2.6. The method of correlators

In this section we shall discuss a method of describing scattering that differs
from the approach on which eq. (2.3) is based. This method takes the
scattering perturbation ¥ to be a random function of time and coordinates.
Thus, for example, in the Hamiltonian given by eq. (3.1), which represents
electron scattering by lattice vibrations, the atomic displacements £,  are
random time-dependent functions.
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Assume that at =0 the electron is in a certain state |i). According to the

general rules of quantum mechanics, the probability that the electron will be
in state |f) at the instant ¢ is

2
f’dzl enp(r)] (2.101)
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where hw =¢; — ¢, is the change in the electron energy due to the transition
and M is the transition matrix element:

M(1) = (£ V(1) |i). (2.102)

As a rule the perturbation V(z), and together with it the matrix element
M(1), are stationary random functions. This means that the average over the
time,

tlft()d[M(f+’)E<M(t)>=<M>, (2.103)
0v0

taken over a sufficiently large averaging interval f,, is independent of the
length and position of the averaging interval. This also means that the average
of the product of two matrix elements, corresponding to different instants of
time:

%/todfM*(t_—i-I) M(i+1)=(M*(t) M(1')y = (M*(0) M(¢' —1t))

=K(1'—1), (2.104)

depends only on the interval ¢/ — ¢ between these two instants of time. The
function K(r) is called the correlator of the matrix elements.

The random function M(z) is characterized by a correlation time 7, such
that if |7—¢|> 7, then the quantities M(z) and M(¢’) are “statistically
independent”, i.e.

(M*(1) M(1')y = (M*(2))(M(2')) = [{M) |2 (2.105)

To determine the average given by egs. (2.103) and (2.104) correctly, the
interval 7, must be much greater than 7.

It will be assumed in the following that (M) =0. Then K(t)—~0 as
t = + oo, with K(¢) becoming small for |7] > 7.

Let us now represent the probability given by eq. (2.101) in the form

P_ ()= #fo’dtlfo’dtz eietap*(1)) M(1,) (2.106)

and go over to integration with respect to the variables

r=3(t,+1t,) and F=1,—1,. (2.107)
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We then obtain

1 o o =2 - - - .
P, (t)y=— [ die“' | TdrM*(r—-50)M(r+1i0). 2.108
SHORSe) Il (i=30)M(i+37) (2.108)
After assuming that ¢ > 7 and making use of definition (2.104) of a correlator,
we have

! *® iw
Pii(1)= Ko, Kw=f7wdz e K (1). (2.109)
Thus, for ¢ > 7 the transition probability is found to be proportional to ¢, and
we can apply the concept of a transition probability per unit time

1

Wiei=

1

K,, (2.110)

as in eq. (2.3).

Another version of the correlator method emerges when the perturbation V
is time-independent, but is a random function in space, for instance, when an
electron is scattered by a static potential of randomly distributed centers.

The matrix element of the transition k — k’, calculated with plane waves as
the wave functions of the initial and fina!l states, has the form

1 —igr ’
M, = —L;fL3d3re "y (r), q=k —k, (2.111)

and the square of its absolute value can be represented in a form similar to eq.
(2.106), viz.

2 1 —igq(ry—r
M, = 7 fL}d3rI/L3d3rz e 9 P (p) V(). (2.112)
After transformation to the integration variables
r=%(r,+r) and F=r,—r, (2.113)

the space average, i.e. the space correlator, is then obtained:
1
—f BFV*(F+r) V(i +r) = (V*(r) V(r)). (2.114)
L35

Here L} [similar to ¢, in eq. (2.104)] is the volume of the averaging domain. It
is assumed that L, < L. If the random potential V(r) is spatially homoge-
neous, i.e. if the correlator depends only on the relative position of the points r
and r’, then

V() V(r)) =V*Q) V(r—r)y=K(r' —r). (2.115)
In the following it is assumed that the average of the potential is

<[ @ V(E4r) = V() = (¥) =0, (2.116)
LyJ}
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As in the case of time averages, K(r) =0 as |r| — oc. The decrease in the
correlator is characterized by the correlation length /. The dimension L, of the
averaging region should be much larger than L.

Assuming that L >/, we have

2 1 —igr
M, _ | = Ky K= fwd% e UK (r), (2.117)
so that the scattering probability per unit time is
27 1
W, w= 7;8(61(—8,(/) K,. (2.118)

Finally, if V is a random function of both r and ¢, a combined treatment of
time and space correlations is feasible. Proceeding as before we have

11
quk'=;F 0g? hw=¢, — ¢, qg=k"—k,
+ o0
— 3 twr—igr
K., f_oo dt/wd re K(r, 1), (2.119)

which contains the space—time correlator
K(r, t)=(V*(0,0) V(r, t)). (2.120)

Here the angular brackets denote averaging over time in accordance with eq.
(2.104) and averaging over space in accordance with eq. (2.114). It is assumed
that

V(r, 1)y=(V)=0. (2.121)

Note that if ¥ is independent of ¢, then, as can readily be seen, eq. (2.119) is
transformed into eq. (2.118).
If we discard condition (2.121), then

VR(0,0) V(r, 1)), . = (V*(0,0))(V(r. 1)) = |(V)|* %0, (2122)

i.e. the correlator does not vanish at infinity, but tends to a certain constant
value. The presence of a constant nonvanishing term in K(r, ¢) leads to a term
in K,, that is proportional to 8(w) 8(g). Therefore, in calculating the
scattering probability, for which k’ is never equal to k, i.e. ¢ # 0, we need not
satisfy condition (2.121). The aforesaid does not concern eq. (2.110) because
the transition probability can also be considered for transitions with & =¢;,
1.e. with w = 0.

The Fourier transforms K, K, and K, of the correlators tend to zero as
w— oo and g — oo. The regions of the variables w and ¢, in which these
Fourier transforms are not small, are determined by the correlation time and
the correlation length: w~1/7 and g~ 1/.. It should be kept in mind,
however, that it is not at all necessary for such energy (4w) and momentum
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(hq) to be transferred in a typical transition. In the energy spectrum of the
system, for example, there may be no energy difference corresponding to the
frequencies of the most intensive Fourier components K in eq. (2.110). In eq.
(2.118) the transfer of momentum #Agq, corresponding to the most intensive
Fourier components K, may not be in agreement with energy conservation
& =&y

If the scattering system can be represented as an ideal gas of quasi-particles,
then the scattering probability can be calculated also by another method that
is described in detail in ch. 3, using the phonon gas as an example. Note, in
this connection, that for scattering by an ideal gas, / is of the order of the
characteristic wavelength of the quasi-particles, whereas % /7 is of the order of
their characteristic energy.

As an example let us consider scattering by the deformation potential of
long-wavelength acoustic phonons (see sect. 3.4) that are in thermodynamic
equilibrium. Here V(r, t) is to be understood as being the deformation
potential at the point r at the instant ¢, equal to Zu(r, t), where u(r, ¢) is the
relative change in volume of the lattice during thermal vibrations. For the
correlator (u(0, 0) u(r, t)) the correlation time 7 is of the order of 7/T, the
vibration period of the thermal phonons, and / is of the order of the
wavelength #s/T of these phonons. However, as has been mentioned previ-
ously, typical energy and momentum transfers are not always equal to 7 and
hs/T. This is directly confirmed by an analysis of the kinematics of scattering
by acoustic phonons, which is carried out in sect. 4.2.2.

The correlator method will be applied in sections 15.2 and 15.3 in order to
deal with scattering by spin fluctuations in a magnetic metal and in a
semiconductor with magnetic impurities. Of especial importance is the fact
that the description of scattering by means of correlators is also valid in the
case when the scattering system cannot be replaced by an ideal gas of
quasi-particles. This is true, in particular, for a system of spins close to a phase
transition point, at which the excitation of the spin-system cannot be de-
scribed in terms of an ideal gas of magnons.

The scattering probability, expressed in terms of correlators, retains its
meaning even in the case when the averaging ( ---) is understood as the
averaging, not of classical quantities, but of operators. This implies that we
begin by quantum averaging over the states of the scattering system, followed
by the statistical averaging with respect to the probabilities of occupying these
states. If the operators a and b in the correlator (ab) are not commutative, it
is necessary to make the substitution

(ab)y —> L{ab + ba). (2.123)

The size of the domain of integration for K, in eq. (2.117) is determined by
the correlation length /. This means that the scatterlng probability given by eq.
(2.118) includes mutual interference of waves scattered by points lying in a
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region having the volume /°. This interference is appreciable if the “wave-
length” corresponding to the momentum transfer Ag is not small compared to
the size of the region, i.e. 27/g > I If, however, 27/q <1, the size of the
domain of integration for K, is reduced, owing to the oscillating factor, to
27 /¢ and only those waves interfere that are scattered from points in a region
having the volume (27 /¢)>.

The calculation of a transition probability with the matrix element given by
eq. (2.111) is equivalent to the Born approximation which, as is well-known,
assumes that in the scattering region there is almost no difference between the
exact wave function and the incident wave. When applied to the potential
V(r) set up by several centers, this means, among other things, that the
rescattering of waves between the centers is not taken into account. In other
words, the wave scattered by each center is the same as if there were no other
centers. However, the interference of waves scattered by different centers will
be taken into consideration.

A random potential V(r) can quite frequently be represented as the
superposition of potentials produced by randomly distributed centers:

V(r)=3uv(r—R,), (2.124)

where v(r) is the potential of a single center located at the origin, and R, are
the random points where the centers are situated. The distribution of the
centers can be said to be “random” if the possibility of finding a center at a
given point does not depend on whether there are centers at neighboring
points. In this case, as is shown by probability theory,

V(o) V(r)) =Nf &r o(r) v(r+r), (2.125)

where N is the average number of centers per cm’. In other words, the
correlation function is completely determined by the form of the potential of a
single center. If potentials v,(r) of various types are possible, and the
probability of finding a potential of a certain type at a given point is
independent of the types of the neighboring potentials, then the integral in eq.
(2.125) should be averaged over all the possible types of potentials.

It follows from eq. (2.125) that the correlation length / is always of the
order of the range a of the potential. It is important that this is valid
independently of whether the centers overlap (Na’ > 1) or do not overlap
(Na® <1).

The applicability of the concept of a “random distribution” of impurities in
a crystal is limited to concentrations Na} <1, where a} is the volume of a
primitive cell. The point is that no more than a single impurity can occupy one
lattice site; hence, for Naj > 1, the probability that a given impurity will
occupy a given site does depend upon the arrangement of the other impurities.
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Fourier component (2.117) of the correlator given by eq. (2.125) is
K,=N|y|? where quf d’re i (r). (2.126)

This means that in the case of scattering by randomly distributed impurities,
the scattering probability is the sum of the probabilities of scattering by the
separate impurities. In other words, waves, scattered by randomly distributed
impurities, do not interfere even in the case when their potentials overlap.





