lattice 
sum calculations with respect to two electron integral terms, which intensively takes CPU 
costs even if some truncation is employed. Therefore, several computational techniques, 
such as sophisticated cutoff-criteria and the fast multi-pole method (FMM), have been 
developed to cope with the problem. (Delhalle et al. 1980; Kudin et al. 2000; Piani et al. 
1980) In this chapter, we explain an efficient method using Fourier transform technique 
and auxiliary pane wave, whose description is suitable for the periodic boundary 
condition, to calculate the periodic Hartree term. Our method is based on the Gaussian 
basis set and the Fourier (GFT) transform method, thus we refer to our method as the GFT 
method. In the GFT method, the Hartree (Coulomb) potential is represented by auxiliary 
plane waves, whose coefficients are obtained by solving Poisson‘s equation based on the 
Fourier transform technique. However, the matrix element of the Hartree term is 
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determined in the real-space integration including Gaussian-based atomic orbtials and 
plane waves. We can employ a recursive relation to achieve the integration, as discussed 
later. Conversely, we can employ the effective core potential (ECP) instead of explicitly 
taking into account core electrons in the GFT method. This chapter will demonstrate 
several electronic band structures obtained from the GFT method to show the availability 
of our method for crystalline systems. 
We try to develop the GFT method to become an extension of the ordinary quantum 
chemistry method, whereas our method employs the different integration algorithm for the 
Hartree term. Therefore, the various quantum chemistry techniques can be easily 
incorporated into the GFT method. In this chapter, we discuss the effect on the Hartree-Fock 
fraction term in the electronic structure calculation for solid-state materials. In first-
principles calculations of crystalline and surface systems, local or semi-local density 
functional theory (DFT) is usually employed, but the use of the HF fraction can expand the 
possibility of DFT. The HF fraction is frequently adopted in the hybrid DFT functional, 
especially in the field of the quantum chemistry. It has been proved that the electronic 
structure description of the hybrid DFT method is superior compared with the local density 
(LDA) and generalized gradient approximations (GGA) in molecular systems. However, the 
hybrid DFT method is rarely adopted for crystalline and surface systems because of its 
larger computational cost.  
When we discuss the hybrid DFT method in crystalline and surface systems, the concept of 
screening on the exchange term is imperative. The concept has been already taken into 
account in the HSE hybrid-DFT functional, which is proposed by Heyd et al. in 2003.(Heyd 
et al. 2003) On the other hand, the GW approximation handles the concept, whereas it is not 
in DFT framework.(Aryasetiawan et al. 1998; Hedin 1965) In the Coulomb hole plus 
screened exchange (COHSEX) approximation of the GW method, the screened exchange 
term is explicitly described. Thus, its importance has been recognized at early stage of first-
principles calculations. However, the relationship between the hybrid-DFT method and the 
screening effect has not been paid attention so much. Recently, we propose a novel screened 
HF exchange potential, in which the inverse of the static dielectric constant represents the 
fraction of HF exchange term.(Shimazaki et al. 2010; Shimazaki et al. 2008; Shimazaki et al. 
2009 b) The screened potential can be derived from a model dielectric function, which is 
discussed in Section III, and can give an interpretation how the screening effect behaves in 
semiconductors and metals. In addition, it will be helpful to present a physical explanation 
for the HF exchange term appeared in the hybrid-DFT method. In order to show the validity 
of our physical concept, we demonstrate several band structure calculations based on our 
screened HF exchange potential, and show that our concept on the screening effect is 
applicable to semiconductors. In this chapter, the screened HF exchange potential is 
incorporated with the GFT method, whereas it does not need to stick to the GFT method.  
The GFT method is based on the Gaussian-basis formalism, and therefore we can easily 
introduce the hybrid-DFT formalism for PBC calculations. 

2. Gaussian and Fourier Transform (GFT) method 

2.1 Crystal Orbital method 

First we briefly review the crystal orbital method, which is a straight-forward extension of 
the quantum chemistry method to consider the periodic boundary condition.(Hirata et al. 
2009; Hirata et al. 2010; Ladik 1999; Pisani et al. 1988; Shimazaki et al. 2009 c) The Bloch 
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function (crystal orbital) for solid-state material is obtained from the linear combination of 
atomic orbitals (LCAO) expansion as follows:  

 ( ) ( ) ( )M K

j jb i d
K

,

1
exp α αα

χ= ⋅∑∑k Q

Q

r k Q k   (1) 

Where Q  is the translation vector. The total number of cells is K K K K1 2 3= , where K1 , K2 , 

and K3  are the number of cells in the direction of each crystal axis, and k  is the wave 

vector. ( )α α αχ χ= − −Q r Q r  is the α -th atomic orbital (AO), whose center is displaced from 

the origin of the unit cell at Q  by αr . jd ,αk  is the LCAO coefficient, which is obtained from 

the Schrödinger equation as follows: 

 ( ) ( )j j jλ=k k kh k d S k d    (2-1) 

 ( )Tj j j j M jd d d d1, 2 , , ,α=k k k k kd A A   (2-2) 

 ( ) ( ) ( )K

iexp= ⋅∑
Q

h k k Q h Q   (2-3) 

 ( ) ( ) ( )K

iexp= ⋅∑
Q

S k k Q S Q   (2-4) 

 ( )T
j j j j

*
,δ′ ′=k kd S k d .  (2-5) 

Here, the Hamiltonian and the overlap matrices are given by ( ) h1 2ˆα βαβ χ χ⎡ ⎤ =⎣ ⎦ Q Qh Q  and ( ) 1 2α βαβ χ χ⎡ ⎤ =⎣ ⎦ Q Q
S Q , respectively. ĥ  is the one-electron Hamiltonian operator, and 

2 1= −Q Q Q . The Hamiltonian matrix is composed of the following terms: 

 ( ) ( ) ( ) ( ) ( )NA Hartree XC= + + +h Q T Q V Q V Q V Q   (3)  

Here, ( )T Q  represents the kinetic term, whose matrix element is obtained from ( ) ( ) 21 2α βαβ χ χ⎡ ⎤ = − ∇⎣ ⎦ 0 QT Q . ( )NAV Q  is the nuclear attraction term, which is obtained 

from ( ) ( )NA A AA
Zα βαβ χ χ⎡ ⎤ = − −⎣ ⎦ ∑0 QV Q r R , ( )HartreeV Q  is the Hartree term, and ( )XCV Q  

is the exchange-correlation term. For example, the exchange-correlation term in the HF 

approximation is expressed using r12 1 2= −r r  as follows, 

 ( ) ( ) ( ) ( ) ( ) ( )1 2

1 2

0
1 2 1 1 2 2 1 2

12,

1Fock d d
r

γδ α γ β δαβ γ δ
⎡ ⎤ = − − χ χ χ χ⎣ ⎦ ∑∑ ∑ ∫∫ Q Q Q

Q Q

V Q D Q Q r r r r r r    (4) 

Here the AO-basis density matrix D  is obtained from the following equation. 

 ( ) ( ) ( )FD F j j j
j

D f E d d i
K

*
, ,

1
expαβ α βλ= − ⋅∑∑ k k k

k

Q k Q   (5) 
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Where ( )FD F jf E λ− k  and FE  are the Fermi–Dirac distribution function and the Fermi energy, 

respectively. 

2.2 Gaussian and Fourier Transform (GFT) method 

In the crystal orbital method, the calculation of the Hartree term is the most time-consuming 
part due to the long-range behavior of the Coulomb potential. The electron-electron 
repulsion integrals need to be summed up to achieve numerical convergence. In order to 
avoid the time-consuming integrations, we employ the Hartree (Coulomb) potential with 
the plane-wave description and the Fourier transform technique.(Shimazaki et al. 2009 a) In 
the method, we divided the nuclear attraction and Hartree terms into core and valence 
contributions as follows.  

 ( ) ( ) ( )core valence
Hartree Hartree Hartree= +V Q V Q V Q  (6-1) 

 ( ) ( ) ( ) ( )core valence valence
NA NA SR NA LR NA− −= + +V Q V Q V Q V Q  (6-2) 

The above equation is obtained by simply dividing the terms into core and valence 

contributions, where ( )core
NAV Q  and ( )core

HartreeV Q  are the nuclear attraction and Hartree terms 

for the core contribution, respectively. ( )valence
SR NA−V Q  and ( )valence

LR NA−V Q  are the short-range (SR) 

and long-range (LR) nuclear attraction terms, respectively, for the valence contribution. ( )valence
HartreeV Q  is the Hartree term for the valence contribution. The electron-electron and 

electron-nuclear interactions of the core contribution are directly determined based on the 

conventional quantum chemical (direct lattice sum) calculations. However, this lattice sum 

calculations does not intensively consume CPU-time, because core electrons are strongly 

localized, and therefore its potential-tail rapidly decays to cancel the core nuclear charges. 

We will discuss the effective core potential (ECP) for core electrons in the next section. On 

the other hand, the contribution of valence electrons is considered by using the Poisson’s 

equation and the Fourier transform. In order to divide the terms into core and valence 

contributions, we introduce the following core and valence electron densities. 

 ( ) ( ) ( ) ( ) ( ) ( )core valence2 1

1 2

2 1
,

αβ β αα β
ρ χ χ ρ ρ= − ≡ +∑∑ ∑ Q Q

Q Q

r D Q Q r r r r   (7-1) 

 ( ) ( ) ( ) ( )valence valence
valence 1 31

1 3

3
,

αβ α βα β
ρ χ χ += ∑ ∑ ∑ Q QQ

Q Q

r D Q r r  (7-2) 

 ( ) ( ) ( )core valenceρ ρ ρ= −r r r    (7-3) 

Here, ( )ρ r  is the total electron density, and ( )coreρ r  and ( )valenceρ r  are the core and valence 

electron densities, respectively. The Hartree potential is divided into core and valence 

components on the basis of eq. (7) as follows: 

  
( ) ( ) ( ) ( )
( ) ( )

core valence

Hartree

core valence
Hartree Hartree

V d d d

V V

ρ ρ ρ′ ′ ′′ ′ ′= = +′ ′ ′− − −
≡ +

∫ ∫ ∫r r r
r r r r

r r r r r r

r r

   (8) 
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The “core” Hartree term in the GFT method is obtained from the “core” contribution of the 
density matrix as follows: 

 

( )
( )
( )
( )

core core
Hartree Hartree

core core

core valence

valence core

V

D

D

D

1 2

1 2

1 2

1 2

1 2

1 2

1 2
,

1 2
,

1 2
,

α βαβ

γδ α γ β δγ δ

γδ α γ β δγ δ

γδ α γ β δγ δ

χ χ
χ χ χ χ
χ χ χ χ
χ χ χ χ

⎡ ⎤ =⎣ ⎦
= −
+ −
+ −

∑∑ ∑
∑ ∑ ∑
∑ ∑ ∑

0 Q

Q Q0 Q

Q Q

Q Q0 Q

Q Q

Q Q0 Q

Q Q

V Q

Q Q

Q Q

Q Q

   (9-1) 

 ( ) ( ) ( ) ( )d d
r

1 2 1 2
1 1 2 2 1 2

12

1
α γ β δ α β γ δχ χ χ χ χ χ χ χ= ∫∫Q Q Q Q0 Q 0 Qr r r r r r   (9-2) 

The lattice sum over a small number of sites is required since the core electrons are strongly 
localized around the center of the nucleus and their electron charges are thus perfectly 
compensated by the core nuclear charges. On the other hand, the “valence” Hartree term in 
the GFT method can be taken into account through the following Poisson’s equation, where 
we can employ Fourier transform technique to solve the equation.  

 ( ) ( )valence valence
HartreeV2 4πρ∇ = −r r    (10-1) 

 ( ) ( ) ( )valence
Hartree

FT

V i
N G2

4
exp

ρπ= ⋅∑
G

G
r G r   (10-2) 

 ( ) ( ) ( )
g

g giexpρ ρ≡ − ⋅∑
r

G r G r   (10-3) 

We can employ a fast Fourier transform (FFT) method, and gr  represents a grid point for the 

FFT calculations. Thus, the “valence” Hartree term is obtained as follows, 

 ( ) ( ) ( )valence valence
Hartree Hartree

FT
G

V i
N G2

0

4
expα β α βαβ

ρπχ χ χ χ
≠

⎡ ⎤ = = ⋅⎣ ⎦ ∑0 Q 0 Q

G

G
V Q G r   (11) 

In the above equation, we omit the term of G 0= . The term will be discussed later.  
The nuclear attraction potential is also divided into core and valence components: 

 ( ) ( ) ( )core valence
core valenceA A A

NA NA NA
A A AA A A

Z Z Z
V V V= = + ≡ +− − −∑ ∑ ∑r r r

r R r R r R
  (12) 

Here, AZ  is the nuclear charge for atom number A . The “core” nuclear charge core
AZ  is 

defined as follows. 

  ( ) ( ) ( ) ( ) ( ) ( )core core core valence valence core
core
A a a a a a a

A A A

Z D S D S D Sβ β β β β βα β α β α β∈ ∈ ∈
= + +∑∑∑ ∑ ∑ ∑ ∑ ∑∑

Q Q Q

Q Q Q Q Q Q   (13) 
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The remaining charge is assigned as the “valence” nuclear valence
AZ  charge as follows. 

 valence core
A A AZ Z Z= −    (14) 

The “core” nuclear attraction term is obtained as follows.  

 ( ) core
core core A
NA NA

A A

Z
Vα β α βαβ χ χ χ χ⎡ ⎤ = − = −⎣ ⎦ −∑0 Q 0 QV Q

r R
  (15) 

Note that the “core” and “valence” nuclear charges are renewed in each self-consistent field 
(SCF) cycle. In the GFT method, the “valence” nuclear attraction potential is divided into 

short-range (SL) and long-range (LR) contributions, where valence valence valence
NA SR NA LR NAV V V− −= +  by using 

the following error function (erf) and complementary error function (erfc).  

 
( ) ( )erf wr erfc wr

r r r

1 = +   (16-1) 

 ( ) ( )wr
erf wr t dt2

0
exp= −∫    (16-2) 

The short range (SR) “valence” nuclear attraction term is determined from the 

complementary error function (erfc) and the “valence” nuclear charges valence
AZ  as follows, 

 ( ) ( )valence
A Avalence valence

SR NA SR NA
A A

Z erfc
Vα β α βαβ

ηχ χ χ χ− −
−⎡ ⎤ = − = −⎣ ⎦ −∑0 Q 0 Q

r R
V Q

r R
  (17) 

The long range (LR) “valence” nuclear attraction term is obtained as follows, 

 

( ) ( )
( )

( )
( ) ( ) ( )2

2

0

4
exp exp exp

4

valence
A A

valence
LR NA

A

valencecell
Z

A

cell A

G

Z erf

Z G
i i d

V G

α βαβ

α β

ηχ χ
π χ χη

−

≠

−⎡ ⎤ = −⎣ ⎦ −
⎛ ⎞ ⎛ ⎞= − − − ⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑ ∫

0 Q

0 Q

G

r R
V Q

r R

G R r r G r r

   (18) 

In order to derive the above representation, we use the following equation. 

 
( ) ( )erf r

i d
r G G2 2

4 4
exp exp

η π η⎛ ⎞− ⋅ = −⎜ ⎟⎝ ⎠∫ G r r    (19) 

Equation (18) does not include the term of G 0= . The term will be discussed with the 

corresponding term of the Hartree potential in the section 2.4. 

2.3 Effective Core Potential (ECP) and total energy fourmula 

If the effective core potential (ECP) is employed together with the GFT method, the core 

electron density, ( )coreρ r , and nuclear charges, core
AZ , become zero, and the ECP term of 
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ECPV  is used for the Fock matrix instead of core contributions of the nuclear attraction and 

Hartree terms as follows,  

 
( ) ( ) ( ) ( )( ) ( ) ( )ECP SR NA

LR NA Hartree XC

−
−

= + +
+ + +
h Q T Q V Q V Q

V Q V Q V Q
     (20) 

The total energy per unit cell in this scheme is obtained as follows, 

( ) ( ) ( ) ( ){ }
( )

( ) ( ) ( )
( ) ( )

( )
( )

( )A B

total ECP SR NA

cell
cell

XC A
AFT cell

G

cell cel A B A BA
A

A BAFT A B
G

E D

V
E Z D S

N G V

Z Z erfcZ G
i

N G

,

2

2 2

0

2

2
,

0

1 4

2

4 1
exp exp

4 2

αβ αβ αβ αβα β

αβ βααβ
ρπ π

η
ηρπ

η

−

≠

≠ − − ≠

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎛ ⎞+ + + ⎜ ⎟⎝ ⎠

− −⎛ ⎞− − ⋅ +⎜ ⎟ − −⎝ ⎠

∑∑
∑ ∑ ∑∑

∑ ∑

Q

G Q

G

R R Q 0

Q T Q V Q V Q

G
Q Q

R R QG
G R

R R Q

l∑ ∑
Q

 

( )( )
( )

cell

A B B A
A Bcell

G

G
Z Z i

V G

2

2
,

0

1 4 1
exp exp

2 4

π
η

≠

⎛ ⎞+ − ⋅ −⎜ ⎟⎝ ⎠∑ ∑
G

G R R    

 
cell

A A
A A cell

Z Z
V

2

2 1

2

η π
π η

⎡ ⎤⎛ ⎞− −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∑ ∑   (21) 

Here, G  is the reciprocal lattice vector. XCE  is the exchange-correlation energy of the unit 

cell, which is written as ( ) ( )Fock
XC XE Tr0.5 ⎡ ⎤= ⎣ ⎦∑

Q

D Q V Q  in the Hartree-Fock approximation. 

FTN  is the number of grids for the Fourier transform. ( ) ( ) ( )
g

g giexpρ ρ= − ⋅∑ r
G r G r , where 

gr  is the grid point for FFT calculations. Last four terms of the total energy come from the 

Ewald-type representation for the nuclear-nuclear repulsion energy. 

2.4 Constant term 

In this section, we discuss the terms of G 0= , which appears in the nuclear attraction and 

Hartree terms, and the nuclear-nuclear repulsion. The total energy formula of eq. (21) 

includes the constant terms, which are derived from considerations of G 0= . The Fourier 

coefficient of the electron density behaves in the limit of G 0=  as follows, 

 

( ) ( ) ( )
( )

( )
g

g

g

g g
G G

g g g
G

g FT

G i

iGr G r

G N G

0 0

2 2 2

0

2 2

lim lim exp

1
lim 1 cos cos

2

ρ ρ

ρ θ θ
ρ β ρ β

→ →

→

= − ⋅
⎡ ⎤⎛ ⎞− +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

≈ + = +

∑
∑

∑

r

r

r

r G r

r

r

0    (22) 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

22 

Here, we use ( )( )
g

g g
G

iGr
0

lim cos 0ρ θ→ − =∑ r
r  and ( ) ( )

g
FT gN1ρ ρ= ∑ r

r . β  is a constant, 

however it disappears in the final form of the total energy, as shown bellow. On the other 
hand, the Hartree energy per unit cell is determined from the following equation:  

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

cell

cell

Hartree ele

V

V FT FT

cell cell

FT FT

E V d

i i d
N G N

V V
N G N G

2

2

2 2 2 2

1

2

4 1
exp exp

4 1 4

ρ
ρπ ρ

ρπ πρ ρ δ
′

′ −′

=

′ ′= ⋅ ⋅

′= =

∫
∑ ∑∫

∑ ∑
G G

G , G
G,G G

r r r

G
G r G G r r

G
G G

 (23) 

Here, we use ( ) ( )( )
cell

cell V
V i d ,1 exp δ ′′− ⋅ =∫ G GG G r r  and ( ) ( )*ρ ρ= −G G . If we consider the 

limit of G 0= , the Hartree energy can be described as follows, 

( )
( )

( )
Hartree cell cell

G
GFT FT

E V V
N G N G

2 2

2 2 2 20
, 0

1 4 1 4
lim

2 2

ρ ρπ π
→≠

= +∑
G

G G
  

 
( )

( ) ( )( )

( )
( )

FT FT

cell cell
G

G FT FT

cell
cell cell

G
G FT FT

N G N G
V V

N G N G

V
V V

N G G N

2 2 2

2 2 2 20
, 0

2

2

2 2 20
, 0

1 4 1 4
lim

2 2

1 4 1 1 4
lim 4

2 2

ρ β ρ βρπ π

ρπ ππ ρ βρ
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Next, we discuss the long-range nuclear attraction energy. 
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Then, the following asymptotic equation is obtained from the above term in the G 0→  case.  
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Here, 
cell

A cellA
Z V ρ=∑  and ( )

gA gA
Z ρ=∑ ∑ r

r . The second term of eq. (26), which includes 

β , is cancelled out by the corresponding constant term of the Hartree energy of eq. (24).  

The asymptotic description for nucleus-nucleus repulsion term is obtained from the Ewald-
type long range interaction as follows, 

( )( )cell

A B B A
G

A Bcell

G
Z Z i

V G

2

20 ,

1 4 1
lim exp exp

2 4

π
η→

⎛ ⎞− ⋅ −⎜ ⎟⎝ ⎠∑ G R R     

cell

A B
G

A Bcell

G
Z Z

V G

2

20 ,

1 4 1
lim 1

2 4

π
η→

⎛ ⎞−⎜ ⎟⎝ ⎠∑0    

 
cell

cell A
G

A cell

V Z
G V

2

2

20

1 1 1
lim 4

2 2

ππ ρ η→
⎡ ⎤= − ⎢ ⎥⎣ ⎦∑     (27) 

The first term of eq. (27) is cancelled by the corresponding terms of eqs (24) and (26). The 
compensation of the self-interaction of the long-range nucleus-nucleus interaction also 

brings in the constant term, and the term can be obtained from A B=  in the long-range 
nucleus-nucleus interaction as follows,  

 

( )
( )

cell

A
Acell

cell cell

A A
r

A A

G
Z i

V G

erf r
Z Z

r

2
2

2

2 2

1 4 1
exp exp

2 4

1
lim

2

π
η

η η
π→∞

⎛ ⎞− ⋅⎜ ⎟⎝ ⎠
= =

∑∑
∑ ∑

G

G 0

   (28) 

Here, we use ( )
r

erf r r
0

lim 2η η π→ ≈ .  

2.5 Recursion relation 

In order to obtain the integrations in eqs (11) and (18), we can use the following recursion 
relation.  

( ) ( )A
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exp exp
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2 2
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exp exp exp exp

4

πμ ⎛ ⎞ ⎛ ⎞⋅ = − − − ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠0 G r 0 R R G P   (29-2) 

 ( ) ( ) ( ) ( )yx zaa a
A A A
x y z a Ax R y R z R g

2
exp= − − − − −a r R    (29-3) 

Here, a bp g g= + , ( )a b a bg g g gμ = + , ( )x y za a a=a , ( )N aξ ξ=a , and ( )x y zξ ξ ξ ξδ δ δ=1  

using Kronecker’s delta. ( ) ( )a A b b a bg g g g= + +P R R . ξ  represents one of x , y , or z . The 
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recursion relation is an expansion of the Obara and Saika (OS) technique for atomic orbital 

(AO) integrals.(Obara et al. 1986) 

3. Screened Hartree-Fock exchange potential 

3.1 Dielectric function and screened exchange potential 

The screening effect caused by electron correlations is an important factor in determining 
the electronic structure of solid-state materials. The Fock exchange term can be represented 
as a bare interaction between electron and exchange hole in the Hartree–Fock 
approximation.(Parr et al. 1994) The electron correlation effect screens the interaction. In this 
section, we discuss the screening effect for bulk materials, especially semiconductors.  
The screening effect is closely related to the electric part of the dielectric function. The 
Thomas–Fermi model is a well-known dielectric model function for free electron gas.(Yu et 
al. 2005; Ziman 1979)  

 ( )TF

TF

k

k

1
2

2
1ε

−⎡ ⎤⎛ ⎞= + ⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦k   (30) 

Here, TFk  is the Thomas–Fermi wave number. Although the Thomas–Fermi model is 

applicable for metallic system, it is not suitable to semiconductors because it diverges when 

k 0= . The dielectric constant of semiconductors must take a finite value at k 0= . Therefore, 

a number of different dielectric function models for semiconductors have been proposed for 
semiconductors,(Levine et al. 1982; Penn 1962) and Bechstedt et al. proposed the following 
model to reproduce the property of semiconductors.(Bechstedt et al. 1992; Cappellini et al. 
1993)  

 ( ) ( )Bechstedt
s

TF F TF

k k

k k k

1
2 4

1

2 2 2
1 1

4 3
ε ε α

−
−⎡ ⎤⎛ ⎞= + − + +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦k   (31) 

Here, Fk  is the Fermi wave number whose value depends on the average electron density. 

sε  is the electric part of the dielectric constant. The value of coefficient α  is determined in 

such way that it fits to the random phase approximation (RPA) calculation, and Bechstedt et 
al. reported that the values of α  do not display a strong dependence on the material type. 

In this paper, we employ 1.563α =  according to their suggestion. The most important point 

is that the Bechstedt’s model does not diverge at k 0= ; ( )Bechstedt
sk 0ε ε= = . In this paper, we 

simplify Bechstedt’s model, and employ the following dielectric function model. 

 ( ) ( )s

TF

k

k

1
2

1

2
1 1ε ε α

−
−⎡ ⎤⎛ ⎞= + − +⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦k    (32) 

The following equation is obtained from the above equation through the inversion.  

 ( ) s sTF

k

k k

2

2 2

1 1 1
1ε ε ε
⎛ ⎞= − +⎜ ⎟⎜ ⎟ +⎝ ⎠k #   (33-1) 
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 TF
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s

k
k

2
2 1

1
1α ε

⎛ ⎞= +⎜ ⎟⎜ ⎟−⎝ ⎠
#   (33-2) 

Then, we obtain the following screened potential from these equations and the Fourier 
transform. 

 ( ) ( ) ( ) ( ) ( )TF
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#
  (34) 

The first term in the above equation represents the short range screened potential. However, 
since the screening effect is not complete in the semiconductors, the partial bare interaction 

appears in the second term. Conversely, for metallic systems, i.e., sε →∞ , complete 

screening is achieved, and the second term disappears.  

The Yukawa type potential, ( )Yq r rexp − , is difficult to handle with Gaussian basis sets, and 

therefore we employ ( )erfc wr r  instead of the Yukawa potential because the both functions 

behaves similarly if the relation Yq w3 2=  holds true.(Shimazaki et al. 2008) The use of a 

complementary error function provides a highly efficient algorithm for calculating 

Gaussian-based atomic orbital integrals. Thus, we obtain the following approximation. 

 ( ) ( )TF

s s

erfc k r
V

r r

2 31 1 1
1 ε ε
⎛ ⎞≈ − +⎜ ⎟⎜ ⎟⎝ ⎠r

#
   (35) 

Based on the above discussions, we employ the following screened Fock exchange in this 
paper. 
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  (36) 

Here, TFw k2 3= # .  The screened Fock exchange includes parameters such as TFk#  and sε , 

which strongly depend on the material. When s 1ε = , eq. (36) reduces to the ordinary Fock 

exchange; ( )screened HF
X TF Xk ,1 =V V# . 

3.2 Local potential approximation 

The semiconductors discussed in this paper have a large Thomas-Fermi wave vector; thus, 

the screening length becomes small and the first term of eq. (36) mainly takes into account 

short-range interactions and small non-local contributions. This potentially allows the first 

term to be approximated by a local potential and to neglect its non-local contribution. In this 

paper, we examine the LDA functional as a replacement for the first term of eq. (36). 

Although the LDA functional is not the same as the local component of first term of eq. (36), 

this replacement can expand the scope of eq. (36), because electron correlations other than 
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the screening effect can be taken into account through the LDA functional. We should note 

that Bylander et al. employed a similar strategy.(Bylander et al. 1990) In this paper, we 

examine the following potentials:  

 ( )screened Slater Fock
s

s s

1 1
1ε ε ε
⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠V V V    (37) 

 ( )screened Slater Fock VWN
s

s s

1 1
1ε ε ε
⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎝ ⎠V V V V    (38) 

Here, SlaterV  is the Slater exchange term, and VWNV  is the Vosko-Wilk-Nusair (VWN) 

correlation term. The above potentials appear to be types of hybrid-DFT functional. The 

relation between the screened HF exchange potential and the hybrid-DFT functional is 

discussed later. Equations (37) and (38) have a system-dependent HF exchange fraction, 

which is unusual for the ordinal hybrid-DFT method. In metal systems, that is, sε →∞ , 

the above potential reduces to the ordinal LDA functional. It is worth noting that eqs. (37) 

and (38) depend on only sε , although eq. (36) depends on two parameters, namely, TFk#  

and sε . 

3.3 Self consistent scheme for dielectric constant 

In eqs (36), (37), and (38), the fraction of the Fock exchange term is proportional to the 

inverse of the dielectric constant. Consequently, in order to use these equations, we must 

know the value of the dielectric constant for the target semiconductor. Although an 

experimentally obtained value is a possible candidate, here we discuss a self-consistent 

scheme for theoretically considering the dielectric constant. In this scheme, the static 

dielectric constant is assumed to be obtained from the following equations: (Ziman 1979) 

 p
s

gapE

2

1
ωε ⎛ ⎞= + ⎜ ⎟⎜ ⎟⎝ ⎠   (39-1) 

     ( )K

gap LUMO HOMOE
K

1 λ λ= −∑ k k

k

   (39-2) 

Here, HOMOλk  and LUMOλk  are the HOMO and LUMO energies, respectively, at wave vector 

k . gapE  is the average energy gap, and pω  is the plasma frequency, the value of which is 

obtained from valence
p en4ω π= . Equation (39-1) depends on the averaged energy gap 

because the dielectric constant reflects overall responses of k-space. The equation is 

combined with equations (36), (37), or (38) in the self-consistent-field (SCF) loop, and sε  and 

gapE  are calculated and renewed in each SCF step. Here, the fraction of the HF exchange 

term, which is proportional to s
1ε − , is not constant throughout the SCF cycle. We obtain the 

self-consistent dielectric constant and the energy band structure after the iterative 

procedure. Notably, this self-consistent scheme does not refer to any experimental results.  
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4. Application for GFT method and screened HF exchange potential 

4.1 Diamond, silicon, AlP, AlAs, GaP, and GaAs 

In this section, we present the energy band structures of the following semiconductors: 
diamond (C), silicon (Si), AlP, AlAs, GaP, and GaAs. We discuss the electronic structures of 
these semiconductors on the basis of the HF method, the local density approximation 
(LDA), and the hybrid-DFT method. The Slater–Vosko–Wilk–Nusair (SVWN) functional 
(Slater 1974; Vosko et al. 1980) and the B3LYP functional,(Becke 1993 b) the latter of which 

includes 80% of the Slater local density functional SlaterV , 72% of the Becke88 (B88)-type 

gradient correction B88ΔV  (Becke 1988) , and 20% of the HF exchange term, are employed 
for the LDA and the hybrid-DFT calculations, respectively. The B3LYP functional is shown 
below:(Becke 1993 b) 

 B LYP Slater B Fock B LYP
XC C

3 88 30.8 0.72 0.2= + + +V V ΔV V V    (40-1) 

 B LYP VWN LYP
C C C

3 0.19 0.81= +V V V    (40-2) 

Here, LYP
CV  is the Lee–Yang–Parr correlation functional.(Lee et al. 1988) We used the 6-21G* 

basis set, which was proposed by Catti et al.(Catti et al. 1993), for diamond calculations. On 

the other hand, we employ the effective core potential proposed by Stevens et al. for silicon, 

AlP, AlAs, GaP, and GaAs.(Stevens et al. 1984; Stevens et al. 1992) The exponents and 

contraction coefficients listed in our previous paper are employed for the atomic orbitals for 

Si, Al, P, As, and Ga.(Shimazaki et al. 2010) We employ 24 24 24× ×  k-points for the Fourier 

transform technique, and 25 25 25× ×  mesh grid points are used, to calculate the valence 

electron contribution of the Hartree term. In addition to these, we employ the truncation 

condition of third neighboring cells. It should be noted that the truncation affect only the HF 

exchange and “core” Hartree (Coulomb) terms. In this section, we also present calculation 

results obtained from the screening HF exchange potential. 
 

 C Si AlP AlAs GaP GaAs 

Lattice constant 6.74 10.26 10.30 10.70 10.30 10.68 

cellV  76.76 207.11 273.10 305.90 273.10 304.29 

sr  1.32 2.01 2.01 2.09 2.01 2.09 

Fermik  1.46 0.96 0.95 0.92 0.95 0.92 

TFk  1.36 1.10 1.10 1.08 1.10 1.08 

sε  5.65 12.1 7.54 8.16 10.75 12.9 

TFk#  1.2 0.92 0.95 0.92 0.93 0.90 

s
1ε −  0.18 0.083 0.13 0.12 0.093 0.078 

Table 1. Parameters for semiconductors in atomic unit [a.u.] 

Table 1 presents the lattice constants and the dielectric constants of those semiconductors; 

the lattice constant, the volume of the unit cell cellV , and the screening parameters are given 

in atomic units (a.u.). Here, the eight valence electrons in the unit cell are considered for 
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calculating the screening parameters. These parameters are used in the screened HF 

exchange potential, for example sε  in Table 1 is used for eqs (36), (37), and (38). On the other 

hand, calculation results based on the self-consistent procedure are presented in Section 3.2.  
Table 2 presents the direct and indirect bandgaps calculated by the SVWN, HF, and B3LYP 
methods for semiconductors, here we also show experimental bandgap values (Yu et al. 
2005). The direct bandgap of GaAs is the same as the minimum energy difference. The 
SVWN functional underestimates the bandgaps in comparison with the experimental ones. 
The kind of underestimation is a well-known problem of LDA. On the other hand, the HF 
method overestimates the bandgap properties, and the B3LYP method yields better 
calculation results. However, the calculation results of B3LYP are more complex than the 
LDA and HF; for example, the B3LYP functional gives calculation results that are close to 
the experimental bandgap in diamond case, but the same functional overestimates the 
bandgaps for AlAs, AlP, and GaP. The B3LYP functional yields the indirect bandgap of 3.3 
eV for AlAs, whereas the experimental property is 2.2 eV. While the B3LYP functional gives 
3.6 eV for the indirect bandgap of AlP, the experimental one is 2.5 eV. In the case of GaP, the 
B3LYP and experimental bandgaps are 3.3 eV and 2.4 eV, respectively. The B3LYP 
functional can reproduce the experimental band structure of diamond well, however the 
results are poorer for other semiconductors such as AlAs, AlP, and GaP. 
 

  HF [ev] SVWN [eV] B3LYP [eV] Exp.[eV] 

C Direct 14.6 5.9 7.4 7.3 
 Indirect 12.6 4.2 6.0 5.48 

Si Direct 8.0 2.0 3.3 3.48 
 Indirect 6.1 0.50 1.8 1.11 

AlP Direct 11.4 4.0 5.6 3.6 
 Indirect 8.5 2.0 3.6 2.5 

AlAs Direct 9.6 2.7 4.0 3.13 
 Indirect 7.8 1.7 3.3 2.23 

GaP Direct 9.1 2.2 3.5 2.89 
 Indirect 8.0 1.9 3.3 2.39 

GaAs Direct 6.8 0.86 1.91 1.52 

Table 2. Theoretical and experimental bandgaps of semiconductors [eV] 

Next, we discuss the screened HF exchange potential discussed in Section 3. The direct and 
indirect bandgaps calculated by the screened HF exchange potential are presented in Table 
3. The overall calculation results are better than those from the SVWN, HF, and B3LYP 
methods. Equation (36) tends to underestimate the indirect bandgap, however eqs (37) and 

(38), which use the Slater functional instead of ( )erfc
SR X w−V , show good agreement with the 

experimental results. The underestimation obtained from eq. (36) may cause that the 
equation takes into account only the screening effect. On the other hand, the VWN 
correlation functional of eq. (38) slightly improves the calculation results.  
However, it should be noted that there is a lager gap between the experimental direct 
bandgap of AlP and our calculation result. The experimental value determined by 
photoluminescence spectroscopy is 3.62 eV (Monemar 1973), and our calculation result of 
eq. (38) is 4.9 eV. Zhu et al. noted that the experimentally obtained spectrum was broad and 
poorly defined due to a high concentration of defects in the AlP sample.(Zhu et al. 1991) 
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They also contended that the transition from v15Γ  to cX3  was assigned in error. They 

calculated 4.38 eV as the direct bandgap by the GW method, which is closer to our 
calculation result. 
 

 

Fig. 1. Experimental and theoretical bandgap properties. Circles indicate calculation results 
based on screened HF exchange method (sEX) of eq. (38) with experimental dielectric 
constant, and triangles and squares denote SVWN and B3LYP results, respectively 

 

  Eq. (36)  [eV] Eq. (37)  [eV] Eq. (38)  [eV] 

C Direct 7.1 6.9 7.0 
 Indirect 5.0 5.5 5.6 

Si Direct 2.4 2.4 2.5 
 Indirect 0.44 0.77 0.90 

AlP Direct 5.1 4.9 5.0 
 Indirect 2.1 2.6 2.8 

AlAs Direct 3.6 3.4 3.4 
 Indirect 1.6 2.2 2.4 

GaP Direct 2.8 2.6 2.7 
 Indirect 1.9 2.2 2.4 

GaAs Direct 1.4 1.2 1.2 

Table 3. Bandgaps obtained from screened HF exchange potential with experimental sε  

The theoretical bandgaps of diamond, silicon, AlP, AlAs, GaP, and GaAs, which are 

obtained from SVWN, B3LYP, and eq. (38), are shown with the experimental bandgaps in 

Figure 1. From the figure, we can easily confirm that the LDA (SVWN) functional 

underestimates the experimental bandgap. On the other hand, the B3LYP method 

reproduces the experimental results for diamond well, but overestimates AlP, AlAs, and 

GaP. The screened HF exchange potential shows good agreements with experiment (Yu et 
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al. 2005). The energy band structures of diamond, silicon, AlP, AlAs, GaP, and GaAs, which 

are obtained from eq. (38), are presented in Figure 2. 
 

 

Fig. 2. Energy band structure calculated using eq. (38) with experimental dielectric constant: 
diamond, silicon, AlP, AlAs, GaP, and GaAs 

4.2 Self-consistent calculation for dielectric constant 

We summarize the calculation results with the self-consistent dielectric constant, the scheme 
of which is discussed in Section 2.4, in Table 4. The self-consistent scheme brings in 
calculation results that are similar to those obtained by using an experimental dielectric 
constant; for example, eq. (36) based on the self-consistent dielectric constant yields 5.5 eV 
for the indirect bandgap of diamond, and the use of the experimental dielectric constant 
yields 5.6 eV. 

www.intechopen.com



Gaussian and Fourier Transform (GFT) Method and  
Screened Hartree-Fock Exchange Potential for First-principles Band Structure Calculations 

 

31 

We demonstrate change of sε  in the SCF cycle of eq. (36) combined with eq. (39) for 

diamond in Figure 3. In the figure, we prepare for two different starting (initial) electronic 

structures; one is the HF electronic structure, and the other is the LDA-SVWN one. In the HF 

reference calculation, sε  is underestimated at the early stages of iterative calculations, and 

then converged to the final value. Conversely, the procedure started from the LDA-SVWN 

overestimates the dielectric constant at the early stages. There are differences in the initial 

steps of the self-consistent (SC) cycles, however those dielectric constants are converged to 

the same value through the iterative calculations. Thus, the same energy band structure is 

obtained from the SCF cycles even if the initial electronic structures are different. In other 

words, the self-consistent method does not depend on the starting (initial) electronic 

structure. On the other hand, the single-shot method, in which the SCF loop is only once 

calculated, strongly depends on the reference electronic structure. The HF-referenced single-

shot calculation underestimates the dielectric constant, 2.9ε = , and it overestimates the 

bandgap property; the direct and indirect bandgap are 8.5 eV and 6.3 eV, respectively, 

because the HF method tends to overestimate the bandgap property. On the other hand, the 

SVWN-referenced single-shot method overestimates the dielectric constant, s 8.1ε = , and 

underestimates the bandgap property; the direct and indirect bandgaps are 6.6 eV and 4.4 

eV, respectively. Thus, the single-shot calculations yield different results.  
Table 5 lists the theoretically determined dielectric constants based on eqs (36), (37), and 
(38). These calculation results present slight underestimations of the dielectric constant.  
 

  Eq. (36)  [eV] Eq. (37)  [eV] Eq. (38)  [eV] 

C Direct 7.0 6.7 6.8 
 Indirect 4.9 5.3 5.5 

Si Direct 2.5 2.5 2.6 
 Indirect 0.48 0.8 0.95 

AlP Direct 4.9 4.8 4.9 
 Indirect 2.0 2.5 2.7 

AlAs Direct 3.5 3.3 3.4 
 Indirect 1.5 2.1 2.4 

GaP Direct 2.9 2.8 2.8 
 Indirect 2.0 2.3 2.5 

GaAs Direct 1.5 1.3 1.3 

Table 4. Bandgaps obtained from the screened HF exchange potential with self-consistent  
dielectric constant 

 

 Eq. (36) Eq. (37) Eq. (38) 

C 6.31 6.55 6.51 
Si 10.90 11.14 10.83 

AlP 8.97 8.69 8.33 
AlAs 9.14 8.92 8.58 
GaP 8.65 8.87 8.63 

GaAs 9.27 9.75 9.55 

Table 5. Dielectric constants calculated from self-consistent scheme based on eq. (39) 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

32 

 

Fig. 3. The change of the dielectric constant in the self-consistent (SC) method for diamond. 
The black filled circles indicate the SC procedure which starts from the HF energy band 
structure. The white ones represent the SC procedure started from the LDA-SVWN energy 
band structure. Two different initials yield the same electronic structure through the 
iterative procedure. (Shimazaki et al. 2009 b) 

5. Discussion 

We summarize the inverse of the dielectric constant in Table 1. Those values represent the 
fraction of the HF exchange term incorporated into the screened HF exchange potential; for 
example, about 18% and about 8% of the HF exchange terms are used in the screened HF 
exchange potential for diamond and silicon, respectively. On the other hand, 20% is used for 
all material in the B3LYP functional. In the case of diamond, the fraction in the proposed 
method takes a value similar to the fraction in the B3LYP method. However, the HF fraction 
of the B3LYP functional is larger compared with those of other semiconductors. The B3LYP 
functional potentially overestimates the bandgap values, other than that of diamond, 
because a larger fraction of the HF exchange term causes a larger energy bandgap. The HF 
fraction of the B3LYP functional is set to reproduce the properties of the G1 basis set, which 
mainly covers light elements such as N, C, and O, and small molecules such as methane, 
ammonia, and silane.(Curtiss et al. 1990; Pople et al. 1989) Thus, the parameter set of the 
B3LYP functional is especially suitable for organic molecules. However, the B3LYP 
functional is not designed for solid-state materials. In order to employ the hybrid-DFT 
method to solid-state materials, the fraction of the HF exchange term must be decided 
appropriately.  
Here, we emphasize the similarity between the screened HF exchange potential and the 
hybrid-DFT method. While eqs (37) and (38) are derived from the model dielectric function 
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of eq. (32) and the local potential approximation, these equations appear to be a type of 
hybrid-DFT functional. The hybrid-DFT method was introduced by Becke in 1993 by using 
the adiabatic connection,(Becke 1993 a) and some empirical justifications, such as 
compensation of the intrinsic self-interaction error (SIE) of semi-local exchange-correlation 
functional, have been discussed.(Janesko et al. 2009) On the other hand, from the careful 
observation of actual behaviors of HF and semi-local DFT calculation, the mixing of the HF 
fraction is reported to bring in useful cancelation, because the semi-local DFT functional 
have a tendency to overestimate the strength of covalent bonds, and the HF method has the 
opposite feature.(Janesko et al. 2009) Now, we have proposed an interpretation that the HF 
fraction represents the incompleteness of the screening effect in semiconductors. Besides, its 
incompleteness can be described by the inverse of the electronic component of the dielectric 
constant. This discussion will be helpful to determine an appropriate HF exchange fractions 
for the target solid-state material. 
The screened HF exchange method can be regard as a type of the generalized Kohn-Shan 
(GKS) method.(Seidl et al. 1996) In the GKS framework, the screened-exchange LDA (sX-
LDA) method, which is proposed by Seidl et al., can reproduce eigenvalue gaps in good 
agreement with experimental bandgaps of several semiconductors. They also presented a 
calculation result for germanium, employing a semiconductor dielectric function model 
proposed by Bechstedt et al., and reported that the screening effect of the Bechstedt model is 
weaker than the Thomas-Fermi model. This feature should correspond to the 
incompleteness of the screening effect of semiconductors discussed in Section 3.1 because 
our dielectric function can be derived from a simplification of the Bechstedt model. We 
should note that the true quasi-particle bandgap is different from the band gap of the GKS 
method due to the derivative discontinuity of the exchange-correlation potential. However, 
the discontinuity is, to some extent, incorporated in the GKS single-particle eigenvalues. 
This fundamental feature of the GKS formalism brings in the improvements of the bandgap 
calculations of the screened HF exchange method.  

Next, we discuss the HSE functional including a splitting parameter ω . The splitting 

parameter is used to divide the potential into short- and long- range interactions, where the 

relation of ( ) ( )r erfc r r erf r r1 ω ω= +  is used. The HSE functional has a form similar to our 

screened HF exchange potential due to the use of ( )erfc r rω . However, we need to pay 

attention to the value of ω . In the HSE functional refined by Krukau et al. in 2006, 0.11ω =  

is recommended for the parameter.(Krukau et al. 2006) Conversely, in our screened HF 

exchange potential, the corresponding parameter takes about 0.8. Thus, in the HSE 

functional, the term of ( )erfc r rω  can take into account a longer interaction than ours. On 

the other hand, in our method, the term including ( )erfc r rω  can represent only short-

range interaction because of a large ω  value. The long-range interaction in our method is 

incorporated by the bare HF exchange interaction represented by the second term of eq. (36). 

The HSE functional has a different theoretical background from our method. Therefore, 

even if the similar term appears in both methods, the physical meaning is different.  
Although the screened HF exchange method and the GW method are taken into account in 
real space and momentum space, respectively, the both theoretical concepts may be similar, 
especially in the Coulomb hole plus screened exchange (COHSEX) approximation, because 
the dielectric function plays an important role in both methods. Gygi et al. have reported 
that the diagonal-COHSEX approximation has a tendency to underestimate the indirect 
bandgap property.(Gygi et al. 1986) This feature of diagonal-COHSEX approximation 
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resembles calculation results determined by eq. (36). The both neglect the energy 
dependence of the self-energy, and this simplification possibly causes the underestimation 
of the indirect bandgap property.  
In order to describe the screened HF exchange method, we adopt the Gaussian-based 
formalism; however, our method is not restricted to Gaussian basis sets, and can be used 
together with other basis set such as the plane-wave basis set. Conversely, the linear muffin-
tin orbital (LMTO) and linearized augmented plane wave (LAPW) methods can taken into 
account the HF exchange term,(Martin 2004) thus our methodology can be easily introduced 
and implemented in these methods.  

6. Summary 

This chapter explains the GFT method, which is based on the Gaussian-basis formalism. In 
the GFT method, the periodic Hartree potential is expanded by auxiliary plane waves, and 
those expansion coefficients can be calculated by Fourier transform method. We discuss that 
this simple approach enables us to estimate the Hartree term efficiently. In addition to this, 
we discuss the screened HF exchange potential, which has a close relationship to the hybrid-
DFT method and the GW approximation. In the screened HF exchange potential, the 
fraction of the HF exchange term is proportional to the inverse of the static dielectric 
constant, and therefore it depends on the target material. In this chapter, we present not 
only experimental values but also a self-consistent scheme for the estimation of the dielectric 
constant. We also discuss that the local potential approximation can expand the possibility 
of the screened HF exchange method, and it is useful to speculation between the screening 
effect and the HF fraction term appeared in the hybrid DFT functional. 
We have demonstrated the energy band structure of diamond, silicon, AlP, AlAs, GaP, and 
GaAs from the GFT method and the screened HF exchange potential. The combination of 
these methodologies can reproduce the experimental bandgap property well. On the other 
hand, the HF method overestimates the bandgap, while the local DFT (SVWN) method 
underestimate the bandgap. These kinds of discrepancy between theory and experiment 
cause the manipulation of the HF exchange term. The fraction of the HF exchange term is 
closely related to the screening effect, and thus we need to determine the fraction 
appropriately according to the target system. The discussion in this chapter will be a helpful 
guideline to determine the fraction. 
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1. Introduction  

Fourier Transform (FT) is widely applied in digital mobile cellular radio systems. The 

implementation requires low power consumption and smaller chip size. The primary factor 

of the FT applications is its chip complexity. The complexity is typically expressed in terms 

of number of adders, the number of multiplier, data storage and control complexity rather 

than the speed of operation. 

The current divide and conquer technique in fast Fourier transform (FFT) reduces the 

number of operations in conventional discrete Fourier transform (DFT) by utilizing the 

advantage of complex twiddle factors instead of matrix multiplications (Oppenheim, 

1990). The computation of DFT is decomposed into nested smaller DFTs which are 

computed separately and combined to give the final results. FFT reduces the number of 

multiplier which account of much of the chip area and power consumption in digital 

hardware design. 

However, a pipeline FFT processor is characterized by real time continuous processing of an 

input data sequence. It is difficult to initiate the FFT operation until all of the N sampled 

data are taken. Another complexity issue is the arithmetic unit, especially multipliers, that 

requires larger area than a digital register. To meet real-time processing in FFT with size of 

N, the multiplicative complexity of N logr N is required (r is generally the radix). It 

contributes the complexity of the processor and power consumption. 

Another consideration of FFT is the data storage or memory for buffering the data and 

intermediate results of the real time computations. The butterfly at the first stage has to take 

the input data elements separated by N/r from the sequence. The required memory 

becomes another major chip area issue especially for large Fourier transform. 

The facts expressed above need to be improved so that the amounts of power consumption, 

chip area and complexity are suitable especially for handheld transceiver. Since the power 

consumption is directly related to the number of complex multiplications, an algorithm to 

reduce or replace these multiplications is important. 

In (Shattil and Nassar, 2002), a simple computation of Fourier transform using a square-

wave is introduced. A mathematical derivation shows that it is possible to replace the 
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complex multiplication in Fourier transforom by additions. However, the performance 

evaluation of the method in (Shattil and Nassar, 2002) is not available to make sure the 

effectiveness of the method. 

In this paper, we propose double square-waves (DS) that completely replace complex 

multiplications by sampling and additions for Fourier and inverse Fourier transforms called 

DSFT. The proposed method only requires sampler, multiplier and filter to remove the 

harmonic components of square-wave. Our results confirm that DS-FT is applicable to any 

system that requires Fourier transforms such as orthogonal frequency division multiplexing 

(OFDM) (Nee and Prasad, 2000), multicarrier code division multiple access (MC-CDMA), 

FFT-based carrier interferometry spreading (Anwar and Yamamoto, 2006) and other 

techniques that requires FFT. 

2. Important 

This chapter presents a simple computation method for Fourier Transform (FT) and its 

inverse (IFT) by employing multiple square waves (MSW), whose complex multiplications 

are replaced by simple additions. Since the square wave is superposition of harmonic 

sinusoids, a simple mathematical derivation shows that fast Fourier transform (FFT) and its 

inverse can be performed by MSW with low computational complexity. MSW replaces the 

complex twiddle factor multiplications in FFT/IFFT by simple adding operation. The main 

parts of this chapter is adapted from (Takahashi et. al., 2007). 

The orthogonality of FFT/IFFT is still kept, by which the bit-error-rate (BER) performance is 

satisfactory. Compared to the standard single square wave (SSW), our results confirm that 

excellent BER performance is achievable without error floor. Furthermore, the proposed 

multiple square wave for Fourier transform (MSW-FT) is free from restriction in its size (e.g. 

power of two, etc.) and is useful for signal processing of multi-carrier system, such as 

orthogonal frequency division multiplexing (OFDM), and multi-carrier code division 

multiple access (MC-CDMA), WiMAX, single carrier frequency division multiple access 

(SC-FDMA) and other frequency domain processing such as frequency domain turbo 

equalization. The proposed MSW-FT and MSW-IFT are less complex than FFT or IFFT, 

which is suitable to digital communication systems, where the power consumption 

constraint is considered. 

3. System model 

We consider an OFDM system as the model to evaluate the effectiveness of the proposed 
DS-FT. Fig. 1 describes the transceiver structure of OFDM system where its FFT is replaced 
by DS-FT. Inverse DS-FT, called DS-IFT, is located at the transmitter while DS-FT is located 
at the receiver. The N incoming data symbols are converted from serial to parallel. Then  
(L – 1)N zeros are added to the center of the parallel data to obtain the oversampled signal, 
where L is the oversampling factor. The LN data symbols (with zero padding) are converted 
to time-domain signals using DS-IFT. After filtering, guard interval (GI) is inserted. The 
OFDM signals are then transmitted to the channel. 
At the receiver, first GI is removed, then the signals are converted to frequency domain 

signals by DS-FT. From the frequency-domain signals, padded zeros are removed. Finally, 

we obtain the data.  
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Fig. 1. System Model of OFDM WLAN where its FFT is replaced by DS-FT 

4. Proposed double square-waves for Fourier transform 

4.1 Square-wave model 

The frequency-domain signal X(fn) converted from timedomain symbol xk by discrete 

Fourier transform (DFT) is expressed by 
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where fn is an n-th frequency component, K is the number of time-domain samples and t0 is 

the interval of time-domain samples. The exponential function ( , )nf tΨ  is expressed by 

Euler’s theorem as  
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From (1) and (2), at least K×K complex multiplications are required. In addition, a lot of 

phases should be restored when performing the multiplications or additions. To replace a 

large number of multiplications, we propose to use square-waves which consist of only 2 

levels of amplitude as a substitute for exponential function in DFT. 

The single square-wave function for n-th frequency can be expressed as a sum of harmonic 
sinusoids as (Kreyzig, 1993) 
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Fig. 2. Double Square-waves consists of π/4  and π/12  single square-waves 
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Here, (3) can be rewrittten as  
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4.2 Order of truncation 

Due to the hardware limitation, truncation is required in performing sin 2π fnt in (4). This 

subsection discusses errors caused by the truncation of (4). We construct a sinusoid by some 

square-waves and measure the average error that shows how the signal is similar with the 

perfect sinusoid signal. The order of number of square-waves is 1, 2, 3, · · · , 12. The result is 

plotted in Fig. 3.  
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Fig. 3. Average squared-error of square-waves based sinusoid compared to a perfect 
sinusoid-waves 

It is shown when we have a single square-wave, the average error is about 0.073 while it is 
0.032 with a double squarewaves. The difference between a single square-wave and double 
square-waves, d1–2, is about 0.041. That means double square-waves improve about 0.041 of 
average error. Increasing the number of square-waves more than 3 does not significantly 
reduce the average error, i.e. d1–2 > d2–3 > d3–4 >.   
On the other hand, using square-waves more than 3 will increase the computational 
complexity in hardware. We conclude that double square-waves is enough to keep lower 
error and hardware complexity. 
 

4.3 Double square-wave transform 

As a consequence of result in Subsection 4.2, it is reasonable to assume 

 1 1
sin(5·2 ) sin(7·2 ) 0

5 7
n nf t f tπ π− − − ≅A   (5) 

such that we obtain 

 1
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4 3
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From (6), it is shown that the sinusoid can be composed by combining two square-waves of 

different amplitudes and different periods. We call it as double square-wave (DS) signal and 

it is noted as xds(2π fnt).  

Because additions require less computational complexity than subtractions, we modify the 

phase of second wave by π to prevent the subtraction. Then double square-wave function  

xds(2π fnt) is expressed by 

 1
(2 ) (2 ) (3·2 ) .

4 3
ds n ss n ss nx f t x f t x f t

ππ π π π⎧ ⎫= + +⎨ ⎬⎩ ⎭ .  (7) 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

42 

The number of samples is 96. 

Now, we can obtain the function ( , )ds ft nf t−Ψ  for DS-FT and ( , )ds ift nf t−Ψ  for DS-IFT as 

substitution of exponential function ( , )nf tΨ  in (2) as  

 ( , ) (2 ) · (2 ),
2

ds ft n ds n ds nf t x f t j x f t
ππ π−Ψ = + − ,   (8) 

 ( , ) (2 ) · (2 ).
2

ds ift n ds n ds nf t x f t j x f t
ππ π−Ψ = + + .   (9) 

Finally, we can express the frequency-domain signal X(fn) as 

 
1

0
0

( ) ( , ),
K

n k ds ft n
k

X f x f kt
−

−=
≅ Ψ∑ ,   (10) 

and the time-domain signal x(fn) as 

 
1

0
0

( ) ( , ).
K

n k ds ift n
k

x f X f kt
−

−=
≅ Ψ∑ .  (11) 

4.4 Computational complexity 

The square-wave generator is simpler than the sinusoid generator because it uses digital logic. 

It doesn’t need the complex analog multiplier and can be replaced by a simple hardware. 

An inverter can be used to multiply the data by −1, while multiplication of +1 is possible by 

copying the signal. Compared to the conventional single square-wave method, our 

proposed method needs an addtional multiplication by 1/3. However, multiplication by a 

constant is not too complex in a hardware. Therefore, multiplication by double square-

waves is easier in hardware implementation than multiplying by a sinusoid. 

5. Performance evaluation 

This section evaluates signal resolution and BER performances using the proposed DS-FT 

compared to that of single square-wave Fourier transform (SS-FT) (Shattil and Nassar, 2002) 

(Bates et. al., 1970). 

5.1 Signal resolution 

Figures 4(a) and (b) show the signal resolution of a sinc function. The sinc waveform is 

represented by the dashed line that has been sampled in 96 samples with normalized 

amplitude. The sinc waveform by SS-FT is shown in Fig. 4(a), while that by DS-FT is shown 

in Fig. 4(b). It is shown that the resolution of SS-FT can not reach the maximum while the 

left and right parts of signals are too high. The sinc waveform represented by the proposed 

DS-FT has better quality than that of SS-FT.  

5.2 BER performances evaluation 

In this subsection, to confirm the effectiveness of the proposed method, we evaluate the BER 
performances of an OFDM system where its FFT and IFFT are replaced by DSFT and  
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Fig. 4. Sinc waveform using (a) single square-wave and (b) double squarewaves 
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Fig. 5. BER performances of WLAN using FFT, SS-FT and the proposed DS-FT method 

DS-IFT. Evaluation of DS-FT using signal resolution is not enough. Thus, evaluation of the 
BER is important to make sure the effectiveness of sampling and orthogonality guarantee. 
The parameters used for BER performance evaluation are shown in Table I which expected 
to be the condition of IEEE802.11a/g Wireless LAN system. 
The modulation is QPSK for OFDM system with number of subcarrier is 52, as in Wireless 
LAN system. We use oversampling factor of 6 to observe efficiently the signal resolution. GI 
length is 25% of the symbol length. The overall simulation is performed in additive white 
Gaussian noise (AWGN) channel without error correction coding.  
The BER performancess are plotted in Fig. 5. The dashed line is a theoretical BER 
performance of QPSK symbol for reference. The BER of OFDM with FFT has degradation by 
about 1 dB as a consequence of guard interval (GI) insertion with length of 1/4 or 25% of the 
length of OFDM symbol. SS-FT has residual bit error at 1.5 × 10−3. Increasing the number of 
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oversampling does not change the BER performance of SS-FT. The reason is that the 
orthogonality can not be kept by the SS-FT. 
The proposed DS-FT does not have residual bit error (up to 10−7) though it has BER 
degradation by about 2dB at BER level of 10−3. Increasing the oversampling factor will 
increase the BER performance. But the oversampling factor enhancement should consider a 
practical reason related to the additional complexity.  
 

Parameters Value(s) 

Modulation QPSK 

Number of Subcarriers 52 

FFT size 64 

GI Length 16 (25%) 

Oversampling factor (L) 6 

Channel AWGN 

Table 1. Simulation Parameters 

6. Conclusion 

In this paper, we propose DS-FT and evaluate it in the OFDM system. The DS-FT comprises 
double square-waves to simplify the Fourier transform computation with better signal 
resolution and BER performance compared to the Fourier transform using single square-
wave. The double square-waves can be easily generated by two weighted single square 
waves with different periods. DS-FT contributes lower computational complexity of Fourier 
transform by replacing the complex multiplication with sampling, addition and filtering 
(only at the transmitter). Therefore, power consumption (related to the number of 
multiplication) and chip area (related to the memory) can be reduced by DS-FT with 
allowable performance degradation. 
In our future work, we will consider the filter at the output of DS-FT to obtain a better signal 
resolution by completely removing the harmonic frequency components.  
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1. Introduction

The theory of stability of periodic traveling waves associated with evolution partial
differential equations of dispersive type has increased significantly in the last five years. A
good number of researchers are interested in solving a rich variety of new mathematical
problems due to physical importance related to them. This subject is often studied in relation
to perturbations of symmetric classes, e.g., the class of periodic functions with the same
minimal period as the underlying wave. However, it is possible to consider a stability study
with general non-periodic perturbations, e.g., by the class of spatially localized perturbations
L2(R) or by the class of bounded uniformly continuous perturbations Cb(R) ( see Mielke
(1997), Gardner (1993)-(1997) and Gallay&Hărăguş (2007)).
Here our purpose is to consider the nonlinear stability and linear instability of periodic
traveling waveforms. From our experience with nonlinear dispersive equations we know
that traveling waves, when they exist, are of fundamental importance in the development of
a broad range of disturbance. Then we expect the issue of stability of periodic waves to be of
interest and it inspires future developments in this fascinating subject.
It is well known that such theory has started with the pioneering work of Benjamin (1972)
regarding the periodic steady solutions called cnoidal waves. Its waveform profile was found
first by Korteweg&de-Vries (1895) for the currently called Korteweg-de Vries equation (KdV
henceforth)

ut + uux + uxxx = 0, (1)

where u = u(x, t) is a real-valued function of two variables x, t ∈ R. The cnoidal traveling
wave solution, u(x, t) = ϕc(x − ct), has a profile determined in the form

ϕc(ξ) = β2 + (β3 − β2)cn2

(√
β3 − β1

12
ξ; k

)
, (2)

where βi’s are real constants and cn represents the Jacobi elliptic function cnoidal. Among
the physical application associated with equation (1) we can mention the propagation of
shallow-water waves with weakly non-linear restoring forces, long internal waves in a
density-stratified ocean, ion-acoustic waves in a plasma, acoustic waves on a crystal lattice,
and so on. Thus, the study of qualitative properties of these nonlinear periodic waves
represents a fundamental piece for the understanding of the dynamic associated to this
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equation. A first stability approach for the cnoidal wave profile as in (2) was determined
by Benjamin in (1972). But only years later a complete study was carry out by Angulo et al.
(2006). Indeed, by extending the general stability theory due to Grillakis et al. (1987) to the
periodic case it was obtained that the orbit generated by the solution ϕc,

Ωϕc = {ϕc(·+ y) : y ∈ R}, (3)

remains stable by the periodic flow of the KdV equation, more specifically, for initial data
close enough to Ωϕc the solution of the KdV starting in this point will remain close enough to
to Ωϕc for all time. Many ingredients are basic for obtaining this remarkable behavior of the
cnoidal waves. One of the cornerstones is the spectral structure associated to the self-adjoint
operator on L2

per([0, L]) (here L represents the minimal period of ϕc)

Lkdv = − d2

dx2
+ c − ϕc, (4)

which is a Schrödinger operator with a periodic potential.
In this case, the existence of a unique negative eigenvalue and simple and the non-degeneracy
of the eigenvalue zero is required. We recall that Lkdv has a compact resolvent and so zero is
an isolated eigenvalue. It is well known that the determination of these spectral informations
in the periodic case is not an easy task. By taking advantage of the cnoidal profile of ϕc, the
eigenvalue problem for Lkdv is reduced to study the classical Lamé problem

d2

dx2
ψ + [ρ − n(n + 1)k2sn2(x; k)]ψ = 0, (5)

on the space L2
per([0, 2K(k)]), for n ∈ N, sn(·; k) denoting the Jacobi elliptic function snoidal

and K representing the complete elliptic integral of first kind. Therefore the Floquet theory
arises in a crucial form in the stability analysis. The existence of a finite number of instability
intervals associated to (5) and an oscillation Sturm analysis will imply the required spectral
structure for Lkdv. Next, by supposing that ϕc has mean zero property we consider the

manifold M = { f :
∫

f 2dx =
∫

ϕ2
c dx,

∫
f dx = 0}. Then the condition d

dc

∫
ϕ2

c (x)dx > 0
will imply that

〈Lkdv f , f 〉 ≧ β‖ f ‖2
H1

per
for every f ∈ Tϕc M ∩ [

d

dx
ϕc]

⊥, (6)

where Tϕc M represents the tangent space to M in ϕc and β > 0. Then, from the continuity

of the functional E( f ) =
∫
( f ′)2 − 1

3 f 3dx and from the Taylor theorem we have the following
stability property of Ωϕc : there is η > 0 and D > 0 such that

E(u)− E(ϕc) ≧ D inf
g∈Ωϕc

‖u − g‖2
H1

per
(7)

for u satisfying that infg∈Ωϕc
‖u − g‖H1

per
< η and F(u) ≡ 1

2

∫
u2dx = 1

2

∫
ϕ2

c dx,
∫

udx = 0.

In other words, ϕc is a constraint local minimum of E. Then, since E and F are conserved
quantities by the continuous KdV-flow, t → u(t), we obtain from (7) that the orbit Ωϕc is
stable by initial perturbation in the manifold M. For general perturbations of Ωϕc we need to
have the existence of a smooth curve of traveling waves, c → ϕc, and to use the triangular
inequality. We call attention that mean zero constraint can be eliminated in the definition of
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the manifold M, because the KdV equation is invariant under the Galilean transformation
v(x, t) = u(x + γt, t)− γ, where γ is any real number. That is, if u solves (1), then so does v.
In this point some comments on the speed-wave associated to the cnoidal wave solution ϕc

deserves to be hold. If we are looking for ϕc having mean zero, we obtain a curve c ∈ (0, ∞) →
ϕc ∈ H1

per([0, L]). But, for instance, if ϕc is positive we obtain a curve c ∈ (4π2/L2, ∞) → ϕc ∈
H1

per([0, L]) for any L > 0 (see Angulo (2009)).
From analysis above we see that spectral information about the operator in (4) is fundamental
for a stability study. Indeed, the second order differential operator appearing in equation
(4) is the key to apply the Floquet theory, but from our experience with nonlinear dispersive
evolution equations we know that depending of the periodic potential the study can be tricky.
Moreover, the Floquet theory is not useful for more general linear operators that arise in the
study of nonlinear dispersive equations. For instance, a general kind of dispersive equations
can be

ut + upux − (Mu)x = 0, (8)

where p ∈ N and M is a Fourier multiplier operator defined by

M̂ f (n) = β(n) f̂ (n), n ∈ Z, (9)

with β being a measurable, locally bounded, even function on R, and satisfying the conditions,
A1|n|m1 ≤ β(n) ≤ A2(1 + |n|)m2 , for m1 ≤ m2, |n| ≥ k0, β(n) > b for all n ∈ Z, and Ai > 0.
Then, the following unbounded linear self-adjoint operator LM : D(LM) → L2

per([0, L])

LM = (M+ c)− ϕ
p
c , (10)

arises in the study of traveling wave solutions of the form u(x, t) = ϕc(x − ct) for equation
(8). Here the profile ϕ = ϕc must satisfy the following nonlinear equation

(M+ c)ϕ − 1

p + 1
ϕp+1 = Aϕ, (11)

where Aϕ is a constant of integration which can be assumed to be zero and the wave-speed
c is chosen such that M + c is a positive operator. Equation (8) with p = 1, contains
two important models in internal water-wave research: The Benjamin-Ono equation (BO
henceforth), M = H∂x, where H denotes the periodic Hilbert transform defined via the

Fourier transform as Ĥ f (n) = −isgn(n) f̂ (n), n ∈ Z. So, we have that M has associated
the symbol β(n) = |n|. The other model is the Intermediate Long Wave equation (ILW
henceforth), where the pseudo-differential operator M has associated the symbol βh(n) =
n coth(nh)− 1

h , h ∈ (0,+∞).
Recently, Angulo&Natali (2008) established a new approach for studying the general linear
operator LM in (10) within the framework of the theory of stability for even and positive
periodic traveling waves (see Section 3). Indeed, by using Fourier techniques associated to
positive linear operators was obtained that the positivity of the Fourier coefficients associated
to ϕc together with a specific positivity property called PF(2) for the Fourier coefficients
of the power function ϕ

p
c , will imply the existence of a unique negative eigenvalue and

simple and the non-degeneracy of the eigenvalue zero. Therefore, one of the advantage of
Angulo&Natali’s approach is the possibility of studying non-local linear operators such as
that associated to the BO equation (see Section 5)

Lbo = H∂x + c − ϕc. (12)
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We also note that in the case of the critical KdV equation (p = 4 and M = −∂2
x in (8))

Angulo&Natali’s approach was applied successfully for obtaining the relevant result that
there is a family of periodic traveling waves, c → ϕc, such that they are stable if the
wave-speed c ∈ (π2/L2, r0/L2) and unstable if c ∈ (r0/L2,+∞), where r0 > 0 does not
depend on L ( see Angulo&Natali (2009)). In the case of operators of type Schrödinger,

L = − d2

dx2
+ c − ϕ

p
c , (13)

Neves (2009) (see Section 6) and Johnson (2009) have obtained other criterium for obtaining
the required spectral information in a stability study. Their approach are different from
those ones that we shall establish in this chapter. For instance, Johnson uses tools from
ordinary differential equations and Evans function methods. Its stability approach works
for perturbations restricted to the manifold of initial data u0 such that

∫
u2

0(x)dx =
∫

ϕ2
c(x)dx

and
∫

u0(x)dx =
∫

ϕc(x)dx.
Other important piece of information in a stability study is the existence of solutions for the
nonlinear equation (11). For M = −∂2

x is obvious that the quadrature method is the most
natural tool to be used (see subsection 5.2). Therefore, the theory of elliptic integrals and
Jacobian elliptic functions arise in a very natural way. For M being a non-local operator the
existence problem is not an easy task. In this point the use of Fourier methods can be very
useful. Indeed, suppose that ϕc represents a solitary wave solution for equation (11) (Aϕ = 0)

with ϕ̂c
R representing its Fourier transform on the line, then the Poisson Summation Theorem

produces a periodic function ψ given by formula

ψ(ξ) = ∑
n∈Z

ϕc(ξ + Ln) =
1

L ∑
n∈Z

ϕ̂c
R
( n

L

)
e

2πinξ
L . (14)

Note that ψ has a minimal period L. Now, from our experience with dispersive evolution
equations we know that the profile ψ does not give for every c a solution for equation (11).
Indeed, we have only that for a specific range of the solitary wave-speed, c, it will produce
that ψ is in fact a periodic traveling wave solution. In other words, there are an interval
I and a smooth wave-speed mapping, c ∈ I → v(c), such that ψ satisfies (M + v(c))ψ −

1
p+1 ψp+1 = 0. An example where equality (14) can be used is in obtaining the well-know

Benjamin’s periodic traveling wave solution for the BO equation (see subsection 5.1). We

note from formula (14) that a good knowledge of the Fourier transform ϕ̂c
R is necessary for

obtaining an explicit profile of ψ and that the Fourier coefficients of ψ are depending of the

discretization of ϕ̂c
R to the enumerable set {n/L}n∈Z.

We note that in our approach we consider the minimal period associated to the periodic
traveling wave solutions completely arbitrary. Our analysis is not restricted to small or large
wavelength. We also note that the stability theory to be established here it can be applied to
a sufficiently wide range of non-linear dispersive models, such as the nonlinear Schrödinger
equation

iut + uxx + |u|pu = 0 (15)

with u = u(x, t) ∈ C and p = 2, 3, 4, ..., and for the generalized Benjamin-Bona-Mahony
equations

ut + ux + upux +Mut = 0, (16)

for p ≧ 1, p ∈ N, and M given by (9) (see Angulo et al. (2010)).
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We will also be interested in this chapter in the linear instability of periodic traveling wave
solutions. By using the theoretical framework of Weinstein (1986) and Grillakis (1988) we
show that there is a family of periodic traveling wave for the cubic Schrödinger equation
(p = 2 in (15)) with a minimal period L which are orbitally stable in H1

per([0, L]) but linearly

unstable in H1
per([0, jL]), for j ≧ 2 (see subsection 5.3.1). In the general case of equations in (8)

we establish a criterium of linear instability developed recently by Angulo&Natali (2010) (see
Section 7).
In the last section of this chapter, we establish some results about the existence and stability
of periodic-peakon for the following nonlinear Schrödinger equation (NLS-δ equation),

iut + uxx + γδ(x)u + |u|2u = 0, (17)

defined for functions on the torus T = R/2πZ. Here the symbol δ denotes the Dirac delta
distribution, (δ, ψ) = ψ(0), and γ ∈ R is denominated the coupling constant or strength
attached to the point source located at x = 0.

2. Notation

For any complex number z ∈ C, we denote by ℜ(z) and ℑ(z) the real part and imaginary part
of z, respectively. For s ∈ R, the Sobolev space Hs

per([0, L]) consists of all periodic distributions

f such that ‖ f ‖2
Hs = L

∞

∑
k=−∞

(1+ n2)s| f̂ (n)|2 < ∞. For simplicity, we will use the notation Hs
per

and H0
per = L2

per. The Fourier transform of a periodic distribution Ψ is the function Ψ̂ : Z → C

defined by the formula Ψ̂(n) = 1
L 〈Ψ, Θ−n〉, n ∈ Z, for Θn(x) = exp(2πinx/L). So, if Ψ is

a periodic function with period L, we have Ψ̂(n) = 1
L

∫ L
0 Ψ(x)e−

2nπxi
L dx. The normal elliptic

integral of first type (see Byrd&Friedman (1971)) is defined by

y∫

0

dt√
(1 − t2)(1 − k2t2)

=

φ∫

0

dθ√
1 − k2 sin2 θ

= F(φ, k)

where y = sin φ and k ∈ (0, 1). k is called the modulus and φ the argument. When y = 1,
we denote F(π/2, k) by K = K(k). The Jacobian elliptic functions are denoted by sn(u; k),
cn(u; k) and dn(u; k) (called, snoidal, cnoidal and dnoidal, respectively), and are defined via
the previous elliptic integral. More precisely, let u(y; k) := u = F(φ, k), then y = sinφ :=

sn(u; k), cn(u; k) =
√

1 − sn2(u; k) and dn(u; k) =
√

1 − k2sn2(u; k). We have the following
asymptotic formulas: sn(x; 1) = tanh(x), cn(x; 1) = sech(x) and dn(x; 1) = sech(x).

3. Positivity properties of the Fourier transform in the nonlinear stability theory

The approach contained in Angulo& Natali (2008) introduces a new criterium for obtaining
that the self-adjoint operator LM in (10) possesses exactly one negative eigenvalue which

is simple and the eigenvalue zero is simple with eigenfunction d
dx ϕ. These specific spectral

properties are obtained provided that ϕ is an even positive periodic function with a priori

minimal period, and such that ϕ̂(n) > 0 for every n ∈ Z and (ϕ̂p(n))n∈Z ∈ PF(2)-discrete
class which we shall define below.
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We start our approach by defining for all θ ≥ 0, the convolution operator Sθ : ℓ2(Z) → ℓ2(Z)
by

Sθα(n) =
1

ωθ(n)

∞

∑
j=−∞

K(n − j)αj =
1

ωθ(n)
(K ∗ α)n ,

where ωθ(n) = β(n) + θ + c, K(n) = ϕ̂
p
c (n), n ∈ Z. Here we have chosen c such that c > −b

where b ∈ R satisfies β(n) > b for all n ∈ Z. Then we have ωθ(n) > 0 for all n ∈ Z. It follows
that the space X defined by

X = {α ∈ ℓ
2(Z); ||α||X,θ := (

∞

∑
n=−∞

|αn|2ωθ(n))
1
2 < ∞},

is a Hilbert space with norm ||α||X,θ and inner product < α1, α2 >X,θ= ∑
∞
n=−∞ α1

nα2
nωθ(n).

The next Proposition is a consequence of the theory of self-adjoint operators with a compact
resolvent.

Proposition 3.1. For every θ ≥ 0, we have the following

(a) If α ∈ ℓ2 is an eigensequence of Sθ for a non-zero eigenvalue, then α ∈ X.

(b) The restriction of Sθ to X is a compact, self-adjoint operator with respect to the norm || · ||X,θ.

(c) 1 is an eigenvalue of Sθ (as an operator of X) if and only if −θ is an eigenvalue of LM (as an
operator of L2

per). Furthermore, both eigenvalues have the same multiplicity.

(d) Sθ has a family of eigensequences (ψi,θ)
∞
i=0 forming an orthonormal basis of X with respect to the

norm || · ||X,θ. The eigensequences correspond to real eigenvalues (λi(θ))
∞
i=0 whose only possible

accumulation point is zero. Moreover, |λ0(θ)| ≥ |λ1(θ)| ≥ |λ2(θ)| ≥ · · ·.

Proof. See Angulo & Natali (2008).

Definition 3.1. We say that a sequence α = (αn)n∈Z ⊆ R is in the class PF(2) discrete if

i) αn > 0, for all n ∈ Z,

ii) αn1−m1 αn2−m2 − αn1−m2 αn2−m1 ≧ 0, for n1 < n2 and m1 < m2,

iii) αn1−m1 αn2−m2 − αn1−m2 αn2−m1 > 0, if n1 < n2, m1 < m2, n2 > m1, and n1 < m2.

Example: The sequence an = e−η|n|, n ∈ Z, η > 0, belongs to PF(2) discrete class. Indeed, the
conditions ii) and iii) in Definition 3.1 are equivalents to

1) |n1 − m1|+ |n2 − m2| ≦ |n1 − m2|+ |n2 − m1|, if n1 < n2 and m1 < m2, and
2) |n1 − m1|+ |n2 − m2| < |n1 − m2|+ |n2 − m1|, if n1 < n2, m1 < m2,

n2 > m1 and n1 < m2,
(18)

which are immediately verified. In section 4 we will use this example in the stability theory
of periodic traveling wave solutions for the BO equation.

The next result will also be useful in section 4.

Theorem 3.1. Let α1 and α2 be two even sequences in the class PF(2) discrete, then the convolution
α1 ∗ α2 ∈ PF(2) discrete (if the convolution makes sense).
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Proof. See Karlin (1968).

We present the main result of this section.

Theorem 3.2. Let ϕc be an even positive solution of (11) with Aϕ = 0. Suppose that ϕ̂c(n) > 0

for every n ∈ Z, and (ϕ̂
p
c (n))n∈Z ∈ PF(2) discrete. Then LM in (10) possesses exactly a unique

negative eigenvalue which is simple, and zero is a simple eigenvalue with eigenfunction d
dx ϕc.

Proof. The complete proof of this theorem is very technical and long (see Angulo&Natali (2008)
for details), so we only give a sketch of it divided in three basic steps as follows.

I- Since Sθ is a compact-self-adjoint operator on X, it follows that

λ0(θ) = ± sup
||α||X=1

| < Sθα, α >X |. (19)

Let ψ(θ) := ψ be an eigensequence of Sθ corresponding to λ0(θ) := λ0. We will show that
ψ is one-signed, that is, either ψ(n) ≤ 0 or ψ(n) ≥ 0. By contradiction, suppose ψ takes

both negative and positive values. By hypotheses the kernel K = (K(n)) = (ϕ̂
p
c (n)) is

positive, then

Sθ|ψ|(n) = 1
ωθ(n) ∑

∞
j=−∞ K(n − j)ψ+(j) + 1

ωθ(n) ∑
∞
j=−∞ K(n − j)ψ−(j)

>

∣∣∣ 1
ωθ(n) ∑

∞
j=−∞ K(n − j)ψ+(j)− 1

ωθ(n) ∑
∞
j=−∞ K(n − j)ψ−(j)

∣∣∣ ,

where ψ+ e ψ− are the positive and negative parts of ψ respectively. It follows that

< Sθ(|ψ|), |ψ| >X,θ>

∞

∑
n=−∞

|λ0||ψ(n)|2ωθ(n) = |λ0|‖ψ‖2
X,θ.

Hence, if we assume that ||ψ||X = 1, we obtain < Sθ(|ψ|), |ψ| >X> |λ0|, which contradicts
(19). Then, there is an eigensequence ψ0 which is nonnegative. Now, since K is a positive
sequence and Sθ(ψ0) = λ0ψ0, we have ψ0(n) > 0, ∀n ∈ Z. Therefore, ψ0 can not be
orthogonal to any non-trivial one-signed eigensequence in X, which implies that λ0 is a
simple eigenvalue. Notice that the preceding argument also shows that −λ0 can not be an
eigenvalue of Sθ , therefore it follows that |λ1| < λ0.

II- The next step will be to study the behavior of the eigenvalue λ1(θ). In fact, it considers the
following set of indices,

△ = {(n1, n2) ∈ Z × Z; n1 < n2}.

Denoting n = (n1, n2) and m = (m1, m2), we define for n, m ∈ △ the following sequence

K2(n, m) := K(n1 − m1)K(n2 − m2)−K(n1 − m2)K(n2 − m1).

By hypothesis K ∈ PF(2) discrete, hence K2 > 0. Let ℓ2(△) be defined as

ℓ
2(△) =

⎧
⎪⎨
⎪⎩

α = (αn)n∈△; ∑ ∑△|αn|2 := ∑
n1∈Z

∑
n1<n2
n2∈Z

|α(n1, n2)|2 < +∞

⎫
⎪⎬
⎪⎭

,
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and define the operator S2,θ : ℓ2(△) → ℓ2(△) by

S2,θg(n) = ∑ ∑△G2,θ(n, m)g(m),

where G2,θ(n, m) = K2(n,m)
ωθ(n1)ωθ(n2)

. It also consider, the space

W =

{
α ∈ ℓ

2(△); ||α||W,θ :=
(
∑ ∑△|α(n)|2ωθ(n1)ωθ(n2)

) 1
2
< ∞

}
.

Then W is a Hilbert space with norm || · ||W,θ given above and with inner product

< α1, α2
>W,θ= ∑ ∑△α1(n)α2(n)ωθ(n1)ωθ(n2).

Remark 3.1. 1) We can show, analogous to Proposition 3.1, that S2,θ

∣∣
W

is a self-adjoint, compact
operator. Therefore, the eigenvalues associated to it operator can be enumerated in order of
decreasing absolute value, that is, |μ0(θ)| ≥ |μ1(θ)| ≥ |μ2(θ)| ≥ · · ·.
2) We also obtain that μ0(θ) := μ0 is positive, simple and |μ1| < μ0.

Definition 3.2. Let α1, α2 ∈ ℓ2(Z), we define the wedge product α1 ∧ α2 in △ by (α1 ∧
α2)(n1, n2) = α1(n1)α

2(n2)− α1(n2)α
2(n1).

We have the following results from Definition 3.2.

Lemma 3.1. 1) Let A =
{

α1 ∧ α2; for α1, α2 ∈ X, α1 ∧ α2 ∈ ℓ2(△)
}

. Then A is dense in W.

2) Let α1, α2 ∈ ℓ2(Z). Then S2,θ(α
1 ∧ α2) = Sθα1 ∧ Sθα2.

Proof. See Karlin (1964), Karlin (1968) and Albert (1992) .

The following Lemma is the key to characterize the second eigenvalue λ1.

Lemma 3.2. For all θ ≧ 0 we have:

a) μ0(θ) = λ0(θ)λ1(θ), and then λ1(θ) > 0.

b) λ1(θ) is simple.

Proof. See Angulo&Natali (2008).

III- Final step. For i = 0, 1, we have that the differentiable curve θ → λi(θ) satisfies d
dθ λi(θ) <

0 and limθ→∞ λ0(θ) = 0. From ϕ̂c(n) > 0 for all n ∈ Z, it follows λ1(0) = 1. Since
λ0(0) > λ1(0) = 1, there is a unique θ0 ∈ (0,+∞) such that λ0(θ0) = 1. From Proposition
3.1, we obtain that κ ≡ −θ0 is a negative eigenvalue of LM which is simple. For i ≥ 2
and θ > 0 we have that λi(θ) ≤ λ1(θ) < λ1(0) = 1, so 1 can not be eigenvalue of Sθ for
all θ ∈ (0,+∞) \ {θ0}, since 1 is an eigenvalue only for θ = 0 and θ = θ0. Then LM has
a unique negative eigenvalue which is simple. Finally, since λ1(0) = 1 and λ1 is a simple
eigenvalue it follows that θ = 0 is a simple eigenvalue of LM by Proposition 3.1. This
shows the theorem. �

Remark 3.2. In Theorem 3.2 the Fourier transform of ϕc and ϕ
p
c must be calculated in the minimal

period L of ϕc.
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3.1 Construction of periodic functions in PF(2) discrete class

In this subsection we show a method for building non-trivial periodic functions such that its
Fourier transform belongs to the PF(2) discrete class. We start with the PF(2) continuous
class.

Definition 3.3. We say that a function K : R → R is in the PF(2) continuous class if

i) K(x) > 0 for x ∈ R,

ii) K(x1 − y1)K(x2 − y2)−K(x1 − y2)K(x2 − y1) ≧ 0, for x1 < x2 and y1 < y2; and

iii) strict inequality holds in ii) whenever the intervals (x1, x2) and (y1, y2) intersect.

The following result is immediate.

Proposition 3.2. Suposse K is in the PF(2) continuous class. Then for α(n) ≡ K(n) we have that
the sequence (α(n))n∈Z is in the PF(2) discrete class.

Next, we have the following Theorem (see Albert&Bona (1991)).

Theorem 3.3. Suppose f is a positive, twice-differentiable function on R satisfying

d2

dx2
(log f (x)) < 0 for x �= 0, (logarithmically concave) (20)

then f ∈ PF(2).

Now we illustrate Theorem 3.3. Indeed, let us consider the solitary wave solution associated
to the KdV and modified KdV equation (p = 2 and M = −∂2

x in (8)),

φc,p(ξ) =
[ (p + 1)(p + 2)c

2

]1/p
sech2/p

( p
√

c

2
ξ
)

, c > 0, p = 1, 2. (21)

Then the Fourier transforms are given by

φ̂c,1(ξ) = 12π
ξ

sinh(πξ/
√

c)
, φ̂c,2(ξ) =

√
3

2
π sech

( πξ

2
√

c

)
. (22)

Hence, since φ̂c,i, i = 1, 2, are logarithmically concave functions it follows from Theorem
3.3 that they belong to PF(2). Moreover, from Proposition 3.2 we have that the sequences
(φ̂c,i(n))n∈Z, i = 1, 2, belong to PF(2) discrete class.

Next, for one better convenience of the reader, we establish the Poisson Summation Theorem.

Theorem 3.4. Let f̂ R(ξ) =
∫ ∞

−∞
f (x)e−2πixξdx and f (x) =

∫ ∞

−∞
f̂ R(ξ)e2πixξdξ satisfy

| f (x)| ≤ A

(1 + |x|)1+δ
and | f̂ R(ξ)| ≤ A

(1 + |ξ|)1+δ
,

where A > 0 and δ > 0 (then f and f̂ can be assumed continuous functions). Thus, for L > 0

∞

∑
n=−∞

f (x + Ln) =
1

L

∞

∑
n=−∞

f̂ R
( n

L

)
e

2πinx
L .

The two series above converge absolutely.
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Proof. See for example Stein&Weiss (1971).

From Theorem 3.4 and formulas in (22) we have that the periodization of the solitary wave
solutions in (21), p = 1, 2, produces the following periodic functions

ψi(ξ) =
1

L

∞

∑
n=−∞

φ̂c,i

( n

L

)
e

2πinξ
L , i = 1, 2, (23)

such that its Fourier transform belongs to the PF(2) discrete class.

4. Orbital stability definition and main theorem

In this section we establish the definition of stability which we are interested in this chapter
and a general stability theorem for periodic traveling waves.

Definition 4.1. Let ϕ be a periodic traveling wave solution of (11) with minimal period L and consider

τr ϕ(x) = ϕ(x + r), x ∈ R and r ∈ R. We define the set Ωϕ ⊂ H
m2
2

per, the orbit generated by ϕ,

as Ωϕ = {g; g = τr ϕ, for some r ∈ R}. For any η > 0, let us define the set Uη ⊂ H
m2
2

per by

Uη = { f ; inf
g∈Ωϕ

|| f − g||
H

m2
2

per

< η}. With this terminology, we say that ϕ is (orbitally) stable in H
m2
2

per

by the flow generated by equation (8) if,

(i) there is s0 such that Hs0
per ⊆ H

m2
2

per and the initial value problem associated to (8) is globally

well-posed in Hs0
per.

(ii) For every ε > 0, there is δ > 0 such that for all u0 ∈ Uδ ∩ Hs0
per, the solution u of (8) with

u(0, x) = u0(x) satisfies u(t) ∈ Uε for all t ∈ R.

Remark 4.1. We have some comments about Definition 4.1:

1. Definition 4.1 is based on the translation symmetry associated to model (8).

2. In Definition 4.1 we are introducing other space, Hs0
per, because to obtain a global well-posed theory

in the energy space H
m2
2

per can not be an easy task. For instance, in the case of the regularized
Benjamin-Ono equation (equation (16) with p = 1 and M = H∂x) it is possible to have a global

well-posed theory in the space Hs0
per with s0 > 1

2 , but global well-posed in H
1
2
per remains an open

problem (see Angulo et al. (2010)).

3. Definition 4.1 was given for equations in (8), but naturally it is also valid for those ones in (16).
Stability definition for the Schrödinger models (15) and (17) is different to that given in definition
4.1, since we have two symmetries (translations and rotations) and one symmetry (rotations) for
that models, respectively (see Theorem 5.5 and Theorem 8.1 below).

The proof of the following general stability theorem can be shown by using techniques due
to Benjamin (1972), Bona (1975), Weinstein (1986) or Grillakis et al. (1987) (see also Angulo
(2009))

Theorem 4.1. Let ϕc be a periodic traveling wave solution of (11) and suppose that part (i) of the
Definition 4.1 holds. Suppose also that the operator LM in (10) possesses exactly a unique negative

eigenvalue which is simple, and zero is a simple eigenvalue with eigenfunction d
dx ϕc. Choose χ ∈ L2

per

such that LMχ = ϕc, and define I = (χ, ϕc)L2
per

. If I < 0, then ϕc is stable in H
m2
2

per.
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Remark 4.2. In our cases the function χ in Theorem 4.1 will be chosen as χ = − d
dc ϕc. Then, I < 0

if and only if d
dc

∫
ϕ2

c (ξ)dξ > 0.

5. Stability of periodic traveling wave solutions for some dispersive models

In this section we are interested in applying the theory obtained in Section 3 to obtain the
stability of specific periodic traveling waves associated to the following models: the BO
equation, the modified KdV and the cubic Schrödinger equation.

5.1 Stability for the BO equation

We start by finding a smooth curve c → ϕc of solutions associated with the following non-local
differential equation

Hϕ′
c + cϕc −

1

2
ϕ2

c = 0. (24)

Here we present an approach based on the Poisson Summation Theorem for obtaining an
explicit solution to equation (24). Indeed, it we consider, the solitary wave solution associated

to BO equation, namely, φω(x) =
4ω

1 + ω2x2
, with ω > 0. Since its Fourier transform is given

by φ̂ω
R
(x) = 4πe

−2π
ω |x|, we obtain from Theorem 3.4 the following periodic wave of minimal

period L

ψω(x) =
4π

L

+∞

∑
n=0

εne
−2πn

ωL cos

(
2nπx

L

)
=

4π

L

sinh
(

2π
ωL

)

cosh
(

2π
ωL

)
− cos

(
2πx

L

) , (25)

where εn = 1 for n = 0, and εn = 2 for n ≧ 1. Next we see that the profile ψω represents a
periodic solution for (24) with ω = ω(c) and c > 2π/L. Let ϕc, c > 0, be a smooth periodic
solution of (24) with minimal period L, then ϕc can be expressed as a Fourier series

ϕc(x) =
+∞

∑
n=−∞

ane
2nπix

L . (26)

Now, from (24), we get [
2π|n|

L
+ c

]
an =

1

2

+∞

∑
m=−∞

an−mam.

We consider an ≡ 4πe−γ|n|/L, n ∈ Z, γ ∈ R. Substituting an in the last identity we obtain

+∞

∑
m=−∞

an−mam =
16π2

L2
e−γ|n|

[
|n|+ 1 + 2

+∞

∑
k=1

e−2γk

]
=

16π2

L2
e−γ|n|(|n|+ cothγ).

Then,

c +
2π|n|

L
=

4π

L
· 1

2
(|n|+ cothγ). (27)

Consider γ = 2π/(ωL). Then for c > 2π/L we choose the solitary wave-speed ω = ω(c) > 0
such that

tanh(γ) =
2π

cL
. (28)
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Therefore, from uniqueness of the Fourier series we obtain ϕc = ψω(c). Hence, since the

mapping c → γ(c) = tanh−1(2π/(cL)) is a differentiable function for c > 2π/L, it follows

that c ∈
(

2π
L ,+∞

)
�→ ϕc ∈ Hn

per([0, L]), n ∈ N, is a smooth curve of periodic traveling

wave solutions for the BO equation. From our analysis we have then the following Fourier
expansion for ϕc

ϕc(x) =
4π

L

+∞

∑
n=−∞

e−γ|n|e
2πinx

L , (29)

with γ satisfying (28). Then, we obtain immediately that (ϕ̂c(n))n∈Z ∈ PF(2) discrete class
(see (18)) and from Theorem 3.2, that the operator in (12) possesses exactly a unique negative

eigenvalue which is simple and whose kernel is generated by d
dx ϕc. Next we calculate the sign

of the quantity I = − 1
2

d
dc ||ϕc||2L2

per
. Indeed, from (29) and Parseval Theorem it follows

I = − L

2

d

dc
||ϕ̂c||2ℓ2 = − 8π2

L

d

dc

∞

∑
n=−∞

e−2γ|n| = − 32π3

c2L2

1

1 −
(

2π
cL

)2

∞

∑
n=−∞

|n|e−2γ|n|
< 0. (30)

Hence, from Theorem 4.1 we obtain the orbital stability of the periodic solutions (29) in H
1
2
per

by the periodic flow of the BO equation.

Remark 5.1. The periodic global well-posed theory for the BO in H
1
2
per has been shown by Molinet

(2008) and Molinet&Ribaut (2009).

5.2 Stability for the mKdV equation

Next we study the modified KdV equation written as

ut + 3u2ux + uxxx = 0. (31)

In this case, the periodic traveling wave solution u(x, t) = ϕc(x − ct) satisfies the equation

ϕ′′
c − cϕc + ϕ3

c = 0. (32)

On this time we are going to use the quadrature method to determine a profile for ϕc (see
Angulo et al. (2010) for the use of the Poisson Summation Theorem). Thus, multiplying
equation (32) by ϕ′

c and integrating once we deduce the following differential equation in
quadrature form

[ϕ′
c]

2 =
1

2

[
−ϕ4

c + 2cϕ2
c + 4Bϕc

]
, (33)

where Bϕc is a nonzero constant of integration. The periodic solutions arise of the specific form

of the roots associated with the polynomial F(t) = −t4 + 2ct2 + 4Bϕc . We start by considering
F with four real roots such that −η1 < −η2 < 0 < η2 < η1, then we obtain

[ϕ′
c]

2 =
1

2
(η2

1 − ϕ2
c )(ϕ2

c − η2
2). (34)

By looking for positive solutions we have η2 ≦ ϕc ≦ η1 and from (34), 2c = η2
1 + η2

2 and

4Bϕc = −η2
1η2

2 . Next, for φc ≡ ϕc/η1 and φ2
c = 1 − k2 sin2 ψ we obtain from (34) the following

elliptic integral equation F(ψ(ξ), k) = η1ξ/
√

2, with k2 = (η2
1 − η2

2)/η2
1 . Therefore, from the
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definition of the Jacobi elliptic function snoidal, sn, it follows that for l = η1/
√

2, sin(ψ(ξ)) =

sn(lξ; k), and hence φc(ξ) =
√

1 − k2sn2(lξ; k) = dn(lξ; k). Then if we return back to the
initial variable ϕc, we obtain the so-called dnoidal wave solutions:

ϕc(ξ) ≡ ϕc(ξ; η1, η2) = η1 dn
( η1√

2
ξ; k

)
(35)

with

k2 =
η2

1 − η2
2

η2
1

, η2
1 + η2

2 = 2c, 0 < η2 < η1. (36)

Next we study the fundamental period associated to ϕc. Indeed, since dn(u + 2K) = dn u, it
follows that ϕc has the fundamental period (wavelength) Tϕc , given by

Tϕc ≡
2
√

2

η1
K(k). (37)

Now, by using (36) we have for c > 0 that 0 < η2 <
√

c < η1 <
√

2c. Hence one can consider
(37) as a function of η2, namely

Tϕc (η2) =
2
√

2√
2c − η2

2

K(k(η2)) with k2(η2) =
2c − 2η2

2

2c − η2
2

. (38)

Then, since for η2 → 0 we have K(k(η2)) → +∞, it follows that Tϕc (η2) → +∞ as η2 → 0.

Now, for η2 → √
c we obtain K(k(η2)) → π/2. Therefore, Tϕc(η2) → π

√
2/

√
c as η2 → √

c.

Finally, since η2 → Tϕc(η2) is a strictly decreasing function we obtain Tϕc >
π
√

2√
c

. Then the

implicit function theorem implies the following result (see Angulo (2007)).

Theorem 5.1. Let L > 0 be arbitrary but fixed. Then there exists a smooth mapping curve c ∈ J0 =(
2π2

L2 ,+∞
)
→ ϕc ∈ Hn

per([0, L]), such that ϕc satisfies equation (32) and it has the dnoidal profile

ϕc(ξ) = η1 dn
( η1√

2
ξ; k

)
, ξ ∈ [0, L]. (39)

Here, c ∈ J0 → η1 (c) ∈ (
√

c,
√

2c), c ∈ J0 → k(c) ∈ (0, 1) are smooth.

Our next step is the study of the following periodic eigenvalue problem,

⎧
⎪⎨
⎪⎩

Lmkdvψ ≡
(
− d2

dx2
+ c − 3ϕ2

c

)
ψ = λψ

ψ(0) = ψ(L), ψ′(0) = ψ′(L).

(40)

Then, we have the following theorem.

Theorem 5.2. Let ϕc be the dnoidal wave solution given by Theorem 5.1. Then problem (40) defined
on H2

per([0, L]) has exactly its three first eigenvalues simple, being the eigenvalue zero, the second one

with eigenfunction ϕ′
c. Moreover, the remainder of the spectrum is constituted by a discrete set of

eigenvalues which are double.
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Remark 5.2. The periodic global well-posed theory for the mKdV in H1
per can be found in Colliander

et al. (2003).

The proof of Theorem 5.2 is based on the Floquet theory. So, we have the following classical
theorem (see Magnus&Winkler (1976))

Theorem 5.3. Consider the Lamé’s equation

− χ′′ + m(m + 1)k2sn2(x; k)χ = ρχ, (41)

where m is a real parameter. Then we guarantee the existence of two linearly independent periodic
solutions to (41) with period 2K or 4K if and only if m is an integer. By letting l = m if m is a
non-negative integer and l = −m − 1 if m is a negative integer then Lamé’s equation (41) has, at
most, l + 1 intervals of instability (including the interval (−∞, ρ0) with ρ0 being the first eigenvalue).
In addition, if m is a non-negative integer then (41) has exactly m + 1 intervals of instability.

Proof. (Theorem 5.2) Since operator Lmkdv has a compact resolvent its spectrum is a countable
infinity set of eigenvalues {λn; n = 0, 1, 2, ...}, with

λ0 < λ1 ≦ λ2 < λ3 ≦ λ4 < · · ·. (42)

We denote by ψn the eigenfunction associated to the eigenvalue λn. The eigenvalue
distribution in (42) is a consequence of the following Oscillation Sturm-Liouville result:

i) ψ0 has no zeros in [0, L],

ii) ψ2n+1 and ψ2n+2 have exactly 2n + 2 zeros in [0, L).

Next, since Lmkdvϕ′
c = 0 and ϕ′

c has two zeros in [0, L) we have that the eigenvalue zero is
either λ1 or λ2. For determining that 0 = λ1 < λ2 we will use Theorem 5.3. Indeed, the

transformation Q(x) = ψ(x
√

2/η1) implies from (40) the following Lamé problem for Q,

{
Q′′ + [ρ − 6k2sn2(x, k)]Q = 0

Q(0) = Q(2K(k)), Q′(0) = Q′(2K(k)),
(43)

with
ρ = 2(λ + 3η2

1 − c)/η2
1 . (44)

Therefore, since problem (43) has exactly 3 intervals of instability we have that the eigenvalues
{ρn; n = 0, 1, 2, ...} will satisfy that ρ0, ρ1 and ρ2 are simples and ρ3 = ρ4, ρ5 = ρ6, · · ·. Next,

we establish the values of the eigenvalues ρi, i = 1, 2, 3. Indeed, ρ0 = 2[1+ k2 −
√

1 − k2 + k4],

ρ1 = 4+ k2, ρ2 = 2[1+ k2 +
√

1 − k2 + k4]. Therefore relation (44) implies that for i = 1, 2, 3, ρi

determine the eigenvalues λi, respectively. Hence, zero is the second eigenvalue for (40) and
it is simple. This shows the theorem.

Remark 5.3. We note that a part of the conclusion of Theorem 5.2 can be also obtained via Theorem

3.2. Indeed, the Fourier transform of the dnoidal profile ϕc is given by ϕ̂c(n) =
√

2π
L sech

(
πn√
ω(c)L

)
,

where for c >
2π2

L2 we have ω(c) = c/(16(2 − k2)K2(
√

1 − k2)). Then since the function f (x) =
μsech(νx) belongs to PF(2) continuous for μ, ν positive (see (22)), it follows (ϕ̂c(n))n∈Z ∈ PF(2)
discrete. Finally, since the convolution of even sequences in PF(2) discrete is in PF(2) discrete (see

Theorem 3.1) we obtain that ϕ̂2
c ∈ PF(2) discrete.
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Finally, we calculate the sign of the quantity D = 1
2

d
dc ||ϕc||2L2

per
. From integral elliptic theory

we have

||ϕc||2L2
per

=
√

2η1

∫ η1√
2

L

0
dn2(x; k)dx =

8K(k)

L

∫ K

0
dn2(x; k)dx =

8

L
K(k)E(k). (45)

Then, since the maps k ∈ (0, 1) → K(k)E(k) and c → k(c) are strictly increasing functions, it
follows immediately from (45) that D > 0. Hence, Theorem 4.1 implies stability in H1

per([0, L])
of the dnoidal solutions (39) by the periodic flow of the mkdV equation.

Remark 5.4. Recently Johnson (2009) has proposed an approach to determine the nonlinear stability
of periodic traveling wave for models of KdV type. Next, we would like to show that this theory can
not be applied to the smooth curve of dnoidal wave, c → ϕc, established by Theorem 5.1. Indeed,

from analysis in subsection 5.2 we have for L > 0 fixed that B := Bϕc (c) = −−16(1−k(c)2)K2(k(c))
L2 .

Now, we note that dB
dc > 0 and so ϕc can be seen as a function of the parameter B. In the proof of

Lemma 4.2 in Johnson (2009) is deduced that d
dB ϕc is a periodic function if and only if the kernel of the

operator Lmkdv is double. So, from the equality d
dB ϕc =

dc
dB

dϕc

dc , we deduce that d
dB ϕc is periodic since

dc
dB > 0 and

dϕc

dc is a periodic function by construction. Therefore from Johnson’s Lemma we obtain that
ker(Lmkdv) is double which is a contradiction.

5.3 Stability and instability for the cubic Schrödinger equation

In this subsection we are interested in studying stability properties of two specific families de
traveling wave solutions for the cubic Schrödinger equation (NLS henceforth)

iut + uxx + |u|2u = 0, (46)

namely, the dnoidal and cnoidal solutions.

5.3.1 The dnoidal case

The stability analysis associated to the mKdV equation (31) gives us the basic information to
study the stability of periodic standing-wave solutions for the NLS equation (46) in the form
u(x, t) = eict ϕc(x). Indeed, Theorem 5.1 implies the existence of a smooth curve c → eictϕc

of periodic traveling wave solutions for the NLS with a profile given by the dnoidal function.
Now, since the NLS has two basic symmetries, rotations and translations, we have that the
orbit to be studied here will be Oϕc = {eiθ ϕc(· + y) : y ∈ R, θ ∈ [0, 2π)}. Therefore, from
Weinstein (1986) and Grillakis et. al (1987) we need to study the spectrum of the following
linear operators: Lmkdv in (40), which henceforth we denote by L−, and the operator L+

defined by

L+ = − d2

dx2
+ c − ϕ2

c . (47)

The following theorem is related to the specific structure of L+.

Theorem 5.4. The self-adjoint operator L+ defined on H2
per([0, L]) is a nonnegative operator. The

eigenvalue zero is simple with eigenfunction associated ϕc and the remainder of the eigenvalues are
double.

Proof. Since ϕc > 0 and L+ϕc = 0, it follows from the theory of self-adjoint operators that
zero is simple and it is the first eigenvalue. Now, by Theorem 5.3 we obtain that L+ has
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exactly two instability intervals and so the remainder of the spectrum of L+ is constituted by
eigenvalues which are double. This finishes the Theorem.

Now, from Angulo (2007) we have the following stability theorem for the NLS equation.

Theorem 5.5. Let ϕc be the dnoidal wave solution given by Theorem 5.1. Then the orbit Oϕc is stable

in H1
per([0, L]) by the periodic flow of the NLS equation. Indeed, for every ǫ > 0 there exists δ(ǫ) > 0

such that if the initial data u0 satisfies

inf
(y,θ)∈R×[0,2π)

‖u0 − eiθ ϕc(·+ y)‖1 < δ,

then the solution u(t) of the NLS equation with u(0) = u0 satisfies

inf
(y,θ)∈R×[0,2π)

‖u(t)− eiθ ϕc(·+ y)‖1 < ǫ,

for all t ∈ R, θ = θ(t) and y = y(t).

Remark 5.5. The periodic global well-posed theory for the NLS equation in H1
per has been shown by

Bourgain (1999).

Theorem 5.5 establishes that the dnoidal solutions are stable by periodic perturbations of the
same minimal period L in H1

per([0, L]). Now, since ϕc is also a periodic traveling wave solution

for the NLS equation in every interval [0, jL], for j ∈ N and j ≧ 2, it is natural to ask about its
stability in H1

per([0, jL]). As we see below they will be nonlinearly unstable (in fact, they are
linearly unstable). We start our analysis with the following elementary result.

Lemma 5.1. Define Pj and Qj as the number of negatives eigenvalues of L− and L+, respectively,
with periodic boundary condition in [0, jL] and j ≧ 2. Then Qj = 0 and Pj = 2j or Pj = 2j − 1.

Proof. Since ϕc > 0 and L+ϕc(x) = 0, x ∈ [0, jL], by the Oscillation Sturm-Liouville result for
Hill equations, we obtain that zero must be the first eigenvalue and therefore for all j ≧ 2, Qj =

0. Next, since L−ϕ′
c(x) = 0, x ∈ [0, jL], and the number of zeros (nodes) of ϕ′

c in the semi-open
interval [0, jL) is 2j, the Oscillation Theorem implies that the eigenvalues corresponding to the
zero eigenvalue are λ2j or λ2j−1. Therefore, we have Pj = 2j or Pj = 2j − 1. This finishes the
Lemma.

A theoretical framework for proving nonlinear instability from a linear instability result for
nonlinear Schrödinger type’s equation was developed in Grillakis (1988), Jones (1988) and
Grillakis et al. (1990). In those approach one deduces instability when the number of negative
eigenvalues of L− exceeds the number of negative eigenvalues of L+ by more than one (see
Theorem 5.8 below). The parts of the instability theorems in Grillakis (1988) that are needed
for obtaining a linear instability of ϕc, connect Pj, Qj and the existence of real eigenvalues of
the operator (the linearized Hamiltonian)

N =

(
0 L+

−L− 0

)
. (48)

First, define: 1)Kj - the orthogonal projection on (kerL−)⊥; 2) Rj - the operator Rj = KjL−Kj;
3) Sj - the number of negative eigenvalues of Rj; 4) Ireal(Nj) - the number of pairs of nonzero
real eigenvalues of N considered on [0, jL].
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Theorem 5.6. [Grillakis (1988), Jones (1988)] For j ≧ 1 we have

1) If |Sj − Qj| = mj > 0, then Ireal(Nj) ≧ mj.

2) If Sj = Qj and { f ∈ L2
per([0, jL]) : (Ri f , f ) < 0 and ((L+)−1 f , f ) < 0} = ∅, then Ireal(Nj) ≧

1.

The following result gives a condition for obtaining the number Sj.

Theorem 5.7. [Grillakis (1988)] If d
dc

∫ jL
0 ϕ2

c(x)dx > 0 then Sj = Pj − 1.

The following theorem is the main result of this section.

Theorem 5.8. [Instability] Consider the dnoidal solution ϕc given by Theorem 5.1. Then the orbit
Rϕc = {eiy ϕc : y ∈ R} is H1

per([0, jL])-unstable for all j ≧ 2, by the flow of the periodic NLS
equation.

Proof. The strategy of the proof is initially to show that the orbit Rϕc is linearly unstable. For
this, we rewrite equation (15) in the Hamiltonian form

d

dt
u(t) = JG′(u(t)), (49)

where u = (ℜ(u),ℑ(u))t, J is the skew-symmetric, one-one and onto matrix given by

J =

(
0 1
−1 0

)
, (50)

and

G(u) =
∫ [1

2
|u′|2 − 1

4
|u|4

]
dx, (51)

which is a conservation law to (46). Next, for the linearization of (49) around the orbit Rϕc we

proceed as follows: we write Ψc = (0, ϕc)t and define

v(t) = Tp(−ct)u(t)− Ψc. (52)

Here Tp(s) acts as a rotation matrix. Hence, if T′
p(0) denotes the infinitesimal generator

of Tp(s), from the properties: Tp(s)T′
p(0) = T′

p(0)Tp(s), Tp(−s)JTp(s) = J, G′(Tp(s)u) =

Tp(s)H′(u), J−1T′
p(0)u = −F′(u) (F(u) = 1

2

∫
|u|2dx) we obtain, via Taylor Theorem,

dv

dt
= J[G′(v + Ψc) + cF′(v + Ψc)]

= J[G′′(Ψc)v + cF′′(Ψc)v + G′(Ψc) + cF′(Ψc) + O(‖v‖2)] = Nv + O(‖v‖2),
(53)

where in the last equality we are taking into account that Ψc is a critical point of G + cF and
J is a bounded linear operator. Here, N is the linear operator defined in (48). Therefore, we
are interested in the problem of determining a growing mode solution v(t) = eλtΦ(x) with
ℜ(λ) > 0 of the linearized problem

dv

dt
= Nv. (54)

We note that the eigenvalues of N appear in conjugate pairs. Now, since d
dc

∫ L
0 ϕ2

c (x)dx > 0
(see (45)) it follows from Lemma 5.1, Theorem 5.6 and Theorem 5.7 that mj = 2j − 1, or, 2j − 2.
Therefore for j ≧ 2, the number Ireal(Nj) ≧ mj > 0. Then the zero solution of (54) is unstable,
which implies that the orbit Rϕc is nonlinearly unstable (see Grillakis (1988) and Grillakis et
al. (1990)).
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Remark 5.6. 1. The Instability criterium in Grillakis et al. (1990) can not be used for studying the
instability of the orbit Rϕc . In fact, we denote by n(Hc) the number of negative eigenvalues of

the diagonal linear operator Hc ≡ J−1 N. Since the kernel of Hc is generated by ϕc and d
dx ϕc,

and d
dc

∫ jL
0 ϕ2

c (x)dx > 0, we have that if n(Hc) − 1 is odd then the orbit Rϕc is nonlinearly

unstable in H1
per([0, jL]). Now, from Lemma 5.1 we have for j ≧ 2 that n(Hc)− 1 = Pj − 1 =

2j− 1, or, 2j− 2. But as we will see latter Pj = 2j− 1 (see Section 6), therefore we have that n(Hc)
is always even.

2. The analysis in this subsection can be applied to study the following forced periodic nonlinear
Schrödinger equation

iut − uxx − γ|u|2u = εexp(−iΩ2t + iα)− iδu,

where ε is the small forcing amplitude, δ is the small damping coefficient, Ω2 is the forcing frequency
and α is an arbitrary phase (see Shlizerman&Rom-Kedar (2010)) .

5.3.2 The cnoidal case

Equation (32) has other family of periodic solutions determined by the Jacobi elliptic function
cnoidal. Indeed, now supposse that equation (33) now is written in the quadrature form

[ϕ′
c]

2 =
1

2
(a2 + ϕ2

c)(b
2 − ϕ2

c).

For b > 0 we have that −b ≦ ϕc ≦ b and so 2c = b2 − a2 and 4Bϕc = a2b2 > 0. Therefore, it is
possible to obtain (see Angulo (2007)) that the profile

ϕc(ξ) = bcn(βξ; k) (55)

is a solution of (32) with k2 = b2/(a2 + b2) and β =
√
(a2 + b2)/2. Then by using the implicit

function theorem we have the following result (see Angulo (2007)).

Theorem 5.9. Let L > 0 arbitrary but fixed. Then we have two branches of cnoidal wave solutions for
the NLS equation. Indeed,

1) there are a strictly increasing smooth function c ∈ (0,+∞) → b(c) ∈ (
√

2c,+∞) and a smooth
curve c ∈ (0,+∞) → ϕc,1 ∈ H1

per([0, L]) of solutions for equation (32) with

ϕc,1(ξ) = b cn
(√

b2 − c ξ; k
)

. (56)

Here the modulus k = k(c) satisfies k2 = b2/(2b2 − 2c) and k′(c) > 0,

2) there are a strictly decreasing smooth function c ∈ (− 4π2

L2 , 0) → a(c) ∈ (
√
−2c,+∞) and a

smooth curve c ∈
(
− 4π2

L2 , 0
)
→ ϕc,2 ∈ H1

per([0, L]) of solutions for equation (32) with

ϕc,2(ξ) =
√

a2 + 2c cn
(√

a2 + c ξ; k
)

. (57)

Here the modulus k = k(c) satisfies k2 = (a2 + 2c)/(2a2 + 2c) and k′(c) > 0.
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Now, for the cnoidal case it makes necessary to study the behavior of the first eigenvalues
related to the following self-adjoint operators

L−
i = − d2

dx2
+ c − 3ϕ2

c,i, L+
i = − d2

dx2
+ c − ϕ2

c,i, i = 1, 2. (58)

The next theorem gives the specific structure for L±
i .

Theorem 5.10. Let L > 0 and ϕc,i, i = 1, 2, the cnoidal wave solution given by Theorem 5.9. Then,

1) The operators L+
i defined on H2

per([0, L]) have exactly one negative eigenvalue which is simple, the
eigenvalue zero is also simple with eigenfunction ϕc,i. Moreover, the remainder of the spectrum is a
discrete set of eigenvalues converging to infinity.

2) The operators L−
i defined on H2

per([0, L]) have exactly two negative eigenvalue which are simple.

The eigenvalue zero is the third one, which is simple with eigenfunction ϕ′
c,i. Moreover, the

remainder of the eigenvalues are double and converging to infinity.

Proof. The proof is a consequence of Theorem 5.3 and the Oscillation Sturm-Liouville Theorem
(see Angulo (2007)).

We note that the stability or instability of the cnoidal solutions ϕc,i can not be determined
by using the same techniques mentioned above for the case of dnoidal solution (see Angulo

(2007) for discussion). Indeed, since d
dc‖ϕc,i‖2 > 0 and for

Hc,i =

(L−
i 0

0 L+
i

)
(59)

we have n(Hc,i) − 1 = 2, it follows that the Grillakis et. al (1990) stability approach is not
applicable in this case. A similar situation occurs with Grillakis (1988) and Jones (1988)
instability theories.

Remark 5.7. Recently, Natali&Pastor (2008) have determined that the cnoidal wave solution in (55)
is orbitally unstable by the periodic flow of the Klein-Gordon equation

utt − uxx + u − |u|2u = 0, (60)

by using the abstract theory due to Grillakis et al. (1990). In fact, if one considers a standing wave
solution for (60) of the form u(x, t) = eict ϕc(x), |c| < 1, we conclude from Theorem 5.10 that the
operator

Lkg =

(
L−

kg 0

0 L+
kg

)
(61)

has three negative eigenvalues which are simple and the eigenvalue zero is double. Here, L−
kg =(

− d2

dx2 + 1 − 3ϕ2
c −c

−c 1

)
and L+

kg =

(
− d2

dx2 + 1 − ϕ2
c c

c 1

)
. So, since D = − d

dc

(
c
∫ L

0 ϕc(x)2dx
)

is negative it follows that n(Lkg) − 0 = 3 is an odd number. Then, the approach in Grillakis et al.
(1990) can be applied in order to conclude the instability result.

In Section 7 we establish a new criterium for the instability of periodic traveling wave
solutions for general nonlinear dispersive equations. An application of this technique shows
that the cnoidal wave profile associated to the mKdV is actually unstable.
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6. Hill’s operators and the stability of periodic waves.

As we have seen in previous sections the study of the spectrum associated to the Hill operator

LQ = − d2

dx2
+ Q(x), (62)

with Q being a periodic potential, is of relevance in the stability’s study of periodic traveling
wave solutions for nonlinear evolution equations. Recently, Neves (2009), have presented
a new technique to establish a characterization of the nonpositive eigenvalues of LQ by
knowing one of its eigenfunctions. Next, we will give the main points of his theory and we
apply it to a specific situation. Indeed, let us consider the Hill equation related to the operator
in (62),

y′′(x) + Q(x)y(x) = 0, (63)

where we assume that the potential Q is a π−periodic function. Denote by y1 and y2 two
normalized solutions of (63), that is, solutions uniquely determined by the initial conditions
y1(0) = 1, y′1(0) = 0, y2(0) = 0, y′2(0) = 1. The characteristic equation associated with (63) is
given by

ρ2 − [y1(π) + y′2(π)]ρ + 1 = 0, (64)

and the characteristic exponent is a number α which satisfies the equation eiαπ = ρ1, e−iαπ =
ρ2, where ρ1 and ρ2 are the roots of the characteristic equation (64). It is well known from
Floquet’s Theorem (see Magnus&Winkler (1976)) that if ρ1 = ρ2 = 1 equation (63) has a
nontrivial π−periodic smooth solution. So, if one considers p such periodic solution and y
be another solution which is linearly independent of p, then y(x + π) = ρ1y(x) + θp(x), for
θ constant. The case θ = 0 is equivalent to say that y is also a π−periodic solution. Next,
suppose that z1 < z2 < · · · < z2n are the simple zeros of p in the interval [0, π). Then from
Taylor’s formula, p can be written as

p(x) = (x − zi)p′(zi) + O((x − zi)
3), (65)

and therefore, for x near zi we deduce, x−zi

p(x)
= 1

p′(zi)+O((x−zi)2)
. Next, we choose in each

interval (zi−1, zi) one point xi such that p′(xi) = 0. Thus, the zeros zi of p and xi of p′

intercalated as follows z1 < x1 < z2 < x2 < · · · < z2n < x2n and, of course, they shall
repeat to the right and to the left by the periodicity of the functions.
Define, for [x1, x1 + π)

q(x) =
x − zi

p(x)
=

1

p′(zi) + O((x − zi)3)
, x ∈ [xi−1, x1), (66)

where i = 2, · · ·, 2n + 1, z2n+1 = z1 + π and x2n+1 = x1 + π. Next, it is possible to extend q
to whole line by periodicity. Moreover we guarantee that function q is a piecewise smooth
with jump discontinuities in the points xi, q is continuous to the right and π−periodic with
q′(zi) = 0, q′(xi) =

1
p(xi)

, that is, q′ is continuous on whole real line.

Then, we can state the following result which is a new version of the Floquet Theorem for the
case ρ1 = ρ2 = 1.
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Theorem 6.1. If p is a π−periodic solution of (63), q is the function defined in (66) and

j(xi) =
q(x+i )− q(x−i )

p(xi)
= − zi+1 − zi

p2(xi)
.

Then, the solution y linearly independent with p such that the Wronskian W(p, y) = 1 satisfies

y(x + π) = y(x) + θp(x), (67)

where θ is given by

θ = ∑
xi∈(0,π]

j(xi) + 2
∫ π

0

q′(x)
p(x)

dx. (68)

In particular, y is π−periodic if and only if θ = 0.

Proof. See Neves (2009).

Now, we turn back to the linear operator in (62). We have from Oscillation Theorem (see
Magnus&Winkler (1976)) that the spectrum of LQ under periodic conditions is formed by an
unbounded sequence of real numbers, λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 · ·· < λ2n−1 ≤ λ2n · ··, where
λ′

ns are the roots of the characteristic equation

Δ(λ) = y1(π, λ) + y′2(π, λ) = 2, (69)

and y1(·, λ) and y2(·, λ) are the solutions of the differential equation −y′′ + (Q(x)− λ)y = 0
determined by the initial conditions y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0 and y′2(0, λ) = 1.
We recall that the mapping λ → Δ(λ) is an analytic function.

Now, we know that the spectrum of LQ is also characterized by the number of zeros of the
eigenfunctions. So, if p is an eigenfunction associated to the eigenvalues λ2n−1 or λ2n, then p
has exactly 2n zeros in the interval [0, π). We can enunciate the converse of the previous result
with the following statement.

Theorem 6.2. If p is the eigenfunction of LQ associated with the eigenvalue λk, k ≥ 1, and θ is the
constant given by Theorem 6.1, then λk is simple if and only if θ �= 0. In addition, if p has 2n zeros in
the interval [0, π), then λk = λ2n−1 if θ < 0, and λk = λ2n if θ > 0.

Proof. See Neves (2009).

Remark 6.1. We note that the main idea in the proof of Theorem 6.2 is to determine the sign of Δ′(λk),
this fact can be obtained from the equality

Δ′(λk) = −θ
[
‖y1‖2 p2(0) + 2 < y1, y2 > p(0)p′(0) + ‖y2‖2(p′(0))2

]
.

Indeed, since Δ′(λk)θ < 0 we have for θ < 0 that λk = λ2n−1 and for θ > 0 that λk = λ2n.

As an application of Theorem 6.2 we obtain the spectral information for the linear operator
Lmkdv in (40) with ϕc being the dnoidal profile determined by Theorem 5.1. Initially, we write

Lmkdv = − d2

dx2 + c − 3ϕ2
c = − d2

dx2 + Q(x, c), then for this kind of operators we already know
that the nonpositive spectrum is invariant with respect to parameter c (see Neves (2008)), so,
it is sufficient to establish the spectral condition contained in Theorem 4.1 for a fixed value of
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c ∈ I = (2π2/L2,+∞). Then, if one considers L = π and the unique value of c ∈ I such that
k(c) = 1

2 , the value of θ in Theorem 6.1 will be θ ≈ −0.5905625. Now, we known that ϕ′
c is an

eigenfunction of Lmkdv with eigenvalue λ = 0 and such that it has two zeros in the interval
[0, π). We conclude from Theorem 6.2 that Lmkdv possesses one negative eigenvalue which is
simple. Moreover, since θ �= 0 it follows that λ = 0 is a simple eigenvalue.

Remark 6.2. Theorem 6.1 and Theorem 6.2 can also be used to show that the operator Lmkdv with
periodic boundary conditions on [0, jL], j ≧ 2, has the zero eigenvalue as being simple and it is the
2j-nth eigenvalue. So, the number of negative eigenvalue of Lmkdv is Pj = 2j − 1.

7. Instability of periodic waves

This section is devoted to establish sufficient conditions for the linear instability of periodic
traveling wave solutions, u(x, t) = ϕc(x − ct), for the general class of dispersive equation in
(8). We shall extend the asymptotic perturbation theories in Vock&Hunziker (1982) and Lin
(2008) (see also Hislop&Sigal (1996)) to the periodic case.

We start by denoting f (u) = up+1/(p + 1), then the linearized equation associated to (8) in
the traveling frame (x + ct, t) is given by

(∂t − c∂x)u + ∂x( f ′(ϕc)u −Mu) = 0. (70)

As mentioned in Subsection 5.3, the central point in this type of problems is the existence of a
growing mode solution eλtu(x), with ℜ(λ) > 0, for (70). Hence, the function u must satisfy

(λ − c∂x)u + ∂x( f ′(ϕc)u −Mu) = 0. (71)

Equation (71) gives us the family of operators Aλ : Hm2
per([0, L]) → L2

per([0, L]) given by,

Aλu = cu +
c∂x

λ − c∂x
( f ′(ϕc)u −Mu). (72)

Hence the existence of a growing mode solution is reduced to find λ > 0 such that Aλ has a
nontrivial kernel. For A0 = M+ c − f ′(ϕc) (see (10)), we have the following results:

1) For λ > 0, Aλ → A0 strongly in L2
per([0, L]) when λ → 0+.

2) The compact embedding Hm2
per([0, L]) ↪→ L2

per([0, L]) give us σess(Aλ) = ∅ for all λ > 0.

3) There exists Λ > 0 such that for all λ > Λ, Aλ has no eigenvalues z ∈ C satisfying
ℜ(z) ≤ 0.

Definition 7.1. An eigenvalue μ0 ∈ σp(A0) is stable with respect to the family of perturbations Aλ

defined in (72) if the following two conditions hold:
(i) there is δ > 0 such that the annular region Qδ := {z ∈ C; 0 < |z − μ0| < δ} is contained in the
ρ(A0) and in the region of boundedness for the family {Aλ}, Δb, defined by

Δb := {z ∈ C; ||Rλ(z)||B(L2
per)

≤ M, ∀ 0 < λ � 1}.

Here M > 0 does not depend on λ and Rλ(z) = (Aλ − z)−1.
(ii) Let Γ be a simple closed curve about μ0 ∈ σp(Aλ) contained in the resolvent set of Aλ and define

the Riesz projector Pλ = 1
2πi

∫
Γ

Rλ(z)dz. Then

lim
λ→0+

||Pλ − Pμ0 ||B(L2
per)

= 0. (73)
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Remark 7.1. It follows from Definition 7.1 that for all 0 < λ � 1, Aλ has total algebraic multiplicity
equal to the μ0 inside Qδ.

The next lemma is the cornerstone of our analysis.

Lemma 7.1. The following three conditions are equivalent:

(i) the number z ∈ Δb;

(ii) for all u ∈ C∞
per([0, L]) we have ||(Aλ − z)u||L2

per
≥ ε||u||L2

per
> 0 for all 0 < λ � 1;

(iii) the number z ∈ ρ(A0).

Proof. See Angulo&Natali (2010).

Lemma 7.1 enable us to prove the following result.

Theorem 7.1. Let Aλ be the linear operator defined in (72). Suppose that μ0 is a discrete eigenvalue
of LM. Then μ0 is stable in the sense of the Definition 7.1.

Proof. See Angulo&Natali (2010).

Then, we can enunciate the following instability criteria (see Lin (2008) for the solitary wave
case).

Theorem 7.2. Let ϕc be a periodic traveling wave solution related to equation (11). We assume that
ker(A0) = [ϕ′

c]. Denote by n−(A0) the number (counting multiplicity) of negative eigenvalues of
the operator A0. Then there is a purely growing mode eλtu(x) with λ > 0, u ∈ Hm2

per([0, L]) to the
linearized equation (70), if one of the following two conditions is true:

(i) n−(A0) is even and d
dc

∫ L
0 ϕ2

c (x)dx > 0.

(ii) n−(A0) is odd and d
dc

∫ L
0 ϕ2

c (x)dx < 0.

Proof. See Angulo&Natali (2010).

7.1 Nonlinear instability of cnoidal waves for the mKdV equation.

The arguments presented in Subsection 5.3.2 and from Theorem 7.2 enable us to determine
that the cnoidal wave solutions ϕc,i defined by Theorem 5.9 are linearly unstable for the mKdV
equation. Now, we sketch the proof that linear instability implies nonlinear instability of
cnoidal waves for the mKdV equation. In fact, we have that the linearized equation (70) takes
the form ut = JL−

i u, i = 1, 2, where J = ∂x and L−
i are defined in (58). So, JL−

i has a positive

real eigenvalue. Next, we define S : H1
per([0, L]) → H1

per([0, L]) as S(u) = uφ(1) where uφ(t)
is the solution of the Cauchy problem,

{
ut + 3u2ux − cux + uxxx = 0,
u(x, 0) = φ(x).

(74)

Then, it follows that the cnoidal waves ϕc,i are stationary solutions for (74). Now, from
Colliander et al. (2003) follows that the mapping data-solution related to the mKdV equation
(74), Υc : H1

per([0, L]) → C([0, T]; H1
per([0, L])) is smooth. Furthermore S(ϕc,i) = ϕc,i for

i = 1, 2. Thus, since S is at least a C1,α map defined on a neighborhood of the fixed point
ϕc,i, we have from Henry et al. (1982) that there is an element μ ∈ σ(S′(ϕc,i)) with |μ| > 1

which implies the nonlinear instability in H1
per([0, L]) of the cnoidal wave solutions ϕc,i.
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8. Stability of periodic-peakon waves for the NLS-δ

Recently Angulo&Ponce (2010) have established a theory of existence and stability of
periodic-peakon solutions for the cubic NLS-δ equation in (17) (p = 2). More precisely, it was
shown the existence of a smooth branch of periodic solutions, (ω, Z) → ϕω,Z ∈ H1

per([0, 2L]),
for the semi-linear elliptic equation

− ϕ′′
ω,Z + ωϕω,Z − Zδ(x)ϕω,Z = ϕ3

ω,Z, (75)

such that
(1) − ϕ′′

ω,Z(x) + ωϕω,Z(x) = ϕ3
ω,Z(x) for x �= ±2nL, n ∈ N.

(2) ϕ′
ω,Z(0+)− ϕ′

ω,Z(0−) = −Zϕω,Z(0),

(3) limZ→0 ϕω,Z = ϕω ,

(76)

where ϕω is the dnoidal profile in (39). We note that if ϕω,Z is a solution of (75) then ϕω,Z(·+ y)
is not necessarily a solution of (75). Therefore the stability study for the “periodic-peakon” ϕω,Z

is for the orbit,
Ωϕω,Z = {eiθ ϕω,Z : θ ∈ [0, 2π]}. (77)

The profile of ϕω,Z is based in the Jacobi elliptic function dnoidal and determined for ω > Z2/4
by the patterns:

(1) for Z > 0, ϕω,Z(ξ) = η1,Zdn
(

η1,Z√
2
|ξ|+ a; k

)
,

(2) for Z < 0, ϕω,Z(ξ) = η1,Zdn
(

η1,Z√
2
|ξ| − a; k

)
,

(78)

where η1,Z and k depend of ω and Z. The shift-function a satisfies that limZ→0 a(ω, Z) = 0.
So, since the basic symmetry for the NLS-δ equation is the phase-invariance we have the
following stability definition for Ωϕω,Z .

Definition 8.1. For η > 0 we put Uη = {v ∈ H1
per([0, 2L]); inf

θ∈R

||v − eiθ ϕω,Z||H1
per

< η}. The

periodic standing wave eiωt ϕω,Z is stable if for ǫ > 0 there exists η > 0 such that for u0 ∈ Uη , the
solution u(t) of the NLS-δ equation with u(0) = u0 satisfies u(t) ∈ Uǫ for all t ∈ R. Otherwise,
eiωt ϕω,Z is said to be unstable in H1

per([0, 2L]).

The stability result established in Angulo&Ponce (2010) for the family of periodic-peakon in
(78) is the following;

Theorem 8.1. Let ω >
π2

2L2 , ω >
Z2

4 and ω large. Then we have:

1. For Z > 0 the dnoidal-peakon standing wave eiωt ϕω,Z is stable in H1
per([−L, L]).

2. For Z < 0 the dnoidal-peakon standing wave eiωt ϕω,Z is unstable in H1
per([−L, L]).

3. For Z < 0 the dnoidal-peakon standing wave eiωt ϕω,Z is stable in H1
per,even([−L, L]).
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México

1. Introduction

The Riemann integral was designed to solve different problems in different areas of
mathematics. Unfortunately, the Riemann integral has some shortcomings: the derivative of
a function is not necessarily Riemann integrable, it lacks of “good" convergence theorems,. . . .
To correct these defects, in the year 1902, H. Lebesgue designed an integral (Lebesgue integral)
which is more general than Riemann’s, it has better convergence theorems, and it allows
integration over other type of sets different from intervals. However, the derivative of a
function does not need to be Lebesgue-integrable. On the other hand, every function which is
Improper-Riemann-Integrable is not necessarily Lebesgue-integrable.
A. Denjoy (1912) and O. Perron (1914) developed more general integrals than Lebesgue’s.
In both integrals, any derivative of a differentiable function is integrable. Both integrals are
equivalent but they are difficult to construct. (Gordon, 1994)
Jaroslav Kurzweil (1957), a Czech mathematician, and Ralph Henstock built independently
equivalent integrals (Gordon, 1994) which generalize the Lebesgue integral, and it has as
“good" convergence theorems as Lebesgue and the derivative of a differentiable function
is Henstock-Kurzweil integrable, including the improper Riemann integral. In addition, the
construction follows the same pattern as the construction of the Riemann integral. This also
facilitates its teaching.
This new integral provided new research lines:

• Construction of new types of integrals by following the Riemann approach.

• Generalization of this concept for functions of several variables, and for functions with
values within a Banach space.

In addition, this integral (Henstock-Kurzweil) can be applied to the differential equations
theory, integral equations theory, Fourier analysis, probability, statistics, etc.
In the Lebesgue-integrable functions space, we can define a norm with which this space
becomes a Banach space with good properties.
Today, Lebesgue integral is the main integral used in various areas of mathematics, for
example Fourier analysis. However, many functions (e.g. functions that have a “bad"
oscillatory behavior) which are not Lebesgue-integrable are Henstock-Kurzweil-integrable.
Therefore, it seems a natural way to study Fourier analysis by using this integral.
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Recall that if f is integrable “in some sense", on R, its Fourier transform in s ∈ R, is defined
as

f̂ (s) =
∫ ∞

−∞
e−ixs f (x)dx. (1)

In the Lebesgue space on R, L(R), the Fourier transform is a bounded linear transformation,
whose codomain is the space of continuous functions on R which “vanish at infinity". It has
good algebraic and analytical properties, which have wide applications in mathematics and
other sciences.
Four important properties of the Fourier transform in space L(R) are:

i For all s ∈ R, the Fourier transform exists , because the function exp(−ixs) is a bounded
measurable function.

ii f̂ is continuous on R.

iii Riemann-Lebesgue Lemma: lims→±∞ f̂ (s) = 0.

iv The Dirichlet-Jordan theorem is valid. This theorem provides us the pointwise inversion
for functions of bounded variation on R.

The first study of the Fourier transform using the Henstock-Kurzweil integral was made by
E. Talvila in 2002, (Talvila, 2002). He shows important properties of the Fourier transform in
the space of Henstock-Kurzweil integrable functions on R, HK(R). However, this study is
incomplete, our purpose is to study other properties. We will call Henstock-Fourier transform
to the Fourier transform definite on HK(R).
Two important differences between the Henstock-Fourier transform and the Fourier transform
are:

• This transform does not always exist. For example, the function f : R → R defined as

f (x) =

⎧
⎨
⎩

sin x

x
, x �= 0,

1, x = 0

belongs to HK(R), but its Henstock-Fourier transform is not defined in s = 1.

• The Riemann-Lebesgue Lemma is not always valid. For example, the function
g(x) = exp(ix2) (Talvila, 2002) is such that ĝ(s) =

√
π exp(i(π − s2)/4), however, this

later function is not tend to zero when s tend to infinity.

We begin the chapter exposing some fundamental concepts concerning the
Henstock-Kurzweil integral, after we show that the intersection of HK(R) and the
space of bounded variation functions over R, HK(R) ∩ BV(R), does not have inclusion
relations with L(R), for this, we exhibit a wide family of functions in HK(R) ∩ BV(R),
which is not in L(R). This makes the study of the Henstock-Fourier transform in this space
interesting. Subsequently, in base of HK(R)∩ BV(R), we prove fundamental properties such
as continuity, the Riemann-Lebesgue Lemma, and the Dirichlet-Jordan Theorem.
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2. The Henstock-Kurzweil integral

For compact intervals in R, the Henstock-Kurzweil integral is defined in the following way:

Definition 2.1. Let f : [a, b] → R be a function, we will say that f is Henstock-Kurzweil
integrable if there exists A ∈ R, which satisfies the following:
for each ε > 0 exists a function γε : [a, b] → (0, ∞) such that for every partition labeled as P =
{( [xi−1, xi], ti)}n

i=1, where ti ∈ [xi−1, xi], if

[xi−1, xi] ⊂ [ti − γε(ti), ti + γε(ti) ] for i = 1, 2, ..., n, (2)

then
|Σn

i=1 f (ti)(xi − xi−1)− A| < ε.

The function γε is commonly called gauge, and if the partition P complies with the condition
(2), we will say that it is γε-fine. The number A is named as the integral of f over [a, b] and it
is denoted as

A =
∫ b

a
f =

∫ b

a
f (x) dx.

If f is defined over an interval of the way [a, ∞], we condition it to f (∞) = 0. In this case,
given a gauge function γε : [a, ∞] → (0, ∞), where γε(∞) ∈ R

+, we will say that the labeled

partition P = {( [xi−1, xi], ti)}n+1
i=1 is γε-fine if:

a) x0 = a, xn+1 = ∞.

b) [xi−1, xi] ⊂ [ti − γε(ti), ti + γε(ti) ], for i = 1, 2, ..., n

c) [xn, ∞] ⊂ [1/γε(∞), ∞].

Thus, the function will be integrable if it satisfies Definition 2.1, and also the condition of
that the partition P be γε-fine according to the previous incises. In addition, these conditions

cause that the last term of Σn+1
i=1 f (ti)(xi − xi−1) is zero and thus this sum is finite. For functions

defined over intervals [−∞, a] and [−∞,+∞] we do similar considerations.
Through the theory of this integral we have that f : [−∞, ∞] → R is an integrable function, if
and only if, f is an integrable function over the intervals [a, ∞] y [−∞, a]. In this case

∫ ∞

−∞
f =

∫ a

−∞
f +

∫ ∞

a
f . (3)

We denote as

HK(I) = { f : I → R | f is Henstock-Kurzweil integrable on I}.

Some features of HK(I) are the following:

1. It is a vector space, i.e.: the sum of functions and the product by scalars of
Henstock-Kurzweil integrable functions are integrable. The integral is a linear functional
over this space.

2. It contains the Riemann and Lebesgue integrable functions. Also, the functions whose
Riemann or Lebesgue improper integrals exist, and their values coincide.

3. It generalizes the Fundamental Theorem of Calculus, in the sense that every derivative
function is integrable. This does not happen with Riemann and Lebesgue integrals. In this
case we have: ∫ b

a
f ′ = f (b)− f (a).
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4. Since we know, in Riemann’s integral, if two functions are integrable, then their product is
also integrable. In the case of the integral of HK, this is not true. Nevertheless, the product
of a HK-integrable function by a bounded variation function, is in fact integrable.

5. The HK integral is not an absolute integral. This asseveration is in the sense that if f is
HK-integrable, it does not imply that | f | is so. When | f | and f are integrable, we say that
f is absolutely HK-integrable.

6. The space of the absolutely HK-integrable lebesgue is L(I), the space of the functions
integrable functions.

As we shall see, the properties (4) and (5) produce important differences in the behavior of the
Henstock-Fourier transform with respect to the Fourier transform.

2.1 Notation and important theorems for Henstock-Kurzweil integral

Let I be a finite or infinite close interval. We work on the following subspaces:

• HK(I) = { f | f is Henstock-Kurzweil integrable on I}.

• HKloc(R) = { f | f ∈ HK(I), for each finite close interval I}.

• BV(I) = { f | f is of bounded variation on I}.

• If f ∈ BV(I), VI f is the total variation of f on I.

• BV( [±∞] ) = { f | f ∈ BV( [a, ∞] ) ∩ BV( [−∞, b] ), for some a, b ∈ R}.

• BV0( [±∞] ) = { f ∈ BV( [±∞] ) | lim|x|→∞ f (x) = 0}.

• L(I) = { f | f is Lebesgue integrable on I}.

Some of the most important theorems of the Henstock-Kurzweil integral will be used in the
proof of our results are as follows.

Theorem 2.1 (Fundamental Theorem I.). (Bartle, 2001) If f : [a, b] → R has a primitive F on
[a, b], then f ∈ HK([a, b]) and ∫ b

a
f = F(b)− F(a).

This theorem guarantees that the derivative of any function on [a, b] is always
Henstock-Kurzweil integrable. This result is not valid for Lebesgue integral.

Theorem 2.2 (Fundamental Theorem II.). (Bartle, 2001) Let a I be a finite o infinite interval. If
f ∈ HK([a, b]) then any indefinite integral F is continuous on I and exists a null Z ⊂ [a, b] such that

F′(x) = f (x) for all x ∈ I − Z.

Theorem 2.3 (Multiplier Theorem.). (Bartle, 2001) Let [a, b] a finite interval, f ∈ HK([a, b]), ϕ ∈
BV([a, b]) and F(x) =

∫ x
a f (t), for x ∈ [a, b], then, the product f ϕ ∈ HK([a, b]) and

∫ b

a
f ϕ =

∫ b

a
ϕ dF = F(b)ϕ(b)−

∫ b

a
F dϕ, (4)

where the second and third integrals are Riemann-Stieltjes integrals.
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If a ∈ R and b = ∞, (4) has the following form

∫ ∞

a
f ϕ = lim

b→∞

[
F(b)ϕ(b)−

∫ b

a
Fdϕ

]
. (5)

Similary, if the integration is over the intervals [−∞, a] or [−∞, ∞], we have the respective limits in
(4).

Theorem 2.4 (Dominated Convergence Theorem.). (Bartle, 2001) Let [a, b] a interval (finite or
infinite), let { fn} be sequence in HK([a, b]) such that f (x) = limn→∞ fn(x) a.e. on [a, b]. Suppose
that there exist functions α, ω ∈ HK([a, b]) such that

α(x) ≤ fn(x) ≤ ω(x) a.e. on [a, b], and for all n ∈ N.

Then f ∈ HK([a, b]) and ∫ b

a
f (x) dx = lim

n→∞

∫ b

a
fn(x) dx.

This theorem is an extension to the Henstock Kurzweil integral of a Dominated Convergence
Theorem (DCT) for the Lebesgue integral.

Theorem 2.5 (Hake Theorem.). (Bartle, 2001) f ∈ HK([a, ∞]), if and only if, f ∈ HK([a, c]) for
every compac interval [a, c] with c ∈ [a, ∞), and there exist A ∈ R such that lim

c→∞

∫ c
a f (t)dt = A. In

this case,
∫ ∞

a f (t)dt = A.

There are versions of the Hake’s Theorem for functions on [−∞, ∞] and [−∞, a].

Theorem 2.6 (Chartier-Dirichlet’s Test.). (Bartle, 2001) Let f , ϕ : [a, ∞] → R and suppose that:

• f ∈ HK([a, c]) for all c ≥ a and F(x) :=
∫ x

a f is bounded on [a, ∞).

• ϕ is monotone on [a, ∞] and limx→∞ ϕ(x) = 0.

Then f ϕ ∈ HK([a, ∞]).

Theorem 2.7 (Characterization of Absolute Integrability.). (Bartle, 2001) Let f ∈ HK([a, b]).
Then | f | is Henstock-Kurzweil integrable, if and only if, the indefinite integral F(x) =

∫ x
a f has

bounded variation on [a, b], in this case,

∫ b

a
| f | = V[a,b]F.

Theorem 2.8 (Comparison Test for Absolute Integrability.). (Bartle, 2001) If f , g ∈ HK([a, b])
and | f (x)| ≤ g(x) for x ∈ [a, b], then f ∈ L([a, b]). More over, we have

∣∣∣∣
∫ b

a
f

∣∣∣∣ ≤
∫ b

a
| f | ≤

∫ b

a
g.
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3. The HK(I) ∩ BV(I) subspace

If I is a finite interval, we know that:

BV(I) ⊂ L(I) ⊂ HK(I),

and consequently HK(I)∩ BV(I) ⊂ L(I).
Now, if I is unbounded, the first two observations which we have are

BV(I) � L(I), (6)

and
L(I) � HK(I)∩ BV(I). (7)

Really it is easy to demonstrate that the function f (x) = 1/x defined in [1, ∞], is of bounded
variation, with

V[1,∞] f = 1,

and ∫ ∞

1

1

x
dx = ∞.

This implies that (6) is true.
To verify (7), we consider the function f : [0, ∞] → R defined like

f (x) =

{ √
x sin(1/x), si x ∈ (0, 1],

0, si x = 0, x ∈ (1, ∞]

which is in L( [0, ∞] ) \ BV( [0, ∞] ).

Next, we will prove that: HK(I)∩ BV(I) � L(I).

Proposition 3.1. (Mendoza et al., 2008) [Theorem 2.1] Let ϕ : [a, ∞] → R be a non-negative
function, which is decreasing to zero when x → ∞. If ϕ /∈ HK([a, ∞] ), then the functions: ϕ(t) sin(t)
and ϕ(t) cos(t) are in HK( [a, ∞] ) \ L( [a, ∞] ).

Proof: We will demonstrate that ϕ(t) sin(t) /∈ L( [a, ∞] ). The proof that ϕ(t) cos(t) �∈
L( [a, ∞] ) can be done in a similar way.
Suppose that n0 is the first natural number for which a < (1 + 4n0)π/4. For t ∈ [a, ∞] we
have

| sin t| ≥ 1√
2

if and only if t ∈ ∪∞
k=n0

[ (1 + 4k)π/4, (3 + 4k)π/4].

Let n ∈ N with n ≥ n0, since (3 + 4n)π/4 < (1 + n)π, we have that:

∫ (1+n)π

a
ϕ(t)| sin t|dt ≥ 1√

2

n

∑
k=n0

∫ (3+4k)π/4

(1+4k)π/4
ϕ(t) dt

≥ 1√
2

n

∑
k=n0

∫ (3+4k)π/4

(1+4k)π/4
ϕ((3 + 4k)π/4) dt

=
π

2
√

2

n

∑
k=n0

ϕ((3 + 4k)π/4)

≥ π

2
√

2

n

∑
k=n0

ϕ((1 + k)π). (8)
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On the other hand,

∫ (1+n)π

a
ϕ(t) dt =

∫ n0π

a
ϕ(t) dt +

∫ (1+n)π

n0π
ϕ(t) dt

=
∫ n0π

a
ϕ(t) dt +

n

∑
k=n0

∫ (1+k)π

kπ
ϕ(t) dt

≤
∫ n0π

a
ϕ(t) dt + π

n

∑
k=n0

ϕ(kπ). (9)

Since ϕ /∈ HK( [a, ∞] ), then
∫ ∞

a ϕ(t) dt = ∞ and from (9) it follows

∞

∑
k=n0

ϕ(kπ) = ∞. (10)

Using (10) and approaching n → ∞ in (8), we conclude that ϕ(t) sin(t) /∈ L( [a, ∞] ).
For any x ∈ [a, ∞), ∣∣∣∣

∫ x

a
sin(t) dt

∣∣∣∣ ≤ 2 and

∣∣∣∣
∫ x

a
cos(t) dt

∣∣∣∣ ≤ 2.

Then according to Chartier-Dirichlet Test (2.6), we have that: ϕ(t) sin(t) and ϕ(t) cos(t) are in
HK[a, ∞]. �

Example 3.1. For any a > 0,

sin(t)

t
∈ HK( [a, ∞] ) \ L( [a, ∞] ).

Proposition 3.2. (Mendoza et al., 2008) [Corollary 2.2,Theorem 2.2] Let 1 > α > 0. The function
fα : [π1/α, ∞] → R defined as

fα(t) =
sin(tα)

t

satisfies:

(a) fα ∈ HK[π1/α, ∞] \ L( [π1/α, ∞] ).

(b) fα ∈ BV( [π1/α, ∞] ).

Proof: (a) Let c > π1/α. Doing a change of variable u = tα we have that

∫ c

π1/α

sin(tα)

t
dt =

1

α

∫ cα

π

sin(u)

u
du.

Since sin(u)/u ∈ HK[π, ∞], we have that:

lim
c→∞

∫ c

π1/α

sin(tα)

t
dt exists,

thus fα ∈ HK[π1/α, ∞]. Moreover since

∫ c

π1/α

∣∣∣∣
sin(tα)

t

∣∣∣∣ dt =
1

α

∫ cα

π

∣∣∣∣
sin(u)

u

∣∣∣∣ du.

77Approach to Fundamental Properties of the Henstock-Fourier Transform

www.intechopen.com



and sin(u)/u �∈ L( [π, ∞] ), then fα �∈ L[π1/α, ∞].
(b) Let x ∈ (π1/α, ∞). We know that f ′α ∈ HK( [π1/α, x] ). Now since

f ′α(t) =
α cos(tα)

t2−α
− sin(tα)

t2
,

we have that

| f ′α(t)| ≤
α

t2−α
+

1

t2
. (11)

The function g(t) =
α

t2−α
+

1

t2
∈ HK( [π1/α, x] ), then by (11) and Theorem 2.8, we conclude

that: f ′α ∈ L( [π1/α, x] ) and

∫ x

π1/α
| f ′α| ≤

∫ x

π1/α

(
α

t2−α
+

1

t2

)
dt

=

(
1

α − 1

) [
xα−1 − π

α−1
α

]
− 1

x
+

1

π1/α
.

Consequently by Theorem 2.7,

V[π1/α, x] fα ≤
(

1

α − 1

) [
xα−1 − π

α−1
α

]
− 1

x
+

1

π1/α
.

Therefore, as 1 − α > 0 we have that

V[π1/α, ∞] f ≤ 1

(1 − α)π(1−α)/α
+

1

π1/α
.

Thus, fα ∈ BV( [π1/α, ∞] ). �

Analogy, we can to prove that for 1 > α > 0, the function gα : [−∞,−π1/α] → R defined as

gα(t) =
sin(−t)α

−t

belongs to HK([−∞,−π1/α]) ∩ BV([−∞,−π1/α]) \ L([−∞,−π1/α]).
Let h ∈ BV([−π1/α, π1/α]). For 1 > α > 0, the function f : R → R defined by

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

h(x), if x ∈ (−π1/α, π1/α),

sin |t|α
|t| , if x ∈ (−∞, −π1/α] ∪ [π1/α, ∞)

is in HK(R) ∩ BV(R) \ L(R). With this example and Proposition 3.1, we have the following
theorem.

Theorem 3.1. (Mendoza et al., 2009) [Theorem 2.4] There exists a function f in HK(R)∩ BV(R) \
L(R).

Now, since BV(R) ⊂ BV( [±∞] ), we have immediately the next corollary.

Corollary 3.1. (Mendoza et al., 2009) [Corollary 2.5] HK(R)∩ BV( [±∞] ) �⊆ L(R).
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We observe that BV(R) ⊂ BV( [±∞] ) properly, because instead of the function h in
BV([−π1/α, π1/α]) we can to take a function in HK([−π1/α, π1/α]) \ BV([−π1/α, π1/α]).
Also we observe that if f ∈ BV(R) then, by Multiplier Theorem (2.3), f (t) sin t/t ∈
HK([0, ∞]).
To conclude this section, we know that f ∈ HK(R) implies that f (±∞) = 0, If in addition
f ∈ BV(R) then lim|x|→∞ f (x) exists. Therefore, we have the following lemma.

Lemma 3.1. If f ∈ HK(R)∩ BV(R), then lim|x|→∞ f (x) = 0 and f is bounded.

4. Existence and continuity of f̂ (s)

4.1 Existence

A part from the Proposition 2.1 b) in (Talvila, 2002), say us that: If f ∈ HKloc(R)∩ BV0( [±∞] ),

then f̂ (s) exists for all s ∈ R. If s �= 0, then the result is true. However with these conditions,

it is not necessarily true the existence of f̂ (0). For example, the function f : R → R defined
by

f (x) =

{
1, if x ∈ (−1, 1),
1
x , if x ∈ (−∞, −1]∪ [1, ∞)

is in HKloc(R) ∩ BV0( [±∞] ) but f̂ (0) does not exist.

In order to have the existence of f̂ (0), we need that f ∈ HK(R).
We will demonstrate that the Henstock-Fourier transform exist in HK(R) ∩ BV( [±∞] ), for
every s ∈ R.

Theorem 4.1. (Mendoza et al., 2009) [Theorem 3.1] If f ∈ HK(R) ∩ BV( [±∞] ), then f̂ (s) exists
for all s ∈ R.

Proof: The result is true for s = 0 because f ∈ HK(R). Now let s �= 0, since HK(R) ∩
BV( [±∞] ) ⊂ HKloc(R) ∩ BV0( [±∞] ) then by (Talvila, 2002) [Proposition 2.1 (b)] it follows

that f̂ (s) exists. However for the sake of completes, here we will give proof of it:
The condition f ∈ BV0( [±∞] ) implies that lim|x|→∞ f (x) = 0 and there exists a < 0, b > 0

such that f is of bounded variation on (−∞, a] ∪ [b, ∞).
Let us prove that f (x)e−ixs ∈ HK([b, ∞)). The functions ϕ1, ϕ2 defined as

ϕ1(x) = V[b, x] f − V[b, ∞) f , ϕ2(x) = [V[b, x] f − f (x)]− V[b, ∞) f

are increasing on [b, ∞) and satisfies that limx→∞ ϕ1(x) = limx→∞ ϕ2(x) = 0 and f = ϕ1 −
ϕ2. Therefore, since

∣∣∣∣
∫ x

b
e−iusdu

∣∣∣∣ =

∣∣∣∣
1

is
(e−ibs − e−ixs)

∣∣∣∣ ≤ 2

s
for all x ∈ [b, ∞),

we have by the Chartier-Dirichlet Test (2.6), that ϕ1(x)e
−ixs, ϕ2(x)e

−ixs ∈ HK([b, ∞)). Thus
f (x)e−ixs ∈ HK([b, ∞)).
In the same way we can to prove that f (x)e−ixs ∈ HK((−∞, a]). �
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4.2 Continuity

We know that the continuity of the Lebesgue-Fourier transform, on R, is consequence of the
dominated convergence Theorem and that the Lebesgue integral is absolute. Now for to
prove the continuity of the Henstock-Fourier transform we don’t can use the same arguments,
because the Henstock - Kurzweil integral is not absolute.

Theorem 4.2. (Mendoza et al., 2009) [Theorem 4.1] Let f be a function with support in a compact

interval such that f ∈ HK(R). Then f̂ is continuous on R.

Proof: We consider [a, b] ⊆ R such that f (x) = 0 for all x ∈ R \ [a, b]. Take t ∈ R and let
{tn}n∈N ⊆ (t − 1, t + 1) such that tn → t. For every n ∈ N, define αn(x) = e−ixtn . Then

lim
n→∞

αn(x) = lim
n→∞

e−ixtn = e−ixt for all x ∈ [a, b].

On the other hand, for every n ∈ N, αn is of bounded variation on [a, b] and V[a, b]αn ≤
2max {|t − 1|, |t + 1|}(b − a).
Thus according to (Talvila, 1999) [Corollary 3.2],

lim
n→∞

∫ b

a
f (x)e−ixtndx = lim

n→∞

∫ b

a
f (x)αn(x)dx =

∫ b

a
f (x)e−ixtdx.

Hence limn→∞ f̂ (tn) = f̂ (t). �

Theorem 4.3. (Mendoza et al., 2009) [Theorem 4.2] If f ∈ HK(R) ∩ BV( [±∞] ), then f̂ is
continuous on R \ {0}.

Proof: Let t0 ∈ R \ {0} and consider a < 0 and b > 0 such that f ∈ BV(−∞, a] ∩ BV[b, ∞).

If we show that f̂ χ(−∞,a], f̂ χ[a,b] and f̂ χ[b,∞) are continuous in t0, then f̂ is continuous in t0,

because
f̂ (t) = f̂ χ(−∞,a](t) + f̂ χ[a,b](t) + f̂ χ[b,∞)(t) for all t ∈ R.

By the Theorem 4.2, f̂ χ[a,b] is continuous in t0. To prove that f̂ χ(−∞,a] and f̂ χ[b,∞) are

continuous in t0 we will use (Talvila, 2002) [Proposition 6(a)]. The conditions f is Henstock
- Kurzweil integrable on R and f is of bounded variation on (−∞, a] ∪ [b, ∞) implies that
lim|x|→∞ f (x) = 0. Now since t0 �= 0, there exists K > 0 and δ > 0 such that if |t − t0| < δ,

then 1
|t| < K. Thus for all |t − t0| < δ,

∣∣∣∣
∫ v

u
e−ixtdx

∣∣∣∣ ≤
2

|t| < 2K for all [u, v] ⊆ R.

Therefore, by (Talvila, 2002) [Proposition 6(a)], f̂ χ(−∞,a] and f̂ χ[b,∞) are continuous in t0. �

5. The Riemann-Lebesgue lemma

A generalization of the Riemann-Lebesgue Lemma was given, still in the context of the
Lebesgue integral, by Bachman (Bachman et al., 1991) [Theorem 4.4.1], assuring that for any
−∞ ≤ a < b ≤ ∞,

lim
|s|→∞

∫ b

a
h(xs) f (x)dx = 0, for each f ∈ L1(R), (12)
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provided h : R → R is a bounded measurable function satisfying

lim
|r|→∞

1

r

∫ r

0
h(s)ds = 0.

In this section, we show a similar generalization for the Henstock-Fourier transform. In the
case of a compact interval, Talvila (Talvila, 2001) showed that the Fourier transform f̂ of a
function f ∈ HK(I) \ L1(I) has the asymptotic behavior:

f̂ (s) = o(s), as |s| → ∞.

Titchmarsh (Titchmarsh, 1999) proved it is the best possible approximation for improper
Riemann integrable functions. Next, we show too a generalization from this result for the
Henstock-Fourier transform.

5.1 The case of a compact interval

The following theorem implies as a corollary the result in (Talvila, 2001).

Theorem 5.1. (Mendoza et al., 2010) Let [a, b] be a compact interval. Suppose ϕ : R → R is
everywhere differentiable with bounded derivative, and such that ϕ(w)− ϕ(0) = o(w), as |w| → ∞.
Then, ∫ b

a
ϕ(wt) f (t)dt = o(w) as |w| → ∞,

for each f ∈ HK([a, b]).

Proof: For w ∈ R, we define ϕw : R → R with ϕw(t) = ϕ(wt). Moreover, F(x) :=
∫ x

a f (t)dt.

Being F continuous and ϕ′ a bounded measurable function, then Fϕ′1([a, b]) ⊂ HK([a, b]).
Also, f ∈ HK([a, b]) and ϕw ∈ BV([a, b]), implying f ϕw ∈ HK([a, b]). Furthermore, from the
Multiplier Theorem (2.3),

∫ b

a
f (t)ϕw(t)dt = F(b)ϕw(b)−

∫ b

a
F(t)

dϕw(t)

dt
dt.

Therefore, for w �= 0,
∣∣∣∣

1

w

∫ b

a
f (t)ϕ(wt)dt

∣∣∣∣≤
∣∣∣∣

F(b)ϕ(wb)

w

∣∣∣∣ +
∣∣∣∣
∫ b

a
F(t)ϕ′(wt)dt

∣∣∣∣ . (13)

The Fundamental Theorem I (2.1), and the hypotheses for ϕ imply

lim
|w|→∞

1

w

∫ w

0
ϕ′(t)dt = lim

|w|→∞

ϕ(w)− ϕ(0)

w
= 0.

In consequence,

lim
|w|→∞

F(b)ϕ(wb)

w
= 0. (14)

Seeing also that F ∈ L1([a, b]), it follows that equation (12) is valid with f and h substituted
for F and ϕ′, respectively. This together with equations (13) and (14) give the result. �

A direct consequence of the previous theorem is the result of Talvila (Talvila, 2001).

Corollary 5.1. Let [a, b] be a compact interval. For each f ∈ HK([a, b]) \ L1([a, b]) the Fourier
transform has the asymptotic behavior f̂ (s) = o(s), as |s| → ∞.
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5.2 The unbounded interval case

Theorem 5.2. (Mendoza et al., 2010) Let ϕ ∈ HKloc(R) be fixed. Suppose in addition that Φ(x) =∫ x
0 ϕ(t)dt is bounded on R. Then, for each f ∈ HK(R)∩ BV(R),

lim
|w|→∞

∫ ∞

−∞
f (t)ϕ(wt)dt = 0.

Proof: For ω ∈ R, we define ϕw(t) = ϕ(wt). Since ϕ ∈ HKloc(R) then ϕ and ϕw are in
HK([0, b], for b > 0. Because f ∈ HK(R) ∩ BV(R), f is the sum of two monotone functions
with limit 0 in infinity. As Φ is bounded in [0, ∞), by the above and from the Chartier-Dirichlet
Test (2.6), we have that f ϕw ∈ HK([0, ∞]).
For w �= 0, Φw(t) = (1/w)Φ(wt) is a primitive of ϕw, bounded and continuous on [0, ∞).
Because f ∈ BV([0, b]), for b > 0, it follows from the Multiplier Theorem (2.3) that

∫ b

0
f (t)ϕ(wt)dt =

f (b)

w
Φ(wb)− 1

w

∫ b

0
Φ(wt)d f (t) (15)

The hypotheses for ϕ imply that |Φ(x)| ≤ M, for each x > 0, for some constant M.
Now we use theorems (Rudin, 1987) [Theorem 3.8] and Theorem 2.7 to obtain,

∣∣∣∣
∫ b

0
Φ(wt)d f (t)

∣∣∣∣ ≤ MV( f ; [0, b]),

implying, from (15), that

∣∣∣∣
∫ b

0
f (t) ϕ (ωt) dt

∣∣∣∣ ≤
M

|ω| (| f (b)|+ V ( f ; [0, b])) . (16)

Since f ∈ HK([0, ∞)) ∩ BV([0, ∞)), limb→∞ V( f ; [0, b])) = V( f ; [0, ∞]) and limb→∞ f (b) = 0.
From (16) and Hake’s Theorem (2.5) it follows that

∣∣∣∣
∫ ∞

0
f (t)ϕ(wt)dt

∣∣∣∣ ≤
M

|w|V( f ; [a, ∞].

Taking |w| → ∞, we get

lim
|w|→∞

∫ ∞

0
f (t)ϕ(wt)dt = 0.

A similar argument is valid for the interval [−∞, 0], which yield the result. �

The trigonometric functions sin(t) and cos(t) obeys the hypotheses the Theorem 5.2. Thus,
the result of Mendoza-Escamilla-Sánchez (Mendoza et al., 2009) is a particular case of this
theorem.

Corollary 5.2. For each f ∈ HK(R)∩ BV(R), lim|s|→∞ f̂ (s) = 0.

6. The Dirichlet-Jordan theorem

A fundamental problem for the Fourier Transform is its pointwise inversion, which means
to recover the function at given points from its Fourier transform. As is known, the
Dirichlet-Jordan Theorem in L(R) solves the pointwise inversion for functions of bounded
variation. This theorem tells us that if f ∈ L(R) ∩ BV(R) then, for each x ∈ R,
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lim
M→∞

1

2π

∫ M

−M
eixs f̂ (s)ds =

1

2
{ f (x + 0) + f (x − 0)}. (17)

We demonstrate a similar result to (17) for the Henstock-Fourier transform at HK(R)∩BV(R).
We will use the Sine Integral function, wich is defined as Si(x) = 2

π

∫ x
0

sin t
t dt, and has the

properties:

1. Si(0) = 0, limx→∞ Si(x) = 1 and

2. Si(x) ≤ Si(π) for all x ∈ [0, ∞].

3. If b > a > 0 and M > 0, then
∣∣∣
∫ b

a
sin Mt

t dt
∣∣∣ ≤ 2

M ( 1
a +

1
b ).

Lemma 6.1. (Mendoza, 2011) Let δ > 0. If f ∈ HK([δ, ∞]) ∩ BV([δ, ∞]) then

lim
M→∞

∞∫

δ

f (t)

t
sinMtdt = 0

Proof: By the Multiplier Theorem (2.3) and the property 3 of the Sine Integral function, it is
easy to see that ∣∣∣∣

∫ ∞

δ

sin Mt

t
f (t)dt

∣∣∣∣ ≤
2

Mδ
+

4

Mδ
Vf ([δ, ∞]).

Therefore, making tend M to infinity, we have the result. �

Lemma 6.2. (Mendoza, 2011) Let δ > 0. If f ∈ HK(R)∩ BV(R), then

lim
ε→0

∫ ∞

δ
f (t)

sin εt

t
dt = 0.

Proof: By the Multiplier Theorem 2.3 and by Lemma 3.1, we have

∣∣∣∣
∫ ∞

δ

sin εt

t
f

∣∣∣∣ ≤ lim
b→∞

{∣∣∣∣ f (b)
∫ b

δ

sin εt

t
dt

∣∣∣∣+
∣∣∣∣
∫ b

δ

(∫ u

δ

sin εt

t

)
d f

∣∣∣∣
}

≤
∣∣∣∣
∫ ∞

δ

(∫ uε

δε

sin t

t

)
d f

∣∣∣∣ .

How for each u ∈ [a, ∞) : limε→∞

∫ uε
δε

sin t
t dt = 0 ;

∣∣∣
∫ uε

δε
sin t

t dt
∣∣∣ ≤ πSi(π) for all ε > 0; and

π(Si)(π) ∈ L(d f ), then, by the Lebesgue Dominated Convergence Theorem 2.4, we obtain
the result. �

Lemma 6.3. (Mendoza, 2011) Suppose that f ∈ HK(R) ∩ BV(R) and β, γ ∈ R are such that
[β, γ] ∩ (R \ {0} = [β, γ]. For all s ∈ [β, γ] we have

lim
a→−∞
b→∞

∫ γ

β
eixs

∫ b

a
f (t)e−istdtds =

∫ γ

β
eixs

∫ ∞

−∞
f (t)e−istdt ds. (18)
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Proof: For c fixed, let f̂cb(s) =
∫ b

c f (t)e−istdt, f̂c(s) =
∫ ∞

c f (t)e−istdt, wich are continuous
at R \ {0}. We know that there exists S > 0 such that | f (t)| ≤ S for all t ∈ R and that for any
b > c : (Vf ([c, b]) ≤ (Vf ([c, ∞]) and f ∈ L([c, b]). By the Multiplier Theorem (2.3), for each
s ∈ [β, γ], we have

∣∣∣∣
∫ b

c
f (t)e−istdt

∣∣∣∣ ≤
∣∣∣∣∣ f (b)

{
e−isb − e−isc

−is

}∣∣∣∣∣+
∣∣∣∣∣
∫ b

c

{
e−ist − e−isc

−is

}
d f (t)

∣∣∣∣∣

≤ 2

|β|

{
S +

∣∣∣∣
∫ b

c
d f (t)

∣∣∣∣
}

≤ 2

|β|
{

S + Vf ([c, ∞])
}
= Nc.

The previous inequality tells us that for any b > c and all s ∈ [β, γ] :
∣∣∣eixs f̂cb(s)

∣∣∣ ≤ Nc.

Applying the Theorem of Hake (2.5): limb→∞ f̂cb(s) = f̂c(s). Then, by the Dominated
Convergence Theorem 2.4

lim
b→∞

∫ γ

β
eixs

∫ b

c
f (t)e−istdt ds =

∫ γ

β
eixs

∫ ∞

c
f (t)e−istdt ds.

To get the result, we conducted a similar process, now taking the interval [a, c] and making
tend a to minus infinity. �

Because we do not know if eixs f̂ is integrable around 0, our theorem is as follows:

Theorem 6.1 (Dirichlet-Jordan Theorem for HK(R).). (Mendoza, 2011) If f ∈ HK(R)∩ BV(R)
then, for each x ∈ R

lim
M→∞
ε→0

1

2π

∫

ε<|s|<M

eixs f̂ (s)ds =
1

2
{ f (x + 0) + f (x − 0)}. (19)

In terms of the Henstock-Kurzweil integral, by the Hake’s Theorem (2.5), the above expression
(19), shall be equal to

1

2π

∫ ∞

−∞
eixs f̂ (s)ds =

1

2
{ f (x + 0) + f (x − 0)}.

Proof: Suppose that δ > 0 and let F(x, t) = f (x − t) + f (x + t). By the Fubini Theorem
for the Lebesgue integral (Apostol, 1974) [Theorem 15.7] at [−M,−ε]× [a, b] and [ε, M]× [a, b]
and by Lemma 6.3

∫

ε<|s|<M

eixs
∫ ∞

−∞
f (t)e−istdt ds =

∫ ∞

−∞
f (t)

(∫ −ε

−M
+

∫ M

ε

)
eis(x−t)ds dt

= 2
∫ ∞

0

F(x, t)

t
(sin Mt − sin εt)dt

= 2
∫ ∞

δ

F(x, t)

t
(sin Mt − sin εt)dt

+ 2
∫ δ

0

F(x, t)

t
(sin Mt − sin εt)dt
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In [δ, ∞] by Lemma 6.1 and Lemma 6.2, we obtain

lim
M→∞,

ε→0

∫ ∞

δ

F(x, t)

t
(sin Mt − sin εt)dt = 0. (20)

In [0, δ], the DCT (2.4) implies that

lim
ε→0

∫ δ

0

F(x, t)

t
sin εt dt = 0. (21)

Integrating by parts

∫ δ

0
[F(x, t)]

sin Mt

t
dt = [F(x, δ)]

(∫ δM

0

sin t

t
dt

)

−
∫ δ

0

(∫ tM

0

sin u

u
du

)
d [F(x, t)] .

Since limM→∞

(∫ Mt
0

sin u
u du

)
= π

2 and applying the CDT (2.4) to the last integral, we infer

that

lim
M→∞

∫ δ

0
[F(x, t)]

sin Mt

t
dt =

π

2
F(x, δ)

− π

2
{(F(x, δ))− (F(x, 0))}

= π
[ f (x − 0) + f (x + 0)]

2
.

Combining (20), (21) and the above expression, we obtain the result. �
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Three Dimensional Reconstruction Strategies 
Using a Profilometrical Approach based on 

Fourier Transform 

Pedraza-Ortega Jesus Carlos, Gorrostieta-Hurtado Efren,  
Aceves-Fernandez Marco Antonio, Sotomayor-Olmedo Artemio,  

Ramos-Arreguin Juan Manuel, Tovar-Arriaga Saul  
and Vargas-Soto Jose Emilio  

Facultad de Informatica – Universidad Autonoma de Queretaro 
Mexico 

1. Introduction 

In the past 3 decades, there is an idea to extract the 3D information of a scene from its 2D 

images ant it has been a research interest in many fields. The main idea is to extract the 

useful depth information from an image or set of images in an efficient and automatic way. 

The result of the process (depth information) can be used to guide various tasks such as 

synthetic aperture radar (SAR), magnetic resonance imaging (MRI), automatic inspection, 

reverse engineering, 3D robot navigation, interferometry and so on. The obtained 

information can be used to guide various processes such as robotic manipulation, automatic 

inspection, inverse engineering, 3D depth map for navigation and virtual reality 

applications (Gokstorp, 1995). Depending on the application, a simple 3D description is 

necessary to understand the scene and perform the desired task, while in other cases a dense 

map or detailed information of the object’s shape is necessary. Furthermore, in some cases a 

complete 3D description of the object may be required.   

In 3D machine vision, the three-dimensional shape can be obtained by using two different 

methodologies; Active and Passive Methods, which are also classified as contact and non 

contact methods. The active methods project energy in the scene and detect the reflected 

energy; some examples of these methods are sonar, laser ranging, fringe projection and 

structured method. 

The fringe processing methods are widely used in non-destructive testing, optical metrology 

and 3D reconstruction systems. Some of the desired characteristics in these methods are 

high accuracy, noise-immunity and processing speed. 

In the spatial and temporal fringe pattern analysis, the main characteristics are the number 

of fringes, and the intensity variation due temporal and spatial measurements. 

A few commonly used fringe processing methods are well-known like Fourier Transform 

Profilometry (FTP) method (Malacara, 2006) and phase-shifting interferometry (Takeda et 

al., 1992). The main problem to overcome in these methods is the wrapped phase, where the 

depth information is included.   
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Despite the fact that most of the previous cited works are proved and tested in previous 
research, the present work present two strategies as an overview to the Fourier Transform 
Profilometry. The first one is a modified algorithm to the Fourier Transform Profilometry 
Method, where an additional pre-processing filter plus a data analysis in the unwrapping 
step is presented. The second strategy presented here is the use of the local and global phase 
unwrapping in the Modified Fourier Transform Profilometry. Both proposed methods 
present some advantages and the simplicity of the algorithm could be considered for 
implementation in real time 3D reconstruction.   

2. Fourier transform profilometry 

The image of a projected fringe pattern and an object with projected fringes can be 
represented by the following equations: 

 0( , ) ( , ) ( , ) * cos[2 * ( , )]g x y a x y b x y f x x y= + +π ϕ  (1) 

 0 0 0( , ) ( , ) ( , ) * cos[2 * ( , )]g x y a x y b x y f x x y= + +π ϕ  (2) 

where g(x,y) g0(x,y) are the intensity of the images at (x,y) point, a(x,y) represents the 
background illumination, b(x,y) is the contrast between the light and dark fringes, f0 is the 
spatial-carrier frequency and φ(x,y) and φ0(x,y) are the corresponding phase to the fringe 
and distorted fringe pattern, observed from the camera.  
The phase φ(x,y) contains the desired information, and a(x,y) and b(x,y) are unwanted 
irradiance variations. In most cases φ(x,y), a(x,y) and b(x,y) vary slowly compared with the 
spatial-carrier frequency f0. Then, the angle φ(x,y) is the phase shift caused by the object 
surface end the angle of projection, and its expressed as: 

 0( , ) ( , ) ( , )zx y x y x y= +ϕ ϕ ϕ  (3) 

Where φ0 (x,y) is the phase caused by the angle of projection corresponding to the reference 
plane, and φz(x,y) is the phase caused by the object’s height distribution. 
Considering the figure 1, we have a fringe which is projected from the projector, the fringe 
reaches the object at point H and will cross the reference plane at the point C. By 
observation, the triangles DpHDc and CHF are similar and 

 0

0

CD d

h l
=−  (4) 

Leading us to the next equation: 

 0 0

0

( , )2
( , )

( , )
z

h x y f d
x y

h x y l
= −

πϕ  (5) 

Where the value of h(x,y) is measured and considered as positive to the left side of the 
reference plane. The previous equation can be rearranged to express the height distribution 
as a function of the phase distribution: 

 0

0 0

( , )
( , )

( , ) 2
z

z

l x y
h x y

x y f d
= −

φ
φ π  (6) 
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Fig. 1. Experimental setup 

2.1 Fringe analysis 
The fringe projection equation 1 can be rewritten as: 

 0( , ) ( , )exp( ( , )) * exp( 2 )n
n

g x y A r x y in x y i nf x
∞
=−∞

= ∑ ϕ π  (7) 

Where r(x,y) is the reflectivity distribution on the diffuse object (Taketa et al., 1992) 
(Berryman et al., 2003). Then, a FFT (Fast Fourier Transform) is applied to the signal for in 
the x direction only. Notice that even y is considered as fix, the same procedure will be 
applied for the number of y lines in both images. Therefore, we obtain the next equation: 

 0( , ) ( , )nG f y Q f nf y
∞
−∞

= −∑  (8) 

Now, we can observe that φ(x,y) and r(x,y) vary very slowly in comparison with the fringe 
spacing, then the Q peaks in the spectrum are separated each other. Also it is necessary to 
consider that if we choose a high spatial fringe pattern, the FFT will have a wider spacing 
among the frequencies. The next step is to remove all the signals with exception of the 
positive fundamental peak f0. The obtained filtered image is then shifted by f0 and centered. 
Later, the IFFT (Inverse Fast Fourier Transform) is applied in the x direction only, same as 
the FFT. The obtained equations for the reference and the object are given by:  

 1 0
ˆ( , ) ( , )exp{ (2 ( , ))}g x y A r x y i f x x y= +π ϕ  (9) 

 0 1 0 0 0
ˆ ( , ) ( , )exp{ (2 ( , ))}g x y A r x y i f x x y= +π ϕ  (10) 

By multiplying the φ(x,y) with the conjugate of φ0(x,y), and separating the phase part of the 
result from the rest we obtain: 
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0

*
0

( , ) ( , ) ( , )

ˆ ˆIm{log( ( , ) ( , ))}

z x y x y x y

g x y g x y

= +
=

ϕ ϕ ϕ
 (11) 

From the above equation, we can see that the phase map can be obtained by applying the 
same process for each horizontal line. The values of the phase map are wrapped at some 

specific values. Those phase values range between π and -π.  
To recover the true phase it is necessary to restore to the measured wrapped phase of an 

unknown multiple of 2πf0.The phase unwrapping process is not a trivial problem due to the 
presence of phase singularities (points in 2D, and lines in 3D) generated by local or global 
sub-sampling. The correct 2D branch cut lines and 3D branch cut surfaces should be placed 

where the gradient of the original phase distribution exceeded π rad value. However, this 
important information is lost due to undersampling and cannot be recovered from the 
sampled wrapped phase distribution alone. Also, is important to notice that finding a 
proper surface, or obtaining a minimal area or using a gradient on a wrapped phase will not 
work and could not find the correct branch in cut surfaces. From here, it can be observed 
that some additional information must be added in the branch cut placement algorithm. 
Therefore, the next step is to apply some improved phase unwrapping algorithms. The 
whole methodology is described in figure 2. 
 

 

Fig. 2. Firstly Proposed Methodology 

2.2 Phase unwrapping in the modified Fourier transform profilometry  
As was early mentioned, the unwrapping step consists of finding discontinuities of 

magnitude close to 2π, and then depending on the phase change we can add or take 2π to 
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the shape according to the sign of the phase change. There are various methods for doing 
the phase unwrapping, and the important thing to consider here is the abrupt phase changes 

in the neighbouring pixels. There are a number of 2π phase jumps between 2 successive 
wrapped phase values, and this number must be determined. This number depends on the 
spatial frequency of the fringe pattern projected at the beginning of the process.  
This step is the modified part in the Fourier Transform Profilometry originally proposed by 
Takeda [3], and represents the major contribution of this work. Another thing to consider is 
to carry out a smoothing before the doing the phase unwrapping, this procedure will help to 
reduce the error produced by the unwanted jump variations in the wrapped phase map. 
Some similar methods are described in (Pramod, 2003)(Wu, 2006). Moreover, a modified 
Fourier Transform Profilometry method was used in (Pedraza et al, 2007) that include some 
extra analysis which considers local and global properties of the wrapped phase image. 
Moreover, a second modification to the Fourier Transform Profilometry is proposed and 
presented in figure 3. 
 

 

Fig. 3. Second Proposed Methodology 

3. Phase unwrapping 

Since two decades ago, phase unwrapping has been a research area and many papers have 
been published, presenting some ideas that solves the problem. Several phase unwrapping 
algorithms have been proposed, implemented and tested.  
The phase unwrapping process is not a trivial problem due to the presence of phase 
singularities (points in 2D, and lines in 3D) generated by local or global undersampling. The 
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correct 2D branch cut lines and 3D branch cut surfaces should be placed where the gradient 

of the original phase distribution exceeded π rad value. However, this important 
information is lost due to undersampling and cannot be recovered from the sampled 
wrapped phase distribution alone. Also, is important to notice that finding a proper surface, 
or obtaining a minimal area or using a gradient on a wrapped phase will not work and one 
could not find the correct branch in cut surfaces. 
The phase unwrapping has many applications in applied optics that require an unwrapping 
process, and hence many phase unwrapping algorithms has been developed specifically for 
data with a particular application. Moreover, there is no universal phase unwrapping 
algorithm that can solve wrapped phase data from any application. Therefore, phase 
unwrapping algorithms are considered as a trade-off problem between accuracy of solution 
and computational requirements. However, even the most robust and complete phase 
unwrapping algorithm cannot guarantee in giving successful or acceptable unwrapped 
results without a good set of initial parameters. Unfortunately, there is no standard or 
technique to define the parameters that guarantee a good performance on phase 
unwrapping. 
In literature, exist several phase unwrapping algorithms, a general review of the most 
widely used algorithms used started with the single phase unwrapping algorithm 
proposed by (Takeda et al, 1982), later the continuous phase map was proposed by (Giglia 
& Pritt, 1998) and more recently (Kian et al., 2005) proposed a windowed fourier 
transform as a filter to approach the phase unwrapping, later the local and global analysis 
was proposed by (Pedraza et al, 2007). Broadly speaking, the local phase unwrapping 
algorithms can be divided in two main subcategories quality guided and residue balancing or 
branch cuts. On the other hand are the global phase unwrapping algorithms that deal with 
the problem of phase unwrapping in a minimum-norm (or minimization) approach, 
example of this phase unwrapping algorithms are unweighted least squares, weighted 
least squares, etc. 
Generally, in order to face the phase unwrapping problems, algorithms can be divided in 
two categories: local and global phase unwrapping. Local phase unwrapping algorithms 
find the unwrapped phase values by integrating the phase along a certain path. This is 
called path-following algorithms. Another way to classify the phase unwrapping algorithms 
are temporal (mention some algorithms) or spatial (add some algorithms too) phas 
unwrapping according with the appropriate fringe pattern analysis. The post processing of 
the unwrapped phase is needed in order to improve the 3D Reconstruction results, and 
some analysis that were carried out by (Kian Q, 2007).  
Global phase unwrapping algorithms locate the unwrapped phase by minimizing a global 
error function and are also called local phase unwrapping algorithm and a global phase 
unwrapping algorithm, by following the methodology proposed by us in (Pedraza et al., 
2009). The unwrapped phase values and the wrapped phase can be related with each other 
according with the Shannon’s sampling theorem: 

 ( ) ( ) 2 ( )n k nΨ = +ϕ π π      ( )n− < Ψ ≤π π  (12) 

 ( ) ( ) 2 ( )n n v n= Ψ +ϕ π      ( )n−∞ < ≤ ∞ϕ  (13) 

here Ψ(n) holds the wrapped phase values and  φ(n) holds the unwrapped phase values, k(n) 
is the function containing the integers that must be added to the wrapped phase φ to be 
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unwrapped, n is an integer and v(n) is the function containing a set of integers that must be 
added to the wrapped phase Ψ. 
Noticing that;  

 v(n) = -k(n) (14) 

The wrapping operation ω which converts the unwrapped phase is defined by: 

 
sin( ( ))

{ ( )} arctan
cos( ( ))

n
n

n

⎡ ⎤= ⎢ ⎥⎣ ⎦
ϕϖ ϕ ϕ  (15) 

3.1 Local phase unwrapping 
Local phase unwrapping algorithms finds the unwrapped phase values by integrating the 
phase along certain path that covers the whole wrapped phase map. The local phase 
unwrapping defines the quality of each pixel in the phase map to unwrap the highest 
quality pixels first and the lowest quality pixels last (quality- guided phase unwrapping). 
The second type is known as residue-balancing methods, which attempts to prevent error 
propagation by identifying residues (the source of noise in the wrapped phase). The 
residues must be balanced and isolated by using barriers (branch-cuts), therefore, it aims to 
produce a path-independent wrapped phase map. Path-dependency occurs to the existence 
of residues. 
 Residue-balancing algorithms search for residues in a wrapped-phase map and attempt to 
balance positive and negative residues by placing cut lines between them to prevent the 
unwrapping path breaking the mesh created. The residue is identified for each pixel in the 
phase map by estimating the wrapped gradients in a 2 × 2 closed loop, as shown in Figure 4. 
 

 

Fig. 4. Identifying residues in a 2 × 2 closed path 

This is carried out using the following equation: 

 
, 1, 1, 1, 1 , 1 ,

2 2 2

i j i j i j i j i j i j
r

+ + + + +Ψ −Ψ Ψ −Ψ Ψ −Ψ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ℜ +ℜ +ℜ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦π π π  (26) 

Where ℜ[] rounds its argument to the nearest integer, Ψx,y is the wrapped pixel. The 

equation of interest; 0( ) ( ) ( )cos(2 ( ))f x a x b x f x x= + +π ϕ  can only take three possible results: 0, 
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+1, and -1. A pixel under test is considered to be a positive residue if the value of r is +1, and 

it is considered to be a negative residue if the value is -1. Conversely, the pixel is not a 

residue if the value of r is zero. After identifying all residues in the wrapped phase map, 

these residues have to be balanced by means of branch cuts. Branch-cuts act as barriers to 

prevent the unwrapping path going thorough them. If these branch cuts are avoided during 

the unwrapping process, no errors propagate and the unwrapping path is considered to be 

path independent. On the other hand, if these branch cuts are penetrated during the 

unwrapping, errors propagate throughout the whole phase map, and in this case the 

unwrapping path is considered to be path dependent. 

3.2 Global phase unwrapping 
In the previous section, it was stated that local phase unwrapping algorithms follow a 

certain unwrapping path in order to unwrap the phase. They begin at a grid point and 

integrate the wrapped phase differences over that path, which ultimately covers the entire 

phase map. Local phase unwrapping algorithms (residue-balancing algorithms) generate 

branch cuts and define the unwrapping path around these cuts in order to minimize error 

propagation. 

In contrast, global phase unwrapping algorithms formulate the phase unwrapping 

problem in a generalized minimum-norm sense (Ichioka & Inuiya, 1972). Global phase 

unwrapping algorithms attempt to find the unwrapped phase by minimizing the global 

error function as: 

 ε2 = ⎥⎥ solution – problem ⎥⎥2 (17) 

Global phase unwrapping algorithms seek the unwrapped phase whose local gradients in 

the x and y direction match, as closely as possible. 

 
2 1 1 2

2

0 0 0 0

ˆ ˆ( , ) ( , ) ( , ) ( , )
p pM N M N

y yx x

i j i j

i j i j i j i j
− − − −
= = = =

= Δ − Δ + Δ − Δ∑ ∑ ∑ ∑ε ϕ ψ ϕ ψ  (18) 

Where ( , )x i jΔ ϕ  and ( , )y i jΔ ϕ  are unwrapped phase gradients in the x and y directions 

respectively, which are given by: 

 ( , ) ( 1, ) ( , )x i j i j i jΔ = + −ϕ ϕ ϕ  (19) 

 ( , ) ( , 1) ( , )y i j i j i jΔ = + −ϕ ϕ ϕ  (20) 

ˆ ( , )x i jΔ ψ  and ˆ ( , )y i jΔ ψ  are the wrapped values of the phase gradients in  the x and y 

directions respectively, and they are given by: 

 ˆ ( , ) { ( 1, ) ( , )}x i j i j i jΔ = + −ψ ω ψ ψ  (21) 

 ˆ ( , ) { ( , 1) ( , )}y i j i j i jΔ = + −ψ ω ψ ψ  (22) 

Finally the wrapping operator is defined by the equation 15. 
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4. Experimental results 

An experimental setup such as the one shown on figure 1 is suitable to apply the proposed 
methodology. In figure 1, a high resolution digital projector is used to create the structured 
light fringe pattern, and a mega-pixel digital CCD camera is used as a sensor to acquire the 
images. Also, a high-resolution digital CCD camera can be used instead of the mega-pixel 
camera.  The reference plane can be any flat surface like a plain wall, or a whiteboard. In the 
reference plane is important to notice that the surface is a non-reflecting one in order to 
avoid the unwanted reflections that may affect or distort the image acquisition process. The 
object of interest can be any object and for this project, 2 objects are considered; the first one 
is an oval with a symmetrical shape and also a pyramid. 
To create different fringe patterns, a GUI was developed. The GUI is capable to create 
several patterns by modifying the spatial frequency (number of fringes per unit area), and 
resolution (number of levels to create the sinusoidal pattern) of the fringe pattern. The GUI 
has the capability to do phase shifting if necessary and also the projection of the fringe 
pattern can have a horizontal or vertical orientation. 
 

 

Fig. 3. Fringe Pattern GUI in MATLAB 

As an example of one object, we can see on figure 4 the reference pattern projected on a 
plane and the same pattern projected on the object. 
Applying the modified Fourier Transform Profilometry we can obtain the Fourier spectra 
corresponding to the images on figure 5. 
On the left part of the figure 6 we can observe the wrapped depth map before applying the 
unwrapped algorithm. Usually, in doing phase unwrapping, linear methods are used [5-7]. 
These methods fail due to the fact the in the wrapped direction of the phase, a high 
frequency can be present and a simple unwrapping algorithm can generate errors in the 
mentioned direction. That is the main reason why a more complete analysis should be 
performed. In this research, a local discontinuity analysis together with the use of the global 
analysis is also implemented.  
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The main algorithm for the local discontinuity analysis [8] is described as; a) first, divide the 
wrapped phase map in regions and give a different weights (w1, w2, .., wn) to each region, b) 
the modulation unit is defined and helps to detect the fringe quality and divides the fringes 
into regions, c) regions are grouped from the biggest to the smallest modulation value, d) 
next, the unwrapping process is started from the biggest to the smallest region, e) later, an 
evaluation of the phase changes can be carried out to avoid variations smaller than f0. 
After the local analysis, an unwrapping algorithm is applied considering punctual 
variations in the phase difference image, which will lead us to the desired phase distribution 
profile, that is, the object’s form. Also, to help the selection of the proper value, a binary 
mask is used, like the one showed on figure 6 on the right hand. This binary mask gives an 
extra parameter, which has the value of “1” in the pixel where a phase jump is bigger than 

2π. From the figure 6, it can be shown that there is more than 1 jump in a frequency higher 
than f0.  
All the phase unwrapping was carried out in the y direction. 
 

 

Fig. 4. Fringe Pattern projected on a plane and object to digitize respectively 

 

 

Fig. 5. Phase of projected fringe pattern on a plane and object to digitize respectively 
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Fig. 6. Wrapped mesh and binary mask 

 

 

Fig. 7. The final 3D reconstruction mesh after the proposed methodology was applied   

On figure 7, the final 3D reconstruction mesh is obtained after the proposed methodology is 

applied.  

For the experimentation, a CCD camera SONY TRV-30 1.3 Mega-pixels was used. As a 

reference frame, a wooden made plane was used, and it was painted with black opaque 

paint to avoid glare. The digitized objects were an oval and a pyramid. 

On Figure 8, a pyramid, the second object used in this work is presented. The projected 

fringe pattern and its Fourier spectra is observed, where a nearly 50 pixel spatial 

frequency is observed. Figure 9 shows the wrapped phase of the pyramid, and after 

applying the phase difference algorithm and binary mask, the 3D mesh of the object is 

presented.  

As a second test, some computer based simulations using virtual created objects were 

carried out. On figure 10, a computer created hand was created. In this figure, the mesh 

visualization, as well as the projected pattern are presented Later, on figure 11, the wrapped 

phase image as well as the phase mesh are presented. Finally, after applying the proposed 

strategy, the reconstructed object is presented by using the global phase unwrapping and 

the local phase unwrapping. Two more object   
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Fig. 8. Fringe pattern projected on a pyramid object and its phase 

 

 

Fig. 9. Pyramid wrapped phase and its 3D reconstruction after the proposed method is 
applied 

 

(a) (b) 
 

(c) 

Fig. 10. Computer created object: (a) Hand, (b) Mesh Visualization and (c) Projected 
fringes 
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(a) 

 
(b) 

Fig. 11. Computer created object: (a) Wrapped phase image, (b) Wrapped phase Mesh  

 

 
(a) 

 
(b) 

Fig. 12. After applying the second strategy: (a) using local phase unwrapping, (b) using 
global phase unwrapping 

 

(a) (b) 
 

(c) 

Fig. 13. Dragonfly digitizing using the Second Strategy: (a) Virtual object to digitize (b) using 
local phase unwrapping, (c) using global phase unwrapping 
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(a) (b) 
 

(c) 

Fig. 13. Plane digitizing using the Second Strategy: (a) Virtual object to digitize (b) using 
local phase unwrapping, (c) using global phase unwrapping 

 

Object Local Global 

Hand 4.45 3.51 

Dragonfly 4.67 3.81 

Airplane 4.58 3.67 

Table 1. Comparison between the phase unwrapping algorithms in the second strategy 

Finally, the methodology was applied to a real object, which is presented on figure 14(a). 
The object is a volley ball, and the results of the local and global phase unwrapping 
algorithms are presented on the same figure 14(b) and (c) respectively. 
 

(a) (b) 
 

(c) 

Fig. 13. Object to digitize: (a) Volley ball (a) using local phase unwrapping, (b) using global 
phase unwrapping 

5. Conclusions and future work 

There are several methods and techniques to made three-dimensional reconstruction of 
virtual and real objects. Among all these methods the fringe pattern analysis had been 
widely used since it provides a non-destructive approach, to optical metrology and 3D 
reconstruction systems.  
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As an option to get the 3D reconstruction of objects, two basic strategies were introduced. A 
modified Fourier Transform Profilometry methodology and the Modified Fourier Transform 
Profilometry including the local and global phase unwrapping were described. 
The fringe pattern analysis has two main phases, the phase extraction and the phase 
unwrapping; in this chapter a two modified profilometry methodologies are presented in 
order to perform this two phases. 
The phase extraction basically consists in analyse a distorted fringe pattern image by using 
Fourier transform and filtering the undesired noise and frequency.  The result of this phase 

is commonly a phase map wrapped into π and -π range. Therefore a phase unwrapping 
algorithm is applied to recover the accurate phase map from the wrapped phase map. In 
literature the phase unwrapping algorithms have been classified in local and global phase 
unwrapping algorithms. 
These phase unwrapping algorithms have been reviewed in this chapter. Local phase 
unwrapping algorithms are reasonably swift and had low computational requirements 
although it implies a decreasing in the quality of three-dimensional reconstruction. 
Conversely the global phase unwrapping algorithms are high time-consuming and had 
elevated computational requirements and commonly perform a superior quality of 3-D 
reconstruction. 
This methodology could be widely used to digitize diverse objects for reverse engineering, 
virtual reality, 3D navigation, and so on. 
Notice that the method can reconstruct only the part of the object that can be seen by the 
camera, if a full 3D reconstruction (360 degrees) is needed, a rotating table is can be used 
and the methodology will be applied n times, where n is the rotation angle of the table. 
One big challenge is to obtain the 3D reconstruction in real time. As a part of the solution, an 
optical filter to obtain the FFT directly can be used. Moreover, the algorithm can be 
implemented into a FPGA to carry out a parallel processing and minimize the processing 
time. Some other tools include the testing of the algorithm performance and doing a 
comparison with a wavelet or neural networks. 
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1. Introduction

The use of the discrete Fourier transform (DFT) is quite spread in many fields of physical
sciences and engineering as for instance in signal theory. This chapter deals with a quadratic
extension of the DFT and its application to quantum information.
From a very general point of view, the DFT can be defined as follows. Let us denote (x0, x1,
. . ., xd−1) a collection of d complex numbers. The transformation

x ≡ (x0, x1, . . . , xd−1) �→ x̃ ≡ (x̃0, x̃1, . . . , x̃d−1) (1)

defined by

x̃α =
1√
d

d−1

∑
n=0

ei2παn/dxn, α = 0, 1, . . . , d − 1 (2)

will be referred to as the DFT of x.
Equation (2) can be transcribed in finite quantum mechanics. In that case, x is often replaced
by an orthonormal basis {|n〉 : n = 0, 1, . . . , d − 1} of the Hilbert space Cd (with an inner
product noted 〈 | 〉 in Dirac notations). The analog of (2) reads

|α̃〉 =
1√
d

d−1

∑
n=0

ei2παn/d|n〉, α = 0, 1, . . . , d − 1 (3)

Equation (3) makes it possible to pass from the orthonormal basis {|n〉 : n = 0, 1, . . . , d − 1} to
another orthonormal basis {|α̃〉 : α = 0, 1, . . . , d − 1} and vice versa since

〈n|n′〉 = δ(n, n′) ⇔ 〈α̃|α̃′〉 = δ(α, α′) (4)

The transformation (3) defines a quantum DFT. In the last twenty years, the notion of quantum
DFT has received a considerable attention in connection with finite quantum mechanics and
quantum information (Vourdas, 2004).
As an interesting property, the two bases {|n〉 : n = 0, 1, . . . , d − 1} and {|α̃〉 : α = 0, 1, . . . , d −
1}, connected via a quantum DFT, constitute a couple of unbiased bases. Let us recall that two
distinct orthonormal bases

Ba = {|aα〉 : α = 0, 1, . . . , d − 1} (5)
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and

Bb = {|bβ〉 : β = 0, 1, . . . , d − 1} (6)

of the space Cd are said to be unbiased if and only if

∀α = 0, 1, . . . , d − 1, ∀β = 0, 1, . . . , d − 1 : |〈aα|bβ〉| =
1√
d

(7)

The unbiasedness character of the bases {|n〉 : n = 0, 1, . . . , d − 1} and {|α̃〉 : α = 0, 1, . . . , d −
1} then follows from

〈n|α̃〉 =
1√
d

ei2παn/d ⇒ |〈n|α̃〉| =
1√
d

(8)

which is evident from (3).
The determination of sets of mutually unbiased bases (MUBs) in Cd is of paramount
importance in the theory of information and in quantum mechanics. Such bases are useful
in classical information (Calderbank et al., 1997), quantum information (Cerf et al., 2002) as
well as for the construction of discrete Wigner functions (Gibbons et al., 2004), the solution of
the mean King problem (Englert & Aharonov, 2001) and the understanding of the Feynman
path integral formalism (Tolar & Chadzitaskos, 2009). It is well known that the number
NMUB of MUBs in Cd is such that 3 ≤ NMUB ≤ d + 1 (Durt et al., 2010). Furthermore, the
maximum number NMUB = d + 1 is reached when d is a prime number or a power of a prime
number (Calderbank et al., 1997; Ivanović, 1981; Wootters & Fields, 1989). However, when
d is not a prime number or more generally a power of a prime number, it is not known if
the limiting value NMUB = d + 1 is attained. In this respect, in the case d = 6, in spite of an
enormous number of works it was not possible to find more than three MUBs (see for example
(Bengtsson et al., 2007; Brierley & Weigert, 2009; Grassl, 2005)).
The main aim of this chapter is to introduce and discuss a generalization of the DFTs defined
by (2) and (3) in order to produce other couples of MUBs. The generalization will be achieved
by introducing quadratic terms in the exponentials in (2) and (3) through the replacement
of the linear term αn by a quadratic term ξn2 + ηn + ζ with ξ, η and ζ in R. The resulting
generalized DFT will be referred to as a quadratic DFT.
The material presented in this chapter is organized in the following way. Section 2 is devoted
to the study of those aspects of the representation theory of the group SU(2) in a nonstandard
basis which are of relevance for the introduction of the quadratic DFT. The quadratic DFT
is studied in section 3. Some applications of the quadratic DFT to quantum information are
given in section 4.
Most of the notations in this chapter are standard. Some specific notations shall be introduced
when necessary. As usual, δa,b stands for the Kronecker delta symbol of a and b, i for the pure
imaginary, z for the complex conjugate of the number z, A† for the adjoint of the operator
A, and I for the identity operator. We use [A, B]q to denote the q-commutator AB − qAB
of the operators A and B; the commutator [A, B]+1 and anticommutator [A, B]−1 are noted
simply [A, B] and {A, B}, respectively, as is usual in quantum mechanics. Boldface letters
are reserved for squared matrices (Id is the d-dimensional identity matrix). We employ a
notation of type |ψ〉, or sometimes |ψ), for a vector in an Hilbert space and we denote 〈φ|ψ〉
and |φ〉〈ψ| respectively the inner and outer products of the vectors |ψ〉 and |φ〉. The symbols
⊕ and ⊖ refer to the addition and subtraction modulo d or 2j + 1 (with d = 2j + 1 = 2, 3, 4, . . .
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depending on the context) while the symbol ⊗ serves to denote the tensor product of two
vectors or of two spaces. Finally N, N∗ and Z are the sets of integers, strictly positive integers
and relative integers; R and C the real and complex fields; and Z/dZ the ring of integers
0, 1, . . . , d − 1 modulo d.

2. A nonstandard approach to SU(2)

2.1 Quon algebra

The idea of a quon takes its origin in the replacement of the commutation (sign −) and
anticommutation (sign +) relations

a−a+ ± a+a− = 1 (9)

of quantum mechanics by the relation

a−a+ − qa+a− = f (N) (10)

where q is a constant and f (N) an arbitrary fonction of a number operator N. The introduction
of q and f (N) yields the possibility to replace the harmonic oscillator algebra by a deformed
oscillator algebra. For f (N) = I, the case q = −1 corresponds to fermion operators (describing
a fermionic oscillator) and the case q = +1 to boson operators (describing a bosonic oscillator).
The other possibilities for q and f (N) = I correspond to quon operators. We shall be
concerned here with a quon algebra or q-deformed oscillator algebra for q a root of unity.
Definition 1. The three linear operators a−, a+ and Na such that

[a−, a+]q = I, [Na, a+] = a+, [Na, a−] = −a−, (a+)k = (a−)k = 0, (Na)
† = Na (11)

where

q = exp
(

2πi

k

)

, k ∈ N \ {0, 1} (12)

define a quon algebra or q-deformed oscillator algebra denoted Aq(a−, a+, Na) or simply Aq(a). The
operators a− and a+ are referred to as quon operators. The operators a−, a+ and Na are called
annihilation, creation and number operators, respectively.
Definition 1 differs from the one by Arik and Coon (Arik & Coon, 1976) in the sense that we
take q as a primitive kth root of unity instead of 0 < q < 1. In Eq. (12), the value k = 0 is
excluded since it would lead to a non-defined value of q. The case k = 1 must be excluded
too since it would yield trivial algebras with a− = a+ = 0. We observe that for k = 2 (i.e.,
for q = −1), the algebra A−1(a) corresponds to the ordinary fermionic algebra and the quon
operators coincide with the fermion operators. On the other hand, we note that in the limiting
situation where k → ∞ (i.e., for q = 1), the algebra A1(a) is nothing but the ordinary bosonic
algebra and the quon operators are boson operators. For k arbitrary, Na is generally different
from a+a−; it is only for k = 2 and k → ∞ that Na = a+a−. Note that the nilpotency relations
(a+)k = (a−)k = 0, with k finite, are at the origin of k-dimensional representations of Aq(a)
(see section 2.2).
For arbitrary k, the quon operators a− and a+ are not connected via Hermitian conjugation. It
is only for k = 2 or k → ∞ that we may take a+ = (a−)†. In general (i.e., for k �= 2 or k �→ ∞),
we have (a±)† �= a∓. Therefore, it is natural to consider the so-called k-fermionic algebra Σq

with the generators a−, a+, a+
+ = (a+)†, a+

− = (a−)† and Na (Daoud et al., 1998). The defining
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relations for Σq correspond to the ones of Aq(a−, a+, Na) and Aq̄(a+
+, a+

−, Na) complemented
by the relations

a−a+
+ − q−

1
2 a+

+a− = 0, a+a+
− − q

1
2 a+

−a+ = 0 (13)

Observe that for k = 2 or k → ∞, the latter relation corresponds to an identity. The operators
a−, a+, a+

+ and a+
− are called k-fermion operators and we also use the terminology k-fermions

in analogy with fermions and bosons. They clearly interpolate between fermions and bosons.
In passing, let us mention that the k-fermions introduced in (Daoud et al., 1998) share some
common properties with the parafermions of order k − 1 discussed in (Beckers & Debergh,
1990; Durand, 1993; Khare, 1993; Klishevich & Plyushchay, 1999; Rubakov & Spiridonov,
1988). The k-fermions can be used for constructing a fractional supersymmetric algebra of
order k (or parafermionic algebra of order k − 1). The reader may consult (Daoud et al., 1998)
for a study of the k-fermionic algebra Σq and its application to supersymmetry.

2.2 Quon realization of su(2)
Going back to quons, let us show how the Lie algebra su(2) of the group SU(2) can be
generated from two quon algebras. We start with two commuting quon algebras Aq(a)
with a = x, y corresponding to the same value of the deformation parameter q. Their
generators satisfy Eqs. (11) and (12) with a = x, y and [X, Y] = 0 for any X in Aq(x) and
any Y in Aq(y). Then, let us look for Hilbertian representations of Aq(x) and Aq(y) on
k-dimensional Hilbert spaces Fx and Fy spanned by the bases {|n1) : n1 = 0, 1, . . . , k − 1} and
{|n2) : n2 = 0, 1, . . . , k − 1}, respectively. These two bases are supposed to be orthonormal,
i.e.,

(n1|n′
1) = δ(n1, n′

1), (n2|n′
2) = δ(n2, n′

2) (14)

We easily verify the following result.
Proposition 1. The relations

x+|n1) = |n1 + 1), x+|k − 1) = 0

x−|n1) = [n1]q |n1 − 1), x−|0) = 0 (15)

Nx|n1) = n1|n1)

and

y+|n2) = [n2 + 1]q |n2 + 1), y+|k − 1) = 0

y−|n2) = |n2 − 1), y−|0) = 0 (16)

Ny|n2) = n2|n2)

define k-dimensional representations of Aq(x) and Aq(y), respectively. In (15) and (16), we use the
notation

∀n ∈ N
∗ : [n]q =

1 − qn

1 − q
= 1 + q + . . . + qn−1, [0]q = 1 (17)

which is familiar in q-deformations of algebraic structures.
Definition 2. The cornerstone of the quonic approach to su(2) is to define the two linear operators

h =
√

Nx
(

Ny + 1
)

, vra = sxsy (18)
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with

sx = qa(Nx+Ny)/2x+ + eiφr/2 1
[k − 1]q!

(x−)k−1 (19)

sy = y−q−a(Nx−Ny)/2 + eiφr/2 1
[k − 1]q!

(y+)k−1 (20)

In (19) and (20), we take

a ∈ Z/dZ, φr = π(k − 1)r, r ∈ R (21)

and the q-deformed factorials are defined by

∀n ∈ N
∗ : [n]q! = [1]q[2]q . . . [n]q, [0]q! = 1 (22)

Note that the parameter a might be taken as real. We limit ourselves to a in Z/dZ in view of the
applications to MUBs.
The operators h and vra act on the states

|n1, n2) = |n1) ⊗ |n2) (23)

of the k2-dimensional Fock space Fx ⊗Fy. It is straightforward to verify that the action of vra

on Fx ⊗Fy is governed by

vra|k − 1, n2) = eiφr/2|0, n2 − 1), n2 �= 0

vra|n1, n2) = qn2a|n1 + 1, n2 − 1), n1 �= k − 1, n2 �= 0 (24)

vra|n1, 0) = eiφr/2|n1 + 1, k − 1), n1 �= k − 1

and

vra|k − 1, 0) = eiφr |0, k − 1) (25)

As a consequence, we can prove the identity

(vra)
k = eiφr I (26)

The action of h on Fx ⊗Fy is much simpler. It is described by

h|n1, n2) =
√

n1(n2 + 1)|n1, n2) (27)

which holds for n1, n2 = 0, 1, . . . , k − 1. Finally, the operator vra is unitary and the operator h
Hermitian on the space Fx ⊗Fy.
We are now in a position to introduce a realization of the generators of the non-deformed Lie
algebra su(2) in terms of the operators vra and h. As a preliminary step, let us adapt the trick
used by Schwinger in his approach to angular momentum via a coupled pair of harmonic
oscillators (Schwinger, 1965). This can be done by introducing two new quantum numbers J
and M

J =
1
2

(n1 + n2) , M =
1
2

(n1 − n2) (28)
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and the state vectors

|J, M〉 = |n1, n2) = |J + M, J − M) ⇒ 〈J, M|J′, M′〉 = δJ,J′δM,M′ (29)

Note that

j =
1
2
(k − 1) (30)

is an admissible value for J. We may thus have j = 1
2 , 1, 3

2 , . . . (since k = 2, 3, 4, . . .). For
the value j of J, the quantum number M can take the values m = j, j − 1, . . . ,−j. Then, let us
consider the (2j + 1)-dimensional subspace ǫ(j) of the k2-dimensional space Fx ⊗Fy spanned
by the basis

B2j+1 = {|j, m〉 : m = j, j − 1, . . . ,−j} (31)

with the orthonormality property

〈j, m|j, m′〉 = δm,m′ (32)

We guess that ǫ(j) is a space of constant angular momentum j. As a matter of fact, we can
check that ǫ(j) is stable under h and vra.
Proposition 2. The action of the operators h and vra on ǫ(j) is given by

h|j, m〉 =
√

(j + m)(j − m + 1)|j, m〉 (33)

vra|j, m〉 = δm,je
i2π jr|j,−j〉 + (1 − δm,j)q(j−m)a|j, m + 1〉 (34)

where q is given by (12) with k = 2j + 1, r ∈ R and a ∈ Z/(2j + 1)Z.
It is sometimes useful to use the Dirac notation by writing

h =
j

∑
m=−j

√

(j + m)(j − m + 1)|j, m〉〈j, m| (35)

vra = ei2π jr|j,−j〉〈j, j| +
j−1

∑
m=−j

q(j−m)a|j, m + 1〉〈j, m| (36)

(vra)
† = e−i2π jr|j, j〉〈j,−j| +

j

∑
m=−j+1

q−(j−m+1)a|j, m − 1〉〈j, m| (37)

It is understood that the three preceding relations are valid as far as the operators h, vra and
(vra)† act on the space ǫ(j). It is evident that h is an Hermitian operator and vra a unitary
operator on ǫ(j).
Definition 3. The link with su(2) can be established by introducing the three linear operators j+, j−
and jz through

j+ = hvra, j− = (vra)
† h, jz =

1
2

[

h2 − (vra)
† h2vra

]

(38)

For each couple (r, a) we have a triplet (j+, j−, jz). It is clear that j+ and j− are connected via Hermitian
conjugation and jz is Hermitian.
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Proposition 3. The action of j+, j− and jz on ǫ(j) is given by the eigenvalue equation

jz|j, m〉 = m|j, m〉 (39)

and the ladder equations

j+|j, m〉 = q(j−m+s−1/2)a
√

(j − m)(j + m + 1)|j, m + 1〉 (40)

j−|j, m〉 = q−(j−m+s+1/2)a
√

(j + m)(j − m + 1)|j, m − 1〉 (41)

where s = 1/2.
For a = 0, Eqs. (39), (40) and (41) give relations that are well known in angular momentum
theory. Indeed, the case a = 0 corresponds to the usual Condon and Shortley phase
convention used in atomic and nuclear spectroscopy. As a corollary of Proposition 3, we have
the following result.
Corollary 1. The operators j+, j− and jz satisfy the commutation relations

[jz, j+] = j+, [jz, j−] = −j−, [j+, j−] = 2jz (42)

and thus span the Lie algebra of SU(2).
The latter result does not depend on the parameters r and a. The writing of the ladder
operators j+ and j− in terms of h and vra constitutes a two-parameter polar decomposition
of the Lie algebra su(2). Thus, from two q-deformed oscillator algebras we obtained a
polar decomposition of the non-deformed Lie algebra of SU(2). This decomposition is an
alternative to the polar decompositions obtained independently in (Chaichian & Ellinas, 1990;
Lévy-Leblond, 1973; Vourdas, 1990).

2.3 The {j2, vra} scheme

Each vector |j, m〉 is a common eigenvector of the two commuting operators jz and

j2 =
1
2

(j+ j− + j− j+) + j23 = j+ j− + j3(j3 − 1) = j− j+ + j3(j3 + 1) (43)

which is known as the Casimir operator of su(2) in group theory or as the square of a
generalized angular momentum in angular momentum theory. More precisely, we have the
eigenvalue equations

j2|j, m〉 = j(j + 1)|j, m〉, jz|j, m〉 = m|j, m〉, m = j, j − 1, . . . ,−j (44)

which show that j and m can be interpreted as angular momentum quantum numbers (in
units such that the rationalized Planck constant h̄ is equal to 1). Of course, the set {j2, jz} is a
complete set of commuting operators. It is clear that the two operators j2 and vra commute.
As a matter of fact, the set {j2, vra} provides an alternative to the set {j2, jz} as indicated by
the next result.
Theorem 1. For fixed j (with 2j ∈ N∗), r (with r ∈ R) and a (with a ∈ Z/(2j + 1)Z), the 2j + 1
common eigenvectors of the operators j2 and vra can be taken in the form

|jα; ra〉 =
1

√

2j + 1

j

∑
m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j, m〉, α = 0, 1, . . . , 2j (45)
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where

q = exp
(

2πi

2j + 1

)

(46)

The corresponding eigenvalues are given by

j2|jα; ra〉 = j(j + 1)|jα; ra〉, vra|jα; ra〉 = qj(r+a)−α|jα; ra〉, α = 0, 1, . . . , 2j (47)

so that the spectrum of vra is nondegenerate and {j2, vra} does form a complete set of commuting
operators. The inner product

〈jα; ra|jβ; ra〉 = δα,β (48)

shows that

Bra = {|jα; ra〉 : α = 0, 1, . . . , 2j} (49)

is a nonstandard orthonormal basis for the irreducible matrix representation of SU(2) associated with
j. For fixed j, there exists a priori a (2j + 1)-multiple infinity of orthonormal bases Bra since r can have
any real value and a, which belongs to the ring Z/(2j + 1)Z, can take 2j + 1 values (a = 0, 1, . . . , 2j).
Equation (45) defines a unitary transformation that allows to pass from the standard
orthonormal basis B2j+1, quite well known in angular momentum theory and group theory,
to the nonstandard orthonormal basis Bra. For fixed j, r and a, the inverse transformation of
(45) is

|j, m〉 = q−(j+m)(j−m+1)a/2+jmr 1
√

2j + 1

2j

∑
α=0

q−(j+m)α|jα; ra〉, m = j, j − 1, . . . ,−j (50)

which looks like an inverse DFT up to phase factors. For r = a = 0, Eqs. (45) and (50) lead to

|jα; 00〉 =
1

√

2j + 1

j

∑
m=−j

q(j+m)α|j, m〉, α = 0, 1, . . . , 2j (51)

⇔ |j, m〉 =
1

√

2j + 1

2j

∑
α=0

q−(j+m)α|jα; 00〉, m = j, j − 1, . . . ,−j (52)

Equations (51) and (52) correspond (up to phase factors) to the DFT of the basis B2j+1 and its
inverse DFT, respectively.
Note that the calculation of 〈jα; ra|jβ; sb〉 is much more involved for (r �= s, a = b), (r = s, a �=
b) and (r �= s, a �= b) than the one of 〈jα; ra|jβ; ra〉 (the value of which is given by (48)). For
example, the overlap between the bases Bra and Bsa, of relevance for the case (r �= s, a = b), is
given by

〈jα; ra|jβ; sa〉 =
1

2j + 1
sin[j(s − r) + α − β]π

sin[j(s − r) + α − β] π
2j+1

(53)

The cases (r = s, a �= b) and (r �= s, a �= b) need the use of Gauss sums as we shall see below.
The representation theory and the Wigner-Racah algebra of the group SU(2) can be developed
in the {j2, vra} quantization scheme. This leads to Clebsch-Gordan coefficients and (3 −
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jα)ra symbols with properties very different from the ones of the usual SU(2) ⊃ U(1)
Clebsch-Gordan coefficients and 3 − jm symbols corresponding to the {j2, jz} quantization
scheme. For more details, see Appendix which deals with the case r = a = 0.
The nonstandard approach to the Wigner-Racah algebra of SU(2) and angular momentum
theory in the {j2, vra} scheme is especially useful in quantum chemistry for problems
involving cyclic symmetry. This is the case for a ring-shape molecule with 2j + 1 atoms at
the vertices of a regular polygon with 2j + 1 sides or for a one-dimensional chain of 2j + 1
spins of 1

2 -value each (Albouy & Kibler, 2007). In this connection, we observe that the
vectors of type |jα; ra〉 are specific symmetry-adapted vectors. Symmetry-adapted vectors are
widely used in quantum chemistry, molecular physics and condensed matter physics as for
instance in ro-vibrational spectroscopy of molecules (Champion et al., 1977) and ligand-field
theory (Kibler, 1968). However, the vectors |jα; ra〉 differ from the symmetry-adapted vectors
considered in (Champion et al., 1977; Kibler, 1968; Patera & Winternitz, 1976) in the sense
that vra is not an invariant under some finite subgroup (of crystallographic interest) of the
orthogonal group O(3). This can be clarified as follows.
Proposition 4. From (36), it follows that the operator vra is a pseudo-invariant under the cyclic
group C2j+1, a subgroup of SO(3), whose elements are the Wigner operators PR(ϕ) associated with the

rotations R(ϕ), around the quantization axis Oz, with the angles

ϕ = p
2π

2j + 1
, p = 0, 1, . . . , 2j (54)

More precisely, vra transforms as

PR(ϕ)vra

(

PR(ϕ)

)†
= e−iϕvra (55)

Thus, vra belongs to the irreducible representation class of C2j+1 of character vector

χ(2j) = (1, q−1, . . . , q−2j) (56)

In terms of vectors of ǫ(j), we have

PR(ϕ)|jα; ra〉 = qjp|jβ; ra〉, β = α ⊖ p (57)

so that the set {|jα; ra〉 : α = 0, 1, . . . , 2j} is stable under PR(ϕ). The latter set spans the regular
representation of C2j+1.

2.4 Examples

Example 1: The j = 1
2 case. The eigenvectors of vra are

|1
2

α; ra〉 =
1√
2

eiπ(a/2−r/4+α)|1
2

,
1
2
〉 +

1√
2

eiπr/4|1
2

,−1
2
〉, α = 0, 1 (58)

where r ∈ R and a can take the values a = 0, 1. In the case r = 0, Eq. (58) gives the two bases

B00 : |1
2

0; 00〉 =
1√
2

(

|1
2

,
1
2
〉 + |1

2
,−1

2
〉
)

, |1
2

1; 00〉 = − 1√
2

(

|1
2

,
1
2
〉 − |1

2
,−1

2
〉
)

(59)

and

B01 : |1
2

0; 01〉 =
i√
2

(

|1
2

,
1
2
〉 − i|1

2
,−1

2
〉
)

, |1
2

1; 01〉 = − i√
2

(

|1
2

,
1
2
〉 + i|1

2
,−1

2
〉
)

(60)
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The bases (59) and (60) are, up to phase factors, familiar bases in quantum mechanics for
1
2 -spin systems.
Example 2: The j = 1 case. The eigenvectors of vra are

|1α; ra〉 =
1√
3

qr
(

qa+2α−2r|1, 1〉 + qa+α−r|1, 0〉 + |1,−1〉
)

, α = 0, 1, 2 (61)

where r ∈ R and a can take the values a = 0, 1, 2. In the case r = 0, Eq. (61) gives the three
bases

B00 : |10; 00〉 =
1√
3

(|1,−1〉 + |1, 0〉 + |1, 1〉)

|11; 00〉 =
1√
3

(

|1,−1〉 + q|1, 0〉 + q2|1, 1〉
)

(62)

|12; 00〉 =
1√
3

(

|1,−1〉 + q2|1, 0〉 + q|1, 1〉
)

B01 : |10; 01〉 =
1√
3

(|1,−1〉 + q|1, 0〉 + q|1, 1〉)

|11; 01〉 =
1√
3

(

|1,−1〉 + q2|1, 0〉 + |1, 1〉
)

(63)

|12; 01〉 =
1√
3

(

|1,−1〉 + |1, 0〉 + q2|1, 1〉
)

B02 : |10; 02〉 =
1√
3

(

|1,−1〉 + q2|1, 0〉 + q2|1, 1〉
)

|11; 02〉 =
1√
3

(|1,−1〉 + |1, 0〉 + q|1, 1〉) (64)

|12; 02〉 =
1√
3

(|1,−1〉 + q|1, 0〉 + |1, 1〉)

It is worth noting that the vectors of the basis B00 exhibit all characters

χ(α) =
(

1, qα, q2α
)

, α = 0, 1, 2 (65)

of the three vector representations of C3. On another hand, the bases B01 and B02 are connected
to projective representations of C3 because they are described by the pseudo-characters

χ
(α)
1 =

(

1, q1+α, q1−α
)

, α = 0, 1, 2 (66)

and

χ
(α)
2 =

(

1, q2+α, q2−α
)

, α = 0, 1, 2 (67)

respectively.
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3. Quadratic discrete Fourier transforms

We discuss in this section two quadratic extensions of the DFT, namely, a quantum quadratic
DFT that connects state vectors in a finite-dimensional Hilbert space, of relevance in quantum
information, and a quadratic DFT that might be of interest in signal analysis.

3.1 Quantum quadratic discrete Fourier transform

Relations of section 2 concerning SU(2) can be transcribed in a form more adapted to
the Fourier transformation formalism and to quantum information. In this respect, let us
introduce the change of notations

d = 2j + 1, n = j + m, |n〉 = |j,−m〉 (68)

and

|aα; r〉 = |jα; ra〉 (69)

so that (49) becomes

Bra = {|aα; r〉 : α = 0, 1, . . . , d − 1} (70)

(Note that d coincides with the dimension k of the spaces Fx and Fy of section 2.) Then from
Eq. (45), we have

|aα; r〉 = q(d−1)2r/4 1√
d

d−1

∑
n=0

qn(d−n)a/2+n[α−(d−1)r/2]|d − 1 − n〉, α = 0, 1, . . . , d − 1 (71)

or equivalently

|aα; r〉 = q(d−1)2r/4 1√
d

d−1

∑
n=0

q(d−1−n)(n+1)a/2+(d−1−n)[α−(d−1)r/2]|n〉, α = 0, 1, . . . , d − 1 (72)

where

q = exp
(

2πi

d

)

(73)

The inversion of (71) gives

|d − 1 − n〉 = q−n(d−n)a/2−(d−1)2r/4+n(d−1)r/2 1√
d

d−1

∑
α=0

q−nα|aα; r〉, n = 0, 1, . . . , d − 1 (74)

By introducing

(Fra)nα =
1√
d

qn(d−n)a/2+(d−1)2r/4+n[α−(d−1)r/2], n, α = 0, 1, . . . , d − 1 (75)

equations (71) and (74) can be rewritten as

|aα; r〉 =
d−1

∑
n=0

(Fra)nα |d − 1 − n〉, α = 0, 1, . . . , d − 1 (76)
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and

|d − 1 − n〉 =
d−1

∑
α=0

(Fra)nα |aα; r〉, n = 0, 1, . . . , d − 1 (77)

respectively. For r = a = 0, Eqs. (76) and (77) yield

|0α; 0〉 =
1√
d

d−1

∑
n=0

ei2παn/d|d − 1 − n〉, α = 0, 1, . . . , d − 1

⇔ |d − 1 − n〉 =
1√
d

d−1

∑
α=0

e−i2πnα/d|0α; 0〉, n = 0, 1, . . . , d − 1 (78)

which corresponds (up to a change of notations) to the DFT described by (3). For a �= 0,
Eq. (76) can be considered as a quadratic extension (quadratic in n) of the DFT of the basis
{|n〉 : n = 0, 1, . . . , d − 1} and Eq. (77) thus appears as the corresponding inverse DFT. This
can be summed up by the following definition.
Definition 4. Let Hra be the d × d matrix defined by the matrix elements

(Hra)nα =
1√
d

q(d−1−n)(n+1)a/2+(d−1)2r/4+(d−1−n)[α−(d−1)r/2], n, α = 0, 1, . . . , d − 1 (79)

where, for a fixed value of d (with d ∈ N \ {0, 1}), r and a may have values in R and Z/dZ,
respectively. In compact form

(Hra)nα =
1√
d

e2πiν/d (80)

with

ν = −1
4
(d − 1)2r +

1
2
(d − 1)a + (d − 1)α − 1

2
[2α + 2a − da − (d − 1)r]n − 1

2
an2 (81)

The expansion

|aα; r〉 =
d−1

∑
n=0

(Hra)nα |n〉, α = 0, 1, . . . , d − 1 (82)

defines a quadratic quantum DFT of the orthonormal basis

Bd = {|n〉 : n = 0, 1, . . . , d − 1} (83)

This transformation produces another orthonormal basis, namely, the basis Bra (see Eq. (70)). The
inverse transformation

|n〉 =
d−1

∑
α=0

(Hra)nα |aα; r〉, n = 0, 1, . . . , d − 1 (84)

gives back the basis Bd.
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For fixed d, r and a, each of the d vectors |aα; r〉, with α = 0, 1, . . . , d− 1, is a linear combination
of the vectors |0〉, |1〉, . . . , |d − 1〉. The vector |aα; r〉 is an eigenvector of the operator

vra = eiπ(d−1)r|d − 1〉〈0| +
d−2

∑
n=0

q(d−1−n)a|d − 2 − n〉〈d − 1 − n| (85)

or

vra = eiπ(d−1)r|d − 1〉〈0| +
d−1

∑
n=1

qna|n − 1〉〈n| (86)

(cf. Eq. (36)). The operator vra can be developed as

vra = eiπ(d−1)r|d − 1〉〈0| + qa|0〉〈1| + q2a|1〉〈2| + . . . + q(d−1)a|d − 2〉〈d − 1| (87)

Then, the action of vra on the state |n〉 is described by

vra|n〉 = δn,0eiπ(d−1)r|d − 1〉 + (1 − δn,0)qna|n − 1〉 (88)

(cf. Eq. (34)). Its eigenvalues are given by

vra|aα; r〉 = q(d−1)(r+a)/2−α|aα; r〉, α = 0, 1, . . . , d − 1 (89)

(cf. Eq. (47)).

3.1.1 Diagonalization of vra

Let Vra be the d × d unitary matrix that represents the linear operator vra (given by (87)) on
the basis Bd. Explicitly, we have

Vra =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 qa 0 . . . 0
0 0 q2a . . . 0
...

...
... . . .

...
0 0 0 . . . q(d−1)a

eiπ(d−1)r 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(90)

where the lines and columns are arranged in the order 0, 1, . . . , d − 1. Note that the nonzero
matrix elements of V0a are given by the irreducible character vector

χ(a) = (1, qa, . . . , q(d−1)a) (91)

of the cyclic group Cd.
Proposition 5. The matrix Hra reduces the endomorphism associated with the operator vra. In other
words

(Hra)
† VraHra = q(d−1)(r+a)/2

⎛

⎜

⎜

⎜

⎝

q0 0 . . . 0
0 q−1 . . . 0
...

... . . .
...

0 0 . . . q−(d−1)

⎞

⎟

⎟

⎟

⎠

(92)

in agreement with Eq. (47).
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Concerning the matrices in (90) and (92), it is important to note the following convention.
According to the tradition in quantum mechanics and quantum information, all the matrices
in this chapter are set up with their lines and columns ordered from left to right and from
top to bottom in the range 0, 1, . . . , d − 1. Different conventions were used in some previous
works by the author. However, the results previously obtained are equivalent to those of this
chapter.
The eigenvectors of the matrix Vra are

φ(aα; r) =
d−1

∑
n=0

(Hra)nα φn, α = 0, 1, . . . , d − 1 (93)

where the φn with n = 0, 1, . . . , d − 1 are the column vectors

φ0 =

⎛

⎜

⎜

⎜

⎝

1
0
...
0

⎞

⎟

⎟

⎟

⎠

, φ1 =

⎛

⎜

⎜

⎜

⎝

0
1
...
0

⎞

⎟

⎟

⎟

⎠

, . . . , φd−1 =

⎛

⎜

⎜

⎜

⎝

0
0
...
1

⎞

⎟

⎟

⎟

⎠

(94)

representing the state vectors |0〉, |1〉, . . . , |d − 1〉, respectively. These eigenvectors are the
column vectors of the matrix Hra. They satisfy the eigenvalue equation (cf. 89)

Vraφ(aα; r) = q(d−1)(r+a)/2−αφ(aα; r) (95)

with α = 0, 1, . . . , d − 1.

3.1.2 Examples

Example 3: The d = 2 case. For d = 2, there are two families of bases Bra: the Br0 family and
the Br1 family (a can take the values a = 0 and a = 1). In terms of matrices, we have

Hra =
1√
2

(

qa/2−r/4 −qa/2−r/4

qr/4 qr/4

)

, Vra =

(

0 qa

qr 0

)

, q = eiπ (96)

The matrix Vra has the eigenvectors (corresponding to the basis Bra)

φ(aα; r) =
1√
2
(qa/2−r/4+αφ0 + qr/4φ1), α = 0, 1 (97)

where

φ0 =

(

1
0

)

, φ1 =

(

0
1

)

(98)

For r = 0, we have

V00 =

(

0 1
1 0

)

, V01 =

(

0 −1
1 0

)

(99)

the eigenvectors of which are (cf. (97))

φ(00; 0) =
1√
2

(φ1 + φ0) =
1√
2

(

1
1

)

, φ(01; 0) =
1√
2

(φ1 − φ0) = − 1√
2

(

1
−1

)

(100)
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and

φ(10; 0) =
1√
2

(φ1 + iφ0) =
i√
2

(

1
−i

)

, φ(11; 0) =
1√
2

(φ1 − iφ0) = − i√
2

(

1
i

)

(101)

which correspond to the bases B00 and B01, respectively. Note that (100) and (101) are, up to
unimportant multiplicative phase factors, qudits used in quantum information.
Example 4: The d = 3 case. For d = 3, we have three families of bases, that is to say Br0, Br1
and Br2, since a can be 0, 1 and 2. In this case

Hra =
1√
3

⎛

⎝

qa−r qa+2−r qa+1−r

qa qa+1 qa+2

qr qr qr

⎞

⎠ , Vra =

⎛

⎝

0 qa 0
0 0 q2a

q3r 0 0

⎞

⎠ , q = ei2π/3 (102)

and Vra admits the eigenvectors (corresponding to the basis Bra)

φ(aα; r) =
1√
3

qr
(

qa+2α−2rφ0 + qa+α−rφ1 + φ2

)

, α = 0, 1, 2 (103)

where

φ0 =

⎛

⎝

1
0
0

⎞

⎠ , φ1 =

⎛

⎝

0
1
0

⎞

⎠ , φ2 =

⎛

⎝

0
0
1

⎞

⎠ (104)

In the case r = 0, we get

V00 =

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ , V01 =

⎛

⎝

0 q 0
0 0 q2

1 0 0

⎞

⎠ , V02 =

⎛

⎝

0 q2 0
0 0 q
1 0 0

⎞

⎠ (105)

The eigenvectors of V00, V01 and V02 follow from Eq. (103). This yields

φ(00; 0) =
1√
3

(φ2 + φ1 + φ0)

φ(01; 0) =
1√
3

(

φ2 + qφ1 + q2φ0

)

(106)

φ(02; 0) =
1√
3

(

φ2 + q2φ1 + qφ0

)

or

φ(00; 0) =
1√
3

⎛

⎝

1
1
1

⎞

⎠ , φ(01; 0) =
1√
3

⎛

⎝

q2

q
1

⎞

⎠ , φ(02; 0) =
1√
3

⎛

⎝

q
q2

1

⎞

⎠ (107)

corresponding to B00,

φ(10; 0) =
1√
3

(φ2 + qφ1 + qφ0)

φ(11; 0) =
1√
3

(

φ2 + q2φ1 + φ0

)

(108)

φ(12; 0) =
1√
3

(

φ2 + φ1 + q2φ0

)
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or

φ(10; 0) =
1√
3

⎛

⎝

q
q
1

⎞

⎠ , φ(11; 0) =
1√
3

⎛

⎝

1
q2

1

⎞

⎠ , φ(12; 0) =
1√
3

⎛

⎝

q2

1
1

⎞

⎠ (109)

corresponding to B01, and

φ(20; 0) =
1√
3

(

φ2 + q2φ1 + q2φ0

)

φ(21; 0) =
1√
3

(φ2 + φ1 + qφ0) (110)

φ(22; 0) =
1√
3

(φ2 + qφ1 + φ0)

or

φ(20; 0) =
1√
3

⎛

⎝

q2

q2

1

⎞

⎠ , φ(21; 0) =
1√
3

⎛

⎝

q
1
1

⎞

⎠ , φ(22; 0) =
1√
3

⎛

⎝

1
q
1

⎞

⎠ (111)

corresponding to B02. Note that (107), (109) and (111) are, up to unimportant multiplicative
phase factors, qutrits used in quantum information.

3.1.3 Decomposition of Vra

The matrix Vra can be decomposed as

Vra = PrXZa (112)

where

Pr =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . eiπ(d−1)r

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(113)

and

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1
1 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Z =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . 0
0 q 0 . . . 0
0 0 q2 . . . 0
...

...
... . . .

...
0 0 0 . . . qd−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(114)

The matrices X and Z can be derived from particular Vra matrices since

X = V00, Z = (V00)
† V01 (115)

which emphasize the important role played by the matrix Vra.
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The matrices Pr, X and Z (and thus Vra) are unitary. They satisfy

VraZ = qZVra (116)

V0aX = q−aXV0a (117)

Equation (116) can be iterated to give the useful relation

(Vra)
mZn = qmnZn(Vra)

m (118)

where m, n ∈ Z/dZ. Furthermore, we have the trivial relations

e−iπ(d−1)r(Vr0)
d = Zd = Id (119)

More generally, we can show that

∀n ∈ Z/dZ : (Vra)
n = q−n(n−1)a/2(Vr0)

nZan (120)

Consequently

(Vra)
d = eiπ(d−1)(r+a)Id (121)

in agreement with the obtained eigenvalues for Vra (see Eq. (95)).

3.1.4 Weyl pairs

The relations in sections 3.1.1 and 3.1.3 can be particularized in the case r = a = 0. For
example, Eq. (118) gives the useful relation

XmZn = qmnZnXm, (m, n) ∈ N
2 (122)

The fundamental relationship between the matrices X and Z is emphasized by the following
proposition.
Proposition 6. The unitary matrices X and Z satisfy the q-commutation relation

[X, Z]q = XZ − qZX = 0 (123)

and the cyclicity relations

Xd = Zd = Id (124)

In addition, they are connected through

(F00)
† XF00 = Z (125)

that indicates that X and Z are related by an ordinary DFT transform.
According to Proposition 6, the matrices X and Z constitute a Weyl pair (X, Z). Weyl pairs
were introduced at the beginning of quantum mechanics (Weyl, 1931) and used for building
operator unitary bases (Schwinger, 1960). We shall emphasis their interest for quantum
information and quantum computing in section 4.
Let x and z be the linear operators associated with X and Z, respectively. They are given by

x = v00, z = (v00)
†v01 ⇒ xz = v01 (126)
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as functions of the operator vra. Each of the relations involving X and Z can be transcribed in
terms of x and z.
The properties of x follow from those of vra with r = a = 0. The unitary operator x is a shift
operator when acting on |j, m〉 or |n〉 (see (34) and (88)) and a phase operator when acting on
|jα; 00〉 = |0α; 0〉 (see (47) and (89)). More precisely, we have

x|j, m〉 = |j, m ⊕ 1〉 ⇔ x|n〉 = |n ⊖ 1〉 (127)

and

x|0α; 0〉 = q−α|0α; 0〉 (128)

The unitary operator z satisfies

z|j, m〉 = qj−m|j, m〉 ⇔ z|n〉 = qn|n〉 (129)

and

z|aα; 0〉 = q−1|aα1; 0〉, α1 = α ⊖ 1 (130)

It thus behaves as a phase operator when acting on |j, m〉 or |n〉 and a shift operator when
acting on |aα; 0〉.
In view of (128) and (129), the two cyclic operators x and z (cf. xd = zd = I) are isospectral
operators. They are connected via a discrete Fourier transform operator (see Eq. (125)).
Let us now define the operators

uab = xazb, a, b = 0, 1, . . . , d − 1 (131)

The d2 operators uab are unitary and satisfy the following trace relation

tr
(

(uab)
†ua′b′

)

= d δa,a′ δb,b′ (132)

where the trace is taken on the d-dimensional space ǫ(d) = ǫ(2j + 1). This trace relation shows
that the d2 operators uab are pairwise orthogonal operators so that they can serve as a basis
for developing any operator acting on the Hilbert space ǫ(d). Furthermore, the commutator
and the anticommutator of uab and ua′b′ are given by

[uab, ua′b′ ] =
(

q−ba′ − q−ab′
)

ua′′b′′ , a′′ = a ⊕ a′, b′′ = b ⊕ b′ (133)

and

{uab, ua′b′} =
(

q−ba′ + q−ab′
)

ua′′b′′ , a′′ = a ⊕ a′, b′′ = b ⊕ b′ (134)

Consequently, [uab, ua′b′ ] = 0 if and only if ab′ ⊖ ba′ = 0 and {uab, ua′b′} = 0 if and only if
ab′ ⊖ ba′ = (1/2)d. Therefore, all anticommutators {uab, ua′b′} are different from 0 if d is an
odd integer. From a group-theoretical point of view, we have the following result.
Proposition 7. The set {uab = xazb : a, b = 0, 1, . . . , d − 1} generates a d2-dimensional Lie algebra.
This algebra can be seen to be the Lie algebra of the general linear group GL(d, C). The subset {uab :
a, b = 0, 1, . . . , d − 1} \ {u00} thus spans the Lie algebra of the special linear group SL(d, C).
A second group-theoretical aspect connected with the operators uab concerns a finite group,
the so-called finite Heisenberg-Weyl group WH(Z/dZ), known as the Pauli group Pd in
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quantum information (Kibler, 2008). The set {uab : a, b = 0, 1, . . . , d − 1} is not closed under
multiplication. However, it is possible to extend the latter set in order to have a group as
follows.
Proposition 8. Let us define the operators wabc via

wabc = qaubc, a, b, c = 0, 1, . . . , d − 1 (135)

Then, the set {wabc = qaxbzc : a, b, c = 0, 1, . . . , d− 1}, endowed with the multiplication of operators,
is a group of order d3 isomorphic with the Heisenberg-Weyl group WH(Z/dZ). This group, also
referred to as the Pauli group Pd, is a nonabelian (for d ≥ 2) nilpotent group with nilpotency class
equal to 3. It is isomorphic with a finite subgroup of the group U(d) for d even or SU(d) for d odd.
Proposition 8 easily follows from the composition law

wabcwa′b′c′ = wa′′b′′c′′ , a′′ = a ⊕ a′ ⊖ cb′, b′′ = b ⊕ b′, c′′ = c ⊕ c′ (136)

Note that the group commutator of the two elements wabc and wa′b′c′ of the group WH(Z/dZ)
is

wabcwa′b′c′ (wabc)
−1(wa′b′c′ )

−1 = wa′′00, a′′ = bc′ ⊖ cb′ (137)

which can be particularized as

uabua′b′ (uab)
−1(ua′b′ )

−1 = qab′⊖ba′ I (138)

in terms of the operators uab.
All this is reminiscent of the group SU(2), the generators of which are the well-known Pauli
matrices. Therefore, the operators uab shall be referred as generalized Pauli operators and
their matrices as generalized Pauli matrices. This will be considered further in section 4.

3.1.5 Link with the cyclic group Cd

There exists an interesting connection between the operator vra and the cyclic group Cd (see
section 2.3). The following proposition presents another aspect of this connection.
Proposition 9. Let R be a generator of Cd (e.g., a rotation of 2π/d around an arbitrary axis). The
application

Rn �→ Xn : n = 0, 1, . . . , d − 1 (139)

defines a d-dimensional matrix representation of Cd. This representation is the regular representation
of Cd.
Thus, the reduction of the representation {Xn : n = 0, 1, . . . , d − 1} contains once and only
once each (one-dimensional) irreducible representation

χ(a) = (1, qa, . . . , q(d−1)a), a = 0, 1, . . . , d − 1 (140)

of Cd.
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3.1.6 Link with the W∞ algebra

Let us define the matrix

T(n1 ,n2) = q
1
2 n1n2 Zn1 Xn2 , (n1, n2) ∈ N

2 (141)

It is convenient to use the abbreviation

(n1, n2) ≡ n ⇒ T(n1 ,n2) ≡ Tn (142)

The matrices Tn span an infinite-dimensional Lie algebra. This may be precised as follows.
Proposition 10. The commutator [Tm, Tn] is given by

[Tm, Tn] = −2i sin
( π

d
m × n

)

Tm+n (143)

where

m × n = m1n2 − m2n1, m + n = (m1 + n1, m2 + n2) (144)

The matrices Tm can be thus formally viewed as the generators of the infinite-dimensional Lie algebra
W∞.
The proof of (143) is easily obtained by using (122). This leads to

TmTn = q−
1
2 m×nTm+n (145)

which implies (143). Thus, we get the Lie algebra W∞ (or sine algebra) investigated in (Fairlie
et al., 1990).

3.2 Quadratic discrete Fourier transform

3.2.1 Generalities

We are now prepared for discussing analogs of the transformations (82) and (84) in the
language of classical signal theory.
Definition 5. Let us consider the transformation

x = {xm ∈ C : m = 0, 1, . . . , d − 1} ↔ y = {yn ∈ C : n = 0, 1, . . . , d − 1} (146)

defined by

yn =
d−1

∑
m=0

(Fra)mn xm ⇔ xm =
d−1

∑
n=0

(Fra)mn yn (147)

where

(Fra)nm =
1√
d

qn(d−n)a/2+(d−1)2r/4+n[m−(d−1)r/2], n, m = 0, 1, . . . , d − 1 (148)

For a �= 0, the bijective transformation x ↔ y can be thought of as a quadratic DFT.
In Eq. (147), we choose the matrix Fra as the quadratic Fourier matrix instead of the matrix Hra

because the particular case r = a = 0 corresponds to the ordinary DFT (see also (Atakishiyev
et al., 2010)). Note that the matrices Fra and Hra are interrelated via

(Fra)nm = (Hra)n′m, n′ = d − 1 − n (149)
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Therefore, the lines of Fra in the order 0, 1, . . . , d − 1 coincide with those of Hra in the reverse
order d − 1, d − 2, . . . , 0.
The analog of the Parseval-Plancherel theorem for the ordinary DFT can be expressed in the
following way.
Theorem 2. The quadratic transformations x ↔ y and x′ ↔ y′ associated with the same matrix Fra,
with r ∈ R and a ∈ Z/dZ, satisfy the conservation rule

d−1

∑
n=0

yn y′n =
d−1

∑
m=0

xm x′m (150)

where both sums do not depend on r and a.

3.2.2 Properties of the quadratic DFT matrix

In order to get familiar with the quadratic DFT defined by (147), we now examine some of the
properties of the quadratic DFT matrix Fra.
Proposition 11. For d arbitrary, the matrix elements of Fra satisfies the useful symmetry properties

(Fra)d−1α = q(d−1)(r+a)/2−αe−iπ(d−1)r (Fra)0α , α = 0, 1, . . . , d − 1 (151)

(Fra)n−1α = q(d−1)(r+a)/2−α+na (Fra)nα , n = 1, 2, . . . , d − 1, α = 0, 1, . . . , d − 1 (152)

which can be reduced to the sole symmetry relation

(F0a)n⊖1α = q(d−1)a/2−α+na (F0a)nα , n, α = 0, 1, . . . , d − 1 (153)

when r = 0.
Proposition 12. For d arbitrary, the matrix Fra is unitary.
The latter result can be checked from a straightforward calculation. It also follows in a simple
way from

〈jα; ra|jβ; sb〉 = 〈aα; r|bβ; s〉 = ((Fra)
†Fsb)αβ (154)

It is sufficient to put s = r and b = a in (154) and to use (48).
For d arbitrary, in addition to be unitary the matrix Fra is such that the modulus of each of its
matrix elements is equal to 1/

√
d. Thus, Fra can be considered as a generalized Hadamard

matrix (we adopt here the normalization of Hadamard matrices generally used in quantum
information and quantum computing (Kibler, 2009)). In the case where d is a prime number,
we shall prove in section 4 from (154) that the matrix (Fra)†Frb is another Hadamard matrix
for b �= a. Similar results hold for the matrix Hra.
Proposition 13. For d arbitrary, the matrix Fra can be factorized as

Fra = DraF, F = F00 (155)

where Dra is the d × d diagonal matrix with the matrix elements

(Dra)mn = qm(d−m)a/2+(d−1)2r/4−m(d−1)r/2δm,n (156)

and F is the well-known ordinary DFT matrix.
For fixed d, there is one d-multiple infinity of Gaussian matrices Dra (and thus Fra)
distinguished by a ∈ Z/dZ and r ∈ R. The matrix F was the object of a great number of
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studies. The main properties of the ordinary DFT matrix F are summarized in (Atakishiyev et
al., 2010). Let us simply recall here the fundamental property

F4 = Id (157)

of interest for obtaining the eigenvalues and eigenvectors of F.
Proposition 14. The determinant of Fra reads

det Fra = eiπ(d2−1)a/6det F (158)

where the value of det F is well known (Atakishiyev et al., 2010; Mehta, 1987).
Proposition 15. The trace of Fra reads

tr Fra = eiπ(d−1)2r/(2d) 1√
d

S(u, v, w) (159)

where S(u, v, w) is

S(u, v, w) =
|w|−1

∑
k=0

eiπ(uk2+vk)/w (160)

with

u = 2 − a, v = d(a − r) + r, w = d (161)

(note that v is not necessarily an integer).
Let us recall that the sum defined by (160) is a generalized quadratic Gauss sum. It can be
calculated easily in the situation where u, v and w are integers such that u and w are mutually
prime, uw is not zero, and uw + v is even (Berndt et al., 1998).
Note that the case a = 2 deserves a special attention. In this case, the quadratic character of
tr Fra disappears. In addition, if r = 0 we get

tr F02 =
√

d (162)

as can be seen from a direct calculation.
Example 5: In order to illustrate the preceding properties, let us consider the matrix

F02 =
1√
6

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1 1
q5 1 q q2 q3 q4

q2 q4 1 q2 q4 1
q3 1 q3 1 q3 1
q2 1 q4 q2 1 q4

q5 q4 q3 q2 q 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(163)

corresponding to d = 6 (⇒ q = eiπ/3), r = 0 and a = 2. It is a simple matter of trivial
calculation to check that the properties given above for Fra are satisfied by the matrix F02.
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4. Application to quantum information

4.1 Computational basis and standard SU(2) basis

In quantum information science, we use qubits which are indeed state vectors in the Hilbert
space C2. The more general qubit

|ψ2〉 = c0|0〉 + c1|1〉, c0 ∈ C, c1 ∈ C, |c0|2 + |c1|2 = 1 (164)

is a linear combination of the vectors |0〉 and |1〉 which constitute an orthonormal basis

B2 = {|0〉, |1〉} (165)

of C2. These two vectors can be considered as the basis vectors for the fundamental irreducible
representation class of SU(2), in the SU(2) ⊃ U(1) scheme, corresponding to j = 1/2 with

|0〉 ≡ |1/2, 1/2〉, |1〉 ≡ |1/2,−1/2〉 (166)

More generally, in d dimensions we use qudits of the form

|ψd〉 =
d−1

∑
n=0

cn|n〉, cn ∈ C, n = 0, 1, . . . , d − 1,
d−1

∑
n=0

|cn|2 = 1 (167)

where the vectors |0〉, |1〉, . . . , |d − 1〉 span an orthonormal basis of Cd with

〈n|n′〉 = δn,n′ (168)

By introducing

j =
1
2
(d − 1), m = n − 1

2
(d − 1), |j, m〉 = |d − 1 − n〉 (169)

(a change of notations equivalent to (68)), the qudits |n〉 can be viewed as the basis vectors
|j, m〉 for the irreducible representation class associated with j of SU(2) in the SU(2) ⊃ U(1)
scheme. More precisely, the correspondence between angular momentum states and qudits is

|0〉 ≡ |j, j〉, |1〉 ≡ |j, j − 1〉, . . . , |d − 1〉 ≡ |j,−j〉 (170)

where |j, j〉, |j, j − 1〉, . . . , |j,−j〉 are common eigenvectors of angular momentum operators
j2 and jz. In other words, the basis Bd (see (83)), known in quantum information as the
computational basis, may be identified to the SU(2) ⊃ U(1) standard basis or angular
momentum basis B2j+1 (see (31)). We shall see in section 4.2 that such an identification is
very useful when d is a prime number and does not seem to be very interesting when d is not
a prime integer. Note that the qudits |0〉, |1〉, . . . , |d − 1〉 are often represented by the column
vectors φ0, φ1, . . . , φd−1 (given by (94)), respectively.
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4.2 Mutually unbiased bases

The basis Bra given by (70) can serve as another basis for qudits. For arbitrary d, the couple
(Bra, Bd) exhibits an interesting property. For fixed d, r and a, Eq. (71) gives

∀n ∈ Z/dZ, ∀α ∈ Z/dZ : |〈n|aα; r〉| =
1√
d

(171)

Equation (171) shows that Bra and Bd are two unbiased bases.
Other examples of unbiased bases can be obtained for d = 2 and 3. We easily verify that the
bases Br0 and Br1 for d = 2 given by (58) are unbiased. Similarly, the bases Br0, Br1 and Br2 for
d = 3 given by (61) are mutually unbiased. Therefore, by combining these particular results
with the general result implied by (171) we end up with three MUBs for d = 2 and four MUBs
for d = 3, in agreement with NMUB = d + 1 when d is a prime number. The results for d = 2
and 3 can be generalized in the case where d is a prime number. This leads to the following
theorem (Albouy & Kibler, 2007; Kibler, 2008; Kibler & Planat, 2006).
Theorem 3. For d = p, with p a prime number, the bases Br0, Br1, . . ., Brp−1, Bp corresponding

to a fixed value of r form a complete set of p + 1 MUBs. The p2 vectors |aα; r〉 or φ(aα; r), with
a, α = 0, 1, . . . , p − 1, of the bases Br0, Br1, . . . , Brp−1 are given by a single formula, namely, Eq. (72)
or (93). The index r makes it possible to distinguish different complete sets of p + 1 MUBs.
The proof is as follows. First, according to (171), the computational basis Bp is unbiased with
any of the p bases Br0, Br1, . . . , Brp−1. Second, we get

〈aα; r|bβ; r〉 =
1
p

p−1

∑
k=0

qk(p−k)(b−a)/2+k(β−α) (172)

or

〈aα; r|bβ; r〉 =
1
p

p−1

∑
k=0

eiπ{(a−b)k2+[p(b−a)+2(β−α)]k}/p (173)

The right-hand side of (173) can be expressed in terms of a generalized quadratic Gauss sum.
This leads to

〈aα; r|bβ; r〉 =
1
p

S(u, v, w) (174)

where the Gauss sum S(u, v, w) is given by (160) with the parameters

u = a − b, v = −(a − b)p − 2(α − β), w = p (175)

which ensure that uw + v is even. The generalized Gauss sum S(u, v, w) in (174)-(175) can be
calculated from the methods described in (Berndt et al., 1998). We thus obtain

|〈aα; r|bβ; r〉| =
1√
p

(176)

for all a, b, α, and β in Z/pZ with b �= a. This completes the proof.
Theorem 3 renders feasible to derive in one step the (p + 1)p qupits (i.e., qudits with d = p a
prime integer) of a complete set of p + 1 MUBs in Cp. The single formula (72) or (93), giving
the p2 vectors |aα; r〉 or φ(aα; r), with a, α = 0, 1, . . . , p − 1, of the bases Br0, Br1, . . . , Brp−1, is
easily codable on a classical computer.
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Example 6: The p = 2 case. For r = 0, the p + 1 = 3 MUBs are

B00 :
|0〉 + |1〉√

2
, −|0〉 − |1〉√

2

B01 : i
|0〉 − i|1〉√

2
, −i

|0〉 + i|1〉√
2

(177)

B2 : |0〉, |1〉

cf. (59), (60), (100) and (101). The global factors −1 in B00 and ±i in B01 arise from the general
formula (72); they are irrelevant for quantum information and can be omitted.
Example 7: The p = 3 case. For r = 0, the p + 1 = 4 MUBs are

B00 :
|0〉 + |1〉 + |2〉√

3
,

q2|0〉 + q|1〉 + |2〉√
3

,
q|0〉 + q2|1〉 + |2〉√

3

B01 :
q|0〉 + q|1〉 + |2〉√

3
,

|0〉 + q2|1〉 + |2〉√
3

,
q2|0〉 + |1〉 + |2〉√

3
(178)

B02 :
q2|0〉 + q2|1〉 + |2〉√

3
,

q|0〉 + |1〉 + |2〉√
3

,
|0〉 + q|1〉 + |2〉√

3
B3 : |0〉, |1〉, |2〉

with q = ei2π/3, cf. (62), (63), (64), (106), (108) and (110).
As a simple consequence of Theorem 3, we get the following corollary which can be derived
by combining Theorem 3 with Eq. (154).
Corollary 2. For d = p, with p a prime number, the p × p matrix (Fra)†Frb with b �= a (a, b =
0, 1, . . . , p − 1) is a generalized Hadamard matrix.
Going back to arbitrary d, it is to be noted that for a fixed value of r, the d + 1 bases Br0, Br1, . . .,
Brd−1, Bd do not provide in general a complete set of d + 1 MUBs even in the case where d is
a power pe with e ≥ 2 of a prime integer p. However, it is possible to show (Kibler, 2009) that
the bases Bra, Bra⊕1 and Bd are three MUBs in Cd, in agreement with NMUB ≥ 3. Therefore for
d arbitrary, given two Hadamard matrices Fra and Fsb, the product Fra

†Fsb is not in general a
Hadamard matrix.
In the case where d is a power pe with e ≥ 2 of a prime integer p, tensor products of the
unbiased bases Br0, Br1, . . ., Brp−1 can be used for generating pe + 1 MUBs in dimension
d = pe. This can be illustrated with the following example.
Example 8: The d = 22 case. This case corresponds to a spin j = 3/2. The application of
(45) or (72) yields four bases B0a (a = 0, 1, 2, 3). As a point of fact, the five bases B00, B01, B02,
B03 and B4 do not form a complete set of d + 1 = 5 MUBs (d = 4 is not a prime number).
Nevertheless, it is possible to find five MUBs because d = 22 is the power of a prime number.
This can be achieved by replacing the space ǫ(4) spanned by

B4 = {|3/2, m〉 : m = 3/2, 1/2,−1/2,−3/2} or {|n〉 : n = 0, 1, 2, 3} (179)

by the tensor product space ǫ(2) ⊗ ǫ(2) spanned by the canonical or computational basis

B2 ⊗ B2 = {|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉} (180)
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The space ǫ(2) ⊗ ǫ(2) is associated with the coupling of two spin angular momenta j1 = 1/2
and j2 = 1/2 or two qubits (in the vector u ⊗ v, u and v correspond to j1 and j2, respectively).
Four of the five MUBs for d = 4 can be constructed from the direct products

|ab : αβ〉 = |aα; 0〉 ⊗ |bβ; 0〉 (181)

which are eigenvectors of the operators

wab = v0a ⊗ v0b (182)

(the operators v0a and v0b refer to the two spaces ǫ(2), the vectors of type |aα; 0〉 and |bβ; 0〉
are given by the master formula (72) for d = 2). Obviously, the set

B0a0b = {|ab : αβ〉 : α, β = 0, 1} (183)

is an orthonormal basis in C4. It is evident that B0000 and B0101 are two unbiased bases since
the modulus of the inner product of |00 : αβ〉 by |11 : α′β′〉 is

|〈00 : αβ|11 : α′β′〉| = |〈0α; 0|1α′; 0〉〈0β; 0|1β′; 0〉| =
1√
2

1√
2

=
1√
4

(184)

A similar result holds for the two bases B0001 and B0100. However, the four bases B0000, B0101,
B0001 and B0100 are not mutually unbiased. A possible way to overcome this no-go result is to
keep the bases B0000 and B0101 intact and to re-organize the vectors inside the bases B0001 and
B0100 in order to obtain four MUBs. We are thus left with four bases

W00 ≡ B0000, W11 ≡ B0101, W01, W10 (185)

which together with the computational basis B4 give five MUBs. Specifically, we have

W00 = {|00 : αβ〉 : α, β = 0, 1} (186)

W11 = {|11 : αβ〉 : α, β = 0, 1} (187)

W01 = {λ|01 : αβ〉 + μ|01 : α ⊕ 1β ⊕ 1〉 : α, β = 0, 1} (188)

W10 = {λ|10 : αβ〉 + μ|10 : α ⊕ 1β ⊕ 1〉 : α, β = 0, 1} (189)

where

λ =
1 − i

2
, μ =

1 + i

2
(190)

As a résumé, only two formulas are necessary for obtaining the d2 = 16 vectors for the bases
Wab, namely

W00, W11 : |aa : αβ〉 (191)

W01, W10 : λ|aa ⊕ 1 : αβ〉 + μ|aa ⊕ 1 : α ⊕ 1β ⊕ 1〉 (192)

for all a, α and β in Z/2Z. The five MUBs are listed below as state vectors and column vectors
with

|0〉 ≡ |j = 1/2, m = 1/2〉 or
(

1
0

)

, |1〉 ≡ |j = 1/2, m = −1/2〉 or
(

0
1

)

(193)
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The canonical basis:

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉

or in column vectors
⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

(194)

The W00 basis:

|00 : 00〉 = +
|0〉 + |1〉√

2
⊗ |0〉 + |1〉√

2
, |00 : 01〉 = −|0〉 + |1〉√

2
⊗ |0〉 − |1〉√

2

|00 : 10〉 = −|0〉 − |1〉√
2

⊗ |0〉 + |1〉√
2

, |00 : 11〉 = +
|0〉 − |1〉√

2
⊗ |0〉 − |1〉√

2

or in developed form

|00 : 00〉 = +
1
2
(|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

|00 : 01〉 = −1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00 : 10〉 = −1
2
(|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|00 : 11〉 = +
1
2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

or in column vectors

1
2

⎛

⎜

⎜

⎝

1
1
1
1

⎞

⎟

⎟

⎠

, −1
2

⎛

⎜

⎜

⎝

1
−1
1
−1

⎞

⎟

⎟

⎠

, −1
2

⎛

⎜

⎜

⎝

1
1
−1
−1

⎞

⎟

⎟

⎠

,
1
2

⎛

⎜

⎜

⎝

1
−1
−1
1

⎞

⎟

⎟

⎠

(195)

The W11 basis:

|11 : 00〉 = −|0〉 − i|1〉√
2

⊗ |0〉 − i|1〉√
2

, |11 : 01〉 = +
|0〉 − i|1〉√

2
⊗ |0〉 + i|1〉√

2

|11 : 10〉 = +
|0〉 + i|1〉√

2
⊗ |0〉 − i|1〉√

2
, |11 : 11〉 = −|0〉 + i|1〉√

2
⊗ |0〉 + i|1〉√

2

or in developed form

|11 : 00〉 = −1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

|11 : 01〉 = +
1
2
(|0〉 ⊗ |0〉 + i|0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

|11 : 10〉 = +
1
2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 + i|1〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

|11 : 11〉 = −1
2
(|0〉 ⊗ |0〉 + i|0〉 ⊗ |1〉 + i|1〉 ⊗ |0〉 − |1〉 ⊗ |1〉)
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or in column vectors

− 1
2

⎛

⎜

⎜

⎝

1
−i
−i
−1

⎞

⎟

⎟

⎠

,
1
2

⎛

⎜

⎜

⎝

1
i
−i
1

⎞

⎟

⎟

⎠

,
1
2

⎛

⎜

⎜

⎝

1
−i
i
1

⎞

⎟

⎟

⎠

, −1
2

⎛

⎜

⎜

⎝

1
i
i
−1

⎞

⎟

⎟

⎠

(196)

The W01 basis:

λ|01 : 00〉 + μ|01 : 11〉 = +μ
|0〉 + |1〉√

2
⊗ |0〉 − i|1〉√

2
− λ

|0〉 − |1〉√
2

⊗ |0〉 + i|1〉√
2

μ|01 : 00〉 + λ|01 : 11〉 = −λ
|0〉 + |1〉√

2
⊗ |0〉 − i|1〉√

2
+ μ

|0〉 − |1〉√
2

⊗ |0〉 + i|1〉√
2

λ|01 : 01〉 + μ|01 : 10〉 = −μ
|0〉 + |1〉√

2
⊗ |0〉 + i|1〉√

2
+ λ

|0〉 − |1〉√
2

⊗ |0〉 − i|1〉√
2

μ|01 : 01〉 + λ|01 : 10〉 = +λ
|0〉 + |1〉√

2
⊗ |0〉 + i|1〉√

2
− μ

|0〉 − |1〉√
2

⊗ |0〉 − i|1〉√
2

or in developed form

λ|01 : 00〉 + μ|01 : 11〉 = +
i

2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

μ|01 : 00〉 + λ|01 : 11〉 = +
i

2
(|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 + i|1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

λ|01 : 01〉 + μ|01 : 10〉 = − i

2
(|0〉 ⊗ |0〉 + |0〉 ⊗ |1〉 − i|1〉 ⊗ |0〉 + i|1〉 ⊗ |1〉)

μ|01 : 01〉 + λ|01 : 10〉 = − i

2
(|0〉 ⊗ |0〉 − |0〉 ⊗ |1〉 + i|1〉 ⊗ |0〉 + i|1〉 ⊗ |1〉)

or in column vectors

i

2

⎛

⎜

⎜

⎝

1
−1
−i
−i

⎞

⎟

⎟

⎠

,
i

2

⎛

⎜

⎜

⎝

1
1
i
−i

⎞

⎟

⎟

⎠

, − i

2

⎛

⎜

⎜

⎝

1
1
−i
i

⎞

⎟

⎟

⎠

, − i

2

⎛

⎜

⎜

⎝

1
−1

i
i

⎞

⎟

⎟

⎠

(197)

The W10 basis:

λ|10 : 00〉 + μ|10 : 11〉 = +μ
|0〉 − i|1〉√

2
⊗ |0〉 + |1〉√

2
− λ

|0〉 + i|1〉√
2

⊗ |0〉 − |1〉√
2

μ|10 : 00〉 + λ|10 : 11〉 = −λ
|0〉 − i|1〉√

2
⊗ |0〉 + |1〉√

2
+ μ

|0〉 + i|1〉√
2

⊗ |0〉 − |1〉√
2

λ|10 : 01〉 + μ|10 : 10〉 = −μ
|0〉 − i|1〉√

2
⊗ |0〉 − |1〉√

2
+ λ

|0〉 + i|1〉√
2

⊗ |0〉 + |1〉√
2

μ|10 : 01〉 + λ|10 : 10〉 = +λ
|0〉 − i|1〉√

2
⊗ |0〉 − |1〉√

2
− μ

|0〉 + i|1〉√
2

⊗ |0〉 + |1〉√
2
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or in developed form

λ|10 : 00〉 + μ|10 : 11〉 = +
i

2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

μ|10 : 00〉 + λ|10 : 11〉 = +
i

2
(|0〉 ⊗ |0〉 + i|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 − i|1〉 ⊗ |1〉)

λ|10 : 01〉 + μ|10 : 10〉 = − i

2
(|0〉 ⊗ |0〉 + i|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉 + i|1〉 ⊗ |1〉)

μ|10 : 01〉 + λ|10 : 10〉 = − i

2
(|0〉 ⊗ |0〉 − i|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 + i|1〉 ⊗ |1〉)

or in column vectors

i

2

⎛

⎜

⎜

⎝

1
−i
−1
−i

⎞

⎟

⎟

⎠

,
i

2

⎛

⎜

⎜

⎝

1
i
1
−i

⎞

⎟

⎟

⎠

, − i

2

⎛

⎜

⎜

⎝

1
i
−1

i

⎞

⎟

⎟

⎠

, − i

2

⎛

⎜

⎜

⎝

1
−i
1
i

⎞

⎟

⎟

⎠

(198)

The five preceding bases are of central importance in quantum information for expressing any
ququart or quartic (corresponding to d = 4) in terms of qudits (corresponding to d = 2). It
is to be noted that the vectors of the W00 and W11 bases are not intricated (i.e., each vector is
the direct product of two vectors) while the vectors of the W01 and W10 bases are intricated
(i.e., each vector is not the direct product of two vectors). To be more precise, the degree of
intrication of the state vectors for the bases W00, W11, W01 and W10 can be determined in the
following way. In arbitrary dimension d, let

|Φ〉 =
d−1

∑
k=0

d−1

∑
l=0

akl |k〉 ⊗ |l〉 (199)

be a double qudit state vector. Then, it can be shown that the determinant of the d × d matrix
A = (akl) satisfies

0 ≤ |det A| ≤ 1√
dd

(200)

as discussed in (Albouy, 2009). The case det A = 0 corresponds to the absence of global
intrication while the case

|det A| =
1√
dd

(201)

corresponds to a maximal intrication. As an illustration, we obtain that all the state vectors for
W00 and W11 are not intricated and that all the state vectors for W01 and W10 are maximally
intricated.
Generalization of (191) and (192) can be obtained in more complicated situations (two qupits,
three qubits, . . . ). The generalization of (191) is immediate. The generalization of (192) can be
achieved by taking linear combinations of vectors such that each linear combination is made
of vectors corresponding to the same eigenvalue of the relevant tensor product of operators
of type v0a.
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4.3 Mutually unbiased bases and Lie agebras

4.3.1 Generalized Pauli matrices

We now examine the interest for quantum information of the Weyl pair (X, Z) introduced in
section 3.1.4. The linear operators x and z corresponding to the matrices X and Z are known
in quantum information and quantum computing as shift and clock operators, respectively.
(Note however that for each of the operators x and z, the shift or clock character depends
on which state the operator acts. The qualification adopted in quantum information and
quantum computing corresponds to the action of x and z on the computational basis Bd.)
For d arbitrary, they are at the root of the Pauli group Pd, a finite subgroup of U(d) (see section
3.1.4). The normaliser of Pd in U(d) is a Clifford-type group in d dimensions noted Cld. More
precisely, Cld is the set {U ∈ U(d)|UPdU† = Pd} endowed with matrix multiplication (the
elements of Pd being expressed in terms of the matrices X and Z). The Pauli group Pd, as well
as any other invariant subgroup of Cld, is of considerable importance for describing quantum
errors and quantum fault tolerance in quantum computing (see (Havlíček & Saniga, 2008;
Planat, 2010; Planat & Kibler, 2010) and references therein for recent geometrical approaches
to the Pauli group). These concepts are very important in the case of n-qubit systems
(corresponding to d = 2n).
The Weyl pair (X, Z) turns out to be an integrity basis for generating the set {XaZb : a, b ∈
Z/dZ} of d2 generalized Pauli matrices in d dimensions (see for instance (Bandyopadhyay et
al., 2002; Gottesman et al., 2001; Kibler, 2008; Lawrence et al., 2002; Pittenger & Rubin, 2004)
in the context of MUBs and (Balian & Itzykson, 1986; Patera & Zassenhaus, 1988; Št’ovíček &
Tolar, 1984) in group-theoretical contexts). As seen in section 3.1.4, the latter set constitutes
a basis for the Lie algebra of the linear group GL(d, C) (or its unitary restriction U(d)) with
respect to the commutator law. Let us give two examples of these important generalized Pauli
matrices.
Example 9: The d = 2 case. For d = 2 ⇔ j = 1/2 (⇒ q = −1), the matrices of the four
operators uab with a, b = 0, 1 are

I2 = X0Z0, X = X1Z0, Y = X1Z1, Z = X0Z1 (202)

or in terms of the matrices V0a

I2 = (V00)
2, X = V00, Y = V01, Z = (V00)

†V01 (203)

In detail, we get

I2 =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Y =

(

0 −1
1 0

)

, Z =

(

1 0
0 −1

)

(204)

Alternatively, we have

I2 = σ0, X = σx, Y = −iσy, Z = σz (205)

in terms of the usual (Hermitian and unitary) Pauli matrices σ0, σx, σy and σz

σ0 =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

(206)

The approach developed here leads to generalized Pauli matrices in dimension 2 that differ
from the usual Pauli matrices. This is the price one has to pay in order to get a systematic

132 Fourier Transforms - Approach to Scientific Principles

www.intechopen.com



generalization of Pauli matrices in arbitrary dimension. It should be observed that the
commutation and anti-commutation relations given by (133) and (134) with d = 2 correspond
to the well-known commutation and anti-commutation relations for the usual Pauli matrices
transcribed in the normalization X1Z0 = σx, X1Z1 = −iσy, X0Z1 = σz.
From a group-theoretical point of view, the matrices I2, X, Y and Z can be considered as
generators of the group U(2). On the other hand, the Pauli group P2 contains eight elements;
due to the factor −i in Y = −iσy, the group P2 is isomorphic to the group of hyperbolic
quaternions rather than to the group of ordinary quaternions.
In terms of column vectors, the vectors of the bases B00, B01 and B2 (see (177)) are eigenvectors
of σx, σy and σz, respectively (for each matrix the eigenvalues are 1 and −1).
Example 10: The d = 3 case. For d = 3 ⇔ j = 1 (⇒ q = ei2π/3), the matrices of the nine
operators uab with a, b = 0, 1, 2, viz.,

X0Z0 = I3, X1Z0 = X, X2Z0 = X2

X0Z1 = Z, X0Z2 = Z2, X1Z1 = XZ (207)

X2Z2, X2Z1 = X2Z, X1Z2 = XZ2

are

I3 =

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ , X =

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠ , X2 =

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠

Z =

⎛

⎝

1 0 0
0 q 0
0 0 q2

⎞

⎠ , Z2 =

⎛

⎝

1 0 0
0 q2 0
0 0 q

⎞

⎠ , XZ =

⎛

⎝

0 q 0
0 0 q2

1 0 0

⎞

⎠ (208)

X2Z2 =

⎛

⎝

0 0 q
1 0 0
0 q2 0

⎞

⎠ , X2Z =

⎛

⎝

0 0 q2

1 0 0
0 q 0

⎞

⎠ , XZ2 =

⎛

⎝

0 q2 0
0 0 q
1 0 0

⎞

⎠

The generalized Pauli matrices (208) differ from the Gell-Mann matrices used in elementary
particle physics. They constitute another extension of the Pauli matrices in dimension d = 3
of interest for the Lie group U(3) and the Pauli group P3.
In terms of column vectors, the vectors of the bases B00, B01, B02 and B3 (see (178)) are
eigenvectors of X, XZ, XZ2 and Z, respectively (for each matrix the eigenvalues are 1, q and
q2).

4.3.2 MUBs and the special linear group

In the case where d is a prime integer or a power of a prime integer, it is known that the
set {XaZb : a, b = 0, 1, . . . , d − 1}\{X0Z0} of cardinality d2 − 1 can be partitioned into d + 1
subsets containing each d − 1 commuting matrices (cf. (Bandyopadhyay et al., 2002)). Let us
give an example before going to the case where d is an arbitrary prime number.
Example 11: The d = 5 case. For d = 5, we have the six following sets of four commuting
matrices

V0 = {01, 02, 03, 04}, V1 = {10, 20, 30, 40}
V2 = {11, 22, 33, 44}, V3 = {12, 24, 31, 43} (209)

V4 = {13, 21, 34, 42}, V5 = {14, 23, 32, 41}
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where ab is used as an abbreviation of XaZb.
Proposition 16. For d = p with p a prime integer, the p + 1 sets of p − 1 commuting matrices are
easily seen to be

V0 = {X0Za : a = 1, 2, . . . , p − 1}
V1 = {XaZ0 : a = 1, 2, . . . , p − 1}
V2 = {XaZa : a = 1, 2, . . . , p − 1}
V3 = {XaZ2a : a = 1, 2, . . . , p − 1} (210)

...

Vp−1 = {XaZ(p−2)a : a = 1, 2, . . . , p − 1}
Vp = {XaZ(p−1)a : a = 1, 2, . . . , p − 1}

Each of the p + 1 sets V0,V1, . . . ,Vp can be put in a one-to-one correspondance with one basis of the
complete set of p + 1 MUBs. In fact, V0 is associated with the computational basis Bp; furthermore, in
view of

V0a ∈ Va+1 = {XbZab : b = 1, 2, . . . , p − 1}, a = 0, 1, . . . , p − 1 (211)

it follows that V1, V2, . . ., Vp are associated with the p remaining MUBs B00, B01, . . ., B0p−1,
respectively.
Keeping into account the fact that the set {XaZb : a, b = 0, 1, . . . , p − 1} \ {X0Z0} spans the Lie
algebra of the special linear group SL(p, C), we have the next theorem.
Theorem 4. For d = p with p a prime integer, the Lie algebra sl(p, C) of the group SL(p, C) can be
decomposed into a sum (vector space sum indicated by ⊎) of p + 1 abelian subalgebras each of dimension
p − 1, i.e.,

sl(p, C) � v0 ⊎ v1 ⊎ . . . ⊎ vp (212)

where the p + 1 subalgebras v0, v1, . . . , vp are Cartan subalgebras generated respectively by the sets
V0,V1, . . . ,Vp containing each p − 1 commuting matrices.
The latter result can be extended when d = pe with p a prime integer and e an integer (e ≥ 2):
there exists a decomposition of sl(pe, C) into pe + 1 abelian subalgebras of dimension pe − 1
(cf. (Boykin et al., 2007; Kibler, 2009; Patera & Zassenhaus, 1988)).

5. Conclusion

The quadratic discrete Fourier transform studied in this chapter can be considered as a
two-parameter extension, with a quadratic term, of the usual discrete Fourier transform.
In the case where the two parameters are taken to be equal to zero, the quadratic discrete
Fourier transform is nothing but the usual discrete Fourier transform. The quantum quadratic
discrete Fourier transform plays an important role in the field of quantum information. In
particular, such a transformation in prime dimension can be used for obtaining a complete
set of mutually unbiased bases. It is to be mentioned that the quantum quadratic discrete
Fourier transform also arises in the determination of phase operators for the groups SU(2)
and SU(1, 1) in connection with the representations of a generalized oscillator algebra
(Atakishiyev et al., 2010; Daoud & Kibler, 2010). As an open question, it should be worth
investigating the relation between the quadratic discrete Fourier transform and the Fourier
transform on a finite ring or a finite field.
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7. Appendix: Wigner-Racah algebra of SU(2) in the {j2, x} scheme

In this self-contained Appendix, the bar does not indicate complex conjugation. Here,
complex conjugation is denoted with a star.
The Wigner-Racah algebra of the group SU(2) in the SU(2) ⊃ U(1) or {j2, jz} scheme is
well known. It corresponds to the use of bases of type B2j+1 resulting from the simultaneous
diagonalization of the Casimir operator j2 and of the Cartan generator jz of SU(2). Any change
of basis of type

|j, μ〉 =
j

∑
m=−j

|j, m〉〈j, m|j, μ〉 (213)

(where for fixed j the elements 〈j, m|j, μ〉 define a (2j + 1) × (2j + 1) unitary matrix) leads
to another acceptable scheme for the Wigner-Racah algebra of SU(2). In this scheme, the
matrices of the irreducible representation classes of SU(2) take a new form as well as the
coupling coefficients (and the associated 3 − jm symbols). For instance, the Clebsch-Gordan
or coupling coefficients (j1 j2m1m2|jm) are simply replaced by

(j1 j2μ1μ2|jμ) =
j1

∑
m1=−j1

j2

∑
m2=−j2

j

∑
m=−j

(j1 j2m1m2|jm)

〈j1, m1|j1, μ1〉∗ 〈j2, m2|j2, μ2〉∗ 〈j, m|j, μ〉 (214)

when passing from the {jm} quantization to the {jμ} quantization while the recoupling
coefficients, and the corresponding 3(n − 1)− j symbols, for the coupling of n (n ≥ 3) angular
momenta remain invariant. The adaptation to the {jμ} quantization scheme afforded by
Eq. (213) is transferable to SU(2) irreducible tensor operators. This yields the Wigner-Eckart
theorem in the {jμ} scheme.
We give here the basic ingredients for developing the Wigner-Racah algebra of SU(2) in the
{j2, v00} or {j2, x} scheme. For such a scheme, the vector |j, μ〉 is of the form |jα; 00〉 so that
the label μ can be identified with α. Thus, the inter-basis expansion coefficients 〈j, m|j, μ〉 are

〈j, m|jα; 00〉 =
1

√

2j + 1
q(j+m)α =

1
√

2j + 1
exp

[

2πi
2j + 1

(j + m)α

]

(215)

with m = j, j − 1, . . . ,−j and α = 0, 1, . . . , 2j. Equation (215) corresponds to the unitary
transformation (45) with r = a = 0, that allows to pass from the standard basis B2j+1 to
the nonstandard basis B00. Then, the Clebsch-Gordan coefficients in the {j2, v00} scheme are

(j1 j2α1α2|j3α3) =
1

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

j1

∑
m1=−j1

j2

∑
m2=−j2

j3

∑
m3=−j3

(q1)
−(j1+m1)α1 (q2)

−(j2+m2)α2 (q3)
(j3+m3)α3 (j1 j2m1m2|j3m3) (216)
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where the various qk are given in terms of jk by

qk = exp
(

2πi
2jk + 1

)

, k = 1, 2, 3 (217)

The symmetry properties of the coupling coefficients (j1 j2α1α2|j3α3) cannot be expressed in
a simple way (except the symmetry under the interchange j1α1 ↔ j2α2). Therefore, it is
interesting to introduce the following f symbol through

f

(

j1 j2 j3
α1 α2 α3

)

=
1

√

(2j1 + 1)(2j2 + 1)(2j3 + 1)

j1

∑
m1=−j1

j2

∑
m2=−j2

j3

∑
m3=−j3

(q1)
−(j1+m1)α1 (q2)

−(j2+m2)α2 (q3)
−(j3+m3)α3

(

j1 j2 j3
m1 m2 m3

)

(218)

where the 3 − jm symbol on the right-hand side of (218) is an ordinary Wigner symbol for the
group SU(2) in the {j2, jz} scheme. (The f symbol is to the {j2, x} scheme what the V symbol
of Fano and Racah is to the {j2, jz} scheme, up to a permutation.) The f symbol exhibits the
same symmetry properties under permutations of its columns as the 3 − jm Wigner symbol
(identical to the V symbol up to a phase factor): Its value is multiplied by (−1)j1+j2+j3 under
an odd permutation and does not change under an even permutation. In contrast to the 3− jm
symbol, not all the values of the f symbol are real. In this respect, the f symbol behaves under
complex conjugation as

f

(

j1 j2 j3
α1 α2 α3

)∗
= (−1)j1+j2+j3 (q1)

α1 (q2)
α2 (q3)

α3 f

(

j1 j2 j3
α1 α2 α3

)

(219)

Other properties (e.g., orthogonality properties, connection with the Clebsch-Gordan
coefficients and the Herring-Wigner tensor, etc.) of the f symbol and its relations with
3(n − 1) − j symbols for n ≥ 3 can be derived along the lines developed in (Kibler, 1968).
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Durt, T.; Englert, B.-G.; Bengtsson, I. & Życkowski, K. (2010). On mutually unbiased bases.
Internat. J. Quantum Info., 8, (2010) 535–640

Englert, B.-G. & Aharonov, Y. (2001). The mean king’s problem: prime degrees of freedom.
Phys. Lett. A, 284, (2001) 1–5

Fairlie, D.B.; Fletcher, P. & Zachos, C.K. (1990). Infinite-dimensional algebras and a
trigonometric basis for the classical Lie-algebras. J. Math. Phys., 31, (1990) 1088–1094

Gibbons, K.S.; Hoffman, M.J. & Wootters, W.K. (2004). Discrete phase space based on finite
fields. Phys. Rev. A, 70, (2004) 062101

Gottesman, D.; Kitaev, A. & Preskill, J. (2001). Encoding a qubit in an oscillator. Phys. Rev. A,
64, (2001) 012310

Grassl, M. (2005). Tomography of quantum states in small dimensions. Elec. Notes Discrete
Math., 20, (2005) 151–164
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1. Introduction  

The A DFT (Discrete Fourier Transform) has seen studied and applied to signal processing 

and communication theory. The relation between the Fourier matrix and the Hadamard 

transform was developed in [Ahmed & Rao, 1975; Whelchel & Guinn, 1968] for signal 

representation and classification and the Fast Fourier-Hadamand Transform(FFHT) was 

proposed. This idea was further investigated in [Lee & Lee, 1998] as an extension of the 

conventional Hadamard matrix. Lee et al [Lee & Lee, 1998] has proposed the Reverse Jacket 

Transform(RJT) based on the decomposition of the Hadamard matrix into the Hadamard 

matrix(unitary matrix) itself and a sparse matrix. Interestingly, the Reverse Jacket(RJ) matrix 

has a strong geometric structure that reveals a circulant expansion and contraction 

properties from a basic 2x2 sparse matrix.  

The discrete Fourier transform (DFT) is an orthogonal matrix with highly practical value 

for representing signals and images [Ahmed & Rao, 1975; Lee, 1992; Lee, 2000]. Recently, 

the Jacket matrices which generalize the weighted Hadamard matrix were introduced in 

[Lee, 2000], [Lee & Kim, 1984, Lee, 1989, Lee & Yi, 2001; Fan & Yang, 1998]. The Jacket 

matrix1 is an abbreviated name of a reverse Jacket geometric structure. It includes the 

conventional Hadamard matrix [Lee, 1992; Lee, 2000; Lee et al., 2001; Hou et. al., 2003], 

but has the weights,ω , that are j  or 2k , where k  is an integer, and 1j = − , located in 

the central part of Hadamard matrix. The weighted elements' positions of the forward 

matrix can be replaced by the non-weighted elements of its inverse matrix and the signs 

of them do not change between the forward and inverse matrices, and they are only as 

element inverse and transpose. This reveals an interesting complementary matrix 

relation.  

Definition 1: If a matrix 
m

J⎡ ⎤⎣ ⎦  of size m m×  has nonzero elements  

 

0,0 0,1 0, 1

1,0 1,1 1, 1

1,0 1,1 1, 1

....

....

....

m

m

m

m m m m

j j j

j j j
J

j j j

−
−

− − − −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
B B B

,  (6-1) 
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0,0 0,1 0, 1

1 1,0 1,1 1, 1

1,0 1,1 1, 1

1 / 1 / .... 1 /

1 / 1 / .... 1 /1

1 / 1 / .... 1 /

T

m

m

m

m m m m

j j j

j j j
J

C

j j j

−
− −

− − − −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
B B B

    (6-2) 

where C  is the normalizing constant, and T  is of matrix transposition, then the matrix 
m

J⎡ ⎤⎣ ⎦  

is called a Jacket matrix [Whelchel & Guinn, 1968],[Lee et al., 2001],[Lee et al, 2008; Chen et 

al., 2008]. Especially orthogonal matrices, such as Hadamard, DFT, DCT, Haar, and Slant 

matrices belong to the Jacket matrices family [Lee et al., 2001]. In addition, the Jacket 

matrices are associated with many kind of matrices, such as unitary matrices, and Hermitian 

matrices which are very important in communication (e.g., encoding), mathematics, and 

physics. 
In section 2 DFT matrix is revisited in the sense of sparse matrix factorization. Section 3 

presents recursive factorization algorithms of DFT and DCT matrix for fast computation. 

Section 4 proposes a hybrid architecture for implentation of algorithms simply by adding a 

switching device on a single chip module. Lastly, conclusions were drawn in section 4. 

2. Preliminary of DFT presentation  

The discrete Fourier transform (DFT) is a Fourier representation of a given sequence x(m), 

0 1m N≤ ≤ −  and is defined as 

 
1

0

( ) ( ) , 0 1
N

nm

m

X n x m W n N
−
=

= ≤ ≤ −∑  ,  (6-3) 

where 
2

j
NW e

−= π
. Let’s denote N -point DFT matrix as nm

N
N

F W⎡ ⎤= ⎣ ⎦ , , {0,1,2,..., 1}n m N= − , 

where 
2

j
NW e

−= π
 (see about DFT in appendix), and the N N×  Sylvester Hadamard matrix 

as 
N

H⎡ ⎤⎣ ⎦ , respectively.  The Sylvester Hadamard matrix is generated recursively by 

successive Kronecker products, 

  
22 NN

H H H= ⊗⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  ,    (6-4) 

for N=4, 8, 16, … and 
2

1 1

1 1
H

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦ . For the remainder of this chapter, analysis will be 

concerned only with N=2k, k=1,2,3, … as the dimensionality of both the F and H matrices.  

Definition 2: A sparse matrix
N

S⎡ ⎤⎣ ⎦ , which relates 
N

F⎡ ⎤⎣ ⎦  and
N

H⎡ ⎤⎣ ⎦ , can be computed from the 

factorization of F based on H.  
The structure of the S matrix is rather obscure. However, a much less complex and more 

appealing relationship will be identified for S [Park et al., 1999]. 

To illustrate the DFT using direct product we alter the denotation of W to lower case 
2jw e−= π , so that 

n
Nw  becomes the n-th root of unit for N -point W . For instance, the DFT 

matrix of dimension 2 is given by: 
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0 0
2 2

2 0 21
2 2

1 1

1 1

w w
F H

w w

⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎡ ⎤ ⎡ ⎤⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ −⎣ ⎦⎣ ⎦
 .   (6-5) 

Let’s define 

  

0
4

2 1
4

1 00

00

w
W

jw

⎡ ⎤ ⎡ ⎤⎢ ⎥= =⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ −⎣ ⎦⎣ ⎦
 and 

2 2 2

1

1

j
E F W

j

−⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,  (6-6) 

and in general,    We define  

( )1 /20/2 1/2 2/2( , , ,..., )
N NN N N

N
W diag w w w w

−=⎡ ⎤⎣ ⎦  

and  

 [ ] [ ] [ ]T
N N NN N N

E F W P F W= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ # .    (6-7) 

where [ ]NP is a permutation matrix and [ ] [ ] [ ]N N NF P F=#  is a permuted version of DFT 

matrix [ ]NF . 

3. A sparse matrix factorization of orthogonal transforms 

3.1 A sparse matrix analysis of discrete Fourier transform 

Now we will present the Jacket matrix from a direct product of a sparse matrix computation 
and representation given by [Lee, 1989], [Lee & Finlayson, 2007] 

 
1

m m m
J H S

m
=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,    (6-8) 

where 12 , {1,2,3,4,...}km k+= ∈  and 
m

S⎡ ⎤⎣ ⎦  is sparse matrix of 
m

J⎡ ⎤⎣ ⎦ . Thus the inverse of the 

Jacket matrix can be simply written as  

 ( ) ( )1 1

m m m
J S H

− −=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .  (6-9) 

As mentioned previously, the DFT matrix is also a Jacket matrix. By considering the sparse 

matrix for the 4-piont DFT matrix
4

F⎡ ⎤⎣ ⎦ ,  

0 0 0 0

2 3
2 2 20 1 2 3

2 4 64 0 2 4 6
2 2 2

0 3 6 9

3 6 9
2 2 2

1 1 1 1
1 1 1 1

1 1 1

1 1 1 11
1 1

1

j j j

j j j

j j j

W W W W
e e eW W W W j j

F
W W W W e e e

j jW W W W
e e e

− − × − ×

− × − × − ×

− × − × − ×

⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

π π π

π π π

π π π

. 

we can rewrite  
4

F⎡ ⎤⎣ ⎦  by using permutations as  
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2 2

4 44
2 2

1 0 0 0 1 1 1 1 1 1 1 1

0 0 1 0 1 1 1 1 1 1 [ ] [ ]
Pr

0 1 0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

j j F F
F F

j j E E

j j j j

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ = = = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# ##  

 2 2 2

2 2 2

[ ] 0

0

T

I I F

I I E

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟= ⎢ ⎥⎢ ⎥⎜ ⎟− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
#

,   (6-10) 

where 2

1

1

j
E

j

−⎡ ⎤= ⎢ ⎥⎣ ⎦ , its inverse matrix is from element-inverse, such that 

 ( ) 1

2

1 1 1 /1 1 /

1 /1 1 /

T
j

E
j j j

− ⎛ ⎞−⎡ ⎤ ⎡ ⎤= = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠ .    (6-11) 

In general, we can write that  

 
/2 /2/2 /2 /2

/2 /2/2 /2 /2

[ ] [ ] [ ] 0
Pr

0

T

N NN N N

N NN
N NN N N

I IF F F
F F

I IE E E

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎜ ⎟= = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟−−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
# # #

# ,  (6-12) 

where 
2 2

F F⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦# . And the submatrix NE  could be written from (6-7) by  

 [ ] [ ] PrN NN N NN
E F W F W⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦# ,    (6-13) 

where 

0

1

1

0 0

0 0

0 0

N

N

W

W
W

W −

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A

B D B
A

, and W  is the complex unit for 2N  point DFT matrix.  

For example, 
2

1

1

j
E

j

−⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦  can be calculated by using  

 
0

12 2 22

1 0 1 1 1 1 1 0 10
Pr

0 1 1 1 1 1 0 10

jW
E F W

j jW

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ − − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
# .  (6-14) 

By using the results from (6-12) and (6-13), we have a new DFT matrix decomposition as  

/2 /2 /2

/2 /2 /2

[ ] 0
Pr

0

T

N N N

N NN
N N N

I I F
F F

I I E

⎛ ⎞⎡ ⎤⎡ ⎤⎡ ⎤ ⎜ ⎟= =⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
#

#  

/2 /2/2

/2 /2/2

[ ] 0

0

N NN

N NN

I IF

I IE

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦
#
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/2 /2 /2

/2 /2/2 /2 /2

[ ] 0

0 Pr [ ]

N N N

N
N NN N N

F I I
F

I IF W

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎣ ⎦⎣ ⎦
#

#
#  

   
/2 /2 /2 /2 /2

/2 /2 /2 /2/2

0 [ ] 0 0

0 Pr 00 [ ]

N N N N N

N N N NN

I F I I I

W I IF

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
#

# .   (6-15) 

Finally, based on the recursive form we have  

( ) ( )1 /2 /2 /2 /2 /2

/2 /2 /2 /2/2

0 [ ] 0 0
Pr Pr

0 Pr 00 [ ]

T N N N N N

N N NN
N N N NN

I F I I I
F F

W I IF

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
#

#
#  

 

( ) /2 2
/4 /2 2

/2 2

/2 /2 /22 2 2

/4 /4
/2 /2 /22 2 2

0 0
Pr ...

0 Pr 0 Pr

00
..

00

T N

N N N
N

N N N

N N
N N N

I I
I I F

I I II I I
I I

W I IW I I

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

. (6-16) 

Using (6-16) butterfly data flow diagram for DFT transform is drawn from left to right to 

perform [ ]NX F= x . 

 

2/Pr
N

4/Pr
N

4/Pr
N

2Pr

2Pr

2Pr

2Pr

[ ]2F
0

W

4/N
W

[ ]2W

0
W

0
W

2
W

22/ −N
W

...

0
W

2
W

22/ −N
W

...

[ ] 4/NW

0
W

1
W

12/ −N
W

2
W

3
W

...

[ ] 2/NW

4/N
W

0
W

0
W

4/N
W

4/N
W

 

Fig. 1.  Butterfly data flow diagram of proposed DFT matrix with order N 

3.2 A Sparse matrix analysis of discrete cosine transform 

Similar to the section 3.1, we will present the DCT matrices by using the element inverse or 
block inverse Jacket like sparse matrix [Lee, 2000; Park et al., 1999] decomposition. In this 
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section, the simple construction and fast computation for forward and inverse calculations 
and analysis of the sparse matrices, was very useful for developing the fast algorithms and 
orthogonal codes design.  
Discrete Cosine Transform (DCT) is widely used in image processing, and orthogonal 
transform. There are four typical DCT matrices [Rao & Yip, 1990; Rao & Hwang, 1996],  

 DCT - I: 1
,

2
cosI

N m n
m n

mn
C k k

N N
+⎡ ⎤ =⎣ ⎦ π

,  , 0,1,...,m n N=   ;   (6-17) 

 DCT - II: 
,

1
( )

2 2cos
N

II
m

m n

m n
C k

N N

+⎡ ⎤ =⎣ ⎦
π

,  , 0,1,..., 1m n N= −   ;   (6-18) 

 DCT - III: 
,

1
( )

2 2cos
N

III
n

m n

m n
C k

N N

+⎡ ⎤ =⎣ ⎦
π

,  , 0,1,..., 1m n N= −   ;  (6-19) 

 DCT - IV: 
,

1 1
( )( )

2 2 2cos
N

IV

m n

m n
C

N N

+ +⎡ ⎤ =⎣ ⎦
π

,  , 0,1,..., 1m n N= −   ,  (6-20) 

where  

1, 1,2,..., 1

1
, 0,

2

j

j N

k
j N

= −⎧⎪= ⎨ =⎪⎩
.  

To describe the computations of DCT, in this chapter, we will focus on the DCT - II 
algorithm, and introduce the sparse matrix decomposition and fast computations.  
The 2-by-2 DCT - II matrix can be simply written as  

  
2

1 3
4 4

1 1
1 1

1 1 12 2
2 2

1 1 1 1 2

2 2

C

C C

⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = =⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ −⎢ ⎥ ⎣ ⎦−⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
,   (6-21) 

where 1 2  can be seen as a special element inverse matrix of order 1, its inverse is 2 , 

and cos( / )i
lC i l= π  is the cosine unit for DCT computations.   

Furthermore, 4-by-4 DCT - II matrix is of the form  

  
1 3 5 7
8 8 8 84
2 6 6 2
8 8 8 8

3 7 1 5
8 8 8 8

1 1 1 1

2 2 2 2

C C C CC

C C C C

C C C C

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

,   (6-22) 

www.intechopen.com



Orthogonal Discrete Fourier and Cosine Matrices for Signal Processing   

 

145 

we can write  

  
1 3 5 7 2 6 6 2
8 8 8 8 8 8 8 84 4
2 6 6 2 1 3 5 7
8 8 8 8 8 8 8 8

3 7 1 5 3 7 1 5
8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1
1 0 0 0

2 2 2 2 2 2 2 2
0 0 1 0

0 1 0 0

0 0 0 1

C C C C C C C CP C

C C C C C C C C

C C C C C C C C

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,  (6-23) 

where 
4

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

P

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
 is permutation matrix. 

N
P⎡ ⎤⎣ ⎦  permutation matrix is a special case 

which has the form  

 
2 2

P I=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , and 

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

N
P

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A A
A A

A

D
D

,   4N ≥ ,    

where    

,i jN N
P pr⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦ , 

with  

,

,

,

1, 2 , 0 1,
2

1, (2 1)mod , 1,
2

0, .

i j

i j

i j

N
pr if i j j

N
pr if i j N j N

pr others

⎧ = = ≤ ≤ −⎪⎪⎪ = = + ≤ ≤ −⎨⎪ =⎪⎪⎩

   

where , {0,1,..., 1}i j N∈ − .  

Since 1 7 2 6 3 5
8 8 8 8 8 8, ,C C C C C C= − = − = − , we rewrite (6-23) as  

 
2 6 6 2 2 2 2 2
8 8 8 8 8 8 8 84 4
1 3 5 7 1 3 3 1
8 8 8 8 8 8 8 8

3 7 1 5 3 1 1 3
8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

C C C C C C C CP C

C C C C C C C C

C C C C C C C C

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,  (6-24) 
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and let us define a column permutation matrix 
4

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

Pc

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
,  and 

N
Pc⎡ ⎤⎣ ⎦  is a 

reversible permutation matrix which is defined by  

2 2
Pc I=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , and  

/4

/4

/4

/4

0 0 0

0 0 0

0 0 0

0 0 0

N

N

N
N

N

I

I
Pc

I

I

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦
, 4N ≥ .  

Thus we have  

 
2 6 6 2
8 8 8 84 4 4
1 3 5 7
8 8 8 8

3 7 1 5
8 8 8 8

1 1 1 1
1 0 0 0

2 2 2 2
0 1 0 0

0 0 0 1

0 0 1 0

C C C CP C Pc

C C C C

C C C C

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

   
2 2 2 2 2 2
8 8 8 8

1 3 1 3 2 2
8 8 8 8

3 1 3 1
8 8 8 8

1 1 1 1

2 2 2 2
C C

C C C C
B B

C C C C

C C C C

⎡ ⎤⎢ ⎥⎢ ⎥ ⎡ ⎤− −⎢ ⎥= = ⎢ ⎥−⎢ ⎥ ⎣ ⎦− −⎢ ⎥⎢ ⎥− −⎣ ⎦

,   (6-25) 

where 
2

1 1

2 2

1 1

2 2

C

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥−⎢ ⎥⎣ ⎦
, the 2-by-2 DCT - II matrix and 

1 3
8 8

3 12
8 8

C C
B

C C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦ . Thus we can 

write that   

 2 2 2 2 2

4 4 4
2 2 2 2 2

0

0

T
C C I I C

P C Pc
B B I I B

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ,  (6-26) 

it is clear that 2

2

0

0

C

B

⎡ ⎤⎢ ⎥⎣ ⎦  is a block inverse matrix, which has  

  
( )

( )
11

22

1
2 2

00

0 0

CC

B B

−−
−

⎡ ⎤⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.   (6-27) 
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The (6-27) is Jacket –like sparse matrix with block inverse.  

In general the permuted DCT - II matrix  
N

C⎡ ⎤⎣ ⎦#  can be constructed recursively by using  

 
/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

0

0

T

N N N N N

N N NN
N N N N N

C C I I C
C P C Pc

B B I I B

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = = = ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
# .  (6-28) 

where 
/2N

C⎡ ⎤⎣ ⎦  denotes the 
2 2

N N×  DCT - II matrix, and 
/2N

B⎡ ⎤⎣ ⎦  can be calculated by using  

 ( )( , )
2/2 , /2

f m n
NN m n N

B C⎡ ⎤=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦ ,  (6-29) 

where  

 

( ,1) 2 1,

( , 1) ( , ) ( ,1) 2,

f m m

f m n f m n f m

⎧ = −⎪⎪⎨⎪ + = + ×⎪⎩
   , {1,2,..., / 2}m n N∈ .   (6-30) 

For example, in the 4-by-4 permuted DCT - II matrix 
4

C⎡ ⎤⎣ ⎦# ,  2B  could be calculated by using 

(1,1) 1f = , (2,1) 3f = , (1,2) (1,1) (1,1) 2 3f f f= + × = , and (2,2) (2,1) (2,1) 2 9f f f= + × = ,  

 ( ) ( ) ( )
( ) ( )

(1,1) (1,2)
8 8

1,1 1,2( , )
82 (2 ,1) (2 ,2), 4

8 8
2 ,1 2 ,2

f f

f m n

f fm n

C C
B C

C C

⎡ ⎤⎢ ⎥⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
.   (6-31) 

and its inverse is of 
N

C⎡ ⎤⎣ ⎦#  can be simply computed from the block inverse 

 

( )

( )
( )

1

1 /2 /2 /2

/2 /2 /2

1
/2 /2

/2

1

/2 /2 /2

0

0

2 2
0

2 20

T

N N N

N N N
N N N

T

N N
N

N N N

I I C
P C Pc

I I B

I IC N N                               
B I I

N N

              

−
−

−

−

⎛ ⎞⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎜ ⎟⎜ ⎟−⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟= ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥−⎢ ⎥⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

( )
( )

1

/2 /2 /2

1
/2 /2

/2

02

0

T

N N N

N N
N

C I I
                 

I IN B

−

−

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥= ⎢ ⎥⎜ ⎟⎢ ⎥ −⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

.  (6-32) 

For example, the 8 8×  DCT - II matrix has  
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[ ]

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥

⎦

⎤

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢

⎣

⎡

=

105
16

91
16

77
16

63
16

49
16

35
16

21
16

7
16

90
16

78
16

66
16

54
16

42
16

30
16

18
16

6
16

75
16

65
16

55
16

45
16

35
16

25
16

15
16

5
16

60
16

52
16

44
16

36
16

28
16

20
16

12
16

4
16

45
16

39
16

33
16

27
16

21
16

15
16

9
16

3
16

30
16

26
16

22
16

18
16

14
16

10
16

6
16

2
16

15
16

13
16

11
16

9
16

7
16

5
16

3
16

1
16

8

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

CCCCCCCC

C

,  

and it can be represented by  

 

4 4 4 4 4 4 4 4
16 16 16 16 16 16 16 16

2 6 2 6 2 6 2 6
16 16 16 16 16 16 16 16

6 2 6 2 6 2 6 2
16 16 16 16 16 16 16 16

8 8 8
1 3 7 5
16 16 16 16

5 1 3 7
16 16 16 16

3 7 5 1
16 16 16 16

1

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

C C C C C C C C

C C C C C C C C

C C C C C C C CP C Pc

C C C C

C C C C

C C C C

C

− − − −
− − − −

− − − −=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ − −
− − −
−

4 4

4 41 3 7 5
16 16 16 16

5 1 3 7
16 16 16 16

3 7 5 1
16 16 16 16

7 5 1 3 7 5 1 3
6 16 16 16 16 16 16 16

C C

B B
C C C C

C C C C

C C C C

C C C C C C C

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ −⎣ ⎦− −⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥− − −⎢ ⎥− − − −⎣ ⎦

. 

Additionally, it is clearly that the function (6-28) also can be recursively constructed by 

using different permutations matrices 
N

P⎡ ⎤⎣ ⎦#  and 
N

Pc⎡ ⎤⎣ ⎦# , as  

 
/2 /2/2 /2 /2

/2 /2/2 /2 /2

0

0

T

N NN N N

N NN
N NN N N

I IC C C
P C Pc

I IB B B

⎛ ⎞⎡ ⎤ ⎡ ⎤⎡ ⎤⎜ ⎟⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎜ ⎟−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠
# # #

## #
# # # ,  (6-33) 

where 
/2N

C⎡ ⎤⎣ ⎦#  and 
/2N

B⎡ ⎤⎣ ⎦#  are the permutated cases of 
/2N

C⎡ ⎤⎣ ⎦  and 
/2N

B⎡ ⎤⎣ ⎦ , respectively. The 

new permutation matrices have the form  

 
/2

/2

[ ] 0

0
N

N
N

P
P

I

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
# , and   

/2

/2

[ ] 0

0 [ ]
N

N
N

Pc
Pc

Pc

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎣ ⎦
# , 4N > .  (6-34)  

Easily, we can check that  

/2 /2 /2 /2

/2 /2 /2 /2

0 0

0 0
N N N N

N NN
N N N N

P C C Pc
P C Pc

I B B Pc

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
## #  

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

Pr 0

0
N N N N N

N N N N N

P C C Pc

I B I B Pc

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦  
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/2 /2 /2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2 /2 /2

N N N N N N N N

N NN
N N N N N N N N

P C Pc P C Pc C C
P C Pc

I B Pc I B Pc B B

⎡ ⎤⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥= =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ − −⎢ ⎥⎣ ⎦ ⎣ ⎦
# #

## #
# #  ,   (6-35) 

where 
/2 /2/2 N NN

B B Pc⎡ ⎤ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦# .  

For example, the 4-by-4 DCT - II case has  

 
1 3 1 3
8 8 8 8

3 1 3 14/2 4/24/2
8 8 8 8

1 0

0 1

C C C C
B B Pc

C C C C

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ = = =⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
# .  (6-36) 

Moreover, the matrix 
1 3
8 8

3 12
8 8

C C
B

C C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦  can be decomposed by using the 2-by-2 DCT - II 

matrix as  

 
1 3 1
8 8 8

3 1 32 2 2 2
2 28 8 8
8 8

1 1
2 0 0

2 2
02 2

C C C
B K C D

C C C
C C

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= = = ⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥− ⎢− ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ −⎢ ⎥⎣ ⎦
,  (6-37) 

where 
2

2 0

2 2
K

⎡ ⎤= ⎢ ⎥⎡ ⎤⎣ ⎦ ⎢− ⎥⎣ ⎦
 is a upper triangular matrix, 

1
8

32
8

0

0

C
D

C

⎡ ⎤=⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  is a diagonal matrix, 

and we use the cosine related function  

 cos(2 1) 2 cos(2 )cos cos(2 1)m m m mk k k+ = − −φ φ φ φ .    (6-38) 

where mφ  is m-th angle.   

In a general case, we have  

 
N N N N

B K C D=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ,   (6-39) 

where 

 

2 0 0

2 2 0

2 2 2
N

K

⎡ ⎤⎢ ⎥⎢− ⎥=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎢ ⎥⎣ ⎦

A

A

A
B B D

, 

0

1

1

4

4

4

0 0

0

0

0 0 N

N

N

N

N

C

C
D

C −

Φ
Φ

Φ

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A
B

B D
A

,    (6-40) 

and 2 1i iΦ = + , {0,1,2,..., 1}i N∈ − .  See appendix 2 for proof of (6-39). 

 
By using the results from (6-28) and (6-39), we have a new form for DCT - II matrix  

/2 /2 /2 /2 /2 /2

/2 /2 /2 /2 /2 /2

0 0
Pr

0 0

T

N N N N N N

N N NN
N N N N N N

I I C C I I
C C Pc

I I B B I I

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ = = =⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎜ ⎟− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠
#  
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/2 /2 /2

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

/2 /2 /2 /2 /2

0

0

0 0 0

0 0 0

N N N

N
N N N N N

N N N N N

N N N N N

C I I
C

K C D I I

I C I I I
         

K C D I I

⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

#

.   (6-41) 

Given the recursive form of (6-41), we can write  

     

( ) ( )
( )

11 /2 2
/4 /4 /2 24

/2 2

1
2 2 2

/4 /4 /4 4
2 2 2

/2 /2 /2

/2 /2 /2

0 0
Pr ... Pr

0 0

0

0

0
...

0

N

N N N NN
N

N N N

N N N

N N N

I I
C I I I C

K K

I I I
I I I Pc

D I I

I I I

D I I

−−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⊗ ⊗ ⊗⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗ ⊗ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥− ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎢ ⎥ −⎣ ⎦ ( ) 1

NPc
−⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

.  (6-42) 

By taking all permutation matrices outside, we can rewrite (6-42) as  

 

( )
( )

1
/2 2

/4 /2 2
/2 2

1
/2 /2 /22 2 2

/4 /4
/2 /2 /22 2 2

0 0
Pr ...

0 0

00
..

00

N

N N NN
N

N N N

N N N
N N N

I I
C I I C

K K

I I II I I
I I Pc

D I ID I I

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⊗ ⊗⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⊗ ⊗⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦−−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

#

#
.   (6-43) 

Using (6-43) butterfly data flow diagram for DCT-II transform is drawn as Fig.2 from left to 
right to perform X=[C]N x. 
 

2/NK

4/NK

4/NK

2K

2K

2K
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[ ]2C

1
8C

3
8C

[ ]2D

1
8C

3
8C

1
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3
8C

1
8C

3
8C

1
N
C

3
N
C

12/ −N

N
C

...

1
N
C

3
N
C
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N
C

...

[ ] 4/ND

1
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3
2NC

1
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N

C

5
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7
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...

[ ] 2/ND  

Fig. 2. Butterfly data flow diagram of proposed DCT - II matrix with order N 
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3.3 Hybrid DCT/DFT architecture on element inverse matrices  

It is clear that the form of (6-43) is the same as that of (6-16), where we only need change lK  

to Prl  and lD  to lW , with {2,4,8,..., / 2}l N∈ . Consequently, the results show that the DCT 

- II and DFT can be unified by using same algorithm and architecture within some 

characters changed. As illustrated in Fig.1, and Fig.2, we find that the DFT calculations can 

be obtained from the architecture of DCT by replacing the 
N

D⎡ ⎤⎣ ⎦  to 
N

W⎡ ⎤⎣ ⎦ , and a permutation 

matrix Pr
N

⎡ ⎤⎣ ⎦  to 
N

K⎡ ⎤⎣ ⎦ .  Hence a unified function block diagram for DCT/DFT hybrid 

architecture algorithm can be drawn as Fig.3. In this figure, we can joint DCT and DFT in 

one chip or one processing architecture, and use one switching box to control the output 

data flow. It will be useful to developing the unified chip or generalized form for DCT and 

DFT together.  

 

 

Fig. 3. A unified function block diagram for proposed DCT/DFT hybrid architecture algorithm 

4. Conclusion 

We propose a new representation of DCT/DFT matrices via the Jacket transform based on 
the block-inverse processing. Following on the factorization method of the Jacket transform, 
we show that the inverse cases of DCT/DFT matrices are related to their block inverse 
sparse matrices and the permutations. Generally, DCT/DFT can be represented by using the 
same architecture based on element inverse or block inverse decomposition.  Linking 
between two transforms was derived based on matrix recursion formula. 
Discrete Cosine Transform (DCT) has applications in signal classification and 
representation, image coding, and synthesis of video signals. The DCT-II is a popular 
structure and it is usually accepted as the best suboptimal transformation that its 
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performance is very close to that of the statistically optimal Karhunen-Loeve transform for 
picture coding. Further, the discrete Fourier transform (DFT) is also a popular algorithm for 
signal processing and communications, such as OFDM transmission and orthogonal code 
designs. Being combined these two different transforms,  a unified fast processing module 
to implement DCT/DFT hybrid architecture algorithm can be designed by adding switching 
device to control either DCT or DFT processing depending on mode of operation.  
Further investigation is needed for unified treatment of recursive decomposition of 
orthogonal transform matrices exploiting the properties of Jacket-like sparse matrix 
architecture for fast trigonometric transform computation. 
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6. Appendix 

6.1 Appendix 1 
The DFT matrix brings higher powers of w , and the problem turns out to be   

 

2

0 0
2 1

1 1
2( 1)2 4

2 2

2( 1) ( 1)1
1 1

1 1 1 . 1

1 .

1 .

. . . . . . .

1 .

n

n

n nn
n n

c y
w w w c y

w w w c y

c yw w w

−
−

− −− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

.   (A-1) 

and the inverse form  

 

2

( 1)1 2

2( 1)2 41

( 1) 2( 1) ( 1)

1 1 1 . 1

1 .
1

1 .

. . . . .

1 .

n

n

n n n

w w w

w w wF
n

w w w

− −− −
− −− −−

− − − − − −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

.    (A-2) 

Then, we can define the Fourier matrix as follows.  

Definition A.1: An n n×  matrix ijF a⎡ ⎤= ⎣ ⎦  is a Fourier matrix if  

 ( 1)( 1)i j
ija w − −= , 2 /i nw e= π , and , {1,2,..., }i j n∈ .    (A-3) 

and the inverse form ( ) ( )1
( 1)( 1)1 1 1 i j

ijF a w
n n

− − − −− ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎣ ⎦ .  

For example, in the cases 2n =  and 3n = , and inverse is an element-wise inverse like Jacket 

matrix, then, we have  

0 0

2 0 1

1 1

1 1

w w
F

w w

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦ , 
0 0

1
2 0 1

1 11 1

1 12 2

w w
F

w w

−
−

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦  
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and  

2 4

3 3
3

4 8

3 3

1 1 1

1

1

i i

i i

F e e

e e

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

π π

π π
, 

2 4
1 3 3

3

4 8

3 3

1 1 1

1
1

3

1

i i

i i

F e e

e e

− −−
− −

⎡ ⎤⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

π π

π π
. 

We need to confirm that 1FF− equals the identity matrix. On the main diagonal that is clear. 

Row j  of F  times column j  of 1F−  is ( )1 / (1 1 ... 1)n + + + , which is 1 . The harder part is 

off the diagonal, to show that row j  of F  times column k  of 1F−  gives zero:  

 , if j k≠ .    (A-4) 

The key is to notice that those terms are the powers of :  

 2 11 ... 0nW W W −+ + + + = .    (A-5) 

6.2 Appendix 2 

In a general case, we have      

 
N N N N

B K C D=⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 

where 

2 0 0

2 2 0

2 2 2
N

K

⎡ ⎤⎢ ⎥⎢− ⎥=⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎢ ⎥⎣ ⎦

A

A

A
B B D

, 

0

1

1

4

4

4

0 0

0

0

0 0 N

N

N

N

N

C

C
D

C −

Φ
Φ

Φ

⎡ ⎤⎢ ⎥⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

A
B

B D
A

,  

and 2 1i iΦ = + , {0,1,2,..., 1}i N∈ − .  

Proof:  In case of N N×  DCT - II matrix, 
N

C⎡ ⎤⎣ ⎦ , it can be represented by using the form as  

 

0 0 0 1 0 2 0 2 0 1

1 0 1 2 1 11 1 1 2

2 0 2 2 2 12 1 2 2

2 0 2 1 2 2 2 2

2 2 2 2 2
4 4 4 4 4

2 2 22 2
4 4 4 4 4

2 2 22 2
4 4 4 4 4

2 2 2 2
4 4 4 4

1 1 1 1 1

2 2 2 2 2
N N

N N

N N

N N N N N

k k k k k
N N N N N

k k kk k
N N N N NN
k k kk k
N N N N N

k k k k
N N N N

C C C C C

C C C C CC

C C C C C

C C C C C

− −

− −

− −

− − − − −

Φ Φ Φ Φ Φ
Φ Φ ΦΦ Φ
Φ Φ ΦΦ Φ

Φ Φ Φ Φ

=⎡ ⎤⎣ ⎦

A

A
A
A

B B B
A 2 12

4
N Nk

N
− −Φ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

,   (A-6) 

where 1ik i= + , {0,1,2,...}i∈ .  

According to (6-37), a N N×  matrix 
N

B⎡ ⎤⎣ ⎦  from 
2N

C⎡ ⎤⎣ ⎦  can be simply presented by  
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0 11 2

0 0 0 1 0 2 0 1

1 0 1 11 1 1 2

2 0 2 1 2 2 2 1

4 4 4 4

(2 1) (2 1) (2 1) (2 1)
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And based on (6-78), we have the formula  
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Since 0 1k = , we get  
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Taking the (A-10)-(A-12) to (A-9), we can rewrite that  
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The proof is completed.  
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1. Introduction 

The essence of GPS signal acquisition is a two-dimensional search process for the carrier 

Doppler and code phase, generally including correlator, signal capture device, and logic 

control module. The disposal efficiency of correlator would affect the capture speed of the 

whole acquisition process. Because of the corresponding relation between frequency- 

domain multiplication and time-domain convolution, the Discrete Fourier Transform (DFT) 

could be applied to play the role of the correlator, which is suitable to implement for 

computers (Akopian, 2005) (Van Nee & Coenen, 1991).  

However, with the performance requirements of GPS receivers increasing, especially in the 

cold start and the long code acquisition, such as P code, the acquisition time should be 

furtherly reduced. Therefore, the fast discrete Fourier transform processing approach, that 

is, Fast Fourier Transform (FFT), is described, including radix-2, radix-4, split-radix 

algorithm, Winograd Fourier Transform Algorithm (WFTA) which is suitable for a small 

number of treatment points, and Prime Factor Algorithm (PFA) in which the treatment 

points should be the product of some prime factors.  

According to the actual needs of GPS signal acquisition, an optimized FFT algorithm was 

put forward, which comprehensively utilize the advantages of different FFT algorithms. 

Applying optimized FFT algorithm to GPS signal acquisition, the results of simulations 

indicate that the improved processing could reduce the acquisition time significantly and 

improve the performance of GPS baseband processing.  

2. Analysis on GPS signal acquisition 

2.1 Basic characteristics of GPS L1 signal 
There are three basic components in GPS signal: carrier waves, pseudo-random numbers 

(PRN) codes and navigation message (D code). Among them, the carrier waves are located 

at the L-band, including L1-band (1575.42MHz) which is with the most common application, 

L2-band (1227.6MHz) and L5-band (1176.45MHz). There are two basic types of PRN codes, 

the coarse/ acquisition (C/ A) code and the precise (P) code. The simplified structure of GPS 

L1 signal is shown in Fig. 1. The frequency of carrier wave is 1575.42MHz. The code rate of 

C/ A code and P code are 1.023MHz and 10.23MHz respectively. The data rate of D code is 

50Hz. 
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Fig. 1. The simplified structure of GPS L1 signal 

C/ A code is used to achieve spread spectrum of D code. Compound code C/ A D could be 

gained when the D code is spreading, and the code frequency is extended to 1.023MHz. 

Compound code P D could be gained when the P code is spreading, and the code 

frequency is extended to 10.23MHz. And then multiply the spread spectrum signal with the 

L1 carrier wave to complete the modulation. Quaternary phase shift keying (QPSK) is 

applied in the modulation of L1 signal, where the in-phase carrier component 

 is modulated with compound code C/ A D, and the orthogonal carrier 

components  is modulated with compound code P D, so the L1 signal 

transmitted by satellites could be expressed as: 

  (1) 

Where  and  are powers of different signal components respectively, ,  and  

are D code, C/ A code and P code of satellite respectively,  is the frequency of carrier 

wave, and  is the initial phase.  

The process of spread spectrum and modulation for GPS transmitted L1 signal could be 

shown in Fig. 2 (Kaplan, & Hegarty, 2006). 

 

 
L1 carrierwave
 (1575 .42MHz)

Navigation message 

(50Hz)

PRN code 
(1.023MHz)

Broadcast signal

 

Fig. 2. The spread spectrum and modulation for GPS L1 signal 

In fact, P code mainly used for the military, and is not open to civilian use, so the received 

L1 signal could be simplified to include carrier wave, C/ A code and D code in the research 

of GPS C/ A code acquisition. 
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2.2 Signal acquisition in GPS receiver 
The original GPS signal, which is interfered and attenuated in the transmission path, is 

gained by the receiver antenna. Radio Frequency (RF) front-end completes the frequency 

conversion and analog-digital conversion for the weak signal, where the high frequency 

analogy signal is transformed into Intermediate Frequency (IF) digital signal which is 

beneficial to computer processing. The coarse and precision estimates of carrier Doppler 

frequency shift and PRN code phase are achieved by acquisition and tracking in the 

baseband processing, and then dispreading and then demodulation of navigation message 

should be completed. Actually it is the opposite process of spreading and modulation 

mentioned above. Position calculation could be realized by adequate information gained by 

baseband module (Michael, & Dierendonck, 1999). The workflow of typical GPS software 

receiver is shown in Fig. 3. 

 

 

Fig. 3. The workflow of GPS receiver 

As a part of baseband signal processing in GPS receiver, the main aim of signal acquisition is 

to find visible satellites, and estimate their C/ A code phase and carrier Doppler frequency 

shift respectively. The essence of GPS signal capture is a two-dimensional search process for 

the carrier Doppler and code phase. The PRN code phase and carrier Doppler frequency 

could be considered respectively. As shown in Fig. 4, each C/ A code contains 1023 code 

elements, and search step with one code element would be commonly selected. In high 

dynamic environment, the Doppler frequency ranges from -10kHz to +10kHz, and 1kHz 

search step is generally selected. 

In the above search process, once the code phase and the carrier Doppler frequency shift 

generated by local oscillator are close to the receiving code phase and Doppler frequency 

shift, there will be a correlation peak for the randomness of C/ A code. Generally, the code 

phase error is less than half a symbol, and the Doppler frequency shift error is within [-

500Hz, 500Hz]. At this time, the code phase and carrier Doppler frequency parameters 

which the peak point corresponds could be the acquisition results, and then the baseband 

processing enters the second stage, signal tracking.  

When the predetermined frequency points are tested one by one in time-domain, the large 

computation would cause great time-consuming, unless there are a lot of hardware 

resources as the supplement. Fortunately, we can use another method to get all results the 

1023 possible code phases corresponding for each frequency point, which is the acquisition 

method based on FFT.  
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3. GPS signal acquisition method based on FFT 

Processing speed is constrained in the traditional acquisition method based on time domain, 

so the acquisition method based on Fourier transform is always used in current software 

receiver (Li, Zhang, Li, & Zhang, 2008).  
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Fig. 4. Two-dimensional search for Doppler frequency shift and C/ A code phase 

3.1 Corresponding relation between frequency-domain and time-domain 
Using circular correlation theory, convert the correlation of received signal and local 

generated signal in the time-domain to spectrum multiplying in the frequency-domain 

(Akopian, 2005) (Van Nee & Coenen, 1991). Assumed  is the circulating moving local 

code,  is the number of corresponding sampling points, the output of correlator would be 

expressed as:  

  (2) 

Do discrete Fourier transform (DFT) of , 

  (3) 

And then,  could be transformed to 

  (4) 

If  and  are DFT forms of  and , 

  (5) 
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As the local code  is real signal, the complex conjugates of  and  could be 

expressed by  and  respectively. The amplitude output is  

  (6) 

According to the correlation of original signal and local code, adjudicate the relevant results. 

The number of visible satellites, and the estimation of code phase and Doppler frequency 

shift could be drawn. So the process of signal acquisition based on FFT could be expressed 

as follows: 

  (7) 

Where  is the inverse fast Fourier transform (IFFT) operation,  is the FFT 

operation, and  is the conjugate form of . 

3.2 GPS signal acquisition based on FFT 
The signal received by antenna would go though amplification, mixing, filtering, and analog-

digital conversion in RF front-end, and its output is the IF digital signal. The local carrier wave 

numerical controlled oscillator (NCO) would generate two-way mutually orthogonal signal 

 and , which would be utilized to multiply the IF digital signal respectively. As 

shown in Fig. 5, the value of branch I and branch Q are regarded as real part and imaginary 

part respectively. Construct a new complex sequence with the form of 

  (8) 

Do FFT of this new sequence, and do FFT of the local generated C/ A codes at the same time. 

Then complex multiplications are carried out between these two FFT values. After 

correlation, IFFT operations are carried out for it. Calculate the modulus of IFFT results one 

by one, and find the maximum value, which is shown in Fig. 6. Comparing the maximum 

value and the pre-set threshold, if the maximum value is less than the threshold, it means 

there is no effective signal. But if the maximum value is higher than the threshold, it means 

the acquisition is successful, and the received signal code phase and Doppler frequency shift 

would appear in the location of peak. 
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Fig. 5. Signal acquisition process based on FFT 
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The corresponding C/ A code and Doppler phase shift could be obtained in the same time, 

so it is obviously that the FFT operations play a crucial role in the acquisition, especially in 

the quick acquisition for high dynamic environments. The efficiency of FFT computation 

would determine the capture speed and whole performance of the receiver. 

 

 

Fig. 6. The peak of signal acquisition (PRN=13) 

4. Description on FFT algorithms  

DFT of  could be defined as: 

  (9) 

According to the definition of equation (9), its computation of complex multiplication is , 

and its computation of complex addition is , whose operation is quite large. To 

calculate DFT rapidly, FFT algorithms came into being in nearly half a century with the 

purpose to reduce the calculation of DFT (Duhamel, & Vetterli, 1990). 

Since Cooley and Tukey proposed FFT algorithm, the new algorithms have emerged 

constantly. In general, there are two basic directions. One is that the length of sequence 

equals to an integral power of 2, with the form of , such as radix-2 algorithm, radix-4 

algorithm and split-radix algorithm. The other is that the number of points does not equal to 

an integer power of 2, with the form of , which is represented by a class of Winograd 

algorithm, such as prime factor algorithm and WFTA algorithm (Burrus, & Eschenbacher, 

1981). 

But the basic idea of various FFT algorithms is to divide the long sequence to short 

sequences successively, and then make full use of the periodicity, symmetry and 

reducibility of rotation factors to decompose DFT with a large number  into DFT with a 

combination of small number of points to reduce the computation. The property of the 

rotation factor  is as follows: 
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• Periodicity： 

  (10) 

• Symmetry： 

  (11) 

   (12) 

• Reducibility ： 

  (13) 

  (14) 

Where  is an integer.     

4.1 Radix-2 FFT algorithm 
Radix-2 FFT algorithm is commonly used, which is described in detail in the literatures 

(Jones, & Watson, 1990) (Sundararajan, 2003). Its basic requirement is the length of the 

sequence  should satisfy , where  is an integer. If  could not satisfy , zeros-

padding method is always applied. There are two categories in radix-2 FFT algorithm: one is 

to decompose the time sequence  (  is time label) successively which is called 

decimation-in-time algorithm, and the other one is to decompose the Fourier transform 

sequence  (  is frequency label) which is called decimation-in-frequency algorithm. To 

some extent these two algorithms are consistent, so only decimation-in- time algorithm 

would be described in detail here. 

Divide the sequence  with the length  into two groups according to parity, 

  (15) 

Where . Therefore, DFT could be transformed into 

  (16) 

Separate according to its parity, 

  (17) 

Simplify, 

  (18) 

If there exist 
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   (19) 

  (20) 

Where . And  

  (21) 

Utilize the property of rotating factor, and formula (22), (23), (24) and (25) could be got. 

     (22) 

   (23) 

   (24) 

  (25) 

In the process of decimation-in-time radix-2 FFT, the  points DFT needs to convert to two 

groups with even and odd serial numbers, and each group has  points. Then the 

periodicity, symmetry and reducibility would be used. The operations of formula (24) and 

(25) could be described by butterfly unit as shown in Fig. 7. The transmission coefficient  

and  in the figure means the multiplication with  and . 
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Fig. 7. Butterfly operation in decimation-in-time 

Supposed that , now the decomposition process could be shown in Fig. 8. 

Obviously, each butterfly operation requires one complex multiplication and two complex 

additions. If  points DFT is divided into two  points DFT, calculating each  points 

DFT directly, its computation of complex multiplication and complex addition are  and 

 respectively. So theses two  points DFT requires  complex 

multiplications and  complex additions. Considering the existing  butterfly 

operations in synthesis of  points DFT, there would be  complex multiplications and 

 complex additions. So the calculation of complex multiplication would be reduced to 

, and the calculation of complex multiplication would be reduced to 

 with the first step decomposition. Therefore, when  equals to 

the integer power of 2, there would be  complex multiplications and  

complex additions. 
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Fig. 8. Decomposition process of radix-2 FFT 

4.2 Radix-4 FFT algorithm 
Similar to the thought of radix-2 FFT, basic requirement of radix-4 FFT is the length of 

sequence  should satisfy , and it has been described in detail in the literatures 

(Jones, & Watson, 1990) (Sundararajan, 2003). It is worth to mention that each separate 4 

points DFT would not require multiplication, and complex multiplication only appears in 

multiplying rotation factors operation. Rotation factor , which need no multiplying, 

so each 4 points needs three multiplying rotation factors. And each step has  4 points 

DFT, so there would be  complex multiplications in each step. For  equals to 

，having  steps, the whole calculations of complex multiplications is  

  (26) 

There is no multiplying rotation factor in first step operation. Compared to the calculation of 

radix-2 FFT，the multiplications operation is much less. The number of butterfly unit is the 

same, so the calculation of complex additions in radix-4 FFT is , which equals to the 

calculation of radix-2 FFT. 

4.3 Split-radix FFT algorithm 
Split-radix FFT algorithm was proposed in 1984, whose basic idea is to use radix-2 FFT 

algorithm in even-number DFT, and use radix-4 FFT algorithm in odd-number DFT (Jones, 

& Watson, 1990) (Sundararajan, 2003).  
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Radix-2 algorithm is applied to process the DFT of even numbers, and then the DFT of even 

sample points could be: 

  (27) 

Where . DFT of these points could be obtained by calculating the DFT of 

 points without using any additional multiplication. 

Similarly, radix-4 algorithm is applied to process the DFT of odd serial numbers. It is that 

rotation factor  should be multiplied for calculating the DFT of . For these 

sample points, the efficiency would be improved to use radix-4 decomposition, because the 

multiplication of 4 points butterfly operation is the least. Appling radix-4 decimation-in- 

frequency algorithm to calculate the DFT of odd sample points, the following  points 

DFT could be obtained. 

  (28) 

  (29) 

So the  points DFT could be decomposed to one  points DFT with no rotation factor 

and two  points DFT with rotation factor. Use this strategy repeatedly until there is no 

decomposition. 

 

 

4 Split-Radix

4 Points Radix-4 DFT

4 Points Radix-4 DFT

2 Split-Radix

4 Points Radix-4 DFT

2 Points  

DFT

2 Points  

DFT

 

Fig. 9. 16 points DFT utilizing split-radix FFT 

Taking  for example, there would be four split radixes in the first step 

decomposition for . There would be two split radixes in the second step decomposition 
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for , including a 4 points DFT utilizing radix-4 FFT and two 2 points DFT utilizing 

radix-2 FFT. And the second step decomposition for  and  are both 4 points DFT 

utilizing radix-2 FFT. The decomposition could be shown in Fig. 9. 

Considering the efficiency and application conditions for radix-4 and radix-2 algorithm 

comprehensively, split-radix algorithm is one of the most ideal methods to process the DFT 

with the length of  (Lin, Mao, Tsao, Chang, & Huang, 2006) (Mao, Lin, Tseng, Tsao, & 

Chang, 2007) (Nagaraj, Andrew, & Chris, 2009). 

4.4 PFA FFT 
In the FFT calculation, the number of points  could not usually be approximated to the 

integer power of 2, where traditional radix-2, radix-4 and split-radix algorithms could not be 

used. PFA was proposed by Kolba and Park in 1977, which alleviates the conflict between 

computation and the structure of algorithm (Chu, & Burrus, 1982) (Liu, & Zhang, 1997). But 

when  equals to the product of a number of prime factors, that is , 

and most of them are odd items, its computational complexity would be slightly increased 

relative to the radix-2 FFT algorithm. Therefore the length of the decomposition factors 

should be better to be even, reducing the computations, whose basic idea is to transform 

one-dimensional DFT to two-dimensional or multi-dimensional small number of points 

DFT, and to get some superiors in calculation. However, it is provided that ,  … and  

are prime to each other, so there could be only one even factor. Taking the whole efficiency 

of operation and computer resources cost into account, the application of PFA method in 

this section would be converted to the form of formula (30). 

  (30) 

Where  and  are prime factors to each other, and ,  is an integer. 

4.5 WFTA FFT 
The expression of DFT is: 

  (31) 

In the process of WFTA, the  and  in formula (31) could be expressed as the vector 

forms. 

   (32) 

  (33) 

If  is a -by-  matrix, 

  (34) 

Where . Here the DFT could be the matrix form of 

  (35) 
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Winograd draw the decomposition of , and 

  (36) 

Where  is a -by-  incidence matrix,  is a -by-  incidence matrix,  a -by-  

diagonal matrix,  is a positive integer. According to different values of ,  is to be 

determined. Therefore, 

  (37) 

For the smaller number of points DFT, WFTA could obtain  by calculating ,  and 

 whose computations are less. When , the results of DFT are 

defined as a smaller factor DFT, which were presented in  the literatures (Winogard, 1976). It 

could be substituted to formula (36), and their computations could be shown in table 1, 

which is relatively less. For the larger number of points DFT, the structure and program are 

complex, which restrict the application of WFTA (Liu, & Zhang, 1997). 

 

Length of sequence (N) Multiplication computation Addition computation 

3 4 12 

4 0 16 

6 10 34 

7 16 72 

8 4 52 

9 20 88 

16 20 144 

Table 1. The computation of smaller number of points DFT with WFTA 

5. Optimized FFT algorithm for GPS signal acquisition 

5.1 Preprocess for FFT 
As for GPS receivers, the best sampling rate is an integer power of 2 (Jin, Wu, & Li, 2005), 

but actually the points in GPS receivers could not always meet the best sampling rate. So 

data pre-processing is needed. When , pretreatment would be used to transform the 

number of points satisfying , which includes following means (Zhao, Gao, & Hao, 

2009). 

1. Zeros-padding method  

For arbitrary sampling rate  in RF front-end, the C/ A code sequences are filled to the 

needed points. However, this process would change the cyclical properties of the C/ A 

codes. Because of decreasing the correlation peak, the cross-correlation increases, and the 

signal to noise ratio (SNR) output diminishes, but it is easy to achieve. 
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2. Average correlation method  

Divide the data into average packets, receive appropriate points and process FFT. This 

method could reduce the consumption of hardware resources, but also decrease the ratio of 

two peaks.  

3. The linear interpolation method  

If radix-2 FFT processing is applied, and linear interpolation methods are used, such as 

Lagrange interpolation algorithm, the input data would be interpolated to an integer power 

of 2.  

4. Sinc interpolation method  

First of all, apply Sinc filter interpolate the input data, and the original continuous signal 

would be recovered. Then it would be resampled with a new sampling frequency. The 

advantage is that the distortion of PRN code is smaller which makes receivers can still 

normally work in the low SNR environment, but the realization is complexity. Meanwhile, 

the volume of calculating is larger. 

5. Double – Length Zero –Padding method  

The method was proposed by Stockham in 1966, the main idea is to extend the calculation 

points from  to , 

  (38) 

Where  is an integer. Add  zeros after the input data directly. The first  local C/ A 

codes and the final  local C/ A codes are in the same cycle. So fill  zeros in the 

intermediate and treat the extended data with FFT. The DFT of former  points is the 

required correlation results, and there is no loss of the correlation peak.  

In the fast GPS signal acquisition process based on FFT, the commonly pretreatment is 

zeros-padding method.  

5.2 Optimized FFT algorithm 

As mentioned above, if the points of sequence meets , split-radix algorithm is one of 

the most effective approaches. In this article, an improved FFT method for the sequence 

with  points is proposed, which is called optimized FFT algorithm for integer power 

of 2 (OFFTI). Its specific operation is to maintain the split-radix algorithm until decomposed 

into the final 16 points DFT, and then utilize smaller points DFT with WFTA. 

A smaller amount of zeros could be added to transform the type of  into the type of 

, and then OFFTI algorithm could be utilize. But for the sequence which could not 

be converted to the type of  with few zeros. The specific processing of this 

condition is as follows. Firstly, PFA is utilized to decompose  points DFT to 

the nested form with  ( ) groups  points DFT and  groups  points 

DFT. As each layer calculates relatively independence in the PFA method, so it will be still 

decomposed with PFA method in process of  points DFT. Until decomposing to less 

points DFT, the WFTA would be considered. For  points DFT, the OFFTI 

algorithm could be used. We call this method against the type not satisfying  

OFFTN algorithm. 

Taking GPS C/ A code acquisition for example, if the digital rate is 5MHz, there would be 

5000 data points in 1msec data. Zeros-padding method is applied in the data preprocessing. 

According to the common radix-2 FFT, add zeros to 8192 points based on the 5000 data 
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points. Do =8192 points DFT, and then discard the later 3192 points, which would bring 

extra computing and increase computation. Besides, there would be more errors brought in 

a certain extent. But if the OFFTN algorithm is used here, only several zeros should be 

added. Extending the points  to 5120 (45 × 5), the computation and errors would be much 

smaller than the traditional radix-2 FFT approach. The structure of the algorithm is shown 

in Fig. 10. 

 

 

Fig. 10. The OFFTN structure of 5000 points 

6. Improved acquisition method and simulation analysis 

Apply the optimized methods mentioned above to GPS signal acquisition method based on 

FFT, the specific process is shown in Fig. 11. 

The IF digital signal provided by GPS RF front-end is sent to baseband processing module, 

and then achieve pre-processing by few zeros padding. Multiply baseband signal with local 

generated carrier wave, and I channel signal is obtained. Multiply baseband signal with 

local generated carrier wave with 90° phase shift, and also Q channel signal is obtained. 

Then take the complex signal formed by I and Q channel signal to the FFT processing. 

Considering the character of the signal length, if  equals to the integer power of 2 

approximately, OFFTI algorithm would be used, otherwise, OFFTN would be selected. The 

peak would generate by the correlation operations, and then compare it with the 

predetermined threshold. If the value is greater than the threshold, there would be GPS 

signal captured. Otherwise, no useful signal exists. Repeat the process until all of the 

available satellites are searched. 

Signal acquisition base on radix-2 algorithm and the improved method are compared. As 

shown in Fig. 12, the correlation peaks have little difference for various methods and the 

acquisition results are mostly the same. 
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Fig. 11. GPS signal acquisition utilizing optimized FFT 

To further verify the advantages of processing efficiency with utilizing optimized FFT, 

compare the signal acquisition time in various Doppler shifts. The results are shown in Fig. 

13, which indicate the processing efficiency of improved method has a significant 

superiority to the traditional methods. 
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(a) Acquisition results utilizing radix-2 algorithm 
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(b) Acquisition results utilizing improved algorithm 

Fig. 12. Acquisition results utilizing different algorithms 
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Fig. 13. Comparison of average acquisition time 
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7. Conclusion and future work 

Apply an optimized FFT algorithm which integrates the traditional radix-2, radix-4, split-

radix, PFA and WFTA to GPS C/ A code acquisition processing, and the primary results of 

simulation and experiment indicate that the optimized FFT algorithm could improve the 

average acquisition time and operation efficiency significantly. It is believed that this 

method could also be utilized in the long code acquisition, such as P code. Future work is to 

research and develop a more efficient and flexible processing platform to satisfy the 

demands of fast DFT calculation. 
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1. Introduction

Multiple scales phenomena are ubiquitous, ranging from mechanical properties of wood,
turbulent flow in gases and fluids, combustion, remote sensing of earth to wave propagation
or heat conduction in composite materials. The obstacle with multi-scale problems is that
they, due to limited primary memory even in the largest computational clusters, can not
easily be modeled in standard numerical algorithms. Usually we are not even interested in
the fine scale information in the processes. However, the fine scale properties are important
for the macroscopic, effective, properties of for example a fiber composite. Attempts to
find effective properties of composites dates back more than hundred years, e.g. see
Faraday (1965); Maxwell (1954a;b); Rayleigh (1892). One way to find effective properties
is to introduce a fine scale parameter, ε > 0, in the corresponding governing equations
(modeling fast oscillating coefficients) and then study the asymptotic behavior of the sequence
of solutions, and equations, when the fine scale parameter tends to zero. The limit yields
the homogenized equations, that have constant coefficients (corresponding to homogeneous
material properties). The discipline of partial differential equations dealing with such issues
is called homogenization theory.
The foundation of homogenization theory was started by Spagnolo (1967) who introduced
G-convergence, followed by Γ-convergence by Dal Maso (1993); De Giorgi (1975); De Giorgi &
Franzoni (1975); De Giorgi & Spagnolo (1973), and H-convergence Tartar (1977). The two-scale
convergence concept introduced by Nguetseng (1989) and developed by Allaire (1992); Allaire
& Briane (1996) simplified many proofs. Floquet-Bloch expansion Bloch (1928); Floquet (1883)
provides a method to find dispersion relations in the case the fine scales are on the same
order as for example the wavelength of a propagating wave. The technique of Floquet-Bloch
expansion can also be used to find the classical homogenized properties Allaire & Conca
(1996); Bensoussan et al. (1978); Conca et al. (2002); Conca & Vanninathan (1997; 2002).
Two-scale transforms have been introduced in different settings, Arbogast et al. (1990); Brouder
& Rossano (2002); Cioranescu et al. (2002); Griso (2002); Laptev (2005); Nechvátal (2004).
The general idea with the two-scale transform is to map bounded sequences of functions

defined on L2(Ω) to sequences defined on the product space L2(Ω × Tn) and then taking

the weak limit in L2(Ω × Tn). Besides finding the effective material properties, one can also
establish easily computed bounds of these. The bounds may be as simple as the arithmetic and
harmonic averages, or more complex. For further reading we recommend the monograph by
Milton (2002) as an introduction to the theory of composites.

 

Homogenization of Nonlocal Electrostatic 
Problems by Means of the Two-Scale 

Fourier Transform 

10

www.intechopen.com



In this paper we return to a two-scale Fourier transform, which belongs to the class of
two-scale transforms, presented in Wellander (2004; 2007; 2009). The transform is applied
to nonlocal constitutive relations in electrostatic applications for periodic composites. The
current density is given as a spatial convolution of the electric field with a conductivity kernel.
It turns out that the homogenized equation also posse’s a nonlocal constitutive relation if we
do not scale the non-localness. However, if we decrease the neighborhood which influence
the current density simultaneously as we make the fine structure finer and finer then we are
ending up with a constitutive relation which is local. To be strict, this is a three-scale problem.
The finest scale is the variation of material properties. The second scale is the non-localness in
the constitutive relation, and the third scale is the global equation, containing only the scales
of the domain, boundary conditions and internal body forces.
The paper is organized in the following way. In Section 2 we give some basic definitions,
mainly to do with two-scale convergence. In Section 3 we define and explore the two-scale
Fourier transform and its application to homogenization of PDEs. In Section 4 we present
the main assumptions and give some basic existence, uniqueness and a priori estimates.
Section 5 is devoted to the main homogenization results. Some concluding remarks are given
in Section 6.

2. Preliminaries

We begin to state the weak and two-scale convergence concepts. A bounded sequence {uε} in

L2(Ω), where Ω is an open bounded set in Rn, n ≥ 1, with a Lipschitz continuous boundary

∂Ω, has a subsequence which converges weakly in L2(Ω), still denoted {uε}. That is,
∫

Ω

uε(x)ϕ(x) dx →
∫

Ω

u(x)ϕ(x)dx, (1)

for all test functions ϕ ∈ L2(Ω). We call u the weak limit of {uε}. Bounded sequences in

L2(Ω) does not imply strong convergence, i.e.,

‖uε − u‖L2(Ω) → 0

To study convergence of sequences with fast oscillations Nguetseng (1989) extended the class
of test functions to functions with two scales, ϕ ∈ C∞

0 (Ω; C∞(Tn)), where Tn is the unit torus
in Rn. We will refer to two-scale convergence using smooth test functions as distributional
two-scale convergence.

Definition 1. A sequence {uε} in L2(Ω) is said to two-scale converge in a distributional sense to a

function u0 = u0(x, y) in L2(Ω × Tn) if

lim
ε→0

∫

Ω

uε(x)ϕ
(

x,
x

ε

)
dx =

∫

Ω

∫

Tn
u0(x, y)ϕ(x, y)dydx, (2)

for all test functions ϕ ∈ C∞

0 (Ω; C∞(Tn)).

The extension of weak convergence to weak two-scale convergence reads,

Definition 2. A sequence {uε} in L2(Ω) is said to weakly two-scale converge to a function u0 =
u0(x, y) in L2(Ω × Tn) if

lim
ε→0

∫

Ω

uε(x)ϕ
(

x,
x

ε

)
dx =

∫

Ω

∫

Tn
u0(x, y)ϕ(x, y)dydx, (3)

for all test functions ϕ ∈ L2(Ω; C(Tn)).
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A more general class of admissible test functions are those that two-scale converge strongly, i.e.,
functions defined as

Definition 3. If a sequence {uε} in L2(Ω) weakly two-scale converge to u0 ∈ L2(Ω × Tn) and

lim
ε→0

‖uε‖L2(Ω) = ‖u0‖L2(Ω×Tn), (4)

then it is said to two-scale converge strongly to u0 ∈ L2(Ω × Tn).

Strongly two-scale converging functions are called admissible test functions. Some examples

are functions in L2(Ω; C(Tn)), or for Ω bounded, C(Ω; C(Tn)) or L2(Tn ; C(Ω)). See Allaire
(1992) for more details regarding this issue. The basic compactness results, Nguetseng (1989),
reads

Theorem 1. For every bounded sequence {uε} in L2(Ω) there exists a subsequence and a function u0

in L2(Ω × Tn) such that uε two-scale converges weakly to u0.

Theorem 2. Assume that {uε} is a bounded sequence in H1(Ω). Then there exists a subsequence,
still denoted {uε} , which two-scale converges weakly to u0 = u, and ∇uε two-scale converges weakly

to ∇xu +∇yu1. Here u is the weak L2(Ω)-limit in (1) and u1 ∈ L2(Ω; H1(Tn)).

By the Rellich theorem, u is the strong L2-limit of the sequence {uε}. We close this section by
definition of some nonstandard function spaces.

H(div, Ω) := {u ∈ L2(Ω; R
n) : divu ∈ L2(Ω)}

H(curl, Ω) := {u ∈ L2(Ω; R
3) : curlu ∈ L2(Ω; R

3)}
Lp(div, Ω) := {u ∈ Lp(Ω; R

n) : divu ∈ Lp(Ω)}
Lp(curl, Ω) := {u ∈ Lp(Ω; R

3) : curlu ∈ Lp(Ω; R
3)}

l1,2(Zn) := {φ ∈ l2(Zn) : 2πimφ(m) ∈ l2(Zn; C
n)∀m ∈ Z

n}
l2(div, Z

n; C
n) := {φ ∈ l2(Zn; C

n) : 2πim ·φ(m) ∈ l2(Zn)∀m ∈ Z
n}

l2(curl, Z
3; C

3) := {φ ∈ l2(Z3; C
3) : 2πim×φ(m) ∈ l2(Z3; C

3)∀m ∈ Z
3}

3. The two-scale fourier transform

We define the two-scale Fourier transform, which is nothing but the standard Fourier transform

evaluated at ξ + ε−1m where ξ is restricted to a cube in Rn with sidelength 1/ε, Wellander
(2009).

Definition 4 (Two-scale Fourier transform). For any function f in L1(Rn) and every 0 < ε the
two-scale Fourier transform at the ε-scale of f is defined by

Fε{ f }(ξ,m) = f̂ε(ξ,m) =

∫

Rn
f (x)e−2πix · (ξ+m

ε ) dx,

for all ξ ∈
]
− 1

2ε , 1
2ε

[n
,m ∈ Zn. The inverse is given by

F−1
ε { f̂ε}(x) =

∑

m∈Zn

∫

ξ∈]− 1
2ε , 1

2ε [
n

f̂ε(ξ,m)e2πix · (ξ+m

ε ) dξ.
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The forward transform is well defined for any ξ in R
n. For the inverse we only need the

ones in the cube ]− 1
2ε , 1

2ε [
n. For fixed ε, the transform is the usual Fourier transform, where

we for each m integrate over the cube ] − 1
2ε , 1

2ε [
n with respect to ξ in the inner loop, see

Figure 1 for the one dimensional case. It is a question of cutting the frequency space into
n-dimensional cubes of side length 1/ε centered at the points m/ε and summing up the
contribution from each cube. When ε → 0 then ξ belongs to the whole real space, Rn. The
standard Fourier transform is recovered if we let m = 0 and permit ξ to take any value in Rn

for all ε > 0. The cube ]− 1
2ε , 1

2ε [
n corresponds precisely to the first Brillouin zone appearing in

the Floquet-Bloch theory Bloch (1928); Floquet (1883) which is extensively used in solid state
physics.

✻

�

❛ ❛

❛ ❛

❛ ❛

❛ ❛

❛ ❛

❛ ❛

❛ ❛

ξ

m

1
2ε− 1

2ε

m = 1

m = 2

m = 3

m = 4

m = 0

m = −1

m = −2

Fig. 1. The Fourier indices used in the inverse transform. Pieces of length 1/ε centered at m/ε
are cut from the ξ-axis and stacked along the m-axis. Hence, the pieces labeled m = 0 and
m = 1 corresponds to the intervals ]− 1/2ε, 1/2ε[ and ]1/2ε, 3/2ε[ on the ξ− axis,
respectively.

The transform can be defied as a mapping L2(Rn) → L2(Rn; l2(Zn)), and then by

interpolation to Lp(Rn), p ∈ [1, 2] with values in Lq(Rn; lq(Zn)), 1
p + 1

q = 1. Here lp(Zn) is

the space of all sequences indexed by the n-tuple of integers, equipped with the usual p-norm.
The transform extends to the Fourier theory for tempered distributions Taylor (1996), but in
this case we have to include one of the boundaries of the Brillouin zone in the definition of the
inverse transform. For example, the semi open cube [− 1

2ε , 1
2ε [

n would be suitable. By doing
this modification we will not exclude Dirac functions with support on the boundary of the

Brillouin zone. Keeping the same notation as in the L1-case we define the Lp-version of the
two-scale Fourier transform.

Definition 5. For any function f in Lp(Rn), p ∈ [1, 2], and every 0 < ε the two-scale Fourier
transform at the ε-scale of f is defined by

Fε{ f }(ξ,m) = f̂ε(ξ,m) =

∫

Rn
f (x)e−2πix · (ξ+m

ε ) dx
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for all ξ ∈
]
− 1

2ε , 1
2ε

[n
,m ∈ Zn. The inverse is given by

F−1
ε { f̂ε}(x) =

∑

m∈Zn

∫

ξ∈]− 1
2ε , 1

2ε [
n

f̂ε(ξ,m)e2πix · (ξ+m

ε ) dξ.

We have Parseval-Plancherel’s relations, which holds because of the corresponding identities
for the usual Fourier transform.

Theorem 3. (Parseval-Plancherel) Suppose that f and g belong to L2(Rn; Rp). Then for every ε > 0
∫

Rn
f (x) ·g(x) dx =

∑

m∈Zn

∫

ξ∈]− 1
2ε , 1

2ε [
n
f̂ε(ξ,m) · ĝε(ξ,m)dξ,

‖f‖L2(Rn;Rp) =

(
∑

m∈Zn

∫

ξ∈]− 1
2ε , 1

2ε [
n
|f̂ε(ξ,m)|2 dξ

)1/2

= ‖f̂ε‖L2(]− 1
2ε , 1

2ε [
n×Zn;Rp).

The following properties of the two-scale Fourier transform follow at once from the usual
Fourier transform.

Proposition 1. The two-scale Fourier transform has the following properties,

(i) Fε{ f g} = Fε{ f } ∗ Fε{g}, for f , g ∈ L2(Rn).

(ii) Fε{ f ∗ g} = Fε{ f }Fε{g} for f ∈ L1(Rn), g ∈ Lp(Rn), p ∈ [1, 2].

(iii)Fε{∇u}(ξ,m) = 2πi(ξ+ ε−1m)Fε{u}(ξ,m) for u ∈ W1,p(Rn), p ∈ [1, 2].

(iv)Fε{∇ ·u}(ξ,m) = 2πi(ξ+ ε−1m) ·Fε{u}(ξ,m) for u ∈ Lp(div, Rn), p ∈ [1, 2].

(v) Fε{∇×u}(ξ,m) = 2πi(ξ+ ε−1m)×Fε{u}(ξ,m) for u ∈ Lp(curl, R3), p ∈ [1, 2].

(vi)Fε{ue−2πix · (η+ s

ε )}(ξ,m) = Fε{u}(ξ+ η,m+ s) for u ∈ Lp(Rn), p ∈ [1, 2],
ξ ∈]− 1/2ε, 1/2ε[n.

The convolution in Fourier space (∗) is defined as

Fε{ f } ∗ Fε{g}(ξ,m) =
∑

s∈Zn

∫

η∈]− 1
2ε , 1

2ε [
n
Fε{ f }(η,s)Fε{g}(ξ− η,m− s)dη,

for ξ ∈] − 1/2ε, 1/2ε[n. Translated functions like Fε{g}( · ,m − s) are extended by zero
outside ]− 1/2ε, 1/2ε[n for all m and s in Zn.
The admissible test functions (as in Definition 3) converge strongly in Fourier space.

Proposition 2. Assume sequence {φε} two-scale converges strongly to φ. Extend φ̂ε
ε( · ,m) by zero

outside
]
− 1

2ε , 1
2ε

[n
for all m ∈ Zn then

φ̂ε
ε(ξ,m) → φ̂(ξ,m) strongly in L2(Rn × Z

n).

Proof: By assumption {φε} is bounded in L2(Ω). It follows that the two-scale Fourier

transformed sequence φ̂ε
ε(ξ,m) is bounded in L2

(]
− 1

2ε , 1
2ε

[n
× Zn

)
. The extended function is
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bounded in L2(Rn ×Z
n) and converges weakly in L2(Rn ×Z

n). Further, Parseval-Plancherel
(Theorem 3) yields

lim
ε→0

‖φ̂ε
ε‖L2(]− 1

2ε , 1
2ε [

n×Zn) = lim
ε→0

‖φ̂ε
ε‖L2(Rn×Zn) =

lim
ε→0

‖φε
ε‖L2(Ω) = ‖φ‖L2(Ω×Tn) = ‖φ̂‖L2(Rn×Zn).

The statement follows since the sequence converges weakly and in norm. ✷

We continue by restating Nguetseng’s two-scale compactness theorem (Theorems 1 and 2) in
Fourier space.

Proposition 3. Let {uε} be a uniformly bounded sequence in L2(Rn) and ξ ∈ Rn, m ∈ Zn

arbitrary.

(i) If φε two-scale converge strongly to φ (as in Proposition 2) then there exists a subsequence and

u0 ∈ L2(Ω × Tn) such that

lim
ε→0

(̂uεφε)ε(ξ,m) = (̂u0φ)(ξ,m).

(ii) The sequence ûε
ε( · ,m) extended by zero outside

]
− 1

2ε , 1
2ε

[n

ûε
ε ⇀ û0

weakly in L2(Rn × Zn).

(iii) If there exists a compact set K in Rn and a positive number ε0 such that supp uε ⊂ K, for all
ε < ε0, then

lim
ε→0

ûε
ε(ξ,m) = û0(ξ,m).

pointwise in Rn × Zn.

Remark 1. If {uε} in Proposition 3 (iii) is uniformly bounded in L2(Rn) ∩ L1(Rn) (or just bounded

in L1(Rn)) then the convergence is pointwise in Fourier space. That is due to the fact that a subsequence

of {uε} converges weakly in L1(Rn) and e−2πi(x ·ξ+y · m) is a function in L∞(Rn × Tn).

We have the following corollary which follows from Proposition 3

Corollary 1. If {uε} is a bounded sequence in L2(Rn) and if there exists a compact set K in Rn and a

positive number ε0 such that supp uε ⊂ K, for all ε < ε0 (or if {uε} is bounded in L2(Rn) ∩ L1(Rn)
), then there exists a subsequence such that,

Fε{uε}(ξ, 0) → û0(ξ, 0),

as ε → 0, for all ξ ∈ R
n. Here û0(ξ, 0) is the Fourier transform of the weak limit of {uε} in L2(Ω).

Remark 2. Proposition 3 (i) can be illustrated by the following commutative diagram

uεφε 2−s−−−−→ u0φ
⏐⏐�Fε

⏐⏐�F

(̂uεφε)ε(ξ,m)
pointwise−−−−−→ (̂u0φ)(ξ,m)
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Assertions (ii) and (iii) are illustrated by

uε 2−s−−−−→ u0

⏐⏐�Fε

⏐⏐�F

ûε
ε(ξ,m)

weakly/pointwise−−−−−−−−−−→ û0(ξ,m)

which indicates that for sequences defined on bounded domains the two-scale convergence becomes (by
considering the exponential function as a test function) pointwise convergence in Fourier space.

Next we give some compactness results for the two-scale Fourier transform. The first one

asserts that we recover the standard Fourier transform of any function in L2 as the limit of the
two-scale Fourier transformed function.

Proposition 4. Let u ∈ L2(Rn) and û be the standard Fourier transform of u. Then,

lim
ε→0

Fε{u}(ξ,m) = û(ξ)δm0,

pointwise for all ξ ∈ Rn,m ∈ Zn.

Here 0 is the n-dimensional null vector and δkl is the Kronecker delta defined by

δkl =

{
1, k = l,
0, k �= l

We find that a sequence of scaled periodic functions are recovered as the Fourier transform of
the unscaled function.

Proposition 5. Let u ∈ L2(Tn), and define uε(x) = u(x/ε). Then,

Fε{uε}(0,m) = û(m)

for all 0 < ε such that 1/ε is an integer, m ∈ Zn, and

lim
ε→0

Fε{uε}(ξ,m) = û(m)

for all ξ ∈ Rn,m ∈ Zn. Here,

û(m) =

∫

Tn
u(x)e−2πix ·m dx,

Proof: The definition of the two-scale Fourier transform, Definition 5, yields

Fε{uε}(0,m) =

∫

Tn
u(x/ε)e−2πix · (0+m

ε ) dx = εn
∫

Tn
1/ε

u(s)e−2πis · (0+m) ds =

= εn
ε−n∑

1

∫

Tn
u(s)e−2πis · (0+m) ds =

∫

Tn
u(s)e−2πis · (0+m) ds = û(m)

for all 0 < ε such that 1/ε is an integer, ξ ∈ Rn,m ∈ Zn. Here, Tn
1/ε is the 1/ε-torus in Rn.

The second statement follows by similar arguments. ✷
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In the next three propositions we will assume that there exists an ε0 > 0 such that for all
ε < ε0 the support of all sequences are contained in a compact set K in R

n. It follows

that e−2πix · (ξ+m

ε ) belongs to L2(K) and is an admissible test function in the two-scale
convergence sense. If the support is not compact then the convergence in Fourier space will

be weak in L2, as in Proposition 3 (iii). The proofs will be similar in these cases, just multiply

with test functions in L2(Rn × Zn) before taking the limits. Alternatively, we can localize the
sequence first by multiplying with functions φ ∈ C0(Ω).

Proposition 6. If {uε} is a bounded sequence in H1(Rn) then there exists a subsequence such that,

(i) Fε{uε}(ξ,m) → û(ξ)δm0,

(ii) Fε{∇uε}(ξ,m) → 2πiξû(ξ)δm0 + 2πimû1(ξ,m)

as ε → 0, for all ξ ∈ Rn,m ∈ Zn. Here û is the standard Fourier transform of u which is the

weak limit of uε in L2(Rn), and û1 ∈ L2(Rn; l1,2(Zn)) is the Fourier transform of a function u1 ∈
L2(Rn; H1(Tn)).

Proposition 7. If {uε} is a bounded sequence in H(div, Rn) then there exists a subsequence such
that,

(i) Fε{uε}(ξ,m) → û0(ξ,m), with 2πim · û0(ξ,m) = 0

(ii) Fε{∇ ·uε}(ξ,m) → 2πiξ · û(ξ)δm0 + 2πim · û1(ξ,m)

as ε → 0, for all ξ ∈ Rn,m ∈ Zn, where û(ξ) = û0(ξ, 0) is the standard Fourier transform

of u ∈ H(div, Rn), u(x) =
∫

Tn u0(x,y) dy and û1 ∈ L2(R3; l2(div, Z3; Cn)) is the Fourier

transform of a function u1 ∈ L2(Rn; H(div, Tn)).

Proposition 8. If {uε} is a bounded sequence in H(curl, R3) then there exists a subsequence such
that,

(i) Fε{uε}(ξ,m) → û0(ξ,m) = û(ξ)δm0 + 2πimφ̂(ξ,m), with 2πim× û0(ξ,m) = 0

(ii) Fε{∇×uε}(ξ,m) → 2πiξ× û(ξ)δm0 + 2πim× û1(ξ,m)

as ε → 0, for all ξ ∈ R3,m ∈ Z3. Here û(ξ) = û0(ξ, 0) is the Fourier transform of u(x) =∫
Tn u0(x,y) dy, u ∈ H(curl, R3), φ̂ ∈ L2(R3; l2(Z3)) is the Fourier transform of a function φ ∈

L2(R3; H1(T3)) and û1 ∈ L2(R3; l2(curl, Z3; C3)) is the Fourier transform of a function u1 ∈
L2(R3; H(curl, T3)).

4. The non-local homogenization problems

We will consider two non-local elliptic problems. The physical problem in mind is a
nonlocal electrostatic equation for a periodic composite. This is an elliptic problem with
spatial convolution of the electric field with a conductivity, which consists of a periodic part
multiplied with a localizing function. The localizer gives a finite contribution to the current
density when convoluted with the electric fields in the neighborhood of the observation point.

4.1 Assumptions and weak formulation
The domain, Ω, is assumed to be a bounded subset of Rn, n ∈ N with a Lipshitz boundary
∂Ω. We assume the current density is given by a spatial convolution of the electric field with
a nonlocal kernel K which gives the current density contribution at a point due to the electric
field in the neighborhood of x,

J(x,∇φ) = J(x) =

∫

Ω

K(x− ξ)∇φ(ξ) dξ. (5)
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The kernel maps electric fields to current densities (Rn → R
n) and decays monotonically for

large arguments. To model the fine scale structure in a heterogeneous material we introduce
the fine scale parameter ε > 0. The scaled current density is given by

J ε(x) =

∫

Ω

Kε(x− ξ)∇φε(ξ)dξ (6)

where φε is the electric potential. We integrate over the support of Kε which overlaps Ω, which
has to be taken into account close to the boundary ∂Ω. The static equation reads

{
−∇ ·J ε(x) = f ε(x) x ∈ Ω

φε|∂Ω = 0
(7)

where f ε is some given current density source bounded in L2(Ω) which converges strongly to

f in H−1(Ω) when ε → 0. Equation (7) is to be understood in the weak sense, i.e.,

∫

Ω

J ε(x) ·∇ψ(x)dx =

∫

Ω

f ε(x)ψ(x)dx ∀ψ ∈ H1
0(Ω) (8)

We introduce the scaled bilinear form

aε(φ, ψ) =

∫

Ω

∫

Ω

Kε(x− ξ)∇φ(ξ)dξ ·∇ψ(x)dx (9)

Equation (8) can now be restated in the following weak formulation. Find φε ∈ H1
0(Ω) such

that

aε(φε, ψ) =

∫

Ω

f ε(x)ψ(x)dx ∀ψ ∈ H1
0(Ω) (10)

We will assume that the kernel K is such that the following boundedness and coercivity
properties follows

Theorem 4. There exist constants C1, C2 > 0 such that

|aε(φ, ψ)| ≤ C1‖∇φ‖L2(Ω;Rn)‖∇ψ‖L2(Ω;Rn) (11)

C2‖∇φ‖2
L2(Ω;Rn) ≤ aε(φ, φ) (12)

for all φ, ψ ∈ H1
0(Ω)

The precise form of the kernel K will be given in the next sections.

4.2 Existence of unique solution
For the existence of solution we need the Lax-Milgram theorem (e.g. see Evans (1998))

Theorem 5 (Lax-Milgram). Assume that

B : H × H → R

is a bilinear mapping, for which there exist constants α, β > 0 such that

|B[u, v]| ≤ α‖u‖‖v‖ (u, v ∈ H)

and
β‖u‖2 ≤ |B[u, u]| (u ∈ H).
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Finally, let f : H → R be a bounded linear functional on H. Then there exists a unique element u ∈ H
such that

B[u, v] = 〈 f , v〉
for all v ∈ H.

Here, 〈 · , · 〉 denotes the duality pairing between H and its dual H′.

Theorem 6 (Existence and uniqueness). Equation (10) has a unique solution φε ∈ H1
0(Ω) for each

ε > 0.

Proof: The result follows from Theorems 4 and 5. ✷

The main question to be answered is: Which equation with constand coefficients has a solution
that is the best possible approximation of the solution of equation (10) when ε is small? To be
able to answer this question we need to find the limit of the bilinear form when ε → 0. The
first step is to establish a priori estimates of the sequence of solutions.

4.3 A priori estimates

We have the standard a priori estimate

Theorem 7 (A priori estimate). The solutions of (10) satisfies

‖φε‖H1
0 (Ω) ≤ C (13)

uniformly with respect to ε > 0.

Proof: Letting ψ = φε in (10), the coercivity property in equation (12) and Hölder’s inequality
yields

C‖∇φε‖2
L2(Ω;Rn) ≤ ‖ f ε‖L2(Ω)‖φε‖L2(Ω) (14)

The Poincare inequality and the boundedness of ‖ f ε‖L2(Ω) gives

‖∇φε‖L2(Ω;Rn) ≤ C (15)

‖φε‖L2(Ω) ≤ C (16)

The assertion is proved. ✷

5. Homogenization

5.1 Case I, Non-vanishing non-localness

Let us consider a non-vanishing convolution kernel. Assume that K is an admissible test
function in the two-scale sense, as in Definition 3, i.e., satisfying Proposition 2. As a model let
us use

K(x,y) =

⎧
⎨

⎩
Cσ(y) exp

(
1

| xr |2−1

)
, |x| < r.

0 , |x| ≥ r
(17)

where r is the radius of the non-local influence zone, σ is the conductivity associated with the
non-locality, it is assumed to be Y-periodic, i.e., σ(y+ e) = σ(y) for all y ∈]0, 1[n, and C > 0
is a constant.
The scaled kernel reads

Kε(x) = K
(
x,

x

ε

)
=

⎧
⎨

⎩
Cσ

(
x
ε

)
exp

(
1

| xr |2−1

)
, |x| < r.

0 , |x| ≥ r
(18)
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The conductivity σ satisfies the coercivity condition

σξ · ξ ≥ c1|ξ|2 (19)

for all ξ ∈ Rn, x ∈ Ω a.e., and is bounded, i.e., σ ∈ L∞(Ω; Rn×n)

Theorem 8 (Homogenization, non-vanishing non-localness). Let {φε} be a sequence of solutions
to (10) where the kernel in the bilinear form (9) is given by (18). The sequence {φε} converges weakly

in H1
0 (Ω) to φ ∈ H1

0(Ω), the unique solution of the Homogenized Problem

−∇ ·

∫

Ω∩suppσh(x− · )
σh(x− z)∇φ(z)dz = f (x), (20)

a.e. in Ω, where the homogenized conductivity is given by

σh(x) =

∫

Tn
K(x,y)dy =

∫

Tn
Cσ(y) exp

(
1

∣∣x
r

∣∣2 − 1

)

dy (21)

Proof: Since φε ∈ H1(Rn) and f ε ∈ L2(Rn) we can apply the two-scale Fourier transform to
(7). The a priori estimate in Theorem 7 and Definition 5 gives

2πi(ξ+ ε−1m) · K̂ε
ε(ξ,m)2πi(ξ+ ε−1m)φ̂ε

ε(ξ,m) = f̂ ε
ε (ξ,m), (22)

for all ε < 0, ξ ∈ Rn,m ∈ Zn. Next we multiply with ε and send a subsequence (still denoted
by ε) to zero. Taking Propositions 6 and 2 into account will give us the Fourier transform of

the local problem as the L2-weak limit in Fourier space,

2πim · K̂(ξ,m)2πi
(
ξφ̂(ξ)δm0 +mφ̂1(ξ,m)

)
= 0, (23)

for a.e. ξ ∈ R
n, and all m ∈ R

n. It has a trivial solution φ̂1(ξ,m) = 0 for all m �= 0. To get
the homogenized problem we let m = 0 in (22), extract another subsequence and send ε → 0

which yields the standard Fourier transform of the weak L2(Ω)-limit,

2πiξ · K̂(ξ, 0)2πiξφ̂(ξ) = f̂ (ξ), (24)

for a.e. ξ ∈ Rn. Apparently we do not need φ̂1 in the homogenized equation. The
homogenized equation (24) is the Fourier transform of

−∇ ·

∫

Ω∩suppσh(x− · )

∫

Tn
K(x− z,y) dy∇φ(z)dz = f (x), (25)

Here σh, is the mean value of K with respect to the local variable. Indeed, it is the
homogenized conductivity

σh(x) =

∫

Tn
K(x,y) dy (26)

The homogenized equation has a unique solution (see Theorem 10 below) which implies that
the whole sequence converges. ✷
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5.2 Case II, Vanishing non-localness
In this case we will use the same kernel, but we will scale both variables, i.e., let

K(y) =

⎧
⎨

⎩
Cσ(y) exp

(
1

| yr |2−1

)
, |y| < r.

0 , |y| ≥ r
(27)

where r > 1 is the radius of the non-local influence zone, and C > 0 is a constant and scale
the kernel as

Kε(x) = ε−nK
(x

ε

)
=

⎧
⎨

⎩
ε−nCσ

(
x
ε

)
exp

(
1

|xεr |2−1

)
, |x| < εr.

0 , |x| ≥ εr
(28)

The assumptions for Case I applies. Note that the scaling implies

lim
ε→0

K̂ε
ε(ξ,m) = K̂(m) (29)

for all ξ ∈ Rn. The support of K̂(m) is continuous (Rn) in contrast to what is indicated by
the argument m. The reason is that the mollifier has a compact support and larger than the
unit cell ]0, 1[n, since r > 1. Actually, this case asks for a modified definition of the two-scale
Fourier transform, e.g. in one dimension we let |ξ| < δ/2ε, and m = ±δ,±2δ, . . . . Then we
send δ → 0, but slower than ε, e.g. δ =

√
ε should work.

Theorem 9 (Homogenization, vanishing non-localness). Let {φε} be a sequence of solutions to
(10) where the kernel in the bilinear form (9) is given by (28). The sequence {φε} converges weakly in

H1
0 (Ω) to φ ∈ H1

0(Ω), the unique solution of the Homogenized Problem

−∇ ·σh∇φ(x) = f (x), (30)

a.e. in Ω, where the homogenized conductivity is given as the mean value

σh =

∫

|y|<r
K(y) dy =

∫

|y|<r
Cσ(y) exp

(
1

∣∣y
r

∣∣2 − 1

)

dy (31)

Proof: Since φε is bounded in ∈ H1(Rn) and f ε ∈ L2(Rn) we can apply the (modified)
two-scale Fourier transform in Definition 5 to (10),

2πi(ξ+ ε−1m) · K̂ε
ε(ξ,m)2πi(ξ+ ε−1m)φ̂ε

ε(ξ,m) = f̂ ε
ε (ξ,m), (32)

for all ξ ∈ Rn,m ∈ Zn. Next we multiply with ε and send a subsequence (still denoted by ε)
to zero. Taking Proposition 6 and limit (29) into account will give us the Fourier transform of

the local problem as the L2-weak limit in Fourier space,

2πim · K̂(m)2πi
(
ξφ̂(ξ)δm0 +mφ̂1(ξ,m)

)
= 0, (33)

for a.e. ξ ∈ Rn, and all m ∈ Rn. It has a trivial solution φ̂1(ξ,m) = 0 for all m �= 0. To
get the homogenized problem we let m = 0 in (32) and send another subsequence ε → 0

which yields the usual Fourier transform of the weak L2(Ω)-limit in (30), once again using
Proposition 6,

2πiξ · K̂(0)2πiξφ̂(ξ) = f̂ (ξ), (34)
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for a.e. ξ ∈ R
n. Applying (29) gives the homogenized equation. The homogenized equation

reads in real space

−∇ ·

∫

|y|<r
K(y) dy∇φ(x) = f (x), (35)

Inspection of equation (35) yields the homogenized conductivity as

σh =

∫

|y|<r
K(y) dy, (36)

The whole sequence converges since the homogenized equation has a unique solution in

H1
0 (Ω), see Theorem 10. ✷

Theorem 10 (Existence of solution). The homogenized problems (20) and (30) has each a unique

solution in H1
0(Ω).

Proof: It follows from the assumptions that the homogenized conductivity σh inherits the
properties of K. The statement follows from Theorem 5. ✷

6. Remarks and conclusions

The localization of the constitutive relation for Case II in (30) can equally be obtained by

multiplying the kernel in (17) with r−1 and sending r → 0 either before sending ε → 0 or
after. Introducing a spatially local contribution in the constitutive relations will somewhat
complicate the analysis, but it is doable. An effect that we have not taken into account is the
influence of the boundary ∂Ω. In real life, e.g. for wave propagation in cases the wavelength
is on the same order as the material periodicity, we expect the nonlocal constitutive relation to
depend on the distance to the boundary. We will return to these issues in forthcoming papers.
We conclude that spatially nonlocal constitutive relations are particularly easy to homogenize
since we need only to integrate the kernel over the fast variable. In retrospective, this is to
some degree expected since spatial convolution is an averaging procedure which smoothers
fast oscillations.
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1. Introduction

1.1 Time-resolved Fourier transform infrared spectroscopy

Time-resolved spectroscopy (TRS) is a wide-spectrum technique used for studying the
dynamics of chemical reactions, or the dynamic properties of molecules, radicals and ions
in liquid, gas and solid states. In the infrared spectral range it can be achieved by
using lasers (Smith & Palmer, 2002), grating spectrometers (Rödig & Siebert, 2002) or by
interferometers (Masutani, 2002). The presented report is focused on the development and
application of a time resolved system based on commercially available continuously scanning
high resolution interferometer and its modification for time resolved Fourier transform
spectroscopy (TR-FTS) (Kawaguchi et al., 2003).
The main advantage of TR-FTS lies in obtaining spectra in wide wavenumber intervals. The
speed of data acquisition is limited by the duration of the acquisition process and by the band
width of the used detector.
There are basically two ways of obtaining the time-resolved spectra: the continuous scan
and the non-continuous, step scan (Masutani, 2002; Rödig & Siebert, 2002; Smith & Palmer,
2002). The continuous scan is best used when the duration of the observed phenomenon is
longer than the time needed for carrying out one scan, i. e. for obtaining an interferogram
up to the maximum trajectory difference (Rapid and ultrarapid scanning FT). Time-shifted
individual scans provide a sequence of interferograms from which a conventional spectrum
can be calculated. When using the rapid scanning and short distance mirror traversing, a time
resolution from 1000 s to 1 ms can be reached.
A special approach to the time-resolved spectra of phenomena lasting from milliseconds
to microseconds is the synchronous scanning FT technique (Kawaguchi et al., 2005). This
method, as well as the methods mentioned below, requires the possibility of initiating the
reaction in a pulse mode, e. g. using a laser, electric discharge, electron bombardment, a
UV discharge lamp, etc. (Civiš et al., 2006). The apparatus carries out a continuous scan
and, during the pulse, it reads the signal from the detector corresponding to the position
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of the mirror and to the time from the beginning of the pulse reaction using the He–Ne
laser fringe signals generated by the interferometer. This method is called stroboscopic
interferometry (Smith & Palmer, 2002). After accumulating a sufficient amount of data and
scans, the time-shifted interferograms are composed. The time mode is usually from 10 ms to
1 µs.
A more favorable method of non-continuous scanning in steps (step-scan) is achieved in
discrete jumps and the time-resolved data from each position can be recorded after each
transient event (Rödig & Siebert, 2002). Such a system is easy to couple with a pulse laser
or a pulsed discharge. The step-scan spectrometers are commercially available and are used
mainly for photolytic experiments in biology. The resolution of commercial step-scan type
interferometers is limited to 0.1 cm-1. A high resolution measurement with a step-scan type
interferometer has been reported: a Connes type interferometer (CNRS Orsay) was used for
the measurement of N2 spectra with a resolution of 0.03 cm-1 (Durry & Guelachvili, 1994).

1.2 Continuous scan systems: Synchronous triggering and data sampling

Continuously scanning spectrometers have been applied for time-resolved spectroscopy by
several teams following the first report by Mantz (1976). Berg & Sloan (1993) developed
a compact data acquisition system for submicrosecond time-resolved FTS. Nakanaga et al.
(1993) applied a pulse discharge system to a continuously scanning interferometer without
any modification of the system’s software. The pulsed discharge was triggered by a
He–Ne laser fringe signal with an appropriate delay time. The system was applied
to the measurement of the time profiles of a vibration-rotation absorption spectrum of
discharged CO. Recently, Kawaguchi et al. (2005) reviewed the methods of time-resolved
Fourier transform infrared spectroscopy and its application to pulsed discharges and
demonstrated the technique of FTS using a high-resolution Bruker IFS 120 HR supported by
a microcontroller SX or Field Programmable Gate Array processor (FPGA) on He2, ArH and
ArH+ spectra. The same system was used for studding the products of ArF excimer laser
ablation products (Civiš et al., 2010; Civiš et al., 2010; Kawaguchi et al., 2008).
The continuous scanning principle was the basis for data acquisition by a modified
(Bruker IFS 120) spectrometer in our laboratory at the J. Heyrovský Institute of Physical
Chemistry, and a similarly modified spectrometer was used in Okayama (Japan).
The data acquisition system can be described as follows:
The position of the traversing mirror of the Michelson interferometer is detected by reading
the interference maxima of the He–Ne laser emission. The input signal in a cosine function
shape is digitally processed into rectangular pulses and becomes the internal standard of the
interferometer. The frequency of these rectangular pulses depends on the mirror speed. In the
classic measurement mode, the frequency is usually 10 kHz with a pulse duration of 100 µs.
An external processor monitors the beginning of the He–Ne laser digital pulse, its order and
the zero position of the mirror. During one pulse, the signal from the detector is read (30 or
up to 64 readings), this is the so-called AD trigger Kawaguchi et al. (2008). These signals are
shifted in time by Δt, where Δt = 1 or 2, 3 . . . µs.
In this way, a matrix I(tk, δi) of intensity I in times tk is acquired for the given optical
path difference δi (i being the index of the selected optical path difference, from its zero to
maximum values). A discharge pulse of variable length can be arbitrarily inserted into the
data acquisition process (AD trigger). This process results in 30 to 64 reciprocally time-shifted
interferograms.
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Time resolved spectra are obtained by collecting data at various points between the
zero-crossings and calculating the FT transformation for each such point. This system was
utilized using a FPGA processor. The main role of the FPGA processor in our experiment
was to create a discharge or laser pulse and AD trigger signals (the signal for data collection
from the detector) synchronously with the He–Ne laser fringe signals from the spectrometer
(see Figure 1 and Figure 2). The FPGA processor also controls the data transmission from the
digital input board to the PC.

Fig. 1. A diagram of the time resolved Fourier transform spectrometer with FPGA
microcontroller

Fig. 2. Timing diagram for time resolved FT measurement. The scan and He–Ne fringe
signals are supplied from Bruker 120 HR spectrometer. The velocity of the scanner is 10 kHz
100 µs time intervals are produced. The discharge trigger is programmed using FPGA
microcontroller. Maximum 64 interferograms (64 time shifted spectra) can be obtained
during one scan.

2. Continuous scan systems: application with discharges

Figure 1 depicts the experimental arrangement used in presented study. Infrared emission
was observed from a pulsed discharge of FT time-resolved measurements. The parent
compound hydrogen or (CN)2 was entrained in an inert carrier gas (He, Ar) and entered in
the 20 cm long positive column discharge (or hollow cathode) tube with an inner diameter of
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12 mm. The pulsed discharge was induced by a high voltage transistor switch HTS 81 (Behlke
electronic GmbH, Frankfurt, Germany) between the stainless steel anode and grounded
cathode. The plasma produced from the reaction mixture was cooled by flowing water in
the outer jacket of the cell. The best conditions for the generation of radicals or ions were
found to be p(He, Ar) = 2–10 Torr and 50 mTorr of parent molecules. The voltage drop across
the discharge was 1000 V, with a pulse width of 20 or 40 µs and 0.5 A peak-to-peak current.
The scanner velocity of the FT spectrometer was set to produce a 10 kHz He–Ne laser fringe
frequency which was used to trigger the pulsed discharge. The recorded spectral range was
1800–4000 cm-1 with an optical filter, and a unapodized resolution of 0.07 or 0.025 cm-1. The
32–100 scans were coadded so as to obtain a reasonable signal-to-noise ratio. The observed
wavenumbers were calibrated using CO ground state rotation-vibration lines presenting in
the spectra (Guelachvili & Rao, 1986) as impurities.

2.1 He discharge plasma

2.1.1 Introduction

The He2 molecule is known as the first Rydberg molecule, since its spectrum was reported
in 1913. Many spectroscopic studies have been carried out as compiled in a book
of Huber & Herzberg (1979) and in the DiRef web site (Bernath & McLeod, 2001). Most
of the spectra of He2 molecule have been observed in the visible and ultraviolet regions.
Ginter & Ginter (1988); Ginter et al. (1984) compiled and analyzed the energy levels of
Rydberg states originating from the electronic configurations (1σg)2(1σu)npλ(3

Πg, 3
Σ
+
g ) and

(1σg)
2(1σu)nsσ, ndλ(3

Σ
+
u , 3

Σ
+
u , 3

Πu, 3
Πu) by multichannel quantum defect theory, where n is

the principal quantum number in the united atom molecular orbital designation. According
to the energy levels listed in Refs. (Ginter & Ginter, 1988; Ginter et al., 1984), many electronic
transitions are expected in the infrared region. However, observations of the infrared spectra
so far have been limited to the three band systems below 8000 cm-1:

(1) b3
Πg–a3

Σ
+
u with the 0–0 band origin at 4750cm-1 , studied by Hepner (1956), Gloersen &

Dieke (1965), and (Rogers et al., 1988),

(2) B1
Πg–A1

Σ
+
u with the 0–0 band origin at 3501cm-1 , studied by Solka et al. (1987) and

(3) the 4 f –3d band in 5100–5800 cm-1 spectral region, studied by Herzberg & Jungen (1986).

The assignment of 4 f –3d band was the first example concerning electronic states originating
from the f -orbital electron.
The time-resolved Fourier transform spectroscopic system was applied for the observations
of He2 emission spectra produced by a pulsed discharge (Hosaki et al., 2004). This method
has enabled us to observe many electronic transitions in the infrared region, including the
previously reported bands. The spectroscopic analysis of newly observed three bands and
their time profiles are briefly reported.

2.1.2 Experimental

The spectra of He2 were observed in emission from a hollow cathode discharge plasma. The
hollow cathode stainless steel tube was 20 cm long with an inner diameter equal to 12 mm.
The ac discharge was maintained by a high voltage transistor switch applied between the
stainless steel anode and grounded cathode. The emission of He2 has been also observed
from a positive column, where lines from vibrationally excited states of b3

Πg were found to
be more intense, compared with the case of the hollow cathode discharge. Here we report
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only the spectra obtained from the hollow cathode discharge, because of its higher efficiency
in the production of the highly excited electronic states of He2.
The plasma made from a pure helium was cooled down by flowing water or by liquid nitrogen
in outer jacket of the cell. The best conditions for the generation of the He2 were found to be
p(He) = 1.33 kPa (10 Torr).

2.1.3 Observed spectra and analysis

Figure 3 shows a part of the observed time-resolved emission spectrum from a discharge
in He. The discharge was initiated at time zero and turned off at 20 µs. For AD-converter
triggers, we used 3 µsec for the zero offset and interval values, that is, AD conversion occurs
every 3 µsec from the start of the discharge and all together 30 pulses cover 90 µsec. The
strong line (5880 cm-1) in Figure 3 belongs to the He atomic line (4d–3p) and is observed as
two intense peaks. It may be noted that the second peak appears after the discharge is off, that
is, it is due to the afterglow plasma. The other spectral lines in Figure 3 pertain to the 4 f –3d
transitions of He2 which have been analyzed by Herzberg & Jungen (1986).

Fig. 3. A portion of the time-resolved spectrum observed by a pulse discharge in He with a
pressure of 1.33 kPa (10 Torr). The discharge was applied in the interval of 0–20 µsec with a
peak current of 0.5 A. The strongest peak belongs to atomic He line (4d–3p). Other lines
pertain to 4d–3p transitions of He2.

Figure 4 shows an observed spectrum in the 2750–5600 cm-1 region, where we averaged all
30 spectra obtained by the time-resolved method. In the figure, the b3

Πg–a3
Σ
+
u ν = 0–0

band is strongly observed in 4800 cm-1 region. Most of spectral lines in the 5200–5900 cm-1

region could be attributed to the 4 f –3d band (Solka et al., 1987). In the 3300 cm-1 region,
the B1

Πg–A1
Σ
+
u ν = 0–0 band found to be weak. From the time profile, it appears that the

population in the singlet B1
Πg state decreased during the discharge period and increased in

the afterglow, similarly to that observed for high-energy triplet states.
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Fig. 4. An observed spectrum of He2 in the 2750–5600 cm-1, where 30 time-resolved spectra
(90 µsec) are averaged. The discharge condition is given in the caption of Figure 3

In addition to these already reported bands, some new bands were observed. In the 3200 cm-1

region, two series of lines have been observed with no Q-branch transitions. Rotational
assignments are listed in Table 1 with the observed wavenumbers.

N P(N) o.-c. R(N) o.-c.

h3
Σ
+
u –g3

Σ
+
g

0 3177.5569 0.0006
2 3134.9969 -0.0005 3206.4133 0.0018
4 3107.2556 -0.0001 3235.5447 0.0000
6 3080.1473 -0.0010 3264.8626 -0.0064
8 3053.7916 0.0000 3294.3028 0.0089

10 3028.3000 0.0012 3323.7108 -0.0054
12 3003.7698 -0.0002 3353.0067 0.0013
14 2980.2783 -0.0002

g3
Σ
+
g –d3

Σ
+
u

1 3190.4064 -0.0019 3232.9664 -0.0013
3 3160.7770 -0.0003 3259.9345 0.0005
5 3130.2548 0.0017 3285.6522 0.0016
7 3098.93068 0.0021 3130.0069 0.0006
9 3066.8917 -0.0002 3332.8839 -0.0017

11 3034.2243 -0.0031 3354.1697 0.0005
13 3001.0169 0.0015

Table 1. Observed transitions of He2 (cm-1). N denotes the rotational quantum number
neglecting spin in lower electronic states.

The analysis using the standard energy level expressions gave the rotational and centrifugal
distortion constants, and the band origin (term energy) as listed in Table 2.
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Present Previous

(h3
Σ
+
u ) (a)

B 7.14853(24) 7.149
D × 103 0.5053(24) 0.574
H × 107 −0.686(87)

E

(g3
Σ
+
g ) (b)

B 7.096458(94) 7.0968(1)
D × 103 0.53071(44) 0.538(7)

E 3204.8746(11)
(d3

Σ
+
u ) (c)

B 7.226364(88) 7.2286(15)a

D × 103 0.51991(37) 0.532(3)
E 0.0 0.0

(a) Huber & Herzberg (1979)
(b) Orth & Ginter (1976)
(c) Ginter (1965)

Table 2. Molecular constants of He2 in the h3
Σ
+
u , g3

Σ
+
g and d3

Σ
+
u states (cm-1 units).

Numbers in parentheses denote one standard deviation and applied to the last significant
digits.

Spin splitting was not observed in these bands. The magnitude of the rotational constants
was useful for identification of the electronic state. The band origin frequencies 3204.9 cm-1

and 3194 cm-1 of the two bands were consistent with those of the g3
Σ
+
g –d3

Σ
+
u (ν = 0–0) and

h3
Σ
+
u –g3

Σ
+
g (ν = 0–0) transitions, respectively. Both the bands were identified for the first

time in the infrared region, although electronic states involved have been observed by other
electronic transitions in the visible region. Molecular constants determined in the previous
studies are also listed in Table 2 for comparison.
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Fig. 5. Observed time profiles of emission intensities of He2

Time profiles of observed spectral lines are depicted in Figure 5 for several bands. Except for
the transitions from the b3

Π state, the high-energy Rydberg states are produced strongly in
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the afterglow plasma. This means those states are more fragile during the discharge period
and may not be observed strongly in a normal DC discharge.
The pulsed discharge and multi-sampling system produce an interesting spectral feature of
He2 in the infrared region. Especially, when the data sampling is carried out after turning
off the discharge, intense emissions from many electronic bands are strongly observed.
The analysis may provide information about high-energy Rydberg states including states
originating from f -orbital electrons.
Figure 6 shows the energy level diagram of He2, where the energy values are represented
relative to the a3

Σ
+
u (v = 0) state, which is located 144952 cm-1 (18 eV) above the repulsive

ground X1
Σ
+
g ) state. The observed transitions are demonstrated by arrows.
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Fig. 6. Energy level diagram of He2. The transitions observed in the present study are shown
by arrows. The energy value is measured from the a3

Σ
+
u (v = 0) state; n(> 1) is the principal

quantum number in a united atom molecular orbital designation. The ionization limit to
He2

+ is 34316 cm-1.

2.2 Hydrogen containing discharge

Hydrogen and helium are the two most abundant elements in the universe. The hydrogen
molecule and its various hydrides are the first source of aggregation and formation of
interstellar matter. This process occurs in dense interstellar clouds, in star-forming regions
and also in the atmosphere of some heavy planets (e. g., Jupiter, Saturn,Uranus). The H3

+

ion plays a dominant role in all these cases (Drossart et al., 1989; Herbst & Klemperer, 1973;
McCall et al., 1998). After the first laboratory spectroscopic detection of H3

+ (Oka, 1980), a
large number of laboratory studies have been published, of which about 20 were concerned
with measuring new infrared spectra, describing about 800 transitions from a variety of
vibrational bands in the spectral range between 1800 and 9000 cm-1. It is apparent from the
comprehensive evaluation and compilation study of H3

+ spectroscopy by Lindsay & McCall
(2001) that most laboratory studies were carried out using absorption measurements. The only
exception consists of the pioneering experiments of Majewski et al. (1987; 1994), who used a
combination of a water-cooled, high-pressure, high-current emission hollow cathode together
with an FT spectrometer. Majewski et al. used a high pressure of hydrogen gas (5–50 Torr)
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and high discharge current (up to 2.5 A) for production of H3
+. They obtained a very dense

spectrum containing, in addition to H3
+, a large number of H atomic, H2 valence, H2 Rydberg,

H3 neutral, and also other unidentified transitions.
In this part we describe the application to the observation of H3

+, He and H emission
produced by a pulsed discharge in a He/H2 mixture in the infrared spectral range. The use
of time-resolved FT spectroscopy opens new pathways and new points of view in the study
of the formation and decay processes inside the discharge plasma and permits description of
the dynamics of the formation and decay of excited states of the H3

+ ion (Civiš et al., 2006).

2.2.1 Experimental

The emission spectra from a hollow cathode discharge plasma in He/H2 mixtures were
observed with the time-resolved Fourier transform high-resolution Bruker IFS 120 HR
interferometer (Civiš et al., 2006). The hollow cathode stainless steel tube, covered with an
outer glass jacket, was 25 cm long with an inner diameter of 12 mm. The He/H2 plasma
was cooled by liquid nitrogen in the outer jacket of the cell. The voltage drop across the
discharge was 800 V, with a pulse width of 20 µs and 0.6 A peak-to-peak current The
recorded spectral range was 1800–4000 cm-1 with an optical filter, at an unapodized resolution
of 0.1 cm-1. Sixty-four scans were averaged to obtain a reasonable signal-to-noise ratio. The
initial pressure of H2 was 0.35 Torr and the He pressure was changed from 2 to 10.8 Torr.
The experiments were carried out with pulsed discharge with a width of 20 µs. Because of
the high pressures (up to 10 Torr) required for generation of H3

+ and thus, subsequently, the
short relaxation times of the H3

+ ions, the measurement was carried out with maximum time
resolution of 1 µs, which is currently limited by the response time of a preamplifier of the InSb
detector. Compared to previous measurements (Hosaki et al., 2004; Kawaguchi et al., 2003),
the data acquisition system was modified for enabling recording of 64 time-shifted spectra in
a single scan.

2.2.2 Results and discussion

Helium has a higher ionization potential than H2 (24.6 eV and 15.4 eV correspondingly;
see Huntress, 1977), so that the electron temperatures are higher when He predominates in
the discharge. Because of the low proton affinity of He (1.9 eV) compared to H2 (4.5 eV), the
He buffer is chemically quite inert.
The low temperature emission spectra from a hollow cathode discharge in a He/H2 mixture
were found to contain only several of the low J and K transitions of H3

+, together with the
atomic lines of He and H. No further lines of He+, H+ or molecular lines of H2 or of neutral
H3 which also absorb in this area, were found (Davies et al., 1990; Vervloet & Watson, 2003).
Figure 7 shows part of the observed time-resolved emission spectra of He (2129.83 cm-1) and
H (2148.79 cm-1). Figure 7(b) depicts the H3

+ line Q(1, 0) at 2529.724 cm-1, which belongs to
ν2 = 1 → 0 band.
Figure 8 shows time profiles of emission lines of He (a,b), H3

+ (c) and H (d). The absolute
energy levels and Einstein coefficients Aij for He, H and H3 were taken from the NIST
database (Ralchenko et al., 2008) and from (Kao et al., 1991). The vertical axis shows observed
intensity divided by the Einstein coefficients Aij and corresponds to the abundance in the
upper state of the transition. It is noted that the emission from n = 5 of H was observed
through the n = 5–4 transition, but other transitions from n = 5 are not observed because of
the limited frequency range. Therefore, the abundance in the initial state of atomic transitions
should be multiplied by a factor of 6 in the case of hydrogen. This sequence of processes was
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Fig. 7. Time-resolved infrared spectrum at 2125–2155 cm-1 (a) and 2528–2532 cm-1 (b),
observed in a pulsed discharge in a He (10.8 Torr)/H2 (0.4 Torr) mixture. The discharge was
applied in a time interval of 0–20 µs with a peak current of 0.5 A.

observed for all the lines in the spectrum; the time in which the maximum emissions were
measured for the individual transitions of the same species (He, H3

+ and H) did not differ by
more than ±2 µs.
Chemical processes in He/H2 plasma that can lead to the formation of H3

+ are discussed
extensively in literature (Eqns. 1–4; see Plašil et al. (2002)):

He + efast −→ He∗ + eslow σ = 4 × 10−18 cm2 for He(23S) (1)

He∗ + H2 −→ H2
+ + e σ = 2.6 × 10−16 cm2 for He(23S) (2)

H2 + efast −→ H2
+ + eslow + eslow σ = 10−16 cm2 for electron energy of 70 eV (3)

H2
+ + H2 −→ H3

+ + H k = 2.0 × 10−9 cm3 s−1, ΔH = −1.65 eV (4)

In all our experiments no emission from H3
+ has been detected in pure hydrogen discharge.

Reaction (4) is exothermic to have enough energy to produce H3
+ in ν2 = 1 state. However,

since H2 is known to be efficient for relaxing the vibrational excited state, the vibrationally
excited H3

+ in pure H2 discharge will be relaxed by the collision with H2. It should be noted
that the obtained radiative lifetime of H3

+ is about 10 ms.
By adding a large amount of He the vibrational relaxation will be suppressed, and the H3

+

emission becomes strong. At low helium pressures, H3
+ is formed directly in the discharge

through direct ionization of H2 and subsequent processes (Eqns. 1,4). Formation and decay
of excited H3

+ occurs in µs time range. The calculated values for the deactivation rate
kij = (2..5)× 105 s−1 are several orders of magnitude higher than the Einstein coefficients Aij

for spontaneous emission of H3
+, and recombination process described later, which clearly

demonstrates the efficiency of collision processes for deactivation of the H3
+ excited states. In

Figure 8, the second weaker maximum of the H3
+ line was found at 45 ± 2 µs. This appears

as a consequence of collisions of H2 and metastable He with a long lived lifetime, as shown in
Eqns. (2) and (4).
The entire process in the afterglow is concluded by formation of H, which could be observed
on two lines (2148.7 and 2467.8 cm-1) at times of 40–60 µs (Figure 8d). The two lines
corresponding to transitions in excited atomic hydrogen were observed with two peaks
(Figure 8d): a small peak at 12 µs and a high-intensity peak with a maximum at 39 ± 1 µs. The
former peak may be explained by direct dissociation of H2 through collision with electron. We
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Fig. 8. Time-resolved emission profiles: (a) excited He 5 f 1Fo–4d1D transition at 2474.64 cm-1

(magnified by ten), (b) He 3p3Po–3s3S transition at 2327.77 cm-1 (strongest line in the FTIR
spectrum), (c) H3

+ transition Q(1, 0) at 2529.72 cm-1 and (d) H Brackett α (n = 5–4) at
2467.60 cm-1. The absolute intensity of emission was corrected by the corresponding Einstein
coefficients Aij.

expect that the second peak is due to hydrogen atom produced by recombination of H3
+ with

electron.
When the discharge is turned off, the electron energy becomes lower through collision, and the
recombination rate will be increased. The recombination products of the reaction of H3

+ with
an electron are either three neutral hydrogen atoms or a hydrogen molecule together with
a hydrogen atom. For the most important case of near-zero initial energy, i. e., low-energy
electrons and small internal excitation of the H3

+ ion, the two reaction channels can be
expected (Eqns. 5,6) (Motret et al., 1985; Strasser et al., 2002).

H3
+ + e− −→ H2(X

1
Σ
+
g , νJ) + H(1s), ΔE = 9.2 eV (5)

−→ H(1s) + H(1s) + H(1s), ΔE = 4.8 eV (6)
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We observed two atomic H transitions in our spectra after electron recombination of H3
+

(Figure 8); both originated from energy levels above 13 eV. This is more than the kinetic energy
released in an energetically more advantageous process (Eq. 6). Because of the high pressure
of He, excitation of H atoms can be expected in collisions with excited He atoms in the early
afterglow.

2.3 (CN)2-containing discharge

The CN free radical is observed in interstellar molecular clouds and the atmospheres of
stars, planets and comets. It is also significant in numerous laboratory processes at high
temperatures (flames, chemical reactions, discharges) where it is often formed from trace
amounts of carbon and nitrogen. It is a very strong absorber/emitter of radiation and its
spectra, extending from the vacuum UV far into the infrared without significant gaps, provide
a very useful tool for its detection and monitoring. A vast proportion of the available spectral
data arises from the A2

Π–X2
Σ
+ and B2

Σ
+–X2

Σ
+ electronic transitions (Prasad & Bernath,

1992; Ram et al., 2006) and the infrared transitions in the X2
Σ
+ ground electronic state (Cerny

et al., 1978; Horká et al., 2004). In our previous paper (Horká et al., 2004) we concentrated
primarily on the measuring and analysis of 12C14N vibration-rotation bands for the sequences
ν = (1–0) through (9–8) which were observed in the spectral region 1800–2200 cm-1 with
Fourier Transform spectroscopy. From the point of view of the vibrational excitation, the
most important information is obtained from vibronic data involving vibrational levels up to
ν = 18 (Ram et al., 2006). Such high vibrational excitation corresponds to temperatures well
above 45000 K thus indicating the potential use of CN in high temperature monitoring and the
possibility of experimental determination of the molecular potential energy function (Horká
et al., 2004).
Cerny et al. (1978) analyzed fourteen vibronic bands of the Δν = 1, 0,−1,−2 spread out
in the near infrared spectral range with ν′ = 0 to 4 for A2

Π electronic state. Kotlar et al.
(1980) carried out a perturbation analysis of data taken at the University of Berkeley, to give
a deperturbed set of the constants for the ν = 0 to ν = 12 vibrational levels of the A2

Π

state. Prasad & Bernath (1992) measured and analyzed the red system of CN by using a
jet-cooled corona excited supersonic expansion in a spectral range of 16500–22760 cm-1. They
measured a total of 27 bands with ν′ = 8 to 21 for A2

Π electronic state. Furio et al. (1989) used
the laser fluorescence excitation spectra for the measurement of the B2

Σ
+–A2

Π(ν = 8, 7)
band in the 20400 cm-1 spectral range and derived the constants for ν = 7 of the A2

Π state.
Rehfuss et al. (1992) used an FT spectrometer in the ultraviolet, visible and infrared region for
a measurement of the CN spectrum. A total of 54 bands were observed throughout the red
and infrared region from 16000 to 2500 cm-1. The observed sequences include Δν = +4, +3,
+2, +1, 0, −1, −2 and −3 with vibrational levels up to ν = 14, where some sequences were
not observed, due to small Franck–Condon factors and/or sensitivity of the spectrometer.
The 0–0 band of the A2

Π–X2
Σ
+ system appears at 9117 cm-1. Since the vibrational frequency

of CN is about 2042 cm-1 and 1813 cm-1 in the X2
Σ
+ and A2

Π respectively, the Δν = −1, −2
and −3 sequences occur near 7000, 5000 and 3000 cm-1 respectively. In the region between
5000 and 2000 cm-1, the vibronic transitions are rather unfavorable due to the Franck-Condon
factors of 0.15–0.05 Prasad & Bernath (1992); Sharp (1984). Furthermore one loses, compared
with the 0–0 band, at least an additional factor of 20 due to the ν3 dependence in the Einstein
A coefficient. Thus a high resolution vibronic CN spectrum with a good signal-to-noise ratio
for the ν = 3 sequence band region has not been reported until now. Only a low resolution
spectrum was weakly observed by Rehfuss et al. (1992).
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There is still a gap for the high resolution measurement and detailed analysis of the spectral
bands concerning ν = 5 to 6 of the A2

Π state. The turning point in this measurement of CN
in the infrared spectral range was the introduction of time resolved FT spectroscopy (Civiš
et al., 2008). This method makes it possible to distinguish the weak emission (or absorption)
bands from strong bands appearing in the spectrum if the time profiles are different. In the
case of CN, weak vibronic bands in the 5 µm region were separated from strong long lived
vibration-rotation bands. In this part a spectroscopic analysis of 7 newly observed Δν = −3
sequences bands: 0–3, 1–4, 2–5, 3–6, 4–7, 5–8 and 6–9 of the A2

Π–X2
Σ
+ transition is reported.

2.3.1 Observed CN spectra and their analysis

Figure 9 shows a part of the time-resolved FT spectra of emission from a discharge in a (CN)2

and He mixture, where the discharge pulse width was 20 µs. Thirty time-resolved spectra
were obtained in one measurement with a time-interval of 3 µs, and 6 spectra are shown in
Figure 9.

Fig. 9. The time-resolved emission FT spectrum from a pulsed discharge in a (CN)2 and He
mixture. The discharge pulse duration was 20 µs. The 30 time-resolved spectra were
collected from t = 0–90 µs with a step of 3 µs. The spectra of C2H2 and C2 were observed at
3300 and 3600 cm-1.

The variation in intensity of the vibrational bands in the X2
Σ
+ state is low. On the other hand,

relaxation of electronic transitions is as fast as expected from a short radiative lifetime. The
wavenumber resolution of Figure 9 was 0.07 cm-1, which was found to be insufficient for the
analysis of the majority of the electronic transitions, because in the band-head region, the lines
remained unresolved and the fit of the spectra was unsatisfactory.
In another time-resolved measurement we used a 0.025 cm-1 resolution with a long discharge
pulse (40 µs) in order to reach the maximum excitation and to set the system into a “steady
state”. The data collection system was set using the offset time of 5 µs before the end
of the pulse and the spectra were taken in 1 µs intervals. A series of experiments was
carried out under this condition, while the basic parameters of the discharge, He pressure
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and discharge current were varied. A series of time-resolved FT spectra was measured in
time intervals of 1–30 µs, providing the time profile of CN relaxation from the A2

Π state to
the ground electronic state. The time-scale was short for the study of the relaxation of the
vibration-rotation transitions in the ground electronic state, but is enough for observations of
relaxation of atomic He, N, C lines, and the C2 radical. From this vast complex spectra, the
spectrum No. 15, as shown in Figure 10, was chosen for the present spectroscopic analysis,
which was obtained 10 µs after the end of the discharge. Figure 11 shows typical time-profiles
of a vibration-rotation transition in the X2

Σ
+ state and a vibronic transition of CN, together

with the atomic lines. The lifetime of the A2
Π–X2

Σ
+ transition is an order of 10 µs. However,

the vibrational relaxation of CN in its ground state is significantly longer; even at a time of
25 µs after the discharge, the intensity of the vibrational fundamental band is still rising. The
intensity of the He atomic line (2469.7 cm-1) shows a fast decay, and lines of C and N atoms
also relax with a speed comparable with atomic helium.

Fig. 10. The emission spectrum of the CN radical in the spectral range 3–5 µm. The overall
view of the CN A2

Π–X2
Σ
+(Δν = −3) sequence with the 1–0 fundamental electronic

vibration–rotation band present with a band origin at 2042 cm-1 and the other hot bands.

The rotational assignments of the A2
Π–X2

Σ
+: 0–3, 1–4, 2–5, 3–6, 4–7 bands were carried

out according to the transition frequency calculations using molecular constants reported by
Cerny et al. (1978). The v = 5–8 and 6–9 bands were assigned by molecular constants from
Kotlar et al. (1980) who reported the Dunham parameters. The standard deviation of the
fitting was 0.0009 cm-1.
The time-resolved experiment itself was carried out in a wide range of time scales and with
various discharge pulse lengths, thus enabling a complex study of the relaxation processes of
the CN system in helium. Such a pulsed discharge gives a stronger emission for the Δν = −3
bands, compared with that of a DC discharge. In this study emission from the ν = 5 and 6
vibrational levels of the A2

Π state was observed for the first time. The observed intensity of
each band was plotted against the energy value of the upper state of the transition to give a
vibrational temperature of 6700 K for the A2

Π. The value does not change significantly after
10 µsec, because the vibrational relaxation is not fast. Similarly the vibrational temperature is
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Fig. 11. Time-profiles of the He(I) atomic line, P22 (10.5) line of the A–X, 5–8 band and R(16)
line of the 1–0 fundamental vibration-rotation band, and nitrogen atomic line. The discharge
pulse was 40 µs long. The time-resolved spectra were collected after 35 µs (5 µs before the
end of the discharge pulse) with a step of 1 µs.

found to be 6757±534 K for the X2
Σ
+. Using the vibrational temperatures, we estimated the

abundance of the A2
Π to be 0.58% of that of the X2

Σ
+.

2.4 Other examples

A discharge in a hydrogen-containing mixture can produce hydrides whose spectra can
be registered using Fourier transform spectroscopy. One of then goals of such studies is
simulation of potential high energy processes in early Earth’s atmosphere (as meteorite
impact, lightning), which could lead to more complex compounds generated from simple
molecular gases. (Babánková et al., 2006). Large-scale plasma was created in molecular gases
(O2, N2, C2H4) and their mixtures by high-power laser-induced dielectric breakdown (LIDB).
Compositions of the mixtures used are those suggested for the early Earth’s atmosphere.
Time-integrated as well as time-resolved optical emission spectra emitted from the laser spark
have been measured and analyzed. The spectra of the plasma generated in the above mixtures
are dominated by emission of diatomic radicals which are precursors of stable products as
acetylene and hydrogen cyanide. Occurrence of these species was confirmed in irradiated
gaseous mixture by FTIR spectroscopy. The figures below illustrate spectra of some hydrides
formed in reactions due to discharge in different hydrogen-containing mixtures.
Baskakov et al. (2005) applied the Fourier transform spectroscopy to study a dc glow discharge
in a mixture of argon and hydrogen. Several strong emission bands of 40ArH were observed in
the 2500–8500 cm-1 region. Rotational-electronic transitions of the two previously unstudied
4p–5s and 5p–6s (ν = 0–0) bands of ArH were measured and assigned in the 6060 and
3770 cm-1 regions, respectively. An overview spectrum of the 4p–5s and 5p–6s band is shown
in Figure 16. There are still many unassigned bands in the observed spectra including higher
vibrationally excited ν–ν bands.
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(a)

(b)

Fig. 12. Spectra of OH radical formed in H2 + O2 + He mixture discharge

(a)

(b)

Fig. 13. Spectra of NH radical formed in H2 + N2 + He mixture discharge
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(a)

(b)

Fig. 14. Spectra of CH radical formed in CH4 + He mixture discharge

Fig. 15. Spectra of C2 radical formed in CH4 + He mixture discharge

3. Continuous scan systems: application with lasers

3.1 Interleaved sampling 1/n
In the case of the measurement of time-resolved spectra in combination with a laser whose
maximum repetition rate is slower than the interferometer mirror speed, there is no possibility
of sampling at each individual trigger point of the He–Ne laser.
The lowest scanning speed of the interferometer is limited to the He–Ne laser fringe frequency
of about 3 kHz. However, by utilizing the under-sampling condition, sampling several times
more slowly becomes possible. Figure 17 shows the clock pattern for sampling in the present
experiments where triggers for the pulse event and for the sampling are produced with a
period of 1/n times the He–Ne laser fringe frequency. Complete interferograms are then
obtained with n scans if the trigger point is changed for each scan. The time sequence shown
in Figure 17 corresponds to the case of n = 3.
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Fig. 16. Observed and calculated emission spectrum of the 4p–5s band of ArH. The strongest
lines in the upper drawing originated from the Ar atom. Sharp lines belong to the 4 f –3d
band and probably to other unnassigned bands of ArH.

The maximum frequency of the used ArF laser is 1 kHz. The laser pulse is therefore repeated
every 1000 µs. The minimum speed of the interferometer mirror is 3 kHz, then the digital
signal produced by the He–Ne laser is repeated every 333.33 µs. In order to obtain data in
the maximum density, i. e. for every trajectory difference defined by the He–Ne laser, the
complete record is taken during three scans (for the mirror speed 3 kHz and laser repetition
frequency 1 kHz). The complete set of the time-resolved spectra (one complete interferogram)
is acquired by three time-shifted scans.

3.2 Synchronous triggering and data sampling

FT data are taken at the zero crossing points of the He–Ne laser fringe signals, while the
wavelength of the He–Ne laser is used for the measurement of path differences. The data are
sampled at time intervals which correspond to a mirror movement of either one wavelength
or half a wavelength, depending on the frequency range of the measurements (8000 or
16000 cm-1). Time resolved spectra are obtained by collecting data at various points between
the zero-crossings and calculating the FT transformation for each such point. This system was
utilized using a Field Programmable Gate Array processor (FPGA). The main role of the FPGA
processor in our experiment was to create a discharge or laser pulse and AD trigger signals
(the signal for data collection from the detector) synchronously with the He–Ne laser fringe
signals from the spectrometer. The FPGA processor also controls the data transmission from
the digital input board to the PC.
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Figure 17 depicts the timing chart (clock pattern) produced by the FPGA for the laser-pulse
ablation method. The scan signal and He–Ne laser fringe signals are supplied by the
Bruker 120 HR spectrometer and used as the system time standard. A discharge trigger
pulse is produced at a width which is preset by the FPGA. AD triggers are also produced
by the FPGA with a time offset value between the beginning of the laser pulse and the
interval between pulses. In the present experiments we used a 60 µs offset and interval values
covering, 30 µs when 30 AD triggers were supplied. A series of data signals corresponding to
the AD triggers are stored and Fourier-transformed.
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HeNe digital signal

Laser Trigger

AD Trigger

333 たs

1000 たs
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laser: 1 kHz repetition

HeNe digital signal

Laser pulse signal

AD signal

HeNe digital signal

Laser Trigger

AD Trigger

HeNe digital signal

Laser Trigger

AD Trigger

1st scan

2nd scan

3rd scan

Complete signal

Fig. 17. Timing diagram for the interleaved sampling. During the scan, the laser pulse and
the AD trigger sampling are induced with a rate of 1/n times of the He–Ne laser fringe
frequency. The complete interferograms are obtained after n scans (n = 3 here).

The maximum number of spectra taken by this method is 64. The time resolution is about
1 µs, which is limited by the band width of the detector amplifier. The present system collects
64 times more data in comparison to the original Bruker system. This is possible because of
rapid development in the field of PCs, their memory size and the writing speed of the hard
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disk. In the case of our current data collection program, we are able to store 64 interferograms
in a single scan when the resolution is up to 0.03 cm-1. For resolutions higher than 0.03 cm-1,
30 time-resolved data are recorded simultaneously, which means the number of time-resolved
data points can be varied according to the type of experiment and the memory capacity.

3.3 The experimental setup

The time resolution FTIR spectra were measured using the modified Bruker IFS 120
HR spectrometer (modified for the time-resolution scan of emission data) in a spectral range
of 1800–6000 cm-1 using a CaF2 beam splitter,and an InSb detector. The aperture size was
4 mm, the preamplifier gain was 3. The spectra were measured at a resolution of 0.1 cm-1 with
a MID IR filter for the range of 1538–3500 cm-1 (number of scans from 1 to 10, zero filling 2,
trapezoid apodization function).
The Bruker system was equipped with an analog-digital converter (ADC 4322: Analogic,
USA), which was connected to a PC containing a programmable control processor of Field
Programmable Gate Array – FPGA, (ACEX 1K: Altera, USA) set up at a frequency of
33 MHz, and digital input board PCI (2172C: Interface, Japan). The data collection process
and synchronization with the laser were controlled by the FPGA processor programmed
by QUARTUS II 7.1, Altera. The computer programs for data acquisition and fast FT
transformation and displaying of the data were written in C ++ language.
Time-resolved FTIR spectroscopy was applied for observations of the emission arising after
the irradiation of metals with a pulsed nanosecond ArF (λ = 193 nm) laser. A high repetition
rate ArF laser ExciStar S-Industrial V2.0 1000 (193 nm, laser pulse width 12 ns, frequency
1 kHz) with 15 mJ output power was focused on a rotating and linearly traversing gold target
inside a vacuum chamber (average pressure 10-2 Torr). The infrared emission (axial distance
from the target 10 mm) was focused into the spectrometer using a CaF2 (100 mm) lens (see
Figure 18). The emission was observed in the 1800–3500 cm-1 spectral region with a time
profile showing maximum emission intensity at 9–11 µs after the laser shot.
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Fig. 18. Experimental set-up of the metal emission measurement.
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For data sampling we used the so-called 1/3 sampling, where the scanner rate was set to
produce a 3 kHz HeNe laser interference signal, the ArF laser oscillation was triggered,
and 30 sets of time-resolved data were recorded with a preset time interval of 1 µs.
Three scans were needed for a complete interferogram, and only 5 scans were coadded to
improve the signal-to-noise ratio. The acquired spectra were post-zerofilled in the OPUS
program and subsequently corrected by subtracting the blackbody background spectrum. The
wavenumbers, line widths and their intensities were then obtained using the peak picking
method (OPUS).

4. TR FTIR emission spectroscopy

4.1 Introduction

Pulsed laser ablation and depositing processes are currently frequently used techniques.
Laser induced plasma at low fluence (typically 10 J/cm2) has numerous applications, e. g.
Pulsed Laser Deposition (PLD) or multi-elemental analysis. The latter technique, known
as Laser Induced Plasma Spectroscopy (LIPS) or Laser-Induced Breakdown Spectroscopy
(LIBS) consists of analyzing the light spectrum emitted from a plasma created on the sample
surface by laser pulses. LIPS has many practical advantages over the conventional methods
of chemical analysis of elements and is consequently being considered for a growing number
of applications (Babánková et al., 2006; Barthélemy et al., 2005; Gomes et al., 2004; Lee et al.,
2004; Radziemski & Cremers, 1989).
Excimer lasers operating in near-ultraviolet regions with typical laser fluences of 1–30 J/cm2

are used for many types of ablation (Claeyssens et al., 2003). The ablation plume arising after
irradiation with fluences of nanosecond duration pulses is governed by a great number of very
complex physical processes. During the laser pulse (with typical duration of 20 ns), the laser
photons heat the sample and bring a part of its surface to the critical temperature. The heated
material starts to boil explosively (Miotello & Kelly, 1999) and creates an emission plume
consisting of ejected particles, atoms and ions. The particles inside the plume can themselves
interact with the laser photons, which leads to a subsequent rise in the temperature of the
ablation plume and to photochemical and photodissociation processes (Rubahn, 1999, p. 219).
The population of Rydberg states responsible for IR emission lines is governed mainly
by collisional processes. The electrons created in the photodissociation processes can
interact with the laser pulse via the electron-ion inverse bremsstrahlung, which again causes
additional heating of the plume (Vertes et al., 1994) and leads to the fast transition of the
plume from ionized gas to plasma. The electrons escaping from the corona region cause a
separation of charges, thereby inducing the ionized part of the plasma to accelerate. After
the end of the laser pulse, the plume expands adiabatically. The electron-ion collision inside
the plume can create excited ions. The electron-ion collision in the presence of a third body
can results in their recombination leading to formation of atoms in highly excited Rydberg
states (Claeyssens et al., 2001). A radiative cascade of these Rydberg states is then observed as
the optical emission of the ablation plume.
The investigation of such emission is complicated by nonequilibrium and nonstationary
conditions of the plasma for the excited states (Aragon & Aguilera, 2008), so the information
on population dynamics is only scarcely available for these states Rossa et al. (2009). As an
example of such data we report temporal evolution dynamics for each IR atomic line of the
recorded spectra of metal atoms.
The properties of the observed plumes obtained by the ablation of different materials can
eventually reflect the superposition of the ensemble processes described above. Here we
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report some results of a study focused on time-resolved spectra arising from 193 nm pulsed
laser ablation of metallic (Au, Ag and Cu) targets in a 10-3 Torr vacuum. The atomic metal
spectra were measured by a high resolution Fourier Transform infrared spectrometer specially
modified for time-resolved measurements (Civiš et al., 2010; Civiš et al., 2010).

4.2 Results for Au

The observed IR emission spectra of the Au atom are presented in Figure 19 at 10 µs after the
laser shot, when the time profile of the emission intensity is maximum for all the observed
lines.

Fig. 19. Some parts of the observed IR emission spectra of Au. The 2743.358 cm-1 and
2747.567 cm-1 values are given to the centers of gravity of the hyperfine patterns clearly seen
in the second graph as double peaks.

Although the Au spectrum has been studied in various spectral domains for several
decades (Brown & Ginter, 1978; Ding et al., 1989; Dyubko et al., 2005; Ehrhardt & Davis,
1971; George et al., 1988; Jannitti et al., 1979; Platt & Sawyer, 1941), to our knowledge only
one experimental study George et al. (1988) concerning the studied 3–5 µm IR range is
reported. As compared to George et al. (1988) we observed several strong new Au lines in the
1800–4000 cm-1 domain. The most prominent IR lines observed for Au are listed in Table 3.
Their half-widths at half-maxima (HWHM) are calculated from fitting to the Lorentzian shape.
The decay time, τ given in the Table 3 was calculated by fitting of the measured time profiles
of the corresponding lines. These profiles are given in Figure 20. The time decay of most
of the strong lines is well described by exponential fitting, excepting the 2156.484 cm-1 line
which demonstrates a non-constant decay rate during the 30 µs after the laser shot. Some
weaker lines demonstrate such behavior more clearly, their decay is not exponential (and is
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Wavenumber
(cm-1)

Intensity
(arb.u)

HWHM
(cm-1)

Decay
time
(µs)

Identification

2156.484 12679 0.098 5.24 ± 1.7∗ 8 f 7
2
→ 8d 5

2

2193.030 38690 0.12 6.56 ± 0.61 8s 1
2
→ 8p 1

2

2428.358 8024 0.39 6.36 ± 1.4∗ 12s 1
2
→ 9p 3

2

2474.954 53951 0.13 5.25 ± 0.21 7d 5
2
→ 6 f 7

2

2512.219 36631 0.14 5.73 ± 0.25 9p 1
2
→ 10d 3

2

2518.489 121588 0.13 5.56 ± 0.22 7d 3
2
→ 6 f 5

2

2520.684 16574 0.16 6.83 ± 0.58 8p 3
2
→ 8d 5

2

2522.683 91622 0.13 5.70 ± 0.36 5 f 7
2
→ 8d 5

2

2743.370 8780 0.39 5.41 ± 1.2∗ ?
2744.380 41786 0.12 5.96 ± 0.68 8s 1

2
→ 8p 3

2

2747.567 10249 0.13 8.52 ± 2.6∗ 12s 1
2
→ 9p 1

2

2749.6 6453 0.27 5.51 ± 1.8∗ 23p 1
2 , 3

2
→ 9d 3

2

3187.811 13199 0.093 6.03 ± 0.91∗ (5d96s)6p 3
2
→ 6d 5

2

3828.96 9540 0.14 5.47 ± 2.0∗ 7 f 7
2
→ 7d 5

2

3862.41 9370 0.13 2.98 ± 1.1∗ 9d 3
2
→ 5 f 5

2

3866.606 7738 0.11 6.84 ± 0.83∗ 9d 3
2
→ 8p 3

2

Table 3. Experimental Au lines and their identification. The decay time, τ, was calculated by
exponential fitting of the measured time profiles of the corresponding lines. Time profile of
the lines denoted by asterisk demonstrates significant deviation from the exponential decay;
τ values are roughly approximate

even non-monotonic), so their τ values are estimated in Table 3 in a rough approximation.
Such a non-monotonic decay can be due to more complex population kinetics of the atomic Au
states in the ablation plasma. We consider most of the observed lines to be due to transitions
between the Rydberg n = 5..10 states of the valence electron outside the closed-shell 5d10 core.

4.3 Results for Ag

Some parts of the observed IR emission spectra of the Ag atom are presented in Figure 21 at
11 µs after the laser shot, when the time profile of the emission intensity is maximum for all
the observed lines. The most prominent IR lines observed for Ag are listed in Table 4. Their
full widths at half-maxima (FWHM) are calculated from fitting to a Voigt profile, but under
our conditions this profile does not differ much from the Lorentzian shape (see Ref. Civiš et al.
(2010)).
We measured the emission spectrum at a different delay time, from 0 to 30 µs, after the laser
shot. This allows us to measure the time profiles of the observed Ag lines. Some such profiles
are shown in Figure 22. The temporal decay of some lines is well described by exponential
fitting, while some lines display non-exponential (including some “plateaux” at 20–25 µs after
the laser shot) and even non-monotonic behavior. Therefore their decay time, τ, values are
estimated in Table 4 in a rough approximation; so, for essentially non-exponential decays, the
standard deviation Δτ is of order of τ.
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Fig. 21. A section of the the observed IR emission spectra of Ag.

It should be noted that the decay times τ ≃ 1–10 µs given in Table 4 are not related to the
radiative lifetimes of Ag atom levels which are at least two orders shorter (Bengtsson et al.,
1991; 1990; Zhankui et al., 1990). The temporal dynamics shown in Figure 22 is due to a
complex combination of the collisional cascade repopulation of the emitting levels (Civiš et al.,
2010) and the transfer processes in ablation products (Kawaguchi et al., 2008).
The revised energy values Ei of some Ag terms are presented in Table 5. For the levels with
n ≤ 6 our values coincides with the reference values within the uncertainty intervals, but it is
not the case for n > 6. However we consider our values preferable since they are extracted
from spectra recorded with 0.02 cm-1 resolution while the reference values were obtained
from spectra with resolution of 0.035–0.045 cm-1 Pickering & Zilio (2001) and 0.06 cm-1 Brown
& Ginter (1977)

4.4 Results for Cu

Figure 23 shows some parts of the observed IR emission spectra of Cu I at 20 µs after the laser
shot, when the emission intensity is maximal for almost all of the observed lines. The list of the
IR lines observed for Cu I is presented in Table 6. Their full widths at half-maxima (FWHM)
are calculated from fitting to the Lorentzian shape (Civiš et al., 2010; Civiš et al., 2010).
As in the cases of Au and ag, we measured the time profiles of the observed Cu lines, i. e. their
emission intensities as functions of the delay time, from 0 to 60 µs, after the laser shot. Some
such profiles are shown in Figure 24. While the temporal decay of some lines can be fitted,
at least roughly, by an exponential function, several lines display essentially non-exponential
behavior including some “plateaux” or even secondary maxima at 35–50 µs after the laser
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Wavenumber
(cm-1)

Intensity
(arb. units)

SNR FWHM
(cm-1)

Decay
time
(µs)

Identification

1345.570(6) 14889 14. 0.125(55) 4.17(104)(b) (4d10)7d 3
2
← (4d10)6 f 5

2

1363.326(14) 3910 4.3 0.146(150) 5.90(609)(b) (4d10)5 f ← (4d10)6g

1460.115(6) 4530 5.6 0.111(035) 3.34(170)(b) (4d10)7p 3
2
← (4d10)8s 1

2

2149.320(2) 6956 2.4 0.025(19) 7.17(206)(b) (4d10)7d 5
2
← (4d10)7 f 7

2

2153.988(4) 32525 9.4 0.031(21) 3.07(15) (4d10)7s 1
2
← (4d10)7p 1

2

2154.599(2) 5958 2.2 0.029(11) 12.8(78)(b) (4d10)7d 3
2
← (4d10)7 f 5

2

2234.168(1) 74835 13. 0.035(6) 3.63(34) (4d10)7s 1
2
← (4d10)7p 3

2

2417.757(2) 4880 5.9 0.030(14) 5.03(214)(b) (4d10)6d 3
2
← (4d10)8p 1

2

2447.045(2) 5463 6.6 0.026(24) 4.88(81)(b) (4d10)6d 5
2
← (4d10)8p 3

2

2477.833(1) 113278 10. 0.044(4) 4.27(29) (4d10)6d 5
2
← (4d10)5 f 7

2

2488.1560(9) 78947 7.0 0.048(4) 4.20(35)(a) (4d10)6d 3
2
← (4d10)5 f 5

2

2506.8196(5) 460526 41. 0.056(2) 3.87(20) (4d10)4 f ← (4d10)5g

2579.210(3) 5252 6.2 0.036(21) 5.14(202)(b) (4d10)7p 3
2
← (4d10)7d 3

2

2584.3387(6) 48450 31. 0.041(3) 4.20(37)(b) (4d10)7p 3
2
← (4d10)7d 5

2

2658.7911(9) 22693 14. 0.038(5) 4.15(39)(a) (4d10)7p 1
2
← (4d10)7d 3

2

3386.152(1) 98370 9.2 0.059(6) 3.35(28) (4d10)6p 3
2
← (4d10)7s 1

2

3589.552(5) 13825 15. 0.065(4) 3.15(11)(a) (4d10)6p 1
2
← (4d10)7s 1

2

Table 4. Experimental Ag lines and their identification. The decay time, τ, was calculated by
exponential fitting of the measured time profiles of the corresponding lines. The profiles
denoted as ((a)) demonstrates significant deviation from the exponential decay; those
denoted by (b) demonstrate the decay curves of essentially non-exponential form with a
plateau or a second maximum; τ value is roughly approximate
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Term Energy (cm-1) Other sources

(4d10)5 f 5
2

56691.275(2) 56691.4 Shenstone (1940), 56692.5 Safronova et al.
(2003)

(4d10)5 f 7
2

56691.397(4) 56691.4 Shenstone (1940), 56694.4 Safronova et al.
(2003)

(4d10)6p 1
2

48297.402(2) 48297.402(3) Pickering & Zilio (2001)

(4d10)6p 3
2

48500.804(1) 48500.804(2) Pickering & Zilio (2001)

(4d10)6d 3
2

54203.119(2) 54203.119(2) Pickering & Zilio (2001)

(4d10)6d 5
2

54213.564(3) 54213.570(3) Pickering & Zilio (2001)

(4d10)6 f 5
2

58045.481(7) This work

(4d10)6g 58054.723(16) This work

(4d10)7s 1
2

51886.954(1) 51886.971(2) Pickering & Zilio (2001)

(4d10)7p 1
2

54041.087(2) 54040.99(6) Brown & Ginter (1977)

(4d10)7p 3
2

54121.059(2) 54121.129(5) Pickering & Zilio (2001)

(4d10)8s 1
2

55581.246(3) 55581.258(3) Pickering & Zilio (2001)

(4d10)8p 1
2

56620.876(3) 56620.72(6) Brown & Ginter (1977)

(4d10)8p 3
2

56660.596(6) 56660.559(17) Pickering & Zilio (2001)

(4d10)7d 3
2

56699.911(2) 56699.768(3) Pickering & Zilio (2001)

(4d10)7d 5
2

56705.435(2) 56705.498(3) Pickering & Zilio (2001)

(4d10)7 f 5
2

58854.510(3) This work

(4d10)7 f 7
2

58854.755(3) This work

Table 5. Revised values of some levels of Ag I

shot. Their decay time, τ, values are therefore estimated in Table 6 in a rough approximation; it
is seen from this table that for essentially non-exponential decays the uncertainity Δτ is of the
same order of magnitude as τ itself. Note that that the decay times τ given in Table 6 are due
to a complex combination of the collisional cascade repopulation of the emitting levels (Civiš
et al., 2010) and the transfer processes in ablation products (Kawaguchi et al., 2008) and by no
means related to the radiative lifetimes of the atomic levels. The temporal dynamics of some
lines is shown in Figure 24.
After the assignment we refined the energy values for some levels involved into the classified
transitions; the revised values of these energies are presented in Table 7. It is interesting to
note that the fine-structure 5p doublet (fine splitting is about 0.3 cm-1) is well resolved in
our experiment unlike the previous measurements Longmire et al. (1980); Shenstone (1948)
where only a single line was observed. The ratio of the 5p 3

2
← 6s 1

2
and 5p 1

2
← 6s 1

2
transition

intensities is close to theoretical nonrelativistic value 2:1.
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Fig. 23. Some parts of the observed IR emission spectra of Cu I
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Wavenumber
(cm-1)

Intensity
(arb. units)

SNR FWHM
(cm-1)

Decay
time
(µs)

Identification

1887.307(6) 1.30× 104 17. 0.083(16) 12.1(44) (b) 6p 3
2
← 7s 1

2

1935.313(2) 6.58× 104 63. 0.106(5) 5.88(221) (b) 6s 1
2
← 6p 3

2

2163.890(16) 3.42× 102 6.2 0.104(46) 16.2(41) (a) 5 f 7
2
← 7g 9

2

2171.118(18) 1.64× 102 4.6 0.074(55) 9.50(266) (a) 5 f 5
2
← 7g 7

2

2176.426(16) 2.16× 102 5.6 0.077(43) 12.8(34) (b) 6d 5
2
← 7 f 7

2

2179.011(3) 7.68× 104 58. 0.065(10) 9.06(479) (a) 6s 1
2
← 6p 1

2

2494.8098(3) 2.98× 105 63. 0.038(1) 11.7(42) (b) 4 f 5
2
← 5g 7

2

2497.7750(3) 3.77× 105 121. 0.041(1) 11.3(36) (b) 4 f 7
2
← 5g 9

2

2513.814(4) 4.65× 103 8.4 0.048(13) 11.5(41) (b) 5d 5
2
← 5 f 5

2

2517.4511(3) 1.03× 105 78. 0.051(1) 15.0(57) (b) 5d 3
2
← 5 f 5

2

2521.0550(3) 1.58× 105 129. 0.049(1) 14.9(57) (b) 5d 5
2
← 5 f 7

2

2865.233(2) 2.32× 104 37. 0.062(5) 7.93(167) (b) 6p 1
2
← 6d 3

2

3110.955(4) 2.06× 104 27 0.087(11) 8.53(214) (b) 6p 3
2
← 6d 5

2

3465.481(4) 8.46× 104 10. 0.089(13) 5.06(87) (b) 5p 1
2
← 6s 1

2

3465.8044(7) 1.70× 105 23. 0.048(2) 5.25(90) (b) 5p 3
2
← 6s 1

2

3837.402(12) 7.49× 103 9.5 0.193(36) 8.51(209) (a) 4 f 5
2
← 6g 7

2

3840.376(15) 9.64× 103 11. 0.235(47) 14.7(190) (a) 4 f 7
2
← 6g 9

2

Table 6. Experimental Cu I lines and their identification. The decay time, τ, was calculated by
exponential fitting of the measured time profiles of the corresponding lines. See the caption
to Table 4
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Term Energy (cm-1) Other sources

(3d10)5p 1
2

49383.263(23) 49383.26 Shenstone (1948)

(3d10)5p 3
2

49382.949(14) 49382.95 Shenstone (1948)

(3d10)5d 3
2

55387.621(11) 55387.668 Shenstone (1948)

(3d10)5d 5
2

55390.569(9) 55391.292 Shenstone (1948)

(3d10)5 f 5
2

57905.041(14) 57905.2 Shenstone (1948),
57905.23 Longmire et al. (1980)

(3d10)5 f 7
2

57911.090(12) 57908.7 Shenstone (1948)

(3d10)5g 7
2

57924.610(30) This work

(3d10)5g 9
2

57924.075(30) This work

(3d10)6s 1
2

52848.752(9) 52848.749 Shenstone (1948)

(3d10)6p 1
2

55027.763(26) 55027.74 Shenstone (1948),
55027.713 Longmire et al. (1980)

(3d10)6p 3
2

54784.081(21) 54784.06 Shenstone (1948),
54784.073 Longmire et al. (1980)

(3d10)6d 3
2

57893.028(24) 57893.05 Shenstone (1948)

(3d10)6d 5
2

57895.084(24) 57895.1 Shenstone (1948)

(3d10)6g 7
2

57267.202(33) This work

(3d10)6g 9
2

57266.676(34) This work

(3d10)7 f 7
2

60071.510(30) This work

(3d10)7g 7
2

60076.159(23) This work

(3d10)7g 9
2

60074.980(20) This work

Table 7. Revised values of some levels of Cu I
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5. Conclusion

The longstanding interests of our laboratory are the spectroscopic investigations of molecular
ions, radicals or atoms which play a fundamental role in many plasma chemical processes, as
well as in the reactions taking place inside of interstellar clouds or in stellar envelopes of giant
stars of our universe.
The presented report is focused on the development and application of a time resolved system
based on commercially available continuously scanning high resolution interferometer and its
modification for time resolved Fourier transform spectroscopy.
The use of time-resolved FT spectroscopy opens new pathways and new points of view in
study of the formation and decay processes inside the discharge or laser plasma.
Here, we are able to study the individual processes using atomic or molecular lines in a very
wide spectral range of the high resolution FT technology, which has been simultaneously
extended into the time dimension.
The only limitation is the sensitivity of the infrared FT technique, together with the
considerable time required for the acquisition of the spectral data.
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1. Introduction 

One of the most important trends in digital holography is the synthesis (calculation and 
fabrication) of diffraction optical elements (DOEs) serving for the transformation of a given 
light distribution into another light distribution with the desired characteristics (Bryngdahl 
& Wyrowski, 1990). In the case where both the amplitude and the phase of output emission 
are of importance, the DOE is a digital hologram which can be binary amplitude, phase, or 
amplitude-phase (Lohmann & Paris, 1967; Lee, 1979; Wyrowski & Bryngdahl, 1988; 
Wyrowski, 1990-1991). But if we are interested only in the output emission intensity, then 
DOEs are synthesized as a purely phase structure of the kinoform type (Lesem et al., 1967; 
Hirsch et al., 1971;  Gallagher & Liu, 1973; Akahori, 1986; Aagebal & Wyrowski, 1997; Skeren 
et al., 2002). 
As distinct from an ordinary optical or digital hologram, a kinoform has a rather high 
diffraction efficiency attaining at least 90 per cent for a continuous kinoform. Therefore, it 
attracts a significant attention of experts in the applied and calculation-theoretic aspects. 
Among a lot of uses of the kinoform, there are particularly three interesting applications 
such as beam splitting (fan-out), beam shaping, and pattern or image generation. Optical 
fan-out elements split a single laser beam into a one- or two-dimensional array of beams and 
are key components in many applications of modern optics such as parallel optical 
processing, free-space communication in optical computing (Herzig et al., 1990; Gale et al., 
1992, 1993; Ehbets et al., 1992; Prongue et al., 1992; Mait & Brenner, 1988), and fiber optic 
communication (Wyrowski & Zuidema, 1994). Fan-out elements with a smooth periodic 
phase structure have a theoretical limit by diffraction efficiency which is close to 100 % 
(Herzig et al., 1990). Beam shaping is most commonly used in high-energy laser applications 
to the processing of various materials and in the laser branding or photolithographic 
illumination. These applications often require minimal energy losses, implying the use of 
phase-only elements such as a kinoform (Dixit et al., 1994; Leger et al., 1994;  Chen et al., 
1994; Duparre et al., 1995; Xin Tan et al., 1995; Johansson & Bengtsson, 2000; Liu & 
Taghizaden, 2002). Playing the role of a generator of images, a kinoform serves for the 
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reproduction, in the form of a light intensity distribution, of a real binary or half-tone 
function stored in a computer in the discrete form. 

The calculation of the phase structure of a kinoform is a partial case of the solution of a 

phase problem in the so-called “two-intensity” statement which is formulated for a 

Fourier-kinoform as follows. Let the input data such as the real function of an object 

o x yf ,( )  and the modulus of some spectrum equal to 1(u,v) be given. It is necessary to 

determine such phase distributions ( ),x yϕ  and  ( )u v,ψ  which together with the input 

data form a Fourier-pair 

 0
1ϕ ψ±⇐ ℑ ⇒f (x, y)exp[i (x, y)] exp[i (u,v)],   (1) 

where  1 1,+ −ℑ ℑ  are the direct and inverse Fourier transformation, respectively. The obtained 

solutions ϕ  and ψ  describe, respectively, the object-oriented phase scatterer (diffuser) and 

a spectral distribution of phases which is registered then on the phase medium in the form 

of a kinoform. We note that the solution of the phase problem for a kinoform has a specific 

feature. In the classical two-intensity statement of the phase problem, a solution exists 

always, because the true amplitude of the spectrum of an object function ( , )of x y  is used in 

the Fourier-plane (though the determination of a solution can be not an easy task). For a 

kinoform, we require that the spectrum amplitude be equal to 1(u,v) in all the cases 

irrespective of the form of a function ( , )of x y . In other words, we set the spectrum 

amplitude. Therefore, strictly speaking, the frequency-bounded phase structure ( ),u vψ , 

whose Fourier-transformation will form the given distribution of intensities 2,( )o x yf ⏐ , 

should not obligatorily exist. Nevertheless, an approximate (and sufficiently exact) solution 

of the kinoform problem exists practically always, which is supported by the practice of 

calculations.  
Many algorithms of solution of phase problems are available. Prior to the beginning of the 
1970s, the solution of inverse problems (which include the phase problem as well) was 
mainly a prerogative of professional mathematicians, because it requires to use a 
complicated mathematical apparatus and to construct high-complexity calculation’s 
algorithms (Tikhonov & Arsenin, 1977; Inverse Source Problems in Optics, 1978). The 
situation was changed, when the mathematically simple and physically transparent 
projective iterative Fourier-transform (IFT) algorithms were developed in the 1970-1980s 
(Lesem et al., 1967; Gerchberg & Saxton, 1972; Gallagher & Liu, 1973; Fienup, 1980, 1982), 
and after the clarification of the mathematical nature of these algorithms (Youla & Webb, 
1982; Levi & Stark, 1987; Catino et al., 1997). The family of IFT-algorithms follows the 
philosophy of the Gerchberg-Saxton algorithm known as the error-reduction (ER) algorithm. 
All of these algorithms incorporate a similar idea – to iterate between the spatial and 
frequency domains, while successively satisfying a set of constraints in both. We start with 
an arbitrary phase-only filter in the object domain multiplying the input object (the original 
image). After the Fourier transformation, we obtain a Fourier domain image and set the 
required Fourier intensity (actually, the magnitude), leaving the phase, as it is. The inverse 
Fourier transformation brings us back to the object domain. Since we demand a phase-only 
filter, we impose the intensity of the input object in this plane. Then we calculate the Fourier 
transform and return to the Fourier domain, and so on. Earlier and now, this simple efficient 
idea of ER-iterations gives a conceptual basis for the development of most iterative methods 
of solution of phase problems in such fields as coherent optics, optical astronomy, electron 
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and Х-ray microscopy, biophysics, etc., where one deals with the diffraction of a coherent 
emission. 
In Section 2 we describe algorithms we have tested. Section 3 presents the results of 

computer simulations, and Section 4 gives the results of optical experiments. The final 
section is devoted to the conclusion of this chapter. 

2. Algorithms 

2.1 Weighting IFT-algorithm 
It is known that the phase calculation for a kinoform with the help of the IFT-algorithm in its 
classical ER-version described above gives no satisfactory results. The algorithm’s 
convergence stagnates rapidly, and the mean square error in a reconstructed image remains 

large. In the present chapter, we will discuss a modified IFT-algorithm of synthesis of a 
kinoform (Kuzmenko, 2006, 2008), whose principal single distinction from the classical ER-
algorithm consists in the use of a new nonlinear operation of the processing of the field 
amplitude in the object plane. To clarify its application, the work of the algorithm is 

illustrated in Fig. 1. 

 
 

 

                                                   , ,                    exp( )o o o k o kf f f iα ϕ α ϕ=                                         exp( )k k kF F iψ=   

                                                                                                                                                                                                                                      

                                          α  

 

                                                                                 exp( )kk k
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∧ ∧ ∧
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=                       
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Fig. 1. Weighting IFT algorithm 

First, one or several iterations )( erK  are realized by the classical ER scheme, in which the 

function of  is the ideal object, and oϕ  is an input phase scatterer imposed on it. Then, in all 

iterations with erk K>  at the formation of an input, the amplitude of  will be replaced by a 

new amplitude defined as  
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 =f f
k k o

α   (2) 

where the weight coefficients kα  are determined by the recurrence relation 
 

 ,      ( 1),
1 1

k
k k k

α α β= >− −   (3) 

where 

 
^

| | .
1 1of f

k k
β ε⎡ ⎤⎢ ⎥= / +− −⎢ ⎥⎣ ⎦

 (4) 

Here, 1
ˆ

kf −⎟ ⎥  is the reconstructed amplitude on the ( 1)k th− −  iteration, and  ε  is a small 

number ∼ 10-10, excluding the division by zero. It should be mentioned that of  is real. The 

processing of the phases kϕ and kψ  remains the same as that in the classical ER-algorithm. 

The phase of a kinoform kψ  can be quantized on each iteration with a required number of 

quantization levels in that case where it is necessary to study the quantization effects in the 

reconstructed image or to register a kinoform on a recording medium with a finite number 

of gradations of the phase. 

Operations (2) - (4) are heuristic and have no strict mathematical justification. Their 

efficiency is established by extensive model and optical experiments.  The physical sense of 

the coefficients α  becomes clear if we consider the block of the algorithm separated by a 

dashed line in Fig. 1, according to Fienup (Fienup, 1980, 1982), as a nonlinear unit with the 

input ,kf  output 
k

f
∧

, and action operator 1 1
FC+ −ℑ ℑ . Then, from the viewpoint of the theory 

of systems, the coefficients α  is nothing but the matrix of coefficients of a negative feedback 

“output-input”: if the amplitude 1kf −
∧⎟ ⎥  on the ( 1)k th− −  iteration at some point ( , )x y  of the 

plane of images is more than a given value of  , then, on the next k th−  iteration, the input 

of  at the corresponding point will be corrected. Namely, it will be decreased by ( , )x yα  

times, and vice versa. At the same time, from the viewpoint of optics, the system of 

coefficients α normalized to one can be interpreted as some object-dependent amplitude 

filter which acts on the initial object of  and varies in the process of iterations. It is clear that, 

for all ER-iterations ( , ) ( , ) 1( , )ox y x y x yα α= = . 

2.2 Input-output algorithm 
In the course of experiments, we compared the weighting IFT-algorithm with the kinoform 

version of the Fienup input-output (IO) algorithm (Fienup, 1980). It is well-known and is 

one of the best at its estimation from the viewpoint of simplicity of the algorithm and the 

quality of a reconstructed image. Like the weighting algorithm, it differs from the ER-

algorithm only by the mean of the processing of a field in the object plane. In the IO 

algorithm, after several preliminary ER-iterations, the input for the input-output kernel (see 

Fig. 1) for all subsequent iterations is taken in the form  
 

 2 exp[ ] exp[ ]1f f f i f f ik k o k k o kμ ϕ ϕ∧ ∧= + { ⎢ ⎥ − −⎢ ⎥ },+  (5) 
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or 

 2 exp[ ] exp[ ]1f f f i f f ik k o k k o kμ ϕ ϕ∧ ∧ ∧= + { ⎢ ⎥ − −⎢ ⎥ }+   (6) 

where μ  is a free parameter, whose optimum value is selected experimentally. It is close to 

unity for half-tone objects and is usually in the interval 1.5-3.5 for binary objects. It should 

be noted that, in Eqs. (5) and (6), the previous input kf  and the previous output 
k

f
∧

 serve, 

respectively, as a reference for the next input 1kf + . The term in the braces in both relations is 

a correction which must turn to zero, if the algorithm converges. Later on (Fienup, 1982), 

these two versions of the algorithm were named the input-output (IO) and output-output 

(OO) algorithms.  

3. Computer simulation 

A number of model experiments with various objects was realized with the purpose to 

study the potentialities of the weighting IFT-algorithm. Analogous experiments were 

performed also with the use of the IO and OO algorithms. In all the cases, the same phase 

starting diffuser ϕо with a uniform distribution of phases in the interval (0-2π) is used. The 

variance of the amplitudes of images reconstructed in the process of iterations was 

evaluated as 

 

2[( ) ( ) ( ) ],,
,

( ) ,
2( )
,

,

f k f kl mo l m
l m

k
f

f
o l m

l m

χ
σ

∧− ⎮ ⎮∑
=

∑
  (7) 

where 
 

 

2( )
,

,
( )

2( ),
,

f
o i j

i j
k

f ki j
i j

χ
∑

=
∧⎮ ⎮∑

  (8) 

is the scale factor, the indices l, m and i, j run over the points, where the amplitude of an 

initial object of  is nonzero, and k is the iteration number.  

In the experiments involving the IO and OO algorithms, we used the optimum value of the 

object-depended coefficient optμ  in the equations (5) and (6), which provides the best 

convergence. The value of optμ  was determined by means of the cyclic repetition of the 

procedure of synthesis for various values of μ  (from the interval 0.1-5.0 with a step of 0.1). 

In Figs. 2 to 6, the results of model experiments on the synthesis of the kinoforms of binary 

and half-tone objects with a dimension of 64×64 counts are presented. 
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Fig. 2. Objects 64x64: (a) binary; (b), (c) half-tone without and with a base (equal to 0.17) 

3.1 Binary object (the beam splitting) 

In Fig. 3, we present the plots characterizing the quality of the image of a binary object (Fig. 

2a) reconstructed by a kinoform. As seen from Fig. 3a, the weighting algorithm allows one 

to decrease the dispersal of the one-bit-intensity one bitI −Δ given by the ER-algorithm 

practically to zero, i.e., the algorithm does not reveal the effect of stagnation for binary 

objects. In our example, 180 weighting-iterations reduce one bitI −Δ  from 0.008 to 77.6 −×10  (Fig. 

3b), whereas 1500 such iterations result in 122 10one bitI −−Δ = × . At the same time, the IO 

algorithm (with optimized μ ) “stops” at the value 52.5 10one bitI −−Δ = × . That is, it falls in a 

minimum of ( )f kσ  which is sufficiently deep, but, nevertheless, is local. We note that the 

ratios of the minimum one-bit-intensity to the maximum zero-bit intensity for three 

algorithms are equal to, respectively, 4 (ER), 4.53 (IO), and 7 (weighting algorithm). Figure 

3b demonstrates the effect of a diminution of the variance ( )f kσ  at the transition from one 

algorithm to another one. Analogous results were obtained also for other binary objects with 

dimensions of 64×64 and 128×128. 

3.2 Half-tone object (the image generation) 

We observe a somewhat more complicated situation for half-tone objects, one of which is 

presented in Fig. 2b. As was shown by model experiments, the kinoforms of such objects 

calculated with the help of the weighting algorithm reconstruct a high-quality image only in 

the range of amplitudes from ∼ 0.15 to 1 (at the normalization of the image to 1). The rest 

amplitudes are distorted to various degrees. We can reach the proper reconstruction of all 

amplitudes, including those close to zero, if the initial object is positioned on a pedestal (Fig. 

2c), whose height is ∼ 15-20% of its maximum amplitude, and if the reconstructed image 

amplitude (the intensity in an optical experiment) is cut off by the pedestal level. It is 

obvious that, in this case, the useful diffraction efficiency of a kinoform decreases. The 

dependences of ( )f kσ  for both compared algorithms given in Fig. 4, as well as the visual  
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Fig. 3. The kinoform of the binary object (Fig. 2a): (a) range of output intensities, (b) variance 
of the amplitude of reconstructed image vs the iteration number 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

232 

observations of reconstructed images, indicate that, in the case where a base is 

supplemented to an object, the weighting algorithm begins to surpass the IO algorithm in 

convergence after a certain number of iterations. In our example with the object in Fig. 2c, 

the advantage of the weighting algorithm over the IO algorithm begins to reveal itself after 

100 iterations, increases with the number of iterations, and is almost four orders of 

magnitude by the 2000-th iteration ( 95.8 10−× against 52.5 10−× for (2000)fσ ). But if the base 

is absent, the IO algorithm has some advantage.  

The calculated efficiencies of kinoforms (in parentheses, the values obtained within the IO 

algorithm are given) are as follows: 91.39 (91.25)% for the object in Fig. 2a, 94.82 (92.48)% 

for the object in Fig. 2b, and 96.91 (95.02)% for the object in Fig. 2c. In the course of 

calculations, the criticality of the weighting algorithm with respect to a value of the 

parameter ε in formula (4) is verified. By varying ε  from 221 10−×  to 61 10−× , the  deviation 

of ( )fσ ε  from  10
10( ) 10fσ ε −=  is determined as 

 10 10100 [ ( ) ( )]/ ( )f f fσ ε σ ε σ εσΔ = % −  (9) 

for various objects with the fixed number of iterations equal to 50. On the average, σΔ  was 

(0.002-0.05)%. Thus, the variation of ε  in the indicated limits did not influence practically 

the exactness of the calculation of a kinoform and, at the same time, excluded the situation 

where one should divide the numerator in formula (4) by zero. 
 

 

Fig. 4. Variance of the amplitude of reconstructed image for a half-tone object without and 
with a base (Fig. 2b, c) 
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3.3 Super-Gaussian (SG) beam shaping  

Within the weighting and IO algorithms, the calculations of kinoforms that are the 

transducers of the intensity of a Gauss beam of the form 2 2 2exp[ ( ) / 2 ]ou v r− +  in a SG beam 

of the form  2 2 2 2' 'exp[ ( / 2 ) ( / 2 ) ]M M
o ox r y r− −  are performed, where or  and '

or  are the 

inflection radii of the Gauss curves, and M is the SG order (as known, the calculation of a 

kinoform involves the square root of the both indicated intensities). In Fig. 5, the input ( or  = 

70) and output ( '
or  = 25) intensity profiles for M = 4 and M = 100 with a dimension of the 

object 256×256 counts are presented. The iteration process with erK  = 10 was truncated at the 

100-th iteration. With regard for the separation of the working part of a SG beam so as shown 

in Fig. 5, the intensity variance Iσ and the output efficiency η  are as follows: 
4 42.9 10  (6.59 10 )Iσ − −= × × ,  96.46 (89.72)%η =  for M = 4; 5 43.7 10  (1.98 10 )Iσ − −= × × , 

93.63 (91.2)%η =  for M = 100. The calculation of Iσ  was performed by a form analogous to 

(4), but for intensities. It should be noted that, in the calculation of a kinoform-former of a SG, 

a special attention should be paid to a choice of or  defining the effective width of a beam 

illuminating the kinoform. For small or  (in our example, 35or = ), the kinoform is illuminated 

by a narrow Gauss beam, which means the actual nullification of light amplitudes on the 

edges  of the kinoform. This is equivalent to a reduction of the band of space frequencies 

forming a SG. As a result, the pattern of a SG will be covered by a speckle irrespective of the 

value of '
or  (see Fig. 6). In more details, the problem of restriction of the frequency band and 

its relation to the quality of images are considered formerly (Wyrowski and Bryngdahl, 1988). 
 

 

Fig. 5. The profiles of intensities of super-Gaussian beams with ' 25or =  of the 4th and 100th 

orders within the weighting and IO algorithms. Curves for M=4 and M=100 are vertically 

shifted up for clarity 
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Fig. 6. Proper ( 70or = ) and erroneous ( 35or = ) choices of the effective width of an 

illuminating beam for the kinoform-former of a super-Gaussian ( ' 25or = ).  In the second 

case, the cross-section of a super-Gaussian is covered by a speckle    

3.4 Off-axis kinoform 
Irrespective of the mean and the accuracy of calculations of the phase function ψ of a 
kinoform, the quality of a reconstructed image depends eventually on the accuracy of the 
representation of a microrelief of this phase on a recording medium. It is obvious that this 
accuracy depends on the technical potentialities of a registering unit and the characteristics 
of a recording medium. As for a programmed SLM, the accuracy is determined by its 
physico-technical parameters. In the synthesis of an axial Fourier-kinoform which 
reconstructs the image in the zero order of diffraction, the inaccuracy of the representation 
of the phase ψ leads to the appearance of a bright spot surrounded by noises at the center of 
the image. This effect can be eliminated in the single way due to a displacement of the 
image, as a whole, to the side from the optical axis of a reconstruction system. This can be 
achieved by the synthesis of a kinoform which reconstructs the image in the nonzero order. 
Such a kinoform is called the off-axis one. 

One knows the mean of synthesis (S1) of an off-axis kinoform (Wyrowski, 1990) with the 

reconstruction of the image in a nonzero order with components Px, Py along the axes ,x y of 

the plane of images. The components Px and Py are defined identically. Therefore, in what 

follows, we will write all relations only for the axis x . The admissible linear displacement 

ox  of an image from the optical axis of the Fourier-system of reconstruction in mean S1 is 

defined as 
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 ,
p

x P L
o x
=  (10) 

where  

 
1

(1 ),
2

iL
P
x p

L
≤ −  (11) 

iL – linear sizes of the image along the axis x , and pL  – linear sizes of the diffraction order. 

According to (10) and (11), the value of ox  decreases with increase in iL . At the standard 

values / 2piL L≈ , we get 0 1 / 4xP≤ ≤ . Respectively, the image can be displaced in the 

interval 0 / 4p
ox L≤ ≤ . From the viewpoint of practice, the principal drawbacks of mean S1 

are both a small interval of admissible displacements of the image and the dependence on 

the image size. As a positive feature of the mean, we mention the invariance of the total 

number of pixels of a kinoform at the transition from the axial to off-axis variant of the 

synthesis. 

One knows also the mean of synthesis (S2) of an off-axis kinoform (Turunen et al., 1990) 

with the possibility of the reconstruction of an image in the order 0xP ≠  which can vary in 

the limits 0 1xP≤ ≤  for the same limitations on Li as in mean S1. Mean S2 ensures a wide 

interval of displacements (0 )p
o ox x L≤ ≤  which does not depend on the image size. 

However, this is attained due to the increase in the total number of pixels necessary for the 

registration of a kinoform by K times (practically, 2 ≤ K ≤ 8). The calculation and the 

registration of such kinoforms (e.g., by the methods of laser or electron lithography) are 

quite complicated (Turunen et al., 1990). The use of programmed SLMs (the total number of 

pixels is  3 310 10≈ × on the average) for their representation becomes problematic already 

for the dimension of a kinoform of 256×256 and K > 4.  

We propose a mean of synthesis of an off-axis kinoform which ensures a significantly 

greater interval of admissible displacements of the reconstructed image as compared with 

mean S1. In this case, we conserve the main advantage of the latter, namely the invariability 

of the total number of pixels of a kinoform at the transition from the axial to off-axis variant 

of the synthesis. The essence of the mean is simple: in order to make a kinoform to be off-

axis, we have to introduce the spatial carrier frequency to it. To this end, we propose to 

supplement of any IFT-method of calculation of the kinoform (including weighting 

algorithm) by one more operation – to add the linear phase 2 ( )  ( , 0 or 0)o o o ox u y v x yπ + ≥ ≤  

to the phase ψ(u,v) of an on-axis kinoform at the last iteration. As a result, the calculated 

kinoform will reconstruct the image  

 
1( , ) {exp[ ( ( , ) 2 ( )]}

              ( , ) ( , ) ( , ).

off o o

o o o o

f x y i u v x u y v

f x y x x y y f x x y y

ψ π
δ

−= ℑ + + =
= ⊗ − − = − −  (12) 

Here, ( , )offf x y  - off-axis image, ( , )f x y  – axial image, δ - delta-function, and the symbol ⊗  

stands for the operation of convolution. It follows from (12) that offf  is nothing but the axial 

image displaced along the axes ,x y by ,o ox y .  The values of ,o ox y  (and also the order Px, Py) 

are independent of the ratio Li/ Lp in this case, as distinct from mean S1, and can be, in 

principle, arbitrary. However, the optical and model experiments executed by us have 

shown that ,o ox y  should be chosen in the limits  0 , / 2p
o ox y L≤ ≤ , which corresponds to 
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0 , 1 / 2x yP P≤ ≤ . Thus, the image can be displaced in the proposed mean in the interval 

0 , / 2p
o ox y L≤ ≤  which exceeds at least twice the analogous interval in mean S1. In Fig. 7a, 

we show the example of the reconstruction into a fractional order (Px = 0.45, Py = 0) (capture 

of 3х3 diffraction orders). The off-axis kinoform was calculated using the weighting IFT-

algorithm with the introduction of a  spatial carrier frequency  (a deflecting grating) along 

the axis x . In Fig. 7b, we give a fragment of the cross-section of a given grating. An 

analogous complicated structure of the grating is observed for the remaining values of Px, Py 

except for Px, Py=0.25 and 0.5 (for them, the grating periods are, respectively, 0, π/2, π, 3π/2, 

and 0, π).    

It is obvious that, in order that such complicated grating have a sufficient number of periods 

Tg  of oscillations in the structure of a kinoform (and thus could manifest the deflecting 

properties), the kinoform format must be sufficiently great (≥500×500 pixels). It is worth 

noting that the diffraction efficiency of an off-axis kinoform decreases with increase in a 

displacement of the image. In Section 4, we present the quantitative results of measurements 

of the diffraction efficiency of off-axis kinoforms.   

3.5 Iterative quantization 

For practical reasons, the phase structure of a kinoform ( , )u vψ  is usually quantized. This 

simplifies the production step. We investigated both the direct iterative quantization and the 

stepwise (soft) iterative quantization. The former is given by the standard operator 

 

0, ( , ) 0.5

     ,          ( 0.5) ( , ) ( 0.5)( , ) 

2 , ( , ) ( 0.5)

u v

m m u v mu v

u v M

ψ ψ
ψ ψ ψ ψψ
π ψ ψ

≤ Δ⎧⎪⎪⎪ Δ − Δ ≤ ≤ + Δ= ⎨⎪⎪ ≥ − Δ⎪⎩

# #

# #
 (13) 

and the latter is presented by the operator (Wyrowski, 1990) 

 

p

p p

p

u v

m m u v m
u v

u v M

u v

( )

( ) ( )

( )

0, ( , ) 0.5

, ( 0.5 ) ( , ) ( 0.5 )
( , )

2 , ( , ) ( 0.5 )

( , ), otherwise

ψ ε ψ
ψ ε ψ ψ ε ψψ
π ψ ε ψ

ψ

⎧ ≤ Δ⎪⎪⎪ Δ − Δ ≤ ≤ + Δ⎪= ⎨⎪⎪ ≥ − Δ⎪⎪⎩

# #

# #
 (14) 

where  

 ( )(1) (2 ) ( )

0,1,   , ,  =2 / ,   - number of quantization levels,  

0      = 1,     

1,2,   ,   number of stages of quantization.  

p P

m M M M

p P P

ψ π
ε ε ε ε
= Δ
< < < <
= −

"
" "

"
 (15) 

The principle of stepwise quantization consists in the following. The whole process of 
iteration is divided into Р cycles, each of which (except for the last one) includes Q 
iterations. In the course of the implementation of a cycle, only  
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Fig. 7. (a) reconstruction into the order Px = 0.45, Py = 0;  (b) fragment of the spatial carrier 
frequency 
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a part of the phases of a kinoform, which belong to the interval ε(p) ψΔ < ψΔ  is quantized, 

rather than all phases falling in the interval ψΔ  (relate to some m-level of quantization). The 

remaining phases remain invariable. The quantity ε increases with the index р. Respectively, 

the interval of quantized phases is extended, by attaining eventually a value close to ψΔ . At 

the last step (P), the direct quantization operator is reached, and only one iteration is 

performed. Thus, the total number of iterations K=Q(P-1)+1. Values of Р and Q can be, in 

principle, arbitrary, as well as the values of elements of the sequence ε(p). Their optimization 

is attained experimentally. Some versions of the choice of Q, P and ε for К=const were 

considered by Skeren et al. (2002). But we used, in our experiments with binary objects, the 

collection of values  

 (1) (2) (3) (4) (5)

(6) (7 ) (8) (9) (10)

10,  

0.3,  0.5,  0.6,  0.7,  0.75,  

0.8,  0.85,  0.9,  0.95,  1,

P

ε ε ε ε ε
ε ε ε ε ε
=
= = = = =
= = = = =

 (16) 

which was proposed and approved by Wyrowski (1990) and allows one to improve, in 

dependence on the number of quantization levels and the form of an object, the signal/noise 

ratio for the reconstructed image by 3 to 10 times as compared with that for the direct 

quantization.  

4. Experiment  

4.1 Optical-digital system 
Model experiments (see Section 3) have shown the high efficiency of the weighting IFT-

algorithm just for binary objects. Therefore, we investigated kinoforms acting as a beam 

splitter and the generation of patterns of binary objects. A typical optical-digital Fourier 

system (Fig. 8) with a He-Ne laser (543 nm) is used to investigate the kinoform 

reconstruction characteristics. Here, we use a reflection-type phase-only SLM HEO 1080 

Pluto produced by the HOLOEYE Inc. The reconstructed images were recorded and 

processed with the use of a SP620-USB CCD-camera of Spiricon Inc. with a high dynamic 

range.  

As known (Oton et al., 2007), the spatial calibration of reflective LCoS SLM is essential for 

the correct use of the modulator in applications with high requirements of the wavefront 

control. We determined the additional phase 2D-distribution compensating the distortions 

of a wave front which appear due to the imperfection of SLM (backplane curvature, 

thickness variations of the liquid crystal layer across the aperture of the SLM, and so on) and 

elements of the optical system, by using the interference-based method proposed by Oton et 

al. (2007). At the implementation of experiments, we sum the obtained distribution with the 

calculated phase of a kinoform. This allowed us to exclude, to a significant degree, the 

hardware-based effect at the measurement of characteristics of reconstructed images. The 

size of objects and kinoforms was 1000x1000 pixels in format. As objects, we took letter F 

and a 14 × 14 two-dimensional one-bits array occupying, respectively, 250 × 150 and 200 × 

200 counts of the input plane which are used in the study of the output intensities, 

diffraction efficiency, and effects of quantization of the kinoform phase in the reconstructed 

images. 
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Fig. 8. Optical-digital Fourier system. Notations: SLM - SLM HEO 1080 PLUTO, CCD -  
SPU620 CCD  with  BeamGage software, PC1, PC2+M2  – computers for the control, 
respectively, SLM and CCD-camera, Laser - He-Ne laser (543 nm) 

 

Fig. 9. Kinoform as a beam-splitter: reconstructed image of 14 × 14 spots with the intensity 
profile (third column) and the structure (a, b) of spots 
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4.2 Kinoform as a beam-splitter 
In Fig. 9, we present the results of experiments with the use of a kinoform for the two-
dimensional spot array generation. In calculations, we applied the stepwise quantization with 
parameters given in relation (16), the number of quantization levels М=256, and the ratio of 
iterations ER/weighting = 10/15. The measured profile of intensities demonstrates a high 
homogeneity of light spots. Each spot of an image was registered by an area including 9×9 
pixels of a CCD-camera, which allows us to control the regularity of arrangement of intensity 
maxima of spots in the output plane. No deviations from the regularity were observed. 

 

 

Fig. 10. Kinoform as a beam-splitter: (a) range of output intensities, and (b) variance of spots 
- intensities vs the iteration number 
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Fig. 11. Kinoform as a beam-splitter: variance of a reconstructed image vs the number of 
quantization levels  of the kinoform phase 

In Fig. 10, the plots characterizing the quality of the image (Fig. 9) reconstructed by a 
kinoform are presented. As seen, both methods give practically the same experimental 
results as distinct from the model experiments with binary objects (see Fig. 3), in which the 
weighting method has had the obvious advantage over the IO method. The reasons for this 
situation will be discussed in Conclusion in more details. In Fig. 11, we show the variance of 
a reconstructed image as a function of the number of quantization levels. In the obtaining of 
curves in Figs. 10 and 11, kinoforms calculation was performed with use the stepwise 
quantization at the ratio of iterations ER/weighting=10/15. 

4.3 Off-axis kinoform  
In Figs. 12 and 13, we give the results of experiments with off-axis kinoforms for object-letter 
F. Figure 12 demonstrates the example of the reconstruction into partial orders Px = 0, 0.25, 
and 0.50. As expected, the 0th and 1st orders remain immobile, and the image shifts between 
them. It is seen from Fig. 13 how the diffraction efficiency (DE) of a kinoform varies at the 
successive shift of the image. Curve 1а corresponds to a shift along the axis Х, and curve 2а 
does to a shift along the diagonal in the X,Y-plane (Px, Py = 0, 0.1, 0.15, …, 0.50). In this case, 
the synthesis of kinoforms is realized with the help of the weighting algorithm at the ratio of 
the numbers of iterations ER/Weighting = 20/200. Curves 1b and 2b represent analogous 
dependences, but for the synthesis of a kinoform with addition of amplitude freedom 
iterations (Wyrowski, 1990). While applying the amplitude freedom, the zero-noise on the 
format of a valid image decreases practically to zero, however, the DE decreases 
significantly in this case. In the second case, the ratio of iterations 
ER/Weighting/Amplitude freedom = 20/50/150. In Table 1, we present the more detailed 
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quantitative data. In measurements, we used a Newport Dual Channel Power meter, Model 
No. 2832-С. The error of measurements was 2.3 % on the average. A decrease in DE at a shift 
if the image is explained by the finite size of the SLM pixel aperture, in the meanwhile the 
character of this decrease does not depend on the method of calculation of a kinoform. The 
synthesis within the input-output method gives close results. The aperture distortion of an 
image is compensated by multiplication, at the beginning of iterations, of the input function 

of an object of  by the inverse function of the pixel aperture 1sinc−  (Lohmann & Paris, 1967; 

Kuzmenko & Yezhov, 2007). We note that the upper bound of DE for object-letter F, covered 
by the optimized scatterer, calculated by the method Wyrowski (1991) is 90.36%.  Thus, the 
energy losses due to the presence of the zero and higher orders of diffraction are, in the best 

case (curve 1a, Px=0) of the order of 27%∼ . 

 

 

Fig. 12. Off-axis kinoform. Reconstruction into partial diffraction orders, Px = 0, 0.25, and 0.5 
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Diffraction efficiency  ( / ) 100%img wholeE Eη = ×  

W-algorithm W-algorithm with A-
freedom 

IO-algorithm 

 X X, Y X X, Y X X, Y 

Order Exper Theor Exper Theor Exper Theor Exper Theor Exper Theor Exper Theor 

0 63 89.20 63 89.20 45 63.99 45 63.99 63 88.60 63 88.60 

0.1 56 89.70 56 88.40 41 64.00 41 63.30 56 89.00 56 87.82 

0.15 52 87.70 51 83.80 39 62.07 37 59.97 53 87.90 53 83.21 

0.20 50 84.40 44 76.70 37 60.35 33 55.02 51 83.90 45 76.20 

0.25 47 79.00 39 67.9 34 57.06 29 48.87 48 79.40 40 67.50 

0.30 42 74.30 35 58.15 30 52.94 26 41.70 44 73.85 36 57.75 

0.35 40 -- 31 47.9 28 48.3 23 34.47 39 67.45 32 47.5 

0.40 35 60.84 26 37.98 26 43.32 20 27.30 36 60.42 26 37.70 

0.45 31 53 19 28.6 22 37.90 19 20.75 33 53.02 20 28.60 

0.50 29 45 16 -- 20 32.64 12 15.08 29 45.54 16 20.81 

Table 1. Diffraction efficiency vs the partial diffraction order. X – means the image in a 
partial order along the axis Х; X,Y – means the image in a partial order along the diagonal of 
the X-Y plane. A-freedom means the use of amplitude-freedom iterations at the final stage of 
calculations. The relative error of measurements Δη/η ≈ 2.3% 

 

 

Fig. 13. Diffraction efficiency of the off-axis kinoform vs the partial diffraction order (for 
object-letter F) 
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5. Conclusion 

Summarizing, we may assert that the weighting algorithm has high efficiency in the 

synthesis of the kinoforms of binary objects. It is worth noting that the effect of stagnation of 

the algorithm is absent in this case, i.e., the one-bits variance ( )f kσ  in a reconstructed image 

tends to zero with increase in the number of iterations, and the noise level (zero-bits) is the 

same as that of other algorithms. The weighting algorithm is also efficient in calculations of 

kinoforms as the formers of super-gaussian laser beams. It must be emphasized that the 

weighting algorithm contains no parameters requiring the optimization (like the feedback 

parameter μ in the IO algorithm), which essentially accelerates the counting rate. 

However, as noted in the literature (Skeren et al., 2002), the methods of synthesis of 

kinoforms, which differ in accuracy, can give practically identical results. The matter is in 

that the physico-technical parameters of the available SLM do not allow one to completely 

realize the potentialities of high-accuracy algorithms. This is indicated by the above-

presented results of experiments, where the comparison of the weighting and IO methods is 

performed. It is possible to assert that all algorithms ensuring 4( ) 1×10f kσ −≈  or less at the 

realization of a kinoform on SLM of the type used by us give images of the approximately 

identical quality. 
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1. Introduction

Signal processing is a fast growing area today and the desired effectiveness in utilization
of bandwidth and energy makes the progress even faster. Special signal processors have
been developed to make it possible to implement the theoretical knowledge in an efficient
way. Signal processors are nowadays frequently used in equipment for radio, transportation,
medicine, and production, etc.
One of the basic problems encountered in signal representations using conventional Fourier
transform (FT) is the ineffectiveness of the Fourier kernel to represent and compute location
information. One method to overcome such a problem is the windowed Fourier transform
(WFT). Recently, Gröchenig (2001); Gröchenig & Zimmermann (2001); Weisz (2008) have
extensively studied the WFT and its properties from a mathematical point of view. Kemao
(2007); Zhong & Zeng (2007) applied the WFT as a tool of spatial-frequency analysis, which is

able to characterize the local frequency at any location in a fringe pattern.
On the other hand the quaternion Fourier transform (QFT), which is a nontrivial
generalization of the real and complex Fourier transform (FT) using quaternion algebra, has
been of interest to researchers, for example, Hitzer (2007); Mawardi et al. (2008); Sangwine
& Ell (2007). It was found that many FT properties still hold but others have to be modified.
Based on the (right-sided) QFT, one can extend the classical windowed Fourier transform
(WFT) to quaternion algebra while enjoying the same properties as in the classical case.
In this paper, by using the adjoint operator of the (right-sided) QFT, we derive the Plancherel
theorem for the QFT. We apply it to prove the orthogonality relation and reconstruction
formula of the two-dimensional quaternionic windowed Fourier transform (QWFT). Our
results can be considered as an extension and continuation of the previous work of Mawardi
et al. (2008). We then present several examples to show the differences between the QWFT and
the WFT. Finally, we present a generalization of the QWFT to higher dimensions.

 

Two-Dimensional Quaternionic Windowed 

Fourier Transform 

13
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2. Basics

For convenience of further discussions, we briefly review some basic facts on quaternions. The
quaternion algebra over R, denoted by

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R}, (1)

is an associative non-commutative four-dimensional algebra, which obeys Hamilton’s
multiplication rules:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1. (2)

The quaternion conjugate of a quaternion q is defined by

q̄ = q0 − iq1 − jq2 − kq3, q0, q1, q2, q3 ∈ R, (3)

and it is an anti-involution, i.e.
qp = p̄q̄. (4)

From (3), we obtain the norm of q ∈ H defined as

|q| =
√

qq̄ =
√

q2
0 + q2

1 + q2
2 + q2

3. (5)

It is not difficult to see that
|qp| = |q||p|, ∀p, q ∈ H. (6)

Using the conjugate (3) and the modulus of q, we can define the inverse of q ∈ H \ {0} as

q−1 =
q̄

|q|2 , (7)

which shows that H is a normed division algebra.

It is convenient to introduce the inner product ( f , g)L2(R2;H) valued in H of two quaternion
functions f and g as follows:

( f , g)L2(R2;H) =
∫

R2
f (x)g(x) d2x. (8)

The associated norm is defined by

‖ f ‖L2(R2;H) = ( f , f )1/2
L2(R2;H)

=

(

∫

R2
| f (x)|2 d2x

)1/2

. (9)

As a consequence of the inner product (8), we obtain the quaternion Cauchy-Schwarz inequality:

∣

∣

∣

∫

R2
f ḡ d2x

∣

∣

∣
≤

(

∫

R2
| f |2d2x

)1/2 (∫

R2
|g|2d2x

)1/2

, ∀ f , g ∈ L2(R2; H). (10)

3. Quaternionic Fourier Transform (QFT)

Let us introduce the continuous (right-sided) QFT. For more details, we refer the reader to
Hitzer (2007); Mawardi et al. (2008); Sangwine & Ell (2007).
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3.1 Definition of QFT

Definition 3..1 (Right-sided QFT). The QFT of f ∈ L1(R2; H) is the function Fq{ f } : R
2 → H

given by

Fq{ f }(ω) =
∫

R2
f (x)e−iω1 x1 e−jω2x2 d2x, (11)

where x = x1e1 + x2e2, ω = ω1e1 + ω2e2, and the quaternion exponential product e−iω1x1 e−jω2 x2

is the quaternion Fourier kernel.

Theorem 3..1 (Inverse QFT). Suppose that f ∈ L2(R2; H) and Fq{ f } ∈ L1(R2; H). Then the QFT
of f is an invertible transform and its inverse is given by

F−1
q [Fq{ f }](x) = f (x) =

1

(2π)2

∫

R2
Fq{ f }(ω)ejω2 x2 eiω1x1 d2

ω, (12)

where the quaternion exponential product ejω2 x2 eiω1x1 is called the inverse (right-sided) quaternion
Fourier kernel.

4. Linear Operators on Quaternionic Hilbert Spaces

In this section, we will briefly introduce the notation of linear operator on quaternionic Hilbert
spaces. In fact, it is a natural generalization of the idea of an operator on a real and complex
Hilbert space.

Definition 4..1. Let X and Y be two H-vector spaces. The operator T : X −→ Y is called a left
H-linear space if

T(αx + βy) = αT(x) + βT(x), (13)

for all quaternion constants α, β ∈ H and for all x, y ∈ X.

Definition 4..2. The adjoint of H-linear operator T : X −→ X is the unique H-linear operator
T∗ : X −→ X such that

(Tx, y) = (x, T∗y), ∀x, y ∈ X. (14)

This gives the following result.

Theorem 4..1. The adjoint of the QFT is inverse of the QFT multiplied by (2π)2, i.e.

(Fq{ f }, g)L2(R2;H) = (2π)2( f ,F−1
q {g})L2(R2;H). (15)

Proof. For f , g ∈ L2(R2; H) we calculate the inner product (8) to get

(Fq{ f }, g)L2(R2;H) =
∫

R2
Fq{ f }(ω) g(ω) d2

ω

(11)
=

∫

R2

∫

R2
f (x) e−iω1x1 e−jω2x2 d2xg(ω) d2

ω

(4)
=

∫

R2
f (x)

(

∫

R2
g(ω) ejx1ω1 eix2ω2 d2

ω

)

d2x

=
∫

R2
f (x) (2π)2F−1

q {g}(x) d2x

= (2π)2( f ,F−1
q {g})L2(R2;H), (16)

which completes the proof.

249Two-Dimensional Quaternionic Windowed Fourier Transform

www.intechopen.com



Remark 4..1. Note that Theorem 4..1 is not valid for the (two-sided) QFT. This fact implies that the
Plancherel theorem can not be established.

Theorem 4..2 (Plancherel formula). Suppose that f , g ∈ L2(R2; H). Then

(Fq{ f },Fq{g})L2(R2;H) = (2π)2( f , g)L2(R2;H) (17)

and
(F−1

q [Fq{ f }],F−1
q [Fq{g}])L2(R2;H) = (2π)2( f , g)L2(R2;H). (18)

Proof. A simple calculation gives for every f , g ∈ L2(R2; H)

(Fq{ f },Fq{g})L2(R2;H)
(15)
= (2π)2( f ,F−1

q [Fq{g}])L2(R2;H)

(12)
= (2π)2( f , g)L2(R2;H), (19)

as desired. Equation (18) can be established in a similar manner.

4.1 Discrete QFT

Similar to the discrete Fourier transform, the discrete quaternionic Fourier transform (DQFT)

and the inverse discrete quaternionic Fourier transform (IDQFT) are defined as follows.

Definition 4..3. Let f (m, n) be a two-dimensional quaternion discrete-time sequence. The DQFT of
f (m, n) is defined by F(u, v) ∈ HM×N, where

F(u, v) =
M−1

∑
m=0

N−1

∑
n=0

f (m, n) e−i um
M e−j vn

N . (20)

Definition 4..4. The IDQFT is defined by

f (m, n) =
1

(2π)2MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej vn
N ei um

M . (21)

4.2 Application of DQFT

In the following, we introduce an application of the DQFT to study two-dimensional discrete
linear time-varying (TV) systems. For this purpose, let us introduce the following definition.

Definition 4..5. Consider a two-dimensional discrete linear TV system with the quaternion impulse
response of the filter denoted h(·, ·, ·, ·). The output r(·, ·) of the system to the input f (·, ·) is defined by

r(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v). (22)

The transfer function of the TV filter h can be obtained by

R(m, n, ω1, ω2) =
∞

∑
m′=−∞

∞

∑
n′=−∞

h(m, n, m′, n′) e−im′ω1 e−jn′ω2 . (23)

The following simple theorem relates the DQFT to the output of a discrete linear TV band-pass
filter.

250 Fourier Transforms - Approach to Scientific Principles

www.intechopen.com



Theorem 4..3. Consider a linear TV system with the quaternion impulse response h defined by

h(m, n, m′, n′) = e−i m(m−m′)
M e−j n(n−n′)

N , for 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1. (24)

If the input to this system is the quaternion signal f (u, v), then its output r(·, ·) is equal to the DQFT

of f (u, v).

Proof. Using Definition 4..5, we obtain

r(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v)

=
M−1

∑
u=0

N−1

∑
v=0

f (u, v) e−i m(m−(m−u))
M e−j n(n−(n−v))

N

=
M−1

∑
u=0

N−1

∑
v=0

f (u, v) e−i um
M e−j vn

N , (25)

which completes the proof by Definition 4..3.

If the quaternion impulse response h is given by

h(m, n, m′, n′) =
1

(2π)2MN
ej n(n−n′)

N ei m(m−m′)
M , (26)

then (22) implies

r2(m, n) =
∞

∑
u=−∞

∞

∑
v=−∞

f (u, v) h(m, n, m − u, n − v)

=
1

(2π)2 MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej n(n−(n−v))
N ei m(m−(m−u))

M

=
1

(2π)2 MN

M−1

∑
u=0

N−1

∑
v=0

F(u, v) ej nv
N ei um

M , (27)

where the input to the system is quaternion signal F(u, v).
Equations (24) and (26) show that the choice of the quaternion impulse response of the filter
determines output characteristics of the discrete linear TV systems.

5. Quaternionic windowed Fourier Transform

In section, we introduce the QWFT presented in Mawardi et al. (2010). As we will see, not all
properties of the WFT can be established for the QWFT.
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5.1 2-D WFT

Although the FT is a powerful tool for the analysis of stationary signals, the FT is not well
suited for the analysis of non-stationary signals. Because the FT is a global transformation with
poor spatial localization Zhong & Zeng (2007). However, in practice, most natural signals are
non-stationary. In order to characterize a non-stationary signal properly, the WFT is commonly
used.

Definition 5..1 (WFT). The WFT of a two-dimensional real signal f ∈ L2(R2; R) with respect to the
window function g ∈ L2(R2) \ {0} is given by

Gg f (ω, b) =
∫

R2
f (x) g

ω,b(x) d2x, (28)

where the window daughter function g
ω,b is defined by

g
ω,b(x) = g(x − b)e

√
−1 ω·x. (29)

The window daughter function g
ω,b is also called the windowed Fourier kernel.

Most applications make use of the Gaussian window function g, which is non-negative and
well localized around the origin both in spatial and frequency domains. The Gaussian window
function can be represented as

g(x, σ1, σ2) = e−[(x1/σ1)2+(x2/σ2)2]/2, (30)

where σ1 and σ2 are the standard deviations of the Gaussian function. For fixed ω0 = u0e1 +
v0e2,

gc,ω0 (x, σ1, σ2) = e
√
−1 (u0x1+v0x2)e−[(x1/σ1)2+(x2/σ2)2]/2 (31)

is called a complex Gabor filter.

5.2 Quaternionic Gabor filters

Bülow (1999; Felsberg & Sommer) extended the complex Gabor filter gc,ω0 (x, σ1, σ2) to

quaternions by replacing the complex kernel e
√
−1(u0x1+v0x2) with the inverse (two-sided)

quaternion Fourier kernel eiu0 x1 ejv0 x2 . He proposed the extension form

gq(x, σ1, σ2) = eiu0 x1 ejv0 x2 e−[(x1/σ1)2+(x2/σ2)2]/2, (32)

which he called quaternionic Gabor filter, and applied it to get the local quaternionic phase of
a two-dimensional real signal. Bayro-Corrochano et al. (2007) also used quaternionic Gabor
filters for the preprocessing of 2D speech representations. Based on (32), the quaternionic
windowed Fourier kernel can be written in the form

Φ
ω,b(x) = eiu0 x1 g(x − b)ejv0x2 . (33)

The extension of the WFT to quaternions using the quaternionic windowed Fourier kernel (33)

is rather complicated, due to the non-commutativity of quaternion functions. Alternatively,
we use the kernel of the (right-sided) QFT to define the quaternionic windowed Fourier kernel
which enables us to extend the WFT to quaternions.
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Definition 5..2. For a non-zero quaternion window function φ ∈ L2(R2; H) \ {0}, its quaternionic
window daughter function is defined by

φ
ω,b(x) = ejω2x2 eiω1 x1 φ(x − b). (34)

For fixed ω0 = u0e1 + v0e2, our quaternionic Gabor filter is defined by

Gq(x, σ1, σ2) = ejv0x2 eiu0 x1 e−[(x1/σ1)2+(x2/σ2)2]/2. (35)

Lemma 5..1. For φ
ω,b ∈ L2(R2; H), we have

‖φω,b‖
2
L2(R2;H) = ‖φ‖2

L2(R2;H). (36)

5.3 Definition of QWFT

Definition 5..3 (QWFT). Let φ ∈ L2(R2; H) \ {0} be a non-zero quaternion window function.
Denote by Gφ, the QWFT on L2(R2; H). The QWFT of f ∈ L2(R2; H) with respect to φ is defined
by

Gφ f (ω, b) =
∫

R2
f (x) φ

ω,b(x) d2x

=
∫

R2
f (x) φ(x − b)e−iω1x1 e−jω2x2 d2x. (37)

The quaternionic window daughter function

φ
ω,b(x) = ejω2x2 eiω1x1 φ(x − b) (38)

is also called the quaternionic windowed Fourier kernel.

These lead to the following observations:

• Equation (37) shows that it is generated using the inverse (right-sided) QFT kernel. Note
that the definition is not valid using the kernel of the (two-sided) QFT.

• If we fix ω = ω0, and b1 = b2 = 0, and take the Gaussian function as the window function
of (38), then we get the quaternionic Gabor filter

Gq(x, σ1, σ2) = ejv0x2 eiu0 x1 e−[(x1/σ1)2+(x2/σ2)2]/2. (39)

• Since the modulation property does not hold for the QFT, equations (37) and (38) can not
be expressed in terms of the QFT.

It is easy to see that
Gφ f (ω, b) = Fq{ f · Tbφ̄}(ω), (40)

where the translation operator is defined by

Tb f = f (x − b). (41)

Equation (40) clearly shows that the QWFT can be regarded as the (right-sided) QFT of the
product of a quaternion-valued signal f and a quaternion conjugated and shifted quaternion
window function, or as an inner product (8) of f and the quaternionic window daughter

function. In contrast to the QFT basis e−iω1x1 e−jω1 x2 , which has an infinite spatial extension,

the QWFT basis φ(x − b) e−iω1x1 e−jω1x2 has a limited spatial extension due to the locality of
the quaternion window function φ(x − b).
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5.4 Properties of QWFT

The following proposition describes the elementary properties of the QWFT. Its proof is
straightforward.

Proposition 5..2. Let φ ∈ L2(R2; H) be a quaternion window function.

(i). (Left linearity)
[Gφ(λ f + μg)](ω, b) = λGφ f (ω, b) + μGφg(ω, b), (42)

for arbitrary quaternion constants λ, μ ∈ H.

(ii). (Parity)
GPφ(P f )(ω, b) = Gφ f (ω,−b), (43)

where P is the parity operator defined by P f (x) = f (−x).

(iii). (Specific shift) Assume that f = f0 + i f1 and φ = φ0 + iφ1.

Gφ(Tx0 f )(ω, b) = e−iω1x0
(

Gφ f (ω, b − x0)
)

e−jω2y0 . (44)

Let us give alternative proofs of the orthogonality relation and reconstruction formula. We
follow the idea of Gröchenig (2001) to prove the theorems.

Theorem 5..3 (Orthogonality relation). Let φ, ψ be quaternion window functions and f , g ∈
L2(R2; H) arbitrary. Then we have

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b = (2π)2( f (φ̄, ψ̄)L2(R2;H), g)L2(R2;H). (45)

Proof. We notice that
Gφ f (ω, b) = Fq{ f · Tbφ̄}(ω), (46)

for fixed b. We have known that the Plancherel theorem is valid for the (right-sided) QFT. So,
applying it into the left-hand side of (45), we get

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω = (Fq{ f · Tbφ̄},F{ f · Tbψ̄})L2(R2;H)

= (2π)2( f · Tbφ̄, f · Tbψ̄)L2(R2;H)

= (2π)2
∫

R2
f (x)φ(x − b)ψ(x − b)g(x) d2x. (47)

If we assume that f φ̄ and ψḡ are in L2(R2; H), then integrating (47) with respect to d2b yields

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b = (2π)2
∫

R2
f (x)

∫

R2
φ(x − b)ψ(x − b)g(x) d2x d2b

= (2π)2
∫

R2
f (x)

∫

R2
φ(x′)ψ(x′) d2x′ g(x) d2x, (48)

which proves the theorem.

From the above theorem, we obtain the following consequences.
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(i). If φ = ψ, then

∫

R2
Gφ f (ω, b) Gφg(ω, b) d2b d2

ω = (2π)2‖φ‖L2(R2;H)( f , g)L2(R2;H). (49)

This formula is quite similar to the orthogonality relation of the classical WFT, for example,
see Gröchenig (2001). However, we must remember that equation (49) is a quaternion
valued function.

(ii). If f = g, then

∫

R2
Gφ f (ω, b) Gψ f (ω, b) d2b d2

ω = (2π)2( f (φ̄, ψ̄)L2(R2;H), f )L2(R2;H). (50)

(iii). If f = g and φ = ψ, then

∫

R2

∫

R2

∣

∣Gφ f (ω, b)
∣

∣

2
d2b d2

ω = (2π)2‖ f ‖2
L2(R2;H)‖φ‖2

L2(R2;H). (51)

(iv). If the quaternion window function is normalized so that ‖φ‖L2(R2;H) = 1, then (51)
becomes

∫

R2

∫

R2

∣

∣Gφ f (ω, b)
∣

∣

2
d2b d2

ω = (2π)2‖ f ‖2
L2(R2;H). (52)

Equation (52) shows that the QWFT is an isometry from L2(R2; H) into L2(R2; H). In other
words, up to the factor (2π)2, the total energy of a quaternion-valued signal computed in
the spatial domain is equal to the total energy computed in the quaternionic windowed
Fourier domain.

Theorem 5..4 (Reconstruction formula). Let φ, ψ ∈ L2(R2; H) be two quaternion window
functions. Assume that (φ, ψ)L2(R2;H) 
= 0. Then, every 2-D quaternion signal f ∈ L2(R2; H) can
be fully reconstructed by

f (x) = (2π)−2
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b(x) (φ̄, ψ̄)−1
L2(R2;H)

d2b d2
ω. (53)

Under the same assumptions as in (49), we obtain

f (x) =
1

(2π)2‖φ‖2
L2(R2;H)

∫

R2

∫

R2
Gφ f (ω, b)φ

ω,b(x) d2b d2
ω. (54)

Proof. By direct calculation, we obtain

∫

R2

∫

R2
Gφ f (ω, b) Gψg(ω, b) d2

ω d2b =
∫

R2

∫

R2

∫

R2
Gφ f (ω, b) ψ

ω,b(x)ḡ(x) d2
ω d2b d2x

= (
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b, g)L2(R2;H), (55)

for every g ∈ L2(R2; H). Applying (45) of Theorem 5..3 to the left-hand side of (55), we have

(2π)2( f (φ̄, ψ̄)L2(R2;H), g)L2(R2;H) =

(

∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b, g

)

L2(R2;H)
, (56)
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for every g ∈ L2(R2; H). Since the inner product identity (56) holds for every g ∈ L2(Rn; H),
we conclude that

(2π)2 f (φ̄, ψ̄)L2(R2;H) =
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b d2
ω d2b. (57)

Multiplying both sides of (57) from the right side by (2π)−2(φ̄, ψ̄)−1
L2(R2;H)

, we immediately

obtain

f = (2π)−2
∫

R2

∫

R2
Gφ f (ω, b)ψ

ω,b (φ̄, ψ̄)−1
L2(R2;H)

d2
ω d2b. (58)

Notice also that if φ = ψ, then (φ̄, ψ̄)L2(R2;H) = ‖φ̄‖2
L2(R2;H)

= ‖φ‖2
L2(R2;H)

. This proves (54).

Theorem 5..5 (Reproducing kernel). Let be φ ∈ L2(R2; H) be a quaternion window function. If

Kφ(ω, b; ω
′, b′) =

1

(2π)2‖φ‖2
L2(R2;H)

(φ
ω,b, φ

ω′ ,b
′ )L2(R2;H), (59)

then Kφ(ω, b; ω
′, b′) is a reproducing kernel, i.e.

Gφ f (ω′, b′) =
∫

R2

∫

R2
Gφ f (ω, b)Kφ(ω, b; ω

′, b′) d2
ω d2b. (60)

Proof. By inserting (53) into the definition of the QWFT (37), we obtain

Gφ f (ω′, b′) =
∫

R2
f (x) φ

ω
′,b

′ (x) d2x

=
∫

R2

(

1

(2π)2‖φ‖2
L2(R2;H)

∫

R2

∫

R2
Gφ f (ω, b) φ

ω,b(x)d
2b d2

ω

)

φ
ω

′,b
′ (x) d2x

=
∫

R2

∫

R2
Gφ f (ω, b)

1

(2π)2‖φ‖2
L2(R2;H)

(

∫

R2
φ

ω,b(x)φω
′,b

′ (x) d2x

)

d2b d2
ω

=
∫

R2

∫

R2
Gφ f (ω, b)Kφ(ω, b; ω

′, b′) d2b d2
ω, (61)

which was to be proved.

5.5 Examples of the QWFT

For illustrative purposes, we will give examples of the QWFT. Let us begin with a
straightforward example given in Mawardi et al. (2010).

Example 5..1. Consider the two-dimensional first order B-spline window function defined by

φ(x) =

{

1, if −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1,

0, otherwise.
(62)

Obtain the QWFT of the function defined as follows:

f (x) =

{

ex1+x2 , if −∞ < x1 < 0 and −∞ < x2 < 0,

0, otherwise.
(63)
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By applying the definition of the QWFT, we have

Gφ f (ω, b) =
1

(2π)2

∫ m1

−1+b1

∫ m2

−1+b2

ex1+x2 e−iω1x1 e−jω2x2 dx1dx2,

m1 = min(0, 1 + b1), m2 = min(0, 1 + b2). (64)

Simplifying (64) yields

Gφ f (ω, b) =
1

(2π)2

∫ m1

−1+b1

∫ m2

−1+b2

ex1(1−iω1)ex2(1−jω2) d2x

=
1

(2π)2

∫ m1

−1+b1

ex1(1−iω1)dx1

∫ m2

−1+b2

ex2(1−jω2) dx2

=
1

(2π)2
ex1(1−iω1)(1 − iω1)

∣

∣

∣

m1

−1+b1

ex2(1−jω2)

(1 − jω2)

∣

∣

∣

m2

−1+b2

=
(em1(1−iω1) − e(−1+b1)(1−iω1))(em2(1−jω2) − e(−1+b2)(1−jω2))

(2π)2(1 − iω1 − jω2 + kω1ω2)
. (65)

Using the properties of quaternions, we obtain

Gφ f (ω, b)

=
(em1(1−iω1)−e(−1+b1)(1−iω1))(em2(1−jω2)−e(−1+b2)(1−jω2))(1+iω1+ jω2−kω1ω2)

(2π)2(1 + ω2
1 + ω2

2 + ω2
1ω2

2)
. (66)

Example 5..2. Let the window function be the two-dimensional Haar function defined by

φ(x) =

⎧

⎪

⎨

⎪

⎩

1, for 0 ≤ x1 < 1/2 and 0 ≤ x2 < 1/2,

−1, for 1/2 ≤ x1 < 1 and 1/2 ≤ x2 < 1,

0, otherwise.

(67)

Find the QWFT of the Gaussian function f (x) = e−(x2
1+x2

2).

From Definition 5..3, we obtain

Gφ f (ω, b) =
1

(2π)2

∫

R2
f (x)φ(x − b)e−iω1x1 e−jω2 x2 d2x

=
1

(2π)2

∫ 1/2+b1

b1

e−x2
1 e−iω1x1 dx1

∫ 1/2+b2

b2

e−x2
2 e−jω2 x2 dx2

− 1

(2π)2

∫ 1+b1

1/2+b1

e−x2
1 e−iω1x1 dx1

∫ 1+b2

1/2+b2

e−x2
2 e−jω2 x2 dx2. (68)

By completing squares, we have

Gφ f (ω, b) =
1

(2π)2

∫ 1/2+b1

b1

e−(x1+iω1/2)2−ω2
1/4dx1

∫ 1/2+b2

b2

e−(x2+jω2/2)2−ω2
2 /4dx2

− 1

(2π)2

∫ 1+b1

1/2+b1

e−(x1+iω1/2)2−ω2
1 /4dx1

∫ 1+b2

1/2+b2

e−(x2+jω2/2)2−ω2
2/4dx2. (69)
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Making the substitutions y1 = x1 + i ω1
2 and y2 = x2 + j ω2

2 in the above expression, we
immediately obtain

Gφ f (ω, b) =
e−(ω2

1+ω2
2)/4

(2π)2

∫ 1/2+b1+iω1/2

b1+iω1/2
e−y2

1 dy1

∫ 1/2+b2+jω2/2

b2+jω2/2
e−y2

2 dy2

− e−(ω2
1+ω2

2)/4

(2π)2

∫ 1+b1+iω1/2

1/2+b1+iω1/2
e−y2

1 dy1

∫ 1+b2+jω2/2

1/2+b2+jω2/2
e−y2

2 dy2

=
e−(ω2

1+ω2
2)/4

(2π)2

[(

∫ b1+iω1/2

0
(−e−y2

1) dy1 +
∫ 1/2+b1+iω1/2

0
e−y2

1 dy1

)

×
(

∫ b2+jω2/2

0
(−e−y2

2) dy2 +
∫ 1/2+b2+jω2/2

0
e−y2

2 dy2

)

−
(

∫ 1/2+b1+iω1/2

0
(−e−y2

1) dy1 +
∫ 1+b1+iω1/2

0
e−y2

1 dy1

)

×
(

∫ 1/2+b2+jω2/2

0
(−e−y2

2) dy2 +
∫ 1+b2+jω2/2

0
e−y2

2 dy2

)]

. (70)

Denote erf(x) =
2√
π

∫ x

0
e−t2

dt. Equation (70) can be written in the form

Gφ f (ω, b) =
e−(ω2

1+ω2
2)/4

(2
√

π)3

{[

−erf

(

b1 +
i

2
ω1

)

+ erf

(

1

2
+ b1 +

i

2
ω1

)]

×
[

−erf

(

b2 +
j

2
ω2

)

+ erf

(

1

2
+ b2 +

j

2
ω2

)]

−
[

−erf

(

1

2
+ b1 +

i

2
ω1

)

+ erf

(

1 + b1 +
i

2
ω1

)]

×
[

−erf

(

1

2
+ b2 +

j

2
ω2

)

+ erf

(

1 + b2 +
j

2
ω2

)]}

. (71)

6. Clifford windowed Fourier Transform

In this section, we introduce the Clifford windowed Fourier transform as a generalization of
two-dimensional quaternionic Fourier transform to higher dimensions. Let us start with the
following definition.

Definition 6..1. The Clifford windowed Fourier transform of a multivector function f ∈ L2(Rn; Cl0,n)
with respect to the non-zero Clifford window function φ ∈ L2(Rn; Cl0,n) is given by

Gc
φ f (ω, b) =

∫

Rn
f (x) φb,ω(x) dnx

=
∫

Rn
f (x) φ(x − b)

n

∏
k=1

e−ekωkxk dnx, (72)
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where ω, b ∈ R
n and e1, e2, e3, · · · , en are the orthonormal vector basis of Clifford algebra Cl0,n which

satisfy the following rules:

ei ej = −ej ej for i 
= j, i, j = 1, 2, 3, · · · , n

e2
i = −1 for i = 1, 2, 3, · · · , n.

We call

φ
ω,b(x) =

n−1

∏
k=0

een−kωn−kxn−kφ(x − b), (73)

a Clifford windowed Fourier kernel. Notice that the Clifford windowed Fourier transform for
n = 2 is identical with the QWFT and that for n = 1 is identical with the classical windowed
Fourier transform.

7. Conclusion

Using the basic concepts of quaternion algebra and its Fourier transform, we have introduced
2-D quaternionic windowed Fourier transform. Since the multiplication in quaternions is
non-commutative, some properties of the classical windowed Fourier transform, such as the
shift property, orthogonality relation and reconstruction formula, needed to be modified. We
have shown that the construction formula can be extended to higher dimensions using the
Clifford Fourier transform. Like quaternion wavelets, which are successfully applied to optical

flow, it will be possible to apply the QWFT to optical flow, image features and image fusion in
the future.
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High Frame Rate Ultrasonic Imaging through 
Fourier Transform using an Arbitrary Known 

Transmission Field 

Hu Peng 
 University of Science and Technology of China 

China 

1. Introduction 

Based on the study of limited array diffraction beams, a High Frame Rate (HFR) imaging 
method which uses a broadband pulsed plane wave, or array beams transmission field 
from a linear transducer array to illuminate the area to be imaged has been developed by 
Jian-yu LU. Echoes from the objects are received with the same transducer as is used in 
transmission. For each array beam parameter in a certain range, the received signals are 
weighted with that array beam and are summed up. The summations are Fourier 
transformed from time domain to frequency domain, and then processed further with the 
so called ‘‘parameter match’’ to produce the spectrum of the imaging. 2D and 3D images 
are constructed with inverse Fourier transformer respectively. In this way, the frame per 
transmission imaging rate is achieved. 
Despite its advantages of high frame rate and high signal to noise ratio, the original HFR 
method has several drawbacks. It can only use the plane wave or the array beam 
transmission field, and is difficult to be ported for a non-array beam field, such as a 
cylindrical or spherical wave. Moreover, since the plane wave transmission field illuminates 
only a narrow area of its own width, the imaged area is quite small, and the only way to 
widen it up is to steer the transmission beams several times from different angles, which 
lowers the frame rate. Besides, the array beam field demands a linear transducer and a very 
complex weighting process. 
Therefore, the HFR method needs to allow diffraction wave transmission fields in order to 
be practically useful. For example, it may use a cylindrical or spherical field and output 
sector format images like the conventional sector B mode ones, which have contributed a lot 
in diagnosing myocardial diseases. 
In this chapter, an extended HFR method for 2D imaging is proposed. It allows all kinds of 
transmission field, including the cylindrical one and the spherical one, as well as the plane 
wave one. It is more general than the original HFR method. 
The extended HFR method works mostly like the original one, except that 1, it implements 
the weight-and-sum process through the Fourier transform; and 2, it iterates for each 
frequency in a certain range to obtain firstly a coarse image component at that frequency 
and then the refined one with the information of the transmission field removed. After the 
iteration the image components are summed up and that is the final image. 
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In ultrasonic imaging systems, the cylindrical transducer, circle or curve transducer and 
linear transducer are commonly used. The advantages and disadvantages among them are 
different. One characteristic of the cylindrical or circle transducer is they can illuminate a 
sector or pyramidal area of the object. Therefore, in the following section, we extend the 
HFR method by using a cylindrical wave to illuminate an object. Mathematical formulas 
are derived and computer simulations are performed to verify the method. The method 
allows to increase the illumination area by using a transducer of a small footprint, which 
is important for applications such as cardiac imaging where acoustic window sizes are 
limited. 
This Chapter is organized as follows. Firstly, the HFR ultrasonic imaging system based on 
the angular spectrum principle is introduced. In the flowing section, this system is extended. 
The extended HFR method allows all kinds of transmission field. Finally, a high frame rate 
2D and 3D imaging system with a curved or cylindrical array is proposed. 

2. High Frame Rate ultrasonic imaging system based on the angular 
spectrum principle 

A kind of high frame rate (HFR) 2D and 3D imaging method was developed by Jianyu Lu in 
1997. Because only one transmission is required to construct a frame of image, this method 
can reach an ultra high frame rate (about 3750 volumes or frames per second for biological 
soft tissues at a depth of 200 mm). In this section, a new HFR method is presented in the 
view of angular spectrum. Compared with conventional dynamic focusing method which 
uses delay-and-sum processing and Lu’s HFR method, which uses a kind of special 
weighting on the received signal, the new method only use the Fourier transform algorithm 
to construct image. So the system implementation of the method could be greatly simplified. 
During constructing image, several array beams with different parameters are used as 
transmitted signals, and the spectra of a frame of image is obtained by synthesizing the 
image spectrums related to different transmit event. The simulation result shows that the 
solution not only suppresses the sidelobe of system greatly and obtains the high quality 
image but also still keeps high frame rate to some extent. 

2.1 Theory 

The HFR method is based on one transmission event. In order to get the image of the object, 
the transducer transmits the limited diffraction beams to the object then the same transducer 
receives the echo signals reflected by the scatters and constructs image by Fourier transform. 
Fig.2.1 is diagram of the linear array used by HFR method. As the transducer emits the 
limited diffraction beams, the distribution of the field is 

  ( , , , ) ( ) ikzp x y z k A k e=   (2.1)  

where ( , , , )p x y z k  means the acoustic pressure at the position ( , , )x y z under the certain 

wave numbered k , and / 2 /k c f cω π= = , f  is frequency and c  is acoustic speed. ( )A k is 

the frequency spectrum of exciting signal.  

If there are some scatters in the 'z z=  plane, the pressure for the scatters is  

 
( , , , ) ( , , ) ( , , , )

                   ( , , ) ( ) i

i i i

jkz
i

s x y z k f x y z p x y z k

f x y z A k e

=
=   (2.2)  
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where ( , , )if x y z  is the reflective coefficient function of the scatters. Using Fourier transform, 

we can get another expression for equation (2.2) in the angular spectrum domain:  

  
,

,

( , , , ) ( , , , )

( , , ) ( )

x y

x yi

ik x ik y

x y i i

x y

ik x ik yikz
i

x y

S k k k z s x y z k e dxdy

f x y z A k e e dxdy

+

+

=
=

∫
∫   (2.3)  

 

 

Fig. 2.1. Linear transducer array used in HFR 

Because of the reflection of scatters, the echo signal represented by equation (2.2) or 
equation (2.3) propagates to the surface of the transducer. Based on the angular spectrum, it 

is easy to get the signal received by the transducer located in the plane 0z =  in angular 

spectrum:  

 
2 2 2

( , , ) ( ) ( , , , ) x yi k k k

x y x y iR k k k T k S k k k z e
− −=   (2.4)  

Where ( )T k  is the frequency response of the transducer. For simplicity, we assume 

 2 2 2
z x yk k k k= − −   (2.5)  

From equation (2.4) and equation (2.3), the received signal can be represented further as 
follow 

 
'

,

( , , ) ( , , ) ( ) ( ) x yz i
ik x ik yik z

x y i

x y

R k k k f x y z A k T k e e dxdy
+= ∫   (2.6)  

where 

 ' 2 2 2
z x yk k k k k= + − −   (2.7)  

The equation (2.6) means the signal, which is received by transducer located in the 

plane 0z = , is come from echo signal produced by the scatters at the plane 'z z= . In fact the 

received signal comes from a lot of planes in the acoustic field. So it should be the 

summation of ( , , )x yR k k k  over different depth, namely 
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 '

'

, ,

( , , ) ( , , )

( , , ) ( ) ( ) x y z i

x y x y z

z

ik x ik y ik z

i

x y z

R k k k R k k k dz

f x y z A k T k e dxdydz
+ +

= =∫
∫∫∫    (2.8)  

Assume 

 ' '( , , ) ( , , )BL x y z x yF k k k R k k k=   (2.9)  

where the subscript “BL” means “band-limited”. From the spectrum '( , , )BL x y zF k k k , the 

useful information of the object can be obtained by the inverse Fourier transform:  

 1 '( , , ) ( ( , , ))BL BL x y zf x y z F F k k k−=   (2.10)  

1( )F− ⋅  is a inverse Fourier transform. From equation (2.10), the relationship between image 

( , , )BLf x y z  and the object ( , , )f x y z  is expressed as  

  

' ' '( ) ( ) ( )

, , , ,

' ' '

, ,

( , , ) ( , , ) ( ) ( )

                           ( , , ) ( , , )

                                     ( , , )

x y z

x y z

ik x x ik y y ik z z

BL x y z

x y x k k k

x y z

f x y z dxdydzf x y z A k T k e dk dk dk

dxdydzf x y z p x x y y z z

f x y z

− − − − − −=
= − − −

= ⊗

∫ ∫
∫

( , , )p x y z

 (2.11)  

Where the function ( , , )p x y z  is defined as  

 
'

1 '

'

, ,

( , , ) ( ( , , ))     

( , , ) [ ( ) ( )]
x y z

x y z

x y z k k k

p x y z F P k k k and

P k k k A k T k

−=
=   (2.12) 

From the equation (2.11) and (2.12), we can see that if the size of the aperture is infinite, the 

image is the result of the convolution between object reflection coefficient and the 

function ( , , )p x y z . So ( , , )p x y z  is the point spread function (PSF) of the imaging system, 

which is determined by the excited signal and the frequency response of transducer. 

Obviously under the condition that k  is infinite and ( ) ( )A k T k  is equal to one, ( , , )p x y z  

turns to be Dirac delta function and ( , , )BLf x y z  is the object ( , , )f x y z . Generally, The 

bandwidth of ( )T k and ( )A k is limited and ( , , )p x y z  is pulse in three dimension. So 

( , , )f x y z  only presents some useful information of the object.  

2.2 Simulation results 

In equation (2.8), function '( , , )x yR k k k is the received signal by transducer in the domain of 

frequency spectrum k and the domain of space spectrum ( , )x yk k . In practice, the received 

signal is expressed by '( , , )e er x y t in the domain of time t  and the domain of space ( , )x y . So 

in the first step the algorithm 3D Fourier transform is used in order to change '( , , )e er x y t  

to '( , , )x yR k k k . It means the weighting process can be realized by Fourier transform over 

transducer surface and the time parameter. 

But there is still a little difference between Fourier transform and the weighting process. 

First we know the number of wave k is positive for constructing imaging, but the result of 
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Fourier transform contains information of positive and negative k . Secondly the results of 

Fourier transform include the information part which corresponds to maxxk k>  and maxyk k> , 

and obviously the part has no physics meaning for the weighting result '( , , )x yR k k k . 

Considering the two condition, '( , , )x yR k k k can be obtained from the modified Fourier 

transform results of the received signal '( , , )r x y t  under the condition  below:  

 max max' 0              0           
( , , )

( ( , , ))        

x y

x y

k or k k or k k
R k k k

F r x y t otherwise

⎧ < > >⎪= ⎨⎪⎩
   (13)  

1( )F− ⋅   is a inverse Fourier transform. Based on the study above, the system of HFR method 

can be simplified into Fig.2.2. 
 

 

Fig. 2.2. The new solution to the realization of HFR method, which consists of three parts 
mainly, two 3D FFT and parameter match 

In Fig.2.2 the system consists of three parts, two FFT chips and one parameter match chip. 

The received signal is imputed into the first FFT chip to get the signal '( , , )x yR k k k , then 

processed by parameter match unit which changes '( , , )x yR k k k  to the spectrum '( , , )BL x y zF k k k  

of the image, and at last step the image ( , , )BLf x y z   is obtained from '( , , )BL x y zF k k k  by the 

second FFT chip. 
 

 

Fig. 2.3. Simulation of 2D B-mode image with log compressed over 40db scale. (a) is 
obtained by original HFR method, and (b) is obtained by the new method 

To verify the new process, a simulation in two dimension was performed to construct image 
by the HFR method. In the simulation, the phantom consists of eight point scatters objects. 
The linear array transducers is a 2.5 MHz array of 64 elements and a dimension of 38.4 mm 
with an inter-element space of 0.6 mm. Two-way (pulse-echo) spectra of the arrays are 
assumed to be proportional to the Blackman window function with a fractional bandwidth 
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of about 81% that is typical for a modern array. The simulation results shows in Fig.2.3 and 
Fig.2.4. In the figures, Fig.2.3a is obtained by original HFR process (IEEE Trans on UFFC, 
44(4), 1997, pp. 839-856) and Fig.2.3b is obtained by the new process. It can be seen that the 
two results are the same. 
 

 

Fig. 2.4. The sidelobe along lateral direction 

2.3 Conclusion 
This section presents a theory analysis, which is based on angular spectrum principle, to 
simplify the HFR imaging system presented by Lu. Besides a new imaging mode is 
proposed, which use several transmission events to synthesize the image. In every 
transmission event, array beam with different parameters is used as excited signal. The 
constructed image has very high resolution and contrast, and meanwhile the imaging 
system still hold high frame rate to some extent.  

3. Construction of High Frame Rate ultrasonic images with Fourier transform 
in any kind of acoustic field 

In HFR method, a plane wave was used to illuminate an area for either 2D or 3D imaging. 
The drawback of this method is that the area illuminated is only as wide as the size of the 
aperture of the array transducer. In this section, a generic HFR method is developed. 2D 
high frame rate images can be constructed using the Fourier transform with a single 
transmission of an ultrasound pulse from an array under different transmission filed as long 
as the transmission filed is known. To verify our theory, computer simulations have been 
performed in the non-plane wave field. The field is cylindrical field defined by zero order 
Hankle function and produced by a linear array. The image with sector format and lower 
sidelobes is obtained. The simulation results are consistent with our theory. 

3.1 Theories 

For simplicity, we discuss our new method in the two dimension (2D). Let us assume that 

there is a linear array at the position z=0 (Fig.3.1), and the transmitted field is ( , , )p x z k  where 

2 /k f cπ= . f  means frequency and c is acoustic speed.  If there is a scatter at the position 

which the coordination is (x,z), and the reflection coefficient is ( , )f x z , The echo signal, 

which object scatter reflects, is as follow:  
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 '( , , ) ( , ) ( , , ) ( )f x z k f x z p x z k T k=   (3.1)  

where ( )T k  is spectra, which is related to the spectrum of excited signal and the frequency 

response of the transducer.  
 

 

Fig. 3.1. The diagram of the transducer 

The received signal to an element of the transducer can be obtained by the equation (3.2)  

 '

,

( , 0, ) ( , , ) ( , ; , 0, )e e e e

x z

r x z k f x z k H x z x z k dxdz= = =∫   (3.2)  

Here ( , 0)e ex z = is the position’s coordination of an element of the transducer, k is wave 

number, ( , ; , 0, )e eH x z x z k=  is transmission function, which is determined by Rayleigh-

Sommerfield diffraction theory and presents the relationship between source point ( , )x y  

and observed point ( , )e ex y . The function ( , 0, )e er x z k=  means the received signal echoed by 

the object to be imaged. 

Under a certain frequency component k , Using signal x ejk xe  to weight the received signal 

 
'

( , ) ( , 0, )

( , , ) ( , ; , 0, )

x e

x e

jk x
x z e e e

l

jk x
e e e

l l

R k k r x z k e dx

dxdzf x z k e H x z x z k dx

= =
= =

∫
∫ ∫     (3.3)  

If the l, the size of the transducer is infinite, the result of the integrate over l is  

 ( , ; , 0, ) x yx e
jk x jk yjk x

e e ee H x z x z k dx e
+= =∫    (3.4)  

Here 

 2 2 2
z xk k k= −    (3.5)  

This means that the transducer at the position 0z = , which is excited by the weight 

signal x ejk xe , produces the plane wave x yjk x k y
e

+
 in the field. From the equation (3.4) and (3.4), 

we have  
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 '

,

( , ) ( , , ) x zik x ik z
x z

x z

R k k f x z k e dxdz+= ∫   (3.6)  

Make inverse Fourier transform for the weighted signal ( , )x zR k k  to get the imaging under 

the frequency component k  and the transmitted filed ( , , )p x z k ; 

 { }' ' '( , , ) ( , )x zf x z k F R k k=   (3.7)   

where {}F ⋅  is Fourier transform. Remove the information of transmitted filed.  

 '' ' ' ' ' ' 1 ' '( , , ) ( , , ) ( , , )f x z k f x z k p x z k−=   (3.8)  

Sum the imaging '' ' '( , , )f x z k  over all frequency components to get final imaging.  

 ''' ' ' '' ' '( , ) ( , , )
k

f x z f x z k=∑     (3.9)  

We can prove that equation (3.9) is a good approximation of the object function ( , )f x z . 

Especially when the transmitted filed is plane wave, it is the original HFR method. 

3.2 Simulation results 

From the theoretical analysis above, the simulation process is divided into several steps as 
follows: 

1. According to the transmitted signal and the boundary of the transducer, calculate the 

distribution of the acoustic filed ( , , )p x z k ;  

2. According to the equation (3.3) and (3.5), using signal x ejk xe  to weight the received 

signal ( , 0, )e er x z k=  to get the spectrum signal ( , )x zR k k ; 

3. Using equation (3.7) to get imaging '( , , )f x z k , which is at the frequency component k; 

4. Remove the imaging’s phase caused by ( , , )p x z k  according to equation (3.8) to get 

signal ''( , , )f x z k ; 

Sum the imaging ''( , , )f x z k for all frequency components to get final imaging '''( , )f x y  by 

equation (3.9); 
Fig.3.1 shows the block diagram of the experiment. Assume the transmitted field is 

cylindrical function determined by zero order Hankel function. By adjusting the phase and 

amplitude of excited signal over the linear transducer according to the equation (3.10), the 

linear transducer produces the transmission filed as follows:  

 

2 2

2 2
( , , )

jk x ze
p x z k

k x z

+= +   (3.10)  

The number of the transducer arrays is 128. The length of the transducer is 37mm. The 

central frequency of the transducer is 2.5MHz and the bandwidth is about 80 percent of the 

central frequency. The frequency response function T(k) is assumed to be Blackman 

window, which is adopted in most literature’s simulation condition. The image is produced 

at the depth which z is equal to 50mm.  Fig.3.2 is the result of the simulation for one scatters 

located at (0,50). Fig3.2.a is the images of the object, which is Log compressed over 40db. In 
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order to observe the sidelobes, Fig3.2.b gives the plot line along lateral direction. Fig.3.2c 

gives the plot line along axial direction. From the figures, we can see that the sidelobes are 

about below -40db, which the resolution is about 1.2mm in the lateral direction, and 0.8 in 

the axial direction. Fig.3.3 is another result of the simulation for seven scatters. The scatters 

are on the part of a circle, among which the central point scatters is equal to 50mm far away 

from the surface of transducer. Fig3.3.a is the imaging of the object, which is Log 

compressed over 40db. Fig3.3.b shows the sidelobes along x direction. Though the size of 

array is only 37mm, the distance in the images along lateral direction from left point scatter 

to the right scatter is about 58mm, which is larger than the size of the transducer. Obviously 

the imaging is impossible to be obtained for original HFR method. 

 

 

Fig. 3.2. Simulation results of Fig1. 1’s one scatterer. (a). The 40db log compressed image and 
(b) and (c) sidelobes along the lateral and the axial direction 
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Fig. 3.3. Simulation results of seven scatters. (a). The diagram of the transducer and seven 
scatterers, (b). the 40 db log compressed image, (c). the sidelobes along x direction 

3.3 Conclusion 
Though the method is analyzed in the two dimensions, it can be obviously used in the three 
dimensions.  So the method gives an effective way to construct images with sector form (2D) 
and pyramidal form (3D) by the linear array based on the Fourier transformer. Like the 
original HFR method, the system can construct images with only one time transmission, and 
the quality of the imaging is high. Compared to the original Fourier transform method, it is 
effective in any kind of acoustic field, though the principle of the method and the original 
HFR method is the same. In original HFR method, the kernel function of the Fourier 
transform contains the information of the transmission field because the transmission waves 
and weighting waves are the same kind beams, which belong to array beams. In our new 
method we extend the kind of transmission field from plane wave or array beams to other 
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kind wave, such as cylindrical wave. As the weighting signal is not the same form as the 
transmission filed, it is difficult to combine the transmission filed and weighted signal 
together in the kernel function of the Fourier transform. As a result we have to repeat the 
Fourier transform process under different frequency component and make the summation 
over different frequency results.  So the shortcoming of the method is obvious compared to 
the original HFR method, namely its quantity of the computation is high. If some kind of 
quick arithmetic is found, the method will be more effective in practice.  
Because the original HFR method assumes the transmission filed to be the plane wave or 
array beams although it is impossible actually due to diffraction property in physics, the 
assumption makes results obtained by original HFR method a little disturbed when the 
distance between object and transducer is some large. For our method if the transmission 
filed is pre-known exactly by some method, such as simulation or measurement, the better 
results can be obtained because the new method can cancel the effects of transmission filed.  

4. High Frame Rate 2D and 3D imaging with a curved or cylindrical array 

The cylindrical transducer, circle or curve transducer and linear transducer are commonly 
used in ultrasonic imaging system. The advantages and disadvantages between them are 
different. One characteristic of the cylindrical or circle transducer is the transducer can 
illuminate a sector or pyramidal area of the object. The scanning format is primarily useful 
for cardiac imaging to avoid interference from the ribs. Since this kind of transducer is 
nonlinear transducer, the method of constructed images is a little different from the linear 
transducer’s method. 

4.1 Theoretical preliminaries 

In the section, a new imaging method (Fourier method and radial matched filter) for a pulse 
system will be developed and formulas for construction of 2D and 3D images will be 
derived with zero order Hankle function. 

4.1.1 3D images construction 

To simplify the analysis, we assume that the sampling of the array along each direction is 
regarded as continuous, our results, based on this assumption, should closely approximate 
that of a sampled aperture as long as the Nyquist criterion is met to avoid spatial aliasing . A 
sufficient condition for this criterion to be satisfied is a half-wavelength spacing of elements 
along the arrays. For simplicity, we will also neglect the diffraction patterns of the 
individual elements; they are assumed to be behaving as point sources and receivers. 
Although we assume continuously sampled, the simulation results shows similar principles 
can be applied to arrays of discrete elements of finite size. 
For the generality, we discuss the method in three-dimension in the cylindrical coordinate 
system. Fig.4.1 shows a cylindrical transducer. Though the filed produced by cylindrical 
transducer is much more complex than the plane wave, we still can get simple form under 
some reasonable assumption. The simplest mode of the filed form produced by the 
cylindrical transducer is zero order Hankle function. If the kr is relatively large, the acoustic 
pressure, which is presented by zero order Hankle function, can be estimated by:  

 ( , ) ( )
ikre

p r k A k
kr

≈   (4.1)  

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

272 

Where k is wave number, 2 2r x y= +  represents radial coordinate, ( )A k is related to the 

spectrum of the signal and the response of the transducer frequency and can be presented 

by the Blackman windows . 
Based on the Rayleigh-Sommerfeld diffraction theory, the received signal for an element for 
all scatterers is easily given by  

 2 2 22 cos( ) ( )

1 22 2 2

1
( , , )

( , , ) ( , ) ( ) cos( , )
2 cos( ) ( )

e e e e

e e

ik r r rr z z

V e e e e

R k z
i

e
rdrd dzf r z p r k T k n n

r r rr z z

θ θ

θ λ
θ θ θ θ

+ − − + −

= ×

+ − − + −∫∫∫ j j
  (4.2)  

where λ is wavelength, and 2 /kλ π= . θ  is azimuthal angle, z is axial axis, which is 

perpendicular to the plane defined by r  andθ . 2 2 22 cos( ) ( )e e e e er r rr z z r rθ θ+ − − + − = −j j
is 

the distance between the scatterer and the transducer element, where ( , , )e e e er r zθ=j
 is the 

coordinate of transducer element, ( , , )r r zθ=j
is the coordinate of the scatters. ( , , )f r zθ is the 

function of reflection coefficient of the object, ( , , )e eR k zθ= means the received signal for the 

element at er
j

, 1n
f

is an unit vector which direction is from (0, , )e ezθ  to ( , , )e e er zθ , and 2n
f

is 

another unit vector which the direction is from ( , , )r zθ to ( , , )e e er zθ . Our objective is to 

image the reflectivity function ( , , )f r zθ , which is the inverse problem of equation (4.2).  
After some mathematical manipulations, one can easily find the following  

 2 2 22 cos( ) ( )

2 2 2

( , , ) ( ) ( )
2

( , , ) ( cos( ) )
2 cos( ) ( )

e e e e

e e

ikr ik r r rr z z

e e

V e e e e

k
R k z A k T k

i

e
drd dzf r z r r r

r r rr z z

θ θ

θ π
θ θ θ θθ θ

+ + − − + −

= ×

− −+ − − + −∫∫∫
 (4.3)  

Even if Equation.(4.3) is similar to Equation.(4.2), it is still different because the equation 
(4.3) includes cylindrical field information, and based on which the image can be 
constructed by only one transmission. …. It is obvious that equation (4.3) is the convolution 

form over ,zθ , so we have  

 ,( , , ) ( , , ) ( , , , )
e

e e z

r

R k z drf r z h k r zθθ θ θ∞= ∗∫    (4.4)  

where ,zθ∗ means convolution operator over ,zθ . ( , , , )h k r zθ is defined as 

 

2 2 22 cos

2 2 2
( , , , ) ( ) ( ) ( cos )

2 2 cos

e eikr ik r r rr z

e

e e

k e
h k r z A k T k r r r

i r r rr z

θθ θπ θ
+ + − += −+ − +  (4.5)  

The equation (4.5) is system transform function, which transforms the object function 

( , , )f r zθ  to the received signal ( , , )e eR k zθ . In the study, the exact form is used to construct 

image instead of an approximate form. 

From equation (4.4), using Fourier transform theory, we have another expression in 

spectrum , zk kθ  domain.  
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 { },( , , ) ( , , ) ( , , ) ( , , , )
e

z z z z

r

R k k k F R k z drF r k k H k r k kθ θ θ θθ ∞= = ∫# # #    (4.6)  

where ( , , )zR k k kθ#  is the Fourier transform of ( , , )R k zθ  in terms of ,zθ , ( , , , )zH k r k kθ# is the 

Fourier transform of ( , , , )h k r zθ . It is clear that Eq. (4.6) establishes a relationship between 

the Fourier transform of measured signal and the Fourier transform of object function. 

However, this relationship is established through the integration over r, which is the radial 

axis of the object function in the cylindrical coordinates. In the following section, we will use 

some mathematical manipulation to find and establish a more direct relationship between 

the Fourier transforms of these two functions. 

From (4.5), it is clear that the filter function ( , , , )zH k r k kθ# contains an oscillating term of k and 

r. This term may play a role of decreasing the integration in terms of either k or r. If such 

oscillation term can be removed under some conditions, we may be able to construct images. 

Multiplying the conjugate of ( , , , )zH k r k kθ# , * '( , , , )zH k r k kθ# , to both sides of (4.6), we have:  

 ' '( , , ) ( , , , ) ( , , ) ( , , , ) ( , , , )
e

z z z z z

r

R k k k H k r k k drF r k k H k r k k H k r k kθ θ θ θ θ
∞∗ ∗= ∫# # # # #  (4.7)  

Integrating over wave number k  for on both side of (4.7), one obtains:  

 

' ' '

'

( , , ) ( , , ) ( , , , )

           ( , , ) ( , , , )
e

z z z

z z

r

R r k k dkR k k k H k r k k

drF r k k G r r k k

θ θ θ

θ θ

∞ ∗
−∞

∞

=
=

∫
∫

# # #

#
  (4.8)  

where 

 ' '( , , , ) ( , , , ) ( , , , )z z zG r r k k dkH k r k k H k r k kθ θ θ
∞ ∗
−∞

= ∫ # #   (4.9)  

Equation (4.8) establishes a relationship between the measured signal, ' '( , , )zR r k kθ# , which is 

known, and the Fourier transform of the object function, ( , , )zF r k kθ# . After inverse Fourier 

transform over , zk kθ  for equation (4.8), we have 

 { }' 1 ' '
, ,( , , ) ( , , ) ( , , ) ( , , , )

z

e

k k z z

r

f r z F R r k k drf r z g r r zθ θ θθ θ θ∞−= = ∗∫#   (4.10)  

What is the relationship between '( , , )f r zθ  and ( , , )f r zθ ? In order to answer the question, 

let us consider the function '( , , , )g r r zθ , which is inverse Fourier transform of '( , , , )zG r r k kθ  

in (4.9) and see its role in the constructed images. Fig4.2 and Fig4.3 shows the simulation of 

the distribution of the function '( , , , )g r r zθ . From the results of the simulation, two 

important properties can be seen. First it is clear that '( , , , )g r r zθ peaks sharply only when r  

is equal to 'r . Second, '( , , , )g r r zθ   is symmetric to both 'r  and r . This gives us the 

following approximate relationship:  

 ' ' '( , , , ) ( , , )g r r z g r r zθ θ≈ −   (4.11)  
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From equation (4.10) and (4.11), we can reasonably assume:  

 ' ' ' '
, , ,( , , ) ( , , ) ( , , ) ( , , ) ( , , )

e

z r z

r

f r z drf r z g r r z f r z g r zθ θθ θ θ θ θ∞= ∗ − = ∗∫   (4.12)  

Obviously the function '( , , )g r zθ  can be treated as the point spread function of the imaging 

system. For a perfect imaging system, '( , , )g r zθ  is a Dirac-Delta function in space domain 

( , , )r zθ . So the image '( , , )f r zθ  is object function '( , , )f r zθ . From the simulation in Figs.4.2 

and 4.3 we see that '( , , )f r zθ  has a sharp point spread function in the space domain ( , , )r zθ  

(please note that only one-way PSF is shown in Figs. 4.2 and 4.3 for high frame rate 

imaging), which is similar to the Derac-Delta function. Based on the analysis above, we have 

the answer for the question above:  

 '( , , ) ( , , )f r z f r zθ θ≈   (4.13) 

4.1.2 2D image construction 

A 2D image in any orientation (including both B-mode and C-mode images) can be readily 
obtained from 3D images with equation (4.6), (4.8) and (4.10). However, 3D imaging is more 
complex and generally requires more computation. In the following, the formulas that are 
simplified from (4.6), (4.8) and (4.4.10) and are suitable for conventional B-mode imaging and a 
C-mode imaging will be derived. In B-mode imaging, objects are assumed to be independent 
of z (along the axial direction) and in C-mode imaging, objects are assumed to be a thin layer 

located at a radial direction 0r r= away from the transducer, where 0r is a constant. 

C-mode imaging assumes the object function ( , , )f r zθ  represents a thin layer that is in 

parallel with the surface of the cylindrical transducer. This is indicated mathematically as 
follows:  

 ( )
0( , ) ( , , ) ( )Cf z f r z r rθ θ δ= −   (4.14)  

where δ is the Dirac-Delta function and ( )( , )Cf zθ  is a transverse object function. Thus (4.8) 

can be simplified as:  

 '
0 0( , , ) ( , , ) ( , , , )z z zR r k k R k k k H k r k k dkθ θ θ

∞ ∗
−∞

= ∫# # #  (4.15)  

Following the discussion in 3D case above, we obtain the constructed image:  

 { }' 1 '
0 , 0 0( , , ) ( , , ) ( , , )

zk k zf r z F R r k k f r zθ θθ θ−= ≈#   (4.16)  

To summarize, the steps to construct a C-mode image are as follows: Perform a 2D Fourier 

transform of received echo signals to get the spectrum in terms of θ and z, multiply the 

results with 0( , , , )zH k r k kθ∗# and integrate over k, and then the images is constructed with an 

inverse Fourier transform over both kθ and zk .  

A similar approach can be used to construct a 2D B-mode image, i.e., an image along both r 

andθ dimension with a fixed z (or object is uniform along z ). Under this condition, 
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( , , )f r zθ can be replaced with ( , )f r θ . For simplicity, without loosing generality, we assume 

0z = . From (4.4), we have:  

 ( , ) ( , ) ( , , )
e

e

r

R k f r h k r drθθ θ θ∞= ⊗∫    (4.17)  

After the Fourier transform of ( , )eR k θ in terms of eθ , from (8), we obtain:  

 ' ' '( , ) ( , ) ( , , )R r k R k k H k r k dkθ θ θ
∞ ∗
−∞

= ∫# # #    (4.18)  

Instead of 2D, 1D inverse Fourier transform is used to construct the image:  

 { }' 1 '( , ) ( , ) ( , )kf r F R r k f rθ θθ θ−= ≈#   (4.19)  

4.2 Simulation results 

The simulation of pulse-echo imaging is performed in the three-dimension. In the 
simulations, Rayleigh-Sommerfeld diffraction formula is used. The parameters of the 
cylindrical transducer for the simulation are as follows (Fig.4.1): The transducer is 
broadband and its center frequency is 1.5MHz. The bandwidth of the transducer is about 
81% of the center frequency. [assume that the combined transmit and receive transfer 
function is proportional to the Blackman window function], The background medium is 
assumed to be water that has a speed of sound of 1500m/s given the wavelength of 1 mm at 
the central frequency. The objects are assumed to be composed of point scatters. The radius 

of the cylindrical transducer is 40mm; the range of the angle is from 045−  to 045 , and the 

range of transducer along the z-axis is from –25mm to 25mm. The inter-element distance of 

the array transducer is assumed to be 00.7087  along angle direction and 0.3927 mm 

along z direction. So the element number of the discrete transducer is 128 128× . In 

transmission, all the array elements are connected electronically to transmit the cylindrical 
wave, which is approximated by zero order Hankle function. Echoes from object (Fig.4.1) 
are received with the same array and processed to construct imaging by the several steps 
below based on the previous analysis. 

1. Do Fourier transform of received signal (see (4.6)) in terms of θ  and z , i.e., { },( , , ) ( , , )z zR k k k F R k zθ θ θ=#  

2. Multiply the results with the known function, '( , , , )zH k r k kθ∗#  (see (4.7)).  

3. Integrate the result over k according to (4.8).  
4. Performing an inverse Fourier transform according to (4.10) to construct image.  
The objects used for the construction are shown in Fig.4.1 and Fig.4.4 and are composed of 
either a single point scatter or nine point scatters which form a cross shape in the plane 

defined by r θ−  and the plane defined by z θ− . The geometry center of the object is located 

at 0( , , ) ( ,0,0)r z rθ = . Results of the pulse-echo images are given in Fig.4.2, Fig.4.3 and Fig.4.5, 

Fig.4.6   

Fig.4.2d, e and f show the image for one scatter which position is ( , , ) (90 ,0,0)r z mmθ = . 

Because the radius of the transducer is 40mm, the nearest distance between the scatter and 
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the surface of transducer is 50mm. To see the sidelobes of the constructed images, line plots 

of the single point scatter along r, z and θ  direction in the z θ−  plane, r θ− plane and z r−  

plane are shown in Fig.4.3. From the results it can be seen that imaging is very similar to the 

result of PSF. This means that the approximations (4.10) due to a finite temporal bandwidth 

and limited spatial Fourier-domain coverage that are typical in medical ultrasonic imaging 

do not significantly affect the equality of constructed images in terms of spatial resolutions, 

sidelobes, and contrast. 

Fig.4.5 shows the images for nine scatters. The nearest distance between surface of the 

transducer and the geometry center of the object is chosen to be 50mm ( 0r =90mm), 100mm 

( 0r =140mm) and 200mm ( 0r =240mm), respectively. An interesting phenomenon is that 

simulation shows the sidelobes and resolution of the images of the object, of which the 

geometry center is at different distance, is nearly the same (Fig.4.6). The reason is that the 

transmitted field keeps the same form as the theory prediction along r direction if the filed is 

cylindrical wave. Though the side lobe and resolution in the r and θ direction is the same for 

the larger area, the sidelobe rises  and the resolution is lower in the regular coordinate 

system when r becomes larger because of the relationships cos( ), sin( )z r x rθ θ= = . 

4.3 Conclusion 

In this section a new 3D images system in cylindrical coordinate has been developed with 
cylindrical wave beams (zero order Hankle function). This computation is much less than 
conventional delay and sum method, so the method has a potential to achieve a high image 
frame rate and can be implemented with relatively simple inexpensive hardware because 
the FFT and IFFT algorithm can be used.  Computer simulation with the new method has 
been carried out to construct 3D images. Though the aperture geometry of the transducer is 
only part of a cylinder, and the transmitted filed is not exact zero order Hankle function, the 
results of the simulation still match theoretical prediction. So the new imaging method is 
robust and is not sensitive to various limitations imposed by practical system. In addition, 
though the discussion above is mainly for 2D cylindrical transducer in three-dimension in 
the cylindrical coordinate system, the method can be used directly for the 1D curve 
transducer in two-dimension in the polar coordinate system obviously.  
 

 

Fig. 4.1. Transducer in the cylindrical coordinate system. The radius of the transducer is 

40er mm= , and the range of axial axis ez  is from –25mm~25mm, the range of azimuthal 

angle eθ  is from 045−  to 045 .  There are 128 128zN Nθ = ×   elements 
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Fig. 4.2. Calculated PSF, { }' ; 1 ' '
,( , , ) ( , , )

zk k zg r r z F G r r k kθ θθ −− = − , and the image constructed 

from one scatterer (Fig. 4.1) where ' 90r mm= .  (a) shows the distribution of PSF in the plane 

90( , )r mmzθ = .(b) shows the distribution of PSF in the plane 0( , )zr θ = . (c) shows the distribution 

of PSF in the plane 0( , )r z θ = . (d) shows the constructed image of the scatter in the 

plane 90( , )rzθ = .  (e) shows the image of the scatter in the plane 0( , )zr θ = . (f) shows the image of 

the scatter in the plane 0( , )r z θ = . The images are log compressed over 40db 
 

 

Fig. 4.5. The images for Fig.4.4. (a), (b) and (c) show images where the geometry center is 

equal to 90mm, 140mm and 240mm by C-mode( z θ− plane) respectively. (d),(e) and (f) 

show images where the geometry center is equal to 90mm, 140mm and 240mm by B-

mode( r θ− plane), respectively. The images are log compressed over 40db 
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Fig. 4.3. Sidelobe of PSF and constructed image of one scatter in Fig.4.2. (a) and (b) show 

sidelobe in the plane 90( , )rzθ =  along z direction and θ direction, respectively.  (c) and (d) 

show sidelobe in the plane 0( , )zr θ =  along r direction and θ direction, respectively.  (e) and (f) 

show sidelobe in the plane 0( , )zr θ =  along z direction and r direction, respectively 
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Fig. 4.4. The objects used for construction of images, which contains nine scatters and the 

geometry center is ( , , ) (90,0,0)r zθ = , (140,0,0)  or (240,0,0)  

 

 

Fig. 4.6. Plots line shows sidelobe for Fig.4.5 along θ direction in the B-mode image 
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1. Introduction 

The personal identities by the biological information have been increasing everywhere, e.g. 
on ATM of the bank, at the airport, and so on. In particular, the fingerprint authentication or 
handwriting analysis has been used as the simplest way, because the biological information 
does not have to be remembered and there is no worry to be lost like a password. Most of 
the methods, whole fingerprint images or handwriting data were stored as templates on 
paper without modification. When the authentication is needed, the biological information 
and the template were matched manually.  
Recently, the fingerprint images or handwriting data have been stored as templates on the 
database of the computer. The authentication method, where the biological information and 
the template on the database are matched automatically, is becoming mainstream on the 
background that the computer technology has rapidly been developed. 
The generation methods of the templates of the fingerprint images are classified into two 
major categories. One generation method is to use a priori extracted features of the images, 
such as minutiae (Maltoni et al., 2003). The other is to use the spatial frequency data of the 
one-dimensional (1D) data extracted from the two-dimensional (2D) original fingerprint 
image in a specific direction (Takeuchi et al., 2007). 
However, there are some problems related to storing the templates; 1) the unfair use is 
possible when the information leaks out; 2) the biological information cannot keep the same 
condition forever so that it could not be always verified accurately when matching. 
We have to consider the following points to solve these problems. For the former, the 
information on the fingerprint images should be hidden in order not to be used unfairly by 
unauthorized persons when the information leaks out. For the latter, the high accuracy of 
the authentication should be demanded even if there are some hurt and dirty on the 
fingerprint images.  
To solve these problems, in this manuscript, the templates are generated using the fractional 
Fourier transform (FRT) (Ozaktas et al., 2001) which is the generalization of the conventional 
Fourier transform (FT). The FRT has a feature that the FRT’s orders can be changed to 
arbitrary real numbers. Therefore, we could generate the templates solving the above-
mentioned problems when the FRT is applied to the 1D data extracted from the 2D original 
fingerprint image in a specific direction. In addition, recently, research on a high-speed 
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optical arithmetic processing of the FRT has been developed (Lohmann, 1993; Moreno et al., 
2003; Ozaktas et al., 2001). Therefore, under the assumption of realizing the high-speed 
optical arithmetic processing of the FRT in the near future, the templates are stored as the 
intensity FRT in our study. 
In this manuscript, we introduce the templates generated by the FRT of the fingerprint 

images. Moreover, we indicate the authentication accuracy by use of the templates and the 

robustness for unauthorized third persons. Specifically, we analyze from the following three 

perspectives: 1) the behavior of peak value of cross-correlation function between the original 

fingerprint image and the generated template expressed in terms of the intensity FRT; 2) the 

behavior of peak value of cross-correlation function between the original fingerprint image 

and the intensity inverse FRT (IFRT) of generated template; 3) derivation of the minimum 

error rate (MER) and authentication threshold on the basis of the false acceptance rate (FAR) 

and the false rejection rate (FRR) (Mansfield et al., 2001).  

These analyses allow us to show the difference between the template and the original 

fingerprint image and that between the intensity IFRT of the template and the original 

image, quantitatively. This fact means that we cannot identify the original fingerprint image 

as the difference between them becomes greater and greater. In addition, the high 

authentication accuracy can be obtained by the analysis using the FAR and FRR which are 

the criterion of authentication accuracy. 

2. Definition of the Fractional Fourier Transform (FRT) 

The FRT is the generalization of a conventional FT. The FRT of 1D input data u(x) is defined 
as (Ozaktas et al., 2001; Bultheel & Martinez Sulbaran, 2004a) 

[ ]( ) 2 2 2( ) ( ) ( )exp[ ( ) / tan ]pu x F u x u x i x x sπ φ= = +∫p p p  

 2exp[ 2 / sin ] ,i x x s dxπ φ× − p           (1) 

where a constant factor has been dropped; / 2pφ π= , where p is the FRT’s order; s is a 
constant. In particular, in the optical FRT, s is called a scale parameter expressed in terms of 

ss fλ=  where λ  is the wavelength and sf  is an arbitrarily fixed focal length (Ozaktas et 
al., 2001). In this manuscript, the value of s was fixed at 1.0. 
When p takes a value of 4n+1, n being any integer, the FRT corresponds to the conventional 
FT. The intensity distribution of the FRT, Ip(xp), which is named intensity FRT in our study, 
is obtained by calculating |up(xp)|2. In addition, up(xp) can be decoded to u(x) by the IFRT 
with the order –p as follows: 

 ( )( ) ( )p
p pu x F u x− ⎡ ⎤= ⎣ ⎦ .                          (2) 

In this manuscript, we call p in Eq. (2) the IFRT’s order. “Disfrft.m” (Bultheel & Martinez 

Sulbaran, 2004b) was used in our numerical calculation of the FRT. 

2.1 Modeling waveform pattern of the fingerprint 

In this subsection, as a 1D modeled fingerprint image, we used the finite rectangular wave 
which is regarded as the simplification of the grayscale distribution in an arbitrary scanned 
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line of the 2D original fingerprint images. We make clear the charactererisc of the amplitude, 
phase and intensity distributions of the FRT.  
First, Fig. 1 (a) shows the cross-sectional waveform that isn’t modeled in an arbitrary 
scanned line of the 2D original fingerprint images. Although the grayscale levels are 
composed of intermediate values between 0 and 255 at the actual scanned lines in the case of 
2D black and white image of 8 bits, in order to highlight the FRT as our method together 
with its feasibility, a finite rectangular wave is assumed to be the simplification of the 
grayscale distribution of the fingerprint image as shown in Fig. 1 (b). Horizontal axis is 
intentionally composed of 1024 (210) pixels to be smoothly illustrated the results of the FT 
and the FRT. We premise the application of the FRT to the 2D original fingerprint image 
which has multiple lines with random FRT’s orders. In addition, the FRT’s orders can be 
used as arbitrary real numbers. 
 

 
 

 

Fig. 1. (a) Cross-sectional waveform of a 2D original fingerprint image and (b) the finite 
rectangular wave as a modeled fingerprint image 

2.2 Application of the FRT 

The algorithm of the FRT has been intensively studied (Marinho & Bernardo, 1998; Yang et 
al., 2004; Bailey & Swarztrauber, 1991). Alternatively, the FRT was also applied to the fake 
finger detection (Lee et al., 2009).  

(a)

(b) 
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Fig. 2. Examples of the amplitude and phase distributions of the FRTs applied to the finite 
rectangular wave, when ps= (a) 1.0, (b) 0.9 and (c) 0.8 

(a) p=1.0

(b) p=0.9 

(c) p=0.8 

www.intechopen.com



High-Accuracy and High-Security Individual Authentication by the 
Fingerprint Template Generated Using the Fractional Fourier Transform 

 

285 

In this subsection we apply the FRT to the 1D finite rectangular wave data shown in Fig. 1 
(b) as a modeled fingerprint image. Basically, the FRT with the order p is applied to the 
finite rectangular wave in Eq. (1). The FRT with the order p can be decoded to the finite 
rectangular wave by the IFRT with the same order p as already explained in Eq. (2). Fig. 2 
demonstrates the results of the FRTs in comparison with the conventional FT (i.e., the FRT 
with p=1.0). Namely, Fig. 2 (a) shows the result of the FT as the amplitude distribution at the 
upper portion and the phase distribution at the lower portion. Figs. 2 (b) and 2 (c) are the 
results of the FRTs with ps=0.9 and 0.8, respectively. As a result, the peak values of the 
amplitude distributions in Figs. 2 (a), 2 (b) and 2 (c) are 4.04×103, 6.59×102 and 5.80×102, 
respectively. 
  

 
 

 

Fig. 3. The intensity distributions of the FRTs of the finite rectangular wave shown in Fig. 1, 
when ps= (a) 1.0, (b) 0.9 and (c) 0.8 

It is found that the peak value of the amplitude distribution falls remarkably and the width 

of spread increases when the value of the FRT’s order p decreases. It is also found that there 

is little difference in phase distributions between Figs. 2 (b) and 2 (c). In the case of FT 

shown in Fig. 2 (a), the order p can be identified through the waveforms of the amplitude 

and phase distributions. However, in the case of FRT, the order p may not be identified 

through them. In particular, it is difficult to identify the FRT’s orders ps through the 

waveforms of the phase distributions shown in Figs. 2 (b) and 2 (c). Therefore, this fact led 

us the new method safer than the conventional method using the FT, because the FRT’s 

order has highly-confidential in the applied FRT condition.  

In this way, we focused on the intensity distribution of the FRT from a viewpoint of the 
security of individual information, because the intensity FRT may not be completely 

(a) p=1.0 

(b) p=0.9 

(c) p=0.8 
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decoded to the original fingerprint image by the IFRT. Fig. 3 depicts the intensity FT of Fig. 
2 (a) and the intensity FRTs of Figs. 2 (b) and 2 (c). The peak values of the intensity 
distributions in Figs. 3 (a), 3 (b) and 3 (c) are 1.63× 107, 4.34× 105 and 3.37× 105, respectively. 
It is found from the comparison between Figs. 2 and 3 that the peak value of the wave 
pattern of the intensity distribution is very high. 

3. How to generate the fingerprint template by use of the FRT and its 
characteristics 

Fingerprint images provided by the Biometric System Laboratory (Maltoni & Maio., 2004) 

were used as original raw data. As an example, the data in the TIF format with 480 vertical 

and 640 horizontal pixels (480×640 pixels) is visualized in Fig. 4. In this manuscript, as 

shown in Fig. 4, height and width of the images are called ‘line’ and ‘column,’ respectively. 

The templates were generated by the FRT of the cross-sectional waveform with an arbitrary 

random order in every longitudinally (or transversally) scanned line of the original 

fingerprint images.  

Fig. 4 illustrates an example where the FRTs with the random orders of p1, p2, p3, ... pm and pn 

are conducted in transversally-scanned lines from the top to the bottom of the fingerprint 

image. Therefore, the information on the FRT’s order in every transversally-scanned line is  

needed to be decoded to the original fingerprint image by use of the IFRT. For that reason, 

there is almost no possibility of the unfair use by the unauthorized third persons.  

Fig. 5 depicts an example of the template expressed in terms of the intensity FRT. The reason 

why we used the intensity FRT as the template is that we would use a high-speed optical 

processing system of the FRT (Lohmann, 1993; Moreno et al., 2003; Ozaktas et al., 2001) to 

generate the templates in the near future. In this case, the template can be produced at 

higher speed because of no need of calculation by a computer. As shown in Fig. 5, the 

information on the original fingerprint image cannot be known from the template which 

was generated by the FRT with a random order in every transversally-scanned line. 

 

 

Fig. 4. Fingerprint image 
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Fig. 5. Template 

4. Characteristics of the fingerprint authentication 

Next, 100 kinds of fingerprint images were prepared, and the fingerprint images with 200 
lines and 200 columns (200×200 pixels) were extracted from a central part of the original 
fingerprint images. Two examples of extracted fingerprint images are depicted in Fig. 6 and 
the real size is 10.2 mm by 10.2 mm. The blank space was deleted from the original 
fingerprint images so that more accurate authentication could be conducted by use of the 
extracted fingerprint images. For this reason, the matching speed can be expected to be 
faster because the matching range is small. 
 

 
                                               (a)              (b) 

Fig. 6. Fingerprint images with 200 lines and 200 columns extracted at a center of the 
original fingerprint images 

4.1 Difference between the template and the extracted fingerprint image 

We analyzed the behavior of the peak value of the normalized cross-correlation function 
between the template generated by the FRT with a different order in every line and the 
extracted fingerprint image shown in Fig. 6. The templates were generated for 100 kinds of 
extracted fingerprint images with 200 lines and 200 columns. 
The behavior was analyzed for the FRT’s order ranges of 4 kinds of 0.1-0.9, 0.1-1.9, 0.1-2.9 
and 0.1-3.9. Fig. 7 gives the result. In Fig. 7, the vertical and horizontal axes denote the peak 
value of the normalized cross-correlation function and the FRT’s order range, respectively. 
In the figure, the symbol of circle and the bar denote the averaged peak value and the 
standard deviation of the peak value, respectively.  The averaged peak values for the FRT’s 
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order ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.636, 0.420, 0.443 and 0.429, 
respectively. Additionally, the standard deviations of the peak values for the FRT’s order 
ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.0484, 0.0474, 0.0592 and 0.0533, 
respectively. The averaged peak value of 0.420 is the smallest of them when the FRT’s order 
range is 0.1-1.9. It is found that the template has a great difference between the extracted 
fingerprint image and the template under the condition that the FRT’s order range is 0.1-1.9, 
0.1-2.9 or 0.1-3.9. 
 

 

Fig. 7. Peak value of the normalized cross-correlation function between the template and the 
extracted fingerprint image for every FRT’s order range 

4.2 Robustness of the template for the IFRT 
Next, we analyzed the behavior of the peak value of the normalized cross-correlation 
function between the intensity IFRT of the template and the extracted fingerprint image 
shown in Fig. 6. The IFRT of the template was generated by the IFRT with a different order 
in every line of the template generated in Subsection 4.1. In the analysis, 100 kinds of 
fingerprint images with 200 lines and 200 columns were used. 
The behavior was analyzed for the IFRT’s order ranges of 4 kinds of 0.1-0.9, 0.1-1.9, 0.1-2.9 
and 0.1-3.9. Fig. 8 gives the result. In Fig. 8, the vertical and horizontal axes denote the peak 
value of the normalized cross-correlation function and the IFRT’s order range, respectively. 
In the figure, the symbol of square and the bar denote the averaged peak value and the 
standard deviation of the peak value, respectively.  The averaged peak values for the IFRT’s 
order ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.340, 0.215, 0.211 and 0.205, 
respectively. Additionally, the standard deviations of the peak values for the IFRT’s order 
ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.0406, 0.0365, 0.0436 and 0.0351, 
respectively. The averaged peak value of 0.205 is the smallest of them when the IFRT’s order 
range is 0.1-3.9. It is found that the template has a great difference between the extracted 
fingerprint image and the intensity IFRT of the template under the condition that the order 
range is 0.1-1.9, 0.1-2.9 or 0.1-3.9. Therefore, the unauthorized third persons who are 
unapprised of the information on the FRT’s order in every line cannot retrieve the extracted 
fingerprint data from the template. 

5. Authentication accuracy based on the FAR and FRR 

Fig. 9 illustrates the basic concept of the FAR and FRR. In the figure, the left-hand curve is 
the imposter distribution and the right-hand curve is the authentic distribution. The 
authentication threshold is decided by a value satisfied with the condition that the FAR and 
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Fig. 8. Peak value of the normalized cross-correlation function between the intensity IFRT of 
the template and the extracted fingerprint image for every IFRT’s order range 

FRR take the same value corresponding to the MER. The FAR is the probability of accepting 
other person erroneously. As shown in the figure, it corresponds to an area of the impostor 
distribution higher than the authentication threshold. On the other hand, the FRR is the 
probability of rejecting identical person and corresponds to the area of the authentic 
distribution lower than the authentication threshold. In our analysis, the horizontal axis in 
Fig. 9 corresponds to the peak value of the 2D normalized cross-correlation function of the 
intensity FRTs for the two sets of fingerprint images. 
In order to obtain the imposter and authentic distributions, 100 kinds of templates were 
used. For each of them, 10 kinds of templates were prepared to obtain the imposter 
distribution. On the other hand, for each of the templates, 10 kinds of templates, which were 
produced by the FRT of the extracted fingerprint images superimposed by random noise 
(average μ=0, standard deviation σ=25.5), were prepared to obtain the authentic distribution. 
Figs. 10 and 11 are the results showing the behavior of peak value of the normalized cross-
correlation function of the FRT intensity by changing the FRT’s order range for the impostor 
distribution and the authentic distribution, respectively. As same as Fig. 7 in the Subsection 
4.1, in Figs. 10 and 11, the vertical and horizontal axes denote the peak value of normalized 
cross-correlation function and the FRT’s order range, respectively. 
 

 

Fig. 9. Basic concept of the FAR and FRR 

In Fig. 10 related to the impostor distribution, the symbol of cross and the bar denote the 
averaged peak value and the standard deviation of the peak value, respectively. The 
averaged peak values for the FRT’s order ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 
0.658, 0.735, 0.764 and 0.732, respectively. Additionally, the standard deviations of the peak 
values for the FRT’s order ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.0928, 0.0868, 
0.0650 and 0.0861, respectively. On the other hand, in Fig. 11 related to the authentic 
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Fig. 10. Behavior of peak value of the normalized cross-correlation function related to the 
impostor distribution 

 

 

Fig. 11. Behavior of peak value of the normalized cross-correlation function related to the 
authentic distribution 

distribution, the symbol of diamond shape and the bar denote the averaged peak value and 
the standard deviation of the peak value, respectively.  The averaged peak values for the 
FRT’s order ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.981, 0.986, 0.977 and 0.985, 
respectively. Additionally, the standard deviations of the peak values for the FRT’s order 
ranges of 0.1-0.9, 0.1-1.9, 0.1-2.9 and 0.1-3.9 are 0.00869, 0.0115, 0.0117 and 0.0135, 
respectively. 
Moreover, Fig. 12 depicts histograms that correspond to the impostor and authentic 
distributions, when the FRT’s order range is 0.1-0.9. The left-hand curve in Fig. 12 
corresponds to the impostor distribution related to Fig. 10, when the FRT’s order range is 
0.1-0.9. The right-hand curve in Fig. 12 corresponds to the authentic distribution related to 
Fig. 11, when the FRT’s order range is 0.1-0.9. In this case, the MER is 7.36×10-4% and the 
authentication threshould is 0.95. 
Furthermore, Fig. 13 illustrates histograms that correspond to the impostor and authentic 
distributions, when the FRT’s order range is 0.1-1.9. The MER is 5.31×10-3% and the 
authentication threshould is 0.96. As we can see from the comparison between Figs. 12 and 
13, the peak of the imposter distribution shifts to right and the peak of the authentic 
distribution becomes high, when the FRT’s range is changed from 0.1-0.9 to 0.1-1.9. 
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The recent available specification sheets of major fingerprint authentication systems in the 
market indicate that the matching accuracy is from 0.001 % to 1.0 % in the FAR and from 
0.0001 % to 0.1 % in the FRR. As summarized in Table 1, the MER takes a value of 7.36×10-

4% when p=0.1-0.9, 5.31×10-3% when p=0.1-1.9, 2.80×10-3% when p=0.1-2.9, and 5.51×10-3% 
when p=0.1-3.9. As a result, we found that the fingerprint authentication by use of the FRT 
has the high matching accuracy. 
From the results shown in Figs. 7, 8, 10 and 11 and Table 1 and our final objective to realize 
the FRT by the optical system, we can say that the suitable FRT’s order range is 0.1-1.9 in our 
method. 
 

 

Fig. 12. A set of histograms corresponding to the impostor and authentic distributions 
(FRT’s order range=0.1-0.9) 
 

 

Fig. 13. A set of histograms corresponding to the impostor and authentic distributions 
(FRT’s order range=0.1-1.9) 
 

FR T's order range M ER  (FA R  / FR R ) Threshold

0.1～0.9 7.36×10

-4

0.95

0.1～1.9 5.31×10

-3

0.96

0.1～2.9 2.80×10

-3

0.94

0.1～3.9 5.51×10

-3

0.95  

Table 1. MERs and authentication thresholds for various FRT’s order ranges 
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6. Effects of size reduction of the extracted fingerprint image on the 
authentication 

In Section 5, we analyzed the authentication accuracy by use of the templates generated by 
the FRT of the extracted fingerprint images with the size of 200×200 pixels. In this section, 
the authentication accuracy is analyzed by changing the size of the extracted fingerprint 
image, for example, 50×200, 100×200 and 150×200 pixels, when the FRT’s order range is 0.1-
1.9. The analysis method is the same as that in Section 5. 
First, Fig. 14 illustrates the result related to the impostor distribution which is the behavior 
of peak value of the normalized cross-correlation function of the intensity FRTs of two 
different extracted fingerprint images, by changing the extracted line number. The vertical 
and horizontal axes denote the peak value of normalized cross-correlation function and the 
extracted line number, respectively. In the figure, the symbols of diamond shape, cross and 
circle denote the averaged peak values when the FRT’s orders are 1.0, 0.0 and random 
between 0.1 and 1.9, respectively. Additionally, the bar denotes the standard deviation of 
the peak value. 
When the extracted line numbers are 50, 100, 150 and 200, the averaged peak values for 
p=1.0 are 0.967, 0.949, 0.931 and 0.916, respectively. For p=0.0, the averaged peak values are 
0.749, 0.751, 0.757 and 0.764, respectively, and for p=random, they are 0.734, 0.732, 0.732 and 
0.735, respectively. 
From these results, it is found that the probability of the accepting other person erroneously 
is low when p=random in comparison with those when ps=1.0 and 0.0. Moreover, there is 
little effect for the variation of the extracted line number when p=random in comparison 
with that when p=1.0. 
 

 

Fig. 14. Peak value of the normalized cross-correlation function of the intensity FRTs by 
changing the extracted line number (Impostor distribution) 

Next, Fig. 15 illustrates the result related to the authentic distribution which is the behavior 

of peak value of the normalized cross-correlation function of the intensity FRTs of the 

extracted fingerprint images with and without random noise, by changing the extracted line 

number. The vertical and horizontal axes denote the peak value of normalized cross-

correlation function and the extracted line number, respectively. In the figure, the symbols 

of diamond shape, circle and cross denote the averaged peak values when the FRT’s orders 

are 1.0, random between 0.1 and 1.9, and 0.0, respectively. Additionally, the bar denotes the 

standard deviation of the peak value. 
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When the extracted line numbers are 50, 100, 150 and 200, the averaged peak values for 
p=1.0 are 0.989, 0.993, 0.995 and 0.995, respectively. For p=random, the averaged peak values 
are 0.976, 0.982, 0.984 and 0.986, respectively, and for p=0.0, they are 0.967, 0.972, 0.975 and 
0.977, respectively. 
From these results, it is found that the probabilities of the rejecting identical person 
erroneously are more-or-less identical for ps=1.0, 0.0 and random. Moreover, there is little 
effect for the variation of the extracted line number for ps=1.0, 0.0 and random. 
Table 2 illustrates the MERs for the variation of the extracted line number, which were 
obtained from Figs. 14 and 15. From the table, it is found that the effect of the variation of 
the extracted line number on the authentication accuracy is very little because the values of 
MERs are fully small as shown in Table 2. 
 

 

Fig. 15. Peak value of the normalized cross-correlation function of the intensity FRTs by 
changing the extracted line number (Authentic distribution) 
 

Extracted

line num ber

M ER , p =1.0

 (FA R  / FR R )

M ER , p =0.0

 (FA R  / FR R )

M ER , p =random

 (FA R  / FR R )

50 0.165 5.83 x 10

-3

2.49 x 10

-2

100 0.111 4.22 x 10

-3

8.49 x 10

-3

150 0.104 3.79 x 10

-3

6.72 x 10

-3

200 0.110 2.81 x 10

-3

5.31 x 10

-3  

Table 2. MERs for variations of the extracted line number and the FRT’s order 

7. Conclusions 

First, we generated the templates of many original fingerprint images by use of the FRT. As 
a result from comparisons between the generated templates and the original fingerprint 
images, it was found that the templates are fully different from the original fingerprint 
images when the templates were generated by changing randomly the FRT’s order in every 
line of the original fingerprint images. It was also found that the generated templates are 
very high secure, because the templates could not be decoded to the original fingerprint 
images by the unauthorized third persons who are unapprised of the information on the 
FRT’s order in every line. 
Additionally, the authentication accuracy of the templates generated by the FRT of the 
extracted fingerprint images with 200×200 pixels was analyzed by changing the FRT’s order 
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range. We found that the suitable FRT’s order range for the generation of the template in our 
method is 0.1-1.9. 
The authentication accuracy was also analyzed by changing the size of the extracted 
fingerprint image, concretely, 150×200, 100×200 and 50×200 pixels. As a result, it was found 
that the authentication accuracy is fully high even if the size of the extracted fingerprint 
image is small, so that the authentication is possible at higher speed. 
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1. Introduction  

All living matter in the environment (i.e., animals, plants, microorganisms, etc.) eventually 
dies and decomposes into what is known as natural organic matter (NOM). NOM is formed 
from a vast variety of sources that have been chemically or microbially degraded in the 
environment where they arise, and NOM can be generally described as a complex mixture 
of organic compounds (Stevenson, 1994). Within this mixture, some compounds retain their 
individual reactivity and characteristics, while others tend to aggregate together and act as a 
polymeric unit. Overall, NOM can encompass a variety of natural biomolecules, such as 
lipids, peptides/protein, amino-sugars, carbohydrates, lignins, tannins, and condensed 
aromatics. Because NOM is a random assortment of organic constituents, its size, shape, 
concentration, and other physico-chemical properties vary greatly with location and season. 
For these reasons, the molecular level characterization of NOM continues to be one of the 
greatest challenges to modern analytical chemists.  
NOM is ubiquitously present in all natural waters, soils, sediments, and air, giving NOM a 
central role in numerous environmental processes. These processes are linked together by 
the global carbon cycle, which describes the storage and flux of carbon sources and sinks 
throughout the environment (Thurman, 1985; Eglinton and Repeta, 2003; Perdue and 
Ritchie, 2003). Special attention is generally paid to land-sea interfaces, atmosphere-sea 
interfaces, and long-term carbon burial/storage. NOM in soils affects the cation exchange 
capacity and water retention of soils, which has triggered studies by the agricultural 
communities. Furthermore, NOM in soils/sediments influences carbon sequestration and 
burial, and this carbon is altered over long periods of time and can be transformed to 
petroleum precursors. NOM in soils and rivers can affect the solubility, transport, and 
eventual fate of anthropogenic pollutants. These hydrophobic organic contaminants can 
interact and bind with NOM in the environment, making it difficult to trace throughout the 
river systems that eventually lead to the ocean. The amount of carbon in dissolved organic 
matter (DOM) in the ocean is approximately the same as that of atmospheric CO2 (Hedges, 
1992; Eglinton and Repeta, 2003) and this exchange has been directly linked to climate 
change (Canadell et al., 2007; Sabine and Feely, 2007). NOM in the atmosphere can exist as 
an aerosol or particulate, which impacts human health, climate, and overall air quality. The 
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brief explanation of NOM, along with the short list of NOM implications given here, barely 
touches upon the large variety of important research that is ongoing within the NOM 
community. The significance of NOM in the environment and the numerous roles that NOM 
plays in the biogeochemical processes that mediate Earth’s ecosystems highlight the 
necessity for a more fundamental comprehension of NOM chemistry and composition. 
The characterization of NOM from different sources is a difficult task, simply because NOM 
does not have an exact composition or structure and occurs at aqueous concentrations that 
can vary by 3 orders of magnitude, depending on NOM type and location. Bulk 
characteristics of NOM can be identified by elemental analysis, ultraviolet and infrared 
spectroscopy, and traditional one-dimensional nuclear magnetic resonance (Hatcher et al., 
2001). Much has been learned about NOM chemistry from these techniques, such as 
elemental compositions and ratios (%C, %N, %O, %S, C/N, etc.), specific functional groups 
that primarily exist in NOM, and general trends that occur amongst different NOM samples. 
Chromatographic techniques, such as gas and liquid chromatography coupled to various 
detectors (i.e., flame ionization detection, mass spectrometry, photodiode array detection) 
has also provided a wealth of structural information on various types of NOM. Two-
dimensional nuclear magnetic resonance has more recently been utilized to characterize and 
understand the nature of both soluble and insoluble NOM beyond that of the one-
dimensional approach, and this has led to the ability to link NOM to well known 
biopolymer classes. However, despite the abundance of data that has been acquired using 
the aforementioned techniques, NOM remains as an analytical challenge. Because NOM 
exists amongst a background matrix, it can be difficult to separate from water or inorganic 
matter, without losing or altering the NOM (Mopper et al., 2007; Dittmar et al., 2008). 
Sample preparation for NOM is an important consideration. Furthermore, NOM is not 
amenable to most instrumental analyses, because it is a low concentration of highly 
functionalized polymeric substances that do not have uniform behaviour. NOM has a wide 
size and volatility range, since portions are hydrophilic, allowing them to be water soluble, 
while other parts retain their hydrophobic nature. Overall, the goal of molecular level 
characterization of NOM continues be a daunting task. 
The advent of atmospheric pressure ionization (API) sources and Fourier transform ion 
cyclotron resonance mass spectrometry (FTICR-MS) has revolutionized our ability to 
analyze NOM. These methods were originally employed by the biochemical communities to 
elucidate the structure of biological macromolecules (proteins, metabolic products, DNA, 
etc.). The knowledge that has evolved from these studies has been applied to NOM, where 
the goal is to transfer polar analytes in solution to molecular ions that can be detected by 
mass spectrometry. With the exception of petroleum and crude oil samples, the first 
application and use of electrospray ionization (ESI) for studying NOM was by McIntyre et 
al. (1997), utilizing a triple quadrupole mass spectrometer to analyze organic acids. Not long 
after, Fievre et al. (1997) utilized ESI-FTICR-MS to investigate the size and composition of 
humic and fulvic acids. In the last 15 years, the utilization of FTICR-MS for the analysis of 
NOM samples has increased from year to year, and from 2000 to 2010, the number of 
publications has increased by nearly 900% (Fig. 1). Clearly, FTICR-MS is a powerful 
technique that has great promise in the field of NOM chemistry, with a rise in its use 
progressing every year. In this chapter, the spotlight lies in utilizing FTICR-MS specifically 
for the characterization of NOM, concentrating on particular instrumental capabilities, its 
application to a variety of different types of NOM, and limitations that exist for the 
acquisition and analysis of data. 
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Fig. 1. Approximate number of publications on the topic of natural organic matter (water, 
soil, sediment, aerosol, petroleum, crude oil, etc.) analysis  using Fourier transform ion 
cyclotron resonance mass spectrometry.  Search conducted in September, 2010 

2. Introduction to Fourier transform ion cyclotron resonance mass 
spectrometry 

Over the course of the last decade, FTICR-MS has emerged as an invaluable tool for the 
characterization of NOM by providing details about its composition. While previous 
chemical and instrumental analyses (e.g., gas and liquid chromatography, ultraviolet and 
infrared spectroscopy, fluorescence excitation emission matrix spectroscopy, nuclear 
magnetic resonance (NMR), elemental and isotopic analyses, etc.) have revealed vital 
information about NOM, these techniques are biased for certain compound classes and 
fail to resolve the numerous constituents in NOM (Hatcher et al., 2001; Leenheer and 
Croué, 2003). Other mass spectrometers have been employed for the analysis of NOM, 
such as quadrupoles, ion traps, and quadrupole time of flights. However, FTICR-MS has 
abilities and advantages over these systems and has achieved a more in depth analysis of 
NOM where other mass spectrometers have been marginally or less successful (Sleighter 
and Hatcher, 2007).    
The detailed theory and instrumental parameters of FTICR-MS are expertly reviewed by 
Marshall et al. (1998). Here, we give a brief overview of the instrument. Ions are produced in 
the ion source region (via a variety of available ion sources discussed in section 3) that is 
maintained at atmospheric pressure. These ions are focused, using ion funnels and 
skimmers, into differential pumping regions that vary in pressure from atmospheric 
pressure, to low vacuum (10-4 - 10-6 mbar) just after the ion source region, to high vacuum 
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(10-9 - 10-10 mbar) in the ICR cell. Ions are steered through these regions and typically pass 
through a mass analyzer in the lower vacuum area where an initial sort and storage occurs. 
Commercial instruments vary in which type of mass analyzer is used; some are a 
combination of hexapoles and/or quadrupoles, while others are linear ion traps. In this first 
mass analyzer region, only ions of a certain mass to charge (m/z) range (typically 100-2000 
m/z) are allowed to be accumulated for a designated time prior to their transfer to the 
detector. Once past this accumulation stage, the ions are guided through more pumping 
stages of the ion transfer optics region and are eventually transferred into the horizontal 
bore of a cryogenic magnet, where they are trapped in the ion cyclotron resonance cell. 
Modern commercial FTICR-MS instruments employ cryomagnets of various strengths 
(usually 7-15 T). Once ions are trapped in the ICR cell under the influence of a homogeneous 
magnetic field, they circulate at a frequency characteristic of their m/z value. Cyclotron 
frequency is inversely proportional to m/z, as shown below: 

 fc = B0(z/m) (1) 

In equation 1, fc is the cyclotron frequency, B0 is the magnetic field strength, z is the charge 
of the ion, and m is the mass of the ion. Ions in orbit in the ICR cell are excited by a 
broadband RF pulse, which increases the radius of their orbit but not their frequency. The 
ions are now circulating closer to the detector plates, where the ion packets can induce an 
image current on the receiving electrode. Field inhomogeneities cause the ions to lose 
coherence and orbit radius, which leads to collapse of the ions to the central core of the ICR 
cell. This produces an image current trace that is called a free induction decay (FID), similar 
to what is observed for NMR signals. The time-domain FID signal (Fig. 2a) is digitized and 
Fourier transformed into a frequency domain signal (Fig. 2b), after acquiring and summing 
multiple FID spectra to build up signal-to-noise. The frequency domain data are then 
converted into mass spectra (Fig. 2c) by use of equation 1 and calibrated with compound 
mixtures having components with known m/z values. This sequence of data detection and 
conversion is shown in Fig. 2 for a sample of Suwannee River NOM.  
In our opinion, FTICR-MS is the only type of mass spectrometer that can achieve the 

resolving powers that are necessary (those exceeding 105) for mass deconvolution of the 

thousands of compounds that are present in a single NOM sample (Fig. 2c). Orbitrap mass 

spectrometers (providing resolving powers of approximately 60,000) provide sufficient 

resolution for evaluating elemental formulas of mixtures containing only C, H, and O 

molecules (see section 5 and Fig. 8), but the inclusion of heteroatoms in the molecules (i.e., 

N, S, and P) requires the use of FTICR-MS to achieve assignment of exact elemental 

formulas. Fig. 2d shows that the most intense peaks are detected at odd nominal masses, 

indicating that they are composed of compounds with either 0 or an even number of 

nitrogens (based on the nitrogen rule). Ions detected at even nominal masses contain an odd 

number of nitrogens or are 13C isotopologues of the 12C compounds detected (Fig. 2e). Based 

on the identification of the 12C and 13C isotopologues, one can determine the charge state of 

the compound. If a compound is singly charged, then the 13C isotope peak will be observed 

at 1.0034 mass units higher than the 12C peak, which is the mass difference between 12C and 
13C. Doubly charged peaks have isotopes that appear at 0.5017 mass units higher, but 

doubly charged peaks are rarely detected in NOM samples (Kujawinski et al. 2002; Stenson 

et al., 2002; Kim et al., 2003). Generally, at least 10 peaks are detected at each individual 

nominal mass, with upwards of 20-30 being observed in some cases. 
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Fig. 2. Suwannee River NOM analyzed by negative ion mode ESI-FTICR-MS: a) time 
domain free induction decay (FID), b) FID Fourier transformed into a frequency domain 
spectrum, c) mass spectrum after  frequency is converted to m/z, d) expanded region of 
mass spectrum at 371-398 m/z, e) nominal masses 375 and 376 of the mass spectrum.  
Numbered peaks in (e) correspond to Table 1 

The ultrahigh resolving powers that FTICR-MS at 12 T routinely achieves is highlighted in 
Fig. 2e and is the main reason why FTICR-MS is preferred over other mass spectrometers 
that exhibit only nominal mass resolution (see examples: Fig. 3 in Kujawinski et al., 2002; 
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Fig. 1 in Sleighter and Hatcher, 2007).  The equation for calculating resolving power is 
shown below in equation 2, where RP is resolving power, m is mass, and FWHM is the full 
width at half maximum of the peak. 

 P = m/(FWHM) (2) 

 

1 375.03585 15.0 0.00078 479014 C17H11O10
- 375.035770 0.21

2 375.05110 10.7 0.00074 508681 C21H11O7
- 375.051026 0.20

3 375.05444 3.1 0.00052 721130 C18H15O7S1
- 375.054397 0.11

4 375.07227 33.4 0.00076 493629 C18H15O9
- 375.072156 0.30

5 375.08755 12.4 0.00074 503478 C22H15O6
- 375.087412 0.37

6 375.10864 43.2 0.00077 487137 C19H19O8
- 375.108541 0.26

7 375.12390 5.4 0.00077 484204 C23H19O5
- 375.123797 0.27

8 375.14491 59.2 0.00083 454710 C20H23O7
- 375.144927 -0.05

9 375.16033 3.5 0.00115 326330 C24H23O4
- 375.160183 0.39

10 375.18132 40.8 0.00082 459226 C21H27O6
- 375.181312 0.02

11 375.21784 8.7 0.00060 625389 C22H31O5
- 375.217698 0.38

12 376.03904 3.3 0.0006 629102 13C1
12C16H11O10

- 376.039125 -0.23

13 376.06734 3.2 0.00048 783961 C17H14N1O9
- 376.067405 -0.17

14 376.07554 5.9 0.00066 569024 13C1
12C17H15O9

- 376.075510 0.08

15 376.09090 4.2 0.00057 662373 13C1
12C21H15O6

- 376.090767 0.35

16 376.10381 3.2 0.0007 538763 C18H18N1O8
- 376.103790 0.05

17 376.11201 8.1 0.00065 576557 13C1
12C18H19O8

- 376.111896 0.30

18 376.14839 12.7 0.00085 443845 13C1
12C19H23O7

- 376.148282 0.29

19 376.18463 7.1 0.00085 444104 13C1
12C20H27O6

- 376.184667 -0.10

calculated 

m/z

Error 

(ppm)
FWHMS/N

Resolving 

Power

Peak 

Number

measured 

m/z

proposed 

formula

FWHM: full width at half maximum
Error units = parts per million deviation of calculated m/z from the measured m/z

 

Table 1. Details of the peaks shown in Fig. 1e 

Resolving power calculations are demonstrated in Table 1, which shows the molecular 
formula assignments to the peaks in Fig. 2e, along with measured details of each. Because 
the frequencies, at which ions orbit within the ICR cell, can be measured very accurately, 
m/z can also be calculated very accurately, usually to the fifth decimal place. With careful 
external and internal calibration (Sleighter et al., 2008), accurate m/z values can be 
calculated and utilized for the determination of unique molecular formulas. These can be 
confidently assigned with an error difference (between the measured m/z and the 
calculated exact m/z) of less than 0.5 ppm (or 500 ppb). Once molecular formulas are 
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assigned to the majority of the peaks in the mass spectrum, compositional make-up of the 
sample can be established.  

3. FTICR-MS instrument capabilities and data acquisition 

While FTICR-MS is a particularly impressive instrument and has the ability to provide 
molecular level details about NOM samples, there are many factors to take into account 
during data acquisition. It is important to consider the specific instrument’s design and 
capabilities, in order to optimize certain parameters and decide how the data should be 
acquired so that high quality, meaningful mass spectra are obtained.   
The first concern is for sample composition. There are several inherent difficulties with 
obtaining publishable mass spectra of NOM, particularly when the organic matter exists at a 
low concentration in the presence of a much higher concentration of inorganic matrix 
components. Salty samples are especially problematic, as emphasized in Fig. 3, which shows 
a NOM sample from the Elizabeth River that was analyzed by ESI-FTICR-MS before and 
after desalting by electrodialysis. An expanded region of the mass spectra acquired for the 
Elizabeth River NOM before desalting (Fig. 3a) shows high magnitude peaks with a high 
mass defect (0.7-0.8) and lower magnitude peaks at mass defects that are typical of organic 
matter (0.0-0.5) in this size range. Once the riverine NOM has been desalted (Fig. 3b), the 
high mass defect peaks attributed to salts are absent and the lower mass defect peaks are 
enhanced. Mass defect refers to the deviation of an m/z value from the exact nominal mass, 
and it is indicative of the type of compound present, based on the mass defect of atoms in 
organic compounds. The exact masses (in amu) of 12C, 1H, and 16O are 12.000000, 1.007825, 
and 15.994915, respectively. Hydrogen has a positive mass defect, while oxygen has a 
negative mass defect. Thus compounds that are oxygen-rich and/or hydrogen-poor will 
display peaks at a lower mass defect (ca. 0.0-0.2), while compounds that are hydrogen-rich 
and/or oxygen-poor give peaks with a higher mass defect (ca. 0.2-0.5).  The composition of 
peaks detected at high mass defect in Fig. 3a has not been confidently determined, but they 
are inorganic compounds present amongst the NOM sample. Their magnitudes are intense 
because they have higher ionization efficiencies than the OM constituents. Compounds that 
exist as ions in solution will ionize much more readily by ESI than compounds that do not. 
ESI is a competitive ionization process, and the OM components simply cannot out-compete 
the inorganic compounds for the negative charge, hence explaining why OM peaks are 
detected at lower magnitudes than the inorganic compounds. Because the OM compounds 
are the analytes of interest, desalting techniques are utilized to remove the background of 
inorganic matrix. 
There is constant research being performed to determine the best method for desalting, 
isolating, and concentrating NOM samples. Traditionally, NOM was extracted from water, 
soils, and sediments as humic substances, which can be further categorized as fulvic acid, 
humic acid, and humin, depending on the pH at which they are soluble (Stevenson, 1994). 
Humic substances are extracted by well established acid/base laboratory protocols 
(Schnitzer and Khan, 1978; Thurman and Malcolm, 1981). More recently, DOM has been the 
focus of many studies interested in carbon cycling through groundwater, porewater, rivers, 
estuaries, and the ocean. Methods that are commonly employed to isolate the NOM from 
water are ultrafiltration, solid phase extraction, electrodialysis, and combined reverse 
osmosis electrodialysis. Each of these methods has certain problems associated, such as 
irreversible NOM sorption (lowering the NOM recovery of that technique), breakthrough  
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Fig. 3. Elizabeth River NOM analyzed by negative ion mode ESI-FTICR-MS before (a) and 
after (b) complete desalting by electrodialysis (expanded ranges are 450-500 m/z and 466.7-
467.4 m/z).  Peaks with high mass defects (0.7-0.9) are from incomplete desalting.  More 
NOM peaks are detected when these compounds are not competing for a charge 
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contamination/bleeding, resin/membrane contamination of the NOM, and typically time 
consuming cleaning requirements (Simjouw et al., 2005; Mopper et al., 2007; Dittmar et al., 
2008). These methods are biased by the chemical or physical properties that regulate the 
extraction procedure, and readers are referred to more in depth discussions of these 
desalting techniques, along with the pros and cons of each, in the references given above. In 
general, desalting and sample cleanup are important issues to consider when preparing 
samples for FTICR-MS.   
After the appropriate sample preparation is performed, the optimal ionization source 
should be identified. There are many different commercially available API sources for the 
application to NOM (Hoffmann and Stroobant, 2003), such as ESI (Bruins, 1991; Gaskell et 
al., 1997; Cech and Enke, 2001), chemical ionization (CI; Bruins, 1991; Harrison, 1992), and 
atmospheric pressure photoionization (APPI; Raffaelli and Saba, 2003; Bos et al., 2006; 
Purcell et al., 2007). Each method varies in its ionization mechanism, and, consequently, the 
analytical window for each is quite different. It is important to mention that non-ionizable 
compounds that exist in the NOM will be invisible to the mass spectrometer. This is 
important, because each ion source has its own innate bias and each can give a different 
resulting mass spectrum for the same NOM sample (Hockaday et al., 2009). The ionization 
methods mentioned above are known as ‘soft’, meaning that compounds are not fragmented 
(as they are in electron ionization) and molecular ions (M●+, M●-) or pseudomolecular ions, 
also known as molecular ion adducts [(M+H)+, (M+Na)+, (M-H)-, (M-Cl)-], are 
predominantly observed in the mass spectrum. Mechanistic studies of each of the ion 
sources are referenced above, but brief explanations of each are described here. 
CI introduces a reagent gas (methane is quite common, CH4) into the ion source to produce 
primary ions of the reagent gas (i.e., CH4●+) to collide with the molecule of interest. Through 
ion-molecule collisions, where the reagent gas ion acts as a Brønsted-Lowry acid and the 
analyte is a Brønsted-Lowry base, and proton transfer reactions, the analyte is ionized with 
minimal fragmentation. During ESI, the liquid sample is sprayed through a needle, and a 
high voltage difference between the spray needle and metal inlet induces a charge on the 
sprayed droplets. The charged droplet diminishes in size as the solvent is evaporated (by 
aid of heat or a drying gas), concentrating the charges held on the droplet. As charge-charge 
repulsions occur, the Rayleigh limit is exceeded, making the Coulombic repulsions greater 
than the surface tension of the droplet. The result is that the droplet bursts into many 
smaller droplets that can be completely desolvated, leaving only charged analyte ions in the 
gas phase for further introduction into the mass spectrometer. ESI operates in either positive 
or negative mode, depending on the functional group composition of the analyte. Functional 
groups that will readily lose a proton (such as alcohols, carboxylic acids, cyanides, peptides, 
nitric- and sulfonic- acids, and phosphates) are analyzed in negative ion mode. Basic 
functional groups that can easily gain a proton (i.e., amines, amides, peptides, and thiols) 
are analyzed in positive ion mode. By changing the pH of the sample solution (slightly basic 
for negative ion and slightly positive for positive ion), one can increase the ionization 
efficiencies for ESI. Another ion source of choice for analyzing less polar compounds is 
APPI, and APPI does not tend to suffer from charge competition with inorganic matrices, 
which is commonly observed in ESI. In APPI, ionization is initiated by supplying UV 
photons to the analyte molecule (typically via a krypton lamp). The analyte absorbs the 
photons and enters into an excited state. The analyte becomes ionized when the energy of 
the UV photons is greater than the ionization energy of the analyte. Dopants (such as 
toluene or tetrahydrofuran) are usually employed to act as intermediates between the 
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photons and analytes, so that charge exchange and proton transfer reactions can occur more 
readily, increasing the ionization of NOM molecules.     
Overall, before selecting an ion source, it is beneficial to know the bulk functional group 
composition of the sample (by previously obtained FTIR or NMR data), because then an 
informed decision can be made on which ion source(s) to employ for that specific sample. ESI 
and APPI are the most commonly used ion sources for the analysis of NOM, and Hockaday et 
al. (2009) performed a study to investigate which appeared to be optimal for a terrestrial 
sample obtained in the Dismal Swamp (Suffolk, VA, USA). They found that little overlap 
existed between the formulas assigned to APPI(+) and ESI(+ and -) mass spectral peaks, 
suggesting that data acquired from the two ion sources complemented each other greatly. 
Furthermore, APPI yielded formulas that were more aromatic and less polar than those from 
ESI, which is expected due to the ionization mechanism for each. Based on Hockaday et al. 
(2009) and the discussion of the types of compounds ionized by various ionization sources, 
many investigations of NOM do multiple-source FTICR-MS analyses to produce data that 
supplement each other, furthering the overall characterization of the NOM sample. 
Once the best ion source has been determined for a particular sample, the mass 
spectrometric parameters can be examined. The two main ways to acquire mass spectral 
data are either broadband mode or narrow scan mode. The vast majority of publications that 
analyze NOM by FTICR-MS utilize broadband mode, where all m/z values, across a wide 
range of generally 200-2000 m/z, are detected during the analysis. Narrow scan mode is 
commonly referred to as sequential selective ion accumulation (SSIA; Sleighter et al., 2009) 
or as selected ion monitoring (SIM; Kido Soule et al., 2010). During SSIA (or SIM), the initial 
mass analyzer [quadrupole for Sleighter et al. (2009) and linear ion trap for Kido Soule et al. 
(2010)] isolates ions within a narrow range of m/z values before transferring the ion packet 
to the ICR cell. The operator selects the range, and ions outside of this range will be 
eliminated by the initial mass analyzer, thus decreasing the total number of ions in the ICR 
cell simultaneously. Because there are fewer ions in the cell at the same time, space-charge 
effects are minimized, generally increasing the resolving power and selectively enhancing 
the S/N of the peaks. Using SSIA, the sample is analyzed multiple times, incrementally 
increasing the m/z range, so that the entire mass range is eventually covered.  By this SSIA 
method, the m/z ranges are acquired in sequential ‘slices’, and these slices can be merged 
together to assemble the entire mass spectrum.   

Whole water from the Dismal Swamp (Suffolk, VA, USA) was sterile filtered (0.2 μm) to 
remove particulates and bacteria and analyzed directly using both broadband and SSIA 
modes, as shown in Fig. 4. The colors in Fig. 4b show each ‘slice’ that was acquired, and the 
‘slices’ overlap by approximately 30-40 m/z to ensure that no area is missed. The nominal 
mass region in Fig. 4 is shown in order to highlight the increase in S/N and resolving 
power. An S/N threshold of 3 is commonly used for peak-picking, and the increase in 
overall S/N using SSIA leads to a larger number of peaks detected. Table 2 gives details for 
the mass spectra shown in Fig. 4, parsed according to the m/z range that was acquired. This 
table shows that the increase in the number of peaks, S/N, and generally resolving power 
exists for SSIA across the entire mass range and is more substantial and pronounced at 
higher m/z values. The broadband analysis requires 20 minutes (1.0 sec ion accumulation 
and 200 co-added scans), while the SSIA analysis requires 30 minutes (1.0 sec ion 
accumulation and 50 co-added scans, for 6 separate m/z ranges). While the SSIA mode 
involves more time to acquire data, 2880 more peaks were detected during that time. It is 
important to note that while nearly 3000 more peaks were detected with SSIA, this does not 
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necessarily translate to 3000 more molecular formulas being assigned, because some of the 
extra peaks detected by SSIA are isotopic peaks. 
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Fig. 4. Dismal Swamp whole water analyzed by negative ion mode ESI-FTICR-MS in 
broadband mode (a) and using sequential selective ion accumulation (b).  The insets show 
expanded mass spectra at m/z  540-700 and 425.0-425.35, to show the peaks at higher m/z 
more clearly and to highlight the enhanced S/N achieved using SSIA 
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200-300 651 25.2 491690 200-300 761 28.5 522998.6

300-400 1441 15.6 401404 300-400 2197 28.8 354605.1

400-500 959 11.8 302398 400-500 1707 27.6 273525.8

500-600 571 7.9 252256 500-600 1205 18.4 229191.6

600-700 81 4.9 215090 600-700 713 8.9 216097.5

200-700 3703 14.9 364562 200-700 6583 24.4 315089.0

a
 The average value is given for the m/z range specified.

S/N 
a

Resolving 

Power 
a

Broadband Mode Sequential Selective Ion Accumulation

Number 

of Peaks 
S/N 

a
Resolving 

Power 
a

m/z 

range

m/z 

range

Number 

of Peaks 

 

Table 2. The number of peaks detected, average S/N, and average resolving power for each 
m/z range of the broadband mass spectra and SSIA mass spectra shown in Fig. 4 

The discussion in this section of sample preparation, ion source selection, and optimizing 
FTICR-MS acquisition modes emphasizes just a few factors that are of paramount 
importance when analyzing NOM. There are countless other mass spectral parameters that 
can also be optimized (ion source voltages, ion optics and transmission parameters, ion 
accumulation times, trapping parameters within the ICR cell, etc.) in order to obtain the 
highest quality data. However, these parameters are instrument specific, and each 
individual instrument requires tuning before each sample set is analyzed. Further 
discussion and advice on these parameters is generally reviewed in detail by the 
manufacturer and is beyond the scope of this chapter. 

4. FTICR-MS applications to NOM 

As discussed above, molecular formulas can be assigned to the multitude of peaks detected 
in mass spectra of NOM, and this capability is the main justification for use of FTICR-MS for 
the molecular characterization of various NOM samples. The molecular formulas provide 
meaningful compositional information that is associated with groups of natural 
biopolymers. This practice of correlating assigned formulas to sample composition has been 
applied to various types of NOM, and several methods exist to assist in this correlation. 
Because it can be difficult, tedious, and labor-intensive to compare the thousands of 
assigned molecular formulas for a single NOM sample, generally visualization diagrams are 
called upon to assist in displaying the formulas in a chemically representative manner. The 
two-dimensional van Krevelen diagram has been the most commonly used approach, which 
plots H/C values vs. O/C values (van Krevelen, 1950; Kim et al., 2003).  Each molecular 
formula aligns on the diagram in a location that can typically be correlated to that 
commonly associated with natural biomolecules, as shown in Fig. 5 for riverine DOM 
isolated from the Elizabeth River in south-eastern Virginia, USA. The circles overlain on the 
plot highlight the types of molecules that are commonly detected in NOM samples, as well 
as their position on the van Krevelen diagram, based on the compound’s elemental ratios 
(Kim et al., 2003; Sleighter and Hatcher, 2007; Hockaday et al., 2009). It should be noted that 
these circles are not strictly representative of all similar molecules, but rather approximate 
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guidelines for identifying compounds of similar composition. Relating formulas to 
compound classes in this manner has been exploited in many studies of various types of 
NOM over the years, and interested readers are referred to the literature for more details 
(Sleighter and Hatcher, 2007; Reemtsma, 2009; references therein). 
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Fig. 5. van Krevelen diagram for Elizabeth River NOM isolated by small-scale electrodialysis 
and subsequent analysis by negative ion mode ESI-FTICR-MS.  Overlain circles are used as 
broad indicators of where biomolecules fall on the plot (Sleighter and Hatcher, 2008; 
Hockaday et al., 2009; Ohno et al., 2010) 

Another diagram that is often used for NOM characterization is the Kendrick mass defect 
(KMD) plot (Kendrick, 1963). KMD analysis converts m/z values to Kendrick mass values 
by multiplying the m/z value by the ratio of the nominal mass CH2 group (14.00000) to the 
exact mass of a CH2 group (14.01565), as shown below in equation 3. Then, KMD is 
determined by subtracting the nominal Kendrick mass (KM) from KM, as shown in equation 
4.  KMD values can then be plotted against their nominal KM values (as shown in Fig. 6), 
and formulas with the same KMD, those falling on a horizontal line, differ only by a CH2 
group (or multiple CH2 groups). KMD values increase with the number of added H atoms, 
thus aliphatic compounds will have high KMD values and aromatic compounds will have 
lower KMD values. This coincides with mass spectral data expanded at individual nominal 
masses, where m/z values with low mass defects are hydrogen-poor and m/z values with 
higher mass defects are hydrogen-rich (as shown in Fig. 2e and Table 1). 

 Kendrick Mass (KM) = m/z value * (14.00000/14.01565) (3) 
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 Kendrick Mass Defect (KMD) = KM – nominal KM (4) 

Originally, KMD was utilized for assigning molecular formulas, by establishing 
homologous CH2 series that could be expanded from low m/z to high m/z (Stenson et al., 
2003). Peaks at low m/z can more easily be assigned a molecular formula because fewer 
formulas exist within the selected error limit (usually 0.5 ppm). Generally, only 1 molecular 
formula exists within this error for peaks less than 500 m/z, but beyond this value, multiple 
formulas are possible. Once molecular formulas are unambiguously assigned to peaks of 
low m/z, peaks at high m/z values that have multiple formula choices can be related to 
formulas assigned at lower mass by assuming that they belong to a CH2 homologous series. 
If one of the formulas belongs to a homologous series, then it is very likely the correct 
formula, and the others can be eliminated. This approach to formula assignment is called 
‘formula extension’ and can be performed manually or written into software designed to 
assist in formula assignment (Kujawinski and Behn, 2006; Grinhut et al., 2010). While CH2 is 
the most commonly used group, other functional groups can be utilized (i.e., OCH2, COO, 
O, H2O, H2, etc.) depending upon the make-up of the sample (Sleighter and Hatcher, 2007). 
Because of the recent growth in use of FTICR-MS for the analysis of NOM, articles have 

been published summarizing the findings of these studies and making suggestions for 

future work (Sleighter and Hatcher, 2007; Reemtsma, 2009). Most recently, multivariate 

statistical analysis in combination with visualization diagrams have been utilized to 

evaluate relationships among sample sets. Hierarchal cluster analysis (HCA) seeks 

correlations among samples displayed in a data matrix and illustrates the results in a 

hierarchical tree, or a dendrogram, where the branching reveals the similarity among the 

samples. HCA has been utilized in numerous studies, one of which shows that there are no 

significant differences between the formulas assigned to a depth profile of DOM from the 

Weddell Sea (Koch et al., 2005). In other studies, Dittmar et al. (2007) compared DOM from 

coastal mangrove forests (before and after photo-irradiation) to open ocean seawater. They 

found that photo-degraded mangrove DOM becomes similar in composition to open ocean 

seawater DOM. Koch et al. (2008) evaluated the various fractions of DOM collected from 

reversed phase HPLC separations, and Schmidt et al. (2009) used HCA statistical 

correlations to differentiate between pore water DOM and riverine DOM. While HCA is 

very useful for grouping samples based on their similarity, it does not indicate the reasons 

why the samples are similar or different. The variation between the samples is not 

explained, and another method is required for this determination. 

By combining HCA with another statistical method, the variance between samples can be 
elucidated.  Kujawinski et al. (2009) employed HCA combined with both non-metric multi-
dimensional scaling (NMS) and indicator species analysis (ISA) to optimize the a priori 
grouping of samples for subsequent ISA, where specific mass spectral m/z values can be 
identified as an indicator species for a certain group of samples. Once all the indicator 
species for the samples are identified, then molecular formulas were examined more closely. 
Indicator species for surface ocean DOM samples were speculated to be biologically-derived 
and to represent a more labile component of the marine DOM pool, while indicator species 
for riverine/estuarine DOM were found to be similar in composition to lignin-derived 
species that have been linked to terrestrially-sourced DOM. Bhatia et al. (2010) also used 
these multivariate statistical methods recently to characterize DOM from the Greenland ice 
sheet and were able to link subglacial, supraglacial, and proglacial DOM to various 
allochthonous and autochthonous sources and processes. Another recent study utilizing ISA 
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distinguished compounds that are specific to various fractions of NOM in soils and crop 
biomass (Ohno et al., 2010). It was discovered that water extractable OM from plant biomass 
had marker components that could be classified as lipids, proteins, carbohydrates, lignin, 
and unsaturated hydrocarbons, while the water extractable OM from soils contained more 
lignin- and carbohydrate-sourced compounds. The mobile humic acid extract of soils 
displayed mostly lignin-like markers and the immobile humic acid markers clustered in the 
condensed aromatic space. A general trend of increasing aromaticity (i.e., decreasing H/C 
ratio) was observed along the humification gradient, from plant biomass to water-
extractable soil OM to refractory, stabilized humic acids. 
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Fig. 6. Kendrick mass defect plot (using a CH2 group) for Elizabeth River NOM isolated by 
small-scale electrodialysis and subsequent analysis by negative ion mode ESI-FTICR-MS.  
The yellow box is expanded in the lower diagram to highlight the points that fall on a 
horizontal line, indicating that they are part of a homologous CH2 series 
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By combining HCA with PCA, Hur et al. (2010) developed a method for comparing multiple 
petroleum samples that were analyzed by APPI-FTICR-MS. Using these multivariate 
statistical tools, twenty petroleum samples could be compartimentalized into numerous 
compositional groups, such as those enriched in hydrocarbons, oxygen series (O1, O2), 
nitrogen series (N1, N1O1), or sulfur series (S1, S2, O1S1). Sleighter et al. (2010) also employed 
a combined approach of HCA and PCA, but in this study the goal was to characterize 38 
NOM samples along a terrestrial to marine transect of the lower Chesapeake Bay and coastal 
Atlantic Ocean, using samples that were prepared for mass spectral analysis by either sterile 
filtration only, solid phase C18 extraction, or small-scale electrodialysis. Not only were 
differences detected between NOM samples from various locations, but it was also found 
that the method of preparation for the same NOM sample changed its composition, as 
determined by ESI-FTICR-MS. Terrestrial samples contained lignin, tannin, and condensed 
aromatic structures in high relative magnitude, while marine DOM was composed more of 
aliphatic and lignin-like compounds, as well as compounds containing more heteroatom 
(NSP) functionalities. Samples desalted by electrodialysis retained the more polar 
compounds (tannins, carbohydrates, and those containing heteroatoms) that were 
eliminated during the C18 extraction procedure. Overall, these recent developments in NOM 
characterization, made by exploiting multivariate statistical analyses, highlight the direction 
in which the NOM community is progressing. It is very likely that statistical analyses will 
become more commonplace, especially as researchers continue to accumulate large sample 
sets that would be otherwise very difficult to analyze manually.       

5. Limitations of FTICR-MS 

A major concern regarding the use of FTICR-MS for NOM characterization in recent years 
has been establishing an appropriate instrumental/solvent blank, to evaluate the 
background peaks detected in the mass spectra. Most analytical techniques have a 
straightforward manner for nulling the blanks, such as a basic background subtraction of 
the blank analysis from the sample analysis. Unfortunately, this method cannot be applied 
so simply when using a competitive ionization source such as ESI. Most NOM samples are 
analyzed in a mixture of methanol and water, thus a clean solvent blank of methanol and 
water is typically evaluated before analyzing samples. However, any contaminants present 
within the instrument itself will not have any analyte molecules with which to compete for 
charge. Thus, these substances acquire most of the charge, giving them an enhanced 
magnitude in the mass spectra. Once a sample is introduced, the analyte molecules out-
compete the contaminants for the charge in most cases, and then those contaminants are 
only observed at lower absolute and relative magnitudes, as shown for Mount Rainier 
humic acid in Fig. 7. The NOM sample is analyzed at various concentrations, to determine 
which concentration is sufficient to out-compete most (if not all) of the contaminants present 
in the FTICR-MS. For peaks that are detected in both the blank and the NOM sample, it is 
difficult to determine if that peak is actually in the sample or if it is due to contamination. In 
the case of Fig. 7, m/z 415.322 is detected at nearly a constant magnitude in the instrument/ 
solvent blank and at each concentration of Mount Rainier humic acid. Because the other 
contaminants (at 414.8–414.9 and 415.27) are nearly eliminated at 50 mg/L OM, it is likely 
that m/z 415.322 is present in the NOM sample, since it continues to be detected at all NOM 
concentrations. Nonetheless, some researchers err on the side of caution and argue that this 
peak should be removed from further analysis, since it is detected in the blank as well. Only 
1 nominal mass region is highlighted in Fig. 7 as an example, but this trend in blank 
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dilution/elimination occurs across the entire mass spectral range of 200-800 m/z. Thus, it is 
common to question the existence of several hundred peaks that are detected in each NOM 
sample that also overlap with the peaks in the blank. There is not currently a standard 
protocol among researchers for determining when to remove peaks from analysis, but 
typically the most conservative approach is taken and overlapping peaks in the blank and 
sample are removed from consideration as analyte peaks. It is important, though, to 
understand the overlap between solvent blank and sample analysis, so that peaks that are 
important to the NOM composition are not considered artifacts of the instrument itself.        
Another concern, when analyzing samples as complex as NOM, is peak reproducibility. The 
vast majority of published studies only analyze each sample once, rather than in replicate. 
This is due to sample throughput and cost. However, more recently, there has been more 
concern for reproducibility in order to characterize NOM reliably. The sample must be 
analyzed, in either duplicate or triplicate, to ensure reproducibility. This facilitates 
comparison of solvent or instrument blanks to replicate injections, enabling decisions as to 
which peaks should be included for further data analysis. Kido Soule et al. (2009) discovered 
that broadband acquisitions offer the highest repeatability for peaks detected and peak 
height (along with highest throughput), when compared to SSIA (or SIM) acquisition. In a 
recent study, Hur et al. (2010) analyzed 20 petroleum samples by APPI in triplicate over the 
course of 2 consecutive days. They reported that the three mass spectra for each sample 
were quite consistent, showing standard deviations of less than 5% of the initial values. 
Sleighter et al. (2010) performed a study comparing a single sample analyzed on different 
days by replicate injections of Dismal Swamp (Suffolk, VA, USA) whole water over the 
course of 31 days. The mass spectra produced were visually very similar, and multivariate 
statistics was utilized to evaluate the reproducibility. Based on HCA and PCA, the different 
analyses were found to be virtually identical when compared to a variety of other samples. 
These three studies highlight that ESI-FTICR-MS has the potential to be very reproducible 
and reliable, when the same instrumental parameters are utilized. However, no studies have 
tested the repeatability for various instrument operators or for the same sample analyzed on 
different FTICR-MS instruments. 
Another unknown factor in the analysis is the fraction of the NOM that is identified by FTICR-
MS. The ion sources described here for coupling to FTICR-MS are well known to exhibit biases 
for certain types of molecules, depending on the ionization mechanism and the ionization 
efficiency of the analyte in the midst of a complex matrix. If only 5% of the NOM is ‘observed’ 
by FTICR-MS, rather than 50% (or perhaps even higher), then the implications are enormous 
for complete characterization. Based on this concern, Hockaday et al. (2009) suggest that an 
internal standard be made widely available for spiking into NOM samples prior to FTICR-MS 
analysis. Using this approach, the ion source performance on various instruments could be 
assessed and compared. Furthermore, this standard could also used for internal calibration, 
making datasets acquired on different instruments by various operators more comparable.   
Once a high quality mass spectrum is obtained for a NOM sample, data analysis can 
proceed in order to obtain molecular level characterization. This characterization is 
performed by assigning the m/z values of peaks detected to molecular formulas, by using a 
molecular formula calculator. First, one must determine which atoms to consider for 
assignment. Typically C, H, O, N, and S are used, although some studies also include P, Na, 
and/or Cl. It is well known that the number of possible molecular formulas increases with 
increasing 1) permissible error difference between measured m/z and exact calculated m/z 
for the formula in question; 2) m/z value (higher m/z peaks are inherently less precisely 
measured); and 3) number of atoms used for formula assignment (Kim et al., 2006; 
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Kujawinski and Behn, 2006; Koch et al., 2007; Reemstma, 2009), as shown in Fig. 8. As one 
can see, increasing the allowable error and including more elements significantly increases 
the number of chemically possible formulas. The relationship between resolving power and 
the error difference between two formulas with slight differences in m/z values is reviewed 
in the four references given above, but Kim et al. (2006) reported that all theoretically 
possible elemental compositions of C,H,N,O,S up to 500 Da could be resolved at an accuracy 
of approximately 0.1 mDa (corresponding to a resolving power of 5,000,000 at m/z 500), 
allowing for a unique molecular formula to be assigned with confidence. While resolving 
powers of this magnitude are not currently routinely achieved during the analysis of NOM, 
it is likely that as technology continues to improve and FTICR-MS instruments at high 
magnetic fields are utilized, that these values will be achieved in the near future. 
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Fig. 7. Negative ion mode ESI-FTICR mass spectra of a) instrument/solvent blank (1:1 
water:methanol with 0.1% ammonium hydroxide) and Mount Rainier humic acid dissolved 
at 5 (b), 25 (c), and 50 (d) mg/L organic matter in 1:1 water:methanol with 0.1% ammonium 
hydroxide. The broadband mass spectrum has been expanded at 414.7 – 415.5 m/z 
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Fig. 8. The number of chemically possible molecular formulas for hypothetical m/z 499.21257 
at various error values for the different elemental compositions specified in the legend 

The inherent complexity incurred while assigning a unique molecular formula to an 
individual m/z value is highlighted in Fig. 8, and this difficulty is amplified when the task 
at hand is to assign thousands of m/z values to formulas for a single NOM sample. This 
process can be very labor-intensive. However, by carefully calibrating the mass spectral 
data, lower error differences can be tolerated (0.5 ppm has become quite common in the 
literature), to minimize the number of formulas that match the measured mass within the 
selected error. There are also other methods to assist in the determination of molecular 
formulas, such as using KMD analysis and the ‘formula extension’ approach, as described 
above. Furthermore, establishing rules that the formulas must obey (as in Stubbins et al., 
2010), to be assigned to a chemically relevant molecule, also helps to reduce the number of 
possible formulas. Formulas that are unlikely to be acceptable can be identified by 
examining the isotopic peak(s) as described by Koch et al. (2007) and featured in Fig. 9. 
Based on the natural abundance of 13C (1.1%), the number of carbons in the correct formula 
can be calculated from the relative magnitude of the 13C peak, eliminating incorrect 
formulas (Fig. 9a). In the case of Fig. 9b and 9c, C20H27O7- is determined to be the correct 
formula for the peak, because the predicted relative abundance of its 13C isotopologue is 
much closer to what is detected in Fig. 9a than it is for the formula C16H30N1O7P1- in Fig. 9c. 
For Fig. 9d, the peak at 487.30445 is not initially assigned a molecular formula, because Cl is 
not included in the formula assignment parameters. Upon closer inspection of the peak, the 
distinctive isotope pattern for Cl- adducts is observed and matches very closely to that of a 
simulated theoretical pattern for C23H48O8Cl1- (Fig. 9e). Koch et al. (2007) cautions that the 
S/N of the isotopic peak should be at least 25, otherwise the deviation (between the number 
of carbons in the proposed formula and that calculated from the relative magnitude) is too 
great to be a reliable tool for formula elimination. In general, by ensuring that an accurate  
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Fig. 9. Coastal marine DOM isolated by C18 solid phase extraction and subsequent analysis 
by negative ion mode ESI-FTICR-MS, expanded at 379.0-380.2 m/z (a) and 487.0-490.5 m/z 
(d), along with the simulated isotope patterns for the possible formulas specified (b, c, e).  
Error values are in ppm 
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calibration is achieved, setting a low error difference, utilizing KMD analysis and elemental 
ratio rules, and exploiting isotopic relative abundances, one can assign molecular formulas 
more easily and with additional confidence.  Ideally, a generally accepted protocol should 
be established and each of these tools could be written into a standard software program, 
similar to that developed by Kujawinski and Behn (2006). Then data analysis consistency 
between samples would be more reliable, and human error introduced by different analysts 
could be minimized. This specific step has yet to be taken, but with emerging literature in 
which suggestions are made regarding formula assignment rules, some standardization will 
become reality in the near future.   
Even though data analysis of FTICR mass spectra of NOM can provide accurate molecular 
formulas for the peaks detected, structural information for these peaks, which is often the 
key to understanding the source of the NOM, still remains elusive. Previous FTICR-MS 
studies focused on molecular characterization of DOM from terrestrial and marine waters 
have found that a significant overlap of the mass spectra is observed, as approximately 30% 
of the assigned formulas are shared between the two different types of DOM (Koch et al., 
2005; Sleighter and Hatcher, 2008). However, mass spectrometry cannot distinguish 
structural isomers of an elemental composition, so the possibility exists that identifying the 
same elemental formula in multiple samples does not necessarily mean that their molecular 
structures also correspond. For these reasons, tandem mass spectrometry (MS/MS) has been 
employed to isolate and fragment ions in the mass spectrometer, and this can provide 
structural information. Because the ions detected during the mass spectral analysis of NOM 
are predominantly singly charged, only neutral losses (i.e., H2O, COO, CO, and OCH2) have 
been observed by MS/MS using FTICR-MS (Stenson et al., 2003; Reemtsma et al., 2008; Witt 
et al., 2009; Liu et al., 2011) and other lower resolution mass spectrometers (Fievre et al., 
1997; Plancque et al., 2001; Leenheer et al., 2001; McIntyre et al., 2002). Furthermore, the 
complexity of NOM samples and the proximity of peaks detected at each nominal mass 
makes it particularly difficult to isolate a single peak in the mass spectrometer for 
fragmentation and subsequent detection of those fragments. While it is possible to do this, 
as shown by Witt et al. (2009), fragmenting each peak detected at every nominal mass from 
approximately 200-800 m/z by FTICR-MS/MS is quite a daunting task, one that will be 
labor intensive and require long instrument run times. The mass of data that would be 
acquired during such a study would also require months (if not longer) to correlate and 
understand. Nonetheless, the wealth of information obtained from a very thorough study 
could perhaps answer many questions regarding the structures of overlapping molecular 
formulas, but it is more likely that MS/MS will be utilized in the near future for specific 
target compounds that have been found to be markers for particular samples.  

6. Conclusions 

FTICR-MS coupled to API sources is clearly a powerful technique for the examination of the 
complex composition of NOM and has facilitated the overall characterization of NOM from 
a variety of source materials. The advent of API sources has allowed for the ionization of 
large, nonvolatile compounds, and its application to the polar, polyelectrolytic NOM 
mixtures has made a significant contribution to the understanding of the composition and 
reactivity of NOM. The ultrahigh resolving powers of FTICR-MS, those in the range of 105, 
can separate and resolve the numerous peaks per nominal mass detected for NOM samples, 
making it the mass spectrometer of choice for investigations of NOM. Furthermore, the 
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accuracy of the instrument is capable of determining m/z values to the fifth decimal place, 
from which molecular formula assignments can be made fairly reliably. The ability to assign 
formulas to the multitude of peaks detected across the mass range of 200-1000 allows for the 
characterization of NOM at the molecular level. 
In this review, we have described the application of FTICR-MS to the analysis of NOM, 
discussed some important parameters for sample preparation and the acquisition of high 
quality data, reviewed some of the recent publications of NOM studies utilizing FTICR-MS, 
assessed the emergence and importance of recent statistical methods, and evaluated the 
current limitations of the instrument and subsequent data processing. All things considered, 
the precision, sensitivity, and ultrahigh resolution offered by FTICR-MS reveals molecular 
level details of NOM composition, which has transformed our knowledge of NOM 
chemistry. We are confident that as FTICR-MS technology continues to improve, that this 
instrumentation will be utilized more widely and will lead to significant advancements in 
not only the areas of analytical and environmental chemistry, but also for the NOM, 
chemical oceanography, and mass spectrometry communities.  
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1. Introduction 

A new method for enhancing the Fourier transforms of x-ray reflectivity data is presented.  
This enhanced Fourier analysis, which employs differentiation of the scattered intensity 
signal, is shown to be extremely effective in extracting layer thicknesses from specular x-ray 
reflectivity scans from single and multi-layer structures.  This is a powerful technique that 
complements simulations of x-ray scattering patterns that employ dynamical diffraction 
models.  Examples of the procedure, data analysis, and comparison of the results with 
methods that have been described previously will be presented. 
A Fourier Transform (FT) power spectrum peak represents the frequency or period length of 
an interference oscillation.  X-ray scattering measurements provide information in the 
reciprocal space domain.  Therefore, the FT of an x-ray scattering measurement would be 
expected to provide information concerning layer properties, especially the layer 
thicknesses which establish the interference fringes in scattering measurements including 
reflectivity measurements and higher angle diffraction measurements.  Indeed, the intensity 
modulations that are observed in specular x-ray reflectivity measurements are related to the 
layer thicknesses and to the difference in refractive index between one layer and the next.  
At x-ray wavelengths, the refractive index is determined by the material density.  Discrete 
Fourier transforms and their application to x-ray reflectivity data will be discussed 
subsequently in terms of the mathematics, challenges inherent to x-ray scatter FTs, and 
enhancement techniques that have already been discussed in the literature. 
The key to the enhancement method described here is based around differentiating the 
specular intensity with respect to vertical reciprocal space coordinate QZ.  This 
differentiation retains the important and useful components of the x-ray reflectivity 
measurements while minimizing the impact of features of the measurements that obscure 
the transformation of the interference pattern.  The reflectivity data is transformed 
according to  
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j Z j i Z j iT
j

Z j Z j i Z j ii

dI I Q I Q
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dQ N Q Q

, ,

, , ,1

( ) ( )1 + −
+ −=
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The summation on the right side of the equation is over the N nearest data points on either 
side of the jth data point.  The number of neighboring data points used to calculate the 
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average slope at the jth data point is set just high enough to average out noise fluctuations, 
but kept well below the period lengths of any possible thickness signals.  In general, this 
differentiation approach is far more effective at removing the sloping background than 
logarithmic compression alone, average subtraction alone, or Qz4 leveling (Durand’s method 
(Durand 2004)) methods in the literature which have been previously employed to enhance 
FT of the reflectivity data and these methods are described in more detail below.  When 
combined with any of the other enhancement techniques, however, differentiation yields 
readily distinguishable FT peaks for even the weakest and most truncated of sloping 
oscillations.  It is not proposed here that differentiation should replace the other 
enhancement techniques, but rather that it should be used with them to achieve the best 
possible FT enhancement.  The background into the development of this approach is 
presented below with illustrations and comparison with the other techniques. 

2. Background  

Electromagnetic radiation that travels through one medium and passes into another will be 
partially reflected at that interface if the media have different indices of refraction.  
Radiation reflecting from interfaces leads to interference in the scattered wave and it is this 
effect that makes x-ray scatter based film thickness measurements useful.  X-ray reflectivity 
can be especially amenable to extraction of layer thicknesses as the interference pattern 
includes only information on changes in refractive index (which is the electron density at x-
ray wavelengths) as a function of depth.  The crystallinity, strain state, or other such 
crystallographic factors do not play roles in determining the reflectivity curve for both 
substrates and multi-layer structures deposited on the substrates.  In fact, specular x-ray 
reflectivity measurements have proven to be extremely valuable for determining the 
properties of multi-layer structures.  In a typical case, the fringes that are introduced from a 
single layer are used to determine the layer thickness; for more complicated multi-layer 
structures, simulation programs are used to help extract layer thicknesses. 
To demonstrate the information gained from a specular x-ray reflectivity scan, consider that 
the reflectivity scan is simply a specular scan from the origin (000) of reciprocal space along 
Qz, i.e., perpendicular to the surface.  This is depicted in Figure 1 which shows a two 
dimensional section of reciprocal space that includes the co-planar scattering conditions; the 
so-called Ewald construction.  An ‘off-specular’ scan, which will be described later as an 
important scan used in the literature to help extract thickness information via FT, is also 
included in the figure. 
The axes are Qx, which is along the surface, and Qz, which is perpendicular to the surface.  
Ko represents the incident wavevector (with a magnitude 1/λ where λ is the radiation 
wavelength) and KH represents the scattered wavevector (also 1/λ).  For specular reflectivity 
scans, the angle between the incident beam and the surface is ω (= Θ) and the angle between 
the incident and scattered beams is 2Θ.  Changing ω (=Θ) by a small increment and the 
angle between the incident and scattered beams by twice that increment traces a vertical line 
in reciprocal space.  The relationship between Qz and ω and 2Θ is simply  

 
( )( )

zQ
sin sin 2ω ω

λ
− − Θ=  (2) 

and, for the specific case for specular reflectivity where ω = Θ, 
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It should be noted that, at x-ray wavelengths, the refractive index is important.  Including 
this effect leads to 

 z cQ 2 22
cos cosλ= Θ − Θ  (4) 

where cos(Θc) = the refractive index and Θc represents the critical angle below which the 
incident x-ray beam is totally reflected at the surface. (Durand 2004) 
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Fig. 1. Reciprocal Space and the Ewald Construction.  (a)  The two gray half circles represent 
regions for which scattering involves the transmission mode.  The region near the origin of 
reciprocal space (000) is expanded in (b).  The vertical dashed line (labeled ‘S’) represents a 
specular reflectivity scan.  This is achieved by rotating the sample by an angle ω = Θ with 
respect to the incident beam and the angle between the incident and scattered beam by 2Θ.  
The dotted line (labeled ‘O’) represents an off-specular scan in which the incident beam 
angle with the surface ω ≠ Θ but both the angle ω and 2Θ are moved by increments of Θ and 
2Θ, respectively 

The development of x-ray reflectivity expanded significantly with the work of L.G. Parratt 
(Parratt 1954), who introduced a theory that related the layer thicknesses and electron 
densities to the reflectivity curve.  Following the approach of von Laue, Parratt used 
Maxwell’s equations and appropriate boundary conditions to solve for the reflected to 
transmitted amplitude ratio at the bottom of layer j, Xj:   

 j j j
j

j j j

r X
X

r X

2
1 1

2
1 11
ϕ
ϕ

+ +
+ +

+= +  (5) 

where layer j + 1 is below layer j.  The phase offset of the wave scattered from the bottom of 
and traversing the thickness of layer j + 1, j 1ϕ + , is: 

 j z j jik t1 , 1 1exp( )ϕ + + +=  (6) 

The component of the wave vector perpendicular to the surface in layer j, kz,j, is 
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where ω (= Θ) is the incidence angle, as noted above, and nj is the index of refraction of layer 
j at wavelength λ. 
The Fresnel coefficient of reflection from the interface between layers j and j + 1, rj, is given 
by 
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for a sharp interface.   
Overall, the x-ray reflectivity R(Qz) for a layer on a substrate can be described as 

 ( ) ( ) ( ) ( ) ( )z
z F z z
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I Q d z
R q R Q iQ z dz

I dz

2
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exp
ρ

ρ∞
= = ∫  (9) 

where Io is the incident intensity, I(Qz) is the measured reflectivity intensity, and RF(Qz) is 
the Fresnel reflectivity (which is effectively the Fresnel coefficient [8] squared).  Equation [9] 
demonstrates that the reflectivity intensity as a function of Qz (or Θ) depends only upon the 
density change at the interfaces and surface. 
This relationship later modified the Fresnel coefficient to account for rough or graded 
interfaces: 

 z j z j
j j z j z j

z j z j

k k
r k k

k k

, , 1
1 , , 1

, , 1
exp 2σ+ + +

+
− ⎡ ⎤= −⎣ ⎦+  (10) 

where σj+1 is the effective width associated with interface roughness and/or compositional 
grading.  Further development of the theory of x-ray reflectivity scattering is addressed 
elsewhere. (Bowen and Tanner 1998; Daillant and Gibaud 1999; Wormington, Panaccione et 
al. 1999)  
Examples of reflectivity curves based on this formalism are shown below to illustrate the 
application and challenges associated with using Fourier Transforms of x-ray reflectivity 
data to extract layer thickness information.  Figure 2 shows reflectivity from a silicon 
surface, a silicon surface with a layer of SiO2, a silicon surface with a layer of germanium, 
and a silicon surface with an r.m.s. roughness of 5 Å.   
For such specular reflectivity scans, it is customary to plot the intensity on a logarithmic 
scale against the angle ω (which, for a specular scan is equal to Θ) with the understanding 
that the angle between the incident beam and the detector is also changing at twice the 
angle, hence 2Θ.  In some cases, the x-axis will indicate this, e.g., with a label ‘ω - 2Θ’ or ‘Θ - 
2Θ’.  In other cases, the reflectivity scan will be plotted as a function of Qz (transformed 
using equation [2] or [4]). 
Starting with the simulated reflectivity curve from a smooth silicon surface, there are two 
notable characteristics of the specular reflectivity scans that are important for the subsequent 
Fourier transform: 
i. the reflected intensity is unity when the incident angle is below a certain value – the 

critical angle for total external reflection which is identified as Qz,c or Θc as noted above.   
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ii. the reflected intensity drops off strongly for Q ≥ Qz,c (ω ≥ Θc) with a with a Qz4 
dependence at higher angles. 
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Fig. 2. Simulated X-ray reflectivity scans for a bare surface (Si) comparing \smooth and 
rough surfaces as well as the scans for 200 Å layers (either SiO2 or Ge) on smooth Si in which 
the thickness fringes are clearly visible.  The scans from the structures with the SiO2 and Ge 
layers are vertically offset (10X) for clarity 

For the case of a layer deposited on the silicon surface, a series of fringes is observed.  The 
fringe spacing provides information on the layer thickness and represents interference 
associated with the difference in electron density between the layer and the substrate.  This 
effect is clearly depicted for the examples of a 200 Å germanium layer on the silicon when 
compared to a 200 Å layer of SiO2 layer on silicon.  The difference in electron density 
between silicon and germanium is significantly greater than that between SiO2 and silicon.  
The fringe spacing remains the same, whereas the fringe amplitude is correspondingly greater 
for the combination with the greater electron density difference, in this case, for the 
germanium on silicon.  In addition, the critical angle, Θc for the Ge layer on the surface is 
greater than that for the SiO2 layer on the surface.  Silicon and SiO2 have very similar densities, 
so the critical angles for those surfaces are also nearly the same value, as shown in the figure. 
For the silicon surface with the rougher interface, the intensity drops off at a different Q 
dependence (and this decay depends on the extent of roughness).  Figure 3 plots the silicon 
reflectivity multiplied by Qz4 (ω4 for these scans to compare directly to the data in Figure 2) 
for the specular scans from both the smooth and the rough surfaces.  In these case, it is clear 
that a horizontal line is generated for the smooth surface for ω > 3Θc (i.e., the decay exhibits 
a Qz-4 dependence) and a decreasing slope is observed for the rougher surface.   
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Fig. 3. The intensity at each position is multiplied by the incident angle to the fourth power.  
For a smooth surface, this product is a constant value at higher angles.  For a rough surface, 
the product decreases at higher angles, but not as strongly as the intensity alone decreases 

Based on the x-ray reflectivity curves and as is deduced from Equation [9], x-ray reflectivity 
scans along Qz measure the Fourier transform of the derivative of the electron density with 
respect to z.  Indeed, Equation [9] can be rewritten as (Russel 1990) (Li, Muller et al. 1996) 
(Daillant and Gibaud 1999) (Durand 2004) 

  Z

Z Z

d z d z
I Q F P

Q d z Q d z

2

4 4

1 ( ) 1 ( )
( )

ρ ρ⎡ ⎤⎛ ⎞ ⎛ ⎞≈ ≈⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦  (10) 

where, in this case, F(dρ(z)/dz) is the Fourier Transform amplitude, and P(dρ(z)/dz) is the 
Fourier transform power of the derivative electron density at a depth z from the surface.  
This formulation of the equation more clearly brings out the general Qz4 dependence and 
also suggests that the extraction of the density distribution as a function of depth using 
Fourier Transforms should be straightforward. 
In other words, the Fourier transform of a specular reflectivity measurement should yield 
the autocorrelation function of the derivative of the electron density.  Thus, x-ray reflectivity 
Fourier transforms are expected to produce peaks corresponding to distances between 
interfaces, which can be the thickness of individual layers or the sum of the thicknesses of 
multiple layers, etc.  While the order of the interface stack sequence and information about 
roughness are not extracted directly from a Fourier Transform of the data, the FT extraction 
is nonetheless anticipated to be powerful techniques for automatically extracting layer 
thickness from specular reflectivity measurements. 
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3. Experimental background 

A Bede Scientific, Inc. model D1 high resolution x-ray diffractometer was used for all x-ray 
measurements in this work.  The diffractometer is comprised of three primary components, 
often referred to as ‘axes.’  The first ‘axis’ is the beam conditioning component of the 
diffractometer, the second is the sample alignment and the third includes the scattered beam 
conditioning.   
The first axis collimates and monochromates the x-ray radiation produced using a copper 
anode (λCuKα1 = 1.540562 Å) vacuum tube x-ray.  A MaxfluxTM specular mirror is used to 
redirect divergent x-rays toward the collimator crystal in a parallel path, resulting in an 
approximately tenfold increase in usable x-rays.  In the reflectivity measurements discussed 
here, the beam is diffracted twice by one channel-cut 220 Si collimator crystal and then 
passed through a slit before it is incident upon the sample crystal.  Together, the specular 
mirror, collimator crystal, and monochromator slit comprise the first axis. 
The second axis supports and manipulates the sample crystal, or specimen.  The specimen 
can also be rotated along orthogonal axes in the plane of the sample surface: χ and ω.  The χ 
axis of rotation allows for adjustment of sample tilt and is located in the dispersion plane of 
the diffractometer.  ω is orthogonal to χ and describes the angle of incidence between the x-
ray beam and the sample surface, as noted above.   
The third axis assembly is placed on a cantilever that revolves around the 2Θ axis of 
rotation, which coincides with the ω axis of rotation.  A scintillating x-ray detector tuned for 
optimum response to the copper K� line, a dual-channel analyzer crystal (DCA) ((220) 
silicon reflections), and a pair of x-ray acceptance limiting detector slits constitutes the 
scattered beam conditioning axis.  The configuration of the third axis determines the angular 
resolution of the instrument.  Angular resolution is determined by the width of the detector 
slits used in double axis measurements which are employed here.  In triple axis 
measurements, the DCA essentially serves as an extremely narrow detector slit and 
determines the angular resolution of the measurement.  
A commercial simulation program (Bede REFS) employs a distorted wave Born 
approximation to the dynamical scattering conditions.  Following the general approach 
described by Parratt, (Parratt 1954) (Wormington, Panaccione et al. 1999), this program can 
be used to generate scans for illustrative purposes as well as to help understand the Fourier 
transforms from multi-layer structures.  The examples that are illustrated here employ two 
different sets of samples.  The first includes a thin AlN layer deposited on a sapphire 
substrate.  The second is a multi-layer structure based on an AlSb / InAs structure 
deposited on a GaAs substrate.  The techniques and procedures described here, however, 
are not material dependent and the structures should be considered as illustrating the 
general principles of the technique. 

4. Prior studies: Fourier Transform of specular x-ray reflectivity 

The first published use of FT with x-ray scattering data is that of Sakurai and Iida. (Sakurai 
and Iida 1992)  As it happens, a few properties of x-ray reflectivity data that are shown in 
Figures 2 and 3 severely limit the effectiveness of Fourier transforms of the raw data.  
Consider that thickness fringes in reflectivity measurements typically follow an intensity 
distribution illustrated by the curve of the Ge (or SiO2) layer on silicon (as in Figure 2); this 
presents a challenge in that the oscillations appear on a sloping background that ranges over 
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several orders of magnitude.  In the case of a specular x-ray reflectivity scan, the intense 
peak adjacent to the oscillations is the intense highly reflected component near the critical 
angle, Θc.  The part of the curve containing the oscillations represents a short non-
background interval.  Any short non-background interval is essentially a signal consisting of 
a single pulse.  A non-square pulse yields a Fourier transform with a truncation peak 
centered at zero frequency similar to the squared sync function associated with a square 
pulse FT.  When the oscillations are weak or the number of oscillations measured is small, the 
truncation peak can obscure the oscillation peaks.  This effect is illustrated in Figure 4.  Here, a 
simple sinusoidal oscillation is compared to the same sinusoidal oscillation with the addition 
of an intense peak at the left that corresponds to the overall decay of the reflectivity signal. 
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Fig. 4. A sinusoidal oscillation (left, upper) and FT (left, lower), the same oscillation added to 
half of an adjacent intense peak (right, upper) with the FT showing the peak due to the 
sinusoidal oscillation partially buried by the truncation FT peak 

The FT that includes the high intensity signal at low angles superimposes a truncation FT 
that significantly distorts the peak which originates from the sinusoidal function.  Therefore, 
the FT provides only vague information about the sinusoidal function peak.  This effect is 
often so severe for experimental data that it renders Fourier transforms on raw data totally 
useless.  For example, see Figure 5.  The specular x-ray reflectivity data is from a 320 Å AlN 
layer deposited on a sapphire substrate and the expected AlN thickness fringe pattern is 
clearly exhibited.  The transform shown on the right, however, only exhibits a diffuse 
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feature where a sharp peak associated with the 320 Å AlN film would be expected.  Clearly, 
the FT of this data does not provide practical information about the layer thickness and the 
culprit is the high intensity at low angles that introduces the background slope. 
In large part, these types of constraints have limited the popularity of FT analysis with x-ray 
scatter data.  However, a few approaches for enhancing specular x-ray reflectivity FTs exist 
in the literature.  They are based around (i) flattening the overall shape of the x-ray scatter 
data prior to the FT and (ii) maintaining as much of the interference pattern as possible 
without artificially modifying the data. 
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Fig. 5. (Left) X-ray reflectivity scan from a 320 Å AlN film on a sapphire substrate and (right) 
Discrete Fourier Transform 

For example, Banerjee et al., (Banerjee, Raghavan et al. 1999) attempted to flatten the scatter 
data by subtracting an off-specular scan from the specular reflectivity scan, as is depicted in 
Figure 1(b).  The second technique proposed by Grave de Peralta and Temkin (Peralta and 
Temkin 2003) involves logarithmic compression of the intensity and subtraction of a heavily 
smoothed version of the x-ray reflectivity curve.  The third technique proposed by Durand 
(Durand 2004) involved multiplication of the intensity by the reciprocal space coordinate 
value, zQ4  as was already shown in Figure 3.  The analysis of each of these concepts is 
included below. 
Because off-specular scans diverge from the interference direction, they often do not show 
interference fringes.  They do, however, have a sloping background shape similar to that of 
a specular scan.  The idea of leveling the specular reflectivity scan for FT enhancement was 
first demonstrated through subtraction of an off-specular scan for just this reason. (Banerjee, 
Raghavan et al. 1999)  However, the effectiveness of off-specular scan subtraction depends 
heavily upon the sample measured.  A film that is uniform in thickness but conforms to a 
rough substrate, for example, may have the interference fringes broadened horizontally in 
reciprocal space.  This is because areas of different surface height may scatter incoherently 
with respect to one another.  Such broadened interference fringes are typically referred to as 
Bragg sheets.  They are illustrated in Figure 6. 
This effect is demonstrated in Figure 7 which shows the specular scan from the 200 Å Ge 
layer on Si but with 5 Å roughness at both the Si-Ge interface and the Ge surface.  In the 
latter case, subtraction of the fringes in the off-specular (otherwise known as a longitudinal 
scan) case will introduce an additional, artificial modulation.  
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Fig. 6. Specular and off-specular scans in the case where interference fringes are horizontally 
broadened into Bragg sheets 
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Fig. 7. X-ray reflectivity scans from a 200 Å Ge layer on Si with 5 Å roughness at the 
interface and 5 Å roughness at the Ge surface.  The top scan is the specular scan; the lower 
scans represent the longitudinal scans for the cases of uncorrelated and correlated interfaces 

Still, the use of the off-specular subtraction introduced the idea of leveling the scan by some 
type of subtraction to enhance the FTs and thus paved the way for more effective 
techniques. 
One improvement is logarithmic compression of the experimental data followed by 
subtraction of a semi-local average intensity.(Peralta and Temkin 2003)  Here logarithmic 
compression means transforming the intensity of the jth datapoint, Ij, according to: 

 T
j jI Ilog=  (11) 
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Equation [11] transforms the data such that its shape becomes numerically what it appears to 
be when plotted on a logarithmic intensity scale.  When logarithmic compression is first 
applied, and the semi-local average is then calculated and subtracted, a dramatic reduction of 
the pulse transform peak is observed upon the Fourier Transform and the oscillation peak is 
clearly observed, as shown in Figure 8 for the same AlN on sapphire sample discussed earlier. 
The combination of logarithmic compression and average subtraction is effective because 
logarithmic compression aids in calculation of a more useful average curve.  In this work, 
the local average is calculated at the jth data point as the average over the N nearest data 
points in each direction.  The average at each point is referred to here as a 2N point local 
average, where 2N is the number of neighboring points contributing to the average.  Within 
N data points of each edge of the scan, the number of points used to calculate the average 
must be reduced.  For example, at the first data point (e.g. j = 1) the average can only be 
calculated over data points 1 to 1 + N.  Logarithmic compression prior to calculation of the 
average reduces this effect through simple compression of the intensity dynamic range. 
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Fig. 8. (Left) logarithmically compressed specular scan showing 100 point local average, 
(center) specular scatter intensity following subtraction of 100 point local average, and 
(right) FT of the center curve 

Clearly logarithmic compression followed by subtraction of a semi-local average can be very 
useful. When extremely thin films are measured, however, the approach loses its 
effectiveness because the wavelength of the oscillation begins to approach the total length of 
the scan.  To prevent the average from itself including oscillations, the term N must at least 
be larger than a period length.  When that period length is long, N must be so large that the 
average curve no longer matches the sloping background shape.  This particular effect is 
demonstrated in Figure 9 using part of the AlN on sapphire scan.  Under these conditions, 
two extra peaks are artificially introduced into the FT and two thinner layers would appear 
to be present in the original data. 
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Fig. 9. Log compression and average subtraction with FT for a sample with few fringes 
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Additional challenges arise when intense peaks exist in the specular scan.  This occurs, for 
example, in the case of a superlattice structure.  The peak elevates the average curve above the 
background slope and thus limits the effectiveness of average subtraction in leveling the data.  
Improper leveling leads to pulse transform artifacts similar to those observed in Figure 9. 
Multiplication of the intensity by ZQ4  (or ω4) (Durand 2004) should thus be an effective method 
for removing the sloping background of a reflectivity scan, i.e., leveling the curve, as depicted 
in Figure 3.  The FT of the leveled curve is calculated and peaks are taken to represent layer 
thicknesses and sums of layer thicknesses.  The effectiveness of this approach is demonstrated 
using the AlN on sapphire reflectivity data and is shown below in Figure 10. 
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Fig. 10. Multiplication of intensity by Qz4 at each data point and the FT showing a distinct 
peak corresponding to the 320 Å thickness of the layer 

As seen in Figure 10, this approach is clearly less effective at leveling the specular scan than 
are the averaging techniques and thus yields a stronger pulse transform peak.  Challenges 
arise when roughness or graded interfaces cause the specular scatter intensity to drop-off 
faster with increasing QZ (for example, see Figure 2) than the assumed fourth order 
dependence so the resulting curve is not necessarily flat.  The main advantage to Durand’s 
approach, however, lies in the fact that it is independent of oscillation period length.  Recall 
that when subtracting a semi-local average, the optimum local average size must be selected 
very carefully.  Furthermore, when the oscillation period length approaches the length of 
the measurement, the average subtraction technique becomes ineffective.  These 
disadvantages do not apply to Durand’s method. Each of the above techniques has merits, 
but each suffers from some aspect of the nature of the x-ray reflectivity curve. 

5. Presentation of a new enhancement approach 

5.1 Differentiation and application to a single layer structure 
An approach to better flatten the reflectivity data stems from considering that the x-ray 
reflectivity data effectively consists of a well-behaved fringe pattern (sine curves or the 
combination of several sine curves) with the addition of a sloped background (i.e., the Qz4 
decay with Qz).  These extrinsic influences may be better separated using differentiation 
than the techniques described in the literature and this concept forms the basis for the 
approach described here.  For example, the differentiation of the fringe pattern will produce 
a curve with an identical periodicity as the original data while the differentiation of the 
sloping component will provide a much reduced contribution to the entire curve.  The data 
is transformed according to  
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The summation on the right side of equation [12] is over the N nearest data points on either 
side of the jth data point.  The number of neighboring data points used to calculate the 
average slope at the jth data point is set just high enough to average out noise fluctuations, 
but kept well below the period lengths of any possible thickness signals. 
Differentiation alone is extremely effective at leveling the data for FT enhancement.  As a 
comparison to logarithmic compression, semi-local average subtraction, and multiplication 
of the intensity by ZQ4 , the same specular reflectivity scan of an approximately 320 Å AlN 
film deposited on a sapphire substrate is shown following the differentiation transformation 
according to Equation [12] with the FT in Figure 11.  The surface truncation peak is 
significantly reduced and does not overlap with the FT peak due to the layer.  Also, the 
layer peak is relatively sharp and provides the correct layer thickness of 320 Å.  Thus, for 
this example, differentiation is clearly one of the most effective single enhancement 
techniques.  Multiple differentiation processes improve the result further. 
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Fig. 11. 320 Å AlN film on sapphire derivative specular reflectivity scan and the FT 
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Fig. 12. Specular reflectivity scan with logarithmic compression followed by differentiation 
(left) and the FT (right) 
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In general, differentiation is far more effective at removing the sloping background than 
logarithmic compression alone, average subtraction alone, or the Qz4 leveling methods.  
However, these techniques can be combined to produce even better results.  For example, 
when combined with any of the other enhancement techniques, differentiation yields 
distinguishable FT peaks for even the weakest and most truncated of sloping oscillations.  
Therefore, it is not proposed here that differentiation should replace the other enhancement 
techniques, but rather that it should be used synergistically with one or more of them to 
achieve the best possible FT enhancement.  To illustrate this point, as shown in Figure 12, 
logarithmic compression followed by differentiation is a very effective transform for FT 
enhancement of specular reflectivity scans.  The peak near 320 Å corresponding to the 
thickness of the AlN film is clearly observed in the FT and the layer FT peak is sharper than 
with either technique alone.   
Multiplication by ZQ4  followed by differentiation is also an extremely effective enhancement 
for specular reflectivity FTs.  Using data from the same AlN thin film discussed in the 
examples above, the FT result is improved through multiplication of the intensity by ZQ4  
followed by differentiation.  The curve and FT are shown below in Figure 13. 
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Fig. 13. 320 Å AlN specular x-ray reflectivity curve leveled using Qz4 leveling followed by 
differentiation (left) with the FT (right) 
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For comparison to logarithmic compression followed by local average subtraction, the same 
truncated segment of the AlN reflectivity scan (compare to Figure 9) is processed using Qz4 
leveling followed by differentiation in Figure 14.  Despite the severe wave truncation, the 
enhanced FT still shows an easily distinguishable single layer thickness peak and greatly 
reduced artifacts when compared to the results in Figure 9 in which the truncation 
artificially introduces additional peaks of comparable intensity to the layer FT peak. 

5.2 Determination of layer thicknesses in multi-layer structures 
Multiple layer structures present a more substantial challenge to the FT approaches in 
general, so the effectiveness of including the differentiation method in the transformation 
should be assessed in terms of analyzing such a multi-layer structure.  The strategy for 
including the differentiation method is illustrated using a multiple layer (>5) InAs / AlSb 
heterostructure grown on GaAs.  These structures are used for high speed electronic 
devices.  Reflectivity data from such a multi-layer structure is presented next to assess how 
well the differentiation process combined – in this case – with the Qz4 multiplication can 
extract important layer thickness information. 
As noted above, Fourier analysis affords a reasonably straightforward method for 
determining layer thicknesses, though initially it may be difficult to interpret which layer 
thicknesses are represented by which FT peaks in these more complex, multi-layer 
structures.  One method for identifying FT peaks is to Fourier transform simulated x-ray 
reflectivity scans of the structure adding one layer at a time.  By tracking the changes to FT 
peaks with the addition of layers, it is possible to identify the relationship between the FT 
peaks and the particular layer thicknesses.  This process was carried out for the AlSb/InAs 
structure that is illustrated in Figure 15.   
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Fig. 15. Schematic of InAs / AlSb multi-layer structure 
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Starting with the lower AlSb electron barrier, this process is shown in Figure 16 through 
Figure 22. 
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Fig. 16. Simulated reflectivity scan FT of the structure up to the lower AlSb electron barrier 

Figure 16 shows the Fourier transform of the reflectivity data; peaks for the buffer layers are 
not present (beyond the scale of the graph in Figure 16) which indicates that the buffer 
layers are too thick to yield measurable thickness fringes in the reflectivity scan and 
therefore do not yield FT peaks.  In effect, the fringe spacing for these thick layers is very 
small (~ 8 arcsec for a 2.0 μm thick AlSb layer on GaAs using Cu kα1 radiation) and is 
readily washed out with even small magnitude beam divergence or curvature that would be 
typical for modern x-ray sources, equipment, and substrates.  The lower AlSb electron 
barrier, on the other hand, yields a FT peak corresponding to its thickness (500 Å).  As 
shown in Figure 17, addition of the InAs electron channel to the simulation yields a new 
peak at the channel thickness (150 Å), and shifts the original lower AlSb barrier FT peak by 
approximately the channel thickness.  The peak labeled t2 in Figure 17 thus represents the 
sum of those two layer thicknesses.  
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Fig. 17. Simulated reflectivity scan FT of the structure up to the InAs channel 

Next, as shown in Figure 18, adding the 75 Å AlSb electron barrier and doped 12 Å InAs 
layer to the simulation introduces a new FT peak (t1) representing the sum of the two new 
layers.  The InAs channel peak, which is now t2 in Figure 18, is still present but is very weak.  
Peak t3 represents the sum of the InAs channel, middle AlSb barrier, and doped InAs layer 
thicknesses.  FT peak t4 in Figure 18 represents the sum of the four layer thicknesses above 
the buffer layers. 
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Fig. 18. FT of simulated reflectivity scan of the structure up to the middle AlSb electron barrier 

Adding the upper 12 Å AlSb electron barrier, we see in Figure 19 a shift of peaks t1, t3, and 
t4, by approximately the thickness of the new layer. 
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Fig. 19. FT from simulated reflectivity scan of the structure up to the top AlSb electron 
barrier 

Carrying this process through to the top of the structure in Figure 20 and 21, we arrive at the 
relationships between the FT peaks and layer thicknesses summarized in Figure 22.  
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Fig. 20. FT of simulated reflectivity scan of the multi-layer structure up to the InAlAs hole 
barrier 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

338 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500 600 700 800 900 1000

|F
(t

h
ic

k
n

e
s

s
)*

F
(t

h
ic

k
n

e
s

s
)|

Angstroms

t4 = 307 Å

t2 = 157 Å

t1 = 76 Å

t5 = 802 Å

t3 = 235 Å

t5

InAs 20 Å

t1t2

t3

t4

In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier
In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InSb 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Ån-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

InAs 20 Å

t1t2

t3

t4

In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier
In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InSb 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Ån-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier
In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier
In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier
In0.4Al0.6As 40 Å hole barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InAs 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

InSb 150 Å electron channel

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 2.0 µm buffer

AlSb 500 Å electron barrier

Al0.7Ga0.3Sb 0.3 µm buffer

GaAs 0.25 µm buffer

AlSb 75 Å electron barrier
n-type InAs:Si (1.1 ×1019 cm-3) 12 Ån-type InAs:Si (1.1 ×1019 cm-3) 12 Å

AlSb 12 Å electron barrier

InAs

 
Fig. 21. FT of simulated reflectivity scan of the structure up to the InAs cap layer 
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Fig. 22. Relationships between various layer thicknesses and the XRR FT peaks 

Through a series of simulated reflectivity scans and the application of the Qz4 multiplication 
and the differentiation described above to the simulation scans, four clear peaks are 
expected to emerge from the FT.  These peaks represent different combinations of the layer 
thicknesses as identified in Fig. 23.  For example, layer “t1” is a combination of the 
thicknesses of the top four layers, t2 is a combination of the top five layers, t3 is from the 
bottom three layers and t4 is a sum of thicknesses from the entire stack.  Figure 24 shows the 
experimental specular reflectivity scan from this structure, and the FT of the data after 
multiplication by Qz4 and differentiation as described above for the AlN layer.  A simulation 
based on the FT values is included with the experimental reflectivity data as a dashed line.  
The FT transform of the processed data clearly show the same four peaks.  With these 
values, the thicknesses of several of the individual layer peaks can be determined.  Of prime 
importance is the thickness of the InAs channel layer.  This is t4 – t2 = 150 Å which is the 
intended thickness and matches that from the best fit XRR simulation (154 Å) as well as 
transmission electron microscopy measurements (148-152 Å).  The other layer thicknesses 
obtained by our new method also match those from the simulated reflectivity scan and from 
TEM.  In fact, even the thin InAs donor layer (This can be obtained, for example, as t1 + t3 – 
t4) is extracted.  Using the values in the transformation, the layer thickness is 10 ± 3 Å, also 
comparable to the simulated value (10 Å) and the TEM measurement (10 ± 3 Å).  The benefit 
with the differentiation approach is that the pulse truncation peak near the origin would 
overwhelm the peaks due to the thinner layers using any of the previously published 
processes.  The identification of these peaks is confirmed by FT transforms of simulated 
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scans which also shows that errors related to ignoring refractive index differences from 
layer to layer are small (thickness differences of less than ± 2 Å).  
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Fig. 23. Schematic of AlSb / InAs heterostructures.  t1, t2, t3, and t4 represent the major 
thickness values from the FT 
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Fig. 24. The specular reflectivity scan and simulation (left, simulation is gray line 
superimposed on the experimental data, black line) and the FT (right)  - after Qz4 leveling 
and differentiation  - with the extracted film thicknesses 

6. Summary 

Fourier transforms of X-ray reflectivity scans from multi-layer structures provide useful 
layer thickness information.  A challenge in the transform process is to address the Qz-4 
sloping background which is present with the layer thickness fringe oscillations.  Previous 
studies included several different methods to address this sloping background issue with 
limited success.  Our approach combines one of these previous methods – logarithmic 
compression or Qz4 multiplication – with differentiation of the x-ray reflectivity data.  The 
differentiation more effectively separates the contribution from the sloping background 
from the thickness fringe oscillations, making the subsequent Fourier transform more 
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closely related to only the layer thicknesses.  This approach is also less susceptible to the 
presence of a limited number of thickness oscillations or a truncated data set.  Data from a 
single layer (320 Å AlN on an Al2O3 substrate) was utilized to compare the results from each 
of the previous techniques with the differentiation step.  The combination of the 
differentiation step with either the logarithmic compression or the Qz4 leveling produces 
clear layer thickness peaks after the Fourier transform. 
The differentiation approach described here also proved to be very effective at extracting 
layer thickness information from multi-layer structures that produce complicated specular 
x-ray reflectivity scans.  The Fourier transform produces a series of sharp peaks that 
originate from different layer thicknesses.  The peaks represent the combination of different 
layer thicknesses and the thickness of each layer can be determined with the assistance of 
the use of specular x-ray reflectivity simulation scans.  This process was demonstrated for an 
InAs / AlSb multi-layer structure.  This technique has applications to any multi-layer 
system with thin layers including complex optical coatings, multi-layer metallic coatings for 
giant magnetoresistance measurements and for any other multi-layer structure that can be 
measured using specular x-ray reflectivity scans. 
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1. Introduction

The Fourier analysis was invented by the French mathematician, Joseph Fourier, in the early
nineteenth century (28). The Fourier transform (FT) is an operation that transforms a function
of a real variable in a given domain into another function in another domain (there are
generalizations to complex or several real variables). The domains differ from one application
to another. In signal processing, typically the original domain is time and the target domain
is frequency. The transform captures those frequencies present in the original function. The
Fourier transform and its generalizations are part of the Fourier analysis (23). The Fourier
transform on discrete structures such as finite groups (DFT), opens up the issue of the time
complexity of the algorithm which computes FT. Particularly, efficient computation of a fast
Fourier transform (FFT) is essential for high-speed computing (8). There is a vast literature on
the theory of Fourier transform on groups, including Fourier transform on locally compact
abelian groups (27), on compact groups (34), and finite groups (73). In this chapter, we
review the generalizations of the Fourier transform on group-like structures, including inverse
semigroups (43), hypergroups (10), and groupoids (70). This is a vast subject with an extensive
literature, but here a personal view based on the authors’ research is presented. References to
the existing literature is given, as needed. The Fourier transform on inverse semigroups are
introduced in (47). The basics of the theory of Fourier transform on commutative hypergroups
are discussed in (10). The Fourier transform on arbitrary compact hypergroups is first studied
in (74). The section on the Fourier transform of unbounded measures on commutative
hypergroups is taken from (2). An application of the quantum Fourier transform (QFT) on
finite commutative hypergroups in quantum computation is given in (4). Finally, the Fourier
transform on compact groupoids is discussed in (1), (3). The case of abelian groupoids (57) is
considered in (6).
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2. Outline
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8. Conclusion
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3. Classical Fourier transform

Fourier transform has a long history. Some variants of the discrete (cosine) Fourier transform
were used by Alexis Clairaut in 1754 to do some astronomical calculations, and the discrete
(sine) Fourier transform in 1759 by Joseph Louis Lagrange to compute the coefficients of a
trigonometric series for a vibrating string. The latter used a discrete Fourier transform of
order 3 to study the solution of a cubic. Finally Carl Friedrich Gauss used a full discrete
Fourier transform in 1805 to find trigonometric interpolation of asteroid orbits.
Although d’Alembert and Gauss had already used trigonometric series to study the heat
equation, it was first in the 1807 seminal paper of Joseph Fourier that the idea of expanding
all (continuous) functions by trigonometric series was explored.
Broadly speaking, the Fourier transform is a systematic way to decompose generic functions
into a superposition of symmetric functions (72). In this broad sense, even the decomposition
of a real function into its odd and even parts is an instance of a Fourier series. Similarly (72)
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if complex function w = f (z) is a harmonic of order j, that is f (e2πi/nz) = e2πij/n f (z) for all
z ∈ C then

f (z) =
n−1

∑
j=0

1
n

n−1

∑
k=0

f (e2πik/nz)e−2πijk/n.

In general, the monomial f (z) = zn has rotational symmetry of order n and each continuous
function f : T → C could be expanded (in an appropriate norm) as f (z) = ∑

∞
n=−∞ f̂ (n)zn

where

f̂ (n) =
1

2π

∫ 2π

0
f (eiθ)e−inθdθ.

One important feature of this expansion is that it could be considered as a generalization of
the case where a complex analytic function f on the closed unit disk D is expanded in its
Taylor series.
For a function f : Rd → C, under some very natural conditions we have the dual formulas

f (x) =
∫

Rd
f̂ (ξ)e2πixξ dξ, f̂ (ξ) =

∫

Rd
f (x)e−2πixξ dx.

Consider an integrable (real or complex) function on the interval [0, 2π] with Fourier
coefficients f̂ (n) as above. Then an important classical problem is the problem of convergence
of the corresponding Fourier series. More precisely, if

SN( f )(t) =
N

∑
n=−N

f̂ (n)eint

then it is desirable to have (necessary and) sufficient conditions on f so that the sequence
{SN( f )} converges to f in a given function topology.
For norm convergence, we know that if f ∈ Lp[0, 2π] for 1 < p < ∞, then {SN( f )} converges
to f in Lp-norm (for p = 2, this is Riesz-Fisher theorem). The pointwise convergence is
more delicate. There are many known sufficient conditions for {SN( f )} to converge to f
at a given point x, for example if the function is differentiable at x; or even if the function
has a discontinuity of the first kind at x and the left and right derivatives at x exist and are
finite, then {SN( f )(x)} will converge to 1

2 ( f (x+) + f (x−)) (but by the Gibbs phenomenon,
it has large oscillations near the jump). By a more general sufficient condition (called the
Dirichlet-Dini Criterion) if f is 2π-periodic and locally integrable and

∫ π

0
| f (x + t)− f (x − t)

2
− �| dt

t
< ∞

then {SN( f )(x)} converges to �. In particular, if f is of Holder class α > 0, then {SN( f )(x)}
converges everywhere to f (x). Indeed, in the latter case, the convergence is uniform (by
Dini-Lipschitz test). If f is only continuous, the sequence of n-th averages of {SN( f )}
converge uniformly to f , that is the Fourier series is uniformly Cesaro summable (also the
Gibbs phenomenon disappears in the pointwise convergence of the Cesaro sum).
In general, for a given continuous function f the Fourier series converges almost anywhere to
f (this holds even for a square integrable function: Carleson theorem, or Lp function: Hunt
theorem) and when f is of bounded variation, the Fourier series converges everywhere to f
(by Dini test). If a function is of bounded variation and Holder of class α > 0, then the Fourier
series is absolutely convergent.
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However, the family of continuous functions whose Fourier series converges at a given x
is of first Baire category in the Banach space of continuous functions on the circle. This
means that for most continuous functions the Fourier series does not converge at a given
point. Kolmogorov constructed a concrete example of a function in L1 whose Fourier series
diverges almost everywhere (later examples showed that this may happen everywhere). More
generally, for any given set E of measure zero, there exists a continuous function f whose
Fourier series fails to converge at any point of E (Kahane-Katznelson theorem).

4. Fourier transform on groups

The Fourier transform could be defined in general on any locally compact Hausdorff group G.
This is done using the (left) Haar measure, a (left) translation invariant positive Borel measure
λ on G whose existence and uniqueness (up to positive scalars) is proved in abstract harmonic
analysis (27, 2.10). If f ∈ L1(G) := L1(G, λ) and π : G → B(Hπ) is an irreducible (unitary)
representation of G (we write π ∈ Ĝ) then we may define the Fourier transform of f

f̂ (π) =
∫

G
f (x)π(x−1)dλ(x).

Similarly the Fourier-Stieljes transform of a bounded Borel measure μ ∈ M(G) is defined by

μ̂(π) =
∫

G
π(x−1)dμ(x),

for π ∈ Ĝ.
The Fourier transform is well studied in the two special cases where G is abelian or compact
(finite). We give more details in the next two sections.

4.1 Abelian groups

When G is abelian, each irreducible representation is one dimensional (27, 3.6) and could
be identified with a (continuous) character χ ∈ Ĝ. A character is a continuous group
homomorphism χ : G → T. In this case, the dual object Ĝ is itself a locally compact abelian
group and one could employ the Fourier transform to prove the Pontrjagin duality, that is
(Ĝ)̂ ≃ G as topological groups.
If f ∈ L1(G) then the Fourier transform of f is defined on Ĝ by

f̂ (χ) =
∫

G
f (x)χ(x)dλ(x)

and f̂ ∈ C0(Ĝ) (Riemann-Lebesgue lemma) and ‖ f̂ ‖∞ ≤ ‖ f ‖1, but the Fourier transform is
not an isometry from L1(G) to C0(Ĝ) (even for G = R). However we have the inversion
formula: if B(G) is the linear span of the positive definite functions on G (27, p. 84) and
f ∈ B(G) ∩ L1(G) then f̂ ∈ L1(Ĝ) and with a suitable normalization of the Haar measure ̟
of Ĝ

f (x) =
∫

Ĝ
f̂ (χ)χ(x)d̟(χ),

for almost all x ∈ G. By the Pontrjagin duality, this means that f (x) = ( f̂ )̂(x−1) for λ-a.e.
x ∈ G.
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When G is compact and abelian and f ∈ L2(G) then the Fourier-Plancherel transform of f is
defined on the discrete abelian group Ĝ by

f̂ (χ) =
∫

G
f (x)χ(x)dλ(x),

which converges by Cauchy-Schwartz inequality (similar definition works for f ∈ Lp(G),
1 < p < ∞, by Holder inequality). In this case f̂ ∈ �2(Ĝ) ( f ∈ �q(Ĝ), 1

p + 1
q = 1, respectively)

and ‖ f̂ ‖2 = ‖ f ‖2, hence the Fourier-Plancherel transform is an isometry from L2(G) to �2(Ĝ).

4.2 Compact and finite groups

If G is a compact Hausdorff group, each irreducible representation π ∈ Ĝ is finite dimensional
(27, 5.2), say with dimension dπ , and the linear span of the matrix elements of π (coefficients
of π) is a finite dimensional space Eπ of dimension at most d2

π . Moreover the linear span
E(G) of the union ∪π∈ĜEπ (trigonometric functions on G) is uniformly dense in C(G) and
L2(G) =

⊕
π∈Ĝ Eπ (Peter-Weyl theorem). If f ∈ L1(G), the Fourier transform of f

f̂ (π) =
∫

G
f (x)π(x−1)dλ(x).

defines an element f̂ ∈ ⊕
π∈Ĝ Mdπ

(C) with coefficients f̂ (π)ij =
∫

G f (x)〈π(x−1)ei, ej〉dλ(x),
hence if f ∈ L1(G) ∩ L2(G),

f = ∑
π∈Ĝ

dπtr( f̂ (π)π(.))

in L2-norm with ‖ f ‖2
2 = ∑π∈Ĝ dπtr( f̂ (π)∗ f̂ (π)). If χπ is the character associated to the

irreducible representation π ∈ Ĝ by χπ = tr(π(.)), then {χπ : π ∈ Ĝ} is an orthonormal
basis of ZL2(G) consisting of central functions in L2(G) (27, 5.23).
Given a complex-valued function f on a finite group G, we may present f as

f = ∑
g∈G

f (g)g,

viewing f as an element of the group algebra CG. The Fourier basis of CG comes from the
decomposition of the semisimple algebra CG as the direct sum of its minimal left ideals

CG = ⊕n
i=1 Mi,

and taking a basis for each Mi. When G = Zn = Z/nZ is the cyclic group of order n, an
element f of the group algebra CZn is a signal, sampled at n evenly spaced points in time. The
minimal left ideals of CZn are one dimensional, and the Fourier basis is unique (up to scaling
factors), and is indeed the usual basis of exponential functions given by the classical discrete
Fourier transform. Hence the expansion of f in a Fourier basis corresponds to a re-expression
of f in terms of the frequencies that comprise f (45).
The efficiency of computing the Fourier transform of an arbitrary function on G depends on
the choice of basis in which f is expanded. A naive computation requires |G|2 operations,
where an operation is a complex multiplication followed by a complex addition. Much
better results are obtained for different groups (21), (48), (49), (50), and (51) (see also (68)
and references therein). For example, computing the Fourier transform requires no more than
O(|G|logk|G|) operations on the cyclic group G = Zn (13; 19), symmetric group G = Sn (47),
and hyper-octahedral group G = Bn (67), with k = 1, 2, 4, respectively. On the other hand,
there is no known O(|G|logc|G|) algorithms for matrix groups over a finite field (48).
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4.2.1 Discrete Fourier transform

The classical discrete Fourier transform of a sequence { f (j)}0≤j≤n−1 is defined

f̂ (k) =
n−1

∑
j=0

f (j)e−2ikj/n,

for 0 ≤ k ≤ n − 1, and

f (j) =
1
n

n−1

∑
k=0

f̂ (k)e2ikj/n,

for 0 ≤ j ≤ n − 1.
For G = Zn, the complex irreducible representations χk of Z/nZ are one dimensional,

χk(j) = e−2ikj/n,

and the group algebra CZn has only one natural basis,

bk =
1
n

n−1

∑
j=0

(e2ikj/n)j,

and f̂ (k) = f̂ (χk).

4.2.2 Fast Fourier transform

The classical FFT has revolutionized signal processing. Applications include fast waveform
smoothing, fast multiplication of large numbers, and efficient waveform compression, to
name just a few (14). FFTs for more general groups have applications in statistical processing.
For example, the FFT on Zk

2 (76) allows for efficient 2k-factorial analysis. That is, it allows
for the efficient statistical analysis of an experiment in which each of k variables may take on
one of two states. The FFT on Sn allows for an efficient statistical analysis of votes cast in an
election involving n candidates (20).
A direct calculation of the Fourier transform of an arbitrary function on Zn requires
n2 = |Zn|2 operations. The classical fast discrete Fourier transform (of Cooley-Tukey
(19)) expressed in the group language (49) is as follows: Suppose n = pq where p is
a prime. Then Zn has a subgroup H isomorphic to Zq. By the reversal decomposition
Zn = ∪0≤j≤p−1(j + H). For 0 ≤ k ≤ n − 1,

f̂ (k) = f̂ (χk) =
n−1

∑
j=0

f (j)χk(j) =
p−1

∑
j=0

χk(j) ∑
h∈H

f (j + h)χk(h).

Now the inner sums in the last term are Fourier coefficients on H. This reduces the problem
of computing the Fourier transform on G to the same computation on H. When n = 2k (a k-bit
number in digital terms), the Fourier transform on Z2k could be computed in 2k + k2k+1 =
O(nlogn) operations.
The reduction argument involved in the above FFT algorithm could basically be applied to
any finite group (or semigroup). However, since the irreducible representations are not one
dimensional for non abelian case, more is needed to be explored in the general case. In
particular, one needs to understand the way (finite dimensional) irreducible representations
behave when restricted to subgroups.
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The basic idea of Cooley-Tukey is adapted by Clausen (18) to create an FFT for the symmetric
group Sn. A standard reference for representation theory of the symmetric group is (38).
The Clausen algorithm for FFT on the symmetric group Sn requires a set of inequivalent,
irreducible, chain-adapted representations relative to the chain Sn > Sn−1 > · · · > S1 = {e},
where e is the identity of Sn and Sk is the subgroup of Sn consisting of permutations which fix
k + 1 through n. Two such sets of representations are provided by the Young seminormal
(62) and orthogonal forms (77). (for generalizations to seminormal representations of
Iwahori-Hecke algebras see (35) and (62)).
A partition of a nonnegative integer k is a weakly decreasing sequence λ of nonnegative
integers whose sum is k. Two partitions are equal if they only differ in number of zeros they
contain. We write λ ⊢ k. A complete set of (equivalence classes of) irreducible representations
for Sn is indexed by the partitions of n (38). A partition corresponds to its Young diagram,
consisting of a table whose i-th row has λ(i) boxes. If we fill these boxes with numbers from
{1, 2, ...n} such that each number appears exactly once and column (row) entries increase from
top to bottom (left to right), we get a standard tableau of shape λ. Now Sn acts on tableaux
by permuting their entries. If L is a standard tableau of shape λ, and L(i) is the box in L
in the position (k, �), we put |L(i)| = � − k and define the action of the basic permutation
σ = σi = (i − 1, i) on the vector space Vλ generated by a basis {vL} indexed by all standard
tableaux L of shape λ by

σvL = (|L(i)| − |L(i − 1)|)−1vL + (1 + (|L(i)| − |L(i − 1)|)−1)vσL,

with the convention that vσL = 0, if σL is not standard. Young showed that these actions
exhaust Ŝn = {ρλ : λ ⊢ n}. Moreover if λ− is the set of all partitions of n − 1 obtained by
removing a corner (a box with no box to the right or below) of λ then Vλ =

⊕
μ∈λ− Vμ and if

we order the basis of Vλ with the last letter ordering of standard tableaux,

ρλ|Sn−1 =
⊕

μ∈λ−
ρμ.

Now Clausen algorithm uses the above Young seminormal representations to find FFT for
Sn (18). If Sn = ∪1≤i≤nτiSn−1 is the transversal decomposition of Sn into left cosets of the
subgroup Sn−1, where τi = σi+1σi+2 . . . σn, for i < n and τn = e, the identity of Sn, then for
λ ⊢ n,

f̂ (ρλ) = ∑
σ∈Sn

f (σ)ρλ(σ) =
n

∑
i=1

ρλ(τi) ∑
σ∈Sn−1

f (τiσ)ρ
λ(σ).

Therefore the minimum number of needed operations is at most 2
3 n(n + 1)2n! = O(n!log3n!).

4.2.3 Quantum Fourier transform

In quantum computing, the quantum Fourier transform (QFT) is the quantum analogue of
the discrete Fourier transform applied to quantum bits (qubits). Mathematically, QFT as a
unitary operator is nothing but the Fourier-Plancherel transform on the Hilbert space �2(G),
for some appropriate (abelian) group G. For n-qubits, this group could be considered to be
G = Z2n = Z/2nZ, but in practice it could be any finite group.
QFT is an integral part of many famous quantum algorithms, including factoring and discrete
logarithm, the quantum phase estimation (estimating the eigenvalues of a unitary matrix) and
the hidden subgroup problem (HSP).
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3 I H R(2) R(3) R(4) ×

2 • H R(2) R(3) ×

1 • • H R(2) ×

0 • • • H ×

Scheme 1. Quantum Circuit of 4-qubit Quantum Fourier Transform

The quantum Fourier transform can be performed efficiently on a quantum computer, with
a particular decomposition into a product of simpler unitary matrices. Using a canonical
decomposition, the discrete Fourier transform on n-qubits can be implemented as a quantum
circuit consisting of only O(n2) Hadamard gates and controlled phase shift gates (58). There
are also QFT algorithms requiring only O(nlogn) gates (32). This is exponentially faster than
the classical discrete Fourier transform (DFT) on n bits, which takes O(n2n) gates. However,
QFT can not give a generic exponential speedup for any task which requires DFT.
The QFT on ZN maps a quantum state ∑

N−1
j=0 xj|j〉 to the quantum state ∑

N−1
k=0 yk|k〉 with

yk = 1√
N

∑
N−1
j=0 xjω

jk, where ω = e2πi/N is a primitive N-th root of unity. This is a surjective

isometry on the finite dimensional Hilbert space �2(ZN) whose corresponding unitary matrix
is FN = 1√

N
[ω jk]0≤j,k≤N−1. The case N = 2n handles the transformation of n-qubits.

Using the Hadamard and phase gates

H =
1√
2

(
1 1
1 −1

)
, R(k) =

(
1 0
0 2πi/2k

)

one could implement the QFT over n = 4 qubits efficiently as in the above circuit (46) (see also
(15)).

5. Fourier transform on monoids and inverse semigroups

A semigroup is a nonempty set S together with an associative binary operation. If S has an
identity element, it is called a monoid. A (finite dimensional) representation of S (of dimension
d) is a homomorphism from S to the semigroup Md(C) with matrix multiplication. An inverse
semigroup is a semigroup S such that for each x ∈ S there is a unique y = x∗ ∈ S such that
xyx = x and yxy = y. The set E = {xx∗ : x ∈ S} is a commutative subsemigroup of S.
For a finite inverse semigroup S, the semigroup algebra CS with convolution

f ∗ g(s) = ∑
r,t∈S,rt=s

f (r)g(t)

is semisimple (53), hence representations of S are (equivalent to) a direct sum of irreducible
and null representations of S. By Wedderburn theorem, the set Ŝ of (equivalence classes of)
irreducible representations of S is finite and the map

⊕

ρ∈Ŝ

ρ : CS →
⊕

ρ∈Ŝ

Mdρ
(C)
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is an isomorphism of algebras sending f to
⊕

ρ∈Ŝ ∑s∈S f (s)ρ(s). This isomorphism is indeed

the Fourier transform on S, that is f̂ (ρ) = ∑s∈S f (s)ρ(s), for f ∈ CS.
A standard example of finite inverse semigroups is the rook monoid Rn consisting of all
injective partial functions on {1, . . . , n} under the operation of partial function composition.
Rn is isomorphic to the semigroup of all n × n matrices with all 0 entries except at most one
1 in each row or column (corresponding to the set of all possible placements of non-attacking
rooks on an n × n chessboard). The rook monoid plays the role of the symmetric group for
finite groups in the category of finite inverse semigroups. Each finite inverse semigroup S is
isomorphic to a subsemigroup of Rn, for n = |S| (43). The (fast) Fourier transform on Rn is
studied in details in (45), which is applied to the analysis of partially ranked data. We give
a brief account of FFT on rook monoids in the next section, and refer the interested reader to
(45) for details.

5.1 Fast Fourier transform on rook monoids

In this section we give a fast algorithm to compute f̂ for f ∈ CRn mimicing the Clausen
algorithm for FFT on Sn (45). There is a much faster algorithm based on groupoid bases
(45, 7.2.3), but the present approach has the advantage that explicitly employs the reversal
decomposition.
As in Sn, let σi = (i − 1, i) ∈ Rn and put τi = σi+1σi+2 . . . σn, for i < n and τn = e, the
identity of Rn. Moreover, put τi = σnσn−1 . . . σi+1, for each i, and let Rk be the subsemigroup
of Rn consisting of those partial permutations σ with σ(j) = j, for j > k. Then Halverson has
characterized R̂n using the semigroup chain Rn > Rn−1 > · · · > R1, similar to the Young
seminormal representations of Sn (35). Considering the transversal decomposition of Rn into
cosets of Rn−1, one should note that two distinct left cosets of Rn−1 do not necessarily have
the same cardinality. Indeed, we have (45, 2.4.4)

|Rn| = 2n|Rn−1| − (n − 1)2|Rn−2|.
This is because Rn consists of those rook matrices having all zeros in column and row 1, those
having 1 in position (α, 1) for 1 ≤ α ≤ n, or in position (1, α) for 2 ≤ α ≤ n, counting twice
those with ones in positions (α, 1) and (1, β) for 2 ≤ α, β ≤ n. This suggests the following
decomposition for n ≥ 3 and ρ ∈ R̂n,

f̂ (ρ) =
n

∑
i=1

ρ(τi) ∑
σ∈Rn−1

f (τiσ)ρ(σ) + ρ([n]) ∑
σ∈Rn−1

f ([n]σ)ρ(σ)

+
n−1

∑
i=1

ρ(τi) ∑
σ∈Rn−2

f (στi)ρ(σ),

where [n] is the identity of Rn−1 considered as an element of Rn (not defined at n). This
decomposition follows from dividing elements σ ∈ Rn into three parts: those with σ(n) = i
for some 1 ≤ i ≤ n, those not defined at n with σ(i) = n for some 1 ≤ i ≤ n − 1, and those not
defined at n with σ(i) �= n for all 1 ≤ i ≤ n (45, 9.1.1). This leads the upper bound

2 ∑
ρ∈R̂n

n

∑
i=1

2(n − i)d2
ρ + ∑

ρ∈R̂n

d2
ρ + ∑

ρ∈R̂n

(2n − 1)d2
ρ,

where twice the first sum calculates the maximum number of operations involved in
calculation of the matrix products in the first and third terms of the above decomposition,
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the second sum calculates the maximum number of operations involved in calculation of the
matrix products in the second term, and the last sum calculates the maximum number of
operations involved in calculation of all matrix sums involved in the whole decomposition.
This upper bound is at most

2n(n − 1)|Rn|+ |Rn|+ (2n − 1)|Rn|.

This leads to the upper bound n2n|Rn| = O(|Rn|1+ε) for the minimum number of operations
needed to calculate the FFT on Rn (45, 9.2.3), which could be improved as ( 3

4 n2 + 2
3 n3)|Rn| =

O(|Rn|log3|Rn|) using more sophisticated decompositions (45, 7.2.3).

6. Fourier transform on hypergroups

Fourier and Fourier-Stieltjes transforms play a central role in the theory of absolutely
integrable functions and bounded Borel measures on a locally compact abelian group G (70).
They are particularly important because they map the group algebra L1(G) and measure
algebra M(G) onto the Fourier algebra A(G) and Fourier-Stieltjes algebra B(G), respectively.
There are important Borel measures on a locally compact, non-compact, abelian group G
which are unbounded. A typical example is a left Haar measure. L. Argabright and J. de
Lamadrid in (7) explored a generalized Fourier transform of unbounded measures on locally
compact abelian groups. This theory has recently been successfully applied to the study of
quasi-crystals (8).
A version of generalized Fourier transform is defined for a class of commutative hypergroups
(10). Some of the main results (7) are stated and proved in (10) for hypergroups, but the
important connection with Fourier and Fourier-Stieltjes spaces are not investigated in (10)
(in contrast with the group case, these may fail to be closed under pointwise multiplication
for general hypergroups.) Recently these spaces are studied in (5), and under some
conditions, they are shown to be Banach algebras. Section 6.2 investigates the relation
between transformablity of unbounded measures on strong commutative hypergroups and
these spaces. In the next section we study unbounded measures on locally compact (not
necessarily commutative) hypergroups. The main objective of this section is the study of
translation bounded measures. These are studied in (10) in commutative case. The main
results (Theorem 6.18 and Corollary 6.20) are stated and proved in section 6.2.1. The former
states that an unbounded measure on a strong commutative hypergroup is transformable if
and only if its convolution with any positive definite function of compact support is positive
definite. The latter gives the condition for the transform of this measure to be a function.
A hypergroup is a triple (K, ,̄ ∗) where K is a locally compact space with an involution ¯and a
convolution ∗ on M(K) such that (M(K), ∗) is an algebra and for x, y ∈ K,

(i) δx ∗ δy is a probability measure on K with compact support,

(ii) the map (x, y) ∈ K2 �→ δx ∗ δy ∈ M(K) is continuous,

(iii) the map (x, y) ∈ K2 �→ supp (δx ∗ δy) ∈ C(K) is continuous with respect to the Michael
topology on the space C(K) of nonvoid compact sets in K,

(iv) K admits an identity e satisfying δe ∗ δx = δx ∗ δe = δx,

(v) (δx ∗ δy)¯= δȳ ∗ δx̄,

(vi) e ∈ supp (δx ∗ δy) if and only if x = ȳ.
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For μ ∈ M(K) and Borel subset E ⊆ K put μ̄(E) = μ(Ē), where Ē = {x̄ : x ∈ E}. This is an
involution on M(K) making it a Banach ∗-algebra. A representation of K is a ∗-representation
π of M(K) such that π(δe) = id and π �→ π(μ) is weak-weak operator-continuous from
M+(K) to B(Hπ). When π is irreducible, we write π ∈ K̂. Define the conjugation operator
Dπ on Hπ by

Dπ(
dπ

∑
i=1

αiξ
π
i ) =

dπ

∑
i=1

ᾱiξ
π
i ,

and put π̄ = DππDπ . For μ ∈ M(K), the Fourier-Stieltjes transform of μ is defined by
μ̂(π) = π̄(μ). Then μ̂ ∈ E(K) :=

⊕
π∈K̂ B(Hπ) and the Fourier-Stieltjes transform from M(K)

to E(K) is one-one.

6.1 Compact hypergroups

Let K be a compact hypergroup and K̂ denote the set of equivalence classes of all continuous
irreducible representations of K. For π ∈ K̂, let {ξπ

i }
dπ

i=1 be an orthonormal basis for the
corresponding (finite dimensional) Hilbert space Hπ and put

πi,j(x) = 〈π(x)ξπ
i , ξπ

j 〉 (1 ≤ i, j ≤ dπ).

Let Trigπ(K) = span{πi,j : 1 ≤ i, j ≤ dπ} and Trig(K) = span{πi,j : π ∈ K̂, 1 ≤ i, j ≤ dπ}.
Then dimTrigπ(K) = d2

π and there is kπ ≥ dπ such that
∫

K
πi,jσ̄r,sdm = k−1

π δπ,σδi,rδj,s (π, σ ∈ K̂) (74, 2.6).

Also {k
1
2
ππi,j : π ∈ K̂, 1 ≤ i, j ≤ dπ} is an orthonormal basis of L2(K) and

Trig(K) = ⊕π∈K̂Trigπ(K) (74, 2.7).

In particular, Trig(K) is norm dense in both C(K) and L2(K) (74, 2.13, 2.9).
For each f ∈ L2(K) we have the Fourier series expansion

f = ∑
π∈K̂

dπ

∑
i,j=1

kπ〈 f , πi,j〉πi,j

where the series converges in L2-norm.
Consider the ∗-algebra

E(K̂) := ∏
π∈K̂

B(Hπ)

with coordinatewise operations. For f = ( fπ) ∈E(K̂) and 1 ≤ p < ∞ put

‖ f ‖p :=
(

∑
π∈K̂

kπ‖ fπ‖p
p

) 1
p , ‖ f ‖∞ := supπ∈K̂‖ fπ‖∞,

where the right hand side norms are operator norms as in (34, D.37, 36(e)). Define Ep(K̂),
E∞(K̂), and E0(K̂) as in (34, 28.24). These are Banach spaces with isometric involution (34,
28.25), (10). Also E0(K̂) is a C∗-algebra (34, 28.26). For each μ ∈ M(K), define μ̂ ∈ E∞(K̂) by
μ̂(π) = π̄(μ), then μ �→ μ̂ is a norm-decreasing ∗-isomorphism of M(K) into E∞(K̂). Similarly
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one can define a norm-decreasing ∗-isomorphism f �→ f̂ of L1(K) onto a dense subalgebra of
E0(K̂) (74, 3.2, 3.3). Also there is an isometric isomorphism g �→ ĝ of L2(K) onto E2(K̂). Each
g ∈ L2(K) has a Fourier expansion

g = ∑
π∈K̂

dπ

∑
i,j=1

kπ〈ĝ(π)ξπ
i , ξπ

j 〉πi,j,

where the series converges in L2-norm (74, 3.4).
For μ ∈ M(K) and π ∈ K̂, we set aπ = π̄(μ)∗, and write

μ ≈ ∑
π∈K̂

kπtr(aππ).

If μ = f dm, where f ∈ L1(K), then we write

f ≈ ∑
π∈K̂

kπtr(aππ).

If moreover ∑π∈K̂ kπ‖aπ‖1 < ∞, we write f ∈ A(K) and put

‖ f ‖A = ∑
π∈K̂

kπ‖ f̂ (π)‖1.

A(K) is a Banach space with respect to this norm, and f �→ f̂ is an isometric isomorphism of
A(K) onto E1(K̂). Also for each f ∈ A(K) with f ≃ ∑π∈K̂ kπtr(aππ) we have

f (x) = ∑
π∈K̂

kπtr(aππ(x)),

m-a.e. (74, 4.2). If moreover f is positive definite, we have

f (e) = ‖ f ‖u := ∑
π∈K̂

kπtr( f̂ (π)),

where the series converges absolutely (74, 4.4). If we denote the set of all continuous positive
definite functions on K by P(K), then f ∈ P(K) if and only if f ∈ A(K) and each operator
f̂ (π) is positive definite (74, 4.6) and A(K) = span(P(K)) = L2(K) ∗ L2(K) (74, 4.8, 4.9).

6.2 Commutative hypergroups

6.2.1 Fourier transform of unbounded measures

There is a fairly successful theory of Fourier transform on commutative hypergroups (10)
which goes quite parallel to its group counterpart (except that there is no Pontrjagin duality
for commutative hypergroups in general). The dual object K̂ is not a hypergroup for some
commutative hypergroups K, and even when K̂ is a commutative hypergroup, its dual object
is not necessarily K (10, Section 2.4). We do not review the standard results on the Fourier
transform on commutative hypergroups and refer the interested reader to (10). Instead,
here we develop a theory of Fourier transform for unbounded measures on commutative
hypergroups. This is analogous to the Argabright-Lamadrid theory on abelian groups (7).
Let K be a locally compact hypergroup (a convo in the sense of (36)). We denote the spaces of
bounded continuous functions and continuous functions of compact support on K by Cb(K)
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and Cc(K), respectively. The latter is an inductive limit of Banach spaces CA(K) consisting of
functions with support in A, where A runs over all compact subsets of K. This in particular
implies that if X is a Banach space, a linear transformation T : Cc(K) → X is continuous if and
only if it is locally bounded, that is for each compact subset A ⊆ K there is β = βA > 0 such
that

‖T( f )‖ ≤ β‖ f ‖∞ ( f ∈ CA(K)).
Also a version of closed graph theorem is valid for Cc(K), namely T is locally bounded if and
only if it has a closed graph (12). Throughout Cc(K) is considered with the inductive limit
topology (ind). Following (12) we have the following definitions.

Definition 6.1. A measure on K is an element of Cc(K)∗. The space of all measures on K is
denoted by M(K). The subspaces of bounded and compactly supported measures are denoted
by Mb(K) and Mc(K), respectively.

Definition 6.2. For μ, ν ∈ M(K), we say that μ is convolvable with ν if for each f ∈ Cc(K), the
map (x, y) �→ f (x ∗ y) is integrable over K × K with respect to the product measure |μ| × |ν|.
In this case μ ∗ ν is defined by

∫

K
f d(μ ∗ ν) =

∫

K

∫

K
f (x ∗ y)dμ(x)dν(y) =

∫

K

∫

K

∫

K
f (t)d(δx ∗ δy)(t)dμ(x)dν(y).

Let C(ν) denote the set of all measures convolvable with ν. When K is a measured hypergroup
with a left Haar measure m, a locally integrable function f is called convolvable with ν if
f m ∈ C(ν). In this case, we put f ∗ ν = f m ∗ ν. Similarly if ν ∈ C( f m) then ν ∗ f = ν ∗ f m.
The next two lemmas are a straightforward calculation and we omit the proof. Here Δ denotes
the modular function of K. Also for a function f on K, we define f̄ and f̃ by

f̄ (x) = f (x̄), f̃ (x) = f (x̄) (x ∈ K).

We denote the complex conjugate of f by f−. For μ ∈ M(K), μ−, μ̄ and μ̃ are defined similarly.

Lemma 6.3. If K is a measured hypergroup, μ ∈ M(K), and f is locally integrable on K, then
(i) (μ ∗ f )(x) =

∫
K f (ȳ ∗ x)dμ(y) =

∫
K f d(μ̄ ∗ δx),

(ii) ( f ∗ μ)(x) =
∫

K f (x ∗ ȳ)Δ̄(y)dμ(y) =
∫

K f d(δx ∗ Δμ̄),
locally almost everywhere. If f ∈ Cc(K), the above formulas are valid everywhere and define
continuous (not necessarily bounded) functions on K.

If we want to avoid the modular function in the second formula, we should define the
convolution of functions and measures differently, but then this definition does not completely
match with the formula for convolution of measures (see (10)).

Lemma 6.4. If K is a measured hypergroup, μ, ν ∈ M(K), f ∈ Cc(K), and μ ∈ C(ν), then μ̄ ∈ C( f ),
μ̄ ∗ f ∈ L1(ν), and ∫

K
f dμ ∗ ν =

∫

K
μ̄ ∗ f dν.

Definition 6.5. A measure μ ∈ M(K) is called left translation bounded if for each compact
subset A ⊆ K

�μ(A) := sup
x∈K

|μ̄ ∗ δx|(A) < ∞.

Similarly μ is called right translation bounded if for each compact subset A ⊆ K

rμ(A) := sup
x∈K

|δx ∗ Δμ̄|(A) < ∞.
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We denote the set of left and right translation bounded measures on K by M�b(K) and Mrb(K),
respectively.

Proposition 6.6. Let μ ∈ M(K), then
(i) μ is left translation bounded if and only if μ ∗ f ∈ Cb(K), for each f ∈ Cc(K). In this case for each
compact subset A ⊆ K,

‖μ ∗ f ‖∞ ≤ �μ(A)‖ f ‖∞ ( f ∈ CA(K)).

(ii) μ is right translation bounded if and only if f ∗ μ ∈ Cb(K), for each f ∈ Cc(K). In this case for
each compact subset A ⊆ K,

‖ f ∗ μ‖∞ ≤ rμ(A)‖ f ‖∞ ( f ∈ CA(K)).

Proof. We prove (i), (ii) is proved similarly. If f ∈ CA(K), then by Lemma 6.3,

|(μ ∗ f )(x)| ≤ ‖ f ‖∞|μ̄ ∗ δx|(A) ≤ ‖ f ‖∞�μ(A),

for each x ∈ K. Conversely, if μ ∗ f is bounded for each f ∈ Cc(K), then f �→ μ ∗ f defines a
linear map from Cc(K) into Cb(K). We claim that it has a closed graph. If fα → 0 in (ilt), then
there is a compact subset A ⊆ K such that eventually supp( fα) ⊆ A and fα → 0, uniformly on
A. If μ ∗ fα → g, uniformly on K, then |(μ ∗ fα)(x)| ≤ ‖ f ‖∞|μ̄ ∗ δx|(A) → 0, for each x ∈ K.
Hence g = 0. By closed graph theorem, for each compact subset B ⊆ K, there is kB > 0 such
that

‖μ ∗ f ‖∞ ≤ kB‖ f ‖∞ ( f ∈ CB(K)).

Now let A ⊆ K be compact and choose B ⊆ K compact with B◦ ⊇ A. By Lemmas 6.3 and 6.4,
for each x ∈ K,

|μ̄ ∗ δx|(A) = sup{|
∫

K
gd(μ̄ ∗ δx)| : ‖g‖∞ ≤ 1, supp(g) ⊆ A}

≤ sup{|
∫

K
gd(μ̄ ∗ δx)| : ‖g‖∞ ≤ 1, supp(g) ⊆ B}

= sup{|μ ∗ g(x)| : ‖g‖∞ ≤ 1, supp(g) ⊆ B} ≤ kB.

Example 6.7. All elements of Mb(K) and Lp(K, m) are translation bounded. Also each
hypergroup has a left-translation invariant measure n (36, 4.3C). We have

(n ∗ f )(x) =
∫

K
(δx ∗ f̄ )dn ≤

∫

K
f̄ dn,

for each x ∈ K and f ∈ C+
c (K). Hence n ∈ M�b(K). Similarly Δn ∈ Mrb(K).

Lemma 6.8. (i) If θ ∈ Mc(K) then θ ∈ C(μ) and μ ∈ C(θ), for each μ ∈ M(K).
(ii) If ν ∈ M(K), then
a)ν ∈ M�b(K) if and only if μ ∈ C(ν), for each μ ∈ Mb(K).
b)ν ∈ Mrb(K) if and only if ν ∈ C(μ), for each μ ∈ Mb(K).

Proof. (i) follows from the fact that |θ̄| ∗ | f | ∈ Cc(K) for each f ∈ Cc(K) (36, 4.2F). If f ∈ Cc(K),
ν ∈ M�b(K) and μ ∈ Mb(K), then |ν| ∗ | f̄ | ∈ Cb(K), hence

∫

K

∫

K
| f (x ∗ y)|d|μ|(x)d|ν|(y) =

∫

K
(|ν| ∗ | f̄ |)d|μ| < ∞,
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so μ ∈ C(ν). Conversely, if ν /∈ M�b(K) then there is f ∈ C+
c (K) such that ν ∗ f is unbounded.

Hence there is μ ∈ M+
b (K) with ν ∗ f /∈ L1(K), i.e.

∫

K
f̄ (x ∗ y)dm̄(x)dν(y) =

∫

K
(ν ∗ f )dμ = ∞,

that is μ̄ /∈ C(ν). This proves (iia). (iib) is similar.

Corollary 6.9. If ν ∈ M�b(K) then for each μ ∈ Mb(K) and f ∈ Cc(K) we have μ ∗ f ∈ L1(K, ν)
and ∫

K
(μ ∗ f )dν =

∫

K
(ν ∗ f̄ )dμ.

Following (12, chap. 8), we have the following associativity result which follows from the
above lemma and a straightforward application of Fubini’s Theorem.

Theorem 6.10. (i) If μ, ν ∈ M(K), μ ∈ C(ν), and θ ∈ Mc(K), then θ ∈ C(μ) ∩ C(μ ∗ ν) and
θ ∗ μ ∈ C(ν), and

(θ ∗ μ) ∗ ν = θ ∗ (μ ∗ ν).

(ii) If ν ∈ M�b(K), μ1, μ2 ∈ Mb(K) then μ1 ∗ (μ2 ∗ ν) = (μ1 ∗ μ2) ∗ ν.

6.2.2 Transformable measures

In this section we assume that K is a commutative hypergroup such that K̂ is a hypergroup,
namely K is strong (10, 2.4.1). We don’t assume that (K̂)̂ = K, unless otherwise specified. We
denote the Haar measure on K and K̂ by mK and mK̂ , respectively. For μ ∈ Mb(K), μ̂ ∈ Cb(K̂)
is defined by

μ̂(γ) =
∫

K
γ(x)dμ(x) (γ ∈ K̂).

We usually identify μ̂ with μ̂mK̂ . Put μ̌ = (μ̂)̄.

Definition 6.11. (10, 2.3.10) A measure μ ∈ M(K) is called transformable if there is μ̂ ∈
M+(K̂) such that ∫

K
( f ∗ f̃ )dμ =

∫

K̂
| f̌ |dμ̂ ( f ∈ Cc(K)).

We denote the space of transformable measures on K by Mt(K) and put M̂t(K̂) = {μ̂ : μ ∈
Mt(K)}. Also we put C2(K) = span{ f ∗ f̃ : f ∈ Cc(K)}. Then above relation could be
rewritten as ∫

K
gdμ =

∫

K̂
ǧdμ̂ (g ∈ C2(K)),

or ∫

K
f ∗ gdμ =

∫

K̂
f̌ ǧdμ̂ ( f , g ∈ Cc(K)).

Example 6.12. The Haar measure mK is transformable and m̂K = πK is the Levitan-Plancherel
measure on K̂ (10, 2.2.13). Also all bounded measures are transformable. If μ ∈ Mb(K)
and μ̂ ≥ 0 on supp(πK), then the transform of μ in the above sense is μ̂πK , where μ̂ is the
Fourier-Stieltjes transform of μ. In particular, δ̂e = πK (10). Finally, if f is a bounded positive
definite function on K, then by Bochner’s Theorem (10, 4.1.16), there is a unique σ ∈ M+

b (K)
such that f = σ̌. Then it is easy to see that f mK ∈ Mt(K) and ( f mK)ˆ= σ̃.

Lemma 6.13. C2(K) is dense in Cc(K).
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Proof. Let {uα} be a bounded approximate identity of L1(K, mK) consisting of elements of
Cc(K) with uα ≥ 0, uα = ūα, and

∫
K uαdmK = 1 such that supp(uα) is contained in a

compact neighborhood V of e for each α (29). For f ∈ Cc(K) with supp( f ) = W, we have
supp( f ), supp( f ∗ uα) ⊆ W ∗ V =: U. By uniform continuity of f , given ε > 0, there is α0 such
that | f (x ∗ y)− f (x)| < ε, for each x ∈ U and y ∈ supp(uα) with α ≥ α0.

|( f ∗ uα − f )(x)| ≤
∫

K
| f (x ∗ y)− f (x)||uα(y)|dmK(y) =

∫

V
εuαdmK = ε,

for α ≥ α0.

By the above lemma and an argument similar to (7, Thm. 2.1) we have:

Theorem 6.14. (Uniqueness Theorem) If μ ∈ Mt(K) then μ and μ̂ determine each other uniquely and
the map μ �→ μ̂ is an isomorphism of Mt(K) onto M̂t(K̂).

The proof of the next result is straightforward.

Lemma 6.15. For each μ ∈ Mt(K), the following measure are transformable with the given transform.
(i) ˆ̄μ = ¯̂μ,
(ii) (μ̃)ˆ= (μ̂)−,
(iii) (μ− )̂ = (μ̂)̃,
(iv) (δx ∗ μ)ˆ= x̄μ̂ (x ∈ K),
(v) (γμ)ˆ= δγ̃ ∗ μ̂ (γ ∈ K̂).

If μ ∈ Mt(K), then by definition we have

Ĉ2(K̂) := {ĝ : g ∈ C2(K)} ⊆ L2(K̂, μ̂).

Next lemma is proved with the same argument as in (7, Prop. 2.2). We bring the proof for the
sake of completeness.

Lemma 6.16. Ĉ2(K̂) ⊆ L2(K̂, μ̂) is dense.

Proof. Since Cc(K̂) ⊆ L2(K̂, μ̂) is dense, we need to show that given ϕ ∈ Cc(K̂) and ε > 0,
there is g ∈ C2(K) such that

∫
K̂ |ϕ − ĝ|2dμ̂ < ε2.

Put A = supp(ϕ). If |μ̂|(A) = 0, we take g = 0. Assume that |μ̂|(A) > 0. By (10, 2.2.4(iv)),
Ĉc(K̂) is dense in C0(K̂), so there is f ∈ Cc(K) such that

| f̂ (γ)− 1| < ε‖ϕ‖−1
∞ (|μ̂|(A))

−1
2 =: δ (γ ∈ A).

We may assume that δ <
1
2 , so | f̂ | > 1

2 , and so
∫

K̂ | f̂ |2dμ̂ �= 0. Choose h ∈ Cc(K) such that

‖ĥ − ϕ‖∞ < ε(
∫

K̂ | f̂ |2dμ̂)
−1
2 . Put g = h ∗ f ∈ C2(K), then

( ∫

K̂
|ĝ − ϕ|2dμ̂

) 1
2 =

( ∫

K̂
|ĥ f̂ − ϕ|2dμ̂

) 1
2

≤
( ∫

K̂
|ĥ f̂ − ϕ f̂ |2dμ̂

) 1
2 +

( ∫

K̂
|ϕ f̂ − ϕ|2dμ̂

) 1
2 < 2ε.

Lemma 6.17. If μ ∈ Mt(K) and g ∈ C2(K), then ĝ ∈ L1(K̂, μ̂) and g ∗ μ = (ĝμ̂) .̌
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Proof. The first assertion follows from definition of μ̂. For the second, since K is unimodular,
given x ∈ K,

(g ∗ μ)(x) =
∫

K
gd(δx ∗ μ̄) =

∫

K̂
ǧ(γ)γ(x̄)d ˆ̄μ

=
∫

K̂
ĝ(γ)γ(x)dμ̂ = (ĝμ̂) .̌

Now we are ready to prove the main result of this section.

Theorem 6.18. For μ ∈ M(K), the following are equivalent:
(i) μ ∈ Mt(K),
(ii) g ∗ μ ∈ B(K), for each g ∈ C2(K).

Proof. If g ∈ C2(K), then ĝ ∈ L1(K̂, μ̂), hence ĝμ̂ ∈ Mb(K̂). Therefore, by the above lemma
and (10, 4.1.15), g ∗ μ = (ĝμ̂)ˇ∈ B(K). Conversely if g ∗ μ ∈ B(K), for each g ∈ C2(K), then by
Bochner’s Theorem, there is a unique νg ∈ Mb(K̂) such that

g ∗ μ(x) =
∫

K̂
γ(x)dνg(γ) (x ∈ K).

For each f ∈ L1(K, m),
∫

K
f (g ∗ μ)dm =

∫

K

∫

K̂
f (x)γ(x)dνg(γ)dm(x) =

∫

K̂
f̌ dνg.

Fix g, h ∈ C2(K), then for each f ∈ Cc(K),
∫

K
( f ∗ ḡ)(h ∗ μ)dm =

∫

K
( f ∗ ḡ ∗ h̄)dμ =

∫

K
( f ∗ h̄ ∗ ḡ)dμ =

∫

K
( f ∗ h̄)(g ∗ μ)dm.

Hence ∫

K̂
f̌ ĝdνh =

∫

K̂
f̌ ĥdνg.

By density of Ĉc(K̂) in C0(K̂), we get ĝdνh = ĥdνg. Define μ̂ on K̂ by
∫

K̂
ψdμ̂ =

∫

K̂

ψ

ĥ
dν̂h,

where h ∈ C2(K) is such that ĥ > 0 on supp(ψ). This is a well defined linear functional by
what we just observed. It is easy to see that this is locally bounded on Cc(K̂). Also

∫

K̂
ψĝdμ̂ =

∫

K̂

ψĝ

ĥ
dνh =

∫

K̂
ψdνg,

that is ĝdμ̂ = dνg, and so ĝ ∈ L1(K̂, μ̂) and
∫

K
gdμ = (ḡ ∗ μ)(e) =

∫

K̂
dνĝ =

∫

K̂
ǧdμ̂.

Finally, since ĥ > 0 on supp(ψ), we have
∫

K̂ ψdμ̂ ≥ 0, for ψ ≥ 0. These all together show that
μ ∈ M+(K̂) is the transform of μ and we are done.

In (5) the authors introduced the concept of tensor hypergroups and showed that for a tensor
hypergroup K, the Fourier space A(K) is a Banach algebra. The following lemma follows from
Plancherel Theorem exactly as in the group case (26, 3.6.2◦).
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Lemma 6.19. If K is a commutative, strong, tensor hypergroup, then A(K) is isometrically isomorphic
(through Fourier transform) to L1(K̂).

The last result of this paper is a direct consequence of the above lemma and Theorem 6.18 (see
the proof of (7, Theorem 2.4)).

Corollary 6.20. If K is a commutative, strong, tensor hypergroup, then for each μ ∈ M(K), the
following are equivalent:
(i) μ ∈ Mt(K) and μ̂ is a function,
(ii) g ∗ μ ∈ A(K), for each g ∈ C2(K).

6.3 Finite hypergroups

Peter Shor in his seminal paper presented efficient quantum algorithms for computing integer
factorizations and discrete logarithms. These algorithms are based on an efficient solution to
the hidden subgroup problem (HSP) for certain abelian groups. HSP was already appeared in
Simon’s algorithm implicitly in form of distinguishing the trivial subgroup from a subgroup
of order 2 of Z2n .
The efficient algorithm for the abelian HSP uses the Fourier transform. Other methods have
been applied by Mosca and Ekert (52). The fastest currently known (quantum) algorithm for
computing the Fourier transform over abelian groups was given by Hales and Hallgren (32).
Kitaev (39) has shown us how to efficiently compute the Fourier transform over any abelian
group (see also (37)).
For general groups, Ettinger, Hoyer and Knill (25) have shown that the HSP has polynomial
query complexity, giving an algorithm that makes an exponential number of measurements.
Several specific non-abelian HSP have been studied by Ettinger and Hoyer (24), Rotteler and
Beth (69), and Puschel, Rotteler, and Beth (61). Ivanyos, Mangniez, and Santha (37) have
shown how to reduce certain non-abelian HSP’s to an abelian HSP. The non-abelian HSP for
normal subgroups is solved by Hallgren, Russell, and Ta-Shma (33).
As for the Graph Isomorphism Problem (GIP), which is a special case of HSP for the
symmetric group Sn, Grigni, Schulman, Vazirani and Vazirani (31) have shown that measuring
representations is not enough for solving GIP. However, they show that the problem can be
solved when the intersection of the normalizers of all subgroups of G is large. Similar negative
results are obtained by Ettinger and Hoyer (24). At the positive side, Beals (9) showed how to
efficiently compute the Fourier transform over the symmetric group Sn (see also (40)).

6.3.1 Hidden subgroup problem

Definition 6.21. (Hidden Subgroup Problem (HSP)). Given an efficiently computable function
f : G → S, from a finite group G to a finite set S, that is constant on (left) cosets of some
subgroup H and takes distinct values on distinct cosets, determine the subgroup H.

An efficient quantum algorithms for abelian groups is given in the next page. Note that the
resulting distribution over ρ is independent of the coset cH arising after the first stage. Thus,
repetitions of this experiment result in the same distribution over Ĝ. Also by the principle of
delayed measurement, measuring the second register in the first step can in fact be delayed
until the end of the experiment.
In the next algorithm, one wishes the resulting distribution to be independent of the actual
coset cH and depend only on the subgroup H. This is guaranteed by measuring only the name
of the representation ρ and leaving the matrix indices unobserved. The fact that O(log(|G|))
samples of this distribution are enough to determine H with high probability is proved in (33).
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1. Prepare the state
1√
|G| ∑

g∈G

|g〉| f (g)〉

and measure the second register, the resulting state is

1√
|H| ∑

h∈H

|ch〉| f (ch)〉

where c is an element of G selected uniformly at random.
2. Compute the Fourier transform of the "coset" state above, resulting in

1√
|H|.|G| ∑

ρ∈Ĝ

∑
h∈H

ρ(ch)|ρ〉| f (ch)〉

where Ĝ denotes the Pontryagin dual of G, namely the set of homomorphisms ρ : G → T.
3. Measure the first register and observe a homomorphism ρ.

Algorithm 1. Algorithm for Abelian Hidden Subgroup Problem

1. Prepare the state ∑g∈G |g〉| f (g)〉 and measure the second register | f (g)〉. The resulting state
is ∑h∈H |ch〉| f (ch)〉 where c is an element of G selected uniformly at random. As above, this
state is supported on a left coset cH of H.
2. Let Ĝ denote the set of irreducible representations of G and, for each ρ ∈ Ĝ, fix a basis for
the space on which ρ acts. Let dρ denote the dimension of ρ. Compute the Fourier transform
of the coset state, resulting in

∑
ρ∈Ĝ

∑
1≤i,j≤dρ

√
dρ√

|H|.|G| ∑
h∈H

ρ(ch)|ρ, i, j〉| f (ch)〉

3. Measure the first register and observe a representation ρ.

Algorithm 2. Algorithm for Non-abelian Hidden Normal Subgroup Problem

A finite hypergroup is a set K = {c0, c1, . . . , cn} together with an ∗-algebra structure on the
complex vector space CK spanned by K which satisfies the following axioms. The product of
elements is given by the structure equations

ci ∗ cj = ∑
k

nk
i,jck,

with the convention that summations always range over {0, 1, . . . , n}. The axioms are

1. nk
i,j ∈ R and nk

i,j ≥ 0,

2. ∑k nk
i,j = 1,

3. c0 ∗ ci = ci ∗ c0 = ci,

4. K∗ = K, n0
i,j �= 0 if and only if c∗i = cj,
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for each 0 ≤ i, j, k ≤ n.
If c∗i = ci, for each i, then the hypergroup is called hermitian. If ci ∗ cj = cj ∗ ci, for each
i, j, then the hypergroup is called commutative. Hermitian hypergroups are automatically
commutative.
In harmonic analysis terminology, we have a convolution structure on the measure algebra
M(K). This means that we can convolve finitely additive measures on K and, for x, y ∈ K,
the convolution δx ∗ δy is a probability measure. Indeed δci ∗ δcj{ck} = nk

i,j. We follow the
convention of harmonic analysis texts and denote the involution by x �→ x̄ (instead of x∗), and
the identity element by e (instead of c0). For a function f : K → C, and sets A, B ⊆ K we put

f (x ∗ y) = ∑
z∈K

f (z)(δx ∗ δy){z}, (x, y ∈ K),

and
A ∗ B = ∪{supp(δx ∗ δy) : x ∈ A, y ∈ B}.

A finite hypergroup K always has a left Haar measure (positive, left translation invariant,
finitely additive measure) ω = ωK given by

ω{x} =
(
(δx̄ ∗ δx){e}

)−1
(x ∈ K).

A function ρ : K → C is called a character if ρ(e) = 1, ρ(x ∗ y) = ρ(x)ρ(y), and ρ(x̄) = ρ(x).
In contrast with the group case, characters are not necessarily constant on conjugacy classes.
Let K be a finite commutative hypergroup, then K̂ denotes the set of characters on K. In this
case, for μ ∈ M(K) and f ∈ �2(K), we put

μ̂(ρ) = ∑
x∈K

ρ(x)μ{x}, f̂ (ρ) = ∑
x∈K

f (x)ρ(x)ω{x} (ρ ∈ K̂).

Hence f̂ = ( f ω) .̂

6.3.2 Subhypergroups

If H ⊆ K is a subhypergroup (i.e. H̄ = H and H ∗ H ⊆ H), then ω̂H = χH⊥ (10, 2.1.8), where
the right hand side is the indicator (characteristic) function of

H⊥ = {ρ ∈ K̂ : ρ(x) = 1 (x ∈ H)}.

If K/H is the coset hypergroup (which is the same as the double coset hypergroup K//H in
finite case (10, 1.5.7)) with hypergroup epimorphism (quotient map) q : K → H/K (10, 1.5.22),
then (K/H)ˆ≃ H⊥ (with isomorphism map χ �→ χ ◦ q) (10, 2.2.26, 2.4.8). Moreover, for each
μ ∈ M(K), q(μ ∗ ωH) = q(μ) (10, 1.5.12). We say that K is strong if K̂ is a hypergroup with
respect to some convolution satisfying

(ρ ∗ σ)ˇ= ρ σ̌ˇ (ρ, σ ∈ K̂),

where
ǩ(x) = ∑

ρ∈K̂

k(ρ)ρ(x)π{ρ} (x ∈ K, k ∈ �
2(K̂, π))

is the inverse Fourier transform. In this case, for ρ, σ ∈ K̂, we have ρ ∈ σ ∗ H⊥ if and only if
ResHρ = ResHσ, where ResH : K̂ → Ĥ is the restriction map (10, 2.4.15). Also H is strong and
K̂/H⊥ ≃ Ĥ (10, 2.4.16). Moreover (K̂)ˆ≃ K (10, 2.4.18).
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6.3.3 Fourier transform

Let us quote the following theorem from (10, 2.2.13) which is the cornerstone of the Fourier
analysis on commutative hypergroups.

Theorem 6.22. (Levitan) If K is a finite commutative hypergroup with Haar measure ω, there is a
positive measure π on K̂ (called the Plancherel measure) such that

∑
x∈K

| f (x)|2ω{x} = ∑
ρ∈K̂

| f̂ (ρ)|2π{ρ} ( f ∈ �
2(K, ω)).

Moreover supp(π) = K̂ and π{ρ} = π{ρ̄}. In particular the Fourier transform F is a unitary map
from �2(K, ω) onto �2(K̂, π).

In quantum computation notation,

F : |x〉 �→ 1
τ(x) ∑

ρ∈K̂

ρ(x)π{ρ}|ρ〉,

where
τ(x) =

(
∑

ρ∈K̂

|ρ(x)|2π2{ρ}
) 1

2 (x ∈ K).

When K is a group, τ(x) = |K̂| 1
2 , for each x ∈ K. It is essential for quantum computation

purposes to associate a unitary matrix to each quantum gate. however, if we write the
matrix of F naively using the above formula we don’t get a unitary matrix. The reason is
that, in contrast with the group case, the discrete measures on �2 spaces are not counting
measure. More specifically, when K is a group, �2(K) =

⊕
x∈K C, where as here �2(K, ω) =

⊕
x∈K ω{x} 1

2 C and �2(K) =
⊕

ρ∈K̂ π{ρ} 1
2 C. The exponent 1

2 is needed to get the same inner

product on both sides. If we use change of bases |x〉′ = ω{x} 1
2 |x〉 and |ρ〉′ = π{ρ} 1

2 |ρ〉, the
Fourier transform can be written as

F : |x〉′ �→ ω{x} 1
2 ∑

ρ∈K̂

ρ(x̄)π{ρ} 1
2 |ρ〉′ ,

and the corresponding matrix turns out to be unitary.

6.3.4 Examples

There ar a variety of examples of (commutative hypergroups) whose dual object is known.
One might hope to relate the HSP on a (non-abelian) group G to the HSHP on a corresponding
commutative hypergroup like Ĝ (see next example). The main difficulty is to go from a
function f which is constant on cosets of some subgroup H ≤ G to a function which is constant
on cosets of a subhypergroup of Ĝ. The canonical candidate f̂ fails to be constant on costs of
H⊥ ≤ Ĝ.
We list some of the examples of commutative hypergroups and their duals, hoping that one
can get such a relation in future.

Example 6.23. If G is a finite group, then Ĝ := (GG)ˆ is a commutative strong (and so
Pontryagin (10, 2.4.18)) hypergroup (10, 8.1.43). The dual hypergroups of the Dihedral group
Dn and the (generalized) Quaternion group Qn are calculated in (10, 8.1.46,47).
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Example 6.24. If G is a finite group and H is a (not necessarily normal) subgroup of G then
the double coset space G//H (which is basically the same as the homogeneous space G/H
in the finite case) is a hypergroup whose dual object is A(Ĝ, H) (10, 2.2.46). It is easy to put
conditions on H so that G//H is commutative.

There are also a vast class of special hypergroups (see chapter 3 of (10) for details) which are
mainly infinite hypergroups, but one might mimic the same constructions to get similar finite
hypergroups in some cases.
There are not many finite hypergroups whose character table is known (75). Here we give two
classical examples (of order two and three) and compute the corresponding Fourier matrix.

Example 6.25 (Ross). The general form of an hypergroup of order 2 is known. It is denoted
by K = Z2(θ) and consists of two elements 0 and 1 with multiplication table

∗ δ0 δ1
δ0 δ0 δ1
δ1 δ1 θδ0 + (1 − θ)δ1

and Haar measure and character table

0 1
ω 1 1

θ
χ0 1 1
χ1 1 −θ

When θ = 1 we get K = Z2. The dual hypergroup is again Z2(θ) with the Plancherel measure

χ0 χ1
π θ

1+θ
1

1+θ

The unitary matrix of the corresponding Fourier transform is given by

F2 =
1√

1 + θ2

(
θ 1
1 −θ

)

Example 6.26 (Wildberger). The general form of hypergroups of order 3 is also known. We
know that it is always commutative, but in this case, the Hermitian and non Hermitian case
should be treated separately. Let K = {0, 1, 2} be a Hermitian hypergroup of order three and
put ωi = ω{i}, for i = 0, 1, 2. Then the multiplication table of K is

∗ δ0 δ1 δ2
δ0 δ0 δ1 δ2
δ1 δ1

1
ω1

δ0 + α1δ1 + β1δ2 γ1δ1 + γ2δ2

δ2 δ2 γ1δ1 + γ2δ2
1

ω2
δ0 + β2δ1 + α2δ2
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where

β1 =
γ1ω2

ω1
, β2 =

γ2ω1
ω2

, α1 = 1 − 1 + γ1ω2
ω1

, α2 = 1 − 1 + γ2ω1
ω2

γ2 = 1 − γ1,

and γ1, ω1 and ω2 are arbitrary parameters subject to conditions 0 ≤ γ1 ≤ 1, ω1 ≥ 1, ω2 ≥ 1,
and

1 + γ1ω2 ≤ ω1

1 + (1 − γ1)ω1 ≤ ω2.

The Plancherel measure and character table are given by

π 0 1 2
χ0

s1
t 1 1 1

χ1
s2
t 1 x z

χ2
s3
t 1 y v

where
x =

α1 − γ1
2

+
D

2ω2
, y =

α1 − γ1
2

− D

2ω2

z =
α2 − γ2

2
− D

2ω2
, v =

α2 − γ2
2

+
D

2ω2

D =
√
(1 + γ1ω2 − γ2ω1)2 + 4γ2ω1

and

s1 = x2v2 +
y2

ω2
+

z2

ω1
− (y2z2 +

x2

ω2
+

v2

ω1
)

s2 = y2 +
v2

ω1
+

1
ω2

− (v2 +
y2

ω2
+

1
ω1

)

s3 = z2 +
x2

ω2
+

1
ω1

− (x2 +
z2

ω1
+

1
ω1

)

t = x2v2 + y2 + z2 − (x2 + y2z2 + v2).

Let πi = π{χi} = si
t and wij =

√
ωiπj, for i, j = 0, 1, 2, then the Fourier transform is given by

the unitary matrix

F3 =

⎛
⎝

w00 w10 w20
w01 xw11 zw21
w02 yw12 vw22

⎞
⎠

One concrete example is the normalized Bose Mesner algebra of the square. In this case,
ω1 = 1, ω2 = 2, γ1 = β1 = α1 = α2 = 0, γ2 = 1, and β2 = 1

2 . A simple calculation gives
D = 2, x = 1, y = z = −1, v = 0, and if we put π1 = 1

4 , we get π2 = 1
4 and π3 = 1

2 . In this
case, the Fourier transform matrix is

F3 =
1
2

⎛
⎝

1 1
√

2
1 1 −

√
2√

2 −
√

2 0

⎞
⎠

363Fourier Transform on Group-Like Structures and Applications

www.intechopen.com



In the non-Hermitian case, the multiplication table of K is

∗ δ0 δ1 δ2
δ0 δ0 δ1 δ2
δ1 δ1 γδ1 + (1 − γ)δ2 αδ0 + γδ1 + γδ2
δ2 δ2 αδ0 + γδ1 + γδ2 (1 − γ)δ1 + γδ2

where γ = 1−α
2 , and α is an arbitrary parameter with 0 < α ≤ 1. When α = 1, we get K = Z3.

The dual hypergroup is again K and the Plancherel measure and character table are given by

π 0 1 2
χ0

s1
t 1 1 1

χ1
s2
t 1 z z̄

χ2
s2
t 1 z̄ z

where

z =
−α ± i

√
α2 + 2α

2
.

s1 = 2 − ω1(α
2 + α), s2 = ω1 − 1, t = ω1(2 − α2 − α).

Put πi = π{χi} and wij =
√

ωiπj, for i, j = 0, 1, 2, then the Fourier transform is given by the
unitary matrix

F3 =

⎛
⎝

w00 w10 w20
w01 zw11 z̄w21
w02 z̄w12 zw22

⎞
⎠

As a concrete example, let us put ω1 = ω2 = 2, γ = 1
4 and α = 1

2 to get z = −1+i
√

5
4 and

π1 = 1
5 , π2 = π3 = 2

5 . In this case, the Fourier transform matrix is

F3 =
1√
5

⎛
⎜⎝

1
√

2
√

2√
2 −1+i

√
5

4
−1−i

√
5

4√
2 −1−i

√
5

4
−1+i

√
5

4

⎞
⎟⎠

6.3.5 Hidden subhypergroup problem

In this section we give an algorithm for solving hidden sub-hypergroup problem (HSHP)
for abelian (strong) hypergroups. This algorithm is efficient for those finite commutative
hypergroups whose Fourier transform is efficiently calculated. It is desirable that, following
Kitaev (39), one shows that the Fourier transform could be efficiently calculated on each finite
commutative hypergroup. This could be difficult, as there is yet no complete structure theory
for finite commutative hypergroups (see chapter 8 of (10)).

Definition 6.27. (Hidden Sub-hypergroup Problem (HSHP)). Given an efficiently computable
function f : K → S, from a finite hypergroup K to a finite set S, that is constant on (left) cosets
of some subhypergroup H and takes distinct values λc on distinct cosets c ∗ H, for c ∈ K.
Determine the subhypergroup H.
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Lemma 6.28. Let K be commutative and H be a sub-hypergroup of K and ρ ∈ K̂, then the following
are equivalent.
(i) ρ ∈ H⊥,
(ii) ∑m∈c∗H ω{m}ρ(m̄) �= 0, for each c ∈ K,
(iii) ∑m∈c∗H ω{m}ρ(m) �= 0, for some c ∈ K.

Proof. (i) ⇒ (ii) If ρ ∈ H⊥ and q : K → K/H is the quotient map, then given c ∈ K,
q(μ ∗ ωH) = q(μ) for μ = δcω ∈ M(K). But clearly

q(δcω) = δc∗Hω = ∑
m∈c∗H

δmω.

Hence ρ(δc∗H)ω = ρ ◦ q(δcω) �= 0, where the last equality is because ρ ◦ q ∈ (K/H)ˆ and a
character is never zero.
(iii) ⇒ (i) If ρ /∈ H⊥ then the multiplicative map ρ ◦ q should be identically zero on K/H
(otherwise it is a character and ρ ∈ H⊥). Hence ∑m∈c∗H ρ(m)ω = ρ(δc∗H)ω = 0, for each
c ∈ K.

1. Prepare the state |χ0〉
′ |0〉.

2. Apply F−1 to the first register to get

∑
x∈K

ω{x} 1
2 |x〉′ |0〉.

3. Apply the black box to get

∑
x∈K

ω{x} 1
2 |x〉′ | f (x)〉,

and measure the second register, to get
√
|K|√

|c ∗ H| ∑
m∈c∗H

ω{m} 1
2 |m〉′ |λc〉,

where c is an element of K selected uniformly at random, and λc is the value of f on the coset
c ∗ H.
4. Apply F to the first register to get
√
|K|√

|c ∗ H| ∑
m∈c∗H

∑
ρ∈K̂

ω{m}π{ρ} 1
2 ρ(m)|ρ〉′ |λc〉 =

√
|K|√

|c ∗ H| ∑
ρ∈K̂

π{ρ} 1
2 ∑

m∈c∗H

ω{m}ρ(m)|ρ〉′ |λc〉

5. Measure the first register and observe a character ρ.

Algorithm 3. Algorithm for Abelian Hidden Subhypergroup Problem

Theorem 6.29. If the Fourier transform could be efficiently calculated on a finite commutative
hypergroup K, then the above algorithm solves HSHP for K in polynomial time.

Note that in the above algorithm, the resulting distribution over ρ is independent of the coset
c ∗ H arising after the first step. Also note that by Lemma 6.28, the character observed in step
3 is in H⊥.
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7. Fourier transform on groupoids

7.1 Abelian groupoids

The structure of abelian groupoids is recently studied by the third author in (57). Our basic
reference for groupoids is (70).
A groupoid G is a small category in which each morphism is invertible. The unit space X =

G(0) of G is is the subset of elements γγ−1 where γ ranges over G. The range map r : G → G(0)

and source map s : G → G(0) are defined by r(γ) = γγ−1, and s(γ) = γ−1γ, for γ ∈ G. We
set Gu = r−1(u) and Gu = s−1(u). The loop space Gu

u = {γ ∈ G|r(γ) = s(γ)} is a called the
isotropy group of G at u.

Definition 7.1. An abelian groupoid is a groupoid whose isotropy groups are abelian.

Definition 7.2. (57) An equivalence relation R on X is r-discrete proper if its graph R is closed
in X × X and the quotient map q : X → X/R is a local homeomorphism.

If the equivalence relation R on X is r-discrete proper, then the groupoid R is proper in the
sense of (30, page 14), that is, the inverse image of every compact subset of X × X is compact
in R. For a groupoid Γ with unit space X = Γ(0), the equivalence relation R(Γ) and isotropy
groupoid Γ(X) are defined by R(Γ) = {(s(γ), r(γ)) : γ ∈ Γ} and Γ(X) = {(γ, σ) : γ, σ ∈
Γ, r(γ) = s(σ)}.

Definition 7.3. An abelian groupoid Γ is called decomposable if R = R(Γ) is r-discrete proper
and covered with compact open R-sets.

Lemma 7.4. The isotropy subgroupoid Γ(X) is open in an decomposable abelian groupoid Γ.

Proof. Since X is open in Γ and r × s is a continuous map when R has quotient topology,
Γ(X) = (r × s)−1(X) is open in Γ, because X is open in R(Γ).

Example 7.5. If Γ is an r-discrete abelian groupoid with finite unit space, then it is
decomposable abelian groupoid.

7.1.1 Eigenfunctionals

A pair (C,D) is called a regular C∗-inclusion if D is a maximal abelian C∗-subalgebra of the
unital C∗-algebra C such that 1 ∈ D and (i) D has the extension property in C; (ii) C is regular
(as a D-bimodule). Let P denote the (unique) conditional expectation of C onto D. We call
(C,D) a C∗-diagonal if in addition, (iii) P is faithful.
If C is non-unital, D is called a diagonal in C if its unitization D̃ is a diagonal in C̃. A twist
G is a proper T-groupoid such that G/T is an r-discrete equivalence relation R. There is a
one-to-one correspondence between twists and diagonal pairs of C∗-algebras: Define

Cc(R,G) = { f ∈ Cc(G) : f (tγ) = t f (γ) (t ∈ T, γ ∈ G)}.

Then G is a T-groupoid over R and

D(G) = { f ∈ Cc(R,G) : supp f ⊂ TG0}

where TG0 denotes the isotropy group bundle of G.
Cc(R,G) is a C∗-algebra with a distinguished abelian subalgebra D(G). Furthermore, D(G) ∼=
C0(G0). Now Cc(R,G) becomes a pre-Hilbert D(G)-module, whose completion H(E) is a
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Hilbert C0(E0)-module. One may construct a ∗-homomorphism π : Cc(R,G) → B(H(G))
such that π( f )g = f g (the convolution product) for all f , g ∈ Cc(R,G) and define C(G) to be
the closure of π(Cc(R,G)) and D(G) to be the closure of π(D(G)). It turns out that D(G) is a
diagonal in C(G), hence every twist gives rise to a diagonal pair of C∗-algebras. Conversely,
given C∗-algebras C and D such that D is a diagonal in C, one may construct a twist G such
that C = C(G) and D = D(G), giving a bijective correspondence between twists and diagonal
pairs (see (41) for more details).

Theorem 7.6. If Γ is an decomposable abelian groupoid, then (C∗(Γ), C∗(Γ(X))) is a C∗-diagonal
pair.

Proof. Since R(0) = Γ̂(X), where R := Γ̂(X) ⋊c R, and Γ̂(X)⋊c R is a principal r-discrete

groupoid, (C∗(Γ̂(X) ⋊c R,G), C0(Γ̂(X))) is a diagonal pair (55, Theorem VIII.6), hence
(C∗(Γ), C∗(Γ(X))) is a C∗-diagonal, because the isomorphism between groupoid C∗-algebras
preserves their diagonals.

Another piece of structure of the pair (C∗(R,G) = C∗(Γ), C0(R(0)) = C∗(Γ(X))) is the
restriction map P : f �→ f |C∗(Γ(X)) from C∗(Γ) to C∗(Γ(X)) (65). In (54), the authors show
that there is generalized conditional expectation C∗(Γ) → C∗(Γ(u)).

Corollary 7.7. If Γ is an decomposable abelian groupoid, then the restriction map P : C∗(Γ) →
C∗(Γ(X)) is the unique faithful conditional expectation onto C∗(Γ(X)).

Corollary 7.8. If Γ is an decomposable abelian groupoid, then C∗(Γ(X)) (resp. C∗
μ(Γ(X))) is a

maximal abelian sub-algebra (masa) in C∗(Γ) (resp. C∗
μ(Γ)).

If Γ is a nontrivial decomposable abelian groupoid, X can not be the interior of Γ(X), therefore
C∗(X) is not a maximal subalgebra of C∗(Γ) (70, prop. II.4.7(ii)). By theorem 7.7, C∗(Γ(X))
is commutative and we can conclude that there is no f ∈ Cc(Γ) with support outside Γ(X)
which is in the commutative C∗-algebra C∗(Γ(X)).

Corollary 7.9. If Γ is an decomposable abelian groupoid, C∗(Γ) is regular as a C∗(Γ(X))-bimodule.

For a Banach C∗(Γ(X))-bimodule M, An element m ∈ M is called an intertwiner if

m.C∗(Γ(X)) = C∗(Γ(X)).m.

If m ∈ M is an intertwiner such that for every f ∈ C∗(Γ(X)), f .m ∈ Cm, we call m a minimal
intertwiner (compare intertwiners to normalizers (22, prop 3.3)). Regularity of a bimodule M
is equivalent to norm-density of the C∗(Γ(X))-intertwiners (22, remarks 4.2).
A C∗(Γ(X))-eigenfunctional is a nonzero linear functional φ : M → C such that, for all
f ∈ C∗(Γ(X)), g → φ( f ∗ g), g → φ(g ∗ f ) are multiples of φ. A minimal intertwiner of
M∗ is an eigenfunctional. We equip the set EC∗(Γ(X))(M) of all C∗(Γ(X))- eigenfunctionals
with the relative weak∗ topology σ(M∗,M). Its normalizer is the set N(C∗(Γ(X))) = {v ∈
C∗(Γ) : vC∗(Γ(X))v∗ ⊂ C∗(Γ(X)) and v∗C∗(Γ(X))v ⊂ C∗(Γ(X))}. For v ∈ N(C∗(Γ(X))),
let dom(v) := {φ ∈ Z : φ(v∗v) > 0}, note this is an open set in Z = ̂C∗(Γ(X)). There is a
homeomorphism βv : dom(v) → dom(v∗) := ran(v) given by

βv(φ)( f ) =
φ(v∗ ∗ f ∗ v)

φ(v∗ ∗ v)
.

It is easy to show that β−1
v = βv∗ (41).

367Fourier Transform on Group-Like Structures and Applications

www.intechopen.com



Remark 7.10. Intertwiners and normalizers are closely related, at least when C∗(Γ(X)) is a
masa in the unital C∗-algebra C∗(Γ) containing M (22). Indeed, if v ∈ C∗(Γ) is an intertwiner
for C∗(Γ(X)), then v∗v, vv∗ ∈ C∗(Γ(X))′

⋂
C∗(Γ). If C∗(Γ(X)) is maximal abelian in C∗(Γ),

then v is a normalizer of C∗(Γ(X)) (22, Proposition 3.3). Conversely, for v ∈ N(C∗(Γ(X))), if
βv∗ extends to a homeomorphism of S(v∗) onto S(v), then v is an intertwiner. Moreover, if I
is the set of intertwiners, then N(C∗(Γ(X))) is contained in the norm-closure of I, and when
C∗(Γ(X)) is a masa in C∗(Γ), N(C∗(Γ(X))) = I (22, proposition 3.4).

Since C∗(Γ(X)) is a C∗-subalgebra of the C∗-algebra C∗(Γ), and it contains an approximate
unit of C∗(Γ), for each v ∈ N(C∗(Γ(X))), we have vv∗, v∗v ∈ C∗(Γ(X)) (65, lemma 4.6).
Given an eigenfunctional φ ∈ EC∗(Γ(X))(M), the associativity of the maps f ∈ C∗(Γ(X)) �→
f .φ and f ∈ C∗(Γ(X)) �→ φ. f yields the existence of unique multiplicative linear functionals
s(φ) and r(φ) on C∗(Γ(X)) satisfying s(φ)( f )φ = f .φ and r(φ)( f )φ = φ. f , that is

φ(g ∗ f ) = φ(g)[s(φ)( f )], φ( f ∗ g) = [r(φ)( f )]φ(g).

We call s(φ) and r(φ) the source and range of φ respectively (22, page 6). There is a
natural action of the nonzero complex numbers z on E(M), sending (z, φ) to the functional
m → zφ(m); clearly s(zφ) = s(φ) and r(zφ) = r(φ). Also E(M) ∪ {0} is closed in the
weak∗-topology. Furthermore, r : E(M) → Z and s : E(M) → Z are continuous.

Notation 7.11. We define G = E1(C∗(Γ)), where E1(C∗(Γ)) is the collection of norm-one
eigenvectors for the dual action of C∗(Γ(X)) on the Banach space dual C∗(Γ)∗. For a bimodule
M ⊂ C∗(Γ), G|M can be defined directly in terms of the bimodule structure of M, without
explicit reference to C∗(Γ) as in (22, remark 4.16).

The groupoid G, with a suitable operation and the relative weak∗- topology admits a natural
T-action. If φ, ψ ∈ E(M) satisfy r(φ) = r(ψ) and s(φ) = s(ψ), then there exists z ∈ C such
that z �= 0 and φ = zψ (22, corollary 4.10). Also E1(M) ∪ {0} is weak∗-compact (22, prop.
4.17). Thus, E1(M) is a locally compact Hausdorff space. We may regard an element m ∈ M
as a function on E1(M) via m̂(φ) = φ(m). When A is both a norm-closed algebra and a
C∗(Γ(X))-bimodule, the coordinate system E1(A) has the additional structure of a continuous
partially defined product as described in (22, remark4.14).

Notation 7.12. Let R(M) := {|φ| : φ ∈ E1(M)}. Then R(M) may be identified with the
quotient E1(M)\T of E1(M) by the natural action of T. A twist is a proper T-groupoid G so
that G\T is an principal r-discrete groupoid. The topology on R(C∗(Γ)) is compatible with
the groupoid operations, so R(C∗(Γ)) is a topological equivalence relation (22).

We know that (C∗(Γ), C∗(Γ(X))) is a C∗-diagonal, let M ⊂ C∗(Γ) be a norm-closed
C∗(Γ(X))-bimodule. Then the span of E1(M) is σ(M∗,M)-dense in M∗. Suppose A is a
norm closed algebra satisfying C∗(Γ(X)) ⊂ A ⊂ C∗(Γ). If B is the C∗-subalgebra of C∗(Γ)
generated by A, then B is the C∗-envelope of A. If in addition, B = C∗(Γ), then R(C∗(Γ)) is
the topological equivalence relation generated by R(A) (22).
Eigenfunctionals can be viewed as normal linear functional on B∗∗ and one may use the polar
decomposition to obtain a minimal partial isometry for each eigenfunctional (22). Indeed, by
the polar decomposition for linear functionals, there is a partial isometry u∗ ∈ C∗(Γ)∗∗ and
positive linear functionals |φ|, |φ∗| ∈ C∗(Γ)∗ so that φ = u∗.|φ| = |φ∗|.u∗. Then r(φ) = |φ|
and s(φ) = |φ∗|. Moreover, uu∗ and u∗u are the smallest projections in C∗(Γ)∗∗ which satisfy
u∗u.s(φ) = s(φ).u∗u = s(φ) and uu∗.r(φ) = r(φ).uu∗ = r(φ). For φ ∈ E1(C∗(Γ)), we call the
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above partial isometry u the partial isometry associated to φ, and denote it by vφ. If φ ∈ Z ,
then u is a projection and we denote it by pφ. The above equations show that v∗φvφ = ps(φ)

and vφv∗φ = pr(φ). Moreover, given φ ∈ E1(C∗(Γ)), vφ may be characterized as the unique

minimal partial isometry w ∈ C∗(Γ)∗∗ such that φ(w) > 0. Recall that χ, ξ ∈ ˆC∗(Γ(X)) satisfy
(χ, ξ) ∈ R(C∗(Γ)) if and only if there is φ ∈ E1(C∗(Γ)) with r(φ) = χ and s(φ) = ξ. For
brevity, we write χ ∼ ξ in this case (22).

Remark 7.13. For χ ∈ Z , we denote the GNS-representation of C∗(Γ) associated to the unique
extension of χ by (Hχ, πχ). Let χ, ξ ∈ Z , then ξ ∼ χ if and only if the GNS-representations
πχ and πξ are unitarily equivalent (22, lemma 5.8). Therefore if χ, ξ ∈ Z(x), then ξ ∼ χ if and
only if ξ = χ (54, lemma 2.11).

If we set M = { f ∈ C∗(Γ) : χ( f ∗ f ) = 0}, then C∗(Γ)/M is complete relative to the norm
induced by the inner product 〈 f +M, g +M〉 = χ(g∗ f ), and thus Hχ = C∗(Γ)/M.

Proposition 7.14. Suppose χ ∈ Z and φ ∈ E1(C∗(Γ)) satisfy χ ∼ s(φ). Then there exist unit
orthogonal unit vectors ω1, ω2 ∈ Hχ such that for every f ∈ C∗(Γ), φ( f ) = 〈πχ( f )ω1, ω2〉 (22).

Theorem 7.15. We have R(C∗(Γ)) ∼= Z ⋊c R(Γ), algebraically and topologically.

Proof. Ionescu and Williams showed that every representation of Γ induced from an
irreducible representation of a stability group is irreducible (30, page 296). We can extend

a character χ ∈ Z to χ ∈ Ĉ∗(Γ) such that χ|C∗(Γ|[y] �=[x]) = 1, but since the extension is

unique in C∗-diagonals, it will be equal to Ind(x, Γ(X)x , χ). Let χ, ξ ∈ Γ̂(X), then χ ∼ ξ if
and only if the GNS-representations πχ and πξ are unitarily equivalent. By (54, lemma 2.5),

Ind(x, Γ(X)x, χ) is unitarily equivalent to Ind(x.k, Γ(X)s(k), χ.k) in Ĉ∗(Γ), hence they are in

the same class in Ĉ∗(Γ), that is χ ∼ χ.k, where k ∈ R. But if two stability groups of Γ are not in
the same orbit, none of their irreducible representation can be equivalent. This shows that the
two sets are the same algebraically. Since the topology is r-discrete, they are also topologically
isomorphic.

Remark 7.16. We know that C∗(Γ|[x]) ∼= K(L2(X|[x], μ))⊗ C∗(Γ(x)) (16, page 107). Also we
have L2(X|[x], μ) ∼= L2(Rx, αx) (56, page 135), therefore Hχ = Cc(Γx)⊗ Hπχ and

Ind(x, Γ(X)x, χ) = πχ,

where Hπχ is the Hilbert space constructed in C∗(Γ(X)x) by χ (54), but Hχ is the Hilbert space
constructed in C∗(Γ) by the unique extension of χ (22). Hence

C∗(Γ|[x])
{ f ∈ C∗(Γ) : χ( f ∗ ∗ f ) = 0}

∼= Cc(Γx)⊗ Hπχ

and πχ( f )(g ⊗ ω) = Ind(x, Γ(X)x, χ)( f )(g ⊗ ω) = ( f ∗ g ⊗ ω).

Corollary 7.17. The groupoid G above is the T-groupoid of Z ⋊c R. In other words, we have the exact
sequence

Z → Z × T → G → G\T ∼= Z ⋊c R.
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7.1.2 Fourier transform

We know that Z ⊂ E1(M). If Γ is an abelian group, we have C∗(Γ(X)) = M = C∗(Γ), hence

EC∗(Γ(X))(M) ⊃ Ĉ∗(Γ), hence eigenfunctionals are generalizations of multiplicative linear
functionals. However, in general, E1(M) need not separate points of M.
We define the open support of f ∈ C∗(R) as

supp′( f ) = {γ ∈ R : f (γ) �= 0}.

Let
C0(Z) = { f ∈ C∗(R,G) : supp′ f ⊂ Z}

(65). Since R is (topologically) principal, and the normalizer N(C∗(Γ(X))) consists exactly of
the elements of C∗(Γ) whose open support is a bisection (65, Proposition 4.8), we may define
αv = αsupp′v, where αS for a bisection S of an r-discrete groupoid R is defined in (65). We
define the Weyl groupoid K of (C∗(Γ), C∗(Γ(X))) as the groupoid of germs of

K(C∗(Γ(X))) = {αv, v ∈ N(C∗(Γ(X)))}.

By proposition 4.13 in (65), the Weyl groupoid K of (C∗(Γ), C∗(Γ(X))) is canonically
isomorphic to R.
Following Renault, let us define D = {(z1, v, z2) ∈ Z × N(C∗(Γ(X))) × Z : v∗v(z2) > 0
and z1 = αv(z2)}. Consider the quotient G(C∗(Γ(X))) = D/ ∼ by the equivalence
relation: (z1, v, z2) ∼ (z′1, v′, z′2) if and only if z2 = z′2 and there exist f , f ′ ∈ C∗(Γ(X))
with f (z2), f ′(z2) > 0 such that v ∗ f = v′ ∗ f ′. The class of (z1, v, z2) is denoted by
[z1, v, z2]. Then G(C∗(Γ(X))) has a natural groupoid structure over Z , defined exactly in
the same fashion as the groupoid of germs: the range and source maps are defined by
r[z1, v, z2] = z1, s[z1, v, z2] = z2, the product by [z1, v, z2][z2, v′, z] = [z1, v ∗ v′, z] and the
inverse by [z1, v, y]−1 = [y, v∗, z1].
The map (z1, v, z2) → [z1, αv, z2] from D to K factors through the quotient and defines
a groupoid homomorphism from G(C∗(Γ(X))) onto W(C∗(Γ(X))). Moreover the subset
H = {[z, f , z] : f ∈ C∗(Γ(X)), f (z) �= 0} ⊂ G(C∗(Γ(X)))} can be identified with the trivial
group bundle T ×Z . Since C∗(Γ(X)) is maximal abelian and contains an approximate unit of
C∗(Γ), the sequence

H → G(C∗(Γ(X))) → K
is (algebraically) an extension (65, Proposition 4.14). Also we have a canonical isomorphism
of extensions:

H −−−−→ G(C∗(Γ(X))) −−−−→ K
⏐⏐�

⏐⏐�
⏐⏐�

T ×Z −−−−→ G −−−−→ R
It is easy to recover the topology of G(C∗(Γ(X))). Indeed, every v ∈ N(C∗(Γ(X))) defines a
trivialization of the restriction of G(C∗(Γ(X))) to the open bisection S = supp′(v). Therefore
G(C∗(Γ(X))) is a locally trivial topological twist over K (65, lemma 4.16).

Definition 7.18 (Fourier transform). The Fourier transform is defined in (54, equaion (4.5)) as

f̂ (χ, γ) =

∫
Γ(r(γ)) χ(g) f (gγ)dβr(γ)(g)

√
ω(γ)

,

370 Fourier Transforms - Approach to Scientific Principles

www.intechopen.com



where ω is a continuous Γ(X)-invariant homomorphism from Γ to R+ such that for all f ∈
Cc(Γ(X)), ∫

Γ(X)
f (g)dβr(γ)(g) = ω(γ)

∫

Γ(X)
f (γgγ−1)dβs(γ)(g).

Definition 7.19 (Gelfand transform). Given f ∈ C∗(Γ) and (z1, v, z2) ∈ D, define the Gelfand
transform of f by

f̂ (z1, v, z2) =
P(v∗ ∗ f )(z2)√

v∗ ∗ v(z2)
.

Then f̂ (z1, v, z2) depends only on its class in G(C∗(Γ(X))), f̂ defines a continuous section
of the line bundle L(C∗(Γ(X))) := (C × G(C∗(Γ(X))))/T, and the map f �→ f̂ is linear
and injective (65, Lemma 5.3). When f belongs to C∗(Γ(X)), then f̂ vanishes off Z and its
restriction to Z is the classical Gelfand transform. If v belongs to N(C∗(Γ(X))), then the
open support of v̂ is the open bisection of K defined by the partial homeomorphism αv (65,
corollary 5.6). The Weyl groupoid K is a Hausdorff r-discrete groupoid (65, proposition 5.7).
Let Nc(C∗(Γ(X))) be the set of elements v in N(C∗(Γ(X))) such v̂ has compact support and
let C∗(Γ)c be its linear span. Then Nc(C∗(Γ(X))) is dense in N(C∗(Γ(X))) and C∗(Γ)c is
dense in C∗(Γ), and the Gelfand map Ψ : f → f̂ defined above sends C∗(Γ)c bijectively
onto Cc(K,G) and C∗(Γ(X))c = C∗(Γ(X))

⋂
C∗(Γ)c onto Cc(Z). Hence the Gelfand map

Ψ : C∗(Γ)c → Cc(K,G) is an ∗-algebra isomorphism (65, lemma 5.8).

7.2 Compact groupoids

All over this section, we assume that G is compact and the Haar system on G is normalized
so that λu(Gu) = 1, for each u ∈ X, where X = G(0) is the unit space of G. In general G
may be non-Hausdorff, but as usual we assume that G(0) and Gu, Gv, for each u, v ∈ G(0) are
Hausdorff.

7.2.1 Fourier transform

Let G be a groupoid (70, 1.1). The unit space of G and the range and source maps are denoted
by X = G(0), r and s, respectively. For u, v ∈ G(0), we put Gu = r−1{u}, Gv = s−1{v}, and
Gu

v = Gu ∩ Gv. Also we put G(2) = {(x, y) ∈ G × G : r(y) = s(x)}.
We say that G is a topological groupoid (70, 2.1) if the inverse map x �→ x−1 on G and the
multiplication map (x, y) �→ xy from G(2) to G are continuous. This implies that the range
and source maps r and s are continuous and the subsets Gu, Gv, and Gu

v are closed, and so
compact, for each u, v ∈ X. We fix a left Haar system λ = {λu}u∈X and put λu(E) = λu(E−1),
for Borel sets E ⊆ Gu, and let λv

u be the restriction of λu to the Borel σ-algebra of Gv
u . The

integrals against λu and λv
u are understood to be on Gu and Gv

u , respectively. The functions on
Gv

u are extended by zero, if considered as functions on G. All over this section, we assume that
λu(Gv

u) �= 0, for each u, v ∈ X. This holds in transitive groupoids. In this case, we say that G
is locally non-trivial and we denote the restriction of λu to the σ-algebra of Borel subsets of Gv

u
by λv

u.
The convolution product of two measurable functions f and g on G is defined by

f ∗ g(x) =
∫

f (y)g(y−1x)dλr(x)(y) =
∫

f (xy−1)g(y)dλs(x)(y).

A (continuous) representation of G is a double (π,Hπ), where Hπ = {Hπ
u }u∈X is a continuous

bundle of Hilbert spaces over X such that:
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(i) π(x) ∈ B(Hπ
s(x)

,Hπ
r(x)

) is a unitary operator, for each x ∈ G,
(ii) π(u) = idu : Hπ

u → Hπ
u , for each u ∈ X,

(iii) π(xy) = π(x)π(y), for each (x, y) ∈ G(2),
(iv) π(x−1) = π(x)−1, for each x ∈ G,
(v) x �→ 〈π(x)ξ(s(x)), η(r(x))〉 is continuous on G, for each ξ, η ∈ C0(G

(0),Hπ).

Two representations π1, π2 of G are called (unitarily) equivalent if there is a (continuous)
bundle U = {Uu}u∈X of unitary operators Uu ∈ B(Hπ

u ,Hπ
u ) such that

Ur(x)π1(x) = π2(x)Us(x) (x ∈ G).

We use Rep(G) to denote the category consisting of (equivalence classes of continuous)
representations of G as objects and intertwining operators as morphisms (3, Notation 2.5).
Let π ∈ Rep(G), the mappings

x �→ 〈π(x)ξs(x), ηr(x)〉,

where ξ, η are continuous sections of Hπ are called matrix elements of π. This terminology is
based on the fact that if {ei

u} is a basis for Hπ
u , then πij(x) = 〈π(x)e

j

s(x)
, ei

r(x)
〉 is the (i, j)-th

entry of the (possibly infinite) matrix of π(x). We denote the linear span of matrix elements
of π by Eπ . By continuity of representations, Eπ is a subspace of C(G). It is clear that Eπ

depends only on the unitary equivalence class of π. For u, v ∈ X, Eπ
u,v consists of restrictions

of elements of Eπ to Gv
u . Also we put Eu,v = span

(
∪π∈Ĝ Eπ

u,v
)

and E = span
(
∪π∈Ĝ Eπ

)
.

It follows from the Peter-Weyl theorem (1, Theorem 3.10) (note that there is a typo in (3,
Theorem 3.10), and the orthonormal basis elements

√
dπ

u /λu(Gv
u)π

ij
u,v is wrongly inscribed

as
√

dπ
u λu(Gv

u)π
ij
u,v) that, for u, v ∈ X, if λu(Gv

u) �= 0, then for each f ∈ L2(Gv
u , λv

u),

f = ∑
π∈Ĝ

dπ
v

∑
i=1

dπ
u

∑
j=1

c
ij
u,v,ππ

ij
u,v ,

where

c
ij
u,v,π =

dπ
u

λu(Gv
u)

∫

Gv
u

f (x)π
ij
u,v(x)dλv

u(x) (1 ≤ i ≤ dπ
v , 1 ≤ j ≤ dπ

u ).

This is a local version of the classical non commutative Fourier transform. As in the classical
case, the main drawback is that it depends on the choice of the basis (which in turn gives
the choice of the coefficient functions). The trick is similar to the classical case, that’s to use
the continuous decomposition using integrals. This is the content of the next definition. As
usual, all the integrals are supposed to be on the support of the measure against which they
are taken.

Definition 7.20. Let u, v ∈ X and f ∈ L1(Gv
u , λv

u), then the Fourier transform of f is Fu,v( f ) :
Rep(G) → B(Hπ

v ,Hπ
u ) defined by

Fu,v( f )(π) =
∫

f (x)π(x−1)dλv
u(x).
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To better understand this definition, let us go back to the group case for a moment. Let’s start
with a locally compact abelian group G. Then the Pontryagin dual Ĝ of G is a locally compact
abelian group and for each f ∈ L1(G), its Fourier transform f̂ ∈ C0(Ĝ) is defined by

f̂ (χ) =
∫

G
f (x)χ(x)dx (χ ∈ Ĝ).

The continuity of f̂ is immediate and the fact that it vanishes at infinity is the so called
Riemann-Lebesgue lemma. For non abelian compact groups, a similar construction exists,
namely, with an slight abuse of notation, for each f ∈ L1(G) one has f̂ ∈ C0(Ĝ,B(H)),
where Ĝ is the set of (unitary equivalence classes of) irreducible representations of G endowed
with the Fell topology. In the groupoid case, one has a similar local interpretation. Each
f ∈ L1(Gv

u , λv
u) has its Fourier transform Fu,v( f ) in C0(Ĝ,Bu,v(H)), where Ĝ is the set of

(unitary equivalence classes of) irreducible representations of G endowed again with the Fell
topology, and Bu,v(H) is a bundle of operator spaces over Ĝ whose fiber at π is B(Hπ

v ,Hπ
u ),

and C0(Ĝ,Bu,v(H)) is the set of all continuous sections vanishing at infinity.
Now let us discuss the properties of the Fourier transform. If we choose (possibly infinite)
orthonormal bases for Hπ

u and Hπ
v and let each π(x) be represented by the (possibly infinite)

matrix with components π
ij
u,v(x), then Fu,v( f ) is represented by the matrix with components

Fu,v( f )(π)ij = λu(Gv
u)

dπ
u

c
ji
u,v,π . When f ∈ L2(Gv

u , λv
u), summing up over all indices i, j, we get the

following.

Proposition 7.21. (Fourier inversion formula) For each u, v ∈ X and f ∈ L2(Gv
u , λv

u),

f = ∑
π∈Ĝ

dπ
u

λu(Gv
u)

Tr
(
Fu,v( f )(π)π(·)

)
,

where the sum converges in the L2 norm and

‖ f ‖2
2 = ∑

π∈Ĝ

dπ
u

λu(Gv
u)

Tr
(
Fu,v( f )(π)Fu,v( f )(π)∗

)
.

We collect the properties of the Fourier transform in the following lemma. Note that in part
(iii), f ∗(x) = f (x−1), for x ∈ Gv

u and f ∈ L1(Gv
u , λv

u).

Lemma 7.22. Let u, v, w ∈ X, a, b ∈ C, and f , f1, f2 ∈ L1(Gv
u , λv

u), g ∈ L1(Gw
v , λw

v ), then for each
π ∈ Rep(G),
(i)Fu,v(a f1 + b f2) = aFu,v( f1) + bFu,v( f2),
(ii)Fu,w( f ∗ g)(π) = Fu,v( f )(π)Fv,w(g)(π),
(iii)Fv,u( f ∗)(π) = Fu,v( f )(π)∗,
(iv) Fu,w(�x( f ))(π) = Fu,v( f )(π)π(x−1) and Fw,v(ry( f ))(π) = π(y) Fu,v( f )(π), whenever
x ∈ Gw

v , y ∈ Gw
u .

As in the group case, there is yet another way of introducing the Fourier transform. For each
finite dimensional continuous representation π of G, let the character χπ of π be the bundle of
functions χπ whose fiber χπ

u at u ∈ X is defined by χπ
u (x) = Tr(π(x)), for x ∈ Gu

u , where Tr is
the trace of matrices. Note that one can not have these as functions defined on Gv

u , since when
x ∈ Gv

u , π(x) is not a square matrix in general. Also note that the values of the above character
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functions depend only on the unitary equivalence class of π, as similar matrices have the same
trace. Now if π ∈ Ĝ, x ∈ Gv

u , and f ∈ L1(Gv
u , λv

u), then

Tr
(
Fu,v( f )(π)π(x)

)
=

∫
f (y)Tr(π(y−1x))dλv

u(y) = f ∗ χπ
u (x),

where in the last equality f is understood to be extended by zero to Gu.

Corollary 7.23. The map Pπ
u,v : L2(Gv

u , λv
u) → Eπ

u,v, f �→ dπ
u f ∗ χπ

u is a surjective orthogonal

projection and for each f ∈ L2(Gv
u , λv

u), we have the decomposition

f = ∑
π∈Ĝ

dπ
u f ∗ χπ

u ,

which converges in the L2 norm.

Applying the above decomposition to the case where u = v and f = χπ
u , we get

Corollary 7.24. For each u ∈ X and π, π
′ ∈ Ĝ,

χπ
u ∗ χπ

′

u =

{
dπ

u
−1 if π ∼ π

′
,

0 otherwise.

7.2.2 Inverse Fourier and Fourier-Plancherel transforms

Next we are aiming at the construction of the inverse Fourier transform. This is best
understood if we start with yet another interpretation of the local Fourier transform. It is
clear from the definition of Fu,v that if u, v ∈ X, π1, π2 ∈ Rep(G), and f ∈ L1(Gv

u , λv
u), then

Fu,v( f )(π1 ⊕ π2) = Fu,v( f )(π1)⊕ Fu,v( f )(π2),

and the same is true for any number (even infinite) of continuous representations, so it follows
from (1, Theorem 2.16) that Fu,v( f ) is uniquely characterized by its values on Ĝ, namely we
can regard

Fu,v : L1(Gv
u , λv

u) → ∏
π∈Ĝ

B(Hπ
v ,Hπ

u ),

where the Cartesian product is the set of all choice functions g : G → ⋃
π∈Ĝ B(Hπ

v ,Hπ
u ) with

g(π) ∈ B(Hπ
v ,Hπ

u ), for each π ∈ Ĝ. Consider the �∞-direct sum ∑π∈Ĝ
⊕B(Hπ

v ,Hπ
u ). The

domain of our inverse Fourier transform then would be the algebraic sum ∑π∈Ĝ B(Hπ
v ,Hπ

u ),
consisting of those elements of the direct sum with only finitely many nonzero components.
An element g ∈ D(F−1

u,v) is a choice function such that g(π) ∈ B(Hπ
v ,Hπ

u ), for each π ∈ Ĝ is
zero, except for finitely many π’s.

Definition 7.25. Let u, v ∈ X. The inverse Fourier transform

F−1
u,v : ∑

π∈Ĝ
B(Hπ

v ,Hπ
u ) → C(Gv

u)

is defined by

F−1
u,v(g)(x) = ∑

π∈Ĝ

dπ
u

λu(Gv
u)

Tr
(

g(π)π(x)
)

(x ∈ Gv
u).
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To show that this is indeed the inverse map of the (local) Fourier transform we need a version
of the Schur’s orthogonality relations (1, Theorem 3.6).

Proposition 7.26. (Orthogonality relations) Let τ, ρ ∈ Ĝ, u, v ∈ X, T ∈ B(Hτ), S ∈ B(Hρ),
A ∈ B(Hρ,Hτ), and ξ ∈ Hτ , η ∈ Hρ, then

(i)
∫

τ(x−1)Ar(x)ρ(x)dλv
u(x) =

{
λu(Gv

u)
dτ

u
Tr(Au)idHτ

u
if τ = ρ,

0 otherwise,

(ii)
∫

τ(x−1)ξr(x) ⊗ ρ(x)ηs(x)dλv
u(x) =

{
λu(Gv

u)
dτ

u
ηu ⊗ ξu if τ = ρ,

0 otherwise,

(iii)
∫

Tr(Ts(x)τ(x−1))Tr(Sr(x)ρ(x))dλv
u(x)

=

{
λu(Gv

u)
dτ

u
Tr(TuSu) if τ = ρ,

0 otherwise,

(iv)
∫

Tr(Ts(x)τ(x−1))ρ(x)dλv
u(x) =

{
λu(Gv

u)
dτ

u
Tu if τ = ρ,

0 otherwise.

In some applications we need to use the orthogonality relations over Gu (not Gv
u). In this

case, using the normalization λu(Gu) = 1, and essentially by the same argument we get the
following result (3, Proposition 3.3).

Proposition 7.27. (Orthogonality relations) Let τ, ρ ∈ Ĝ, u ∈ X, T ∈ B(Hτ), S ∈ B(Hρ),
A ∈ B(Hρ,Hτ), and ξ ∈ Hτ , η ∈ Hρ, then

(i)
∫

τ(x−1)Ar(x)ρ(x)dλu(x) =

{
Tr(Au)

dτ
u

idHτ
u

if τ = ρ,

0 otherwise,

(ii)
∫

τ(x−1)ξr(x) ⊗ ρ(x)ηs(x)dλu(x) =

{
1
dτ

u
ηu ⊗ ξu if τ = ρ,

0 otherwise,

(iii)
∫

Tr(Ts(x)τ(x−1))Tr(Sr(x)ρ(x))dλu(x)

=

{
1
dτ

u
Tr(TuSu) if τ = ρ,

0 otherwise,

(iv)
∫

Tr(Ts(x)τ(x−1))ρ(x)dλu(x) =

{
1
dτ

u
Tu if τ = ρ,

0 otherwise.

Now we are ready to state the properties of the local inverse Fourier transform (3, Proposition
3.4). But let us first introduce the natural inner products on its domain and range. For f , g ∈
C(Gv

u) and h, k ∈ ∑π∈Ĝ B(Hπ
v ,Hπ

u ) put 〈 f , g〉 =
∫

f̄ .gdλv
u, and

〈h, k〉 = ∑
π∈Ĝ

dπ
u

λu(Gv
u)

Tr(k(π)h∗(π)),
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where the right hand side is a finite sum as h and k are of finite support. Also note that if εu :
C(Gu

u ) → C is defined by εu( f ) = f (u), then for each f , g ∈ C(Gv
u), we have g ∗ f ∗ ∈ C(Gu

u )

and 〈 f , g〉 = εu(g ∗ f ∗), where f ∗ ∈ C(Gu
v ) is defined by f ∗(x) = f (x−1), for x ∈ Gu

v . Similarly,
h∗ ∈ ∑π∈Ĝ B(Hπ

v ,Hπ
u ) is defined by h∗(π) = h̄(π̌), where h̄(π) = h(π)∗, π̄(x) = π(x)∗, and

π̌(x) = π(x−1)∗, for each π ∈ Ĝ and x ∈ G. The star superscript denotes the conjugation of
Hilbert space operators.

Proposition 7.28. For each u, v ∈ X and h, k ∈ ∑π∈Ĝ B(Hπ
v ,Hπ

u ), � ∈ ∑π∈Ĝ B(Hπ
w,Hπ

v ) we have

(i)Fu,vF
−1
u,v(h) = h,

(ii)λu(Gv
u)F

−1
u,w(hk) = F−1

u,v(h) ∗ F−1
v,w(k),

(iii)F−1
v,u(h

∗) = (F−1
u,v(h))

∗,

(iv)〈F−1
u,v(h),F−1

u,v(k)〉 = 〈h, k〉.
Next we define a norm on the domain of the inverse Fourier transform in order to get a
Plancherel type theorem. Let u, v ∈ X , for h ∈ ∑π∈Ĝ B(Hπ

v ,Hπ
u ) we put ‖h‖2 = 〈h, h〉 1

2 .
This is the natural norm on the algebraic direct sum, when one endows each component
B(Hπ

v ,Hπ
u ) with the Hilbert space structure given by 〈T, S〉 = dπ

u

λu(Gv
u)

Tr(ST∗). We denote

the completion of ∑π∈Ĝ B(Hπ
v ,Hπ

u ) with respect to this norm by L2
u,v(G). The above map

is called the (local) Fourier-Plancherel transform. The next result is a direct consequence of (3,
Proposition 3.2).

Theorem 7.29. (Plancherel Theorem) For each u, v ∈ X such that λu(Gv
u) �= 0, Fu,v extends to a

unitary Fu,v : L2(Gv
u , λv

u) → L2
u,v(G).

8. Conclusion

The classical Fourier transform extends to most of the group-like structures. The fast
Fourier transform could be computed on finite abelian groups and monoids. There are more
sophisticated versions of the Fourier transform on compact groups and hypergroups. The
theory of abelian groupoids should be developed with care, but one could safely define the
Fourier transform in this case. The theory of Fourier transform on compact groups extends to
compact groupoids and a local (bundle-wise) as well as a global Fourier transform is defined
in this case.
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1. Introduction  

Discrete Fourier Transform (DFT) is one of the core operations in digital signal processing 
and communication systems. Many fundamental algorithms can be realized by DFT, such as 
convolution, spectrum estimation, and correlation. Furthermore, DFT is widely used in 
standard embedded system applications such as wireless communication protocols 
requiring Orthogonal Frequency Division Multiplexing (Wey et al., 2007), and radar image 
processing using Synthetic Aperture Radar (Fanucci et al., 1999). In practice, DFT is difficult 
to implement directly due to its computational complexity. To reduce the degree of 
computation, Cooley and Tukey proposed the well-known Fast Fourier Transform (FFT) 
algorithm, which reduces the calculation of N-point DFT from O(N2) to O(N/2log2N). 
(Proakis & Manolakis, 2006). Nevertheless, for embedded systems, in particular portable 
devices; efficient hardware realization of FFT with small area, low-power dissipation and 
real-time computation is a significant challenge. The challenge is even more pronounced 
when FFTs with large transform lengths (>1024 points) need to be realized in embedded 
hardware. Therefore, the objective of this research is to investigate hardware efficient FFT 
architectures, emphasizing compact, low-power embedded realizations. 
As VLSI technology evolves, different architectures have been proposed for improving the 
performance and efficiency of the FFT hardware. Pipelined architectures are widely used in 
FFT realization (Li & Wanhammar, 1999; He & Torkelson, 1996; Hopkinson & Butler, 1992; 
Yang et al., 2006) due to their speed advantages. Higher radix (Hopkinson & Butler, 1992; 
Yang et al., 2006) and multi-butterfly (Bouguezel et al., 2004; X. Li et al., 2007) structures can 
also improve the performance of the FFT processor significantly, but these structures require 
substantially more hardware resources. Alternatively, shared memory based schemes with a 
single butterfly calculation unit (Cohen, 1976; Ma, 1994, 1999; Ma & Wanhammar, 2000; Wang 
et al., 2007) are preferred in many embedded FFT processors since they require least amount of 
hardware resources. Furthermore, “in-place” addressing strategy is a practical choice to 
minimize the amount of data memory. With “in-place” strategy, the two outputs of the 
butterfly unit can be written back to the same memory locations of the two inputs, and replace 
the old data. For in-place FFT processing, two data read and two data write operations occur at 
every clock cycle. Multiple memory banks and conflict-free addressing logic are required to 
realize four data accesses in one clock cycle. Consequently, a typical FFT processor is 
composed of three major components:  i) butterfly calculation units, ii) conflict free address 
generators for both data and coefficient accesses and iii) multi-bank memory units.  
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In this study, several techniques are developed for reducing the hardware logic and power 
requirements for these three components: 
1. In order to optimize the conflict free addressing logic, a modified butterfly structure 

with input/output exchange circuits is presented in Section 2.  
2. CORDIC based FFT algorithms are presented for multiplier-less and coefficient 

memory-less implementation of the butterfly unit in Section 3.   
3. Memory bank partitioning and bitline segmentation techniques are presented for 

dynamic power reduction of data memory accesses. Furthermore, a special coefficient 
memory addressing logic which reduces the switching activity is proposed in Section 4.  

Case studies with ASIC and FPGA synthesis results demonstrate the performance gains and 
feasibility of these FFT implementations on embedded systems. 

2. Hardware efficient realization of fast Fourier transform  

There is an ongoing interest in hardware efficient FFT architectures. Cohen (Cohen, 1976) 

introduced a simplified control logic for FFT address generation, which is composed of 

parity checks, barrel shifters and counters based on the fact that two data addresses of every 

butterfly operations differ in their parity. Ma (Ma, 1999) proposed a method to realize the 

radix-2 addressing logic which reduces the address generation delay by avoiding parity 

check (XOR operations), but barrel shifters are still needed. Furthermore, Ma’s approach is 

not “in-place”, so more registers and related control logic are needed to buffer the interim 

data to avoid the memory conflict. Yang (Yang et al., 2006) proposed a locally pipelined 

radix-16 FFT realized by two radix-2 deep feedback (R2SD2F) butterflies. This architecture 

can improve the throughput of the FFT processing and reduce the complex multipliers and 

adders compared to other pipelined methods, but it needs extra memory and there is 

significantly more coefficient access due to radix-16 implementation. Li (X. Li et al., 2007) 

proposed a mixed radix FFT architecture, which contains one radix-2 butterfly and one 

radix-4 butterfly. The two butterflies share the multipliers, which reduce the hardware 

consumption, but the address generation is based on XOR logic, and similar to Cohen's 

design. Next section describes in detail addressing schemes that emphasize reduced 

hardware.  

2.1 Conflict-free addressing for FFT 

The N-point discrete Fourier transform is defined by 

 
21

0

( ) ( ) 0,1,..., 1,
N j nk

nk nk N
N N

n

X k x n W k N W e
π− −

=
= = − =∑    (1) 

Fig. 1 shows the signal flow graph of 16-point decimation-in-frequency (DIF) radix-2 FFT 
(Proakis & Manolakis, 2006). FFT algorithm is composed of butterfly calculation units:  

 1( ) ( ) ( )m m mx p x p x q+ = +  (2) 

 1( ) [ ( ) ( )] r
m m m Nx q x p x q W+ = −  (3) 

Equations (2), (3) describe the radix-2 butterfly calculation at Stage m  as shown in Fig. 2. 

Parallel and “in-place” butterfly operation using two memory banks of two-port memory 
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units requires that the two inputs of any butterfly are read from different banks of memory 
and the two outputs are written to the same address locations as the inputs. As shown in 
Fig. 1, in the conventional FFT addressing scheme, only the butterflies in the first stage 
satisfy this requirement. Two inputs and two outputs of butterfly operations in all other 
stages are originating from and sinking to the same memory bank. Therefore, a special 
addressing scheme is required to prevent the conflicting addresses. 
Cohen (Cohen, 1976) used parity check to separate the data into two memory banks.  Fig. 3 
is the signal flow graph of Cohen’s approach and it shows that inputs and outputs of any 
butterfly stage utilize separate memory banks. The addresses of butterfly operations are “in-
place” located. The drawback of Cohen’s method is the address generation delay. In order to 
reduce the delay of the address generation, Ma (Ma, 1999) proposed an alternative 
addressing scheme which avoids using parity check. The signal flow graph of Ma’s scheme 
is shown in Fig. 4. In Ma’s scheme, two inputs of a butterfly unit originate from two separate 
memory banks but two outputs of the butterfly unit utilize the same memory bank. The 
inputs and outputs of a butterfly unit are not “in-place”. Therefore, extra registers and 
related control logic are needed to buffer the outputs of the butterfly until next butterfly 
calculation is finished in order to realize the “in place” operation. Compared to Cohen’s 
approach which uses both parity check and barrel shifters, Ma’s method needs only barrel 
shifters and avoids parity check, resulting in a reduced address generation delay. However, 
Ma’s approach consumes more hardware resources to realize the “in-place” operation. 
In the following section, a hardware efficient FFT engine with reduced critical path delay is 
proposed. Addressing logic is reduced by using a butterfly structure which modifies the 
conventional one by adding exchange circuits at the input and output of the butterfly (Xiao, 
et al., 2008]. With this butterfly structure, the two inputs and two outputs of any butterfly 
can be exchanged; hence all data addresses in FFT processing can be reordered. Using this 
flexible input and output ordering, addressing logic is designed to be “in-place” and it does 
not need barrel shifters.  
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Fig. 1. Signal flow graph of 16-point FFT 
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Fig. 3. Signal flow graph of 16-point FFT using Cohen’s method (Cohen, 1976) 
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Fig. 4. Signal flow graph of 16-point FFT using Ma’s method (Ma, 1999) 
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2.2 Reduced address generation logic with the modified butterfly FFT (mbFFT) 

This addressing scheme is based on a modified butterfly FFT (mbFFT) structure, which is 
shown in Fig. 5. The main difference between the modified butterfly structure and the 
conventional one is the addition of two exchange circuits that are placed at both the input 
and the output of the butterfly unit. Each exchange circuit is composed of two (2:1) 
multiplexers; when the exchange control signal C1 or C2 is 1, the data will be exchanged, 
otherwise they keep their locations. 
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Fig. 5. Modified butterfly structure 

Equation (4) shows the function: 

If   C1=1:       
);()(),()( pyqxqypx mmmm ==

  

Else:    
);()(),()( qyqxpypx mmmm ==

  

If  C2=1:    
);()(),()( 1111 pxqyqxpy mmmm ++++ ==

  

else:     
);()(),()( 1111 qxqypxpy mmmm ++++ ==

 (4) 

Based on this butterfly structure, all data within the FFT processing can be reordered by 
setting the different values of the exchange control signals C1 and C2. The control signals are 
chosen such that the input data always originate from two separate memory banks and 
output data are written to the same memory location in order to achieve in-place operation. 

2.2.1 16-point mbFFT implementation 

For 16-point mbFFT, the signal flow graph is shown in Fig. 6.  In the figure, the butterfly 
inputs or outputs indicated by broken lines denote that the data have been exchanged.  Fig. 
7 shows the complete address generation architecture and components for 16-point FFT 
implementation. The address generation logic is composed of a 5-bit counter D, three 
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inverters, a 3-bit shifter, three (2:1) multiplexers, two (4:1) multiplexers, four multi-bit (2:1) 
multiplexers and delay elements. Stage Counter S indicates which stage of FFT is currently 
in progress and controls the two (4:1) multiplexers to generate the correct exchange control 
signals C1 and C2 for the butterfly operation. The 3-bit shifter shifts one bit at each stage and 
it controls three (2:1) multiplexers to generate the correct M1 address. Since this technique is 
“in-place”, the addresses for read and write are same with the exception of a delay 
introduced for compensating the butterfly computation time. Table I presents the counter 
values (control logic) which are used to generate the addresses for M0 and M1 memory 
banks. 
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Fig. 6. Signal flow graph of 16-point mbFFT  

 

Stage 0 
(exchange 

control signal: 
C1=0,C2=b2) 

Stage 1 
(exchange 

control signal:
C1= b2,C2= b1)

Stage 2 
(exchange 

control signal: 
C1= b1,C2= b0) 

Stage 3 
(exchange 

control signal: 
C1= b0,C2=0) 

Counter 

2 1 0( )B b b b  

Counter 

2 1 0( )B b b b
Bank0 

address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address

2 1 0b b b

Bank1 
address

2 1 0b b b

Bank0 
address 

2 1 0b b b  

Bank1 
address 

2 1 0b b b  

000 111 000 000 000 100 000 110 000 111 

001 110 001 001 001 101 001 111 001 110 

010 101 010 010 010 110 010 100 010 101 

011 100 011 011 011 111 011 101 011 100 

100 011 100 100 100 000 100 010 100 011 

101 010 101 101 101 001 101 011 101 010 

110 001 110 110 110 010 110 000 110 001 

111 000 111 111 111 011 111 001 111 000 

Table 1. Address generation table for the 16-point mbFFT 
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Fig. 7. Address generation circuits for 16-point mbFFT 

2.2.2 N-point mbFFT implementation 

In order to generalize the addressing scheme for 2nN = - point FFT, the necessary circuit 

components of the addressing and control logic can be listed as follows: 

• (n-1)-bit Butterfly Counter 2 3 1 0...n nB b b b b− −= ,  

• (n-1) inverters which generate the complement of the Butterfly Counter 

2 3 1 0...n nB b b b b− −=  from counter B ,  

• 2log n⎡ ⎤⎢ ⎥ - bit Stage Counter ( 1),...,2,1,0S n= − .  

• Two memory banks, Bank 0 (M0) and Bank 1 (M1). 

In practice, Stage Counter S and Butterfly Counter B can be combined to a single counter D, 

where B is the least significant (n-1) bits of counter D, and S is the most significant 2log n⎡ ⎤⎢ ⎥  

bits of counter D. At any time, the read and write addresses of M0 is exactly same as the 

value of Butterfly Counter B.  For M1, the read and write address at Stage s is 

2 3 1 2 1 0... ...n n n s n sb b b b b b− − − − − − , which is a combination of counters B  and B . The exchange 

control signal C1 is equal to 1n sb − − (assume 1 0nb − ≡ ), and C2 is equal to 2n sb − − (assume 

1 0b− ≡ ). The address of twiddle factors at stage s  is given by 2 3 0... 0...0n s n sb b b− − − − ( s  ‘0’s).  
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2.3 VLSI synthesis results 

The mbFFT architecture is synthesized using TSMC CMOS 0.18µm technology. Synthesis is 
performed with Cadence Build Gates and Encounter tools. The synthesis results for 16-point 
FFT with 32-bit complex number input show a maximum clock frequency of 280MHz with 
0.665mm2 area and 0.645mW total power consumption for the complete FFT operation 
including butterfly unit, address generation unit, and memory circuits. 
In order to compare different FFT addressing methods, the logic complexity can be 
evaluated similar to (Ma, 1999), based on gate counts. The sizes of some basic circuits and 
gates are listed in Table 2. Estimated gate count comparison for 1024-point FFT of 32-bit 
complex data (16-bit each for the real part and imaginary part) is shown in the Table 3. In 
terms of area, mbFFT scheme requires 24% fewer number of transistors. This reduction is 
mainly due to the difference in logic complexity of the multiplexers and barrel shifters. 
Based on the gate counts in Table 2 (and confirmed by synthesis results), r-input (r:1) 
multiplexer is approximately 4 times  smaller than (r-1) barrel shifter in terms of area. 
The delay of address generation for both read and write operations in the mbFFT addressing 
scheme is determined by two stages of multiplexers, where the first stage uses an r-input 
(r:1) multiplexer and the second stage uses a 2-input (2:1) multiplexer for a 2r-point FFT 
operation (see Fig 7). In (Ma, 1999), worst-case address generation delay is dominated by an 
(r-1)-bit barrel shifter and a (2:1)-multiplexer. An (r-1)-bit barrel shifter requires 

2log ( 1)r −⎡ ⎤⎢ ⎥  stages of (2:1) multiplexers in the critical path. Cohen’s address generation 

method (Cohen, 1976) uses an r-bit parity check unit, an (r-1)-bit barrel shifter, and two (2:1) 
multiplexers in the critical path. Standard cell synthesis results in Table 4 show that the 
proposed mbFFT address generation scheme is faster compared to (Cohen, 1976) and (Ma, 
1999) for large FFTs, due to the complex wiring and parasitic capacitances in barrel shifters 
and elimination of the parity-check operation.  
Compared to a pipelined FFT architecture such as R2SD2F given in (Yang et al., 2006), the 
shared memory architectures such as mbFFT offer significantly reduced hardware cost and 
power consumption at the expense of (slower) throughput. R2SD2F requires log4N-1 
multipliers, 2log4N adders and 10log4N multiplexers for the butterfly operations in an N-
point FFT. In contrast, only one multiplier, two adders and four multiplexers are used in the 
mbFFT architecture datapath. The latency (total clock cycles) of a pipelined FFT architecture 

is faster by a factor of N22
1 log . However, the maximum achievable clock frequency would 

be less than the mbFFT design due the increased complexity of the R2SD2F datapath and 
address generation. Hence, for embedded applications, the proposed reduced logic, shared 
memory FFT approach with modified butterfly units presents a more viable solution. 
 

Types of Gates and Circuits No. of. Transistors 

2-Input XOR 10 

2-1 Multiplexer 6 

10-1 Multiplexer 42 

1-bit Register/Latch 10 

9-bit Counter 182 

13-bit Counter 270 

9-bit Barrel Shifter 152 

10-bit Barrel Shifter 168 

Table 2. Transistor counts for CMOS cells (Ma, 1999) 
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Components 
Design Schemes 

Quantity Type 

Transistor 
Counts 

1 13-bit Counter 

9 Inverters 

1 9-bit Shifter 

9 1-bit 2:1 Multiplexer 

2 1-bit 10:1 Multiplexer 

4 32-bit 2:1 Multiplexer 

Proposed mbFFT 
Design 

2 9-bit Latches 

1562 

1 13-bit Counter 

2 9-bit Barrel Shifters 

4 9-bit Latches 

2 32-bit Latches 

2 9-bit 2:1 Multiplexers 

(Ma, 1999) 

2 32-bit 2:1 Multiplexers 

2066 

1 13-bit Counter 

1 9-bit Counter 

2 9-bit Latch 

2 10-bit Barrel Shifter 

2 9-bit 2:1 Multiplexer 

4 32-bit 2:1Multiplexer 

(Cohen, 1976) 

1 9-bit Address Parity Generator 

1924 

Table 3. Address generation logic comparison for 1024-point FFT with 32-bit complex data 

 

FFT size =2n Proposed mbFFT (Ma, 1999) (Cohen,1976) 

n=4 1.28 ns 1.28 ns 1.82 ns 

n=8 1.40 ns 1.53 ns 2.50 ns 

n=10 1.47 ns 1.71 ns 2.61 ns 

n=16 1.59 ns 1.85 ns 2.87 ns 

Table 4. Delay comparison of address generation circuits 

3. Multiplierless FFT architectures using CORDIC algorithm 

In FFT processors, butterfly operation is the most computationally demanding stage. 
Traditionally, a butterfly unit is composed of complex adders and multipliers. A complex 
multiplier can be very large and it is usually the speed bottleneck in the pipeline of the FFT 
processor. The Coordinate Rotation Digital Computer (CORDIC) (Volder, 1959) algorithm is 
an alternative method to realize the butterfly operation without using any dedicated 
multiplier hardware. CORDIC algorithm is versatile and hardware efficient since it requires 
only add and shift operations, making it suitable for the butterfly operations in FFT 
(Despain, 1974). Instead of storing actual twiddle factors in a ROM, the CORDIC-based FFT 
processor needs to store only the twiddle factor angles in a ROM for the butterfly operation. 
In recent years, several CORDIC-based FFT designs have been proposed for different 
applications (Abdullah et al., 2009; Lin & Wu, 2005; Jiang, 2007; Garrido & Grajal, 2007).  In 
(Abdullah et al., 2009), non-recursive CORDIC-based FFT was proposed by replacing the 
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twiddle factors in FFT architecture by non-iterative CORDIC micro-rotations. It reduces the 
ROM size, however, it does not eliminate it completely. (Lin & Wu, 2005) proposed a 
“mixed-scaling-rotation” CORDIC algorithm to reduce the total iterations, but it increases 
the hardware complexity. (Jiang, 2007) introduced Distributed Arithmetic (DA) to the 
CORDIC-based FFT algorithms, but the DA look-up tables are costly in implementation. 
(Garrido & Grajal, 2007) proposed a memory-less CORDIC algorithm to reduce the memory 
requirements for a CORDIC-based FFT processor by using only shift operations for 
multiplication.  
Conventionally, a CORDIC-based FFT processor needs a dedicated memory bank to store 
the necessary twiddle factor angles for the rotation. In our earlier work (Xiao et al., 2010), a 
modified CORDIC algorithm for FFT processors is proposed which eliminates the need for 
storing the twiddle factor angles. The algorithm generates the twiddle factor angles 
successively by an accumulator. With this approach, memory requirements of an FFT 
processor can be reduced by more than 20%. Memory reduction improves with the 
increasing radix size. Furthermore, the angle generation circuit consumes less power 
consumption than angle memory accesses. Hence, the dynamic power consumption of the 
FFT processor can be reduced by as much as 15%. Since the critical path is not modified with 
the CORDIC angle calculation, system throughput does not change.  
In the following sections, CORDIC algorithm fundamentals and the design of the proposed 
memory efficient CORDIC-based FFT processor are described. 

3.1 CORDIC algorithm 

CORDIC algorithm was proposed by J.E. Volder (Volder, 1959). It is an iterative algorithm 
to calculate the rotation of a vector by using only additions and shifts. Fig. 8 shows an 
example for rotation of a vector Vi.  
 

α
φ

),( iii yxV

),( 111 +++ iii yxV

x

y

 

Fig. 8. Rotate vector ( , )i i iV x y  to 1 1 1( , )i i iV x y+ + +  

The following equations illustrate the steps for calculating the rotation: 

 1 cos cos cos sin sin

cos sin
i

i i

x r ( ) r( )

x y

α φ α φ α φ
φ φ+ = + = −

= −       (5) 

 1 sin( ) (sin cos cos sin )

cos sin
i

i i

y r r

y x

α φ α φ α φ
φ φ+ = + = +

= +      (6) 
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If each rotate angle φ  is equal to arctan 2 i− , then: 

 1 cos ( 2 )i
i i ix x yφ −+ = − ⋅     (7) 

 1 cos ( 2 )i
i i iy y xφ −+ = + ⋅     (8) 

Since arctan 2 iφ −= , cosφ can be simplified to a constant with fixed number of iterations: 

 1 ( 2 )i
i i i i ix K x y d −+ = − ⋅ ⋅  (9) 

 1 ( 2 )i
i i i i iy K y x d −+ = + ⋅ ⋅  (10) 

where cos(arctan(2 ))i
iK −= and 1id = ± . Product of Ki's can be represented by the K factor 

which can be applied as a single constant multiplication either at the beginning or end of the 

iterations. Then, (9) and (10) can be simplified to: 

 1 2 i
i i i ix x y d −+ = − ⋅ ⋅  (10) 

 1 2 i
i i i iy y x d −+ = + ⋅ ⋅  (11) 

The direction of each rotation is defined by di and the sequence of all di 's determines the 
final vector. di is given as: 

 i

i

1 if z 0

1 if z 0id
− <⎧ ⎫= ⎨ ⎬+ ≥⎩ ⎭  (12) 

where zi is called angle accumulator and given by 

 1 ( arctan 2 )i
i i iz z d −+ = − ⋅  (13) 

All operations described through equations (10)-(13) can be realized with only additions and 

shifts; therefore, CORDIC algorithm does not require dedicated multipliers. CORDIC 

algorithm is often realized by pipeline structures, leading to high processing speed. Fig. 9 

shows the basic structure of a pipelined CORDIC unit. 

As shown in equation (1), the key operation of FFT is ( ) nk
Nx n W⋅ , (

2
j nk

nk N
NW e

π−= ). This is 

equivalent to "Rotate ( )x n by angle 
2

nk
N

π− " operation which can be realized easily by the 

CORDIC algorithm. Without any complex multiplications, CORDIC-based butterfly can be 
fast. An FFT processor needs to store the twiddle factors in memory. CORDIC-based FFT 
doesn’t have twiddle factors but needs a memory bank to store the rotation angles. For 

radix-2, N-point, m-bit FFT, 
2

mN
 bits memory needed to store 

2

N
 angles. In the next 

section, a new CORDIC based FFT design which does not require any twiddle factor or 
angle memory units is presented. This design uses a single accumulator for generating all 
the necessary angles instantly and does not have any precision loss. 
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3.2 Reduced memory CORDIC based FFT  

Although several multi-bank addressing schemes have been used to realize parallel and 
pipelined FFT processing (Ma, 1999; Xiao et al., 2008), these methods are not suitable for the 
reduced memory CORDIC FFT.  In these schemes, the twiddle factor angles are not in 
regular increasing order (see Table 5), resulting in a more complex design for angle 
generators. As shown in Table 6, using a special addressing scheme first proposed in (Xiao 
et al., 2009), the twiddle factor angles follow a regular, increasing order, which can be 
 

 

Register

>>0

+/- +/- +/-

Register Register

>>0

Register

>>1

+/- +/- +/-

Register Register

>>1

Register

>>n

+/- +/- +/-

Register Register

>>n

0φ

nφ

1φ

0x 0y 0z

nx ny nz  

Fig. 9. Basic structure of a pipelined CORDIC unit 

generated by a simple accumulator. Table 6 shows the address generation table of the 16-
point radix-2 FFT. It can be seen that twiddle factor angles are sequentially increasing, and 

every angle is a multiple of the basic angle 2
N

π , which is 
8

π  for 16-point FFT. For 

different FFT stages, the angles increase always one step per clock cycle. Hence, an angle 
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generator circuit composed of an accumulator, and an output latch can realize this function, 
as shown in Fig. 10. Control signal for the latch that enables or disables the accumulator 
output is simple and it is based on the current FFT butterfly stage and RAM address bits 
b2b1b0 (see Table 6).  
 

CLK

Angle

Latch

Control Accumulator

RegisterN
π2

 

Fig. 10. Angle generator for the CORDIC based FFT 

 

Stage 0 Stage 1 Stage 2 Stage 3 
Butterfly 
Counter 

B(b2b1b0) 
RAM 

address
b0b2b1

Twiddle 
factor 
angle 

RAM 
address
b1b0b2

Twiddle 
factor 
angle 

RAM 
address
b2b1b0

Twiddle 
factor 
angle 

RAM 
address 
b0b2b1 

Twiddle 
factor 
angle 

000 000 0 000 0 000 0 000 0 

001 100 4
8

π  010 4
8

π  001 4
8

π  100 0 

010 001 8
π  100 0 010 0 001 0 

011 101 5
8

π  110 4
8

π  011 4
8

π  101 0 

100 010 2
8

π  001 2
8

π  100 0 010 0 

101 110 6
8

π  011 6
8

π  101 4
8

π  110 0 

110 011 3
8

π  101 2
8

π  110 0 011 0 

111 111 7
8

π  111 6
8

π  111 4
8

π  111 0 

Table 5. Address generation table of Ma’s (Ma, 1999) design for 16-point radix-2 FFT 

Fig. 11 shows the architecture of the proposed no-twiddle-factor-memory design for radix-2 
FFT. Four registers and eight 2-to-1 multiplexers are used. Registers are needed before and 
after the butterfly unit to buffer the intermediate data in order to group two sequential 
butterfly operations together. Therefore, the conflict-free “in-place” data accessing can be 
realized. This register-buffer design can be extended to any radix FFTs. For radix-2, the 
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structure can be simplified by using just 4 registers, but for radix-r FFT, 22 r×  registers are 

needed. Fig. 12 shows the structure for radix-r FFT. 
 

Stage 0 Stage 1 Stage 2 Stage 3 
Butterfly 
Counter 

B(b2b1b0) 
RAM 

address
b2b1b0

Twiddle 
factor 
angle 

RAM 
address
b0b2b1

Twiddle 
factor 
angle 

RAM 
address
b1b0b2

Twiddle 
factor 
angle 

RAM 
address 
b2b1b0 

Twiddle 
factor 
angle 

000 000 0 000 0 000 0 000 0 

001 001 8
π  100 0 010 0 001 0 

010 010 2
8

π  001 2
8

π  100 0 010 0 

011 011 3
8

π  101 2
8

π  110 0 011 0 

100 100 4
8

π  010 4
8

π  001 4
8

π  100 0 

101 101 5
8

π  110 4
8

π  011 4
8

π  101 0 

110 110 6
8

π  011 6
8

π  101 4
8

π  110 0 

111 111 7
8

π  111 6
8

π  111 4
8

π  111 0 

Table 6. Address generation table for 16-point radix-2 FFT with the proposed angle 
generator 
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Fig. 11. Radix-2 FFT processor with no-twiddle-factor-memory 
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Fig. 12. Proposed radix-r CORDIC-based FFT 

For an 2nN = -point FFT, the addressing and control logic are composed of several 

components: An ( 1)n − -bit butterfly counter 2 3 1 0...n nB b b b b− −= will provide the address 

sequences and the control logic of the angle generator. In stage S , the memory address is 

given by
snnss bbbbbbb ...... 320121 −−−− , which is rotate right S bits of butterfly counter B . 

Meanwhile, the control logic of the latch of the angle generator is determined by the 

sequence of the pattern; 2 3... 0...0n n sb b b− −  ( S “0”s).  

For radix-2, 2nN = -point, m-bit FFT, (each data is 2m-bit complex number; m-bit each for 

the real part and imaginary part) by using the proposed angle generator, 
5

2

mN
 bits 

memory required by the conventional CORDIC can be reduced to
4

2

mN
 which corresponds 

to 20% reduction. For higher radix FFT, the reduction is even more significant. For radix-r 

FFT, the saving is 
( 1)r mN

r

−
bits out of  

(3 1)r mN

r

−
, which converges to 33.3% reduction. 

Due to finite wordlength, as the accumulator operates, the precision loss will accumulate as 
well. In order to address this issue, more bits (wider wordlength) can be used for the 
fundamental angle 2π/N and the accumulator logic. For example, for 1024-point FFT, the 
accumulator is extended from 16 bits to 21 bits and no precision loss is observed compared 
to a conventional angle-stored CORDIC FFT processor. 

3.3 FPGA synthesis results 

The proposed reduced memory CORDIC based FFT designs for both radix-2 and radix-4 
FFT algorithms have been realized by Verilog-HDL and implemented on an FPGA chip 
(STRATIX-III EP3SE50C2). Synthesis results shown in Table 7 show that these designs can 
reduce memory usage for FFT processors without any tangible increase in the number of 
logic elements used when compared against the conventional CORDIC implementation (i.e., 
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angles are stored in memory). Furthermore, dynamic power consumption is reduced (up to 
15%) with no delay penalties. The synthesis results match with the theoretical analysis.  
 

Radix-2 Radix-4 

 
Proposed 

CORDIC FFT
(angle 

generator) 

Conventional 
CORDIC FFT

(angles 
stored) 

Proposed 
CORDIC FFT 

(angle 
generator) 

Conventional 
CORDIC FFT 

(angles 
stored) 

Total logic 
elements 

1,427 
(19-bit accum.)

1,386 
5,892 

(20-bit accum.)
5,763 

Total memory 8,672 10,720 8,728 11,800 
256-point 

FFT 

Dynamic Power 136.87 mW 156.22mW 437.53 mW 495.06 mW 

Total logic 
elements 

1,773 
(21-bit accum.)

1,718 
5,991 

(22-bit accum.)
5,797 

Total memory 33,248 41,440 33,304 45,592 
1024-point 

FFT 

Dynamic Power 135.07 mW 175.98 mW 439.40 mW 496.64 mW 

Total logic 
elements 

1,809 
(23-bit accum.)

1,757 
5,993 

(24-bit accum.)
5,863 

Total memory 
bits 

131,552 164,320 131,608 180,760 
4096-point 

FFT 

Dynamic Power 212.78 mW 242.85 mW 501.11 mW 571.72 mW 

Table 7. FPGA implementation results for Radix-2 and Radix-4 FFT 

4. Low-power FFT addressing schemes 

For embedded applications, power dissipation is often a crucial design goal. (Ma & 
Wanhammar, 1999) proposed a new addressing logic to improve the memory accessing 
speed and to reduce the power consumption. (Hasan et al., 2003) designed a new coefficient 
ordering method to reduce the power consumption of radix-4 short-length FFTs. Gate-level 
algorithms have also been proposed (Zainal at al., 2009; Saponara, 2003) to reduce the FFT 
processor’s power consumption by lower supply voltage techniques and/or voltage scaling. 
Power consumption of FFT processors can be significantly reduced by optimizing both data 
and coefficient memory accesses. Dynamic power consumption in CMOS circuits can be 
characterized by the following equation: 

 2
dynamic total DDP C V fα= ⋅ ⋅ ⋅  (14) 

where α is the switching activity, VDD is the supply voltage, f is the frequency and Ctotal is the 
total switching capacitance charging and discharging in the circuit. In particular, 
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architectural techniques can reduce two parameters in (14), Ctotal and .  These techniques are 
discussed next: First, a multi-bank memory structure is proposed for data memory accesses, 
resulting in reduced overall capacitance load on the SRAM bit-lines. Second, a new butterfly 
calculation order reduces the memory access frequency for twiddle factors and minimizes 
the switching activity. 

4.1 Memory bank partitioning 

Since FFT operation largely consists of data and twiddle factor memory accesses, it is 
desirable to reduce the power dissipation caused by memory accesses. Memory bank 
partitioning and bitline segmentation is an important technique to reduce the power 
dissipation in SRAMs. The bitlines (each read and write port is associated with one bitline) 
in the SRAM logic are a significant source of energy dissipation due to the large capacitive 
load. This capacitance has two components, wire capacitance of the bitlines and the 
diffusion capacitance of each pass transistor connecting bitline to bitcells. Hence, the 
capacitive load increases linearly with the components attached to the bitline i.e., the 
number of words or size of the memory. In order to reduce this large capacitive load, the 
data memory can be partitioned into four memory banks instead of two. As a result, the 
capacitive loading in each memory bank is lowered since the bitline wire length and the 
number of pass transistors connected to the bitline is now only one fourth of the original 
bitline. The first two memory banks, bank0 and bank1 are accessed by the upper leg of the 
butterfly structure, and bank2 and bank3 are accessed by the lower leg of the butterfly (see 
Fig. 13). The most significant bit (MSB) of the addresses determine which two memory 
banks will be accessed; the remaining two memory banks will be inactive. Multi-bank 
memory structure has been proposed before (Ma & Wanhammar, 2000), but a major 
advantage of the proposed addressing scheme is that the memory bank switching occurs 
only once in the middle of a stage. In the first half of the stage, same two memory banks are 
used and in the second half of the stage, the other two memory banks are accessed. There is 
no precharging and discharging of bitlines in the inactive memory banks. 
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Fig. 13. Signal flow graph of 16-point FFT using memory partitioning 
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4.2 Reordering coefficient access sequence 

The mbFFT architecture (see Section 2.2) can be used to generate the addressing scheme for 

reducing twiddle factor memory accesses and switching activity power. The twiddle factor 

access sequence is optimized for minimizing data bus changes. For all butterfly stages, the 

twiddle factor addresses are ordered in such a way that the twiddle factors at the same 

address are grouped together and accessed sequentially. This way, the twiddle factor ROM 

is not accessed every clock cycle. Reordering of the coefficient access sequences is shown in 

Table 8 and Table 9.  For example, in stage 1 in Table 9, only 8 accesses are needed instead of 

16, and in stage 2, only 4 accesses instead of 8 and so on.  
 

Stage 0 Stage 1 

Counter 

2 1 0( )B b b b  
Bank 0,1
address 

2 1 0b b b  

Twiddle 
factor  address 

1 0b b  

Bank 2,3
address 

2 1 0b b b  

Bank 0,1
address 

2 0 1b b b  

Twiddle 
Factor address 

10b  

Bank 2,3 
address 

2 0 1b b b  

000 000 00 000 000 00 100 

001 001 01 001 010 00 110 

010 010 10 010 001 10 101 

011 011 11 011 011 10 111 

100 100 00 100 100 00 000 

101 101 01 101 110 00 010 

110 110 10 110 101 10 001 

111 111 11 111 111 10 011 
 

Stage 2 Stage 3 

Bank0,1 
address

2 1 0b b b  

Twiddle  
factor 

address 

00  

Bank2,3
address

2 1 0b b b  

Bank0,1
address

2 1 0b b b  

Twiddle factor
address 

0 0b  

Bank2,3 
address 

2 1 0b b b  

000 00 110 000 00 111 

001 00 111 001 00 110 

010 00 100 010 00 101 

011 00 101 011 00 100 

100 00 010 100 00 011 

101 00 011 101 00 010 

110 00 000 110 00 001 

111 00 001 111 00 000 

Table 8. Address generation table for the 16-point, reduced memory access FFT 
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Stage 0 Stage 1 

Counter 
)( 0123 bbbbB  

Bank 0,1 
address 

0123 bbbb  

Twiddle factor  
address 

012 bbb  

Bank 2,3
address 

0123 bbbb  

Bank 0,1 
address 

1203 bbbb  

Twiddle  factor 
Address 

012bb  

Bank 2,3 
address 

1203 bbbb  

0000 0000 000 0000 0000 000 1000 

0001 0001 001 0001 0100 000 1100 

0010 0010 010 0010 0001 010 1001 

0011 0011 011 0011 0101 010 1101 

0100 0100 100 0100 0010 100 1010 

0101 0101 101 0101 0110 100 1110 

0110 0110 110 0110 0011 110 1011 

0111 0111 111 0111 0111 110 1111 

1000 1000 000 1000 1000 000 0000 

1001 1001 001 1001 1100 000 0100 

1010 1010 010 1010 1001 010 0001 

1011 1011 011 1011 1101 010 0101 

1100 1100 100 1100 1010 100 0010 

1101 1101 101 1101 1110 100 0110 

1110 1110 110 1110 1011 110 0011 

1111 1111 111 1111 1111 110 0111 
 

Stage 2 Stage 3 Stage 4 

Bank0,1 
address 

3 1 0 2b b b b  

Twiddle  
factor 

address 

2 00b  

Bank2,3
address

3 1 0 2b b b b

Bank0,1
address

3 2 1 0b b b b

Twiddle 
factor 

address 
000 

Bank2,3 
address 

3 2 1 0b b b b  

Bank0,1
address

3 0 2 1b b b b

Twiddle  
factor 

Address 
000 

Bank2,3 
address 

3 0 2 1b b b b  

0000 000 1100 0000 000 1110 0000 000 1111 

0010 000 1110 0001 000 1111 0100 000 1011 

0100 000 1000 0010 000 1100 0001 000 1110 

0110 000 1010 0011 000 1101 0101 000 1010 

0001 100 1101 0100 000 1010 0010 000 1101 

0011 100 1111 0101 000 1011 0110 000 1001 

0101 100 1001 0110 000 1000 0011 000 1100 

0111 100 1011 0111 000 1001 0111 000 1000 

1000 000 0100 1000 000 0110 1000 000 0111 

1010 000 0110 1001 000 0111 1100 000 0011 

1100 000 0000 1010 000 0100 1001 000 0110 

1110 000 0010 1011 000 0101 1101 000 0010 

1001 100 0101 1100 000 0010 1010 000 0101 

1011 100 0111 1101 000 0011 1110 000 0001 

1101 100 0001 1110 000 0000 1011 000 0100 

1111 100 0011 1111 000 0001 1111 000 0000 

Table 9. Address generation table for the 32-point, reduced memory access FFT 
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Equations (15) and (16) show the twiddle factor memory access frequency for shared 
memory methods (Xiao et al., 2008) and the proposed reduced memory access method for 

2nN = point FFT.  

Conventional method:  ( )( )2( 2) 2 log 2 2
2 2

N N
n N× − + = − +  (15) 

Reduced memory access method:   
1

2

2 2 2 2 2
n

i n

i

N
−
=

+ = − = −∑     (16) 

Table 10 shows the twiddle factor memory access frequency for different FFT lengths. As 

FFT length increases, the power saving also scales up. 

4.3 Implementation 

To implement an 2nN = -point FFT with reduced coefficient memory accesses, an (n-1)-bit 

Butterfly Counter 2 3 1 0...n nB b b b b− −= , and a 2log n⎡ ⎤⎢ ⎥ -bit Stage Counter ( 1), ... ,2,1,0S n= −  is 

needed. In addition, one (n-2)-bit barrel shifter is used: Assume 1 2 1 0( ... , )u u uRR x x x x x v− −  

indicates rotate-right counter 1 2 1 0...u u ux x x x x− −  by v  bit. At stage s, the read and write 

addresses of the upper legs of the butterfly is 3 1 0 3 4 1 0( ... , ) ...u n n nA RR b b b s a a a a− − −= = , and 

2nb −  decides if bank0 or bank1 will be accessed.  

 

 
16- 

point
FFT 

32- 
point
FFT 

64- 
point
FFT 

128-
point
FFT 

256-
point
FFT 

512-
point
FFT 

1024-
point
FFT 

2048-
point
FFT 

4096- 
point 
FFT 

8192- 
point 
FFT 

Conventional 
FFT design 

18 50 130 322 770 1794 4098 9218 20482 45058 

Reduced memory 
access FFT design 

14 30 62 126 254 510 1022 2046 4094 8190 

Reduction 22% 40% 52% 61% 67% 72% 75% 78% 80% 82% 

Table 10. Reduction in twiddle factor memory access frequency 

For example, for the 32-point FFT shown in Table 9, at stage 2, the address of the upper legs 

of the butterfly is 2 1 0 1 0 2( ,2)RR b b b b b b= , and when b3=0, memory bank0 will be accessed, 

when b3=1, memory bank1 will be accessed. For the read and write addresses of the lower 
legs of the butterfly, (n-2) inverters are needed. The address is given by 

3 4 1 2 1 0... ...n n n s n sa a a a a a− − − − − − , and 2rb −  decides if bank2 or bank3 will be accessed at stage 0. At 

stage 0, when 2 0nb − = , bank2 will be accessed. When 2 1nb − = , bank3 will be accessed. For 

other stages 2 0nb − =  means bank3 will be accessed, 2 1nb − =  means bank4 will be accessed. 

The address of twiddle factors is given by 3 0... 0...0n sa a− −  ( S  ‘0’s). Fig 14 shows the 

components of the address generation logic using mbFFT and four memory banks. 

www.intechopen.com



Reduced Logic and Low-Power FFT Architectures for Embedded Systems 

 

401 

 

Stage Counter S Butterfly Counter B

2b 1b 0b3b4b

)( pxm )(qxm

)( pym

)(1 pxm+ )(1 qxm+

)(1 pym+

)(1 qym+

2b

1a

1a

0a

0a

2:1MUX

D D D
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0 1
2:1MUX

0 1
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2:1MUX
0 1

2:1MUX
0 1
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0 0
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0 1
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0 1
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Memory Bank

M2

DataIn

DataOut R_Address

W_AddressW_en

R_en
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Fig. 14. Address generation circuits for low-power 16-point FFT using mbFFT and four 
memory banks 
 

Shared memory design 
(Xiao et al., 2008) 

Power optimized design 

 
Total 

power 
Dynamic 

power 
Static 
power 

Total 
power 

Dynamic 
power 

Static 
power 

512 point FFT 653.14mw 203.13mw 450.00mw 635.47mw 185.47mw 450.00mw 

1024 point FFT 715.79mw 265.79mw 450.00mw 676.79mw 226.78mw 450.00mw 

2048point FFT 840.49mw 390.49mw 450.00mw 764.31mw 314.31mw 450.00mw 

4096 point FFT 1089.33mw 639.33mw 450.00mw 939.25mw 489.24mw 450.00mw 

8192 point FFT 1595.13mw 1145.13mw 450.00mw 1289.17mw 839.17mw 450.00mw 

Table 11. FPGA synthesis results – Reduction in dynamic power 
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4.4 FPGA synthesis results 

The low-power FFT algorithm is implemented on an FPGA chip (ALTERA STRATIX 

EP1S25F780C5) with FFT length up to 8192 points as shown in Table 11. The synthesis 

results demonstrate that dynamic power reduction grows with the transform size, making 

this architecture ideal for applications requiring long FFT operations. 

5. Conclusion 

This study focused on hardware efficient and low-power realization of FFT algorithms. 

Recent novel techniques have been discussed and presented to realize conflict-free memory 

addressing of FFT. Proposed methods reorder the data and coefficient address sequences in 

order to achieve significant logic reduction (24% less transistors) and delay improvements 

within FFT processors. Multiplierless implementation of FFT is shown using a CORDIC 

algorithm that does not need any coefficient angle memory, resulting in 33% memory and 

15% power reduction. Finally, optimization of FFT dynamic power consumption is 

presented through memory partitioning and reducing coefficient memory access frequency 

(26% power reduction for 8192 point-FFT).  
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1. Introduction  

Infrared (IR) spectroscopy of micro- and nanosized particles and their composites is 
currently one of the most important enabling technologies in the development of micro- and 
nanostructures and their application to various areas of science and technology. Decreasing 
the characteristic size of metallic, dielectric and semiconductor materials results in a 
dramatic alteration to their optical, electrical and mechanical properties, allowing the 
fabrication of new materials with unique physical properties (Lamberti, 2008; Cao, 2004). 
These alterations in the optical properties are related to a quantum confinement effect, as 
well as to a dielectric, or electrostatic, confinement effect (Cahay et al., 2001; Chemla & 
Miller, 1986).  The effect of quantum confinement is most pronounced in semiconductor 
materials, where the transition from the bulk state to the microcrystalline state causes a 
substantial change in the band structure and an enhancement of the non-linear electro-
optical properties. Dielectric, or polarisation, confinement has a wider impact, since it 
influences the frequencies and intensities of absorption bands in the spectra of any 
condensed matter, including crystalline and amorphous solids, as well as liquids. This is 
because considerable changes in the polarisation of micro/nanoparticles occur, depending 
on their form and orientation with respect to the external electromagnetic field and the 
details of the spatial restriction.  
So, the dielectric confinement effect is due to abrupt changes in the intensity of the internal 
(Ein(ν)), local electric field Eloc(ν), causing significant changes in the spectroscopic 
characteristics, depending on the direction of the external field Е(ν), and the size and shape 
of the submicron sized particles, or micro-objects. Dielectric confinement occurs when the 
absorbing material consists of micro-particles with characteristic sizes significantly smaller 
than the wavelength of the probe beam.  These particles are generally embedded in a 
transparent dielectric matrix, or deposited on a transparent substrate as an ultra-thin film 
(Fig. 1).  A good analogy to these systems is that of an aerosol suspended in air or stained 
glass, that is, glass doped with small metal particles (Gehr & Boyd, 1996). In the long 
wavelength limit, d << λ, for the determination of the spectroscopic characteristics of micro-
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particles with size d in the direction of dielectric confinement, one can use an effective 
medium theory model, while taking into account the dispersive local field (DLF) (Chemla & 
Miller, 1986; Schmitt-Rink, 1987; Cohen, 1973; Spanier & Herman, 2000). The important role 
of the local-field effect in the derivation of the equations of the effective medium theory of 
composites was considered in the paper by Aspnes, 1982. 
The local-field approach is widely used for the analysis of the spectral characteristics of 
condensed matter under dielectric confinement.  In particular, in Ref. (Liu, 1994), a 
description of the distribution of the p-component of the local electric field within the 
quantum wells in multi-quantum well GaAs-AlxGa1-xAs structures and the absorption band 
for intersubband transitions has been obtained, using a self-consistent integral equation for 
the local field. The development of the approach suggested for the analysis of the spectral 
features observed from materials based on porous structures is of particular importance 
(Spanier & Herman, 2000; Timoshenko et al., 2003; Golovan et al., 2007). These 
investigations largely involve extending the models used in effective medium theory.  

 

 

Fig. 1. a) The modeled spheroidal shape of the absorbing mesoparticles. Schematic depicting 

different types of size confinement for ordered (in (b) 3D confinement, c) 2D confinement 

( E
f ⊥z ) and d) 1D confinement ( E

f
 z)) and disordered (in (e) 3D confinement, f) 2D׀׀

confinement and g) 1D confinement) mesoparticles 

The effective medium theory (EMT) approach is widely used for modelling the optical and 
spectroscopic properties of a variety of composite media. The most extensively used EMT 
models are the Maxwell-Garnett (MG) and Bruggeman models, however other models are 
also used in some specific cases (Aspnes, 1982; Cohen et al., 1973; Spanier & Herman, 2000; 
Maxwell-Garnett, 1906; Bruggeman, 1935). For example in Ref. (Spanier & Herman, 2000), 
hybrid models, containing both phenomenological features and statistical theories of the 
dielectric function of dielectric media were used for modelling the infrared spectra from 
porous silicon carbide films. In Ref. (Mallet et al., 2005), an analysis of the accuracy of the 
modified Maxwell-Garnett equation, taking into account multiple scattering of light by the 
composite medium with spherical inclusions, has also been performed. In Ref. (Gehr & 
Boyd, 1996) the authors reviewed the theories and models developed for relating the linear 
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and non-linear optical properties of composite materials to those of the constituent 
materials, and to the morphology of the composite structure. The authors of Ref. (Hornyak 
et al., 1997) experimentally determined the size of gold nanoparticles, satisfying the quasi-
static limit of applicability of the Maxwell-Garnett equation.  As shown in this paper, 
inaccuracies in the MG expression, related to the scattering of light on large particles which 
do not satisfy the limit discussed earlier, can be eliminated by a dynamic modification of 
this expression (Foss et al., 1994). In the work (Ung et al., 2001), it was shown that the MG 
expression adequately describes the influence of inter-particle interactions on the position of 
the plasmon resonance band in colloidal solutions of gold.  The influence of the local field 
on the enhancement of the light emission from various composite materials is described by   
(Dolgaleva et al., 2009).   
In this Chapter, an overview of our recent work developing the effective medium approach 
and dispersive local field theory is presented. We also discuss the application of these 
models to nanocomposite materials, based on liquids and amorphous solids, for simulation 
of the experimentally obtained infrared spectra.  We focus on a consideration of dielectric 
confinement only within the linear optical response.  The influence of the dielectric 
confinement effect on the infrared absorption spectra of composite media will be 
demonstrated experimentally. We also present a theoretical analysis of this effect on the 
value of the frequency shift. The influence of the integrated intensity of the IR bands under 
consideration and the dielectric constant of the surrounding matrix will also be explored. 
The results obtained will assist in improving the reliability of IR spectral analysis. 

2. Theoretical considerations 

In the long-wave limit, when the absorbing material consists of micro-particles, with 
characteristic sizes significantly smaller than the wavelength of the probe beam, i.e. 
satisfying the condition d << λ, the spectroscopy of intermolecular interactions (IMI) can be 
used for analysis of their spectroscopic characteristics.  The influence of the dielectric effect 
on the absorption spectra of molecular condensed systems was described for the first time in 
the work of Backshiev, Girin and Libov (BGL) (Backshiev et al., 1962; 1963), based on 
accounting for the spectral difference in the intensity of the effective, internal, field in the 
vicinity of the optical resonance and the average macroscopic field in condensed matter. A 
similar approach for calculating the spectral dependence of the microscopic susceptibility in 
the wavelength range of the intermolecular vibrations of organic liquids was used by 
Clifford & Crawford, 1966. In accordance with the BGL approach, the relationship between 
the micro- and macro-characteristics of condensed matter can be presented as 

 
ˆ2 Im ( ) ( )

( )B
Nh

π ε ν θ νν =  (1a) 

or 

 
( ) ˆIm ( ) ( )
2

B Nhν ε ν θ νπ =  (1b) 

Here B(ν) is  the spectral density of the quantum intramolecular transition probability 

(Heitler, 1975), ˆIm ( )ε ν  is the imaginary part of the dielectric function in the vicinity of this 

transition and 
2

( ) ( ) / ( )o inv E Eθ ν ν=  is the correction factor accounting for the spectral 
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difference between the internal, local, micro Ein(ν) and the average macro E0(ν) fields of the 

electromagnetic wave in condensed matter.  We note that the average electromagnetic field, 

Eo(v),  is considered here as a small perturbation and, therefore, the approach presented is 

still valid within the framework of linear molecular optics.   

The B(ν) spectrum in Eqn. (1) is considered to be characteristic of intramolecular quantum 

transitions with absorption. In case of the lattice vibrations, this spectrum is related to the 

dipole moment of the quantum transition, localized in a physically small volume of the 

crystal.  The size of this elemental volume is significantly smaller than the wavelength of the 

probe beam, but is substantially larger than the size of the elemental crystal cell (Tolstykh et 

al., 1973). This conclusion can also be generalised to non-crystalline media. Indeed, it can be 

easily shown that expression (1b) corresponds to the spectrum of the imaginary part of the 

complex microscopic susceptibility of the medium  2Im ( ) ( )microχ ν χ ν= , which, in 

accordance with the Lorentz local field model, is related to the macroscopic susceptibility of 

the isotropic medium by this expression  

 
ˆ3

ˆ
ˆ 3

micro χχ χ= +  (2) 

Where 1 2
ˆ( ) ( ) ( )iχ ν χ ν χ ν= −  is the macroscopic dielectric susceptibility of the medium under 

consideration. Solving Eqn. (2) with respect to Im microχ  we obtain  2 2 ( )microχ χ θ ν= . Since 

2
ˆ( ) Im ( )vχ ν ε=  we can consider 2 ( )microχ ν  as the spectrum of 2 ( )microε ν . This allows us to 

conclude that Eqn. (1a) corresponds to the spectral characteristics of a spherical micro-

volume, or microparticle, of the condensed medium under consideration, with the particle 

size satisfying the condition λ >> d >> amolec   and represented by the following expression 

 2 2( ) ( ) ( )microε ν ε ν θ ν=  (3) 

Using a continuum model of the local field allows us to use this expression with  
2

( ) 9 / ( ) 2θ ν ε ν= +   in order to establish the relationship between the dielectric loss 

spectrum of the bulk sample and that of the material under three dimensional (3D) size 

confinement, that is, for an isolated spherical particle.  In general, the relationship between 

the local and average field in a condensed medium under 1D, 2D and 3D confinement can 

be written as (Ghiner & Surdotovich, 1994) 

 0( ) / ( ) 1 ( ( ) 1) /inE E mν ν ε ν= + − , (4) 

where  m =  1, 2 and 3 respectively for the case of   1D , 2D and 3D confinement. The general 

equation describing the spectra of micro-objects, 2 ( )microε ν , satisfying the conditions above 

can be expressed as  

 
2

2 2 2( ) ( ) ( ) ( ) 1 ( ( ) 1) /micro mε ν ε ν θ ν ε ν ε ν −= = + −  (4a) 

The use of molecular spectroscopy approaches when considering the spectral features 
characteristic of microparticles is justified. As shown by (Ghiner & Surdotovich, 1994), 
micro-particles, satisfying the conditions for dielectric confinement, can be considered as 
meso-oscillator molecules or meso-molecules, possessing their own spectroscopic 
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characteristic, i.e. 2 ( )microε ν  (or 2 ( )mesoε ν ), spectrum.  A similar conclusion follows from the 

work of (Chemla & Miller, 1986) where an expression similar to Eqn. (3) here was used to 
describe the spectral properties of semiconductor particles. It is worth noting that the basic 
mechanism responsible for the blue shift of the absorption spectra of nanoparticles with 
respect to their bulk counterpart is the decrease in the intermolecular interaction potential 
due to the reduction in, or elimination of, resonant dipole-dipole interactions of the 
molecules both inside and outside  the particles. This decrease occurs as a result of the 
decrease in particle size from d ≤ λ to d << λ, as well as the increase in the distance between 
the particles. The decrease in the resonant dipole-dipole interactions and, consequently, the 
intermolecular interaction potential can be taken into account by considering the dispersion 
of the effective field, from which the expressions (1a) and (4) are derived. We note that 
expression (4) describes only limited cases of dielectric confinement. In accordance with the 
expression for the local field inside a spherically shaped particle (Böttcher, 1952), the 
correction factor in Eqn. (4) can be written as  

  
2

2 2 2( ) ( ) ( ) ( ) 1 ( ( ) 1)micro Lε ν ε ν θ ν ε ν ε ν −= = + −  (5) 

L is the form factor, the ratio of the semi-axes for an ellipsoidal particle shown in Fig. 1e. For 
an ellipsoid of revolution, the corresponding components of the form factor for two 
orientations of the electric field vector Е, parallel, Lz, or perpendicular, Lx,y, to the rotation 
axis of the spheroid, are determined by the following expressions (Osborn, 1945; Golovan et 
al., 2003): 

 
( )2

2 2

arcsin 11
1

1 1
z

P
L P

P P

⎡ ⎤−⎢ ⎥= −⎢ ⎥− −⎢ ⎥⎣ ⎦
;    ,

1

2
z

x y

L
L

−=  (6) 

where P = dz/dx = dz/dy and zd and x yd d=  are the sizes of the corresponding polar and 

equatorial semi-axes of the spheroid (Fig. 1a). We note that for a spherical particle, the form-
factor is L=1/3 (Fig. 1b), while for a rod, along the short axis, L = 1/2, and along the long 
axis, L=0 (Figs. 1c and 1f). For a strongly oblate spheroid stretched in the perpendicular 
direction, L=1 (Figs. 1d and 1g). 

Equation (5) shows that a particle with a dielectric function, ε, corresponding to the bulk 

material, can be considered as a particle with an effective microscopic spectrum 2 ( )microε ν .  If 

this particle is embedded in a dielectric host matrix with εh > 1, then expression (5) can be 

written as  

 
22

2 2 2( ) ( ) ( ) ( ) 1 ( ( ) )micro
h hLε ν ε ν θ ν ε ν ε ε ν ε −= = + −  (7) 

The dielectric loss spectrum for a diluted composite medium would be determined by 

spectrum  2 ( )microε ν  and the volume concentration of particles f in the composite 

 
22

2 2 2( ) ( ) ( ) ( ) 1 ( ( ) )comp
h hf f Lε ν ε ν θ ν ε ν ε ε ν ε −= = + −  (8) 

Obviously, we ignore the resonant dipole-dipole interactions of the particles, which are 
practically insignificant when the filling factor, f, is smaller than 1%. This does not generate 
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significant errors in calculations until f is over 10%.  Eqn. (8) was obtained earlier in paper 
(Shaganov et al., 2005). A more accurate equation can be obtained by modifying the 
Maxwell-Garnett expression using an effective media approach (Aspnes, 1982; Cohen et al., 
1973; Spanier & Herman, 2000).  For a composite medium containing absorbing particles of 
spheroidal shape, the corresponding expression can be written as 

 

hii

h

hiii

hi

LvL

vf

LvL

v

εε
εε

εε
εε

)1()(ˆ

))(ˆ(

)1()(ˆ

)(ˆ

−+
−⋅=−+

−  (9) 

where Li is the corresponding component of the form factor, ˆ ( )iε ν  is the component of the 

tensor of the effective complex dielectric permittivity of the media and  ˆ( )ε ν is the complex 

dielectric permittivity of the bulk material of the embedded particles. For Li = 1/3 

expression (9) can be converted to the typical form of the Maxwell-Garnett equation. 

 

h

h

hi

hi

v

vf

v

v

εε
εε

εε
εε

2)(ˆ

))(ˆ(

2)(ˆ

)(ˆ

+
−⋅=+

−  (10) 

These expressions have been widely used in the past for modelling the spectral properties of 
metal-dielectric composites (Cohen et al., 1973; Foss et al. 1994; Hornyak et al., 1997; Ung et 
al., 2001). We note that the limits of applicability of this approximation are defined by the 
applicability of the electrostatic model of the effective medium, because this approximation 
does not take into account the size of the particles under consideration. A more precise 
approach is required to consider so-called dynamic polarisation, which takes into 
consideration the size of the particle, and its interaction time, with the field of the 
electromagnetic wave (Golovan et al., 2003; 2007). It is reasonable to assume that dynamic 
polarisation is significant only in the visible range, playing a minor role in the mid-infrared 
range, to a first approximation. Solving expression (9) for the desired value, we obtain the 
following expression for the dielectric permittivity spectrum of the composite media 

 [ ]
ihhii

hiihihh
i

LvfLvL

LvLLvf

))(ˆ()1()(ˆ

)1()(ˆ)1())(ˆ(
ˆ εεεε

εεεεεεε −⋅−−+
−++−−=  (11) 

From expression (10), the effective dielectric loss spectrum of the ordered composite 

medium, ˆIm( ( ))iε ν , in general, can be presented in the following form. 

 
2

2

2

1

2112))(ˆIm(
BB

BABA
vi +

−=ε  (11a) 

where [ ]{ } hiihii vLLfLfvA εεε )()1()1)(1()( 11 +−+−−=  

)(])1([)( 22 vLLfvA hiii εε+−=  

)()1()1()( 11 vfLLfLvB iihhii εεε −++−=  

)()1()( 22 vfLvB ii ε−=  

Here )(1 vε and )(2 vε are the real and imaginary parts of the dielectric permittivity spectrum 

of the particle material in the bulk state )()()(ˆ 21 vivv εεε −= . For a random particle 

orientation, the effective dielectric loss spectrum of the isotropic composite medium can be 

presented as  
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 2 2

1
( ) ( )

3
i

eff
i

L

ε ν ε ν= ∑  (12) 

where the addition of the index Li takes into account the difference in form factor of the 
particles in  the x, y, z directions.  For the specific case of 1D, 2D and 3D confinement, and at 
f << 1, Eqn.(11)  can be transformed to the more simple form given in Ref. (Shaganov et al., 
2010) 

 2ˆIm( ( )) ( ) ( )i iDfε ε θ=v v v  (13) 

where θiD (ν) is the correction factor for the internal, local, field, acting on the particles under 
1D, 2D and 3D dielectric confinement, in agreement with Expression (4) obtained  
previously (Shaganov et al., 2005).  

 

2

)(ˆ
1)(

−

⎟⎟⎠
⎞

⎜⎜⎝
⎛ −+=

hi

h
iD

m

v
v ε

εεθ  (14) 

where i = mi  = 1, 2, 3 for  1D,  2D  and  3D  confinement, respectively. For randomly oriented 
particles, expressions (13) and (14) can be transformed to the following form (Shaganov et 
al., 2010) 

 
23 2

22

1 ˆ( ) ( ) 3 ( ) ( 1)
3

eff
i i h i hf m m mε ε ε ε ε −⎡ ⎤= − + ⋅ + −⎢ ⎥⎣ ⎦v v v  (15) 

It is worth noting that the expressions above are valid only for diluted composites, where 
the resonant dipole-dipole interaction between the particles can be neglected. Depending on 
the intensity of the absorption band, or oscillator strength, resonant interactions between the 
particles become significant when the volume fraction of the particles is in the range f = 0.1 - 0.2. 
In this case, the local field factor, θiD(ν), becomes dependent on the particle concentration 
(Shaganov et al., 2005) and expression (15) is transformed to the following (Shaganov et al., 2010) 

 
23 2

22

1 ˆ( ) ( ) 3 ( ( ) )(1 )
3

eff
i i h h i hf m m f mε ε ε ε ε ε −⎡ ⎤= − + ⋅ − − +⎢ ⎥⎣ ⎦v v v  (15a) 

We note that Eqn. (15a) can be used not only in the limited cases of 1D, 2D and 3D 
confinement, but also for composites of spheroidal particles where the ratio of the semi-axes 
P ≥ 10 or  P ≤ 0.1.  For intermediate values of Ǿ: 0.2 < P < 9, account must be taken of the 
specific values of the form factors for the three axes of the spheroidal particles, assuming 
that   mi = 1/Li (see Shaganov et al., 2010 for details). 
As shown in Ref. (Shaganov et al., 2005), the difference between the spectral characteristics 
of the bulk materials and those from a composite of micro-particles can be substantial. The 
shift in the peak position of the intense absorption bands due to dielectric confinement can 
be far greater than the linewidth of the absorption band observed in the bulk material. The 
peak position, or maximum frequency, for isolated particles in the case of 3D confinement 
(ν3D) is close to Fröhlich’s frequency (νF) (Fröhlich, 1949), corresponding to the condition 

1( ) 2F hε ν ε= − . The maximum shift in the peak position of the absorption spectrum occurs for 

1D confinement, where the peak position  is observed at a frequency νl, satisfying the 
minimum of the function ε1(νl) = 0. Thus, it is not surprising that the values for νl, obtained 
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from calculations for polar crystals, coincide with the frequency of the corresponding band of 
longitudinal optical (LO) phonon vibrations. The absorption spectra of the amorphous media 
at frequencies νl   has already been discussed in numerous papers (Berreman, 1963; Röseler, 
2005; Tolstoy et al., 2003; Iglesias et al., 1990; DeLeeuw & Thorpe, 1985).  Conclusions on the 
size dependent nature of this effect have been made earlier in the theoretical work of 
(Lehmann, 1988). We would like to emphasise that we obviously cannot discuss LO-phonons 
in amorphous solids and, in particular, in liquids, since the new bands observed arise as a 
result of the interaction of the transverse electromagnetic wave with a condensed medium 
under dielectric confinement, when the contribution from surface vibrations becomes greater 
than that from the bulk. The maximum frequency of the spectrum from a composite medium, 
for 2D confinement, lies between the frequencies for 1D and 3D dielectric confinement, i.e. ν3D 

< ν2D < ν1D. In practice, the microparticles will not all be spheroidal, particularly in 
microcrystalline powders, for which the shape of particles often depends on the crystalline 
structure of the material. For a more detailed discussion see Shaganov et al., 2010.    

3. Results and discussion 

The objective of this section is to demonstrate, both theoretically and experimentally, the 
role of various types of dielectric confinement on the absorption spectra of organic liquids 
and amorphous solids.  Аmorphous SiO2 and three organic liquids of spectroscopic grade 
viz. benzene (ǿ6Н6), chloroform (CHCl3), and carbon disulphide (CS2), have been chosen for 
the experiments, because of their well characterized, strong absorption in the infrared range 
(Zolotarev  et al., 1984; Barnes & Schatz, 1963). 

3.1 Calculations  
The method in which dielectric mesoparticles are embedded in the host medium is 
important in the engineering of the optical properties of a composite. For example, 
depending on the alignment and distribution of the mesoparticles in the host medium, the 
composite medium can possess optical anisotropy, which is apparent in phenomena such as 
birefringence,  anisotropy in the real part of the refractive index,  and dichroism, anisotropy 
in the imaginary part of the refractive index (Golovan et al., 2007). In this study, we discuss 
the influence of dielectric confinement on the resonant part of the dielectric permittivity, 
leading to phenomena such as a spectral shift in the resonant absorption band and its 
anisotropy. We consider two extreme cases only, viz. completely ordered and completely 
disordered (randomly oriented) dielectric mesoparticles, uniformly distributed in a host 
medium (Fig. 1). It is worth noting that deliberately varying the degree of mesoparticle 
disorder in a composite medium  can  be  used  in order  to  tune  its  optical properties. 
Eqns. (8), (11a) and (12), (15) describe dielectric loss spectra for completely ordered and 
disordered composites, respectively. Note that in the case of a disordered composite, as 
described by Eqn. (12), (15) and (15a), the solution consists of two bands for all 
mesoparticles, with the exception of those with a spherical shape. The splitting apparent in 
the dielectric loss spectrum and, therefore, in the absorption spectrum of the composite, is 
most pronounced for 1D confinement. 
In the calculations presented in Figs. 2-4, and summarized in Tables 1 and 2, we used Eqns. 
(11a) and (12) for 1D, 2D and 3D confinement. These situations can also be described using the 
simplified Eqns. (8) and (15a). In Table 1, experimental data described in Section 3.2 are also 
shown for comparison.  Calculations have been performed for liquid benzene, chloroform and 
carbon disulphide at f = 0.1 (for εh = 11.56 (Si) and εh = 13.6) and additionally for carbon 
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disulphide at f = 0.1 and εh = 3, and for benzene at f = 0.1 and εh = 2.2, εh = 5, and εh = 16 (Ge). 
The optical constants in the infrared range for benzene, chloroform and carbon disulphide 
were taken from references (Zolotarev  et al., 1984; Barnes & Schatz, 1963).  The value of εh = 
13.6 was an average, calculated by taking the square root of the product of εSi =11.56 and εGe = 
16. This allowed us to model liquids films between a Ge ATR prism and a Si slide in a GATR 
attachment as described in the experimental Section. Additional calculations for carbon 
disulphide at εh = 3 and for benzene at εh = 2.2 were performed to illustrate absorption band 
splitting in a disordered composite, apparent on the bottom panels of Fig.2 (c and d). 
 

 

Fig. 2. Dielectric loss spectra calculated for ordered and disordered mesoparticles with 
filling factor f=0.1 under different confinement conditions for (a) benzene and (b) carbon 
disulfide in host media with εh=13.6 (Si/Ge) and for (c)  benzene at εh=2.2 and  (d) carbon 
disulfide at εh=3 

As can be seen from Fig. 2, by changing the particle shape for ordered mesoparticles, we can 
gradually change the peak position of the absorption spectrum of the composite media in 
the range of 15 cm-1 for benzene and 30 cm-1 for CS2. The peak position of the dielectric loss 
spectrum for oblate spheroids (P = 1/3) is close to the peak position corresponding to 1D 
confinement in planes or disks (Figs. 1d and 1g), while the peak position for prolate 
spheroids (P = 3) is close to that observed from bulk benzene and carbon disulphide, since 
the amount of dielectric confinement is reduced in the direction of the field, that is, along the 
rotation axis of the particles. 
The situation for disordered mesoparticles is quite different. In both cases, namely P = 1/3 
and P = 3, the dielectric loss spectra are close to the spectrum from spherical particles. It is 
interesting that, in this case, the dielectric loss spectrum from oblate spheroids is closer to 
the spectrum of the bulk, while the spectrum for prolate spheroids is closer to the spectrum 
characteristic of 1D confinement. The similarity of the dielectric loss spectra for P = 1/3 and 
P = 3 to the spectrum from spherical particles under 3D confinement can be explained as 
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being due to averaging of the disordered spheroids in every direction, resulting in an 
isotropic medium, the properties of which will be close to those in spherical particles. This is 
true despite despite the strong anisotropy of the particles themselves. From a comparison of 
Figs. 2(a) and 2(c) for C6H6 and Figs. 2(b) and 2(d) for CS2 it can also be seen that splitting of 
the dielectric loss spectrum depends strongly on the value of εh.   
 

Calculations Experiment 

Liquid Ordered 
medium

Disordered 
medium 

GATR I 
(Si window) 

GATR II 
(Al window) 

I. CHCl3 
Bulk 

 
756.0 

752 
 

753 
3D 759.1 758.1   
2D 760.1 759.8  759.2 
1D 771.1 771 772  

P=1/3 761.1 673.2   
P=3 756.9 659.5   

II. C6H6 
Bulk 

 
672.7 

671 
 

671 
3D 673.3 673.3   
2D 673.8 673.6  675 
1D 678.6 678.4 678.6  

P=1/3 674.4 673.8   
P=3 672.8 673.4   

III. CS2 
Bulk 

 
1502.7 

1501 
 

1500 
3D 1505.4 1505.4   
2D 1507.5 1506.7  1513 
1D 1527.7 1527.2 1531  

P=1/3 1509.7 1507.4   
P=3 1503.4 1506.0   

Table 1. Calculated and experimental peak positions, ν (cm-1), of the most intense IR 
absorption band observed for liquid CHCl3, C6H6 and CS2 under various dielectric 
confinement conditions (εh=13.6, Si/Ge) 
 

Ordered Disordered Host 
Matrix, 
εh 

Bulk 
benzene,

νbulk 
1D 2D 3D 1D 2D 3D 

2.2 681.4 (0.42) 677.3 (0.41) 675.7 (0.42)
673 (0.34)
681 (2.2) 

676.2 (0.36) 675.7 (0.42) 

5 680.4 (1.69) 675.3 (0.76) 674.3 (0.63)
680 (0.65)
673 (1.4) 

674.8 (0.63) 674.2 (0.63) 

11.56 678.9 (5.63) 674 (1.09) 673.5 (0.78) 678.8 (1.99) 673.8 (0.87) 673.5 (0.78) 
16 

672.7 
(4.56) 

678.2 (8.26) 673.7 (1.19) 673.3 (0.82) 678.1 (2.19) 673.6 (0.94) 673.3 (0.82) 

Table 2. Peak position (in cm-1) and intensity (in brackets) for dielectric loss spectra of two 
component composite medium consisting of ordered and disordered benzene mesoparticles 
under 1D, 2D and 3D dielectric confinement  in various  host matrices (f=0.1) 
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Fig. 3. Calculated dielectric loss spectra ε2eff(ν) of liquids (a) CS2, (b) C6H6 and (c) CHCl3 
under the conditions of different size confinement for ordered and disordered (random) 
media. The calculations were performed using equations (8) and (15a) at f=0.1, εh=11.56 
 

 

Fig. 4. Dielectric loss spectra of benzene mesoparticles calculated for ordered and random 
composite media at different confinement conditions for various matrixes  (a) εh=2.2 glass, 
(b) εh=5, (c) εh=11.56 silicon, and (d) εh=16 germanium 
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Calculations of the dielectric loss spectra of mesoparticles of amorphous SiO2 under various 
types of dielectric confinement are presented in Fig. 5 and summarised in Table 3. The 
calculations were performed at f = 0.2 and εh = 2.34 for KBr. The optical properties of 
amorphous SiO2 were obtained from Ref. (Efimov, 1995). Amorphous SiO2 has several 
absorption bands, with peaks at 468 cm-1 (Si-O-Si rocking vibrational mode), 808 cm-1 (O-Si-
O bending mode) and 1082 cm-1 (Si-O asymmetric stretching mode). In our analysis, we 
focus mainly on the most intense band at 1082 cm-1. 
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Fig. 5. Calculated dielectric loss spectra of bulk SiO2 and its composites under dielectric 
confinement in a host medium with εh=2.34 (KBr) and filling factor f=0.2 for ordered (left 
panel) and disordered (right panel) mesoparticles. The circles on the right panel correspond 
to experimental data for SiO2/Si rods in a KBr matrix from Noda et al., 2005 

The principal features of the calculated spectra are shown in Figs. 2 - 5 and the results of our 
calculations are summarized in Tables 1 - 3.  For all the calculated model composites viz. 
benzene, chloroform, carbon disulphide and SiO2, the position of the dielectric loss spectral 
maximum, and its intensity, depends on the dielectric permittivity of the host medium. For 
larger εh, the peak position is shifted to smaller wavenumbers towards the peak of the bulk 
medium. The peak intensity increases significantly for larger values of εh, for example, by a 
factor of  2 for C6H6 in Figs. 2(a) and 4(c), for CHCl3 in Fig. 3c and for CS2 in Fig. 2(b). 
In all cases, the maximal spectral shift of the dielectric loss spectrum is observed under 1D 
dielectric confinement.  The peak positions for 2D and 3D confinement are closer to the peak 
position observed from bulk benzene and carbon disulphide. The difference in peak position 
for 2D and 3D confinement is very small and is more apparent for small εh. For benzene 
mesoparticles embedded in the host matrix, with εh = 2.2 or εh = 5, the appearance of the 
second peak is clearly seen under 1D confinement in disordered media (see Fig. 4 (a and b) 

and Table 2). Similar results are also apparent in Fig. 2(d) for CS2 at εh = 3. Note that at 
smaller εh,  the peak related to the bulk mode is more intense, while for larger εh, the peak 
corresponding to 1D confinement has a higher intensity.  For both C6H6 and CS2, the peak 
related to the bulk mode significantly reduces in intensity, indeed, it practically disappears 
at εh = 13.6 as seen in Fig. 2 (a and b).   It is also worth noting that the peak intensity of the 
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dielectric loss spectrum for an ordered composite medium at f = 0.1 and εh  = 16, in a 
germanium host matrix, is approximately two times higher than that for bulk benzene 
(Table 2), while it is 10 times lower at εh  = 2.2.  
 

Dielectric 
matrix 

Bulk, peak 
position 

Calculations, DLF 
method, peak position, 

(cm-1) 

Experiment, peak position,  
(cm-1) 

 
Sample 

 

εh νbulk, cm-1 ν3D ν2D ν1D ν3D ν2D ν1D 

 
 

SiO2 
 

1, air 
 
 

2.34, KBr 
 

1.77, water 
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1216 
 

1142 

 
 
 
 

1109 

 
 
 

1130c 

1257d 
1253e 

aFrom transmission spectra calculated at 65o of incident light using TMM; bfrom minimum of the 
reflection spectrum calculated for p-polarized light at incidence angle of 70o using expressions of 
multilayer stack optics; cexperimental data from Noda et al., 2005; dexperimental data from Shaganov et 
al., 2001; eexperimental data from Röseler, 2005. 

Table 3. Experimental and calculated peak positions, ν (cm-1), of IR absorption bands 
observed for SiO2 under various dielectric confinement conditions 

3.2 Experimental 
Infrared absorption spectra were measured on an FTS 6000 Fourier Transform Infrared 
(FTIR) spectrometer using a commercially available Grazing angle Attenuated Total 
Reflection (ATR), attachment from the Harrick Scientific Corporation. Absorption 
measurements were made on both thick and thin layers of liquid, as well as on thin solid 
films. For measurements of absorption for the bulk, thick layer, a drop of liquid 
approximately 1 mm thick was placed in the middle of the Ge ATR element. In order to 
achieve dielectric confinement in the liquids studied, three methods were used.  In the first 
technique, absorption spectra were measured using the Grazing angle Attenuated Total 
Reflection (GATR) attachment. A thin film of liquid was obtained by confining the liquid 
between the Ge ATR prism and the 4 mm thick silicon top window, see Fig. 6(a). In the 
second method, an Al coated glass substrate was used instead of the Si top window Fig. 
6(b).  The strength of window compression was changed using the GATR pressure 
applicator control. Measurements were performed in p-polarized light at a 60o angle of 
incidence. The third method for exploring dielectric confinement effects is based on the use 
of a macro-porous silicon matrix, with liquid infiltrated into the pores (Perova et al., 2009). 
In our study, porous Si samples were fabricated by electrochemical etching of single-
crystalline (100) n-type Si wafers in a HF (48%) : H2O = 2:3 solution. Etching was performed for 

30 mins at a current density of 16 mA/cm2. The resulting pore diameter was about 0.8 μm. All 
three liquids studied evaporated completely from the pores approximately 30-40 minutes after 
infiltration. Therefore, in-situ FTIR measurements were carried out immediately after liquid 
infiltration using a registration time of ~ 20 sec and a dwell time of ~ 5 sec. 
All the liquids investigated were of high purity, purchased from Sigma-Aldrich. The Ge 
ATR prism and Si windows were new and of excellent optical quality. The Ge ATR element 
was carefully cleaned before the drop of liquid was placed on it. The glass substrate with the 
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Al layer was freshly prepared; a new element was used for each experiment. At least five 
separate experiments were performed for each liquid. These precautions enabled us to avoid 
the influence of any unwanted interactions. 
 

 

Fig. 6. Schematic of FTIR experiments using GATR attachment for (a) Si and (b) Al top window 

Thin films of SiO2 were deposited onto an Al coated glass substrate using an electron-gun 
evaporator.  In order to register the LO-phonons, or the absorption spectrum of these 
materials under 1D confinement, we used an oblique incidence of light in p- and s-
polarisations, using the Reflection-Absorption (RA) and GATR attachments, see Ref. 
(Shaganov et al., 2003) for details.  For registration of spectra under 3D confinement, we 
used SiO2 spherical particles of different diameters dissolved in water.  Spherical particles of 
SiO2, with a diameter of 193 nm, coated with an ultra-thin layer of surfactant to prevent 
particle conglomeration and dissolved in water, were purchased from Sigma-Aldrich.  The 

distribution of particles size in the solution is  ± 5 - 10 nm, as guaranteed by the manufacturer.   

3.3 Comparison of experimental and calculated data 

a) Liquid systems 

Absorption spectra obtained for three of the liquids under investigation are shown in Figs. 
7(a) - 7(c). From Fig. 7(a), it is apparent that, for a thick chloroform layer, an absorption band 
with a peak position at ν = 752 cm-1, corresponding to the bulk mode, is observed. At the 
maximum possible confinement, when the layer is only ~ 100-200 nm thick, the absorption 
peak  shifts to  ν = 771 cm-1. This value agrees very well with calculations of the dielectric 
loss spectrum of liquid CHCl3 under 1D dielectric confinement (see Table 1). We believe that 
the line width increase observed for the absorption band at 760 cm-1 is due to the fact that 
the absorption band for this intermediate case is a superposition of the absorption bands 
obtained in the presence and absence of the dielectric confinement effect. We would like to 
emphasise that the position and shape of the weaker absorption band, observed for CHCl3 
at ν = 1215 cm-1, remained unchanged as expected (see Fig. 7(a)).  
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Fig. 7. Normalized infrared spectra of liquids (a) CHCl3, (b) C6H6 and (c) CS2 registered with 
GATR attachment. Note that the absorbance of the vibrational bands with small intensities 
was multiplied by slightly different factors,  shown beside the bands, to demonstrate clearly 
that they have the same peak position 
 

 

 
 

Fig. 8. Top view AFM image of the Al coated glass substrate 

Similar behaviour was observed for liquid benzene (Fig. 7(b)), where the frequency of the 
spectral maximum for the bulk liquid, initially observed at ν = 671 cm-1, was shifted under 
strong confinement to ν = 679 cm-1, corresponding to 1D dielectric confinement of a very 
thin layer of C6H6. The same effect was observed in liquid CS2 (Fig. 7(c)) with a frequency 
shift from v = 1501 cm-1, observed for the bulk material, to v = 1532 cm-1, measured under 1D 
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confinement. As in the case of chloroform, the layer thickness for the benzene and carbon 
disulphide was estimated to be 100 – 200 nm.  The position and shape of the weak 
absorption band observed at 1036 cm-1 for C6H6, and at 2155 cm-1 for CS2, remain unchanged 
(see Figs. 7(b) and 7(c)). We also note that the largest peak shift due to dielectric confinement 
was observed for CS2 with the largest integrated intensity of infrared absorption band of all 
the liquids investigated. 
In order to measure the vibrational spectra of these liquids under 2D/3D dielectric 
confinement, we modified the experimental setup as follows (see Fig. 6(b)). The top silicon 

window was replaced with a 5 mm thick glass plate, coated with a thin, ~ 0.1 μm, Al layer. 
The coating was applied by evaporation of Al wire in a bell jar evaporator. Under these 
evaporation conditions, the Al film contains pores, with diameters ranging from a few 
microns to tens of nanometers. A small drop of liquid was placed on top of the ATR Ge 
prism, then the Al coated glass plate was placed on top and the experiment was 
immediately run as the level of compression of the top glass window was increased. The 
effects of confinement on the liquid spectra were practically identical to those described 
earlier, with the exception of the last stage. When the thin layer of liquid evaporated 
completely,  the  maximum  frequency  in  the  spectrum shifted to ~ 760 cm-1 for CHCl3, 676 
cm-1 for C6H6 and to 1513 cm-1 for CS2 (see Fig. 7 and Table 1). These frequencies are in good 
agreement with data calculated for 2D or 3D dielectric confinement. This can be seen in 
Table  1  and from Figs. 2, 3 and 7. Note that the infiltration of the liquid into the voids, or 
pores, in the Al layer was confirmed by the fact that the spectra related to 2D/3D 
confinement were still observed several hours after initial sample preparation, when the 
thin layer of liquid between the Ge prism and the Al coated substrate had definitely 
evaporated. As the deposited layer of Al is too thin to consider the “porous” Al layer 
obtained as a matrix for the fabrication of liquid wires, the diameter/length ratio of the 
pores obtained suggests that we are dealing with liquid spheres embedded in a porous Al 
matrix situated at the top of the Ge prism. The results of surface analysis of the Al coated 
glass substrate using an Atomic-Force Microscope (AFM) confirms the existence of the void 
structure (with width and depth of voids at around ~20-40 nm and ~10-15 nm, accordingly) 
of the substrates used for these experiments (see Fig. 8).  From Table 1, the peak positions 
observed under 2D and 3D confinement are close, making it difficult to draw firm 
conclusions. Nevertheless, we believe that with this experiment, it is possible to obtain 
information on the absorbance spectra of the liquids investigated under 3D confinement.  
Fig. 9 shows the behaviour of the absorption spectra of benzene infiltrated into a macro-
porous silicon matrix registered at various times after infiltration. The position of the 
absorption band for benzene immediately after infiltration was close to the frequency of the 
bulk mode of C6H6 (ν = 673 cm-1).  During the course of evaporation, the peak position 
shifted to higher frequencies and ν = 682 cm-1 at the end of the registration process. We 
believe that at the beginning of the registration process, the pores were totally filled with 
liquid benzene. Since the pore diameter is larger than that necessary to satisfy the criteria for 
dielectric confinement, the absorption spectrum observed is that from the bulk liquid. In the 
course of drying out, the liquid bulk phase of the C6H6 evaporates, leaving a thin layer of 
adsorbed liquid on the pore surface. When the electric field of the incident light is oriented 
parallel   to   the   sample   surface,   the  conditions   for   the   registration   of   1D  dielectric 
confinement are met, as  shown in  the insert in Fig. 9. These  results  are  in good agreement 
with our calculations shown in Fig. 3(b).  Similar results were obtained for CHCl3 and for 
CS2, these results are summarized in Table 1. It should be noted that, due to the faster 
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evaporation of CHCl3 and the CS2 liquids from the pores, it was not possible to register the 
bulk mode at the beginning of the registration process. In conclusion, we note that since exact 
values of layer thickness and the sphere diameter distribution were not known, we were 
unable to calculate the imaginary part of the dielectric function from the experiment, in order 

to compare this with the calculated values 2 ( )effε ν . Therefore, the position of the absorbance 

spectra, A(ν),  was used for this comparison. However, it is well known that for strong and 

narrow isolated absorption bands, the peak positions of 2( )ε ν and A(ν) are close to each 

other. Our estimates have shown that, in this case, the deviation does not exceed 1 - 2 cm-1. 
 

Fig. 9. Absorbance spectra of benzene infiltrated into silicon pores. Insert: Schematic diagram 
of the conversion of liquid infiltrated into the macro-porous silicon matrix from a bulk liquid 
phase to a liquid under 1D dielectric confinement as a result of the drying process. 
Reproduced with permission of journal Chemical Physics Letters (Perova et al., 2009) 

(b)  Amorphous solids (SiO2) 

Calculations of the dielectric loss spectra of mesoparticles of amorphous SiO2 under various 
types of dielectric confinement are presented in Fig. 4 and summarised in Table 3. The peak 
position for 1D dielectric confinement is confirmed experimentally in our earlier paper 
(Shaganov et al., 2003) for 70 nm thick thermally grown oxide,  as well as by a number of 
other papers where the IR spectra of thin (Shaganov et al., 2001; Almeida, 1992; Olsen & 
Schimura, 1989)  and ultra-thin (with a thickness of 5nm) (Tolstoy et al., 2003) films of 
amorphous SiO2 were measured under oblique incidence of IR light.  It is worth noting that 
the shift in the peak position of the Si-O-Si band at ∼ 1100 cm-1 to higher frequencies (~ 1253 
cm-1) was also observed in an SiO2 thin film under oblique incidence of light using infrared 
spectroscopic ellipsometry (see Ref. (Röseler , 2005) for details). 
In order to lend further support to the model suggested, we performed calculations of the 
transmission spectra for SiO2 thin films under oblique incidence of light, corresponding to 
1D confinement, using a 2 x 2 Transfer Matrix Method (TMM) (Azzam & Bashara, 1977). The 
peak positions of the transmission spectra obtained are included in Table 3. In addition, the 
peak position of the transmission spectra for thin SiO2 films, calculated at oblique incidence 
of light, is also shown in Table 3. These calculations are performed using expressions from 
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paper (Shaganov et al., 2001).  The results obtained for 1D confinement in an SiO2 thin film 
demonstrate very good agreement between the theory developed for the calculation of the 
optical properties of a multilayer stack and the approach suggested in this paper.  These 
results are also in agreement with both spectroscopic ellipsometry and infrared 
spectroscopy experiments at oblique incidences of light.   
The spectra calculated for the disordered composite, for 2D confinement, are confirmed 
experimentally using results published recently in Ref. (Noda et al., 2005), where the 
infrared spectra of SiO2/Si disordered nanowires embedded in KBr pellets were 
investigated. We believe that the peak observed in paper (Noda et al., 2005) at ~ 1130 cm-1 
and assigned by the authors to a highly disordered structure of thin SiO2/Si nanowires can 
be reinterpreted, in the light of the results presented in this paper, as being due to 2D 
dielectric confinement of amorphous SiO2. 
Finally, the infrared spectra of spherical SiO2 particles in an aqueous solution have been 
measured using a GATR attachment. Spherical particles, with diameters of 193 nm, coated 
with an ultra-thin layer of surfactant to prevent particle conglomeration and dissolved in 
water, were supplied by Sigma-Aldrich.  As noted earlier, the particle size distribution 
guaranteed by the manufacturer is ± 5 - 10 nm.  The solution was shaken intensely before 
placing a drop of the liquid onto the Ge ATR prism. The infrared spectra of the SiO2 
mesoparticles obtained in this experiment are shown for spherical particles of diameter  193  
nm  in  Fig. 10,  along  with  calculations for 3D confinement at εh = 1.77. Good agreement 
between the experimental and calculated spectra can be seen for this composite.  The minor 
discrepancies between the experimental and calculated spectra of the spherical SiO2 
particles observed in the spectrum wing regions is due to the fact that silicon dioxide can 
exist in various forms such as amorphous quartz, fused quartz or quartz doped with 
impurities. The exact structure of the Sigma-Aldrich silicon dioxide spherical particles is not 
known.  For our calculations, the optical constants of amorphous quartz were taken from the 
literature, which can result in differences between the calculated spectra from the 
experimental data in the wing regions. 
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4. Conclusions 

The experimental results presented here demonstrate good agreement with calculations 
made using the model suggested for estimating the effect of 1D, 2D and 3D dielectric 
confinement on the IR spectra of condensed matter. The results obtained allow us to 
conclude  that the physical mechanism responsible for the shift of the absorption peak of 
small particles experiencing different types of dielectric confinement is the same, regardless 
of the nature of the condensed medium, whether crystalline or amorphous,  solid or liquid. 
The shift is due to the local field effect acting on the size confined particles, surrounded by 
the dielectric matrix. 
The expression obtained for particle absorption under 1D confinement is the same as that 
for the dielectric loss spectrum of the crystal at the frequency of the longitudinal-optical 
phonons (Berreman, 1963).  This indicates that similar absorption bands to those seen under 
1D confinement will be observed near the minimum of the real part of the dielectric function 
(Reε(ν)) function in any condensed medium. This has been confirmed already in other 
studies on thin films of amorphous solids (Payne & Inkson, 1984; Röseler, 2005; Tolstoy et 
al., 2003; Röseler, 2005;  Shaganov et al., 2005), polymer monolayers (see (Yamamoto & 
Masui, 1996) and references therein) as well as for the thin liquid films investigated in this 
work. We conclude that the absorption bands, observed earlier and ascribed to the 
Berreman effect (Berreman, 1963), are a particular case of the manifestation of 1D 
confinement.  This conclusion is supported by a study by (Lehmann, 1988), where it was 
shown that the appearance of the absorption band at the frequency of the LO-phonons in an 
amorphous dielectric is a consequence of the boundary conditions in a dielectric film at an 
oblique incidence of the probe beam.   
The numerical and experimental results described above indicate that relatively large 
spectral effects can be expected as a result of dielectric confinement. Our results 
convincingly demonstrate that the blue shift of the absorption bands under dielectric 
confinement can be significant, and must be taken into account when interpreting 
experimental spectroscopic data from composite systems. Of course, we ignored the resonance 
dipole-dipole interactions, which are negligible at particle volume concentrations of less than 
1% and will not impact the accuracy of the calculations for filling factors of less than 10%.       
We note that the expressions obtained only deal with isolated particles of spheroidal shape 
and are valid when the spheroidal semi-axes in either one, two or three directions are 
satisfied by the conditions dz << λ or dx = dz << λ while remaining larger than atomic 
dimensions. Therefore, the approach suggested here can be used for a general description of 
the spectral characteristics of arbitrary micro-objects, or more specifically, sub-micron 
microcrystalline particles, under dielectric confinement.  One of the disadvantages of our 
approach is the absence of the size parameter in the model.  Obviously, the response of the 
dielectric medium will change with a decrease in the particle size, approaching frequencies 
characteristic of the limited cases of 1D, 2D and 3D confinement considered in this work. 
There is evidence to indicate that this assumption is justified, assuming the optical 
properties are linear. We believe that particle size will play a significant role only when 
quantum confinement effects influences their non-linear optical properties. Other physical 
phenomena need to be taken into account in order to calculate the absolute value of the 
imaginary part of dielectric function. These phenomena include sample surface roughness, 
polaritons, diffraction and scattering. In addition, the specificity of the molecular orientation 
in, for example, Langmuir-Blodgett films, or the film structure, that is, anisotropy, of the 
oxide or island-like surface structure for ultra-thin films, or monolayers, may also influence 
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the shape and position of the IR spectra.  Therefore, further development of this theory and 
its experimental verification is required. 
We conclude that dielectric confinement offers considerable promise as a method for tuning 
the absorption properties of composite media. The approach allows control of both the 
position and intensity of the dielectric loss spectrum of the absorbing medium embedded in 
a composite. Furthermore, the absorption efficiency can be increased significantly due to 
local field effects. Clearly, further development of simple models for the description of the 
spectral properties of composite media, including meso-composites based on porous 
semiconductors, as well as other porous media with absorbent inclusions, is still necessary. 
The most important applications of these studies are to the analysis of the absorption spectra 
of industrial smokes, toxic aerosols and liquid droplets, (see Ref. (Carlton et al., 1977; 
Carlton, 1980) for example) as well as for colloidal optofluidic systems (Psaltis, 2006).  
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Fourier Transform Based Hyperspectral Imaging  

Marco Q. Pisani and Massimo E. Zucco 
National Institute of Metrological Research 

Italy 

1. Introduction 

A hyperspectral imaging system (HSIS) is a combination of an imaging device and a 
spectrometer. The result is a 2D image combined with the third dimension containing the 
spectral composition of each pixel of the image. Spectrometers normally implemented in 
hyperspectral imaging systems are made by integrating a dispersive means (a prism or a 
grating) in an optical system, with the drawback of having the image analyzed per lines and 
some mechanics integrated in the optical system, cfr. Fig 1, (Sellar & Boreman, 2005). 
 

 

Fig. 1. Classical “pushbroom” hyperspectral imaging camera. L: collimating lenses, S: 
entrance slit selecting a row of the image in the focal plane; D: dispersive means (prism or 
grating) dispersing light in the direction orthogonal to the entrance slit; C: camera sensor 
where the combined image is focused. Points a and b, representing a pixel of the row 
selected at the entrance, are imaged at different vertical coordinates 

Alternatively, HSIS devices are based on optical band-pass filters either tuneable or fixed 
and the spectrum has to be scanned in steps. In Fig 2 an example of the spectral 
transmissivity of a tunable band pass filter. Since the spectral transmissivity depends on the 
wavelength, HSIS systems have to be calibrated in advance and some mathematical 
manipulations are required to obtain the final hyperspectral image. 
A third kind of spectrometer implemented in HSIS is based on interferometers (Alcock & 
Coupland, 2006), where the spectrum for each pixel is obtained by applying Fourier 
transform based algorithm to the signal (called interferogram) obtained by scanning the 
optical path difference OPD. The same technique has been used for decades by 
spectroscopists to obtain high resolution absorption spectra by using Michelson (or two-
beam) or Fabry-Perot F-P (multi-beam) interferometer. There are many features that make 
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interferometer based spectrometers superior to conventional spectrometers. First, the Felgett 
or multiplex advantage arises from the fact that there is no spectral scanning and all the 
spectral components are acquired at the same time. Second, the Jacquinot or throughput 
advantage originates from the fact that the aperture used in FTIR spectrometers has a larger 
area than the slits used in dispersive spectrometers, thus enabling higher throughput of 
radiation. These two effects combined together make the interferometer based spectrometer 
a faster (or equivalently having a higher luminosity) instrument with respect to the other 
spectrometers at the same resolution. We have realized a HSIS based on a F-P spectrometer 
that will be discussed in details in  section 3. In section 4 the application of our HSIS will be 
presented. In section 2 the mathematical manipulation to obtain spectra with the Michelson 
spectrometer will be discussed. 
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Fig. 2. The spectral response of a tunable filter to be used for HSIS 

2. Michelson spectrometer 

This section is devoted to the presentation of the Michelson spectrometer and to the 
mathematical manipulation to calculate spectra. In a Michelson spectrometer (Fig 3) the 
incoming light is divided in two beams by the beam splitter, after the two beams have 
travelled different paths, they are finally recombined on the detector where interference is 
measured. The intensity on the detector varies with the optical path difference OPD or 
retardation δ, double of the mirror displacement x. 
When the incoming light is emitted by a monochromatic source and the two beams have the 
same intensity on the detector, the interferogram signal is represented by the equation  

  ( ) ( ) ( )( )0.5 1 cos 2o oI Bδ ν πν δ= +# #  (1)  

where oν#  is the wavenumber 1o o
ν λ=#  and ( )oB ν#  represents the intensity of the source at 

oν# . By using the frequency o o o
c cν ν λ= =# , equation (1) is transformed in:  
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  ( ) ( ) ( )( )0.5 1 cos 2o oI B cδ ν πν δ= +  (2) 

The interferogram in (2) has two components, a constant component equal to ( )0.5 oB ν#  and 

a modulated component equal to  

 ( ) ( ) ( )0.5 cos 2o oI B cδ ν πν δ=  (3) 

Equation (3) is incomplete, there are several factors that reduce the spectral response of the 
system and the resulting signal: the optical elements (beam splitter, mirrors, lenses) and 
detectors normally have a non uniform responsivity. Moreover, the electronic devices used 
to condition the signal have a non uniform frequency dependence. All these different 

contributions are counted in the term ( )oS ν , giving  

 ( ) ( ) ( )cos 2o oI S cδ ν πν δ=  (4) 

When the source is broadband and continuum, the interferogram can be represented by the 
cosine Fourier Transform integral  

  ( ) ( ) ( )1
cos 2I S c d

c
δ ν πν δ ν∞

−∞
= ∫  (5) 

and the spectrum by  

 ( ) ( ) ( )
0

2 cos 2S I c dν δ πν δ δ∞= ∫   (6) 

I(δ) in (6) is based on an infinite and continuum retardation δ. In practice, the signal is 
sampled at finite sampling interval Δs and consists of N discrete, equidistant points and 
equation (6) transforms in (7), where all the constants have been discarded: the discrete 
version of the cosine FT, discrete cosine transform DCT. The maximum retardation is  
N Δs.  

 ( )1

0

cos 2 /
N

n

S k I n s nk Nν π−
=

⋅ Δ = ⋅ Δ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (7) 

DCT means that in the time domain the Fourier series decomposes the periodic function into 
a sum of cosine and in the frequency domain it could be seen as if the signal intensity is 
divided in multiple adjacent frequency bins. For N equi-spaced points in the retardation at 
interval N Δs, we have N equi-spaced bins in the spectrum with spacing Δν related to Δs by 
the formula 

  
max

c c

N s
ν δΔ = =Δ   (8) 

Therefore the resolution Δν is inversely proportional to total retardation δmax. Considering 

the total mirror displacement L from zero retardation, the resolution will be 
2

c

L
νΔ = . As an 

example, for L = 20 μm, we obtain Δν = 7.5 THz.  
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Fig. 3. Set-up of the Michelson spectrometer. S is the light source, D is the detector, M1 and 
M2 are two plane mirrors (or corner cube retro-reflectors). M1 moves back and forth 
unbalancing the optical path difference (OPD) of the interferometer 

A laser at 633 nm is normally incorporated in Michelson spectrometers to calibrate the 
mirror displacement and to acquire the retardation at equal intervals of retardation. There 
are two ways to perform the interferogram acquisition synchronized with the mirror 
displacement, one is by moving the mirror at constant velocity in the retardation, this means 
that for a mirror velocity of 1 cm/s the acquired signal is at tens of kHz. The other method is 
by equispaced steps, for each single step one point of the interferogram is acquired.  
As will be seen in Fig 6 in the next section, DCT generates a spectrum formed by the 
fundamental spectrum plus its mirror image, only the first N/2 points of equation (7) are 
useful, the second set of N/2 are redundant and discarded. A spectrum is meaningful if 
there is no overlap between the fundamental spectrum and the symmetrical replicas, 
therefore if the fundamental spectrum is completely contained in the first N/2 bins and is 
zero in the remaining N/2 bins. This is called Nyquist criterion, in order to sample a signal 
the sampling device should include a low pass filter that cuts the frequencies higher than 
half the sampling rate. 
DCT in (7) is based on symmetrical interferograms around the zero retardation. When optics 
is dispersive and/or conditioning electronics have a phase dependence on frequency the 
interferogram becomes asymmetrical and DCT cannot be used directly. There are some 
techniques (Griffiths & de Haseth, 2007) to calculate the phase correction from the complex 
DFT. 
The instrumental lineshape ILS function represents the resolution of the spectrometer and 
corresponds to the spectrum measured by the spectrometer when the radiation is 
monochromatic. ILS is the filter shape of each frequency bin. When the interferogram 
acquisition is abruptly truncated at the extremes, the rectangular or boxcar cutoff creates an 
ILS having the shape of a “sinc” function centered on the frequency bin, having a narrow 
peak but with important sidelobes that would hide possible neighbor lines. There is a 
palette of ILS function available to trade between the resolution (related to the width of the 
peak) and to the amplitude accuracy (related to the amplitude of the tails). ILS function can 
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varied by multiplying the acquired interferogram by an appropriate tapering function 
(Smith, 1999), (Weisstein).  
As was described before, the frequency bin interval is inversely proportional to the total 
retardation. If a monochromatic component has a period that is not exactly a submultiple of 
the total retardation, the frequency falls between adjacent bins and spectral components 
would be spread in several adjacent bins. Adding a series of zeros at the end of the 
interferogram has the important effect that new bins are created and the spectrum is 
interpolated in correspondence of the new bins and more frequencies could be represented 
without being spread.  
Apparently, as stated in eq (8) the resolution Δν is only limited by the maximum retardation 
of the interferometer and therefore by increasing the retardation there is no physical limit to 
the attainable resolution. In practice the detector has a finite dimension and the considered 
rays pass through  the interferometer with a divergence half-angle α. For a certain frequency 
νo and divergence α, it is always possible to find a retardation δmax such that the rays 
interfere destructively on the detector. This retardation δmax inserted in eq. (8) limits the 
minimum attainable resolution and there is no advantage to use a retardation longer than 
δmax. The formula that relates the divergence half-angle α to the resolution Δν is the 
following: 

 2
oν α νΔ =  (9) 

3. F-P spectrometer 

After having considered how it is possible to calculate a spectrum with the Michelson 
spectrometer by using the mathematical manipulations based on DCT, we now describe F-P 
spectrometers, core of the HSIS we have developed, and the associated algorithm to 
calculate the spectrum (Pisani & Zucco, 2009). 
 

F-P Lens CCD 
 

Fig. 4. Scheme of the F-P interferometer 

The F-P spectrometer set-up is presented in Fig 4, and it is formed by two semireflective 
mirrors having reflectivity R at a distance d. For simplicity we consider mirrors with metallic 
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coating with the peculiarity of having a negligible dispersion in the visible and in the IR 
region or equivalently a constant penetration depth versus the frequency. The incoming 
beam is reflected many times by the reflective surfaces and the different refracted beams are 
finally combined on the detector. The resulting interferogram for a monochromatic source at 

frequency oν  is the Airy function  

 ( ) ( )
( ) ( )2

2

1

4
1 sin 2

1

I S
R

d c
R

δ ν
πν

= ⎛ ⎞⎜ ⎟+ ⎜ ⎟−⎝ ⎠
  (10) 

Comparing the F-P interferogram (10) with the Michelson interferogram in (4) for a 
monochromatic source, it is evident that the interferogram is formed by fringes having the 
same periodicity, but with fringes more pronounced at the increasing of R, as in Fig 5.  
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Fig. 5. Interferogram from the F-P spectrometer for different R 

When the source is broadband and continuum, the resulting interferogram can be obtained 
by the integration of the different monochromatic contributions giving:  

 ( ) ( )
( ) ( )2

2

1

4
1 sin 2

1

I S d
R

d c
R

δ ν ν
πν

∞

−∞
= ⎛ ⎞⎜ ⎟+ ⎜ ⎟−⎝ ⎠
∫  (11) 

In the approximation that the reflectivity R of the mirrors is very low R<<1, the Airy fringes 
in (10) could be approximated with cosine function and eq (10) becomes 

 ( ) ( )
( ) ( )

( )( ) ( ) ( )
2

2

1
1 2 2 cos

4
1 sin 2

1

I S S R S R d c
R

d c
R

δ ν ν ν πν
πν

= ≈ − +⎛ ⎞⎜ ⎟+ ⎜ ⎟−⎝ ⎠
  (12) 
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Taking into account only the modulated part of the interferogram (12), and including all the 

responsivity contributions in intensity of the radiation at the detector in ( )oS ν , we obtain a 

equation similar to (3) and therefore the interferogram from the F-P could be solved using 
the DCT as in (6), provided that Nyquist criterion is respected, i.e. at least two points per 
fringe are acquired. 
 

 

 

Fig. 6. Spectra obtained with DCT from F-P interferogram with different reflectivity. a) and 
b) interferogram and spectrum for reflectivity R = 0.05. c) and d) interferogram and 
spectrum for reflectivity R = 0.2 

When the approximation presented in (12) is not possible because R is close to 1, we could 
still apply DCT to the Airy fringes, since the interferogram is periodic and can be 
decomposed by the Fourier series into a sum of cosines. Since the Airy fringes are far from 
being a cosine, also the higher harmonic components are presents. As an example in Fig 6. 
we have represented a F-P interferogram of a monochromatic source when R = 0.05, cfr. Fig 
6(a), the associated DCT is presented in Fig 6(b) and the second harmonic is about 1/20th of 
the fundamental whereas the third harmonic is negligible. In this example, the fringe is well 
oversampled, 8 points per fringe are acquired and Nyquist criterion is respected since it is 

www.intechopen.com



 Fourier Transforms - Approach to Scientific Principles 

 

434 

possible to see that the harmonics fade away in the higher part of the spectrum, and the aliases 
do not “superpose” with the fundamental spectrum. On the contrary, in a situation similar to 
the practical case that we will describe in the next section, when R = 0.2 the Airy fringes are 
more pronounced and by applying the DCT we see in Fig 6(d) that the 3rd and 4th harmonics 
are present and the 7th harmonic of the alias would sum up with the fundamental. Since the 6th 
harmonic is about 3· 10-5 of the fundamental, we state that is effect is negligible and by 
acquiring 8 points per fringe for R = 0.2 is enough to respect Nyquist criterion.  
If now we consider a source with a broad spectrum larger than an octave in the 
electromagnetic spectrum, the second harmonic of the low frequency side would sum up 
with the fundamental spectrum in the high frequency side as is depicted in Fig 7(a). In this 
figure the fundamental spectrum is represented in red and is larger than an octave, the 
second harmonic in blue is superposed with the high frequency side of the spectrum. The 
sum of all the harmonics would give the resulting spectrum in black, and from its analysis is 
nearly impossible to obtain information about the fundamental spectrum in red. When the 
fundamental spectrum is smaller than an octave, as in Fig 7(b), from the resulting spectrum 
it is possible to discriminate from the fundamental and the second harmonic spectra.  

 

f

a)

 original spectrum
 spectrum 1st harmonic 
 spectrum 2st harmonic
 resulting spectrum

 
 

f
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 original spectrum
 spectrum 1st harmonic 
 spectrum 2st harmonic
 resulting spectrum

 

Fig. 7. Effect of superposition between harmonics of the fundamental spectrum. a) the 
spectrum is larger than an octave and it is not possible to discriminate from the fundamental 
and second harmonic b) the spectrum is smaller than an octave 
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While Michelson spectrometers have a double sided interferogram and this fact is useful in 
order to obtain information about the phase correction, the F-P interferogram is evidently 
single-sided and it does not start from the central or zero fringe when the mirrors come in 
contact because of the penetration depth of the radiation in the metallic coating. The latter 
implies that the interferogram is incomplete (i.e. it does not contain the data corresponding 
to the zero retardation condition), therefore it is not possible to apply directly the DCT to the 
interferogram as in two beam interferometers. As an example, in Fig 8 is presented the 
measured interferogram obtained from a F-P having a metallic coating of a laser radiation at 
λ = 410 nm. It is possible to see that the first half of the fringe is missing, corresponding to a 
retardation of 205 nm or equivalently to a mirror distance of 102.5 nm, we can estimate that 
the penetration depth of the metallic layer is smaller than 50 nm. 
 

2000150010005000

retardation (nm)
 

Fig. 8. The measured interferogram of a laser radiation at λ = 410 nm. The estimated 
penetration depth of the metallic layer is smaller than 50 nm 
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Fig. 9(a). The interferogram of a yellow LED with a maximum mirror distance δ = 25 μm 

The two aforementioned problems (presence of harmonics and missing points) are solved in 
our prototype by introducing an optical bandpass filter in the optical system transmitting 
slightly less than one octave of the electromagnetic spectrum, as the spectrum reported in 
Fig 7(b). This solution reduces the region of measurable spectrum but has the important 
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consequence that by using the information that certain region of the spectrum have zero 
intensity it is possible to estimate the value of the missing points in the interferogram and 
reconstruct the spectrum. As an example, consider the interferogram in Fig 9 of a yellow 
LED with a maximum mirror scan distance of δ = 25 μm corresponding to a resolution of 
about 6 THz, according to equation (8). To calibrate the mirror distance a blue laser at 410 
nm is used and the points are acquired at interval of 25.5 nm in mirror distance. In Fig 9(a) it 
is presented the plot of the acquired interferogram. Due to the penetration depth, the first 
four points are missing. In Fig 9(b) the zoom of Fig 9(a) near the contact zone, zero 
retardation. 
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Fig. 9(b). The zoom of the interferogram in Fig 9(a) with the 4 missing points 

Since the interferogram of Fig 9 is incomplete, four points are missing, it cannot be elaborated 
by the DCT in eq (7). In order to apply DCT the interferogram is completed with four points 
set at zero, not having any information a priori, and the result is presented in Fig 10.  
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Fig. 10. The interferogram in Fig 9 with the 4 missing points (red diamonds) set at zero 

The DCT of the interferogram gives the spectrum presented in Fig 11 where it is visible the 
spectrum of the yellow LED at about 500 THz and the second harmonic at about 1000 THz. 
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The spectra are sitting on a curved background due to the 4 missing points. In fact, 
according to the DCT equation where each point in the interferogram corresponds to a 
cosine contribution in the spectrum: the first missing point corresponds to the DC level in 
the spectrum, the second missing point corresponds to the cosine component having a 
period equal to the full spectrum span, and so on.  
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Fig. 11. The “biased” spectrum obtained by applying the DCT to the incomplete 
interferogram in Fig 10 

 

2000

1000

0

In
te

n
s
it
y
 (

a
.u

.)

500040003000200010000

frequency (THz)  

Fig. 12. The spectrum versus frequency of the yellow LED obtained by reconstructing  the 
four missing points 

By using the information that the spectrum has to be zero in certain region (the optical filters 
stops optical frequencies lower than 380 THz and higher than 720 THz), it is possible to find 
the amplitude of the four missing cosines and the value of the four missing points. In Fig 12 
the reconstructed spectrum of the yellow LED with the fundamental spectrum at about 500 
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THz, the second harmonic at about 1000 THz and the third harmonic is nearly visible. In Fig 
13 the spectrum in the pass band region of the optical filter represented in wavelength. In 
Fig 14 the interferogram with the reconstructed four missing points. 
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Fig. 13. The spectrum versus wavelength of the yellow LED in Fig 12 
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Fig. 14. Corrected interferogram to obtain the spectrum in Fig 12 and Fig 13. Blue squares: 
the original incomplete interferogram, red diamonds the reconstructed four points 

In this section we have described the mathematical manipulations to calculate the spectrum 
from the incomplete F-P interferogram, in the next section we will explain how the F-P 
spectrometer could be integrated in an imaging system and obtain a HSIS.  

4. Hyperspectral imaging prototype 

In this section we describe how the F-P spectrometer is integrated in the HSIS, how the 
acquisition system is done and some applications in spectroscopy, colorimetry and thermal 
imaging. 
The core of the device is the scanning F-P spectrometer described in section 3 and whose 
rendering is presented in Fig 15. The two mirrors are coated with a thin aluminum layer and 
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have a reflectivity of about 20%. The dispersion of the metallic coating has been 
demonstrated to be negligible for our applications in the spectral interval (0.4 – 1.7 um). The 
mirrors are mounted in aluminum frames and the distance is scanned by means of three 
piezo actuators allowing a maximum displacement of 60 μm at 100 V. A system made by 
three elastic hinges and three screws allows the optimal alignment and working distance of 
the mirrors to be found, so that, when the actuators are completely retracted (maximum 
voltage applied), the mirrors are in contact and the contact area is sufficiently large and 
centered.  
 

 

Fig. 15. Rendering of the F-P device and its section. The piezo actuator and the trimming 
screws are visible 

 

 

Fig. 16. Optical set-up formed by a beam splitter to couple the laser radiation to calibrate the 
retardation, the bandpass filter, the photographic objective and the CCD camera 

The optical part of the HSIS is made of a photographic objective coupled with a CCD 
camera. The F-P is placed as close as possible to the camera sensor. Between the objective 
and the F-P is placed the optical band pass filter needed to select the wanted portion of the 
spectrum as explained before in order to apply the algorithm to find the missing points. The 
layout of the experiment used to obtain the data described in next section is schematized in 
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Fig 16. Other setups used in this work are variations of this one. The laser radiation to 
calibrate the mirror displacement is sent either directly on the sample or directly to the CCD 
through the F-P by inserting a beam splitter on the optical axis. We have used the HSIS in 
two different regions of the spectrum, in the visible by means of an optical band pass filter 
(380 – 720 nm), a reference blue laser at 410 nm and a 12-bit Si–CCD camera, in the NIR 
using a calibration laser at 980 nm and a 14-bit InGaAs CCD camera that has a response in 
the optical region 900 – 1700 nm. 
 

 

Fig. 17. Picture of the experiment where it has been acquired the spectrum of a laptop monitor 

The HSIS is controlled by two boards on a PC, one used to drive the F-P and the other to 

drive the camera. The first, equipped with a 16-bit digital-to-analog converter, generates a 

triangular voltage ramp sent to a HV amplifier which generates the 0-100 V signal to drive 

the three piezo actuators (connected in parallel). Through the same board a trigger signal is 

generated synchronously with the ramp. The second board acquires a video starting from 

the trigger signal (corresponding to the maximum mirror distance condition) and ending 

with complete contact. In order to have a sufficient sampling rate to respect Nyquist 

criterion, about 1000 frames each acquisition are required for a 20 μm scan. This figure, in 

combination with the maximum frame rate of the camera sets the maximum ramp speed. 

The video is saved in TIFF format. 

5. Hyperspectral imaging applications 

This section shows some application of our HSIS prototype. We start with a calibrated 

reflective target to test the accuracy of the system, on a selectively absorptive target to test 

the potentialities as a spectroscopic analytic instrument, with laser sources to test the 

spectral resolution and on a heated tungsten plate to test thermal imaging. 

5.1 Reflective target  
The first application of the HSIS is a ColorChecker®. The image covers a rectangle of about 

670x460 pixels on the CCD area. Each colour tab is illuminated by a laser spot in order to 

calibrate the retardation for each frame in the video. In Fig 18 a video frame is presented. 
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Fig. 18. Video frame of the colour checker target. In magenta and white are indicated the 
areas used for the calculation of the spectrum of the magenta and white tabs. In blue are 
indicated the pixels used to calibrate the retardation for both tabs 

 

 

Fig. 19(a). the interferogram of the magenta set of pixels in Fig 18; Fig 19(b) the same 
interferogram after having subtracted the mean and calibrated the retardation using the 
calibration of the blue laser. The blue squares are the recorded data, the red squares are the 
values found with the reconstruction algorithm 

The magenta square in Fig 18 contains the pixels used for the calculation of the spectrum of 

the magenta coloured tab. The blue square on the bottom right hand side contains the pixels 
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illuminated by the blue laser used to calibrate the retardation for the magenta. The same 

applies for the white tab (bottom left) used for normalization purposes. Fig 19(a) reports the 

interferogram of the pixel set in the magenta square in Fig 18 with the x-axis represented in 

video frames. In Fig 19(b) the blue squares are the first part of the same interferogram after 

the re-sampling using the reference scale from Fig 6(b) (as explained in section 4). The 

retardation sampling interval is 51.25 nm and the first record corresponds to a retardation of 

205 nm (half wavelength of the blue laser). 

The spectra obtained with the reconstructing algorithm are presented in Fig 20(b) (in black 

and magenta respectively the spectra of the white and magenta tabs). The resolution in 

frequency is about 14 THz corresponding to a resolution in wavelength of about 12 nm at a 

wavelength of 500 nm, (by applying the zero padding method the number of points is 

artificially increased in order to have one point each nanometer for practical computational 

reasons). The absolute reflectivity spectrum is given by the ratio of the coloured tab 

spectrum and the white tab spectrum used as a reference. In this way the effect of the non 

uniform spectral responses of the optical system, of the camera and of the light source is 

cancelled. In Fig 20(a) the reflectivity spectrum is shown and compared with the same 

spectrum measured with a commercial spectrometer (thin black line); relatively large 

differences are evident at the extremes of the spectrum mainly due to the reduced intensity 

of the reference spectrum in Fig 20(b). 

 

 

Fig. 20. (a) Magenta spectrum normalized with respect to the white to obtain the absolute 
reflectivity spectrum, the black trace is the reflectivity spectrum obtained with a 
spectrometer. (b) In black and magenta respectively the spectra of the white and magenta 
tabs  

Similarly we can obtain a hyperspectral image from an emitting surface. Fig 21 shows the 

emission spectra from a target made of LED and lamp sources. Even in this case a 

normalization that allows to take in account the responsivity of the whole system is 

necessary. The normalization in this case has been done comparing the spectrum obtained 

from a broadband source (a tungsten lamp or a white LED) with the same spectrum 

measured with a calibrated spectrophotometer. This normalization function is a constant of 

the system.  
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Fig. 21. The emission spectra on the left correspond to the pixel area (10×10) indicated in the 
image on the right. The target is composed of LED of four different colors  (blue, green, 
yellow and red) 

5.2 Spectroscopy applications  
As a second application we have measured the transmission of a didymium oxide optical 
filter, and the results are presented in Fig 22. A white screen placed in front of the camera is 
illuminated with the xenon discharge lamp. A portion of the field of view of the camera is 
covered with the filter so that the light reflected by the screen passes through it before 
entering the objective. Another portion is illuminated with the blue laser again used for the 
retardation calibration. The transmittance spectrum is obtained by the ratio between the 
spectrum of the filtered portion and the spectrum of the white portion of the same image. 
Again the result is compared with the measurement done with a spectrometer (black line). 
This was done to demonstrate the potentialities of the instrument to detect complex 
absorption spectra, thus to be used in spectroscopy based chemical analysis. 
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Fig. 22. The complex transmission spectrum of a glass doped with didymium oxide. The 
black line is the same spectrum measured with a classical spectrometer 
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5.3 Thermal imaging 
The device can be used in different regions of the electromagnetic spectrum provided the 
transmissivity of the mirrors glass and the reflectivity of the metallic layer is adequate. We 
have implemented the system with a InGaAs camera capable of detecting infrared radiation 
in the 900-1700 nm band. One interesting application in this region is thermal imaging. By 
exploiting the change in shape of the blackbody radiation curve with temperature it is 
possible to infer the temperature of the emitting body. Fig 23 shows thermal imaging of a 
heated tungsten plate. With respect to classical thermal cameras which infer the temperature 
of a body by measuring the amount of radiation emitted in a given band, with an 
hyperspectral system the temperature is inferred by fitting the blackbody curve. The difference 
is that in the latter we do not need an a priori knowledge of the emissivity of the body.  
 

 
 

    

Fig. 23. Up: spectra obtained at different temperatures. The curves represent the blackbody 
emission spectra truncated by the responsivity of the camera for wavelengths larger than 
1700 nm 

5.4 Spectral resolution 
In order to test the spectral resolution of the device a white target has been illuminated with 
lasers at five different wavelengths: a blue diode laser at 410 nm (used as a reference), a 
green duplicated Nd:YAG laser at 532.4 nm, a red He-Ne laser at 633 nm and two red diode 
lasers (637.5 and 674 nm). The scan applied to the mirrors is 50 μm corresponding to about 
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240 entire fringes in the blue interferogram. Fig 24 shows the obtained spectrum using 
Welch windowing. The experimental FWHM is about 3 THz corresponding to the 
theoretical resolution in eq. (8). The maximum difference of the measured wavelengths with 
respect to the nominal values is 1 nm. The resolution can be appreciated in the pair 633 and 
638 nm whose peaks are well distinguishable. 
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Fig. 24. Spectrum of a target illuminated by five laser beams having wavelength 410 nm 
(used as a reference), 532.4 nm, 633 nm, 637.5 nm and 674 nm. In the box a zoom of the 
green line showing the resolution 

6. Conclusion 

Hyperspectral imaging is a technique that consists in associating to each pixel of an image 
the spectral composition of the light hitting the same. The simplest example of 
Hyperspectral imaging is the RGB standard where color content of digital images is 
represented by giving the amount of red, green and blue. In a similar way we have three 
different cone cells in our retina, sensible to the three colors. By increasing the number of 
components of the spectral content would permit to have more information about the 
radiation emitted or reflect by an object. There are many applications to this technique in 
different fields, to mention but a few: fluorescence microscopy, thermal imaging, chemistry 
(infrared spectroscopic analysis),  space missions (Earth survey for environmental or 
security), colorimetry. In this work we have realized a hyperspectral imaging device based 
on a Fabry-Perot interferometer. We have introduced the algorithm based on the Fourier 
transform to obtain the spectral content of each pixel from the measured interferogram.  
Moreover we have discussed the accuracy and resolution that characterize this system and 
some applications.  
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Application of Fast Fourier Transform for 
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Thermal-Hydraulic Code Calculations 
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1. Introduction 

To study the behaviour of nuclear power plants, sophisticated and complex computer codes 
are needed. Before the computer codes are used for safety evaluations they have first to be 
validated. The assessment process of system codes involves the comparison of code results 
against experimental data and measured plant data. The accuracy of the code is the 
capability of the code to correctly predict the physical behaviour. Therefore the evaluation of 
accuracy coincides with code validation. In the past a few methods to quantify the code 
accuracy of thermal-hydraulic system codes have been proposed. Among the proposed 
methods, the approach using the fast Fourier transform has been proposed as one of the 
most effective approaches in 1990s (Ambrosini et al., 1990; D’Auria et al., 1994). The fast 
Fourier transform based method (FFTBM) shows the measurement-prediction discrepancies, 
i.e. the accuracy quantification, in the frequency domain. From the amplitudes of the 
component frequencies, the average amplitude (AA) is calculated. AA sums the difference 
between experimental and calculated signal discrete Fourier transform amplitudes at each 
frequency. To get a dimensionless accuracy measure, the sum of the amplitudes of the 
experimental signal is used for normalization. The closer the non-dimensional AA value is 
to zero, the better the agreement between the calculated results and the experimental 
measurements is judged. However, some problems involved in FFTBM, such as proper 
selection of time windows, weighting factors, number of discrete data used, consistency of 
the method in all cases and time dependent accuracy, still remain open and partly limit its 
application, especially those requiring a consistent accuracy judgement. For example, in 
early applications of FFTBM problems in evaluating signals, where experimental or error 
signal has the shape similar to triangle (i.e. first increases and then decreases), the accuracy 
value regularly overshoots at triangle peak, stabilising at lower value when discrepancy 
decease (Mavko et al. 1997). Not being aware about the reasons of such or some other 
strange behaviour, the FFTBM method has been also criticized. In general it is required that 
at any time into the transient the accuracy measure should remember the previous history. 
But on the other hand, the original FFTBM method has been effectively applied in obtaining 
information on code accuracy by several researchers in the literature. 
More recently, an automated code assessment program (ACAP) has been developed to 
provide a quantitative comparison between nuclear reactor system code results and 
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experimental measurements (Kunz et al., 2002). For the time record data the original FFTBM 
accuracy measure was modified and a new continuous wavelet transformation accuracy 
measure was included among several other accuracy measures developed for timing of 
events tables, scatter plots and steady state data. Unfortunately, the ACAP tool was 
developed for single variable comparison only. Besides, not many measures were effective 
in evaluating time record data. This means that the original FFTBM remained in use. In 
2002, the review of important applications was done (Prošek et al., 2002). Much of the work 
was performed mostly in the application domain. The comparisons between the 
experimental data and calculated results were done for different transients and accidents on 
different experimental facilities. The first large FFTBM application was to the international 
standard problem no. 27 (ISP-27) in which primary system thermal-hydraulic system codes 
were used (D’Auria et al., 1994) to the BETHSY facility simulating the French pressurized 
water reactor. The maturity was shown in that the method was sensible in highlighting the 
differences between pre- and post-test calculations for the same user, normally originating 
by an ad-hoc code tuning operated in post-test analyses and by the code use at the 
international level. The first application of FFTBM to containment code calculations was to 
ISP-35 performed on the NUPEC facility (D’Auria et al., 1995). The need for potential further 
efforts to refine the weighting factors was expressed. The application to ISP-39 performed 
on the FARO facility (D’Auria & Galassi, 1997) was the first application of FFTBM to severe 
accidents. The application confirmed the capabilities of the FFTBM method only in ranking 
generic calculation results. The application to ISP-42 performed on the PANDA facility 
(Aksan et al., 2001) showed that ten variables were not enough to completely characterize 
the transient. Finally, the application of FFTBM to the ISP-13 exercise, post-test calculations 
of the LOFT L2-5 test was performed in the frame of the BEMUSE program (OECD/NEA, 
2006). The original FFTBM approach was used in this application. The numerous 
applications showed that there are some deficiencies of the original FFTBM, which were 
resolved in the proposed improved FFTBM. 
In this Chapter, we first describe the original FFTBM approach. Then the time dependent 
accuracy measures are introduced. By calculating the time dependent accuracy it can be 
answered, which discrepancy contributes and how much is its contribution to the 
inaccuracy. Then, the index for time shift indication is proposed. The application of the time 
dependent accuracy showed that the original FFTBM gave an unrealistic judgment of the 
accuracy for monotonically increasing or decreasing functions, causing problems in FFTBM 
results interpretation. This problem was hidden in the past when FFTBM was applied only 
to a few time windows and/or intervals. It was found out that the reason for such an 
unrealistic calculated accuracy of increasing/decreasing signals is the edge between the first 
and last data point of the investigated signal, when the signal is periodically extended. 
Namely, if the values of the first and last data point of the investigated signal differ, then 
there are discontinuities present in the periodically extended signal seen by the discrete 
Fourier transform, which views the finite domain signal as an infinite periodic signal. The 
discontinuities give several harmonic components in the frequency domain, thus increasing 
the sum of the amplitudes, on which FFTBM is based, and by this influencing the accuracy. 
The influence of the edge due to the periodically extended signal is for clarity reasons called 
edge effect. It should be noted that the signal may include several other rising and falling 
edges, which influences are not considered as edge effect in this chapter. The quantitative 
contribution of the edge effect on the accuracy may be very unpredictable and can 
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overshadow the contribution of the discrepancies of the compared functions on the 
accuracy. Therefore it is proposed how to resolve the problem of the edge effect on a unique 
way by signal mirroring. 
In order to demonstrate its application, the proposed improved FFTBM by signal mirroring 
is tested to show that it gives a realistic and consistent judgment of the accuracy also for 
monotonically increasing or decreasing functions, and for all other signals influenced by the 
edge effect. The results obtained with FFTBM results were compared to results obtained 
with ACAP. At the end general recommendations for applying FFTBM are given. 

2. Original FFTBM description 

The methodology of the code-accuracy assessment consists of three steps: a) selection of the 
test case (experimental or plant measured data to compare), b) qualitative analysis, and c) 
quantitative analysis. The qualitative analysis is a prerequisite to perform the quantitative 
analysis. The qualitative analysis, including visual observation of plots, is done by 
evaluating and ranking the discrepancies between the measured and calculated variable 
trends. The quantitative analysis (applying FFTBM) is meaningless unless all the important 
phenomena are predicted. 
The original FFTBM is a method (Ambrosini et al., 1990), which shows the measurement-
prediction discrepancies in the frequency domain. The method purpose is to quantify the 
accuracy of code calculations based on the amplitudes of the discrete experimental and error 
signal calculated by the fast Fourier transform (FFT). On the other hand, the digital 
computers can only work with information that is discrete and finite in length and there is 
no version of the Fourier transform that uses finite length signals (Smith, 1999). The way 
around this is to make the finite data look like an infinite length signal. This is done by 
imagining that the signal has an infinite number of samples on the left and right of the 
actual points. The imagined samples can be a duplication of the actual data points. In this 
case, the signal looks discrete and periodic. This calls for the discrete Fourier transform 
(DFT) to be used. There are several ways to calculate DFT. One method is FFT. While it 
produces the same results as the other approaches, it is incredibly more efficient. The key 
point to understand the FFTBM is that the periodicity is invoked in order to be able to use a 
mathematical tool, i.e., the DFT. Therefore, the periodic nature of DFT is explained first 
before the accuracy measures used in FFTBM are described. 

2.1 Periodic nature of discrete Fourier transform 

The discrete Fourier transform views both, the time domain and the frequency domain, as 
periodic (Smith, 1999). The signals used for comparison are not periodic. Nevertheless, the 
user must conform to the DFT’s view of the world. Figure 1 shows two different 
interpretations of the time domain signal. In the upper part of Fig. 1 the time domain is 
viewed as N points. This represents how digital signals are typically acquired in 
experiments and code calculations. For instance, these 64 samples might have been acquired 
by sampling some parameters at regular intervals of time. Sample 0 is distinct and separate 
from sample 63 because they were acquired at different times. The samples on the left side 
are not related to the samples on the right. 
As shown in the lower part of Fig. 1, the DFT views these 64 points to be a single period of 
an infinitely long periodic signal. This means that the left side of the signal is connected to 
the right side of a duplicate signal, and vice versa. The most serious consequence of time 
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domain periodicity is the occurrence of the edge. When the signal spectrum is calculated 
with DFT, the edge is taken into account, despite the fact that the edge has no physical 
meaning for comparison, since it was introduced artificially by the applied numerical 
method. It is known that the edge produces a variegated spectrum of frequencies due to the 
discontinuity of the edge. These frequencies originating from the artificially introduced edge 
may overshadow the frequency spectrum of the investigated signal.  
 

0

4

8

12

16

-192 -128 -64 0 64 128 192
Sample number

A
m

p
lit

u
d
e

edge

The time domain
viewed as N points

The time domain
viewed as periodic

0

4

8

12

16

0 16 32 48

Sample number

A
m

p
lit

u
d
e

63

 
Fig. 1. Periodicity of the DFT’s time domain original signal. The time domain can be viewed 
as N samples in length, shown in the upper part of the figure, or as an infinitely long 
periodic signal, shown in the lower part of the figure 

2.2 Average amplitude 

For the calculation of measurement-prediction discrepancies the experimental signal  exp( )F t  
and the error signal ( )ΔF t  are needed. The error signal in the time domain is defined as 

exp( ) ( ) ( )Δ = −calF t F t F t  where ( )calF t  is the calculated signal. The code accuracy quantification 
for an individual calculated variable is based on the amplitudes of the discrete experimental 
and error signal obtained by FFT at frequencies nf , where 0,1,...,2= mn  and m is the 
exponent defining the number of points 12 += mN . The average amplitude AA is defined: 
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where nΔF(f )#  is the error signal amplitude at frequency nf  and exp nF (f )# is the experimental 
signal amplitude at frequency nf . The AA factor can be considered a sort of average 
fractional error and the closer the AA value is to zero, the more accurate is the result. 
Typical values of AA are from 0 to 1. 

2.3 Total average amplitude 

The overall picture of the accuracy for a given code calculation is obtained by defining 
average performance index, that is the AAtot  (total average amplitude or total accuracy) 

 ( ) ( )var

tot fi i
1

AA AA ,⋅
=

= ∑N
i

w  (2)  

with 

 ( )var

f i
1

1 ,
=

=∑N
i

w  (3)  

where varN  is the number of the variables analyzed (typically from 20 to 25), and ( )AA
i
 

and ( )f
i

w  are the average amplitude and the weighting factor for the i-th analyzed variable, 
respectively. Each ( )f

i
w  accounts for the experimental accuracy, the safety relevance of 

particular variables and its relevance with respect to the primary pressure. The weights 
must remain unchanged during each comparison between code results and experimental 
data concerning the same class of a transient (for more information on weighting factors see 
D’Auria et al., 1994). The acceptability factor for AAtot  was set to 0.4 and for primary system 
pressure to 0.1. 

3. Time dependent accuracy 

As mentioned in Section 2, the FFTBM methodology requires the qualitative assessment and 
the subdivision of the transient into phenomenological windows. Normally, the accuracy 
analysis is performed for time windows and time intervals, where each phenomenological 
window represents one time window, while time intervals start at the beginning of the 
transient and end at each phenomenological window end time. 
Instead of a few phenomenological windows a series of narrow windows (phases) is 
proposed (around 40 windows / intervals for a transient). This gives the possibility to check 
the accuracy of each part of the transient and to get time dependency of accuracy measures. 
In the quantitative assessment with 3 to 5 phenomenological windows only global trends 
were available. In the present analysis by the term moving time window a set of equidistant 
narrow time windows as we progress into the transient is meant (like a moving chart strip). 
By the term increasing time interval a set of time intervals each increased for the duration of 
one narrow time window is meant, where the last time interval is equal to the whole 
transient duration time. The moving time window shows instantaneous details of ( )ΔF t  and 

consequently cannot draw an overall judgement about the accuracy, but focuses the analysis 
only on instantaneous discrepancies. An integral approach is needed to draw an overall 
judgement about accuracy and this is achieved by increasing the time interval, what also 
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shows how the accuracy changes with time progression. From these time dependant 
accuracy measures it can be easily seen when the largest total discrepancy occurs and what 
is its influence on the total accuracy. They also show how the transient duration selected for 
the analysis influences the results. 
In Fig. 2 are shown the results for the three different participants using different computer 
codes for the standard problem exercise no. 4 (SPE-4) (Szabados et al., 2009), simulating the 
small-break loss of coolant accident on the PMK-2 facility. 
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Fig. 2. Results for SPE-4 test calculations of rod surface temperature 

The PMK-2 facility is the first integral type facility for VVER-440/213 plants. In the study by 
Szabados et al., 2009 the results for the signals are plotted (see Fig. 2(a) and the accuracy for 
five selected time windows is given (see Fig. 2(c)). Figure 2(b) shows the difference signals, 
which are used for the AA calculation beside the experimental signal used for the 
normalization. Finally, Fig. 2(d) shows the AA calculated for increasing time intervals (each 
time 10 s), thus obtaining time dependent AA. When comparing Figs. 2(c) and 2(d) the 
contribution of discrepancies is better evident from Fig. 2(d). Also it can be seen how the 
accuracy overshoots due to edge effects, later stabilizing at some lower value. 
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4. Index for time shift detection 

It should be noted that the AA accuracy measure (Equation 1) is not obtained by comparing 
the experimental and calculated magnitude spectra, but by calculating the magnitude 
spectrum of the difference signal. Nevertheless, due to the Fourier transform properties the 
magnitude spectrum of the difference signal can also be obtained by adding the 
experimental and calculated signal magnitude spectra (actually subtraction); they must be 
converted into a rectangular notation, added, and then reconverted back to a polar form. 
When the spectra are in a polar form, they cannot be added by simply adding the 
magnitudes and phases. The error function amplitude spectrum nΔF(f )#  can be expressed 
as: 

 ( ) ( )
( )

2 2

2 2
1 2 1 2 1 2 1 2

Re( ) Im( )

2 cos cos sin sin ,

= − =
= − + − =
= + − +

n e xp n cal n

e xp n cal n e xp n cal n

ΔF(f ) F (f ) F (f )

F (f ) F (f ) F (f ) F (f )

M M M M

# # #

# # # #

ϕ ϕ ϕ ϕ
 (4)  

where 1 1 1 1cos sin= +e xpF M iM# ϕ ϕ  and 2 2 2 2cos sin= +calF M iM# ϕ ϕ  (rectangular form). 

This example shows that to calculate the difference magnitude spectrum we need both the 
magnitude and the phase of the experimental and calculated spectra. Information about the 
shape of the time domain signal is contained in the magnitude and in the phase. In other 
words, comparing the shapes of the time domain signals is done through calculating the 
difference signal magnitude spectrum. At the time of the development of the original 
FFTBM (Ambrosini et al., 1990) it was mentioned that a possible improvement of the 
method could involve “the development of the procedure taking into account the 
information represented by the phase spectrum of the Fast Fourier Transform in the 
evaluation of accuracy”. As we can see from Equation 4, the difference signal magnitude 
inherently includes the magnitude and the phase of the experimental and calculated signal. 
The finding that both, the magnitude and the phase of the experimental and calculated 
frequency spectra are contained in AA by making the Fourier transform of the difference 
signals is very important as this gives the possibility to compare the shapes of the signals. 
The authors agree with Smith et al., 1999 that it is difficult to imagine which information is 
contained in the phase spectrum of the difference signal, since the experimental and 
calculated phase cannot be simply added. Therefore, to the authors’ opinion the difference 
signal phase information is not applicable for the comparison of two signals. In the 

following, AA will be referred to as MAA ϕ , since it contains the magnitude M and phase ϕ  
information. 
The original FFTBM package allows time shifting of data trends to analyze separately the 
effects of delayed or anticipated code predictions concerning some particular phenomena or 
systems interventions. It is a Fourier transform property that a shift in the time domain 
corresponds to a change in the phase. This property was used to identify the signals which 
differ in the time shift. Namely, the magnitudes of such signals are the same and only their 
phases are different. Therefore, the following expression, not taking into account the phase, 
is proposed (Prošek & Leskovar, 2009): 
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where: 
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When 1 2=ϕ ϕ , Equation 4 is equal to Equation 6. This means that expression MAA  is a 
measure containing information from magnitudes M only. It is known that when two 
signals are only time shifted, the magnitude spectra are the same and the value of MAA  is 
consequently zero. It is very unlikely that a calculated signal, which is not shifted, would 
have a shape giving the same magnitudes as the experimental signal, as the predictions are 
required to be qualitatively correct. Therefore, MAA  can be used to establish the value by 
which ≡MAA AAϕ  is increased due to the time shift contribution. In MAA ϕ , the information 
from both, the shape of the time domain signal and the time shift, is provided, while in 

MAA , only the time invariant information of the time domain signal is provided, what can 
be regarded to a certain degree as the shape of the time domain signal. Therefore, the 
difference = −M MAA AA AAϕ ϕ  gives the information about the time shift contribution. This 
difference is further normalized to: 

 ,
−= =M M

M M

AA AA AA
I

AA AA

ϕ ϕ
 (7)  

where the indicator I tells how the compared time signals are shifted, and is therefore called 
the time shift indicator. The larger the value of the time shift indicator I, the larger is the 
contribution of the time shift to MAA ϕ  of the difference signal. A large value of I (I > 1) 
indicates that the compared signals are maybe shifted in time. When I > 2, we can be quite 
confident into time shift. 

5. Signal mirroring 

Since the original FFTBM is based on the sum of the amplitudes of the frequency spectrum 
of the investigated signal, the frequencies originating from the artificially introduced edge 
may significantly contribute to the sum of the frequency spectrum amplitudes of the 
investigated signal. Consequently the accuracy measure based on the original FFTBM is 
significantly influenced by the edge and therefore does not present a consistent accuracy 
measure of the signals being compared. This inconvenient drawback of the original FFTBM 
may be completely cured by eliminating the artificially numerically introduced edge. This 
may be efficiently done by signal mirroring, where the investigated signal is mirrored before 
the FFTBM is applied. 
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5.1 Symmetrised signal 

If we have a function ( ), where 0 ≤ ≤ dF t t T  and dT  is the transient time duration, its 
mirrored function is defined as ( ) ( ), where 0= − − ≤ ≤mir dF t F t T t . From these two functions a 
new function is composed which is symmetrical around dT : ( ), where 0 2≤ ≤m dF t t T . By 
composing the original signal and its mirrored signal, a signal without an edge between the 
first and the last data sample is obtained when periodically extended, and is called 
symmetrised signal. The symmetrised signal is shown in Fig. 3. The upper figure shows the 
finite length signal and the lower figure shows the infinite length periodic signal.  
 

0

4

8

12

16

-384 -256 -128 0 128 256 384
Sample number

A
m

p
lit

u
d
e no

edge

The time domain
viewed as N points

The time domain
viewed as periodic

0

4

8

12

16

0 32 64 96

Sample number

A
m

p
lit

u
d
e

127

 
Fig. 3. Periodicity of the DFT’s time domain symmetrised signal. The time domain can be 
viewed as N samples in length, shown in the upper part of the figure, or as an infinitely long 
periodic signal, shown in the lower part of the figure. We see that the symmetrised signal 
has no edge also when viewed as a periodic signal. Therefore in the sum of the frequency 
spectrum amplitudes only the amplitudes of the investigated signal are considered, as it 
should be. The FFTBM using the symmetrised signal is called “improved FFTBM by signal 
mirroring” 

5.2 Deficiency of original FFTBM 

When the original accuracy measures were proposed (Ambrosini et al., 1990) it seems that 
the impact of the edge effect was not considered. It is evident that this is a deficiency if the 
accuracy measure depends on the unphysical edge resulting from the intrinsic property of 
the DFT mathematical method, which treats the investigated finite length signal as an 
infinite length periodic signal. Namely, for the comparison the shape of the finite discrete 
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signal is important and not its edge characteristics. Also the visual comparison of signals is 
done in such a way. 
It was already mentioned that the periodicity is invoked in order to use a mathematical tool. 
Therefore this influence should be eliminated. This was done by signal mirroring. When 
DFT is applied to the finite length symmetrised time domain signal the edge effect is 
obviously not introduced anymore. 

5.3 Calculation of AAm 

For the calculation of the average amplitude by signal mirroring (AAm) Equation 1 is used as 
for the calculation of AA, except that, instead of the original signal, the symmetrised signal 
is used. The reason to symmetrise the signal was to exclude the artificial edge from the 
signal without influencing the characteristics of the investigated signal. The signal is 
automatically symmetrised in the computer program for the improved FFTBM by signal 
mirroring (updated version of software described in Prošek & Mavko, 2003). 
As already mentioned, the edge has no physical meaning for comparison, since it was 
introduced artificially by the applied numerical method, but FFT produces harmonic 
components because of it. By mirroring, the shapes of the experimental and error signal are 
symmetric and their spectra are different from the original signals spectra, mainly because 
they are without unphysical edge frequency components. Due to different spectra the sum 
of the amplitudes changes in both, the numerator and the denominator of Equation 1. To 
further demonstrate this in Sections 6.2 and 6.3, two new definitions are introduced for the 
average amplitude of the error signal (AAerr) and the average amplitude of the experimental 
signal (AAexp), related with the numerator and denominator of Equation 1: 

 
2

err
0

1
AA ,

2 1 =
= + ∑m

nm
n

ΔF(f )#  (8)  

 
2

exp exp
0

1
AA .

2 1 =
= + ∑m

nm
n

F (f )#  (9)  

It should be noted that also when both, the original and error signal are without the artificial 
edge, in principal different AAerr and AAexp may be obtained with the original FFTBM and 
the improved FFTBM by signal mirroring. Indeed AA and AAm are slightly different 
measures also if the signals are without an artificial edge. The values obtained with the 
original FFTBM and the improved FFTBM by signal mirroring are the same only for 
symmetrical original signals. But this is not really a deficiency of the proposed improved 
FFTBM by signal mirroring, since it is important only that the method judges the accuracy 
on a realistic and unbiased way and that it is consistent within itself. In Section 6.4 it is 
presented how the accuracy calculated with the improved FFTBM by signal mirroring can 
be directly compared to the accuracy calculated with the original FFTBM. 

6. Demonstration application 

In this section some results are shown to see the advantages of the improved FFTBM by 
signal mirroring compared to the original FFTBM. First the test and the calculations used in 
the demonstration application of the improved FFTBM by signal mirroring are briefly 
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described. Then two case studies are presented. The case 1 study is presented to show how 
the artificial edge (when present) always changes the accuracy even if this is logically not 
expected. In the case 2 study the accuracy of one variable is calculated for two time 
windows. Average amplitudes of the error and experimental signal are calculated to show 
the impact of the edge effect. Finally, the improved FFTBM by signal mirroring is applied to 
LOFT L2-5 calculations performed in the frame of the Best-Estimate Methods Uncertainty 
and Sensitivity Evaluation (BEMUSE) Phase II to further show that the improved FFTBM by 
signal mirroring is more consistent in the quantitative assessment than the original FFTBM. 

6.1 Test description 

The LOFT L2-5 test was selected for this demonstration because the huge amount of data 
was available and the assessment of these test results with the original FFTBM was already 
published in the literature (OECD/NEA, 2006). The calculations of the LOFT L2-5 test, 
which is the re-analysis of the ISP-13 exercise, were performed in the phase II of the 
BEMUSE research program. The nuclear LOFT integral test facility is a scale model of a 
pressurized water reactor (OECD/NEA, 2006). The objective of the ISP-13 test was to 
simulate a loss of coolant accident (LOCA) caused by a double-ended, off-shear guillotine 
cold leg rupture coupled with a loss of off-site power. The experiment was initiated by 
opening the quick opening blowdown valves in the broken loop hot and cold legs. The 
reactor scrammed and emergency core cooling systems started their injection. After initial 
heatup the core was quenched at 65 s, following the core reflood. The LPIS injection was 
stopped at 107.1 s, after the experiment was considered complete. In total 14 calculations 
from 13 organizations were performed using 6 different codes (9 different code versions). 
The code most frequently used was RELAP5/MOD3.3. For more detailed information on 
the calculations the reader is referred to (OECD/NEA, 2006, Prošek et al., 2008). 

6.2 Case 1 study by signal mirroring 

To demonstrate how signal mirroring works, FFT was applied to the signals shown in Figs. 
1 and 3. The AAexp values of signals were calculated per Equation 9. Imagine that you would 
quantitatively assess two variables, with the shape of the experimental signals as shown in 
Figs. 1 and 3. Most probably you would judge that the judgment based on FFTBM should be 
the same for both signals as the area below the curve is the same when normalized with the 
number of data samples (the area below the symmetrised curve is the double area of the 
original signal). Nevertheless, in the case of the original FFTBM different values of AAexp are 
obtained (25.87 for the original signal and 16.29 for the symmetrised signal), while in the 
case of the improved FFTBM by signal mirroring the same results are obtained for AAexp of 
the original and symmetrised signal (16.29). This means that both, the original FFTBM and 
the improved FFTBM by signal mirroring produce the same results when no artificial edge 
is present in the signal and when the signal is symmetrical. This example clearly shows that 
the original FFTBM is not consistent when an artificial edge is present in the signal. 
The difference between the original FFTBM and the improved FFTBM by signal mirroring 
results mainly due to the unphysical edge introduced by the applied numerical method, and 
can be directly quantified. The AAexp of the symmetrised signal has to be extracted from the 
AAexp of the original signal. In our example this contribution is 9.58 ((25.87 – 16.29) = 9.58). 
This means that the AAexp of the experimental signal (used in the denominator of 
Equation 1) is 37% smaller when the edge effect is not considered, what would increase the 
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value of accuracy measure AA for 59% in this example. This means that all integral variables 
(e.g. integrated break flow, ECCS injected mass) and variables dropping from the nominal to 
a low value (e.g. power, primary pressure during LOCA) exhibit lower AA values just 
because the artificially introduced unphysical edge is present in the experimental signal. 
This basically explains the, in general, very high accuracy of these integral variables (Prošek 
et al., 2002) in comparison to other variables and why the acceptability factor for primary 
pressure (D’Auria et al., 1994) (dropping during small break LOCAs) had to be set to the 
very low value 0.1 (for other parameters there is no need for a special criterion). 
The improved FFTBM by signal mirroring provides a realistic, unbiased and consistent 
judgment, since it eliminates the effect of the unphysical edge, which sometimes is present 
and sometimes not. For example, when comparing primary pressures, during blowdown 
the pressure is decreasing and so a huge edge is present (it significantly decreases AA 
calculated by the original FFTBM), while during a very small break the pressure may 
recover to normal pressure after the initial drop due to emergency core cooling injection and 
consequently there is no edge (the original FFTBM then calculates similar values of AA as 
the improved FFTBM by signal mirroring). 

6.3 Case 2 study by signal mirroring 

To further demonstrate how signal mirroring works, in the second example the pressurizer 
pressure accuracy of LOFT L2-5 test calculations (see Fig. 4) is calculated for two time 
intervals, the blowdown phase time interval (0-20 s) and the whole transient time interval (0 
– 119.5 s), as shown in Tables 1 and 2, respectively. Both, the original FFTBM and the 
improved FFTBM by signal mirroring were used. For each calculation the values of the 
average amplitude of the error signal (see Equation 8) and the average amplitude per 
Equation 1 are shown with the corresponding average amplitude of the experimental signal 
(see Equation 9). It should be noted that two calculations (Cal3, Cal6) did not provide data 
for the whole transient time interval; therefore for them the quantitative assessment was not 
applicable. 
To see the influence of the edge elimination, the ratios of average amplitudes of the error 
signal obtained by the original FFTBM and the improved FFTBM by signal mirroring are 
shown in Tables 1 and 2. Besides the ratios, average amplitudes of the error signal, average 
amplitudes of the experimental signal, average amplitudes and rank of average amplitudes  
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Fig. 4. Results of the LOFT L2-5 test for pressurizer pressure 
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ID AAerr AA AAerr m AAm 
AAerr/ 
AAerr m 

Rank AA 
Rank 
AAm 

Cal1 4.28 0.136 3.63 0.209 1.2 11 9 
Cal2 0.86 0.027 0.88 0.050 1.0 1 1 
Cal3 1.34 0.043 1.14 0.066 1.2 2 2 
Cal4 4.13 0.131 3.64 0.209 1.1 10 10 
Cal5 6.80 0.216 4.76 0.274 1.4 13 13 
Cal6 2.91 0.092 2.40 0.138 1.2 7 7 
Cal7 1.80 0.057 1.35 0.078 1.3 5 4 
Cal8 2.06 0.065 1.67 0.096 1.2 6 5 
Cal9 1.73 0.055 2.16 0.124 0.8 4 6 
Cal10 1.70 0.054 1.24 0.071 1.4 3 3 
Cal11 4.01 0.128 3.86 0.222 1.0 9 11 
Cal12 3.73 0.118 2.55 0.147 1.5 8 8 
Cal13 9.86 0.314 6.92 0.399 1.4 14 14 
Cal14 5.77 0.183 4.34 0.250 1.3 12 12 
ID AAexp AAexp m AAexp/AAexp m 
EXP 31.45 17.37 1.8 

Table 1. Calculation of AA and AAm for pressurizer pressures in time interval (0–20 s) 

 

ID AAerr AA AAerr m AAm 
AAerr/ 
AAerr m 

Rank AA 
Rank 
AAm 

Cal1 3.06 0.096 3.85 0.237 0.8 8 8 
Cal2 1.08 0.034 1.23 0.076 0.9 1 1 
Cal3 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
Cal4 3.10 0.097 3.97 0.244 0.8 9 9 
Cal5 3.93 0.123 4.96 0.305 0.8 11 11 
Cal6 N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
Cal7 1.17 0.036 1.38 0.085 0.8 3 3 
Cal8 1.49 0.047 1.80 0.111 0.8 4 4 
Cal9 1.64 0.051 2.09 0.129 0.8 5 5 
Cal10 1.10 0.034 1.34 0.082 0.8 2 2 
Cal11 2.97 0.093 3.74 0.230 0.8 7 7 
Cal12 2.23 0.070 2.71 0.167 0.8 6 6 
Cal13 5.96 0.186 7.44 0.458 0.8 12 12 
Cal14 3.80 0.119 4.47 0.275 0.8 10 10 
ID AAexp AAexp m AAexp/AAexp m 
EXP 32.00 16.26 2.0 

Table 2. Calculation of AA and AAm for pressurizer pressures in time interval (0–119.5 s) 

for both, the original FFTBM and the improved FFTBM by signal mirroring are shown. It 
can be seen that the average amplitude of the experimental signal is similar for both time 
intervals. The reason is that after 20 s the pressure signal (see Fig. 4(a)) is not changing very 
much. As the pressure at 20 s significantly dropped, the edge effect at 20 s is rather similar 
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to the edge effect at 119.5 s. The average amplitudes of the experimental signal obtained by 
the original FFTBM are 1.8 and 2.0 times larger than by the improved FFTBM by signal 
mirroring for the first and second time interval, respectively. The conclusion for the error 
signals (see Fig. 4(b)) is different. The ratio of the average amplitudes of the error signal 
varies between 0.8 and 1.5 in the first time interval, while in the second time interval this 
ratio is around 0.8. The reason for the varying ratio in the first time interval is that the edges 
between calculations are quite different, while in the second time interval the edges are 
rather similar between calculations. Ranking of the AA values may change only in the case 
when the ratio of AAerr varies, i.e. in the first time interval, as it can be seen from Table 1. In 
the second time interval (in the whole calculation) the rank of AA remains unchanged, as 
shown in Table 2. Nevertheless, the absolute value of AA changes when the edge is not 
considered in the experimental signal and this influences the total accuracy. 

6.4 Application to single variable 

Fig. 5 shows the comparison between experimental and calculated data, the error signals 
between the calculation and the experiment, AA calculated with the original FFTBM, and 
AAm calculated with the improved FFTBM by signal mirroring. For the rod surface 
temperature shown in Fig. 5(a) the calculated maximum values of the rod surface 
temperature were in rather good agreement with the experimental value. However, the 
trends were in general under or over predicted, with some calculations that predicted 
quench too early. From the error signals shown in Fig. 5(b) it can be seen that discrepancies 
were present until core quench. From Fig. 5(c) it can be seen that the edge effect is present in 
the calculation of AA. When looking AAm in Fig. 5(d) it can be seen that the value of AAm 
monotonically increases as long as the discrepancy is present. Nevertheless, when 
considering the whole transient time interval, there is only a slight difference between AA 
and AAm. The reason is the small edge in the whole transient time interval. This is the 
reason why the original FFTBM in several cases produced reasonable results (but not for 
monotonically increasing and decreasing signals like the pressurizer pressure). 
Nevertheless, for investigating the influence of discrepancies as we progress into the 
transient the edge effect needs to be eliminated to make the right conclusions. Only the 
improved FFTBM by signal mirroring gives consistent results. Consistent judgment of the 
time dependent accuracy is very important as the analyst in this way gets an objective 
picture how each discrepancy decreases the accuracy. On the other hand, from Fig. 5(c) it 
can be very easily verified that the requirements for accuracy measures (Ambrosini et al., 
1990) that at any time into the transient the previous history should be remembered and that 
the measure should be independent upon the transient duration are not well fulfilled in the 
case of the original FFTBM when the edge influences the results. Through performing the 
time dependent accuracy, tens of calculations for different time intervals were performed 
demonstrating the consistency of the improved FFTBM by signal mirroring comparing to 
the original FFTBM and therefore there is no need to use further experiments for the 
validation of the improved FFTBM. On the other hand, very frequently at the end of the 
transient the edges are rather small and in such cases also the original FFTBM produces 
consistent results. Luckily, this was the case in several studies performed with the original 
FFTBM (Prošek et al., 2002). Nevertheless, before the analyst is confident to the results 
obtained by the original FFTBM he should always verify that the edge is not present in the 
signal. In the opposite, the results are doubtful. It should be also noted that the methodology 
using the FFTBM requires qualitative analysis with visual observation and only for 
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discrepancies which are reasonable and understood the quantitative assessment using 
FFTBM could be done. 
 
 Cal1 Cal2 Cal3 Cal4 Cal5 Cal6 Cal7 Cal8 Cal9 Cal10 Cal11 Cal12 Cal13 Cal14 EXP  

400

600

800

1000

1200

0 20 40 60 80 100 120
Time (s)

T
 (

K
)

-600

-400

-200

0

200

400

600

0 20 40 60 80 100 120
Time (s)

T
 (

K
)

(a) Calculated and experimental signals (b) Difference signals 

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120
Time (s)

A
A

 (
-)

0.0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120
Time (s)

A
A

m
 (

-)

(c) AA accuracy measure (d) AAm accuracy measure 

Fig. 5. Results for the LOFT L2-5 test calculations of rod surface temperature 

6.5 Accuracy criterion for primary pressure 

The differences between AA and AAm as a function of time were clearly shown to be due to 
the edge contribution. On the other hand, for the whole transient time interval with 
stabilized conditions resulting in small edges also the judgment by the original FFTBM is 
qualitatively correct. However, this is never the case for monotonic trends where the edge 
increases with increasing the transient time. This can be seen from Fig. 6 showing AA and 
AAm for pressurizer pressure shown in Fig. 4. After 20 s the AA value is low due to the large 
edge present in the experimental signal, which is used for normalization. 
Based on the results in Fig. 6 it seems that the restrictive pressure criterion (AA below 0.1) in 
the original FFTBM was set, because it was based on pressure trends during small break 
LOCAs in facilities simulating typical PWRs (high initial pressure and large pressure drop 
after break occurrence, therefore high edge). When tests on different facilities were 
simulated, there were difficulties in satisfying the primary pressure criterion. The first 
example is the accuracy quantification of four standard problem exercises (SPEs) organized 
by IAEA (D’Auria et al., 1996). In this study only the primary system pressure has been 
considered. Among other things it was also concluded that in the case of SPE-3 the 
calculation is clearly unacceptable (AA was 0.31) and that more complex transients lead to 
worse results than simple one’s. As no plots are shown in the paper by D’Auria et al. (1996) 
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no further conclusion can be done except that the pressure drop (edge) is smaller than in a 
typical PWR. Namely, the initial pressure in this test is lower than in the typical PWR test. 
By lowering the pressure edge the values of AA are increased. This can be still better 
illustrated in the recent application of FFTBM to heavy water reactors. In the study (Prošek 
et al., 2006) all participants fulfilled the acceptance criterion for the total accuracy K< 0.4 
while the primary pressure criterion was not fulfilled. In the blind accuracy calculation the 
AA value for the primary pressure was 0.117 for the best calculation. The header 7 pressure 
with initial pressure around 10 MPa was selected as a variable representing the primary 
pressure. In the open accuracy analysis header 6 pressure was proposed by a representative 
from Italy. The initial value of this pressure was around 12 MPa. Now the value of AA was 
below 0.1 for most of participants mostly due to the increased pressure edge effect (the best 
AA was 0.074) due to the higher pressure. 
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Fig. 6. Accuracy measures for the LOFT L2-5 test calculations of pressurizer pressure 

The last example of the AA calculation for the primary pressure is for ISP-22 calculations 
(loss of feedwater test). From paper by Prošek et al. (2002) it may be seen that the AA value 
for the primary pressure in the best posttest calculation is 0.21, the worst (as judged by the 
original FFTBM) among summarized ISPs. From the original report (Ambrosini et al., 1992) 
showing plots it can be easily concluded that the edge contribution in the experimental 
signal is smaller than typically for small break LOCAs due to lower pressure drop and the 
complex shape of the experimental signal, resulting in larger AA.  
All these examples demonstrate that due to the unpredictable edge contribution a consistent 
criterion for the primary pressure cannot be defined for the original FFTBM, while for the 
improved FFTBM with signal mirroring this can be done.  

6.6 Moving average 

When trends oscillate greatly (e.g., the steam generator pressure drops shown in Fig. 7), 
special treatment is needed (Prošek & Mavko, 2009). To correctly reproduce the 
experimental signal by linear interpolation, many points are needed. This is achieved by 
increasing the maximum frequency component of the signal. However, it makes no sense 
to increase the number of points, as some cases have a sampling frequency 30 times larger 
than the calculated data. When many points are used, the main contribution to the 
amplitude spectrum comes from the oscillations (very often noise) in the experimental 
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signal for which the calculated data have no information. The correct procedure is 
therefore to smooth the data. Smoothing data removes random variations and shows 
trends and cyclic components. The simplest way to smooth the data is by taking the 
averages. This is done by use of the moving average of the experimental signal. 
Mathematically, the moving average is an example of a convolution of the input signal 
with a rectangular pulse having an area of 1. 
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(e) AA accuracy measure (moving average) (f) AAm accuracy measure (moving average) 

Fig. 7. Results for the LOFT L2-5 test calculations of steam generator pressure drop 
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Without using the moving average, AA varies around a certain value. In the presented case 
for steam generator pressure drop, the values of AA and AAm are close to 1 (see Figs. 7(c) 
and 7(d)), because the calculated values are much smaller than the experimental values. 
The exception is Cal2 which values vary around 4 and is not visible in Figs. 7(c) and 7(d). 
Variations in AA are the consequence of inappropriately prepared experimental data for 
the FFTBM analysis. The problem of the oscillatory signal was less significant in the past, 
because the original FFTBM limited the number of data points to 1,000, and data reduction 
was needed when this value was exceeded. Thus, data reduction is another possibility to 
use for partially smoothing the signal and thereby increasing the accuracy by eliminating 
some noise. However, as shown by Figure 4(e) in Prošek et al., 2006, the AA still varies 
because the moving average was not used. The reason is that, by increasing the time 
interval and not increasing the number of points, the amplitude spectrum changes as the 
signal between two consecutive data points is not a monotonic function (it oscillates). This 
gives a different amplitude spectrum of the experimental and difference signal. When 
moving average was used in the case of the steam generator pressure drop experimental 
signal, the AA values no longer oscillate in phase because of AAexp, as shown in Figs. 7(e) 
and 7(f). This suggests that the observation of oscillations being in phase in the calculated 
AAs indicates that moving average should be used. Figures 7(e) and 7(f) show a sudden 
increase in AA in the Cal1 and Cal5 calculations. The reason for this increase are the 
pressure spikes clearly shown in Fig. 7(a). Each spike significantly deteriorates the results. 
Finally, FFTBM was able to detect the deviation in the Cal9 calculation at the end of the 
transient. 
Another important finding is that the mismatch between the experimental data and the 
calculations for the steam generator pressure drop variable is present from the very 
beginning of the transient, as shown in Fig. 7(b). Only the Cal2 calculation reproduced the 
frequency of oscillations in the first second. However, because the peaks were too high, the 
calculation was not very accurate. Use of moving average removes the large oscillations 
from the experimental signal (EXP(ma)), while in the Cal2(ma) calculation, the oscillations 
still remain in the beginning of the transient. Later (at approximately 15 seconds), the 
pressure drop stabilizes and the values oscillate around their mean values. This means that 
the transient related to the pressure drop has more or less ended. 

6.7 Comparison of results obtained by FFTBM and ACAP 

Tables 3 and 4 shows the comparison of FFTBM and Automated Code Assessment Program 
(ACAP) (Kunz et al., 2002) accuracy measures for the calculated pressurizer pressure and 
rod surface temperature shown in Figs. 4 and 5, respectively. This comparison was made for 
the independent assessment that FFTBM provides for consistent accuracy measures. The 
calculations are sorted according to AAm in ascending manner. For the pressurizer pressure 
it can be seen that AAm, AA, mean square error (MSE), and cross-correlation coefficient 
(XCC) accuracy measures agree well. The only difference is that MSE and XCC indicate that 
all calculations of pressurizer pressure are very good, while FFTBM shows that some are not 
so accurate and some do not even fulfil the original FFTBM primary pressure criterion. As 
the pressure criterion was developed without consideration of the edge effect, care must be 
taken in its use, as indicated by the ACAP results. Finally, D’Auria fast Fourier transform 
(DFFT) and continuous wavelet transform (CWT) accuracy measures do not help much in 
this case. 
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Method FFTBM ACAP 
Calculation AAm AA DFFT MSE XCC CWT 
Cal6 (100 s) 0.076 0.034 0.194 1.000 1.000 0.154 
Cal10 0.079 0.032 0.132 1.000 0.999 0.008 
Cal14 0.082 0.034 0.173 1.000 0.999 0.116 
Cal13 0.085 0.036 0.223 1.000 0.999 0.059 
Cal7 0.111 0.047 0.173 0.999 0.999 0.148 
Cal8 0.129 0.051 0.194 1.000 0.999 0.179 
Cal2 0.159 0.062 0.168 0.999 0.999 0.008 
Cal5 0.167 0.070 0.134 0.998 0.997 0.126 
Cal12 0.230 0.093 0.082 0.998 0.993 0.006 
Cal4 0.237 0.096 0.129 0.998 0.994 0.140 
Cal9 0.244 0.097 0.128 0.998 0.995 0.220 
Cal11 0.275 0.119 0.110 0.997 0.992 0.069 
Cal1 0.305 0.123 0.089 0.996 0.983 0.091 
Cal3 (110 s) 0.458 0.186 0.096 0.991 0.972 0.053 

Table 3. Comparison of FFTBM and ACAP accuracy measures for pressurizer pressure in 
time interval (0–119.5 s) 

 
Method FFTBM ACAP 
Calculation AAm AA DFFT MSE XCC CWT 
Cal6 (100 s) 0.313 0.285 0.245 0.989 0.992 0.020 
Cal10 0.375 0.337 0.197 0.984 0.987 0.193 
Cal14 0.388 0.347 0.228 0.988 0.973 0.171 
Cal13 0.409 0.356 0.206 0.982 0.960 0.106 
Cal7 0.442 0.374 0.203 0.983 0.968 0.006 
Cal8 0.451 0.396 0.182 0.980 0.972 0.010 
Cal2 0.452 0.391 0.208 0.982 0.962 0.055 
Cal5 0.488 0.429 0.181 0.968 0.962 0.055 
Cal12 0.504 0.429 0.207 0.981 0.967 0.004 
Cal4 0.555 0.487 0.158 0.948 0.883 0.043 
Cal9 0.578 0.511 0.150 0.938 0.853 0.049 
Cal11 0.600 0.515 0.152 0.940 0.832 0.000 
Cal1 0.616 0.544 0.151 0.929 0.841 0.055 
Cal3 (110 s) 0.708 0.620 0.149 0.901 0.780 0.000 

Table 4. Comparison of FFTBM and ACAP accuracy measures for rod surface temperature 
(i.e. rod cladding temperature) in time interval (0–119.5 s) 

For rod surface temperature (see Table 4), AAm, AA, MSE, and XCC accuracy measures 
agree well. The XCC figure of merit is in especially good agreement with AAm. When 
comparing the Cal12 and Cal13 calculations, FFTBM slightly favours the Cal13 calculation, 
while ACAP gives comparable values. The qualitative analysis of dryout occurrence 
reported in Table 13 of the BEMUSE Phase II Report (OECD/NEA, 2006) showed, that the 
Cal13 calculation receives three excellent and one minimal mark, while the Cal12 calculation 
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receives two excellent, one reasonable, and one minimal mark. One parameter representing 
the dryout occurrence is the peak cladding temperature and for it the Cal13 calculation is 
qualitatively judged better than the Cal12 calculation. These BEMUSE results support the 
FFTBM judgments for cladding temperature. Examination of AAm in Fig. 5(d) shows that, in 
the initial period of 40 seconds, the Cal13 calculation is significantly better because of the 
Cal12 calculation’s large overprediction of cladding temperature. 

6.8 Discussion 

A demonstration application of the improved FFTBM by signal mirroring was done for a 
design basis accident. In the case of the LOFT L2-5 test calculation it was shown that only 
the improved FFTBM by signal mirroring gives a realistic judgment for the time dependent 
accuracy. The differences between AA and AAm as a function of time were clearly shown to 
be due to the edge contribution. On the other hand, for the whole transient time interval 
with stabilized conditions resulting in small edges also the judgment by the original FFTBM 
is qualitatively correct. However, this is never the case for monotonic trends where the edge 
increases with increasing the transient time. 
In general there is a need to make comparisons for any time window and the transient may 
not be terminated at stable conditions resulting in small edges. For the proposed improved 
FFTBM by signal mirroring the acceptability criteria need to be defined in the same way as 
this was done for the original FFTBM. The easiest way would be to use the same set of 
calculations as for the original FFTBM. The obtained results for LOFT L2-5 suggest slightly 
higher acceptability limits for the improved FFTBM by signal mirroring than for the original 
FFTBM, including the restrictive pressure criterion. 

7. Conclusions 

In the past the most widely used method for code accuracy quantification of primary system 
thermal-hydraulic codes was the original FFTBM. Recently, in the original FFTBM an 
important deficiency was discovered. It turned out that the accuracy measure depends on 
the difference between the first and last data point of the investigated signal. Namely, the 
DFT mathematical method, on which the FFTBM is based, treats the investigated finite 
length signal as an infinite length periodic signal, introducing discontinuities if the first and 
last data point of the finite signal differ. These discontinuities produce a variegated 
spectrum of frequencies when applying DFT, which may overshadow the frequency 
spectrum of the investigated signal. This so called edge effect is a significant deficiency of 
the original FFTBM since for the comparison the shape of the investigated signal is 
important and not the artificially introduced unphysical edge.  
Therefore the authors proposed to resolve the edge effect problem on a unique way by 
signal mirroring, where the investigated signal is mirrored before FFTBM is applied. By 
composing the original signal and its mirrored signal a symmetric signal with the same 
characteristics is obtained, but without introducing artificial discontinuities when viewed as 
a periodically extended infinite signal. With the so improved FFTBM by signal mirroring a 
consistent and unbiased tool for quantitative assessment is obtained. An additional good 
property of the improved FFTBM is that the same FFTBM procedure (numerical tools etc.) 
may be applied as with the original FFTBM. 
The benefits of the improved FFTBM by signal mirroring were demonstrated on the large 
break LOCA test LOFT L2-5. The results show that the so improved FFTBM judges the 
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accuracy of variables in a reliable, unbiased and consistent way. Nevertheless, the new 
measure for indication of the time shift between the experimental and the calculated signal 
can be used only by the original FFTBM. It is also suggested to make all operations in the 
time domain for both, the original and the improved FFTBM, as it is very difficult to make 
adjustments in the frequency domain (e.g. logarithmic scale, moving average). There is no 
way to make such adjustments automatically. Finally, it should not be forgotten, that the 
qualitative analysis is a prerequisite to perform the quantitative analysis. This means that 
thermal hydraulic code calculations must be analyzed by experts first, and only then FFTBM 
can assist in conducting an objective comparison and answering if improvements to the 
input model are needed. 
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