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2.5. The relaxation time approximation. The Boltzmann integral as
a current in k-space

The relaxation and fluctuation characteristics introduced in sect. 2.4 enable a
semiquantitative description to be given for the change in the distribution
during the scattering process. But they do not, in general, allow the Boltzmann
integral given by eq. (2.41) to be represented in the “r-approximation”, i.e., in
the form
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A number of cases are known, however, in which the representation given by
eq. (2.78) is feasible. Moreover, it has sometimes been found possible to
represent the Boltzmann integral given by eq. (2.41) in differential form,
which, though more complex than eq. (2.78), leads, nevertheless, to substantial
simplifications.

k) (2.78)

Localized perturbations of the type given by eq. (2.46)

The possibility of writing the Boltzmann integral in the form of eq. (2.78)
follows directly from the definition (2.41), since §f(k’) = 0. At the same time,
a comparison of eq. (2.41) with eq. (2.48) indicates that 7 = 7,. Whether or not
a perturbation can be regarded as being localized depends on whether colli-
sions can be neglected in which k and &’ both lie within the perturbed region,
compared to collisions that give rise to exchange between the perturbed and
unperturbed regions. For this reason, a perturbation that formally is not
described by eq. (2.46) can sometimes be regarded as a localized one (see sect.
7.1).

Elastic scattering in the isotropic model
Making use of the properties of spherical harmonics, it can be shown that for
such scattering the “7-approximation” is valid for perturbations of the type

/

8f(k)= X C,le) ¥, (n) (I1#0), (2.79)
m=—1/
where Y, are spherical harmonics and C, are arbitrary functions of e.

Perturbations with /=0 that depend only on & do not relax in perfectly elastic
scattering. For perturbations described by eq. (2.79)

d 1
38 (k) = = 58/ (k). (2.80)

where 7, has the form

%= S Wi w1 = P(cos 8)]. (2.81)
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In scattering by impurities these times are related to the weighted cross
sections, given by eq. (2.21), as follows:

1/7,=Nve,, [=0,1,2, .... (2.82)

The time 7,, determined by eq. (2.81), coincides with the momentum relaxa-
tion time defined above, and

1_31 (2.83)

The validity of eq. (2.80) is readily evident for /=1 and /=2 if we note
that these perturbations can also be written as

8fx = Ci(e) k, (1=1), (2.84)
=C,(e) (kk,—18,k) (1=2). (2.85)

J

When, for example, /=1
9 N ki (k)
at6f(k)—C,.<k,. kyy= C.T1 = _— (2.86)
Perturbations with /=1 are set up in a weak electric field E when 8f is
proportional to the field; in this case C, & E,. Hence the time 7, appears in a
description of electrical conductivity.

Perturbations with /= 2, proportional to the square of the field, occur, for
example, in photo-excitation of carriers by polarized light. Here G, h;h,
where A is a unit vector defining the polarization of the light (see sect. 13.6). A
perturbation of this type is also set up by the joint action of two weak fields
E, and E, of different frequencies », and »,. In this case, perturbations of the
distribution function, oscillating at the frequencies »; + »,, have C,, < E|, E, ;.
It is clear from these examples that 7, is the time during which a memory of
the light polarization is retained by the photoexcited electrons. This time also
determines the nonlinear effects of frequency mixing.

Small-angle scattering

When the changes in all three components of the momentum are small in each
scattering event, the motion of the electron in k-space consists of diffusion.
Therefore, the rate of change of the distribution function due to collisions is
the divergence of the diffusion current:

J 9’
52/ () = =5 (), (287)

5(k) = = 4,(k) 1(k) = D, (k)5 £ (k). (2.88)

Here D;; is the diffusion tensor given by eq. (2.59), and the vector of dynamic
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friction A4; is expressed in terms of this tensor and of the momentum loss rate
vector given by eq. (2.50) namely

A (k)= P(k)+ U(k) (2.89)

In the isotropic case, according to eqgs. (2.53), (2.61), and (2.62), the flux J, is
determined by the times 7, 7, and 7.

The presence in eq. (2.88) of a nonderivative term (in contrast to the
customary diffusion flux in r-space) is due to the fact that in equilibrium,
when the flux should vanish, the distribution f,(k) is not a constant, but
depends upon k.

Quasi-elastic scattering

Since the changes in a component of the momentum may be large in an event
of quasi-elastic scattering, the motion of an electron in momentum space is not
always diffusive. However, if we are only interested in the position of the
electron along the energy axis, then the electron travels in a manner resem-
bling diffusion along this axis. Therefore, the rate of change of the distribution
with respect to energy,

fe) =7 ) . (2.90)

is the divergence of the diffusion current

519 =~ 15 55 Ls(e) T, (2.91)

J(e) = —4(s) f(e) = D(e) o= (e). (292)

Here g(e) is the density of states, eq. (1.9), and the coefficients A and D are
related to the averaged quantities given by eq. (2.67): D is the coefficient of
energy diffusion and A(e) is the so-called coefficient of dynamic friction:

A(e) = Q(e) + ﬂa—[g(ts) D(e)]. (2.93)

If the scattering is from a thermal bath at the temperature T, it follows

from the principle of detailed balance (see sect. 2.2) that, for the equilibrium

distribution f (k) at the same temperature, the currents given by eq. (2.88)

and (2.92) vanish. (If we had not resorted to the principle of detailed balance,

we could only have come to the conclusion that the divergence of these
currents equals zero.) Consequently,

A, (k)= (hr*/mT)D,;(k) k,, (2.94)
A(e)=D(e)/T. (2.95)
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For the isotropic case, it follows from eq. (2.94) that

iT T’E;) . (2.96)
I

Ai(k)=

Since, on the other hand, we have eq. (2.89) for 4,, the following relation
between the relaxation times for small-angle scattering of a test particle by a
thermal bath is obtained:

1 _e 1 94/ 1 1
Tl(s)_TTu(E)-Faf[('r“(E) 2@(5)”' (2.97)

Randomizing scattering
This term refers to the scattering whose probability has the following proper-
ties:

Wi =Wt w=W_y_p- (2-98)

In such a scattering a test electron at the point k goes, after being scattered, to
the point k’ or the point —k’ with equal probability, the velocities v,. and
v_, at these points being equal and opposite. Therefore, the average velocity
of the test electrons vanishes even after the first collision. It is readily evident
from eq. (2.43) that the scattering and transport times coincide for randomiz-
ing scattering,

(k) =7 (k), (2.99)

both for Boltzmann and Fermi gases. A special case of randomizing scattering
is elastic isotropic scattering with a scattering cross section independent of 4.
If the small perturbation 8f of the distribution function is odd, i.e.,

8f(—k)=—-8f(k) (2.100)
(when, for instance, it is due to a weak electric field), then, as can be seen from
eq. (2.41), we have eq. (2.78) with 7= 1,.

Hence, for randomizing scattering and a small antisymmetric perturbation
to the distribution, a “r-approximation” with the scattering time 7, is valid.
For a Boltzmann gas, eq. (2.78) is simply a consequence of the fact that the
scattering-in term vanishes.



