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1

Exterior Calculus

Differential geometry and topology are about mathematics of objects that are, in a sense,

’smooth’. These can be objects admitting an intuitive or visual understanding – curves, surfaces,

and the like – or much more abstract objects such as high dimensional groups, bundle spaces,

etc. While differential geometry and topology, respectively, are overlapping fields, the perspective

at which they look at geometric structures are different: differential topology puts an emphasis

on global properties. Pictorially speaking, it operates in a world made of amorphous or jelly-like

objects whose properties do not change upon continuous deformation. Questions asked include:

is an object compact (or infinitely extended), does it have holes, how is it embedded into a host

space, etc?

In contrast, differential geometry puts more weight on the actual look of geometric struc-

tures. (In differential geometry a coffee mug and a donut are not equivalent objects, as they

would be in differential topology.) It often cares a about distances, local curvature, the area

of surfaces, etc. Differential geometry heavily relies on the fact that any smooth object, looks

locally flat (you just have to get close enough.) Mathematically speaking, smooth objects can

be locally modelled in terms of suitably constructed linear spaces, and this is why the con-

cepts of linear algebra are of paramount importance in this discipline. However, at some point

one will want to explore how these flat approximations change upon variation of the reference

point. ’Variations’ belong to the department of calculus, and this simple observations shows that

differential geometry will to a large extend be about the synthesis of linear algebra and calculus.

In the next section, we will begin by introducing the necessary foundations of linear algebra,

notably tensor algebra. Building on these structures, we will then advance to introduce elements

of calculus.

1.1 Exterior Algebra

In this section, we introduce the elements of (multi)linear algebra relevant to this course.

Throughout this chapter, V will be an R–vector space of finite dimension n.

1.1.1 Dual Basis

Let V ∗ be the dual vector space of V , i.e. the space of all linear mappings from V to the real

numbers:

V ∗ = {φ : V → R, linear}

1
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differential topology:
compactness?
‘holes’?
embedding in outer space?

differential geometry:
geometric structure?
curvature?
distances?
areas?

Figure 1.1 The arena of differential topology and geometry. The magnified area illustrates that a
smooth geometric structure looks locally flat. Further discussion, see text

Let {ei} a basis of V , and {ei} be the associated basis of V ∗. The latter is defined by ∀i, j =

1, . . . , N : ei(ej) = δij . A change of basis {ei} 7→ {e′i} is defined by a linear transformation

A ∈ GL(n). Specifically, with

e′i = (A−1)j iej , (1.1)

the components vi of a vector v = viei transform as vi′ = Aijv
j . We denote this transforma-

tion behaviour, i.e. transformation under the matrix {Aij} representing A, as ’contravariant’

transformation. Accordingly, the components {vi} are denoted contravariant components. By

(general) conventions, contravariant components carry their indices upstairs, as superscripts.

Similarly, the components of linear transformations are written as {Aij}, with the contravariant

indices (upstairs) to the left of the covariant indices (downstairs). For the systematics of this

convention, see below.

The dual basis transforms by the transpose of the inverse of A, i.e. ei′ = Aije
j , implying

that the components wi of a general element w ≡ wie
i ∈ V ∗ transform as w′i = (A−1)j iwj .

Transformation under the matrix (A−1)j i is denoted as covariant transformation. Covariant

components carry their indices downstairs, as subscripts.

INFO Recall, that for a general vector space, V , there is no canonical mapping V → V ∗ to its

dual space. Such mappings require additional mathematical structure. This additional information

may either lie in the choice of a basis {ei} in V . As discussed above, this fixes a basis {ei} in V .

A canonical (and basis-independent) mapping also exists if V comes with a scalar product, 〈 , 〉 :
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V × V → R, (v, v′) 7→ 〈v, v′〉. For then we may assign to v ∈ V a dual vector v∗ defined by the

condition ∀w ∈ V : v∗(w) = 〈v, w〉. If the coordinate representation of the scalar product reads

〈v, v′〉 = vigijv
′j , the dual vector has components v∗i = vjgji.

Conceptually, contravariant (covariant) transformation are the ways by which elements of

vector spaces (their dual spaces) transform under the representation of a linear transformation

in the vector space.

1.1.2 Tensors

Tensors (latin: tendo – I span) are the most general objects of multilinear algebra. Loosely

speaking, tensors generalize the concept of matrices (or linear maps), to maps that are ’multi-

linear’. To define what is meant by this, we need to recapitulate that the tensor product V ⊗V ′
of two vector spaces V and V ′ is the set of all (formal) combinations v ⊗ v′ subject to the

following rules:

. v ⊗ (v′ + w′) ≡ v ⊗ v′ + v ⊗ w′

. (v + w)⊗ v′ ≡ v ⊗ v′ + w ⊗ v′

. c(v ⊗ w) ≡ (cv)⊗ w ≡ v ⊗ (cw).

Here c ∈ R, v, w ∈ V and v′, w′ ∈ V ′. We have written ’≡’, because the above relations define

what is meant by addition and multiplication by scalars in V ⊗V ′; with these definitions V ⊗V ′
becomes a vector space, often called the tensor space V ⊗ V ′. In an obvious manner, the

definition can be generalized to tensor products of higher order, V ⊗ V ′ ⊗ V ′′ ⊗ . . . .
We now consider the specific tensor product

T qp (V ) = (⊗qV )⊗ (⊗pV ∗), (1.2)

where we defined the shorthand notation ⊗qV ≡ V ⊗ · · · ⊗ V︸ ︷︷ ︸
q

. Its elements are called tensors

of degree (q, p). Now, a dual vector is something that maps vectors into the reals. Conversely,

we may think of a vector as something that maps dual vectors (or linear forms) into the reals.

By extension, we may think of a tensor φ ∈ T qp as an object mapping q linear forms and p

vectors into the reals:

φ : (⊗qV ∗)⊗ (⊗pV )→ R,
(v′1, . . . v

′
q, v1, . . . , vp) 7→ φ(v′1, . . . v

′
q, v1, . . . , vp).

By construction, these maps are multilinear, i.e. they are linear in each argument, φ(. . . , v +

w, . . . ) = φ(. . . , v, . . . ) + φ(. . . , w, . . . ) and φ(. . . , cv, . . . ) = cφ(. . . , v, . . . ).

The tensors form a linear space by themselves: with φ, φ′ ∈ T qp (V ), and X ∈ (⊗qV ∗)⊗(⊗pV ),

we define (φ+φ′)(X) = φ(X)+φ(X ′) through the sum of images, and φ(cX) = cφ(X). Given

a basis {ei} of V , the vectors

ei1 ⊗ · · · ⊗ eiq ⊗ ej1 ⊗ · · · ⊗ ejp , i1, . . . , jp = 1, . . . , N,
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form a natural basis of tensor space. A tensor φ ∈ T qp (V ) can then be expanded as

φ =

N∑
i1,...,jp=1

φ
i1,...,ip

j1,...,jp
ei1 ⊗ · · · ⊗ eiq ⊗ ej1 ⊗ · · · ⊗ ejp . (1.3)

A few examples:

. T 1
0 is the space of vectors, and

. T 0
1 the space of linear forms.

. T 1
1 is the space of linear maps, or matrices. (Think about this point!) Notice that the

contravariant indices generally appear to the left of the covariant indices; we have used this

convention before when we wrote Ai j .

. T 0
2 is the space of bilinear forms.

. T 0
N contains the determinants as special elements (see below.)

Generally, a tensor of ’valence’ (q, p) is characterized by the q contravariant and the p covariant

indices of the constituting vectors/co-vectors. It may thus be characterized as a ’mixed’ tensor (if

q, p 6= 0) that is contravariant of degree q and covariant of degree p. In the physics literature,

tensors are often identified with their components, φ↔ {φi1,...,ipj1,...,jp} which are then – rather

implicitly – characterized by their transformation behavior.

The list above may illustrate, that tensor space is sufficiently general to encompass practically

all relevant objects of (multi)linear algebra.

1.1.3 Alternating forms

In our applications below, we will not always have to work in full tensor space. However, there is

one subspace of T 0
p (V ), the so-called space of alternating forms, that will play a very important

role throughout:

Let ΛpV ∗ ⊂ T 0
p (V ) be the set of p–linear real valued alternating forms:

ΛpV ∗ = {φ : ⊗pV → R, multilinear & alternating}. (1.4)

Here, ’alternating’ means that φ(. . . , vi, . . . , vj , . . . ) = −φ(. . . , vj , . . . , vi, . . . ).

A few remarks on this definition:

. The sum of two alternating forms is again an alternating form, i.e. Λp is a (real) vector space

(a subspace of T 0
p (V ).)

. ΛpV ∗ is the p–th completely antisymmetric tensor power of V ∗, ΛpV ∗ = (⊗p1V ∗)asym..

. Λ1V = V ∗ and Λ0V ≡ R.

. Λp>nV = 0.

. dim ΛpV ∗ =
(
n
p

)
.

. Elements of ΛpV ∗ are called forms (of degree p).
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1.1.4 The wedge product

Importantly, alternating forms can be multiplied with each other, to yield new alternating forms.

Given a p–form and a q–form, we define this so-called wedge product (exterior product) by

∧ : ΛpV ∗ ⊗ ΛqV ∗ → Λp+qV ∗,

(φ, ψ) 7→ φ ∧ ψ,

(φ ∧ ψ)(v1, . . . , vp+q) ≡ 1

p!q!

∑
P∈Sp+q

sgnP φ(vP1, . . . , vPp)ψ(vP (P+1), . . . , vP (p+q)).

For example, for p = q = 1, (φ ∧ ψ)(v, w) = φ(v)ψ(w) − φ(w)ψ(v). For p = 0 and q = 1,

φ ∧ ψ(v) = φ · ψ(v), etc. Important properties of the wedge product include (φ ∈ ΛpV ∗, ψ ∈
ΛqV ∗, λ ∈ ΛrV ∗, c ∈ R):

. bilinearity, i.e. (φ1 + φ2) ∧ ψ = φ1 ∧ ψ + φ2 ∧ ψ and (cφ) ∧ ψ = c(φ ∧ ψ).

. associativity, i.e. φ ∧ (ψ ∧ λ) = (φ ∧ ψ) ∧ λ ≡ φ ∧ ψ ∧ λ.

. graded commutativity, φ ∧ ψ = (−)pq ψ ∧ φ.

INFO A (real) algebra is an R-vector space W with a product operation ’·’

W ×W →W,

u, v 7→ u · v,

subject to the following conditions (u, v, w ∈W, c ∈ R):

. (u+ v) · w = u · w + v · w,

. u · (v + w) = u · v + u · w,

. c(v · w) = (cv) · w + v · (cw).

The direct sum of vector spaces

ΛV ∗ ≡
n⊕
p=0

ΛpV ∗ (1.5)

together with the wedge product defines a real algebra, the so-called an exterior algebra or

Grassmann algebra. We have dimΛV ∗ =
∑n
p=0

(
n
p

)
= 2n. A basis of ΛpV ∗ is given by all

forms of the type

ei1 ∧ · · · ∧ eip , 1 ≤ i1 < · · · < ip ≤ n.

To see this, notice that i) these forms are clearly alternating, i.e. (for fixed p) they belong

to ΛpV , they are b) linearly independent, and c) there are 2n of them. These three criteria

guarantee the basis-property. Any p–form can be represented in the above basis as

φ =
∑

i1<···<ip

φi1,...,ip e
i1 ∧ · · · ∧ eip , (1.6)
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where the coefficients φi1,...,ip ∈ R obtain as φi1,...,ip = φ(ei1 , . . . , eip). Alternatively (yet

equivalantly), φ may be represented by the unrestricted sum

φ =
1

p!

∑
i1,...,ip

φi1,...,ip e
i1 ∧ · · · ∧ eip ,

where φi1,...,ip is totally antisymmetric in its indices. By construction, the components

of a p–form transform as a covariant tensor of degree p. Indeed, it is straightforward

to verify that under the basis transformation φi1,...,ip 7→ φ′i1,...,ip , where φ′i1,...,ip =

(A−1T ) j1
i1

. . . (A−1T )
jp
ip

φj1,...,jp .

1.1.5 Inner derivative

For any v ∈ V there is a mapping iv : ΛpV ∗ → Λp−1V ∗ lowering the tensor degree by one. It

is defined by

(ivφ)(v1, . . . , vp−1) ≡ φ(v, v1, . . . , vp−1).

The components of ivφ obtain by ’contraction’ of the components of φ:

(ivφ)i1,...,ip−1
= viφi,i1,...,ip−1

.

Properties of the inner derivative:

. iv is a linear mapping, iv(φ+ φ′) = ivφ+ ivφ
′.

. It is also linear in its ’parametric argument’, iv+w = iv + iw.

. iv obeys the (graded) Leibnitz rule:

iv(φ ∧ ψ) = (ivφ) ∧ ψ + (−)pφ ∧ (iv)ψ, φ ∈ ΛpV ∗. (1.7)

It is for this rule that we call iv a ’derivative’.

. The inner derivative is ’antisymmetric’ in the sense that iv ◦ iw = −iw ◦ iv, in particular,

(iv)
2 = 0.

1.1.6 Pullback

Given a form φ ∈ ΛpV ∗ and a linear map F : W → V we may define a form (F ∗φ) ∈ ΛpW by

the pullback operation,

F ∗ : ΛpV ∗ → ΛpW ∗,

φ 7→ F ∗φ,

(F ∗φ)(w1, . . . , wp) ≡ φ(Fw1, . . . , Fwp). (1.8)

To obtain a component–representation of the pullback, we consider bases {ei} and {fi} of

V and W , respectively. The map F is defined by a component matrix (mind the ’horizontal’

positioning of indices, F ji = (FT ) i
j .)

Ffi = F jiej .
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It is then straightforward to verify that the action on the dual basis is given by

F ∗ei = F ijf
j .

(Cf. with the component representation of basis changes, (1.1).) The action of F ∗ on general

forms may be obtained by using the rules

. F ∗ is linear.

. F ∗(φ ∧ ψ) = (F ∗φ) ∧ (F ∗ψ),

. (F ◦G)∗ = G∗ ◦ F ∗.

The first two properties state that F ∗ is a (Grassmann)algebra homomorphism, i.e. a linear map

between algebras, compatible with the product operation.

1.1.7 Orientation

Given a basis {ei} of a vector space V , we may define a top–dimensional form ω ≡ e1 ∧ e2 ∧
· · · ∧ en ∈ ΛnV ∗. Take another basis {e′i}. We say that the two bases are oriented in the same

way if ω(e′1, e
′
2, . . . , e

′
n) > 0. One verifies that (a) orientation defines an equivalence relation

and (b) that there are only two equivalence classes. A vector space together with a choice of

orientation is called an oriented vector space.

EXERCISE Prove the statements above. To this end, show that ω(e′1, e
′
2, . . . , e

′
n) = det(A−1),

where A is the matrix mediating the basis change, i.e. e′i = (A−1T ) j
i ej . Reduce the identification

of equivalence classes to a classification of the sign of determinants.

1.2 Differential forms in Rn

In this section, we generalize the concepts of forms to differential forms, that is forms φx
continuously depending on a parameter x. Throughout this section, we assume x ∈ U , where

U is an open subset of Rn. This will later be generalized to forms defined in different spaces.

1.2.1 Tangent vectors

Let U ⊂ Rn be open in Rn. For practical purposes, we will often think of U as parameterized

by coordinates. A system of coordinates is defined by a diffeomorphism (an bijective map such

that the map and its inverse are differentiable),

x : K → U,

(x1, . . . , xn) 7→ x(x1, . . . , xn), (1.9)

where the coordinate domain K ⊂ Rn is an open subset by itself (cf. Fig. 1.2.)1 If no confusion

is possible, we do not explicitly discriminate between elements x ∈ U and their representation

in terms of an n–component coordinate vector.

1 At this stage, the distinction K vs. U – both open subsets of Rn – may appear tautological. However, the usefulness of the
distinction between these two sets will become evident in chapter 2.
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Figure 1.2 An open subset of Rn and its coordinate representation

EXAMPLE For a chosen basis in Rn, each element x ∈ U may be canonically associated to an

n–component coordinate vector (x1, . . . , xn). We then need not distinguish between K and U and

x : U → U is the identity mapping.

EXAMPLE let U = R2−{negative x axis}. With K =]0, r[×]0, 2π[ a system of polar coordinates

is defined by the diffeomorphism K → U, (r, φ) 7→ (r cosφ, r sinφ) = x(r, φ).

The tangent space of U at x is defined by

TxU = {x} × Rn = {(x, ξ)|ξ ∈ Rn}. (1.10)

Through the definition a(x, ξ) + b(x, η) ≡ (x, aξ + bη), a, b ∈ R,

TxU becomes a real n–dimensional vector space. Note that each

x carries its own copy of Rn; For x 6= y, TxU and TyU are to

be considered as independent vector spaces. Also, the space Rn
attached to x ∈ U should not be confused with the host space Rn ⊃ U in which U lives.

EXAMPLE Consider a curve γ : [0, 1] → U . Monitoring its velocity, dtγ(t) ≡ γ̇, we obtain entries

(γ, γ̇) ∈ TγU of tangent space. Even if U is ’small’, the velocities γ̇ may be arbitrarily large, i.e. the

space of velocities Rn is really quite different from the base U (not to mention that the latter doesn’t

carry a vector space structure.)

Taking the union of all tangent spaces, we obtain the so–called tangent bundle of U ,

TU ≡
⋃
x∈U

TxU = {(x, ξ)|x ∈ U, ξ ∈ Rn} = U × Rn. (1.11)

Notice that TU ⊂ R2n is open in R2n. It is therefore clear that we may contemplate differentiable

mapping to and from the tangent bundle. Throughout, we will assume all mappings to be

sufficiently smooth to permit all derivative operations we will want to consider.

PHYSICS (M) Assume that U defines the set of n generalized coordinates of a mechanical system.

The Lagrangian function L(x, ẋ) takes coordinates and generalized velocities as its arguments. Now,

we have just seen that (x, ẋ) ∈ TxU , i.e.
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Figure 1.3 Visualizaton of a coordinate frame

The Lagrangian is a function on the tangent bundle TU of the
coordinate manifold U .

It is important not to get confused about the following point: for a given curve x = x(t), the

generalized derivatives ẋ(t) are dependent variables and L(x, ẋ) is determined by the coordinate

curves x(t). However, the function L as such is defined without reference to specific curves. The way

it is defined, it is a function of the 2n variables (x, ξ) ∈ TxU .

1.2.2 Vector fields and frames

A smooth mapping

v : U → TU

x 7→ (x, ξ(x)) ≡ v(x) (1.12)

is called a vector field on U .

Consider a set of n vector fields {bi}. We call this set a frame (or n–frame), if (∀x ∈
U : {bi(x)} linear independent.) The n vectors {bi(x)} thus form a basis of TxU , smoothly

depending on x.

For example, a set of coordinates x1, . . . , xn parameterizing U induces a frame often denoted

(∂/∂x1, . . . , ∂/∂xn) or (∂1, . . . , ∂n) for brevity. It is defined by the n vector fields

∂

∂xi

∣∣∣
x
≡
(
x,
∂x(x1, . . . , xn)

∂xi

)
, i = 1, . . . , n.

Notice that the notation hints at a connection (vectors ↔ derivatives of functions), a point to

which we will return below.

Frames provide the natural language in which to formulate the concept of ’moving’ coordinate

systems pervasive in physical applications.
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EXAMPLE Let U ⊂ R2 be parameterized by cartesian coordinates x = (x1, x2). Then ∂1 =

(x, (1, 0)) and ∂2 = (x, (0, 1)), i.e. ∂1,2 are vector fields locally tangent to the axes of a cartesian

coordinate system.

Now consider the same set parameterized by polar coordinates, x = (r cosφ, r sinφ). Then

∂r = (x, (cosφ, sinφ)) and ∂φ = (x,−r sinφ, r cosφ) are tangent to the axes of a polar coordinate

system. (To obtain a proper orthonormal frame, we would need to normalize these vector fields (see

section 1.3.)

Every vector v(x) ∈ TxU may be decomposed with respect to a frame as

v(x) =
∑
i

vi(x)bi(x),

and every vector field v admits the global decomposition v =
∑
i v
ibi where vi : U → R are

smooth functions. Expansions of this type usually appear in connection with coordinate systems

(frames). For example, the curve (γ, γ̇) may be represented as

(γ, γ̇) =
∑
i

γ̇i
∂

∂xi
∣∣
γ
,

where γi = γi(t) is the coordinate representation of the curve.

The connection between two frames {bi} and {b′i} is given by

b′i(x) =
∑
i

(A−1T ) j
i (x)bj(x),

where A(x) ∈ GL(n) is a group–valued smooth function – frames transform covariantly. (Notice

that A−1(x) is the inverse of the matrix A(x), and not the inverse of the function x 7→ A.)

Specifically, the transformation between the coordinate frames of two systems {xi} and {yi}
follows from

∂x

∂yi
=
∑
j

∂x

∂xj
∂xj

∂yi
.

This means,

∂

∂yi
=
∂xj

∂yi
∂

∂xj
,

implying that (A−1)j i = ∂xj

∂yi .

1.2.3 The tangent mapping

Let U ⊂ Rn and v ⊂ Rm be open subsets equipped with coordinates (x1, . . . , xn) and

(y1, . . . , ym), respectively. Further, let

F : U → V

x 7→ y = F (x),

(x1, . . . , xn) 7→ (F 1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)) (1.13)
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Figure 1.4 On the definition of the tangent mapping

be a smooth map. The map F gives rise to an induced map TxF : TxU → TF (x)V of tangent

spaces which may be defined as follows: Let γ : [0, 1] → U be a curve such that v = (x, ξ) =

(γ(t), γ̇(t)). We then define the tangent map through

TxFv = (F (γ(t)), dt(F ◦ γ)(t)) ∈ TF (x)V.

To make this a proper definition, we need to show that the r.h.s. is independent of the particular

choice of γ. To this end, recall that γ̇ = dtγ
i ∂
∂xi = vi ∂

∂xi , where γi are the coordinates of

the curve γ. Similarly, dt(F ◦ γ) = dt(F ◦ γ)j ∂
∂yj . However, by the chain rule, dt(F ◦ γ)j =

∂F j

∂xi dtγ
i = ∂F j

∂xi v
i. We thus have

v = vi
∂

∂xi
, (TxF )v =

∂F j

∂xi
vi

∂

∂yj
, (1.14)

which is manifestly independent of the representing curve. For fixed x, the tangent map is a

linear map TxF : TxU → TF (x)V . This is why we do not put its argument, v, in brackets, i.e.

TxFv instead of TxF (v).

Given two maps U
F→ V

G→ W , we have Tx(G ◦ F ) = TF (x)G ◦ TxF . In the literature, the

map TF is alternatively denoted as F∗.

1.2.4 Differential forms

A differential form of degree p (or p–form, for short) is a map φ that assigns to every x ∈ U a

covariant tensor of degree p, φx ∈ ΛpTxU . Given p vector fields, v1, . . . , vp, φx(v1(x), . . . , vp(x))

is a real number which we require to depend smoothly on x. We denote by ΛpU the set of all

p–forms on U . (Not to be confused with the set of p–forms of a single vector space discussed

above.) With the obvious linear structure,

(aφ+ bψ)x ≡ aφx + bψx,
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ΛpU becomes an infinite dimensional real vector space. (Notice that Λ0U is the set of real–

valued functions on U .) We finally define

ΛU ≡
n⊕
p=0

ΛpU,

the exterior algebra of forms. The wedge product of forms and the inner derivative with

respect to a vector field are defined point–wise. They have the same algebraic properties as their

ancestors defined in the previous section and will be denoted by the same symbols.

INFO Differential forms in physics – why? In Physics, we tend to associate everything that comes

with a sense of ’magnitude and direction’ with a vector. From a computational point of view, this

identification is (mostly) o.k., conceptually, however, it may obscure the true identity of physical

objects. Many of our accustomed ’vector fields’ aren’t vector fields at all. And if they are not, they

are usually differential forms in disguise.

Let us illustrate this point on examples: consider the concept of ’force, i.e. one of the most

elementary paradigms of a ’vector’ F in physics teaching. However, force isn’t a vector at all! What

is more, the non-vectorial nature of force is not rooted in some abstract mathematical thinking but

rather in considerations close to experimentation! For force is measured by measuring the amount of

work, W , needed to move a test charge along a small curve segment. Now, locally, a curve γ can be

identified with its tangent vector γ̇, and work is a scalar. This means that force is something that

assigns to a vector (γ̇) a scalar (W ). In other words, force is a one form. In physics, we often write

this as W = F · γ̇δt, where δt is a reference time interval. This notation hints at the existence of a

scalar product. Indeed, a scalar product is required to identify the ’true force’, a linear form in dual

space, with a vector. However, as long as we think about forces as differential forms, no reference to

scalar products is needed.

Another example is current (density). In physics, we identify this with a vector field, much like force

above. However, this isn’t how currents are measured. Current densities are determined by fixing a

small surface area in space, and counting the number of charges that pass through that area per unit

time. Now, a small surface may be represented as the parallelogram spanned by two vectors v, w,

i.e. current density is something that assigns to two vectors a number (of charges). In other words,

current density is a two-form. (It truly is a two form (rather than a general covariant 2-tensor)

for the area of the surface is given by the anti-symmetric combination v × w. Think about this

point, or see below.) In electrodynamics we allow for time varying currents. It then becomes useful

to upgrade current to a three form, whose components determine the number of charges associated

to a space-time ’box’ spanned by a spatial area and a certain extension in time.

The simplest ’non-trivial’ forms are the differential one-forms. Locally, a one-form maps tangent

vectors into the reals: φx : TxU → R. Thus, φx is an element of the dual space of tangent

space, the so-called cotangent space, (TxU)∗. For a given basis (b1(x), . . . , bn(x)) of TxM ,2

the cotangent space is spanned by (b1(x), . . . , bn(x)). The induced set of 1–forms (b1, . . . , bn)

2 Depending on the context, we sometimes indicate the x-dependence of mathematical objects, F , by a bracket notation, ′F (x)′,
and sometimes by subscripts ′F ′x.
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defines a frame of the cotangent bundle, i.e. of the unification (TU)∗ ≡
⋃
x(TxU)∗. The

connection between a cotangent frame {bi} and another one {b′i} is given by

b′i(x) =

n∑
j=1

γij(x)bj(x),

where γ−1(x) is the matrix (function) generating the change of frames {bi} → {b′i}.
For a given coordinate system x = x(x1, . . . , xn) consider the coordinate frame {∂i}. Its dual

frame will be denoted by {dxi}. The action of the dual frame is defined by

dxi
(

∂

∂xj

)
= δij . (1.15)

Under a change of coordinate systems, {xi} → {yi},

dxi → dyi =
∑
j

∂yi

∂xj
dxj , (1.16)

i.e. in this case, γi j = ∂yi

∂xj . (Notice the mnemonic character of this formula.)

By analogy to (1.6), we expand a general p–form as

φ =
∑

i1,...,ip

φi1,...,ip b
i1 ∧ · · · ∧ bip , (1.17)

where φi1,...,ip(x) is a continuous function antisymmetric in its indices. Specifically, for the

coordinate forms introduced in (1.15), this expansion assumes the form

φ =
∑

i1,...,ip

φi1,...,ip dx
i1 ∧ · · · ∧ dxip . (1.18)

PHYSICS (M) Above, we had argued that the Lagrangian of a mechanical system should be

interpreted as a function L : TU → R on the tangent bundle. But where is Hamiltonian mechanics

defined? The Hamiltonian is a function H = (q, p) of coordinates and momenta. The latter are defined

through the relation pi = ∂L(q,q̇)

∂q̇i
. The positioning of the indices suggests, that the components

opi do not transform as the components of a vector. Indeed, consider a coordinate transformation

q′i = q′i(q). We have q̇′i = ∂q′i

∂qj
q̇j , which shows that velocities transform covariantly with the matrix

Ai j = ∂q′i

∂qj
. The momenta, however, transform as

p′i =
∂L(q(q′), q̇(q′, q̇′))

∂q̇′i
=
∂L(q(q′), q̇(q′, q̇′))

∂q̇j
∂q̇j

∂q̇′i
=
∂qj

∂q′i
pj ,

where we noted that q̇j = ∂qj

∂q′i q̇
′i implies ∂q̇j

∂q̇′i = ∂qj

∂q′i . This is covariant transformation behavior

under the matrix (A−1)i j = ∂qj

∂q′i . We are thus led to the conclusions that

The momenta pi of a mechanical system are the components of a covariant rank 1
tensor. Accordingly, the Hamiltonian H(q, p) is a function on the cotangent bundle TU∗.
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We can push this interpretation a little bit further: recall (cf. info block on p ??) that a vector space

V can be canonically identified with its dual, V ∗, iff V comes with a scalar product. This is relevant

to our present discussion, for

the Lagrangian of a mechanical systems defined a scalar product on tangent space, TU .

This follows from the fact that the kinetic energy T in L = T − U usually has the structure T =
1
2
q̇iFij(q)q̇

j of a bilinear form in velocities. This gives pi = Fij q̇
j , (where the q̇j on the r.h.s. needs

to be expressed as a function of q and p).

1.2.5 Pullback of differential forms

Let F : U → V be a smooth map as defined in (1.13). We may then define a pullback operation

F ∗ : ΛpV ∗ → ΛpU∗.

For ψ ∈ ΛpV ∗ it is defined by

(F ∗ψ)x(v1, . . . , vp) = ψF (x)(F∗v1, . . . , F∗vp).

For fixed x, this operation reduces to the vector space pullback operation defined in section

1.1.6. In the specific case p = 0, ψ is a function and F ∗ψ = ψ◦F . Straightforward generalization

of the identities discussed in section 1.1.6 obtains

. F ∗ is linear,

. F ∗(φ ∧ ψ) = (F ∗φ) ∧ (F ∗ψ),

. (G ◦ F )∗ = F ∗ ◦G∗.

Let {yj} and {xi} be coordinate systems of V and U , resp. (Notice that TU and TV need not

have the same dimensionality!). Then

(F ∗dyj)

(
∂

∂xi

)
= dyj

(
F∗

(
∂

∂xi

))
= dyj

(
∂F l

∂xi
∂

∂yl

)
=
∂F j

∂xi
,

or

(F ∗dyj) =
∂F j

∂xi
dxi. (1.19)

EXAMPLE In the particular case dimU = dimV = n,3 and degree(ψ) = n (a top–dimensional

form), ψ can be written as

ψ = gdy1 ∧ · · · ∧ dyn,

where g : V → R is a smooth function. The pullback of ψ is then given by

F ∗ψ = (g ◦ F ) det

(
∂F

∂x

)
dx1 ∧ · · · ∧ dxn,

3 By dimU we refer to the dimension of the embedding vector space Rn ⊃ U .
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where ∂F/∂x is shorthand for the matrix {∂F j/∂xi}. The appearance of a determinant signals that

top–dimensional differential forms have something to do with ’integration’ and ’volume’.

1.2.6 Exterior derivative

The exterior derivative

d : ΛpU → Λp+1U,

φ 7→ dφ,

is a mapping that increases the degree of forms by one. It is one of the most important operations

in the calculus of differential forms. To mention but one of its applications, the exterior derivative

encompasses the operations of vector analysis, div, grad, curl, and will be the key to understand

these operators in a coherent fashion.

To start with, consider the particular case of 0–forms, i.e. smooth functions f : U → R. The

1–form df is defined as

df =
∑
i

∂f

∂xi
dxi. (1.20)

A number of remarks on this definition:

. Eq. (1.20) is consistent with our earlier notation dxj for the duals of ∂
∂xf

. Indeed, for f = xj

a coordinate function, dxj = ∂xj

∂xi dx
i = dxj .

. Eq. (1.20) actually is a definition (is independent of the choice of coordinates.) For a different

coordinate system, {yi},

df =
∂f

∂yj
dyj =

∂f

∂xi
∂xi

∂yj
∂yj

∂xk
dxk =

∂f

∂xi
dxi,

where we used the chain rule and the transformation behavior of the dxj ’s Eq. (1.16).

. The evaluation of df on a vector field v = vi ∂
∂xi obtains

dfv =
∂f

∂xi
vi,

i.e. the directional derivative of f in the direction identified by the vector components vi.

Specifically, for vi = dtγ
i, defined by the velocity of a curve, dfdtγ = ∂f

∂xi dtγ
i = dt(f ◦ γ).

. The operation d defined by (1.20) obeys the Leibnitz rule,

d(fg) = dfg + gdf,

and is linear

d(af + bg) = adf + bdg, a, b = const. .

To generalize Eq. (1.20) to forms of arbitrary degree p, we need the following

Theorem: There is precisely one map d : ΛU → ΛU with the following properties:
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. d obeys the (graded) Leibnitz rule

d(φ ∧ ψ) = (dφ) ∧ ψ + (−)pφ ∧ (dψ), (1.21)

where p is the degree of φ.

. d is linear

d(aφ+ bψ) = adφ+ bdψ, a, b = const.

. d is nilpotent, d2 = 0.

. d(ΛpU) ⊂ Λp+1U .

. d(Λ0U) is given by the definition above.

To prove this statement, we represent an arbitrary form φ ∈ ΛpU as an unrestricted sum,

φ =
1

p!

∑
i1,...,ip

φi1,...,ipdx
i1 ∧ · · · ∧ dxip .

Leibnitz rule and nilpotency then imply

dφ =
1

p!

∑
i1,...,ip

(dφi1,...,ip)dxi1 ∧ · · · ∧ dxip , (1.22)

i.e. we have found a unique representation. However, it still needs to be shown that this repre-

sentation meets all the criteria listed above.

As for 1.), let

φ =
1

p!

∑
i1,...,ip

φi1,...,ipdx
i1 ∧ · · · ∧ dxip , ψ =

1

q!

∑
i1,...,iq

ψj1,...,jqdx
j1 ∧ · · · ∧ dxjq .

Then,

d(φ ∧ ψ) =
1

p!q!

∑
i1,...,ip
j1,...,jp

d(φi1,...,ipψj1,...,jq )dx
i1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq =

=
1

p!q!

∑
i1,...,ip
j1,...,jp

[
(dφi1,...,ip)ψj1,...,jp) + φi1,...,ipdψj1,...,jq

]
dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq =

= (dφ) ∧ ψ + (−)pφ ∧ dψ,

where we used the chain rule, and the relation dψ∧dxi1∧· · ·∧dxip = (−)pdxi1∧· · ·∧dxip∧dψ.

Property 3. follows straightforwardly from the symmetry/antisymmetry of second derivatives

∂2
xixjφi1,...,ip/differentials dxi ∧ dxj .
Importantly, pullback and exterior derivative commute,

F ∗ ◦ d = d ◦ F ∗, (1.23)

for any smooth function F . (The proof amounts to a straightforward application of the chain

rule.)
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INFO Let us briefly address the connection between exterior differentiation and vector calculus

alluded to in the beginning of the section. The discussion below relies on an identification of co-

and contravariant components that makes sense only in cartesian coordinates. It is, thus, limited in

scope and merely meant to hint at a number of connections whose coordinate invariant (geometric)

meaning will be discussed somewhat further down.

Consider a one–form φ = φidx
i, i.e. an object characterized by d (covariant) components. Its

exterior derivative can be written as

dφ =
∂φi
∂xj

dxj ∧ dxi =
1

2

(
∂φi
∂xj
− ∂φj
∂xi

)
dxj ∧ dxi.

Considering the case n = 3 and interpreting the coefficients φi, as components of a ’vector field’ vi,4

we are led to identify the three coefficients of the form dφ as the components of the curl of {φi}.
Similarly, identifying the three components of the two–form ψ = εijkψ

idxj ∧ dxk (εijk is the fully

antisymmetric tensor) with a vector field, ψi ↔ vi, we find dψ =
(
∂
∂xi

ψi
)
dx1 ∧ dx2 ∧ dx3, i.e. the

three–form dψ is defined by the divergence ∇ · v = ∂iv
i.

Finally, for a function φ, we have dφ = ∂iφdx
i, i.e. (the above naive identification understood) a

’vector field’ whose components are defined by the gradient ∇φ = {∂iφ}. (For a coordinate invariant

representation of the vector differential operators, we refer to section xx.)

Notice that in the present context relations such as ∇ ·∇× v = 0 or ∇×∇f = 0 all follow from

the nilpotency of the exterior derivative, d2 = 0.

PHYSICS (E) The differential forms of electrodynamics. One of the objectives of the present

course is to formulate electrodynamics in a geometrically oriented manner. Why this geometric

approach? If one is primarily interested in applied electrodynamics (i.e. the solution of Maxwell’s

equations in a concrete setting), the geometric formulation isn’t of that much value: calculations are

generally formulated in a specific coordinate system, and once one is at this stage, it’s all down to the

solution of differential equations. The strengths of the geometric approach are more of conceptual

nature. Specifically, it will enable us to

. understand the framework of physical foundations needed to formulate electrodynamics. Do we

need a metric (the notion of ’distances’) to formulate electrodynamics? How does the structure of

electrodynamics emerge from the condition of relativistic invariance? These questions and others

are best addressed in a geometry oriented framework.

. formulate the equations of electrodynamics in a very concise, and easy to memorize manner. This

compact formulation is not only of aesthetic value, rather, it connects to the third and perhaps

most important aspect:

. understand electrodynamics as a representative of a family of theories known as gauge theories.

The interpretation of electrodynamics as a gauge theory has paved the way to one of the most

rewarding and important developments in modern theoretical physics, the understanding of funda-

mental ’forces’ electromagnetism, weak and strong interactions, and gravity as part of one unifying

scheme.

We will here formulate the geometric view of electrodynamics in a ’bottom up’ approach. That is,

we will introduce the basic objects of the theory, fields, currents, etc. first on a purely formal level.

The actual meaning of the definitions will then gradually get disclosed as we go along.

4 The naive identification φi ↔ vi does not make much sense, unless we are working in cartesian coordinates. That’s why the
expressions derived here hold only in cartesian frames.
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Electrodynamics is formulated in (4 = 3 + 1)–dimensional space, three space dimensions and one

time dimension. For the time being, we identify this space with R4. Unless stated otherwise, cartesian

coordinates (x0, x1, x2, x3, x4) will be understood, where x0 = ct measures time, and c is the speed

of light.

Let us begin by introducing the ’sources’ of the theory: we define the current 3-form, j ∈ Λ3R4,

j =
1

3!
εµνλρj

µdxν ∧ dxλ ∧ dxρ, (1.24)

where εµνλρ is the fully antisymmetric tensor in four dimensions.5 We may rewrite this as

j =j0dx1 ∧ dx2 ∧ dx3−
j1dx2 ∧ dx3 ∧ dx0−
j2dx3 ∧ dx1 ∧ dx0−
j3dx1 ∧ dx2 ∧ dx0.

We tentatively identify j1,2,3 with the vectorial components of the

current density familiar from electrodynamics. This means that, say, j1

will be the number of charges flowing through surface elements in the

(23)-plane during a given time interval. Comparing with our heuristic

discussion in the beginning of the chapter, we have extended the defini-

tion by a ’dynamical component’, i.e. j1 actually measures the number

of charges associated with a ’space-time box’ spanned by a spatial area

in the (23) plane and a stretch in the 0-direction (time.) To be more pre-

cise, take a triplet of vectors (∆x2e2,∆x
3e3,∆x

0e0), anchored at a space time point (x0, x1, x2, x3).

The value obtained by evaluating the current form on these arguments, j(∆x2e2,∆e
3e3, c∆te0),

then is the number of charges passing through the area ∆x2∆x3 at (x1, x2, x3) during time interval

[t, t + ∆t], where ∆t = ∆x0/c (see the figure, where the solid arrows represent the time line of

particles passing through the shaded spatial area in time ∆t.) Similarly, j0 will be interpreted as (c

times) the number of charges in a spatial box spanned by the (1, 2, 3)–coordinates. Thus, j0 = cρ,

where ρ is the physical charge density.
On physical grounds, we need to impose a continuity equation,

∂µj
µ = ∂tρ+

∑3
i=1 ∂xij

i = ∂µj
µ = 0.6 This condition is equivalent to

the vanishing of the exterior derivative,

dj = 0. (1.25)

To check this, compute

dj =
1

3!
εµνλρ ∂τ j

µ dxτ ∧ dxν ∧ dxλ ∧ dxρ =

=
1

3!
εµνλρ ∂τ j

µ ετνλρdx0 ∧ dx1 ∧ dx2 ∧ dx3 = ∂µj
µ dx0 ∧ dx1 ∧ dx2 ∧ dx3,

where the second equality follows from the antisymmetry of the wedge product and the third from

the properties of the antisymmetric tensor (see below), εµνλρε
τνλρ = 3!δτµ.

5 I.e. εµνλρ vanishes if any two of its indices are identical. Otherwise, it equals the sign of the permutation (0, 1, 2, 3) →
(ε, µ, ν, σ).

6 Following standard conventions, indices i, j, k, . . . are ’spatial’ and run from 1 to 3, while µ, ν, ρ are space-time indices
running from zero to three.
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Figure 1.5 Cartoon on the measurement prescriptions for electric fields (left) and magnetic fields
(right). Discussion, see text.

Next in our list of definitions are the electric and magnetic fields. The electric field bears similarity

to a force. At least, it is measured like a force is, that is by displacement of a test particle along (small)

stretches in space and recording the corresponding work. Much like a force, the electric field is something

that converts a ’vector’ (infinitesimal curve segment) into a number (work). We thus describe the field

in terms of a one-form

E = Eidx
i, (1.26)

where Ei = Ei(x, t) are the time dependent coefficients of the field strength. In cartesian coordinates

(and assuming the standard scalar product), these can be identified with the components of the electric

field ’vector’. The magnetic field, in contrast, is not measured like a force. Rather, one measures the

magnetic flux threading spatial areas (e.g. by measuring the torque exerted on current loops.) In analogy

to our discussion on page ?? we thus define the magnetic field as a two-form

B = B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2. (1.27)

Attentive readers may wonder how this expression fits into our previous discussion of coordinate repre-

sentations of differential forms: as it is written, B is not of the canonical form B = Bijdx
i ∧ dxj . On

a similar note, one may ask how the coefficients Bi above relate to the familiar magnetic field ’vector’

Bv of electrodynamics (the subscript v serves to distinguish Bv from the differential form.) The first

thing to notice is that Bv is not a conventional vector, rather it is a pseudovector, or axial vector. A

pseudovector is a vector that transforms conventionally under spatial rotation. However, under parity

non-conserving operations (reflection, for example), it transforms like a vector, plus it changes sign (see

Fig. 1.6.) Usually, pseudovectors obtain by taking the cross product of conventional vectors. Familiar

examples include angular momentum, l, (l = r × p) and the magnetic field, Bv.

To understand how this relates to the two-form introduced above, let us rewrite the latter as B =
1
2
Biεijkdx

i ∧ dxk, where Bi transforms contravariantly (like a vector.) Comparison with B shows that,

e.g., B1 = B1ε123 = B̃1. I.e. in a given basis, B1 = B1 and we may identify these with the components

of the field (pseudo)vector Bv. However, under a basis change, Bi → Ai jB
j transforms like a vector,

while (check it!) εijk → εijk det(A). This means Bi → Ai jBj det(A). For rotations, detA = 1 and

{Bi} transforms like a vector. However, for reflections detA = −1, we pick up an additional sign

change. Thus, {Bi} transforms like a pseudovector, and may be identified with the magnetic field

strength (pseudo)vector Bv. The distinction between pseudo- and conventional vectors can be avoided,

if we identify B with what it actually is, a differential two-form.
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Figure 1.6 On the axial nature of the magnetic field. Spatial reflection at a plane leads to reflection
of the field vector plus a sign change. In contrast, ordinary vectors (such as the current density
generating the field) just reflect.

We combine the components of the electric field, E, and the magnetic field, B, into the so–called

field strength tensor,

F ≡ E ∧ dx0 +B ≡ Fµνdxµ ∧ dxν . (1.28)

Comparison with the component representations in (1.26) and (1.27) shows that

{Fµν} =

 0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (1.29)

It is straightforward to verify that the homogeneous Maxwell equations, commonly written as

(CGS units)

∇ ·B = 0,

1

c

∂

∂t
B +∇× E = 0,

are equivalent to the closedness of the field strength tensor,

dF = 0. (1.30)

We next turn to the discussion of the two partner fields of E and B, the electric D-field and the

magnetic H-field, respectively. In vacuum, these are usually identified with E and B, i.e. E = D

and B = H, resp. However, in general, the fields are different and this shows quite explicitly in

the present formalism. In principle, D and H can be introduced with reference to a measurement

prescription, much like we did above with E and B. However, this discussion would lead us too far

astray and we here introduce these fields pragmatically. That is, we require that D and H satisfy a

differential equation whose component-representation equals the inhomogeneous Maxwell equations.

To this end, we define the two form D by

D = D1dx
2 ∧ dx3 +D2dx

3 ∧ dx1 +D3dx
1 ∧ dx2, (1.31)

similar in structure to the magnetic (!) form B. The field H is defined as a one-form,

H = Hidx
i. (1.32)
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The components {Di} and {Hi} appearing in these definitions are two be identified with the ’vector’

components in the standard theory where, again, the appearance of covariant indices indicates that

the vectorial interpretation becomes problematic in non-metric environments. We now define the

differential two-form

G ≡ −H ∧ dt+D = Gµνdx
µ ∧ dxν , (1.33)

with component representation

{Gµν} =

 0 H1 H2 H3

−H1 0 D3 −D2

−H2 −D3 0 D1

−H3 D2 −D1 0

 . (1.34)

With these definitions it is straightforward to verify that the inhomogeneous Maxwell equations

assume the form

dG = j. (1.35)

What the present discussion does not tell us is how the two main players in the theory, the covariant

tensors F and G are connected to each other. To establish this connection, we need additional

structure, viz. a metric, and this is a point to which we will return below.

To conclude this section let us briefly address the coupling between electromagnetic fields and matter.

This coupling is mediated by the Lorentz force acting on charges q, which, in standard notation, assumes

the form F = q(E + v × B). Here, v is the velocity vector, and all other quantities are vectorial, too.

Translating to forms, this reads

F = q(E − ivB), (1.36)

where F is the force one-form.

INFO The general fully antisymmetric tensor or Levi-Civita symbol or ε-tensor is a mixed tensor

defined by

εµ1,...,µn
ν1,...,νn =

 +1 , (µ1, . . . , µn) an even permutation of (ν1, . . . , νn),
−1 , (µ1, . . . , µn) an odd permutation of (ν1, . . . , νn),
0 , else.

(1.37)

In the particular case (µ1, . . . , µn) = (1, . . . , n) one abbreviates the notation to ε1,...,nν1,...,νn ≡
εν1,...,νn . Similarly, εµ1,...,µn

1,...,n ≡ εµ1,...,µn . Important identities fulfilled by the ε–tensor include

εµ1,...,µnε
µ1,...,µn = n! and εµ,µ2,...,µnε

µ′,µ2,...,µn = (n− 1)!δµ
′
µ .

1.2.7 Poincaré Lemma

Forms φ which are annihilated by the exterior derivative, dφ = 0, are called closed. For example,

every n–form defined on U ⊂ Rn is closed. Also, forms φ = dκ that can be written as exterior

derivatives of another form κ — so called exact forms — are closed. One may wonder whether

every closed form is exact, dφ = 0
?⇒ φ = dκ. The answer to this question is negative; in general

closedness does not imply exactness.
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EXAMPLE On U = R2 − {0} consider the form

ψ =
xdy − ydx
x2 + y2

.

It is straightforward to verify that dψ = 0. Nonetheless, ψ is not exact: one may verify that ψ =

d arctan(y/x), everywhere where the defining function exists. However the function arctan(y/x) is

ill–defined on the positive x–axis, i.e. ψ can not be represented as the exterior derivative of a smooth

function on the entire domain of definition of ψ. (A more direct way to see this is to notice that on

R2 −{0}, ψ = dφ, where φ is the polar angle. The latter ’jumps’ at the positive x–axis by 2π, i.e. it

is not well defined on all of U .)

The conditions under which a closed form is exact are stated by the

Theorem (Poincaré Lemma): On a star–shaped7 open subset U ⊂ Rn a form φ ∈ ΛpU is

exact if and only if it is closed.

The Lemma is proven by explicit construction. We here restrict ourselves to the case of

one–forms, φ ∈ Λ1U and assume that the reference point establishing the star–shapedness of

U is at the origin. Let the one–form φ = φidx
i be closed. Then, the zero–form (function)

f(x) =
∫ 1

0
dt
∑
i φi(tx)xi satisfies the equation df = φ, i.e. we have shown that φ is exact.

(Notice that the existence of the integration path tx, t ∈ [0, 1] relies on the star–shapedness of

the domain.) Indeed,

df =

∫ 1

0

dt

[
t
∂φi(y)

∂yj

∣∣∣
y=tx

dxjxi + φi(tx)dxi
]

=

=

∫ 1

0

dt
[
tdtφi(tx)dxi + φi(tx)dxi + t

(
∂φi
∂yj
− ∂φj
∂yi

)
︸ ︷︷ ︸

0 (dφ=0)

dxjdxi
]

=

= φi(x)dxi,

where in the last line we have integrated by parts. (Notice that
∫ 1

0
dt φi(tx)xi =

∫ 1

0
dt φi(tx)dt(tx) =∫

dxiφi coincides with the standard vector–analysis definition of the line–integral of the ’irro-

tational field {φi}’ along the straight line from the origin to x. The proof of the Lemma for

forms of higher degree p > 1 is similar.

INFO The above example, and the proof of the Lemma suggest a connection (exactness ↔ geom-

etry). This connection is the subject of cohomology theory.

1.2.8 Integration of forms

Orientation of open subsets U ⊂ Rn

We generalize the concept of orientation introduced in section 1.1.7 to open subsets U ⊂ Rn.

Consider a no–where vanishing form ω ∈ ΛnU , i.e. a form such that for any frame (b1, . . . , bn),

7 A subset U ⊂ Rn is star–shaped if there is a point x ∈ U such that any other y ∈ U is connected to x by a straight line.
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∀x ∈ U : ωx(b1(x), . . . , bn(x)) 6= 0. We call the frame (b1, . . . , bn) oriented if

∀x ∈ U, ωx(b1(x), . . . , bn(x)) > 0. (1.38)

A set of coordinates (x1, . . . , xn) is called oriented if the associated frames (∂/∂x1 , . . . , ∂/∂xn)

are oriented.

Conversely, an orientation of U may be introduced by declaring

ω = dx1 ∧ · · · ∧ dxn

to be an orienting form. Finally, two forms ω1 and ω2 define the same orientation iff they differ

by a positive function ω1 = fω2.

Integration of n–forms

Let K ⊂ U be a sufficiently (in the sense that all regular integrals we are going to consider exist)

regular subset. Let (x1, . . . , xn) be an oriented coordinate system on U . An arbitrary n–form

φ ∈ ΛnU may then be written as φ = f dx1 ∧ · · · ∧ dxn, where f is a smooth function given by

f(x) = φx

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

The integral of the n–form φ is then defined as∫
K

φ ≡
∫
K

f(x) dx1 . . . dxn, φ = f(x) dx1 ∧ · · · ∧ dxn, (1.39)

where the notation
∫
K

(. . . )dx1 . . . dxn (no wedges between differentials) refers to the integral

of standard calculus over the domain of coordinates spanning K.

Under a change of coordinates, (x1, . . . , xn)→ (y1, . . . , yn), the integral changes as∫
K,x

φ→ sgn det

(
∂xi

∂yj

) ∫
K,y

φ,

where
∫
K,x

φ is shorthand for the evaluation of the integral in the coordinate representation x.

The sign factor sgn det(∂xi/∂yj) has to be read as

sgn det

(
∂xi

∂yj

)
=

∣∣∣det
(
∂xi

∂yj

)∣∣∣
det
(
∂xi

∂yj

) ,

where the modulus of the determinant in the numerator comes from the variable change in the

standard integral and the determinant in the denominator reflects is due to φ = f(x)dx1 ∧
· · · ∧ dxn = f(x(y)) det(∂xi/∂yj) dy1 ∧ · · · ∧ dyn. This results tells us that (a) the integral is

invariant under an orientation preserving change of coordinates (the definition of the integral

canonical) while (b) it changes sign under a change of orientation.

Let F : V → U, y 7→ F (y) ≡ x be a diffeomorphism, i.e. a bijective map such that F and

F−1 are smooth. We also assume that F is orientation preserving, i.e. that dy1∧· · ·∧dyn ∈ ΛnV
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Figure 1.7 On the definition of oriented p-dimensional surfaces embedded in Rn

and F ∗(dx1∧ · · ·∧dxn) ∈ ΛnV define the same orientation. This is equivalent to the condition

(why?) det(dxi/dyj) > 0. We then have∫
F−1(K)

F ∗φ =

∫
K

φ. (1.40)

The proof follows from F ∗(f(x) dx1 ∧ · · · ∧ dxn) = det(dxi/dyj)f(x(y)) dy1 ∧ · · · ∧ dyn, the

definition of the integral Eq. (1.39), and the standard calculus rules for variable changes.

Integration of p–forms

A p–dimensional oriented surface T ⊂ Rn is defined by a smooth parameter representation

Q : K → T, (τ1, . . . , τp) 7→ Q(τ1, . . . , τp) where K ⊂ V ⊂ Rp, and V is an oriented open

subset of Rp, i.e. a subset equipped with an oriented coordinate system.

The integral of a p–form over the surface T is defined by∫
T

φ =

∫
K

Q∗φ. (1.41)

On the rhs we have an integral over a p–form in p–dimensional space to which we may apply

the definition (1.39). If p = n, we may choose a parameter representation such that V = U ,

K = T and Q =inclusion map. With this choice, Eq. (1.41) reduces to the n–dimensional case

discussed above. Also, a change of parameters is given by an orientation preserving map in

parameter space V . To this parameter change we may apply our analysis above (identification

p = n understood). This shows that the definition (1.41) is parameter independent.

Examples:

. For p = 1, T is a curve in Rn. The integral of a one form φ = φidx
i along T is defined by∫

T

φ =

∫
[0,1]

Q∗φ =

∫
[0,1]

φi(Q(τ))
∂Qi

∂τ
dτ, (1.42)

where we assumed a parameter representation Q : [0, 1] → T, τ → Q(τ). The last expres-

sion conforms with the standard calculus definition of line integrals provided we identify the

components of the form φi with a vector field.
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. For p = 2 and n = 3 we have a surface in three–dimensional space. Assuming a parameter

representation Q : [a, b] × [c, d] → T, (τ1, τ2) → Q(τ1, τ2), and a form φ = v1dx2 ∧ dx3 +

v2dx3 ∧ dx1 + v3dx1 ∧ dx2 = 1
2εijkv

idxj ∧ dxk, we get∫
T

φ =

∫
[a,b]×[c,d]

Q∗φ = (1.43)

=
1

2

∫
[a,b]×[c,d]

εijkv
i(Q(τ1, τ2))

(
∂Qj

∂τ1

∂Qk

∂τ2
− ∂Qj

∂τ2

∂Qk

∂τ1

)
dτ1dτ2 =

=

∫
[a,b]×[c,d]

εijkv
i(Q(τ1, τ2))

∂Qj

∂τ1

∂Qk

∂τ2
dτ1dτ2. (1.44)

In the standard notation of calculus, this would read
∫
dτ1dτ2 v · (∂τ1Q× ∂τ2Q) =

∫
dS n · v,

where dS n = ∂τ1Q× ∂τ2Q is ’surface element × normal vector field’.

Cells and chains

A p–cell σ of in Rp is a triple σ = (D,Q,Or) consisting of (cf. Fig. 1.8)

. a convex polyhedron D ⊂ Rp,

. a differentiable mapping (parameterization) Q : D → K ⊂ Rn, and

. an orientation (denoted ’Or’) of Rp.

Using the language of cells, our previous definition of the integral of a p–form assumes the form∫
σ

φ =

∫
D

Q∗φ,

where we have written
∫
σ

(instead of
∫
Q(D)

for the integral over the cell. The p–cell differing

from σ in the choice of orientation is denoted −σ. If no confusion is possible, we will designate

cells σ = (D,Q,Or) just by reference to their base–polyhedron D, or to their image Q(D).

(E.g. what we mean when we speak of the 1–’cell’ [a, b] is (i) the interval [a, b] plus (ii) the

image Q([a, b]) with (iii) some choice of orientation.)

EXAMPLE Let σ be the unit–circle, S1 in two–dimensional space. We may represent σ by a 1–cell

in R2 whose base polyhedron is the interval I = [0, 2π] of (oriented) R1 and the map Q : [0, 2π]→
R2, t 7→ (cos t, sin t) The integral of the 1–form φ = x1dx2 ∈ Λ1R2 over σ then evaluates to∫

σ

φ =

∫
I

Q∗φ =

∫
I

cos t d(sin t) =

∫ 2π

0

cos2 t dt = π.

Now, let σ be the unit–disk, D2 in two dimensional space. We describe σ by

Q : D ≡ [0, 1]× [0, 2π] → D2,

(r, φ) 7→ (r cosφ, r sinφ).

The integral of the one–form d(x1dx2) = dx1 ∧ dx2 over σ is given by∫
D2

dx1 ∧ dx2 =

∫
D

Q∗(dx1 ∧ dx2) =

∫
det

(
d(x1, x2)

d(r, φ)

)
︸ ︷︷ ︸

r

dr ∧ dφ =

∫ 1

0

dr

∫ 2π

0

r = π.

We thus observe
∫
S1 x

1dx2 =
∫
D2 d(x1x2), a manifestation of Stokes theorem ...
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Figure 1.8 On the concept of oriented cells and their boundaries. Discussion, see text

As a generalization of a single cell, we introduce chains. A p–chain is a formal sum

c = m1σ1 + · · ·+mrσr,

where σi are p–cells and the ’multiplicities’ mi ∈ Z integer valued coefficients. Introducing the

natural identifications

. m1σ1 +m2σ2 = m2σ2 +m1σ1,

. 0σ = 0,

. c+ 0 = c,

. m1σ +m2σ = (m1 +m2)σ,

. (m1σ1 +m2σ2) + (m′1σ
′
1 +m′1σ

′
2) = m1σ1 +m2σ2 +m′1σ

′
1 +m′2σ

′
2,

the space of p–chains, Cp, becomes a linear space.8

Let σ be a p–cell. Its boundary ∂σ is a (p − 1)–chain in which may be defined as follows:

Consider the p − 1 dimensional faces Di of the polyhedron D underlying σ. The mappings

Qi : Di → Rn are the restrictions of the parent map Q : D → Rn to the faces Di. The faces

Di inherit their orientation from that of D. To see this, let (e1, . . . , ep) be a positively oriented

frame of D. At a point xi ∈ Di consider a vector n normal and outwardly directed (w.r.t. the

bulk of D.) A frame (f1, . . . , fp−1) is positively oriented, if (n, f1, fp−1) is oriented in the same

way as (e1, . . . , ep). We thus define9

∂σ =
∑
i

σi,

where σi = (Di, Q
∣∣
Di
,Ori) and Ori is the induced orientation. The collection of faces, Di,

defines the boundary of the base polyhedron D:

∂D =
∑
i

Di.

8 Strictly speaking, the integer–valuedness of the coefficients of elementary cells implies that Cp is an abelian group (rather
than the real vector space we would have obtained were the coefficients arbitrary.)

9 These definitions work for (p > 1)–cells. To include the case p = 1 into our definition, we agree that a 0–chain is a collection

of points with multilplicities. The boundary ∂σ of a 1–cell defined in terms of a line segment ~AB from a point A to B is
B − A.
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The boundary of a p–chain σ =
∑
imiσi is defined as ∂σ =

∑
imi∂σi. We may, thus,

interpret ∂ as a linear operator, the boundary operator mapping p chains onto p− 1 chains:

∂ : Cp → Cp−1

σ 7→ ∂σ. (1.45)

Let φ ∈ ΛpU be a p–form and σ =
∑
miσi ∈ Cp be a p–chain. The integral of φ over σ is

defined as ∫
σ

φ ≡
∑
i

mi

∫
σi

φ. (1.46)

1.2.9 Stokes theorem

Theorem (Stokes): Let σ ∈ Cp+1 be an arbitrary (p + 1)–chain and φ ∈ ΛpU be an arbitrary

p–form on U . Then, ∫
∂σ

ω =

∫
σ

dω. (1.47)

Examples

Before proving this theorem, we go through a number of examples. (For simplicity, we assume

that σ = (D,Q,Or) is an elementary cell, where D = [0, 1]p+1 is a (k + 1)–dimensional unit–

cube and Q(D) ⊂ U lies in an open subset U ⊂ Rn. We assume cartesian coordinates on

U .)

. p = 0, n = 1: Consider the case where Q : D → Q(D) is just the inclusion mapping embedding

the line segment D = [0, 1] into R. The boundary ∂D = 1− 0 is a zero–chain containing the

two terminating points 1 and 0. Then,
∫
∂[0,1]

φ = φ(1) − φ(0) and
∫

[0,1]
dφ =

∫
[0,1]

∂xφdx,

where φ is any 0–form (function), i.e. Stokes theorem reduces to the well known integral

formula of one–dimensional calculus.

. p = 0 arbitrary n: The cell σ = ([0, 1], Q,Or) defines a curve γ = Q([0, 1]) in Rn. Stokes

theorem assumes the form

φ(Q(1))− φ(Q(0)) =

∫
γ

dφ =

∫
[1,0]

d(φ ◦Q) =

∫ 1

0

∑
i

∂φ

∂xi

∣∣∣
Q(s)

Q̇i(s)ds,

i.e. it relates the line integral of a ’gradient field’ ∂iφ to the value of the ’potential’ φ at the

boundary points.

. p = 1, n = 3 : The cell σ = ([0, 1]× [0, 1], Q,Or) represents a smooth surface embedded into

R3. With φ = φidx
i, the integral∫

∂σ

φ =

∫
∂σ

φi dx
i =

∫
∂[0,1]2

φi(Q(τ))
∂Qi

∂τ
dτ
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reduces to the line integral over the boundary ∂([0, 1]2) = [0, 1]×{0}+ {1}× [0, 1]− [0, 1]×
{1} − {0} × [0, 1] of the square [0, 1]2 (cf. Eq. (1.42)). With dφi dx

i = ∂φi
∂xj dx

j ∧ dxi, we

have (cf. Eq. (1.43))∫
σ

dφ =

∫
σ

∂φi
∂xj

dxj ∧ dxi =

∫
[0,1]2

εkji
∂(φ ◦Q)j

∂xj
εklm

∂Ql

∂τ1

∂Qm

dτ2
dτ1dτ2.

Note that (in the conventional notation of vector calculus) εkji ∂φ
i

∂xj = (∇ × φ)k, i.e. we

rediscover the formula ∫
γ

ds · φ =

∫
σ

dS · (∇× φ),

(known in calculus as Stokes law.)

. p = 2, n = 3 : The cell σ = ([0, 1]3, Q,Or) defines a three dimensional ’volume’ Q([0, 1]3) in

three–dimensional space. Its boundary ∂σ is a smooth surface. Let φ ≡ 1
2φij dx

i ∧ dxj be a

two–form. Its exterior derivative is given by dφ = 1
2ε
kij ∂φij

∂xk
dxk ∧ dxi ∧ dxj and the l.h.s. of

Stokes theorem assumes the form∫
∂σ

φ =
1

2

∫
∂σ

φij dx
i ∧ dxj =

∫
∂([0,1]3)

(φ ◦Q)ij
∂Qi

∂τ1

∂Qj

∂τ2
dτ1dτ2.

The r.h.s. is given by∫
σ

dφ =
1

2

∫
σ

εkij
∂φij
∂xk

dxk ∧ dxi ∧ dxj =
1

2

∫
[0,1]3

εkij
∂(φ ◦Q)ij

∂xk
det

(
∂Q

∂τ

)
dτ1dτ2dτ3.

Identifying the three independent components of φ with a vector according to φij = εijkv
k,

we have 1
2ε
kij ∂φij

∂xk
= ∇ · v and Stokes theorem reduces to Gauß law of calculus,∫

∂σ

dS · v =

∫
σ

dV (∇ · v).

Proof of Stokes theorem

Thanks to Eq. (1.46) it suffices to prove Stokes theorem for individual cells.

To start with, let us assume that the cell σ = ([0, 1]p+1, Q,Or) has a unit–(p+1)–cube as its

base. (Later on, we will relax that assumption.) Consider [0, 1]p+1 to be dissected into N � 1

small cubes ri of volume 1/N � 1. Then, σ =
∑
i σi where σi = (ri, Q,Or) and ∂σ =

∑
i ∂σi.

Since
∫
σ
dφ =

∑
i

∫
σi
dφ and

∫
∂σ
φ =

∑∫
∂σi

φ, it is sufficient to prove Stokes theorem for the

small ’micro–cells’.

Without loss of generality, we consider the corner–cube r1 ≡ ([0, ε]p+1, Q,Or), where ε =

N−
1
p+1 . For (notational) simplicity, we set p = 1; the proof for general p is absolutely analogous.

By definition, ∫
r1

dφ =

∫
[0,ε]2

Q∗dφ =

∫
[0,ε]2

dQ∗φ.
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Assuming that the 1–form φ is given by φ = φidx
i, we have

dQ∗φ = dQ∗(φidx
i) = d((φ ◦Q)id(xi ◦Q︸ ︷︷ ︸

Qi

)) = d(φ ◦Q)i ∧ dQi =

=

[
∂(φ ◦Q)i
∂τ1

∂Qi

∂τ2
− ∂(φ ◦Q)i

∂τ2

∂Qi

∂τ1

]
dτ1 ∧ dτ2.

We thus have∫
[0,ε]2

dQ∗φ =

∫ ε

0

dτ1dτ2

[
∂(φ ◦Q)i
∂τ1

∂Qi

∂τ2
− ∂(φ ◦Q)i

∂τ2

∂Qi

∂τ1

]
=

= ε2
[
∂(φ ◦Q)i
∂τ1

∂Qi

∂τ2
− ∂(φ ◦Q)i

∂τ2

∂Qi

∂τ1

]
(0, 0) +O(ε3).

We want to relate this expression to
∫
∂r1

φ =
∫
∂[0,ε]2

Q∗φ =
∫
∂[0,ε]2

(φ ◦ Q)idQ
i. Considering

the first of the four stretches contributing to the boundary ∂[0, ε]2 = [0, ε]×{0}+{ε}× [0, ε]−
[0, ε]× {ε} − {0} × [0, ε] we have∫ ε

0

(
(φ ◦Q)i

∂Qi

∂τ1

)
(τ1, 0) dτ1 ' ε

(
(φ ◦Q)i

∂Qi

∂τ1

)
(0, 0) +O(ε2).

Evaluating the three other contributions in the same manner and adding up, we obtain∫
∂r1

φ = ε

((
(φ ◦Q)i

∂Qi

∂τ1

)
(0, 0) +

(
(φ ◦Q)i

∂Qi

∂τ2

)
(0, ε)−

−
(

(φ ◦Q)i
∂Qi

∂τ1

)
(0, ε)−

(
(φ ◦Q)i

∂Qi

∂τ2

)
(0, 0)

)
+O(ε2) =

= −ε2
(

∂

∂τ2

(
(φ ◦Q)i

∂Qi

∂τ1

)
− ∂

∂τ1

(
(φ ◦Q)i

∂Qi

∂τ2

))
(0, 0) +O(ε3) =

= ε2
(
∂(φ ◦Q)i
∂τ1

∂Qi

∂τ2
− ∂(φ ◦Q)i

∂τ2

∂Qi

∂τ1

)
(0, 0) +O(ε3),

i.e. the same expression as above. This proves Stokes theorem for an individual micro–cell and,

thus, (see the argument given above) for a d–cube.

INFO The proof of the general case proceeds as follows: A d–simplex is the volume spanned by

d + 1 linearly independent points (a line in one dimension, a triangle in two dimensions, a tetrad in

three dimensions, etc.) One may show that (a) a d–cube may be diffeomorphically mapped onto a

d–simplex. This implies that Stokes theorem holds for cells whose underlying base polyhedron is a

simplex. Finally, one may show that (b) any polyhedron may be decomposed into simplices, i.e. is

a chain whose elementary cells are simplices. As Stokes theorem trivially carries over from cells to

chains one has, thus, proven it for the general case.

1.3 Metric

In our so far discussion, notions like ’length’ or ’distances’ – concepts of paramount importance

in elementary geometry – where not an issue. Yet, the moment we want to say something about
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the actual shape of geometric structures, means to measure length have to be introduced. In

this section, we will introduce the necessary mathematical background and various follow up

concepts built on it. Specifically, we will reformulate the standard operations of vector analysis

in a manner not tied to specific coordinate systems. For example, we will learn to recognize the

all–infamous expression of the ’Laplace operator in spherical coordinates’ as a special case of a

structure that not difficult to conceptualize.

1.3.1 Reminder: Metric on vector spaces

As before, V is an n–dimensional R-vector space. A (pseudo)metric on V is a bilinear form

g : V × V → R,
(v, w) 7→ g(v, w) ≡ 〈v, ω〉,

which is symmetric, g(v, w) = g(w, v) and non–degenerate: ∀w ∈ V, g(v, w) = 0 ⇒ v = 0.

Occasionally, we will use the notation (V, g) to designate the pair (vector space,its metric).

Due to its linearity, the full information on g is stored in its value on the basis vectors ei,

gij ≡ g(ei, ej).

(Indeed, g may be represented as g = gije
i ⊗ ej ∈ T 0

2 (V ).) The matrix {gij} is symmetric

and has non–vanishing determinant, det(gij) 6= 0. Under a change of basis, e′i = (A−1)jiej it

transforms covariantly, g′ii′ = (A−1)ji(A
−1)j

′

i′gi′j′ , or

g′ii′ = (A−1T gA−1)ii′ .

Being a symmetric bilinear form, the metric may be diagonalized, i.e. a basis {ẽi} exists, wherein

gij = g(ẽi, ẽj) ∝ δij . Introducing orthonormalized basis vectors by θi = ẽi/(g(ẽi, ẽi)
1/2), the

matrix representing g assumes the form

g = η ≡ diag(1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
n−r

), (1.48)

where we have ordered the basis according to the signature of the eigenvalues. The set of trans-

formations A leaving the metric form–invariant, A−1T ηA−1 = η defines the (pseudo)orthogonal

group, O(r, n−r). The difference, 2r−n between the number of positive and negative eigenval-

ues is called the signature of the metric. (According to the theorem of Sylvester), the signature

is invariant under changes of basis. A metric with signature n is called positive definite.

Finally, a metric may be defined by choosing any basis and declaring it to be orthonormal,

g(θi, θj) ≡ ηij .

1.3.2 Induced metric on dual space

Let {θi} be an orthonormal basis of V and {θi} be the corresponding dual basis. We define a

metric
∗
g on V ∗ by requiring

∗
g (θi, θj) ≡ ηij . Here, {ηij} is the inverse of the matrix {ηij}.10

10 The distinction has only notational significance: {ηij} is self inverse, i.e. ηij = ηij .
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Now, let {ei} be an arbitrary oriented basis and {ei} its dual. The matrix elements of the metric

and the dual metric are defined as, respectively, gij ≡ g(ei, ej) and gij ≡
∗
g (ei, ej). (Mind the

position of the indices!) By construction, one is inverse to the other,

gikg
kj = δji. (1.49)

Canonical isomorphism V → V ∗

While V and V ∗ are isomorphic to each other (by virtue of the mapping ei 7→ ei) the isomorphy

between the two spaces is, in general, not canonical; it relies on the choice of the basis {ei}.
However, for a vector space with a metric g, there is a basis–invariant connection to dual

space: to each vector v, we may assign a dual vector v∗ by requiring that ∀w ∈ V : v∗(w)
!
=

g(v, w). We thus have a canonical mapping:

J : V → V ∗,

v 7→ v∗ ≡ g(v, . ). (1.50)

In physics, this mapping is called raising or lowering of indices: For a basis of vectors {ei}, we

have

J(ei) = gije
j

For a vector v = viei, the components of the corresponding dual vector J(v) ≡ vie
i obtain as

vi = gijv
j , i.e. again by lowering indices.

Volume form

If {θi} is an oriented orthonormal basis, the n–form

ω ≡ θ1 ∧ · · · ∧ θn (1.51)

is called a volume form. Its value ω(v1, . . . , vn) is the volume of the parallel epiped spanned

by the vectors v1, . . . , vn.

As a second important application of the general basis, we derive a general representation

of the volume form. Let the mapping {θi} → {ei} be given by θi = (A−1)jiej . Then, we have

the component representation of the metric

ηij = Aikg
kl(AT ) jl . (1.52)

Taking the determinant of this relation, using that detA > 0 (orientation!), and noting that

det{gij}/ det{ηij} = |det{gij}|, we obtain the relation

detA = |g|1/2, (1.53)

where we introduced the notation

g ≡ det{gij} = (det{gij})−1.
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At the same time, we know that the representation of the volume form in the new basis reads

as ω = detAe1 ∧ · · · ∧ en, or

ω = |g|1/2 e1 ∧ · · · ∧ en. (1.54)

1.3.3 Hodge star

We begin this section with the observation that the two vector spaces ΛpV ∗ and Λn−pV ∗ have

the same dimensionality

dim ΛpV ∗ = dim Λn−pV ∗ =

(
n

p

)
.

By virtue of the metric, a canonical isomorphism between the two may be constructed. This

mapping, the so–called Hodge star is constructed as follows: Starting from the elementary scalar

product of 1–forms, gij =
∗
g (ei, ej) ≡ 〈ei, ej〉, a scalar product of p–forms may be defined by

〈ei1 ∧ · · · ∧ eip , ej1, ∧ · · · ∧ ejp〉 ≡ det{〈eik , ejl〉) = det{gikjl}.

Since every form φ ∈ ΛpV ∗ may be obtained by linear combination of basis–forms ei1,∧· · ·∧eip
this formula indeed defines a scalar product on all of ΛpV ∗. Indeed, noting that for any matrix

X = {Xij}, detX = ε1,...,ni1,...,in
Xi11 . . . Xinn, i.e.

det{gikjl} = ε
i1,...,ip
k1,...,kp

gk1j1 . . . gkpjp ,

we obtain the explicit representation

〈φ, ψ〉 =
1

p!
φi1,...,ipψi1,...,ip . (1.55)

(Notice that the r.h.s. of this expression may be equivalently written as 〈φ, ψ〉 = 1
p!φi1,...,ipψ

i1,...,ip .

The Hodge star is now defined as follows

∗ : ΛpV ∗ → Λn−pV ∗,

α 7→ ∗α,

∀β ∈ ΛpV ∗ : 〈β, α〉ω !
= β ∧ (∗α). (1.56)

To see that this relation uniquely defines an (n − p)–form, we identify the components

(∗α)ip+1,...,in of the target form ∗α. To this end, we consider the particular case, β = e1∧· · ·∧ep.

Separate evaluation of the two sides of the definition obtains

ω〈e1 ∧ · · · ∧ ep, α〉 =
ω

p!
αi1,...,ip〈e1 ∧ · · · ∧ ep|ei1 ∧ · · · ∧ eip〉 =

=
ω

p!
ε
i1,...,ip
j1,...,jp

g1j1 . . . gpjpαi1,...,ip = ωg1i1 . . . gpipαi1,...,ip = ωα1,...,p

e1 ∧ · · · ∧ ep ∧ (∗α) =
1

(n− p)!
(∗α)ip+1,...,ine

1 ∧ · · · ∧ ep ∧ eip+1 ∧ · · · ∧ ein = ω
(∗α)p+1,...,n

|g|1/2
,
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Comparing these results we arrive at the equation

(∗α)p+1,...,n = |g|1/2α1,...,p =
|g|1/2

p!
εi1,...,ip,p+1,...,nα

i1,...,ip .

It is clear from the construction that this result holds for arbitrary index configurations, i.e. we

have obtained the coordinate representation of the Hodge star

(∗α)ip+1,...,in =
|g|1/2

p!
εi1,...,inα

i1,...,ip . (1.57)

In words: the coefficients of the Hodge’d form obtain by (i) raising the p indices of the coefficients

of the original form, (ii) contracting these coefficients with the first p indices of the ε–tensor,

and (iii) multiplying all that by
√
|g|/p!.

We derive two important properties of the star: The star operation is compatible with the

scalar product,

∀φ, ψ ∈ ΛpV ∗ : 〈φ, ψ〉 = sgn g 〈∗φ, ∗ψ〉 , (1.58)

and it is self–involutary in the sense that

∀φ ∈ ΛpV ∗ : ∗ ∗ φ = sgn g (−)p(n−p)φ. (1.59)

INFO The proof of Eqs. (1.58) and (1.59): The first relation is proven by brute force computation:

〈∗φ, ∗ψ〉 =
1

(n− p)! (∗φ)ip+1,...,in(∗ψ)ip+1,...,in =

=
|g|

(n− p)!(p!)2
εi1,...,inφ

i1,...,ipψl1,...,lp εj1,...,jng
l1j1 . . . glpjpgip+1jp+1 . . . ginjn︸ ︷︷ ︸
g−1 ε

l1...lpip+1...in

=

=
sgn g

(p!)2
ε
l1,...,lp
i1,...,ip

φi1,...,ipψl1,...,lp =
sgn g

p!
φi1,...,ipψi1,...,ip = sgn g 〈φ, ψ〉.

To prove the second relation, we consider two forms φ ∈ ΛpV ∗ and ψ ∈ Λn−pV ∗. Then,

ω〈∗ψ, φ〉 = ∗ψ ∧ ∗φ = (−)p(n−p) ∗ φ ∧ ∗ψ = (−)p(n−p)ω〈∗φ, ψ〉 =

= (−)p(n−p) sgn g〈∗ ∗ φ, ∗ψ〉 = (−)p(n−p) sgn g〈∗ψ, ∗ ∗ φ〉.

Holding for every ψ this relation implies (1.59).

1.3.4 Isometries

As a final metric concept of linear algebra we introduce the notion of isometries. Let V and V ′

be two vector spaces with metrics g and g′, respectively. An isometry F : V → V ′ is a linear

mapping that conforms with the metric:

∀v, w ∈ V : g(v, w) = g′(Fv, Fw). (1.60)

EXAMPLE (i) The set of isometries of R4 with Minkowski metric η = diag(1,−1,−1,−1) is the

Lorentz group SO(3, 1). (ii) The canonical mapping J : V → V ∗ is an isometry of (V, g) and (V ∗,
∗
g).
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1.3.5 Metric structures on open subsets of Rn

Let U ⊂ Rn be open in Rn. A metric on U is a collection of vector space metrics

gx : TxU × TxU → R,

smoothly depending on x. To characterize the metric we may choose a frame {bi}. This obtains

a matrix–valued function

gij(x) ≡ gx(bi(x), bj(x)).

The change of one frame to another, b′i = (A−1)jibj transforms the metric as gij(x)→ g′ij(x) =

(A−1T ) ki (x)gkl(x)(A−1)lj(x). Similarly to our discussion before, we define an induced metric

∗gx on co–tangent space by requiring that ∗gx(bix, b
j
x) ≡ gij(x) be inverse to the matrix {gij(x)}.

EXAMPLE Let U = R3−(negative x–axis). Expressed in the cartesian frame ∂
∂xi

, the Euclidean

metric assumes the form gij = δij . Now consider the coordinate frame corresponding to polar

coordinates, ( ∂
∂r
, ∂
∂θ
, ∂
∂φ

). Transformation formulae such as

∂

∂r
=
∂x1

∂r

∂

∂x1
+
∂x2

∂r

∂

∂x2
+
∂x3

∂r

∂

∂x3
= sin θ cosφ

∂

∂x1
+ sin θ sinφ

∂

∂x2
+ cos θ

∂

∂x3

obtain the matrix

A−1 =

sin θ cosφ −r sin θ sinφ r cos θ cosφ
sin θ sinφ r sin θ cosφ r cos θ sinφ

cos θ 0 −r sinφ


Expressed in the polar frame, the metric then assumes the form

g = A−1T1A−1 = {gij} =

1
r2 sin2 θ

r2

 .

The dual frames corresponding to cartesian and polar coordinates on R3−(negative x–axis) are given

by, respectively, (dx1, dx2, dx3) and (dr, dφ, dθ). The dual metric in polar coordinates reads

{gij} =

1
r−2 sin−2 θ

r−2

 .

Also notice that
√
|g| = r2 sin θ, i.e. the volume form

ω = dx1 ∧ dx2 ∧ dx3 = r2 sin θdr ∧ dφ ∧ dθ

transforms in the manner familiar from standard calculus.

Now, let (U ⊂ Rn, g) and (U ′ ⊂ Rm, g′) be two metric spaces and F : U → U ′ a smooth

mapping. F is an isometry, if it conforms with the metric, i.e. fulfills the condition

∀x ∈ U,∀v, w ∈ TxU : gx(v, w)
!
= g′F (x)(F∗v, F∗w).

In other words, for all x ∈ U , the mapping TxF must be an isometry between the two spaces

(TxU, gx) and (TF (x)U
′, g′F (x)). Chosing coordinates {xi} and {yj} on U and U ′, respectively,
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defining gij = g( ∂
∂xi ,

∂
∂xj ) and g′ij = g′( ∂

∂yi ,
∂
∂yj ), and using Eq. (1.14), using Eq. (1.14), one

obtains the condition

gij
!
=
∂F l

∂xi
∂F k

∂xj
g′lk. (1.61)

A space (U, g) is called flat if an isometry (U, g) → (V, η) onto a subset V ⊂ Rn with metric

η exists. Otherwise, it is called curved.11

Turning to the other operations introduced in section 1.3.2, the volume form and the Hodge

star are defined locally: (∗φ)x = ∗φx, and ω =
√
|g|b1 ∧ · · · ∧ bn. It is natural to extend the

scalar product introduced in section 1.3.3 by integration of the local scalar products against

the volume form:

〈 , 〉 : ΛpU × ΛpU → R,

(φ, ψ) 7→ 〈φ, ψ〉 ≡
∫
U

〈φx, ψx〉ω.

Comparison with Eq. (1.56) then obtains the important relation

〈φ, ψ〉 =

∫
U

φ ∧ ∗ψ. (1.62)

Given two p-forms on a metric space, this defines a natural way to produce a number. On p xx

below, we will discuss applications of this prescription in physics.

1.3.6 Holonomic and orthonormal frames

In this section we focus on dual frames. A dual frame may have two distinguished properties:

An orthonormal frame is one wherein

gij = ηij .

It is always possible to find an orthonormal frame; just subject the symmetric matrix gij to a

Gram–Schmidt orthonormalization procedure.

A holonomic frame is one whose basis forms βi are exact, i.e. a frame for which n functions

xi exist such that βi = dxi. The linear independence of the βi implies that the functions xi form

a system of coordinates. Open subsets of Rn may always be parameterized by global systems of

coordinates, i.e. holonomic frames exist. In a holonomic frame,

g = dxigijdx
j , g∗ =

∂

∂xi
gij

∂

∂xj
.

It turns out, however, that it is not always possible to find frames that are both orthonormal

and holonomic. Rather,

11 The definition of ’curved subsets of Rn’ makes mathematical sense but doesn’t seem to be a very natural context. The
intuitive meaning of curvature will become more transparent once we have introduced differentiable manifolds.
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the neccessary and sufficient condition ensuring the existence of orthonormal and

holonomic frames is that the space (U, g) must be flat.

To see this, consider the holonomic representation g = dxigijdx
j and ask for a transformation

onto new coordinates {xi} to {yj} such that g = dyiηijdy
j be an orthonormal representa-

tion. Substituting dxi = ∂dxi

∂yj dy
j into the defining equation of the metric, we obtain g =

∂xi

∂yl
∂xj

∂yk
gijdy

ldyk
!
= dylηlkdy

k. Comparison with (1.61) we see that the coordinate transforma-

tion must be an isometry.

EXAMPLE We may consider a piece of the unit sphere as parameterized by, say, the angular values

0 < θ < 45 deg and 0 < φ < 90 deg. The metric on the sphere obtains by projection of the Euclidean

metric of R3 onto the submanifold r = 1, gij = diag(sin−2 θ, 1). (Focusing on the coordinate space

we may, thus, think of our patch of the sphere as an open subset of R2 (the coordinate space)

endowed with a non–Euclidean metric.) We conclude that (sin θdφ, dθ) is an orthonormal frame.

Since d(sin θdφ) = cos θ dθ ∧ dφ 6= 0 it is, however, not holonomic.

1.3.7 Laplacian

Coderivative

As before, U ⊂ Rn is an open oriented subset of Rn with metric g. In the linear algebra of metric

spaces, taking the adjoint of an operator A is an important operation: ’〈Av,w〉 = 〈v,A†w〉’.
Presently, the exterior derivative, d, is our most important ’linear operator’. It is, thus, natural

to ask for an operator, δ, that is adjoint to ’d’ in the sense that

∀φ ∈ Λp−1U,ψ ∈ ΛpU : 〈dφ, ψ〉 !
= 〈f, δψ〉+ . . . ,

where the ellipses stand for boundary terms
∫
∂U

(. . . ) (which vanish if U is boundaryless or φ, ψ

have compact support inside U .) Clearly, δ must be an operator that decreases the degree of

forms by one. An explicit formula for δ may be obtained by noting that

〈dφ, ψ〉 =

∫
U

dφ ∧ ∗ψ = −(−)p−1

∫
U

φ ∧ d ∗ ψ (1.59)
=

= (−)p sgn g(−)(p−1)(n−p+1)

∫
U

φ ∧ ∗ ∗ d ∗ ψ = sgn g(−)(p+1)n+1〈φ, ∗d ∗ ψ〉,

where in the second equality we integrated by parts (ignoring surface terms). This leads to the

identification of the coderivative, a differential operator that lowers the degree of forms by one:

δ : ΛpU → Λp−1U,

φ 7→ δφ ≡ sgn g(−)n(p+1)+1 ∗ d ∗ φ.

Two more remarks on the coderivative:

. It squares to zero, δδ ∝ (∗d∗)(∗d∗) ∝ ∗dd∗ = 0.
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. Applied to a one–form φ ≡ φidxi, it obtains (exercise)

δφ = − 1

|g|1/2
∂

∂xi
(|g|1/2φi). (1.63)

Laplacian and the operations of vector analysis

We next combine exterior derivative and coderivative to define a second order differential oper-

ator,

∆ : ΛpU → ΛpU,

φ 7→ ∆φ ≡ −(dδ + δd)φ. (1.64)

By construction, this operator is self adjoint,

〈∆φ, ψ〉 = 〈φ,∆ψ〉.

If the metric is positive definite it is called the the Laplacian. If r = n− 1 (cf. Eq. (1.48)) it is

called the d’Alambert operator or wave operator (and usually denoted by �.)

Using Eq. (1.63), it is straightforward to verify that the action of ∆ on 0–forms (functions)

f ∈ Λ0U is given by

∆f =
1

|g|1/2
∂

∂xi

(
|g|1/2gij ∂

∂xj
f

)
. (1.65)

EXAMPLE Substitution of the spherical metric discussed in the example on p 34, it is straightforward

to verify that the Laplacian in three dimensional spherical coordinates assumes the form

∆ =
1

r2
∂rr

2∂r +
1

r2 sin θ
∂θ sin θ∂θ +

1

r2 sin2 θ
∂2φ.

We are now, at last, in a position to establish contact with the operations of vector analysis.

Let f ∈ Λ0U be a function. Its gradient is the vector field

grad f ≡ J−1df =

(
gij

∂

∂xj
f

)
∂

∂xi
. (1.66)

Let v = vi ∂
∂xi be a vector field defined on an open subset U ⊂ R3. Its divergence is defined as

div v ≡ −δJv =
1

|g|1/2
∂

∂xi
|g|1/2vi. (1.67)

Finally, let v = vi ∂
∂xi be a vector field defined on an open subset U ⊂ R3 of three–dimensional

space. Its curl is defined as

curl v ≡ J−1 ∗ dJv =
1

|g|1/2
εijk

(
∂

∂xi
vj
)

∂

∂xk
. (1.68)
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PHYSICS (E) Let us get back to our discussion of Maxwell theory. On p 19 we had introduced

two distinct two-forms, F and G, containing the electromagnetic fields as coefficients. However, the

connection between these two objects was left open. On the other hand, a connection of some sort

must exist, for we know that in vacuum the electric field E (entering F ) and the displacement field D

(entering G) are not distinct. (And analogously for B and H.) Indeed, there exists a relation between

F and G, and it is provided by the metric.

To see this, chose an orthonormal frame wherein the Minkovski metric assumes the form

η =

1
−1

−1
−1

 . (1.69)

Assuming vacuum, E = B and B = H, and using Eq. (1.57), it is then straightforward to verify that

the 2 form F and the (4− 2)-form G are related through

G = ∗F. (1.70)

How does this equation behave under a coordinate transformation of Minkovski space? Under a

general transformation, the components of F transform as those of a second rank covariant tensor.

The equation dF = 0 is invariant under such transformations. However, the equation G = ∗F
involves the Hodge star, i.e. an operation depending on a metric. It is straightforward to verify (do it)

remains form-invariant only under isometric coordinate transformations. Restricting ourselves to linear

coordinate transformations, this identifies the invariance group of Maxwell theory as the Poincaré

group, i.e. the group of linear isometries of Minkowski space. The subgroup of the Poincaré group

stabilizing at least one point (i.e. discarding translations of space) is the Lorentz group.

The Maxwell equations now assume the form d ∗ F = j and dF = 0, resp. In the traditional

formulation of electromagnetism, the solution of these equations is facilitated by the introduction of

a ’vector potential’. Let us formulate the ensuing equations in the language of differential forms:

On open subsets of R4, the closed form F may be generated from a potential one-form, A,

F = dA, (1.71)

whereupon the inhomogeneous Maxwell equations assume the form

d ∗ dA = j. (1.72)

Now, rather than working with the second order differential operator d∗d, it would be nicer to express

Maxwell theory in terms of the self adjoint Laplacian, ∆. To this end, we act on the inhomogeneous

Maxwell equation with a Hodge star to obtain ∗d ∗ dA = δdA = ∗j. We now require A to obey

the Lorentz gauge condition δA = 0.12 A potential obeying the Lorentz condition can always be

found by applying a gauge transformation A→ A′ ≡ A+df , where f is a 0-form (a function). The

12 In a component notation, A = Aµdx
µ and

δA = ∗d ∗ A = ∗d
(

1

3!
εµνστA

µ
dx
ν ∧ dxσ ∧ dxτ

)
=

=
1

3!

(
∗εµνστ∂ρAµdxρ ∧ dxν ∧ dxσ ∧ dxτ

)
= ∂ρA

ρ
,

which is the familiar expression for the Lorentz gauge.
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condition δA′ = 0 then translates to δdf = ∆f
!
= −δA, i.e. a linear differential equation that can be

solved. In the Lorentz gauge, the inhomogeneous Maxwell equations assume the form

−�A = ∗j, (1.73)

where � = −(δd+ dδ).

So far, we have achieved little more than a reformulation of known equations. However, as we are

going to discuss next, the metric structures introduced above enable us to interpret Maxwell theory

from an entirely new perspective: it will turn out that the equations of electromagnetism can be

’derived’ entirely on the basis of geometric reasoning, i.e. without reference to physical input!

Much like Newton’s equations are equations of motions for point particles, the Maxwell equations

(1.73) can be interpreted as equations of motions for a field, A. It is then natural to ask whether these

equations, too, can be obtained from a Lagrangian variational principle. What we need to formulate a

variational principle is an action functional S[A], whose variation δS[A]/δA = 0 obtains Eq. (1.73)

as its Euler-Lagrange equation.

At first sight, one may feel at a loss as to how to construct a suitable action. It turns out, however,

that geometric principles almost uniquely determine the form of the action functional: let’s postulate

that our action be as simple as possible, i.e. a low order polynomial in the degrees of freedom of the

theory, the potential, A. Now, to construct an action, we need something to integrate over, that is

4-forms. Now, our so-fare development of the theory is based on the differential forms, A,F , and j.

Out of these, we can construct the 4-forms F ∧ F , F ∧ ∗F and j ∧ A. The first of these is exact,

F ∧ F = dA ∧ dA = d(A ∧ dA) and hence vanishes under integration. Thus, a natural candidate of

an action reads

S[A] =

∫
(c1F ∧ ∗F + c2j ∧A) ,

where ci are constants.13

Let us now see what we get upon variation of the action. Substituting A→ A+ a into the action

we obtain

S[A+ a] =

∫
(c1(dA+ da) ∧ ∗(dA+ da) + c2j ∧ (A+ a)) .

Expanding to first order in a and using the symmetry of the scalar product
∫
φ∧ ∗ψ =

∫
ψ ∧ ∗φ, we

arrive at

S[A+ a]− S[A] =

∫
a ∧ (2c1d ∗ dA− c2j) .

Stationarity of the integral is equivalent to the condition 2c1d ∗ dA− c2j = 0. Comparison with Eq.

(1.72) shows that this condition is equivalent to the Maxwell equation, provided we set c1 = c2/2.

Summarizing, we have seen that the structure of the Maxwell equations – which entails the entire

body of electromagnetic phenomena – follows largely from purely geometric reasoning!

1.4 Gauge theory

In this section, we will apply the body of mathematical structures introduced above to one of the

most important paradigmes of modern physics, gauge theory. Gauge principles are of enormously

13 In principle, one might allow ci = ci(A) to be functions of A. However, this would be at odds with our principle of ’maximal
simplicity’.
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general validity, and it stands to reason that this is due to their geometric origin. This chapter

aims to introduce the basic ideas behind gauge theory, within the framework of the mathematical

theory developed thus far. In fact, we will soon see that a more complete coverage of gauge

theories, notably the discussion of non-abelian gauge theory, requires the introduction of more

mathematical structure: (Lie) group theory, the theory of differential manifolds, and bundle

theory. Our present discussion will be heuristic in that we touch these concepts, without any

ambition of mathematical rigor. In a sense, the discussion of this section is meant to motivate

the mathematical contents of the chapters to follow.

1.4.1 Field matter coupling in classical and quantum mechanics (reminder)

Gauge theory is about the coupling of matter to so-called gauge fields. According to the modern

views of physics, the latter mediate forces (electromagnetic, strong, weak, and gravitational),

i.e. what we are really up to is a description of matter and its interactions. The most basic

paradigm of gauge theory is the coupling of (charged) matter to the electromagnetic field.

We here recapitulate the traditional description of field/matter coupling, both in classical and

quantum mechanics. (Readers familiar with the coupling of classical and quantum point particles

to the electromagnetic field may skip this section.)

Consider the Lagrangian of a charged point particle coupled to the electromagnetic field.

Representing the latter by a four-potential with components {Aµ} = (φ,Ai) the corresponding

Lagrangian function is given by (we set the particle charge to unity)14

L =
m

2
ẋiẋi − φ+ ẋiAi.

Exercise: consider the Euler-Lagrange equations (dt∂ẋiL− ∂xi)L = 0 to verify that you obtain

the Newton equation of a particle subject to the Lorentz force, mẍ = E + v × B, where

E = −∇φ− ∂tA and B = ∇×A.

The canonical momentum is then given by pi = ∂xiL = mxi+Ai, which implies the Hamilton

function

H =
1

2m
(p−A)i(p−A)i + φ.

We may now quantize the theory to obtain the Schrödinger equation (~ = 1 throughout)[
i∂t −

1

2m
(−i∇−A)i(−i∇−A)i − φ

]
ψ(x, t) = 0. (1.74)

What happens to this equation under a gauge transformation, A→ A+∇θ, φ→ φ−∂tθ? Sub-

stitution of the transformed fields into (1.74) obtains a changed Schrödinger equation. However,

the gauge dependent contributions get removed if the gauge the wave function as ψ(x, t) →

14 In this section, we work in a non-relativistic setting. We assume a standard Euclidean metric and do not pay attention to the
co- or contravariance of indices.
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ψ(x, t)eiθ(x,t). We thus conclude that a gauge transformation in quantum mechanics is

defined by

A→ A+∇θ,
φ→ φ− ∂tφ,
ψ → eifψ. (1.75)

1.4.2 Gauge theory: general setup

The take home message of the previous section is that gauge transformations act on the C-

valued functions of quantum mechanics through the multiplication by phases. Formally, this

defines a U(1)-action in C. Let us now anticipate a little to say that the states relevant to the

more complex gauge theories of physics will take values in higher dimensional vector spaces Cn.

Natural extensions of the (gauge) group action will then be U(n) actions or SU(n) actions. We

thus anticipate that a minimal arena of gauge theory will involve

. a domain of space time – formally an open subset U ⊂ Rd, where d = 4 corresponds to

(3 + 1)–dimensional space time.15

. A ’bundle’ of vector spaces B ≡
⋃
x∈U Vx, where Vx ' V and V is an r–dimensional real

or complex vector space.16

. A transformation group G (gauge group) acting in the spaces Vx. Often, this will be a norm-

preserving group, i.e. G = U(n) or SU(n) for complex vector spaces and G = O(n) or SO(n)

for real vector spaces.

. A (matter) field, i.e. a map Φ : U → B, x 7→ Φ(x). (This is the generalization of a ’wave

function’.)

. Some dynamical input (the generalization of a Hamiltonian.) At first sight, the choice the

dynamical model appears to be solely determined by the physics of the system at hand.

However, we will see momentarily that important (physical!) features of the system follow

entirely on the basis of geometric considerations. Notably, we will be forced to introduced a

structure known in mathematics as a connection, and in physics as a gauge field.

15 In condensed matter physics, one is often interested in cases d < 4.
16 This is our second example of a vector bundle. (The tangent bundle TU was the first.) For the general theory of bundle

spaces, see chapter ...
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Let us try to demystify the last point in the

list above. Physical models generally involve

the comparison of states at nearby points. For

example the derivative operation in a quantum

Hamiltonian, ∂xψ(x, t) ’compares’ wave function

amplitudes at two infinitesimally close points. In

other words, we will want to take ’derivatives’ of

states. Now, it is clear how to take the derivative

of a real scalar field V = R: just form the

quotients

lim
ε→0

1

ε
(Φγ(ε) − Φγ(0)), (1.76)

where γ is a curve in U locally tangent to the direction in which we want to differentiate. How-

ever, things start to get problematic when Φx ∈ Vx and Vx ' V is a higher dimensional vector

space. The problem now is that Φγ(ε) ∈ Vγ(ε) and Φγ(0) ∈ Vγ(0 live in different vector spaces.

But how do we compare vectors of different spaces? Certainly, the naive formula (1.76) won’t

work anymore. For the concrete evaluation of the expression above requires the introduction of

components, i.e. the choice of bases of the two spaces. The change of the basis in only one of

the spaces would change the outcome of the derivative (cf. the figure above) which shows that

(1.76) is a meaningless expression.

We wish to postulate the freedom to independently choose a basis at different points in

space times an integral part of the theory. (For otherwise, we would need to come up with

some principle that synchronizes bases uniformly in space and time. This would amount to an

’instantaneous action at the distance’ a concept generally deemed as problematic.) Still, we

need some extra structure that will enable us to compare fields at different points. The idea is

to introduce a principle that determines when two fields Φx and Φx′ are to be identified. This

principle must be gauge invariant in that identical fields remain identical after two independent

changes of bases at x and x′. A change of basis at x is mediated by an element of the gauge

group gx ∈ G. Here, gx is to be interpreted as a linear transformation gx : Vx → Vx acting in

the field space at x. The components of the field in the new representation will be denoted by

gxΦx.

In mathematics, the principle establishing a gauge covariant relation between fields at different

points is called a connection. The idea of a connection can be introduced in different ways. We

here start by defining an operation called parallel transport. Parallel transport will assign to

each Φx ∈ Vx and each curve γ connecting x and x′ an element Γ[γ]Φx ∈ Vx′ which we interpret

as the result of ’transporting’ the field Φx along γ to the space Vx′ . In view of the isomorphy

Vx ' V ' Vx′ , we may think of Γ[γ] ∈ G as an element of the gauge group. Importantly,

parallel transport is defined so as to commute with gauge transformations, which is to say that

the operation of parallel transport must not depend on the bases used to represent the spaces

Vx and Vx′ , resp.

In formulas the condition of gauge covariance is expressed as follows: subject Φx to a gauge

transformation to obtain gxΦx. Parallel translation will yield Γ[γ]gxΦx. This has to be equal to
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the result gx′Γ[γ]Φx obtained if we first parallel transport and only then gauge transform. We

are thus lead to the condition

Γ[γ] = gx′Γ[γ]g−1
x . (1.77)

As usual, conditions of this type are easiest

to interpret for curve segments of infinitesimal

length. For such curves, Γ[γ] ' id. will be close

to the group identity, and Γ[γ] − id. will be

approximately and element of the Lie algebra,

g.17 Infinitesimal parallel transport will thus be a

prescription assigning to an infinitesimally short

segment (represented by a tangent vector) an

element close to the group identity (represented

by a Lie algebra element). In other words,

Infinitesimal parallel transport is described by a g–valued one-form, A, on U .

Let us now derive more concrete expressions for the parallel transportation of fields. To this end,

let Φ(t) = Γ(γ(t))Φ(0) denote the fields obtained by parallel translation along a curve γ(t). We

then have

Φ(t+ε) = Γ(γ(t+ε))Φ(0) = Γ(γ(t+ε))(Γ(γ(t)))−1Γ(γ(t))Φ(0) = Γ(γ(t+ε))(Γ(γ(t)))−1Φ(t).

Taylor expansion to first order obtains

Φ(t+ ε) = Φ(t)− εA(dtγ(t))Φ(t) +O(ε2), (1.78)

where A(dtγ((t)) = −dε
∣∣
ε=0

Γ(γ(t+ ε))(Γ(γ(t)))−1 ∈ g is the Lie algebra element obtained by

evaluating the one form A on the tangent vector dtγ(t). Taking the limit ε → 0, we obtain a

differential equation for parallel transport

dtΦ(t) = −A(dtγ(t))Φ(t). (1.79)

Having expressed parallel transport in terms of a g–valued one-form, the question arises what

conditions gauge invariance imply on this form. Comparing with (1.77) and denoting the gauge

transformed connection form by A′, we obtain (all equalities up to first order in ε)

Φ′(t+ ε) ≡ [id.− εA′(dtγ)] Φ′(t) =

= g(t+ ε)Φ(t+ ε) = g(t+ ε) [id.− εA(dtγ)] Φ(t) =

= g(t+ ε) [id.− εA(dtγ)] g−1(t)Φ′(t) =[
id.+ ε((dtg(t))g−1(t)− g(t)A(dtγt))g

−1(t)
]

Φ′(t).

17 Referring for a more substantial discussion to chapter xx below, we note that the Lie algebra of a Lie group G is the space
of all ’tangent vectors’ dt

∣∣
t=0

g(t) where g(t) is a smooth curve in g with g(0) = id.
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where g(t) is shorthand for g(γ(t)). Comparing terms, and using that (dtg(t))g−1 =

−g(t)dtg
−1(t), we arrive at the identification

A′ = gAg−1 + gdg−1, (1.80)

where gdg−1 is the g–valued one form defined by (gdg−1)(v) = g(γ(0))dt|t=0g
−1(γ(t)) where

dtγ(t) = v.

Notice what happens in the case G = U(1) and g = iR relevant to conventional quantum

mechanics. In this case, writing g = eiθ, where θ is a real valued function on U , the differential

form gdg−1 = −idθ collapses to a real valued form. Also g−1Ag = A, on account of the

commutativity of the group. This leads to the transformation law A′ = A − idθ reminiscent

of the transformation behavior of the electromagnetic potential. (The extra i appearing in this

relation is a matter of convention.) This suggests a tentative identification

connection form (mathematics) = gauge potential (physics).

Eq. (1.79) describes the infinitesimal variant of parallel transport. Mathematically, this is a

system of ordinary linear differential equations with time dependent coefficients. Equations of this

type can be solved in terms of so-called path ordered exponentials: Let us define the generalized

exponential series

Γ[γt] ≡ P exp

(
−
∫
γt

A

)
≡
∞∑
j=1

(−)j
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tj−1

0

dtjA(γ̇(t1))A(γ̇(t2)) . . . A(γ̇tj ),

(1.81)

where γt is a shorthand for the extension of a curve γ = {γ(s)|s ∈ [0, 1]} up to the parameter

value s = t.

The series is constructed so as to solve the differential equation

dtP exp

(
−
∫
γt

A

)
= A(γ̇(t))P exp

(
−
∫
γ(t)

A

)
,

with initial condition P exp
(
−
∫
γ0
A
)

= id.. Consequently

Φ(t) = P exp

(
−
∫
γt

A

)
Φ(0)

describes the parallel transport of Φ(0) along curve segments of finite length.

INFO In the abelian case G = U(1) relevant to electrodynamics, the (matrices representing the)

elements A(γ̇) at different times commute. In this case,∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tj−1

0

dtjA(γ̇(t1))A(γ̇(t2)) . . . A(γ̇tj ) =
1

j!

(∫ γt

0

dtA(γ̇)

)j
and Γ[γt] = exp

(
−
∫ γt

0
dtA(γ̇)

)
collapses to an ordinary exponential. In components, this may be

written as

Γ[γ] = e−
∫ t
0 dsAµ(γ(s))γ̇µ(s).
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1.4.3 Field strength

Our discussion above shows that a connection naturally brings about an object, A, behaving

similar to a generalized potential. This being so, one may wonder whether the ’field strength’

corresponding to the potential carries geometric meaning, too. As we are going to show next,

the answer is affirmative.

Consider a connection as represented by its connection one–form, A. The ensuing parallel

transporters Γ[γ] generally depend on the curve, i.e. parallel transport along two curves con-

necting two points x and x′ will not, in general give identical results. Equivalently, Γ[γ] may

differ from unity, even if γ is closed. To understand the consequences, let us consider the case

of the abelian group G = U(1) relevant to quantum electrodynamics. In this, case, (see info

section above), parallel transport around a closed loop in space-time can be written as

Γ[γ] = e−
∫
γ
A = e−

∫
S(γ)

dA = e−
∫
S(γ)

F ,

where S(γ) may be any surface surrounded by γ. This shows that the existence of a non-trivial

parallel transporter around a closed loop is equivalent to the presence of a non-vanishing field

strength form. (Readers familiar with quantum mechanics may interpret this phenomenon as

a manifestation of the Aharonov-Bohm effect: a non-vanishing Aharonov-Bohm phase along a

closed loop (in space) is indicative of a magnetic field penetrating the loop.)

How does the concepts of a ’field strength’ generalize to the non-abelian case? As a result of

a somewhat tedious calculation one finds that the non-abelian generalization of F is given by

F = dA+A ∧A. (1.82)

The g–valued components of the two-form F are given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ],

where [X,Y ] = XY − Y X is the matrix commutator. Under a gauge transformation A →
gAg−1 + gdg−1. Substituting this into (1.82), we readily obtain

F ′ = gFg−1. (1.83)

INFO To prove Eq. (1.82), we consider an infinitesimal curve of length ε. The area bounded by

the curve will then be of O(ε2). We wish to identify contributions to the path ordered exponential of

this order. A glance at the abelian expression exp(−
∫
S(γ)

F ) = 1 + F ×O(ε2) +O(ε3) shows that

this is sufficient to identify the generalization of F .

We thus expand

Γ[γ] = id.+

∫ 1

0

dt1 A(γ̇(t1)) +

∫ 1

0

dt1

∫ t1

0

dt2 A(γ̇(t1))A(γ̇(t2)) +O(ε3).

The term of first order in A is readily identified as
∫
γ
A =

∫
S(γ)

dA, which is of O(ε2). Turning to

the second term, we represent the product of matrices

A(γ̇(t1))A(γ̇(t2)) =
1

2
([A(γ̇(t1)), A(γ̇(t2))]+ + [A(γ̇(t1)), A(γ̇(t2))]−)
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as a sum of a symmetrized and an anti-symmetrized contribution. Here, [A,B]± = AB ± BA. The

symmetric contribution evaluates to∫ 1

0

dt1

∫ t1

0

dt2 [A(γ̇(t1)), A(γ̇(t2))]+ =

(∫ 1

0

dtA(t)

)2

= O(ε4),

and can be discarded. Turning to the antisymmetric contribution, we obtain∫ 1

0

dt1

∫ t1

0

dt2 [A(γ̇(t1)), A(γ̇(t2))]+

=
1

2
AµAν

∫ 1

0

dt1

∫ t1

0

dt2 (γ̇µ(t1)γ̇ν(t2)− γ̇ν(t1)γ̇µ(t2)) +O(ε3) =

=
1

2
AµAν

∫ 1

0

dt1 (γ̇µ(t1)γν(t1)− γ̇ν(t1)γµ(t1)) +O(ε3) =

=
1

2
AµAν

∫
γ

(dγµγν − dγνγµ) +O(ε3) =

=
1

2
AµAν

∫
S(γ)

(dγµ ∧ dγν − dγν ∧ dγµ) +O(ε3) =

=

∫
S(γ)

A ∧A+O(ε3).

In the crucial first equality, we noted that for an infinitesimal curve, A(γ̇(t)) = (Aµ)γ(t)γ̇
ν(t) '

(Aµ)γ(0)γ̇
ν(t) ≡ Aµγ̇ν(t), i.e. the coefficients of the potential form can be pulled out of the integral.

Combining terms, we arrive at

Γ[γ] = id.+

∫
S(γ)

(dA+A ∧A) +O(ε3).

Comparing with the abelian expression, we obtain (1.82) for the non-abelian generalization of the

field strength form.

The discussion above illustrates the appearance of maps carrying representations different

from the fundamental group representation of G in V : Let us assume that we are interested

in the variation of a smooth map Φ : U → X. Here, X = B corresponds to a V -valued function.

However, we may also choose to consider forms X = ΛpU , or just ordinary functions X = R.

These maps generally carry a representation of the group G whose specifics depend on the target

space and on the definition of the map. For X = V , this representation will be the fundamental

representation considered above, Φx → gxΦx, where gx = {gx,ij} is the matrix representing

gx ∈ U . For X = Λ2U , we may encounter other representations. For example, for Φ = F , the

field strength form, Fx → gFxg
−1 transforms according to the adjoint representation, cf. Eq.

(1.83). Finally, for X = R, Φ does not transform under G, transformation behavior which we

may formally assign to the singlet representation.

It is straightforward to generalize the notion of parallel transport to objects transforming

according to arbitrary group representations. For example, for an object transforming according

to the adjoint representation, the analog of (1.78) reads

Φ(t+ ε) = Φ(t)− ε [A(dtγ(t))Φ(t)− Φ(t)A(dtγ(t))] +O(ε2),
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which immediately leads to

dtΦ(t) = −[A(dtγ),Φ(t)]. (1.84)

The generalization to objects transforming under yet different representations of G should be

straightforward.

1.4.4 Exterior covariant derivative

With the notion of parallel transport in place, we are now in a position to define a meaningful

derivative operation. The idea simply is to measure variations of objects defined in U in terms

of deviations from the parallel transported objects. Consider, thus, a curve γ(t), as before. The

derivative of a function along γ is described by the differential quotient

DΦ
∣∣
γ(t)

(γ̇(t)) ≡ lim
ε→0

1

ε

[
Φγ(t+ε) − Φγ(t) +A(γ̇(t))Φγ(t)

]
.

Here, both Φγ(t+ε) and the parallel transport of Φγ(t), i.e. Φγ(t) +A(γ̇(t))Φγ(t) are considered

to be elements of Vγ(t+ε), and we assumed Φ to transform under the fundamental representation

of G. This expression defines the so-called (exterior) covariant derivative of Φ along γ̇. The

general covariant derivative (prior to reference to a direction of differentiation) is defined as

DΦ ≡ dΦ +A ∧ Φ, (1.85)

where in the case of a Vx-valued function (zero-form), the wedge product reduces to the con-

ventional product between the ’matrix’ A and the ’vector’ Φ. In components:

(DΦ)i ≡ dΦi +Aij ∧ Φj .

The wedge product becomes important, once we generalize to the covariant derivative of differ-

ential forms. For example, for a two-form transforming under the adjoint representation, the

covariant derivative reads (cf. Eq. (1.84)),

DΦ = dΦ−A ∧ Φ + Φ ∧A. (1.86)

Let us discuss the most important properties of the covariant derivative:

. By design, the covariant derivative is compatible with gauge transformations: with

Φ′ = gΦ,

A′ = gAg−1 + gdg−1,

we have

D′Φ′ = g(DΦ),

where D′ ≡ d+A′∧. This is checked by direct substitution of the definitions.

. The covariant derivative obeys the Leibniz rule

D(Ψ ∧ Φ) = DΨ ∧ Φ + (−)qΨ ∧DΦ.
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. Unlike with d2 = 0, the covariant derivative is not nilpotent. Rather, one may check by

straightforward substitution that

D2 = F∧,

where F is the field strength form (1.82).

. Finally, let us consider the covariant derivative of F itself. The field strength transforms

under the adjoint representation, (1.83), which means that the covariant derivative DF =

dF +A∧ F − F ∧A is well defined. Substituting the definition (1.82), we readily obtain the

Bianchi identity,

DF = 0, (1.87)

which generalizes the homogeneous Maxwell equations to general gauge theories.

The covariant derivative plays a very important role in physics. Important applications include all

areas of gauge theory, and general relativity. In the latter context, the role of the connection

is assumed by the so-called Riemannian connection associated to the curvature of space time.

We will return to this point in chapter xx below.

1.5 Summary and outlook

In this chapter, we have introduced a minimal framework of mathematical operations relevant

to differential geometry: we discussed the (exterior) multilinear algebra, and its generalization

to alternating and locally linear maps on the tangent bundle of open subsets of Rn, i.e. the

apparatus of differential forms. We learned how to differentiate and integrate differential forms,

thus generalizing the basic operations of ’vector analysis’. Finally, we introduced the concept of

a metric as an important means to characterize geometric structures.

The mathematical framework introduced above is powerful enough to describe various appli-

cations of physics in a unified and efficient way. We have seen how to formulate the foundations

of classical mechanics and electrodynamics in a ’coordinate invariant’ way. Here, the notion of

coordinate invariance implies three major advantages: (i) the underlying structure of the theory

becomes maximally visible, i.e. formulas aren’t cluttered with indices, etc., (ii) the change(ability)

between different coordinate systems is exposed in transparent terms, and (iii) formulas relating

to specific coordinate systems (think of the formula (1.65)) are formulated so as to expose the

underlying conceptual structure. (You can’t say this about the standard formula of the Laplacian

in spherical coordinates.)

However, in our discussion of the final ’example’ – gauge theory – we were clearly pushing

limits, and several important limitations of our so far theory became evident. What we need,

at least, is an extension from geometry on ’open subsets of Rn to more general geometric

structures. Second, we should like to give the notion of ’bundles’ – i.e. mathematical constructs

where some mathematical structure is locally attached to each point of a base structure – a

more precise definition. And thirdly, the ubiquitous appearance of continuous groups in physical

applications calls for a geometry oriented discussion of group structures. In the following chapters

we will discuss these concepts in turn.



2

Manifolds

In this chapter, we will learn how to describe the geometry of structures that cannot be identified

with open subsets of Rn. Objects of this type are pervasive both in mathematics, and in physical

applications. In fact, it is the lack of an identification with a single ’coordinate domain’ in Rn
that makes a geometric structure interesting. Prominent examples of such ’manifolds’ include

spheres, tori, the celebrated Moebius strip, continuous groups, and many more.

2.1 Basic structures

2.1.1 Differentiable manifolds

Spaces M which locally (yet not necessarily globally) look like open subsets of Rn are called

manifolds. The precise meaning of the notion “look like” is provided by the following definition:

A chart of a manifold M is a pair (U,α), where U ⊂M is an open (!) subset of M and

α : U → α(U) ⊂ Rn,
x 7→ α(x)

is a homeomorphism (α is invertible and both α and α−1 are continuous) of U onto an image

α(U) ⊂ Rn which is open in Rn. Notice that the definition above requires the existence of

a certain amount of mathematical structure: We rely on the existence of ’open’ subsets and

’continous’ mappings. This means that M must, at least, be a topological space. More precisely,

M must be a Hausdorff space1 whose topology is generated by a countable basis. Loosely

speaking, the Hausdorffness of M means that it is a topological space (the notion of openness

and continuity exists) on which we may meaningfully identify distinct points.

The chart assigns to any point x ∈ U ⊂M a set of n–coordinates αi(x), the coordinates of

x with respect to the chart α. If we are working with a definite chart we will, to avoid excessive

notation, often use the alternative designation xi(x), or just xi. Given the notion of charts,

we are able to define topological manifolds. A topological manifold M is a Hausdorff space

with countable basis such that every point of M lies in a coordinate neighbourhood, i.e. in the

domain of definition U of a chart. A collection of charts (Ur, αr) such that
⋃
r Ur = M covers

M is called an atlas of M .

1 A Hausdorff space is a topological space for which any two distinct points possess disjoint neighbourhoods. (Exercise: look up
the definitions of topological spaces, bases of topologies, and neighbourhoods.)

49
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Figure 2.1 On the definition of topological manifolds. Discussion, see text.

INFO Minimal manifolds as defined above are called topological manifolds. However, most man-

ifolds that are encountered in (physical) practice may be embedded into some sufficiently high

dimensional Rn. (Do not confuse the notions ’embedding’ and ’identifying’. I.e. we may think of the

two–sphere as a subset of R3, it is, however, not possible to identify it with a subspace of R2.) In

such cases, the manifolds inherits its topology from the standard topology of Rn, and we need not

worry about topological subtleties.

Consider now two charts (U1, α1) and (U2, α2) with non-empty intersection U1 ∩ U2. Each

x ∈ U1 ∩U2 then possesses two coordinate representations x1 ≡ α1(x) and x2 ≡ α2(x). These

coordinates are related to each other by the map α2 ◦ α−1
1 , i.e.

α2 ◦ α−1
1 : α1(U1 ∩ U2) → α2(U1 ∩ U2),

x1 7→ x2 = α2 ◦ α−1
1 (x1),

or, in components, xi2 = αi2(α−1
1 (x1

1, . . . , x
n
1 )). The coordinate transformation α2 ◦α−1

1 defines

a homeomorphism between the open subsets α1(U1 ∩ U2) and α2(U1 ∩ U2). If, in addition, all

coordinate transformations of a given atlas are C∞, the atlas is called a C∞–atlas. (In practice,

we will exclusively deal with C∞–systems.)

EXAMPLE The most elementary example of a manifold is an open subset U ⊂ Rn. It may be

covered by a one–atlas chart containing just (U, idU ).

EXAMPLE Consider the two–sphere S2 ⊂ R3, i.e. the set of all points x ∈ R3 fulfilling the

condition (Euclidean metric in R3) (x1)2 + (x2)2 + (x3)2 = 1. We cover S2 by two charts–domains,
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U1 ≡ {x ∈ S2|x3 > −1} (S2 – south pole) and U2 ≡ {x ∈ S2|x3 < 1} (S2 – north pole). The two

coordinate mappings (aka stereographic projections of the sphere) α1 are defined by

α1(x1, x2, x3) =
1

1 + x3
(x1, x2) ∈ α1(U1) ⊂ R2, x3 > −1

α2(x1, x2, x3) =
1

1− x3
(x1, x2) ∈ α2(U2) ⊂ R2, x3 < 1.

If the union of two atlases of M , {(Ui, αi)} and {(Vi, βi)} is again an atlas, the two parent

atlases are called compatible. Compatibility of atlases defines an equivalence relation. Individual

equivalence classes of this relation are called differentiable structures. I.e. a differentiable

structure on M contains a maximum set of mutually compatible atlases. A manifold M equipped

with a differentiable structure is called a differentiable manifold. (Throughout we will refer to

differentiable manifolds just as ’manifolds’.)

EXAMPLE Let M = R be equipped with the standard topology of R and a differentiable structure

be defined by the one–chart atlas {(R, α1)}, where α1(x) = x. Another differentiable structure is

defined by {(R, α2)}, where α2(x) = x3. These two atlases indeed belong to different differentiable

structures. For, α1 ◦ α−1
2 : x→ x1/3 is not differentiable at x = 0.

2.1.2 Differentiable mappings

A function f : M → R is called a differentiable function (at x ∈ M) if for any chart U 3 x,

the function f ◦ α−1 : α(U) ⊂ Rn → R is differentiable in the ordinary sense of calculus, i.e.

f(x1, . . . , xn) has to be a differentiable function at α(x) (cf. Fig. 2.2, top.) It does, in fact,

suffices to verify differentiability for just one chart of M ’s differentiable structure. For with any

other chart, β, f◦β−1 = (f◦α−1)◦(α◦β−1) and differentiability follows from the differentiability

of the two constituent maps. The algebra of differentiable functions of M is called C∞(M).

More generally, we will want to consider maps

F : M →M ′

between differentiable manifolds M and M ′ of dimensions n and n′, resp. (cf. Fig. 2.2, center

part.) Let, x ∈M , U 3 x the domain of a chart and U ′ 3 x′ ≡ F (x) be a chart of M ′ containing

x’s image. The function F is differentiable at x if α′◦F ◦α−1 : α(U) ⊂ Rn → α′(F (U)) ⊂ Rn′

is differentiable in the sense of ordinary calculus (i.e. F i(x1, . . . , xn) ≡ α′i(F (x1, . . . , xn)),

i = 1, . . . , n′ are differentiable at α(x).) The set of all smooth mappings F : M → M ′ will be

designated by C∞(M,M ′).

The map F is a diffeomorphism if it is invertible and both F and F−1 are differentiable.

(What this means is that for any two chart domains, α′ ◦F ◦α−1 diffeomorphically maps α(U)

onto α′(F (U)). If a diffeomorphism F : M → M ′ exists, the two manifolds M and M ′ are

diffeomorphic. In this case, of course, dimM = dimM ′.

INFO The definitions above provide the link to the mathematical apparatus developed in the previous

chapter. By virtue of charts, maps between manifolds may be locally reduced to maps between open

subsets of Rn (viz. the maps expressed in terms of local coordinates.) It may happen, though, that
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Figure 2.2 On the definition of continuous maps of manifolds into the reals, or between manifolds.
Discussion, see text.

a map meaningfully defined for a local coordinate neighbourhood defies extension to the entire atlas

covering M . Examples will be encountered below.

2.1.3 Submanifolds

A subset N of an n–dimensional manifold M is called a q–dimensional submanifold of M if

for each point x0 ∈ N there is a chart (U,α) of M such that x0 ∈ U and for all x ∈ U ∩N ,

α(x) = (x1, . . . , xq, aq+1, . . . , an),

with αq+1, . . . , an fixed. Defining Ū = U ∩N and ᾱ : Ū → Rq, ᾱ(x) = (x1, . . . , xq), we obtain

a chart (Ū , ᾱ) of the q–dimensional manifold N . A (compatible) collection of such charts defines

a differentiable structure of N .

EXAMPLE An open subset U ⊂ M is an n–dimensional submanifold of M . We may think of a

collection of isolated points in M as a zero–dimensional manifold.

EXAMPLE Let f i : M → R, i = 1, . . . , p be a family of p functions on M . The set of solutions of

the equations f1(x) = · · · = fp(x) = const. defines a p–dimensional submanifold on M if the map

M → Rp, x 7→ (f1(x), . . . , fp(x)) has rank p.
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2.2 Tangent space

In this section, we will generalize the notion of tangent space as introduced in the previous

chapter to the tangent space of a manifold. To make geometric sense, this definition will have

to be independent of the chosen atlas of the manifold.

2.2.1 Tangent vectors

The notation ∂
∂xi introduced in section 1.2.1 to designate coordinate vector fields suggests an

interpretation of vector fields as differential operators. (Indeed, the components vi of v = vi ∂
∂xi

where obtained by differentiating the coordinate functions in the direction of v.) This view

turns out to be very convenient when working on manifolds. In the following, we will give the

derivative-interpretation of vectors the status of a precise definition.

Consider a curve γ : [−a, a]→ M such that γ(0) = x. To define a vector vx tangent to the

manifold at x ∈M we take directional derivatives of functions f : M → R at x in the direction

identified by γ. I.e. the action of the tangent vector vx identified by the curve on a function f

is defined by

vx(f) ≡ dt
∣∣
t=0

f(γ(t)).

Of course there are other curves γ′ such that γ′(t0) = γ(0) and dtf(γ(t))
∣∣
t=0

= dtf(γ′(t))
∣∣
t=t0

.

All these curves are ’tangent’ to each other at x and will generate the same tangent vector

action. It is thus appropriate to identify a tangent vectors vx at x as equivalence classes of

curves tangent to each other at x.

For a given chart (U,α), the components vix of the vector vx are obtained by letting vx act

on the coordinate functions:

vix ≡ vx(xi) = dtγ
i(t)
∣∣
t=0

,

where γi ≡ αi ◦ γ. According to the chain rule, the action of the vector on a general function

is then given by

vx(f) = vix
∂f̄

∂xi
, (2.1)

where f̄ = f ◦ α−1 : α(U) ⊂ Rn → R is a real valued function of n variables and ∂xi f̄ its

partial derivative. In a notation emphasizing vx’s action as a differentiable operator we have

vx = vix
∂

∂xi
.

Notice the analogy to our earlier definition in section 1.2.1; the action of a vector is defined by

taking directional derivatives in the direction identified by its components.

The definition above is coordinate independent and conforms with our earlier definition of

tangent vectors. At the same time, however, it appears to be somewhat un–natural to link the

definition of vector (differential operators) to a set of curves.2 Indeed, there exists an alternative

2 Cf. the introduction of partial derivatives in ordinary calculus: while the action of a partial derivative operation on a function
is defined in terms of a curve (i.e. the curve identifying the direction of the derivative), in practice one mostly applies partial
derivatives without explicit reference to curves.
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definition of vectors which does not build on the notion of curves: A tangent vector vx at

x ∈ M is a derivation, i.e. a linear map from the space of smooth functions3 defined on some

open neighbourhood of x into the real numbers fulfilling the conditions

vx(af + bg) = avxf + bvxg, a, b ∈ R, f, g functions, linearity,

vx(fg) = fvxg + (vxf)g, Leibnitz rule.

To see that this definition is equivalent to the one given above, let y be a point infinitesimally

close to x. We may then Taylor expand

f(y) = f(x) + (α(y)− α(x))i
∂f̄

∂xi

∣∣∣∣
x

.

Again defining the components vix of the vector (in the chart α) as

vix = vxα
i,

and taking the limit y → x we find that the action of the vector on f is given by (2.1).

We may finally relate the definitions of tangent vectors given above to (the mathematical

formulation of ) a definition pervasive in the physics literature. Let (α,U) and (α′, U ′) be two

charts such that x ∈ U ∩ U ′. The action of a tangent vector vx on a function then affords the

two representations

vxf = vix
∂f̄

∂xi

∣∣∣∣
α(x)

= vi′x
∂f̄ ′

∂x′i

∣∣∣∣
α′(x)

,

where f̄ ′ = f ◦α′−1 = f̄ ◦ (α ◦α′−1). Using the abbreviated notation (α′ ◦α−1)(x) = x′(x) we

have

∂f̄

∂xi
=

∂f̄

∂x′j
∂x′j

∂xi
,

we obtain the transformation law of vector components

v′ix =
∂x′i

∂xj
vjx. (2.2)

This leads us to yet another possibility to define tangent vectors: A tangent vector vx is

described by a triple (U,α, V ), where V ∈ Rn is an n–component object (containing the

components of vx in the chart α.) The triples (U,α, V ) and (U ′, α′, V ′) describe the same

tangent vector iff the components are related by V ′i = ∂x′i

∂xj V
j .

We have, thus introduced three different (yet equivalent) ways of defining tangent vectors on

manifolds:

. Tangent vectors as equivalence classes of curves, as

. derivative operations acting on (germs of) functions, and

. a definition in terms of (contravariant) transformation behaviour of components.

3 To be precise, vectors map so–called germs of functions into the reals. A germ of a function is obtained by identifying functions
for which a neighbourhood around x exists in which the reference functions coincide.
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2.2.2 Tangent space

Defining a linear structure in the obvious manner, (avx + bwx)(f) = avx(f) + bwx(f), the

set of all tangent vectors at x becomes a linear space, the tangent space TxM . The union⋃
x∈M TxM ≡ TM defines the tangent bundle of the manifold. Notice that

The tangent bundle, TM of an n-dimensional manifold, M , is a 2n-dimensional

manifold by itself.

For, in a chart domain of M with coordinates {xi}, the elements of TM may be identified

in terms of coordinates {x1, . . . , xn, v1, . . . , vn}, where the ’vectorial components’ of TxM are

parameterized of v = vi ∂
∂xi . In a similar manner, we may introduce the cotangent bundle

as the space TM∗ ≡
⋃
x∈M T ∗xM , where T ∗xM is the dual space of TxM . Again, TM∗ is a

2n-dimensional manifold. Below, we will see that it comes with a very interesting mathematical

structure.

A vector field on the domain of a chart, (U,α) is a smooth mapping

v : U → TU,

x 7→ vix
∂

∂xi
∈ TxU.

A vector field on the entire manifold is obtained by extending this mapping from a single chart

to an entire atlas and requiring the obvious compatibility relation, x ∈ U ∩ U ′ ⇒ vx = v′x. (In

coordinates, this condition reads as (2.2).)

The set of all smooth vector fields on M is denoted by vect (M). For v ∈ vect (M) and

f ∈ C∞M , the action of the vector field on the function obtains another function, v(f), defined

by

(v(f))(x) = vx(f).

A frame on (a subset of) M is a set (b1, . . . , bn) of n vector fields linearly independent at

each point of their definition. A coordinate system (U,α) defines a local frame ( ∂
∂x1 , . . . ,

∂
∂xn ).

However, in general no frame extensible to all of M exists. If such a frame exists, the manifold

is called parallelizable.

EXAMPLE Open subsets of Rn, Lie groups (see next chapter), and certain spheres S1, S3, S7 are

examples of parallelizable manifolds. Non–parallelizable are all other spheres, the Moebius strip and

many others more.

2.2.3 Tangent mapping

For a smooth map F : M → M ′ between two differentiable manifolds, the tangent mapping

may be defined by straightforward extension of our definition in section 1.2.3. For x ∈ M , we
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define

TFx : TxM → TF (x)M
′,

vx 7→ TFx(vx),

[TFx(vx)]f ≡ vx(f ◦ F ).

For two coordinate systems (U,α), and (U ′, α′) covering x ∈ U and the image point F (x) ∈ U ′,
respectively, the components (TFx(vx))i of the vector (TFx)(vx) obtain as

(TFx(vx))i =
∂F̄ i

∂xj
vj ,

where F̄ = α′ ◦F ◦α−1. The tangent mapping of the composition of two maps G ◦F evaluates

to

T (G ◦ F )x = TGF (x) ◦ TFx.

2.2.4 Differential Forms

Differential forms are defined by straightforward generalization of our earlier definition of differ-

ential forms on open subsets of Rn: A p–form φ on a differentiable manifold maps x ∈ M to

φx ∈ Λp(TxM)∗. The x–dependence is required to be smooth, i.e. for v1, . . . , vp ∈ vect (M),

φx(v1(x), . . . , vp(x)) is a smooth function of x. The vector space of p–forms is denoted by ΛpM

and the algebra of forms of general degree by

ΛM ≡
n⊕
p=0

ΛpM.

The mathematics of differential forms on manifolds completely parallels that of forms on open

subsets of Rn. Specifically,

. The wedge product of differential forms and the inner product of a vector field and a form

are defined as in section 1.2.4.

. A (dual) n–frame is a set of n linearly independent 1–forms. On a coordinate domain, the

coordinate forms (dx1, . . . , dxn) locally define a frame, dual to the coordinate vector fields

( ∂
∂x1 , . . . ,

∂
∂xn ). In the domain of overlap of two charts, a p–form affords the two alternative

coordinate representations

φ =
1

p!
φi1,...,ipdx

i1 ∧ · · · ∧ dxip ,

φ =
1

p!
φ′i1,...,ipdx

′i1 ∧ · · · ∧ dx′ip ,

φ′i1,...,ip = φj1,...,jp
∂xj1

∂x′i1
. . .

∂xjp

∂x′ip
.
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. For a given chart, the exterior derivative of a p–form is defined as in Eq. (1.22). The

coordinate invariance of that definition pertains to manifolds, i.e. the definition of the exterior

derivative does not depend on the chosen chart; given an atlas, dφ may be defined on the

entire manifold.

. The pullback of a differential form under a smooth mapping between manifolds is defined as

before. Again, pullback and exterior derivative commute.

The one mathematical concept whose generalization from open subsets of Rn to manifolds

requires some thought is Poincaré’s lemma. As a generalization of our earlier definition of star–

shaped subsets of Rn, we define the notion of ’contractible manifolds’: A manifold M is called

contractible contractible manifold if the identity mapping M →M,x 7→ x may be continuously

deformed to a constant map, M → M,x 7→ x0, x0 ∈ M fixed. In other words, there has to

exist a family of continuous mappings,

F : [0, 1]×M → M, (t, x) 7→ F (x, t),

such that F (x, 1) = x and F (x, 0) = x0. For fixed x, F (x, t) defines a curve starting at x0 and

ending at x. (Exercise: show that Rn is contractible, while Rn − {0} is not.)

Poincaré’s lemma now states that on a contractible manifold a p–form is exact if and only

if it is closed.

2.2.5 Lie derivative

A vector field implies the notion of ’transport’ on a manifold. The idea is to trace the behavior

of mathematical objects — functions, forms, vectors, etc. — as one ’flows’ along the directions

specified by the reference field. In this section, we define and explore the properties of the ensuing

derivative operation, the Lie derivative.

The flow of a vector field

Given a vector field, v, we may attribute to each point x ∈M a curve whose tangent vector at

x equals vx. The union of all these curves defines the flow of the vector field.

More precisely, we wish to introduce a one–parameter group of diffeomorphisms,

Φ : V → U,

(x, τ) 7→ Φτ (x),

where τ ∈ R parameterizes the one–parameter group for fixed x ∈ M . Think of Φ(x, τ) as a

curve parameterized by τ . We parameterize this curve such that Φ0(x) = x. For each domain

of a chart, U , and x ∈ U , we further require that V = supp(Φ) ∩ {x} × R = {x} × interval 3
{(x, 0)}, i.e. for each x the parameter interval of the one–parameter group is finite. Φ is a group

of diffeomorphisms in the sense that

Φτ+τ ′(x) = Φτ (Φτ ′(x)).
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Each map Φ defines a vector field v ∈ vect(M),

v : M → TM,

x 7→ (x, dτ
∣∣
τ=0

Φτ (x)),

i.e. x is mapped onto the tangent vector of the curve Φτ (x) at τ = 0. Conversely, each vector

field v defines a one–parameter group of diffeomorphisms, the flow of a vector field. The flow

— graphically, the trajectories traced out by a swarm of particles whose velocities at x(t) equal

vx(t) — is defined by (see the figure above)

∀x ∈M : dτΦτ (x)
!
= vΦτ (x).

Here, we interpret Φτ : C∞(M) → C∞(M), f 7→ Φτ (f) as a map between functions on M ,

where (Φτ (f))(x) ≡ f(Φτ (x)). The equation above then reads as (dτΦτ )(f) = dτf(Φτ ) =
∂f
∂xi dτΦiτ = ∂f

∂xi v
i. With a local decomposition v = vi ∂

∂xi this translates to the set of first order

ordinary differential equations,

i = 1, . . . , n : dτΦiτ (x)
!
= viΦτ (x).

Together with the initial condition Φi0(x) = xi, we obtain a uniquely solvable problem (over at

least a finite parameter interval of τ .)

EXAMPLE Let M = Rn and vx = Ax, where A ∈ GL(n). The flow of this vector field is

Φ : M × R→M, (x, τ) 7→ Φτ (x) = exp(Aτ)x.

Lie derivative of forms

Given a vector field and its flux one may ask how a differential form φ ∈ ΛpM changes as one

moves along its flux lines. The answer to this question is provided by the so–called Lie derivative.

The Lie derivative compares φx ∈ Λp(TxM)∗ with the pullback of φΦτ (x) ∈ Λp(TΦτ (x))
∗

under Φ∗τ (where we interpret Φτ : U → U as a diffeomorphism of an open neighbourhood

U 3 x.) The rate of change of φ along the flux lines is described by the differential quotient

lim−1
τ (Φ∗τ (φΦτ (x))− φx), the Lie derivative of φ in the direction of v.

Formally, the Lie derivative is a degree–conserving map,

Lv : ΛpM → ΛpM,

φ 7→ Lvφ,

Lvφ = dτ
∣∣
τ=0

(Φ∗τ (φΦτ (x)). (2.3)

Properties of the Lie derivative (all immediate consequences of the definition):

. Lv is linear, Lv(w + w′) = Lvw + Lvw
′, and

. obeys the Leibniz rule, Lv(φ ∧ ψ) = (Lvφ) ∧ ψ + φ ∧ Lvψ.

. It commutes with the exterior derivative dLv = Lvd and

. Lv is linear in v.
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. for f ∈ L0M a function, Lvf = dfv reduces to the directional derivative, Lvf = v(f). This

can also be written as Lvf = dτ
∣∣
τ=0

f ◦ Φτ .

In practice, the computation of Lie derivatives by the formula (2.3) is cumbersome: one first

has to compute the flow of the field v, then its pullback map, and finally differentiate w.r.t.

time. Fortunately there exists an alternative prescription due to Cartan that is drastically more

simple:

Lv = iv ◦ d+ d ◦ iv. (2.4)

In words: to compute the Lie derivative, Lv, of arbitrary forms, one simply has to apply an

exterior derivative followed by insertion of v (plus the reverse sequence of operations.) Now,

this looks like a manageable operation. Let us sketch the proof of Eq. (2.4). One first checks

that the operations on both the left and the right hand side of the equation are derivations.

Consequently, it is sufficient to prove the equality for zero forms (functions) and one-forms, dg.

(In combination with the Leibniz rule, the expandability of an arbitrary form into wedge products

of these building blocks then implies the general identity.)

For functions (cf. the list of properties above), we have Lvf = df(v) = ivdf = (ivd+ div)f ,

where we used that ivf = 0 by definition. For one-forms, dg, we obtain

Lvdg = d(Lvg) = d(ivdg) = (div + ivd)dg.

This proves Eq. (2.4).

Lie derivative of vector fields

A slight variation of the above definitions leads to a derivative operation on vector fields: Let

v be a vector field and Φ its flux. Take another vector field w. We may then compare wx with

the image of wΦτ (x) under the tangent map (TΦ−τ )Φτ (x) : TΦτ (x)M → TxM . This leads to

the definition of the Lie derivative of vector fields,

Lv : vect(M) → vect(M),

w 7→ Lvw,

(Lvw)x = dτ
∣∣
τ=0

(TΦ−τ )Φτ (x)(wΦτ (x)). (2.5)

The components of the vector field Lvw = (Lvw)i ∂
∂xi may be evaluated as

(Lvw)i = dτ
∣∣
τ=0

(TΦ−τ )Φτ (x)(wΦτ (x))(x
i) = dτ

∣∣
τ=0

∂Φi−τ
∂xk

wkΦτ (x)

=

(
dτ
∣∣
τ=0

∂Φi−τ
∂xk

)
wk + dτ

∣∣
τ=0

wiΦτ (x) = − ∂v
i

∂xk
wk +

∂wi

∂xk
vk.

We thus arrive at the identification

Lvw =

(
∂wi

∂xk
vk − ∂vi

∂xk
wk

)
∂

∂xi
. (2.6)
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Eq. (2.6) implies an alternative interpretation of the Lie derivative: Application of v to a function

f ∈ C∞(M) produces another function v(f) ∈ C∞(M). To this function we may apply the

vector field w to produce the function w(v(f)) ≡ (wv)(f). Evidently, the formal combination

wv acts as a ’derivative’ operator on the function f . It is, however, not a derivation. To see this,

we choose a coordinate representation and obtain

(wv)(f) = wi
∂

∂xi
vj

∂

∂xj
f = wi

∂vj

∂xi
∂

∂xj
f + wivj

∂2

∂xi∂xj
f.

The presence of second order derivatives signals that wv is not a linear derivative operation.

However, consider now the skew symmetric combination

vw − wv ≡ [v, w].

Application of this combination to f obtains:

(vw − wv) =

(
∂wi

∂xk
vk − ∂vi

∂xk
wk

)
∂

∂xi
f.

The second order derivatives have canceled out, which signals that [v, w] is a vector field; the

space of vector fields admits a product operation to be explored in more detail below. Second,

our result above implies the important identification

[v, w] = Lvw. (2.7)

EXAMPLE Consider the vector field v = x1∂x2 − x2∂x1 . The flow of this field is given by the

(linear) map: Φτ (x) = Oτx, where the matrix

Oτ =

(
cos τ − sin τ
sin τ cos τ

)
.

Now, consider the constant vector field w = ∂x1 . With wix = δi,1, we obtain

Lvw = (Lvw)i
∂

∂xi
= dτ

∣∣
τ=0

∂(O−τx)i

∂xj
wj

∂

∂xi
= dτ

∣∣
τ=0

∂(O−τx)i

∂x1

∂

∂xi
= − ∂

∂x2
.

Notice that Lvw 6= 0, even at the origin where Φt0 = 0 is stationary.

PHYSICS (M) Consider the cotangent bundle, TM∗ of a manifold M of generalized coordinates

{qi}. The bundle TM∗ is parameterized by coordinates {qi, pi} where the canonical momenta cor-

respond to a Hamiltonian H = H(q, p).

Now, consider the so-called symplectic two-form ω =
∑
i dq

i ∧ dpi. A the existence of a two-

form on the vector spaces T(q,p)TM
∗. (Don’t be afraid of the accumulation of tangent/co-tangent

structures! Just think of TM∗ as a manifold with coordinates {(qi, pi)} and T(q,p)TM
∗ its tangent

space at (q, p).) enables us to switch between T(q,p)TM
∗ and its dual space (T(q,p)TM

∗)∗, i.e.

the space of one-forms on T(q,p)TM
∗. We apply this correspondence to the particular one-form

dH ∈ T (TM∗)∗: define a vector field XH ∈ T (TM∗) by the condition

ω(XH , ·) ≡ dH(·). (2.8)

In words: substitution of a second vector, Y ∈ T (TM∗), into (ω(XH , Y ) gives the same as evaluating

dH(Y ). The vector field XH is called the Hamiltonian vector field of H.
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The Hamiltonian vector field represents a very useful concept in the description of mechanical

systems. We first note that the flow of the Hamiltonian vector field represents describes the

mechanical trajectories of the system. We may check this by direct evaluation of (2.8) on the vectors
∂
∂qi

and ∂
∂pi

. Decomposing XH = (QH , PH) into a ’coordinate’ and a ’momentum’ sector, we obtain

ω(XH ,
∂

∂qi
) = dqj ∧ dpj(XH ,

∂

∂qi
) = −(PH)i

!
= dH(

∂

∂qi
) =

∂H

∂qi
.

In a similar manner, we get (QH)i = ∂H
∂pi

. Thus, the components of the Hamiltonian flow Φ ≡
(ΦQ,ΦP ) obey the equations

dt(ΦQ)i = (QH)i =
∂H

∂pi
,

dt(ΦP )i = (PH)i = −∂H
∂qi

, (2.9)

which we recognize as Hamiltons equations of motion.

Many fundamental statements of classical mechanics can be concisely expressed in the language of

Hamiltonian flows and the symplectic two form. For example, the time evolution of a function in phase

space is described by ft(x) ≡ f(Φt(x)), where we introduced the shorthand notation x = (q, p),

and assumed the absence of explicit time dependence in H for simplicity. In incremental form, this

assumes the form dtft(x) = df(dtΦt(x)) = df(XH) = XH(f) = LXH f . For example, the statement

of the conservation of energy assumes the form dtHt(x) = dH(XH) = ω(XH , XH) = 0.

Phase space flow maps regions in phase space onto oth-

ers and this concept is very powerful in the description of

mechanical motion. By way of example, consider a subset

A ⊂ TM∗. We interpret A as the set of ’initial conditions’ of

a large number, N , of point particles, where we assume for

simplicity, that these particles populate A at constant den-

sity N/vol(A). (Notice that we haven’t defined yet, what the

’volume’ of A is (cf. the figure.) The flow will transport the

volume A to another one, Φτ (A). One may now ask, in which

way the density of particles changes in the process: will the ’evaporate’ to fill all of phase space? Or

may the distribution ’shrink’ down to a very small volume? The answer to these questions is given

by Liouville’s theorem, stating that the density of phase space points remains ’constant’. In other

words, the ’volume’ of A remains constant under phase space evolution.4

To properly formulate Liouville’s theorem, we first need to clarify what is meant by the ’volume’

of A. This is easy enough, because phase space comes with a canonical volume form. Much like a

metric induces a volume form, the symplectic two-form ω does so two: define

Ω ≡ 1

n!
ω ∧ · · · ∧ ω︸ ︷︷ ︸

n

= S
∑
i

dqi ∧ dpi,

where S is an inessential sign factor. The volume of A is then defined as

vol(A) =

∫
A

Ω.

4 Notice that nothing is said about the shape of A. If the dynamics is sufficiently wild (chaotic) an initially regular A may
transform into a ragged object, whose filaments cover all of phase space. In this case, particles do get scattered over phase
space. Nonetheless they stay confined in a structure of constant volume.
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Liouville’s theorem states that ∫
A

Ω =

∫
Φτ (A)

Ω.

Using Eq. 1.40, this is equivalent to
∫
A

Ω =
∫
A

Φ∗τΩ, or to the condition Φ∗τΩΦτ (x) = Ωx. Comparing

with the definition (2.3), we may reformulate this as a vanishing Lie derivative, LXHΩ = 0. Finally,

using the Leibniz property (i.e. the fact that the Lie-derivative separately acts on the ω-factors

constituting Ω, we conclude that

Liouville’s theorem is equivalent to a vanishing of the Lie derivative LXHω = 0 of the
symplectic form in the direction of the Hamiltonian flow.

The latter statement is proven by straightforward application of Eq. (2.4): LXHω = iXHdω+diXHω =

0 + 0 = 0, where the first 0 follows from the dω = 0 and the second from diXHω
(2.8)
= ddH = 0.

The discussion above heavily relied on the existence of the symplectic form, ω. In general, a manifold

equipped with a two-form that is skew symmetric and non-degenerate is called a symplectic manifold.

Many of the niceties that came with the existence of a scalar product also apply in the symplectic case

(think of the existence of a canonical mapping between tangent and cotangent space, or the existence

of a volume form.) However, the significance of the symplectic form to the formulation of classical

mechanics goes much beyond that, as we exemplified above.

What remains to be show is that phase space actually is a symplectic manifold: our introduction of

ω above was ad hoc and tied to a specific system of coordinates. To see, why any cotangent bundle

is symplectic, consider the ’projection’ π : T (TM∗)

2.2.6 Orientation

As with the open subsets of Rn discussed above, an orientation on a manifold may be introduced

by defining a no–where vanishing n–form ω. However, not for every manifold can such n–forms

be defined, i.e. not every manifold is orientable (the Moebius strip being a prominent example

of a non–orientable manifold.)

Given an orientation (provided by a no-where vanishing

n-form), a chart (U,α) is called positively oriented, if the

corresponding coordinate frame obeys ωx( ∂
∂x1 , . . . ,

∂
∂xn ) >

0, or, equivalently, ω = fdx1 ∧ · · · ∧ dxn with a positive

function f . An atlas containing oriented charts is called ori-

ented. Orientation of an atlas is equivalent to the statement

that for any two sets of overlapping coordinate systems

{xi} and {yi}, det(∂xi/∂yj) > 0. (Exercise: show that for

the Moebius strip no orientable atlas exists.)
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Figure 2.3 On the definition of manifolds with boundaries

2.2.7 Manifolds with boundaries

An n–dimensional manifold is an object locally looking like an open subset of Rn. Replacing Rn
by the half space

Hn ≡ {x = (x1, . . . , xn} ∈ Rn|xn ≥ 0},

we obtain what is called a manifold with boundary. The boundary of M , ∂M , is the set of all

points mapping onto the boundary of H, ∂Hn = {x = (x1, . . . , xn} ∈ Rn|xn = 0},

∂M =
⋃
r

α−1
r (αr(M) ∩ ∂Hn),

where the index r runs over all charts of an atlas. (One may show that this definition is inde-

pendent of the chosen atlas.)

EXAMPLE Show that the unit ball Bn = {x = (x1, . . . , xn) ∈ Rn|(x1)2 + · · · + (xn)2 ≤ 1} in

n–dimensions is a manifold whose boundary is the unit sphere Sn−1.

With the above definitions, ∂M is (a) a manifold of dimensionality n− 1 which (b) is bound-

aryless, ∂∂M = {}. As with the boundary of cells discussed earlier, the boundary ∂M of a

manifold inherits an orientation from the bulk, M . To see this, let x ∈ ∂M be a boundary point

and v = vi ∂
∂xi ∈ TxM be a tangent vector. If vn = 0, v ∈ Tx(∂M) is tangent to the boundary

(manifold). If vn < 0, v is called a outward normal vector. (Notice, however, that ’normal’

does not imply ’orthogonality’; we are not using a metric yet.)

With any outward normal vector n, the (n − 1)–form ω̃ ≡ inω ∈ Λn−1∂M then defines an

orientation of the boundary manifold.
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2.2.8 Integration

Partition of unity

An atlas {(Uα, α)} of a manifold M is called locally finite, if every x ∈ M possesses a neigh-

bourhood such that the number of charts with Uα∩U 6= {} is finite. Locally finite atlases always

exist.

A partition of unity subordinate to a locally finite covering of M is a family of mappings hα
with the following properties:

(i) ∀x ∈M, hα(x) ≥ 0,

(ii) supp(hα) ⊂ Uα,

(iii) ∀x ∈M,
∑
α hα(x) = 1.

(Due to the local finiteness of the covering, the sum in 3. contains only a finite number of

terms.)

EXAMPLE Let {Bα|α ∈ I} be a countable set of unit balls centered at points xα ∈ Rn covering

Rn. Define the functions

fα ≡
{

exp(−(1− |x− xα|2)−1) , |x− xα| ≤ 1,
0 , else

Then the functions

hα(x) ≡ fα(x)∑
β fβ(x)

define a partition of unity in Rn.

Integration

Let M be a manifold (with or without boundary), {(Uα, α)} a locally finite atlas, {hα} a

partition of unity and φ ∈ ΛnM an n–form. For an integration domain U ⊂ Uα contained in a

single chart domain, the integral over φ is defined as∫
U

φ =

∫
α(U)

α−1∗φ,

where the second integral is evaluated according to our earlier definition of integrals over open

subsets of Rn. If U is not contained in a single chart, we define∫
U

φ =
∑
α

∫
U∩Uα

hαφ.

One may show that the definition does not depend on the reference partition of unity.

Finally, Stokes theorem assumes the form

φ ∈ Λp−1M :

∫
M

dφ =

∫
∂M

φ.

(For a manifold without boundary, the l.h.s. vanishes.)
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Metric

A metric on a manifold is a non–degenerate symmetric bilinear form gx on each tangent space

TxM which depends smoothly on x (i.e. for two vector fields v1, v2 the function gx(v1(x), v2(x))

depends smoothly on x.) In section 1.3.5 we introduced metric structures on open subsets of

U ⊂ Rn. Most operations relating to the metric, the canonical isomorphism TxU
J→ (TxU)∗,

the Hodge star, the co–derivative, the definition of a volume form, etc. where defined locally.

Thanks to the local equivalence of manifolds to open subsets of Rn, these operations carry over

to manifolds without any changes. (To globally define a volume form, the manifold must be

orientable.)

There are but a few ’global’ aspects where the difference between a manifold and an open

subset of Rn may play a role. While, for example, it is always possible to define a metric of

any given signature on an open subset of Rn, the situation on manifolds is more complex, i.e.

a global metric of pre–designated signature need not exist.

2.3 Summary and outlook

In this section, we introduced the concept of manifolds to describe geometric structures that

cannot be globally identified with open subsets of Rn. Conceptually, all we had to do to achieve

this generalization was to patch up the local description of a manifold – provided by charts and

the ensuing differentiable structures – to a coherent global description. By construction, the

transition from one chart to another is mediated by differentiable functions between subsets of

Rn, i.e. objects we know how to handle. In the next section, we will introduce a very important

family of differentiable manifolds, viz. manifolds carrying a group structure.
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Lie groups

In this chapter we will introduce Lie groups, a class of manifolds of paramount importance in

both physics and mathematics. Loosely speaking, a Lie group is a manifold carrying a group

structure. Or, changing the perspective, a group that is at the same time a manifold. The

linkage of concepts from group theory and the theory of differential manifolds generates a rich

mathematical structure. At the same time, Lie groups are the ’natural’ mathematical objects

to describe symmetries in physics, notably in quantum physics. In section In section 1.4 above,

we got a first impression of the importance of Lie groups in quantum theory, when we saw how

these objects implement the concept of gauge transformations. In this section, however, the

focus will be on the mathematical theory of Lie groups.

3.1 Generalities

A (finite dimensional, real) Lie group, G, is a differentiable manifold carrying a group structure.

One requires that the group multiplication, G×G→ G, (g, g′) 7→ gg′ and the group inversion,

G→ G, g 7→ g−1 be differentiable maps.

Notice that there are lots of mathematical features that may be attributed to a Lie group

(manifold):

. manifold: dimensionality, compactness, conectedness, etc.

. group: abelian, simplicity, nilpotency, etc.

The joint group/manifold structure entails two immediate further definitions: a Lie subgroup

H ⊂ G is a subgroup of G which is also a sub–manifold. We denote by e the unit element

of G and by Ge the connected component of G. The set Ge is a Lie subgroup of the same

dimensionality as G (think why!)

A few elementary (yet important) examples of Lie groups:

. There are but two different connected one–dimensional Lie groups: the real numbers R with

its additive group structure is a simply connected non–compact abelian Lie group. The unit

circle {z ∈ C||z| = 1} with complex multiplication as group operation is a compact abelian

non–simply connected Lie group (designated by U(1) or SO(2) depending on whether one

identifies C with R2 or not.)

. The general linear group, GL(n), i.e. the set of all real (n×n)–matrices with non–vanishing

determinants is a Lie group. Embedded into Rn it contains two connected components,

GL+(n) and GL−(n), the set of matrices of positive and negative determinant, respectively

66
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(the former containing the group identity, 1n.) GL(n) is non–compact, non–connected, and

non–abelian.

. The orthogonal group, O(n) is the group of all real orthogonal matrices, i.e. O(n) =

{O ∈ GL(n)|OTO = 1n}. It is the maximal compact subgroup of GL(n). It is of dimension

n(n − 1)/2 and non–connected. Similarly, the special orthogonal group, SO(n) = {O ∈
O(n)|detO = 1} is the maximal compact subgroup of GL+(n). It is connected yet not simply

connected. (Think of SO(2).)

. The special unitary group, SU(n) is the group of all complex valued (n× n)–matrices, U ,

obeying the conditions U†U = 1n and detU = 1. Alternatively, one may think of SU(n) as

a real manifold viz. as a real subgroup of Gl(2n). It is of dimension n2 − 1, compact, and

simply connected.

By way of example, consider SU(2). We are going to show that SU(2) is isomorphic to

the real manifold S3, the three sphere. To see this, write an element U ∈ SU(2) (in complex

representation) as

U =

(
a b

c d

)
.

The conditions U†U = 12 and detU = 1 translate to aā+ cc̄ = 1, bb̄+ dd̄ = 1, ab̄+ cd̄ = 0,

and ad− cb = 1. Defining a = x1 + ix2 and c = x3 + ix4, x1, . . . , x4 ∈ R, these conditions

are resolved by

U =

(
x1 + ix2 −x3 + ix4

x3 + ix4 x1 − ix2

)
,

4∑
i=1

(xi)2 = 1.

This representation establishes an diffeomorphism between SU(2) and the three sphere, S3 =

{(x1, x2, x3, x4) ∈ R4|
∑4
i=1(xi)2 = 1}.

3.2 Lie group actions

3.2.1 Generalities

Let G be a Lie group and M an arbitrary manifold. A (left) action1 of G on M is a differentiable

mapping,

ρ : G×M → M,

(g, x) 7→ ρ(g, x) ≡ ρg(x),

assigning to each group element a smooth map ρg : M → M . The composition of these maps

must be compatible with the group structure multiplication in the sense that

ρgg′ = ρg ◦ ρg′ , ρe = idM .

1 Sometimes group actions are also called ’group representations’. However, we prefer to reserve that terminology for the linear
group actions to be defined below.
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EXAMPLE Let G = SO(3) be the three dimensional rotation group and M = S2 the two–sphere.

The group G acts on M by rotating the unit–vectors constituting S2. More generally, the isometries

of a Riemannian manifold define a group acting on the manifold.

A right action of G on M is defined in the same manner, only that the compatibility relation

reads

ρgg′ = ρg′ ◦ ρg.

Notation: Instead of ρg we will occasionally write ρ(g) or just g. For brevity, the left/right action

of g on x ∈M is often designated as gx/xg

If ρ is a left action, then g 7→ ρg−1 defines a right action. For a fixed x ∈ M , we define the

map,

bitx : G → M,

g 7→ bitxg ≡ ρg−1x. (3.1)

The orbit of x is the image of bitx,

orbit(x) ≡ bitx(G).

If orbit(x) = M , the action of the group is called transitive. (Exercise: why is it sufficient to

prove transitivity for an arbitrary reference point?) For a transitive group action, two arbitrary

points, x, y ∈M are connected by a group transformation, y = ρgx. An action is called faithful

if there are no actions other than ρe acting as the identity transform: (∀x ∈ M : ρgx = x) ⇒
g = e. It is called free iff bitx is injective for all x ∈M . (A free action is faithful.) The isotropy

group of an element x ∈M , is defined as

I(x) ≡ {g ∈ G|ρgx = x}.

The action is free iff the isotropy group of all x ∈M contains only the unit element, I(x) = {e}.

EXAMPLE The action of the rotation group SO(3) on the two–sphere S2 is transitive and faithful,

but not free. The isotropy group is SO(2).

3.2.2 Action of a Lie group on itself

A Lie group acts on itself, M = G, in a number of different and important ways. The action by

left translation is defined by

Lg : G → G,

h 7→ gh, (3.2)

i.e. g acts by left multiplication. This representation is transitive and free. Second, it acts on

itself by the inner automorphism,

autg : G → G,

h 7→ ghg−1. (3.3)
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In general, this representation is neither transitive nor faithful. The stability group, I(e) = G.

Finally, the right translation is a right action defined by

Rg : G → G,

h 7→ hg. (3.4)

Right and left translation commute, and we have autg = Lg ◦Rg−1 .

3.2.3 Linear representations

An action is called a linear representation or just representation if the manifold it acts upon

is a vector space, M = V , and if all diffeomorphisms ρg are linear. Put differently, a linear

representation is a group homeomorphism G→ GL(V ). Linear representations are not transitive

(think of the zero vector.) They are called irreducible representations if V does not possess

ρg invariant subspaces other than itself (and space spanned by the zero vector.)

EXAMPLE The ’fundamental’ representation of SO(3) on R3 is irreducible.

A group action is called an affine representation if it acts on an affine space and if all ρg
are affine maps.2

Two more remarks on representations,

. Given a linear (or affine) representation, ρ, a general left action may be constructed as ρ′g ≡
F ◦ ρg ◦ F−1, where F : V → V is some diffeomorphism; ρ′g need no longer be linear.

Conversely, given a left action ρg it is not always straightforward to tell whether ρg is a linear

representation ρ′g disguised by some diffeomorphism, ρg = F ◦ ρg ◦ F−1.

. Depending on the dimensionality of the vector space V , one speaks of a finite or an infinite

dimensional representation. For example, given an open subset of U ⊂ Rn the Lie group

GL(n) acts on the frame bundle of U — the infinite dimensional vector space formed by all

frames — by left multiplication. This is an infinite dimensional representation of GL(n).

3.3 Lie algebras

3.3.1 Definition

Recall that a (finite or infinite) algebra is a vector space V equipped with a product operation,

V × V → V . A Lie algebra is an algebra whose product (the bracket notation is standard for

Lie algebras)

[ , ] : V × V → V

(v, w) 7→ [v, w]

satisfies certain additional properties:

. [ , ] is bilinear,

2 A map is called affine if it is the sum of a linear map and a constant map.



70 Lie groups

. skew–symmetric: ∀v, w ∈ V, [v, w] = −[w, v], and satisfies the

. Jacobi identity, ∀u, v, w ∈ V, [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0.

EXAMPLE In section 2.2.5 we have introduced the Lie derivative Eq. (2.5) as a derivative operation

on the infinite dimensional space of vector fields on a manifold, vect(M). Alternatively, we may think

of the Lie derivative as a product,

[ , ] : vect(M)× vect(M) → vect(M),

(v, w) 7→ Lvw = [v, w] (3.5)

assigning to two vector fields a new one, [v, w]. The above product operation is called the Lie

bracket of vector fields. Both, skew symmetry and the Jacobi identity are immediate consequences

of Eq. (2.6). We thus conclude that vect(M) is an infinite dimensional Lie algebra, the Lie algebra

of vector fields on a manifold.

3.3.2 Lie algebra of a Lie group

Let A ∈ vect(G) be a vector field on a Lie group G. A is a left invariant vector field if it is

invariant under all left translations,

∀g, h ∈ G : (TLg)hAh = Agh.

EXAMPLE The left invariant vector fields on the abelian Lie group Rn are the constant vector

fields.

Due to the linearity of TLg, linear combinations of left invariant vector fields are again left

invariant, i.e. the set of left invariant vector fields forms a linear space, here denoted by g.

However, as we are going to show below, g carries much more mathematical structure than

just linearity. To see this, a bit of preparatory work is required: Let M be a manifold and

F : M →M a smooth map. A vector field v on M is called invariant under the map F , if ∀x ∈
M : TFxvx = vF (x). Recalling that TFxvx(f) = vx(f ◦F ), and that vF (x)(f) = (v(f) ◦F )(x)

this condition may be rewritten as

∀f ∈ C∞(M) : v(f ◦ F ) = v(f) ◦ F.

Now, consider two vector fields A,B ∈ g. Applying the above invariance criterion to F = Lg
and considering the two cases v = A, f = B(f̃), and v = B, f = A(f̃), where f̃ ∈ C∞(G), we

obtain

(AB)(f̃) ◦ Lg = A(B(f̃)) ◦ Lg = A(B(f̃) ◦ Lg) = A(B(f̃ ◦ Lg)) = (AB)(f̃ ◦ Lg),
(BA)(f̃) ◦ Lg = B(A(f̃)) ◦ Lg = B(A(f̃) ◦ Lg) = B(A(f̃ ◦ Lg)) = (BA)(f̃ ◦ Lg).

Subtraction of these formulas gives

(AB −BA)(f̃) ◦ Lg = (AB −AB)(f̃ ◦ Lg),

which shows that

A,B ∈ g⇒ [A,B] ∈ g,
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i.e. that the space of left invariant vector fields, g, forms a Lie subalgebra of the space of vector

fields. g is called the Lie algebra of G.

The left action of a Lie group on itself is transitive. Specifically, each element g may be

reached by left multiplication of the unit element, g = Lge = ge. As we shall see, this implies

an isomorphism of the tangent space TeG onto the Lie algebra of the group. Indeed, the left–

invariance criterion implies that

Ag = (TLg)eAe, (3.6)

i.e. the value of the vector field at arbitrary g is determined by its value in the tangent space at

unity, TeG. As a corollary we conclude that

. The dimension of the Lie algebra, dim(g) = dim(G), and

. On g there exists a global frame, {Bi}, i = 1, . . . ,dim(g), where (Bi)g = (TLg)eE
i and

{Ei} is a basis of TeG; Lie group manifolds are parallelizable.

EXAMPLE By way of example, let us consider the Lie group GL(n). (Many of the structures

discussed below instantly carry over to other classical matrix groups.) GL(n) ⊂ Rn
2

is open in Rn
2

and can be represented in terms of a global set of coordinates. The standard coordinates are, of

course, xij(g), where xij is the ith row and jth column of the matrix representing g. A tangent

vector at e can be represented as (remember: summation convention)

Ae = aij
∂

∂xij
.

In order to compute the corresponding invariant vector field Ag, we first note that the Lg acts by

left matrix–multiplication,

xij(Lgh) = xik(g)xkj(h).

Using Eq. (1.14), we then obtain

((TLg)eAe)
ij =

∂xij(Lgh)

∂xkl(h)

∣∣∣
h=e

akl = xik(g)akl,

Or Ag = gAe, where g (Ae) is identified with the n × n matrices {xij(g)} ({aij}) and matrix

multiplication is implied. Another representation reads

Ag = x(g)ikakj
∂

∂xij
≡ xikakj ∂

∂xij
.

This latter expression may be used to calculate the Lie bracket of two left invariant vector fields,

[A,B] = xijakj
∂

∂xij
xlmbmn

∂

∂xln
− (a→ b) = xik(ab− ba)kj

∂

∂xij
,

where {bij} are the matrix indices identifying B and ab is shorthand for standard matrix multiplication.

This result (a) makes the left invariance of [A,B] manifest, and (b) shows that the commutator [A,B]

simply obtains by taking the matrix commutator of the coordinate matrices [a, b], (more formally, the

identification A→ a = {aij} is a homomorphism of the Lie algebras ’(left invariant vector fields, Lie

bracket)’ and ’(ordinary matrices, matrix commutator)’.

When working with (left invariant) vector fields on Lie groups, it is often convenient to employ

the ’equivalence classes of curves’ definition of vector fields. For a given A ∈ TeG, there are



72 Lie groups

many curves γA(t) tangent to A at t = 0: γA(0) = e, dt

∣∣∣
t=0

γA(t) = A. Presently, however,

it will be convenient to consider a distinguished curve, viz. gA,t ≡ ΦA,t(e), where Φt(e) is the

flow of the left invariant vector field Ag corresponding to A. We note that the vector field A

evaluated at gA,s, AgA,s , affords two alternative representations. On the one hand, AgA,s =

T (LgA,s)eAe = dt
∣∣
t=0

gA,sgA,t and on the other hand, AgA,s = dsgA,s = dt
∣∣
t=0

gA,s+t. This

implies that

gA,sgA,t = gA,s+t,

i.e. {gA,t} is a one parameter subgroup of G. Later on, we shall see that these subgroups play

a decisive role in establishing the connection between the Lie algebra and the global structure

of the group. Presently, we only note that the left invariant vector field Ag may be represented

as (cf. Eq. (3.6))

Ag = dt
∣∣
t=0

ggA,t.

Put differently, the flow of the left invariant vector field3, ΦA,t acts as

ΦA,t : G → G,

g 7→ ggA,t,

for ΦA,0 = idG and dt
∣∣
t=0

ΦA,t(g) = Ag, as required. This latter representation may be used

to compute the Lie derivative of two left invariant vector fields A and B, LAB. With Bg =

ds
∣∣
s=0

ggB,s, we have

(LAB)e = dt
∣∣
t=0

(TΦ−t)ΦA,t(e)(BΦA,t(e)) = d2
s,t

∣∣
s,t=0

(TΦ−t)gA,tgA,tgB,s =

= d2
s,t

∣∣
s,t=0

gA,tgB,sgA,−t.

Using that gtg−t = gt−t = g0 = e, i.e. that g−t = g−1
t , we conclude that the Lie derivative of

two left invariant vector fields is given by

(LAB)e = d2
s,t

∣∣
s,t=0

gA,tgB,sg
−1
A,t. (3.7)

3.4 Lie algebra actions

3.4.1 From the action of a Lie group to that of its algebra

Let Fa : M → M , a ∈ R be a one parameter family of diffeomorphisms, smoothly depending

on the parameter a. Assume that F0 = idM . For a infinitesimal, we may write,

Fa(x) ' x+ a
∂

∂a

∣∣∣
a=0

Fa(x) +O(a2).

3 Notice that gA,t was constructed from the flow through the origin whilst we here define the global flow.
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This shows that, asymptotically for small a, Fa may be identified with a vector field (whose

components are given by ∂a
∣∣
a=0

xi(Fa(x)). Two more things we know are that (a) the infinites-

imal variant of Lie group elements (the elements of the tangent space at unity) constitute the

Lie algebra, and (b) Lie group actions map Lie group elements into diff(M). Summarizing

G
repr.−→ diff(M),

infinit. ↓ ↓ infinit.

g
?−→ vect(M).

The diagram suggests that there should exist an ’infinitesimal’ variant of Lie group representa-

tions mapping Lie algebra elements onto vector fields. Also, one may expect that this mapping

is a Lie algebra homomorphism, i.e. is compatible with the Lie bracket.

Identifying g = TeG, the representation of the Lie algebra, i.e. an assignment g 3 A 7→ v ∈
vect(M) may be constructed as follows: consider x ∈M . The group G acts on x as x 7→ ρg(x).

We may think of ρ•(x) : G→ M, g 7→ ρg(x) as a smooth map from G to M . Specifically, the

unit element e maps onto x. Thus, the tangent mapping Tρ•(x) maps g into TxM . For a given

Lie group representation ρ we thus define the induced representation of the Lie algebra as

ρ̃ :g→ vect(M),

A 7→ ρ̃A,

(ρ̃A)x = (Tρ•(x))e(A).

INFO It is an instructive exercise to show that ρ̃ is a Lie algebra (anti) homomorphism. Temporarily

denoting ρ̃A ≡ Ã, what we need to check is that [̃A,B] = [Ã, B̃]. Again, it will be convenient to

work in the curve representation of vector fields. With A = dt
∣∣
t=0

gA,t and B = ds
∣∣
s=0

gB,s, we have

Ãx = dt
∣∣
t=0

gA,tx, where we denote the group action on M by ρg(x) ≡ gx. Similarly, the flow of

the vector field Ã is given by ΦÃ,t(x) = gA,tx. We may now evaluate the Lie bracket of the image

vector fields as

[Ã, B̃]x = (LÃB̃)(x) = dt
∣∣
t=0

(TΦÃ,−t)Φ
Ã,t

(x)B̃Φ
Ã,t

(x) = d2
s,t

∣∣
s,t=0

gA,−tgB,sgA,t(x) =

= −d2
s,t

∣∣
s,t=0

gA,tgB,sgA,−tx.

Comparison with (3.7) shows that [Ã, B̃]x = −L̃ABx = −[̃A,B]x, i.e. g→ vect(M) is a Lie algebra

anti (the sign) homomorphism.

3.4.2 Linear representations

Let ρ : G → GL(V ) ⊂ diff(V ) be a linear representation of a Lie group. To understand

what vector fields describe the Lie algebra, let A ∈ TeG be a Lie algebra element and gA,t
be a representing curve. The representation ρg(v) ≡ Mgv maps group elements g onto linear

transformations Mg ∈ GL(V ). In a given basis, Mg is represented by an (n×n)–matrix {M ij
g }.
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Specifically, the generating curve gA,t 7→ MgA,t is represented by a matrix valued curve. We

thus find

(ρ̃A)v = dt
∣∣
t=0

MgA,tv.

The vector field (ρ̃A)v depends linearly on v. Defining XA ≡ dt
∣∣
t=0

MgA,t ∈ gl(V ) (XA is an

element of the Lie algebra, gl(V ) of the group GL(V )), we may write have (ρ̃A)v ≡ XAv.

Adjoint representation

In section 3.2.2 we have seen that a Lie group acts on itself by the inner automorphism, aut,

where autg(h) = ghg−1. Associated to this action we have a linear representation of G on g,

the adjoint representation, Ad, of the group on its Lie algebra:

Ad : G× g → g,

(g,A) 7→ Adg(A) ≡ (Tautg)eA,

where we identify A ∈ TeG as an element of the tangent vector space. Since autg(e) = e, the

image of A, (Tautg)eA ∈ TeG is again in the Lie algebra. With gA,t a curve representing A,

we have Adg(A) = dt
∣∣
t=0

ggA,tg
−1.

The corresponding linear representation of the Lie algebra is denoted the adjoint represen-

tation of the Lie algebra, Ãd ≡ ad. The adjoint representation is a representation of the Lie

algebra on itself. According to our previous discussion, we have

adA(B) = d2
t,s

∣∣
t,s=0

gA,tgB,sg
−1
A,t = [A,B].

The result

adA(B) = [A,B] (3.8)

plays a pivotal role in the representation theory of Lie groups. Let {Ta} be a basis of the Lie

algebra. The expansion coefficients fabc of [Ta, Tb],

[Ta, Tb] ≡ fabcTc (3.9)

are called the structure constants of the Lie algebra. Two Lie algebras are isomorphic, if they

share the same structure constants.

3.5 From Lie algebras to Lie groups

Above, we have seen how plenty of structure information is encoded in the Lie algebra g. In

this final section, we will show that this information actually suffices to recover the structure

of the whole group G, at least in some vicinity of the unit element. The section contains the

mathematics behind the physicists’ strategy to generate a global transformation (an element

of the Lie group or one of its actions) out of infinitesimal transformations, or transformation

’generators’ (an element of the Lie algebra or one of its actions.)
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3.5.1 The exponential mapping

In section 3.3.2 we have introduced the flow gA,t of a left invariant vector field A through the

origin. We now define the map

exp : TeG → G,

A 7→ exp(A) ≡ gA,1. (3.10)

Let us try to understand the background of the denotation ’exp’. We first note that for s ∈ R,

gsA,t = gA,st. Indeed, gsA,t solves the differential equation dtgsA,t = sAgsA,t with initial

condition gsA,0 = e. However, by the chain rule, dtgA,st = sdstgA,st = sAgA,st (with initial

condition gA,s0 = e.) Thus, gA,st and gsA,t solve the same first order initial value problem which

implies their equality. Using the homogeneity relation gsA,t = gA,st, we find that

exp(sA) exp(tA) = gsA,1gtA,1 = gA,sgA,t = gA,s+t = g(s+t)A,1 = exp((s+ t)A),

i.e. the function ’exp’ satisfies the fundamental relation of exponential functions which explains

its name. The denotation exp hints at another important point. Defining monomials of Lie

algebra elements An in the obvious manner, i.e. through the n–fold application of the vector A,

we may tentatively try the power series representation

exp(A) =

∞∑
n=0

1

n!
An. (3.11)

To see that the r.h.s. of this equation indeed does the job, we use that exp(tA) = gt,A must

satisfy the differential equation dt exp(tA) = exp(tA)A = Aexp(tA). It is straightforward to

verify that the r.h.s. of Eq. (3.11) solves this differential equation and, therefore, appears to

faithfully represent the exponential function.4

INFO We are using the cautious attribute ’appears to’ because the interpretation of the r.h.s. of

the power series representation is not entirely obvious. A priori, monomials An neither lie in the Lie

algebra, nor in the group, i.e. the actual meaning of the series requires interpretation. In cases, where

G ⊂ GL(n) is (subset of) the matrix group GL(n) no difficulties arise: certainly, An is a matrix

and det exp(A) = exp(ln det exp(A)) = exp tr ln exp(A) = exp tr(A) 6= 0 is non–vanishing, i.e.

exp(A) ∈ GL(n) as required. For the general interpretation of the power series interpretation, we

refer to the literature.

3.5.2 Normal coordinates

The exponential map provides the key to ’extrapolating’ from local structures (Lie algebra) to

global ones (Lie group). Let us quote a few relevant facts:

. In general, the exponential map is neither injective, nor surjective. However, in some open

neighbourhood of the origin, exp defines a diffeomorphism. This feature may be used to define

4 Equivalently, one might have argued that the fundamental relation exp(x) exp(y) = exp(x + y) implies the power series
representation.
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a specific set of local coordinates, the so–called normal coordinates: Assume that a basis of

TeG has been chosen. The normal coordinates of exp(tA) are then defined by exp(tA)i ≡ tAi,
where Ai are the components of A ∈ TeG in the chosen basis. (For a proof of the faithfulness

of this representation, see the info block below.)

. There is one and only one simply connected simply connected Lie group G with Lie(G) = g.

For every other connected Lie group H with Lie(H) = g, there is a group homomorphism

G → H whose kernel is a discrete subgroup of H. (Example: g = R, G = R, H = S1, with

kernel Z× (2π).) G is called the universal covering group of H.

INFO We wish to prove that, locally, exp defines a diffeomorphism. To this end, let gi(g) be an

arbitrary coordinate system and ηi(g) be the normal coordinates. The (local) faithfulness of the latter

is proven, once we have shown that the Jacobi matrix ∂gi

∂ηj
is non–singular at the origin. Without loss

of generality, we assume that the basis spanning TeG is the basis of coordinate vectors ∂
∂gi

of the

reference system.

Thus, let ηi ≡ tAi be the normal coordinates of some group element g. Now consider the specific

tangent vector B ≡ ∂
∂t

∣∣
t=0

g ∈ TeG. Its normal coordinates are given by Bin = ∂
∂t
ηi = Ai. By

definition, the components of the group element g in the original system of normal coordinates will

be given by gi(g) = expi(tA). The components of the vector B are given by Bi = dt
∣∣
t=0

expi(tA) =

dt
∣∣
t=0

gi1,tA = dt
∣∣
t=0

git,A = Ai. Thus, Bi = Bin coincide. At the same time, by definition, Bi =
∂gi

∂ηj
Bjn, implying that ∂gi

∂ηj
= id has maximal rank, at least at the origin. By continuity, the coordinate

transformation will be non–singular in at least an open neighbourhood of g = e.

EXAMPLE The group SU(2) as the universal covering group of SO(3). The groups SU(2)

and SO(3) have isomorphic Lie algebras. The three dimensional algebra so(3) consists of all three

dimensional antisymmetric real matrices. It may be conveniently spanned by the three matrices

T1 =

0 0 0
0 0 −1
0 −1 0

 , T2 =

 0 0 1
0 0 0
−1 0 0

 , T3 =

0 −1 0
1 0 0
0 0 0

 ,

generating rotations around the 1, 2 and 3 axis, respectively. The structure constants in this basis,

[Ti, Tj ] = εijkTk coincide with the fully antisymmetric tensor εijk. In contrast, the Lie algebra

su(2) of SU(2) consists of all anti–Hermitean traceless two dimensional complex matrices. It is three

dimensional and may be spanned by the matrices τi ≡ − i
2
σi, where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the familiar Pauli matrices. As with so(3), we have [τi, τj ] = εijkτk, i.e. the two algebras are

isomorphic to each other.

Above, we have seen that the group manifold SU(2) ' S3 is isomorphic to the three–sphere, i.e.

it is simply connected. In contrast, the manifold SO(3) is connected yet not simply connected.

To see this, we perform a gedanken experiment: consider a long two–dimensional flexible strip

embedded in three dimensional space. Let the (unit)–length of the strip be parameterized by τ ∈ [0, 1]

and let v(τ) be the vector pointing in the ’narrow’ direction of the strip. Assuming the width of

the strip to be uniform, the mapping v(0) 7→ v(τ) is mediated by an SO(3) transformation O(τ).

Further, τ 7→ O(τ) defines a curve in SO(3) Assuming that v(0) ‖ v(1), this curve is closed. As we

will see, however, it cannot be contracted to a trivial (constant) curve if v(1) obtains from v(0) by
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a 2π rotation (in which case our strip looks like a Moebius strip.) However, it can be contracted, if

v(1) was obtained from v(0) by a 4π rotation.

To explicate the connection SU(2)↔ SO(3), we introduce the auxiliary function

f : R3 → su(2),

v = viei 7→ viτi.

For an arbitrary matrix U ∈ SU(2), we have Uf(v)U−1 ∈ su(2) (Uf(v)U−1 is anti–Hermitean and

traceless.) Further, the map f is trivially bijective, i.e. it has an inverse. We may thus define an action

of SU(2) in R3 as

ρUv ≡ f−1(Uf(v)U−1).

Due to the linearity of f , ρU actually is a linear representation. Furthermore ρU : R3 → R3 ∈ SO(3),

i.e. ρ : SU(2)→ SO(3), U 7→ ρU defines a map between the two groups SU(2) and SO(3). (To see

that ρU ∈ SO(3), we compute the norm ρUv. First note that for A ∈ su(2), |f−1(A)|2 = 4 det(A).

However, det(Uf(v)U−1) = det(f(v)), from where follows the norm–preserving of ρU . One may

also check that ρU preserves the orientation, i.e. ρU is a norm– and orientation preserving map,

ρU ∈ SO(3).)

It can be checked that the mapping ρ : SU(2)→ SO(3) is surjective. However, it is not injective.

To see this, we need to identify a group element g ∈ SU(2) such that ∀v : g−1f(v)g = f(v), or,

equivalently, ∀h ∈ SU(2) : g−1hg = h. The two group elements satisfying this requirement are

g = e and g = −e. We have thus found hat the universal covering group of SO(3) is SU(2) and that

the discrete kernel of the group homomorphism SU(2)→ SO(3) is {e,−e}.


