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    INTRODUCTION 

 

 

Symmetry is a vast subject, significant in art and nature. 

Mathematics lies at its root, and it would be hard to find a 

better one on which to demonstrate the working of the 

mathematical intellect. I hope I have not completely failed in 

giving you an indication of its many ramifications, and in 

leading you up the ladder from intuitive concepts to abstract 

ideas. – Herman Weyl, Symmetry (Princeton, 1952)   

 

 

 Why and how Isometrica, and who would read it? 

 

Back in Spring 1995, one of my SUNY Oswego students submitted the following 

one-sentence teacher evaluation: "The course was relatively easy until chapter 

11 when I felt that the instructor was as lost as the students"! Chapter 11 -- 

typically associated with bankruptcy in the so-called 'real world' -- was in that 

case the symmetry chapter in Tannenbaum & Arnold's Excursions in Modern 

Mathematics: I had casually picked it as one of two 'optional' chapters in my 

section of MAT 102 (SUNY Oswego's main General Education course for non-

science majors, consisting of various mathematical topics). 

 

Perhaps that anonymous student's not entirely unjustified comment was the best 

explanation for my decision to volunteer to teach MAT 103, a General Education 

course devoted entirely to Symmetry, in Fall 1995: better yet, curiosity killed the 

cat -- once I started teaching MAT 103 I never took a break from it, gradually 

abandoning my passion for rigor and computation in favor of intuition and 

visuality. 

 

But where had MAT 103 come from? Following a January 1991 MAA minicourse 
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(Symmetry Analysis of Repeated Patterns) by Donald Crowe at the San 

Francisco Joint Mathematics Meetings, my colleague Margaret Groman 

developed (Fall 1992) a new course (Symmetry and Culture) in response to 

our General Education Board's call for courses fulfilling the newly introduced 

Human Diversity requirement: after all, was Professor Groman not an algebraist 

keenly interested in applications of Abstract Algebra (to symmetry for example), 

and had Professor Crowe not  co-authored a book with anthropologist Dorothy 

Washburn titled Symmetries of Culture (Univ. of Washington Press, 1988)?    

 

MAT 103 ceased to fulfill the Human Diversity requirement and was renamed 

Symmetries in Spring 1998, but it remained quite popular among non-science 

majors as a course fulfilling their Mathematics requirement; it also attracts a few 

Mathematics majors now and then. At about the same time I set out (initially in 

collaboration with Margaret Groman) to write a book -- not the least because 

Washburn & Crowe had temporarily gone out of print -- that was essentially 

completed in three stages: January 1999 (chapters 1-5), January 2000 (chapter 

6), and August 2001 (chapters 7 & 8). Various projects and circumstances 

delayed !official" completion until November 20, 2006 (the day a new computer 

forcefully arrived), with the first six chapters posted on my MAT 103 web site 

(http://www.oswego.edu/~baloglou/103) as of Fall 2003. In spite of my endless 

proofreading and numerous small changes, what you see here is very close in 

both spirit and content to the August 2001 version. [For the record, I have only 

added 'review' section 6.18 and subsections 1.5.3 & 4.17.4, and also added or 

substantially altered figures 4.73, 5.36, 6.121, 6.131, 7.44, and 8.3.]     

 

My initial intent was to write a student-oriented book, a text that our MAT 103 

students -- and, why not, students and also !general" readers elsewhere -- would 

enjoy and use: this is why it has been written in such unconventional style, and in 

the second person in particular; in a different direction, this is why it relies on 

minimal Euclidean Geometry rather than Abstract Algebra. Looking now at the 
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finished product, I can clearly see a partial failure: the absence of exercises and 

other frills (available to considerable extent through the MAT 103 web site), 

together with an abundance of detail (also spilling into the MAT 103 web site), 

may have conspired toward turning a perceived student's book into a teacher's 

book. Beyond students and teachers, and despite its humble origins, there may 

also be some specialists interested in Isometrica: I will attempt to address these 

three plausible audiences in considerable detail below; you may wish to skip 

these three sections at first reading and proceed to the end of the Introduction. 

   

 

 

 Comments for students and general readers 

 

 

 What is this book about, and how accessible is it? 

 

Donald Crowe's 'repeated patterns', better known nowadays as frieze/border 

patterns and wallpaper patterns, may certainly be viewed as one of the very first 

mathematical (even if accidentally so) creations of humankind: long before they 

were recognized as the poor relatives of the three-dimensional structures so dear 

to modern scientists, these planar crystallographic groups were being discovered 

again and again by repetition/symmetry-seeking native artists in every corner of 

the world. This book's goal is therefore the gradual unveiling of the structural and 

the mathematical that hides behind the visual and the artistic: so chapters 2 - 4, 

and even chapters 5 and 6, are more eye-pleasing than mind-boggling, while 

chapters 7 and 8 certainly require more of the reader's attention. It is fair to say 

that a determined reader can read the entire book relying only on some high 

school mathematics.    
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 Why is Chapter 1 here to begin with? 

 

Good question: this is the only chapter with some algebra (read analytic 

geometry) in a heavily geometrical book! The simple answer is that the General 

Education Committee of SUNY Oswego would not approve [Spring 1998] a 

mathematical course without some mathematical formulas in it... And it took me a 

while to come up with a constructive/creative way of incorporating some formulas 

into MAT 103, simply by providing an analytical description -- and, quite 

unintentionally, classification -- of the four planar isometries (that is, the four 

possible types of distance-preserving transformations of the plane). 

 

So, if you are not algebraically inclined, don't hesitate to skip chapter 1 at first 

reading: the four planar isometries are indirectly reintroduced in the much more 

reader-friendly chapter 2, save for the general rotation, as well in chapters 3 and 

4. (At the other end, some readers may be interested only in chapter 1, which is, 

I hope, a very accessible and engaging introduction to planar isometries, relying 

on neither matrices nor complex numbers.) 

 

 

 Any other reading tips, dear professor? 

 

I have no illusions: most of you are going to merely browse through my book, 

even if you happen to be a student whose GPA depends on it... Well, save for the 

potentially attractive figures, this book is not browser-friendly: its conversational 

style may be tiring to some, and the absence of 'summary boxes' depressing to 

others; and let's not forget a favorite student's remark to the effect that "it is odd 

that in a book titled Isometrica there is no definition of isometry"! But those 

figures are there, slightly over one per page on the average, and most of them 

are interesting at worst and seductive at best (me thinks): so start by looking at 

appealing figures, then read comments related to them, then read stuff related to 
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those comments, and ... before you know it you will have read everything! After 

all, this book talks to you -- are you willing to listen? (My thanks to another 

former student for this 'talking-to-me book' comment!)   

 

 

 Why is there no bibliography? 

 

Both because Isometrica is totally self-contained and because suggestions for 

further reading are always made in the text (including this introduction) and in 

context. Moreover, Washburn & Crowe provides a rather comprehensive 

bibliography to which I would have little to add... But if you ask me for one book 

that you could or should read before mine, I would not hesitate to recommend 

Peter Stevens' Handbook of Regular Patterns (MIT Press, 1981): that is any 

math-phobic's dream book and, although I follow it in neither its 'kaleidoscopic' 

approach nor its 'multicultural' focus, several figures from Stevens have been 

included in Isometrica (with publisher"s permission) as a tribute.  

 

 

 What is there for the non-mathematically inclined? 

 

Despite the inclusion of patterns from Stevens, my book -- as well as MAT 103 

in both its present and past forms -- fails to address in depth the cultural aspects 

of those patterns and the 'inner motives' of the native artists who created them: 

nothing like Paulus Gerdes' Geometry From Africa (Mathematical Association 

of America, 1999) or Washburn and Crowe's second book (with updated 

bibliography), Symmetry Comes of Age (Univ. of Washington Press, 2004). 

Still, I must mention a telling incident: a former student made once a deal with a 

quilt maker friend of hers involving the exchange of her copy of Isometrica for a 

quilt right after the MAT 103 final exam! In other words, mathematically oriented 
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as it happens to be, Isometrica and its 'abstract' designs can still be a source of 

inspiration for many non-mathematically inclined readers.  

 

 

 Is Isometrica related to the work of Escher? 

 

Yes and no: Escher's symmetrical drawings, for which he is well known, are 

certainly special cases of wallpaper patterns, which are Isometrica's main 

focus; but Escher's main achievement, the tiling of the plane by repeated 'real 

world' figures, is not discussed at all. Still, it is safe to say that those intrigued by 

Escher's creations are likely to be interested in Isometrica; conversely, 

Isometrica might be a solid introduction toward a serious reading of Doris 

Schattschneider's classic M. C. Escher: Visions of Symmetry (Abrams, 2004). 

 

More generally, Isometrica is not a good source for tilings of any kind; a few 

obvious planar tilings are used as standard examples, but there is no mention of 

hyperbolic or spherical tilings, and likewise no discussion of Penrose and other 

aperiodic (non-repeating) tilings. Still, the curious reader may find Isometrica to 

be a good starting point for such topics. (The same applies to other 'popular', 

loosely related topics like fractals.) 

  

 

 How about Alhambra? 

 

Granada's famed Moorish palace complex that inspired Escher is barely 

mentioned in Isometrica. For a detailed discussion of Alhambra's wallpaper 

aspects I would strongly recommend John Jaworski's A Mathematician's Guide 

to the Alhambra, currently available through the Jaworski Travel Diaries at 

http://www.grout.demon.co.uk/Travel/travel.htm.  
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 Is Isometrica history-oriented at all? 

 

No. Consistent with the absence of bibliography, any discussion of the subject's 

historical development is absent from Isometrica. For such information, and a 

broader view as well, the interested reader is referred to both the internet and 

such classics as Grunbaum & Shephard's Tilings and Patterns (Freeman, 

1987) and Coxeter's Introduction to Geometry (Wiley, 1980). 

 

 

 

 Comments for teachers. 

 

 

 Symmetry as a General Education course? 

 

This is an eminently legitimate concern: is it fair for a course that for most of its 

takers is their 'final' mathematical experience to be devoted to a single subject 

almost devoid of 'real world' applications? My response is that students may in 

the end understand more about what Mathematics is about by focusing on one 

subject and its development than by being briefly exposed to a variety of 

subjects. (Besides, even if I wrote Isometrica for a General Education course, it 

may certainly be used for other classes and audiences!)  

 

 

 Is Symmetry just about border and wallpaper patterns? 

 

Certainly not! In fact MAT 103 does cover the isometries of the cube and the 
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soccerball (and their compositions) toward the end, and students tend to enjoy 

these subjects at least as much as the rest of the course (especially when it 

comes to isometry composition, which is now greatly facilitated by finiteness). It 

is therefore fair to say that Isometrica may also be used for only part of a course 

devoted to symmetry or geometry; for example, one may spend just three to four 

weeks covering only chapters 2, 3, and 4, or merely two weeks on chapters 2 

(border patterns) and 4 (wallpaper patterns).   

 

 

 What is the interplay between border patterns and wallpaper patterns? 

 

Border patterns are planar designs invariant under translation in precisely one 

direction; wallpaper patterns are planar designs invariant under translation in two, 

therefore infinitely many, directions. This difference makes border patterns 

substantially easier to understand and classify. It is therefore natural to use 

border patterns as a stepping stone to wallpaper patterns. Further, border 

patterns may be seen as the building blocks of wallpaper patterns, and this is 

indeed an opportunity that Isometrica does not pass by; the subject is treated in 

depth in Shredded Wallpaper -- Bonita Bryson's 2005 honors thesis currently 

available at http://www.oswego.edu/~baloglou/103/bryson-thesis.pdf, which 

may also be used as a quick introduction to border and wallpaper patterns.    

 

 

 How about covering border patterns only? 

 

I would discourage this option, except perhaps early in high school, with the 

intention of covering wallpaper patterns the year after. I suspect nonetheless that 

several readers of Isometrica may limit their serious reading to chapter 2, which 

is probably the book's most successful and accessible chapter anyway! 
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 How do border and wallpaper patterns relate to Euclidean Geometry? 

 

The Euclidean Geometry employed in Isometrica is so minimal and elementary 

that a daring question emerges: would it actually be possible to develop the 

students' geometrical intuition through some informal exposure to border and 

wallpaper patterns before introducing them to Euclidean Geometry? Could the 

intense exposure to shapes and transformations enforced by the study of 

patterns facilitate the absorption of geometrical ideas and even arguments 

encountered in high school geometry? This might be a good research topic for 

Mathematics educators.       

 

 

 Could this be too easy for some students? 

  

Yes, especially in case they happen to be visual learners. It is the teacher"s 

responsibility to decide whether his/her students would benefit from a course 

based either partly or wholly on Isometrica, and how much time should be spent 

on it (if any). I have seen students who struggled for a D in MAT 103, as well as 

students who stated that it was the easiest course (in any subject) they have ever 

taken! Anyway, I do suspect that Isometrica could keep even the very best 

Mathematics/Science majors intrigued for a weekend (or at least a long Saturday 

afternoon), so please do not automatically give up on it simply because you 

happen to teach the best and brightest… [And do not forget that student"s 

comment at the beginning of this Introduction – it can be a treacherous subject!]  

  

 

 What is the role of color? 

 

The coverage of two-colored patterns in chapters 5 (border patterns) and 6 
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(wallpaper patterns) is a direct consequence of Isometrica's debt to Washburn 

& Crowe already alluded to. But, while for Washburn and Crowe the study of the 

artistically/anthropologically important two-colored patterns was an end, for me it 

ended up being largely a mean: indeed a careful look at chapters 5 and 6 shows 

how the classification of two-colored patterns is largely used as an excuse to 

delve into the structure of (one-colored) border and wallpaper patterns, and the 

compositions of their isometries in particular.     

 

 

 Is Isometrica written top-down or bottom-up? 

 

The answer lies hidden in the previous paragraph! Assuming that it would be 

difficult for (my) students to understand first 'abstract' (even if geometrically 

presented) composition of isometries (as treated in chapter 7) and then pattern 

structure based on that (top-down approach), I opted for an indirect, if not 

surreptitious, introduction to isometry composition departing from various 

classification issues in chapters 5 and 6 (bottom-up approach). My assumption is 

a questionable one, so a student-friendly top-down approach may indeed be 

presented in a future book! (In fact such an approach is currently being tested in 

Patterns and Transformations (MAT 203), an experimental SUNY Oswego 

course for honors students.)   

 

 

 What is the significance of isometry composition? 

 

Finding the isometries of any given pattern is a great exercise for the student, 

and essential for the pattern's correct classification. But it is not possible to 

appreciate a pattern's structure and 'personality' without understanding the way 

its isometries interact with each other: any two pattern isometries combined -- 

that is, applied sequentially -- produce a third isometry that also leaves the 
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pattern invariant; it is for this reason that mathematicians talk about border/frieze 

and wallpaper groups, the total absence of Group Theory from Isometrica 

notwithstanding. 

 

As already indicated, chapter 7 offers a thorough coverage of isometry 

composition in a totally geometrical context -- perhaps the most thorough (as well 

as accessible) coverage of compositions of planar isometries to be found in any 

book. It is therefore possible to use chapter 7 for a largely self-contained (despite 

the references to pattern structure) introduction to planar isometry composition. 

At the other end, section 7.0 alone shows how isometry composition can be 

studied 'empirically' in the context of multi-colored symmetrical tilings: that is in 

fact the way isometry composition is studied [since Spring 1997] in MAT 103, 

definitely making for the hardest part of the course -- likened once to "pulling 

teeth" by one of my best students! (To make 'isometry hunting' more fun, the 

instructor may even choose to initially hide from the students the helpful fact that, 

when it comes to isometry composition, rotations/translations and (glide) 

reflections act like positive and negative numbers in multiplication, respectively.)     

 

 

 What is the significance of isometry recovery? 

   

Finding the isometries of a border pattern is quite easy for most students. 

Wallpaper patterns are a different story, complicated by more than one possible 

direction for glide reflection, rotations other than half turn, etc. As indicated in 

passing in chapter 4, the determination of all the isometries mapping a 

'symmetrical' set to a copy of it -- a 'recovery' process discussed in detail in 

chapter 3 -- can make the isometries of a complex wallpaper pattern much more 

visible and 'natural': quite often the isometries mapping a 'unit' of the pattern to a 

copy of it are extendable to the entire pattern!  This is stressed in MAT 103: 

students are initially encouraged to reconstruct the isometries, with the hope (or 
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rather certainty) that they will gradually become more capable of seeing them; 

they are in fact told that "what you cannot see you may build", a guiding 

principle throughout the course! (A student's mother was thrilled enough by this 

principle to tell her daughter "now I do know that you are learning something in 

college" -- a very sweet comment indeed.) So, even though chapter 4 is almost 

entirely independent of chapter 3, I am strongly in favor of covering both.  

 

 

 How do students benefit from classifying patterns? 

 

A former student told me once that "this course put some order in his mind"; and 

several students report in their evaluations that MAT 103 made them better 

thinkers. For such a visual, almost playful, course these comments may appear 

startling at first. But the classification process, especially of two-colored patterns, 

is very much a thinking process; for example, and very consistently with the 

guiding principle cited above, the classifier will often either detect or rule out an 

isometry based on logical rather than visual evidence.   

 

 

 What is the role of symmetry plans? 

          

Washburn & Crowe facilitates the classification of individual two-colored 

patterns by way of step-by-step, question-and-answer flow charts; Isometrica 

reaches this goal through a complete graphic description of each two-colored 

type's isometries and their effect on color (preserving or reversing). This 

approach has the advantage of constantly and constructively exposing the 

students to the full isometry structure of the 7 border patterns (through 24 two-

colored types and symmetry plans at the end of chapter 5) and the 17 wallpaper 

patterns (through 63 two-colored types and symmetry plans at the end of chapter 

6). Quite clearly, similar symmetry plans could be used for the simpler tasks of 
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classifying one-colored border patterns (chapter 2) and one-colored wallpaper 

patterns (chapter 4); but I prefer a purely non-graphical description of one-

colored patterns in order to test/develop the students' reading skills a bit! 

  

 

 Does Isometrica discriminate against glide reflection?        

 

How did you know? You must have read the entire book!  Yes, there is some 

discrimination ... in the sense that glide reflection is viewed as an isometry 

'weaker' than reflection. This view is of course dictated by the fact that glide 

reflection, which may certainly be viewed as deferred reflection, is harder to 

detect in a wallpaper (or border) pattern. Further, every wallpaper pattern 

reflection generates translation(s) parallel to it and, therefore, "hidden glide 

reflection(s)": reflection 'contains' glide reflection, but not vice versa (and despite 

the fact that every reflection may be viewed as a glide reflection the gliding vector 

of which has length zero). But a careful reading of section 8.1 shows that 

reflection and glide reflection are simply two equivalent 'possibilities'; and the 

'shifting' processes introduced in sections 4.2 - 4.4 clearly indicate that reflection 

is the exception that verifies the rule (glide reflection).     

 

One way or another, the teacher must stress the curious interplay between 

reflection and glide reflection outlined above, and also insist that the students use 

dotted (read dashed) lines for glide reflection axes and vectors and solid lines for 

reflection axes and translation vectors, as in the symmetry plans. (There are 

places in Isometrica where some readers may disagree with my choice of solid 

or dotted lines; when a pattern reflection is combined with a parallel translation in 

order to create a 'hidden' glide reflection, for example, I use solid rather than 

dotted lines.)  
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 What is the role of inconsistency with color? 

 

Between the 'perfectly symmetrical' two-colored patterns of Washburn & Crowe 

and the randomly colored designs of the 'real world' lies a third, somewhat 

esoteric, class of two-colored patterns where, informally speaking, there is some 

order within their coloring disorders; more formally, some of their isometries 

happen to be inconsistent with color -- reversing colors in some instances and 

preserving colors in other instances -- but, otherwise, the coloring appears to be 

perfectly symmetrical, and with the two colors in perfect balance with each other 

in particular. Such inconsistently yet symmetrically colored patterns are largely 

absent from Washburn & Crowe, and for a good reason: it seems that native 

artists, driven perhaps by instinct or intuition, largely shunned them, producing 

either 'perfect' or 'random' colorings!  

 

A natural question arises: should such inconsistent colorings be avoided in 

teaching? Although I do cover this topic extensively in MAT 103 and Isometrica, 

my answer is a reluctant "perhaps" -- especially to those teachers who may think 

that two-colored patterns would already strain their students considerably. On the 

other hand, anyone delving into this seemingly esoteric topic will be rewarded 

with many fascinating (both visually and conceptually) creations; the color 

inconsistencies involved will often transform a 'symmetrically rich' structure into a 

'lower' type, illustrating the fateful principle that "coloring may only reduce 

symmetry". Anyway, those wishing to avoid the topic should be able to do so 

relatively easily, despite the presence of several color-inconsistent examples; 

and those venturing into it may be seduced enough to substantially enlarge 

Isometrica's collection of inconsistent colorings! 
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 What is the role of the Conjugacy Principle? 

 

The Conjugacy Principle states that the image of an isometry by any other 

isometry is an isometry of the same kind (with rotation angles or glide reflection 

vectors preserved modulo orientation); conversely, any two 'identical-looking' 

isometries are actually images of each other under a third isometry. In the 

context of wallpaper patterns, the Conjugacy Principle becomes an indispensable 

tool for their structural understanding and classification. Although formally 

introduced in section 6.4 (with the excuse of understanding the color effect of 

coexisting reflections and glide reflections) and applied throughout chapter 6, the 

Conjugacy Principle is thoroughly discussed and rigorously explained only in 

section 8.0 (paving the way for the classification of wallpaper patterns); it also 

appears in section 4.0 -- to the extent needed for the establishment of the 

Crystallographic Restriction (on rotation angles allowed for wallpaper patterns), 

which could admittedly wait until section 8.0.  

 

 

 What do we make of chapter 8? 

 

This final chapter is devoted to my purely geometrical argument that there exist 

precisely 17 types of wallpaper patterns. It would clearly be beyond the scope of 

most General Education courses, and probably too sophisticated for the great 

majority of non-science majors as well. But it is largely self-contained -- totally 

self-contained in case section 4.0 and chapter 7 are assumed -- and requires 

mathematical maturity rather than knowledge. Interested instructors (or other 

readers) should probably teach/read it in parallel with Crystallography Now, a 

web page (http://www.oswego.edu/~baloglou/103/seventeen.html) devoted 

to a more informal presentation of my classification of wallpaper patterns.  
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 Comments for experts 

 

 

 Does chapter 8 really offer a classification of wallpaper patterns? 

 

Tough question! The answer depends even on the way one defines a wallpaper 

pattern, and whether one believes that Group Theory has to be part of that 

definition in particular. Among thousands of visitors of Crystallography Now, 

only one was kind enough to tell me that my classification is "more intuitive than 

others, but not at all rigorous", his main point being that "two wallpaper patterns 

are of the same type if and only if their isometry groups are isomorphic". Fair 

enough, but is it reasonable to be able to characterize such simple structures, 

known to humankind for thousands of years, only in terms of advanced 

mathematical concepts? How would Euclid describe -- and perhaps classify -- the 

seventeen types in the Elements, had he included them there? (Just a thought!) 

 

To be honest, a solid structural understanding of the seventeen types of 

wallpaper patterns was, and still is, more important to me than a rigorous/quick 

proof that there exist indeed precisely seventeen such types. Nonetheless, I 

suspect that what Isometrica offers could easily be turned into a formal proof by 

replacing isomorphism of isometry groups by a properly defined 'isomorphism' of 

symmetry plans. Such an isomorphism would certainly distinguish between solid 

lines (reflection) and dotted lines (glide reflection) or between hexagonal dots 

(sixfold centers) and triangular dots (threefold centers), etc. Under such an 

approach, any two symmetry plans consisting only of round dots (half turn 

centers) should represent the same type of wallpaper pattern (p2); even more 

frighteningly, any two wallpaper patterns having nothing but translations would be 

of the same type (p1) on account of their 'blank' symmetry plans, and so on. 
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More interestingly, the reader is invited to compare the way this symmetry plan 

approach distinguishes between p4g and p4m (section 8.3) or between p31m 

and p3m1 (section 8.4) to the way the traditional group-theoretic approach 

reaches the same goals: rather than looking at their generator equations, 

Isometrica focuses on the two possible ways in which their (glide) reflections 

may 'pass through" their lattices of rotation centers.  

 

[Note: the classification of border patterns in chapter 2 is even more 'informal' 

than that of wallpaper patterns, consistently with that chapter's introductory 

nature; the interested reader should be able to easily derive a more rigorous 

classification of border patterns based on symmetry plans.] 

 

 

 Any new ideas in the proposed classification? 

 

The main new idea is the reduction of complex (rotation + (glide) reflection) types 

to the three rotationless types with (glide) reflection (pg, pm, cm) via the 

characterization of the latter in terms of their translations. So section 8.1, where 

the said characterization is achieved, may seem endless, but the derivation of the 

remaining types in the subsequent sections is swift and rather elegant (I hope).  

 

Needless to say, the Conjugacy Principle shines throughout the classification!     

 

 

 Any other surprises prior to chapter 8? 

 

Some readers may find a few interesting ideas lurking in my novel (non-group-

theoretic) classification of two-colored patterns (which assumes the classification 

of one-colored patterns), and in the exploitation of symmetry plans in sections 6.9 

and 6.11 - 6.12 in particular. Others may be delighted at the various ways of 
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passing from one border or wallpaper type to another: although such 

'transformations' are included in Isometrica mostly for educational purposes, 

they are bold commentaries on the ever-elusive structure of patterns, too!     

 

 

 Can Isometrica's ideas be extended to the three dimensions? 

 

Before trying to explore two-colored 'sparse crystals' (blocks not touching each 

other and therefore not obscuring colors) I would rather try to investigate 

compositions of three-dimensional isometries in a geometrical context (extending 

chapter 7) and classify the 230 crystallographic groups geometrically (extending 

chapter 8). I believe that both projects are feasible, and hope to pursue them now 

that Isometrica has been completed; anyone interested in competing with me 

may like to start with Isometries Come In Circles (my 'mostly two-dimensional' 

novel derivation of three-dimensional isometries, currently available at 

http://www.oswego.edu/~baloglou/103/circle-isometries.pdf).  

 

 

 What happens when more than two colors are involved? 

 

This question has been answered in Tom Wieting's The Mathematical Theory 

of Chromatic Plane Ornaments (Marcel Dekker, 1982). I was ambitious 

enough to investigate multicolored types in the context of maplike colorings of 

planar tilings, and also without the group-theoretic tools employed by Wieting; 

more specifically, I was interested in the interplay between tiling structure and 

coloring possibilities. That was not necessarily a hopeless project, and I did/do 

have some interesting ideas, but I had to finally admit that my attempts -- during 

the summers of 2000 and 2005 -- were not that realistic: several hundred 

multicolored tilings later a projected ninth chapter (initially numbered as seventh) 

had to be abandoned, and this fascinating, literally colorful, project was 
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postponed indefinitely... [Section 9.0 (i.e., introduction only) is available at 

http://www.oswego.edu/~baloglou/103/isometrica-9.pdf, but has not been 

included in Isometrica; it concludes with a 'four color' conjecture on 

'symmetrically correct' coloring of tilings.]  

 

 

 Any other future projects related to Isometrica? 

 

It would be nice if someone with more energy and knowledge sits down and 

writes a book on wallpaper patterns that could be used for a mathematics 

capstone course! Here is how this could be achieved: start with an elementary 

geometrical classification of wallpaper patterns like mine and then continue with 

the standard group-theoretic classification (available for example in Wieting's 

book) and Conway's topological classification, developing/reviewing all needed 

mathematical tools along the way. The success of such a project (and course) 

would probably depend on the author's ability to delve into the hidden interplay 

among the three approaches.   

 

[Conway's orbifold approach may be found, together with broadly related topics, 

in Geometry and the Imagination -- informal notes by John Conway, Peter 

Doyle, Jane Gilman, and Bill Thurston currently available at 

http://www.math.dartmouth.edu/~doyle/docs/gi/gi.pdf; look also for The 

Symmetry of Things, by John Conway, Heidi Burgiel, and Chaim Goodman-

Strauss (AK Peters, forthcoming).]  

 

 

 Can we judge this book by its cover? 

 

No way! The figure on the cover is a tribute to the great crystallographer (and not 

only) Arthur Loeb and his Color and Symmetry (Wiley, 1971), which offers an 
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alternative geometrical study of wallpaper patterns. More specifically, it is a 

humorous reminder of Loeb's nifty derivation of the composition of two 

intersecting glide reflections (and that mysterious parallelogram associated with 

them): this important problem forms the pinnacle of my discussion of isometry 

composition in chapter 7, and it seems to be absent from all other books that 

could have discussed it; my approach is not as direct as Loeb's, but it has its own 

methodological advantages (such as requiring a thorough discussion of the 

composition of a glide reflection and a rotation, a topic not directly addressed by 

Loeb). 

 

[Which Isometrica figure would be on the cover if I didn't choose to attract the 

reader's attention to Loeb's work and genius? Tough question, but the winner is 

figure 8.19 (on the 'ruling' and unexpected mirroring of half turn centers by glide 

reflection): in addition to capturing Isometrica's spirit, it could lead to an 

alternative and probably quicker discussion of half turn patterns in section 8.2. 

And a close second would no doubt be figure 8.39, which dispenses of the 

patterns with threefold/sixfold rotation and reflection by showing that their only 

'factor' can be a cm.] 

 

 

 

 Further comments, acknowledgments, dedications. 

 

 

Responding to my May 2000 talk at a Madison conference honoring Donald 

Crowe, H. S. M. Coxeter -- in his 90's at the time, seated in a wheelchair barely 

ten feet from the speaker(s) -- remarked with a wry smile that "all the two-colored 

types had been derived in the 1930's by a textile manufacturer from Manchester 

[H. J. Woods] without using any Mathematics". The eminent geometer's remark 

captures much of the spirit in which Isometrica has been written, as well as the 
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subject's precarious position between Art and Mathematics. At another level, 

Coxeter's remark serves as a reminder of the interplay and struggle between 

rigor and intuition, between structure and freedom, which has certainly left its 

mark on Isometrica.  

 

I like to say, in hindsight, that border and wallpaper patterns are "of limited 

interest to many people" -- not artistic enough for artists and not mathematical 

enough for mathematicians... Further, and contrary to the pleasant illusions 

created by Stevens or Washburn & Crowe or Isometrica, symmetry itself is an 

exception rather than a rule in the real world: I was rather flattered to hear from 

two former students that they think of me when they run across symmetrical 

figures during their New York City strolls, but how frequent, and how important 

after all, are such symmetrical encounters? How meaningful is abstract beauty in 

an increasingly tormented world? I have been caught telling friends that it is not 

enough for me to hear my students say that they enjoyed my course (and, by 

extension, book), I actually need to hear -- even if occasionally -- that it changed 

their life, or, less arrogantly on my part, that “it caused them see the world a little 

differently" (this is quoted verbatim from a former student's recent e-mail). 

 

If you read between the lines above you already know that the teaching of MAT 

103 and the writing of Isometrica have certainly changed my life: I knew that 

since the first week of classes in Fall 1995, when I came up with an assignment 

calling for the creation of the seven border pattern types using vertical and 

horizontal congruent rectangles -- an assignment that looks trivial now but kept 

me up late that night (because the idea of 'multidecked' border patterns is not 

'natural' to our minds, perhaps). Moreover, there I was, someone with absolutely 

no prior interest in drawing or Design, spending many hours and nights creating 

'new' patterns, first by hand, then on a computer ... gradually discovering how 

such patterns and concepts could form a gateway to mathematical thought for 

students as interested in Mathematics as I once was in Design! [The term 
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"design" is used quite narrowly here, and intentionally so: Graphic Design majors 

who take MAT 103 tend to find its patterns rather inspiring!]  

 

So a labor of love it was, and this is why I have largely preserved Isometrica in 

its original form: perhaps my preferred strategy or tactics for presenting this 

incredibly flexible material have changed since 2001, but I chose to preserve my 

initial insight and the writing adventure that ensued. For the same reason, 

combined with various personal circumstances, Isometrica is going straight to 

the internet rather than some constricting publishing house: the software 

packages employed (MathWriter and SuperPaint) were already ancient when I 

started, the English may seem awkward here and there, the figures are 

somewhat primitive and often imperfect, the overall format is kind of kinky, but 

you are getting the real thing, and for free at that! [You may in particular get a 

good sense of the struggle and discovery process that went on as the exposition 

revs up through the chapters: even if there is a "royal road to geometry" … I often 

fail to follow it ... keeping in mind that “the shortest approach is not always the 

most interesting”!] 

 

My joy at having been able to preserve Isometrica's desired form is offset by the 

sadness of having left so much out: my plans of including everything bypassed 

by 'first insight' in the form of exercises had to be abandoned, but I am still hoping 

of creating additional web pages -- probably linked to the online version of this 

Introduction -- in the future, covering extra topics in detail (and color); and if this 

hope never materializes, with the future of MAT 103 as inevitably unclear as is, I 

trust that enough material has been included here to inspire others toward new 

mathematical ideas and/or artistic creations. [Please forgive this desperate 

optimism about Isometrica being read and even expanded, but it is my firm 

belief that its informal and adventurous style is going to win it some lasting 

friends!]     
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My obvious desire to generate disciples for Isometrica has a non-obvious 

implication: despite the copyright notices at the beginning and ending of each 

chapter, I do allow the reproduction of my book for educational purposes; if for 

example a teacher anywhere in the world wishes to have hard copies (of either 

Isometrica in its totality or some of its chapters) for his/her students, then it is 

fine with me to have that school's printing service produce such copies, even if at 

a reasonable cost and marginal profit. So please do not write to me for 

permissions (concerning either Isometrica or various web pages related to it): I 

would love to have feedback from you, but giving me credit for the materials you 

have used is all that I am asking for...     

 

For every book and completed project that sees the light of day there are several 

visions buried under perennial darkness: I happen to have the right personality 

for incompleteness, therefore I am almost ecstatic as these final lines are being 

written; repeatedly seduced as I was by those 'repeating patterns', the discipline 

often failed to match the excitement, the time and will appeared not to be there at 

times, the questions tended to dwarf the answers... While several friends and 

colleagues provided constant support, I believe that the project's completion and, 

I hope, success is primarily due to my MAT 103 students and their enthusiasm. 

At the risk of being oblivious to the small but precious contributions of many, I 

would like to single out and thank five former students for their encouragement 

and inspiration: Terry Loretto (Fall 1995), Dreana Stafford (Spring 1999), Michael 

Nichols (Fall 1999), who also provided crucial assistance with SuperPaint in 

January 2000, Richard Slagle (Fall 2003), and Bonita Bryson (Spring 2004), who 

also wrote the aforementioned honors thesis (on the tiling of wallpaper patterns 

by border patterns). 

 

As made clear in the beginning of this Introduction, there would simply be no 

Isometrica without Margaret Groman's original vision; I am equally grateful to 

her for her constant encouragement and suggestions for improvement. Likewise, 
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I am indebted to Mark Elmer, who has also taught MAT 103 several times, for his 

careful reading of Isometrica and useful observations. Beyond MAT 103, I am 

grateful to my friend and collaborator Phil Tracy, who has also read Isometrica 

and discussed it with me in considerable detail; and likewise to my colleagues 

Chris Baltus, Fred Barber, Joseph Gaskin, Michel Helfgott, and Kathy Lewis for 

their mathematical camaraderie over the years.  

 

Beyond Oswego, I am grateful to a number of mathematicians and others who 

provided links to Isometrica's early ambassador, Crystallography Now, or 

offered useful feedback: Helmer Aslaksen, Andrew Baker, Dror Bar-Natan, Bryan 

Clair, Marshall Cohen, Wis Comfort, David Eppstein (Geometry Junkyard), 

Sarah Glaz, Andreas Hatzipolakis, Dean Henderson, William Huff, Loukas 

Kanakis, Nikos Kastanis, Barbara Pickett, Doug Ravenel, Jim Reid, Saul Stahl, 

Tohsuke Urabe, Marion Walter, Eric Weisstein (Wolfram MathWorld), Mark 

Yates, and others – notably family and friends in Thessaloniki, contributors to the 

sci.math newsgroup, and participants of my January 2003 Symmetry For All 

MAA minicourse -- who should forgive me for having overlooked their input. I am 

also grateful to George Anastassiou, Varoujan Bedros, and Fred Linton for their 

advice on technical and !legal" matters; along these lines, special thanks are also 

due to my friend and non-mathematical collaborator Nick Nicholas. 

 

Back to Oswego, I am grateful to Alok Kumar, Ampalavanar Nanthakumar, and 

Bill Noun for their support and good advice; same applies to several other 

colleagues from Mathematics, Computer Science, Art and other departments 

(and also administration) at SUNY Oswego. Sue Fettes deserves special mention 

for her assistance with MathWriter (in its final years). Finally, many thanks are 

due to Patrick Murphy, Jean Chambers & David Vampola, and Julia & Matthew 

Friday for many a pleasant evening -- followed at times by all-night Isometrica 

writing and, inevitably, drawing -- in tranquil Oswego.  
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In a somber tone now ... even though Isometrica was dedicated from the 

beginning to the memory of our colleague Ron Prisco (Margaret Groman's 

Abstract Algebra teacher forty years ago, among other things), who passed away 

before even I started writing it but "had a lot of faith in my work", I would like to 

honor here the memory of a few local friends whom we lost during the last couple 

of years: 

 

-- Bob Deming, whose unpublished but highly effective notes on Linear 

Programming provided an early model for me on classroom-generated books 

 

-- Jim Burling, who also taught MAT 103 a couple of times, organized our 

seminar, and was a fatherly figure for a number of younger colleagues 

    

-- Gaunce Lewis (of Syracuse University), whose tragically untimely death was a 

haunting reminder of the fragility of intellectual pursuits 

 

-- Don Michaels, who in his capacity as tireless news & web administrator 

contributed handsomely to the success of MAT 103 

 

Finally, Isometrica owes a lot to my late father, Christos Baloglou (1919 - 2002): 

a high school geometer who also taught Descriptive & Projective Geometry to 

Aristotle University Engineering students in the 1960's and published Scattered 

Drops of Geometry in 2001, he certainly influenced me to study Mathematics. 

My whole symmetry project may be seen as a Sisyphean effort to annul his 

lovely -- and, less obviously, loving -- verdict on it: "Son, this is not Mathematics"!  

 

                                                                                                    George Baloglou 

 

           Oswego, April 27, 2007 
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CHAPTER 1

 ISOMETRIES AS FUNCTIONS

1.0  Functions and isometries on the plane

1.0.1 Example. Consider a fixed point O and the following 
‘operation’: given any other point P on the plane, we send (map) it to 
a point P′ that lies on the ray going from O to P and also satisfies 
the equation |OP ′′′′| = 3 ×××× |OP|  (figure 1.1). It is clear that for each 
point P there is precisely one point P′, the image of P, that 
satisfies the two conditions stated above. Any such process that 
associates precisely one image point to every point on the plane is 
called a function (or mapping) .

                    
Fig. 1.1

1.0.2 Coordinates. Let us now describe the ‘blowing out’ 
function discussed in 1.0.1 in a different way, using the cartesian 
coordinate system  and positioning O at the origin, (0, 0). 
Consider a specific point P with coordinates (2.5, 1.8). Looking at 

the similar triangles OPA and OP′B in figure 1.2, we see that |P′B|
|PA|

 

= |OB|
|OA|

 = |OP′|
|OP|

 = 3, hence |P′B| = 3 × |PA| = 3 × 1.8 = 5.4 and |OB| = 3 × |OA| 

1



= 3 × 2.5 = 7.5. That is, the coordinates of P′ are (7.5, 5.4). In exactly 
the same way we can show that an arbitrary point with coordinates 
(x, y) is mapped to a point with coordinates (3x, 3y). We may 
therefore represent our function by a formula: f(x, y) = (3x, 3y).

          
Fig. 1.2

1.0.3 Images. Let us look at the rectangle ABCD, defined by the 
four points A = (2, 1), B = (2, 2), C = (5, 2), D = (5, 1). What happens 
to it under our function? Well, it is simply mapped to a ‘blown out’  
rectangle A′B ′C ′D ′ -- image of ABCD under the ‘blow out’ function --
with vertices (6, 3), (6, 6), (15, 6), and (15, 3), respectively:

 

    
Fig. 1.3
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1.0.4 More functions. One can have many more functions, 
formulas, and images. For example, g(x,y) = (2x−−−−y, x+3y) maps 
ABCD to a parallelogram, while h(x, y) = (3x+y, x−−−−y2+4) maps 
ABCD to a semi-curvilinear quadrilateral (figure 1.4). We compute 
the images of A under g and h, leaving the other three vertices to 
you: g(A) = g(2, 1) = (2×2−1, 2+3×1) = (3, 5); h(A) = h(2, 1) = (3×2+1, 
2−12+4) = (7, 5). (You may find more details in 1.0.8.) 

Fig. 1.4

1.0.5 Distortion and preservation. Looking at the three functions 
f, g, and h we have considered so far, we notice a progressive 
‘deterioration’: f simply failed to preserve distances (mapping ABCD 
to a bigger rectangle), g failed to preserve right angles (but at least 
sent parallel lines to parallel lines), while h did not even preserve 
straight lines (it mapped AB and CD to curvy lines). Now that we 
have seen how ‘bad’ some (in fact most) functions can be, we may as 
well ask how ‘good’ they can get: are there any functions that 
preserve distances (therefore angles and shapes as well), 
satisfying |AB| = |A′′′′B ′′′′| for every two points A, B on the plane? 

3



The answer is “yes”. Distance-preserving functions on the plane 
do exist, and we can even tell exactly what they look like: they are 
defined by formulas like F(x, y) = (a′′′′+b ′′′′x+c ′′′′y, d′′′′+e ′′′′x+f ′′′′y), where 
a ′, d′ are arbitrary, b′2+e ′2 = c′2+f′2 = 1, and either f′ = b′, e′ = −c′ or 
f′ = −b ′, e′ = c′! This is quite a strong claim, isn’t it? Well, we will 
spend the rest of the chapter proving it, placing at the same time 
considerable emphasis on a geometric description of the involved 
functions. For the time being you may like to check what happens 
when b′ or c′ are equal to 0: what is the image of ABCD in these 
cases? (Look at specific examples involving situations like a′ = 3,   
b′ = 0, c′ = 1, d′ = 2, e′ = -1, f′ = 0 or a′ = -2, b′ = -1, c′ = 0, d′ = 4,       
e′ = 0, f′ = 1, and determine the images of A, B, C, D.)  

1.0.6 What’s in a name? You probably feel by now that such nice, 
distance and shape preserving functions like the ones mentioned 
above deserve to have a name of their own, don’t you? Well, that 
name does exist and is probably Greek to you: isometry, from ison 
= “equal” and metron = “measure”. The second term also lies at the 
root of “symmetry” = “syn” + “metron” = “plus” + “measure” 
(perfect measure, total harmony). In fact ancient Greek isometria 
simply meant “symmetry” or “equality”, just like the older and more 
prevalent symmetria . The term “isometry” with the meaning 
“distance-preserving  function”  entered English -- emulating 
somewhat earlier usage in French and German -- in 1941, with the 
publication of Birkhoff & Maclane’s Survey of Modern  Algebra.    

1.0.7 Isometries preserve straight lines! We claim that every 
isometry maps a straight line to a straight line. And, yes, one could 
prove this claim without even knowing (yet) what isometries look 
like, without having seen a single example of an isometry! In fact, 
one could prove that isometries preserve straight lines without even 
knowing for sure that isometries do exist!! This mathematical world 
can at times be a strange one, can’t it? But how do we prove such an 
‘abstract’ claim?

Well, a clever observation is crucial here: it suffices to show 
that every isometry maps three distinct collinear  points to three 
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distinct collinear points! Indeed, let’s assume this ‘subclaim’ for 
now, and let’s prove right below the following: every function (not  
necessarily an isometry!) that maps every three collinear points to 
three collinear points must also map every straight line L to (a 
subset of) a straight line L′. Once this is done, preservation of 
distances shows easily that the image of L actually ‘fills’ L′. 

Start with a straight line L and pick any two distinct points P1, 
P2 on it. These two points are mapped by our function to distinct 
points P1′ , P2′  that certainly define  a new line, call it L′. Now every 
other point P on L is collinear with P1, P2, therefore, by our subclaim 
above (still to be proven!), its image P′ is collinear with P1′ , P2′ , 
hence it lies on L′ (figure 1.5). That is, every point P on L is mapped 
to a point P′ on L′, hence L itself is mapped ‘inside’ L′.

       

Fig. 1.5

So, how do we prove our subclaim that an isometry must always 
map collinear points to collinear points? Well, let A, B, C be three 
collinear points that are mapped to not necessarily collinear points 
A ′, B′, C′, respectively (figure 1.6). We are dealing with an isometry, 
therefore |A′C′| = |AC|, |A′B′| = |AB|, and |B′C′| = |BC|. Since A, B, C are 
collinear, |AC| = |AB| + |BC|. But then |A′C′| = |AC| = |AB| + |BC| =       
|A′B′| + |B′C′|. We are forced to conclude that A′, B′, C′ must indeed be 
collinear: otherwise one side of the triangle A′B ′C ′ would be equal to 
the sum of the other two sides, violating the familiar triangle  
inequal i ty .
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Fig. 1.6

1.0.8 Practical (drawing) issues. As you will experience in the 
coming sections, the fact that isometries map straight lines to 
straight lines makes life a whole lot easier: to draw the image of a 
straight line segment, for example, all you have to do is determine 
the images of the two endpoints and then connect them with a 
straight line segment. On our part, we will be repeatedly applying 
this principle throughout this chapter without specifically 
mentioning it. 

On the other hand, determining the image of either a straight 
segment under a function that is not an isometry or a curvy segment 
under any function requires more work: one needs to determine the 
images of several points between the two endpoints and then 
connect them with a rough sketch. This is, for example, how h(AB) 
has been determined in 1.0.4: h(2, 1) = (7, 5), h(2, 1.2) = (7.2, 4.56), 
h(2, 1.4) = (7.4, 4.04), h(2, 1.6) = (7.6, 3.44), h(2, 1.8) = (7.8, 2.76), 
h(2, 2) = (8, 2). This is indeed a lot of work, especially when not 
done on a computer! Luckily, most images in this book are 
determined geometrically rather than algebraically; more to the 
point, most shapes under consideration will be quite simple 
geometrically, defined by straight lines. 

1.0.9* How about parallel lines? Now that you have seen why 
isometries must map straight lines to straight lines, could you go 
one step further and prove that isometries must also map parallel 
lines to parallel lines? You can do this arguing by  contradiction: 
suppose that parallel lines L1, L2 are mapped by an isometry to non-
parallel lines L1′ , L2′  intersecting each other at point K; can you then 
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notice something impossible that happened to those distinct points 
K1, K2 (on L1, L2, respectively) that got mapped to K? 

And if you are truly adventurous, can you prove, perhaps by 
contradiction, that whenever a function (not necessarily an 
isometry!) maps straight lines to straight lines it must also map 
parallel lines to parallel lines?

1.1  Translation

1.1.1 Example. Consider the triangles ABC, A′B′C ′ below:

                         
            
Fig. 1.7

Not only they are congruent to each other, but they also happen 
to be ‘parallel’ to each other: AB, BC, and CA are parallel to A′B ′, 
B ′C ′, and C′A ′, respectively. This is a rather special situation, and 
what lies behind it is a vector . 

1.1.2 Vectors. Familiar as it might be from Physics, a vector is 
a hard-to-define entity. It basically stands for a uniform motion 
that takes place all over the plane: every single point moves in the 
same direction (the vector’s direction -- but have a look at 1.1.5, 
too) and by the same distance (the vector’s length). In figure 1.7, 
for example, it is easy to see that every point of the triangle ABC 
has moved in the same southwest to northeast (SW-NE) direction by 
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the same distance. We represent this motion by the ‘arrow’ below 
and call it a translation  -- “transferring (ABC) to (A′B ′C ′)”, in the 
same way a text is transferred from one language to another --

defined by the vector v
→→→→

:  

                                    

Fig. 1.8

Comparing figures 1.7 and 1.8, we easily conclude that every 
vector uniquely defines a translation and vice-versa. Notice also 
that the triangle A′B ′C ′ moves back to the triangle ABC by a 
translation opposite of the SW-NE one we already discussed, a 
translation defined by a NE-SW vector of equal length:  

                                    

Fig. 1.9
 

1.1.3 It’s an isometry! While figure 1.7 makes it ‘obvious’ that 
every translation does preserve distances, it would be nice to 
actually have a proof of this claim. All we need to do is to show that 

if points A and B move by the same  vector v
→

 to image points A′, B′ 
then |A′′′′B ′′′′| = |AB|. But this is easy: as AA′ and BB′ are ‘by definition’ 
parallel and equal to each other, AB and A′B ′ are by necessity the 
opposite, therefore equal (and parallel), sides of a parallelogram: 
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Fig. 1.10

1.1.4 Coordinates. Let us revisit 1.1.1, placing now figure 1.7 in 
a cartesian coordinate system, so that the coordinates of A, B, C and 
the approximate coordinates of A′, B′, C′ are as shown below:

Fig. 1.11

It doesn’t take long to realize that our translation simply adds  
approximately 3.6 units to the x-coordinate of every point and 
approximately 2.5 units to the y-coordinate of every point; this is 
explicitly shown in figure 1.11 for C and C′. We call these two 
numbers coordinates of the translation vector, which we may now 

write as v
→→→→

 ≈≈≈≈  <3.6, 2.5>. By the Pythagorean  Theorem , the 
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vector’s length is approximately 3.62 + 2.52  ≈  4.3. All this is 
further clarified in figure 1.12, which in particular shows how the 
translation vector’s coordinates are determined by the image O′ of 
(0, 0):

                            
Fig. 1.12

That is, we may represent this translation employing the 
formula T(x, y) = (3.6+x, 2.5+y). More generally, every translation 
on the plane may be represented by a formula of the form T(x, y) = 
(a+x, b+y). Conversely, each formula of the form T(x, y) = (a+x, b+y) 
represents a translation defined by the vector <a, b>; sometimes we 
may even denote the translation itself by <a, b>. Observe that the                            
opposite of the translation defined by the vector <a, b> is simply 
defined by the vector <−−−−a, −−−−b>. For example, the opposite translation 
of <3.6, 2.5> that we discussed in 1.1.2 is <−−−−3.6, −−−−2.5>.

1.1.5 ‘Determining’ a vector. While figure 1.12 provides 
sufficient illustration on the relation between a vector’s length, 
direction, and coordinates, just a bit of Trigonometry  makes 

everything so much clearer! Indeed, since the vector v
→

 of length 4.3 
makes a vector-angle  of about 360 with the positive  x-axis, its 
x-coordinate and y-coordinate are given by 4.3 × cos360 ≈ 4.3 × .81       
≈ 3.48 and 4.3 × sin360 ≈ 4.3 × .59 ≈ 2.53, respectively. While 
absolute precision has not been achieved, <3.48, 2.53> is indeed very 
close to <3.6, 2.5>. The quotient 2.53/3.48 ≈ .73 is the vector’s 
slope , which is another quantitative way of describing the vector’s 
direction. (Those who know a bit more know of course that this slope 
is equal to approximately tan360.)
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Beware at this point of a simple, yet important, fact: while the 
two distinct vectors <3.6, 2.5> and <−3.6, −2.5> share the same 
direction, their slopes being equal (2.5/3.6 = (−2.5)/(−3.6)), they are 
of opposite sense, going opposite ways (as figures 1.8 & 1.9 
demonstrate). Moreover, as we shall see in 1.4.7, opposite vectors 
have distinct vector-angles, in this case 360 and 2160, 
respectively. So, it is important to remember that for every 
slope/direction there exist two distinct, and opposite of each other, 
senses. Notice at this point that any two vectors of equal length and 
same direction and sense are one and the same, while any two 
vectors of equal length and same direction might be either one and 
the same or opposite of each other. 

1.2  Reflection

1.2.1 Mirrors create equals. Anyone who has ever successfully 
looked into a mirror is aware of this simple, as well as deep, natural 
phenomenon. Moreover, the closer you stand to a mirror, the closer 
you see your image in it -- another simple truth that even your cat 
is likely to be painfully aware of! In fact your mirror  image  lies 
precisely as far ‘inside’ the mirror as far away from it you stand: a 
fact used by many restaurants, bars, etc, to ‘double’ their perceived 
space. As mirrors or calm ponds cannot be included in books, we need 
a more abstract way of illustrating such natural observations, and 
we must indeed invent a ‘paper equivalent’ of a mirror!

 1.2.2 Reflection axes. In order to ‘touch’ your mirror image 
inside a mirror you need to extend your hand toward the mirror 
straight  ahead , so that it makes a right  angle  with the mirror, 
right? Well, this simple observation, together with the ones made in 
1.2.1, helps us come up with the needed representation of a mirror 
on paper. The image P′ of a point P under reflection about the axis 
(mirror) L is found as figure 1.13 indicates:
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Fig. 1.13

That is, we get the same effect on P as if an actual mirror had 
somehow been placed perpendicularly to this page along L: you may 
of course go through such an experiment and see what happens! 

1.2.3 Images. Let us return to triangle ABC of figure 1.7 and try 
to find its image under reflection by the straight line L in figure 
1.14. We do that simply by determining the images A′, B′, C′ of 
vertices A, B, C and then connecting them to obtain the image 
triangle A′B′C ′:

             

Fig. 1.14
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1.2.4 It’s an isometry! The two triangles in figure 1.14 certainly 
look congruent. This might not be as obvious as it was in the case of 
the two triangles of figure 1.7 -- we will elaborate on this in 
section 3.0 -- but, having three pairs of seemingly equal sides, ABC 
and A′B′C′ have to be congruent. How do we show that |BC| = |B′′′′C′′′′|, 
for example?

               

Fig. 1.15    

 Well, all we need to do is draw segments CD, C′D ′ (both parallel 
to L and perpendicular to BB′, CC′) and notice, with the help of the 
rectangles FECD and FEC′D′ (figure 1.15), that |DF| = |CE| = |C′E| = 
|D′F|, therefore |DB| = |BF| − |DF| = |B′F| − |D′F| = |D′B′|, while |DC| = |FE| = 
|D′C ′|: it follows that the two right triangles DBC and D′B ′C ′ are 
congruent (because |DB| = |D′B′| and |DC| = |D′C′|), hence |BC| = |B′C′|.

1.2.5 Coordinates. Let us now place triangles ABC, A′B ′C ′ and the 
axis L in a cartesian coordinate system (figure 1.16) and see what 
happens! You may use your straightedge to estimate the coordinates 
of A′, B′, and C′ and verify that (2, 1), (2, 3), and (6, 2) got mapped to 
approximately (5.1, 7.7), (3.6, 6.4), and (6.9, 4), respectively. 
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Fig. 1.16

Unlike in the case of translation, there is no obvious algebraic 
way of describing the transformation of coordinates observed above. 
This is of course no reason for giving up on determining the magic 
formula, if any, that lies behind this transformation of coordinates.

1.2.6 The reflection formula. Let L be a straight line with 
equation ax + by = c and M(x, y) be the mirror image of an arbitrary                      
point (x, y) under reflection about L. Then (‘magic formula’) 

M(x, y) = 

= ( 2 a c
a2+b2

 + b2−−−−a2

a2+b2
x −−−−  2 a b

a2+b2
y,  2 b c

a2+b2
 −−−−  2 a b

a2+b2
x −−−−  b2−−−−a2

a2+b2
y )

 
Proof*: Let (x′′′′, y′′′′) be the coordinates of M(x, y) and (x1, y1) be 

the coordinates of the midpoint Q  of the segment connecting (x, y) 
and (x′, y′); Q lies, of course, on  the mirror L (figure 1.17), while     

x1 = x+x′
2

 and y1 = y+y′
2

.
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Fig. 1.17

Since (x1, y1) = ( x+x′
2

, y+y′
2

) lies on the line ax + by = c, we 

obtain a( x+x′
2

)+b( y+y′
2

) = c, therefore a(x+x′)+b(y+y′) = 2c, 

ax+ax′+by+by′ = 2c, and, finally, ax′′′′+by′′′′ = 2c−−−−ax−−−−by (I).

Next, observe that the line ax + by = c (or, in equivalent form, 

and assuming b ≠≠≠≠  0, y = −−−− a
b

x + c
b

) and the segment connecting (x, y) 

and (x′, y′) have slopes that are negative reciprocals of each 
other: indeed the line and the segment are perpendicular to each 

other. Since the line’s slope is −−−− a
b

 and the segment’s slope is y′′′′−−−−y
x′′′′−−−−x

, 

we conclude that y′−y
x′−x

 = b
a

, hence a(y′−y) = b(x′−x), ay′−ay = bx′−bx 

and, finally, bx ′′′′−−−−ay ′′′′ = bx−−−−ay  (II).

Multiplying now (I) by a and (II) by b and adding the two products 
we get (a2x′+aby′)+(b2x′−aby′) = (2ac−a2x−aby)+(b2x−aby), therefore 

(a2+b2)x′ = 2ac+(b2−a2)x−2aby and x′′′′ = 2 a c
a2+b2

 + b2−−−−a2

a2+b2
x  −−−−  2 a b

a2+b2
y  

(III). Very similarly (multiplying (I) by b  and (II) by −−−−a , etc) we see 

that y ′′′′  = 2 b c
a2+b2

 −−−−  2 a b
a2+b2

x −−−−  b2−−−−a2

a2+b2
y (IV). Observe now that (III) 

and (IV) together yield the reflection formula we wished to 
establish.
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When b = 0, one can see directly that the image of (x, y) under 

reflection about the vertical  line x = c
a

 is  M(x, y) = ( 2 c
a

 −−−−  x, y); 

this observation does prove the reflection formula in the special 
case b = 0. 

1.2.7 Let’s check it out! Does an application of the reflection 
formula obtained in 1.2.6 confirm our empirical observations and 
coordinate estimates  in 1.2.5? Well, it better, otherwise there is 
something wrong somewhere! Let’s see: in figure 1.16 the reflection 
axis L passes through (13, 0) (x-intercept) and (0, 6) (y-intercept), 

hence its equation is x
1 3

 + y
 6 

 = 1 or 6x + 13y = 78; this leads to 

a = 6, b = 13, and c = 78, so that a2+b2 = 62+132 = 36+169 = 205, 
b2−a2 = 132−62 = 169−36 = 133, 2ab = 2 × 13 × 6 = 156, 2ac =             
2 × 6 × 78 = 936 and 2bc = 2 × 13 × 78 = 2,028. The reflection formula 
tells us that the image of a point (x, y) is given by 

M(x, y) = ( 2ac
a2+b2

 + b2−a2

a2+b2
x − 2ab

a2+b2
y,  2bc

a2+b2
 − 2ab

a2+b2
x − b2−a2

a2+b2
y) = 

= ( 936
205

 + 133
205

x − 156
205

y, 2028
205

 − 156
205

x − 133
205

y) ≈

≈  (4.56 + .65x −−−−  .76y, 9.89 −−−−  .76x −−−−  .65y). 

Therefore the image of, say, (6, 2) ‘predicted’ by our formula is 
(4.56 + .65 × 6 − .76 × 2, 9.89 − .76 × 6 − .65 × 2) = (4.56+3.9−1.52, 
9.89−4.56−1.3) = (6.94, 4.03), which is marvelously close to our 
estimates in figure 1.16! (This is the check applied to C and C′; make 
sure you verify the reflection formula for A, A′ and B, B′, too.)

 

1.2.8 Crossing a mirror? One important aspect of reflection you 
will have to get used to is the fact that, unlike in the real world, a 
mirror can cross  through an object (set) reflected about it, and vice 
versa. To find the image of a set that does intersect a mirror, all you 
have to do is apply the ‘natural rules’ outlined in 1.2.1 and 1.2.2 
without worrying about ‘physical realities’. Here is an example: 
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Fig. 1.18

Beware of ‘mirror-crossing’ cases where the mirror image falls 
back on the original set point by point: in such cases, which will 
become important in the rest of this book, we say that the set in 
question has an internal mirror  and mirror  symmetry . The 
following English letters have mirror symmetry: A, B, C, D, E, H, I, M, 
O, T, U, V, W, X, Y. 

    

1.3  Rotation

1.3.1 How about a ‘time game’? Suppose that it is 9:40 (PM or 
AM) now that you are reading this paragraph. Take your watch in your 

Fig. 1.19
                                                                                             

hands, stop the time at 9:40 and start to slowly turn it around. You 
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may do this on a piece of paper where you have already marked the 
positions of 12, 3, 6, and 9 as if on a compass (N, E, S, W); you may 
of course mark the other hours in between as well. There are 
positions where, as figure 1.19 demonstrates, your turning watch’s 
hands will approximately show 2:00 or 4:10, right? Could you tell 
how much you should turn your watch in order to ‘attain’ these 
times? Well, while a precise answer would require (just like the 
determination of the exact attainable times) some serious 
mathematical thinking, you should be able to handle the question as 
posed: a clockwise  (‘screwing’) turn by 1300 will make the watch 
show a time close to 2:00 (2:01′:49″ to be precise!), while a 
clockwise turn by 1950 will ‘change the time’ from 9:40 to 
approximately 4:10 (in fact 4:12′:44″, but you don’t have to worry 
about that right now).  

1.3.2 What happened to the watch? While the ‘time game’ 
described in 1.3.1 can indeed get quite complicated, especially if 
played with precision, some simple facts about the stopped watch’s 
‘condition’ during its turning around are simple and indisputable: its 
center remained fixed, the angle between the two hands remained 
the same (500), and, last but not least, the distance between the 
tips of the two hands never changed. It seems that our watch-
turning game preserves distances: could in fact be some kind of 
isometry, then?

                                 

Fig. 1.20

Figure 1.20 describes the change of time from 9:40 to 
approximately 2:00 during our game: S and L represent the position 
of the tips of the watch’s short and long hand, respectively, at 9:40, 
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while S′ and L′ represent the position of those tips at about 2:00. One 
thing that cannot be missed is the fact that both angles LOL′ and 
SOS ′ are equal to about 1300. What really happened to the tips, and 
hands, and the entire watch in fact, is a clockwise rotation by an 
angle of approximately 1300 about the point O (the watch’s center).     

1.3.3 How does rotation work? Even though figure 1.20 says it 
all, it would be useful to offer another example here, this time of a 
counterclockwise  (‘unscrewing’) rotation by  700 about  the center 
K shown in figure 1.21. How do we find the image P′ of any given 
point P under this rotation? We simply draw KP, measure it either 
with a ruler or with a compass, then ‘build’ a 700 angle ‘to the left 
hand’ of KP with the help of a protractor, and finally pick a point P′ 
on the angle’s ‘new’ leg so that |KP ′′′′| = |KP|. That’s all!                                       

                        

Fig. 1.21

1.3.4 It’s an isometry! Let us now verify our conjecture in 1.3.2 
and prove that every rotation is indeed an isometry. We return to our 
watch example and prove that |LS| = |L′′′′S ′′′′|, which says that the 
distance between the two images L′, S′ is equal to the distance 
between the two original points L, S; the general case is proven in 
exactly the same way. 
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Fig. 1.22

Let us look at the two triangles OLS, OL′S ′ (figure 1.22): they 
have two pairs of equal sides as |OS| = |OS′′′′| (short hands) and |OL| = 
|OL′′′′| (long hands). If we show the in-between angles ∠LOS and ∠L′OS′ 
to be equal, then the two triangles are congruent and, of course, |LS| 
= |L′S ′|. But the equality of the two angles follows easily: ∠LOS = 
∠LOL′−∠SOL′ = ∠SOS′ − ∠SOL′ = ∠L′OS′. (Note: ∠∠∠∠LOL′′′′ = ∠∠∠∠SOS′′′′ ≈≈≈≈ 1300.)

1.3.5 Images. Now that we know how rotation works, let us find 
the image of triangle ABC from 1.1.1 under rotation about the center 
K in figure 1.23 and by the counterclockwise 700 angle of 1.3.3. We 
do this by finding the images A′, B′, C′ of A, B, C (figure 1.23): 

                      
Fig. 1.23
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1.3.6 Coordinates. Let us now place the triangles ABC, A′B ′C ′ of 
1.3.5 in a cartesian coordinate system as shown in figure 1.24, so 
that the coordinates of A, B, C will again be (2, 1), (2, 3), (6, 2),                              
respectively, those of the rotation center will be (8, −2). Estimating 
the coordinates of A′, B′, and C′ as in 1.2.5, we find them to be 
approximately (3.2, −6.8), (1.4, −6), and (3.6, −2.7), respectively.

               
Fig. 1.24

Exactly as in 1.2.5, you might wonder whether there could 
possibly exist a ‘magic formula’ that could ‘predict’ the coordinates 
estimated above. Such a formula does exist, but its derivation is 
even harder than that of the reflection formula in 1.2.6 and can only 
be understood with some knowledge of Trigonometry.

1.3.7 The rotation formula. Let R(x, y) = (x′′′′, y′′′′) be the image 
of an arbitrary point (x, y) under rotation about the rotation 
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center K = (a, b) by a rotation angle φφφφ . Then either

x ′′′′ = (1−−−−cosφφφφ )a −−−−  (sinφφφφ )b + (cosφφφφ )x + (sinφφφφ )y ,

y ′′′′ = (sinφφφφ )a + (1−−−−cosφφφφ )b −−−−  (sinφφφφ )x + (cosφφφφ )y                            
                                                                                                         
(in case φ  is clockwise) or

x ′′′′ = (1−−−−cosφφφφ )a + (sinφφφφ )b + (cosφφφφ )x −−−−  (sinφφφφ )y ,

y ′′′′ = −−−− (sinφφφφ )a + (1−−−−cosφφφφ )b + (sinφφφφ )x + (cosφφφφ )y    
                                                                                                   

(in case φ  is counterclockwise) .

These formulas are indeed complicated, almost hard to believe, 
aren’t they? Well, for a quick check you may like to verify that, no 
matter what φ is, both formulas yield x′ = a and y′ = b when x = a and 
y = b, that is, R(a, b) = (a, b): indeed the center of every rotation 
remains invariant under that rotation! Moreover, the two formulas 
are really one and the same: mathematicians tend to view clockwise 
angles as ‘negative’; so, substituting φ by −φ in the second formula 
yields the first one via cos(−−−−φφφφ ) = cosφφφφ , sin(−−−−φφφφ ) = −−−−sinφφφφ .

 
 Proof*: We offer a complete proof for the case of clockwise φ 

and a basic hint for the very similar case of counterclockwise φ. 
Once again, some familiarity with basic trigonometric functions and 
identities will be assumed; do not get discouraged if this proof 
seems too hard for you, and do not hesitate to ask for some help! 

Let P = (x, y) be a point that clockwise rotation by angle φ about 
center K = (a, b) maps to a point P′ = (x′, y′), as shown in figure 1.25. 
Notice, referring to figure 1.25 always, that |KP ′′′′| = |KP|, |GK| = |CA| 
= |OA| − |OC|, and |GP| = |BD| = |OD| − |OB|; moreover, θθθθ′′′′ = 1800−−−−θθθθ−−−−φφφφ, 
hence cosθ′ = −cos(θ+φ) = −cosθcosφ + sinθsinφ and sinθ′ = sin(θ+φ) =  
sinθcosφ + cosθsinφ. 

Now x′ = |OE| = |OA| + |AE| = |OA| + |KH| = |OA| + |KP′′′′|cosθθθθ′′′′ =  
= |OA| − |KP|cosθθθθcosφ + |KP|sinθθθθsinφ = |OA| − |GK|cosφ + |GP|sinφ = 
= |OA| − (|OA| − |OC|)cosφ + (|OD| − |OB|)sinφ =  
= a − (a − x)cosφ + (y − b)sinφ =  
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= (1−cosφ)a − (sinφ)b + (cosφ)x + (sinφ)y, as claimed.

            
Fig. 1.25

Similarly, y′ = |OF| = |OB| + |BF| = |OB| + |HP′| = |OB| + |KP′′′′|sinθθθθ′′′′ = 
= |OB| + |KP|sinθθθθcosφ + |KP|cosθθθθsinφ = |OB| + |GP|cosφ + |GK|sinφ =
= |OB| + (|OD| − |OB|)cosφ + (|OA| − |OC|)sinφ =
= b + (y − b)cosφ + (a − x)sinφ =
= (sinφ)a + (1−cosφ)b − (sinφ)x + (cosφ)y, as claimed.

When φ happens to be counterclockwise, figure 1.25 changes 
into figure 1.26 below: now θθθθ′′′′ = θθθθ−−−−φφφφ , hence cosθ′ = cosθcosφ + 
sinθsinφ and sinθ′ = sinθcosφ − cosθsinφ; |GK| = |OA| − |OC| and |GP| =       
= |OD| − |OB| remain valid. You should be able to fill in the details and 
derive the claimed formulas for x′ and y′.

                  
Fig. 1.26
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There are in fact more cases to investigate, like when φ is                          
counterclockwise and larger than θ, for example. Similar arguments 
left to you as exercises do work in all such cases, and our rotation 
formula works always.

1.3.8 Let’s check it out! Let us now return to figure 1.24, 
augmented by A″B″C″, the clockwise image of ABC (figure 1.27). As 
we did in the cases of translation (1.1.4) and reflection (1.2.7), we 
would like to verify that geometrical  estimates (1.3.6) and 
algebraic formulas (1.3.7) are in full agreement with each other.

Fig. 1.27  

Let’s see: with cos700 ≈≈≈≈  .34 and sin700 ≈≈≈≈  .94, the 
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counterclockwise  rotation formula for A = (2, 1) yields 

x′ ≈ (1−.34)×8 + .94×(−−−−2) + .34×2 − .94×1 = 5.28−1.88+.68−.94 = 
3.14 and

y′ ≈ −.94×8 + (1−.34)×(−−−−2) + .94×2 + .34×1 = −7.52−1.32+1.88+.34 
= −6.62,

                                                                                        
therefore R(2, 1) ≈≈≈≈  (3.1, −−−−6.6) , which is quite close indeed to that 
(3.2, −6.8) estimate in 1.3.6. Perhaps we could have achieved some 
greater precision with the use of more precise drawing and 
instruments, but such great precision will probably not be possible 
when you take your exam anyway...

Let us now see how things work out for A″, the clockwise  
image of A = (2, 1). Coordinate estimates (figure 1.27) indicate that 
A″ ≈ (8.8, 4.7). The rotation formula yields

x″ ≈ (1−.34)×8 − .94×(−−−−2) + .34×2 + .94×1  = 5.28+1.88+.68+.94 =    
= 8.78 and

y″ ≈ .94×8 + (1−.34)×(−−−−2) − .94×2 + .34×1  = 7.52−1.32−1.88+.34 =  
= 4.66, 

                                                                                        
therefore R(2, 1) ≈≈≈≈  (8.8, 4.7): our estimate (in fact our drawing) 
worked perfectly this time -- it happens!

By the way, a closer look at the preceding two examples should 
help you understand why the image of an arbitrary point (x, y) under 
rotation by 700 about (8, −2) is approximately (7.16 + .34x + .94y, 
6.2 −−−−  .94x + .34y) in the clockwise case and  (3.4 + .34x −−−−  .94y, 
−−−−8.84 + .94x + .34y) in the counterclockwise case.

 
You should now get a bit more practice by near-matching formula 

outcomes and geometrical estimates for B′, C′, B″, and C″, redrawing 
the image triangles A′B′C ′ and A″B″C″ in case you are not happy with 
our drawing: good luck! 

1.3.9  ‘Interior’ centers. Just as the reflection axis is allowed to 
cross a set that is reflected about it (1.2.8), the rotation center K 
could very well be inside a set rotated about it. Here is an example: 
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Fig. 1.28

When, in the case of such ‘internal centers’, the image falls, 
point by point, back on the original, we say that the figure in 
question has an internal turn and rotational symmetry . The 
following English letters have rotational symmetry (of 1800, see 
1.3.10): H, I, O, S, X, Z.

1.3.10 A ‘straight’ rotation. We have seen how important it is to 
know whether a rotation is clockwise or counterclockwise. There is 
however precisely one angle for which the distinction between 
clockwise and counterclockwise does not matter at all, and that is 
the 1800 angle: regardless  of which way the point P is rotated 
about the rotation center K, we end up with an image point P′ on the 
extension of the segment PK such that |KP ′′′′| = |KP| (figure 1.29).

               

Fig. 1.29
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This very special rotation by 1800 is also known as half turn or 
point  ref lect ion  -- we will be using either term at will -- and is 
destined to become very important in chapter 2 and beyond. For the 
time being, here is an example of half turn applied to the 
quadrilateral of figure 1.18:

Fig.1.30

Notice here an important property of point reflection: it always 
maps a straight line segment to a straight line segment (equal and) 
parallel to it. You may confirm this with the help of figure 1.30 
and/or a simple geometrical proof. 

1.4  Glide reflection

1.4.1 Is it a ‘new’ isometry? Our fourth and last planar isometry 
is at the same time the least ‘intuitive’ -- you will truly understand 
it only after going through the next three chapters -- and the easiest 
one to introduce: how can this happen? The answer is simple: it is 
the ‘combination’  of two already described isometries, translation 
and reflection, but it is not so clear in the beginning why anyone 
would ever bother to combine them!

1.4.2 Axes and vectors. All we need to describe the new 
isometry is, as hinted above, a reflection axis L and a translation 

vector v
→

 parallel to L: the image of an arbitrary point P is now 
found either by first reflecting about L to PL and then gliding 
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(translating) along v
→

 to P′ or by first gliding along v
→

 to Pv and then 
reflecting about L to P′ (figure 1.31). That is, the order in which the 
two operations are performed does not affect the final outcome P′, 

the image of P under glide reflection G = (L, v
→→→→

) by L and v
→

. We 
view glide reflection as a ‘deferred  reflection’  and use dotted  

lines for L (a ‘half’ (glided) mirror) and v
→

 (a ‘half’ (mirrored) glide) 
in order to stress their interdependence:

            
Fig. 1.31

Why do these two isometries, a reflection and a translation 
parallel to each other, commute? Figure 1.31 (and rectangle 
PPLP ′′′′PV  in particular) makes that ‘obvious’, but it is worth 

stressing the role of parallelism: since v
→

 is parallel to L, the final 
image of P is bound to lie on a line parallel to L and at a distance 
from L equal to the distance from P to L, regardless of the order in 
which we performed the two operations. Observe at this point that a 
reflection and a translation not  parallel to each other do not  
commute (figure 1.32);

     
Fig. 1.32
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that is generally the case whenever one tries to ‘combine’ any two 
isometries, as we will see in chapter 7. On the other hand, leaving 
something unchanged twice certainly preserves it: the combined 
effect of every two isometries is still an isometry, as each of the 
two isometries preserves all distances; in particular every glide 
reflection is indeed an isometry.  

1.4.3 Images. Figure 1.33 demonstrates how one determines the 

image of the pentagon S under a glide reflection G  = (L, v
→→→→

), as well 
as the commutativity between reflection and translation; the 
relation among the three isometries (translation, reflection, glide 
reflection) and the respective three images (T(S), M(S) , G(S)) is 
shown clearly:  

Fig. 1.33
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1.4.4 Two opposite glide reflections. Let us once again revisit 
triangle ABC of figure 1.11, as well as the reflection axis L  of 

figure 1.16, adding two vectors v1
→→→→

 and v2
→→→→

 (figure 1.34): these are of 
equal  length  and of the same  direction (parallel to L), but of 
opposite  sense . The two vectors create two glide reflections 

opposite of each other, G1 = (L, v1
→→→→

) and G2 = (L, v2
→→→→

); the images 
A′B′C′, A″B″C″ of ABC under G1, G2, respectively, are shown below:

Fig. 1.34

What would have happened in case we successively applied G1 
followed by G2 (or G2 followed by G1) to ABC? It shouldn’t take you 
that long to realize that we would have gone first to A′B ′C ′ (or 
A″B″C″) and then back where we started from, ABC. This is why G1 
and G2 are called inverses of each other: they simply cancel each 
other’s effect, just as the two translations of 1.1.4 and the two 
rotations of 1.3.8 do. Notice by the way that every reflection is the 
inverse  of itself, and the same holds for every half turn.                               
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1.4.5 The glide reflection formula. Deriving a formula for the 
coordinates of the image point G(x, y) under a glide reflection is not 
that challenging in view of the work we have done in sections 1.1 
and 1.2. We will in fact offer two formulas, one here (based on 1.1.4 
and 1.2.6) and one in 1.4.7 (based on 1.1.5 and 1.2.6): unless you still 
have problems with basic Trigonometry you will probably find the 
formula in 1.4.7 easier to use, so you may certainly choose to read 
that section f irst .

Avoiding Trigonometry for now, let ax + by = c be the equation 
of the glide reflection axis L and let <A, B> be the glide reflection 
vector parallel to L. The slope B/A of <A, B> must be equal to the 
slope of L, which is −−−−a/b (see 1.2.6); so we may and do write <A, B> 
as <bs, −−−−as>, where s is a parameter that depends on the vector’s 
length  S  via 

S = A2+B2  = (bs)2+(as)2  = |s| a2+b2 . 

That is, <A, B> = <bs, −−−−as>, where s = ±±±± S

a2+b2
. In the case 

of the vectors v1
→→→→

 and v2
→→→→

 of 1.4.4, a = 6, b = 13, S = 5 (see 1.2.7 and 

figures 1.16 & 1.35), so s = ±5/ 62+132  ≈  ± .35; now s = +.35 yields 

v 1
→→→→

 ≈ <13 × .35, −6 × .35> = <4.55, −−−−2.1>, while s = −−−− .35 leads to     

v 2
→→→→

 ≈ <−13 × .35, 6 × .35> = <−−−−4.55, 2.1>. We obtain approximately the 

same coordinates for v1
→→→→

 and v2
→→→→

 (like <4.6, −−−−2.1>  and <−−−−4.6, 2.1>, 
as in figure 1.35) following the procedures outlined in figures 1.11 
or 1.12.   

Now we combine the reflection formula from 1.2.6 and the 
translation  formula from 1.1.4 to obtain G(x, y) = (x′′′′, y′′′′), where

x ′′′′ = bs + 2 a c
a2+b2

 + b2−−−−a2

a2+b2
x −−−−  2 a b

a2+b2
y,  
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y ′′′′ = −−−−as + 2 b c
a2+b2

 −−−−  2 a b
a2+b2

x −−−−  b2−−−−a2

a2+b2
y.   

So, all we did was to apply the reflection first and then add  the                  
translation effect coordinatewise! We still had to do a bit of work, 
of course, and that was the determination of the translation vector’s 
coordinates .

1.4.6 Let’s check it out! The game is perfectly familiar by now: 
we redraw figure 1.34 in a cartesian coordinate system, estimate 
the coordinates of points and vectors alike (figure 1.35), and use 
this numerical input to confirm the validity of the glide reflection 
formula. The work has been largely done in 1.2.7 (where we computed 

the quotients b2−a2

a2+b2
, 2ab

a2+b2
, 2ac

a2+b2
, and 2bc

a2+b2
 for a = 6, b = 13, and  

c = 78 in order to derive the reflection part of the formula) and 1.4.5 
(where we determined s and the two vectors of length 5 that are 
parallel to the axis 6x + 13y = 78). Combining everything, we obtain

 
G1(x, y) = (4.55 + 4.56 + .65x − .76y, −2.1 + 9.89 − .76x − .65y) = 

(9.11 + .65x −−−−  .76y, 7.79 −−−−  .76x −−−−  .65y) and 

G2(x, y) = (−4.55 + 4.56 + .65x − .76y, 2.1 + 9.89 − .76x − .65y) =  
(0.01 + .65x −−−−  .76y, 11.99 −−−−  .76x −−−−  .65y). 

Applying these formulas to A and B, respectively, we obtain 
G 1(2, 1) = (9.65, 5.62) for A′ and G 2(2, 3) = (−−−− .97, 8.52) for B″ , 
which are quite close to our geometrical estimates below:
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Fig. 1.35

1.4.7 Alternative formula. You certainly know that, more often 
than not, there is a gap between theory and practice. In the present 
context we point out that, while, in theory, the formula in 1.4.5 
nicely expresses the glide reflection vector’s coordinates in terms 
of the glide reflection axis’ equation’s coefficients, in practice 
determining the parameter s  (and its sign) is quite complicated. It 
turns out that, as we promised in 1.4.5, Trigonometry offers a quick 
rescue.

Indeed, going back to 1.1.5, we recall that every vector may be 
written as <S ....cosθθθθ , S....sinθθθθ> , where S  is the vector’s length and θθθθ  is 
the vector-angle, that is the counterclockwise angle between the 
vector and the positive x-axis. In the case of the two opposite 

gliding vectors v1
→

, v2
→

 of 1.4.5, our method is fully illustrated in 
figure 1.36: 
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Fig. 1.36 

That is, the fact that the glide reflection vectors v1
→

, v2
→

 are 
parallel to the glide reflection axis L reduces  the angle’s 
measurement, for both vectors, to simply measuring the 
counterclockwise  angle between L and the positive x-axis (as 

shown in figure 1.36). As the vector-angles for v2
→

 and v1
→

 are θθθθ2 ≈ 
1800 − 24.50 = 155.50 and θθθθ1 = θ2 + 1800 ≈ 155.50 + 1800 = 335.50, we 
obtain cosθ2 ≈ cos(155.50) ≈ −.91 and sinθ2 ≈ sin(155.50) ≈ .41, so 
that cosθ1 = cos(θ2+1800) = −cosθ2 ≈ .91 and sinθ1 = sin(θ2+1800) = 

−sinθ2 ≈  − .41. It follows, with S = 5, that v1
→→→→

 = <5....cosθθθθ1 , 5....sinθθθθ1> ≈ 

<5 × (.91), 5 × (−.41)> = <4.55, −2.05> and v2
→→→→

 = <5....cosθθθθ2 , 5....sinθθθθ2> ≈ 
<5 × (−.91), 5 × (.41)> = <−4.55, 2.05>: these are indeed very close to 
the vectors determined in 1.4.5.

From here on all there is to be done is to add the translation 
effect (as computed above) to the reflection effect (as determined 
in 1.2.6), obtaining G(x, y) = (x′′′′, y′′′′) with
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x ′′′′ = S....cosθθθθ  + 2 a c
a2+b2

 + b2−−−−a2

a2+b2
x −−−−  2 a b

a2+b2
y , 

y ′′′′ = S....sinθθθθ  + 2 b c
a2+b2

 −−−−  2 a b
a2+b2

x −−−−  b2−−−−a2

a2+b2
y ,

                                                                                             
where S  is the gliding vector’s length, θθθθ  is the gliding vector’s 

vector-angle (as discussed right above and also in 1.1.5), and, again, 
ax + by = c is the equation of the glide reflection axis L. We leave 

it to you to check that, with vector-angles θθθθ1 and θθθθ2 for G 1 = (L , v1
→→→→

) 

and G2 = (L, v2
→→→→

), respectively, 

G 1(x, y) ≈≈≈≈  (9.11 + .65x −−−−  .76y, 7.84 −−−−  .76x −−−−  .65y) and  

G 2(x, y) ≈≈≈≈  (0.01 + .65x −−−−  .76y, 11.94 −−−−  .76x −−−−  .65y):

 these formulas are certainly very close to those in 1.4.6. 

Of course, those with a strong Trigonometry background should 
have no trouble seeing the connection between 1.4.6 and 1.4.7: 

indeed cos155.50 = −cos24.50 ≈ − |OP|
|PQ|

 = − 1 3

132+62
 ≈ −.908 and 

sin155.50 = sin24.50 ≈ |OQ|
|PQ|

 = 6

132+62
 ≈ .419. Moreover, they would 

know that the coordinates of P and Q yield a more exact value for 
the vector-angle via cos−1(.908) ≈ sin−1(.419) ≈ tan−1(6/13) ≈ 24.770.    

1.4.8  Reflections as glide reflections. Trivial as it might seem 
to you right now, this is a fact that is worth keeping in mind: every 
reflection may be seen as a ‘degenerate’ glide reflection the gliding 
vector of which has length zero. Indeed setting either s = 0 in the 
glide reflection formula of 1.4.5 or S = 0 in the glide reflection 
formula of 1.4.7 yields the reflection formula of 1.2.6.
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1.5*  Why precisely four planar isometries?

1.5.1 An old claim revisited. Back in 1.0.5 we promised to show 
that every isometry on the plane can be expressed via a formula like 
F(x, y) = (a′+b′x+c′y, d′+e′x+f′y), where a′ and d′ are arbitrary, b′′′′2+e′′′′2 
= c′′′′2+f ′′′′2 = 1, and either f′′′′ = b′′′′, e ′′′′ = −−−−c ′′′′ or f′′′′ = −−−−b ′′′′, e ′′′′ = c′′′′. Before  
we establish this claim (and more) in 1.5.4, let us prove that every 
function on the plane defined by such a formula is indeed an 
isometry. We do this using the distance formula: given any two 
points (x1, y1), (x2, y2), the distance between their images, F(x1, y1) 
= (a′+b′x1+c′y1, d′+e′x1+f′y1) and F(x2, y2) = (a′+b′x2+c′y2, d′+e′x2+f′y2), 
is 

((a′+b′x1+c′y1)−(a′+b′x2+c′y2))2 + ((d′+e′x1+f′y1)−(d′+e′x2+f′y2))2  

= ((b′(x1−x2) + c′(y1−y2))2 + ((e′(x1−x2) + f′(y1−y2))2  

= (b′2+e′2)(x1−x2)
2 + 2(b′c′+e′f′)(x1−x2)(y1−y2) + (c′2+f′2)(y1−y2)

2     

= (x1−x2)
2 + 2(b′c′−b′c′)(x1−x2)(y1−y2) + (y1−y2)

2  

= (x1−x2)
2 + (y1−y2)

2 , the distance between (x1, y1) and (x2, y2).

Notice at this point that, once (and if) we know that all 
isometries are linear, that is of the form F(x, y) = (a′+b ′x+c ′y, 
d ′+e ′x+f ′y), then it is not too difficult to show that they must be of 
the form conjectured in 1.0.5 (and restated above): you might be able 
to do this using the fact that all three  distances  among (1, 0),    
(0, 1), and (0, 0) must be preserved. But how do we show that every 
isometry is linear? One possible way to do that would be to first 
recall that every isometry maps straight lines to straight lines 
(1.0.7) and then try to prove that every planar function that 
preserves straight lines must indeed be linear: the latter happens to 
be true, but it’s a real theorem  the proof of which lies beyond the 
scope of this book. 

We can actually show that every isometry is linear following a 
more direct path: first we record the particular way (l inear  
formula) in which each one of the four isometries already studied 
is linear (1.5.2); then we show that every linear function expressed 
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by one of the four linear formulas must  actually be one of the four 
isometries already studied (1.5.3); and finally we prove that every 
isometry is expressed by one of the four linear formulas (1.5.4). That 
is, we will manage to show that all isometries are linear and must 
be one of the four isometries already studied ... at the same  time!                  

1.5.2 Our bag of isometries. In the previous four sections we 
studied four planar functions (translation, reflection, rotation, and 
glide reflection) and showed each one of them to be an isometry. Our 
proof was purely geometrical in all four cases. Now we can provide 
algebraic proofs using the lemma we just established in 1.5.1! We do 
this by going back to the formulas derived in 1.1.4, 1.2.6, 1.3.7, and 
1.4.5 and simply verifying that each of them satisfies the isometry  
conditions of 1.5.1:

Translation: f′ = b′ = 1, e′ = −c′ = 0, a′ = a, d′ = b. 

Reflection: f′ = −b′ = − b2−a2

a2+b2
, e′ = c′ = − 2ab

a2+b2
, a′ = 2ac

a2+b2
,            

d′ = 2bc
a2+b2

; (b2−a2)2 + (2ab)2 = (a2+b2)2 implies b′2+e′2 = c′2+f′2 = 1.

Rotation: f′ = b′ = cosφ, e′ = −c′ = ±sinφ, a′ = (1−cosφ)a + (±sinφ)b,  
d′ = −(±sinφ)a + (1−cosφ)b; cos2φ + sin2φ = 1 yields b′2+e′2 = c′2+f′2 = 1.    

Glide reflection: f′ = −b ′ = − b2−a2

a2+b2
, e′ = c′ = − 2ab

a2+b2
, 

a′ = bs + 2ac
a2+b2

, d′ = − as + 2bc
a2+b2

1.5.3 ‘Going backwards’. The formulas summarized in 1.5.2 allow 
us to characterize any linear function F(x, y) = (a′+b′x+c′y, d′+e′x+f′y) 
satisfying the isometry conditions of 1.5.1 as one of the four types 
of isometries we have encountered in this chapter; omitting the 
technical details involved (like solutions of 2×2 l inear  systems ), 
we present the results as follows:
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(I) A linear function F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f′y) satisfying    
f′′′′ = b′′′′ ≠≠≠≠  ±±±±1 , e ′′′′ = −−−−c ′′′′ ≠≠≠≠  0, and b ′′′′2+e ′′′′2 = c′′′′2+f ′′′′2 = 1 is a rotation by 

(angle) cos−−−−1(b′′′′) about (center) [ (1−−−−b ′′′′)a′′′′+c ′′′′d ′′′′ 
2(1−−−−b ′′′′)

, −−
−−a′′′′c′′′′+(1−−−−b′′′′)d′′′′

2(1−−−−b ′′′′)
], 

clockwise if c ′′′′ < 0 and counterclockwise if c ′′′′ > 0; this rotation 

becomes a half turn about ( a′′′′
2

, d′′′′
2

) when c ′′′′ = 0, b ′′′′ = −−−−1, and is 

reduced to a translation by <a ′′′′, d′′′′>  when c ′′′′ = 0, b ′′′′ = 1.

(II) A linear function F(x, y) = (a′+b ′x+c ′y, d′+e ′x+f′y) satisfying   
f′′′′ = −−−−b ′′′′ ≠≠≠≠  ±±±±1 , e ′′′′ = c′′′′ ≠≠≠≠  0, and b ′′′′2+e ′′′′2 = c′′′′2+f ′′′′2 = 1 is a glide  
reflection about (axis) 2(1−−−−b ′′′′)x −−−−  2c′′′′y = a′′′′(1−−−−b ′′′′)−−−−c ′′′′d ′′′′ by (vector) 

< a′′′′c′′′′+(1−−−−b′′′′)d′′′′
(1−−−−b ′′′′))))2+c ′′′′2

....c ′′′′ , a′′′′c′′′′+(1−−−−b′′′′)d′′′′
(1−−−−b ′′′′))))2+c ′′′′2

....(1−−−−b ′′′′)>  when (1−−−−b ′′′′))))2 + c′′′′2 ≠≠≠≠  0 

and about (axis) y = d′′′′
2

 by (vector) <a ′′′′, 0> when c ′′′′ = 0, b ′′′′ = 1; this 

glide reflection is reduced to a reflection when a ′′′′c ′′′′ + (1−−−−b ′′′′)d ′′′′ = 0 
(first case) or a ′′′′ = 0 (second case). 

You should probably try to verify the validity of these claims and 
formulas by revisiting our old examples, like 1.2.7 (where a′ ≈  4.56, 
b ′ ≈ .65, c′ ≈ −.76, and d′ ≈ 9.89 do indeed satisfy the reflection 
condition a′c′ + (1−b′)d′ = 0) or 1.3.8 (where either a′ ≈ 7.16, b′ ≈ .34, 
c′ ≈ .94, d′ ≈ 6.2 or a′ ≈ 3.4, b′ ≈.34, c′ ≈ −.94, d′ ≈ −8.84 do indeed yield 

the rotation  center  via [ (1−b′)a′+c′d′ 

2(1−b′)
, −a′c′+(1−b′)d′

2(1−b′)
] = (8, −2)). 

More to the point, you may substitute a′, b′, c′, d′ by the ‘general’ 
values provided by the formulas in 1.5.2, and see what happens!       

With these important observations (on the nature of the linear 
formulas associated with each one of the four known isometries) at 
hand, we are now ready to demonstrate why every planar isometry 
must be one of the four familiar ones: this is the kind of result that 
mathematicians affectionately call classification  theorem .
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1.5.4 Isometries and circles. Let us begin with a fundamental                         
observation: every planar isometry is bound to map a circle of radius 
r to a circle of radius r. Indeed if the center O is mapped to O′, then 
every image point P′ must satisfy |O′′′′P ′′′′| = |OP| = r. Consider now a 
fixed isometry that maps the unit circle, x2 + y2 = 1, to the circle 
(x−a′)2 + (y−d′)2 = 1, and the point P1 = (1, 0) to a point P1′  (figure 
1.37). Isometries map straight lines to straight lines (1.0.7), so the 
x-axis OP1 is mapped to a line O′P1′  that makes a counterclockwise  
angle φφφφ  with the positive x-axis (figure 1.37). Consider now the 
points P = (r, 0) and Q = (rcosθθθθ , rsinθθθθ ) on the circle x2 + y2 = r2, 
which is mapped to the circle (x−a ′)2 + (y−d′)2 = r2. Since P lies on 
OP1, it must be mapped to the unique point P′ on the intersection of 
O′P1′  and (x−a′)2 + (y−d′)2 = r2 that satisfies |P ′′′′P 1′′′′ | = |PP1| (figure 
1.37).

Fig. 1.37

The critical question is: where is Q mapped? Obviously to a point 
Q′ on (x−a′)2 + (y−d′)2 = r2 such that |P′′′′Q ′′′′| = |PQ|. But there isn’t that 
much room on a circle, is there? If you are standing at P′ facing O′ 
and wish to move to any  other point on  the circle at a given 
distance from P′, how many choices do you have altogether? 
Precisely two : either you move ‘to your  left hand’  (making a 
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clockwise angle θ with O′P ′) or you move ‘to your right hand’ 
(making a counterclockwise angle θ with O′P ′); these two 
possibilities are shown in figures 1.38 & 1.39, respectively. 
Moreover, it shouldn’t take you long to realize that all points on       
x2 + y2 = r2 are ‘isometrically forced’ to follow the fate of Q: we 
cannot have some points going clockwise and some points going 
counterclockwise!                                                                                               

In the first (‘clockwise’) case, Q = (x, y) = (rcosθ , rsinθ) is 
mapped (figures 1.37 & 1.38, see also 1.3.7 and figure 1.25) to 

Q ′′′′ = (a′′′′+rcos(φφφφ -θθθθ ), d′′′′+rsin(φφφφ -θθθθ )) =  
= (a′+rcosφcosθ+rsinφsinθ, d′+rsinφcosθ−rcosφsinθ) =
= (a′+(cosφ)(rcosθ)+(sinφ)(rsinθ), d′+(sinφ)(rcosθ)+(−cosφ)(rsinθ)) 
= (a′+(cosφ)x+(sinφ)y, d′+(sinφ)x+(−cosφ)y) =
= (a′+b′x+c′y, d′+e′x+f′y), where f′ = −b′ = −cosφ, e′ = c′ = sinφ, 

b′2+e′2 = c′2+f′2 = (cosφ)2+(sinφ)2 = 1.

Fig. 1.38

The whole argument holds for every r and every θθθθ  (hence 
taking care of every single point (x, y) on the plane!) and is indeed 
very similar to what we did when we established the rotation 
formula in 1.3.7. At first you might even think that our isometry is 
in fact a rotation, but a careful look at the list of isometries in 
1.5.2 shows otherwise: while rotations (and translations) satisfy    
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f′ = b′ and e′ = −−−−c ′, our isometry satisfies f′′′′ = −−−−b ′′′′ and e ′′′′ = c′′′′, just as 
reflections and glide reflections do! To summarize, our isometry has 

to be either a reflection  (in the special case tanφφφφ  = 2a′′′′d′′′′
a′′′′2−−−−d′′′′2

, as it 

follows from the conditions given in 1.5.3) or, far more likely, a 
glide  reflection  -- essentially because it maps ‘counterclockwise 
circles’ (think of the P-to-Q arc) to ‘clockwise circles’ (think of the 
P ′-to-Q′ arc), formally because of our observations in 1.5.3.

In the second (‘counterclockwise’) case, Q = (x, y) = (rcosθ, rsinθ) 
is mapped (figures 1.37 & 1.39, see also 1.3.7 and figure 1.26) to 

Q ′′′′ = (a′′′′+rcos(φφφφ+θθθθ ), d′′′′+rsin(φφφφ+θθθθ )) =
= (a′+rcosφcosθ−rsinφsinθ, d′+rsinφcosθ+rcosφsinθ) =
= (a′+(cosφ)(rcosθ)+(−sinφ)(rsinθ), d′+(sinφ)(rcosθ)+(cosφ)(rsinθ)) 
= (a′+(cosφ)x+(−sinφ)y, d′+(sinφ)x+(cosφ)y) = 
= (a′+b′x+c′y, d′+e′x+f′y), where f′ = b′ = cosφ, e′ = −c′ = sinφ, 

b′2+e′2 = c′2+f′2 = (cosφ)2+(sinφ)2 = 1. 

Fig.1.39

As in the first case, these computations are valid for all r and  
all θθθθ  and cover the entire plane. But this time our isometry maps 
‘counterclockwise circles’ to ‘counterclockwise circles’ (think, as in 
figure 1.38, of the P-to-Q and P′-to-Q ′ arcs) and ‘looks identical’ to 
a rotation! Is it one? Referring to 1.5.3 again, we see that yes, this 
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time it is indeed a rotation (by angle φ), unless of course φφφφ  = 00, in 
which case f′ = b′ = 1, e′ = −c′ = 0 and our isometry is the 
translation <a′, d′> (which does not  rotate circles at all)!

To summarize, we have shown that every planar isometry maps 
circles to circles and does so either reversing  circular  
orientation  (in which case it must be a glide reflection, or 
possibly a reflection) or preserving  circular  orientation  (in 
which case it must be a rotation, or possibly a translation). We 
ended up both proving our claim from 1.0.5 about isometries being 
linear and classifying them! This is not the only way to classify 
isometries: probably it is not even the easiest one, see for example 
section 7.2. But it is a rather neat way to do it, at least for those 
with some familiarity with Precalculus. And those with greater such 
familiarity could even have more fun, like trying to determine the 
axis and vector (in the case of a glide reflection) or the center (in 
the case of a rotation) in terms of a′, d′, and φ (and in the spirit of 
1.5.3), for example!   

Postscript: It is possible to combine our ‘circular’ approach 
above with ideas from chapter 7 in order to provide a completely 
geometrical classification of isometries (not only of the plane but 
of space as well): please check Isometries Come in Circles at  
http://www.oswego.edu/~baloglou/103/circle-isometries.pdf. 
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CHAPTER 2

BORDER PATTERNS

2.0  Infinity and Repetition

2.0.1 “What goes (a)round comes (a)round”. You are certainly 
surprised to see this familiar proverb lying near the beginning, in 
fact at the very root, of a mathematical book, aren’t you? Well, no 
treatise on fate here, we are simply quoting it literally: if you are 
moving ‘straight’ on the surface of a sphere or cylinder then you are 
bound to return to the point where you started from, that’s all... This 
is even more obvious to those who like to think about the structure 
of our infinite universe in terms of space and time, but we are not 
getting into that, either!

What we have in mind is very earthly indeed: when was the last 
time you noticed a certain motif repeating itself around a vase or 
belt or the margin (border) of a framed photo or ancient mosaic? If 
you do not quite recall ever having noticed such details, you better 
be prepared for a change after you go through this book!  Such 
repeating motifs, called border patterns, have been with us for a 
very long time and, rather surprisingly at first, happen to be subject 
to mathematical rules that are accessible and profound at the same 
time. We investigate these rules and more with the help of many 
examples that might even make this book seem like an art book to 
you: indeed the worlds of art and mathematics are not disjoint!

Before going further, let us point out that infinity and repetition 
do not always go together. You may recall for example that, while 
some numbers with an infinite decimal portion have repeating digits 
after some point (like 4.7217373... = 116,863/24,750), others (like 
the most famous of all such numbers, ππππ  = 3.141592654...) come 
with a very unpredictable sequence of digits. And, of course, while 
repeating motifs abound in our finite world, infinite objects exist 
only in our powerful imagination : indeed you will have to train 
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yourself to see the finite as infinite throughout much of this book; 
in the case of a border pattern, the easiest way to manage that is to 
simply wrap it around -- in about the same way that geometers 
often consider an infinite straight line as a circle of infinite radius!

2.0.2 Notation. Although border patterns will be best understood 
by following the examples and discussion in the following sections, 
we can briefly state here that they consist of a motif that repeats 
itself infinitely along a straight line (or finitely along a circle, in 
view of what we just discussed above). As we will see, there are a 
total of seven distinct types, each of them equipped with a special 
four-character ‘name’  that always starts with a p  (for “pattern”). 
This special notation, even though not terribly important, will be 
explained as we move through the next seven sections. 

2.1  Translation left alone (p111)

2.1.1 Uneventful repetition. Consider the following pattern, 
consisting of repeated images of the letter F , and try to imagine it 
either extending itself to the right and to the left for ever or going 
straight around a ‘short’ cylinder:  

                                                                                                

Fig. 2.1

Clearly, a horizontal translation by the vector v
→→→→

 in figure 2.1 
maps the ‘first to the left’ F  to the ‘second’ one, the ‘second’ one to 
the ‘third’ one, and so on; as for that ‘first to the left’ F , you should 
think of it as being in turn the image of its predecessor (not shown),  
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etc. Alternatively, we could consider the opposite translation 

defined by −−−−v
→→→→

 that ‘moves’ the Fs from right to left instead of left 

to right; or a translation defined by the vector 3 v
→→→→

 that moves every 
F  to an F  three positions to the right, etc. The possibilities for a 
great variety of translations are endless, and they are all allowed by 
the letter F ’s uniform  repetit ion  along a straight line. But we will 
usually only consider the ‘minimal’ left-to-right translation defined 

by v
→→→→

, the pattern’s minimal  translation  vector .

2.1.2 More than one letters allowed. Instead of repeating a 
single letter, as in figure 2.1, we may create patterns by repeating 
two or more letters or even whole words and more:   

Fig. 2.2

Notice that the (minimal) translation vector in figure 2.2 is 
about twice as long as the translation vector in figure 2.1: the  
fundamental  region  consists now of “FAME ” instead of just “F ”. 

2.1.3 Other motifs. Instead of repeating letters or words, we 
may of course repeat any geometrical or other figure of our choice 
and imagination. Here is an example:

                                                                                      p111
Fig. 2.3

2.1.4  Attention! As we will see very shortly, repeating motifs 
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involves ‘positive risks’: we may end up creating patterns with 
more  symmetry (and isometries) than promised by the very title of 
this section! Remember, this section is devoted to patterns of p111  
type, where p  stands for translation and the three 1s denote the 
absence  of other isometries to be revealed in the coming sections.

2.2 Mirrors galore (pm11)  

2.2.1 Not all letters are created equal. What happens when we 
try to use the letter M  instead of F  in figure 2.1? Let’s see:

Fig. 2.4

Clearly, a vector approximately equal to the vector v
→→→→

 of figure 
2.1 works as a translation vector for this pattern. But sooner or 
later one notices something ‘extra’: any vertical line either half way 
between any two successive Ms or right through the middle of any M  
acts as a vertical  reflection  axis (mirror ) for the entire pattern; 
that is, the whole pattern remains invariant, with each M  being 
reflected onto some other M . 

Fig. 2.5

Now you are probably ready to protest our claim and argue that 
only m 1 is a legitimate reflection axis for our pattern, aren’t you? 
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Well, if that is the case, you better hold your horses! For your 
protest is a sure indication that you forgot one important thing: our 
pattern is assumed to extend ‘for ever’ in both directions! So, there 
is no point in worrying that there are only two M s to the left of m 2 
to match the five M s to the right of m 2, or only one M  to the left of 
m 3 to match the five M s to the right of m 3: there are infinitely many 
Ms ‘in both directions’, and our pattern is actually blessed with 
infinitely  m a n y  vertical mirrors! 

Patterns with vertical reflection are denoted by pm11 , where m  
stands for “mirror (reflection)” and, again, the two 1s mark the 
absence of symmetries that we still have to explore.

2.2.2 What made the difference? Why are there infinitely many 
mirrors in the M -pattern but none in the F -pattern? It all has to do 
with the fact that M  itself has an internal mirror running through 
it (that maps it to itself by mapping its right half to its left half 
and vice versa), while F does not have such a mirror. Does that mean 
that in order to create a pm11  pattern we must repeat a motif that 
has what we called (1.2.8) “mirror symmetry”? Yes and no: we may 
certainly employ two (or more) motifs without mirror symmetry, 
but the fundamental region itself must have it; the pm11  pattern in 
figure 2.6, where the fundamental region may be taken to be either 
“qp ” (of mirror L 1) or “pq ” (of mirror L 2), is rather illuminating:

Fig. 2.6

2.2.3 Two kinds of mirrors. Our examples in 2.2.1 and 2.2.2 do 
indicate something interesting: there always seem to be two kinds 
of vertical mirrors in a pm11  pattern! Indeed, there are mirrors 
alternatively running either through an M  or between two Ms in 
figure 2.5; likewise, mirrors alternatively running either ‘between 
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two lines’ or ‘between two circles’ in figure 2.6 (like L1 and L2, 
respectively). In more sophisticated terms, mirrors either bisect  
the fundamental region or separate two adjacent fundamental 
regions. Moreover, you may also notice something a bit more subtle: 
the distance between every two successive  (hence ‘different’) 
mirrors (like m 2 and m 3 in figure 2.5) is equal to half the length of 
the minimal translation vector! All these observations are valid in 
every pm11  pattern and for fairly deep reasons that will be 
discussed in chapters 7 and 8, specifically in 7.2.1 and 8.1.5. 

2.2.4 From p111  to pm11 . There is a simple way of turning a 
p111  pattern into a pm11  pattern: simply ‘reverse’ every other 
motif (as if a mirror ran through  it)! We illustrate this idea by 
getting a pm11  pattern out of the p111  pattern of figure 2.3:

                                                                                     pm11
Fig. 2.7

2.3  Only one mirror (p1m1)

2.3.1 An infinite mirror. Let us now duplicate the letter D :

Fig. 2.8

It is obvious that the line L that runs through our D -pattern acts 
as a reflection axis for it: indeed the upper half of each D  is mapped 
to its lower half (and vice versa), and that happens simply because 
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the letter D  itself has mirror symmetry. We have just created our 
third border pattern type, characterized by horizontal reflection 
(and only that, save for the translation of course) and denoted by 
p1m1 . (Notice that m  denotes horizontal reflection when in the 
third position and vertical reflection when in the second position.) 

Here is another example of a p1m1  pattern using two letters 
(each of them endowed with a horizontal mirror) instead of one:

Fig. 2.9

2.3.2 From p111  to p1m1 . It is not necessary to use motifs 
with horizontal mirror symmetry in order to create a p1m1  pattern. 
We may in fact start with an arbitrary p111  pattern and then 
reflect it across an axis parallel  to its ‘direction’  to get a 
perfectly legitimate p1m1  pattern. Here is how this idea is applied 
to the pattern from figure 2.3:

                                                                                  p1m1

Fig. 2.10

This example simply points to a rather obvious, yet useful, fact: 
in a p1m1  border pattern the horizontal reflection axis must be the 
pattern’s ‘backbone’ (i.e., the intelligible axis that cuts the pattern 
into two equal halves, ‘top’ and ‘bottom’); that is, and unlike in the 
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case of vertical reflection, there  is  only  one  place  to  look  for  
hor izonta l  ref lect ion !

2.3.3 Aesthetic considerations. We have seen in 2.2.4 and 2.3.2 
how simple modifications of the p111  pattern lead to the pm11  and 
p1m1 patterns. And we have also seen that both the pm11 and the 
p1m1  patterns are created by repetition of a motif that has mirror 
symmetry: we get a p1m1  in case the repetition occurs along a 
direction parallel  to the motif’s internal mirror, and a pm11  in 
case the repetition occurs along a direction perpendicular  to that 
mirror. This simple geometrical fact bears on the visual impressions 
created by these patterns: using arrows  as in figure 2.11, for 
example, we see that the p1m1  creates a feeling of motion along 
the pattern’s backbone, while the pm11 ’s vertical mirrors create a 
feeling of stillness ; as for the p111  type, it is not unreasonable to 
say that it stands somewhere between stillness and motion!

Fig. 2.11

Do you agree with our statements in the preceding paragraph? 
Well, do not worry in case you do not! When it comes to aesthetics, 
things are a bit more democratic than in mathematics, and 
contrasting opinions are allowed to peacefully coexist: simply 
consider our opinion as a starting point for developing yours! On our 
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part, we offer a viewpoint that could support either opinion: 
consider each arrow in figure 2.11 as representing a footprint 
(with the arrow’s tip standing for the toes); then the pm11  pattern 
can be seen as a series of footprints of people standing on line next 
to each other, while the p1m1  pattern can be seen as a series of 
footprints of people standing on line behind each other. In fact the 
pm11  and p1m1  patterns may also be created by the footprints of a 
jumping individual, and you can verify this yourself: which way 
would you move faster, the pm11  way or the p1m1  way?

 
2.4  Footsteps (p1a1)

2.4.1 Moving for sure now! Consider the arrow-footprint p1m1  
pattern of figure 2.11 ‘cut  in  half’ as in figure 2.12:

Fig. 2.12

Don’t you think that the feeling of motion generated by this 
pattern is much stronger than the one generated by the ‘full pattern’ 
of figure 2.11? With a bit of imagination, you can view the arrows 
as successive positions of a kayak crossing straight through rough 
seas! And if you prefer to stay on land, simply return to the arrow = 
footprint equation of 2.3.3 and be proud of yourself: you actually 
generate that footstep  pattern many times per day, in fact every 
time you resort to a straight, steady walk for a few seconds! 

2.4.2 What lies between the footsteps? Recall that our ‘new’ 
pattern has been obtained by ‘cutting in half’ the p1m1  pattern of 
figure 2.11. Moreover, we eliminated precisely those arrows that 
needed to be eliminated in order to destroy  horizontal reflection 
and preserve translation at the same time. Notice however that the 
minimal translation vector (solid  line) of the new pattern is 
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precisely twice as long as the minimal translation vector (dotted  
line) of the ‘old’ p1m1  pattern; this does make sense, as we have 
indeed eliminated every other arrow:

Fig. 2.13

What happens if we translate an arrow, say arrow A  above, by 
the ‘old’ vector? Nothing, unless of course we reflect it across 
that between-the-arrows line L: then it matches arrow B ! Repeat the 
process to arrow B  -- or first reflect across L and then translate by 
the ‘old’ vector -- and you get to arrow C  (which is A ’s translate by 
the ‘new’  vector), and likewise from C  to D  (which is B ’s translate), 
and so on: our footstep pattern does ‘move’ thanks to a glide 
reflection! We have just arrived at our fourth border pattern type, 
characterized by glide reflection and denoted by p1a1. 

Summarizing our observations, we point out that the glide 
reflection axis in every p1a1  pattern (typically denoted by a dotted 
line) runs parallel to the pattern’s direction (and by  necessity  
right through  its backbone , of course); further, the minimal glide 
reflection vector equals half  the pattern’s minimal translation 
vector: this reflects on the fact that the glide reflection’s ‘square’  
equals the translation! 

2.4.3 Any good letters out there? Now that you have understood 
what a p1a1 pattern is, can you create one by repeating a single 
English letter, as we did for every border pattern so far? It 
shouldn’t take you that long to realize that this is impossible, even 
if you resort to letters from distant lands’ alphabets or Chinese 
ideograms! And the reason is simple: while we used letters like F  (no 
symmetries), M  (vertical reflection), and D  (horizontal reflection) to 
get the p111 , pm11 , and p1m1  patterns, respectively (in 2.1.1, 
2.2.1, and 2.3.1), there is no letter that has glide reflection! More to 
the point, no  finite  f igure  may  ever  remain  invariant  under  
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gl ide  ref lect ion ! 

Does this mean that there is no way to create a p1a1  pattern 
using letters of the English alphabet? Actually not! All we need is 
two  English letters mappable to each other by glide reflection: 

Fig. 2.14 

It is not difficult now to create a p1a1  pattern by infinite 
repetition of the fundamental region “p b ”:

Fig. 2.15

Recall, once again, that all border patterns are infinite by 
definition, but, of course, we can only show a finite part of them on 
this page, leaving the rest to the imagination. In particular, the 
rightmost b  above is mapped by the ‘standard’ left-to-right glide 
reflection to a p  right next to it that is not shown, etc.  

2.4.4 Example. Consider the following ‘arrow pattern’:

Fig. 2.16
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What type is it? Does it have glide reflection? It is tempting to 
say “yes”: arrows A  and C  are mapped to arrows D  and F by a ‘long’ 
glide reflection, arrows B  and D  are mapped to arrows C  and E by a 
‘short’ glide reflection, etc. We asked for one  glide reflection but 
ended up with two  instead! Can we still say that there exists glide 
reflection in our pattern ‘endowed’ with two vectors instead of just 
one? No : a glide reflection is by definition associated with precisely 
o n e  vector  that  works  for  all  moti fs  -- otherwise it wouldn’t 
be an isometry! (Indeed our ‘double vector’ pseudo-glide-reflection 
above fails, for example, to preserve the distance between the tips 
of the arrows A  and B , which are ‘mapped’ to the tips of the arrows 
D  and C , respectively.)

What type is it then? There is clearly some symmetry in our 
example, in particular a translation mapping A  to E , B  to F, and so 
on. Could it be just a p111 then? No, a somewhat closer look shows 
that there is vertical reflection, with mirrors -- work ing  for  the  
entire pattern -- between A  and B , C  and D , E  and F , etc: it’s a 
pm11 ! (Compare now this pm11  pattern with the one in 2.3.3: what 
makes them differ from each other?)

2.5  Flipovers (p112)

2.5.1 One more variation. Let us revisit the p1m1  and p1a1  
border patterns in figures 2.6 and 2.15, both of them starting with a 
p  and continuing with either a q  or b , respectively. What if we try to 
continue with a d  this time? We end up with the following pattern:

Fig. 2.17
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Once again, there seems to be some symmetry involved here, and 
the pattern is clearly invariant under the indicated translation. You 
can check that no reflection or glide reflection is going to leave it 
invariant. There is something else going on though: what happens if 
you turn this page upside down? Does the flipped pattern look any 
similar to the original one? Have a classmate hold his/her copy 
straight right next to yours in case you cannot remember how the 
original looked like! And, if that is not possible, just trace  the 
pattern and then flip it. What do you think? Is the flipped pattern the 
same as the original? Well, you may at first say “no”: the original 
pattern ‘begins’ and ‘ends’ with a p , while the flipped one ‘begins’ 
and ‘ends’ with a d ... But, do not forget: border patterns are infinite, 
so they do not ‘begin’ or ‘end’ anywhere! With this all-important 
detail in mind, you must now agree that the original and flipped 
versions are identical ! 

2.5.2 How do mathematicians flip? Have you really read 1.3.10 
on half turn or had you assumed it to be little more than a 
footnote? Either way we suggest that you quickly review it, so that 
the special relation between the letters p  and d  illustrated in figure 
2.18 will make full sense to  you: 

Fig. 2.18

Clearly, p and d above are images of each other under the shown 
half turn or point  reflection  (as the 1800  rotation  was also 
called in 1.3.10). That is, all we need in order to flip a p  into d  or 
vice versa is a point reflection center, easily found by inspection. It 
doesn’t take that long now to realize that the pattern’s backbone  in 
figure 2.17 is full of such centers: a half turn around each one of 
them leaves the entire pattern invariant! To confirm this you may 
like to trace the pattern and then rotate the tracing paper by 1800 
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about your pencil’s tip, held firmly at any one of the half turn 
centers shown in figure 2.19: every p on the tracing paper moves on 
top of a d and vice versa! 

Fig. 2.19

In particular, our “p d ” pattern has half turn and belongs to 
the type known as p112. Notice that the two 1s in the second and 
third positions denote the lack  of vertical reflection and horizontal 
reflection (or even glide reflection), respectively; in the same way, 
the 1  in the fourth position of all types we have seen so far 
indicated the absence of half turn. As for the 2 , that reflects on the 
fact that, with 2 ××××  1800 = 3600, a half turn needs to be applied 
twice  -- as its very name aptly suggests -- in order for everything 
to return to its original position. 

2.5.3 Any single letters? We now ask the same question we 
asked in 2.4.3, providing an affirmative answer this time: it is 
possible to create a p112  pattern using a single letter. All we have 
to do is pick a letter that has internal  half  turn , like N  or Z :

Fig. 2.20 

Notice that the existence of half turn in the “Z ” pattern is 
much more obvious than in the case of the “p d ” pattern -- why? 

2.5.4 Two kinds of half turn centers. The p112  patterns in 
figures 2.19 and 2.20 have two kinds of half turn centers: between 
either two circles or two lines in the case of the “p d ” pattern, 
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right on the center of a Z  or right between two Zs in the case of the 
“Z ” pattern. In either case we notice that the distance between any 
two adjacent (hence of distinct type) half turn centers equals half 
the length of the minimal translation vector. This observation is 
very much in tune with our remarks in 2.2.3, and we will return to it 
in 7.5.2.

2.5.5 Example. We now return to the pentagon featured in 2.1.3, 
2.2.4, and 2.3.2 and show how it may be built into a p1a1 or p112:

Fig. 2.21

Sometimes students confuse a p1a1  pattern for a p112  pattern 
and vice versa. Comparing the two examples above should help you 
understand the difference between them even at the ‘intuitive’ level: 
there is spinning  (with lots of parallel  segments ) in p112  as 
opposed to straight motion (and segments going opposite ways) 
in p1a1. Also, check what happens to each pattern when you flip it 
over by rotating the page by 1800: in one case (p112) the new top 
row still ‘points’ to the same  direction (right), while in the other 
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case (p1a1) the new top row ‘points’ to the opposite direction 
(left). Further, think of what exactly you need to do in each case in 
order to bring a tracing paper  copy  back to the original pattern! 

Anyhow, the best way to distinguish a p1a1  type from a p112  
type is to remember the isometries that characterize them (glide 
reflection in p1a1 , point reflection in p112 ) and be able to 
explicitly recognize them as such. You may of course wonder: isn’t 
there any way to have both these wonderful isometries present in 
the same pattern? Well, that’s the topic of the next section! 

2.6  Roundtrip footsteps (pma2) 

2.6.1 Are they mutually exclusive? The discussion in 2.5.5 has 
probably left you with the impression that glide reflection and point 
reflection cannot quite coexist in a border pattern. In particular, you 
would probably be ready to guess that the images of any given figure 
under a glide reflection and under a point reflection must always be 
distinct. This is not true: those two images could actually be one and 
the same in some cases! For an example, look at what happens to the 
letter V  in figure 2.22:

Fig. 2.22

Clearly V gets mapped to ΛΛΛΛ  (capital Greek Lamda) both by glide 
reflection (left) and point reflection (right)! How did that happen? 
Well, observe that in the case of glide reflection AB  got mapped to 
DE , and AC  to DF , while in the case of point reflection AB  and AC  
got mapped to DF  and DE , respectively; notice in the latter case 
that, consistently with 1.3.10, DF  and DE  are parallel to AB  and AC , 

58



respectively. In a way, the two isometries acted on V  in two very 
different ways: that should not come as a surprise in view of our 
remarks in 2.5.5. Were AB  a bit longer than AC , for example, the two 
images would have been distinct. Likewise, it is important that AB  
and AC  are not only of equal length, but also at equal distance from 
the vertical line L that bisects V  and acts as an internal  mirror  
for V . In short, the effect of the particular point reflection and the 
particular glide reflection on V  are seemingly  identical precisely  
because V  has (vertical) mirror symmetry !

2.6.2 All three together now! What happens if we start 
repeating  that “V ΛΛΛΛ  ” motif created out of V  in figure 2.22? We 
end up with the following border pattern:

Fig. 2.23

In view of the discussion in 2.6.1, it shouldn’t take you long to 
realize that our “V ΛΛΛΛ  ” pattern has vertical reflection (‘ inherited’  
by individual motifs), glide reflection, and point reflection. 
Likewise, you should have no difficulty determining the vertical 
reflection axes, glide reflection vectors, and half turn centers, 
confirming both figure 2.23 and the remarks made on such entities in 
2.2.3, 2.4.2, and 2.5.4. Notice in particular that half way  between 
every two adjacent mirrors there exists a half turn center (and vice 
versa), while the distance between every two adjacent half turn 
centers (or  mirrors) is equal  to the length of the glide reflection 
vector. Finally, and in view of all the border pattern types and 
notations you have already seen, you ought to be able to guess this 
new pattern’s ‘name’: pma2.

2.6.3 Two as good as three! Let us now apply either a half turn 
or a glide reflection to pq  and then translate the outcomes 
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repeatedly, exactly as we did in the previous section; due to the 
vertical symmetry of pq , we end up, in both cases, with the same  
pma2  pattern (exactly as it happened with the V  in 2.6.1 and 2.6.2):

 
Fig. 2.24

We leave it to you to determine all the isometries of the pqbd  
pattern created in figure 2.24. What is important to observe is that, 
once again, glide reflection and point reflection seem to ‘imply’ 
each other in the presence of vertical reflection.

  
What happens if we start with a motif that has point reflection, 

like pd , and then apply either glide reflection or vertical reflection 
to it, followed by repeated translation? We leave it to you to check 
that, either way , we end up with the pma2  pattern of figure 2.25:

Fig. 2.25 

Again you should determine all the symmetry elements of this 
pdbq pattern and confirm the remarks made in 2.6.2. You also have 
the right to suspect that, in the presence of point reflection, 
vertical reflection and glide reflection ‘ imply’  each other.

What happens when we begin with a pb motif, known from 2.4.3 
to generate a pattern with glide reflection? Will we still be able to 
say that, in the presence of glide reflection, point reflection and 
vertical reflection imply each other? Let’s see... If we apply vertical 
reflection to pb  and then we translate, we end up with the following 
pattern: 
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Fig. 2.26
 
The vertical reflection is still there, but there are no signs of 

point reflection. On the other hand, the glide reflection is gone, too: 
this is a pm11  pattern!

Likewise, if we apply point reflection to pb  and then we 
translate, we end up with the p112  pattern of figure 2.27:

Fig. 2.27

That is, we came close, but have finally failed to produce a 
border pattern that would have glide reflection plus either vertical 
reflection without the point reflection (figure 2.26) or point 
reflection without the vertical reflection (figure 2.27). And for a 
good reason: it can be proven -- see 7.7.4, but also 6.6.2 -- that, 
precisely as our examples so far indicate, whenever a border pattern 
has two  of these three isometries, it must  have  the  third one  as  
well (and be a pma2)! 

Returning to our pb example: is there any way to get a pma2 
pattern out of it by applying either vertical reflection or point 
reflection followed by translation? Yes, provided that we place the 
mirror or half turn center between p  and b , ‘spacing’ them 
appropriately! We leave it to you to verify that we end up with either 
the pqbd  pattern of figure 2.24 (via vertical reflection) or the pdbq  
pattern of figure 2.25 (via point reflection): those are indeed 
distinct pma2 patterns!

We conclude with a puzzle: can you create a p1a1 pattern by 
translating some permutation of (all four of) b , d , p , and q?
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2.6.4 From p1a1 to pma2 . There is no need for any more pma2  
examples, but we would like to justify this section’s title! You may 
recall our ‘footstep’ p1a1  example in figure 2.12. What happens if 
that walker returns through exactly the same route? We could very 
well end up with the following footprint pattern, effectively 
‘doubling’ our p1a1  pattern:

                                                                                   pma2

Fig. 2.28

These ‘roundtrip footsteps’ clearly form a pma2  pattern; glide 
reflection was known to be there by the pattern’s very nature (and 
discussion in 2.4.1), while the vertical mirrors and half turn centers 
are even easier to see: just look ‘between’ the arrows as needed! 

2.6.5 From pma2  to p112 and pm11 . What happens if we 
remove every other ‘column’ of arrows in the pattern of figure 
2.28? We simply arrive at a p112  pattern with all the half turn 
centers of the original pma2  pattern preserved (figure 2.29):

                                                                                   p112

Fig. 2.29

Notice also that the upper  half of the pma2  pattern in figure 
2.28 is the familiar pm11  pattern from figure 2.11. That is, every 
pma2  pattern seems to ‘contain’ a pm11 , a p1a1, and a p112: in 
view of the isometries involved this observation is not at all 
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surprising and you should be able to verify it for every pma2  pattern 
we have studied. How about the p1m1  pattern then? Is it ‘contained’ 
in every pma2  pattern? Well, as we will see right below, such a 
possibility is ruled out by the very nature of the patterns involved. 

2.7  A couple’s roundtrip footsteps (pmm2)

2.7.1 Is it a ‘new’ pattern? As we pointed out in 1.4.8, every 
reflection may be viewed as a very special glide reflection the 
gliding vector of which has length zero. What happens to a pma2  
pattern when its glide reflection is ‘upgraded’ to horizontal 
reflection? Nothing much, in a way; all other isometries will still be 
there, with the minimum distance between vertical mirrors and half 
turn centers reduced to zero: half turn centers are now found at the 
intersect ions  of the pattern’s horizontal  reflection axis with 
every single vertical reflection axis! You may confirm all this by 
looking at a simple example of such a pattern, created by a letter 
that has both  vertical and horizontal mirror symmetry:

Fig. 2.30 

Once again there are two  kinds  of vertical mirrors (right 
through Hs and right between Hs), hence two kinds of half turn 
centers as well. There isn’t really too much new about this pattern, 
and even its name you should be able to guess: pmm2 , with first m  
for vertical reflection, second m  (instead of a ) for horizontal 
reflection (instead of glide reflection), and 2  for point reflection.

In addition to viewing the horizontal reflection as a glide 
reflection with a gliding vector of zero length, we may as well 
employ it to create glide reflection; this is done by combining the 
horizontal reflection with the minimal translation vector as shown 
in figure 2.30: instead of merely  reflecting each H  back to itself, 
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we glide it to the next H , too. This idea of using a reflection axis as 
an axis for a non-trivial, ‘hidden’  glide reflection will become very 
important in future chapters. Notice by the way that the glide 
reflection of the p1a1  pattern in figure 2.13 is none other than the 
‘hidden’ glide reflection of the p1m1  pattern in figure 2.11!

2.7.2 The ‘king’ of border patterns. The pmm2  is the ‘richest’  
type in terms of symmetry: it ‘contains’ both the pma2  type (hence, 
as pointed out in 2.6.5, the pm11 , p1a1 , and p112  types as well) 
and the p1m1 type. Indeed we can ‘reduce’ our pmm2  pattern to 
either a pma2  or a p1m1  pattern by cutting two ‘arms’ off each H :

Fig. 2.31

2.7.3 From pmm2  to pma2 . We now revisit our pentagonal motif 
and construct pmm2  and pma2 patterns as shown below:
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Fig. 2.32

Notice that this time we went from pmm2  to pma2  not by 
cutting the pattern in half (as in figure 2.31) but by shifting  its 
bottom row. This ‘shifting’ will play an important role in chapter 4 
and is also at the very root of the fact that the p1m1  is not 
‘contained’ in the pma2 .

2.7.4 More footsteps. Consider the following ‘arrow-footprint’ 
pattern:

Fig. 2.33

With a little bit of thinking and imagination, you can see this 
pmm2  pattern as the roundtrip footsteps of a couple walking 
together -- a bit fast perhaps -- and justify this section’s title!

2.7.5 Footnote. Our representation of border patterns as 
footprints and footsteps is partially inspired by a June 24, 1996 
What Shape Are You Into? lecture delivered at the Art and 
Mathematics conference at SUNY Albany by eminent Princeton 
mathematician John Horton Conway: he actually demonstrated 
how to create all seven types ‘walking’ alone (and barefoot)! You may 
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like to experiment in that direction, especially when you happen to 
be alone; can you come up with a footprint representation of the 
p112  pattern, alone or not, walking or standing?

Conway has his own orbifold notation for border patterns, 
closely related to his startling topological  answer to the question 
discussed right below (and to the harder question of chapter 8, too).

2.8  Why only seven types of border patterns?

2.8.1 Brief summary. We have so far discussed the following 
seven types of border patterns (with a minimal sequence of English 
letters generating them (fundamental  region) in brackets):

p111 : Translation only (common to all seven types) [F ]

pm11 : Vertical Reflection [M ]

p1m1 : Horizontal Reflection [D ]

p1a1: Glide Reflection [pb ] 

p112 : Half Turn [Z ]

pma2 : Vertical Reflection, Glide Reflection, Half Turn [pqbd ]

pmm2 : Vertical Reflection, Horizontal Reflection, Half Turn [H ]

Are there any other types or ‘combinations’ of border pattern 
isometries? The answer is “no” , and we are in a position to justify 
this claim without too much extra work.

2.8.2 Observations. Based on what we have observed in this 
chapter, and 2.7.1 & 2.6.3 in particular, we summarize here a number 
of useful remarks on how a certain isometry or combination of 
certain isometries implies the existence of another isometry:
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[1] Horizontal reflection  ⇒   Glide reflection 

[2] Glide reflection + Point reflection  ⇒   Vertical reflection 

[3] Point reflection + Vertical reflection  ⇒   Glide reflection 

[4] Vertical reflection + Glide reflection  ⇒   Point reflection 

2.8.3 Classification. As we have seen in section 1.5, there exist 
four types of planar isometries: translation, reflection, rotation, and 
glide reflection. In the context of border patterns, only isometries 
that map the border pattern back  to itself are allowed. That is, 
translation and glide reflection are allowed only along the pattern’s 
backbone (‘horizontally’), reflection may be either horizontal (along 
the backbone) or vertical (perpendicular to the backbone), and 
rotation is limited to 1800 (half turn) with its centers lying on the 
pattern’s backbone. Putting ever-present translation aside, we are 
left with four border pattern isometries, or ‘four kinds of 
reflection’  if you wish: vertical-, horizontal-, glide-, and point-.

Now for every possible border pattern and each one of the four 
border pattern isometries (and reflection types) discussed above, we 
may, in fact must, ask a simple question: “does the border pattern 
have it, or not?” Clearly the answer to each one of the four possible 
questions is either “yes” or “no”. How many possible combinations 
of answers are there? That will, quite simply, determine an upper 
bound for the number of possible combinations of border pattern 
isometries and border pattern types: there could be at most as 
many border pattern types as possible combinations of answers!

In theory there are 24 = 16 possible combinations, precisely 
because there are two  possible answers (“yes” or “no”) to four 
independent questions -- in the same way that, for example, there 
exist 64 = 1,296 possible outcomes when four distinctly colored dice 
are rolled. In practice, the observations made in 2.8.2 reduce the 
number of possible combinations to seven: that is precisely how 
many border patterns have been recorded in 2.8.1 and studied in this 
chapter. In the table below you see the process of elimination, with 
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Y  standing for “yes” and N  for “no” (placed between question 
marks  when a negative answer is in fact impossible because of 
one of the observations in 2.8.2); the number inside the parenthesis 
right next to “impossible” indicates the applicable  observation  
from 2.8.2. Whenever a certain combination of answers happens to be 
impossible for more than one reasons, we cite the ‘simplest’ one. 

2.9  Across borders

2.9.1 Mathematics and the artist’s imagination. Designs that 
belong to the seven possible types of border patterns are found all 
over the world, transcending borders, cultures, and historical 
periods. Two very different looking designs from, say, medieval 
Europe and pre-Colombian America, designed for very different uses 
and having very different cultural meanings to their creators, could 
very well belong to the same type of border pattern. This is not 
surprising: people, and artists in particular, of varying cultural and 
technological backgrounds are attracted to symmetry, but symmetry 
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subjects its unsuspecting worshippers to unspoken mathematical 
truths and limitations that we just began to explore in this chapter.

Indeed a careful search through art books will reveal the 
presence of border patterns of any one of the seven types all around 
the world. You could find the same type around a Roman mosaic or on 
a Maori wood rafter, for example: different as they may look 
stylistically, they could very well be the same mathematically. In 
many cases mathematical kinship is in fact accompanied by stylistic 
similarity, leading perhaps to conjectures on cultural exchanges 
between two cultures or periods. While such exchanges and 
influences definitely existed, stylistic similarities are more likely 
to be byproducts of the mathematical limitations discussed above. 

     
For further discussion on such issues we refer you to the book 

Symmetries of Culture: Theory and Practice of Plane 
Pattern Analysis, by Dorothy K. Washburn (an archaeologist) and 
Donald W. Crowe (a mathematician), published by the University of 
Washington Press in 1988. The whole book is full of examples of 
designs from all over the world, while its first chapter discusses 
both border patterns and wallpaper patterns (which we begin to 
explore in chapter 4) from the anthropological perspective.

Less comprehensive yet brilliantly written and example-oriented 
is a book written by architect Peter S. Stevens, titled Handbook of 
Regular Patterns: An Introduction to Symmetry in Two 
Dimensions and published by the MIT Press in 1981. Stevens 
provides several pages of designs from different parts of the world 
for each border pattern type: going through his book will make you 
feel that there is nothing but perfectly symmetric designs in our 
world, which, fortunately or unfortunately, is not quite true. 
Anyhow, you should from now on be alert and keep an eye open for 
such ‘perfect’ designs around you! We give you a jump start here -- 
and conclude chapter 2 as well -- by citing seven ‘multicultural 
pages’ from Stevens’ book, one for each type of border pattern, and 
in the same order we studied them; these pages have been included 
here with official permission from the MIT Press (which also covers 
a number of figures from Stevens’ book included in chapter 4).

                                                                                                 

first draft: summer 1998                              2006 George Baloglou
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

p111 border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 12.6, p. 101 (© MIT Press, 1981):

(12.6a) French, twentieth century

(12.6b) ancient Greek

(12.6c) Roman, Pompeii

(12.6d) Chinese, eleventh century B.C.
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pm11  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 14.4, p. 121 (© MIT Press, 1981)

(14.4a) Mesopotamian motif, first millennium B.C.

(14.4b) ancient Egyptian

(14.4c) ancient Greek

(14.4d) ancient Greek
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p1m1  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 15.4, p. 129  (© MIT Press, 1981)

(15.4a) ancient Greek

(15.4b) ancient Roman

(15.4c) Victorian

(15.4d) Oklahoma Indian
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p1a1 border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 13.8, p. 113  (© MIT Press, 1981)

(13.8a) Navaho Indian

(13.8b) Turkish design, sixteenth century

(13.8c) medieval ornament

(13.8d) Pueblo Indian design
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p112 border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 16.7, p. 142 (© MIT Press, 1981)

(16.7a) border design developed by the Chinese, ancient Greeks, 
and Navaho Indians

(16.7b) ancient Greek

(16.7c) Turkish

(16.7d) from pre-Columbian Peru
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pma2  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 17.5, p. 152 (© MIT Press, 1981)

(17.5a) ancient Greek

(17.5b) French, Louis XV

(17.5c) Chinese, as well as ancient Greek

(17.5d) Chinese

(17.5e) Chinese
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pmm2  border patterns from Peter S. Stevens’ Handbook of 
Regular Patterns, figure 18.6, p. 162 (© MIT Press, 1981)

(18.6a) Pompeian mosaic

(18.6b) medieval

(18.6c) medieval

(18.6d) Celtic manuscript design



76



 2006 George Baloglou                                   first draft: fall 1998

CHAPTER 3

WHICH ISOMETRIES DO IT?

3.0  Congruent sets

3.0.1 Congruence. We call two sets congruent to each other if 
and only if there exists an isometry that maps one to the other; in 
simpler terms, if and only if one is a copy  of the other. For example, 
this is the case with the quadrilaterals ABCD and A′B ′C ′D ′ in either 
of figures 1.18 & 1.30. It is correct to say that this definition 
extends the familiar definition of congruent triangles and, more  

Fig. 3.1
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generally, congruent polygons. In more practical terms, two sets 
are congruent if and only if one of them can be brought to perfectly 
‘match’ the other point by point. Let us for example have a look at 
the triangles ABC, A′B ′C ′, and A″B″C″ of figure 3.1: both triangles 
A′B′C′ and A″B″C″ are congruent to ABC as |A″B″| = |A′B′| = |AB|, |A″C″| = 
|A′C′| = |AC|, and |B″C″| = |B′C′| = |BC|. The relation of each triangle to 
ABC is somewhat different though: while A′B ′C ′ may be slid (i.e., 
glided and turned as needed) until it matches ABC point by point, 
A″B″C″ may not be brought back to ABC by mere sliding. How do we 
demonstrate the congruence of ABC and A″B″C″ in a hands-on way 
then? One needs to be clever enough to observe that A″B″C″ may in 
fact be slid back to ABC after it gets flipped : if that is not obvious 
to you, simply trace A″B″C″ on tracing paper, then flip the tracing 
paper and slide the flipped A″B″C″ back to ABC -- it works!

Revisiting the pairs of quadrilaterals in figures 1.18 & 1.30, we 
make similar observations: in figure 1.18 A′B ′C ′D ′ (image of ABCD 
under reflection) must be flipped in order to be slid back to the 
original ABCD, while in figure 1.30 A′B′C ′D ′ (image of ABCD under 
rotation) can be slid back to ABCD without any flipping. You have 
probably suspected this one by now: flipping is required in the case 
of reflection but not in the case of rotation. But let us now take a 
look at the two triangles of figure 1.14, mirror images of each other:

                   

Fig. 3.2
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Despite the reflection, you can easily check, using tracing paper 
if necessary, that the two triangles may easily be slid back to each 
other (without any flipping, that is). What makes the difference?

3.0.2 Homostrophy and heterostrophy. Before addressing the 
issues raised by figure 3.2, we need some terminology. We call two 
congruent sets homostrophic  (‘of same turning’) if and only if they 
can match each other via mere sliding; and we call two congruent 
sets heterostrophic  (‘of opposite turning’) if and only if they can 
only match each other via a combination of flipping and sliding. For 
example, ABCD and A′B′C′D′ are homostrophic in figure 1.30, but 
heterostrophic in figure 1.18. And, in figure 3.1 above, A′B ′C ′ and 
A″B″C″ are homostrophic and heterostrophic to ABC, respectively.

3.0.3 Labeling. Let us now return to the ‘puzzle’ of figure 3.2 and 
reinstate the vertex labels from figure 1.14 as below:

                   

Fig. 3.3

Can you now slide A′B′C′ ‘back’ to ABC in a way that A′, B′, C′ 
‘return’ to A, B, C, respectively? After a shorter or longer 
effort -- that depends on your personality -- you are bound to give 
up: it is simply impossible! That is, the labeling  of the vertices has 
made the two congruent triangles heterostrophic: A′B ′C ′ needs to be 
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flipped before it can slide to ABC. And, once again, heterostrophy 
seems to be associated with reflection.

Back in 3.0.1, and figure 3.2, you were able to slide the triangle 
now labeled A′B′C′ to match ABC. What would happen if you repeat 
that same sliding? The two triangles would still match each other, 
except that now A′ ‘returns’ to B and B′ ‘returns’ to A. This is not 
quite a perfect match, but it would obviously be one if we swap  A′ 
and B′. Indeed such an action leads to the following situation:

                    

Fig. 3.4

Clearly, it is now possible to simply slide A′B ′C ′ to ABC: the two 
triangles are now homostrophic! A rushed conclusion is that 
homostrophy  and  heterostrophy  are concepts  ‘defined’ by  
labeling ; this is a rule with its fair share of exceptions , as we 
will see in 3.2.6 and 3.5.4. And, in view of our entire discussion so 
far, an obvious question would be: is there a rotation that maps 
ABC to A′B ′C ′ in figure 3.4? We knew ahead of time, thanks to figure 
1.14, of a reflection that mapped ABC to A′B ′C ′ in figure 3.3; it is not 
unreasonable now to suspect that there is a rotation that maps ABC 
to A′B ′C ′ in figure 3.4: but how  do we determine such a rotation, how 
do we come up with a center and an angle that would work? 

3.0.4 The ‘reverse’ problem. Let us now consider a situation 
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similar to the one discussed in 3.0.3, departing from rotation and 
figure 1.24 this time; we leave the familiar triangle ABC untouched 
but we swap A′ and B′ as shown in figure 3.5 below:     

                         
Fig. 3.5

It is clear that the homostrophy (created by rotation) in figure 
1.24 has now been eliminated. Does that mean that there exists a 
reflection that maps ABC to A′B ′C ′? The answer is “no”: in every 
reflection the segments PP′ that join every point P of the original 
figure to its image point P′ are perpendicular to the reflection axis, 
hence they must all be parallel to each other; and that is clearly 
not the case in figure 3.5! For exactly the same reason there is no 
translation mapping ABC to A′B ′C ′. Nor is a rotation plausible, as we 
do suspect, without proof so far, that rotation is always  associated 
with homostrophy. There only remains one possibility: glide 
re f lect ion !

That glide reflection can be associated with heterostrophy is 
suggested by the effect of the two opposite glide reflections on ABC 
in figure 1.34: both A′B′C′ and A″B″C″ are easily seen to be 
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heterostrophic to ABC! So yes, there is hope, if not certainty, that 
there exists a glide reflection that maps ABC to A′B ′C ′ in figure 3.5; 
but how do we determine such a glide reflection, how do we come up 
with an axis and a vector that would work? 

This last question sounds very similar to the one posed at the 
end of 3.0.3, doesn’t it? The two questions are indeed the two faces 
of a broader question that reverses the tasks you learned in chapter 
1: back then you were given a set and an isometry and you had to 
determine the image; here you are given the ‘original’ set and an 
‘image’ set congruent to it, and you are asked to determine all the 
isometries that send the original to the image. That there may be 
more  than one  isometries ‘between’ two congruent sets should 
be clear in view of the examples discussed in this section, and has 
in fact been explicitly demonstrated in figure 2.22. Chapter 3 is 
devoted to this ‘reverse’ question. 

3.1   Poin ts

3.1.1  Infinite flexibility. Points do not take much room at all, 
hence they ought to be rather easy to deal with! In our context, given 
any two points A and A′, we can at once find not one but two 
isometries that map A to A′. These are a translation defined by the 
vector  AA ′′′′ and a reflection whose axis is the perpendicular  
bisector  of  AA ′′′′:

Fig. 3.6
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We are much ‘luckier’ than that though! There exist in fact 
infinitely  m a n y  rotat ions  and infinitely  m a n y  gl ide  
reflections that map A to A′. Getting them all turns out to be 
mostly a matter of remembering the ways of rotation and glide 
reflection from chapter 1: we will also need to learn to play the 
game backwards, and employ a bit of high school geometry as well.

3.1.2 Rotations. Let us revisit figure 1.21, where we defined 
rotation, and make a fundamental observation: since |KP| = |KP′|, K 
must lie on the perpendicular bisector of PP′! Indeed if M is the 
midpoint of PP′ then the two triangles MKP and MKP′ have three 
pairs of equal sides, hence they are congruent; but then ∠KMP′ = 
∠KMP = 1800/2 = 900, hence KM is perpendicular to PP′: 

         

Fig. 3.7

Returning to A and A′ of 3.1.1, we may now obtain infinitely 
many rotations that map A to A′; simply apply the previous argument 
backwards , pick an arbitrary point K on the perpendicular  
bisector of AA′ to be the rotation center, and then observe that the 
rotation angle is none other than the oriented angle ∠∠∠∠AKA ′′′′, 
opening  from  A  toward A ′′′′ by  way  of K : 
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Fig. 3.8

Notice that the rotation angle could be either clockwise or 
counterclockwise, depending on the relative position of A, K, and A′: 
this information should always  be part of your answer! Notice also 
that the rotation angle is 1800 when K is the midpoint of AA′, and 
approaches 00 as K moves far away from (and on either side of) AA′ 
(with the rotation itself ‘approaching’ -- near AA′ at least -- the 
translation  of figure 3.6).

3.1.3  Glide reflections. It’s time now to revisit figure 1.31, 
where we defined glide reflection, and make a crucial observation: 
the glide reflection axis L does intersect PP′ at its midpoint ! 

       

Fig. 3.9
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While this is made ‘obvious’ by figure 3.9, it is not difficult to 
offer a rigorous proof. Indeed, since PLP ′ is parallel to PMB (by the 

very definition of glide reflection), |PB|
|PP′|

 = 
|PPM|

|PPL|
 = 1

2
. 

  
How do we take advantage of this crucial observation and, in the 

context of 3.1.1 in particular, how could we use it to obtain glide 
reflections that map A to A′? All we have to do is to play the game 
backwards ! Simply draw an arbitrary line L through the midpoint  
M of AA′ and then find the image AL of A under reflection about L; it 
is easy then to check that the line L and the vector ALA ′ (pointing 
f rom  the  ‘ intermediate’  mirror  image  toward  the  actual  
glide  reflection image ) are the axis and vector of a glide 
reflection that maps A to A′:

Fig. 3.10

Figure 3.10 offers two out of infinitely many possibilities for a 
glide reflection that maps A to A′. Notice that the glide reflection 
vector can be of every possible direction, but its length cannot 
exceed |AA′|; in the special case where L is the perpendicular 
bisector of AA′, the length of the glide reflection vector is equal to 
zero  and the glide reflection is ‘reduced’ to the reflection  of 
figure 3.6.
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3.2  Segments

3.2.1 Two possibilities. Consider two straight line segments of 
equal length, one of them already labeled as AB:

   
Fig. 3.11

You are probably certain that there exist isometries that map AB 
to the segment on the right, but you probably cannot guess how many 
and you are not sure how to find them, right? Well, one departing 
point is to realize that there exist only  two  possibil i t ies  for A 
and B: either A gets mapped to the ‘top endpoint’ and B gets mapped 
to the ‘bottom endpoint’ of the segment on the right, or vice versa. 
We will begin with the first possibility.

3.2.2 Two perpendicular bisectors, one center. Now that we have 
for the time being decided where A and B are mapped by the isometry 
we are trying to determine (‘first possibility’ in 3.2.1), we may 
recall (3.1.2) that there exist infinitely many rotations  that map A 
to A′ and infinitely many rotations that map B to B′. The obvious 
question is: could some of those rotations perform both tasks, 
mapping A to A′ and B to B′? This question is answered if we also 
recall how  all those rotations were determined! That is, let us 
recall (3.1.2) that the set of centers  of all the rotations that map A 
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to A′ is the perpendicular  bisector  of AA′, and likewise the set of 
centers of all the rotations that map B to B′ is the perpendicular 
bisector of BB′. Isn’t it reasonable then to guess that the 
intersection  of  the  two  perpendicular  bisectors , lying on 
both  of them, will be the unique  rotation  center  that achieves 
both goals? This guess is correct, as shown in figure 3.12, where we 
also determine the rotation angle : 

      
Fig. 3.12
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Although it is next to impossible to achieve perfect precision, 
we see that approximately the same clockwise angle (and center) 
does indeed work for both A and B; in fact the rotation works for all 
points on AB -- we elaborate on this in 3.3.1.

3.2.3 Two midpoints, one axis. You can almost guess the game 
now: always sticking with that ‘first possibility’ of 3.2.1 (or just 
the placement of A′ and B′ in figure 3.12 if you wish), we would like 
to determine a glide reflection that maps both  A to A′ and B to B′. 
We may at this point recall (3.1.3) that a glide reflection maps A to 
A ′ (and B to B′) if and only if it passes through the midpoint of AA′ 
(and the midpoint of BB′). Arguing as in 3.2.2, we conclude that there 
exists a unique glide reflection mapping both A to A′ and B to B′, 
the axis of which is no other than the line connecting  the  two  
midpoints. The whole affair is presented in figure 3.13, where we 
also determine the glide  reflection  vector :  

    
  Fig. 3.13

Again we see that approximately the same S-N vector works for 
both A and B. The glide reflection must  in fact work for all points 
on AB, as we are going to see in 3.3.1.
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3.2.4 The ‘second possibility’. We now take care of the second 
possible labeling of the segment on the right in figure 3.11 (3.2.1) 
and obtain two more isometries between the two segments as shown 
in figures 3.14 (rotation) and 3.15 (glide reflection):

      
Fig. 3.14

Fig. 3.15
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3.2.5 Four isometries! Putting everything together, we see that 
there exist two  rotations  and  two glide reflections  mapping 
every two congruent straight line segments to each other. One  of the 
rotations may be ‘deformed’  into a translation (in case AB and 
A ′B ′, hence the perpendicular bisectors of AA′ and BB′ as well, are 
parallel to each other, ‘meeting at infinity’ -- see also concluding 
remark in 3.1.2); likewise, one  of the glide reflections may be 
‘reduced’  to a reflection (in case the line connecting the 
midpoints of AA′, BB′ is perpendicular to one -- hence, by a   
geometrical argument, both -- of them). Both situations occur for 
example in the case of any two adjacent hexagons in a beehive!

3.2.6 Homostrophic segments. We conclude by pointing out that, 
under  either labeling, the segment on the right (in figures 3.11 
through 3.15) is homostrophic to AB. This is further indicated by the 
two rotations determined in figures 3.12 & 3.14, of course. But 
notice here that, quite uniquely as we will see later on, the segment 
A ′B ′, homostrophic to AB, is at the same  time the image of AB 
under the two glide reflections determined in figures 3.13 & 3.15!

3.3  Triangles

3.3.1 Two points almost determine it all. Here is a simple 
question you could have already asked in section 3.2: how do we 
really know that each of the four isometries mapping A and B to the 
endpoints of the ‘image segment’ on the right do actually map (every 
point P on) the segment AB to (a point P′ on) the segment on the 
right? Good question! Luckily, circles come to the rescue of 
segments in figure 3.16 below.  

Indeed, P′ (the image of P under whatever isometry maps A to A′ 
and B to B′) must lie on both  the circle CA ′′′′ = (A′′′′; |AP|) of center A ′′′′ 
and radius |AP| and the circle CB ′′′′ = (B′′′′; |BP|) of center B ′′′′ and 
radius |BP|: the distances of P from both A and B must be preserved. 
But these two circles can have only one ‘tangential’ point in 
common, lying on A′′′′B′′′′, due to |A′B′| = |AB| = |AP| + |BP| (figure 3.16).   

90



Fig. 3.16

There are of course precisely  two  possibilities for the exact 
location of P′ on AB’s image on the right, depending on the two 
possibilities for A′ in 3.2.1; but in both cases every point P on AB is 
indeed mapped to a point P′ on A′B′ (with |PA| = |P′A′| and |PB| = |P′B′|, 
of course), therefore the entire segment  AB is mapped to A′B ′.

Now that you have seen that the images of the endpoints A, B 
completely determine the image of every point P on the segment AB 
(and in fact of every point on the entire line of AB, thanks to a 
similar argument involving ‘exterior points’ and ‘interior tangency’), 
you may wonder: what if P lies outside that line? Once again the 
circles CA ′ and CB ′ can be of great help, except that this time, with 
|A′B′| < |AP| + |BP| instead of |A′B′| = |AP| + |BP|, they do intersect 
each other instead of being tangent to each other; hence there are 
two  possibilities  for P′, indicated by P1′  and P2′  in figure 3.17:
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Fig. 3.17

3.3.2 Congruent triangles. It doesn’t take long to observe that, 
in figure 3.17, A′B ′P1′  is (congruent and) homostrophic to ABP while 
A′B′P2′  is (congruent and) heterostrophic to ABP. Reversing this 
observation, we notice that whenever a triangle A′B ′P ′ is congruent 
to a triangle ABP there exists precisely one  isometry  mapping 
ABP to A′B ′P ′: a rotation (or translation) in case A′B ′P ′ is 
homostrophic to ABP and a glide reflection (or reflection) in case 
A ′B ′P ′ is heterostrophic to ABP. Indeed, with A ′′′′ and B ′′′′ determined 
on AB’s image by P′′′′’s position (and |AP| ≠ |BP|, the case |AP| = |BP| 
being deferred to section 3.4), there are precisely two isometries 
mapping AB to A′B ′, one rotation and one glide reflection (section 
3.2): P′ may then be only one  of the two  intersection points of 
the two circles shown in figure 3.17 (and corresponding to the two  
isometries mapping AB to A′B ′). 

We illustrate this in figure 3.18: labeling the ‘original’ triangle 
as DEF, we easily determine the images D′, E′, F′ (homostrophic copy 
of DEF) and D″, E″, F″ (heterostrophic copy of DEF); it is then clear 
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that only  one  of the two intersection points (F′) of the circles      
(D′; |DF|) and (E′; |EF|) corresponds to a homostrophic copy of DEF, and 
likewise only  one  of the two intersection points (F″) of the circles  
(D″; |DF|) and (E″; |EF|) corresponds to a heterostrophic copy of DEF.  

Fig. 3.18 

3.3.3  Circular orientation revisited. Implicit in the discussion 
above is the assumption that translation and rotation are associated 
with homostrophy (‘same  turning’), while reflection and glide 
reflection are associated with heterostrophy (‘opposite  turning’). 
We can offer a quick justification for this assumption (and naming) 
as follows. 

Returning to figure 3.17, let us replace the circles CA ′ and CB ′ by 
the three congruent circles C0, C1, and C2, circumscribed to the 
triangles ABP, A′B′P1′ , and A′B′P2′ , respectively:
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Fig. 3.19

Clearly the points A, B, P, traced alphabetically, are 
clockwise placed on C0; their images are clockwise placed on C1 
(A′, B′, P1′ ) and counterclockwise placed on C2 (A′, B′, P2′ ). As this 
‘circular order’ among A, B, P on C0 has been preserved among 
their images on C1 but reversed on C2, it is easy to see that C1 can 
slide back to C0 returning images to originals, while C2 cannot 
(without flipping, that is). So, homostrophy is associated with 
preservation of circular order, while heterostrophy is associated 
with reversal of circular order. But we have already seen in 1.5.4 -- 
and could certainly verify from scratch by extending section 3.1 
from points to circles! -- that preservation of circular order is 
associated with translations and rotations, while reversal of 
circular order is associated with reflections and glide reflections. 

3.3.4 Triangles determine everything! We just saw that, in the 
case of two congruent triangles, homostrophy is indeed associated 
with translation or rotation, and heterostrophy with reflection or 
glide reflection. This holds true for every pair of congruent sets on 
the plane, and relies on a broader fact, demonstrated in figure 3.20 
below: every isometry on the plane is uniquely determined by its 
effect on any  three  non-coll inear  points !       
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Fig. 3.20

Indeed, any ‘fourth point’ P lies at the intersection of three  
circles of centers A, B, C and radii |AP|, |BP|, |CP|, respectively. So 
the image of P is forced by the radius-preserving isometry to lie at 
the intersection of the three  image  circles (of centers A′, B′, C′ 
(rotation) or A″, B″, C″ (glide reflection) and radii |AP|, |BP|, |CP|); but 
every three circles with non-collinear  centers  can have at most  
one point in common, hence the image of P -- P′ under the rotation, 
P″ under the glide reflection -- is uniquely determined! 

3.3.5 From theory to practice. Returning to section 3.0 and 
figure 3.1, we demonstrate in figure 3.21 how to find the rotation 
that maps ABC to A′B ′C ′ (homostrophic pair) and the glide 
reflection that maps ABC to A″B″C″ (heterostrophic pair).

As you can see, determining the isometries in question reduces, 
in view of 3.3.2, to picking the right type of isometry (rotation or 
glide reflection) that maps AB to A′B ′; the rotation center or glide 
reflection axis is subsequently located as in section 3.2. It is 
always wise  to use a third point  (like C in figure 3.21) and its 
image to determine the rotation angle or glide reflection vector, as 
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shown in figure 3.21 -- and even wiser to check that the same angle 
or vector indeed  works for a fourth point, as well as for A and B!

Fig. 3.21 

 

3.4  Isosceles triangles

3.4.1 The ‘second possibility’ revived. As we pointed out in 
3.3.2, there is generally only one isometry mapping a ‘randomly 
chosen’ triangle ABC to a congruent triangle A′B ′C ′: this is because C′ 
both  allows only one possibility for the positions of A′ and B′ on 
the image of AB and determines the kind of isometry that maps AB 
to A′B ′. While homostrophy/heterostrophy considerations never allow 
us to avoid the second limitation, it is possible to escape from the 
first one in case ABC happens to be isosceles (with |AC| = |BC|); 
there exist then again, as in 3.2.1, two  possibilities for the images 
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of A and B, associated with homostrophy (A1′ , B1′ ) and heterostrophy 
(A2′ , B2′ ). And there exist therefore one rotation mapping ABC to 
A1′ B1′ C ′ (figure 3.22) and  one glide reflection mapping ABC to 
A2′ B2′ C ′ (figure 3.23), determined as in 3.3.5; but, of course, A1′ B1′ C′ 
and A2′ B2′ C ′ are one and the same triangle, congruent to ABC!     

Fig. 3.22

Fig. 3.23
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3.4.2 Old examples revisited. We can at long last confirm and 
justify what we suspected in 3.0.3 and 3.0.4: there exists a rotation 
that achieves what reflection did in figure 1.14, and there also 
exists a glide reflection that rivals the rotation in figure 1.23. We 
demonstrate our findings in figures 3.24 & 3.25:

            
Fig. 3.24

               
Fig. 3.25
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3.5  Parallelograms, ‘windmills’, and Cn sets

3.5.1 Two triangles to go to! Consider the congruent, 
heterostrophic parallelograms ABCD, EFGH of figure 3.26:

Fig. 3.26

The congruent triangles ABC and HGF are heterostrophic, so 
there certainly exists a glide reflection mapping ABC to HGF, hence 
ABCD to EFGH as well (3.3.4), obtained in figure 3.27:

  
Fig. 3.27
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On the other hand ... don’t you think that ABC could have gone to 
FEH instead? Indeed ABC and FEH also happen to be congruent and 
heterostrophic, so there must exist a glide reflection mapping ABC 
to FEH, hence ABCD to EFGH as well (3.3.4); and such a glide 
reflection is obtained in figure 3.28: 

Fig. 3.28

So, there exist two glide reflections mapping ABCD to EFGH! 
What has happened? Clearly, the extra flexibility we have here is 
due to the existence of two congruent triangles within EFGH, HGF 
and FEH. Digging a bit deeper into this, what has made these two 
‘components’ of the parallelogram EFGH congruent to each other? 
Could there be an ‘obvious’ isometry mapping one to the other? The 
answer is “yes”: there exists an isometry mapping HGF to FEH (or 
vice versa) and that is ... no other than the half turn about the 
parallelogram’s  center , K′! To put it in more familiar terms 
(1.3.9), the parallelogram EFGH has rotational symmetry: indeed a 
twofold  (1800) rotation about K′ maps the parallelogram to itself,  
swapping HGF and FEH; and this twofold rotation is in fact 
‘combined’  (section 7.8) with the glide reflection of figure 3.27 to 
produce the glide reflection of figure 3.28!
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3.5.2  How about more triangles? It is not that difficult to come 
up with situations involving more than two glide reflections 
between two congruent sets. Indeed, and in view of the discussion in 
3.5.1, all we need is two copies of a set with ‘richer’ rotational 
symmetry than that of the parallelogram, a set with more than two 
‘triangles’ rotating around a center. How about the following pair of 
heterostrophic  windmill-like sets:

Fig. 3.29

You should have no trouble realizing that, with five ‘options’ for 
‘blade’ ABC, there exist indeed five glide reflections mapping the 
‘windmill’ on the right to the ‘windmill’ on the left. We leave it to 
you to determine these glide reflections; and if you go through this 
task with the great precision that is typical of you by now, you are 
going to see all five glide reflection axes passing  through  the  
same  point, that is the midpoint  of KK ′′′′: that should not surprise 
you if you care to notice that all five glide reflections must  map K 
to K′! (You may of course decide to ‘cheat’ by choosing K, K′ as one 
of your two pairs of points needed to determine each one of the five 
glide reflections!)

3.5.3 How about rotations? Returning to the parallelograms of 
figure 3.26, let us ‘rectify’ EFGH a bit, so that ABCD and EFGH are 
now homostrophic: 
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Fig. 3.30

Repeating the thought process of 3.5.1 we see that ABC is 
homostrophic to both GHE and EFG, hence there exist two rotations 
mapping ABCD to EFGH: one of them, by a clockwise 1160, maps ABC 
to GHE (figure 3.31), the other one, by a counterclockwise 640, maps 
ABC to EFG (figure 3.32). Notice that 1160 + 640 = 1800, in the same 
way, say, that the two glide reflection axes in figures 3.27 & 3.28 
are perpendicular to each other: please check and, perhaps, think 
about such ‘phenomena’!  

Fig. 3.31
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Fig. 3.32

Just as we turned the two glide reflections between the two 
heterostrophic parallelograms (3.5.1) into two rotations between 
homostrophic parallelograms, we can now turn the five glide 
reflections between the heterostrophic ‘windmills’ of figure 3.29 
into five rotations between homostrophic ‘windmills’: 

Fig. 3.33
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Again, it is left to you to check that there exist f ive  rotations 
mapping the ‘windmill’ on the right to the ‘windmill’ on the left, 
determined by the ‘blade’ to which ABC is mapped. As in 3.5.2, all 
five rotations must  map K to K′, hence all five rotation centers 
must lie on the same line, the perpendicular bisector of KK ′′′′!

3.5.4 C n sets and the role of orientation. Let us revisit figures 
3.27, 3.28, 3.31, and 3.32, where we labeled EFGH as D′C′B′A′, B′A′D′C′, 
C ′D ′A ′B ′, and A′B ′C ′D ′, respectively -- which, by the way, are the only 
possible labelings induced by isometries mapping ABCD to EFGH. 
Still, what made the difference was not labeling but orientation: 
regardless  of  labeling , we obtained a glide  reflection  between 
the heterostrophic  parallelograms in both  figure 3.27 and figure 
3.28, and, likewise, a rotation between the homostrophic  
parallelograms in both figure 3.31 and figure 3.32.  

Similarly, revisiting figures 3.29 & 3.33, we see that the 
existence of five glide reflections or  five rotations between the 
two ‘windmills’ is associated solely  with heterostrophy and 
homostrophy, respectively: labeling plays no role whatsoever.

Such observations always hold true between every two congruent 
C n  sets , that is, sets with n-fold  rotat ional  symmet ry  without  
mirror  symmetry : there exist either  n  rotations  mapping one to 
the other (in case they are homostrophic ) or  n  glide reflections  
mapping one to the other (in case they are heterostrophic).

In addition to ‘n-blade windmills’, examples of Cn sets, known as 
chiral  sets  -- “hand(s)-like”, from Greek “chir” = “hand” -- in 
Molecular Chemistry or Particle Physics, include: non-isosceles 
triangles (C1), parallelograms (C2), the triskelion (three human legs 
joining each other at 1200 angles) from, among several other places, 
Isle of Man (C3), the heterostrophic and culturally unrelated Hindu 
and Nazi swastikas (C4), the Star of David (C6), etc. An excellent 
collection of Cn sets and likewise of Dn sets (studied in section 3.6 
right below), from various regions of the world and historical 
periods, is available in Peter S. Stevens’ book (pages 16-93) already 
cited in section 2.9.
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3.6  Rhombuses, ‘daisies’, and Dn sets 

3.6.1 Two triangles and two ways. Let us consider the special 
case |AB| = |BC| = |CD| = |DA| (hence |FE| = |EH| = |HG| = |GF| as well) in 
either of figures 3.26 or 3.30; that is, let us consider the special 
case where each of the two congruent parallelograms is a rhombus:

    
Fig. 3.34

How many isometries map ABCD to EFGH? Arguing in the spirit of 
section 3.5, we notice that every isometry mapping ABCD to EFGH 
has to map ABC to either FGH or HEF. But we also notice that ABC 
and either of FGH or HEF are isosceles triangles, and we do as well 
recall (section 3.4) that there always exist two  isometries mapping 
an isosceles triangle to a congruent to it isosceles triangle. We 
conclude that there exist two ××××  two = four isometries mapping 
ABCD to EFGH: two rotations (one mapping ABC to FGH (figure 
3.35), another mapping ABC to HEF (figure 3.36)) and two glide 
reflections (one mapping ABC to HGF (figure 3.37), another mapping 
ABC to FEH (figure 3.38)); D’s image is simply determined by those 
of A, B, C (3.3.4).

More rigorously, and with composition of isometries (chapter 
7) in mind, we could see how, for example, the rotation in figure 
3.35 is ‘combined’  with the rhombus’ internal reflection swapping 
E, G to produce the glide reflection of figure 3.38, etc.
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Fig. 3.35

Fig. 3.36
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Fig. 3.37

Fig. 3.38

Notice that homostrophy  or heterostrophy induced  by  
labeling has once again become important, just as in section 3.4: 
we obtained rotations in the cases of homostrophic copies (with 
EFGH labeled in effect as either D ′′′′A ′′′′B ′′′′C ′′′′ (figure 3.35) or B ′′′′C ′′′′D ′′′′A ′′′′ 
(figure 3.36), both of them homostrophic to ABCD ) and glide 
reflections in the cases of heterostrophic copies (with EFGH labeled 
in effect as either D ′′′′C ′′′′B ′′′′A ′′′′ (figure 3.37) or B ′′′′A ′′′′D ′′′′C ′′′′ (figure 3.38), 
both of them heterostrophic to ABCD ) .

3.6.2 Everything in double! What happens if we apply the same 
‘symmetrization’ process applied to the parallelograms of figures 
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3.26 & 3.30 to those ‘5-blade  windmills’  of figures 3.29 & 3.33? 
We need to replace non-isosceles triangles by isosceles ones, 
arriving at a pair of congruent ‘5-petal  daisies’ :

Fig. 3.39

How many isometries map the ‘daisy’ on the right to the ‘daisy’ 
on the left? Well, you almost know the game by now: there are five 
‘petals’ to which ‘petal’ ABC can be mapped, and in each case this 
can be done by both a rotation and a glide reflection mapping the 
‘daisy’ on the right to the ‘daisy’ on the left; putting everything 
together, we see that there exist five ××××  two = ten isometries 
between the two congruent ‘daisies’, five rotations  and  five 
glide  reflections ! We leave it to you to provide the right labeling 
for each one of these ten isometries: you should then be able to 
check that all five glide reflection axes pass through the midpoint of 
KK ′ (3.5.2) and that all five rotation centers lie, despite falling off 
this page on occasion, on the perpendicular bisector of KK′ (3.5.3).

3.6.3 Dn sets and the role of labeling. A closer look at 3.6.1 and 
3.6.2 explains the abundance of isometries between the rhombuses 
and the ‘5-petal daisies’: in addition to rotational  symmetry  (by 
1800 and 720, respectively), they are both blessed by at least one 
isosceles  triangle  the reflection axis of which acts as a 
reflection axis for the entire set -- that is, they also have mirror  
symmetry !
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Summarizing and generalizing our findings in this section, we 
may say that between every two congruent Dn sets, that is, sets 
with both  mirror  symmetry  and  n-fold  rotational  symmetry , 
there exist n  rotations (allowed by ‘homostrophic labeling’) and  n  
glide  reflections  (allowed by ‘heterostrophic labeling’).

In addition to ‘n-petal daisies’, examples of Dn sets, known to 
scientists as achiral  sets , include: isosceles triangles (D1), 
rhombuses and straight line segments (D2), equilateral triangles 
(D3), squares and the Red Cross symbol (D4), the ‘pentagram’ (D5), 
snowflakes (D6), regular n-gons (Dn), circles and points (D∞ ), etc.

3.6.4 ‘Practical’ issues. You must have observed by now that, 
once we know what type of isometry (rotation or glide reflection) 
between two congruent sets we are looking for, and any and all 
issues of homostrophy/heterostrophy and labeling have been decided, 
the actual determination of the isometry simply reduces to 
constructing one between two congruent segments and choosing the 
relevant endpoints. Such an observation is of course a natural 
consequence of our discussion in the entire chapter; see in 
particular 3.3.5. 

When looking for a rotation, it is advisable to choose two pairs 
of points such that the perpendicular bisectors of the corresponding 
segments will not  be ‘nearly parallel’ to each other. The idea here 
is that tiny, almost inevitable, errors in the location of the two 
midpoints and/or the direction of the perpendicular bisectors are 
propagated in case the two lines run nearly parallel to each other, 
hence the rotation center could be greatly misplaced. For example, 
choosing to work with B, B′ and C, C′ would have been a bad idea in 
figure 3.36 but not in figure 3.35. 

Likewise, in the case of a glide reflection, it is not  advisable to 
work with two segments the midpoints of which are ‘too close’ to 
each other: again, tiny, almost inevitable, errors in the location of 
the two midpoints are likely to lead to a considerably misplaced 
glide reflection axis; this has in fact happened to some extent with 
B, B′ and C, C′ in figure 3.37 (why?), but probably not in figure 3.38.
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Prior to choosing your pair of points, you should decide whether 
you need a rotation or a glide reflection. If both are possible, then 
homostrophy/heterostrophy issues become important. You must 
carefully choose your labeling  so that it will be both possible  
(avoid a disaster situation where, for example, |A′B ′| ≠ |AB|!) and 
appropriate (homostrophic or heterostrophic as needed) for the 
isometry you are looking for. Figures 3.35-3.38 should provide 
sufficient illustration in this direction. Another useful tip for 
labeling the image set, suggested by Erin MacGivney (Spring 1998), 
is this: trace the original set, including original labels (A, B, C, ...) on 
tracing paper, then slide it in every possible way until it matches 
(and labels!) the image set, with  or  without  flipping  the tracing 
paper (and inducing heterostrophic or homostrophic labeling, 
respectively).

Various ‘labeling’ errors can often be caught with the use of a 
‘third point’  (in determining the rotation angle or glide reflection 
vector) already advocated in 3.3.5: watch  out  in particular for 
unequal angle legs or for an axis and vector not parallel to each 
other!   

Of course, you should first of all answer the following question 
about the given pair of congruent sets: are they Cn sets or Dn 
sets, and  what  is n?  If they are Cn sets then you must decide 
whether they are homostrophic or heterostrophic, allowing for 
either  n  rotat ions  or  n  glide  reflections , respectively. If they 
are Dn sets you should keep in mind that, with fully developed 
labeling skills, you ought to be able to get all n  rotations and  n  
glide reflections between the two sets; and keep in mind that one  
rotation could be ‘reduced’ to a translation (in case the two sets are 
side-by-side ‘parallel’ to each other) and one  glide reflection 
might ‘merely’ be a reflection (3.2.5).

3.7*  Cyclic (Cn) and dihedral (Dn) groups 

3.7.1  ‘Turning the windmills’. Let us revisit that ‘5-blade 
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windmill’ C5 set of figure 3.29, redrawn and relabeled in figure 3.40 
below; more specifically, the five ‘blades’ are now labeled as T0, T1, 
T2, T3, and T4.

               

Fig. 3.40

As we noticed in 3.5.2, a clockwise 3600/5 = 720 rotation r 
about K maps the ‘windmill’ to itself by moving the ‘blades’ Ts 
around according to the formula r(Ts) = T(s+1)mod5, where, for every 
integer t, tmod5  is the remainder  of the division of t by 5. For 
example, r(T2) = T3, r(T4) = T0, etc. What happens when we apply r 
twice  in a  row? Clearly, r(r(T2)) = r(T3) = T4, r(r(T4)) = r(T0) = T1, 
and so on; we write r2(T2) = T4, r2(T4) = T1, and so on, and we notice 
that r2 is a clockwise rotation by 2 ×  720 = 1440, ‘rigorously’ 
defined via r2(Ts) = T(s+2)mod5. And likewise we can go on and define 
r3 and r4 as clockwise rotations by 3 × 720 = 2160 and 4×720 = 2880, 
respectively, subject to the rule, for l = 3 and l = 4, respectively, 
rl(Ts) = T(s+l)mod5. For example, for l = 3 and s = 4, (s+l)mod5 = 7mod5 
= 2, therefore r3(T4) = T2, a result that you may certainly confirm 
geometrically (by rotating T4 about K by a clockwise 2160).
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All this extends naturally to the ‘n-wing windmill’ (of ‘blades’ 
T0, T1, ... , Tn−1), where the clockwise 3600/n rotation r satisfies 
rl(Ts) = T(s+l)modn for all integers s, l between 0 and n−1. We may in 
fact extend this formula for all l ≥  n; for l = n, in particular, we 
notice that (s+n)modn = (s+0)modn, hence rn(Ts) = Ts for all s: that 
is, rn = r0 = I is a ‘dead’ rotation (Identity  map ) that leaves all the 
‘blades’ unchanged. Moreover, we can easily compute the product of 
the rotations rk and rl (a clockwise rotation of l ×  3600/n followed 
by a clockwise rotation by k ×  3600/n) via rk∗∗∗∗rl(Ts) = rk(rl(Ts)) = 
rk(T(s+l)modn) = T(s+l+k)modn = rk+l(Ts); that is, rk∗∗∗∗rl = r(k+l)modn, due to 
(s+l+k)modn = (s+(l+k)modn)modn: please check! 

You may also verify this ‘rotation multiplication’ by adding  the  
angles  via l ×  3600/n + k ×  3600/n = (l+k) ×  3600/n and noticing that 
a (l+k) × 3600/n rotation is the same as a ((l+k)modn) × 3600/n 
rotation. Moreover, you may certainly confirm this multiplication 
rule geometrically by returning to our ‘5-blade windmill’ and 
checking that, for example, the r3 rotation of 2160 followed by the 
r4 rotation of 2880 does indeed produce the r2 rotation of 1440, 
precisely as (4+3)mod5 = 2 would predict!

The relations rn = r0 = I and rk∗∗∗∗ rl = r(k+l)modn derived above 
define the cyclic group of order n, denoted by Cn: an algebraic 
structure whose elements are I, r, ..., rn−−−−1 and whose importance in 
Mathematics is inversely proportional to its simplicity! It is in fact 
a commutative  group: the order of ‘multiplication’ does not matter 
(rk∗∗∗∗ rl = rl*rk = r(k+l)modn). Its identity element is the ‘dead map’ 
(rotation) rn = I we already discussed, and the inverse  of rl is 
simply rn −−−− l (w i th  rl* rn −−−− l = rn −−−− l* r l = r0  = I) .

3.7.2 ‘Bisecting the daisies’. Let us now apply the notation of 
3.7.1 to the ‘leaves’ of that ‘5-petal daisy’ from figure 3.39, drawing 
its reflection axes (‘bisectors’) at the same time; we end up with 
the axis m s bisecting ‘petal’ Ts for s = 1, 2, 3, 4, and with axis m 5 
bisecting ‘petal’ T0:
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Fig. 3.41

In addition to the reflections, our ‘5-petal daisy’ has five 
rotations, including the trivial one, all ‘inherited’ from 3.7.1. In 
total, there are ten isometries mapping the daisy to itself: I, r, r2, 
r3, r4, m 1, m 2, m 3, m 4, and m 5. Could these isometries possibly 
form a group? The answer would be “yes” if we could show that the 
product (successive application) of every two of them is still one of 
the ten isometries listed above, and that each one of the ten 
isometries has an inverse. Starting from the latter, recall (1.4.4) 
that every reflection is the inverse of itself, hence the inverse of 
m s is m s with m s∗∗∗∗m s = I for s = 1, ... , 5; moreover, the inverse of rl 
for l = 1, ... , 4 is r5−−−− l (3.7.1), and I is of course the inverse of itself. 
Observe next that the product of every two rotations is indeed a 
rotation, with rk*rl = rl*rk = r(k+l )mod5 (3.7.1), and same holds for 
the product of every two reflections (as we will see in section 7.2 
and as you could probably verify even now). Keeping the latter in 
mind and observing also that mt(Ts) = T(2t−s)mod5, let us now compute 
mt∗∗∗∗ms(T0) = mt(ms(T0)) = mt(T(2s−0)mod5) = mt(T2smod5) = T(2t−2s)mod5 = 
r(2t−−−−2s)mod5(T0) -- the last step follows from rk(T0) = Tk -- and 
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conclude that m t∗∗∗∗m s = r(2t−−−−2s)mod5: if two rotations have the same 
effect on any one of the ‘petals’ (in this case T0) then they must be 
one and the same! ‘Multiplying’ both sides of the derived identity by 
m t (from the left) and by m s (from the right), we obtain, with some 
details omitted, the identities rl∗∗∗∗m s = mk (where 2k = 
(2s+l)mod5 )  and m t∗∗∗∗ rl = mk (where 2k = (2t−−−− l )mod5 ), 
respectively. (You may not be able to derive the missing details right 
now, but you can certainly verify them geometrically : for l = 3 and 
s = 2, for example, k = 1 satisfies 2k = (2s+l)mod5, hence the 
product r3∗∗∗∗m 2 (reflection bisecting T2 followed by clockwise 2160 
rotation) ought to be m 1 (reflection bisecting T1), etc.)

Replacing 5 by any odd n, we can extend the results and 
formulas of the preceding paragraph to arbitrarily large groups of 2n 
elements (and yet very similar structure). For even  n  some slight 
modifications, as well as a ‘6-petal daisy’, are in order:

      
Fig. 3.42
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Observe that our new ‘daisy’ is now bisected in two different 
ways, with some axes (m 2, m 4, m 6) cutting through ‘petals’ and 
other axes (m 1, m 3, m 5) passing right between ‘petals’. The effect 
of the reflections on the ‘petals’ is now somewhat different, with 
mt(Ts) = T(2t−s)mod5 replaced by mt(Ts) = T(t−s)mod6; that leads in turn 
to m t∗∗∗∗m s = r(t−−−−s)mod6, as opposed to m t∗∗∗∗m s = r(2t−−−−2s)mod5. At the 
same time, rk∗∗∗∗ rl = rl∗∗∗∗ rk = r(k+l)modn (3.7.1) remains intact, while 
the other two kinds of products are in fact simplified: proceeding 
as in the preceding paragraph, we now establish rl∗∗∗∗m s = m(s+l)mod6 
and mt∗∗∗∗rl = m(t−−−− l)mod6. (Once again you should be able to verify 
these formulas geometrically ; for example, m 3∗∗∗∗ r4 (clockwise 
4×3600/6 = 2400 rotation followed by ‘in-between’ bisection m 3) 
ought to be equal to m (3−−−−4)mod6 = m(−−−−1)mod6 = m5, another ‘in-
between’ bisection.) Notice that all formulas obtained in this 
paragraph for n = 6 can be easily modified for arbitrary even  n .

To summarize, we have just proven, by going through two 
distinct cases (odd n and even n), that, for every n, the set of 2n 
isometries {I, r, ..., rn−−−−1, m1, ... , mn} forms indeed a group under 
composition  of  isometries , subject to the rules and formulas 
established in this section. This non-commutative  group, which 
contains Cn as a subgroup , is well known in the literature as 
dihedral group  of order 2n, denoted by Dn. It may be shown -- 
see for example chapter 8 in George E. Martin’s Transformation 
Geometry: An Introduction  to  Symmetry  (Springer, 1982) -- 
that every finite group  of isometries in the plane must  be C n or D n 
for some n: this result is attributed to none other than Leonardo da 
Vinci and is known as Leonardo’s Theorem!

[How about infinite such groups? Well, those are actually 
studied in chapters 2 and 4, but our approach tends to be informal 
and geometrical (even in chapter 8) rather than group-theoretic -- a 
group-theoretic approach is available in Martin’s book above, as well 
as in several Abstract Algebra texts, such as M. A. Armstrong’s 
Groups and Symmetry  (Springer, 1997), for example.] 

                                                                                                      
first draft: fall 1998                                    2006 George Baloglou
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CHAPTER 4

WALLPAPER PATTERNS

4.0  The Crystallographic Restriction

4.0.1 Planar repetition. Even if you don’t have one in your own 
room, you probably see one often at a friend’s place or your favorite 
restaurant: it fills a whole wall with the same motif repeated  all 
over in an ‘orderly manner’ , creating various visual impressions 
depending on the particular motif(s) depicted, the background color, 
etc. And likewise you must have noticed the tilings in many 
bathrooms you have been in: they typically consist of one square tile 
repeated all over the bathroom  wall, right? Well, as you are going 
to find out in this chapter, we can do much better than simply 
repeating square tiles (plain or not) all over: tilings (and other 
repeating designs as well), be it on Roman mosaics, African 
baskets, Chinese windows or Escher drawings, can be wonderfully 
complicated! 

You can certainly imagine the wall in front of which you are 
standing right now extended in ‘all directions’ without a bound, 
thus turning the wallpaper or tiling you are looking at into an 
infinite design ; for the sake of simplicity we call any and all such 
two-dimensional  (planar) infinite designs that repeat themselves 
in all directions and ‘in an orderly manner’ wallpaper  patterns . 
For example, the familiar beehive , consisting of hexagonal ‘tiles’, 
is still viewed here as a wallpaper pattern -- once extended to cover 
the entire plane, that is. More technically, a wallpaper pattern is a 
design that covers the entire plane and is invariant under  
translation  in  two  distinct , non-opposi te , directions ; check 
also our definition at the end of 4.0.7 and discussion in section 4.1. 
Notice at this point that motif repetitions, however ‘imperfect’ 
mathematically, are not that rare in nature: think of a leopard’s skin 
or certain butterflies’ wings, for example. Moreover, there are 
zillions of such repetitions and ‘orderly packings’ to be seen in three 
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dimensions, and in particular when one looks at a crystal through a 
microscope: although this is where this section’s title (but not 
content) comes from, we will not dare venture into three-
dimensional symmetry in this book!

4.0.2 Taming the infinite. As we have seen in 2.0.1, infinite 
border patterns may be ‘finitely represented’ by strips going around 
the lateral side of a ‘short’  cylinder . Notice at this point that, 
precisely because they do have a certain finite width, border 
patterns are, strictly speaking, ‘one-and-half’  dimensional: a truly 
one-dimensional pattern would be something as dull as the infinite 
repetition of a M o r s e  signal  ( __ . __ .  _ _ _  _ . .  . ), while 
two-dimensional patterns could only be represented on the lateral 
side of a cylinder  of  infinite height . But, in the same way an 
infinite strip can be ‘wrapped around’ into a ‘short’ cylinder (of 
finite height equal to the strip’s width), a cylinder of infinite height 
can be ‘wrapped around’ into a torus: before you get somewhat 
intimidated by this ‘abstract’ geometrical term, be aware that this 
is a familiar item on the breakfast table, be it in the form of a 
doughnut or a bagel! Yes, you could draw all the wallpaper patterns 
you will see in this book on a bagel!

Representations of wallpaper patterns by polyhedra may at least 
be considered. Think of the soccer ball, for example, which looks 
like a beehive consisting of pentagonal and hexagonal ‘tiles’; known 
to chemists as “carbon molecule C60”, it does not correspond to a 
planar (wallpaper) pattern: it is in fact impossible  to tile the plane 
with such a combination of regular pentagons and hexagons! Another 
trick, familiar to map makers and crystallographers, is the 
stereographic  projection , that is the representation of the entire 
plane on a sphere (as in figure 4.1); it clearly maps every point on 
the plane to a point on the sphere (hence every wallpaper pattern to 
a ‘spherical design’), but it leads to great distortion and problems 
around the ‘north pole’:
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Fig. 4.1 

Well, our brief excursion into the three dimensions is over. From 
here on you will have to keep in mind that, unless otherwise stated, 
the finite-looking designs in this book are in fact infinite, extending 
in every direction around the page  you are looking at; it may not be 
easy at first, but sooner or later you will get used to the concept!

4.0.3 How about rotation? Let’s have a look at the beehive and 
bathroom wall patterns we mentioned in 4.0.1:

Fig. 4.2

Clearly, a sixfold (600) clockwise rotation about 6  maps the 
entire (infinite!) beehive to itself: B is mapped to itself, E to C, C to 
D, D to A, etc; every hexagonal tile is clearly mapped to another one, 
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and, overall, the entire beehive remains invariant. Likewise, a 
threefold (1200) clockwise rotation about 3  leaves the beehive 
invariant, mapping B to C, C to D, D to B, A to E, etc; and, a twofold 
(1800) rotation about 2 does just the same, mapping D to B (again!), 
A to C, etc. We describe these facts by saying that the beehive has 
600 rotation (about 6  and all other hexagon centers), 1200 rotation 
(about 3 and all other hexagon vertices), and 1800 rotation (about 2 
and all other midpoints of hexagon edges). Notice that the existence 
of 600 rotation in a wallpaper pattern always implies the existence 
of 1200 and 1800 rotations about the same center: for example, 
applying twice  the 600 rotation centered at 6  yields a 1200 rotation 
(mapping E to D, C to A, etc), while a triple application leads to a 
1800 rotation (mapping E to A, etc). Further, the existence of 600 
centers implies the existence of ‘genuine’ 1200 and 1800 centers 
(7.5.4). 

Visiting the bathroom wall now, we see that it has both 900 and 
1800 rotation. Indeed a clockwise fourfold (900) rotation about 4  
leaves it invariant (mapping A to B, B to C, C to D, D to A, E to F, 
etc), and so does a twofold (1800) rotation about 2 (mapping B to C, 
D to E, etc). In fact the middle of every square is also the center of 
a 900 rotation (as well as a 1800 rotation via a double  application 
of the 900 rotation), while the midpoint of every square edge is the 
center of a 1800 rotation (but not  a 900 rotation!). 

So, we have just seen that wallpaper patterns can have twofold, 
threefold, fourfold, and sixfold rotations (by 1800, 1200, 900, and 
600, respectively). More precisely, we have seen examples of 
wallpaper patterns where the smallest  rotation  is 600 (beehive) 
or 900 (bathroom wall). As we will see in the rest of this chapter, 
there also exist wallpaper patterns with smallest rotation 1200 
(somewhat exotic) and 1800 (very common), as well as wallpaper 
patterns with no rotation at all. A very important question is: are 
there any other ‘smallest’ rotations besides those by 600, 900, 1200, 
and 1800? Are there any wallpaper patterns with fivefold rotation 
(720), for example? The answer to these questions is negative, and 
we devote the rest of this section to establish this important fact, 
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known in the literature as the Crystallographic  Restriction and 
central in proving that there exist precisely  seventeen  types of 
wallpaper  patterns. (We describe these types in the rest of 
chapter 4, but we defer their classification to chapter 8.) 

4.0.4 Rotation centers translated. In section 1.4 we defined 
glide reflection as the combination of a reflection and a translation 
parallel to each other, and we observed that the two operations 
commute with each other only when the reflection axis and the 
gliding vector are parallel to each other (1.4.2).  

Asking the same question about rotation and translation leads 
always  to a negative answer. We may confirm this in the context of 
the bathroom wall of figure 4.2 placed now in a coordinate axis 
(figure 4.3): consider for example R , the clockwise 900 rotation 
about (0, 0), and T, the translation by the vector <1, 1>; it can be 
verified, using techniques from either chapter 3 (see right below) or 
chapter 1, that R∗∗∗∗T  (T  followed by R ) is the clockwise 900 rotation 
about (−1, 0), while T∗∗∗∗R  (R  followed by T) is the clockwise 900 
rotation about (1, 0). 

                    
Fig. 4.3

Concerning the latter, notice that R  maps (−1, −1) to (−1, 1), and 
subsequently T maps (−1, 1) to (0, 2); likewise, (1, 1) is mapped by R  
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to (1, −1), which is in turn mapped by T to (2, 0). So T∗∗∗∗R , which 
must  be a rotation (why?), maps (−1, −1) to (0, 2) and (1, 1) to      
(2, 0). With the perpendicular bisectors of the segments joining   
(−1, −1), (0, 2) and (1, 1), (2, 0) intersecting each other at (1, 0) 
(figure 4.3), it is easy from here on to verify that T∗∗∗∗R  is indeed the 
clockwise 900 rotation about (1, 0).    

At this point, you may ask: how come T∗∗∗∗R   is not RT, the 
‘translated’ clockwise 900 rotation  about (1, 1)? Shouldn’t the 
translation T  ‘translate’ the entire rotation R  the same way it 
translates  its center  (0, 0) to (1, 1)? Well, we already proved in 
the preceding paragraph, and may further confirm here, that this is 
not the case: for example, RT maps (0, 2) to (2, 2) instead of its 
image under T∗∗∗∗R , which is (3, 1). But observe  at this point that the 
one point that RT maps to (3, 1) is no other than the point (1, 3), 
which happens to be the image of (0, 2) under translation by T! 
Likewise, if we first translate  (0, 1) by  T  to (1, 2) and then  
rotate (1, 2) by RT we end up mapping (0, 1) to (2, 1), exactly as 
T∗∗∗∗R does! And so on.

Putting everything together, it seems that R T∗∗∗∗T , that is T  
followed by RT, has the same effect as R  followed by T , that is T∗∗∗∗R : 
in the language of Abstract Algebra, RT∗∗∗∗T = T∗∗∗∗R . ‘Multiplying’ both 
sides by T−−−−1 (T ’s inverse , that is a translation by a vector 
opposite  -- see 1.1.2 -- to that of T  that cancels  T ’s effect), we 
obtain RT = T∗∗∗∗R∗∗∗∗T−−−−1; in even more algebraic terms, we have shown 
that RT is the conjugate of R  by T . Switching to Geometry and 
moving away from the bathroom wall, we offer a ‘proof without 
words’ (figure 4.4) of the following fact: for every translation T  and 
every rotation R = (K, φφφφ ), the ‘product’ T∗∗∗∗R∗∗∗∗T−−−−1 is indeed the 
rotation R T = (T(K), φφφφ ), that is, R  ‘translated’ by  T . (You may of 
course provide a rigorous geometrical proof, especially in case you 
are aware of the fact that any two isosceles triangles of equal 
bases and equal top angles must be congruent!)    
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Fig. 4.4

Since compositions of isometries leaving a wallpaper pattern 
invariant leave it invariant, too, we conclude that we may indeed 
assume the following: in every wallpaper pattern, the image of the 
center of a rotation R  by a translation T  is the center for a new 
rotation (T∗∗∗∗R∗∗∗∗T−−−−1 rather than T∗∗∗∗R  or R∗∗∗∗T) by the same  angle. This 
follows from the more general fact depicted in figure 4.4, was 
empirically confirmed in the case of the bathroom wall, and may be 
further verified in the cases of the beehive and the other wallpaper 
patterns you are going to see in this chapter.  

It follows that the existence of a single rotation center in a 
wallpaper pattern implies the existence of infinitely many rotation 
centers all over the plane! Indeed, there exist two distinct, non-
opposite translations in our pattern, say <p, q> and <r, s>, hence 
translating the rotation center by the four distinct translations    
<p, q>, <r, s>, <−p, −q>, and <−r, −s> -- notice that if a translation 
leaves a wallpaper pattern invariant then so does its opposite -- we 
produce four new rotation centers around the old one. Repeating this 
process to all new centers again and again we end up with an 
infinite  lattice  of rotation centers, shown in figure 4.5 below for 
the cases of the beehive and the bathroom wall. Observe that there 
exist in fact three  lattices in  one  in the case of the beehive, 
consisting of 600, 1200, and 1800 centers, and two  lattices in one  
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in the case of the bathroom wall, consisting of 900 centers and 1800 
centers. (There is more than meets the eye here: there really are two 
kinds of 900 centers in the bathroom wall -- only one of which was 
shown in figure 4.2 -- the translations of which may transport us 
from one kind to another only in a rather ‘indirect’ manner (7.6.3); 
and similar remarks apply to the beehive’s 1200 centers and to the 
1800 centers of both the beehive and the bathroom wall.)  

Fig. 4.5

Notice the lack of rotation centers other than the ones shown in 
figure 4.5: in a wallpaper pattern rotation centers cannot be 
arbitrarily close to each other, in the same way that translation 
vectors cannot  be  arbitrarily  smal l  -- this is what Arthur L. 
Loeb calls Postulate of Closest Approach  in his Concepts  and  
Images (Birkhauser, 1992). For a challenge to this principle and 
further discussion you may like, if adventurous enough, to have a 
look at 4.0.7. It seems in fact that there is an interplay between 
translation vectors and distances between rotation centers, to the 
extend that you might venture to guess that every vector starting at 
a rotation center and ending at a center for a rotation by the same  
angle  is in fact a translation vector for the entire pattern: this is 
true for 600 centers but not for 900, 1200, or 1800 centers, as you 
may verify for yourself (and has been hinted on at the end of the 
preceding paragraph); still, there are interesting facts relating the 
distances  between rotation centers to the lengths  of translation 
vectors that you should perhaps explore on your own!    
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4.0.5 Rotation centers rotated. Let’s have another look at the 
beehive pattern and its various rotation centers, as featured in 
figure 4.2 (entire pattern) or figure 4.5 (centers only). It seems 
clear that the rotation about a randomly chosen center (be it for 600, 
1200, or 1800) of every  other center (be it for 600, 1200, or 1800) 
moves it to another center (for a rotation by the same  angle); for 
example, rotating a 1200 center about a 600 center (by 600, of 
course) we get another 1200 center, rotating a 600 center about a 
1800 center (by 1800) we get another 600 center, etc. Similar 
observations may be made for the bathroom wall and, in fact, every 
wallpaper pattern that has one, therefore infinitely many, rotation 
centers: wallpaper patterns are indeed wonderful!

Moving away from the harmonious world of wallpaper patterns, 
we must ask: is it true in general that rotations always rotate 
rotation centers to rotation centers? To be more specific, consider 
two rotations, R 1 = (K1, φφφφ 1) and R 2 = (K2, φφφφ 2): is it true that 
R 1(K2), that is K 2 rotated about K 1 by  φφφφ1, is a center for a rotation 
by φφφφ2? The answer is “yes”, and the rotation in question is no other 
than R1∗∗∗∗R2∗∗∗∗R1

−−−−1, the conjugate of R2 by R1: the same algebraic 
operation employed in 4.0.4 to express the translation of a rotation 
works here for the rotation of  a  rotation! While a computational 
proof using the rotation formulas of section 1.3 certainly works, the 
easiest way to demonstrate this wonderful fact is a geometrical  
‘proof without words’ (figure 4.6 below) in the spirit of figure 4.4; 
we take both φφφφ1 and φφφφ2 to be clockwise, but you may certainly verify 
that this is an unnecessary restriction. 

We should note in passing that 4.0.4 and 4.0.5 (and figures 4.4 & 
4.6 in particular) are special cases of a broader phenomenon that we 
will encounter again and again in chapter 6 (starting at 6.4.4) and 
section 8.1 (and the rest of chapter 8): the ‘image’ of an  isometry  
by another isometry is again an isometry; we should probably 
remember this fact under a name like Mapping  Principle, but we 
will later call it Conjugacy  Principle  on account of the algebraic 
realities discussed above. 
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Fig. 4.6

As in 4.0.4, we must stress that the rotations R1∗∗∗∗R2, R2∗∗∗∗R1, and 
R1∗∗∗∗R2∗∗∗∗R1

−−−−1 are all distinct: we will thoroughly examine such 
compositions of rotations and other isometries in chapter 7.

4.0.6 Only four angles are possible! At long last, we are ready to 
establish  the Crystallographic Restriction. Assume that a certain 
wallpaper pattern remains invariant under rotation by an angle φ, and 
pick two centers at the shortest  possible  distance  (4.0.4) from 
each other, K0 and K1. Let us also assume that 00 < φφφφ  ≤≤≤≤  1800: in case        
φ > 1800 we can work with the angle 3600 − φ, which also leaves the 
wallpaper pattern invariant. We may now (4.0.5) rotate K1 by a 
counterclockwise φ about K0 in order to get a new center K2, and 
then rotate K2 (about K0 and by counterclockwise φ always) to obtain 
yet another center K3, and so on. For how long can we continue this 
way, producing new centers on the ‘rotation center  circle’ (figure 
4.7) of center K0 and radius |K0K1|? In theory (and absence of the 
assumption that |K0K1| is the minimal possible distance between any 
two distinct rotation centers) for ever; in practice not for too long, 
as no  center is allowed to fall within an ‘arc  distance’  of less  

125



than  600 from K1, unless it returns to K1: otherwise we would have 
two rotation centers at a distance  smaller than  |K0K 1| from each 
other! (Think of an isosceles triangle K0K1K where K is the multi-
rotated K1 and |K0K1| = |K0K|; if the angle ∠K1K0K is smaller than 600 
then the other two angles are bigger than 600, therefore |KK1| would 
be smaller than |K0K1|.) 

 

                         
   
Fig. 4.7

Let now N be the unique integer such that N××××φφφφ  ≤≤≤≤  3600 < (N+1)××××φφφφ : 
that is, N records how many rotations are required for K1 to either 
return to K1 (N×φ = 3600) or bypass K1 (N×φ < 3600 < (N+1)×φ). 

In the latter case (N××××φφφφ  < 3600) we must also assume, in order to 
avoid the ‘forbidden  arc’, the inequalities 3600 −−−−  N××××φφφφ  ≥≥≥≥  600 and 
(N+1)××××φφφφ  −−−−  3600 ≥≥≥≥  600; these inequalities lead to 3000/N ≥  φ  and     
φ  ≥  4200/(N+1), respectively. It follows that 300/N ≥  420/(N+1), so 
300×(N+1) ≥ 420×N and 300 ≥ 120×N; we end up with N ≤≤≤≤  2.5, hence 
either N = 1 or N = 2. The case N = 1 is ruled out by φ ≤ 1800, while in 
the case N = 2 the inequalities 3000/N ≥ φ and φ ≥ 4200/(N+1) yield 
1400 ≤≤≤≤  φφφφ  ≤≤≤≤  1500. But if K2 lies on the arc [1400, 1500] then K3 lies 
on the arc [2800, 3000], K4 on the arc [600, 900], K5 on [2000, 2400], 
and K6 on [3400, 3900] = [−−−−200, 300], which is part of the ‘forbidden 
arc’: K1’s trip ends up in a disaster, unless  perhaps φφφφ  = 1440 (the 
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solution of the ‘return equation’ 5×φ = 2×360), in which case K1 
quietly returns to itself with K6 ≡  K1 (figure 4.8). But in that case a 
(counterclockwise) rotation by 1440 applied twice certainly yields a 
(counterclockwise) rotation by 2880, hence a (clockwise) rotation by 
3600 −  2880 = 720, a rotation that will be ruled out further below.  

                      

Fig. 4.8

In the former case (N××××φφφφ  =  3600) we substitute φ = 3600/N into 
the inequality (N+1)×φ − 3600 ≥ 600 to get (N+1)×360/N − 360 ≥ 60 
and, eventually, N ≤≤≤≤  6; more intuitively, we must have φφφφ  ≥≥≥≥  600 or 
else K2 would fall into that ‘forbidden arc’ discussed above. After 
discarding the case N = 1 (φ = 3600 -- no rotation), we are left with 
the cases N = 2 (φ = 1800), N = 3 (φ = 1200), N = 4 (φ = 900), N = 5      
(φ = 720), and N = 6 (φ = 600); ‘global rotations’ by all these angles 
are possible and familiar to you by now, except  for φφφφ  = 720 (the 
angle that tormented many artists only a few centuries ago!). To 
render a rotation by 720 impossible for a wallpaper pattern, we 
simply rotate K 0 about  K 1 by clockwise  720 to a rotation center 
K0′  (figure 4.9): it is obvious now that |K2K0′′′′ | is  smal ler  than  
|K0K1|, thus violating the assumption on the minimality of |K0K1|! (To 
be precise, trigonometry yields |K2K0′ | = (sin180/sin540) × |K0K1| ≈
.38 × |K0K1|.)
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Fig. 4.9

We conclude that a wallpaper pattern either has no rotation at 
all or that the smallest rotation that leaves it invariant can only be 
by one of the four angles that we couldn’t rule out: 600, 900, 1200, 
1800. Based on this fact, we naturally split wallpaper patterns into 
five  families : those that have no rotation at all (or, equivalently, 
smallest rotation 3600), and those of smallest rotation 600, 900, 
1200, and 1800, respectively; this greatly facilitates their 
classification into seventeen  distinct  types  (chapter 8), as well 
as their descriptions in this chapter (sections 4.1 through 4.17).

4.0.7* An ‘exotic’ pattern and a definition. Most available proofs 
of the crystallographic restriction seem to follow, in one way or 
another, W. Barlow ’s proof, published in Philosophical Magazine in 
1901; such is the case, for example, with both H. S. M. Coxeter’s 
Introduction to Geometry (Wiley, 1961) and David W. Farmer’s 
Groups and Symmetry: A Guide to Discovering Mathematics 
(American Mathematical Society, 1996). These proofs assume both 
Loeb’s Postulate of Closest Approach (4.0.4), which guarantees a 
minimum distance between rotation centers, also assumed in our 
proof, and the fact that a wallpaper pattern’s smallest rotation 
angle is of the form 3600/n (where n is an integer), which we did 
not assume. Our example below presents a clear challenge to both 
these assumptions.

Let S  be the set of all rational  points  in the plane, that is, the 
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set of all points both coordinates of which are rational numbers; 
notice that S is dense  in the plane, in the sense that every circular 
disk, no matter how small, contains infinitely many  elements of S. 
What if we consider S to be a wallpaper pattern? It certainly has 
translat ions  in  infinitely  m a n y  direct ions : for every pair of 
rational numbers, a and b, T(x, y) = (a+x, b+y) defines a translation 
<a, b> that leaves S invariant! Observe also that S has 1800 rotation 
about every point (c, d) in S, defined by R(x, y) = (2c−x, 2d−y); this 
already shows that rotation centers of S can indeed be arbitrarily 
close to each other. Moreover, S has rotation about each point of 
S  by  infinitely many  angles: every angle both the sine and the 
cosine of which are rational would map a rational point to a rational 
point, as the rotation formulas of 1.3.7 would demonstrate; and for 
every pair of integers m, n, such an angle is actually defined via sinφ 

= 2mn
m2+n2

 and cosφ = m2−n2

m2+n2
, thanks to |2mn| ≤ m2+n2, |m2−n2| ≤ m2+n2, 

and the Pythagorean  identity (2mn) 2 + (m2−n2)2 = (m2+n2)2!

So, S is indeed a pattern invariant under rotation by angles other 
than 3600/n that has rotation centers at arbitrarily small distances 
from each other. In case you protest the fact that S consists of 
single points, we can easily modify it to look more ‘pattern-like’. 
For example, we can augment every rational point (a, b) to a square 
‘frame’ defined by the points (a−r, b−r), (a−r, b+r), (a+r, b−r), and 
(a+r, b+r), where r is an arbitrary rational number. As each such 
‘frame’ contains many points with one or two irrational coordinates, 
you may protest that the union of all the ‘frames’ (over all (a, b) and 
all r) is no other than the entire plane: that turns out not to be the 
case, because each ‘frame’ is ‘thin’ (in the sense that it contains no 
full disks) and a theorem in Topology  -- many thanks to Robert 
Israel , who helped this former topologist recall his first love by 
way of a sci.math discussion! -- called Baire Category  Theorem  
states that the plane cannot be a countably  infinite union of such 
‘thin’ sets. This much you could perhaps see even without this 
heavy-duty theorem -- the union of all ‘frames’ contains no points 
both  coordinates of which are irrational! -- but you would need the 
theorem in case our ‘extended pattern’ contains not only the ‘frames’ 
described above but their images by all rotations of S described in 
the preceding paragraph as well: yes, this extended pattern S#  that 
inherits all the translations and rotations of S and seems to be 
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everywhere is still a  countable  union  of  ‘thin’ sets , hence not 
the entire plane! (There is of course a bit more to this Baire 
Category Theorem, as you may find out by checking any 
undergraduate Topology book; one suggestion is George F. Simmons’ 
Introduction to Topology and Modern Analysis (McGraw-Hill, 
1963).)

‘In practical terms’ now, exotic wallpaper patterns such as S and 
S# cannot quite exist (as art works) in the real world: for every bit 
of paint (or even ink) contains a miniscule full disk -- recall 
Buckminster  Fuller ’s statements about “every line having some 
width and structure” and “every circle being a polygon with 
enormously many sides” (Loeb , p. 126) -- and, ‘reversing’ the 
Baire Category Theorem, we easily conclude that every pattern 
containing such disks and  having arbitrarily small translations must 
equal/blacken the entire plane! That is, art works -- which cannot be 
infinite to begin with -- cannot have arbitrarily small translations, 
hence, less obviously, must also satisfy that Postulate of Closest 
Approach  (no arbitrarily small distances between rotation centers): 
indeed, as we will see in 7.5.2, one can always ‘combine’ two 
rotations (by the same angle but of opposite orientations) to produce 
a translation (of vector length not exceeding twice the distance 
between the two centers).

A broader way of ruling out arbitrarily small translations is the 
following definition (certainly satisfied by art works): a wallpaper 
pattern S is a countable  union  of congruent  sets  Sn that is 
invariant under translation in two distinct, non-opposite directions, 
and has also the property that every  disk  intersects  at most  
finitely many  Sns. (In the case of the beehive and the bathroom 
wall the Sns  are (boundaries of) regular hexagons and squares, 
respectively; and in the case of the sets S and S# -- not accepted as 
wallpaper patterns under this definition due to failure of the finite 
intersection  property  -- the Sns are rational points and rational 
points surrounded by those rationally rotated concentric rational 
square frames, respectively.)
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4.1  3600 , translations only (p1)

4.1.1 Stacking p111s. What happens when we fill the plane with 
copies of a p111 border pattern placed right above/below each other 
in ‘orderly’ fashion, whatever that means? We obtain wallpaper 
patterns like the ones shown below:

Fig. 4.10

Fig. 4.11
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While looking different from each other, these two wallpaper 
patterns are ‘mathematically identical’: they both have translation 
in two, thus infinitely many  directions, and no other isometries.  
It is only their minimal  translation  vectors  that separate them: 

horizontal u
→

 and vertical v
→

 (figure 4.10) versus horizontal u
→

 and 

diagonal w
→

 (figure 4.11); notice that the two patterns share many 

translation vectors, like u
→

, u
→

+2v
→

 = 2w
→

, -u
→

+2w
→

 = 2v
→

, etc. (Vectors 
are added following the parallelogram  rule  familiar from Physics, 
see figures 4.10 & 4.11; and it is this addition’s nature that leads to 
the infinitude of translations alluded to right above.) Such wallpaper 
patterns are denoted by p1 and are the simplest of all.

Is it possible to stack copies of the “p ” border pattern in some 
kind of ‘disorderly’ fashion so that the end result is not  a 
wallpaper pattern? The answer is “yes”, and here is an example:

Fig. 4.12 
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What went wrong with the design in figure 4.12? To answer this 
question you have to know, if you have not guessed it already, what 
the rest of the design is! Recall that all wallpaper patterns are 
infinite, and you must always be able to imagine their extension 
beyond the page you are reading! This ‘extension’ is normally not that 
difficult to see (as long as you remember that you have to, of 
course), but in the case of the ‘pathological’ pattern of figure 4.12 
you may need some help: we start with a copy of the “p ” border 
pattern, then place one  ‘shifted’ copy right below it, continue with 
two  ‘straight’ copies underneath, then one  shifted copy below them, 
then three straight copies again, then one shifted copy, and so on; 
the same process applies to all rows above the top one in figure 
4.12. We leave it to you to verify that this ...32123...-like design is 
not  a wallpaper pattern: all you have to do is to verify that it has 
translations  in only  one  direction , the horizontal one.

4.1.2 Pis all the way! Below you find another design that fails to 
be a wallpaper pattern by having translation in only one direction, in 
this case the vertical one; unlike the one in figure 4.12, built by 
disorderly stacking of a border pattern, this one is built by orderly 
stacking of an one-dimensional design that is not a border pattern:

Fig. 4.13

In case you haven’t noticed, the protagonist here is no other than  
ππππ  ≈≈≈≈  3.141592654... , well known to have an infinite, non-repeating 
decimal expansion: don’t be fooled, one  reflection alone (right in the 
middle) cannot produce a translation!
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4.1.3 From the land of the Incas. Here is a very geometrical Inca 
design that, in spite of its geometrical beauty and complexity, has 
no isometries other than translations, therefore it is classified as a 
p1  wallpaper pattern (Stevens , p. 180):

               
                                                                           MIT Press, 1981

Fig. 4.14

4.2  3600  with reflection (pm)

4.2.1 Straight stacking of pm11s. You have certainly noticed 
that the design in figure 4.13 has mirror symmetry. Due to the lack 
of horizontal translation, however, there exists one and only one 
reflection axis that works. To obtain a wallpaper pattern with 
infinitely many reflection axes (all parallel to each other), we can 
resort to the process of 4.1.1, stacking copies of a pm11  border 
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pattern this time:

Fig. 4.15

You recognize of course the “p q ” border pattern of 2.2.2 and 
figure 2.6. The wallpaper pattern in figure 4.15 has automatically 
inherited all its symmetries (like vertical reflection and horizontal 
translation) in a rather obvious manner; in addition to those, 
‘straight’  stacking -- every  p  straight  above  a  p  and  every  q 
straight  above  a  q  -- has created vertical translation.

Such wallpaper patterns generated by straight stacking of a 
pm11  border pattern and having reflection in one direction (and no 
rotation of course) are denoted by pm . 

4.2.2 Two kinds of mirrors. Just like pm11  border patterns, all 
pm  wallpaper patterns have two kinds of reflection axes; this is for 
example the case with the wallpaper pattern of figure 4.15. We 
illustrate this phenomenon with a more geometrical example, 
stressing once again the fact that reflection axes are allowed to go 
through  the motifs (in this case being identical to the trapezoids’ 
own reflection axes):
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Fig. 4.16

4.2.3 Ancient Egyptian oxen. The following example of a pm  
pattern (Stevens , p. 193) is dominated by the stillness that tends 
to characterize the pm  patterns (as well as oxen in general):

             
                                                                           MIT Press, 1981
Fig. 4.17 
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Thanks to the cascading spires between the oxen, there are 
still two  kinds  of reflection axes, even though they all ‘dissect’ 
the oxen!

4.3  3600  with glide reflection (pg)

4.3.1 Shifted stackings of pm11s. What happens when we stack 
the “p q ” pattern in a ‘disorderly’ manner, as shown right below?

Fig. 4.18

Clearly, the shifting of  every  other  row  has eliminated any 
possibility for reflection, but it has generated two  kinds  of 
vertical glide  reflection , as shown in figure 4.18. Such 
rotationless wallpaper patterns with glide reflection are denoted by 
pg ; they may be obtained either as a shifted stacking of a pm11  
border pattern (figure 4.18) or by shifting every other row in a pm  
wallpaper pattern, as the following modification of figure 4.16 (and 
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determination of glide reflection axes based on chapter 3 methods) 
demonstrates:

Fig. 4.19

4.3.2 Straight stackings of p1a1s. Can we get a pg  wallpaper 
pattern by stacking copies of a border pattern with glide reflection? 

Fig. 4.20

As figure 4.20 illustrates, this is certainly possible: our pattern 
inherits the horizontal  glide reflection from the p1a1  border 
pattern of figure 2.15 (crossing right through  the stacks, like lines 
A  and C ), and it has its own, ‘stack-gluing horizontal glide 
reflection (with axes running right between  the stacks, like line B ) .
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4.3.3 Between pg  and p1. What kind of wallpaper pattern is the 
one obtained via a shifted stacking of copies of “p b ”?

Fig. 4.21

The wallpaper pattern shown in figure 4.21 is a ‘complicated’ 
one: it has glide reflection along the lines A  and C , exactly as the 
pattern in figure 4.20, but not along lines B  or D ! Indeed line B  (or 
D ) fails to be a glide reflection axis for the same reason that the 
border pattern in figure 2.16 does not have glide reflection: it would 
require two  distinct  vectors  -- short vector sending C-letters to 
A-letters, long vector sending A-letters to C-letters -- in order to 
work as a glide reflection axis! So, and unless one checks only axes 
like B  or D , our pattern is classified as a pg  rather than a p1 . 
Interestingly, this pg  pattern may be viewed as a straight stacking 
of a p111  border pattern (consisting of the strip between two     B-
like axes, for example)!

How does one ‘see’ glide reflection in a wallpaper pattern where 
not all motifs are homostrophic , distinguishing between pg  and 
p1? One trick is suggested by our observation in 2.4.2 that remains 
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valid for wallpaper patterns, too: the glide reflection vector is 
always equal to half of a translation vector -- but not vice versa, 
as the pg  has glide reflection in only  one  direction and translation 
in infinitely many  directions... So, first you use your intuition to 
pick the ‘right’ direction , next you translate a motif by half the 
minimal translation vector in that direction, and finally you look for 
a reflection axis that maps it to another motif: for example, 
trapezoid ABCD in figure 4.19 is first vertically translated right 
across the reflection axis from trapezoid A′B ′C ′D ′. 

4.3.4 Peruvian birds. We conclude this section with an example 
of a Peruvian pg  pattern from Stevens (p. 188): 

              
 MIT Press, 1981 
Fig. 4.22

Clearly, there are two flocks of birds ‘flying’ in opposite 
directions, and that feeling of ‘opposite’ movements perpendicular 
to the direction of the glide reflection is quite common in pg  
patterns; you can see that in the wallpaper pattern of figure 4.20, 
for example (especially if you turn the page sideways), but not quite 
in those of figures 4.18 or 4.19 -- can you tell why?   
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4.4  3600  with reflection and glide reflection (cm)

4.4.1  A ‘perfectly shifted’ stacking of pm11s. What if we shift 
every other row in the pattern of figure 4.18 a bit further, pushing 
every  p  straight above  a  q  and  vice versa? Here is the result:

Fig. 4.23 

The wallpaper pattern in figure 4.23 looks like ‘both’ a pm  and a 
pg , as reflection axes alternate with glide reflection axes: it is in 
fact a ‘new’ type, known as cm .

4.4.2 More perfectly shifted stackings. What has made the 
patterns of figures 4.15, 4.18, and 4.23 different? Well, a straight 
stacking of the pm11  “p q ” border pattern simply preserved the 
border pattern’s reflection and created a pm  wallpaper pattern in 
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figure 4.15; a ‘random’  shifting of every other row ‘replaced’ the 
reflection of the pm  pattern by glide reflection and created a pg  
pattern in figure 4.18; and, finally, a ‘perfect’  shifting of every 
other row ‘preserved’ the glide reflection of the pg  pattern and  
‘revived’ the lost reflection, creating a cm  pattern. But, what do we 
mean by “perfect shifting”? Well, the following example may help 
you answer this question:

Fig. 4.24

We just obtained another cm  wallpaper pattern, this one with 
horizontal reflection and glide reflection, stacking copies of the    
“p b ” p1a1  border pattern: just as in figure 4.23, placing every p  
straight below a b  and vice versa allows for some reflection that we 
couldn’t possibly have in the patterns of figures 4.20 & 4.21 
(consisting of straight stackings and randomly shifted stackings of 
that “p b ” border pattern, respectively). A closer look reveals that 
it was crucial to shift every other row by a vector equal to half  the  
minimal  translation  vector  of the original border pattern! That’s 
what we mean by “perfect shifting”, as opposed to “random 
shifting” (by a vector of length either strictly smaller or strictly 
bigger than half the minimal translation vector’s length). By the 
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way, the pattern in figure 4.11 is the result of a perfect shifting! 

We leave it to you to check that perfectly shifted stackings of  
p1m1  border patterns are cm  wallpaper patterns, while their 
randomly shifted stackings are pm  wallpaper patterns: you may of 
course use the D -pattern of figure 2.8 to verify this. 

4.4.3 In-between glide reflection. Consider the following 
trapezoid-based wallpaper pattern:

Fig. 4.25

Many students will typically see either all the reflections or 
half of them and quickly classify it as a pm  pattern. Having just 
gone through 4.4.2, you are of course likely to recognize it as either 
a perfectly shifted version of the pm  pattern of figure 4.16 or a 
perfectly shifted stacking of a pm11  border pattern: either way, it 
is clearly a cm  pattern!

Are there any ways of seeing the glide reflection ‘directly’? 
One could employ the machinery of chapter 3, as we did in 4.3.1, or 
resort to the idea discussed in 4.3.3. An easier approach takes 
advantage of the very structure of the cm  type and the fact that its 
glide reflection axes always run half way  between two nearest 
reflection axes: once you have determined the reflection axes in 
what seems to be a pm  pattern, draw a line half way between them 
and check whether or not there is a vector that makes it work: if yes 

143



your pattern is a cm , if not your pattern ‘remains’ a pm . In short, 
every time you see reflections in a wallpaper pattern check  
whether or not there exists in-between  glide  reflection .

4.4.4 Phoenician funerary ‘crowns’. The following design from a 
Phoenician tomb in Syria (Stevens, p. 202) shows that the cm  type 
has been with us for a very long time; but this is the case with 
most, if not all, types of wallpaper patterns...

                     
 MIT Press, 1981
Fig. 4.26

The Phoenicians were a naval superpower more than twenty five 
centuries ago, but the cm  remains popular with our times’ 
superpower: next time you stand close to the Star-Spangled Banner, 
have a careful  look at its stars!

4.4.5 Diagonal axes. Reflection and glide reflection axes do not 
always have to be ‘vertical’ or ‘horizontal’; they may certainly run in 
every possible direction, and the concept of direction is a relative 
one, as it changes every time you rotate the page a bit! Here we 
present an interesting example of a cm  pattern with easy-to-see 
‘diagonal’ reflection and more subtle in-between glide reflection: 
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Fig. 4.27

Under glide reflection G1, for example, A  is mapped to B , while 
glide reflection G2 maps A  to D  and B  to C , etc.

4.4.6 Only one kind of axes! While our examples in sections 4.2 
and 4.3 show that there are always two kinds of reflection and glide 
reflection axes in pm  and pg  wallpaper patterns, respectively (both 
in the same direction, of course), all the examples in this section 
clearly indicate that every cm  wallpaper pattern has only one  kind 
of reflection axes and only one  kind of glide reflection axes as well. 
We elaborate on this observation in 6.4.4 and 8.1.5, as well as in 
4.11.2. For the time being we would like to point out that, in the 
case of the cm , it seems that whatever we gained  in terms of 
symmetry we lost in terms of diversity! In other words, whenever 
all vertical reflection axes look the same to you, look out for that 
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in-between glide reflection: your pattern is probably not a pm  but a 
cm ! Likewise, if all the glide reflection axes in a seemingly pg  
pattern look the same to you, then either you have missed the 
‘other  half’ of the glide reflection or you have achieved  the  
impossible : you saw the glide reflection without seeing the 
reflection ... and your pattern is probably a cm  rather than a pg! 

4.5  1800 , translations only (p2)

4.5.1 Stacking p112s. Replacing the “p ” border pattern of 4.1.1 
by the “p d ” border pattern, we obtain the following wallpaper 
patterns, direct analogues of the p1  patterns in figures 4.10 & 4.11:

Fig. 4.28
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Fig. 4.29

Such patterns, having nothing but half turn  -- in addition to 
translation, always -- are known as p2 . As you can see, there exist 
four  kinds  of rotation centers, nicely arranged at the vertices  of  
rectangles (and numbered 1, 2, 3, 4). These rectangles are usually 
mere parallelograms  -- as in figure 8.18, think for example of a 
p2  tiling of the plane by copies of a single parallelogram -- but 
they may on occasion be rhombuses or even squares:

Fig. 4.30
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4.5.2 When is the twofold rotation there? How could you tell 
that the wallpaper pattern in figure 4.28 has 1800 rotation without 
some familiarity with the p112  border pattern that created it? 
Well, the easiest way is to turn the page upside down and decide 
whether or not the pattern still looks the same ... keeping always in 
mind the fact that all patterns are infinite . It is always better, on 
the other hand, to be able to determine some 1800 rotation centers: 
this you can do either based on your intuition and experience or 
following methods from chapter 3, as shown in figure 4.30; and then 
you can always confirm your findings using tracing paper!

As we will see in the next four sections, it is easier to find the 
twofold rotation centers when the given pattern happens to have 
some (glide) reflection: then the location of the rotation centers is, 
more or less, predictable. Within the p2, once you have found one 
center, you can use the pattern’s translations to locate all the 
others: indeed a look at figures 4.28-4.31 will convince you that the 
lengths of the sides of those ‘center parallelograms’ are equal to 
half  the  length  of the pattern’s minimal  translat ion  vectors  
(to which the sides themselves are parallel); more on this in 7.6.4!

4.5.3 Italian curves. How about finding all four kinds of 1800 
rotation centers in this modern Italian ceramic (Stevens , p. 213)?

                      
                                                                           MIT Press, 1981
Fig. 4.31
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4.6  1800 , reflection in two directions (pmm)

4.6.1 Stacking pmm2s. Rather predictably in view of what we 
saw in earlier sections, straight stackings of pmm2  border patterns 
have both 1800 rotation and reflection in two  directions:

Fig. 4.32 

There is nothing too tricky about this new type of wallpaper 
pattern, known as pmm : it has reflection axes (of two kinds) in two  
perpendicular  directions and four kinds of 1800 rotation centers, 
all of them located at the intersections  of  reflection  axes . This 
last observation gives you a chance to practice your geometry a bit 
and try to explain why, as first noticed in 2.7.1, the intersection of 
two perpendicular reflection axes yields a 1800 rotation center: this 
is a special case of a more general fact discussed in 7.2.2!

4.6.2 Native American ‘gates’. Here is a Nez Perce′ pmm  pattern 
from Stevens  (p. 244), not quite dominated by the pmm ’s stillness:
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 MIT Press, 1981

Fig. 4.33

4.6.3 More examples. While the ‘building blocks’ in the wallpaper 
patterns of figures 4.32 & 4.33 had a lot of symmetry themselves 
(D 2 sets), it is certainly possible to build pmm  patterns employing 
less symmetrical motifs (still creating D 2 fundamental regions 
though), as figures 4.34 & 4.35 demonstrate:

Fig. 4.34
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Fig. 4.35

4.7  1800 , reflection in one direction 
             with perpendicular glide reflection (pmg)

4.7.1 Shifted stackings of pmm2s. Let’s look at a randomly 
shifted stacking of the “H ” border pattern employed in figure 4.32:

Fig. 4.36
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4.7.2 Straight stackings of pma2s. Let’s also look at a straight 
stacking of a pma2  border pattern similar to the one in figure 2.24: 

 

Fig. 4.37

4.7.3 What is going on? As we have indicated above, both 
wallpaper patterns created have 1800 rotation, reflection in one 
direction (horizontal in figure 4.36, vertical in figure 4.37), and 
glide reflection in one direction as well (vertical in figure 4.36, 
horizontal in figure 4.37). In both cases, the directions of reflection 
and glide reflection are perpendicular  to each other, with all the  
rotation  centers  on  glide  reflection  axes , half  way  between  
two  reflection  axes : this type of 1800 wallpaper pattern is known 
as pmg. Here are two more examples employing, once again, 
trapezoids:
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Fig. 4.38

Fig. 4.39

While all four wallpaper patterns in figures 4.36-4.39 belong to 
the same type (pmg), they do not necessarily ‘look’ the same; for 
example, the ones in figures 4.36 & 4.39 (randomly shifted 
stackings of a pmm2  border pattern) create a feeling of a wave-like 
motion, while the ones in figures 4.37 & 4.38 (straight stackings of 
a pma2  border pattern) create an impression of two flows in 
opposite directions. More significantly, there are glide  reflection  
axes  of  two  kinds in all four examples. It is tempting to say the 
same about reflection axes (especially in figures 4.37 & 4.38), but 
not quite so if we are ‘cautious’ enough to turn the patterns upside 
down: we elaborate further on this in 4.11.2. (Likewise concerning 
the numbering  of half turn centers in figures 4.36-4.39!) 
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How does one recognize a pmg  pattern? Basically, look for a 
1800 pattern with reflection  in  only  one  direction  -- as we are 
going to see the pmg  is the only 1800 wallpaper pattern with 
reflection in only one direction -- and then use all the other 
observations made in this section for confirmation.

4.7.4 Chinese pentagons. The following pmg example of a 
Chinese window lattice (Stevens, p. 221) comes close to a famous 
impossibility  (tiling the plane with regular  pentagons):

                       
 MIT Press, 1981
Fig. 4.40

4.8  1800 , glide reflection in two directions (pgg)

4.8.1 Shifted stackings of pma2s. In the same way that going 
from straight to shifted stackings of p m m 2 s substituted reflection 
by glide reflection in one  of the two directions (and ‘reduced’ the 
symmetry type from pmm  to pmg ), going from straight to shifted 
stackings of pma2s replaces the reflection by glide reflection and 
‘reduces’ the symmetry type from pmg  to pgg:
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Fig. 4.41

A brief review of figures 4.18 & 4.21 would make it easier for 
you to realize that the wallpaper pattern in figure 4.41 has the 
indicated glide reflections, in two  perpendicular  directions . It 
should also be easy for you by now to locate the 1800 rotation 
centers (of two  kinds, actually) and confirm that each of them lies 
right  between  four  glide  reflection  axes . There is no reflection. 
Wallpaper patterns of this type are known as pgg.

4.8.2 Between p2 and pgg. Distinguishing between p2 and 
pgg  -- especially in the presence of ‘rectangularly  ruled’  half 
turn centers characteristic of glide reflection (8.2.2) -- is not that 
easy. Reversing our advice in 4.8.1, we suggest that every time you 
determine all the 1800 rotation centers in a wallpaper pattern you 
should subsequently check the lines passing right between rows 
or  columns  of  rotation  centers : those could  be glide reflection 
axes! In general, the presence of heterostrophic motifs in a 
pattern (such as p  and q  in figures 4.18 & 4.41) is a major indication 
in favor of glide reflection (4.3.3). Things can get a bit trickier in 
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case the pattern’s ‘building blocks’ are D1 (rather than C1) sets:

Fig. 4.42

4.8.3 Two kinds of axes? Observe that the pgg  patterns in 
figures 4.41 & 4.42 appear  to have two kinds of vertical glide 
reflection axes: we must stress at this point that remarks similar 
to the ones made in 4.7.3 do apply! Anyway, returning now to C1 
motifs, or cutting the trapezoids of the pattern in figure 4.42 in half 
if you wish, here is a pgg  pattern that appears  to have two kinds of 
glide reflection axes in both  directions:

    

Fig. 4.43
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4.8.4 Congolese parallelograms. The following pgg example 
from Stevens  (p. 236), full of heterostrophic  paral lelograms , 
should allow you to practice your skills in determining glide 
reflection axes:

              
 MIT Press, 1981
Fig. 4.44

4.9  1800 , reflection in two directions 
             with in-between glide reflections (cmm)

4.9.1 Perfectly shifted stackings of pma2s and pmm2s. In the 
same way perfectly shifted stackings of pm11 , p1a1 , and p1m1  
border patterns created a ‘new’ type of wallpaper pattern (cm ) in 
section 4.4, perfectly shifted stackings of pma2  and pmm2  border 
patterns create a two-directional analogue of cm  as shown below:
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Fig. 4.45

Fig. 4.46
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There is nothing too surprising about this new type of wallpaper 
pattern to those familiar with the cm  and pmm  patterns: there is 
reflection and in-between glide reflection in two  perpendicular  
directions ; within each direction, both reflection and glide 
reflection axes are of one  kind  only ; 1800 rotation centers are 
found at the intersections of reflection axes and -- the only new 
element -- at the intersections  of  glide  reflection  axes  as 
well. This new type, very rich in terms of symmetry, is known as 
cmm , and its last property is perhaps the easiest way to distinguish 
it from the p m m  type: in the p m m  pattern all rotation centers lie 
on reflection axes, in the cmm  pattern half of them do not. Since 
locating the rotation centers can at times be trickier than finding 
the glide reflection axes, another obvious way of distinguishing 
between pmm  and cmm  is the latter’s in-between glide reflection. 
Either way, once all reflection axes have been determined, you know 
where to look for both glide reflection axes and rotation centers! 

4.9.2 Shifting back and forth to other types. Quite clearly, the 
cmm  pattern of figure 4.45 is a close relative, or a ‘shifted 
version’, if you wish, of the pmg  pattern in figure 4.37 and the pgg  
pattern in figure 4.41. Likewise, the cmm  pattern of figure 4.46 is 
related to the pmm  pattern of figure 4.32 and the pmg  pattern of 
figure 4.36. Here are two more, trapezoid-based, cmm  patterns the 
‘shifting relations’ of which to previously presented examples you 
may like to investigate:

Fig. 4.47
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Fig. 4.48

4.9.3 Turkish arrows. Here comes our long-awaited real-world 
example of a cmm  pattern, a 16th century Turkish design from 
Stevens (p. 250); make sure you can find all the rotation centers!


                                                                         © MIT Press, 1981
Fig. 4.49
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4.9.4 The world’s most famous cmm  pattern ... is no other than 
the all-too-familiar br ick  wal l :

       

Fig. 4.50

We have already discussed the bathroom wall in section 4.0: as 
you will see right below, the two walls are  mathematically 
d is t inct !

4.10  900 , four reflections, two glide reflections (p4m)

4.10.1 The bathroom wall revisited. How would one classify the 
bathroom wall in case he or she misses its 900 rotation, already 
discussed in 4.0.3? It all depends on which reflections one goes by! 
Indeed, looking at its vertical and horizontal reflections only, the 
bathroom wall would certainly look like a pmm : two kinds of axes, 
no in-between glide reflection... If, on the other hand, one focuses 
only on the diagonal reflections, then the bathroom wall looks like a 
cmm : for there does indeed exist some ‘unexpected’ (yet in-
between) glide reflection, as demonstrated in figure 4.51:    

161



Fig. 4.51

Well, our 1800 dreams are over! The bathroom wall is clearly full 
of 900 rotation centers, as pointed out in 4.0.3 and shown in figures 
4.5 & 4.51. Moreover, 1800 patterns may have reflection in at most 
two directions, and, as we will see in section 7.2, the intersection 
point of two reflection axes intersecting each other at a 450 angle 
is always a center for a 900 rotation. On the other hand, the 
bathroom wall has many 1800 rotation centers, too: again, we first 
noticed that in 4.0.3, where it was also pointed out that there are 
two  kinds of fourfold (900) centers, as opposed to only one  kind of 
1800 centers; notice also the 900-450-450 triangles formed by two 
fourfold centers (one of each kind) and one twofold center (figure 
4.51), something that will be further analysed in 6.10.1 and 7.5.1. 
Finally, observe that 900 and 1800 centers are always at the 
intersection of four  and two  reflection axes, respectively. 
Wallpaper patterns having all these remarkable properties are known 
as p4m , and they are the only ones having reflection in precisely 
four  direct ions .
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4.10.2 The role of the squares. Do we always get 900 rotation in 
wallpaper patterns formed by square motifs? The answer is a flat 
“no”, as demonstrated by a familiar floor tiling:

Fig. 4.52

The pattern in figure 4.52 is somewhere between the bathroom 
wall and the brick wall of 4.9.4, a perfectly shifted version of the 
former yet much closer to the latter mathematically: they both 
belong to the cmm  type. Other shiftings of the bathroom wall will 
easily produce pmg patterns, and you should also be able to produce 
the other 1800 (or even 3600) wallpaper patterns using square 
motifs by being a bit more imaginative!

Reversing the question asked two paragraphs above, can we say 
that p4m  patterns are always formed by square motifs? The answer 
is again “no”, and the following modification of the cmm  pattern of 
figure 4.48 provides an easy counterexample: 
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Fig. 4.53 

4.10.3 Byzantine squares. The following example from Stevens 
(p. 308) stresses the p4m ’s glide reflections: 


                                                                         © MIT Press, 1981
Fig. 4.54
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4.11  900 , two reflections, four glide reflections (p4g)

4.11.1 Similar processes, different outcomes. In 4.10.2 we 
rotated the motifs in every  other  column  of the ‘squarish’ cmm  
pattern of figure 4.48 by 900 and ended up with the p4m  pattern in 
figure 4.53. Here is what happens when we rotate the motifs in 
every  other  ‘diagonal’ of the p m m  pattern of figure 4.34:

Fig. 4.55

The derived pattern looks very much like a cmm , having vertical 
and horizontal reflection and in-between glide reflection. There are, 
as  always  (4.6.1), 1800 rotation centers at the intersections of 
perpendicular reflection axes. What happens at the much  less 
predictable  intersections of perpendicular glide  reflection axes? 
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Well, those intersections are centers for 900, rather than just 1800, 
rotations: no chance for a cmm , which has by definition a smallest 
rotation of 1800! And the surprises are not over yet: as in figure 
4.53, every pair of trapezoids is a ‘square’ D2 set, hence (3.6.3) 
there exist two rotations and  two glide reflections between every 
two adjacent, perpendicular pairs of trapezoids (such as ABCD/EFGH 
and A′B′C ′D ′/E′F′G ′H ′); we already know the two 900 rotations that do 
the job, but where are the glide reflections? Using methods from 
chapter 3 once again (figure 4.55), we see that our new pattern has  
glide  reflection  in  two  diagonal  directions ; these are the 
‘subtle’ glide reflections we were looking for, passing half way 
through two adjacent rotation centers (for 900 and 1800, 
alternatingly) in  every  single  row  and  column  of  centers !

Wallpaper patterns with the properties discussed above are 
known as p4g ; they are the only 900 patterns with reflection in 
precisely  two  directions. They are easy to distinguish from the 
p4m  patterns: one has to simply look at the number of directions of 
reflection (or even glide reflection, if adventurous enough).

4.11.2 How about rotation centers? Although there seem to be 
two kinds of 900 rotation centers in figure 4.55, marked by 1  and 1 ′′′′, 
we still declare that, unlike p4m  patterns, every p4g  pattern has 
just one  kind  of fourfold centers: indeed every 900 rotation center 
of type  1 ′′′′ is the image  of a type  1  900 rotation center under one of 
the pattern’s isometries (glide reflection or reflection), and vice 
versa; and, for reasons that will become clear in 6.4.4, but have also 
been discussed in 4.0.5, we tend to view any two isometries that are 
images of each other as ‘equivalent’ (read “conjugate”).

 
Likewise, we view all the 1800 centers in either a p4g  or a p4m  

pattern as being of the same kind: any two of them are images of 
each other by either a 1800 rotation (possibly about a 900 center) or 
a 900 rotation! This also confirms that the cm  has only ‘one kind’ of 
reflection axes (4.4.6): every two adjacent reflection axes are 
images of each other under the cm ’s glide reflection or translation! 
More subtly, all reflections in the pmg  (4.7.3) and all the glide 
reflections (of same direction) in the pgg  (4.8.3) are ‘of the same 
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kind’: indeed every two adjacent pmg  reflection axes and every two 
adjacent, parallel pgg  glide reflection axes are, as we indicated in 
4.7.3, images of each other under a 1800 rotation! Finally, we leave 
it to you to confirm that there exist two , rather than four, kinds of 
1800 centers in the pgg and pmg  types, and three kinds of 1800 
centers in the cmm .  

4.11.3 More on ‘diagonal’ glide reflections. The p4g  wallpaper 
pattern in figure 4.56 should be compared to the pgg  pattern of 
4.8.4, which may be viewed as a ‘compressed’ version of it. On the 
other hand, every p4g pattern may be viewed, with some forgiving 
imagination, as a ‘special case’  of a pgg  pattern: just ‘overlook’ 
the 900 rotation and all reflections and in-between glide reflections 
... and focus on the 1800 rotations and the diagonal glide reflections! 

     
Fig. 4.56

Every p4g pattern may also be viewed as the union of two 
disjoint, ‘perpendicular’ cmm  patterns mapped to each other by 
any and all of the p4g ’s diagonal glide reflections; this is best seen 
in the following ‘relaxed’ version of the previous p4g  pattern (where 
the two cmms consist of the vertical and the horizontal motifs, 
respectively): 
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Fig. 4.57

4.11.4 Roman semicircles. In the following p4g  example from 
Stevens (p. 294), every two nearest 900 centers are nicely placed 
at the centers of heterostrophic C4 sets:


                                                                         © MIT Press, 1981
Fig. 4.58
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4.12  900 , translations only (p4)

4.12.1 Still the same centers! Let’s have a look at the following 
‘distorted’ version of the p4g  pattern of figure 4.57, obtained via an 
‘up and down, left and right’ process:

Fig. 4.59

In terms of rotations, the wallpaper pattern in figure 4.59 is 
identical to a p4m  pattern: two  kinds  of 900 centers, one  kind  of 
1800 centers, and exactly the same lattice of rotation centers that 
we first saw in figure 4.5. What makes this new pattern different is 
that it has no reflections or glide reflections: the absence of the 
former is obvious, some candidates for the latter would require two 
or more gliding vectors each in order to work. Such patterns, having 
only 900 (and 1800, of course) rotation (plus translation, always), 
are known as p4. 
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4.12.2 On the way back to p4m . Pushing the ‘process’ that led 
from the p4g  pattern of figure 4.57 to the p4  pattern of figure 4.59 
one more step we obtain the following p4  pattern:

Fig. 4.60

You can probably guess at this point the next step in the 
process, a step that will result into a p4m  pattern: all these 900 
types are close relatives indeed!

4.12.3 Two kinds of Egyptian ‘flowers’. In this remarkable p4  
design from ancient Egypt (Stevens, p. 284), the two kinds of 900 
centers are cleverly placed inside two slightly different types of 
flower-like D 4 figures; were the two kinds of ‘flowers’ one and the 
same, this design would still be a p4 , except that the other kind of 
900 centers would have to move to the ‘swastikas’: 
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
                                                                         © MIT Press, 1981
Fig. 4.61

4.13  600 , six reflections, six glide reflections (p6m)

4.13.1 Bisecting the beehive. We have already discussed the 
lattice of rotation centers of the beehive (figure 4.5), and are aware 
of its three rotations (600, 1200, 1800). Figure 4.62 stresses some  
of its rather obvious reflections (of two kinds and in six directions), 
as well as its in-between  glide reflections (again, of two kinds 
and in six directions):
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Fig. 4.62

So, while some reflection axes (#1) pass through sixfold and 
twofold centers only, others (#2) pass through all three kinds of 
centers. As for glide reflection axes, they all pass through twofold  
centers  only , but they are of two kinds as well, having gliding 
vectors of different length (figure 4.62). Wallpaper patterns with 
these properties are denoted by p6m , a type that can justifiably be 
branded “the king of wallpaper patterns”: indeed not only is p6m  
very rich in terms of symmetry, but, as we will see in the coming 
sections, many other types are ‘contained’ in it or ‘generated’ by it. 
(The downside of this is that some times one may miss the 600 
rotation and underclassify a p6m  as a cmm  or even cm).
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4.13.2 From hexagons to rhombuses. It is easy to get a ‘dual’ of 
the pattern in figure 4.62 that features rhombuses  instead of 
hexagons and yet preserves all its isometries:

              
Fig. 4.63

4.13.3 Arabic rectangles. Here are two complex, ‘rectangular’ 
p6m  patterns from Stevens (p. 330); can you see how to derive 
them from the beehive by attaching rectangles to the hexagons?  

                                                                         © MIT Press, 1981
Fig. 4.64
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4.14  600 , translations only (p6)

4.14.1 ‘Adorning’ the rhombuses. What happens when one starts 
‘enriching’ the ‘plain’ rhombuses in the p6m  pattern of figure 4.63? 
The following Arabic design (Stevens, p. 318) provides an answer:


                                                                         © MIT Press, 1981
Fig. 4.65

The T-like figures inside the rhombuses have turned them from 
D 2 sets into homostrophic C 2 sets, destroying all possibilities for 
(glide) reflection, and yet preserving the rotations: the lattice of 
centers from figure 4.5 remains intact, with twofold, threefold, and 
sixfold centers placed at the vertices of 900-600-300 triangles (on 
which you may read more in 6.16.1 and 7.5.4). Such multi-rotational, 
rotation-only patterns are denoted by p6 .  
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4.14.2 Hexagons with ‘blades’. One can get a p6  pattern directly 
from the beehive by cleverly turning the hexagons from D6 sets into 
homostrophic C6 sets; here is one of many ways to do that, turning 
three out of every four old sixfold centers into twofold centers (and 
eliminating three quarters of the old threefold centers as well): 

        
Fig. 4.66

4.15  1200 , translations only (p3)

4.15.1 Further rhombus ‘ornamentation’. Let’s have a look at the 
following Arabic design from Stevens  (p. 260), similar in spirit to 
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the p6  pattern of figure 4.65:


                                                                         © MIT Press, 1981
Fig. 4.67

Both patterns create a three-dimensional  feeling, consisting 
of cube-like hexagons split into three rhombuses rotated to each 
other via 1200 rotation, but that’s where their similarities end. 
Indeed, while the rhombuses in figure 4.65 are homostrophic C2 sets 
(allowing for two  rotations between any two adjacent rhombuses, 
one by 600 and one by 1200), the rhombuses in figure 4.67 are 
homostrophic C1 sets allowing for only one  rotation between any 
two adjacent ones, the 1200 rotation already mentioned: there goes 
our 600 rotation, with the old 600 centers reduced  to 1200 centers! 
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It seems that we will have to settle for a wallpaper pattern having 
no other isometries than 1200 rotations and translations: such 
patterns are known as p3. 

4.15.2  Three kinds of rotation centers. There is a little bit of 
compensation for this reduction of symmetry: unlike p6m  or p6  
wallpaper patterns, every p3  pattern has three kinds  of 1200 
rotation centers; this is perhaps easier to see in the following 
direct modification of the beehive than in the pattern of figure 4.67: 

   

Fig. 4.68
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4.16  1200 , three reflections, three glide reflections,
          some rotation centers off reflection axes (p31m)

4.16.1 Regaining the reflection. All the p6  and p3  patterns we 
have seen so far may be viewed as modifications of the beehive, 
with D6 sets (hexagons) replaced by homostrophic C6 and C3 sets, 
respectively: twelve (or just six) rhombuses ‘build’ a C 6 set in 
figure 4.65, while only three suffice for a C 3 set in figure 4.67. 
What happens when D6 sets turn into D3 sets? Here is an answer:

Fig. 4.69

Rather luckily, the reflections of the D3 sets (hexagons with an 
inscribed  equilateral triangle) have survived, producing a 
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wallpaper pattern with reflection and in-between glide reflection in 
three directions; notice that these reflections are precisely the 
type  1  reflections of the original p6m  pattern, passing through its 
sixfold and twofold, but not threefold, centers (4.13.1).

Which other isometries of the original p6m  pattern (beehive) 
have survived, and how? Well, all sixfold centers have turned into 
threefold centers, and all threefold centers have remained intact! 
One may say that there are two  kinds of 1200 rotation centers: 
those -- denoted by 1 in figure 4.69 and always mappable to each 
other by translation -- at  the  intersect ions  of  three  ref lect ion  
axes  (old sixfold centers); and those -- denoted by 2  or 2 ′′′′ in figure 
4.69 and mappable to each other by either (glide) reflection (2 to 2 ′′′′) 
or translation/rotation (2  to 2  or 2 ′′′′  to 2 ′′′′) -- on  no  reflection  
axis  (old threefold centers). All type  2  reflections and glide 
reflections are gone -- in this example at least (see also 4.17.4). 
Wallpaper patterns of this type are known as p31m .  

4.16.2 Japanese triangles. In our next example from Stevens (p. 
274) the off-axis 1200 centers are hidden inside curvy triangles:


                                                                         © MIT Press, 1981
Fig. 4.70
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4.17  1200 , three reflections, three glide reflections,
                  all rotation centers on reflection axes (p3m1)
 

4.17.1 Thinning things out a bit. Consider the following diluted 
version of the wallpaper pattern in figure 4.69:

Fig. 4.71

This new pattern is of course very similar to that of figure 4.69: 
they both have rotation by 1200 only, and they both have reflection 
and in-between glide reflection in three directions. What, if 
anything, makes them different in that case? To simply say that the 
one in figure 4.69 is ‘denser’ than the one in figure 4.71 is certainly 
not that precise or acceptable mathematically! (See also 4.17.4 
below.) Well, a closer look reveals that, unlike in the case of the 
p31m  type, all the 1200 centers in the new pattern were 600 
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centers in the beehive and lie at the intersection of three reflection 
axes: such patterns are known as p3m1 , our ‘last’ type.

4.17.2 How many kinds of threefold centers? In a visual sense, 
the pattern in figure 4.71 has three kinds of 1200 rotation centers: 
one at the center of a triangle (1), one between three vertices (2), 
and one between three sides (3). From another perspective, all 
rotation centers are the same: they are all old sixfold centers, lying 
on reflection axes, and at the  same  distance  from  the  closest  
glide  reflection  axis . More significantly though, and in the spirit 
of 4.11.2, the three kinds of centers are distinct because no 
isometry maps centers of any kind to centers of another kind. Either 
way, p3m1  patterns (three or one kinds of centers, depending on 
how you look at it) are distinguishable from p31m  patterns (two  
kinds of centers)!

4.17.3 Persian stars. In the following p3m1  example from 
Stevens (p. 267), six-pointed stars and hexagons give the illusion 
of a p6m  pattern, but you already know too much to be fooled (and 
miss the ‘tripods’ that turn the D 6 sets into D 3 sets):


                                                                         © MIT Press, 1981
Fig. 4.72
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4.17.4 More on (glide) reflection. The reflections and in-
between glide reflections in both figures 4.69 (p31m ) and 4.71 
(p3m1 ) are none other than those type 1  (glide) reflections 
inherited from the beehive pattern in figure 4.62. This may give you 
the impression that the beehive’s type  2  (glide) reflections can 
never survive in a 1200 pattern. But as figure 4.73 demonstrates, it 
is possible to ‘build’ a p3m1  pattern ‘around’ type  2  (glide) 
reflection; and we leave it to you to demonstrate the same for p31m  
patterns -- a simple way to do that would be to modify figure 4.71 
so that the vertices of the triangles would be each hexagon’s 
vertices rather than edge midpoints!

Fig. 4.73
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As we indicate in 8.4.3 (and figure 8.41 in particular), and as you 
may verify in figures 4.69-4.73, the real difference between p3m1  
and p31m  has to do with the placement  of their (glide) reflection 
axes with respect to their lattice of rotation centers; for example 
the ratio of the glide reflection vector’s length to the distance 
between two nearest rotation centers equals 3 /2 in the case of 
the p31m  as opposed to 3/2 in the case of the p3m1 .   

A medieval design very similar to the pattern in figure 4.73 was 
actually at the center of a famous controversy regarding whether or 
not all seventeen  types of wallpaper patterns (and the p3m1  in 
particular) appear in the Moorish Alhambra Palace in Spain: indeed 
the pattern in figure 4.73 may be viewed as a two-colored pattern 
of p6m  (rather than p3m1 ) type, more specifically a p6 ′′′′mm ′′′′ 
(described, among other two-colored p6m  types, in section 6.17)! 
This can be avoided simply by starting with a ‘sparse’ beehive (i.e., 
one from which two thirds of the hexagons have been removed, in 
such a way that no two hexagons touch each other): see figures 6.132 
& 6.133, as well as the 600 & 1200 examples in Crystallography 
Now (http://www.oswego.edu/~baloglou/103/seventeen.html, a web 
page devoted to a geometrical classification of wallpaper patterns 
in the spirit of chapters 7 and 8).   

4.18  The seventeen wallpaper patterns in brief 

(I)  Patterns with no rotation (3600 ) 

p1   : nothing but translation (common to all seventeen types)

pg    : glide reflection in one direction; no reflection

pm    : reflection in one direction; no in-between glide reflection
         
cm    : reflection in one direction, in-between glide reflection
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(II)  Patterns with smallest rotation of 1800

p2    : 1800 rotation only

pgg   : glide reflection in two perpendicular directions, no  
          reflection; no rotation centers on glide reflection axes

pmm  : reflection in two perpendicular directions, no in-between         
                glide reflection; all rotation centers at the intersection  

   of two perpendicular reflection axes

cmm  : reflection in two perpendicular directions, in-between 
                glide reflection; all rotation centers either at the     

  intersection of two perpendicular reflection axes or at   
           the intersection of two perpendicular glide reflection 
           axes

pmg  : reflection in one direction (with no in-between glide    
                reflection), glide reflection in a direction perpendicular to 
                that of the reflection; all rotation centers on glide            

     reflection axes, none of them on a reflection axis

(III)  Patterns with smallest rotation of 900

p4   : 900 rotation only; distinct 1800 rotation, too

p4m  : reflection in four directions; in-between glide reflection 
               in two out of those four directions; all 900 rotation     
                centers at the intersection of four reflection axes; all      

         1800 rotation centers at the intersection of two reflection
          axes and two glide reflection axes

p4g  : reflection in two directions; in-between glide reflection in         
               both of those directions; additional glide reflection in two                      
               more (diagonal) directions; all 900 rotation centers at the                    
               intersection of two perpendicular (vertical and horizontal)                     
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               glide reflection axes, none of them on a reflection axis or    
               a diagonal glide reflection axis; all 1800 rotation centers                

         at the intersection of two perpendicular reflection axes

(IV)  Patterns with smallest rotation of 1200

p3      : 1200 rotation only

p3m1 : reflection in three directions with in-between glide          
                 reflection; all rotation centers at the intersection of                     

           three reflection axes; no rotation center on a glide
            reflection axis                                                              

p31m : reflection in three directions with in-between glide
            reflection; some rotation centers at the intersection of
            three reflection axes; some rotation centers on no
            reflection axis; no rotation center on a glide reflection
            axis

(V)  Patterns with smallest rotation of 600

p6    : 600 rotation only; distinct 1200 and 1800 rotations, too

p6m  : reflection in six directions with in-between glide       
                reflection; all 600 (1200) rotation centers at the       

         intersection of six (three) reflection axes, none of them 
          on a glide reflection axis; all 1800 rotation centers at the
          intersection of two reflection axes and four glide 
          reflection axes 
    
                                                                                                   
first draft: fall 1998                                   © 2006 George Baloglou
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 2006 George Baloglou                               first draft: winter 1999

CHAPTER 5

TWO-COLORED BORDER PATTERNS

5.0  Color and colorings

5.0.1 Design, color, and background. Color is present 
everywhere, even on this page: it is the contrast between black ink 
and white background that makes this page visible! One could even 
talk about ‘active’ design colors and ‘passive’ background colors; in 
more complex situations it is not so clear what belongs to the 
design and what belongs to the background -- nor is such a 
differentiation always important or even possible, of course. But it 
is often crucial in discussions of ‘colored  patterns ’. 

Consider the following pma2  border pattern:

Fig. 5.1

One can certainly talk about three colors being present here: the 
trapezoids are ‘grey’, their boundaries are black, and the background 
is, of course, white; since we generally ignore the boundary lines’ 
color, we can safely talk about two colors being present and deal 
with an ‘one-colored’  (grey) pattern on white background.

5.0.2 Colorings. Let us now leave blank (white) the pattern of 
figure 5.1, planning to color it in two colors as indicated below:

Fig. 5.2
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In figure 5.2, B and G  could stand for blue and green, or any other 
pair of distinct colors: if you feel that blue and green are too close 
to each other or that they do not get along that well, whatever, you 
are free to use, for example, red for B  and yellow for G , etc. (The 
choice of the two colors is not an entirely trivial matter, as it could 
in fact affect perception of space and interaction between shapes.) 
For our purposes, and in an effort to keep printing costs low, we 
limit ourselves to black for B  and grey for G  (in this and the next 
chapters, where, with the exception of 5.0.4 below, only two colors 
are involved). In particular, our coloring of figure 5.2 yields the 
following ‘ two-colored’  border pattern:

Fig. 5.3

5.0.3 Color preservation and reversal. Does the border pattern in 
figure 5.3 look the same if you flip this page (or if you trace it and 
flip the tracing paper)? Your first response might be “no”, as the 
black trapezoids that were ‘inverted’ in figure 5.3 are now ‘upright’:

Fig. 5.4  

In other words, it is tempting to say that the pattern in figure 
5.3 (or 5.4) does not have half turn. But then the question arises: 
what happened to the half turn of the original pattern, and to the 
rotation centers indicated in figure 5.1, in particular? A closer look 
at figures 5.3 & 5.4 shows that a 1800 rotation (half turn) about 
each of those rotation centers maps every black trapezoid to a grey 
one and vice versa! In the language that we will be using from here 
on, each half turn in figures 5.3 & 5.4 reverses colors. We end up 
saying that our pattern has color-reversing  half  turn , indicating 
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this fact by placing a capital R  right next to each rotation center: 
indeed those Rs that you see right next to the rotation centers in 
figures 5.3 & 5.4 do not stand for “rotation” but for “reverses”!

How about the vertical reflections of our pattern? In figures 5.3 
& 5.4 you see a P  right next to each reflection axis, standing for 
“preserves”: indeed vertical reflection about each axis maps every 
black trapezoid to a black one (possibly even itself) and every grey 
trapezoid to a grey one! In our new language we say that the pattern 
in figures 5.3 & 5.4 has color-preserving  vertical  reflection .

So, every half turn in the border pattern of figures 5.3 & 5.4 
reverses colors, while every vertical reflection preserves colors. 
Does that mean that, in such two-colored border patterns, half turns 
always reverse colors and vertical reflections always preserve 
colors? Not  at all: as you are going to see in what follows, all 
combinations are possible; further, it is possible for a single border 
pattern to have both  color-preserving and color-reversing half 
turns, or both  color-preserving and color-reversing vertical 
reflections. On the other hand, a border pattern can have only one 
glide reflection or horizontal reflection: so these isometries, if 
there to begin with, must be either color-preserving or color-
reversing; but wait until section 5.8, too! 

5.0.4 More than two colors? Let’s have a look at a few colorings 
-- indicated by letters rather than real colors -- of another pma2  
border pattern:

Fig. 5.5

Fig. 5.6
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Fig. 5.7

In the pattern of figure 5.5, there are two colors ‘in balance’ 
with each other (blue and green) and a third color (yellow) not ‘in 
balance’ with either of the other two: it is more reasonable then to 
describe the pattern as two-colored (blue-green) pma2  on yellow-
white background; at the same time, one could ‘see’ an one-colored 
pma2  border pattern (yellow) on three-colored (blue-green-white) 
background! 

Much more so, it is not clear what the background is in figure 
5.6, so one could easily talk of two  two-colored pma2  border 
patterns, a blue-green one and a yellow-red one, on white 
background: indeed yellow and red are as much ‘in balance’ with each 
other as blue and green are! Finally, it does make sense to talk of a 
four-colored (blue-green-purple-orange) pma2  border pattern and  
a two-colored (yellow-red) pma2  border pattern in figure 5.7!

Complicated, isn’t it? Well, in this and the next chapter all 
border and wallpaper patterns will be simple enough to be viewed as 
two-colored, with no room for confusion; one or more background 
colors  might be there from time to time, but it will be clear that 
those are indeed background colors. The concept of background color 
is more important in the context of ‘real world’  patterns, found in 
textiles, mosaics, and other artifacts. 

But what is, after all, and in our context of border or wallpaper 
patterns always, that “background (color)”? It is reasonable to say 
that, in the presence of more than one colors in a pattern, a color is 
viewed as background if and only if the pattern has no  isometry 
that  swaps  it with  another  color . Under this definition, the 
situation is certainly clear in figure 5.5 (yellow is background) but 
not quite so clear in figures 5.6 & 5.7: it would be best to view those 
border patterns as four-colored and six-colored  patterns, 
respectively. (On another note, this definition resolves the 
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‘Alhambra controversy’ of 4.17.4 by rendering the ‘entrapped white’ 
in figure 4.73 a second  color!)    

5.0.5 One-colored or two-colored? Motivated by the discussion 
in 5.0.4, we say that a border or wallpaper pattern is two-colored  
if and only if precisely  two  of its colors are swapped  by  at  
least  one  isometry  that maps the pattern to itself. In particular, 
this definition implies that the two colors are ‘in balance’ with 
each other: for example there is as much grey as black in figures 5.3 
& 5.4 (with grey and black swapped by half turn), and as much blue 
as green in figure 5.5 (with blue and green swapped by both vertical 
reflection and half turn).

For a change, let’s have a look at the following border pattern:

Fig. 5.8

How many isometries do you see that swap black and grey? None! 
Our pattern has color-preserving translation and color-preserving 
glide reflection, and that’s about it! On the other hand, it is clear 
that black and grey are in perfect balance with each other: is it a 
two-colored pattern, then? No, under our sound definition the border 
pattern in figure 5.8 is one-colored , classifiable in fact as a p1a1 !

Confused? Well, don’t worry, the next seven sections will be 
relatively straightforward; patterns such as that of figure 5.8 are 
indeed rare... (Can you create any others, by the way? Having, for 
example, only color-preserving translation and color-preserving 
vertical reflection?) For the rest of the chapter we will be dealing 
mostly with ‘genuine’ two-colored patterns, colorings in fact of the 
seven types of one-colored patterns we studied in chapter 2. Now 
things can at times go a bit ‘wrong’ with those colorings, too, but 
you will have to wait until section 5.8 to see how that can happen! 

190



5.1  Colorings of p111

5.1.1 Color-reversing translation. All border patterns presented 
in section 5.0 have color-preserving translation, common in fact by  
definition to all border patterns, but none of them has color-
reversing translation. Does that mean that no translation can be 
color-reversing? Not at all, in fact sometimes a color-reversing 
translation is the only  isometry that makes a border pattern two-
colored! This will have to be the case in this section: if you start 
with a border pattern that has only translation (p111 ), coloring it in 
two colors can at most make it have both  color-reversing and color-
preserving translation instead of just color-preserving translation; 
coloring may  not increase symmetry! Here is an example of two 
distinct colorings of the same p111  pattern:   

                                                                                     p111

                                                                     p111

                                                                     p′′′′1 1 1
Fig. 5.9
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Only the second coloring above allows for color-reversing 
translation (indicated by R−vector), in addition of course to color-
preserving translation (indicated by P−vector, twice  as  long  as the 
R−vector): this yields a two-colored  pattern known as p ′′′′111 . The 
first and second patterns in figure 5.9, despite looking like colorless 
and two-colored, respectively, are both  classified as p111 : they 
both have color-preserving translation and nothing else!

5.1.2  A word on notation. That little ‘accent’  (like the one 
above p  in p ′′′′111 ) will always indicate a color-reversing  
isometry  in this and the next chapter; in particular, p ′′′′ always 
stands for color-reversing  translation . In figure 5.9 we 
indicated color-reversing translations with R−vectors and color-
preserving translations with P− vectors. From here on we will no 
longer bother to indicate color-preserving translations: they are 
present in all border patterns, be them one-colored or two-colored; 
moreover, the doubling of any color-reversing translation vector 
produces a color-preserving one! Here is an example, again of two 
distinct colorings of the same border pattern, illustrating this 
approach:

                                                                       p111

                                                                       p′′′′1 1 1

Fig. 5.10
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5.2  Colorings of pm11

5.2.1  Color-reversing vertical reflection. Let us now start with 
a ‘colorless’ pm11  border pattern and color it following the 
colorings employed in figure 5.9: 

                                                                                      pm11

                                                                    pm11

                                                                    pm′′′′1 1
Fig. 5.11

Once again, only the third pattern is two-colored, not because of 
color-reversing translation (which it doesn’t have) but because of 
its color-reversing  vertical  reflection : such border patterns, 
having only color-reversing vertical reflection (in addition, of 
course, to that ubiquitous color-preserving translation) are denoted, 
rather predictably in view of 5.1.2, by pm ′′′′11 .

5.2.2 How about color-reversing translation? Can we ‘force’ the 
third pattern in figure 5.11 to also have color-reversing 
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translation? One thing to try is to reverse the colors in every  
other pair of motifs ... and see what happens:

                                                                                      p ′′′′m 1 1
Fig. 5.12

Clearly, color-reversing translation has been achieved. How 
about vertical reflection? Well, here we got a bonus: instead of 
color-preserving vertical reflections only  or color-reversing 
vertical reflections only , as in the second (pm11 ) and third 
(pm ′′′′11) patterns in figure 5.11, respectively, our new pattern has 
both  color-preserving (P ) and color-reversing (R ) vertical 
reflections; such border patterns are known as p ′′′′m11 , in honor (p ′′′′) 
of the color-reversing translation that actually allows for the two 
kinds of vertical reflections ... and is in turn implied by them! 

5.2.3 Two kinds of mirrors. As we pointed out in 2.2.3, every 
pm11  border pattern has two kinds of vertical reflection axes 
(mirrors). This is nicely illustrated in the context of figure 5.12, 
where one kind of reflection axes preserve colors and the other kind 
of reflection axes reverse colors. Can we get the two kinds of axes 
to have the exact opposite effect on color? Surely we can, in fact 
the same process that led from the third pattern of figure 5.11 to 
the pattern of figure 5.12 leads from the second pattern in figure 
5.11 to the following border pattern: 

                                                                                     p ′′′′m 1 1
Fig. 5.13
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While the two-colored patterns in figures 5.12 & 5.13 are 
distinct to  the  eye , they are mathematically identical (p ′′′′m11 ): 
each of them has color-reversing translation and both kinds of 
vertical reflection (color-preserving and color-reversing). In more 
mathematical terms, we may say, never forgetting that all border 
patterns are infinite, that the patterns in figures 5.12 & 5.13 share 
the same symmetry plan:

Fig. 5.14

Symmetry plans will be revisited in full in section 5.9.

5.2.4 How many colorings? There are two kinds of reflection 
axes in every pm11 -like pattern and two possibilities for each kind 
of reflection axis (color-preserving and color-reversing), hence 
there should be two × two = four possible types all together. In 
view of our remarks in 5.2.3, however, two of those four types are 
viewed as identical, hence there exist four minus one = three types 
of pm11-like border patterns: pm11 , pm ′′′′11 , and p ′′′′m11  (each of 
them discussed and exhibited already).

Another way of arriving at this conclusion follows the approach 
employed in 2.8.3 for classifying all one-colored border patterns:

Color-reversing             Color-reversing            Border pattern
   translation               vertical reflection                  type

         Y                                      Y                              p ′′′′m11
         Y                                      N                          impossible
         N                                      Y                              pm ′′′′1 1
         N                                      N                              pm11
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The ruling out of the second possibility above relies on the 
following observation: the existence of color-reversing translation 
in a border pattern with vertical reflection implies  the existence 
of color-reversing vertical reflection; check also 7.3.1 and 5.6.2!

5.2.5 Further examples. Here are a couple of suggested colorings 
further illustrating the role of p m 1 1 ’s two kinds of vertical 
ref lect ion:

                                                                      pm′′′′1 1

                                                                      p′′′′m 1 1
Fig. 5.15 

5.3  Colorings of p1m1

5.3.1 Four possibilities. The p1m1  border pattern may of course 
be viewed as a pm11  pattern with vertical reflection ‘replaced’ by 
horizontal reflection. Replacing “vertical” by “horizontal” in the 
table of 5.2.4 we obtain the following list of possibilities and 
border pattern types:

Color-reversing             Color-reversing            Border pattern
   translation              horizontal reflection               type

         Y                                      Y                            p ′′′′1a1
         Y                                      N                            p ′′′′1m1
         N                                      Y                            p1m ′′′′1
         N                                      N                            p1m1
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In other words, we claim that this time all two ×  two = four 
types are indeed possible. In particular there is no problem having 
color-reversing translation without color-reversing horizontal 
reflection in a p1m1 -like border pattern. The best way to establish 
this claim is of course to provide examples for each one of the four 
possibilities: one picture is worth one thousand words! To do that, 
we start with a ‘colorless’ p1m1  border pattern and then we color 
it in two colors and in every possible way, exactly as in the two 
preceding sections: 

                                                                      p1m1
Fig. 5.16

Now if we start by coloring the first two ‘cells’ grey (G ) and 
black (B ) as indicated in figure 5.16, then there exist two  choices 
(G  or B ) for each  of the two ‘adjacent’ cells I and II; so there exist 
indeed four possibilities altogether shown in figures 5.17-5.20. 

(I = B , II = G )      p ′′′′1a1
Fig. 5.17
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This type is known as p ′′′′1a1 , ‘in honor’ of the color-preserving 
glide reflection (a ) implied ‘automatically’ by the horizontal 
reflection (and the translation) in the spirit of 2.7.1. It should more 
appropriately be denoted by “p′1m ′1”, perhaps, but the 
crystal lographic  notat ion  has its own little secrets!   

                                                              (I = B , II = B )       p ′′′′1 m 1
Fig. 5.18

This type is known as p′′′′1m1 and may be viewed as a ‘doubled’ 
version of a p ′′′′111 , with the bottom half being a mirror image of a 
p ′′′′111  border pattern at the top.

                                                                (I = G , II = G )      p1m ′′′′1
Fig. 5.19

This type is known as p1m ′′′′1 ; it could also be called “p1a′1”, 
thanks to its ‘hidden’ color-reversing glide reflection and in 
conformity with the p ′′′′1a1  type’s naming above, except that ... this 
‘name’ is reserved for a type we will introduce in the next section!
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Finally, we get the standard two-colored looking, one-colored 
classifiable border pattern that is found in every group, a p1m1 :

                                                              (I = G , II = B )       p1m1
Fig. 5.20

5.3.2 Further examples. Here are three colorings illustrating the 
three new members of the p1m1 group:

                                                                                       p ′′′′1a1

                                                                     p′′′′1 m 1
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                                                                     p1m′′′′1
Fig. 5.21

5.4  Colorings of p1a1

5.4.1 Only two possibilities. In 2.4.2 we observed that the glide 
reflection vector in every p1a1  border pattern is equal to half the 
pattern’s minimal translation vector. Pushing that observation one 
step further we see that a double  application of the p1a1 ’s 
minimal glide reflection results in the p1a1 ’s minimal translation. 
You may verify that yourself for the following ‘colorless’ p1a1  
pattern:

                                                                        p1a1
Fig. 5.22

Our observation has a crucial implication: no matter how one 
colors a p1a1  border pattern, the resulting two-colored pattern 
cannot possibly have color-reversing translation! Indeed, the p1a1 ’s 
translation is the ‘square’  of either a color-preserving glide 
reflection or a color-reversing glide reflection: in either case, that 
‘square’ must  be color-preserving, in the same way that the 
square of every non-zero number must be positive. But this means 
that there is only one  question to ask (“does the pattern have 
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color-reversing glide reflection?”) and as many types of p1a1 -like 
two-colored patterns as possible answers to that question:

                                                                      p1a1

                                                                      p1a′′′′1

Fig. 5.23

So we have only one genuinely two-colored pattern in the p1a1 
group, characterized by color-reversing glide reflection (p1a ′′′′1) .

5.4.2 Example. Our usual coloring example follows, involving 
two distinct but closely related p1a ′′′′1s :

                                                                      p1a′′′′1

                                                                      p1a′′′′1

Fig. 5.24
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5.5  Colorings of p112

5.5.1 A familiar story! Back in 2.5.4 we alluded to a certain 
similarity between vertical mirrors (in the pm11  type) and half 
turn centers (in the p112  type). This similarity is in fact so strong 
that virtually all our observations in section 5.2 remain valid when 
“vertical reflection” is replaced by “half turn”. In particular, color-
reversing translation in a p112 -like border pattern implies  color-
reversing half turn -- check also 7.6.4 -- and that table from 5.2.4 
migrates here as follows:

Color-reversing             Color-reversing          Border pattern
   translation                      half turn                        type

         Y                                      Y                              p ′′′′112
         Y                                      N                          impossible
         N                                      Y                              p112 ′′′′
         N                                      N                              p112

That is, there are precisely three types of patterns in the p112  
group, only two of them genuinely two-colored, shown right below:

                                                                     p′′′′1 1 2
Fig. 5.25

This type, known as p ′′′′112, has both color-reversing and color-
preserving half turn centers, thanks to color-reversing translation. 
But why is color-reversing translation associated with two adjacent 
half turn centers (or vertical reflection axes) of opposite  effect on 
color? Well, the easiest way to see this right now is to argue as in 
5.4.1, observing in particular that the successive application 
(‘product’) of two adjacent half turns (or vertical reflections) 
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yields the pattern’s minimal translation; check also 7.5.3 (and 7.2.1)! 

                                                                      p112′′′′
Fig. 5.26

This type, known as p112 ′′′′, has only color-reversing half turn: 
now both types of centers correspond to color-reversing half turns.

 
As usual, we are ‘tolerant’ enough to include a ‘two-colored 

looking’ one-colored pattern in our collection:

                                                                       p112
Fig. 5.27

5.5.2 Examples. Here are two colorings of a p112  pattern that 
should be compared to the colorings of pm11  in 5.2.5 (as well as the 
colorings of p1a1  in 5.4.2):

                                                                       p112′′′′

                                                                      p′′′′1 1 2
Fig. 5.28

203



5.6  Colorings of pma2
 

5.6.1 Half turns and mirrors of one kind only! Combining the 
discussions in 5.4.1 and 5.5.1 we are forced to conclude that in every 
pma2 -like two-colored pattern all half turns must be either color-
preserving or color-reversing, and likewise for vertical reflections. 
Indeed, the ‘combination’ of two adjacent half turn centers or 
vertical reflections of opposite effect on color would produce a 
color-reversing translation, which is ruled out by the presence of 
glide reflection!

5.6.2 Another kind of multiplication. As we are going to see in 
6.6.2 and 7.7.4, and have already hinted on in 2.6.3, the pma2 ’s glide 
reflection may be viewed as the ‘product’ (successive application) of 
the pattern’s half turn and vertical reflection. This means that the 
glide reflection’s effect on color is completely  determined  by 
those of the half turn and the vertical reflection: if both are either 
color-preserving (P ) or color-reversing (R ), then the glide reflection 
has to be color-preserving (P  ××××  P  = P , R  ××××  R  = P); and if one is color-
preserving (P) and the other one is color-reversing (R ), then the 
glide reflection must be color-reversing (P  ××××  R  =  R ,  R ××××  P  =  R ). This 
‘multiplication rule’, partially introduced in 5.4.1 and 5.5.1, is 
something you should be able to verify on your own: for P  × R (color-
reversing isometry followed  by color-preserving isometry), for 
example, B → G → G and G → B → B, hence B → G and G → B. You may 
also draw an analogy with ordinary multiplication, thinking of P  as 
‘positive’ and R  as ‘negative’ !

5.6.3 Precisely four possibilities. The discussion in 5.6.1 and 
5.6.2 allows for a quick determination of all the pma2  colorings. 
Indeed it suffices to look only at the pattern’s half turn and vertical 
reflection, each of which has a well defined effect on color (either P 
or R ), and the following table captures all two ×  two = four types:
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Half turn    Vertical reflection    Pattern type    Glide reflection

      P                      P                       pma2                P  × P  = P   
      P                     R                       pm ′′′′a′′′′2             P × R  = R
      R                      P                      pma ′′′′2′′′′             R  × P = R
      R                      R                       pm ′′′′a2′′′′             R  × R  = P 

Once again, we better provide one example per type in order to 
show that each type is indeed possible:

    pma2

                                                                                         pm ′′′′a ′′′′2                  

                                                                                        pma ′′′′2 ′′′′

                                                                                        pm′′′′a2 ′′′′

Fig. 5.29

Now you can go back to section 5.0, practice what you just 
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learned and confirm that the two-colored patterns presented there 
indeed belong to the pma2  family as follows: pma ′′′′2 ′′′′ (figures 5.3 & 
5.4 (black-grey)), pm ′′′′a2 ′′′′ (figures 5.5 & 5.6 (blue-green)), and pm ′′′′a ′′′′2 
(figures 5.6 & 5.7 (yellow-red)).

5.6.4 Further examples. Three more pma2-like border patterns:

                                                                      pm′′′′a ′′′′2

                                                                      pma′′′′2 ′′′′

                                                                      pm′′′′a 2 ′′′′

Fig. 5.30

5.7  Colorings of pmm2

5.7.1 ‘Multiplying’ two types now! As we noticed in 4.6.1, the 
half turn of the pmm2  border pattern may be seen as the ‘product’ of 
that pattern’s vertical and horizontal reflections, with the half turn 
centers found at the intersection  points  of the horizontal 
reflection axis with the vertical reflection axes. That is, the effect 
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of a two-colored pmm2 ’s half turns on color is determined by the 
effect on color of its horizontal reflection and vertical reflections, 
following again the ‘multiplication’ rules of 5.6.2. It follows that we 
only need to focus on the effect on color of the horizontal reflection 
(viewing for a moment our pmm2  pattern as merely a p1m1  one), 
the vertical reflection (now treating the pmm2  pattern as merely a 
pm11  one), and the translation (present of course in both ‘factor 
types’). Focusing on whether or not both ‘factors’ have color-
reversing translation or not, as well as on the color effect of their 
reflections, we build a ‘mult ipl ication  table’  as follows:

color-reversing        p1m1         pm11         pmm2        half turn  
   translation          ‘factor’      ‘factor’        type        (H.R.×V.R.)
     
          N                   p1m1         pm11         pmm2          P  only

N                   p1m ′′′′1       pm11        pmm ′′′′2 ′′′′        R  only
          N                   p1m1         pm ′′′′11       pm ′′′′m2 ′′′′        R  only
          N                   p1m ′′′′1       pm ′′′′11       pm ′′′′m ′′′′2        P  only  
          Y                   p ′′′′1m1       p ′′′′m11        p ′′′′mm2        P and R
          Y                   p ′′′′1a1        p ′′′′m11         p ′′′′ma2         P  and R

There are many things one could say about this complicated 
‘multiplication’, but we would rather let you discover those on your 
own and verify our table with the help of the following examples:

 
                   

           pmm2
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    pmm′′′′2 ′′′′

                                                          pm′′′′m 2 ′′′′

                                                         pm′′′′m ′′′′2
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                                                                 p′′′′m m 2

 p′′′′ma2
Fig. 5.31

5.7.2 Further examples. Once again, here are five colorings, 
corresponding to each one of the five new pmm2 -like patterns:

                                                                     pmm′′′′2 ′′′′
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                                                                     pm′′′′m 2 ′′′′

                                                                     pm′′′′m ′′′′2

                                                                      p′′′′m m 2
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                                                                      p′′′′m a 2

Fig. 5.32

5.8  Consistency with color

5.8.1 What happened to that reflection? Let’s try a coloring for 
the pma2  pattern of figures 5.1 & 5.2 a bit different from the one 
featured in figures 5.3 or 5.4:

Fig. 5.33

Do the vertical reflection axes carried over from figure 5.1 
preserve or reverse colors? The answer is neither “yes” nor “no”: 
looking at axis M , for example, we see that it leaves the black 
trapezoid it bisects inevitably unchanged, but it maps the black 
trapezoid to its left to the grey trapezoid to its right. One might say 
that our reflection axis acts inconsistently  with respect to color, 
preserving it in some instances and reversing it in others. And it 
doesn’t take long to notice that all reflection axes in figure 5.33 
‘behave’ the same way, being inconsistent with color.

How would you classify the pattern in question? First, you would 
certainly not think of vertical reflection anymore (our pattern looks  
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now like a row of homostrophic  black and grey parallelograms, 
leaving no room for reflection or even glide reflection), but you 
would probably notice the color-reversing  half turns  centered at 
A  and B  and nothing else: a p112′′′′, then? Well, if you remember or 
review section 5.5 and also notice the pattern’s color-reversing 
translation, you will disagree: p112 ′′′′ does not have color-reversing 
translation, hence our pattern must be a p ′′′′112. But every p ′′′′112 has 
both color-reversing and color-preserving centers: where are the 
color-preserving  half  turn  centers , in that case? Well, a bit of 
experience would have led you to look right at the center of each 
paral lelogram-l ike  pair  of  trapezoids  of same color, the 
‘internal’ half turn of which naturally extends to the entire border 
pattern. Alternatively, both color-preserving and color-reversing 
half turn centers have been ‘inherited’ from the original pma2  
pattern, hence they should not be missed. One way or another, we 
have reached a conclusion: the pattern in figure 5.33 is a p ′′′′112. 

5.8.2 Coloring, symmetry, and perception. Back in 5.1.1 we made 
an ‘innocent’ remark to the effect that coloring cannot increase 
symmetry. We are now in a position to complete that remark by 
stating that coloring may  only  decrease  symmetry . Indeed the 
example discussed in 5.8.1 is an appropriate illustration of this 
principle, in both visual and conceptual  terms: the two-coloring of 
a pma2  border pattern ‘el iminated’  its vertical reflection -- and 
glide reflection, as you should verify on your own -- by rendering it 
inconsistent with color and reduced it to a p ′′′′112  pattern; and 
instead of trapezoids, the viewer is now more likely to ‘see’ 
parallelograms!

More generally, the rule born out of the discussion in 5.8.1 is: 
when classifying a two-colored border pattern, discard  every  
isometry  that  is  inconsistent  with  color .

5.8.3 Inconsistent half turns? Now you might ask: isn’t the half 
turn in the ‘trapezoidal’ pattern discussed in 5.8.1 inconsistent with 
color? Do not half of the 1800 centers reverse colors while the other 
half preserve them? Attention! When you examine consistency with 
color, you should focus on one  isometry at a time! Indeed if you 
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think of any individual half turn center in the pattern of figure 5.33, 
you will confirm for yourself that it either  preserves  colors  
(mapping every black trapezoid to a black one and every grey 
trapezoid to a grey one) or it reverses colors (mapping every 
black trapezoid to a grey one and vice versa); that is, every half turn 
in figure 5.33 is consistent  with  color , one way or another.

Does this mean that half turns are always consistent with 
color? Not at all! Here is another coloring of the original pma2  
pattern -- to be precise, of a ‘partitioned’  version of it (in which 
every trapezoid is cut into two equal halves) -- that produces a 
p ′′′′m11  pattern:

      
Fig. 5.34

Indeed all half turns are inconsistent with color (a fact denoted 
by an I right next to every half turn center), hence discarded 
(likewise for glide reflection); at the same time, vertical reflection 
axes alternate between color-preserving (P) and color-reversing (R ).

5.8.4 Both kinds together. Here is yet another coloring of the 
original pma2  pattern, producing a pm ′′′′11  this time: 

Fig. 5.35

Now only  half  of the vertical reflections in figure 5.35 are 
consistent, that is color-reversing (R ); the other half are 
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inconsistent (I), hence discarded  together with the half turns, 
glide reflection, and even inconsistent translation! (There is still a 
color-preserving translation, of course, but the color-reversing one 
in figure 5.34 has been rendered inconsistent by our modification of 
coloring.)

5.8.5 Consistent glide reflection? Both colorings of the pma2  
pattern presented in 5.8.3 and 5.8.4 eliminated its glide reflection 
by rendering it inconsistent with color: are there any colorings that 
eliminate the pattern’s half turn and  vertical reflection but 
preserve its glide reflection? The answer is “yes”, but such 
colorings are a bit harder to come up with; here is a coloring that 
reduces the pma2 to a p1a ′′′′1, exhibited on a ‘compressed’ version of 
the original pattern (with the length of each trapezoid cut in half):  

Fig. 5.36

5.8.6 Further examples. Here are some inconsistent colorings 
reducing a ‘partitioned diamond’ pmm2  pattern to ‘lower’ types:

  

                                                                     p′′′′m11   

                                                                      p112′′′′
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                                                                      p′′′′1 a 1

                                                                     pm′′′′a 2 ′′′′

Fig. 5.37

5.9  Symmetry plans

5.9.1 The abstract way of looking at it. As we indicated in 5.2.3, 
from the purely mathematical point of view, and for mere 
classification purposes, all that matters in a border pattern is its 
symmetry elements (isometries) and their effect on color, captured 
in what we called symmetry  plan. Here we present symmetry plans 
for all twenty  four  types of two-colored border patterns: 
seventeen genuinely two-colored ones (introduced in this chapter) 
and seven one-colored ones (introduced in chapter 2); it is of course 
the various colorings of these seven ‘parent types’ (presented 
below in bold face print) that generate the other seventeen types, 
hence the latter are appropriately grouped under the former. 

When trying to classify a border pattern, you should first locate 
its parent type and then match it with one of the parent type’s 
‘offspring’. Do not forget that isometr ies  inconsistent  with  
color -- which should still be marked with an I -- are not  taken  
into account  at all: there are no Is in the symmetry plans below!

215



Symmetry Plan notation: solid lines represent translation 
vectors (indicated even when color-preserving) and reflection 
axes; dotted lines represent glide reflection vectors and axes. 
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 2006 George Baloglou                               first draft: winter 2000

CHAPTER 6 

TWO-COLORED WALLPAPER PATTERNS

6.0  Business as usual?

6.0.1 Consistency with color. All concepts and methods 
pertaining to two-colored border patterns discussed in detail in 
chapter 5 extend appropriately to two-colored wallpaper patterns. 
Once again, and due to induced color inconsistencies, coloring may 
only preserve or decrease symmetry . As an example, the 
following coloring of the cm pattern in figure 4.27 eliminates both  
its reflection and its glide reflection by way of color inconsistency:

Fig. 6.1

Indeed, the reflection axis L1 reverses colors as it maps B to 
itself but preserves colors as it maps A to C; and the shown upward  
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glide reflection along L2 reverses colors as it maps B to C but 
preserves colors as it maps A to D. (An important lesson drawn out 
of this example that you should keep in mind throughout this chapter 
is this: whenever you check a reflection or glide reflection axis for 
consistency with color, make sure that you look both  at motifs on or 
‘near’  that axis and at motifs ‘far’ from that axis -- “far” and 
“near” depending on the fundamental (repeated) region’s size.)

6.0.2 The smallest rotation angle. As in the case of one-colored 
wallpaper patterns (chapter 4), the most important step in 
classifying two-colored wallpaper patterns is the determination of 
the pattern’s smallest rotation angle; again, coloring may eliminate 
certain rotations by rendering them inconsistent with color, and it 
is appropriate to state here that coloring  may  only  preserve  or  
increase  the  smallest  rotation angle . As an example, the 
following two colorings (figures 6.2 & 6.3) of the p4g  pattern in 
figure 4.57 do increase the smallest  rotation  angle  consistent  
with color from 900 to 1800 (color-reversing) and 3600 (none), 
respectively; and this change most definitely affects our visual 
perceptions of these ‘new’ wallpaper patterns: 

Fig. 6.2
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Fig. 6.3

In the pattern of figure 6.2, clockwise 900 rotation about K  maps 
black A to black B but black B to grey C (inconsistent), while 1800 
rotation about K  maps all black units to grey ones and vice versa 
(consistent): that is, the initial 900 rotation is gone but the induced 
1800 rotation -- recall (4.0.3) that applying a 900 rotation twice  
trivially generates a 1800 rotation -- survives. And in the pattern of 
figure 6.3 clockwise 900 rotation about K  maps black A to black B 
but black C to grey D (inconsistent), while 1800 rotation about K  
maps black A to black C but black B to grey D (inconsistent): that is, 
both the 900 and 1800 rotations about K  have been rendered color- 
inconsistent by the original p4g  pattern’s coloring -- which has in 
fact ‘destroyed’ all rotation centers, twofold and fourfold alike. In a 
nutshell, the pattern in figure 6.2 is a two-colored 1800 pattern, 
while the pattern in figure 6.3 is a two-colored 3600 pattern.  

6.0.3 When the two colors are ‘inseparable’. As in chapter 5, it 
is possible for a ‘two-colored looking’ pattern to be classifiable as 
one-colored because it has no  color-reversing isometry. Here 
are two such ‘exotic’ examples featuring color-preserving 
translation  -- present in all two-colored patterns, hence not 
mentioned -- together with color-preserving  glide  reflection  (a 
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pg , figure 6.4) or color-preserving  half  turn  (a p2 , figure 6.5); of 
course one may view these two patterns as unions of two ‘equal 
and  disjoint’, black and grey, pg  and p2  patterns, respectively.

                                                                                        pg
Fig. 6.4  
  

                    
                                                                                       p 2
Fig. 6.5              
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6.0.4 Symmetry plans and types. Tricky two-colored wallpaper 
patterns such as the ones presented so far, as well as easier ones, 
are not that difficult to classify once the smallest rotation angle 
consistent with color has been determined. Indeed there are 
symmetry  plans available at the end of most sections, focused on 
those symmetry elements that are essential for classification 
purposes; all notation introduced in 5.2.3 and employed in section 5.9 
remains intact. As in chapter 4, little attention is paid to the 
crystallographic notation’s mysteries: simply try to comprehend 
symmetry plans instead of memorizing sixty three type names! 

In each of the next seventeen sections we will be looking not 
only at all possible ways of coloring each one of the seventeen 
wallpaper types in two colors, but also at all possible two-colored 
types sharing the same isometries (be them color-preserving or 
color-reversing) with each of the seventeen parent types. For 
example, the two-colored patterns in figures 6.2 & 6.3 are no longer 
associated with the p4g  parent type, but rather with 1800 and 3600 
parent types to be determined -- stay tuned! Moreover, the number of 
two-colored possibilities associated with each parent type will be 
not only artistically and empirically determined, but also 
mathematical ly  justif ied  and  predicted : and it is precisely 
through this ‘prediction process’ that you will begin to understand 
the mathematical structure of the seventeen wallpaper pattern 
types, and how their isometries interact with each other, 
effectively building each type’s symmetry and ‘personality’!    

Here is the number of two-colored types associated with each of 
the seventeen parent types, including in each case the one-colored 
parent type itself (which is justified by our discussion in 6.0.3): 

p1:   2 pmg:     6 p3:         1
pg:   3 pmm:    6 p31m :    2
pm:  6 cmm:    6 p3m1 :    2
cm:    4                p4 :        3 p6:         2
p2:     3                p4g:      4 p6m :      4
pgg:   3                p4m :     6

As promised above, the grand total is 63: the journey begins!
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6.1  p1 types (p1, pb′′′′ 1 )

6.1.1 One direction is not enough! A two-colored wallpaper 
pattern must by definition have translation consistent with color in 
two , therefore (4.1.1) infinitely many , directions. Notice here, as 
in 5.1.2, the existence of color-preserving translation in all two-
colored patterns (already mentioned in 6.0.3): since the successive 
application of any translation that leaves the pattern invariant 
produces a double translation that also leaves the pattern 
invariant, the R  x R  = P  rule of 5.6.2 allows us to get a color-
preserving translation out of every color-reversing translation. 

On the other hand, color-reversing translation in one  direction 
(with no other color-consistent translations in sight) does not  make 
a wallpaper pattern! Combining ideas from section 4.1 (figures 4.12 
& 4.13), we use vertical p ′′′′111  border patterns to built the 
following ‘non-pattern’  that has vertical color-reversing 
translation (hence black and grey in perfect balance  with each 
other): 

Fig. 6.6
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6.1.2 Infinitely many color-reversing translations. Leaving the 
‘non-pattern’ of figure 6.6 behind us, let’s have a look at the two-
colored wallpaper pattern of figure 6.1: it clearly has no rotation, 
and we have already pointed out in 6.0.1 that all its reflections and 
glide reflections are gone due to color inconsistency. In view of our 
discussion in 6.0.3, you have every right to ask: is it ‘truly’ two-
colored? That is, does it have any isometries that swap  black and 
grey? Yes, if you remember to think of translations! Indeed, you 
can easily see that there is an ‘obvious’ horizontal color-
reversing  translation and three less obvious ‘diagonal’  color-
reversing translations, mapping A to B, C, and D, respectively; and 
you can probably see by now that there exist such translations in 
infinitely  many  directions . This property of the pattern in figure 
6.1 should not surprise you in view of our discussions in 4.1.1, 6.1.1, 
and the R  x P  = R  rule of 5.6.2: every two-colored wallpaper pattern 
that has color-reversing translation in one direction must have 
color-reversing translation in infinitely many directions.

The observation we just made holds true for every two-colored 
wallpaper pattern: all patterns you are going to see in this chapter 
have color-reversing translation in either  none  or  infinitely  
many  directions. Patterns that have nothing but color-reversing 
translation (and color-preserving translation, of course) are known 
as pb′′′′ 1 patterns. Here are three examples of such patterns simpler 
in underlying structure than the one in figure 6.1:                      

                      

                 pb′′′′ 1                       pb′′′′ 1                       pb′′′′ 1
Fig. 6.7
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6.1.3 No color-reversing translations. The only wallpaper 
pattern type simpler than the pb′′′′ 1 is the one that has the only 
isometry common  to  all wallpaper patterns (color-preserving  
translation) and nothing else: this is the p1  type, familiar of 
course from section 4.1. But how about a p1  pattern that, just like 
the p2 and pg  patterns in 6.0.3, looks like a ‘genuine’ two-colored 
pattern, having black and grey in perfect balance with each other? 
Here is such an example: 

 

p 1
Fig. 6.8

We leave it to you to compare this pattern to the pb′′′′ 1  pattern of 
figure 6.1 and verify its p1  classification: notice in particular that 
there are no ‘underlying’ reflections or glide reflections; or, if you 
wish, they were dead before they were born, ruled out by structure 
and position rather than inconsistency with color. 

6.2  pg types (pg, pb′′′′ 1g, pg′′′′)

6.2.1 Those elusive glide reflections. While the pattern in figure 
6.2 clearly has vertical and horizontal color-preserving reflections 
and in-between color-reversing glide reflections, as well as 1800 
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rotations of both kinds, the corresponding isometries of the pattern 
in figure 6.3 are all inconsistent with color; the only consistent 
with color isometries that the pattern in figure 6.3 seems to have 
are translations , and in particular vertical and horizontal color-
reversing translations. So, are we to conclude that the pattern in 
question is a pb′′′′ 1? Well, as in every context in life, some knowledge 
of ‘history’ can only help. Going back to the pattern’s progenitor in 
figure 4.57, we see the standard p4g  ‘diagonal’ glide reflection: we 
leave it to you to check that the particular NW-SE  axis shown in 
figure 4.57 (passing through bottoms  of vertical rectangles) 
provides a color-preserving glide reflection; and that the NW-SE 
glide reflection axes right next to it (passing through tops  of 
vertical rectangles) provide color-reversing  glide reflections. So 
the pattern in figure 6.3 is not a pb′′′′ 1 , but rather what is known as a 
pb′′′′ 1g : color-reversing translation (pb′′′′ 1 ) plus glide reflection, both  
color-preserving and color-reversing (g) .

6.2.2  Let’s change those triangles a little! A slight modification 
of the pg  pattern in figure 6.4 yields another example of a pb′′′′ 1g: 

                                                                      pb′′′′ 1 g
Fig. 6.9    
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The visual difference between the ‘two kinds’ of glide reflection 
axes is much more clear than the one in the example discussed in 
6.2.1, so it is even less surprising that one kind of axes preserve 
colors while the other kind reverse colors. 

6.2.3 Hunting for the third type. As we have seen in 5.2.1 and 
5.5.1, it is possible to have both  kinds  of vertical reflection axes 
or half turn centers reverse  colors in a two-colored border pattern. 
Therefore it is very reasonable to expect to have patterns in the pg  
family where all glide reflection axes reverse  colors. Could a 
coloring of the familiar p4g  pattern of figure 4.57 produce such an 
example? Well, a closer look at the NW-SE glide reflection of the 
pb′′′′ 1g  pattern in figure 6.3 suggests this attempt:

Fig. 6.10

Indeed all NW-SE glide reflections reverse colors. But so do the 
NE-SW glide reflections (which were in fact inconsistent with color 
in figure 6.3)! Could such a pattern ever belong to the pg family? As 
we will point out in sections 7.2, 7.9, and 7.10, and as you may 
already have observed in chapter 4, whenever a pattern has 
reflection and/or glide reflection in two  dist inct  direct ions  it 
must  also have rotation: indeed our pattern above has color-
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reversing 900  rotation -- not to mention its color-preserving 
reflections and glide reflections -- and it belongs to the p4g  family 
(see 6.11.2). 

The lesson drawn out of this example is that some times we get 
more  symmetry than desired, especially when we try to ‘hide’ a 
rich underlying structure by way of coloring. This is a lesson worth 
remembering, but what about our original quest for a pg  kind of 
pattern with color-reversing  glide reflection only? Well, perhaps 
it is time to be less adventurous, avoid ‘structural traps’, and look 
for a more down-to-earth example; not that it is the simplest way 
out, but, once again, a modification of the pg  pattern in figure 6.4 
works:

                                                                                         pg ′′′′
Fig. 6.11  

Patterns such as the one in figure 6.11 are known as pg′′′′.

6.2.4 Examples. These colorings should be compared to the p1 
colorings employed in figure 6.7:
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               pb′′′′ 1g                        pg′′′′                            p b′′′′ 1 g

Fig. 6.12

6.2.5 Are there any more pg  types? The three look-alikes in 
figures 6.4, 6.9, and 6.11 represent the three types (pg, pb′′′′ 1g, pg′′′′, 
respectively) discussed so far in this section: they all have glide 
reflection in a single direction, and what makes them distinct is the 
effect of their glide reflections on color. Could there be other such 
types? Well, in the absence of rotations and reflections, the only 
other isometry that could split the three types into subtypes is 
translation . At first it looks like we could have three ×  two = six 
cases: three  possibilities for glide reflection (color-preserving 
only (PP ) or both color-preserving and color-reversing (PR ) or 
color-reversing only (RR )), and two  possibilities for translation 
(color-preserving only (PP ) or both color-preserving and color-
reversing (PR), see section 6.1). 

But a pattern’s glide reflections and translations are not  
independent of each other: as we will prove in section 7.4, and as 
you can see in figure 6.13 right below, a glide reflection (mapping A 
to B) and a translation (mapping B to C) combined produce another 
glide reflection (mapping A to C) parallel to the first one (G ×  T = 
G); moreover (see figure 6.21 further below), the combination of 
two parallel  glide reflections of opposite  vectors  is a 
translation perpendicular to their axes (G × G = T).
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Fig. 6.13

 In view of these facts, the multiplication rules of 5.6.2 analyse 
the six cases mentioned above as follows:

G(PP) × T(PP) = G(PP),    G(PP) × G(PP) = T(PP):    pg   
G(PP) × T(PR) = G(PR),    G(PP) × G(PP) = T(PP):    impossible
G(PR) × T(PP) = G(PR),    G(PR) × G(PR) = T(PR):    impossible  
G(PR) × T(PR) = G(PR),    G(PR) × G(PR) = T(PR):    pb′′′′ 1 g
G(RR) × T(PP) = G(RR),    G(RR) × G(RR) = T(PP):    pg′′′′
G(RR) × T(PR) = G(PR),    G(RR) × G(RR) = T(PP):    impossible  

So, there are no more types in the pg  family after all. Using the 
examples of this section you can certainly confirm that the only 
member of the pg  family that has both kinds of translations (color-
preserving and color-reversing) is the one that has both kinds of 
glide reflections (pb′′′′ 1g), just as the above equations indicate. And an 
important byproduct of the entire discussion, quite useful to 
remember throughout this chapter, is this: in the presence of (glide) 
reflections, translations  play  no  role  at all when it comes to 
classifying two-colored wallpaper patterns; indeed a pattern with 
(glide) reflection has translations of both kinds if and  only  if it 
has both kinds of (glide) reflections! (Recall (1.4.8) that every 
reflection may be viewed as a special case  of glide reflection.) 

6.2.6 Symmetry plans. We capture the structure of the three pg  
types as follows:
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            pg                              pg ′′′′                            pb′′′′ 1 g
  P     P      P      P     P             R      R     R      R     R             P      R     P      R     P

Fig. 6.14 

In these symmetry plans glide reflection vectors are not shown 
for the sake of simplicity, but you must  indicate them in your work!

6.3  pm types (pm, pm′′′′ , pb′′′′ 1m, p′′′′m, pb′′′′ g, c′′′′m)   
  

6.3.1 Upgrading the glide reflection to reflection. Employing an 
old idea from 2.7.2 -- where we viewed a pma2  pattern as ‘half’ of a 
pmm2  pattern -- in the opposite direction, we are now ‘doubling’ 
the three pg -like patterns in figures 6.4, 6.9, and 6.11 into pm -like 
patterns by ‘ fattening’  the glide reflections into reflections; that 
is, we reflect the pattern across every glide reflection axis without  
gliding the image. This process is bound to produce six two-colored 
pm -like patterns having reflection in one  direction: indeed as we 
reflect across the glide reflection axes we have the option of a 
color effect either opposite to or same as that of the glide 
reflection (see also 6.3.2 and 6.3.5), so we end up with three × two = 
six pm  types. We illustrate the process in the following six figures, 
indicating in each case the ‘original’ pg-like pattern and providing 
the name for the ‘new’ pm-like pattern. Make sure you can 
rediscover the old pg -like pattern inside the richer structure of the 
new pattern; there is more than mere nostalgia in our call: the old 
glide reflection is alive and well, ‘hidden’  under the new reflection 
and ready to play an important role in the classification process! 
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                                                                          pg →  pm              

Fig. 6.15
                                                                    
All reflections and hidden glide reflections preserve colors, so 

the new pattern is classified as a pm , despite being two-colored.              

                                                                                      pg  →  pb′′′′ g  
Fig. 6.16 
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Reflections reverse colors, hidden glide reflections preserve 
colors (g ); there exists color-reversing  translation  along the 
reflection axes (pb′′′′ ). Such patterns are known as pb′′′′ g. 

    

                     
                                                                       pg′′′′  →  p ′′′′m

Fig. 6.17

Once again we get color-reversing translation along the 
reflection axes (p ′′′′), all of which preserve colors (m ): the new 
pattern is known as p ′′′′m . 

Comparing the two patterns in figures 6.15 & 6.17 we see that 
they are similar not only in name, but in structure as well; in fact 
the only thing that makes them distinct is that the p ′′′′m  has color-
reversing translation while the pm  doesn’t. But didn’t we promise 
back in 6.2.5 that “in the presence of (glide) reflection translation 
will play no role in the classification process”? Well, there is 
indeed another, more subtle way of distinguishing between pm  and 
p ′′′′m , and that is their hidden  (‘old’) glide  reflection , which of 
course preserves colors in the case of the pm  (an ‘offspring’ of pg) 
but reverses colors in the case of the p ′′′′m  (an ‘offspring’ of pg ′′′′)! 
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                                                                                     pg ′′′′ →  pm ′′′′   
    Fig. 6.18

All reflections and hidden glide reflections in this pm ′′′′ pattern 
do reverse colors (m ′′′′). Notice the absence of color-reversing 
translation.  

                                                                                  pb′′′′ 1g →  c′′′′m          
     Fig. 6.19
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Things started getting a bit complicated! Unlike the previous 
four types, this pattern has both  color-preserving and color-
reversing reflection, and likewise both color-preserving and color-
reversing hidden glide reflection; notice that each reflection and 
hidden glide reflection associated with it have opposite  effect on 
color. And, for the first time, we get color-reversing translation in 
directions both  parallel and perpendicular to that of the reflection. 
Visually , the effect of all this is a feeling that every other column  
in our pattern has been shifted (like in the case of the cm  patterns 
of section 4.4), hence its somewhat unexpected name (c′′′′m).

      
                                                                    pb′′′′ 1g →  pb′′′′ 1m     
       Fig. 6.20

Just as in the case of the other ‘offspring’ of pb′′′′ 1g  we just 
discussed (c ′′′′m , figure 6.19), this new pattern, known as pb′′′′ 1m, has 
both  color-preserving and color-reversing reflections. Unlike in the 
case of the c ′′′′m , however, the hidden glide reflection of the pb′′′′ 1m  
always has the same effect on color as the corresponding reflection.     

6.3.2 Are there any other types? The process employed in 6.3.1 
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produced six pm -like two-colored wallpaper patterns out of the 
three pg-like patterns of section 6.2. We must ask: could there be 
any more types in the pm  family, ‘unrelated’ perhaps to pg types? 
Well, looking back at the new types we constructed, we can fully 
describe them in terms of the effect on color (R  or P ) of their ‘two 
kinds’ of reflection (R) and  hidden glide reflection (G) as follows:

pm:              R(PP)/G(PP)
pb′′′′ g:             R(RR)/G(PP)
p′′′′m:             R(PP)/G(RR)
pm′′′′:             R(RR)/G(RR)
c′′′′m :             R(PR)/G(RP)
pb′′′′ 1m:          R(PR)/G(PR)

It becomes clear that the only possible extra types we could get 
would be of a form like R(PR)/G(RR) or R(RR)/G(PR), etc. That is, 
we ‘need’ types where the hidden glide reflection has the same 
effect on color as the corresponding reflection in the case of every  
other  reflection axis, and the opposite effect on color of that of the 
corresponding reflection in the case of all other reflection axes. In 
other words, we ‘need’ situations like the one pictured right below:

 

    

Fig. 6.21

But this is an impossible situation! Indeed the bottom reflection 
(M 1) followed by the top one (M 2) produce the shown vertical 
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translation which must be color-preserving (P  ×  P  = P ); but the 
same  translation is produced by combining the corresponding 
hidden glide reflections (G1 followed by G2) of the shown opposite 
vectors, hence it has to be color-reversing (P ××××  R = R ), too!

    The contradiction we have arrived at shows that there 
cannot possibly be any pm -like two-colored wallpaper patterns 
other than the six types already derived in 6.3.1.

6.3.3 Examples. You should pay special attention to the sixth 
example, which should belong to the cm  family but is in fact a pb′′′′ 1m  
because its in-between glide reflection is inconsistent  with color:

                c′′′′m                             p m ′′′′                          pb′′′′ 1 m

                p′′′′m                              p b′′′′ g                          pb′′′′ 1 m
Fig. 6.22
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6.3.4 Translations and hidden glide reflections revisited. The 
examples in 6.3.1 and 6.3.3 make ‘visually obvious’ the fact that 
there always exists a glide reflection employing the same axis as 
any given reflection. Such a ‘hidden’ glide reflection exists because 
a translation parallel  to the reflection axis is always  there (just 
as in the case of p1m1  and pmm2  border patterns); and it is easy to 
see that the hidden glide reflection’s minimal gliding vector is 
always equal  to the minimal translation vector along the reflection 
axis.

But why  should such a parallel translation be there, after all? 
The double application of every glide reflection produces a parallel 
translation of vector twice  as long as the gliding vector (2.4.2, 
5.4.1), but why should a ‘vectorless’ reflection carry the obligation 
to produce a translation parallel  to itself? This is best explained 
through a ‘proof without words’: 

Fig. 6.23

[Since every wallpaper pattern has translations in at least two  
directions, pick one in a direction non-perpendicular  to that of 
the reflection axis; then subsequent application of reflection (A to 
B), translation (B to C), reflection (C to D), and translation (D to E) 
produces a parallel to the reflection translation (mapping A to E)!]
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Once we know that a translation vector parallel to the reflection 
axis exists , then it is possible to pick the minimal  such vector -- 
recall that wallpaper patterns do not  have arbitrarily small 
translations (4.0.4) -- which is easily shown to be the minimal 
gliding vector of a (hidden) glide reflection along the reflection axis. 
You should verify all these ideas for the examples in 6.3.1 and 6.3.3; 
you may in particular verify that the vertical translation guaranteed 
by the process in figure 6.23 is actually twice  as  long  as the 
pattern’s minimal vertical translation.

6.3.5 Symmetry plans. Even though we classified the pm  types 
looking at their reflections and hidden glide reflections, we prefer 
to provide their symmetry plans based on reflections and parallel to 
them translations . It is of course easy to see that there exists a 
color-reversing  translation parallel to the reflection axis if and 
only if the reflection and the corresponding hidden glide reflection 
have opposite effect on color.

           pm                        pm′′′′                       pb′′′′ 1m  

            p′′′′m                      pb′′′′ g                       c′′′′m

Fig. 6.24
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6.4  cm types (cm, cm′′′′ , pc′′′′ g, pc′′′′ m )

6.4.1 Playing that old game again. As we have seen in 4.4.3, 
every cm  pattern can be seen as a pm  pattern every other row of 
which has been shifted. Therefore it is reasonable to assume that 
the application of that process to the two-colored pm -like patterns 
of 6.3.1 -- shifting columns rather than rows, of course -- is bound 
to produce two-colored cm -like patterns. This turns out to be 
largely true, with a couple of exceptions: the ‘standard’ shifting 
process leads from the c′′′′m  and the pb′′′′ 1m  ‘back’ to pb′′′′ 1g (due to 
induced color  inconsistencies). We illustrate all this in the 
following six figures: 

 

                                                                                    pm  →  cm        
Fig. 6.25    
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                                                                                    pb′′′′ g → pc′′′′ g                  

      Fig. 6.26 
                                                                               

                                                                   p′′′′m  →  pc′′′′ m      
Fig. 6.27
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                                                                                  pm ′′′′ →  cm ′′′′         
 Fig. 6.28

                                                                c′′′′m  →  p b′′′′ 1g  
Fig. 6.29
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                                                                               pb′′′′ 1m →  pb′′′′ 1g   
       Fig. 6.30

6.4.2 Another ‘game’ to consider. Let us revisit that pb′′′′ 1  pattern 
in figure 6.1: since its underlying structure (before coloring) is that 
of a cm , it is reasonable to assume that some other colorings may  
produce new  cm -like two-colored patterns. In figures 6.31-6.34 
below we present a few failed attempts toward such additional cm  
types (some of which involve color inconsistencies leading this 
time to patterns belonging to the p1 and pm  groups rather than the 
pg group): 
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                                                                                           pb′′′′ 1       
 Fig. 6.31  
 

                                                                                           pb′′′′ g
Fig. 6.32
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                                                                         pc′′′′ m                     
Fig. 6.33

                                                                         cm′′′′
Fig. 6.34                                                                                             
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So, while our first two colorings induced inconsistencies, 
yielding types ‘lower’ than cm , the last two colorings provided cm  
types already known to us. Again, this begs the question: are there 
any other cm -like two-colored patterns besides the ones we have so 
far ‘discovered’? The answer follows easily from the facts 
discussed right below in 6.4.3 and 6.4.4.

6.4.3 No ‘essential’ hidden glide reflections. The reason we got 
six rather than just three pm -like patterns in section 6.3 was the 
possibility of using a reflection axis for a (hidden) glide reflection 
of opposite  effect on color. This is not quite possible in the case of 
a cm -like pattern ... simply because there cannot possibly be color-
reversing translations parallel to reflection axes in such patterns!

To establish our claim above, let us first recall that a double 
application of a glide reflection yields a color-preserving  
translation parallel to it (5.4.1). Next, observe that the smallest  
possible translation vector parallel to the glide reflection axis has 
length equal to 2g , where g  > 0 is the length of the shortest glide 
reflection vector. To establish this observation we argue by  
contradiction, employing yet another ‘proof without words’:

             
Fig. 6.35      

[Assume that there is a downward  translation vector of length 
t strictly smaller  than 2g  (mapping A to B); apply then an upward  
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glide reflection of length g  (mapping B to C): the result is a 
downward glide reflection (mapping A to C) of length t−g , which is 
shorter than g , contradiction. (In case you like inequalities and 
absolute values, it’s all a consequence of 0 < t < 2g ⇒  |t−g | < g!)] 

6.4.4 No (glide) reflections of both kinds. You may already have 
noticed another feature common to all two-colored cm -like patterns 
presented so far: in each example, all reflections have the same  
effect on  color ; and, likewise, all glide reflections have the same 
effect on color. This is not a coincidence! As figure 6.36 indicates, 
every two adjacent reflection axes -- therefore all reflection 
axes -- in a cm -like pattern must  have the same effect on color: 

    

Fig. 6.36

[Assume that M1 reverses colors and that G  preserves colors, 
the other three possibilities being treated in a very similar manner. 
Then M2 is the outcome of successive applications of G−−−−1 
(downward  glide reflection), M 1, and G  (upward  glide reflection). 
Employing the notation of 4.0.4, we may write M2 = G∗∗∗∗M1∗∗∗∗G−−−−1, so 
that the ‘multiplication rule’ of 5.6.2 yields P  ×  R  ×  P  = R  and 
therefore M 2 must  reverse colors (as figure 6.36 demonstrates).]

There is a similar argument (and picture) demonstrating the 
same fact for glide reflections: all axes have the same  effect on 
color. At this point you may recall our ‘innocent’ comments in 4.4.6 
to the effect that all reflection and glide reflection axes in a cm  
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pattern ‘look the  same’ . It’s a bit deeper than that: every two 
adjacent reflection axes (M 1, M 2) are conjugates (4.0.4) of each 
other by way of some ‘ in-between’  glide reflection (G ); in simpler 
terms, there exists a glide reflection (G ) mapping  one (M 1) to the 
other (M2), and that has the consequences discussed above (as well 
as in 4.0.4 & 4.0.5 and even 4.11.2). Similar facts hold true for the 
glide reflections of every cm  pattern: every two adjacent glide 
reflection axes are mirrored to each other by some ‘in-between’ 
ref lect ion).

Putting everything discussed in the preceeding paragpaphs 
together we arrive at a conjecture: whenever I2 = I[I1], where I, I1, 
I2 are isometries leaving a two-colored pattern invariant, I1 and I2 
must have the same effect on color. As already indicated, our 
conjecture is not that difficult to prove -- via I2 = I∗I1∗I−1 and the 
‘multiplication rules’ of 5.6.2 -- so we will not delve into the 
details. But, please, remember this important  fact that we will be 
using throughout this chapter: every two isometries of a two-
colored pattern mapped  to each other by a third isometry (and 
its inverse) must  have the same effect on color (by way of being 
conjugates of each other). 

The observation made here is in fact important enough to be 
assigned a name of its own, Conjugacy  Principle; a principle that 
not only will help us to classify and understand wallpaper patterns 
from here on, but has already been employed in less pronounced 
ways: for example, it does lie behind the fact that every  other  
reflection axis in a p m -like two-colored pattern (or glide reflection 
axis in a pg-like two-colored pattern) has the same effect on color! 
(Couldn’t it be called the Mapping  Principle, instead? Well, we 
prefer “Conjugacy Principle” because it resonates with the crucial 
role played by the abstract  algebraic  structure of wallpaper 
patterns -- a structure not discussed here, but rather prominent in 
the literature...) Beyond the Conjugacy Principle (studied in detail in 
section 8.0), (glide) reflections are further analysed in section 8.1. 

6.4.5 Only four cm  types! It is now easy to show that there are 
no cm -like two-colored patterns other than the ones already 
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described in this section. Indeed if we view a cm  two-colored 
pattern as a ‘merge’ of a pm  pattern (reflections) and a pg  pattern 
(glide reflections), we see that there are only two  possibilities for 
each ‘partner’: only pm , pm ′′′′ for pm  (6.4.4 rules out pb′′′′ 1m and c′′′′m, 
while 6.4.3 rules out p ′′′′m  and pb′′′′ g) and only pg, pg′′′′ for pg (pb′′′′ 1g  is 
ruled out by 6.4.4). But two × two = four, and we can certainly write 
down the new (cm) types as ‘products’ of the old ones (pm , pg):

cm = pm × pg, cm′′′′ = pm′′′′ × pg′′′′, pc′′′′ g = pm′′′′ × pg, pc′′′′ m = pm × pg′′′′  

Of course this ‘multiplication’ was first introduced in section 
5.7, where we viewed pmm2s as ‘products’ of pm11s and p1m1s.

6.4.6 Further examples and symmetry plans.      
                                                                      

              cm′′′′                               pc′′′′ g                               pc′′′′ m
Fig. 6.37

                     cm                                             cm ′′′′
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                pc′′′′ g                                    pc′′′′ m

   

  R   P   R   P   R   P   R                 P   R    P   R  P   R   P

Fig. 6.38

6.5  p2 types (p2, p2′′′′ , pb′′′′ 2 )

6.5.1 A good place to start! ‘Experimenting’ a bit with the p2  
pattern in figure 6.5, we get a couple of ‘genuine’ two-colored ones:

                                                                                       p2 ′′′′
Fig. 6.39
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                                                                                        pb′′′′ 2  
Fig. 6.40
  
The first type (p2 ′′′′) has color-reversing half turns only , the 

second (pb′′′′ 2) has both color-preserving and color-reversing ones. 

6.5.2 From pg  to p2 . Let’s revisit those ‘root’ patterns of 6.2:

                                                                   pg →→→→  p2              
Fig. 6.41
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                                                                                  pg ′′′′ →  p2 ′′′′               
      Fig. 6.42  

                    
                                                                               pb′′′′ 1g →  pb′′′′ 2
Fig. 6.43

What happened? By applying a ‘secret’ vertical reflection to 
every  other  row  of a pg -like pattern, we end up -- in this case 
anyway -- with a p2 -like pattern! This incident suggests a strong 
analogy between the two types, which we discuss right below.
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6.5.3 Half turns and translations. Are there any more p2-like 
two-colored patterns? The answer is “no”, and it strongly relies on 
figure 6.44, inspired in turn by figure 6.13:

Fig. 6.44

What’s the story here? Well, go back to section 6.2 for a moment 
and recall how we established the correlation between glide 
reflections of both  kinds (color-preserving and color-reversing) and 
color-reversing translations: it all follows from the fact that the 
combination of a translation and a glide reflection is another glide 
reflection (figure 6.13); and that correlation proves (6.2.5) that 
there exist precisely three two-colored patterns in the pg  family. In 
exactly the same way, figure 6.44 shows that the combination of a 
1800 rotation (mapping A to B) and a translation (mapping B to C) is 
another 1800 rotation (mapping A to C). It follows, for example, that 
we cannot have a pattern with color-preserving half turns only and 
color-reversing translations: P  × R  = R , etc. (For a complete analysis 
of why there can only be three p2  types follow 6.2.5 case by  case, 
with 6.4.4 (Conjugacy Principle) in mind, replacing glide reflections 
by half turns.)

A few additional comments are in order. First of all, the fact 
illustrated in figure 6.44 (rotation ×  translation = rotation) holds 
true for arbitrary  rotations, not just for 1800 rotations: a rigorous 
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proof will be given in section 7.6. More to the point, the close 
analogy between pg and p2 is also based on the fact that, just as 
the combination of two parallel  glide reflections is a translation 
(figure 6.21), the combination of two 1800 rotations is indeed a 
translation: use the two half turns of figure 6.44 ‘in the reverse’ to 
see how rotating B to A and then A to C is equivalent to translating 
B to C! (Yes, this rotation ××××  rotation = translation equation 
requires the two angles to be 1800 or at least equal  to each other 
and  of opposite  orientation; see figure 6.99 or 7.5.2 for details.)

6.5.4 Symmetry plans. Nothing but rotation centers this time:

            p2                       p2′′′′                       pb′′′′ 2 

    
Fig. 6.45

6.5.5 Further examples. First our usual two-colored triangles:

                 pb′′′′ 2                       p2′′′′                        pb′′′′ 2

Fig. 6.46
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You should probably compare figure 6.46 to figure 6.12!

And now a pb′′′′ 2  example that many students misclassify thinking 
that it has glide reflection:

 

  
                                                                        
                                                                        pb′′′′ 2
Fig. 6.47

In an echo of the discussion in 4.5.1, we would like to point out 
that the half turn centers in figure 6.47 form parallelograms  
rather than rectangles (figures 6.41, 6.42, 6.43, 6.46) or squares 
(figures 6.5, 6.39, 6.40). This observation both justifies the 
‘general’ arrangement (in parallelograms) of half turn centers in the 
p2  symmetry plans (6.5.4) and rules out (4.8.2) the glide reflection 
in figure 6.47!

6.6  pgg types (pgg, pgg′′′′, pg′′′′g ′′′′)

6.6.1 From one to two directions. Let’s now apply a ‘secret’ 
vertical glide  reflection (6.5.2) of both  kinds (color-preserving and 
color-reversing) to every row  of a pg  or pg ′′′′:
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                                                                  pg →  pgg
Fig. 6.48

                                                                                  pg  →  pgg ′′′′                    
 Fig. 6.49
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                                                                pg′′′′  →  p g g ′′′′
Fig. 6.50

     
                                                               pg′′′′  →  p g ′′′′g ′′′′           

      Fig. 6.51    
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So far so good: we obtained four two-colored patterns (from the 

‘root’ pg  and pg ′′′′ patterns of figures 6.4 & 6.11 always) having glide 
reflection in two  perpendicular directions, welcome additions to 
the pgg  family; two of them (figures 6.49 & 6.50) look  distinct but 
are the same mathematically (pgg ′′′′), with color-preserving glide 
reflection in one direction and color-reversing glide reflection in 
the other direction. But there will be ‘casualties’ caused by color 
inconsistencies as we apply this process to the pb′′′′ 1g : right below 
you find two pb′′′′ 2 patterns with color-inconsistent glide reflection 
(mappable in fact to each other by either color-preserving horizontal 
glide reflection or color-reversing vertical glide reflection):

 

                                                                              pb′′′′ 1g →  pb′′′′ 2
Fig. 6.52
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                                                                              pb′′′′ 1g →  pb′′′′ 2                      

        Fig. 6.53

6.6.2 Only three types indeed! Looking at the pgg-like patterns 
obtained so far, we notice that none of them has glide reflection of 
both kinds in the same direction: such a situation is indeed 
impossible  because of what figures 6.54 & 6.55 tell us:

Fig. 6.54 
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This is a demonstration of a significant fact: the combination of 
two perpendicular glide reflections (mapping A to B and B to C) 
produces a half turn (mapping A to C)! We will go through a rigorous 
proof of a generalization of this in section 7.10, but you should try 
to verify an important aspect of this new theorem: depending on 
which  way  the gliding vector of each of the two glide reflections 
goes (north-south versus south-north and west-east versus east-
west), as well as the order  in which the two glide reflections are 
combined, we get four plausible centers (and half turns) out of 
eight  actual possibilities; in our case, a ‘symbolic’  rule  yields 
(west-east) ×  (north-south) = northeast. (Notice also that the 
distances  of the rotation center from the glide reflection axes are 
equal to half the length of the corresponding gliding vectors; as an 
important special case , the composition of two perpendicular 
reflections  is a half turn centered at their intersection point. 
These facts throw new light into sections 2.6 (pma2  border 
patterns) and 2.7 (pmm2  border patterns), as well as several 
sections in chapter 4!) 

Now figure 6.55, together with the preceding remarks, shows 
why color-preserving and color-reversing glide reflection axes of a 
pgg -like pattern cannot  coexist in the same direction:

    

Fig. 6.55
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Is the half turn (at) K color-preserving or color-reversing? In 
view of K = G1∗∗∗∗G++++ (G applied upwards (P) followed by G1 (P)) and     
K = G2∗∗∗∗G−−−− (G applied downwards (P) followed by G2 (R)) we conclude 
that the half turn at K must be both  color-preserving and color-
reversing; that is, the situation featured in figure 6.55 (‘mixed’ 
horizontal axes) is impossible .

We conclude that each of the two pg -like ‘factors’ of a pgg -like 
pattern could be either a pg or a pg ′′′′, but not a pb′′′′ 1g. This should 
allow for four possibilities, but since the outcome of this 
‘multiplication’ is not  affected by the order  of ‘factors’, we are 
down to three types: 

pgg = pg × pg, pgg′′′′ = pg × pg′′′′ = pg′′′′ × pg, pg′′′′g′′′′ = pg′′′′ × pg′′′′      

6.6.3 Another way of looking at it. The discussion in 6.6.2 was 
very useful in terms of analysing the structure of the pgg  pattern, 
but it is certainly not the easiest way to see that any two of its 
glide reflections parallel to each other must have the same effect on 
color. Indeed that follows at once  from our Conjugacy  Principle  
(6.4.4): every two adjacent parallel axes are mapped to each other 
by any  half turn center lying half way  between them! It might be a 
good idea for you to see how the Conjugacy Principle works in this 
special case, though: you should be able to provide your own proof, 
arguing in the spirit of figure 6.36.

In another direction now, let’s revisit the pgg  example of 4.8.3 
and figure 4.43. We state there, with the Conjugacy Principle in mind 
(4.11.2), that it appears  that there are two  kinds of glide 
reflection axes in both  directions: our reservations are now further 
justified by the impossibility of coloring that pattern in such a way 
that any two parallel glide reflections would have opposite effect on 
color!

6.6.4 Further examples. First, three pgg -like ‘triangles’ that 
you should compare to the p2-like patterns of figure 6.46: 
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                 pg′′′′g ′′′′                      pgg′′′′                              p g g ′′′′

Fig. 6.56

 The ‘proximity’ between the two families (pgg  and p2) is 
further outlined through the following curious example of a pg ′′′′g ′′′′ 
that is a close  relative of the p2  example in figure 6.5:

                  
                                                                       pg′′′′g ′′′′
Fig. 6.57

This is an example that many would classify as a p2 : after all, 
the rotations of both the pg ′′′′g ′′′′ and the p2  are color-preserving only. 
Well, the advice offered in 4.8.2 remains valid: after you locate all 
(hopefully!) the rotation centers, check for ‘in-between’  diagonal  
glide reflection! Instead of applying this ‘squaring’ process to the 
p2 ′′′′ in figure 6.39 for a pgg ′′′′, we offer a fancy pmg-generated pgg ′′′′:
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                                                                        pgg′′′′
Fig. 6.58

This pattern (Laurie  Beitchman , Fall 1999) consists of two  
pmgs of distinct colors; its vertical and horizontal glide reflections 
reverse and preserve colors, respectively. Again, you may opt to find 
the glide reflection axes after you get all the half turn centers!

6.6.5 Symmetry plans. What follows captures our structural 
observations on the interplay between axes and centers (6.6.2):

pgg                           pgg′′′′                          pg ′′′′g ′′′′              

Fig. 6.59
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You should compare these pgg symmetry plans to the p2 
symmetry plans in figure 6.45: parallelograms have now been 
‘ruled’ by  glide  reflection into rectangles, and the real reason is 
revealed in 8.2.2!

6.7  pmg types (pmg, pb′′′′ mg, pmg′′′′, pm′′′′g, pb′′′′ gg, pm′′′′g ′′′′)

6.7.1 How many types at most? By now we know the game well 
enough to try to predict how many two-colored types can possibly 
exist within a family sharing the same symmetrical structure. In the 
case of the pmg  (reflection in one direction, glide reflection in a 
direction perpendicular to that of the reflection), we are dealing 
with the ‘product’  of a ‘vertical’ p m  with a ‘horizontal’ pg . So it 
seems at first that we could have up to six × three = eighteen types 
... but we also know that several cases will most likely have to be 
ruled out, as it has happened in the case of the pgg.

First, let’s not forget the pmg ’s 1800 rotation and its centers, 
located -- special case of figure 6.55! -- on  glide reflection axes 
and half way  between every two adjacent reflection axes: arguing 
as in 6.6.3 (Conjugacy Principle), we see that all reflection axes of a 
pmg  must have the same  effect on color. (Alternatively, and closer 
in spirit to 6.4.4, we may appeal to the Conjugacy Principle by way 
of reflection axes mapped to each other by glide reflections rather 
than half turns!) This rules out pb′′′′ 1m  and c ′′′′m  for the pm  ‘factor’, so 
we are down to at most  four × three = twelve pmg  types.  

Next, observe that ‘vertical’ hidden glide reflections and 
associated translations along reflection axes are fully determined  
by the ‘horizontal’ glide reflections. Indeed the combination of any 
two adjacent  glide reflections -- of opposite  vectors, as in figure 
6.21 -- produces the shortest  possible (by figure 6.60 below) 
translation parallel to the reflection. It follows that there exists 
vertical color-reversing translation if and only if there exists 
horizontal glide reflection of both kinds. 
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Fig. 6.60

[The combination of a glide reflection G (mapping A to B) and a 
translation of length 2d perpendicular  to it (mapping B to C) 
produces a glide reflection G′ (mapping A to C) parallel to G, of 
same  gliding vector and at a distance d  from G; so if d (the distance 
between any two adjacent horizontal glide reflections) is assumed 
to be minimal then 2d  (the length of the resulting vertical 
translation) must be minimal, too.] 

Putting everything together, we see that all that  matters  
when it comes to the first factor (pm ) of a pmg  is whether its 
reflections preserve (PP ) or reverse (RR ) colors: color-reversing 
translations along reflection axes (and associated hidden glide 
reflections) appear  to play no crucial role anymore -- except that, 
as pointed out above, they do make their presence obvious indirectly, 
through the pmg ’s second factor (pg)! Anyhow, there can be at most 
two ×  three = six pmg -like two-colored wallpaper patterns: two 
possibilities for the first factor (P P , R R ) and three possibilities for 
the second factor (PP, PR, RR); see also 6.7.4.

There is no obvious reason to exclude any one of the resulting six 
possible types; and as we are going to see right below, each of them 
does show up, predictably perhaps, in concrete examples!

6.7.2  Are they there after all? Applying a ‘secret’ reflection   
to every row  of our pg  ‘root’ patterns, we do  get six pmg  types:
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                                                                                 pg  →  p m g
Fig. 6.61

                                                                pg →  p m ′′′′g                
Fig. 6.62   
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                                                               pg′′′′  →  p m g ′′′′
Fig. 6.63

                                                                pg′′′′  →  p m ′′′′g ′′′′                
 Fig. 6.64                                  

So far there have been no surprises, save perhaps for the total 
absence of color-reversing translation -- provided in fact by the 
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last two types, offspring of pb′′′′ 1g  and rather more interesting:

   
                                                           pb′′′′ 1g →  pb′′′′ mg
Fig. 6.65

                                                            pb′′′′ 1g →  pb′′′′ gg               
 Fig. 6.66 
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This completes the pmg  picture. The last two types, coming 
from the only pg -root with color-reversing translation (figure 6.9), 
have themselves color-reversing translation along the direction of 
the reflection (pb′ ).

6.7.3 Examples. First, five types for six triangular colorings:

             pm′′′′g                       p m ′′′′g ′′′′                            p m g ′′′′

             pb′′′′ gg                            pb′′′′ mg                           pb′′′′ mg

Fig. 6.67

And now an old p4g acquaintance (figures 6.2, 6.3, 6.10), 
revisited and (inconsistently) recolored as a pb′′′′ m g , calling for 
additional such pmg -like creations: 
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                                                                      pb′′′′ mg
Fig. 6.68

6.7.4 Symmetry plans. Make sure you understand the complex 
interaction between reflection, glide reflection, and rotation:

             pmg                        pb′′′′ mg                   pmg′′′′

             pm ′′′′g                         pb′′′′ gg                        pm ′′′′g′′′′

Fig. 6.69

Even though this is not exactly how we classified the pmg -like 
patterns, it is not a bad idea to express the six types as ‘products’ 
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of simpler types; the main difficulty lies with the p m  ‘factor’:

pmg = pm × pg, pb′′′′ mg = p′′′′m × pb′′′′ 1g, pmg′′′′ = pm × pg′′′′,
pm′′′′g = pm′′′′ × pg, pb′′′′ gg = pb′′′′ g × pb′′′′ 1g, pm′′′′g′′′′ = pm′′′′ × pg′′′′ 

Of course the mysteries of the crystallographic notation and 
everything else make a bit more sense now, don’t you think? (Notice 
again the role played by the ‘vertical’ color-reversing translation in 
determining the first factor in our products: p ′′′′m  or pb′′′′ g  in its 
presence (associated with a second factor of pb′′′′ 1g), pm  or pm ′′′′ in its 
absence (associated with a second factor of pg or pg ′′′′).)  

6.8  pmm types (pmm, pb′′′′ mm, pmm′′′′, c′′′′mm, pb′′′′ gm, pm′′′′m ′′′′)

6.8.1 An easy guess this time. The pmm  type may of course be 
viewed as the ‘product’ of two pms. It can be shown as in 6.7.1 that 
it is easier to work with effect on color rather than types, and that 
we do not need to worry about the pm ’s hidden glide reflections or 
color-reversing translations. With three possibilities (section 6.3) 
for each  direction of reflection (PP , PR , RR ), and the order  of 
‘factors’ in our ‘multiplication’ reduced to the trivial  “vertical 
reflection versus horizontal reflection” issue, there seem to be at 
most six possible pmm -like types: PP  × PP , PP  × PR , PP  × RR ,    
PR × PR, PR × RR, RR × RR. Let’s see how many of those we can 
actually get -- if not all!

6.8.2 From the pmgs to the pmms. Returning to old tricks, we 
will now try to get as many pmm  types as possible by ‘perfect 
shiftings’ (4.4.2) of the pmg  types we created in section 6.7; that 
is, we shift every other row by half  the minimal horizontal 
translation.
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                                                                            pmg  →  p m m
Fig. 6.70

Somewhat confused? It is not a bad idea to go back to figure 
6.61 for a moment and compare the two patterns! Let’s move on:  

   

                    
                                                                          pb′′′′ mg → pb′′′′ mm 
 Fig. 6.71

   
Notice how the mixed horizontal glide reflections of the pb′′′′ mg 

(figure 6.65) have turned into the mixed horizontal reflections of the 
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pb′′′′ m m , while all vertical reflections remained color-preserving: we 
started with PP  × PR  and ended up, predictably, with PP  × PR .

                                                                            pm ′′′′g →  pmm ′′′′
Fig. 6.72

No axis ‘lost’ its effect on color as figure 6.62 got ‘perfectly 
shifted’ into figure 6.72 (RR  × PP ). But look at our next step:

                                                                           pmg ′′′′ →  pmm ′′′′         
      Fig. 6.73
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The two patterns in figures 6.72 & 6.73 look  distinct, but 

mathematically they are the same (RR × PP versus PP × RR), even 
though they are related to two distinct pmg -like patterns: indeed 
the pmg ′′′′ pattern of figure 6.63 (PP  × RR) and the pm ′′′′g pattern of 
figure 6.62 (RR  × PP) are not the same because the pmg ’s two 
‘factors’, unlike those of the pmm , are not  equivalent (reflection ×  
glide reflection as opposed to reflection ×  reflection). 

Let’s go on to a ‘perfect shifting’ of figure 6.66:

     
                                                            pb′′′′ gg → pb′′′′ gm
Fig. 6.74

This time we went from RR × PR to PR × RR: again ‘no changes’ 
(keeping in mind the equivalence between RR × PR and PR × RR in 
the pmm  type, in accordance to our observations above on the 
equivalence between its ‘vertical’ and ‘horizontal’ directions). 

Finally, a ‘perfect shifting’ of the pm ′′′′g ′′′′ pattern of figure 6.64 
leads, most predictably, to a RR  × RR  pmm -like pattern having 
color-reversing reflections only :
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                                                                          pm ′′′′g ′′′′ →  pm ′′′′m ′′′′

Fig. 6.75

So we did get five out of six possible types, missing PR  × PR : 
does this mean that there is no such pmm -like type? Certainly not: 

          
                                                             pb′′′′ gm → c′′′′mm
Fig. 6.76
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                                                            pb′′′′ mm → c′′′′mm
Fig. 6.77

What happened? Shifting now columns (rather than rows), and 
departing from two pmm  (rather than pmg ) types (figures 6.71 & 
6.74), we did arrive at two  ‘distinct’ representatives (figures 6.77 
& 6.76, respectively) of the sought sixth pmm -like type!

6.8.3 Examples. A larger than usual collection of ‘triangular 
patterns’ indicating the pmm ’s richness; notice how the last four 
examples have ‘dropped’ from cmm  to pmm  because of coloring. 

              pm′′′′m ′′′′                          pmm ′′′′                          pmm ′′′′
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             pb′′′′ mm                         pb′′′′ mm                           pb′′′′ gm

 

              pb′′′′ gm                        pb′′′′ mm                    c′′′′m m

                 

             c′′′′mm                    c′′′′mm                     pb′′′′ m m
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               pb′′′′ gm                    pb′′′′ mm                     pb′′′′ gm

Fig. 6.78

6.8.4 Symmetry plans. No surprises here, just remember that all 
rotations are combinations of the two perpendicular reflection axes 
intersecting at their center (a special  case  of the fact illustrated 
in figure 6.54), hence their effect on color is determined by that of 
the reflections (and according to the ‘multiplication’ rules of 5.6.2). 

             pmm                        pb′′′′ mm                        pmm ′′′′

            c ′′′′mm                         pb′′′′ gm                        pm′′′′m ′′′′

Fig. 6.79

We conclude by expressing each type as a ‘product’ of pm types:
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pmm = pm × pm, pb′′′′ mm = p′′′′m × pb′′′′ 1m, pmm ′′′′ = pm × pm′′′′,
c′′′′mm = c′′′′m × c′′′′m, pb′′′′ gm = pb′′′′ 1m × pb′′′′ g, pm′′′′m′′′′ = pm′′′′ × pm′′′′

In connection to figure 6.79 (pmm  symmetry plans) always, the 
‘first’ factor corresponds to the ‘vertical’ direction and the ‘second’ 
factor corresponds to the ‘horizontal’ direction. Color-reversing 
translation is no longer crucial enough to be explicitly indicated; 
consistently with 5.5.1 and 6.5.3, it is to be found precisely in those 
directions in which there exist half turn centers of opposite  effect 
on color. In particular the elusive c ′′′′m m  is the only pmm -like type 
with color-reversing translation in both  the vertical and horizontal 
directions, while pmm  and pm ′′′′m ′′′′ are the only ones with no color-
reversing translation at all. More to the point, and arguing as in 
6.7.1, we see that there exist vertical reflections of opposite color 
effect if and only if there exists horizontal color-reversing 
translation (and vice versa).

6.9  cmm types (cmm, cmm′′′′, cm′′′′m ′′′′, pc′′′′ mm, pc′′′′ mg, pc′′′′ gg)

6.9.1 How many types? Following the approach in 6.6.2, 6.7.1, 
and 6.8.1, we view a cmm -like pattern as a ‘product’ of two cm -like 
patterns. Having four possibilities for each ‘factor’ (PP , PR , RP , RR , 
where the first letter now stands for reflection and the second  
letter for in-between glide reflection), and keeping in mind that 
‘multiplication’ is commutat ive  (again the ‘horizontal’ versus 
‘vertical’ non-issue), we see that there can be at most ten possible 
cmm  types, defined by the ‘products’ PP × PP, PP × PR, PP × RP,  
PP × RR, PR × PR, PR × RP, PR × RR, RP × RP, RP × RR, RR × RR. 
Let’s first check how many types we can get ‘experimentally’ (6.9.2), 
and then check how many types are in fact impossible (6.9.3).

6.9.2 Perfectly shifting the pmms. We trace each new (cmm ) 
type back to a pmg type, showing also the ‘intermediate’ pmm  type 
(the perfect shifting of which led to the cmm  type):
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                                                                 pmg  →  pmm  →  c m m
Fig. 6.80
                                 

                                                 pb′′′′ mg → pb′′′′ mm → pc′′′′ mg
Fig. 6.81
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     pm′′′′g → pmm′′′′ → cmm′′′′

Fig. 6.82
                                    

                                                  pmg′′′′  →  p m m ′′′′  →  c m m ′′′′     
      Fig. 6.83
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                                                                pb′′′′ gg → pb′′′′ gm → pc′′′′ gg 
Fig. 6.84
                                  

                                                pm′′′′g ′′′′  →  p m ′′′′m ′′′′  →  c m ′′′′m ′′′′
Fig. 6.85
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pb′′′′ gm → c′′′′mm → pb′′′′ gg
Fig. 6.86
                                   

                                               pb′′′′ mm → c′′′′mm → pb′′′′ gg
 Fig. 6.87
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Due to not-that-obvious color inconsistencies, the last two 
patterns are of the same pmg -like type! Our shifting process has 
produced five out of at most ten possible types corresponding to the 
ten combinations listed in 6.9.1: PP × PP (cmm), PR  × RP  (pc′′′′ mg), 
PP × RR (cmm′′′′), RP × RP (pc′′′′ gg), RR × RR (cm ′′′′m ′′′′). But this 50% rate 
of success is a bit too low in view of our experience with the other 
types! Is it possible that some or all of the remaining five 
combinations are in fact impossible?

6.9.3 Ruling out the non-obvious.  It turns out that another four 
of the combinations in 6.9.1 are impossible (PP  × PR , PP  × RP,      
PR × RR, RP × RR), leaving thus only one question mark around      
PR × PR. Let’s see for example why a situation such as PP × PR is 
impossible, using a version of the argument in 6.6.2 (figure 6.55): 

             

Fig. 6.88

Is the half turn (at) K color-preserving or color-reversing? In 
view of K = M2∗∗∗∗M 1 = M1∗∗∗∗M 2 (reflection M 1 (P ) followed by 
reflection M2 (P) or the other way around) and K = G2∗∗∗∗G1 (glide 
reflection G 1 (P ) followed by glide reflection G 2 (R )) we conclude 
that the half turn at K must be both  color-preserving and color-
reversing, which is certainly impossible . 
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So, the cmm  does not allow a ‘mixed’ combination of reflection 
and glide reflection in one direction and  a ‘pure’ combination in the 
other direction. Unlike in 6.6.3, this impossibility cannot be deduced 
from the Conjugacy Principle; it is solely a consequence of the 
pattern’s structure and the way its isometries are ‘weaved’  into 
each other. 

6.9.4 One more type! The question mark around PR × PR would 
not have been there at all were we blessed with photo memory: 
indeed the pattern in figure 6.2 has just what we were looking for, 
color-preserving reflections and  in-between color-reversing glide 
reflections in both directions! Such patterns are known as pc′′′′ mm.  

But here is another question: how could we possibly get a pc′′′′ mm 
out of those ‘root’ pg  patterns through our usual operations? This is 
something for you to wonder about as we are bidding farewell to our 
‘roots’: even though the p4m  types in section 6.12 may be viewed as 
special (‘square’) versions of the pmm , and likewise for p4g  
(section 6.11) and cmm  (as our last example on pc′′′′ mm  indicates), 
the pg excursion cannot go on for ever, as color inconsistencies and 
worse stand on our way...

6.9.5 Examples. First a few ‘triangles’: compare  with 6.8.3!

                pc′′′′ gg                     pc′′′′ mg                     cmm′′′′
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               pc′′′′ mm                     pc′′′′ mg                   cm′′′′m ′′′′

Fig. 6.89

And now a collection of examples in the spirit of 6.4.2, with or 
without color inconsistencies (and consequent reductions  of 
symmetry from cmm  to ‘lower’ types):

                                                                                         pc′′′′ m m
Fig. 6.90
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                                                                                          pc′′′′ mg
Fig. 6.91

                                                                                          cm ′′′′m ′′′′
Fig. 6.92
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                                                                                           pm′′′′
Fig. 6.93

cmm′′′′
Fig. 6.94
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pb′′′′ 2
Fig. 6.95

pc′′′′ gg
Fig. 6.96
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 pb′′′′ gm
Fig. 6.97

You should be able to derive more types out of the original cmm  
pattern of figures 6.90-6.97 using yet more imaginative colorings!

6.9.6 Symmetry plans. Notice the location and effect on color 
of rotation centers (determined  by that of (glide) reflection axes).

                 cmm                                               cm ′′′′m ′′′′
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                 cmm ′′′′                                              pc′′′′ m m

                 pc′′′′ mg                                                pc′′′′ gg

Fig. 6.98

A couple of remarks: the half turn centers found at the 
intersection of any two perpendicular glide reflection axes are 
‘products’ of any one of the two glide reflections and a reflection 
perpendicular  to it (as in the case of the pmg ), not  of the two 
glide reflections; and the length of the glide reflection vector is 
equal to the distance between two nearest half turn centers on a 
parallel to it (glide) reflection axis (as in the case of the pmg ).  

Finally, a ‘factorization’ of our cmm  types into simpler ones:

cmm = cm × cm, cm′′′′m ′′′′ = cm′′′′ × cm′′′′, cmm′′′′ = cm × cm′′′′,
pc′′′′ mm = pc′′′′ m  × pc′′′′ m , pc′′′′ mg = pc′′′′ m  × pc′′′′ g, pc′′′′ gg = pc′′′′ g × pc′′′′ g

You may also ‘factor’ the cmms using either pmms and pggs or, 
in resonance with the remarks made above, pmgs in both directions!
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6.10  p4 types (p4, p4′′′′ , pc′′′′ 4 )

6.10.1 A look at fourfold rotations. We begin with a picture:

Fig. 6.99

That is, a clockwise  900 rotation centered at R1 (mapping A to 
B) followed by a clockwise 900 rotation centered at R2 (mapping B 
to C) result into a 1800 rotation centered at K  (mapping A to C); 
and a clockwise 900 rotation centered at R1 (mapping A to B) 
followed by a counterclockwise  900 rotation centered at R 2 
(mapping B to D) result into a translation (mapping A to D). Figure 
6.99 offers of course illustrations rather than proofs (which are 
special cases of 7.5.1 and 7.5.2, respectively).

You can also use figure 6.99 ‘backwards’ to illustrate how the 
combination of a translation (mapping D to A) and a 900 rotation 
(mapping A to B) is another 900 rotation (mapping D to B).  

6.10.2 The lattice of rotation centers revisited. Figure 6.99 
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throws quite a bit of light into the lattice of rotation centers 
featured in figure 4.5. Indeed it is not a coincidence that we always 
get two  fourfold centers and one  twofold center in an isosceles  
right  triangle  (900-450-450) configuration: you can see this rather 
special triangle being formed by the composition of the two fourfold 
rotations in figure 6.99; and it is true that every  wallpaper pattern 
with 900 rotation is bound  to have 1800 rotation as well, with all 
the twofold centers ‘produced’ by fourfold centers as in figure 6.99.

6.10.3  Precisely three types. With all 1800 rotations fully 
determined by 900 rotations, and an interplay between fourfold 
rotations and translations (figure 6.99) fully reminiscent of the one 
between the pg ’s glide reflections and translations (figure 6.13) or 
the one between the p2 ’s half turns and translations (figure 6.44), it 
is easy to follow the approach in sections 6.2 (pg) or 6.5 (p2) and 
conclude without much effort that there exist at most  three p4  
types: p4  (all 900 rotations preserve  colors), p4 ′′′′ (all 900 
rotations reverse  colors), and pc′′′′ 4  (900 rotations of both  kinds). As 
usual, we need to show that such types do indeed exist:  

                 

               
                                                                                          p 4
Fig. 6.100

295



                      
                                                                                          p4 ′′′′
Fig. 6.101

                
                                                                        pc′′′′ 4
 Fig. 6.102
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We leave it to you to investigate the complex relationship 
between the p4-like patterns in figures 6.100-6.102 above and the 
p2-like patterns in figures 6.5, 6.39, and 6.40!

6.10.4 Examples. First a couple of ‘triangles’ and ‘windmills’:

                                p4′′′′                                      pc′′′′ 4
Fig. 6.103

Next, a rather complicated pc′′′′ 4 , offspring of a p4g  of which all 
reflections and glide reflections have been destroyed by coloring:

                                                                                         pc′′′′ 4
Fig. 6.104
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6.10.5 Symmetry plans. We use ‘straight’ and ‘slanted’ squares 
for the two  kinds  of fourfold centers (4.0.4), and dots for the 
twofold centers (included for reference only, as 900 patterns can be 
classified based solely  on the effect on color of their fourfold 
rotations).

           p4                                p4 ′′′′                              pc′′′′ 4

Fig. 6.105

Recall (4.0.3) that every fourfold center is also  a twofold center 
by way of double  application of the 900 rotation; this means that 
the resulting 1800 rotation is color-preserving: P  × P  = R  × R  = P . 
Observe that, by the same ‘multiplication’ rules, all ‘genuine’ 
twofold centers must be color-preserving in p4  and p4 ′′′′, but color-
reversing (P × R  = R) in pc′′′′ 4 : this follows from our remarks in 6.10.1 
and 6.10.2.

6.11  p4g types (p4g, p4′′′′g ′′′′m, p4′′′′g m ′′′′ , p4g′′′′m ′′′′) 

 
6.11.1 Studying the symmetry plan. Of course a p4g may be 

viewed as a ‘merge’ of a cmm  (‘vertical’-‘horizontal’ direction) and 
a pgg  (‘diagonal’ direction). This leads to a rather complex 
interaction between the two structures, severely limiting the 
number of possible two-colored p4g-like patterns and best 
understood by having a close look at the p4g ’s symmetry plan:
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Fig. 6.106

Depending on their vector’s direction, the diagonal glide 
reflections G 1 and G 2 produce four  distinct twofold  rotations, 
centered at A, B, C, D. (This relies on figure 6.54 and, primarily, on 
common sense: where else could the four centers be?) Of course B 
and D are centers for fourfold rotations, but, as pointed out in 
6.10.5, such centers are also centers for color-preserving  twofold 
rotations. A first consequence of this is that the pgg -like 
component of a p4g type can only be a pgg or a pg′′′′g′′′′: G1 and G2 must 
have the same effect on color, otherwise we get color-reversing 
twofold centers at B and D! Another consequence is that the cmm -
like component of a p4g type can only (and possibly) be a cmm  or a 
cm′′′′m ′′′′ or a pc′′′′ mg: by figure 6.54 again, M1 and G4 combined produce a 
color-preserving twofold center at D, and so do M 2 and G3; this 
means that horizontal/vertical glide reflections (G 4/G 3) must have 
the same  effect on color as vertical/horizontal reflections (M 1/M 2).                

A further analysis of the symmetry plan rules out the pc′′′′ mg as a 
possible cmm  ‘factor’. Indeed the Conjugacy Principle (and also a 
precursory remark in 4.11.2) tells us that the fourfold centers at B 
and D (reflected to each other by M1) must have the same effect on 
color, hence the twofold center at C, produced by a combination of 
two fourfold rotations (figure 6.99), must be color-preserving . 
But then the two reflection axes M1 and M2, which also produce the 
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twofold rotation at C, must both  be either color-preserving (cmm ) 
or color-reversing (cm ′′′′m ′′′′). (One may also appeal directly to the 
Conjugacy Principle: M1 and M2 must have the same effect on 
color because they are rotated to each other by a 900 rotation at D!) 

6.11.2 Precisely four types. We are already familiar with the 
p4g = cmm  × pgg (but see 6.11.3 for a ‘two-colored’ version), and 
we had in fact produced a p4′′′′g′′′′m  = cmm  × pg′′′′g′′′′ back in figure 6.10 
(color-reversing 900 rotations, color-reversing ‘diagonal’ glide 
reflections (pg ′′′′g ′′′′), color-preserving ‘vertical’-‘horizontal’ 
reflections and glide reflections (cmm )). One way to arrive at a 
p4 ′′′′gm ′′′′ = cm ′′′′m ′′′′ ×  pgg  is this: start with a ‘p4 ′′′′-unit’ like the one 
occupying the four central squares in figure 6.107, and then use 
color-reversing reflections to extend it to a full-fledged pattern:

                 

                                                                                        p4 ′′′′gm ′′′′ 
Fig. 6.107
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A variation on this approach, starting now with a ‘p4-unit’, 
yields the fourth type, p4g′′′′m ′′′′ = cm ′′′′m ′′′′ × pg′′′′g′′′′:

        

                                                                      p4g′′′′m ′′′′
Fig. 6.108

Of course this approach would lead to the other two types if we 
used color-preserving  mirrors around our starting unit. Notice 
also that, while there seem  to be two kinds of fourfold centers in 
figures 6.107 & 6.108, their effect on color is the same in each case: 
for the reflection that maps them to each other makes them to have 
the same effect on color (Conjugacy  Principle), even though it 
makes them look different (heterostrophic) at the same time. 

6.11.3 Examples. Another way of getting p4g -like two-colored 
patterns is to start with a ‘p4 -unit’ or a ‘p4 ′′′′-unit’ and then extend 
it to a full pattern using color-preserving  (by necessity) vertical-
horizontal translations  instead of reflections:

301



                                       p4g                                            p4 ′′′′g ′′′′m

                               p4g′′′′m ′′′′                               p4′′′′g m ′′′′

Fig. 6.109

6.11.4 Symmetry plans. Notice that a p4g-like pattern may be 
classified using only  the underlying ‘vertical’-‘horizontal’ c m m  
(and, more specifically, its reflections) together with the effect on 
color of the fourfold centers (all of which are of one  kind  and 
therefore represented by the same type of square dot): this remark 
has some practical significance, as it is often difficult to ‘see’ a p4g -
like pattern’s ‘diagonal’ pgg  glide reflection. Notice by the way that 
the g  or g ′′′′ in the ‘names’ listed below stands for the diagonal (pgg) 
glide reflection, not  for the vertical-horizontal (c m m ) glide 
reflection. And do not forget that “diagonal”, “vertical”, and 
“horizontal” have always a lot to do ... with the way we ‘hold’ the 
pattern in question!
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                     p4g                                          p4 ′′′′g ′′′′m

                   p4g ′′′′m ′′′′                                       p4 ′′′′gm ′′′′

Fig. 6.110

6.12  p4m types (p4m, p4′′′′m m ′′′′ , pc′′′′ 4mm, pc′′′′ 4gm, p4′′′′m ′′′′m, p4m′′′′m ′′′′)

6.12.1 Studying the symmetry plan. Fortunately (a lot of fun) or 
unfortunately (a lot of work), we need to repeat the ‘break down’ 
process we applied to the p4g  and its symmetry plan: that’s the only 
way to prove that there can only be six p4m -like two-colored 
patterns! So we start with a fresh look at the p4m ’s symmetry plan:
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Fig. 6.111

We see that the p4m  may be viewed as a ‘product’ of a ‘vertical’-
‘horizontal’ pmm  and a ‘diagonal’ cmm . Every two adjacent 
horizontal or vertical axes may  have opposite effect on color, but 
this is not possible for either any two parallel  diagonal reflection 
axes or any two parallel diagonal glide reflection axes (by the very 
structure of cm (m )-like patterns, see 6.4.4); moreover, every two 
perpendicular diagonal axes (such as G1, G2 or M3, M4, for 
example) must have the same effect on color by the Conjugacy 
Principle: indeed they are rotated  to each other by fourfold 
centers (such as A). We conclude, by revisiting 6.9.6 if needed, that 
the cmm  ‘factor’ could only (and possibly) be one of cmm , cm ′′′′m ′′′′, 
pc′′′′ mm , or pc′′′′ gg. Moreover, every horizontal and every vertical 
reflection axis intersecting each other at a fourfold  center 
(twofold center within the pmm ), such as M 1, M 5 at B or M 2, M 6 at 
D, must have the same effect on color (Conjugacy Principle again). 
Therefore the pmm  ‘factor’ could only (and possibly) be one of 
pmm, pm′′′′m ′′′′, or c′′′′mm (6.8.4).

Let’s now have a closer look at how the two types ‘merge’ into 
the p4m . The ‘genuine’ twofold center C is produced by the 
combination of a glide reflection and a reflection perpendicular to it 
within the cmm  ‘factor’ (G 1, M 4 or G 2, M 3), as  well  as  by the 
combination of two perpendicular reflections within the pmm  
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‘factor’ (M 1, M 2). The implication of this ‘weaving’  is that the two  
perpendicular  pairs  of diagonal (cmm ) and vertical-horizontal 
(pmm) axes producing the same genuine twofold center must be of 
same  combined  effect on color: in the context of figure 6.111, 
(M4, G1) and (M1, M2) could possibly be nothing but PP /PP , PP /RR , 
RR /PP , RR /RR (if C preserves colors) or PR /PR , RP /PR (if C 
reverses colors). (Recall (6.9.1, 6.8.1) that the letter order in the 
latter case is  crucial for c m m  types (reflection, glide reflection) 
but not  for p m m  types (reflection, reflection).) 

Converting our findings into ‘type multiplication’, we arrive at 
six possible combinations:

p4m = cmm × pmm, p4′′′′m ′′′′m = cmm × pm′′′′m ′′′′, 
p4′′′′mm′′′′ = cm′′′′m′′′′ × pmm, p4m′′′′m′′′′ = cm′′′′m′′′′ × pm′′′′m′′′′,
pc′′′′ 4mm = pc′′′′ mm × c′′′′mm, pc′′′′ 4gm = pc′′′′ gg × c′′′′mm 

6.12.2 Six types indeed. A good source of patterns verifying the 
five ‘new’ types above is chapter 5: employing the stacking process 
of chapter 4, we can often stack copies of a two-colored pmm2 -like 
border  pattern into a p4m -like two-colored wallpaper pattern:

 

      
                                                     pmm2 →  p 4 ′′′′m m ′′′′
Fig. 6.112

305



     
                                                          pm′′′′m ′′′′2  →  p 4 m ′′′′m ′′′′
Fig. 6.113      

    
                                                          pm′′′′m ′′′′2  →  p 4 ′′′′m ′′′′m
Fig. 6.114

By now you can probably tell that the process is somewhat 
‘unpredictable’: an ‘one-colored’ type (pmm2 , figure 5.31) led to a 
genuinely two-colored type (p4 ′′′′m m ′′′′, figure 6.112), while distinct 
representatives of the same type (pm ′′′′m ′′′′2), one of them also from  
figure 5.31, led to two distinct p4m  types (figures 6.113 & 6.114).
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We move on to get the remaining two p4m  types; the last one 
(figure 6.116) ‘requires’ a perfectly  shifted  stacking of yet 
another border pattern -- distinct from the one employed in figure 
6.115 despite being of the same type (p ′′′′mm2 ) -- from figure 5.31:

    
                                                           p′′′′m m 2  →  p c′′′′ 4 m m
Fig. 6.115

                                                                           p ′′′′mm2  →  pc′′′′ 4gm
Fig. 6.116
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6.12.3 Further examples. Our ‘triangles’ have now been 
superficially merged into ‘squares’; notice the ‘two-colored’ p4m :

                              p4m                                       p4′′′′m m ′′′′

                              p4′′′′m ′′′′m                                    p 4 m ′′′′m ′′′′

                              pc′′′′ 4mm                                    pc′′′′ 4gm
Fig. 6.117

6.12.4 Hidden glide reflections revisited. While color-reversing 
translations along reflection axes no longer matter (6.7.1), hidden 
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glide reflections are now upgraded thanks to the second of the next 
two pc′′′′ 4gm examples provided by Amber Sheldon (Spring 1998): 

 
                                                                                      pc′′′′ 4gm
Fig. 6.118

This example is useful because it tells you once again that some 
patterns must be viewed ‘diagonally’: that is, the cmm  direction 
(of in-between glide reflection) is vertical-horizontal rather than 
diagonal (as it has so far been the case with all our examples).

The next example is a clever variation on the previous one: all 
vertical-horizontal glide reflections are now inconsistent  with 
color; and so is every  other  diagonal reflection, but  the axes of all 
those diagonal reflections that are inconsistent with color do  work 
for diagonal glide  reflections (of vector shown below) that are  
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consistent with color! As a consequence of all this, we are now 
back  to vertical-horizontal viewing and diagonal cmm  subpattern 
(built, remarkably, on underlying structure of pmm  type):  

      
       pc′′′′ 4gm   

Fig. 6.119

6.12.5 Symmetry plans. The two pc′′′′ 4gm  patterns of 6.12.4 are 
fully indicative of the pitfalls  associated with the classification 
of p4m-like patterns. We suggest the following way of ‘reading’ the 
symmetry plans listed below, particularly helpful in distinguishing 
between p4 ′′′′m ′′′′m  and p4 ′′′′mm ′′′′: first decide what the cmm  direction 
(of in-between  glide  reflection) is and determine what the c m m  
type is, then  work on the pmm  ‘factor’, and finally ‘merge’ the two 
factors following the p4m ’s ‘factorizations’ at the end of 6.12.1. 
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                   p4m                                            p4 ′′′′mm ′′′′

                 p 4 ′′′′m ′′′′m                                p4m′′′′m ′′′′

                 pc′′′′ 4mm                                pc′′′′ 4gm 

Fig. 6.120
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Predictably, fourfold centers preserve  colors precisely when 
they lie at the intersection of four  reflection axes of same  effect 
on color. Of course it is only in the last two types that different 
kinds of fourfold centers (not mapped to each other by any of the 
pattern’s isometries) have opposite effect on color. (Again we have 
not marked the effect on color of the twofold centers, which are not 
essential for classification purposes; and that effect is in any case 
easily determined (within the p m m  ‘factor’), as twofold centers lie 
at the intersection of two  reflection axes only . )

6.13  p3 types (p 3 )

6.13.1 No threefold color-reversing rotations. The assumption 
that there exists a 1200 color-reversing rotation leads to an 
immediate contradiction : starting with a black point A, its image  
must be grey, then the image of the image must be black, and finally 
the third image, which is no other than the departing point A, must 
be grey! More generally, the same argument shows that no ‘oddfold’ 
rotation (in a finite pattern) can be color-reversing.

6.13.2  Farewell to color-reversing translations. As we show in 
section 7.6, and have indicated in 6.10.1 for the special case of 900, 
the combination of a rotation and a translation leads to a rotation of 
same  angle  but different center. It follows from 6.13.1 and the      
P  × R  = R  rule that no  wallpaper pattern with 1200 rotation (such as 
the p3  or actually every type we are going to study from here on) 
can have color-reversing  translation.

6.13.3 Only one type. In the absence of (glide) reflection, 6.13.1 
and 6.13.2 imply that the only possible type in the p3  group is the 
p3  itself. Below we offer an example of a ‘two-colored’ p3  pattern. 
Notice the three different kinds of 1200 rotation centers (denoted 
by dots of different sizes): no two centers of different kind are 
mapped to each other by either a rotation or a translation. Notice 
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also the rhombuses  formed by rotation centers of the same kind: 
their importance will be made clear in later sections and chapters! 

                                                                                             p3
Fig. 6.121

The pattern in figure 6.121 may not be the simplest two-colored 
p3  in the world, but it should be compared to the p31m  pattern in 
figure 6.122 below in order to illustrate a basic symmetry principle: 
less symmetry is often harder to achieve than more  symmetry!

6.14  p31m types (p31m, p31m ′′′′)

6.14.1 ‘Products’ of three cms. The p31m  has reflection and in-
between glide reflection in three directions, hence it may be viewed 
as the ‘product’ of three cms. Therefore all reflections within each 
one of the three directions must have the same effect on color and 
likewise all glide reflections within each of the three directions 
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must have the same effect on color (6.4.4). Moreover, every two 
axes (be them glide reflection axes or reflection axes) of non-
parallel direction must have the same effect on color: indeed any 
two such axes (intersecting each other at 600) produce a 1200 
rotation  (see sections 7.2, 7.9, and 7.10); but this  rotation must  
leave the pattern invariant, therefore it must  be color-preserving 
(6.13.1), so that the two axes must have the same  effect on color. 

What all this means is that, in every p31m -like wallpaper 
pattern, all axes -- be them reflection or glide reflection axes -- 
must have the same effect on color. That is, either all axes 
preserve colors (cm  ×  cm  ×  cm  = p31m ) or all axes reverse 
colors (cm ′′′′ × cm ′′′′ × cm ′′′′ = p31m ′′′′): no other possibilities!

6.14.2 Examples. First a ‘two-colored’ p31m :

                                                                                         p31m
Fig. 6.122

We have marked the two  different kinds of rotation centers by 
dots of different sizes. If you are at a loss trying to determine the 
color-preserving  reflection axes, simply connect the smaller  
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dots! As for glide reflection axes (not  crucial for classification 
purposes), those pass not only half way between every two adjacent 
rows of on-axis  centers (smaller dots), but also half way between 
every two adjacent rows of off-axis  centers (larger dots).

Next comes an example of a p31m′′′′:

                                                                                          p31m ′′′′
Fig. 6.123

As in the case of figure 6.122, color-reversing reflection axes 
lie on lines formed by the smaller dots. And once again each on-axis 
center (smaller dot) is ‘surrounded’ by six off-axis centers (larger 
dots) symmetrically placed on the vertices of an invisible hexagon .

Finally, an example of a p31m ′′′′, ‘offspring’ of figure 4.69:
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                                                                                      p31m ′′′′
Fig. 6.124

6.15  p3m1 types (p3m1, p3m′′′′)

6.15.1 Three cms again. As we indicated in 4.17.4, and will 
analyse further in chapters 7 and 8, the difference between the 
p31m  and p3m1  types is rather subtle, having in fact more to do 
with the glide reflection vector’s length and the distances between 
glide reflection axes and rotation centers than with ‘symmetry plan’ 
structure (and the off-axis centers of the p31m  specifically). It is 
clear in particular that both  the p3m1  and the p31m  are ‘products’ 
of three cm  patterns, and the entire p31m  analysis of 6.14.1 is also 
applicable to the p3m1 word by word. We conclude again that, 
depending on the (glide) reflections’ uniform  effect on color, there 
can only be two p3m1 -like patterns, p3m1  = cm  × cm  × cm  (all 
(glide) reflections preserve colors) and p3m ′′′′ = cm ′′′′ × cm ′′′′ × cm ′′′′ (all 
(glide) reflections reverse  colors).

6.15.2 Examples. We begin with a ‘two-colored’ p3m1 :
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                                                                                        p3m1
Fig. 6.125

Next, a rather ‘exotic’ p3m ′′′′ that probably celebrates the sacred 
concept of hexagon more than any other figure in this book:
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                                                                                            p3m ′′′′
Fig. 6.126
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We are back to three kinds of rotation centers (p3  structure). 
(This is not obvious for the p3m ′′′′ in figure 6.126, which at first 
glance seems  to have only two kinds of threefold centers: do you 
see why the ‘hexagon middle’ centers are of two kinds?) As in 
figures 4.71 & 4.73, reflection axes are defined by any three 
coll inear  centers of different  kind.  

Finally, let’s ‘dilute’ (4.17.1) the p31m ′′′′ pattern in figure 6.124 
in order to get a ‘triangular’ p3m ′′′′:

                                                                                       p3m ′′′′
Fig. 6.127

Observe here that rotating all triangles above about their center 
by any angle other than 600 or 1200 or 1800 turns the p3m ′′′′ into a 
p3 ; exactly the same observation holds for the triangular p31m ′′′′ of 
figure 6.124 (and in fact for all p3m1 -like or p31m -like patterns)! 

6.15.3 How about symmetry plans? You have probably noticed by 
now that we have not provided symmetry plans for p3, p31m , and 
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p3m1  types. They are not that crucial, because the classification is 
very easy within each type (two cases at most). Anyway, you will 
find symmetry plans for all sixty three two-colored types at the end 
of the chapter (section 6.18); before that, look also for the p31m  
and the p3m1  ‘symmetry plans’ (inside the p6m) in section 6.17!

6.16  p6 types (p6, p6′′′′)

6.16.1  The lattice of rotation centers. Let us first explain the 
arrangement of rotation centers (twofold, threefold, and sixfold) in 
600 wallpaper patterns (both p6-like and p6m -like), shown already 
in figure 4.5 (‘beehive’), by way of the following demonstration:

Fig. 6.128

We see that a clockwise 1200 rotation (mapping A to B) 
followed by a clockwise  600 rotation (mapping B to C) results into 
a 1800 rotation (mapping A to C). While a complete proof of this 
will be offered only in 7.5.4, figure 6.128 is rather convincing; 
especially in view of the fact that the three rotation centers are 
located at the three vertices of a 90 0-600-300  triangle, exact ly  
as in figure 4.5! 

You should use a demonstration similar to figure 6.128 in order 
to verify that the combination of two clockwise 600 rotations is a 
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clockwise 1200 rotation, that the combination of a 1800 rotation and 
a clockwise 1200 rotation is a counterclockwise 600 rotation, etc.

6.16.2 One kind of sixfold rotations at a time! Another fact 
valid for both p6 -like and p6m -like types is that no  600 wallpaper 
pattern can possibly have both color-preserving and color-reversing 
sixfold centers. Indeed, should two 600 rotations of opposite  effect 
on color coexist in a pattern, their combination would generate a 
color-reversing 1200 rotation (see section 7.5 or proceed as in 
figure 6.99), which is impossible (6.13.1).

6.16.3 Only two types. In the absence  of (glide) reflection and 
color-reversing translation (6.13.2), and in view of 6.16.2 above, we 
conclude at once that only two p6-like types are possible: one with 
only  color-preserving  600 rotations (p6 ) and one with only  
color-reversing  600 rotations (p6 ′′′′); no ‘mixed’ type like pb′′′′ 2  
(1800) or pc′′′′ 4  (900) is possible in the 600 case!

Of course all 1200 rotations in either the p6  or the p6 ′′′′ are 
color-preserving as usual. Then figure 6.128, together with the        
P × P = P and P × R = R rules, leads to an observation that may at 
times help you distinguish between p6  and p6 ′′′′: all 1800 rotations in 
a p6  pattern are color-preserving, and all 1800 rotations in a p6 ′′′′ 
pattern are color-reversing. (Sometimes you may even miss the 
sixfold rotation and see only the twofold one, thus misclassifying a 
p6 ′′′′ or a p6 as a p2 ′′′′ or a p2, respectively; more likely, you may only 
see the threefold rotation and misclassify a p6  or a p6 ′′′′ as a p3 !) 

These remarks make it clear that the classification process 
within the p6  type is rather simple, and the need for symmetry 
plans drastically reduced: therefore we follow the example set by 
the three previous sections, simply exiling the p6  symmetry plans 
to the ‘review’ section 6.18. 

6.16.4  Examples. First a ‘two-colored’ p6  (with sixfold, 
threefold, and twofold centers represented by hexagons, triangles, 

321



and dots, respectively):

                                                                                           p 6
Fig. 6.129 

The 900-600-300 triangles of figure 6.128 are certainly 
ubiquitous. There are many other remarks one could make with 
regard to the positioning of the three kinds of rotation centers. One 
non-trivial remark is that every two rotation centers corresponding 
to equal rotation angles are conjugate in the sense of 6.4.4: at 
least one of the pattern’s isometries (in fact a rotation) maps one 
to the other; in particular, this fact provides another explanation for 
the uniform effect on color within each kind of rotation. A related 
remark concerns the perfectly hexagonal arrangement of both 
twofold and threefold centers around every sixfold center. And so on.

We leave it to you to check that the p6  pattern in figure 6.129 
may be split into two identical p6 ′′′′ patterns the threefold centers of 
which are sixfold centers of the original p6  pattern and vice versa! 
Further, here are two similar yet distinct p6 ′′′′ patterns (the second 
of which is sum of two copies of the p31m ′′′′ pattern in figure 6.123):  
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                                                                                            p6 ′′′′
Fig. 6.130

                                                                                            p6 ′′′′
Fig. 6.131
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6.17  p6m types (p6m, p6′′′′m m ′′′′ , p6′′′′m ′′′′m, p6m′′′′m ′′′′)

6.17.1 A symmetry plan in two parts. We begin with a very 
visual introduction to the most complex of wallpaper patterns:

Fig. 6.132

Fig. 6.133
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Two pictures are worth two thousand words, one may say! All we 
did was to ‘analyse’ a typical, hexagon-based p6m  pattern into one 
‘p3m1’  pattern (with reflection axes passing through the p6m ’s 
threefold centers and hexagons’ edges, figure 6.132) and one 
‘p31m’  pattern (with reflection axes avoiding the p6m ’s threefold 
centers and passing through the hexagons’ vertices, figure 6.133). 
This is in fact the ‘game’ we have been playing throughout most of 
this chapter, and some ‘cheating’ was always involved! In the 
present case, for example, we do know that the ‘off-axis’ centers in 
figure 6.133 (p31m  pattern) do  in fact lie on the reflection axes of 
the p3m1  pattern (figure 6.132); and that the ‘distinct’ on-axis 
centers of the p3m1  pattern in figure 6.132 (small and medium 
sized dots) are in fact mapped  to each other by the p31m ’s 
reflection axes (figure 6.133). Moreover, the largest dots in both 
figures represent rotation centers for 600 rather than just 1200, and 
so on. At the same time, the ‘lower’ patterns (p3m1 , p31m ) 
included in the ‘higher’ pattern (p6m ) do determine  its structure: 
for example, wherever two reflection axes (one from each 1200 
subpattern) cross each other at a 300 angle -- see figures 6.132 and  
6.133 -- they do ‘produce’ a 600 rotation center (7.2.2). Conversely, 
the p6m ’s properties are inherited by the p3m1  and the p31m  
contained in it: for example, we may always ‘use’ a sixfold center as 
a threefold one; after all, a double application of a 600 rotation 
produces a 1200 rotation (4.0.3). In brief, our reduction  of the 
study of complex structures to that of simpler ones employed so far 
is sound , and we will appeal to it for one last time in 6.17.3.  

6.17.2 A complex structure indeed. Figures 6.132 and 6.133 
together  make it clear that the p6m ’s sixfold  centers lie at the  
intersection of six  reflection axes and that its threefold  centers 
lie at the intersection of three  reflection axes. Missing from both 
figures (and from 1200 patterns!) are the p6m ’s twofold  centers, 
which nonetheless exist, located half way  between every two 
adjacent hexagons; they are in fact located at the intersection of 
one  reflection axis and two  glide reflection axes perpendicular  to 
hexagons’ edges (figure 6.132) and at the intersection of one 
reflection axis and two  glide reflection axes parallel to hexagons’ 
edges (figure 6.133). We conclude that the p6m ’s twofold centers lie 
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at the intersection of two  reflection axes and four  glide reflection 
axes, still adhering to the ‘p6 rule’ set by figure 6.128, and in full 
agreement with figure 4.5 as well. See also figure 8.42! 

6.17.3 Only four types! Given the p6m ’s complexity and what 
has happened in the case of other complex types (such as the pmg or 
the p4m), you would probably expect a long story here, too, right? 
Well, sometimes we get a break, rather predictable in this case: 
since the p6m  is the ‘product’ of two simple  (in terms of two-color 
possibilities) types, its study may not be that complicated after all. 
Indeed there can be at most  two × two = four types, all of which do  
in fact exist (6.17.4): p6m  = p3m1  × p31m  (both the p3m1 ’s and 
the p31m ’s (glide) reflections preserve colors), p6 ′′′′mm ′′′′ = p3m1  × 
p31m ′′′′ (the p3m1 ’s (glide) reflection preserves colors and the 
p31m ’s (glide) reflection reverses colors), p6 ′′′′m ′′′′m  = p3m ′′′′ × p31m  
(the p3m1 ’s (glide) reflection reverses colors and the p31m ’s 
(glide) reflection preserves colors), p6m ′′′′m ′′′′ = p3m ′′′′ × p31m ′′′′ (both 
the p3m1 ’s and the p31m ’s (glide) reflections reverse colors).

Our analysis so far is rather effective yet not terribly user-
friendly. Taking advantage of the fact that one of the p31m ’s (glide) 
reflection’s directions is ‘horizontal’ (figure 6.133) and that one 
of the p 3 m 1 ’s (glide) reflection’s directions is ‘vertical’  (figure 
6.132), we capture the preceding paragraph’s findings in a simple 
diagram (and effective substitute for symmetry plan) as follows:

         p6m                p6 ′′′′m ′′′′m           p6′′′′m m ′′′′          p6m′′′′m ′′′′

Fig. 6.134

So, once you decide that a two-colored pattern belongs to the 
p6m  family (600 rotation plus ‘some’ reflection), locate all sixfold 
centers, pick four of them arranged in a (not necessarily ‘vertical’) 
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rhombus configuration as above, and then simply determine the 
effect on color of that rhombus’ short diagonal (p31m ) and long  
diagonal (p3m1). Notice that you do not need at all the effect on 
color of the p6m ’s sixfold centers (represented by dots in figure 
6.134), but you may still use them to check  your classification: they 
of course have to preserve colors (6) in the cases of p6m  and 
p6m ′′′′m ′′′′, and reverse colors (6′′′′) in the cases of p6′′′′mm ′′′′ and p6′′′′m ′′′′m . 

6.17.4 Examples. First a p6′′′′mm ′′′′ and a p6m ′′′′m ′′′′:

                                                                                         p6 ′′′′mm ′′′′                 
Fig. 6.135

We indicate two rhombuses of sixfold centers, one vertical and 
one non-vertical: the process is the same for both cases, the only 
thing that matters is the correct identification of the long  and 
short diagonals. Make sure you can locate all the other isometries: 
threefold and twofold centers, in-between glide reflections, etc.
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                                                                                        p6m ′′′′m ′′′′
Fig. 6.136

In this example, closer than you might think to the previous one, 
we see that there is no vertical rhombus of sixfold centers. But we 
can still classify the pattern, using for example the horizontal  
rhombus at the bottom: both its diagonals reverse colors.

A slight yet necessary modification of the two-colored hexagons  
(and not only!) leads to examples of the remaining two p6m  types, 
p6 ′′′′m ′′′′m  and (‘two-colored’) p6m . This time there is only one 
rhombus of sixfold centers shown per example: 
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                                                                      p6′′′′m ′′′′m
Fig. 6.137

                                                                         p6m                        
 Fig. 6.138
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Finally, some triangles inside the hexagons:

                                                                                       p6 ′′′′m ′′′′m

                                                                                       p6m ′′′′m ′′′′
Fig. 6.139
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6.17.5 Reduction of symmetry revisited. You must have noticed 
that we provided no ‘triangular’ example of a p6 ′′′′mm ′′′′ in figure 6.139. 
While we leave it to you to decide whether or not such a particular 
example is possible, we compensate with the following variation: 

                                                                                     pc′′′′ mg 
Fig. 6.140

What happened? Quite simply, our coloring has rendered all the  
p6m  isometries but the ones shown in figure 6.140 inconsistent 
with color. More specifically, only one  direction of (glide) reflection 
has survived within each of the two 1200 patterns hidden behind the 
p6m . As a result, all sixfold and threefold rotations are gone, but 
the twofold ones are left intact; to be more precise, all the sixfold 
centers have been ‘downgraded’ to twofold ones. It is certainly not 
difficult now to classify this ‘fallen’ pattern as a c m m -like type. 

 
The p6m  is a type that can generate many two-colored types (in 

all groups save for 900) by way of color inconsistency (just like the 
p4g of figure 4.57 has produced several 1800 and 3600 types). You 
should experiment on your own and explore its rich underground.
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6.18  All sixty three types together (symmetry plans)

6.18.1 Reading and using the symmetry plans. As in section 
4.18, we split the seventeen families of two-colored wallpaper 
patterns into five groups  based on the angle of smallest rotation, 
indicating the ‘parent types’ within each group in parenthesis; but 
the descriptions of the various patterns and types here are going to 
be visual rather than verbal, based on the symmetry plans developed 
throughout this chapter. As in section 5.9, isometries inconsistent 
with color are discarded: there are no  Is in the symmetry plans!  

In what follows, and as in the rest of the book, solid lines stand 
for reflection  axes and dotted  lines stand for glide  reflection  
axes; once again, however, space limitations dictate the omission of 
all the glide reflection vectors and most translation vectors. 
Twofold, threefold, fourfold, and sixfold rotations are represented 
by dots, triangles, squares, and hexagons, respectively.

Recall at this point that all 1200 rotations preserve colors 
(6.13.1) and that all reflections and glide reflections in two-colored 
1200 patterns must have the same effect on color (6.14.1): therefore 
in the respective symmetry plans a P  or R  to the symmetry plan’s 
lower left or right indicates that all axes preserve colors or that 
all axes reverse colors, respectively. Along the same lines, rather 
than marking with a P  or R , or even showing, every single (glide) 
reflection axis in each of the four p6m  types, we limit ourselves to 
a single rhombus formed by sixfold centers (in the spirit of 6.17.3); 
a single unmarked p6m  symmetry plan is shown in full.

Keep in mind that a symmetry plan not only provides the answer 
(as to what type a given two-colored wallpaper pattern belongs to), 
but it also may well lead to the answer; it shows, for example, how 
rotation centers are positioned with respect to (glide) reflection 
axes and vice versa: in some cases you may first locate the rotation 
centers, in other cases you may first find the (glide) reflection axes.      
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(I) 3600 types (p1, pg, pm, cm) 

                       p1                              pb′′′′ 1

               

            pg                              pg ′′′′                            pb′′′′ 1g    

           pm                       pm′′′′                       pb′′′′ 1 m

           p ′′′′m                             pb′′′′ g                            c ′′′′m
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                         cm                              c m ′′′′

                                    
                
                              pc′′′′ g                                pc′′′′ m  

                    

(II) 1800 types (p2, pgg, pmg, pmm, cmm)

          p2                             p2 ′′′′                            pb′′′′ 2

        pgg                             pgg ′′′′                           pg ′′′′g ′′′′
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            pmg                         pb′′′′ mg                         pmg ′′′′

         pm′′′′g                          pb′′′′ gg                         pm ′′′′g ′′′′

          pmm                        pb′′′′ mm                       pmm ′′′′

          c′′′′mm                  pb′′′′ gm                    pm′′′′m ′′′′

335



                 cmm                                                 cm′′′′m ′′′′

                cmm ′′′′                                                pc′′′′ m m

                pc′′′′ mg                                       pc′′′′ gg
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( III) 900  types (p4, p4g, p4m)

           p4                       p4′′′′                      pc′′′′ 4

                     p4g                                          p4 ′′′′g ′′′′m

                   p4g ′′′′m ′′′′                                       p4 ′′′′gm ′′′′
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               p4m                                  p4′′′′m m ′′′′

                 p 4 ′′′′m ′′′′m                                p4m′′′′m ′′′′

                 pc′′′′ 4mm                                pc′′′′ 4gm 
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(IV-V) 1200  (p3, p31m, p3m1) & 600  (p6, p6m) types  

          p6                       p3                        p6′′′′

              p31m                                    p31m′′′′

         

             p3m1                                    p3m′′′′
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            p6m                                       p6′′′′m ′′′′m

                    

         p6m′′′′m ′′′′                                        p6′′′′m m ′′′′

                                                                                               
first draft: winter 2000                              © 2006 George Baloglou
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 2006 George Baloglou                             first draft: summer 2001

CHAPTER 7

COMPOSITIONS OF ISOMETRIES

7.0  Isometry ‘hunting’

7.0.1 Nothing totally new. Already in 4.0.4 we saw that the 
composition (combined effect) of a rotation followed by a 
translation is another rotation, by the same angle but about a 
different center. And we employed this fact (in the special case of 
1800 rotation) in 6.5.3 (‘visual proof’  in figure 6.44) in our study 
of two-colored p2  patterns. In fact we did run into several 
compositions of isometries in chapter 6: for example, figure 6.54 
demonstrated that the composition of two perpendicular glide 
reflections is a 1800 rotation; and we encountered instances of  
composition of two rotations in figures 6.44, 6.99, and 6.128. 

Speaking of glide reflection, recall that its definition (1.4.2) 
involves the commuting  composition of a reflection and a 
translation parallel to it. Moreover, we also pointed out in 1.4.2 that, 
in the composition of a reflection and a translation non-parallel to 
each other, whatever isometry that might be, the order  of the two 
isometries does matter (figure 1.32). And we did indicate in figure 
6.13 that the composition of a glide reflection (hence reflection as 
well) followed by a translation is a new glide reflection (about an 
axis parallel to the original and by a vector of different length).

7.0.2 ‘No way out’. Of course the most important point made in 
1.4.2, if not in the entire book, is that the composition I2∗∗∗∗ I1 of every 
two isometries I1, I2 must again be an isometry: indeed the distance 
between every two points P, Q is equal, because I1 is an isometry, to 
the distance between I1(P) and I1(Q); which is in turn equal, because 
I2 is an isometry, to the distance between I2(I1(P)) = I2∗∗∗∗ I1(P) and 
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I2 (I1(Q)) = I2∗∗∗∗ I1(Q). In particular, the composition of every two 
isometries of a wallpaper pattern must be an isometry of it: this 
turns its set of isometries into a group . (More on this in chapter 8!)   

So we do know that the composition I2∗∗∗∗ I1 of any two given 
isometries I1, I2 is again an isometry. Since (section 1.5) there exist 
only  four  possibilities for planar isometries (translation, rotation, 
reflection, glide reflection), determining I2∗∗∗∗ I1 should in principle be 
relatively simple. On the other hand, our remarks in 7.0.1 and overall 
experience so far indicate that there may after all be certain 
practical difficulties: formulas like the ones employed in chapter 1 
may be too complicated for the mathematically naive (and not only!), 
while visual ‘proofs’ like the ones you saw throughout chapter 6 are 
not rigorous enough for the mathematician at heart. Therefore we 
prefer to base our conclusions in this chapter (and study of the ten 
possible combinations of isometries) on solid geometrical  proofs : 
those are going to be as precise as algebraic proofs are, relying on 
the directness of pictures at the same time.

7.0.3 A ‘painted’ bathroom wall. Before we provide a detailed 
study of all possible combinations of isometries (sections 7.1-7.10), 
we present below a more ‘empirical’ approach. Employing a  
‘standard’ coloring of the familiar bathroom wall we seek to 
‘guess’ -- ‘hunt’  for, if you like -- the composition T∗∗∗∗R 0 (clockwise 
900 rotation followed by diagonal SW-NE translation, see figure 7.1) 
already determined in 4.0.4, dealing with other issues on the way. 
(The coordinate system of figure 4.3 is absent from figure 7.1, and 
the lettering/numbering of the tiles has given way to coloring.) 

So, why the colors? First of all they help us, thanks to the 
maplike coloring, distinguish between neighboring tiles and keep 
track of where each tile is mapped under the various isometries of 
the tiling (and their compositions). Moreover, since the coloring is 
consistent, if the composition in question sends, say, one  red tile 
to a green tile, then we know that it must send every  red tile to 
some green tile: that helps us ‘remember’ (and even decide) where 
specific tiles are mapped by the ‘unknown’ isometry-composition (of 
the two isometries that we need to determine) without having to 
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‘keep notes’ on them. (All this assumes that you will take the time 
to color the tiles as suggested in figure 7.1, of course; but you do 
not have to, as long as you can keep track of where your tiles go!) 

Most important, the colored tiles will help you rule out many 
possibilities. To elaborate, let’s first look at T∗∗∗∗R 0 ’s color  effect : 

  R0   T   T∗R0 

B →→→→  R R →→→→  G B →→→→  G
Y →→→→ G G →→→→  R Y →→→→  R
R →→→→  Y Y →→→→  B R →→→→  B
G →→→→  B B →→→→  Y G →→→→  Y 

In other words, all we did was to rewrite T∗∗∗∗R0 (in the language 
of color permutations) as (RG)(BY)∗∗∗∗(BRYG) = (BGYR). Now there 
exist many isometries whose effect on color is (BGYR), such as the 
four 900 rotations around the red (R ) square -- two of them (R1, R2) 
counterclockwise and two of them clockwise -- and the four 
diagonal glide reflections in figure 7.1: which one of these  
isometries, if any, is T∗∗∗∗R 0?   

           

   
Fig. 7.1
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Well, before we decide what T∗∗∗∗R0 is, let’s quickly observe what 
it cannot  possibly be: since all translations, reflections, vertical or 
horizontal glide reflections, 1800 rotations, and 900 rotations of 
first kind (i.e., centered in the middle of a tile) produce a color 
effect equal to either a product of two 2-cycles or a 2-cycle or the 
identity P  (instead of a 4-cycle like (BGYR)), none of these 
isometries could possibly be T∗∗∗∗R0. (For some examples, notice that 
the vertical reflection passing through R 0 is (BG)(YR) , the left-to-
right glide reflections passing through R0 are either (BY)(GR)  or 
(BR)(GY) , minimal vertical translation is (BR)(GY) , 900 rotation 
about the center of any red or green square is (BY), vertical or 
horizontal reflections passing through such centers are P , etc.) So, 
the only possibilities left are the ones that figure 7.1 ‘suggests’.

Now many students would naturally look at the outcome that we 
ruled out in 4.0.4, that is R1. To be more precise, at 4.0.4 we looked 
at clockwise  900 rotation at R 1 (the translation of clockwise 900 
R0 by T), which we can now rule out at once: its color effect is 
(BRYG), not T∗∗∗∗R0’s (BGYR). But how about counterclockwise 900 
rotation at R 1, whose color effect is (BGYR) , after all? Well, 
looking (figure 7.1) at the yellow tile labeled #1, we see that R 0 
takes it to the green tile directly south of it, which is in turn 
mapped by T  to the red tile labeled #1′ (figure 7.1); that’s exactly 
where counterclockwise R 1 moves tile #1, so it is tempting  to 
guess that it equals T∗∗∗∗R 0: after all, the two isometries seem  to 
agree not only in terms of color, but position, too! Well, the 
temptation should be resisted: for example, T∗∗∗∗R0 moves the red tile 
#2 (formerly #1′) to the blue tile #2′ (by way of the yellow tile at 
the bottom center of figure 7.1), but counterclockwise R1 maps #2 
to the blue tile directly north of it: if two isometries disagree on a 
single tile they simply cannot be one and the same.

So, are there any other ‘good candidates’ out there? Notice that 
counterclockwise R2 agrees with T∗∗∗∗R0 on #2, but not #1, while G2 
agrees with T∗∗∗∗R0 on #1, but not #2. More promising is G1, which 
agrees with T∗∗∗∗R0 on both #1 and #2: shouldn’t the agreement on 
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two  tiles allow us to conclude that these two isometries are equal? 
Well, at this point you need to go back to 3.3.4, where we discussed 
how and why “every isometry on the plane is uniquely determined by 
its effect on any  three  non-coll inear  points ”: replace points by 
tiles, and surely you will begin to suspect that G1 may not be the 
right answer after all; indeed this is demonstrated in figure 7.2, 
where we see that the blue tile #3 is mapped to a green tile #3′ by 
T∗∗∗∗R0 but to a green tile #3″ by G1.  

   

Fig. 7.2

Now a closer look at figure 7.2 reveals that G1, and, more 
generally, any glide reflection, had no chance at all: indeed, looking 
at the tile trio 123  and its image 1 ′′′′2 ′′′′3 ′′′′, we see that they are 
homostrophic, hence only a rotation could possibly work! But we 
have already tried a couple of rotations and none of them worked! 
Well, if you are about to give up on trial-and-error, if you feel lost 
in this forest of tiles and possibilities, chapter 3 comes to your 
rescue again: simply determine the center of a rotation that maps 
the centers  of tiles #1, #2, #3 to the centers of the tiles #1′, #2′, 
#3 ′; this is in fact done in figure 7.3, where the rotation center is 
determined as the intersection of the three perpendicular 
bisectors 11′, 22′, and 33′. (Of course just two  perpendicular 
bisectors would suffice, as we have seen in 3.3.5). 
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Fig. 7.3

So, it becomes clear after all that a clockwise 900 rotation 
maps the tile trio 123  (NW-SE shading) to the tile trio 1 ′′′′2 ′′′′3 ′′′′ (NE-
SW shading); that rotation has to be T∗∗∗∗R0, and its center is located 
‘between’ the three centers R0, R1, and R2 (all indicated by a black 
square in figure 7.3). We could very well have made the right guess 
earlier, but the chapter 3 method illustrated in figure 7.3 can 
always  be applied after the first few guesses have failed! (An extra 
advantage is the replacement of D4 sets (squares) by D1 sets (trios 
of non-collinear squares), which facilitates isometry recovery.)

7.0.4 Additional examples. In figure 7.4 we demonstrate the 
determination of R0∗∗∗∗G1 and G1∗∗∗∗R0, where R0 is again a 900 
clockwise rotation. In the case of R 0∗∗∗∗G 1, the color effect is just the 
identity P = (BRYG)∗∗∗∗(BGYR): the details are as in 7.0.3 above. That 
immediately rules out all the rotations (save for one type of 1800 
rotation revealed towards the end of this section) and ‘off-tile-
center’ reflections: none of those isometries, in the case of the 

346



particular tiling and coloring, always, may preserve all the colors; 
less obviously, the same is true of diagonal glide reflections. What 
could it be, then? Working again with individual tiles #1, #2, and #3 
(figure 7.4), we see them mapped by R0∗∗∗∗G1 to the tiles #1′, #2′, and 
#3 ′: the two tile trios 123  and 1 ′′′′2 ′′′′3 ′′′′ are heterostrophic , hence 
the outcome must be a ‘hidden’  glide reflection -- one of those 
glide reflections, first mentioned in 6.3.1, employing one of the 
tiling’s reflection  axes  and one of the tiling’s translat ion  
vectors. Either by applying the procedures of chapter 3 -- as in 
figure 7.3, but using midpoints instead of bisectors -- or by simple 
inspection, we find out that R0∗∗∗∗G 1 is indeed the hidden vertical 
glide reflection denoted in figure 7.4 by MG ′′′′: the importance of 
hidden glide reflections warrants the use of a separate notation!

Fig. 7.4

A similar analysis, employing the tile trios 123  and 1″″″″2″″″″3″″″″ , 
shows G1∗∗∗∗R0 to be MG″″″″ , a horizontal hidden glide reflection (figure 
7.4): rather predictably, R0∗∗∗∗G1 and G1∗∗∗∗R0 are differently positioned 
isometries of exactly the same kind. Notice the importance, in each 
case, of having used three non-collinear tiles: had we used only tiles 
#1 and #2 for R0∗∗∗∗G1, or #2 and #3 for G1∗∗∗∗R0, we would have 
‘concluded’ that those glide reflections were mere translations!

Having seen the importance of order (of the two isometries) in 
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combining isometries, we turn now to the relevance of angle 
orientation: we investigate, in figure 7.5, the compositions R 3

 +∗∗∗∗G1 
and R3

 −−−−∗∗∗∗G1, where R3
 −−−− and R3

 + are counterclockwise and clockwise 
900 rotations about the shown center R3, respectively.  

   
Fig. 7.5

Bypassing color considerations, but still using our ‘tile trios’ 
(1 ′′′′2 ′′′′3 ′′′′ for R 3

 +∗∗∗∗G 1, 1″″″″2″″″″3″″″″  for R3
 −−−−∗∗∗∗G1), let’s look at the outcomes in 

figure 7.5. R3
 +∗∗∗∗G1 is a hidden glide reflection (MG1) sharing the 

same axis with MG ′′′′ = R0∗∗∗∗G1 (figure 7.4), but of smaller (half) gliding 
vector: yes, the distance  from the rotation center to the glide 
reflection axis does play a crucial role! And R3

 −−−−∗∗∗∗G1 is a horizontal 
reflection  (M 1): as R 3

 −−−−  ‘ turns  opposite’  of G 1 ’s gliding vector, it 
ends up annihilating it -- while R 3

 +, ‘turning the same way’ as G1’s 
gliding vector, increases its length to that of MG 1 ’s gliding vector!

How about compositions of glide reflections? Viewing, once 
again, a reflection as a glide reflection of zero gliding vector 
(1.4.8), we may first think of compositions like M1∗∗∗∗MG1 and MG1∗∗∗∗M1: 
those are rather easy in view of the discussion on perpendicular 
glide reflections in 6.6.2. For example, adjusting figure 6.54 to the 
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present circumstances, we see that M 1∗∗∗∗MG 1 is the 1800 rotation 
centered at the green tile right above R3, and this is corroborated by 
color permutations: (BR)(GY)∗∗∗∗(BR)(GY) = P . (Recall (4.0.3) that 
every fourfold center may also act as a twofold center, in this case 
preserving all colors!) Turning now to M 1∗∗∗∗G1 (figure 7.6), probably 
a rotation in view of 6.6.2, we see that its color effect is 
(BR)(GY)∗∗∗∗(BGYR) = (BY). The only rotations producing this color 
effect are 900 rotations centered inside  a green  or  red  tile 
(rather than at the common corner of four neighboring tiles); but 
there exist many  such rotations, so it is best to once again resort 
to position considerations and numbered tiles!

 

   
Fig. 7.6

Using three non-collinear tiles #1, #2, #3 (figure 7.6), we see 
that M 1∗∗∗∗G 1 maps the tile trio 123  to 1 ′′′′2 ′′′′3 ′′′′: these two trios are 
homostrophic, corroborating our guess that M1∗∗∗∗G1 is a rotation. 
And since we already know, through our color considerations above, 
that the composition in question must be a 900 rotation centered 
inside a green or red tile, the answer becomes obvious: M1∗∗∗∗G1 is the 
shown 900 counterclockwise rotation centered at R4. Work along 
similar lines will allow you to show that G 1∗∗∗∗M 1 is the clockwise  
9 00 rotation R5 (of color effect (GR) = (BGYR)∗∗∗∗ (BR)(GY)).      
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We could go on, looking not only at more combinations but at 
different colorings and types of tilings as well, but we would rather 
start looking at composition of isometries in a more systematic  
manner, just as promised in 7.0.2.

7.1  Translation ∗∗∗∗  Translation

7.1.1 Just the parallelogram rule. Composing two translations 
T1, T2, each of them represented by a vector, is like computing the 
combined effect of two forces (vectors) in high school Physics: all 
we need is the parallelogram rule as shown in figure 7.7 (and 
applied to a particular point P, where each of the two vectors has 
been applied).

Fig 7.7

The composition is simply represented by the ‘diagonal’ vector, 
and the equality T1∗∗∗∗T2 = T2∗∗∗∗T1 is another way of saying that there 
are two ways of ‘walking’ (across the parallelogram’s edges) from 
P to the diagonal’s other end (figure 7.7). So, every two translations 
commute  with each other, something that happens only in a few 
cases of other isometries (such as the composition of reflection and 
translation parallel to each other discussed in 1.4.2 and 7.0.1).

7.1.2 Collinear translations. When the translation vectors are 
collinear (parallel) to each other (as in the border  patterns  of 
chapters 2 and 5, for example), then the Physics becomes easier and 
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the parallelogram of figure 7.7 is flattened . In fact, every two 
parallel vectors T1, T2 of lengths l1, l2 may be written as ± l1×T , 
± l2×T , where T  is a vector of length 1; the choice between + or − 
depends on whether or not T and the vector in question (T1 or T2) 
are of the same or opposite orientation (sense), respectively. The 
composition of the two translations is then reduced to addition of 
real numbers by way of T2∗∗∗∗T1 = (±l1±l2)×T. Conversely, given any 
vector T , not necessarily of length 1, all vectors parallel to it are of 
the form l×T , where l may be any positive or negative real number. 

Combining 7.1.1 and 7.1.2, we may now talk about linear 
combinations  of non-collinear translations T1, T2: those are sums 
of the form l1×T1+l2×T2, where l1, l2 are any real numbers ... and 
have already been employed in figures 4.10 & 4.11 (where we had in 
fact indicated, without saying so, that every translation in a 
wallpaper pattern may be written as a linear combination (with l1, 
l2 integers ) of two particular translations). 

7.2  Reflection ∗∗∗∗  Reflection

7.2.1 Parallel axes (translation). Back in 2.2.3, we did observe 
that the distance between every two adjacent  mirrors in a pm11  
pattern is equal to half the length of the pattern’s minimal  
translation vector. This makes full sense in view of the following 
‘proof without words’:

     

Fig. 7.8
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Well, we can add a few words after all: with d(X, Y) standing for 
distance between points X and Y, we see that d(P, M2∗∗∗∗M1(P)) =        
d(P, M1(P)) + d(M1(P), M2∗∗∗∗M1(P)) = 2 × d(A, M1(P)) + 2 × d(M1(P), B) =       
2 × d(A, B) = twice the distance between the parallel lines M1 and 
M2; likewise, d(Q, M2∗∗∗∗M1(Q)) = d(Q, M1(Q)) − d(M1(Q), M2∗∗∗∗M1(Q)) =           
2 × d(C, M1(Q)) − 2 × d(M1(Q), D) = 2 × d(C, D) = twice the distance 
between the parallel lines M1 and M2. So, both P and Q moved in the 
same direction (perpendicular to M 1 and M2, and ‘from M1 
toward M 2’) and by the same length (twice the distance between 
M1 and M2). We leave it to you to verify that the same will happen to 
any other point, regardless of its location (between the two 
reflection lines, ‘north’ of M 2, ‘way south’ of M 1, etc): always, the 
combined effect of M 1 and M 2 (in that order) is the translation  
vector M2∗∗∗∗M1 shown in figure 7.8!  

7.2.2 Non-parallel axes. We have not kept it a secret that the 
composition -- in this case intersection  -- of two perpendicular 
reflections yields a half turn: we have seen this in 2.7.1 (pmm2 ), 
4.6.1 (pmm), 4.9.1 (cmm), etc. Moreover, we have seen 1200 centers 
(p3m1 , p31m ) at the intersections of three reflection axes (making 
angles of 600), 900 centers (p4m ) at the intersections of four 
reflection axes (making angles of 450), and 600 centers (p6m ) at 
the intersections of six reflection axes (making angles of 300). It is 
therefore reasonable to conjecture that every two reflection axes 
intersecting each other at an angle φ/2 generate a rotation about 
their intersection point by an angle φ ; this is corroborated right 
below: 
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Fig. 7.9

To turn figure 7.9 into a proof, we must show, with a(X, Y) 
denoting the angle between lines KX and KY, that a(P, M2∗∗∗∗M1(P)) =   
2 × a(A, B), a(Q, M2∗∗∗∗M1(Q)) = 2 × a(C, D), and so on. These equalities 
are derived exactly as the corresponding ones in 7.2.1, simply 
replacing d  (distances) by a (angles). We leave it to you to verify 
that, no matter where P or Q is, the composition M 2∗∗∗∗M 1 is a rotation 
by the angle shown in figure 7.9: twice the size of the acute angle 
between M1 and M2, and going ‘from M1 toward M2’ (which happens 
to be clockwise in this case). 

7.2.3  The crucial role of reflections. Unlike translations, 
reflections do not  commute with each other: it is easy to see that 
M1∗∗∗∗M2 is a vector opposite of M2∗∗∗∗M1 in 7.2.1, while M1∗∗∗∗M2 is an 
angle opposite (counterclockwise) of M2∗∗∗∗M1 in 7.2.2. A crucial 
exception occurs when M1 and M2 are perpendicular to each other: 
there is no difference between a clockwise 1800 rotation and a 
counterclockwise 1800 rotation sharing the same center (1.3.10)!

All the techniques and observations of this section, including 
that of the preceding paragraph, stress the closeness between 
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translation and rotation: each of them may be represented as the 
composition of two reflections, and the outcome depends only on 
whether the angle between them is zero (translation) or non-zero 
(reflection). It follows at once that every glide  reflection  may be 
written as the composition of three reflections. So we may safely 
say, knowing that there exist no other planar isometries (section 
1.5), that every isometry of the plane is the composition of at most 
three  ref lect ions . 

Conversely, the traditional way  of proving that there exist 
only four types of planar isometries is to show first that every 
isometry of the plane must  be the composition of at most three 
reflections: see for example Washburn & Crowe, Appendix I. We 
certainly provided a classification of planar isometries not relying 
on this fact in section 1.5; but we will be analysing a translation or 
rotation into two reflections throughout chapter 7.               

As a concluding remark, let us point out another difference 
between translation and rotation (and the way each of them may be 
written as a composition M 2∗∗∗∗M 1 of reflections): in the case of a 
translation, we may vary the position of the parallel mirrors M 1, M 2 
but not their distance or common direction; in the case of a rotation, 
we may vary the directions of M 1, M 2, but not their angle or 
intersection point. 

7.3  Translation ∗∗∗∗  Reflection 

7.3.1 Perpendicular instead of parallel. Of course we have 
already seen a most important special case of this combination in 
1.4.2: when the translation and the reflection are parallel to each 
other, their commuting composition is useful and powerful enough 
to be viewed as an isometry of its own (glide reflection). Another 
important special case is the one that involves a translation and a 
reflection that are perpendicular to each other. We have encountered 
many such cases, the last one provided by 7.2.1: just think of the 
reflection M 1 followed by the translation M 2∗∗∗∗M 1, yielding the 
equality (M2∗∗∗∗M1)∗∗∗∗M1 = M2∗∗∗∗(M1∗∗∗∗M1) = M2∗∗∗∗ I = M2; or of the translation 
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M 2∗∗∗∗M 1 followed by the reflection M 2, leading to the equality 
M2∗∗∗∗(M2∗∗∗∗M1) = (M2∗∗∗∗M2)∗∗∗∗M1 = I∗∗∗∗M1 = M1.  

Our ‘algebraic experimentation’ (and appeal to 7.2.1) above 
suggests that the composition of a reflection M  and a translation T   
perpendicular to each other is another reflection parallel to the 
original one; this is established below, via another appeal to 7.2.1:

Fig. 7.10

What went on in figure 7.10? We computed both compositions 
M∗∗∗∗T  (left) and T∗∗∗∗M  (right), writing T  as a composition of two 
reflections perpendicular to it (therefore parallel to M ) and at a 
distance from each other equal to half the length of T  (7.2.1): in the 
first case, with T ’s second  reflection L2 being M , M∗∗∗∗T  equals 
L2∗∗∗∗ (L2∗∗∗∗L1) = L1; and in the second case, with T ’s first reflection N1 
being M , T∗∗∗∗M  equals (N2∗∗∗∗N1)∗∗∗∗N1 = N2. (As above, it is crucial that 
the square of a reflection is the identity isometry I. )

So, we see that a reflection M  and a translation T  perpendicular 
to each other do not commute: when T comes first it moves M  
‘backward’  by |T |/2 (figure 7.10, left), and when T  follows M  it 
moves it ‘forward’  by |T |/2 (figure 7.10, right); that is, M ∗∗∗∗T  and 
T∗∗∗∗M  are mirror images of each other about M . You should try to 
verify these results, following the method, rather than the outcome, 
of 7.2.1 and figure 7.8.

7.3.2 Physics again! We come now to the general case of the 
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composition of a reflection M  and a translation T, assuming M  and T 
to be neither parallel nor perpendicular to each other: it looks 
complicated, but an old trick from high school Physics is all that is 
needed! Indeed, analysing T into two components, T1 (perpendicular 
to M ) and T2 (parallel to M ), we reduce the problem to known special 
cases; in figure 7.11 you see how M∗∗∗∗T = M∗∗∗∗(T1∗∗∗∗T2) = (M∗∗∗∗T1)∗∗∗∗T2 = 
M ′′′′∗∗∗∗T2 turns into a glide  reflection (of axis M ∗∗∗∗T1 (at a distance of 
|T1|/2 from M ) and vector T2) :

   

Fig. 7.11

Likewise, T∗∗∗∗M  = (T2∗∗∗∗T1)∗∗∗∗M  = T2∗∗∗∗(T1∗∗∗∗M) = T2∗∗∗∗M″″″″ is a glide 
reflection (not shown in figure 7.11) of vector T2 (no change here) 
and axis M″″″″ (mirror image of M ′′′′ about M , as in 7.3.1). So, in general, 
the composition of a reflection M  and a translation T  is a glide 
reflection; and a closer look at this section’s work shows that it is 
a reflection if and only if M  and T  are perpendicular to each other 
(that is, precisely when T2 = 0).

7.4  Translation ∗∗∗∗  Glide Reflect ion   

7.4.1 Just an extra translation. This case is so close to the 
previous one that it hardly deserves its own visual justification. 
Indeed, let G = M∗∗∗∗T0 = T0∗∗∗∗M  be the glide reflection, and let T  be the 
translation. Then G∗∗∗∗T = (M∗∗∗∗T0)∗∗∗∗T = M∗∗∗∗(T0∗∗∗∗T) and T∗∗∗∗G = T∗∗∗∗(T0∗∗∗∗M)  = 
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(T∗∗∗∗T0)∗∗∗∗M. Since T0∗∗∗∗T = T∗∗∗∗T0 is again a translation T ′′′′, we have 
reduced this section to the previous one; and we may safely say that 
the composition of a translation and a glide reflection is another 
glide reflection, with their axes parallel to each other (and 
identical  if and only if the translation is parallel  to the glide 
ref lect ion).

7.4.2 Could it be a reflection? We have run into compositions of 
non-parallel translations and glide reflections as far back as 6.2.5 
and figure 6.13, while studying two-colored pg  types: we could even 
say that the pg ’s diagonal  translations are ‘responsible’ for the 
perpetual repetition of the vertical glide reflection axes! And the 
interaction between the pg ’s glide reflection and translation is also 
reflected in the fact that the only pg  type (pb

′′′′ 1g ) with both color-
reversing and color-preserving glide reflection is the only pg  type 
that has color-reversing translation (figures 6.4, 6.9, and 6.11). 

But a similar observation is possible about two-colored cm  
types: the two types that have color-preserving reflection and 
color-reversing glide reflection (pc

′′′′ m ) or vice versa (pc
′′′′ g) are 

precisely those that do have color-reversing translation (figures 
6.25-6.28). Could it be that, the same way the pg ’s ‘diagonal’ 
translation takes us from one ‘vertical’ glide reflection to another, 
the cm ’s ‘diagonal’ translation takes us from ‘vertical’ reflection to 
‘vertical’ glide reflection (which is to be expected in view of 7.3.2) 
and  from ‘vertical’ glide reflection to ‘vertical’ reflection? In 
broader terms, could the composition of a glide reflection and a 
translation be ‘exactly’  a reflection?

The answer is “yes”: a translation and a glide reflection may 
after all create a reflection! And this may be verified not only in the 
cm  examples mentioned above, but also though a visit to our newly 
painted bathroom wall: for example, the composition MG1∗∗∗∗T  in figure 
7.5 is the vertical reflection passing through R0. How does that 
happen? A closer look at the interaction between T and the hidden 
glide reflection M G 1 ’s gliding vector T0 is rather revealing:
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Fig. 7.12

A bit of ‘square geometry’ in figure 7.12 makes it clear that the 
composition T ′′′′ = T0∗∗∗∗T is perpendicular to T0 (and MG1 as well). But 
we have already seen (combining 7.3.2 and 7.4.1) that G∗∗∗∗T is a 
reflection if and only if T ′′′′ is perpendicular to G : this is certainly the 
case in figures 7.12 & 7.5 (with G  = MG1).

In general, what relation between the glide reflection G ’s vector  
T0 and the translation vector T  is equivalent to G∗∗∗∗T  (and therefore, 
by 7.3.2, T∗∗∗∗G  as well) being a reflection? A bit of simple 
trigonometry (figure 7.13) shows that it all has to do with the 
lengths |T0| and |T | of T0 and T , as well as the angle φ between T0 
and T. Indeed, all we need is that for the angle a(T0, T ′′′′) between T0 
and T ′′′′ = T0∗∗∗∗T to be π/2 (900). But in that case we end up with a 
right triangle of side lengths |T|, |T0|, and |T ′′′′| and angles π−φ and 
φ−π /2 (figure 7.13); it follows that |T0| = |T |×cos(π−φ) = 
|T|×sin(φ−π/2), so that |T0| = −|T|×cosφ or |T| = −|T0|/cosφ, where, 
inevitably, π /2 < φ  ≤  π .   
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Fig. 7.13

So, to ‘annul’ the vector T0 of a glide reflection G  = M∗∗∗∗T0, all we 
need is to ‘multiply’ G  by a translation T  of length |T | that makes an 
angle φ with T0 such that |T0| = −−−− |T|cosφφφφ . Observe that cosφ < 0, 
hence φ has to be an obtuse angle (forcing T to go ‘somewhat 
opposite’ of T0); also, in view of |T | = − |T0|/cosφ , the closer φ  is to 
π/2 the longer T  is: π/2 < φ ≤ π yields |T0| ≤ |T | < ∞ , with |T | = |T0| 
corresponding to φ = π (T = T0

 −−−−1 and G∗∗∗∗T = T∗∗∗∗G  = M  -- the rather 
obvious ‘parallel case’).

In figures 7.12 & 7.5, φ = 1350 and |T| = −|T0|/cos(1350) = |T0| 2 . 

7.5  Rotation ∗∗∗∗  Rotation 

7.5.1  Just like two reflections? Counterintuitive as it might 
seem as first, it turns out that determining the composition of two 
rotations is about as easy as determining the composition of two 
reflections. And you will be even more surprised to see that the key 
to the puzzle lies inside figure 7.10 (that does not seem to have 
anything to do with rotations)! On the other hand, a figure that is 
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certainly related to rotations is 7.9: we demonstrated there how 
the composition of two intersecting reflections is a rotation; in this 
section we will play the game backwards, breaking  rotations into 
two intersecting reflections.

So, let’s first consider two clockwise rotations RA  = (A, φ1) and 
RB = (B, φ2). To compute RB∗∗∗∗RA we set RA = M∗∗∗∗L and RB = N∗∗∗∗M, where 
L , M  are reflection lines intersecting each other at A at an angle 
φ1/2 and M , N  are reflection lines intersecting each other at B at an 
angle φ2/2; in particular, M  is the line defined by A and B (figure 
7.14), the common  reflection destined to play the same 
‘vanishing’ role as in 7.3.1 (and figure 7.10). It is easy now to 
determine RB∗∗∗∗RA = (N∗∗∗∗M)∗∗∗∗(M∗∗∗∗L) = N∗∗∗∗L as a rotation centered at C 
(composition of two reflections intersecting each other at C).

    
Fig. 7.14 

So, it was quite easy to determine RB∗∗∗∗RA ’s center, and there is 
nothing ‘special’ about it. But there is another potential surprise 
when it comes to RB∗∗∗∗RA’s angle: although both RA and RB are taken 
clockwise, RB∗∗∗∗RA = N∗∗∗∗L ends up being counterclockwise (going from 
L toward N)! How about RA∗∗∗∗RB then, with each of RA and RB taken 
counterclockwise this time? Or RB∗∗∗∗RA with one rotation taken 
clockwise and the other counterclockwise, and so on? Taking both 
order and orientation into account, there exist eight possible cases 
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(all based on M ’s ‘elimination’), shown in figure 7.15 (arguably the 
most important one in the entire chapter or even book):  

Fig. 7.15 

As in 7.0.4, clockwise rotations are marked by a +  superscript 
and counterclockwise rotations are marked by a - superscript, while 
the arrows  pointing to each composition angle indicate its 
orientation. The example shown in figure 7.14 is therefore RB

 +∗∗∗∗RA
 +; 

notice how each of the four centers C, D, E, F is shared by two 
compositions. Notice that the four rotations centered at C and D have 
angles equal to 2×∠ACB = 2×(1800−(φ1+φ2)/2) = 3600−φ1−φ2, which is 
equivalent to φφφφ1+φφφφ2 (with reversed  orientation, via φ1 < 1800 and 
φ2 < 1800); and the four compositions centered at E and F have angles 
equal to 2×∠CFA = 2×(1800−∠CAF−∠ACF) = 2×(1800−∠CAD−∠ACB) = 
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2×(1800−φ1−(1800−(φ1+φ2)/2)) = 2×(−(φ1/2)+(φ2/2)) = φφφφ2−−−−φφφφ1 (which 
would have been φφφφ1−−−−φφφφ2 in case φ1 was bigger than φ2).   

7.5.2 When the angles are equal. When φφφφ1 = φφφφ2, our preceding 
analysis suggests that the angle between AE and BE (or AF and BF) in 
figure 7.15 is zero; but AE and BE are certainly distinct, passing 
through two distinct points A and B: indeed the two lines, making 
equal angles with M , should be parallel to each other, with E and F 
‘pushed’ all the way to infinity! In simpler terms, when two 
rotations RA, RB have equal angles of opposite orientation (one 
clockwise, one counterclockwise) their composition is a 
translation (composition of parallel reflections, see 7.2.1). [Notice 
(figure 7.15) that E and F act as centers precisely for those product 
rotations where one factor is counterclockwise and the other one is 
clockwise.]

Of course we do not need something as complicated and thorough 
as figure 7.15 to conclude that the composition of two rotations of 
equal, opposite angles is a translation: a simple modification of 
figure 7.14 suffices!

Fig. 7.16

With RA
 + = (A, φ) = M∗∗∗∗L and RB

  −−−− = (B, φ) = N∗∗∗∗M, L and N become 
parallel to each other (figure 7.16), therefore RB

  −−−−∗∗∗∗RA
 + = N∗∗∗∗L is a 

translation perpendicular to them (7.2.1). And since the distance 
between L  and N  is |AB|sin(φ/2) = dsin(φ/2) (figure 7.16), the length 
of the translation vector is 2dsin(φ /2).
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Once again, viewing a translation as a rotation the center of 
which is that mysterious ‘point at infinity’ (3.2.5) turns out to make 
a lot of sense!

7.5.3 The case of half turn. There is another way of destroying 
the quadrangle  of figure 7.15: reduce it to a triangle by forcing 
the lines DE and CF to be one and the same, which would happen if 
and only if they are both perpendicular to M  at B, that is if and only 
if φφφφ2 = 1800. Other than reducing the number of product rotations 
from eight to four, and the number of intersection points (rotation 
centers) from four to two, making one of the two rotations a half 
turn would not have any other consequences. But if both rotations 
are 1800 then there are no  intersections at all, and the number of 
compositions is further reduced from four to two: with angle 
orientation no longer an issue, both RA∗∗∗∗RB and RB∗∗∗∗RA are now 
translations  of vector length 2d (figure 7.16 with φ  = 1800).   

7.5.4 An important example. How about the ‘surviving’ rotations 
of figure 7.15 when φ1 = φ2? Let’s look at the case φ1 = φ2 = 600, 
where two sixfold centers at A and B generate counterclockwise and 
clockwise rotations of φ1+φ2 = 1200 at C and D (figure 7.17), as well 
as four translations that we will not be concerned with. With M , N , 
and L as in figure 7.14, and N ′′′′, L ′′′′ being the mirror images of N , L 
about M , the four 1200 rotations may be written as N∗∗∗∗L, L ′′′′∗∗∗∗N ′′′′ 
(clockwise) and L∗∗∗∗N , N ′′′′∗∗∗∗L ′′′′ (counterclockwise). Everything is shown 
in figure 7.17, and it is clear that the four centers A, B (600) and C, 
D (1200) form a rhombus.
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Fig. 7.17

So, any two sixfold centers A, B are bound to create two 
threefold centers C, D -- but  not  vice versa ! What is the location 
of C (or D) with respect to A and B? With |AB| = d and P the midpoint 
of AB, simple trigonometry in PAC establishes |PC| = |AP|tan300 = 
d / ( 2 3 ). It follows that |CD| = d/ 3  and |AD| = |AC| = |PA|2 + |PC|2  
= d2/4 + d2/12  = d/ 3 : the triangle ACD is equilateral! (Notice 
that ACBD will be a rhombus whenever φ1 = φ2, but ACD (and BCD) 
will be equilateral if and  only  if φ1 = φ2 = 600.) 

All this begins to look rather familiar: didn’t we talk about that 
rhombus of sixfold centers when we classified two-colored p6m  
types (6.17.3 & 6.17.4, figures 6.134-6.138)? The two rhombuses are 
similar, except that the one in 6.17.3 consists of four  sixfold 
centers, while the one we just produced involves two  sixfold and 
two threefold centers: where does the 6.17.3 rhombus come from? 
To answer this question, we simply adapt the quadrangle of figure 
7.15 with φφφφ 1 = 600 and φφφφ 2 = 1200; that is, we determine the ‘total 
combined effect’ of a sixfold center (A) and a threefold center (B), 
shown (figure 7.18) in the context of the beehive:       
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Fig. 7.18

Starting with centers A and B as above we produced two 1800 
(φ1+φ2) centers (C and D) and two 600 (φ2−φ1) centers (E and F). So, 
now we have three sixfold centers: where is the fourth one? Well, 
the answer lies in a combination of figures 7.17 and 7.18: sixfold 
centers E and F are bound (figure 7.17) to produce another threefold 
center B′, mirror image of B about EF; and then E (or F) and B′ will 
have to create the ‘missing’ sixfold center A′, A’s mirror image 
about EF -- in the same way A and B produce E (and F) in figure 7.18!

Let’s summarize the situation a bit: we may ‘start’ with two 
sixfold centers that create two threefold centers (figure 7.17), 
hence two additional sixfold centers (figure 7.18 plus discussion); 
or ‘start’ with one sixfold center and one threefold center that 
create two additional sixfold centers (figure 7.18), hence another 
threefold center (figure 7.17), and then a fourth sixfold center 
(figure 7.18 again). It seems rather clear that the first approach, 
summarized in figure 7.19 below, makes more sense: 

Fig. 7.19

Notice that we have removed not only the labels of the various 
centers, but the beehive as well: indeed, since we have created its 
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lattice using only  sixfold rotations, the lattice created in figure 
7.19 is also  the rotation center lattice of a p6 ; after all, the p6  and 
the p6m  are no different when it comes to their lattices of rotation 
centers (6.16.1).

The process of figure 7.19 can go on to create the full lattice 
shown in figure 4.5 (right); the next step involves compositions of 
‘peripheral’ sixfold and twofold centers, generating new threefold 
centers. The only question that remains is: could we have ‘started’ 
with only  one  sixfold center instead of two? The answer is “yes”, 
provided that we seek some help from translation: as figure 7.18 
shows, F is E’s image under the pattern’s minimal  vertical 
translation (T); and, following 4.0.4 (Conjugacy Principle), T(E) = F 
has to be a sixfold center! [Attention: as in 4.0.4 again, T(E) is not 
the same as T∗∗∗∗E  or E∗∗∗∗T , where E  stands for the sixfold rotation(s) 
centered at E; we do not need compositions of translation and 
rotation (studied in the next section) to ‘create’ the beehive’s 
lattice -- but we do  need them to ‘create’ the bathroom wall’s 
lattice (7.6.3)!]        

7.6  Translation ∗∗∗∗  Rotation

7.6.1 A trip to infinity. What happens as A moves further and 
further westward in figure 7.14? Clearly L  becomes ‘nearly parallel’ 
to M  and the rotation angle φ1 approaches zero; ‘at the limit’, when A 
has ‘reached infinity’, L  and M  are parallel to each other and the 
clockwise rotation RA = M∗∗∗∗L becomes a translation T = M∗∗∗∗L:
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Fig. 7.20

Just as in figure 7.14, and with RB = N∗∗∗∗M  still a clockwise φ2 
rotation, the composition RB∗∗∗∗T  = N∗∗∗∗L  is now a clockwise rotation, 
centered at C, the point of intersection of N  and L. Since L and M  are 
parallel to each other, the angle between L  and N  is still φ2/2, 
therefore RB∗∗∗∗T ’s angle remains equal to φ2. As for the location of 
RB∗∗∗∗T ’s center, that is fully determined via |BC| = |T |/(2sin(φ2/2)), a 
relation that has in essence been derived in figure 7.16.

7.6.2 Our old example. How does 7.6.1 apply to the composition 
T∗∗∗∗R0 of 7.0.3? We demonstrate this below, in the context of figure 
7.1, blending into it figure 7.20:

Fig. 7.21

With clockwise R0 = M∗∗∗∗N and T = L∗∗∗∗M, T∗∗∗∗R0 is equal to L∗∗∗∗N, a 
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clockwise 900 rotation centered at C, intersection point of L  and N .

7.6.3 An important pentagon. So, we have established that the 
composition of a translation T  and a rotation R  = (K, φ) is again a 
rotation by φ about another center. But, just as we did in 7.5.1, we 
observe here that the final outcome of the composition depends on 
the order in the operation (R∗∗∗∗T  versus T∗∗∗∗R ), the rotation’s  
orientation (R  clockwise versus R  counterclockwise), and the 
translation’s sense (T  versus T−−−−1). Again, there exist eight possible 
combinations sharing four rotation centers (C, D, E, F), all featured 
in figure 7.22 (that parallels figure 7.15, with R A  replaced by T ) :

Fig. 7.22

As in figure 7.15, each angle’s orientation is indicated by arrows 
pointing to it; all rotation angles are equal to φ , a fact that may be 
derived from our findings in 7.5.1 (with φ1 = 0 and φ2 = φ), of course.

The five rotation centers (K, C, D, E, F) in figure 7.22 form a very 
symmetrical, non-convex ‘pentagon’  -- a more ‘scientific’ term is 
quincunx -- that may remind you of the number 5 ’s standard 
representation on dice! We have already seen it, certainly without 
noticing, in figure 7.19 (right): over there it stands for a ‘formation’ 
of twofold centers in a p6  lattice, all of them obtained as 
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compositions of ‘higher’ rotations. Should that lattice have been 
allowed to grow further, we would have certainly seen similar 
pentagons formed by sixfold centers, as well as rectangles formed 
by threefold centers; see also figure 4.2, and figure 7.25 further 
below. All those p6 centers had been obtained by way of composition 
of rotat ions , starting from two sixfold centers -- or, if you prefer, 
one  sixfold center and an image of it under translation. Now we 
derive the p4  and the p3  lattices of rotation centers starting  from 
a ‘pentagon’: that is, we start with one  fourfold or threefold 
rotation and compose  it with the pattern’s minimal  ‘vertical’  
translation, in the spirit of figure 7.22.

First, the p4  lattice, shown initially in its ‘Big  Bang’  
(pentagonal) stage, then with some twofold centers created by the 
fourfold centers, and, finally, with additional fourfold centers 
created by one fourfold and one twofold center: 

  

 
Fig. 7.23

Next comes the p3  lattice, where threefold centers keep 
creating nothing but threefold centers:

Fig. 7.24   

369



How do these lattices relate to the ones shown in figures 4.59 
(p4) and 4.68 (p3)? Looking at their ‘fundamental pentagon’ KCDEF 
(figure 7.22) in the context of those figures, as well as figures 7.23 
& 7.24, we observe the following: the p4  pattern has no translation 
taking K to any of the other four vertices, but it certainly has 
translations interchanging any two vertices among C, D, E, F (‘two 
kinds’ of fourfold centers, as indicated in figure 4.59); and the p3  
pattern has no translation interchanging any vertices from the ‘first 
column’ (C, D) with any vertices from either the ‘third column’ (E, F) 
or K (‘three kinds’  of threefold centers, as indicated in figure 
4.68). Notice that these observations are fully justified by the 
pentagon’s very ‘creation’: vector CD is by definition the pattern’s 
minimal  translation, and this rules out vector KF (but certainly not  
vector CF) in the case of p4  (figure 7.23, left); CD’s minimality also 
rules out vector CE (hence vector CF as well, for CE = CF−CD) in the 
case of p3  (figure 7.24, left)!

Let’s now look at the p6 ’s ‘first three stages of creation’, 
composing the ‘first’ rotation with a translation (as in the cases of 
p4 and p3, figures 7.23 and 7.24, respectively) rather than another 
rotation (as in figure 7.19):   

              
Fig. 7.25  
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This is of course an alternative way of looking at p6 ’s lattice: 
you can’t miss the four copies of the rhombus in figure 7.19 packed 
inside the big rhombus of figure 7.25! But more illuminating is 
figure 7.25’s pentagon, showing that there exists only ‘one kind’ of 
sixfold centers: observe how any two of its vertices (labeled as in 
figure 7.22 always) are interchangeable via one of the p6 ’s 
translations -- indeed all edges but CE (and DF) are ‘equivalent’ to 
either CD or 2×CD, while the above noticed CE = CF−CD allows CE 
(and DF) as well.    

7.6.4 When the pentagon collapses. Exactly as in 7.5.3 and figure 
7.15, a 1800 rotation would make lines DE and CF one and the same in 
figure 7.22, allowing for only one  intersection (and half turn center) 
with each of L  and L ′′′′. So, φ = 1800 makes a trio of collinear points 
(C ≡ E, K, D ≡ F, with |KC| = |KD| = |T|/2) out of the pentagon of figure 
7.22. And yet there exists a ‘starting pentagon’ in every p2  pattern, 
created by one  half turn R  and two  non-parallel translations T1, T2: 

Fig. 7.26

We leave it to you to check the details in figure 7.26 and extend 
its ‘oblique’  pentagon into the full p2  lattice of half turn centers; 
keep in mind that many new  half turn centers may only be created 
with the help of translations : after all the composition of any two 
half turns is a translation, not a half turn (7.5.3)! 

Notice the importance of having two non-parallel, ‘minimal’ 
translations available in the case of the p2  pattern: assuming 
existence of translation in one  direction only, plus 1800 rotation, 
we are only guaranteed a p112  (border) pattern -- half turn centers 
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endlessly multiplied by the translation along a single line! On the 
other hand, the pentagon of rotation centers created by one threefold 
(p3 ) or fourfold (p4 ) or sixfold (p6 ) rotation and one minimal 
translation is bound (7.5.2) to produce translations in three (and 
eventually infinitely many) additional directions.  

7.7  Rotation ∗∗∗∗  Reflection

7.7.1 When the center lies on the mirror. A comparison between 
the previous two sections shows that rotation and translation are of 
rather similar mathematical behavior. This is of course due to the 
fact that each of them is the composition of two reflections, a fact 
that also lies behind the proximity of this section and section 7.3; in 
particular, figure 7.27 below may be seen as a ‘copy’ of figure 7.10:

Fig. 7.27  

On the left is the composition M∗∗∗∗R  of a clockwise rotation R  = 
(K, φ) followed by a reflection M , while on the right is R∗∗∗∗M ; as figure 
7.27 makes it clear, R ’s center K lies on M . As in section 7.3 and 
figure 7.10, we analysed R  as L2∗∗∗∗L1 with L2 = M  in the first case, 
and as N2∗∗∗∗N1 with N1 = M  in the second case; in both cases M  cancels 
out, exactly as in figure 7.10.  

Adopting (as in previous sections) the notations R+ and R−−−− for R  
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taken clockwise and counterclockwise, respectively, we observe (in 
the context of figure 7.27 always) that M∗∗∗∗R+ = R−−−−∗∗∗∗M  = L1 and M∗∗∗∗R−−−− = 
R+∗∗∗∗M  = N2. So, the composition of a rotation and a reflection passing 
through the rotation center is always another reflection ‘tilted’ by 
half the rotation angle, and still passing through the rotation center. 

7.7.2 The general case. What happens when the rotation center 
does not lie on the reflection axis? This one looks a bit complicated! 
Perhaps some initial experimentation, in the context of a four-
colored beehive this time, might help:

Fig. 7.28

Employing the methods of 7.0.3-7.0.4 if necessary, you may 
derive all four possible combinations between the reflection M  and 
the sixfold rotation R 0  in figure 7.28: they are glide  reflections  of 
gliding vectors of equal length, their two  axes being mirror images 
of each other about M ; at a more subtle level, observe how, in all 
four cases, the vector’s sense  is such that the glide reflection and 
the rotation ‘turn  the  same  way’ .

Let’s now justify the outcome of the compositions in figure 
7.28 through a specific example of the type R+∗∗∗∗M , where R+ = (K, φ+) 
and K not on M  (figure 7.29). We write R+ = L2∗∗∗∗L1, where L1 is now 
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parallel to M , so that R+∗∗∗∗M  = (L2∗∗∗∗L1)∗∗∗∗M  = L2∗∗∗∗(L1∗∗∗∗M ) = L2∗∗∗∗T, where 
T  is a translation perpendicular  to M , going from M  toward L1 and 
of length twice the distance d between K and M  (7.2.1). 

Fig. 7.29

From here on, we appeal to section 7.3: we write T  = T1∗∗∗∗T2 with 
T1 perpendicular  to L2 and T2 parallel to L2 (7.3.2), so that 
L2∗∗∗∗T1 is a reflection L2′′′′  parallel to L2 and at a distance |T1|/2 from 
it and ‘backward’ with respect to T1 (7.3.1); it follows at long last 
that R+∗∗∗∗M  = L2∗∗∗∗T = L2′′′′ ∗∗∗∗T2 is indeed a glide reflection (of axis L2′′′′  and 
vector T2). Since a(T , T1) = a(L1, L2) = φ/2 (because T , T1 are 
perpendicular to L1, L2, respectively), T2 ’s length is |T | ×  sin(φ/2) = 
2d ×  sin(φ/2): you may verify this in the case of figure 7.28, with φ = 
600 and |T2| = d = r 3 /2, where r is the regular hexagon’s side 
length.   

7.7.3 A sticking intersection point. Figure 7.29 makes it 
visually clear that the intersection point of M  and L2′′′′  is K’s 
projection on M . And figure 7.28 provides further evidence: the two 
glide reflection axes’ common  point is none other than R0’s 
projection on M ! But how do we prove  this fact? The proof is a bit 
indirect : starting from the four lines of figure 7.29, we let B be the 
point where the perpendicular  to M  at A (intersection point  of M  
and L2′′′′ ) intersects L2 (figure 7.30); and then we prove that B has  to 
be the same  as K (intersection point of L1 and L2) by showing |AB| to 
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be equal to d (and implying that B lies on L1, too)!  

Fig. 7.30

To do this, we need two more lines: a line perpendicular to M  
at C (M ’s intersection point with L2), intersecting L2

′′′′  at D; and a line 

perpendicular  to L2
′′′′  at D that intersects L2 at E. Perpendicularities 

show then the angle CDE to be equal to ∠CAD = φ/2 and the two right 
triangles EDC and E′D ′C ′ to be similar (figure 7.30). It follows that 
|DE|
|DC|

 = |D′E′|
|D′C′|

, so that |DC| = |DE| × |D′C′|
|D′E′|

 = 
(|T1|/2) ×  (2d)

|T1|
 = d. Now ABCD 

is by assumption  (L2
′′′′  is parallel to L2, hence AD is parallel to BC) 

and construction (both AB and CD are perpendicular to M , hence 
parallel to each other) a parallelogram, therefore |AB| = |CD| = d. 

We can finally state that the composition of a rotation R  = (K, φ) 
and a reflection M  at a distance d from K is a glide reflection G  of 
axis passing through K’s projection on M  and gliding vector of length 
2d × sin(φ/2), intersecting M  at an angle φ/2.

7.7.4 Could it pass through the center? Figures 7.28 & 7.29 may 
for a moment give you the impression that the glide reflections 
produced by the combination of a rotation and a reflection cannot 
possibly pass through the rotation center: once again the case of 
half turn comes as a surprise! Not as a complete surprise though, as 
this situation (where the two glide reflection axes of figure 7.28 
become one and the same) is characteristic of the pma2 and pmg    
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patterns, where ‘vertical’ reflections ‘multiplied’ by half turns  
produce ‘horizontal’ glide reflection(s) passing through their 
centers: at long last, our ‘two as  good  as  three’ observations in 
2.6.3 begin to make full sense!

Notice, along these lines, that the relations M∗∗∗∗R = G  and R∗∗∗∗M  = 
G −−−−1, where R  is a half  turn , yield (by way of ‘multiplication’ of 
each side by R  and M , respectively, and R2 = M2 = I) the relations 
G∗∗∗∗R = M = R∗∗∗∗G−−−−1 and M∗∗∗∗G = R = G−−−−1∗∗∗∗M: these represent special cases 
of the next two sections and also illuminate further, if not 
completely, the structure of the pma2  and pmg  patterns! 

7.8  Rotation ∗∗∗∗  Glide Reflection 

7.8.1  Just a bit of extra gliding. First a rather familiar example: 

Fig. 7.31

What went on? There has been some slight ‘disturbance’ of 
figure 7.28, hasn’t it? All we did was to replace the reflection M  by 
the hidden glide reflection MG , and then ... the glide reflection axes 
got scattered away from the safety of R0’s projection onto M  ... into 
the four points of the horizon -- in fact two of them ended up 

376



passing through R0 itself, despite the rotation being 600 rather than 
1800 (7.7.4)!

To get a better understanding of the situation, it would be 
helpful to see what happens when MG  is replaced by its inverse: 

Fig. 7.32

In case that was not already clear through the comparison of 
figures 7.28 and 7.31, figure 7.32 certainly proves that the glide 
reflection vector has ‘the  last  word’ : that should be intuitively 
obvious, and we go on to articulate it right below.

Let R  be the rotation, and G  = M∗∗∗∗T = T∗∗∗∗M  the glide reflection. 
Then R∗∗∗∗G = (R∗∗∗∗M)∗∗∗∗T and G∗∗∗∗R = T∗∗∗∗(M∗∗∗∗R), where R∗∗∗∗M and M∗∗∗∗R are glide 
reflections: this section is just a blending of sections 7.4 and 7.7!

As an example, let us illustrate how we went from the M∗∗∗∗R0
 + of 

figure 7.28 (section 7.7) to the MG∗∗∗∗R0
 + = T∗∗∗∗(M∗∗∗∗R0

 +) of figure 7.31:
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Fig. 7.33

All we had to do was to apply the idea of figure 7.11 and analyse 
MG ’s gliding vector T  into two vectors: one perpendicular to M∗∗∗∗R0

 + 
(T1) that pulls M∗∗∗∗R0

 +’s axis ‘forward’ by |T1|/2 (7.3.1), and one 
parallel to M∗∗∗∗R0

 + (T2) that is easily added  to M∗∗∗∗R 0
 +’s vector (of 

opposite to T2’s sense in this case); the outcome is the glide 
reflection of figure 7.33, which is no other than figure 7.31’s 
MG∗∗∗∗R0

 +, of course.

Figure 7.33 illustrates clearly why the glide reflection axes of 
figures 7.31 & 7.32 are still parallel  to the glide reflection axes of 
figure 7.28, still making angles of 300 with M . Moreover, figure 7.33 
determines exactly where they cross M : |AC| = |AB|/(sin(φ/2)) = 
(|T 1 |/2)/(sin(φ /2)) = ((|T |sin(φ /2))/2)/(sin(φ /2)) = |T |/2. (That’s why 
the distance between the two ‘crossing points’ in figures 7.31 & 
7.32 is equal to |T | and, may we add, independent of φφφφ !) Finally, 
figure 7.33 explains why there are vectors of two distinct lengths, 
|T | × cos(φ/2) + 2d × sin(φ/2) and ||T | × cos(φ/2) − 2d × sin(φ/2)|, in 
figures 7.31 & 7.32: M∗∗∗∗R0

 + and M∗∗∗∗R0
 −−−−  have gliding vectors of equal 

length  2d ×  sin(φ /2) (7.7.2) but distinct  direction , and the latter 
forces distinct lengths for the gliding vectors of T∗∗∗∗ (M ∗∗∗∗R 0

 +) and 
T∗∗∗∗(M∗∗∗∗R0

 −−−−); to recall our ‘cryptic’ expression from 7.7.2 (as well as 
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7.0.4), the longer vector is produced when the glide reflection and 
the rotation ‘turn  the  same  way’ .

7.8.2 Could it be a reflection? In the important special case 
where the glide reflection axis passes through the rotation center,  
d = 0 implies gliding vectors of length |T | ×  cos(φ /2) for all four  
resulting glide reflections; their intersecting axes will still form a 
rhombus  (as in figures 7.31 & 7.32), but the rotation center (R0) 
will now be in the middle  of that rhombus (like fourfold center D  
combined with glide reflection G 4 in figure 6.106 (p4g ), for 
example). But the rhombus disappears when φ = 1800! In partial 
‘compensation’, |T | ×  cos(1800/2) = 0 turns the glide reflections into 
two  reflections crossing the original glide reflection at a distance 
of |T |/2 from the half turn center: in case you didn’t realize, that’s 
the pmg ’s story!   

In general, when does a rotation turn a glide reflection into a 
reflection? Recall that we asked a similar question in 7.4.2: the 
answer remains the same here, and so does the way to get it. Indeed, 
with R∗∗∗∗G = (R∗∗∗∗(M∗∗∗∗T1))∗∗∗∗T2 and G∗∗∗∗R = T2∗∗∗∗((T1∗∗∗∗M)∗∗∗∗R), all we need is 
for T2 to be of sense  opposite of R∗∗∗∗ (M∗∗∗∗T1)’s (or (T1∗∗∗∗M )∗∗∗∗R ’s) 
gliding vector (which is bound  to happen for either G  or G−−−−1) and of 
equal  length  to it. Focusing on the latter condition, and referring 
to figure 7.33 and 7.7.2, we see that all we need is the equality     
|T|  ××××  cos(φφφφ /2) = 2d ××××  s in(φφφφ /2)  -- trivially valid in the case of p m g  
(with d = 0 and φ = 1800) and equivalent to |T| = 2d ××××  tan(φφφφ /2) when 
φφφφ  ≠≠≠≠  1800. 

Of course we have already seen an example of R∗∗∗∗G = M in 7.0.4 
and figure 7.5, where R3

 −−−−∗∗∗∗G1 = M1: assuming that each tile has side 
length 1, |T | = 2d × tan(φ/2) holds with |T | = 2 /2, d = 2 /4 and 
tan(φ/2) = tan450 = 1. So, it is possible for the composition of a 900 
rotation and a ‘diagonal’  glide reflection to produce a reflection in 
the case of a p4m  pattern; this also happens in the p4g pattern, as 
you should be able to verify (in figure 4.55 for example).
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7.9  Reflection ∗∗∗∗  Glide Ref lec t ion

7.9.1 Only two centers. In the pmg  pattern, the combination of a 
reflection M  and a glide reflection G  perpendicular to each other 
produces two  half turns the centers of which lie on G ’s axis and are 
mirror images of each other about M : this may either be checked 
directly (and by appeal to the discussions in 7.7.4 and 7.8.2 if 
necessary) or be derived as a special case of figure 6.6.2 (by making 
one  of the glide reflection vectors zero). Could this be due to the 
right  angle ’s ‘special privileges’? After all, there exist four  
possibilities altogether (M∗∗∗∗G , G∗∗∗∗M , M∗∗∗∗G-1, G−−−−1∗∗∗∗M ) that could create 
four distinct centers. Well, a look at 7.0.4 and figure 7.6 is not that 
promising for center diversity: over there we established M 1∗∗∗∗G1 = 
R4

 - and indicated that G1∗∗∗∗M1 = R5
 +, with M 1  a ‘horizontal’ reflection 

and G1 a ‘diagonal’ glide reflection in a p4m  pattern (bathroom 
wall); and a bit more work would show that M1∗∗∗∗G1

−−−−1 = R5
 −−−− and G1

−−−−1∗∗∗∗M1 
= R4

 + -- only two  centers altogether!

Evidence for two rather than four centers is strengthened by a 
more ‘exotic’ (p31m) example:

Fig. 7.34

You should be able to verify N∗∗∗∗G = R2
 +, G∗∗∗∗N = R1

 −−−−, N∗∗∗∗G−−−−1 = R1
 +, and 
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G−−−−1∗∗∗∗N = R2
 −−−−: again, four compositions sharing two centers. (Notice 

here that R1 and R2 are among the p31m ’s ‘off-axis’ 1200 centers 
(4.16.1), derived through the compositions above rather than as 
obvious compositions of intersecting reflections.)   

     
 
7.9.2 The way to the two centers. Having ‘only’ two centers 

would make sense not only in view of the examples presented, but 
also in view of what we saw in 7.7.2: the combination of a reflection 
and a rotation produced two, not four, glide reflection axes. 
Moreover, having two rather than four centers will make perfect 
sense after the ‘whole  story’ is revealed in section 7.10!

So, having resigned to living with just two centers, how do we 
find them? How would we justify figure 7.34? Using M 1 instead of N  
and setting G  = M2∗∗∗∗T = T∗∗∗∗M2, G−−−−1 = M2∗∗∗∗T−−−−1 = T−−−−1∗∗∗∗M2, we notice that 
the four compositions of figure 7.34 may be written as (M 1∗∗∗∗M 2)∗∗∗∗T , 
T∗∗∗∗(M2∗∗∗∗M1), (M1∗∗∗∗M2)∗∗∗∗T−−−−1, and T−−−−1∗∗∗∗(M2∗∗∗∗M1); now M1∗∗∗∗M2 and M2∗∗∗∗M1 are 
rotations R+, R−−−− of same center K and angle φ (1200 in this case) but 
opposite orientation, so we may ‘blend’ figures 7.34 and 7.22:

  

 
Fig. 7.35
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So, with N1 = DE, N2 = CF, M  perpendicular to T (therefore M2 as 
well), L and L ′′′′ parallel to M  with d(M , L) = d(M , L ′′′′) = |T |/2, and     
a(M , N1) = a(M , N2) = a(M1, M2) = 600 (φ/2), the ‘blending’ of figures 
7.22 and 7.34 is complete: center R1 (figure 7.34) corresponds to F 
(figure 7.22) and the rotations R+∗∗∗∗T−−−−1 = (M1∗∗∗∗M2)∗∗∗∗T−−−−1 = N∗∗∗∗G−−−−1 and 
T∗∗∗∗R−−−− = T∗∗∗∗(M2∗∗∗∗M1) = G∗∗∗∗N; and center R2 (figure 7.34) corresponds to C 
(figure 7.22) and the rotations R+∗∗∗∗T = (M1∗∗∗∗M2)∗∗∗∗T = N∗∗∗∗G and T−−−−1∗∗∗∗R−−−− = 
T−−−−1∗∗∗∗(M2∗∗∗∗M1) = G−−−−1∗∗∗∗N. And there is a bonus as well: observe, focusing 
on acute angles always, that a(M1, N2) = a(M1, M2) + a(M2, N2) = 
a(M , N2) + a(M2, N2) = a(M , M2) = 900! In other words, M1 and N2 are 
perpendicular to each other: this is going to be important both in 
7.9.3 below and in section 7.10. 

Our analysis above has certainly explained how the composition 
centers are born, but there is one more question to answer: what do 
‘unused centers’ D (intersection of L ′′′′ and N1) and E (intersection 
of L  and N1) of figure 7.35 stand for? The answer is: they represent 
rotations unrelated  to the given pair of reflection and glide 
reflection (and not  ‘belonging’ to the p31m  pattern of figure 7.34)! 
For example, one of the two rotations based on E is R−−−−∗∗∗∗T = (M2∗∗∗∗M1)∗∗∗∗T 
= M 2∗∗∗∗ (M 1∗∗∗∗T), which is the composition of another pair of 
reflection (M 2) and, by 7.3.2, glide reflection (M 1∗∗∗∗T ); it is of course 
crucial that we cannot replace M2∗∗∗∗M1 by M1∗∗∗∗M2 (7.2.3). 

7.9.3 A ‘practical guide’. The detailed discussion in 7.9.2 is 
certainly enlightening, but how would you describe to someone not 
terribly interested in mathematical rigor the general  procedure for 
determining the composition of a reflection and a glide reflection? 
To be more precise, how would you lead that person to the center of 
the resulting rotation? That’s really the only crucial question: for it 
is clear from the preceding discussion that the rotation angle is 
twice  the intersection  angle  of the reflection and the glide 
reflection; and, once the center is known, the angle’s orientation is 
easy to determine (by checking what happens at the intersection 
point  of the reflection and the glide reflection, for example).
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Removing all ‘redundant information’ from figure 7.35, we arrive 
at an easy answer to our question. Indeed, since N2 is perpendicular 
to M1 (7.9.2) and L , L ′′′′ are perpendicular to M2 with the intersection 
point K half way from L  to L ′′′′ (figure 7.35), the procedure for 
determining the rotation centers R1, R2 for the four possible 
compositions of 7.9.1 is simple: pick points K1, K2 on M2 so that |KK1| 
= |KK2| = |T|/2, and then draw lines L′′′′, L perpendicular to M2 at K1, K2 
respectively, and line N2 perpendicular to M1 at K; R1 and R2 are 
now determined as the intersections of N2 by L and L ′′′′ (figure 7.36).

         

Fig. 7.36

Of course figure 7.36 alone does not tell us which center 
(between R1, R2) to use for any given combination of reflection and 
glide reflection. Some rules can be derived by referring to the 
discussion following figure 7.35, or perhaps by looking at figure 
7.40 in section 7.10. But it is probably easier to follow the tip given 
above and determine the right center and angle orientation simply by 
checking where the intersection of the two axes is mapped. We 
illustrate all this in figure 7.37 below, where we verify the 
identities M 1∗∗∗∗G1 = R4

 −−−− and G1∗∗∗∗M1 = R5
 + of figure 7.6 (bathroom wall), 

which is reproduced in part, explicitly demonstrating the 
determination of centers R4 and R5: looking at the pair K, M1∗G1(K), 
it becomes clear that the only rotation among R4

 +, R 4
 −−−−, R5

 +, R 5
 −−−−  that 
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could map K to M1∗∗∗∗G1(K) is R4
 −−−−, therefore M1∗∗∗∗G1 = R4

 −−−− ; likewise, 
looking at the pair K, G1∗∗∗∗M1(K), we conclude that G1∗∗∗∗M1 = R5

 +.

        
Fig. 7.37

7.9.4 When the axes are parallel. Everything we discussed so far 
in this section collapses in case M1 and M2, that is N  and G  are 
parallel to each other. Luckily, the compositions N∗∗∗∗G  = (M1∗∗∗∗M2)∗∗∗∗T 
and G∗∗∗∗N = T∗∗∗∗(M2∗∗∗∗M1) are much easier to determine in this case; we 
derive these translations below, leaving N∗∗∗∗G−−−−1 and G−−−−1∗∗∗∗N  to you: 

Fig. 7.38
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Of course all this is strongly reminiscent of sections 7.3 and 
7.4; and such compositions are prominent in cm  (and pm) patterns, 
as well as all patterns containing them: more  on this in chapter 8!

7.10  Glide reflection ∗∗∗∗  Glide Ref lec t ion

7.10.1 Parallel axes. This ‘pg’ case is similar to the ‘cm’  case 
of 7.9.4. Indeed G1∗∗∗∗G2 = T1∗∗∗∗(M1∗∗∗∗M2)∗∗∗∗T2 = (T1∗∗∗∗T2)∗∗∗∗(M1∗∗∗∗M2) and G2∗∗∗∗G1 
= T2∗∗∗∗ (M2∗∗∗∗M1)∗∗∗∗T1 = (T2∗∗∗∗T1)∗∗∗∗ (M2∗∗∗∗M1) are ‘diagonal’ translations:

Fig. 7.39

Notice that the special case T1 = −−−−T2 (with T1∗∗∗∗T2 = I) has been 
employed in 6.3.2 (figure 6.21) in our investigation of two-colored 
pm  patterns.

7.10.2 A good guess indeed! We now come to the much more 
involved case where G1 and G2 intersect each other at a point K. 
Luckily, most of the work has already been done in section 7.9! 
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Indeed, had you been asked to determine G1∗∗∗∗G2 (etc) yourself, you 
would probably look at figure 7.36 and think like this: “were M 1 a 
glide reflection G 1 = M 1∗∗∗∗T1 instead of a mere reflection, I would 
have treated it exactly as G 2 = M 2∗∗∗∗T2; that is, I would draw lines N , 
N ′′′′ perpendicular to M 2 and at a distance of |T2|/2 to the left and 
right of K, and then I would look for the rotation center(s) at their 
intersection(s) with L ′′′′ and L"; and surely you would already know 
that the composition is a rotation by an angle twice  the 
intersection angle of G1 and G2! And you would be right on the mark:

Fig. 7.40

Figure 7.40 offers an exhaustive  overview of the situation, 
covering all eight possible combinations and four rotation centers: 
it is possible to develop rules about ‘what  goes  where’ , but it is 
probably smarter to do what we suggested in 7.9.3 (and figure 7.37) 
when it comes to determining rotation centers and angle orientation!

In simple terms, draw two perpendiculars at each of the two 
axes and at distances equal to half the length of the respective 
gliding vector on each side of their intersection point, then look for 
the four intersections of the resulting two pairs of parallel lines 
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(figure 7.40): observe that this generalizes  figure 6.54, where the 
two axes are perpendicular to each other!  

7.10.3 Where do they come from? Notice how we have upgraded 
from the two possible centers of figure 7.36 to the four possible 
centers of figure 7.40: this is hardly surprising if you notice that we 
did get an extra translation here (as the reflection turned into glide 
reflection) and if you recall how the addition of a translation 
increased the number of glide reflection axes from two (figure 7.28, 
R∗∗∗∗M) to four (figures 7.31 & 7.32, R∗∗∗∗G).

In 7.8.1, and figure 7.33 in particular, we explained how the 
additional translation leads to the two extra axes (when the 
reflection (figure 7.28) combined with the rotation is upgraded  to 
glide reflection (figures 7.31 & 7.32)). We do something similar in 
figure 7.41 below, showing how each  of the two rotation centers 
(R1, R2) generates two new rotation centers (R4, R5 and R3, R6, 
respectively), the same  way  K generated R1 and R2 in figure 7.36:

Fig. 7.41
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Basically, all we had to do was to combine each of R1 and R2 
with the ‘added’  translation T1, exactly as in figures 7.22 and  7.35; 
and, for the same reason that line N1 was ‘useless’ in figure 7.35, 
lines N11 and N21 play no role in figure 7.41: our rotation centers 
are created by the intersections of lines N12 and N22 with L  and L ′′′′. 
(Notice however that R5 also lies on N21, while R6 also lies on N11: 
this is part of a ‘coincidence’ discussed right below.)    

Are you ready for a little surprise , at long last? Figure 7.41 is 
in fact an ‘abstract  detail’  of a familiar  piece, namely figure 
7.34! Indeed M 2∗∗∗∗T2 is figure 7.34’s glide reflection G , while M 1∗∗∗∗T1 
is figure 7.34’s reflection N  upgraded to a hidden glide reflection 
MG ; everything is fully revealed in figure 7.42: 

MG∗G = R3
 +, G∗MG = R4

 −, MG∗G−1 = R5
 +, G−1∗MG = R6

 −, 

G−1∗MG−1 = R3
 −, MG−1∗G−1 = R4

 +, G∗MG−1 = R5
 −, MG−1∗G = R6

 +

Fig. 7.42

So, the ‘coincidence’ mentioned above reflects on the fact that 
R5 and R6 are ‘on-axis’ 1200 centers in figure 7.34’s p31m  pattern: 
figure 7.42 indicates that those centers are generated whenever two 
‘somewhat  opposite’  glide reflections are combined; but it is 
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more crucial to find out ‘why’ those centers fall on the axes, and we 
do that next as a byproduct of a broader investigation.

7.10.4* Some coordinates, at long last! Our goal here is to 
determine the location of the four rotation centers (A, B, C, D) 
corresponding to ‘all possible combinations’ of the two given glide 
reflections G 1 , G 2  analytical ly  -- that is, using cartesian  
coordinates  (for the first time since chapter 1)! To do that, we 
‘rotate’ figure 7.40 so that G 1 is now our x-axis  (y = 0), while G 2 
is a line of unspecified slope m  (y = mx), and the intersection point 
of G1, G2 is the origin (0, 0); we also set |T1| = 2d1 and |T2| = 2d2, 
so that the perpendiculars to G1, N and N ′′′′, are now represented by 
the equations x = d1 and x = −d1, respectively (figure 7.43).     

Fig. 7.43

The critical step is to determine the equations of the lines L  and 
L ′′′′: being perpendicular to y = mx and symmetric of each other about 
(0, 0), they may be written as y = (−1/m)x − k and y = (−1/m)x + k, 
respectively; k is a real number that we need to determine, and we 
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do so by first determining the coordinates of K1 and K2, the 
intersection points of G 2 with L  and L ′′′′, respectively (figure 7.43).

Solving the systems y = mx = (−−−−1/m)x + k and y = mx = 

(−−−−1/m)x −−−−  k, we obtain K1 = ( −km
m2+1

, −km2

m2+1
) and K2 = ( km

m2+1
, km2

m2+1
). 

We know that |K1K2| = 2d2, so the distance formula leads to 

( −km
m2+1

−
km

m2+1
)2 + ( −km2

m2+1
−

km2

m2+1
)2  = 2d2, which is equivalent to 

4k2m2

(m2+1)2
 + 4k2m4

(m2+1)2
 = 4d2

 2, k2m2

m2+1
 = d2

 2 and, finally, k = ±±±±
d2

m
m 2+ 1 . 

Knowing now the equations of L (y = (−1/m)x − (d2/m) m2+1 ) 

and L ′′′′ (y = (−1/m)x + (d2/m) m2+1 ), it is trivial  to determine the 
coordinates of their intersections with N  (x = d1) and N ′′′′ (x = −d1):  

  

A = (d1, 
−−−−d1−−−−d2 m 2+ 1

m
),    B = (d1, 

−−−−d1+d2 m 2+ 1

m
),          

C = (−−−−d 1, 
d1+d2 m 2+ 1

m
),    D = (−−−−d 1, 

d1−−−−d2 m 2+ 1

m
).

Now we can finally answer the question: when does the center of 
a rotation that is the composition of two glide reflections lie on one 
of the glide reflection axes? Working in the context of figure 7.43, 
always, we notice that there exist two  distinct possibilities: two 
centers lying on G 1 (if and only if their y-coordinate is 0), and two 
centers lying on G 2 (if and only if their coordinates x and y satisfy y 
= mx). Indeed the first possibility may only occur for both B and D 
at the  same  time , and is equivalent to d1 = d2 m 2+ 1 ; and the 
second possibility may only occur for both B and D at the same  
time, and is equivalent to d2 = d1 m 2+ 1 . (The roles of B, D and A, 
C are switched when we select −−−−  instead of + in the above derived 
formula for k, with the formulas for L  and L ′′′′ swapped .) Observe 
that we may in fact set m = tanγγγγ , where γ = φ/2 is the acute  angle 
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between the two glide reflection axes; with m2+1 = tan2γ+1 = 1
cos2γ

, 

our condition becomes |T1| = |T2| × cosγ or |T2| = |T1| × cosγ. [Notice 
that this condition is made all too obvious by figure 7.41, making all 
previous calculations above seem totally redundant; but our main 
goal was the determination of the composition center’s 
coordinates  in the general  case  (i.e., when the resulting rotation 
center lies on no glide reflection axis).] 

In the case of the p31m  pattern of figures 7.34 & 7.42, we may 
set, after rotating the coordinate system as above, m = −−−− 3 ; a bit 
of Geometry shows then that |T2| = 2|T1|, hence d2 = d1 m2+1  and 
|T1| = |T2| × cosγ are valid: on-axis rotations may therefore be seen 
as compositions of one genuine and one hidden glide reflection. 

In the case of perpendicular  glide reflections, l i m
m→∞

m2+1
m

 = 1 

(the fraction approaching 1 as m approaches infinity) and d1/m = 0 
yield the centers (±±±±d1, ±±±±d2), corroborating figure 6.54 and 
contributing to our understanding of pgg and cmm  patterns. In the 
case of the latter, the off-axis centers are always produced by one 
reflection and one glide reflection perpendicular to each other; any 
pair of perpendicular glide reflections produces four centers lying, 
as we indicated in 6.9.3, on intersections of reflection axes, hence 
not  on glide reflection axes. 

In the case of the p4g  pattern of figure 7.44 (and 4.55), working 
with the shown horizontal and diagonal glide reflection axes and 
vectors, observe that m = tan450 = 1, d1 = a/2, and d2 = a/(2 2 ) = 

d1cos450, so that 
d1+d2 m2+1

m
 = a and 

d1−d2 m2+1

m
 = 0; here a 

stands for the length of the horizontal  glide reflection vector 
(figure 7.44). The four intersection points (and fourfold centers) are 
(a/2, 0), (−a/2, 0), (a/2, −a), and (−a/2, a); the first two centers do  
indeed lie on the horizontal glide reflection axis:
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Fig. 7.44
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CHAPTER 8

WHY PRECISELY SEVENTEEN TYPES?

8.0   Classification of wallpaper patterns

8.0.1 The goal. Back in section 2.8 it was rather easy to explain 
why there exist precisely seven  types of border patterns. But we 
have not so far attempted to similarly determine  the number of 
possible wallpaper patterns: we simply assumed  that there exist 
precisely seventeen  types of wallpaper  patterns in order to 
investigate their two-colorings in chapter 6. And there was a good 
reason for this: unlike border patterns, wallpaper patterns may only 
be classified with considerable effort; in fact most known proofs 
would probably be too advanced mathematically for many readers 
of this book. Luckily, we are at long last in a position to fulfill our 
promise at the end of 4.0.6 and justify our assumptions on 
wallpaper patterns, classifying them in a purely geometrical  
manner: no tools beyond those already developed in earlier chapters 
will be needed.

Of course ‘half’ of our goal has already been achieved: chapter 4 
provides some rather convincing evidence on the existence and 
structure of the seventeen types, and the latter has also been 
indirectly examined in chapters 6 and, to some extent, 7. What we 
need to reach now is a negative result: there cannot be any more 
types of wallpaper patterns other than the ones studied in chapter 4.

8.0.2 The tactics. The promised classification will be greatly 
facilitated by the Crystal lographic  Restriction  of section 4.0, 
established in 4.0.6: the smallest rotation angle of a wallpaper 
pattern may only be 3600 (none), 1800, 1200, 900, or 600. This 
fundamental fact allows us to split the entire classification 
process into five cases. Moreover, we will view each 900 pattern as 
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‘built’ on two 1800 patterns, each of which will in turn be viewed 
as a ‘product’ of two 3600 patterns; and something quite similar 
will happen among 3600, 1200, and 600 patterns. This approach 
allows us to reduce potentially ‘complicated’ types to simpler ones.

As stated above, we will be looking for ‘negative’ results, trying 
to rule out various geometrical situations and, to be more specific, 
interactions among isometries. Therefore various facts on 
compositions  of isometries explored in chapter 7 are going to be 
crucial. Moreover, looking at an isometry’s image under another 
isometry will often be useful: that operation is closely related to 
the Conjugacy Principle of 6.4.4 (and 4.0.4 & 4.0.5), and needs to 
be further investigated before the classification begins.  

8.0.3 The Conjugacy Principle revisited. First formulated in 
6.4.4, the Conjugacy Principle essentially states that, given two 
isometries I and I1, I1’s image under I, denoted by I[I1 ], is still an 
isometry, equal in fact to I∗∗∗∗ I1∗∗∗∗ I −1 (and not I∗∗∗∗ I1). In 6.4.4, figure 6.36, 
I was the glide reflection G , I1 was the reflection M 1, and I[I1] was 
the glide reflection M 2. In 4.0.4, figure 4.4, I was the translation T , 
I1 was the clockwise rotation R  = (K, φ), and I[I1] was the clockwise 
rotation (T(K), φ). And in 4.0.5, figure 4.6, I was the clockwise 
rotation R1 = (K1, φ1), I1 was the clockwise rotation R2 = (K2, φ2), and 
I [ I1] was the clockwise rotation (R1(K2), φ) .

One should be careful about what exactly I[I1] stands for! The 
following example, where I is the glide reflection G  and I1 is the 
counterclockwise  rotation R  = (K, φ) is rather illuminating:
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Fig. 8.1     

As made clear by figure 8.1, I[I1] = I∗∗∗∗ I1∗∗∗∗ I −1 is the clockwise  
rotation (G (K), −φ): G  glide-reflected not only R ’s center, but also 
the arrow  indicating its orientation! This empirical  ‘arrow rule’ 
works rather well: for example, it indicates -- by placing the arrows 
and the angles in a circular context, if needed -- that rotating a 
rotation I1 by another rotation I should preserve  its orientation, 
regardless of whether I is clockwise or counterclockwise; you 
should be able to verify this claim by considering all possible 
combinations of clockwise and counterclockwise in figure 4.6. 

So far we have not said anything about proving the various 
instances of the Conjugacy Principle. Well, congruent  triangles 
simply give everything away in figure 4.6, while the presence of 
three  parallelograms  settles everything in figure 4.4. And in 
figure 8.1 above, where we are facing a seemingly more difficult 
situation, a seemingly cleverer but merely generalizing approach 
works: the triangle {P, G(K), G∗∗∗∗R∗∗∗∗G−−−−1(P)} is the image of the 
isosceles triangle {G−−−−1(P), K, R∗∗∗∗G−−−−1(P)} under G , therefore 
congruent  to it; it follows that G∗∗∗∗R∗∗∗∗G −−−−1(P) = I∗∗∗∗ I1∗∗∗∗ I−1(P) is indeed 
the image of P under the clockwise rotation (G (K), −φ) = I[I1], hence 
we may conclude that I[I1] = I∗∗∗∗ I1∗∗∗∗I−1 holds. 

The method employed in figure 8.1 could also be employed back 
in figures 4.4 & 4.6: it requires no particular skill or ingenuity, just 
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experience in arguing somewhat abstractly. But in figure 8.2 
below -- an ‘ inverse’ of figure 8.1, for now we rotate a glide 
reflection instead of glide-reflecting a rotation -- there seems  to 
be a complication: while K, P, and R∗∗∗∗G∗∗∗∗R−−−−1(P) are clearly the images 
under R  of K, R−−−−1(P), and G∗∗∗∗R−−−−1(P), respectively, it is not obvious 
that P’s image under the rotated reflection line R[M] is the same as 
M∗∗∗∗R−−−−1(P)’s image under R ; notice that we do need this fact in order 
to show that the segment {R[M](P), R∗∗∗∗G∗∗∗∗R−−−−1(P)} is both equal in 
length to the segment {M∗∗∗∗R−−−−1(P), G∗∗∗∗R−−−−1(P)} and parallel to R[M], 
therefore equal to the vector R[T], as figure 8.2 suggests. (Recall at 
this point that isometries, and rotations in particular, map parallel 
lines to parallel lines (1.0.9).) 

Fig. 8.2

So, how do we establish R(M∗∗∗∗R−−−−1(P)) = R[M](P)? While a 
‘standard’ geometrical approach is possible, the following idea, 
extending the methods of this section and suggested by Phil Tracy, 
is much more efficient: simply rotate the axis M  along with the 
quadrangle {K, R−−−−1(P), M∗∗∗∗R−−−−1(P), G∗∗∗∗M∗∗∗∗R−−−−1(P)} to R[M] and the 
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congruent quadrangle {K, P, R(M∗∗∗∗R−−−−1(P)), R∗∗∗∗G∗∗∗∗R−−−−1(P)}; the desired 
equality R(M∗∗∗∗R−−−−1(P)) = R[M](P) follows now from the observation 
that isometries preserve perpendicular bisectors -- in particular R  
rotates the perpendicular bisector M  of {R−−−−1(P), M∗∗∗∗R−−−−1(P)} to the 
perpendicular bisector R[M ] of {P, R(M∗∗∗∗R−−−−1(P))}, so that R(M∗∗∗∗R−−−−1(P)) 
is indeed the mirror image of P about R [M ].

We have just derived the most difficult case of the Conjugacy 
Principle, showing that the rotation of a glide reflection by an angle 
φ is another glide reflection both  the axis and the vector of which 
have been rotated by φ: this will be useful in what follows, and so 
will be its ‘inverse’ on glide-reflected rotations (figure 8.1).

Here is a challenge for you concerning the image of a glide 
reflection under another  glide reflection not  parallel  to it (a case 
that, unlike the previous ones, we do not need in the rest of this 
chapter): how would you ‘justify’ figure 8.3?     

Fig. 8.3
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 Here is another useful instance of the Conjugacy Principle:

            

Fig. 8.4

A seasoned conjugacist by now, you should have no trouble 
understanding what happened in figure 8.4: you better do, it is 
destined to play a crucial role in what follows! (The few remaining 
cases and possibilities of the Conjugacy Principle are rather easier, 
and left to you to investigate; from here on we will assume it 
proven  in full rigor and generality, but we will be explicitly stating 
where and how we use it throughout our classification of wallpaper 
patterns (sections 8.1-8.4).)   

8.1  3600  patterns

8.1.1 The basic question. The first question we will be asking in 
each of the coming sections is: does the pattern in question have 
(glide) reflection? In the case of a 3600 pattern, a negative answer 
to this question implies a pattern that has only  translation(s): 
that’s our familiar p1  pattern, and there is not much more to say 
about it than what we already discussed in sections 4.1 and 6.1.
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8.1.2 How many (glide) reflections? An affirmative answer to 
the ‘basic question’ of 8.1.1 naturally raises the question: “how 
many kinds of (glide) reflection may coexist in a 3600 pattern?” 
What we can say at once is that there cannot possibly be (glide) 
reflection in two  distinct directions; indeed that is ruled out by the 
basic result of section 7.10 (which generalizes sections 7.2 and 7.9): 
any two (glide) reflections intersecting at an angle φ/2 produce a 
rotation by an angle φ (7.10.2). 

At the same time, the Conjugacy Principle yields infinitely many 
(glide) reflections derived out of the one that we started with. 
Indeed every wallpaper pattern has translation in at least two  
directions, in particular in a direction distinct  from that of the 
given (glide) reflection; that translation T , as well as its inverse  
T−−−−1, simply translate the given (glide) reflection G  -- as suggested 
in figure 8.4 -- again and again in both directions, creating an 
inf initude  of paral lel  (glide) reflections of equal  gliding 
vectors: T[G], T2[G] = T[T[G]], ... , Tn[G] = T[Tn−−−−1[G]], ... and T−−−−1[G], 
T−−−−2[G] = T−−−−1[T−−−−1[G]], ... , T−−−−n[G] = T−−−−1[T−−−−n+1[G]], ... (figure 8.5):     

Fig. 8.5

8.1.3 Another way to go. Let’s now employ composition of 
isometries (section 7.4) instead of the Conjugacy Principle, forming 
T∗∗∗∗G, T2∗∗∗∗G = T∗∗∗∗(T∗∗∗∗G), ... , Tn∗∗∗∗G = T∗∗∗∗(Tn−−−−1∗∗∗∗G), ... and T−−−−1∗∗∗∗G, T−−−−2∗∗∗∗G = 
T−−−−1∗∗∗∗(T−−−−1∗∗∗∗G), T−−−−3∗∗∗∗G = T−−−−1∗∗∗∗(T−−−−2∗∗∗∗G), ... , T−−−−n∗∗∗∗G = T−−−−1∗∗∗∗(T−−−−n+1∗∗∗∗G), ... :
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Fig. 8.6

Figure 8.6 certainly looks more complicated than figure 8.5, but 
it isn’t; indeed it essential ly  consists, just like figure 8.5, of a 
single  glide reflection, G 0 = T−−−−1∗∗∗∗G , with all others being 
translated  odd  powers  of it: G  = (T1/2)[G 0

 3], T∗∗∗∗G  = T1[G0
 5], T2∗∗∗∗G  

= (3T1/2)[G 0
 7], ... and T−−−−2∗∗∗∗G = (T1

 −−−−1 /2)[G 0
 −−−−1] = (−T1/2)[G 0

 −−−−1], T−−−−3∗∗∗∗G = 
T 1

 −−−−1[G0
 −−−−3] = (−T1)[(G0

 −−−−1) 3], ... , where T1 and T1
 −−−−1 =  −−−−T1 are T ’s and 

T−−−−1’s perpendicular-to-G  components, respectively (figure 8.6). (In 

general, Tm∗∗∗∗G = (( m+1
2

)T1)[G 0
 2m+3], for all integers m; of course 

this equation is valid only  for the particular G  and T  in figure 8.6!) 

What we used above is the fact that every pattern having glide 
reflection based on axis M  and minimal gliding vector T  is bound to 
also have glide reflections (M , kT), where k is an odd  integer 
(positive or negative); no  even multiples of T  are there because, as 
we saw as far back as 5.4.1 and 2.4.2 (p1a1 border patterns), the 
square  (and therefore every even  power) of a glide reflection is a 
translation  by a vector twice as long as the glide reflection 
vector. Conversely, every ‘non-minimal’ glide reflection combined 
with T  and its powers brings us back to the minimal one, (M , T): in 
the context of figure 8.6, G 0

 2m+3 = Tm+1∗∗∗∗G 0 for all integers m.

One last remark before we go on: the compositions G∗∗∗∗Tm would 
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not bring any additional glide reflections into figure 8.6. You may 
verify that using again the techniques of section 7.4; in algebraic 
terms, notice some curious identities such as G∗∗∗∗T = (T−−−−1∗∗∗∗G ))))3!    

8.1.4 Can they coexist? In view of our remarks in 8.1.2 and 
8.1.3, figures 8.5 and 8.6 may be merged into one as follows:  

Fig. 8.7 

In other words, we simply represent each one of infinitely many, 
parallel to each other glide reflections by its axis and minimal  
downward gliding vector T0, remembering that all odd  multiples 
of T0 (positive/downward or negative/upward) produce valid glide 
reflections based on the same axis. And what we obtained after all 
these deliberations is the rather familiar symmetry plan of a pg  
pattern! (Note at this point that T ’s components, T2 = G0

 2 = 2×T0 and 
T1 = G0∗∗∗∗G0′′′′  = G0″″″″ ∗∗∗∗G 0, are valid translations of this pg  pattern, too.)

It seems that there is no problem at all here, but ... there is a 
catch! Indeed each glide reflection in figure 8.7 is a translate (copy) 
of G0 = T−−−−1∗∗∗∗G  obtained in 8.1.3, but ... that’s not the glide reflection 
G  that we started with in 8.1.2! To wit: had we assumed G  to be a 
glide reflection of minimal  gliding vector in figure 8.5, we would 
be in trouble; for ‘playing by the rules’ led to a glide reflection G 0 of 
gliding vector strictly smaller than that of G  -- to be precise, one  
third the length of G ’s gliding vector! And we have every right, in 
fact obligation, to assume  the existence of a minimal gliding 
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vector: if that is not the case, then, squaring  glide reflections of 
arbitrarily small gliding vectors would imply the existence of a 
pattern with arbitrarily small translations, violating Loeb’s 
Postulate  of Closest  Approach  (4.0.4).

Looking back at 8.1.3 and figure 8.6, it becomes clear that what 
‘created’ G 0 and its ‘smaller than minimal’ gliding vector was T2

 −−−−1, 
the component of T−−−−1 that is parallel to G . At this point, you may 
ask: aren’t we bound to always run into trouble, with T2

 −−−−1 always 
creating a glide reflection having a gliding vector shorter  than T0?        

Perhaps the best way to answer this question is to have a closer 
look at figure 8.7 and its ‘apparently legal’ pg  pattern: what happens 
when we compose its minimal glide reflection G 0 with T? In simpler 
terms, what happens when T2

 −−−−1 is added to G0’s minimal vector T0? 
Since T2

 −−−−1 = −2×T0 (figure 8.7), the result is T0 + T2
 −−−−1 = T0 + (−2×T0) 

= -T0, which is G 0
 −−−−1 ’s gliding vector: we ‘jumped’ from T0 to -T0 (as 

opposed to a still downward vector shorter than T0) only because T2 
wasn’t any shorter -- because T 2  itself is minimal  as the vertical  
component  of any  valid translation of the pg  pattern in figure 8.7!  

[More generally, T0 + m×T2 = (2m+1)×T0 for all integers m: the 
resulting gliding vector is, according to our discussion in 8.1.3, still 
‘legal’, corresponding to a valid glide reflection. Even more 
generally, notice that T0 + t is an odd  (‘legal’) multiple of T0 if and 
only if the ‘vertical’ translation t is an even  multiple of T0 (hence 
an arbitrary multiple of T2). Conversely, the composition of two 
vertical glide reflections of the form (M , k1×T0) and (M , k2×T0), 
where k1 and k2 are odd  integers, is a translation, with k1+k2 
even, of vertical component (k1+k2)×T0: we can therefore say that 
all valid translations have a parallel-to-axis component of the form 
k×T0, where k is an even integer.]  

Putting everything together, and with our remarks in 8.1.7 
further below also in mind, we get a condition  of  existence for 
pg , the pattern first studied in sections 4.3 and 6.2:
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Fig. 8.8

In English: in a pg  pattern, its translation’s minimal parallel-to-
the-gliding-axis component (T2) must be the double of its glide 
reflection’s minimal gliding vector (T0). 

8.1.5 Two gliding vectors? Unpleasant as that may sound, we 
are not completely through with our derivation of the pg  pattern! 
Indeed, while we have fully justified and understood figure 8.7’s 
infinitely many, parallel and ‘equal’ glide reflections, running at 
equal distances from each other, we never ruled out the existence of 
another  glide reflection half way  (Conjugacy Principle) between 
the axes of figure 8.7! 

 Luckily, that is not difficult to do: if t1 , t2  are minimal gliding 
vectors for the glide reflection axes M 1, M 2, respectively (and with 
M 1, M 2 parallel to each other by necessity), then their squares  2×t1 
and 2×t2 are translations  parallel to (M 1, t1) and (M 2, t2); so, by 
7.4.1, (M 1, t1−2×t2) and (M 2, t2−2×t1) are valid glide reflections. 
The minimality assumptions on (M 1, t1) and (M 2, t2) lead then -- 
after switching from the two coll inear  vectors to their lengths -- 
to the inequalities |t1−2t2| ≥  t1 and |t2−2t1| ≥  t2, which seem  to hold 
concurrently if and  only if t1 = t2 (i.e., t1 = ± t2, making the two 
glide reflections ‘equal’ to each other). Our argument is illustrated 
in figure 8.9, where t1 ≠  t2 leads to a violation of the minimality 
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assumption about t1 being the minimal vector for M 1:

Fig. 8.9

Well, didn’t we go a bit too  fast with the algebra in the 
preceding paragraph? Let’s see: squaring both inequalities we end up 
with −4t1t2  + 4t2 2 ≥ 0 and −4t1t2 + 4t1 2 ≥  0, that is t2 2 ≥  t1t2 and      
t 1

 2 ≥  t1t2 or, equivalently, t2(t2− t1) ≥  0 and t1(t1− t2) ≥  0; now if t2 > 0 
and t1 > 0, we may safely conclude t2−t1 ≥ 0 and t1−t2 ≥ 0, therefore      
t1 = t2 as above. Observe however that it is possible to have t2 = 0 
and t1 > 0 or t1 = 0 and t2 > 0! (Or t1 = t2 = 0, of course.)

What is the geometric relevance of our algebraic observations? 
What corresponds to a glide reflection of minimal gliding vector of 
length zero? Luckily we are well prepared for this question, and the 
answer is: reflection! To be precise, a glide reflection employing a 
reflection axis, what we already know as a ‘hidden glide reflection’.  

8.1.6 A closer look at reflection. We have certainly seen as far 
back as in 1.4.8 that a reflection M  may be viewed as a glide 
reflection of gliding vector zero. A natural question to ask would be 
the following: what is M ’s next  shortest  gliding vector? This 
question makes a lot of sense in view of what we have already 
discussed in this section: if T  is the minimal gliding vector of a 
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glide reflection G , then the next shortest vector is 3×T  (8.1.4).

Alternatively, we may look at T0, the shortest non-zero  gliding 
vector of a (glide) reflection. In the case of a genuine glide 
reflection and a pg pattern, we have seen in figure 8.8 and 8.1.4 that 
T 0  = T 2 /2, where T 2  is always the translation’s minimal  vertical 
component. When it comes to reflection, we observed in 6.3.4 (figure 
6.23), while studying two-colored pm  patterns, how the existence of 
a vertical reflection M  does indeed guarantee 2×T2 as a valid 
vertical translation. That means that 2×T2 must  be a gliding vector 
for the hidden glide reflection associated with M , albeit not  
necessarily the shortest non-zero one (T0). Indeed a review of our 
examples in chapters 4 and 6 would certainly show that T0 = 2×T2 
holds for cm  patterns only; in pm  patterns it gives way to T0 = T2! 

Leaving the cm  aside for now, we could derive the symmetry 
plan for the pm  (almost a ‘special case’ of pg , studied in sections 
4.2 and 6.3), arguing as in 8.1.2 through 8.1.4; we prefer to simply 
record the pm ’s ‘condition of existence’: 

                  
Fig. 8.10

In English: in a pm  pattern, its translation’s minimal parallel-
to-the-gliding-axis component (T2) must be equal to the shortest 
non-zero gliding vector associated with its reflection (T0) .
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The next natural question: is T0 = k×T2 possible for 1 < k < 2 in 
the presence of reflection? (Notice that k > 2 is impossible by 6.3.4, 
while k < 1 would contradict the minimality of T2 at once: a gliding 
vector for a vertical reflection must  in addition be a vertical 
translation vector -- and vice versa, of course, as noted above.) The 
answer is negative: with both 2×T2 (6.3.4) and k×T2 being vertical 
translations, their difference  (2−k)×T2 must also  be a vertical 
translation, violating the minimality of k×T2 = T0 via 0 < 2−−−−k < k. 
We illustrate our argument for k = 5/4 in figure 8.11 below:

              
Fig. 8.11

8.1.7 Back to glide reflection. We have already seen in 8.1.4 and 
figure 8.8 that the pg  pattern satisfies the relation T0 = (1/2)×T2; 
at the same time, looking at the cm  examples of chapters 4 and 6 we 
see that the vertical glide reflection’s minimal gliding vector is 
equal to the translation’s minimal vertical component: T0 = T2! Now 
we rule out all other possibilities (for a glide  reflection G ) in      
T0 = k×T2, namely k < 1/2, 1/2 < k < 1, 1 < k < 2, and k ≥ 2.

Ruling out k < 1/2 is the easiest of the four: indeed 2×T0 = 2k×T2 
is a vertical translation, therefore minimality of T 2  yields 2k ≥  1. 

We illustrate the case 1/2 < k < 1 for k = 3/4 in figure 8.12: 
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assuming T0 = k×T2 with 1/2 < k < 1, we notice that T2′  = 2×T0 − T2 
= (2k−1)×T2 is also  the vertical component of a valid translation, 
namely T ′′′′ = (−T)∗∗∗∗(2×T0) = (−T1)∗∗∗∗(−T2)∗∗∗∗(2k×T2) = (−T1)∗∗∗∗((2k−1)×T2); 
but this contradicts the minimality of T 2  via 0 < 2k−−−−1 < 1.

                  
Fig. 8.12 

As in the case of reflection (8.1.6, figure 8.11), the case 1 < k < 2 
is ruled out by appeal to the minimality of T0. Thanks to 7.4.1 the 
argument remains intact, except that 6.3.4 must be extended to glide 
reflection; in figure 8.13 we employ the Conjugacy Principle in order 
to show that 2×T2 = T∗∗∗∗ (G[T] ) is still a valid vertical translation: 

Fig. 8.13 

Here is a ‘direct’ approach to the matter (and in the spirit of 
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figure 6.23), corresponding to 8.1.6 and figure 8.11 (and k = 5/4), 
that you should ponder on your own:

Fig. 8.14

Finally, we need to rule out the case k ≥ 2. Since 2×T2 is a valid 
translation (figure 8.13), T0′  = T0−2×T2 = (k−2)×T2 is also a gliding 
vector, corresponding (7.4.1) to the glide reflection G∗∗∗∗ (−2×T2); this 
contradicts the minimality of T0 via 0 ≤≤≤≤  k−−−−2 < k. (To be more 
precise, k = 2 yields a contradiction by turning the glide reflection 
into a ref lect ion . )

So, while glide reflection is more ‘complicated’ than reflection, 
we have obtained a result similar to the one in 8.1.6: the glide 
reflection’s minimal gliding vector T 0  is either half  of or equal  to 
the translation’s minimal vertical component T2. (We stress again in 
passing a major difference between reflection and glide reflection: 
the former may employ all multiples  of T0 as gliding vectors, the 
latter only the odd  multiples  of T 0 . )

8.1.8 The last case. Summarizing, we point to a few useful facts 
already established: 
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-- two parallel glide reflections of distinct minimal gliding 
vectors may coexist if and only if one of them is a reflection (8.1.5)

-- the smallest non-zero gliding vector (T0) of a reflection M  
may only be either equal or double the translation’s minimal        
parallel-to-M  component (T2) (8.1.6)

-- the smallest gliding vector (T0) of a glide reflection G  may 
only be either equal or half the translation’s minimal parallel-to-G  
component (T2) (8.1.7)

In addition, we derived the pg  (glide reflection only, T0 = T2/2) 
and pm  (reflection only, T0 = T2) patterns (figures 8.8 & 8.10), 
corresponding to the equalities t1 = t2 > 0 and t1 = t2 = 0 of 8.1.5, 
respectively. Two natural questions would then be whether or not 
there exists a reflection-only  pattern satisfying T0 = 2×T 2 and 
whether or not there exists a glide-reflection-only  pattern 
satisfying T0 = T2.

The first possibility is ruled out as follows:

Fig. 8.15

Treating M∗∗∗∗T0 as a glide reflection and applying 7.4.1, we see 
that its composition with T−−−−1 = −−−−T  produces a glide reflection 
based on an axis at a distance of |T1|/2 to the right of M  and of 
gliding vector T0−T2 = T2 (figure 8.15): this violates either T0 ’s 
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minimality (in case (M∗∗∗∗T0)∗T-1 is indeed a reflection) or our 
assumption that all axes are reflection axes.

The second possibility is ruled out as follows:

Fig. 8.16

Employing ideas from section 7.4 as in figure 8.15, we see that 
G∗∗∗∗T−−−−1 is a reflection based on an axis at a distance of |T1|/2 to the 
right of G  (figure 8.16), again contradicting our starting assumption.

So, the only possibilities that remain are the ones corresponding 
to the case t1 > 0, t2 = 0 (or vice versa) of 8.1.5: reflection and  glide 
reflection in one and the same pattern, at long last! Let T0

 G be the 
minimal gliding vector of the glide reflection G , and let T0

 M be the 
minimal non-zero  gliding vector associated with the reflection M . 
With T2 being always the translation’s minimal parallel-to-M -and-G  
component, there exist, in theory, four possibilities:

(I) T 0
 G = T 2 /2, T 0

 M = T2 

(II) T 0
 G = T 2 /2, T 0

 M = 2×T2

(III) T 0
 G = T2, T0

 M = T2

(IV) T 0
 G = T2, T0

 M = 2×T2

410



It is easy to rule out (I) through (III). In (I) the composition of 
the reflection and the glide reflection yields a valid translation of 
‘vertical’ component T0

 G = T 2/2, contradicting T 2 ’s minimality. In 
(II) the square of the glide reflection produces a valid translation T2 
that contradicts the minimality of T 0

 M = 2×T2. And in (III) the axis 
of G  ends up being a reflection axis for G∗T

2
 −−−−1  -- recall that any 

gliding vector associated with a reflection axis is in fact a valid 
translat ion  vector.

So the only  remaining possibility is (IV), which is more or less 
already known to correspond to the only 3600 pattern not ‘formally’ 
derived so far (good old cm of sections 4.4 and 6.4) and whose 
‘condition of existence’ is given below:

               

 

Fig. 8.17

Indeed we may verify figure 8.17 by reviewing old cm  examples 
from chapters 4 and 6. No contradictions are to be found, glide 
reflection axes will never be good for reflection, whatever is 
supposed to be minimal will indeed remain minimal, etc. Of course 
T∗∗∗∗M  = G , while T1 and T2 are not valid translations.
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8.1.9 Brief overview. We have finally demonstrated why, in the 
presence of (glide) reflection and in the absence of rotation, only 
three types of wallpaper patterns are possible (pg , pm , cm ); those 
are ‘defined’ in figures 8.8, 8.10, and 8.17, respectively, and are 
characterized  by the relations T 0

 G = T2/2 (pg ), T0
 M = T2 (pm), and 

T 0
 G = T2 & T0

 M = 2×T2 (cm ). (The fact that these relations are indeed 
characterizations of the patterns in question follows from a closer 
look at our work in this section.) Together with the p1  type (8.1.1), 
there exist therefore precisely four  3600 wallpaper patterns.

In view of the characterizations and ‘definitions’ cited above for 
the three non-trivial 3600 patterns, we need to question somewhat 
our discussion of the cm  type in 6.4.5, where we viewed it as a 
‘merge’  of pg  and pm : cm  has definitely its own structure, and it’s 
more than a pg and a pm ‘under the same roof’!  Please have a look at 
the two-colored cm examples of figure 6.37 and notice how the 
removal of every other row  yields a pm  pattern, while the removal 
of every other column yields a pg  pattern; in both cases the 
removal of half of the pattern doubles  the vectors T  and T2 but 
leaves T0

 G and T0
 M unchanged, altering T0

 G = T2 & T0
 M = 2×T2 to    

T 0
 M = T2 (row removal, pm ) or T0

 G = T2/2 (column removal, pg).

One important fact to keep in mind: T2 (and hence T1 = T−T2 as 
well) is a valid translation in both the pg  and pm  patterns, but not  
in the cm  pattern; differently said, a translation’s projection onto 
the (glide) reflection direction (and its perpendicular) may not be a 
valid translation if and  only  if the 3600 pattern is a c m . 

The “if” part above is established through figure 8.17 and 
related comments. The “only if” follows from the observation that, 
in any  pattern, the vertical component of any  translation T ′′′′ must be 
an integral multiple of T2; but in both the pm  and the pg  the T2 is 
a valid translation, and so would be any integral multiple of it! (If 
the vertical component of T ′′′′ equals k×T2 with k non-integer then the 
vertical component of the valid translation T ′′′′ −  m×T , where m is the 
closest integer to k, would violate the minimality of T2.)  
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8.2  1800  patterns

8.2.1 The p2  lattice. In the absence of (glide) reflection, a 1800 
pattern is fully determined by an infinitude of half turn centers 
propagated by two non-parallel, ‘shortest possible’ translations 
T1, T2. This is demonstrated in figure 8.18, echoing figure 7.26 and 
related discussion in 7.6.4: please refer there for details.    

Fig. 8.18

The rows and columns of half turn centers of the p2  pattern in 
figure 8.18 would be orthogonal to each other in case there was 
some (glide) reflection (as in 8.2.3-8.2.6 below): indeed in such a 
case T1 and T2 would be perpendicular and parallel, respectively, 
to the (glide) reflection axis (as in figures 8.8, 8.10, and 8.17). Of 
course we do not need any (glide) reflection in order to make T1 and 
T2 perpendicular to each other and ‘rule’ the 1800 centers: see for 
example figures 4.28, 4.30, 6.39, and 6.40 in sections 4.5 and 6.5!

8.2.2 Ruling the centers. In the case you are not convinced by our 
argument above concerning the ‘alignment’ of half turn centers by 
(glide) reflection, figure 8.19 offers another approach to the matter: 
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Fig. 8.19

Miraculously, G  not only glide-reflects K into a new center G (K) 
(Conjugacy Principle), but it also ends up mirroring it into another 
working center right across its axis: how did that happen? Well, as 
figure 8.19 suggests, the inverse of G ’s square is a ‘backward’ 
translation T ; composing T  with the half turn R  centered at G (K), 
and with T going second (7.3.1, 7.6.4), creates a new rotation center 
half way  between G (K) and T(G (K)), which is K’s mirror image! 

Such observations are going to be crucial in what follows: 
assuming some (glide) reflection from here on, we will see how the 
‘ruled’, orthogonalized lattice(s) of half turn centers are built, 
classifying 1800 patterns at the same time. A solid departing point 
is to assume (glide) reflection in the pattern’s ‘vertical’ direction: 
that forces  (glide) reflection in the ‘horizontal’ direction as well, 
and in ways dictated by the laws that govern isometry composition; 
what is clear, in view of our results in section 8.1, is that there are 
precisely three  possibilities for the vertical ‘factor’ (p m , pg , c m ). 

8.2.3 Starting with a pm  and an on-axis center. We begin by 
assuming a pm  vertical factor and  the existence of one 1800 
center K on  one of the reflection axes. By the Conjugacy Principle, 
that center is translated all over that axis by multiples of T2; and 
then all the centers on that axis are translated across to every  
other  reflection axis by multiples of T 1 : 
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Fig. 8.20

Next come the compositions of the ‘already existing’ half turns 
with T1 and T2, creating ‘new’ centers at distances of |T1|/2, |T2|/2 
from the ‘old’ ones (7.6.4), inevitably lying on the reflection axes 
(which may be viewed as having been created by the same 
compositions):

Fig. 8.21

Finally, the compositions of 1800 rotations and reflections 
create ‘new’ reflection axes perpendicular to the existing ones and 
passing through the half turn centers (7.7.1): 
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Fig. 8.22

What you see in figure 8.22 is the familiar pmm  = pm  × pm   
pattern of sections 4.6 and 6.8: no new isometry compositions are 
possible, everything is ‘complete’ and ‘settled’. Assuming 
minimality of T1 and T2, T  is the pattern’s shortest  ‘diagonal’ 
translation; in particular, no translation (or any other isometry) may 
swap any two of the centers located at the corners of any given 
smallest  rectangle  in figure 8.22: this justifies our reference to 
‘four kinds’  of half turn centers in 4.6.1. 

8.2.4 Starting with a pm  and an off-axis center. Let’s now 
assume a vertical pm  factor and a 1800 center K that does not lie on 
any of the vertical reflection axes. By the Conjugacy Principle, K 
must lie half way  between two adjacent axes, rotating them onto 
each other; arguing then as in 8.2.3, we see that K is ‘multiplied’ by 
T1 and T2 into the group of centers shown in figure 8.23: 

Fig. 8.23
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Next, each composition of a 1800 rotation and a reflection 
creates a glide reflection perpendicular to the reflection and 
passing through the rotation center (7.7.4), and of gliding vector of 
length 2x(|T1|/4)×sin(1800/2) = |T1|/2 (7.7.3). We end up with the 
‘complete’ pattern of figure 8.24, which is the pmg  = pm  × pg  of 
sections 4.7 and 6.7:   

  

Fig. 8.24

Indeed the pattern’s horizontal factor is a pg , with its minimal 
gliding vector being half of T ’s horizontal component (8.1.4).

8.2.5 Starting with a pg  and an on-axis center. Let’s now 
assume the existence of a pg  in the vertical direction and  the 
existence of a 1800 center K on  a glide reflection axis. Exactly as in 
8.2.3, the standard translations T1 and T2 ‘multiply’ the half turn 
centers (still lying on  the glide reflection axes); and, reversing the 
process of 8.2.4, each composition of a 1800 rotation and a glide 
reflection of gliding vector T2/2 produces a reflection perpendicular 
to the glide reflection and at a distance of (|T2/2|)/2 = |T2 |/4 from 
the rotation center (7.8.2). We end up with a horizontal pm  factor 
and, again, a pmg pattern:  
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Fig. 8.25

Most certainly, the pmg  patterns shown in figures 8.24 & 8.25 
are mathematically indistinguishable. Looking at any ‘smallest 
rectangle of rotation centers’ (as we did in 8.2.3), we see the four 
corners split into two  pairs (4.11.2) of centers (lying on opposite 
sides) that may be swapped by both the pattern’s reflection and the 
pattern’s glide reflection.

8.2.6 Starting with a pg  and an off-axis center. Assuming this 
time a vertical pg  factor and a 1800 rotation center K that does not  
lie on any glide reflection axis, we follow previous considerations in 
order to once more arrive at an ‘aligned’ p2  lattice ‘coexisting’ with 
the pg pattern. As in 8.2.4, the Conjugacy Principle shows that K, 
and therefore all other centers created out of it via T1 and T2, must 
lie half way between two adjacent glide reflection axes. Next, we 
appeal to 7.8.1 and 7.8.2 in order to see that each composition of a 
1800 rotation with a vertical  glide reflection of gliding vector 
T 2/2 lying at a distance |T 1 |/4 from its center creates a horizontal  
glide reflection of gliding vector of length 2× (|T1 |/4)×sin(1800/2) = 
|T1 |/2 at a distance of (|T2/2|)/2 = |T2 |/4 from the rotation center 
(figure 8.26). The outcome is a horizontal pg  factor and the familiar 
pgg = pg × pg pattern of sections 4.8 and 6.6.     
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Fig. 8.26
 
Notice how the half turn centers in figure 8.26 are mirrored 

across glide reflection axes, precisely as shown in 8.2.2. Of course 
we did not directly appeal to glide reflection in order to get the pgg  
lattice; but notice that the pgg ’s glide reflections allow ‘travel’ 
along the diagonals  of that smallest rectangle of half turn centers: 
this confirms our remark about two  kinds of pgg  centers in 4.11.2!   

8.2.7 Starting with a cm  and a ‘reflection’ center. We have just 
verified in 8.2.3-8.2.6 that we may start with a p m  vertical factor 
and end up with either a pm  or pg  horizontal factor, or that we may 
start with a pg  vertical factor and end up with either a pg  or pm  
horizontal factor. It seems that there is no way we can get a cm  
horizontal factor starting with either a p m  or a pg  in the vertical 
direction: for one thing, you may verify that there is no way we can 
insert a horizontal in-between  (glide) reflection in figures 8.22 
and 8.24-8.26 without creating, by way of isometry composition, 
non-exist ing  (glide) reflection in the vertical direction. 

In fact the coexistence of the cm  with either the pm  or the pg  
may be ruled out by our crucial remark at the end of 8.1.9: the cm  
requires a translation the vertical and horizontal components of 
which are not translations, which is impossible  in either pm  or pg !

So, let’s start with a vertical cm  and see what we get in the 
horizontal direction. (By symmetry between the two directions, we 
may only  anticipate a horizontal cm ; but we still have to verify 
that this is possible, after all, and also see in how many ways it is 
possible.) By the Conjugacy Principle, a 1800 center K may only lie 
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on  either a reflection or a glide reflection axis. Leaving the latter 
case for 8.2.8, we begin with K on a reflection axis, paralleling the 
‘center creation’ process of 8.2.3 and figure 8.20:

Fig. 8.27

The 1800 centers featured in figure 8.27 are precisely those 
created out of K by way of translation and the Conjugacy Principle: 
recall at this point that the c m ’s minimal  vertical and minimal  
horizontal translations are 2×T2 and 2×T1, respectively (8.1.8).

Next we compose  the ‘already existing’ centers with the 
translations 2×T2 and 2×T1 (in the spirit of 7.6.4 and figure 8.21) in 
order to get ‘new’ centers, still on reflection axes only  (figure 
8.28); alternatively, we could get the same centers by employing the 
glide reflections and 8.2.2: 
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Fig. 8.28

Now the vertical reflections ‘turn’  into horizontal reflections, 
exactly as in figure 8.22:

Fig. 8.29
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Next come the horizontal glide reflections, ‘created’, as in 8.2.6 
and figure 8.26, by compositions of vertical glide reflections with 
1800 rotations the centers of which do not lie on the glide reflection 
axes. To be more specific, the composition of every vertical glide 
reflection of gliding vector T2 with a half turn center at a distance 
of |T1|/2 from it (figure 8.29) produces a horizontal glide reflection 
of gliding vector of length 2×(|T1|/2)×sin(1800/2) = |T1| at a 
distance of |T2|/2 from the rotation center (7.8.1):

Fig. 8.30
             
Finally, every composition of a vertical glide reflection (of 

gliding vector T2) with a horizontal reflection produces a 1800 
center lying at the intersection of two glide reflection axes, and so 
does every composition of a vertical reflection with a horizontal 
glide reflection (of gliding vector T1). We demonstrate this in figure 
8.31 below, relying either on section 7.9 or on figure 6.6.2: the 
shown half turn center and 1800 rotation equals both M1∗∗∗∗G2 and 
M 2∗∗∗∗G 1, lying on G 2 and at a distance |T2|/2 from its intersection 
with M 1, as well as on G 1 and at a distance |T1|/2 from its 
intersection with M 2. 
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Fig. 8.31

Alternatively, we could at long last have used the diagonal 
translation T  and its composit ions  with ‘existing’ centers at the 
intersections of reflection axes (figure 8.30) to get the ‘new’ 
centers at the intersections of glide reflection axes. One way or 
another, we have finally arrived at the ‘standard’ cmm  = cm  × cm  
pattern of sections 4.9 and 6.9, as no more centers or axes can be 
created: 

Fig. 8.32

Comparing the lattice of half centers in figure 8.32 (cmm ) to 
the ones in figures 8.22 (pmm), 8.24 & 8.25 (pmg), and 8.26 (pgg), 
we can certainly say that this new lattice ‘has been cut in half’; or, 
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if you prefer, while the minimal translation T  remained the same, 
we moved from the ‘minimal rectangle’ of centers of the pmm , pmg , 
and pgg  patterns to the cmm ’s ‘minimal rhombus’ of centers, 
which is twice  as large in area as that rectangle (figure 8.32).  

8.2.8 Starting with a cm  and a ‘glide reflection’ center. What  
happens in case the ‘creating center’ K lies on a vertical glide 
reflection axis? The answer may disappoint, but hopefully not 
astonish, you: we end up with exactly the same  cmm  pattern of  
figure 8.32, completing in fact the classification of 1800 patterns! 
We leave it to you to check the details, providing just one possible 
‘intermediate stage’ in figure 8.33: horizontal reflections have just 
been ‘created’ as compositions of vertical glide reflections and 1800 
rotations lying on them (as in 8.2.5); in the next stage, intersecting 
reflection axes will create all ‘missing’ half turn centers, etc.  

Fig. 8.33

Of course there was no way we were going to get anything but a 
cm  in the horizontal direction (as already pointed out in 8.2.7). Still, 
we had to check that the horizontal cm  factor would be the same  in 
the two possible cases examined (half turn center on reflection axis 
or half turn center on glide reflection axis) in terms of translations, 
gliding vectors, etc; and figure 8.33 certainly makes that clear.
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8.3  900  patterns

8.3.1 The lattice and the possibilities. It took us some time to 
‘build’ the lattice of rotation centers for 1800 patterns, be it with 
the help of translations only (p2 , 7.6.4) or with the added assistance 
of (glide) reflection (pgg , pmg , pmm , cmm  -- section 8.2). On the 
other hand, as we have seen in section 7.6, just one minimal 
translation suffices to build that lattice in the cases of 900, 1200, 
and 600 patterns (starting from a single  rotation center, always). 
This difference has dramatic consequences: unlike 1800 lattices, all 
other lattices are uniquely determined and are independent  of the 
(glide) reflection possibilities; in fact, as we will see below, it is 
now the lattice of rotation centers that determines  the possible 
(glide) reflection interactions rather than the other way around!

To begin, observe that the lattice of rotation centers determines 
the possible  directions  of (glide) reflection in the case of a 900 
pattern. Indeed the image of any segment AB, where A and B are two 
closest possible 900 centers, under any  isometry could only run in  
two  directions (figure 8.34); by 3.2.4, those yield at most four 
possible directions of (glide) reflection: images of AB under any two 
(glide) reflections are parallel if and only if their axes are either 
parallel or perpendicular to each other!

                 
Fig. 8.34
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Before we proceed into investigating the (glide) reflection 
structure of any given 900 pattern, we must of course ask: is there 
any  (glide) reflection in the given pattern? If not, then the pattern 
only has 900 (and 1800) rotation and translation, and it’s no other 
than the familiar p4  pattern of sections 4.12 and 6.10. Its structure 
has been discussed in 7.6.3 and it is also going to be further 
investigated in 8.3.2 below ... precisely because it is destined to play 
a very important role even  in the presence of (glide) reflection! 

8.3.2 Two fateful translations. Assuming from now on that our 
900 pattern has (glide) reflection, let us notice first that sections 
7.8 and 7.10 imply precisely  four  directions of (glide) reflection 
(indicated in fact in figures 8.34 and 8.35): at least four because 
the composition of a glide reflection with a 900 rotation generates 
another glide reflection making an angle of 450 with the original 
(section 7.8); and at most  four because any two glide reflections 
intersecting each other at an angle smaller than 450 would generate 
a rotation by an angle smaller than 900 (section 7.10). 

Further, the Conjugacy Principle implies that we must have the 
same  type of 3600 subpattern  in the ‘vertical’ and ‘horizontal’ 
directions (mapped to each other by the 900 rotation), and likewise 
for the two ‘diagonal’ directions; in particular, this rules  out  the 
p m g  as a 1800  subpattern . Still, we are left, in theory, with 
nine combinations among pmm , pgg, and cmm  ‘factors’.

The way to eliminate most of these nine possibilities with very 
little work relies on the characterization of the c m  pattern at the 
end of 8.1.9 and  on the structure of the p4  lattice investigated in 
7.6.3 (and figure 7.23). Blending everything into figure 8.35 below, 
we examine whether or not the valid translations t and T  may be 
analysed into valid translations in the diagonal and vertical-
horizontal pair of directions, respectively:                                            
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Fig. 8.35

On the right, the minimal vertical translation t may certainly  
be written as t1+ t2, where t1 and t2 are not  valid diagonal  
translations. On the left, we see that valid translations such as T  
may be analysed into sums of two valid vertical and horizontal 
translations (like the minimal  translations T1 and T2), while ‘non-
analysable’ translations such as T ′′′′ are not valid to begin with 
(otherwise T ′′′′ −−−−  T  would be a valid translation violating the 
minimality of T1 or T2); in fact some further analysis would easily 
show that every  valid translation may only have valid vertical and 
horizontal components. (Here is a way to confirm that: observe that 
we may introduce a coordinate system so that all rotation centers 
have integer coordinates, the twofold centers one even and one odd, 
the fourfold centers either two even coordinates (‘even’ centers) or 
two odd coordinates (‘odd’ centers); a translation would then be 
valid if and only if it ‘connects’ two odd centers or, equivalently , 
two even centers -- that is if and only if it is of the form <2k, 2l> = 
k × T1 − l × T2, where T1 = <2, 0> and T2 = <0, −2>.) 

In view of our crucial remark in 8.1.9, two conclusions follow at 
once: one , in the pattern’s vertical-horizontal directions we may 
only have a pmm  (two perpendicular pms) or pgg (two perpendicular 
pgs) subpattern; two , in the pattern’s diagonal directions we may 
only have a cmm  subpattern (two perpendicular cms). 

Focusing first on the diagonal (cmm ) directions, we notice that 
the Conjugacy Principle allows for two  possibilities: reflections 
passing either through the fourfold centers (figure 8.36, left) or 
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through the twofold  centers (figure 8.36, right).

Fig. 8.36

Before examining the vertical-horizontal possibilities (pmm  and 
pgg ), let’s have another look at the lattice of rotation centers in 
figure 8.36: while every two twofold centers may be mapped to each 
other by either a fourfold rotation (applied twice if necessary) or a 
translation, and every two fourfold centers on the right may be 
mapped to each other by some isometry (including a reflection or 
glide reflection), there exist fourfold centers on the left that may 
not be mapped to each other by any isometries; this is destined not 
to change (by the addition of vertical-horizontal isometries in 
figure 8.36), so the distinct notation for ‘even’ and ‘odd’ fourfold 
centers employed as early as in figure 4.5 is justified after all!      

In theory, each  of the two emerging 900 patterns of figure 8.36 
should allow for two  possibilities, cmm  × pmm  and cmm  × pgg , 
bringing the maximum number of possible 900 patterns (with (glide) 
reflection) to four . But the actual situation is even simpler: by 
7.7.1, we can only have either none  or four reflections passing 
through a fourfold center; and this fact eliminates at once the pgg  
possibility on the left side and the p m m  possibility on the right side 
of figure 8.36! So we are finally limited to cmm  ×  pmm  on the left 
and cmm × pgg on the right:
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Fig. 8.37

But these patterns are the familiar p4m  of sections 4.10 and 
6.12 (left) and, after rotation by 450, p4g  of sections 4.11 and 6.11 
(right): the classification of the 900 patterns is now complete. 

8.4  1200 and 600 patterns

8.4.1 Two families, one lattice. The reason we are studying 
1200 patterns and 600 patterns in the same section is that, to a 
large extent, these two types share the same lattice of rotation 
centers. Let’s have a look at the two lattices in figure 7.24 (p3 , 
smallest rotation 1200) and figure 7.25 (p6 , smallest rotation 600): 
if we ignore the 1800 centers of the latter and view its 600 centers 
as 1200 centers, then it would indeed be identical to the former!

8.4.2 Six possible directions. Let’s now look at the p3  lattice 
and the possibilities for (glide) reflection, observing that a valid 
(glide) reflection direction in the p6  lattice must  provide a valid 
(glide) reflection direction in the p3  lattice, and, although not 
obvious, vice versa (8.4.4). We argue as in 8.3.1 and figure 8.34, 
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showing the underlying hexagons  for clarity (figure 8.38); this time 
there are three possible directions for the image of AB, associated 
(via 3.2.4 again) with six possible directions of (glide) reflection:

      
Fig. 8.38

Employing the methods of chapter 3 or otherwise, you should be 
able to see that the six possible directions are determined by pairs 
of either opposite vertices or opposite sides of any fixed hexagon 
(see figure 8.38). Assuming there is (glide) reflection, we need to 
decide, as we did in 8.3.2 for 900 patterns, which type among pg, 
pm , and cm  we could get in each of the six directions; and, by the 
Conjugacy Principle (which rotates (glide) reflection axes by 1200), 
we actually need to check only two directions (one perpendicular to 
AB and one parallel to AB), and in just one stroke at that:

                                 
Fig. 8.39
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What figure 8.39 offers is an analysis of the pattern’s minimal  
(by 7.6.3) translation T  into two components parallel to the two 
glide reflection directions, none  of which is a valid translation: by 
8.1.9, we can only have a cm  ‘factor’ in each of those directions!

8.4.3 Threefold types. In the absence of any (glide) reflection, a 
1200 pattern may only be the familiar p3  pattern of sections 4.15 
and 6.13, also investigated (in fact derived) in 7.6.3. If there is 
(glide) reflection, then it has to exist through a cm  subpattern in 
precisely three  of the six directions derived in 8.4.2. Specifically, 
and referring to figures 8.39 & 8.17, there exist two possibilities: 
one , a cm  subpattern in the direction of T2 (plus that rotated by 
1200 both ways), with reflection axes at a distance of |T1| from each 
other and in-between glide reflection of gliding vector T2 (figure 
8.40, right); two , reversing the roles of T1 and T2 in figure 8.17, a 
cm  subpattern in the direction of T1 (plus that rotated by 1200 both 
ways), with reflection axes at a distance of |T2| from each other and 
in-between glide reflection of gliding vector T1 (figure 8.40, left). 

Fig. 8.40
      
A comparison between figure 8.36 (900 pattern generation) and 

figure 8.40 (1200 pattern generation) is now appropriate: in figure 
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8.36, the direction of the two cm  subpatterns was uniquely 
determined by the lattice, but there were two  possible locations of 
the axes with respect to the centers; in figure 8.40, there are two  
possible directions of the three cm  subpatterns, but the location 
of the axes with respect to the centers is uniquely  determined 
within each of the two possible directions.

The cm  subpatterns of figure 8.40 may now generate the two 
familiar 1200 patterns shown in figure 8.41 (without the underlying 
hexagons or the gliding vectors): p3m1  on the left (studied in 
sections 4.17 and 6.15) and p31m  on the right (studied in sections 
4.16 and 6.14); the classification of 1200 patterns is now complete. 

Fig. 8.41

Looking at figure 8.41 (or 8.40 for more clarity), we see that, 
remarkably, every two off-axis centers of the p31m  may be mapped 
to each other by one of the pattern’s isometries (notably (glide) 
reflection), while there exist indeed ‘ three  kinds’  of centers in 
the p3m1  (with no isometry swapping centers of different kind), 
and likewise in the p3  (7.6.3): this confirms old observations from 
chapter 4! (Similar stories for 900 patterns: every two fourfold 
centers of a p4g  are ‘conjugate’ of each other (thanks to (glide) 
reflection again), which is not  true in either the p4m  or the p4 .)  
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8.4.4  Sixfold types. The last step of the classification is the 
easiest! Indeed, in the absence of any (glide) reflection there can 
only be the p6 pattern of sections 4.14 and 6.16, also investigated 
(and derived) in 7.6.3. And in the presence of (glide) reflection, we 
need all six  directions of 8.4.2, and it is still possible to show that 
we must  have a cm  subpattern in all six directions: all we need to 
do is make B and D sixfold centers in figure 8.39; and all other 
arguments and facts of 8.4.3 may also be extended, leading to the 
p6m  pattern of sections 4.13 and 6.17 as the ‘merge’ of p3m1  and 
p31m  featured in figures 6.132 & 6.133 (and figure 8.41 as well)! 
Here it is in its full glory, with T1 and T 2 playing the same  roles  
as in 8.4.2 & 8.4.3 (and figure 8.40) -- and all ‘old’ glide reflections 
mapping sixfold centers to sixfold centers):

Fig. 8.42
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