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Chapter 1
Non-linear optics: I ntroduction

1.1 THE FIRST OBSERVATION OF A NON-LINEAR OPTICAL PROCESS

Ruby laser
Focusing lens

Prism and
Quartz crystal collimating lenses

Fig: Frequency doubling of a Ruby laser: A = 694.3 nm —» A= 347.1 nm as shown by Franken et al.EI

1.2 THE NONLINEAR SUSCEPTIBILITY

The polarization P induced in a medium when electric field E is applied may be expanded as a
power series in the electric field vector:

P=XME + X®EE+ X®EEE+ XY EEEE +etc [1.1]
where the X() are tensors, even for the first order contribution:

P; = Xii(D E; [1.2]
As a consequence the orientation of the induced polarization may be different from the applied
field. In a centro-symmetric medium, that is a medium with inversion symmetry, one may

derive (use the inversion symmetry operator Iyp):

IppP=-P=-XDE - X EE- X®EEE- XYW EEEE+etc [1.3]

because of the last relation we find
IOpP = -X(l)E + )((Z)EE- X(3)EEE+ X(4)EEEE+etc [1.4]

Thus we find the important relation for (inversion)-symmetric media: X(20) =0 [1.5]
All even powersin the susceptibility expansion are zero.

P A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett. 7 (1961) 118
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1.3 GRAPHICAL REPRESENTATION OF NONLINEAR OPTICS
LINEAR RESPONSE NONLINEAR RESPONSE
P=xME P=xMWE +X®EE
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The nonlinear response, e.g. in the case of an electromagnetic wave (a periodic function), may
be evaluated in terms of a Fourier series expansion:

P=Y a,sin(nar +g,) [1.6]

Graphically the Fourier series expansion may be shown as follows. The nonlinear polarization
induced can be represented as:
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This function can be Fourier analyzed:
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Fig.: Fourier analysis of the non-linear polarization in (b): Sin ux; (c): Sin 2ux; and (d): Sin @, the dc-component
("optical rectifying")

The nonlinear response of the medium produces higher harmonics in the polarization. The

oscillating polarization P(2® acts as a source term in the Maxwell equations (consider the
nonlinear medium as an antenna):

9’ 62
0°E E= 1.7
gat HO a 2 [ ]

and thus produces a field EC®

1.4 LORENTZ-MODEL OF THE SUSCEPTIBILITY

In this model a medium is considered in which the electrons are affected by external electric
forces that displace them. The motion of the electrons is restored by the binding force. As a
result a harmonic motion of the electron in the combined field of the atom and the external
Coulomb force is produced that may be described in terms of a damped harmonic oscillator.

1) In linear optics: the equation of motion for a damped (damping constant Yy) electronic
oscillator in one dimension:



2
jTr+2y3r+a)02r:—%E [1.8]

with the electric field written as E = Rel_Ee”‘”J and for the position of the electron take the
deviation from equilibrium: r = Re[re”"] it follows that:

(@ - ) +2i0p =< E [1.9]
m
So:
_ . ~ek L —ek
m[ouo2 - W +ia)y_| 2m|w, (w, - w)+iwy]
where the last part of the equation holds in the approximation of near resonance: w = ay. The
induced polarization in a medium is P(a)) = —Ner a)) and so:

[1.10]

Ne’
2m|w, (w, - w)+iwy]

E=¢,x(w)E [1.11]

=

Thus we find a complex quantity representing the linear susceptibility )((a)) =X (a)) —ix" (a))
of the medium with:

, Ne (0, )/y .
X' (w)= Imaye, [+ -] /] [1.12]
and:
2 1
X' ()= Ne” . [1.13]

2ma,ye, 1 +(w, - w) /v’

The real part of the susceptibility X'(w) is related to the index of refraction n of the medium,
while the imaginary part X"(c) is related to the absorption coefficient.

2) In nonlinear optics the motion of the electron is considered to have an anharmonic response
to the applied electric fields. The equation of motion for the oscillator now becomes, with the
anharmonic term &r2:

2

d—r+2yir+w r-&=-<FE [1.14]
dr’ dt m

Try a solution in power series r=r;+ ra+ r3+ etc, with , =a,E’,so 1, =a,E' and r, = a,E’ .
Now substitute »=r;+r; and collect terms in the same order of £

2
first order: %rl +2y%r1 +w,’r =—%E [1.15]
d’ d 2 2
second order: ?rz +2VE rntw ' =¢én [1.16]



A general form for the field:

E= ZE(a)n)e'"""’ [1.17]
2
Calculate %rl and % r,with 7, = a,E" and substitute in equation [1.15] and it is found that:

Lo DB} [1.18)
1 2 . :
m (@, -, )" - 2iya,

Calculate rlz and substitute in [1.16], while using that:

(5 2@ ) =3 S Ew,)E(w, )" [1.19]

we find:

__eE zzE(w,,)E(wm)e"(“ - ,
[a) -] —2zycula) -, —2zya)”Jla) (W +w,) —2iy(w,,+wm)J

=

[1.20]

As a result we have obtained a relation for the non-linear susceptibility from the simple model
of the electron as an anharmonic oscillator. The polarization may be written as a series of
higher nonlinear orders:

P= z P, with P =-Ner,
Then:

linear n n

Powi =3 S X0, 0,)E(,)E(, )e ) [1.22]

P = 3 X(w, )E(w, ) [1.21]

with the susceptibilities:

W(ew )= ! 1.23
XV w,)== @ o) -2iym [1.23]

and:
N635 1 .
m’ [w ~w,) —Zzya) o, -, ) —2iyw, |

XV, ,)=

P 1 [1.24]
@, - (, +a, )) ~2iy(w, +w,)

The second order susceptibility can be written in terms of the first orders susceptibilities, and it
depends on a product of three of these, the susceptibility at frequency w,, @), and the sum-

frequency w,+w,;:



xw,.,)= ]_VT”fx(”(wn X (w, X (w, +w,) [1.25]

In these equations wy represents the "eigenmodes" of the medium. These modes correspond to
the eigenstates and should be calculated quantummechanically. In case of wy =~ w, or wy = Wy,
"resonance enhancement" will occur: an increase in the nonlinear susceptibility as a result of
the resonance behavior of the medium. Even a resonance on the sum-frequency will aid to the
susceptibility.

1.5 MAXWELL'S EQUATIONS FOR NONLINEAR OPTICS

Light propagating through a medium or through the vacuum may be described by a transverse
wave, where the oscillating electric and magnetic field components are solutions to the
Maxwell's equations. Also the nonlinear polarizations, induced in a medium, have to obey these
equations:

UxE=-(o/ot)B [1.26]

OxH=j+ (0/ot)D [1.27]

@ D=p [1.28]

1 B=0 [1.29]
with additional relations, and 0 the conductivity:

D=gyE+P [1.30]

j= oE [1.31]
The induced polarization may be written in a linear and a nonlinear part:

P =¢goXE + PNL [1.32]

Inserting this in the Maxwell equation for the curl of the magnetic field yields with

[e=€o(1+X)]:
Ox H = oF + ¢ (8/dt) E+ (8/6t) PNL [1.33]

Taking the curl of the curl of the electric field component, starting form the first equation gives:
Ox Ox E=-(&/0t) Ox B=-u(o/ot) dx H = -u(o/ot) [OE + &(6/ot)E+ (8/0t)PNL]

[1.34]
Also the general vector relation holds:
OxOxE=0( E)-0O2E [1.35]
And by taking [ E=O0 (i.e. for a charge-free medium) we obtain:
02E = U0 (8/0t)E + pe(02/0t2)E+ W(02/0t2)PNL [1.36]



Above equations were derived in the SI or MKS units. In many handbooks (also at a few
instances in this course) the fields are expressed in the esu units. Some simple substitution rules
may be used for the transfer of SI to ‘esu’:

SI: P =gyX™ EM  in Cm2
esu: P(m)=x®) EMm) in statvolt cm-!
and:

Xgy/ XM = 4T7(10-4c)n-1 and P(n)g,/ P, = 103/c

1.6 THE COUPLED WAVE EQUATIONS

Consider an input wave with electric field components at frequencies w; and wp. In the
approximation of plane waves the total field may then be written as:

E(t) = Re [E(wy) exp(iwyt) + E(wp) exp(iupt)] [1.37]

In the medium a polarization at the sum frequency w=w;+wy is generated. This polarization is
now expressed in the vector components:

Pi(artap) = Re {Xjjk(w=0y+wp) Ej(wr) Ex(y) expli(w+an)t]} [1.38]

At the same time also a difference frequency component may be produced in the medium,
however with a different nonlinear susceptibility tensor:

Pj(wy-0p) = Re {Xjjk(w=wi-0x) Ej(wr) Ex*(0p) exp[i(wi-up)t]} [1.39]

The notation of fields in terms of complex amplitudes has the consequence that whenever a
negative frequency appears in the equations the complex conjugate of the field amplitude is to
be taken, because:

Ek(-u») = Ek*(an) [1.40]

The tensors xijk((,o=w1+(,02) and xijk(qul -uy) are material properties and have different
values depending on the frequencies; this is related to the possibility of resonance enhancement
and the energy level structure of the medium.

Now we will consider the above derived Maxwell equation:

02E - uo (0/0t)E - Pe(02/0t2)E = W(02/0t2)PNL [1.41]
which is a vectorial expression that may be used in threefold for the three vector components.
In the simple case of frequency mixing with two incoming plane waves propagating along the

z-axis and the assumption of a linear polarization in a single transverse direction:

E1(z,t) = E1(z) exp(iwt-ik1z) [1.42]
Ej(z,t) = Ea(z) exp(iwpt-ikyz)

10



These two incoming fields induce a nonlinear polarization at frequency w=w;+wy that may be
written as:

PNL(z,t) = d E1(z) Ex(2) exp[i(wytop)t-i(ki+ko)z] [1.43]
And we assume that a new field is created at frequency w3=w;+wy with a field:
E3(z,t) = E3(z) exp(int-ik3z) [1.44]

Now substitute these fields into the wave equation. For plane waves traveling in the z-direction
the field gradient may be written as:

2

ez =L B (2
0z [1.45]

The left side of Eq. [1.45] then yields:

a—2E(z,t)+ GQE(zt)— sa—zE(zt)—
o7 3o THOG Blel TG T e

= dd_; E (zt) +2i gdizg(z,t)— K’E, (z,t) +iw,U0E, (z,t) + pewiE, (z,t) [1.46]

The quantities Ej(z,t) have the meaning of an amplitude and it will be a good assumption that
the variation of the amplitude over the distance of one wavelength will be small; this
assumption is called the slowly varying amplitude approximation:

d2
42 E;(zt) <<

.. d
21 KEZE3(Zt)|
[1.47]

As a consequence the second order spatial derivative may be dropped. Furthermore for plane
waves propagating in a medium with dielectric constant € and magnetic susceptibility M the
following relation holds:

2 —
Hews —ks =0 [1.48)
So only two terms are left on the left side of the wave equation:

2i |§FdZE3(Z)eXp(iw3t —i kz) +i w0 By (2)expliwst —i kz)

[1.49]
The right side of the wave equation is evaluated as follows:
o’ 0’ : v \
Ho P20 = u—s dE@E @explifw, + o, =ik +k 1
= —ploy + (Dz]szl(Z)EQ(Z)eXpl_i (w + wz}t —ilk + kz]zl [1.50]

11



Equating the two results yields:

d i, .
L@ = —g‘/ga(z)—'%‘/gda(z)a(aexpl—wkl +k, —k;,7 s

where use was made of energy conservation (t3=wj+wy) and the above postulated relation
between the frequency and the wave vector of a wave. The basic equation found implies that
the amplitude of the newly produced wave is coupled through the nonlinear constant d to the
incoming wave. There is an energy flow from the wave at frequencies w; and wy to the wave at
frequency Wy At the same time inverse processes will take also place, i.e. processes where the
newly generated frequency w3 mixes with one of the two incoming waves in a difference
frequency mixing process like o3-0p» — . By inserting the fields in the Maxwell's wave
equation in a similar fashion one can derive two more coupled amplitude equations:

d 0, . )
d—ZEl(Z) = —%-JSEIEI(Z)—I%Edﬁ(Z)EQ(Z)*eXpl—I‘k3 -k, - kuZJ

d W, : \
e T —%EEQ(Z)* +%Ed5(2)53(2) *expl-ilk +k ~ k4

[1.52]

Now we have derived three differential equations by which the three amplitudes of the waves
are coupled.

NOTE: Even in the case where a wave at frequency (3=w;+wy is created the wave vectors do
not cancel because of the dispersion in the medium (the frequency dependence of the index of
refraction):

__k _ck

YT @) ne) 1531

Of course it should be realized that the k; are vectors, with in the most general case a
directionality, that may be different for the waves. We define the wave vector mismatch as:

Ak = k3-k1-ko [1.54]

1.8 NONLINEAR OPTICS WITH FOCUSED GAUSSIAN BEAMS

In previous sections the non-linear interactions are treated in the plane-wave approximation;
the fields in Eq. [1.42-1.43] are expressed as plane waves propagating with a flat wave-front
along the z-axis. This approximation is not valid in cases when the laser beams are focused.
Focusing is often profitable in non-linear optics as the high peak intensities give high non-
linear yields. We consider again the wave equation for a wave at frequency wy and neglecting
absorptions:

¢t ot

2 2
0E, —@HO—QEH _4mo [1.55]
e 0 ot

12



The electric field vector and the polarization are now defined different from Eq. [1.42-1.43] by
explicitly taking a spatial dependence into account:

E,(r.1)=Re|A, ()] [1.56]
P ( Rel_p ik, 'z wz)J

Here the complex amplitudes A, and p, are spatially varying. The Laplace operator of the
wave function may now be expressed as:

2= 42
022 [1.57]
Similarly as in the plane wave case the slowly varying amplitude approximation may be
applied and this then results in the paraxial wave equation:

2
2ik, a(';" +0.°A =- 4’2? p,e ™ [1.58]

This paraxial wave equation can first be considered in the case where the polarization py
vanishes. From an analysis of Gaussian optics an amplitude distribution follows (see optics
course):

O » 0 QOik?* O

A(r,z) =AM )expD- > [ppr[pxp[qu [1.59]

e

where w(z) represents the 1/e radius of the field distribution, R(z) the radius of curvature of the
wave front and @(z) the spatial variation of the phase of the wave with respect to an infinite
plane wave defined as:

w1 +%§ [1.60]
éﬂ

z[]+% 0 [1.61]
=

—arctan%% [1.62]

It is convenient to express the Gaussian beam as:

O O
O 2 O
A(r,z2) 5 explE > 0 [1.63]
gt
0

13



where b is the so-called confocal parameter, a measure of the longitudinal extent of the focal
region of the Gaussian beam:

2
bzz’/T\WO = kw? [1.64]

In the Figure the characteristics of such a Gaussian beam is depicted.

(a) 1

intensity

2w(z)

—
e
L1

I

() — b —
: ; 2w ;
22w ¢ 2\5w0

Fig.: (a) Intensity distribution of a Gaussian laser beam. (b) Variation of the beam radius w and wavefront radius
of curvature R with position z. (¢) Relation between the beam waist radius w, and the confocal parameter b.

In case of harmonic generation with Gaussian beams the above amplitude expressions may

be used. If Ay is the amplitude of the wave at the fundamental frequency then the g-th nonlinear
polarization may be expressed as:

p, =x“A " [1.65]

and the amplitude Aq of frequency qw must obey the equation (use [1.65] and the paraxial
wave equation [1.58]).

14



0A AT’ .
2ik, —L+ 0, A, = ——— 1 x WA T [1.66]

0z c?

where the phase-mismatch is defined as:

Ak =kq~ak [1.67]

For the amplitude of the fundamental we use [1.63] and for the harmonic we adopt the trial
solution:

A (Z) ‘ D gr’

1+l? WOH+1—

[1.68]

EEEDDD

This is a function with a confocal parameter equal to that of the fundamental wave. After
inserting the trial [1.67] into the wave equation [1.66] it follows that:

ibkz
LN L VOV — [1.69]
dz nc 2z H
+i—
O b0
The equation may be integrated:
2iTy W
Aq(z):n—"zx(q)Af F, (Bk, 2y, 2) [1.70]

where the so-called phase-matching integral:

z —lAkz

F,(0k,zy,2) = [———d= [1.71]

2 2zz g

is over the length of the nonlmear medium, starting at zg. The harmonic radiation is generated
with a confocal parameter b, similar to that of the fundamental wave. The beam waist radius is
therefore narrower by a factor of \/E .

The integral can be evaluated numerically and in approximating cases also analytically. If
b>>z the result for a situation of plane waves should follow. In the limiting case b<<z the
fundamental wave is focused tightly. If the boundary conditions range over the complete focus,
in the approximation [-o0,o0], the integral can be evaluated via contour integration resulting in:

o0 —il\kz'
F,(Bk, z,2) = IezT'H_ldz' [1.72]
O b0

which yields in two limiting cases:

F_

q

for Ak =0 [1.73]

=0
_b 2"2)'B‘LH expBb—H for Ak <0 [1.74]
(g

15



So in the tight-focusing limit there is no yield of harmonics for Ak>0. Only in case of Ak<0
harmonics are generated. This condition corresponds to media with negative dispersion at the
frequency of the harmonic.

16



Chapter 2

Second Harmonic Generation

2.1 SECOND HARMONIC GENERATION AND PHASE MATCHING

Starting out from the coupled wave equations, assuming just a single input field,
soE, (z% =K, (z), a radiation field E, (z) may be generated:

i =_£ ﬂ _i& ﬂ 2 =i(2ky ks )z
e6)=-T a1 Mok 21

Under the assumptions:

- that there is a nonzero nonlinear coefficient d; this implies a certain symmetry of the medium;
- that there is no absorption in the medium, so the conductivity term may be neglected;

- there is only little production of the wave at w33, so that the field amplitudes are not affected by
the conversion process;

- the wave vector mismatch is now:

Nk = kP9 — 2@ [2.2]

the coupled wave equation can be integrated straightforwardly:

EC) () = —ico, /zél—wydEz (@)fe*az [2.3]

where the integration is over the length of the medium (and the overlap of light beams) between
0 and L. The integration yields, assuming that E(2®)(0) =0:

E®)()= - |-H arEz(w)eM_1 [2.4]
g6 Nk

The output intensity of the second harmonic is proportional to:

, sin® BAEH

ECNL)ECI (LY =2 8“ I|E(w) I —iLz : U [2.5]
ne Bé
02 0O

If the beams are written in terms of beam intensities, so of power per unit area A, then it
follows that the conversion efficiency for second harmonic generation is:

17



AL
plo) sin’ QAT Q P

nSHG = W U Q)zdsz

2.6
P [2.6]
02 0
From this derivation we learn that:

- the conversion efficiency is proportional to the power density, so the total amount of
generated light at the second harmonic is proportional to /P(@W]2. Thus second harmonic
generation is a process that is non-linear in the power dependence.

- the efficiency is equal to the square of the nonlinear coefficient d, or in other terms
proportional to [x(?|?

- the efficiency is proportional with L2 and a "sinc"-function involving L; it seems that longer
crystals will produce more second harmonic; we will see that this effect will be restricted.

- the efficiency is optimal if Ak=0 and this is a condition that generally cannot be met in
ordinary media; we will see that in birefringent media this condition, that can be written as
k(2@ =2k(w), and also the breakdown of inversion symmetry can be met at the same time.

The condition of Ak=0 is referred to as the phase-matching condition. With the use of k=nw/c
the phase matching relation is given by Eq. [2.2].

For ordinary waves in a medium there is always dispersion, with the consequence that:

n@0) > @ [2.7]
so always Ak#0. The physical consequence of the dispersion is that the two waves:

E,(z.1)= E, explicx — ik )] [2.8]
E,,(z.t) = E,, exp|2icx — ik ®<)

will run out of phase and therefore the process of coherent generation of radiation at frequency
2w will be stopped and even reversed if the phases differ by 1809. Then destructive interference
will take place and the original build up of the wave at 2cowill be destroyed. After a distance /
for which holds:

Akl =T [2.9]

the amplitude is at maximum. The particular length L=2/ is called the coherence length; it is
the maximum crystal length useful in producing the second harmonic:

21T 21T g A
L =—-= = = 2.10
VR TRy MED R O) R MED g O [2:10]

For some typical values of a wavelength A= 1um and a dispersion of n(?@ - n(@ = 10-2 we find
a coherence length of L,=50 pum. So in the equation derived above the dependence on the
length L is to be replaced by a dependence on L?.

The proof of the coherence length effect was given in an experiment by Maker et al.ﬂln a
simple experimental setup with a rotating crystal and a transmission filter for the frequency 2w

? P.D. Maker, R.W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. 8, 19 (1962).

18



the variation of the produced second harmonic power was measured with variation of the angle
of rotation of the crystal.

Sample F

w /7 w - P(2w)
‘\L/4 2w 2w

In a situation with Ak#0 in the first coherence length L. power at 2w1is produced. In the second
coherence length also a field E)¢yis generated, but this is out of phase with the propagating
field Ep¢ythat was generated in the first coherence length. In these parts the intensity at
frequency 2w will be coupled back into a wave at the fundamental frequency w. As a net result
the power will decrease.

So we find for a particular crystal length L:

L=2nLe . PRW = [2.11]
L=02n+1)Le - P24 = optimum

As the crystal length we understand the path length of the light beam through the crystal, and
this is dependent on the incident angle 8 of the incoming beam onto the crystal surface:

L =dcos 0 [2.12]

with d the thickness of the crystal. By varying the angle of rotation the effective length of the
crystal will change and therewith the number of coherence lengths. This oscillatory effect of the
second harmonic power was first observed by Maker et al.* and the oscillations are called
Maker fringes.

[
=]
—

T T e
LR (O
T

Relative Blue Light Signal
® o

o N b oo

M T W2 ~ A NP A AN IS |
20 10 1] 10 20 30 40
Angular Rotation in Degrees

Fig.: adapted from ref [2].
If the phase matching condition could be fulfilled by some means then instead of the coherence

length of Ls=50 pm the full length of a crystal of e.g. 2 cm could be used. This would lead to
an increase of second harmonic power of a factor 1.6x105. This condition can be met in a
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special class of crystals, the so-called birefringent crystals, that are known to have some
peculiar and complicated properties, even in the realm of linear optics.

2.2 WAVE PROPAGATION IN ANISOTROPIC MEDIA; INTERMEZZO

In an anisotropic medium the induced polarization is not always parallel to the applied electric
field. The susceptibility that governs the electromagnetic response of the medium is not just a
scalar but a tensor of rank two. Physically this effect may be understood from the fact that the
ordering of atoms in a crystal is not identical along different directions. The polarization is:

P=gyXE [2.13]
or in components (in SI units):

P1=¢p(X11 E1 ¥X12 E2 +X13 E3)
P2 =¢€p(Xx21 E1 ¥X22 E2 +X23 E3) [2.14]
P3=¢€p(X31 E1 +X32 E2 +X33 E3)

The 9 elements of a second order tensor X depend on the choice of a coordinate frame. From
formal tensor theory it follows that there are three invariants in three dimensions for a second
order tensor. As a consequence for a particular choice of axes X, y and z, the so-called principal
dielectric axes of the crystal (that are not necessarily orthogonal) there will be only 3 non-zero
elements left. The dielectric tensor can also be written in the form of Maxwell's displacement
vector:

D=g E+P=g(1+Xi) E=&j E [2.15]

where the susceptibility tensor Xjj is replaced by the dielectric permittivity tensor &jj.

A monochromatic plane wave of angular frequency w can be expressed with electric and
magnetic field components, E exp(itt - ike r) and H exp(iax - ike r), where Kk is the wave
vector, a vector in the direction of wave propagation. It is the vector that in Huygens theory is
the normal to the wave front. It is equal to:

k=nwcs [2.16]

with n the index of refraction and S a unit vector. In nonmagnetic media Maxwell's equations
are:

Ox E=-(0/6t) B [2.17]
Ox H = (8/6t) D

From these equations we will determine now the relative orientations of the vectors k, H, E and
D. The derivatives, in case of plane waves may be written as:

O - _ik =-inwcs [2.18]
(8/6t) . 00
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and by insertion of the plane waves in the Maxwell equations we obtain:

k x E =+ powH [2.19]
kxH=-wD

From these equalities we learn that H and D are vectors perpendicular to the wave vector K.
Also H and D are a pair of perpendicular vectors, because of the second relation. So we
conclude that H and D constitute a proper transverse wave in an orthogonal frame with k. For
the electric field vector E the following statements hold:

- E is perpendicular to H

- D=¢E; if € is a scalar then E is along the direction of D and then E is perpendicular to the
wave vector K. But in an anisotropic medium, where € is a tensor, the vector E is no longer

perpendicular to k.
E D

ExH

An important physical consequence for the wave propagation in anisotropic media follows from
this. The Poynting vector:

S=ExH [2.20]
is not along K. So the direction of energy flow is different from the direction of the wave vector.
In other words the phase velocity and the group velocity of the light beam are different, not only

in size but also in direction.
By eliminating H from the above equations we find:

kx(kxE)=-ppw? D
Using the vector relation Ax(BxC)=B(A+C)-C(A+*B) we obtain:

k x (k x E) = k(k*E)-E(k*k) = - pow? D [2.22]
so in terms of the unit vector S:

D =n2g[ E - S(SE)] [2.23]

Now we choose a coordinate frame (x,y,z) corresponding to the principal dielectric axes of the
medium. In this frame:
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where of course the permittivities of the medium will be different along the various principal
axes. Then it follows for i=x,y,z that :

[2.24]

(D, 0
D, =n’e, [ - s,(s(E) [2.25]
CE: U
and by rearranging:
p, =% (SCE) s, [2.26]
1_&
n> €

1

Forming the scalar product DS = Dxsy+Dys),+Dzsz =0, because D and s are perpendicular then
gives:

S g S
L& 1 & 1 _& |
ex n* & n?

~&
€
z [2.27]
This equation is known as Fresnel's equation. This equation is quadratic in n and will therefore
have two independent solutions n’ and n". So there are also two different waves D'(n") and
D"(n") that obey Fresnel's equation. A calculation of the dot product of the two solutions yields,

by making use of Eq. [2.27]:

D
=< ey )

s =

where the summation index O is over coordinates x, y and z. So we find for the two solutions of
the Fresnel equation:

D'D" =0 [2.29]

0
O [2.28]

%f :

A general result is: an anisotropic crystal can transmit waves that are plane polarized in one of
two mutually orthogonal directions. These two waves see different refractive indices n’ and n".
Also the direction of energy flow is now perpendicular to the wave front. If an incoming light
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beam is not polarized in one of the two allowed transmittance modes then the transmission may
be calculated by first taking the projections of the polarizations of the incoming wave onto D'
and D".

2.2.a REFRACTION AT A BOUNDARY OF AN ANISOTROPIC MEDIUM

Consider a plane wave incident on the surface of an anisotropic crystal. The polarization of
the incoming beam is in general a mixture of the two different polarization eigenmodes,
denoted with D' and D" in the above. So in general, except for the specific case where the
polarization is exactly along one of the principal axes of the crystal, the polarization of the
refracted beam is partly along D' and partly along D". These polarization waves are solutions to
the Fresnel equation for different indices of refraction. So one wave with polarization D'
undergoes refraction corresponding to n', while the second polarization component D" is
refracted by an index n". Different indices of refraction at a boundary implies that the
propagation direction of the two beams with D' and D" is different. In the figure it is graphically
shown how to determine the direction of propagation at a boundary with ng at one side and n'
and n" at the other side.

kg sin 6,

KD
x
-

Intersection of
normal surface
with plane of incidence

Fig.: Double refraction at a boundary of an anisotropic medium and the graphic method of determining 6, and 6,.

A kinematic condition for refraction requires that:
ko sinBy = kj sin@; = k> sin6> [2.30]
with the index 0 referring to the incoming wave and 1 and 2 referring to the refracted waves.
The physical effect of double refraction or birefringence is thus explained. An incoming

wave with polarization Dy is split into two waves with orthogonal polarizations that transmit
under different angles through a crystal.
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2.2.b THE INDEX ELLIPSOID

The energy density of the stored electric field in a medium is known to be:

U, =—(ED) [2.31]

N | —

With a coordinate frame of principal axes (x,y,z) and the relation D; = &Ej for i=x,y,z a surface
of constant energy in D-space is given by:

2 D2 2
D 2y Di ooy [2.32]
& & &

X y z

Now write r =D,/2U, (so r relates to a normalized polarization vector) and n;2=¢; the
equation reduces to a formula for a three dimensional ellipsoid:

2

=

2 2
+ 2+ = [2.33]
n, Z

3
S

This ellipsoid can be used to find the two indices of refraction for the two polarizations of a
wave with a wave vector in a specific direction S. For a certain direction of the wave vector the
plane normal to S intersecting the ellipsoid forms a two-dimensional ellipse. The two axes of
this ellipse then determine the two indices of refraction. These axes are parallel to the direction
of the vectors Dy » of the two allowed solutions of the Fresnel equation.

Consideration of a so-called uniaxial crystal simplifies the geometry somewhat. A uniaxial
crystal, in contrast to a bi-axial crystal, has a single optical axis. In terms of the index ellipsoid
this becomes a three-dimensional body with cylindrical symmetry. Two indices of refraction are
identical, so the plane intersecting perpendicular to the one optical axis forms a circle. If z is
taken as the axis of cylindrical symmetry (the optical axis of a uniaxial crystal) then the
principal indices of refraction are:

&
2 _Cx — 7y
no___

& &

™

and n’ =

e

™ |NM

(=}

and the equation for the index ellipsoid becomes:

2 2

2
+2 4
n,

[2.34]

:|><

(=1 S
:|N
I
—_

N
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z(optic) axis S

If the direction of the wave vector S now makes a certain angle 0 to the optic z-axis then the
indices of refraction for both the polarization components can be found from the intersecting
plane of the ellipsoid perpendicular to the vector S. The coordinate frame is chosen such that the
vector Sis in the y-z-plane; because of the cylindrical symmetry around the z-axis this may be
done without loss of generality.
The dark plane of intersection forms a two-dimensional ellipse with two principal axes. The

two allowed polarization directions are parallel to the axes of the ellipse:
- one polarized along the x-axis; this wave has the polarization vector perpendicular to the optic
axis and is defined as the ordinary wave; it transmits with index n,.
- one polarized in the x-y plane but perpendicular to s; this wave , with the polarization vector
in the plane with the optic axis is called the extraordinary wave.

For clarity the projection of the ellipsoid onto the y-z plane is shown separately. The
polarization of the ordinary wave now points perpendicular to the paper.

The polarization of the extraordinary wave is along the vector OA and the index of refraction is
ne(6). From the figure it follows that that for an arbitrary angle 6 the relations hold:

z =ne(0) sinf [2.35]
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¥y =ne(6) cosO
The equation of the ellipse (projection of the ellipsoid with x=0) is:

2
J’_2+Z_:1 [2.36]

2
2
n e

S

Combining these results yields an equation for the index of refraction experienced by the
extraordinary wave in a birefringent crystal:

1 _cos’B N sin” @

nf(G) nu2 n’

e

[2.37]

So the index is dependent on the direction of propagation of the wave vector. In the special case
of 6=0, when the wave vector is along the optical axis, there is no birefringence; both
polarizations experience an index n,. If the wave vector s is perpendicular to the optic axis two
waves will travel through the medium with indices n, and ne. The index of the extraordinary
wave then reaches a maximum (for positive birefringence ne>np) or a minimum (for negative
birefringence ne<ngp).

Usually the refractive indices are represented with a Sellmeier equation of the form:

B D
+

nf=A+
1-v?/C E-v?

[2.38]

Where 4, B, C, D, and E are parameters to be derived from experiment. For the important
crystals ADP and KDP the Sellmeier constants are:

ADP KDP
n, n, n, n,
2.133831 2.260476 2.164692 2.304082

8.653247 X101t 1.011279 X10-10 9,633312 X101t 1.114773 Xi0™10
8.134538 X10° 7.726552 X10° 7.691000 X102 7.542305 X10°
8.069838 10  3.249268 X108 1.479865 X108 3.774363 X108
2.500000 X108 2.500000 X105 2.500000 X103 2.500000 X103

[CRCES RN

Table : adapted from ref 8!

2.3 THE NONLINEAR COEFFICIENT

In the framework of Maxwell’s equations usually a factor )((2) ij(@y, (W, ) 1s used as the second
order non-linear susceptibility. Here x'” obeys the general rules for a 2™ rank tensor and it can
be shown, that as a result of the free permutation of ) there are 27 independent components.
From the experimentalists view usually a non-linear coefficient d is used, that may be defined
as:

? Zernike, J. Opt. Soc. Am. 54, 1215 (1964).
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1
d, = Ex,-,‘i’ [2.39]

But is usually written in a contracted form to represent the nonlinear polarization as:

[2.40]

Note that sometimes the factors 2 are included in the dj; coefficients, leading to some confusion.
It can be shown (beyond the scope of these lectures; for further reading see ref.

- Only 18 of the tensor elements in dj; are independent;

- In crystals with a center of symmetry all d;; =0, consistent with Eq. [1.5];

- Of the 32 existing crystal classes, 21 are non-centro-symmetric;

- There is one crystal class (Class 1: triclinic system) with the lowest symmetry and 18

independent elements; in the figure shown the connected elements have the same value;

—
— -

"o i« % ~e
.- Q)/)\ \\
- /// \\ ,\\ \\
o e e » e ]
Class 1

- Additional symmetry is imposed by Kleinman’s conjecture: if the nonlinear polarization is of
purely electronic origin and if the crystal is lossless in the spectral range of interest the 1,j and k
can be freely permuted and this gives rise to additional symmetry;
- For quartz (belonging to crystal class 32) the d-matrix reads as (if Kleinman’s symmetry is
imposed):
lel_dll()dm 0 0 H
00 0 00 —-d,-4d,,O [2.41]
Ho o000 o oH

- For each symmetry class the effective nonlinear polarization can be derived for each type of
phase-matching; a few examples are listed below (adapted from ref. *). The important crystals
ADP and KDP and their analogues belong to the point group 42m, and hence have tetragonal
symmetry.

* I.F. Nye, Physical Properties of Crystals, Oxford, 1960
> Zernike and Midwinter, Applied Nonlinear Optics, J. Wiley & Sons, 1973
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Effective nonlinear coefficient doy:

Class 32 with Kleinman symmetry without Kleinman symmetry
Type I (ete - 0) d;;cos’0sin3@ d,,cos?0sin3¢-d,,sin20

Type II (eto > ¢) -same- d,;cos?6sin3@t+d,,sinBcosO
Type I (0+0 —e¢) d;;cosBsin3@ d,;cosBsin3@

Type II (e+0 - 0) -same- d,;cosBsin3@

Class 42m with Kleinman symmetry without Kleinman symmetry
Type I (ete - 0) d,4c0s20sin2@ d,4c0s20sin2¢

Type II (eto > ¢) -same- (d41ds6)sinBcosBcos2 @
Type I (0+0 —e¢) -d,;sinBsin2@ -d3681nBsin2¢

Type II (e+0 - 0) -same- -d,sinBsin2@

Note that not all processes indicated yield effective second harmonic power under all
conditions. Of course phase-matching is required for a specific combination of wavelengths,
and therewith the angles 8 and @become fixed at these values. Note also that the d;; are material
properties of the specific crystals.

2.4 PHASE MATCHING IN BIREFRINGENT MEDIA

In section 2.1 we have found that in isotropic media the phase matching condition Ak=0
cannot be obtained, because of the phenomenon of dispersion. In anisotropic media the
ordinary and extraordinary waves can be mixed and phase matching can be obtained, because
it is possible to "tune" the index of refraction of the transmitted extraordinary wave by varying
the angle 6 between the k-vector and the optical axis of the medium:

n,(0)= 1M, [2.42]
e) \/nf sin® @ +n’ cos” 6

In anisotropic media the effect of dispersion, i.e. the wavelength dependence of the index of
refraction, is of course also present. As a result the indices n, and n, and therewith n, (9) are a
function of frequency of the incoming light.

KDP is obviously a crystal with negative birefringence (ne<np). The dispersion curves for
this material are also plotted in the following figure:
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The figure should be understood as follows. The two curves for n, and ne represent the
maximum and the minimum attainable index of refraction in the crystal, and the whole range in
between the two curves covers the possible indices of refraction.

Considering this wide range of possible indices, and particularly the tunability of the index
by the setting of the optic axis, the phase matching relation Ak=0 for second harmonic
generation may be fulfilled in a crystal. This condition is met when:

nw :nZw [243]

Because of dispersion it will still not be possible to meet the conditions n? =n’* or
n>® (6) = n“(@), but in the case of a negatively birefringent crystal (ne< np) there will exist an

e e

angle 6,, for which the following condition can be met:

n2@,)=n® [2.44]

Before solving in an algebraic way the equations in order to find the particular angle for
which the phase matching condition is fulfilled, the so-called phase matching angle, we will
first adopt a geometrical procedure to clarify the problem. The problem is that of a crystal that
is birefringent and dispersive at the same time. The index surfaces for ordinary and extra-
ordinary rays can be drawn at both the frequencies w and 2w. So we have four different index
surfaces as shown in the figure (for a negative birefringent crystal):

z (optic) axis




Note the interpretation of index surfaces: they are drawn such that the indices n, and n, (9) are
found at the crossings of the ellipsoids with the k-vector.
The index surfaces for n, at frequency 2w (outward circle) and for n, at frequency w (inner
ellipse) are shown as dotted curves, because they are not important for the phase matching
problem in negatively birefringent media. The curves for n, at frequency wand for n,at
frequency 2w determine the phase matching angle. At the point where the circle of n,’ crosses
the ellipse of n’“ the phase matching condition is met. The relation then holds for the
particular angle 8,, between the optical axis and the k-vector as shown in the figure.
Algebraically the problem of finding the phase matching angle can also be solved. At
frequency 2w the equation for the index ellipsoid is:

2w, 2w

*6,)= R [2.45]
! \/(nj“’)z sin’ @, + (nez“’)2 cos’ 6,

In order to obtain phase matching this needs to equal n;’ . Thus we obtain an equation with an

unknown variable 6,, and involving a sin26,, and a cos2?6,, function which may be solved for
. 2 6 .

sin“6y,:

sin?@ = o) =) [2.46]

Let us now consider some of the physics behind the mathematical equations. Phase matching,
so efficient frequency doubling, is achieved when a beam travels through a crystal under a
particular angle 6,, between the k-vector and the optical axis. It should be noted that the angle
6, is defined for propagation within the crystal; for all calculations (or experiments on finding
the phase matching angle) starting from a ray impinging under a certain angle on a crystal
surface refraction at the boundary has to be taken into account. Because of the dispersive effect
on all three parameters in the above equation (n*, n’?, and n’“) the phase matching angle
will be different for frequency doubling of different frequencies . It was assumed that the ray
at frequency wwas an ordinary ray (so polarized perpendicular to the optical axis) while the
second harmonic is an extra-ordinary ray (polarized in the plane of the optical axis). Thus we
find that in this process the polarization of the second harmonic is perpendicular to the
polarization of the fundamental. In this example we assumed that the crystal was negatively
birefringent; the phase matching condition was found for an ordinary fundamental and an
extraordinary second harmonic. Considering index surfaces of positively birefringent media
will show that the phase matching condition is fulfilled for an extraordinary fundamental and
an ordinary second harmonic.
The phase matching condition for sum-frequency mixing was originally written as:

Ak =k3-ki-ko [2.47]
The process of frequency doubling or second harmonic generation can also be understood as a

process of sum-frequency mixing of an ordinary and an extraordinary wave at the same
frequency within a crystal. In that case the phase matching relation Ak=0 reduces to:
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29 (0) = %[nw +1°(0) [2.48]

This relation may be fulfilled, for certain angles 8, in negatively birefringent crystals. In
positively birefringent crystals another condition holds:

o

2 = %[n“’ +n°(@) [2.49]

In both _cases n“’( ) and/or n2“(P) may be expressed in terms of the four parameters n“(9),
n®, n’®, and n’“, and the equation may be solved to find the particular phase matching angle
O It is 0bV10us that the thus found phase-matching angle 6,, in the two different cases is
different, although in both the processes the frequency is doubled.

Commonly a distinction is made between these different Types of Phase-matching:

TYPE I phase matching EoW+ EqW . Ee2W negative birefringence
and EeW+ Ee® . Ey2W positive birefringence

TYPE II phase matching EoW+ EeW _, Eg2W negative birefringence
and EoW+ Ee®W . Ey2W positive birefringence

2.5 OPENING ANGLE

Consider Type I phase-matching and a negatively birefringent crystal. The phase-matching
relation is:

N = =% ~n®]=0 12.50]

which is satlsﬁed for a certain angle 6,,. In order to evaluate a Taylor expansion around the
optimum phase matching angle (6-8,,) the first derivative of Ak with respect to 8is calculated:

dk_2w d _2wd NN,

[ne*®) - 5]

de ¢ de c dé yrgsin’ @ +n]cos’ 0
_ W n.n, ‘ :
= — n; —n;)sin20
¢ {rg sin’ 6 +n_ cos’ 9}3/2 ’
20 e 3
= —&)M (¢ —nZ)sin20
c nn [2.51]
SO:
|ﬂ1 = -2} (0 -n? )sin28,
dBley,  C [2.52]

where in the last step it was used that ne(2®)(8)=ng and the value of the angle was set at =0,

31



X 8.1 x 1014

1.0 T i T
o Experimental ' TEMyoq

. 0.8 sin? ’ P, = 148 X 1073 watt
£ .oy? [ L, /=123 cm
206
£
Z 04
-

0.2

0b

-0.1° 0 +0.1° +0.2°
Angle of deviation, o, from index-matching direction

So the spread in allowed k-values is proportional to the spread in angles around the phase
matching angle 6y:

Ak = éAG
L [2.53]
with:

The power of the second harmonic generated thus becomes:
sin’ EA—kLD .2
My g sin'[Be-a,)
kg [p(e-6,)
2 § [2.55]

P (g)

This relation was verified in an experiment on frequency doubling in a KDP-crystal:

For the particular example of a KDP crystal, with a certain thickness L=1.23 cm and index
parameters it is found that the full spread in angles that allow for phase matching is 0.1° of
angular variation. The concept of opening angle may be understood in different ways:

- for a fixed wavelength A, in a focused light beam the angular convergence angle should not
exceed this 0.1°, otherwise the efficiency of the process will be reduced.

- in case of a co-linear light beam, the wavelength spread A\ around a center wavelength A is
related to a spread in wave-vectors:

Bk _ _8A [2.56]
k A
As a result only a limited bandwidth around the center wavelength is efficiently frequency
doubled because of the opening angle.

The experiment again (as in the experiment on the Maker fringes) proofs that phase
matching plays a role in second harmonic generation. It is important to note that at 6,,,=90° the
first term in the Taylor expansion is zero. Then the second order term in the expansion has to
be taken, and then:

Ak O (A6 [2.57]
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So a small spread in angle AB will allow for a large spread in the wave-vector domain. Also the
bandwidth that may be efficiently frequency doubled is larger. This effect at 6,=90° is dubbed
non-critical phase-matching.

Note that the concept of angle tuning is particularly important for the frequency doubling of
large bandwidth short pulse lasers.

2.6 PHASE MATCHING BY ANGLE TUNING

In the above we have seen that under certain conditions of polarization of incoming waves,
vs the birefringence of the material phase matching can be achieved for second harmonic
generation at specific wavelengths. The indices of refraction for ordinary and extraordinary rays
for the LilO3 crystal are given in the Table (from ref

A No Ne
4000 1.948 1.780
4360 1.931 1.766
5000 1.908 1.754
5300 1.901 1.750
5780 1.888 1.742
6900 1.875 1.731
8000 1.868 1.724

10600 1.860 1.719

With the method described in the preceding paragraphs the phase-matching angle for second
harmonic generation is as a function of the fundamental wavelength (for type I phase
matching).

PHASE MATCHING ANGLE 8,

500 520 540 860 580
waveiength (nm)

Fig.: Calculated phase matching angles for type I for SHG in LilO3; obtained from rei!rzl

When using this crystal for frequency doubling of a scanning tunable laser, the angle 6, has to
be tuned, while scanning the fundamental. In general phase matching in a particular crystal can
be achieved down to wavelengths A(90°), where the angle reaches a value of 6,,=90°. In LilO3
the situation is different: it starts absorbing at 295 nm, and therefore SHG is not possible
beyond fundamental wavelengths of 590 nm.

% Nath and Haussuhl, Appl. Phys.Lett 12, 186 (1968)

7W. Ubachs, PhD Thesis, Nijmegen University 1986
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2.7 PHASE MATCHING BY TEMPERATURE TUNING

Before this point it was assumed that the indices of refraction are just dependent on the
angles of k-vector and polarization of the transmitted wave in the crystal. In reality the indices
will depend on all external influences that will influence the lattice spacings in the three
dimensions of the crystal. In principle all four parameters n%, n”, n*, and n’* are dependent
of the temperature. Qualitatively it may be understood that the phase-matching condition Ak=0
can be achieved by merely changing the temperature of the crystal. Of course the angle setting
of 6, will remain important. There is a class of crystals, similar to KDP, that is particularly
suited for temperature tuning; moreover phase matching may be achieved at 6,,=90°.

By changing the temperature both the conditions of:
Ak =0 and 0m=900°

are fulfilled at different wavelengths. The figure shows the temperature tuning curves for two
crystals: ADP and KDP.

| .
540 | JAcp
O/
530 — /o/
520 2 o) O o O KDP
S/0 —
! ] | |

[ l -
O /0 20 30 40 50 60 70 8O 90 /0C /IO 120

Temperature tuning has several advantages:

a) The properties of walk-off are unimportant if phase matching is obtained at an angle of
Bm=900. This situation is called non-critical phase matching.

b) At this angle the ray travels along the optical axis and there is no effect of double refraction
and optical activity in the medium. This makes temperature tuning very suitable for use in intra-
cavity phase-matching of SHG, because these side effects would additional losses to the lasing
process.

C) At 6,=90° the first order expansion term in the Taylor series for the derivation of the
opening angle, containing a factor sin26y,, disappears and we find that for non-critical phase
matching:

Ak O (A6 [2.58]

So at non-critical phase matching larger opening angles are allowed.
d) At ,=90° the nonlinear coefficient d, is largest.
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2.8 QUASI PHASE-MATCHING BY PERIODIC POLING

In angle phase-matching some angles of propagation are not possible; hence some elements of
the dj; tensor element cannot be accessed. The underlying problem is that the phase of the
second harmonic changes with respect to the fundamental, due to the different light speeds in
the crystal: dispersion. In each coherence length, defined in [2.10], the nonlinear polarization
wave is shifted in phase by Tt radians, and the relative phase slips by 102. After the first
coherence length, the phase has slipped into a regime where energy is lost from the field. The
idea behind an alternative way of phase-matching is to adjust the phase of the non-linear
polarization appropriately after each coherence length. Under those circumstances the non-
linear intensity will grow (monotonically), although less rapid as in case of perfect phase-
matching. This condition of quasi phase-matching (QPM) can be achieved in a so-called
periodically poled crystal.

c-Axes of Crystals

S I S I

Propagation Axis
—_—-

— Lo -

Material segments with the optical axis alternating in reverse directions are stacked together.
From the perspective of the propagating wave the segments are rotated by 180° to the effect that
the phase shift built up in the first L. is decreased again in the next L.. The phase relation
between the generated optical field and the time derivative of the driving nonlinear polarization
for SHG are sketched in the figure.

g7, aP"at (arb. units)

0.0 0.5 1.0 1.5 20
z/L



Although this idea of QPM was conceived by Bloembergen, already in the early days of non-
linear optics, it is only through recent progress in crystal technology that such periodically
poled materials can be grown. The period A of the crystal modulation is in most applications on
the order of 10 pm. Technologically the growth of such materials does not proceed forming a
stack of thin wafers. A more practical approach is to use ferro-electric crystals (LiNbO; is an
important one) forming regions of periodically reversed polarization domains by applying
electric fields; these domains remain intact when the applied field is switched off.

The most rapid growth of the second harmonic is obtained by changing the sign of the
polarization (and thus the sign of the non-linear coefficient) every coherence length. This
situation is illustrated in part (a) of the figure obtained from ref .

Curve A represents the condition of perfect phase-matching over the length of the entire crystal.
Curve C represents the case of phase-mismatch with a coherence length of phase-match of /.
Curve B, represents the case where the polarization is flipped after every coherence length. In
the lower part of the figure curve B; represents third order QPM: every three coherence lengths
the nonlinear coefficient is flipped. The harmonic yield is less in third order QPM, but the
technological requirements are less strict in view of the larger domain structures, so it is useful
in some conditions. It can be shown by using Fourier analysis, that a full polarization switch is
not necessary: even a period modulation of the nonlinear coefficient already enhances the SHG
output.

The coupled wave equation can be written again as:

diE2 =d(z)exp[- ink' 2] [2.59]
A

" M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quant. Electr. 28, 2631 (1992)
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where [ represent the usual factor I =iwE; /n,c. The second harmonic at the end of the
sample L is then:

=r .f z)exp[- idk' z]dz [2.60]
In the trivial case that d ( ) d,; and Ak'=0 the second harmonic field is:

E,(L)=Td,L [2.61]

In the real space description the function d(z) can be assumed to consist of domains with +d
with sign changes at positions z,. Let g, the sign and /, the length of the & domain, then
[2.60] can be integrated to:

il

d
E, = eff Z g [exp(- itk z, ) - exp(-itk'z, , ) [2.62]

with N the number of domains. The sign changes in a perfect structure occur at positions:

ez = (-1) [2.63]
where Ak,' is the wave vector mismatch at the design wavelength, and for m™ order QPM:

Zo = Mk, [2.63]

For a perfect structure, without phase errors at the boundaries the generated field yields:

) 2
E, e =118 an [2.64]
We see that in an interaction with perfect m™ order QPM, the effective non-linearity is reduced
by a factor of 2 /m1T with respect to a conventional phase-matched interaction.
Since the crystals have to be grown at specific poling periodicity A they match only a single
wavelength. SHG at any other wavelength gives rise to a mismatch and reduced SHG output.

Additionally the domain structure is never perfect, also giving rise to boundary mismatches.

2.9 PUMP DEPLETION IN SECOND HARMONIC GENERATION

The conversion efficiency for second harmonic generation was calculated in the
approximation that the efficiency nsyg <<l. In case of large conversion efficiencies other
processes have to be taken into consideration also. In a generalized picture apart from the sum-
frequency process, in which a new frequency w3 is generated, also reverse processes take place
when the intensity at w3 becomes large:

Wt - O3
W3 -W - W [2.65]
W3 - W] - G)
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We go back to the coupled wave equations and we define amplitudes A; and coefficients Qj:

A[ :£Ei g
.

and a, = 2.66
VHo /€, 1266

Then the coupled wave equations become the coupled amplitude equations:

iA = lalAl—iKA3A2De_’Mz
dz 2
d A 1 a AD+ . O ilNkz
—a,A4, +ik4, Ase [2.67]
dz 2
d 1

s — 4, = E013,43 —iKA A, e™*

where K was defined as:

k=dL [Fo [G0.0 12.68]
2\ g, \ nn,n,

The terms proportional with the ; coefficients represent linear polarization effects, such as
absorptions in the media. Some assumptions are made now:

a;i=0 s0 no absorptions
w] =w for frequency doubling
Ak =0 a phase matched combination of waves (holds for all processes)
Then:
d ) o
— A, = —ikA, A
dZ 1 347
d 1,
— A, =—iK— A 2.69
i 1 5 [ ]

In fact there is no field with amplitude Aj, because of the degeneracy w] = w) the factor 1/2
comes in the second equation. Now we choose A1(0) to be a real amplitude and we rewrite
Ajz'=-1A3, then we obtain:

d \

EAl = _KA3 Al

d 1,

— A,'=—kKA 2.70

g b= KA [2.70]
We calculate:

d [A2 +2(4 ] 24, diA +44 'diA [2.71]

so in the crystal (assuming no input at w3):
|42 +2(4, ()| = const = 42(0) 2.72]
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If we consider:

H /u
If'E = | |-— o 4] [2.73]
0

and also that:

I, UNh,,o, [2.74]
e find that |Al. ? s proportional to the number of photons in the beam. So the fact that

r,éllz (z)+ 24, (2)2 = constant has the physical meaning that for every 2 photons taken away at

the fundamental, there is one generated in the second harmonic beam. Energy is thus conserved

because w3 = 2wj.

The differential equation in A3’ is:

RyRE ——K[Af (0)—2(A3')2] =0 [2.75]

with a solution:

4,'(z)= A‘(O)t hEA \/9‘25 [2.76]

So for the conversion efficiency we find:

- pLe) — |A3 (ZY — 2 U4, (O)KZD
nSHG - P(w) - 1|A (012 = tanh WH [277]
2 1

If 40kz - o, then 4,'(z) ~ 4,0)/v1/2 and hence |4,'(z)" - (1/2)4,(0), so the

number of input photons will be converted into half the number of frequency doubled photons.
The figure shows the deviation at high input powers from the quadratic behavior.

Note that from this analysis it follows that conversion efficiencies larger than 50% are
possible.

100 T T T I | T

Second-harmonic energy
conversion efficiency (%)
o
=]

o | 1 | | | l

1 2 3 4 5 6
input intensity (GW/cm?)
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Chapter 3

The optical parametric oscillator
3.1 PARAMETRIC AMPLIFICATION

Now we consider a non-linear medium with two co-linear incoming light beams; one high
power at frequency w3 (the pump beam), and a low power beam at frequency w3 (the signal
beam). The intense pump beam will amplify the signal beam under conditions of phase-
matching for the non-linear process:

w3 - 0] + . [3.1]

With the amplification of the signal beam a third beam at frequency wp is generated, the so-

called idler beam. Again we start from the coupled wave equations, derived above with some
assumptions:

- no losses, a; =0,
- Ak = 0, a phase-matched combination of waves
- similar definition of K

dA_ — _l-K * —ibkz
dz 2I AhE

d_A; __1- * _iAkz
dz 2|KA1A}e [3.3]

[3.2]

Also we assume that the pump intensity will not be depleted, so A3(z) = A3(0) and we define:

g= KA(O)

[3.4]
The coupled amplitude equations reduce to:
dﬁ = _ll ng
dz 2 [3.5]
dz 2 [3.6]

With boundary conditions a small signal field at z=0, A1(0), and A(0)=0 these differential
equations may be solved to:

_ gz
= 0 h ==
Al(z) A«( )cos Oy C (3.7]

(z) =1 A0)sinh=—
A 0,0 13.8]

For gz>0 a reasonable approximation is:
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A2 =A@ De” [3.9]

So both waves at frequencies w] and wp are found to grow with a gain factor g. It may be
proven straightforwardly from the coupled amplitude equations (with the assumption that the
0i=0) that:

d, «_d, . _d, .
T T TN [3.10]

Where AjA;* is the photon flux of a wave, the physical meaning of this relation is that for each
photon taken away from the pump beam, two photons are created: one at the signal frequency
w] and one at the idler with wp. This may also be expressed as the Manley-Rowe relation:

[3.11]

3.2 PARAMETRIC OSCILLATION

In the preceding paragraph we have seen that a pump beam at frequency w3 can provide via a
non-linear interaction in a phase-matched medium, simultaneous amplification of optical waves
at the signal wave w; and the idler wave y; with the condition that w3=w;+0». In such a
system there was found to be parametric gain. Parametric denotes here that the process depends
on a parameter, namely the phase-matching condition Ak=0.

Placed inside an optical resonator the parametric gain will at some threshold pumping cause
simultaneous oscillation at signal and idler waves. Similar to lasing operation in a resonator
(where the gain is derived from a population inversion) the oscillation will start from noise
photons. A device based on parametric gain in a resonator is called an optical parametric
oscillator or in short OPO.

Parametric oscillator

i Focusing
Laser oscillator lens Optic axis
of crystal G, W, Wy
. - Wy —>
medium Nonlinear
R, = 100% crystal R, (high but < 1)
R, = 100% R, (high but < 1)
R, = 0% Ry = 0%

We will first look at a threshold for oscillation. Such a threshold will be reached when the
parametric gain equals the losses in the resonator. Under those conditions the coupled amplitude
equations will be in steady state:

41



dA _dA

dz = dz [3.12]

so in steady state, with Q; the absorption losses and g the parametric gain:

1 1. 4
TS OATTIgA=0

[3.13]

ST A =0

—_ I —_—— =

2! I [3.14]
This set of coupled linear equations has a nontrivial solution at this threshold if:

g2 =a;0; [3.15]
We may also conclude that above threshold oscillation will occur if:

22> 0q0; [3.16]

3.3 TUNING OF AN OPO

Parametric amplification and oscillation may be viewed upon as an inverse sum-frequency
process, for which the same phase-matching conditions will hold; it is these phase-matching
conditions that determine which frequencies w; and wy will be generated at a certain setting of
the angle of the crystal with respect to the wave vector k3 of the pump beam.

Ak =0 - k3=Kki+tkp [3.17]
for co-linear beams the following relation must hold in order to achieve phase-matching:
n303 = njwy + o0y [3.18]

Of course the conservation of energy is a strict condition for frequency conversion in an OPO:
w3 =W + Wy [3.19]
Again, because of dispersion in any medium these relations can only be met under the special
conditions of anisotropic crystals with a tunable index; and again we distinguish between Type [

and II phase-matching conditions. For example:
w; and wy are ordinary waves with index, respectively n1© and ny©
w3 is an extraordinary wave with index n3€(0)

So Type I phase-matched oscillation is obtained at w; and wy at a specific angle 8=0,,, with the
condition:

0 [3.20]
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At each specific phase- match angle 6,, the OPO will produce a particular combination of two
frequencies that obey the phase-matching condition.

Next we consider what will happen if we rotate the angle 0 of the crystal for an amount AB;
s0 B —» O TtAB. As the pump frequency wx is fixed at the phase-matched frequencies will
change:

W] > W +Aw [3.21]
W - W+ Awy [3.22]

because of energy conservation: Aw;=-Awy. All the indices of refraction will change:

n; —» n;+Ang
np - np+Any [3.23]
n3 — n3+ Ang

Note that the index at the pump frequency changes, because it is an extraordinary wave and the
angle has been rotated; the index of the signal and idler wave change because of dispersion; so
the changes in the indices are:

0
Anl = % A(.Ol
Hel frequency dependence [3.24]
on
Anz = —(DL A(JL)2
w2 frequency dependence [3.25]
on
An, = Fl JAG)
ém angle dependence [3.26]

With these relations a new phase-matching condition has to be satisfied, although at a different
angle 6,,+A6:

(n3+Anz)es = (nj+Ang)(w;+Aw) + (n2+Any ) (b +AW) [3.27]

SO:
g;g)g,_-f—An_gQ)g, = gl(,_ol'f‘An] Wyt 1AW +An Awy +gz(,_02_+(ann2-n2A(x)1 -Anr Ay [3 2 8]

Here Auwp=-Awy was used. With use of the original phase-matching relation at 6=8,, (underlined
parts) and neglect of second order derivatives, such as An1Awy, we solve for Awy:

_ WAn, —w,An - w,An,
n—n [3.28]

Aw

1

Substituting the above relations in the equation for Awy gives:
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w3%A9—(qa—nlAwl+oo2 on, Aw,
00 0w, 0w,
Aw, =
n—n [3.29]
Solving Awy:
on,
(‘03
Aw _ ow, _ 00
AD 06 (n n\+EM on, © on, O
h —Th, . W ]

In the paragraph on the opening angle for phase-matched second harmonic generation the
derivative dk/dO was determined at the phase matched angle 8,,,. Also k was written in terms of
the index of refraction of an extraordinary wave ne(8). Now we use this result for the derivative
0n3/00:

n 1 _ -
o) __1 n§|ne2 (0, ) —ny* o, ]] sin 20,
BOloy 2 13.31]

Finally we have obtained an equation for the angle dependence of the generated frequency of
the signal wave as a function of the indices of refraction and their dispersion relations.

1 - - .
K n (w0, ), n;2 () —n:? (w, ]sin26

0w, _
00 O o on, U
(nl _n2]+ﬂ*)1_nL_wz_n2'D
0 90, [ 13.32]

In an experiment with an OPO, the parameters 3 and therewith ng(wy), ne(w3), are constant. If
the indices of the medium are known, and their frequency dependence then the dependence of
the frequency of the signal wave  as a function of the angle 6 may be calculated numerically,
using the above equation. Such an angle tuning curve for an OPO based on a BaB>O4 crystal
(also called BBO) is shown in the following figure. The wavelength of both the signal and the
corresponding idler (energy conservation) at the particular easily accessible pump wavelength

of 354.7 nm is shown.
BBO type I

] pamp 354.7
3000 P ‘\‘p

2500

Jxlunln“llnnllul-1

1 i by

I

1500

wavelength
T

1000
5003 -

0 ST
22 24 26 28 30 32 34

angle

1y

piaa iy
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Thus we find that such a device, an OPO based on the material BBO, and pumped by the UV-
output of a Nd-YAG laser, is a source for coherent radiation in the wavelength range 420-2500
nm, this means the whole visible and near infrared part of the spectrum. (Wavelengths longer
than 2.5 mm are absorbed in the BBO-material). And the tuning of such a device may be simply
arranged by rotating the crystal over an angle from 22 to 33 degrees.

3.4 BANDWIDTH OF THE OPO

As a consequence of the opening angle associated with a sum-frequency mixing process
even under the conditions of a perfectly parallel pump beam at w3 with an infinitely narrow
bandwidth Aws the signal and idler waves will have certain widths Aw; and Awy in the
frequency domain. The opening angle corresponds to a wavelength range that may be
determined from the analysis in the preceding paragraph. Particularly at the degeneracy point,
i.e. where signal and idler waves have the same frequency, a small variation in the tuning angle
corresponds to a large frequency spread; so the bandwidth will be very large here.

An additional broadening effect on the output of an OPO is caused by the pump beam
divergence. Because of a spatial spread of k-vectors non-co-linear phase-matching also occurs.
This will cause an increase of the opening angle and therewith an increase of bandwidth.

For the example of an OPO based on a BBO-crystal the linewidth for the signal has been
calculated for two different beam divergencies of 0.1 mrad and 0.5 mrad and a pump
wavelength of 354.7 nm. Note that the bandwidth of the pump laser is not taken into account.

160‘l'll'll’l["t'llllll]f'l('YTT- 120 "l'll'l"r'l'll' l"ll'llr"lll
1i— 0.1 mrad divergence . ] — ditfraction hxnlted divergence 7
1404 < 0.5 mrad divergence 1 = 4° © * experiment ]
1 pump 354.7 nm H ] 1, 1007 p
= 120 ; i E ]
| < 80 1
= g
4 P d
12 ]
B = 60 -
1 9 1
1 E ]
1 — 404 -
] « ] ]
i £ ] i
1 .20 204 -
- « ] ]
0 l'lrl’llll[l l'lT'YI’(I’l"l"l 0 llllllll!l!ITI'ITI'[’T"!!I'III" T
400 450 500 550 600 650 700 540 560 580 600 620 640 660 680 700 720
signal wavelength (nm) signal wavelength (nm)
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3.5 PUBLIC DOMAIN SOFTWARE

Calculations of phase-matching properties and effective non-linear coefficients, particularly in
the case of bi-axial crystals are quite intricate. A large number of research papers on this topic
have been published as well as several textbooks.

A sophisticated computer program to calculate all relevant nonlinear properties has been
designed by A.V. Smith of Sandia National Laboratories, Albuquerque, New Mexico. The
program “SNLO” has been made publicly available at:

http://www.sandia.gov/imrl/XWEB1128/xxtal.htm|

and is regularly updated for new materials and new measurements of e.g. refractive indices. It is
equipped with plotting routines to produce phase-matching curves for OPO’s as well as
effective non-linear coefficients d.; for all processes and crystals. It also includes the use of
periodically poled materials and the construction of resonators for intra-cavity frequency
conversion.

A typical display for the calculation of phase-matching angles for an OPO pumped at 350
nm is shown for the CLBO crystal.

CLBO Type 2 - 350nm pump

runmp pol.=a
Hen \ Slgnal pol.=o
- Idler pol.=e
£ 1200
o
& 1000
=
@
—
2 800
o
=
600

40 50 60 70 80 90
Internal Angle [degrees]
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Chapter 4

Quantum theory of the nonlinear susceptibility

4.1 SCHRODINGER EQUATION; PERTURBATION THEORY

Similar to Chapter 2 we adopt Schrdodingers equation as a starting point for a derivation of
nonlinear susceptibilities. Again this treatment, based on the properties of the atomic wave
function will have a restricted validity. Particularly for the relaxation processes upon resonant
excitation the outcome will lack validity and a more complex density matrix formalism may be
used for a proper description. Note also that the present description is semi-classical; the
electromagnetic field is not quantized. It is assumed that all properties of the atoms can be
described in terms of the wave function, which is a solution to the time-dependent Schrédinger
equation:

2 = fw
ot [4.1]

where H is the Hamilton operator that may be written as:

Vit)= - E(®) [4.3]
E(t)=5 E(wn]e_i("”t
n [4.4]

I:|0 represents the Hamiltonian for a free atom, V(t) the interaction of the atom with the external
electromagnetic field E(t), which is written in an expansion of frequency components. In order
to solve [4.1] in terms of a perturbation expansion the Hamiltonian is written:

A= Ho + W0 s

where A is a continuously varying parameter, and a solution of the wave function is seeked as a
power series:

W, t)= WO, )+ A0, )+ 2WO(r )+ [4.6]

Now a solution is required for every value of A and all terms in AN satisfy the equation
separately. When the wave function [4.6] is inserted in [4.1] a set of equations is obtained:

0 .
i = f,w )
ot
(N) .
i = 3, p(N) ygN-D
ot ,N=1,2,3, .. [4.7]
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We assume that initially the atom is in its ground state |g>, represented by a solution of ﬁo :

W(o)(r,t)=ug(r)expEriE—gtB [4.8]
o #0

The energy eigenfunctions for the free atom form a complete set, and this set is now used as a
basis for the description of the higher order wave functions:

WO, 6= 5 a, M ()u, (e [4.9]

The amplitude aM(t gives the probability that up to N-th order in the perturbation the atom is
p

in the eigenstate [p> at time t. Inserting [4.9] into wave equation [4.7] a set of equations for the
amplitudes is found:

. 0 —-iw,t _ -1) ¥ —iw,t
lhza—tap(N)up(r)e =52, (e [4.10]
P 1z
The left side of [4.10] is multiplied by u,,* and through the use of the ortho-normality relation:

03
fUnupd™r =8, [4.11]

dynamical equations for the probability amplitudes, similar to [2.15] and [2.16] follow:

0 (N) 1 1~ t
ot ih
p [4.12]
where the definitions are used:
A _ A _ %k A 3
Vip —<um|\/|un> = fupVudr (4.13]
Wnp = ®m = @p [4.14]

Note that the derivation is exactly the same as in Chapter 2, but now for a multi-level system. If
the amplitude up to order N-1 is determined Eq. [4.12] can be used straightforward to calculate
the amplitude of order N through integration:

(N) _

an AtV ()2l (1) "

—

1
EZ
| p-

8

[4.15]
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4.2 CALCULATION OF PROBABILITY AMPLITUDES

Equation [4.15] in fact represents a set of dynamical equations, from which the probability
amplitudes up to all orders may be derived. The resulting wave functions then govern the
behavior of the atoms under influence of the radiation field. As a starting point we assume that
the atom is initially in the ground state, so:

(0) _
A7 =0pg [4.16]

This delta function is now inserted in the integral equation [4.15]. Following the above
definitions we set:

Vip (1) = =3 Uy CE (o JeTIokt
Kk [4.17]

and the transition dipole moment:
Unp = J Ul
mp = J UmHup [4.18]

Now the integral [4.15] is easily evaluated, and when it is assumed that at t=-co there is no
contribution the following result follows:

Wy ~ Wk [4.19]

Now when the first order perturbation amplitude is found the second order can be derived from
integrating Eq. [4.15] once more:

81(12) - 1 5S IUnmEW)l ]I |.u”U E‘wk]J ei‘wng“*)k —y ]t
hikim (wng— Wk~ (g — o, (4.20]
The same procedure once more yields the third order amplitudes:
Ly g lwnEe) Junm Eleoq,]  |umy CEleop
N parm (00 g= wp = 00g = @, fong — wp — 0, oy —wp,
[4.21]

; \
{We W~ We—wWy {
xe‘ sg @p~®¥q~%r

With this derivation of the probability amplitudes we also have obtained the time-dependence of
the wave functions under the influence of the external field, i.e. the response of the medium up
to third order. The susceptibility functions representing this response will now be evaluated.
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4.3 FIRST ORDER SUSCEPTIBILITY

In the preceding paragraph the wave function of the system is determined. In the perturbation
expansion A is set at 1, then W follows through Eq. [4.6] and [4.9]. The expectation value of the
electric dipole moment is given by:

(B =(Wilw) [4.22]

The lowest order contribution to this dipole moment, i.e. the one linear in the field amplitude is
then:

<f_,(1)> :<qJ(0)|I:J|L|J(1)> +<l_|J(1)|I1|L|J(O)> 423]

The wave function in 0-th order is given by [4.8] and in 1-st order by [4.9], after inserting the
first order amplitude, calculated in [4.19]. Substituting these results then yields:

<f_,(1)> :_lzzgjgm|ung DE‘wp:] e_iwpt + |“ng E*E‘wp:]*um}] eiwptg
homH g —p Wy ~ Wp H

[4.24]

This equation involves a summation over all positive and negative field frequencies. Moreover
we have allowed the possibility of complex frequencies (see below). In the second term of
[4.24] the field frequency is replaced by its negative counterpart, which is allowed because all
possible frequency combinations appear in the summations. For negative frequencies [4.40] is
applied. Then it is found:

<|@(1)> :_lzzglgmluma EE‘%:] . |“rrg EE‘wp:]“mg = —ioopt
h’s mH Wy ~ Wp Wy + Wy % [425]

This result can be used for the calculation of the linear susceptibility. The macroscopic
susceptibility is:
(1) = <~(1)> s pW . o pt
P =N{p"/) =3PV |w, &
P [4.26]

where the last part is an expansion of the polarization in Fourier components. Note that the
polarizations as derived above have a vector character. Eq. [4.25] involves a dot product of the
electric dipole moment and the electric field vector and the resulting scalar is then multiplied by
the dipole moment, a vector. If the linear susceptibility is defined as follows:

R =5 x{VE lwp,
, [4.27]
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an expression for the linear susceptibility is found:

i, i
“gn“rrg . Hgmtng L
mg ~Wp  Wny +°)pﬁ

X lwp Z
[4.28]

The second term is called the anti-resonant contribution that is usually negligible. If g denotes
the ground state it can never become resonant. In the figure below the contributions to the linear
susceptibility are represented in a so-called energy diagram.

w
P wp
g - Y__L.om

Fig.: The resonant and anti-resonant contributions to the linear susceptibility

The frequencies formally represent a complex quantity in above expressions. If the
frequencies are written as:

0 rm

w =W -
Mo [4.29]

where ¥ is a real transition frequency and I the population decay rate of the upper level jm>.
This inclusion of damping only accounts for the phenomena that are related to population
effects and not to dephasing processes that are not accompanied by transfer of population. In
other terms: [4.29] only describes T1 processes and not T2 processes (in the language of NMR)

4.4 SECOND ORDER SUSCEPTIBILITY

Now that the wave function W is known up to all orders of N, through the description in
temrs of dynamical amplitudes [4.19-4.21] the higher order polarization terms can be gathered.
Including all terms that contain a second order contribution in the applied electric field the
second order polarization can be written:

(59 =(w O @)+ (W) O) 4 (W) 4301

Inserting the wave function and amplitudes then gives an expression:

AR .
h? pgm (@ng = 0p = 0 Wy — @)
|HngEE(wq,] Hnm[Hng EIE((opJ —I(wp ogl

“*’ng Wy, “*’ng Wp,
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|UngEE‘wq,] [Hn’n EE‘pr Hrrg —|((,o +0.)q)
fong - W, loomy = 0p - ‘*’q

[4.31]
Again by replacing -uy by wy in the second term, which is allowed because the summation over
p and q are independent, the equation may be written as:

HJgnllinmEE‘wq ][Ung EE‘COp ] |Ugn E‘('Oq,]Unm[Hrrg E(wp,]

Al

B lwng —wp =g, “*’ng ‘*’p, 1wng+wq 1wng Wp,

R 1
(p) =550
pgm

|Hgn DE((Uq ”UanE(wp ]Hrrg E - (wpﬂoq)
(wng+wq 1wng +wp+wq‘ E

[4.32]
If now, similar to Eq. [4.26] the second order polarization is defined and written in a Fourier
series expansion:

50 = N(p)) = 3 P2 o, 61O
p

[4.33]
Along the same lines as in [4.27] a second order susceptibility X(2) is defined through:

2 2 Al Al Al
R =3 5 X kop +wq,0p 0q E; looq B feop,
j Kpa) [4.34]
then an expression for this second order nonlinear susceptibility follows in a straightforward
manner:

s Modtnatiny
E‘wng Wp ~ W, “*’ng “’p,

(2)
k(cop+wq,ooq,oopl - D

Mottt TERTiTL E

%k Al A\l * Al %k Al
(0ng + waiwng ~ Wy, foong + wq‘kong +wp+ g, (435]
Here the expression is somewhat simplified by the inclusion of the so-called intrinsic
permutation operator [. Frequencies wy, and y are to be permuted and the contributions
included in the expression for X(2). Cartesian indices i and j have to be permuted with these
fields. Eq. [4.35] is written in this form to ensure that the resulting expression indeed obeys the
condition of intrinsic permutation symmetry. Thus 6 terms appear in the expression for X(2);
with the use of the permutation operator X(2) may be written as a sum of three terms that can

each be expressed as an energy diagram.
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4.5 THIRD ORDER NONLINEAR SUSCEPTIBILITY

The procedure for the derivation of the third order nonlinear susceptibility is exactly similar
to the derivation of the second order, shown above. First the polarization is defined:

<f)(3)> :<qJ(0)||j|l.|J(3)> +<l_|J(1)|I1|L|J(2)> +<l_|J(2)|ﬁ|L|J(1)> +<L|J(3)|ﬁ|\_p(0)>

[4.36]
where terms up to the third order in the field are retained. Evaluation yields:
< (3)> 5 @ Mgy [Hun CE (0o ) [“anE“*’q,”“ng Efwp |
N pgrmv E(w\,g Wy — Wy~ Wp, 1wng Wy~ Wp, 1oong oop i (o.)p+o.)q+(,or ot

|Uvg EE<COr an[“anE‘wq }[Hrrg DE‘pr

10)\,9 Wy 10)”9 Wg ~ Wp, (oong oop

—1 + — \t
xe Hop*wg oy

|Uvg EE((Dr * |an EE‘wq;I * llnml_llng EE‘(JOp;J

‘wvg (VS ‘(Dng wr — (Jl)q ((Dn‘g (L)p‘ Xe_i‘wp_wq_wf]t

lquDE‘er [Unv DE‘wq] [Urm EE‘(,OpJ Ung e—i(wp+wq+wf]tD
(wvg Wy ‘wng Wy — 0y, ‘wng Wy = Wq ~ wp E

[4.37]

Replacing negative frequencies by their positive counterparts and making use of [4.40] yields:

< (3)> 5 E “g\)l.“vnDE(wr Jl_llnmEE‘wq,‘”Urrg EE‘COp;I
n pqrrmva‘wvg W = Wg = 0p, lwng = 0 = 0, Wy — @y,
|Hgv [E(w, IUvn[UanE‘wq J[urrg EE‘pr |Hgv [E(w, I[Uvn EE‘quUnn{Hrrg EE‘pr

(covg+wr (cong Wg ~ Wp, (cong wp (covg+wr (cong+wr+wq (cong wp

JUQV EE‘((,or*]”len EE‘(A)q“][I:nmEE‘wpl]ung - @Xe—i (wp+wg+oy ]t%
Wyg T W (WhgT W + Wy Wy W + Wy + W
(wyg r,‘ ng™ ®r q,‘ mg T T %™ Wp, H U [4.38]

Again defining the macroscopic nonlinear polarization and expanding in Fourier components:

50 = n(p) = P70
[4.39]
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Writing the nonlinear third order polarization as a function of a third order nonlinear
susceptibility x(3):

3
H<( )‘wp"'wq +°°r Z > XkJ i k*’oawr,wq,wq,Ej (wr)E‘wq Eh‘("op

hi {par) [4.40]
giving an expression for x(3):
3 "N
mv
K i . h
x% TN TLARTIMTIASS
H‘wvg — 0y ~ g ~Wp g = 00g ~Wp, Wiy — w0p,
i ki h
Uévuvnulnn“ng

* Al Al ]

leoug + x l6ng = 00g =0, (g ~wp, [4.41]

UngannnUng
(covg + (wng+ W + g (wng Wp,

UgVUannmUng E

U
(covg+wr (cong+wr + g 1wng + wy +wq+wp‘a

where again the intrinsic permutation operator is used. Eq. [4.41] contains 4 terms but if the
complete expression for X® is written by evaluating [, then it actually contains 24 terms.
Eq.[4.41] can also be viewed in terms of energy diagrams as displayed in the figure.

Veg— = - g

Iw wr
r

n-+- - -V
")

m- - - -=-n
i :
P P

g \ Yo m

Fig.: Locations of the resonances of each term in the expression [4.41] for the third-order susceptibility.

I
The contents of this chapter are adapted from ref. °

 R.W. Boyd, Nonlinear Optics, Academic Press 1992
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Chapter 5
Coherent Raman Scattering in Gases

5.1. THIRD ORDER NONLINEAR SUSCEPTIBILITY

In general, when no external fields are applied, the rule of inversion symmetry holds for
gaseous media and thus all even order susceptibility tensors, as proven in Ch. 1, have zero
elements:

X =0 [5.1]
and as a consequence all even orders of the non-linear polarization cancel:
P(Zn) - 0 [52]

Thus the first term of importance, which rules the non-linear optical behavior of gases, is the
one of third order (in SI units):

PY =¢,x®EEE [5.2]

Here X3 is a material property that governs the nonlinear response of a medium and all
nonlinear processes occurring in that medium. It is therefore important to notice some aspects of
X, even before starting a treatment of specific nonlinear processes.

1) A general expression of the third order nonlinear susceptibility was derived in Ch. 4. This
expression consists of different terms, all having a different functional dependence on the input
frequencies, the transition dipole moments describing the interaction matrix element for a single
wave with quantum states of the medium, and the so-called resonance denominators. Perhaps
most important are these resonance denominators that are the origin of resonance enhancement.
Because the third order nonlinear processes are generally weak the resonance processes are
usually dominant.

2) x(3) is a fourth rank tensor; so in the most general sense it contains 81 independent elements
written as X(3)y'k1; for the specific case of an isotropic medium there are only 3 independent
elements. In cases where all incident electric field vectors are chosen linear and parallel x(3)
may be considered as a scalar function.

3) The generation of light by nonlinear optical processes is fully governed by the third order
nonlinear susceptibility X(3). Of course this holds in the approximation that the higher order
contributions, like the ones proportional to X(5), may be neglected. Furthermore the linear
processes, governed by X(1), such as diffraction and absorption will play an important role in the
propagation of input waves and the newly generated waves.

A distinction may be made between two ways in which the nonlinear susceptibility x(3) may be
involved in the generation or amplification of waves. These are discussed in 5.1.1 and 5.1.2.
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5.1.1 NON-LINEAR GAIN PROCESSES

Processes in which there occurs a direct coupling of waves, where one of the waves already
present at the input is amplified with a certain gain factor. An example is the production of
stimulated Stokes (Raman) radiation, where it is not even necessary that a strong light beam is
present at the input; a source of Stokes noise-photons (always present of course) will do.
Characteristic for these types of processes is that the intensity of the nonlinearly generated (or
amplified) light beam is dependent on Imx(3). In case this ImX(3/ is negative, there is effective
gain in the medium. These processes will be called nonlinear gain processes.

5.1.2 FOUR WAVE-MIXING PROCESSES

b) Processes in which input waves of three different frequencies (in degenerate cases: only two
or even one) effectively mix to generate a new wave at a different frequency. In that case the
description is as follows. A polarization is generated at a new frequency :

P¥ =g, xVE E,E, [5.4]

Inserting this polarization as a source terms into Maxwell's Wave Equation yields that a new
wave at a certain modulation frequency is generated, proportional to this PVL:

E, OPY [5.5]

And we find that the intensity of this wave is proportional to:
™ =g, o™ olx®) [5.6]

These types of processes, that depend on the absolute square of the non-linear susceptibility are
called Four-Wave-Mixing processes.

5.2 SPONTANEOUS RAMAN SCATTERING

Raman scattering is a two-photon linear inelastic light scattering process. The elastic
counterpart is the well-known Rayleigh scattering process. In spontaneous Raman scattering the
light is emitted in random directions (although for polarized light there may be preferred
directions, depending also on the molecular mode). In Raman scattering an incoming photon
with energy A, is scattered by a molecule to an outgoing photon with energy Acw,, which is
different from 4w, . In principle the incident frequency is not resonant with the medium. The
difference in energy is absorbed or released by internal modes in the molecule, such as
vibrational or rotational modes. The process in which energy is absorbed (red shifted photon
produced) is called a Stokes process, whereas it is called Anti-Stokes in case of energy release
(blue shifted photon produced).

For Raman processes in molecules specific selection rules are observed. First of all the parity
of initial state and final state is the same, such as is always the case in a two-photon process. In
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polyatomic molecules therefore only specific vibrational modes can be excited, that conserve
the symmetry. In diatomic molecules there is no restriction on symmetry, as there is only a
single symmetric vibration. Usually only modes Av=1 are excited, although extremely weak
overtone modes have been observed in spontaneous Raman scattering. For rotations the
selection rules AJ=-2, AJ=0 and AJ=+2 apply. Purely rotational (then the AJ=0 transitions form

the Rayleigh peak) and rovibrational excitations are possible. Below a [schenmatic emergy

diagram is displayed for a purely rotational Raman spectrum, taken from ref {}
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5.3 STIMULATED RAMAN SCATTERING

In spontaneous Raman scattering all Raman modes are excited at the same time and all
frequencies are generated simultaneously. In stimulated Raman scattering one of these new
fields is enhanced, similar as a particular mode in a laser is amplified. As a result a directional
beam with high coherence is produced, with great similarities to a laser beam.

We go back to the Maxwell Wave equation that was derived in the general section on non-
linear optics and we assume that the medium is nonconductive (0=0) and non-magnetic (P=1):

0°E, —c.&,1 iE = U iPNL [5.7]
i r=0 Oatz i Oatz i .

It is important to realize that this equation holds for a specific frequency w, and in fact it should
be considered for each frequency component of a Fourier decomposition of the frequency
dependence of the waves; the index i1 refers to a specific frequency component. For each
combination of three frequencies that add up to w there is a corresponding term in the non-
linear polarization. In fact the nonlinear polarization PNL couples the waves of different
frequencies, in this case the pump wave and the Stokes wave. The resonant terms (where two
frequencies match with the Raman shift of the medium) are large, so all combinations of
frequencies at resonance will be considered. Some simplifying approximations will be made
now in order to find physical solutions:

a) one dimensional plane waves, for input and generated frequencies

1 G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand 1950
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b) the concept of different orientations of the polarization vector is dropped
¢) the slowly varying amplitude approximation is assumed again

d) the intensity of the pump is considered constant (no pump depletion)

e) the stationary limit or the steady state approximation

One of the frequency components will be written as:
E(r,z,w)=A(r, )™ [5.8]
where K points in the direction of propagation of the wave (the wave vector). We then find:
0°E = |0*A +2i(k M)A - KA Je ™) [5.9]

The energy transfer among waves is usually insignificant over distances of the order of their
wavelengths and therefore we expect the variation of the amplitude to be small over one
wavelength (slowly varying amplitude approximation):

|D2A| <<|(k m)A| [5.10]

For the time derivative we find:

0° 02 0 O e
Z E=r—A+2iw—A - w*Are ko) 5.11
or’ %tz ey %F B-11]

And we assume that the variation of the amplitude in time is slow compared to the frequency w:

<< w‘i A‘ [5.12]
ot
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The non-linear polarization PNL is a perturbation in the wave equation and it is a small quantity
compared to &-£gE, so not only the second but also the first time derivative of its amplitude can
be ignored and only the term -a?PNL is retained.

Now we turn to the approximation of the stationary limit. On some typical timescale the
stimulated Raman scattering process may be considered as a stationary process, even though the
physical process is induced with pulsed lasers. The typical time scale is related to the relaxation
time of the excitation, and this is again related to the characteristic linewidth for stimulated
Raman scattering. For hydrogen these numbers are Aw=0.01 cm-! and Tr=1.7 ns; verify that
these numbers are related through the Fourier transform. So for pulsed lasers with time
durations of 5 ns the steady state limit is still valid. So we neglect the term with 2iwo/ot A.
Furthermore for & we take the imaginary part £”,. Thus we obtain the coupled amplitude
equation for stimulated Raman scattering;

2i(k M)A +ig," £, U, w* A = — 1 PV e k) [5.13]

For wave propagation in one direction along a z-axis this reduces to:

58



diAS(r)mAS(r): iBRY (¢ Jetese-en) [5.14]

r

and with n1s the index of refraction at frequency w:

" 2
= M and B = w [5.15]
2k 2¢g,n,,c

5.4 FIRST STOKES GENERATION

It is necessary for a description to restrict the couplings to a few waves only. Consider the
case where only the laser frequency and the so-called first Stokes are important. Assume the
laser beam of constant intensity and propagating along the z-axis. Only Eq. [5.14] for the Stokes
intensity remains to be solved. The growth of the Stokes beam depends on the attenuation
constant 0 and the imaginary part of the nonlinear polarization. This nonlinear polarization
consists of two terms:

kp—kp )zeikSl me_f(wp_wp+w31 )

£0X1(3)(O)51;0)P,—0)P, Wy, ]AP|2 ASle[(

£0X§3)(w51;w519_wS19wSlXASI| ASle (ks k31+k51)me (ARETAREYA [516]

where |A » ? and |A s1|2 are the intensities of pump and first Stokes respectively. X; is resonant
at wsj-wp, while in X» no combination of frequencies is in resonance. X> is real and only
modifies the refractive index. These nonlinear polarizations are inserted in the coupled equation
[5.14] and then the phase factors all cancel giving:

d .
EAS(r)+ aA(r)= zsoﬁ[xl(3)|AP|2AS +)(2(3)|AS|2AS] [5.17]

The solution to this equation depends on the input intensity at cs;:

A ()= A (0)e Forart mxsel el rextextia [5.18]

The real part of X; and x> only modify the refractive index, so a phase shift is introduced. A
new wave at the Stokes frequency is built up if there is somehow some initial amplitude at the
Stokes frequency and if the first exponential has a positive value. Then the imaginary part of x;
must be negative. Then a gain coefficient for stimulated Raman scattering may be defined as:

g=-¢,BA, mx [5.19]

Of course the gain g must also be larger than the losses 0, similar to the condition in a laser.

A very important point for the occurrence of Stimulated Raman scattering is the requirement
that the imaginary part of the relevant term in x(3) is negative. In the figure the nonlinear Raman
susceptibilities are displayed:
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Note that at the Anti-stokes frequency the imaginary part of the x(3)-term, which is negative for
Stokes generation, is positive for Anti-Stokes generation. Therefore the term:

X(3)(_ W 515 Wp =Wy, wASl) [5.20]

cannot give rise to the generation of an Anti-Stokes beam in a similar way as it generates a
Stokes beam. Stimulated Anti-Stokes can be produced through other nonlinear coupling
mechanisms, for example through the term:

X(3)(_ wASl;wP;wPa_wm) [5.21]

Via this and also other terms stimulated Anti-Stokes beams can be efficiently generated. Note
however that in these processes phase-matching plays a role.

Verify that all exponentials containing frequencies have cancelled because of conservation of
energy. Because the exponentials with the wave vectors have cancelled as well in the derivation
there is in principal no preferential (or phase-matched) directionality for amplification of the
first Stokes beam. But of course it will be amplified in the volume of the laser beam. The profile
of the generated radiation will therefore resemble the profile of the incident pump beam. This
process of First Stokes generation is a non-phase-matched or a non-parametric nonlinear
optical process.

Rather high conversion efficiencies can be obtained for first Stokes generation. As soon as
S1 reaches high enough intensities it can act as a pump source to produce S2 radiation and so
on. In this way higher order Stokes beams resembling the spatial profile of the pump beam can
be generated. These higher order Stokes-shifted frequencies correspond to:

WSy = WSy - "WRaman [5.22]

where Wraman 18 the material excitation frequency of the medium. It should be noted that on the
microscopic scale in higher order Stokes shifting different molecules are transferred into the
first vibrationally excited state, and that vibrational overtones are not excited (i.e. excitation into
v=2 or v=3). If this were the case anharmonicity shifts for the higher order Stokes frequencies
would necessarily result, and these are not observed.

The figure below shows the efficiency curves for the production of the first, second and third
Stokes frequencies of an input laser beam with characteristics: 20 mJ in 5 ns at A=266 nm
focused with =50 cm. The horizontal axis shows the pressure (in atm) of H2 in the Raman cell.
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Note that at high pressures (6 Bar) the intensity of the first and even the second Stokes beam are
higher than that of the fundamental input beam.
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5.5. RAMAN SHIFTING IN HYDROGEN

In the above we have learned that the frequency of a pump laser may be efficiently Raman
shifted towards the red (Stokes generation) or to the blue (Anti-Stokes generation). With the
help of this technique wavelength regions, which are not easily accessible for tunable dye lasers
may come into reach. We recall some important properties of H2 as a Raman shifting medium:

- large Raman shift (4155.26 cm!), the largest of all molecules

- nearly all molecules in a single quantum state [v=0, J=1>

- a small relaxation width [=0.01 cm-!, so shifted frequencies of narrow bandwidth are
produced.

These properties make that H)-gas, available at high pressures against low costs, is ultimately
suitable as a Raman shifting medium. Starting out from a Nd-YAG pumped dye laser (with
DCM-dye) the following regions can be covered using Stokes shifting:

pump 615 - 660 nm
1st Stokes 826 - 909 nm
2nd Stokes 1258 - 1461 nm
3rd Stokes 2635 -3722 nm

Use of other dyes may cover the ranges in between. Anti-Stokes Raman shifting has been
employed to generate radiation in the vacuum ultraviolet, though at low powers. Starting out
from a XeCl-excimer laser pumping a DMQ-dye up to the 12th Anti-Stokes are observed with a
(tunable) wavelength down to 129 nm.
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5.6 COHERENT ANTI-STOKES RAMAN SPECTROSCOPY (CARS)

CARS is a Four-wave mixing process in which a new frequency tps=20;-0y is generated. In
the language of Raman spectroscopy this frequency is called the Anti-Stokes frequency, if there
is a Raman resonance at w;-0y. The nonlinear polarization may be written as:

Pcars(@s) = XN (was=2w1-0n) E(wp)E(w))E(n)* [5.23]

The generated intensity in a medium with length L is then:
2 . MKLO
Leaps DX Pw,s ) If]zslncaz—a [5.24]

The last factor in the equation determines the necessary conditions of phase matching, similar to
the example of second harmonic generation or the OPO. However, if CARS is performed in a
dilute gaseous medium there is almost no dispersion, so the value of the phase mismatch:

Ak = kas - (2k1 -k2)

is small and nearly negligible even in the case of a co-linear beam geometry. In general the
phase matching condition can also be fulfilled in non-co-linear geometries. In such a case a
wave vector diagram may be constructed. From the direction and magnitude of the incoming
wave vectors K and K» the direction of the generated wave vector:
Kas = 2K1 -k2

may be calculated. Also three dimensional phase matching diagrams may be applied. The
technique of "BOXCARS" takes advantage of this: a beam is generated in a direction, where
there is no input beam. The name originates in the box-like structure of the wave vector
diagram.

""H. Wallmeier and H. Zacharias, Appl. Phys. B45 (1988) 263
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CARS is generally applied for the detection of molecular species, so the quantum structure of
molecules needs to be considered in the evaluation of the nonlinear susceptibility x(3). In most
relevant molecules there are no electronic transitions from the occupied ground states involving
visible photons that are used in a CARS experiment. In a CARS energy level diagram:

[

O =20. 0
0)(0 A821 2

the quantum states at the one-photon electronic level are therefore represented by "virtual
states". For CARS the different vibrational and rotational levels in molecules are important. In
the sequence of the four photon interactions appearing in the non-linear susceptibility, states |1>
and |3> are the virtual electronic states, denoted by [i>, whereas level [2> is a rovibrational state
of the molecule, with the same electronic character. The expression for x(3) reduces to:

I’l il‘l[vuw’l‘l[
X(3) = ZNpgg ( & g [525]

W * wio)(w1 W, W, _irvo)(c“)i wz‘o)

where the +-signs refer to the fact that different terms will appear in the expression with
different combinations of signs.

In the Born-Oppenheimer approximation the transition moments, such as [, may be
written in a product of independent electronic, vibrational and rotational parts. The electronic
and vibrational parts then take the place of the Raman cross-section. Thus:

do 0
XS O ToB [5.26]

Note that this implies that the CARS-signal is proportional to the square of the Raman cross
section. Note also that in CARS signals are proportional to the density squared (N?), in contrast
to most spectroscopic techniques.
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Similar to the spontaneous Raman effect, where only the vibrational transitions of Av=1
occur, this holds also, and for the same reason in the coherent Raman effect, CARS. This
implies also that the rotational selection rules will be the same for CARS as for spontaneous
Raman scattering. For simple diatomic molecules such as Nj, Hp, and CO AJ= -2, 0, 2
rotational transitions are possible, denoted by O, Q and S-branches. Generally the equation for
the CARS-susceptibility is then written as:

NJSJJ
(wl —W, ~w, _irvo

X9 0 )+ X [5.27]

where NJ represents the population of a particular rotational state, Sjj’ is the rotational
linestrength factors (Placzek-Teller coefficients) and the summation is over all populated states
with quantum number J. Xyz is generally added for the contribution the to CARS signal of the
non-resonant terms in the non-linear susceptibility.
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The resulting equation for the nonlinear susceptibility has important consequences for the
CARS-spectrum. A spectral resonance is found whenever the denominator approaches a zero-
value. This happens for:

W —wW, =W, [5.28]

A spectral line is found if the difference in energy (in fact frequency) of the two incoming
waves equals a Raman resonance in the molecule; an important condition is that the transition
w, 1s Raman-allowed, i.e. fulfills the Raman selection rules. Because in the expression there is
a summation over all initially populated rotational levels with quantum numbers J in the
spectrum, and because of the appearance of 3 branches (O,Q and P) the spectrum will consist of
3 times J lines. These lines are centered at a Raman shift of w,g. ',y represents a damping
factor that is related to the time scale of relaxation of the vibrational excitation in the molecule;
ultimately this damping factor will determine the linewidth to be observed in the spectrum. An
example of a vibrational CARS-spectrum is given above.
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Apart from the above described vibrational CARS processes, where a rotational structure is
superimposed on the vibrational transition, also a purely rotational CARS spectrum may be
observed. The energy difference wy( of a vibrational excitation is then to be replaced by the
much smaller energy difference of a rotational excitation wyy. In rotational CARS the quantum
states J' probed by the energy difference wsi-wy may be populated initially. Therefore the
expression for the susceptibility has to be replaced by:

(NJ ~ NJ')SJJ'

()
x ;
(wl W, ~w;, ~ lrJJ')

*+ Xar [5.29]

Examples of purely rotational CARS spectra for Ny, O and CO molecules are shown below.
Note that the full spectrum covers less than 200 cm-!; moreover the lowest J lines are shifted
from the so-called pump-frequency wyby only 20 cm-l. For visible wavelengths of the
commonly used Nd-YAG laser at 532 nm this corresponds to a shift of only 0.5 nm; in order to
retrieve the CARS-signal from the background stray-light from the pump-laser BOXCARS
configurations are helpful.

3 k] 0 19 s

" a 2 N b
H " 1 ? } 1 ? 3 ¢ Lag
20 56 10 1.0 180 20 80 0w 40 180 20 80 100 MO 180
w-wy Jem W -u fem® w - fem

Fig.: Rotational CARS spectra of N,, O, and CO recorded in the BOXCARS configuration, from ref. '

The population factors N; and Ny are dependent of the temperature. In thermodynamic
equilibrium these are equal to:

N, O(@J+ 1)expg—wg 5.30]
O kT 0O

where B, is the rotational constant of the probed molecule and &z the Boltzmann constant. In
the expression for the nonlinear susceptibility the rotational line-strengths S 7’ can be calculated
and the expressions for Ny and N substituted. The observed line intensities of a spectrum may
then be fitted to a temperature. As such this procedure is a non-intrusive temperature probe for a
medium. An example of temperature dependent CARS spectra is shown below.

12 B. Dick and A. Gierulski, Applied Physics B40, 1 (1986)
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Chapter 6
The production of vacuum ultraviolet radiation by FWM

6.1. THIRD HARMONIC GENERATION

A theoretical analysis of third harmonic generation (THG) was fi \Y v
Bloembergen, Ducuing and Pershan in thelr semmal paper in 1962[.—E—)epefi-meﬂ-ts—i-ﬂ—'rse&epie—
crystals (note that third harmonj g IVersion symmetry) we
then performed by Maker et al. I G-reaseotstedia—wa st-reported 7 Ward and Ne
Although metal atom 0 third order nonlinear susceptibilities by
the group of Sorokinﬁ e i itable for use in the vacuum ultraviolet for
reasons of transparency.

Starting equations for describing THG are again the coupled wave equations derived from
Maxwell theory:

‘|

d 27T (q a))
YE £i\9wj
dz ck

q

P [6.1]

where E_  and PqNL are the Fourier components of the electric field and the nonlinear
polarization at the frequency gw. [6.1] represents two coupled equations with g=1,3. The
electric field is defined as:

E, =&, (z.1)explik, 2] [6.2]

and the nonlinear polarization can be written as:
N
P = bx o) EE, + XG0 JES + X (3w E ] [6.3]

where the term with )(p is responsible for the actual THG and the other terms give rise to
intensity dependent index of refraction. Also a similar equation for Pcambe writem, that
couples the fields E, and E, nonlinearly to a polarization at frequency w [

Before proceeding with theory it should be realized that THG depends on:
- phase matching, in combination with focused beams giving rise to the Gouy phase
- the nonlinear susceptibility involving transition dipole moments of the atoms
- the occurrence of resonances in the atomic level structure, also related to )(

BJA. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, Phys. Rev. 127, 1918 (1962).

4pD. Maker, R.W. Terhune, and C.M. Savage, Proceedings of the Third International Conference on Quantum
Electronics, Paris, 1963 (Columbia University Press 1964, p. 1559).

'S G.H.C. New and J.F. Ward, Phys. Rev. Lett. 19, 556 (1967); J.F. Ward and G.H.C. New, Phys. Rev. 185, 57
(1969)

' R.T. Hodgson, P.P. Sorokin, and J.J. Wynne, Phys. Rev. Lett. 32, 343 (1974).

" H.B. Puell and C.R. Vidal, IEEE J. Quant. Electr. 14, 364 (1978).
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6.2. PHASE MATCHING UNDER FOCUSING CONDITIONS

In this paragraph, which is based on ref |f{—a—ecomparison—is—made—between—three—four-wave

mixing processes:

wtw+tw, - W, I
wtw W, - W, I [6.4]
W -W W, - W, I

The fundamental electric field is written as:
E(r , t) = Re[E1 (r )exp(— ia)lt) +E, (r )exp(— ia)zt) +E; (r )exp(— ia)3t)] [6.5]

The fundamental beams at w,, w, and w, are lowest order Gaussian and propagate along the z-
axis:

1 Ok (e +y2)0
E (r)=E ,(r)exp(ik z) ex ! 6.6
n() nO() p( n /l+if p% b(l+if) E [6.6]
with the confocal parameter defined as in [1.64]:
2 2
b= 21w, _ 2mwyn _ 2A, = Jow? 6.7]

) A, n®

Here w, is the beam waist radius, # the index of refraction, A, the vacuum wavelength, and 6
the far-field diffraction half angle. & is a normalized coordinate along z, defined as:

_2(z-f)
g=2 -

[6.8]

where fis the position of the focus (beam waist) along the z-axis.

In the analysis the fundamental and generated beams are considered as linearly polarized (all
along the same axis), so the vector nature of the fields and the tensor nature of the nonlinear
susceptibility may be dropped. The polarization at the generated frequency w, can be written as:

P,(r.) = Re[P,(r )exp(- icw,z)] [6.9]
with:

N

_~

p
1

Nx (- w300, 0,0, )E, (1 )E, ()E, ()
Nx (- w0, 0,,~w, )E, ()E, (r )ES(r) [6.10]

NX(_ w,; w,,~wW,,~w;, )E1 (r )Ezm(r )EE(I’)

o0 [
—_~ =
N N
1 1
N N|w N |w

'® G.C. Bjorklund, IEEE J. Quant. Electr. 11, 287 (1975)
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with X the nonlinear susceptibility per atom and N the number density of atoms in the nonlinear
medium. When two or three of the input frequencies are degenerate, the factor of 3/2 must be
changed to % or 4).

Now the polarization at w, for process I becomes:

3 -k
P4(r)=EN)((—w4;w1,w2,w3)E10E20E30exp(ik'z) pE x +y % [6.11]

(1+i&) b(1+i€) H

with k' the wave vector for the generated field in process I, which is set equal to £" for future
use:

K=k +k, +k =k" [6.12]

The factor B(z) defined as B(z)=0 for z < 0 and B(z)=1 for z > 0 signifies that the space at z <0 is
vacuum, while the nonlinear medium exists at z>0.
For the process II one finds similarly:

3 o 1
P, (r ) = ENX(_ W, ; W, W, ,—w; )E10E20E30 eXp(lk Z) (1 + if)z (1 _ ZE)
exp E(_ k"+’fk X+ Eﬁ [6.13]
o bli+&) n
where k"is as before and &' is defined as kK'=k, +k, —k;:
Similarly for process III:
3 i 1
P, (I’ ) = ENX(_ W, W,,~wW,,~w; )E10E20E30 exp(lk Z) ( N if)(l _ Z.E)z
(- k" +iék)x
6.14
L 48) EB [6.14]

with k'=k, -k, -k,
The next step is to perform a Fourier decomposition of P, (r) to determine the amplitudes of the

plane wave components of the driving polarization. The amplitude with wave vector K is
defined by:

P,(K)=(n)’ }dx"}dy"}dz"a (r")exp[-iK "] [6.15]

This frequency component can be inserted in Maxwell’s equation:
OxOxE (1) =k B,y (r) = 478 P, (K Jexp[iK (2] [6.16]

where k, and k, are the wave vectors of the generated radiation in the medium and in vacuum
respectively. It was shown that this equation can be solved under certain realistic conditions and
with the wave vector mismatch:
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Ak =k, — k' [6.17]

yielding for process I;

E (r)—l%rk bX( w4;wl’a)2’a)3)E10E20E30 eXP(ik'Z)(l _'_llf)
EA (x +y )D‘( exp[— (lb/2) (f"f)] '
ex PH b(1 +i&) Bl; (1+:&) “ -

with the integration boundary definedas { =2 f/b.
For processes II a slightly different expression results:

3N
E (I’)—l—]'k bX( 0)4;01)1,01)2,—&)3)E10E20E30 eXp(ik'Z)

2k,
¢ expl- zb/Z)Ak(E E)] (x> + y o
6.29
[ tvieYo-wew g 1629
with the function H defined as:
- nge)= 1t ) [6.30]
’ (k"‘ik'f') k'

For process III a similar expression can be retained.

The equations [6.28] and [6.29] are important results for harmonic conversion in a medium
contained in a cell of length L with the entrance window at z = 0, the focus at z = f and
parameters & = 2(L -f )/ b and { =2f/b. The expressions give the generated field at the
position z = L. i.e. at the ‘end’ of the cell.

General conclusions can be drawn from these expressions.

1) If £'=k" then the generated beam has a lowest order Gaussian mode. Inspection of the
equations reveals that this holds for process I, but not for the processes Il and III. The
sum- and difference frequency mixing yield higher order transverse modes, even if the
fundamentals are lowest order Gaussian. The mismatch may be represented by the ratio:
K"/ k'.

2) In all processes E, (r) is circularly symmetric around the z-axis. The total generated
power at w, 1s obtained by performing integrals (transverse in space) of the form:

[2rRIE,RYdR  with  R=yx'+y’ and  z=L [6.31]
0

Then dimensionless functions can be defined of the form:
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H 8 k k' 1
4
O 9 a k b’ 2|E10E20E30

k"
T Ian|E (R) dr [6.32]

where j refers to the specific process (I, II, III). The integrated intensity depends on
dimensionless parameters bAk , b/L, f/L and k”/k’.

It can be shown that with all wave vectors expressed in units of cm™, b in cm, N in atoms/cm?,
in ESU/atom and the powers P in Watts then the total generated power P, is expresses as:

I NI N b f k"
P, =n—0—1"273 N2 ZPPPF N, — 6.33
LN N Eb St k,@ [6.33]

The efficiency factor is n = 6.318 x 10* for three different beams, n = 1.580 x 10* for two
degenerate beams and n = 1.755 x 10~ for three degenerate beams (so for THG).

For process I the phase-matching integral Fj is:

¢
FIH)Ak,é,i,k— J‘exp[ lb/z)AkE] [634]
0 L' L kO |4

1+l€

In the so-called tight-focusing limit, where b is short compared to the cell (b<<L), the entire
focal region is contained within the cell (¢ — o and { — o), and the focus put half-way into
the cell (f/L = 0.5) the integral can be solved in closed form:

2 2 (bnk/2) M <0
F,(b0k,0,0.51)="" (baky et [6.34]
0 Dk 20

For the other two processes expressions can be found by integration if the deviation from a
Gaussian is neglected (so £'= k" is set):

F, (k,0,0.5,1) = e ) [6.35]

Ak <0

Fy (bAkaOaO'S’l) = P (bAk)ze(bAk/Z) for Ae>0

[6.36]

This leads us to another important general conclusion (holding for the case of tight focusing):
THG is only possible for the condition Ak <0, so for the condition of negative phase mismatch.
Process II is possible for all signs in the phase mismatch, while process III is only possible for
Ak =20.
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6.3 NUMERICAL APPROACH TO THE PHASE MATCHING INTEGRALS

In this section the functions Fj will be inspected in case of non-exact tight-focusing conditions.

For this purpose the integrals contained in Fj can be evaluated numerically. The first example is
that of F; for b/L = small shown in the figure:

F, (bak,0.1,05,1.0)

F, (bak,0, 05,1.0)

L ) I | PR S I . A}
-i2 -i0 -8 -6 -4 -2 [o] 2 [ [
bak —

Fig: F;versus bAk for b/L < 0.1and f/L=0.5

And for processes II and III:

fF,(bAK,0,05, 10)

Fy(bAK,0, 085,10}

Fy (bOk,01,05,10)
F(b2K,01,05.10) s ! Fy(bAK,04,05,11)

F, (bBK,0.,05, 1.1

Fy(bAk, 01,05, 1.5)
F, (bAk,01, 05, L5)

F, {bAk, 04,0.5. 2.0} F,(bAk, 01, 0.5, 20}
2 , 04,05,

F, (b&k,01,05,30) £, (bAK,04,05,3.0)

) A . S L
a2 o 2 4 6 8 o1 ol—t——1
’ bAk —o bAK —+

Fig: Fy; (left) and Fyy (right) versus bAk for b/L < 0.1and f7L=0.5 and varying values for k”/k’

These figures show that slight variations of the exact tight-focusing condition (b/L is small)
does not affect the outcome of the integrals. The effect of deviation from Gaussian profiles in
the generated beam is more profound as is shown in the lower figures for £”/k’ up to 3. The
decrease in generated power reflects the lack of overlap of the beams of differing transverse
profiles.

For process II the optimum conversion is at Ak=0, while for processes I and III this optimum is

at a nonzero value of bAk, for process I at negative phase mismatch and for process III at
positive phase mismatch.

Opposite to the case of tight-focusing igthatof the plane-wave timirThis 15 the condition g
which b/L >> 0. Then the result is found|¥:

—t

' R.B. Miles and S.E. Harris, IEEE J. Quant. Electr. 9, 470 (1973).
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lim F, B’;Ak 5, K H— AL ncz%g [6.37]

b/L -
The value of k£”/k’ does not influence the values of Fj in the plane wave limit. The evolution of

the integral F; when proceeding from the tight-focusing to the plane-wave limit with
intermediate cases can be evaluated numerically as shown in the figure:

F, (bak,0, 05, 1.0)

F (bak 03,085,100~ A F, (bak, 0, 05, L0)
: N F, (bak,i ,05,10) PER RS
5+ / \\ sk x2
Fi (0ak,05.05,100~ 7% F,(bak, 2 ,05,10)
4l /]| ek 075,05, 10 al ‘5
3} A Ribak10,05,10) ,| ek 3,05000~, .
2 i N 2 e
/ N / A
s /,/:’ o — F, (bak,20,05,10) ik S ‘\ \
- 4 By VL
a 1 1 l \Y 1\ YIRS . i Ry \ e R o
o -8 -6 -4 -2 0 2 4 6 B 0 4 30 =2 40 0 10 20 30 4
bak — bak —»

Fig: F;versus bAk for f/L=0.5 and various b/L (left b/L = 0 — 2.0, right b/L =0 — 3);
Note the varying vertical scale on the right.

This shows that at /L = 3 the peak has shifted already toward Ak = 0. Note also that the peak of
the integral has decreased by an order of magnitude in the plane-wave limit. This results in
another important conclusion of the algebra: tight focusing is more efficient in generating
harmonics.

Now also the effect of positioning the focus in the cell can be studied by evaluating the phase-
matching integrals. First for the near tight-focusing condition /L = 0.1 the focal position is
shifted from f/L = 0.5 to 1.5; results are shown in the figure:

F. (bak 01,075,10) F, (bak,0., 05, 10}
5 /
F,(bak,04,085,101~/
i \ F(bAkOI|5IO)
4t / \/_
\ l
F,(bak,01,10,10) l
ok l
: \
1+ B
r~ 'v‘rg
Il I 1 e 3 J

] R T Y O
-0 -8 -6 -4 -2 4] 2 4 6 8 10
bak —»

Fig: F; VCFSUS bAk for b/L=0.1"and i/éfiouéjf/i 0.5t0 1.5)

It shows that as long as the focus is contained in the cell no serious changes occur; only when
the focus shifts outside the cell region the intensity reduces drastically. In fact, when f/L = 1.5
the focus is outside the cell and the condition is like in the plane-wave limit.

A similar evaluation can be performed for the true plane-wave limit, when b/L = 10. The
values for the integral remains relatively unchanged as long as the cell is located close to the
beam waist location. For f/L = 20 the focus is twice the distance of the confocal parameter b/L =
10.
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Fig: Fyversus bAk for b/L=10 and various f/L 0.5 to 20)

Similar calculations can be performed in the intermediate cases for the integrals F; and Fy;. In
these cases the effect of non-overlapping spatial beams plays a role, an effect of k"/k'#1. By
numerically evaluating the field distribution |E . (R]2 as a function of the transverse coordinate
R, and then for each value of bAk this phenomenon can be investigated. A typical evolution of
this far-field pattern is shown for process Il with £"/k’ =3.

TRAMSVERSE RADIAL POSITION (ARBITRARY UNITS}

Fig: Far-field intensity distribution versus bAk for f/L=0.5, b/L =0.1 and k"/k’=3.0

Note that for small values of bAk a nearly Gaussian transverse beam profile is found and that for
high values of bAk a ring-like structure is obtained.

6.4 PHYSICAL INTERPRETATION OF PHASE MATCHING INTEGRALS

It is found that the amplitude of the driving polarization strongly peaks in the region of the
fundamental beam waists. This is very well understandable: harmonic conversion occurs at the
focus where the intensity is high. In the case of tight-focusing the boundaries of the generating
region are located at £ = -2 and é =2 (or z = f-b and z = f+b). In the case of loose focusing
the boundaries are located at the input and output windows. From the definition of the Gaussian
beam [6.6] it can be seen:

1 — 1 —iarctan& 6 38
1+ié \/(1+fz)e [6.38]
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that a focused lowest order Gaussian beam undergoes a shift in phase by arctané as it
propagates through the waist region (the Gouy phase). The driving polarization then experiences
phase shifts of: 3arctané for process I, arctané for process I, and -arctané for process II1.

It is assumed that the optimum conversion efficiency occurs when the generated radiation is
in phase with the driving field. The generated beam may be considered to experience a phase
shift of arctané . Thus a slip of phase between the driving polarization and the generated region
occurs of 2arctané for process I, -2arctané for process III, while process Il remains in phase.
The slip in phases causes destructive interference in different portions of the generating region.

These phase slips are compensated to some degree by the dispersion effects in the medium,
i.e. the wave vector mismatch Ak. The optimum value of Ak, Ak, is the value at which
cancellation occurs. For the case of tight focusing this is at;

~22/b I
Dk, O 0 for 1l [6.39]
22/b I

For the analysis in the plane wave limit the factors 2.2 are to be replaced by 4.

6.5 OPTIMIZING DENSITY IN THE NONLINEAR MEDIUM

It was derived that the total power generated obeys the proportionality relation:

P, DPPPNZ)(FE)Aki { ]]‘{H [6.40]

The parameters P,, P,, P;, ¥ and k”/k’ are considered to be constant and thus an optimization
procedure aims at maximizing the quantity N 2F ; by varying the parameters N, bAk, b/L and f/L.

When N is a parameter independent of the other ones the density may be increase for
optimization. Then the parameter bAk should be set at Ak,,, as defined in [6.39]. The value for
bAk may be altered by changing b or Ak. But in the tight focusing approximation b/L should
remain within 0.1, so the focal condition cannot be varied at will. In order to make Ak a
parameter independent of N, another medium with a specific dispersion can be mixed.

When N is a parameter dependent on hAk optimization can proceed differently. One important
case is when Ak is constrained proportional to N, b is constrained to be constant and N is a free

parameter. Then the quantity Ak*F i (bAk,b/ L,f/LKk"/ k') should be optimized; this quantity
is not dimensionless and depends on b. Hence a dimensionless quantity is defined:

G, EbAk b f K H_ (baky F, EbAk LA EH [6.41]

and the quantity to be optimized is (1/b) G ; (bOk,b/ L, f / L,k"/ k). The function G; is plotted
below as a function of bAk for certain f/L parameters:
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sor 6,(bak ,01,075,10)—, | G(bak01,085,10]
6(62k,01,05,10)

40

30

201

bak —e

Fig: Gy versus bAk, b/L =0.1(tight focus) and f7L=0.5, 0.75 and 0.85

So for tight focusing the specific value of f (focal position) does not matter, as long as the entire
waist is contained in the cell.

Since N is the only free parameter, the optimization procedure is to adjust bDAk to maximize G;
by adjusting N. Let (bAk)op[ the value of bAk which corresponds to the peak of G;. Define the
constant of proportionality:

Ak =aN [6.42]

Then the optimization procedure reduces to adjusting N to the value N, = (bAk)opt /ab . The
total generated power is then:

4 *PP,P.G.
P, =1 koz;’;;@ X g [6.43]
4

where the factor 1 is defined above G; is at the peak of the function as displayed e.g. in the
figures above (G)) or below (Gp):

—G,(bak, 0. 05, 1.0)

~ G,{bAKk, O4,05,1.0)

_~—G,(bAk, 01,05, 15)

" —G,(bAK. 04,05, 30)
rd

bAk —

Fig: G versus bAk, b/L =0.1(tight focus), f/L=0.5and k"/k’=1.0, 1.5, 3.0.

Again it may be noted that o must be negative for process I and that for process Il a may both
have positive and negative values.
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6.6 DISPERSION CHARACTERISTICS OF THE NOBLE GASES

In the above the phase matching properties for the tight-focusing and the plane-wave limit were
derived, as well as numerical procedures for intermediate cases. The generated third harmonic
power produced by a beam at the center of a cell of length L can be expressed as:

Prio 3;')4 VO B, BaAk 0515 [6.44]

with n=8.215 x 102, P in Watts, )((3) in esu, A (wavelength of generated beam) in cm.
In the tight focusing limit (b<<L) this results in [6.34]:

m (pakf et Ak <0 645

F,(b0k,0,0.51)="" AL >0

with a maximum of F; of 5.343 at bAk =-2.
In the plane-wave limit (b>>L) a result is obtained [6.37]:

F, (bDk,0,0.5,1) = = sinc B‘”‘L [6.46]

with a maximum of 41% /b at Ak =0.

A requirement for a rather tightly focused beam is that the medium should be negatively
disperse. In the example of section 6.5 a value for Ak was obtained in a fit; it is also possible to
calculate the dispersion a medium.

First it should be considered that through THG usually short Wavelengths are generated, thus
reaching the region of dense lev ium. For the
following analysis we refer to ref ﬁ

In the region of the bound states the refractive index is given by:

_ _ M, /i
(n = 1), o Z o [6.47]

where r,= 2.8181 x 10" cm is the classical electron radius, f; the oscillator strength of the i"
transition, and A; the wavelength of this transition.

For the region of the continuum the transitions into the continuum are considered, that
usually are broadened:

( - l)contmuum - 27TJ.—dV [6-48]

with o(cm?) the photo-ionization cross section and 0 (cm™)=A"".
By taking the cross sections and oscillator strength from the literature (a large number of
papers, listed in *°) the k& vector mismatch per atom, defined as C, can be calculated:

2 R. Mahon, T.J. Mcllrath, V.P. Myerscough, D.W. Koopman, IEEE J. Quant. Electr. 15, 444 (1979).
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27-[(”1 - ”3)

Ak =CN = [6.49]

where A is the vacuum wavelength of the generated harmonic.
In the figures the calculated values for C are plotted for three noble gas atoms. Negative
signs are represented by the gray shaded regions:

=16
107 U T T T T T T T

Xenon

Krypton

ICK’I(cmz)

ld"-—J j L Py N N L 1 1 1 b L
900 1000 L1100 1200° 1300 1400 1250 1350 1450 1550
Wavelengthi of Third Harmonic (A) Waveiength of Third Harmonic (A)

So in the gray shaded wavelength regions efficient third harmonic generation can be obtained. In
some regions of wavelength there the refractive index strongly varies with wavelength. This
gives rise to strong oscillations in THG yield and may even produce bandwidth filtering®.

6.7 THIRD HARMONIC GENERATION IN XENON

The theories on the phase-matching were tested in an experiment on third harmonic generation
in Xenon, in the case of tight focusing near the center of the cell (so f/L = 0.5) with A; = 354.7
nm and A; = 118.2 nm. b/L was adjusted to 0.025. The pressure dependent harmonic yield,
plotted in the figure, was compared with the theory as established here. In fact the function
G, (bAk,0,0.S,l) was fitted to the data resulting in a value:

Ak =(-5.99 x 10") Ny, (cgs units).

RELATIVE POWER OUTPUT AT JiB2 i

L
[+] 1 2 3 a4 5 € 7
Xe PRESSURE (Torr)

Fig: Relative power output at 118.2 nm for THG in Xenon
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The yield of THG in Xenon gas cap of a phase-

matching integral. Results of ref I 2
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Fig: THG in Xenon as a function of wavelength in the range102-110 nm;
Upper curve: measured THG yield; Lower curve: calculated F; for » = 0.3 mm and 30 torr in a gas jet

Important conclusions on THG can be drawn from this figure:
1) The main features in the wavelength dependent THG can be explained by the phase-

matching integral.
2) Resonances in the THG yield occur in many cases “at the blue” side of the ns and nd
atomic one-photon resonances.

6.8 RESONANCE ENHANCED VUV-PRODUCTION

The nonlinear susceptibility can generally be written as:

POk z <g|r|i><i|r|j><j|r|k><k|r|g> [6.50]

& & (wgl. + w)(a)gj + 2w)(wgk + 300)

It is an obvious result that the non-linear susceptibility blows up if one of the denominators is in
resonance. This may occur if one of the applied electric fields has a frequency that matches the
spacing between level energies in the medium. This may happen at the one, two or three photon
level. A resonance at the one-photon level has the disadvantage that the incident field is strongly
absorbed in the medium, therewith giving rise to many unwanted effects. Absorption at the
three photon level implies that the generated field is (re)absorbed in the medium, also an
unwanted effect. Resonances at the two-photon level do not have these disadvantages. In such
case the nonlinear susceptibility becomes:

I A. Lago, PhD Thesis, University of Bielefeld, 1986
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(i) irk ) (Al

- &, £ w)w, —20-ir o, +3w)

X0 O [6.51]

where the summation over ; states is dropped in favor of the one selected two-photon resonant
state |J '> ; the summation over | g> is also dropped, since only one ground state plays a role in
the noble gases considered here. The resonance denominator has been given a
phenomenological damping term to prevent )((3) of growing to infinity, which is unphysical.

Two two-photon resonance-enhanced processes are feasible: sum and difference frequency
mixing, as shown in the figure.

L T

Fig: Energy level scheme in an atom; left two-photon resonant sum-frequency mixing; right: difference frequency
mixing. Dashed lines are virtual levels; solid lines are real energy levels.

The level structure of the noble gases is particularly suitable to take advantage of resonance

enhancement. Many levels are available for two-photomrexcritatiomr rthe uttraviotet—200-256

nm, as shown in the list, adapted from ref {4—TFhese—wavelengths—cannowadays-be—produced
with tunable pulsed lasers, particularly with BBO-crystals for frequency doubling. Recently
two-photon resonance-enlranced sumfrequency Tmxing was demonstrated in Argon, using
wavelengths A <200 nm %

Two-photon excitation resonance relative
resonance energy wavelength efficiency?
(cm"1) (nm)
Sp - 6p' [3/2], 89162.9 224.3 40
[172]y 89860.5 222.6 187
7p [5/2); 88352.2 226.4 4
Xe (3/2) 88687.0 2255 9
[1/2]4 88842.8 225.1 26
8p [5/2], 92221.9 216.9 9
[3/2], 92371.4 216.5 5
[1/2], 92555.7 216.1 119
4p - 5p [5/2], 92308.2 216.7 167
Kr [3/2), 931241 214.8 56
[1/2]y 94093.7 212.6 1000

2 Fundamental power is 20 kW.

Note the important difference between the two processes described here. Sum-frequency mixing
is a process I and must obey the F; phase integral with optimum at negative dispersion, while

22 K. Miyazaki, H. Sakai, and T. Sato, Appl. Opt. 28, 699 (1989).
# H. Palm and F. Merkt, Appl. Phys. Lett. 73, 157 (1998).
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the difference frequency mixing is a process II and must obey the Fj; phase integral with
optimum near Ak = 0.

6.9  POLARIZATION PROPERTIES

In the previous sections the polarization properties in the harmonic conversion processes are
neglected. Polarization is associated with the vector character of the electromagnetic fields,
coupled by susceptibilities that have a tensor nature. The third order nonlinear polarization can
be written as:

P, (w;w.0,,0,)0 X&), ELELEL [6.52]

where the indices z,)],kr refer to the frequencies and 0,a,[3,y, to the spatial coordinates of the
vectors. Hence )( is a tensor of rank 3 with 81 elements that represents the response of a
medium induced by polarizations of the input fields. Here X is written as a single term; in
fact there are many (see Chapter 4) with differing frequency dependences. The nonlinear
susceptibility can be written:

o) (glr|){alr | ) jir fe)(K]r|g)
X g;,zm (wgl. —ou)(wg]. - 2w)(wgk - 3w) [6.53]

where a general summation over “terms” is taken, each having a different frequency
dependence. Here the term is written that is generally the most resonant for THG. The matrix
elements <a|r|b> contain the electronic transition dipole moments that have an explicit vector
character.

In four-wave mixing it is of importance to note that it is a coherent “cycling” process. Four
waves interact in such a way that no population transfer occurs. Hence |g> and <g| at the
beginning and end of the loop. This is of importance for the derivation of polarization
dependence. The summation over populated ground states | g> can be dropped in the case of
atoms where only a singly populated ground state exists (particularly for noble gases). The states
can be written in terms of quantum numbers and their projections; the angular momentum
quantum number is of importance here: |z> = |J M l.> with neglect of the electronic character and
fine structure. Using methods from atomic physics (the Wigner-Eckart theorem) a transition
dipole moment can be decomposed as:

1 J,

() = (o i) = OB RO

[6.54]

where the superscript (1) denotes a first rank tensor and the Wigner-6; symbols are introduced.
The angular momentum characteristics associated with the non-linear susceptibility is then:

) J. 1 J, J. 1 J. J, 1 J. J, 1 J,
§IPTY SR SR SR B
M, q Mg Mj q9, M, M, g, Mj Mg q9, M,
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Polarization selection rules in four-wave mixing arise from this expression. Only specific
combinations of the g; lead to a non-zero angular part. In fact the g; are the projections of the
dipole moment on a basis of spherical harmonics: g = 0 linear polarization, g= 1 and g= -1 right
and left-handed circular polarization.

1) For the case of all polarizations linear along the same axis: ¢, =¢q, =g, =0. This is
possible and yields also g, = 0. So the third harmonic is polarized along the input beam.

2) Third harmonic generation with circularly polarized light: ¢, =¢g, =¢, =1 is not
possible.

3) In case of two-photon resonant sum- or difference frequency mixing there is a real level
in the atom with a specific quantum number J;. It follows that J; = 1 is not possible. If
the intermediate level has either J; = 0 or J; = 2 there are solutions, hat also determine the
polarization of the generated light. The table gives the options with calculated
polarization factors deriving from the sequence of Wigner-6; symbols.

OR Wryn XUV Jo=0 Jp=2
—> —> —> 0.333 0.298
— T T 0333  -0.149
— ( —> 0.236 0.211
- C T -0.236i 0.105i

C D ¢ o om

C — C 0 0.316
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6.10 PULSED JETS

From a practical perspective it should be realized that below the so-called LiF-cutoff at 105 nm
there are no window materials available for experiments; the region below 105 nm is usually
called the extreme ultraviolet (XUV). So no exit windows can be employed to close off the cell.
A pulsed jet, first employed by Kung*, can deliver the gaseous non-linear medium; in the figure
below such a setup is shown, although still with a LiF exit window. This window can be
replaced by a narrow orifice; differential pumping techniques can sustain vacuum conditions at
the detector side, such that wavelengths A < 105 nm can also propagate. Note that under these
conditions the interaction length L can no longer be freely chosen.

Xe

|

Pulsed Valve

N -
3547 A Laser g2k []/onzetion Ar Purged
\ 174 -

3547A L] 7 /4m Mono

A chromator

Vacuum Chamber

510z Lens LiF Window Solar

l Blind

To PMT

Fig: Experimental setup as used in re

** A.H. Kung, Opt. Lett. 8, 24 (1983).
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