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Chapter 1 
 

Non-linear optics: Introduction 
 
1.1 THE FIRST OBSERVATION OF A NON-LINEAR OPTICAL PROCESS 
 
 

 
Fig: Frequency doubling of a Ruby laser: λ = 694.3 nm →   λ = 347.1 nm as shown by Franken et al.13 

 
 
1.2 THE NONLINEAR SUSCEPTIBILITY 
 
The polarization P induced in a medium when electric field E is applied may be expanded as a 
power series in the electric field vector: 
 
 P = χ(1) E  +  χ(2) E E +  χ(3) E E E +  χ(4) E E E E + etc [1.1] 
 
where the χ(i) are tensors, even for the first order contribution: 
 
 Pi = χij(1) Ej [1.2] 
 
As a consequence the orientation of the induced polarization may be different from the applied 
field. In a centro-symmetric medium, that is a medium with inversion symmetry, one may 
derive (use the inversion symmetry operator Iop): 
 
 Iop P  =  -P  = - χ(1) E  -  χ(2) E E -  χ(3) E E E -  χ(4) E E E E + etc [1.3] 
 Iop E  =  -E   
 
because of the last relation we find 
 
 Iop P  =  - χ(1) E  +  χ(2) E E -  χ(3) E E E +  χ(4) E E E E + etc [1.4] 
 
Thus we find the important relation for (inversion)-symmetric media: χ(2n)  = 0 [1.5] 
All even powers in the susceptibility expansion are zero. 

                                                 
13 P.A. Franken, A.E. Hill, C.W. Peters and G. Weinreich, Phys. Rev. Lett. 7 (1961) 118 
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1.3 GRAPHICAL REPRESENTATION OF NONLINEAR OPTICS 
 
 LINEAR RESPONSE NONLINEAR RESPONSE 
 
 P = χ(1) E    P = χ(1) E  + χ(2) E E  
 
in the steady state 
 

  
 
and for oscillatory E.M.-waves 

 
 
The nonlinear response, e.g. in the case of an electromagnetic wave (a periodic function), may 
be evaluated in terms of a Fourier series expansion: 
 
 ( )nn tnaP φω += ∑ sin  [1.6] 
 
Graphically the Fourier series expansion may be shown as follows. The nonlinear polarization 
induced can be represented as: 
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This function can be Fourier analyzed: 
 

  
 
Fig.: Fourier analysis of the non-linear polarization in (b): Sin ωt; (c): Sin 2ωt; and (d): Sin φc, the dc-component 
("optical rectifying") 
 
The nonlinear response of the medium produces higher harmonics in the polarization. The 
oscillating polarization P(2ω) acts as a source term in the Maxwell equations (consider the 
nonlinear medium as an antenna): 

 ( )ωµ 2
2

2

02

22
2 PEE

ttc
n

∂
∂=

∂
∂






−∇  [1.7] 

and thus produces a field E(2ω) . 
 
 
1.4 LORENTZ-MODEL OF THE SUSCEPTIBILITY 
 
In this model a medium is considered in which the electrons are affected by external electric 
forces that displace them. The motion of the electrons is restored by the binding force. As a 
result a harmonic motion of the electron in the combined field of the atom and the external 
Coulomb force is produced that may be described in terms of a damped harmonic oscillator. 
 
1) In linear optics: the equation of motion for a damped (damping constant γ) electronic 
oscillator in one dimension: 
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 Errr
m
e

dt
d

dt
d −=++ 2

02

2

2 ωγ  [1.8] 

 
with the electric field written as [ ]tiEe ωRe=E  and for the position of the electron take the 
deviation from equilibrium: [ ]tire ωRe=r  it follows that: 
 

 ( ) E
m
erir −=+− ωγωω 222

0
 

[1.9] 

So: 

 [ ] ( )[ ]ωγωωωωγωω im
eE

im
eEr

+−
−≈

+−
−=

00
22

0 2
 

[1.10] 

where the last part of the equation holds in the approximation of near resonance: ω = ω0. The 
induced polarization in a medium is ( ) ( )ωω NerP −=  and so: 
 

 ( )[ ] ( )EE
im

Ner ωχε
ωγωωω 0

00

2

2
=

+−
=

 
[1.11] 

 
Thus we find a complex quantity representing the linear susceptibility ( ) ( ) ( )ωχωχωχ "' i−=  
of the medium with: 
 

 ( ) ( )
( )[ ]22

0

0

00

2

/1
/

2
'

γωω
γωω

γεω
ωχ

−+
−=

m
Ne  [1.12] 

and: 

 ( ) ( )[ ]22
000

2

/1
1

2
"

γωωγεω
ωχ

−+
=

m
Ne  [1.13] 

   

 
The real part of the susceptibility χ'(ω) is related to the index of refraction n of the medium, 
while the imaginary part χ"(ω) is related to the absorption coefficient. 
 
2) In nonlinear optics the motion of the electron is considered to have an anharmonic response 
to the applied electric fields. The equation of motion for the oscillator now becomes, with the 
anharmonic term ξr2: 
 

 E
m
errr

dt
dr

dt
d −=−++ 22

02

2

2 ξωγ
 

[1.14] 

 
Try a solution in power series r=r1+ r2+ r3+ etc, with i

ii Ear = , so 1
11 Ear =  and 2

22 Ear = . 
Now substitute r=r1+r2 and collect terms in the same order of E: 
 

 first order: E
m
err

dt
dr

dt
d −=++ 1

2
0112

2

2 ωγ  [1.15] 

 second order: 2
12

2
0222

2

2 rrr
dt
dr

dt
d ξωγ =++  [1.16] 
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A general form for the field: 
 
 ( ) ti

n
neEE ωω −∑=  [1.17] 

Calculate 1rdt
d  and 12

2

r
dt
d with 1

11 Ear =  and substitute in equation [1.15] and it is found that: 

 

 
( )

( ) nn

ti
n

i
eE

m
er

n

γωωω
ω ω

22
0

1 −−
−=

−∑
 

[1.18] 

 
Calculate 2

1r   and substitute in [1.16], while using that: 
 
 ( )( ) ( ) ( ) ( )ti

mn
ti

n
mnn eEEeE ωωω ωωω +−∑∑∑ =

2
 [1.19] 

 
we find: 
 

( ) ( ) ( )

[ ][ ] ( ) ( )[ ]mnmnmmnn

ti
mn

iii
eEE

m
er

mn

ωωγωωωγωωωγωωω
ωωξ ωω

+−+−−−−−
−= ∑∑ +−

222 22
0

22
0

22
0

22  [1.20] 

 
As a result we have obtained a relation for the non-linear susceptibility from the simple model 
of the electron as an anharmonic oscillator. The polarization may be written as a series of 
higher nonlinear orders: 
 
 ∑= kPP  with kk NerP −=  

 
Then: 
 
 ( )( ) ( ) ti

nnlinear
neEP ωωωχ −∑= 1  [1.21] 

 ( )( ) ( ) ( ) ( )∑∑ +−= ti
mnmnond

mneEEP ωωωωωωχ ,2
sec  [1.22] 

 
with the susceptibilities: 
 

 ( )( ) ( ) nn
n im

Ne
γωωω

ωχ
2

1
2

0

2
1

−−
=

 
[1.23] 

and: 

 ( )( ) ( )[ ] ( )[ ]mmnn
mn iim

Ne
γωωωγωωω

ξωωχ
22

1, 2
0

2
0

2

3
2

−−−−
=   

 ( )( ) ( )[ ]mnmn i ωωγωωω +−+− 2
1
2

0

 [1.24] 

The second order susceptibility can be written in terms of the first orders susceptibilities, and it 
depends on a product of three of these, the susceptibility at frequency ωn, ωm and the sum-
frequency ωn+ωm: 
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 ( )( ) ( )( ) ( )( ) ( )( )mnmnmn eN
m ωωχωχωχξωωχ +−= 111

32
2 ,  [1.25] 

In these equations ω0 represents the "eigenmodes" of the medium. These modes correspond to 
the eigenstates and should be calculated quantummechanically. In case of ω0 ≈ ωn or ω0 ≈ ωm 
"resonance enhancement" will occur: an increase in the nonlinear susceptibility as a result of 
the resonance behavior of the medium. Even a resonance on the sum-frequency will aid to the 
susceptibility. 
 
 
1.5 MAXWELL'S EQUATIONS FOR NONLINEAR OPTICS 
 
Light propagating through a medium or through the vacuum may be described by a transverse 
wave, where the oscillating electric and magnetic field components are solutions to the 
Maxwell's equations. Also the nonlinear polarizations, induced in a medium, have to obey these 
equations: 
 
 ∇∇∇∇  x E = - (∂/∂t) B [1.26] 
 ∇∇∇∇  x H = j +  (∂/∂t) D [1.27] 
 ∇• D = ρ [1.28] 
 ∇• B = 0 [1.29] 
 
with additional relations, and σ the conductivity: 
 
 D = ε0E + P [1.30] 
 j =  σE  [1.31] 
 
The induced polarization may be written in a linear and a nonlinear part: 
 
 P = ε0χE + PNL [1.32] 
 
Inserting this in the Maxwell equation for the curl of the magnetic field yields with 
[ε=ε0(1+χ)]: 
 
 ∇∇∇∇  x H =  σE + ε (∂/∂t) E+ (∂/∂t) PNL [1.33] 
 
Taking the curl of the curl of the electric field component, starting form the first equation gives: 
 ∇∇∇∇  x ∇∇∇∇  x E = -(∂/∂t) ∇∇∇∇  x B = -µ(∂/∂t) ∇∇∇∇  x H = -µ(∂/∂t) [σE + ε(∂/∂t)E+ (∂/∂t)PNL] 
  [1.34] 
Also the general vector relation holds: 
 
 ∇∇∇∇  x ∇∇∇∇  x E = ∇∇∇∇ (∇• E) - ∇ 2E [1.35] 
 
And by taking ∇∇∇∇• E=0 (i.e. for a charge-free medium) we obtain: 
 
 ∇ 2E = µσ (∂/∂t)E + µε(∂2/∂t2)E+ µ(∂2/∂t2)PNL [1.36] 
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Above equations were derived in the SI or MKS units. In many handbooks (also at a few 
instances in this course) the fields are expressed in the esu units. Some simple substitution rules 
may be used for the transfer of SI to �esu�: 
 
 SI: P(n) = ε0χ(n) E(n) in Cm-2 
 esu: P(n) = χ(n) E(n) in statvolt cm-1 
and: 
 
 χ(n)SI/ χ(n)esu = 4π/(10-4c)n-1 and  P(n)SI/ P(n)esu = 103/c 
 
 
1.6 THE COUPLED WAVE EQUATIONS 
 
Consider an input wave with electric field components at frequencies ω1 and ω2. In the 
approximation of plane waves the total field may then be written as: 
 
 E(t) = Re [E(ω1) exp(iω1t) + E(ω2) exp(iω2t)] [1.37] 
 
In the medium a polarization at the sum frequency ω=ω1+ω2 is generated. This polarization is 
now expressed in the vector components: 
 
 Pi(ω1+ω2) = Re {χijk(ω=ω1+ω2) Ej(ω1) Ek(ω2) exp[i(ω1+ω2)t]} [1.38] 
 
At the same time also a difference frequency component may be produced in the medium, 
however with a different nonlinear susceptibility tensor: 
 
 Pi(ω1-ω2) = Re {χijk(ω=ω1-ω2) Ej(ω1) Ek*(ω2) exp[i(ω1-ω2)t]} [1.39] 
 
The notation of fields in terms of complex amplitudes has the consequence that whenever a 
negative frequency appears in the equations the complex conjugate of the field amplitude is to 
be taken, because: 
 
 Ek(-ω2) = Ek*(ω2) [1.40] 
 
The tensors χijk(ω=ω1+ω2) and χijk(ω=ω1-ω2) are material properties and have different 
values depending on the frequencies; this is related to the possibility of resonance enhancement 
and the energy level structure of the medium. 
Now we will consider the above derived Maxwell equation: 
 
 ∇ 2E - µσ (∂/∂t)E - µε(∂2/∂t2)E = µ(∂2/∂t2)PNL [1.41] 

 
which is a vectorial expression that may be used in threefold for the three vector components. 
In the simple case of frequency mixing with two incoming plane waves propagating along the 
z-axis and the assumption of a linear polarization in a single transverse direction: 
 
 E1(z,t) = E1(z) exp(iω1t-ik1z)  [1.42] 
 E2(z,t) = E2(z) exp(iω2t-ik2z)  
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These two incoming fields induce a nonlinear polarization at frequency ω=ω1+ω2 that may be 
written as: 
 
 PNL(z,t) = d E1(z) E2(z) exp[i(ω1+ω2)t-i(k1+k2)z]  [1.43] 
 
And we assume that a new field is created at frequency ω3=ω1+ω2 with a field: 
 
 E3(z,t) = E3(z) exp(iω3t-ik3z)  [1.44] 
 
Now substitute these fields into the wave equation. For plane waves traveling in the z-direction 
the field gradient may be written as: 
 

   
∇ 2E3(z,t) =

∂2

∂z2 E3(z,t)

 
[1.45] 

 
The left side of Eq. [1.45] then yields: 
 

   

∂2

∂z2 E3(z,t) + µσ
∂
∂t
E3(z,t) − µε

∂2

∂t2
E3(z,t) =

  

   
=
d2

dz2
E3 (z,t) + 2ik3

d

dz
E3(z,t) −k3

2E3 (z,t) +iω3µσE3 (z,t) + µεω3
2E3 (z,t)

 [1.46] 
   
The quantities Ei(z,t) have the meaning of an amplitude and it will be a good assumption that 
the variation of the amplitude over the distance of one wavelength will be small; this 
assumption is called the slowly varying amplitude approximation: 
 

   

d2

dz2
E3(z,t) << 2ik3

d

dz
E3(z,t)

 [1.47] 
 
As a consequence the second order spatial derivative may be dropped. Furthermore for plane 
waves propagating in a medium with dielectric constant ε and magnetic susceptibility µ the 
following relation holds: 
 

   µεω3
2 −k3

2 = 0  [1.48] 
 
So only two terms are left on the left side of the wave equation: 
 

   
2ik3

d

dz
E3(z)exp iω3t−ik3z( )+iω3µσE3(z)exp iω3t−ik3z( )

 [1.49] 
The right side of the wave equation is evaluated as follows: 
 

   
µ

∂2

∂t2
P NL(z,t) = µ

∂2

∂t2
dE1 (z)E2 (z)exp iω1 + ω2( )t−ik1 +k2( )z[ ]

 
   = −µ ω1 + ω2( )2

dE1(z)E2 (z)exp iω1 + ω2( )t−ik1 +k2( )z[ ]  [1.50] 
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Equating the two results yields: 
 

   

d

dz
E3(z) = −

σ
2

µ
ε3

E3(z) −
iω3

2
µ
ε3

dE1(z)E2 (z)exp −ik1 +k2 −k3( )z[ ]
 [1.51] 

 
where use was made of energy conservation (ω3=ω1+ω2) and the above postulated relation 
between the frequency and the wave vector of a wave. The basic equation found implies that 
the amplitude of the newly produced wave is coupled through the nonlinear constant d to the 
incoming wave. There is an energy flow from the wave at frequencies ω1 and ω2 to the wave at 
frequency ω1. At the same time inverse processes will take also place, i.e. processes where the 
newly generated frequency ω3 mixes with one of the two incoming waves in a difference 
frequency mixing process like ω3-ω2 → ω1. By inserting the fields in the Maxwell's wave 
equation in a similar fashion one can derive two more coupled amplitude equations: 
 

   

d

dz
E1(z) = −

σ
2

µ
ε1

E1(z) −
iω1

2
µ
ε1

dE3(z)E2 (z) * exp −ik3 −k2 − k1( )z[ ]
 [1.52] 

   

d

dz
E2 (z)* = −

σ
2

µ
ε2

E2 (z)* +
iω2

2
µ
ε2

dE1(z)E3 (z) * exp −ik1 +k2 − k3( )z[ ]
 

 
Now we have derived three differential equations by which the three amplitudes of the waves 
are coupled.  
NOTE: Even in the case where a wave at frequency ω3=ω1+ω2 is created the wave vectors do 
not cancel because of the dispersion in the medium (the frequency dependence of the index of 
refraction): 
 

   
ωi =

ki
µε(ωi)

=
cki
n(ωi)  [1.53] 

Of course it should be realized that the ki are vectors, with in the most general case a 
directionality, that may be different for the waves. We define the wave vector mismatch as: 
 
 ∆k = k3-k1-k2 [1.54] 
 
 
1.8 NONLINEAR OPTICS WITH FOCUSED GAUSSIAN BEAMS 
 

In previous sections the non-linear interactions are treated in the plane-wave approximation; 
the fields in Eq. [1.42-1.43] are expressed as plane waves propagating with a flat wave-front 
along the z-axis. This approximation is not valid in cases when the laser beams are focused. 
Focusing is often profitable in non-linear optics as the high peak intensities give high non-
linear yields. We consider again the wave equation for a wave at frequency ωn and neglecting 
absorptions: 

 

 nnn tctc
n PEE 2

2

22

22
2 4

∂
∂=

∂
∂






−∇ π  [1.55] 
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The electric field vector and the polarization are now defined different from Eq. [1.42-1.43] by 
explicitly taking a spatial dependence into account: 
 
 ( ) ( ) ( )[ ]tzki

nn
nket ω−= rArE Re,  [1.56] 

 ( ) ( ) ( )[ ]tzki
nn

nket ω−= 'Re, rprP  
 
Here the complex amplitudes nA  and np  are spatially varying. The Laplace operator of the 
wave function may now be expressed as: 
 

 
∇ 2 = ∂2

∂z2
+ ∇ T

2
 [1.57] 

Similarly as in the plane wave case the slowly varying amplitude approximation may be 
applied and this then results in the paraxial wave equation: 
 

 kzi
n

n
nT

n
n e

cz
ik ∆−−=∇+

∂
∂ pAA

2

2
2 42 πω  [1.58] 

 
This paraxial wave equation can first be considered in the case where the polarization pn 

vanishes. From an analysis of Gaussian optics an amplitude distribution follows (see optics 
course): 

 

 ( ) ( ) ( ) ( ) ( )[ ]zi
zR

ikr
zw

r
zw

wzr Φ















−= exp

2
expexpA,A

2

2

2
0  [1.59] 

 
where w(z) represents the 1/e radius of the field distribution, R(z) the radius of curvature of the 
wave front and Φ(z) the spatial variation of the phase of the wave with respect to an infinite 
plane wave defined as: 
 

 ( )
2

2
0

0 1 





+=

w
zwzw

π
λ  [1.60] 

 ( )

















+=

22
01

z
wzzR
λ

π  [1.61] 

 ( ) 





−=Φ 2

0

arctan
w
zz

π
λ  [1.62] 

 
It is convenient to express the Gaussian beam as: 
 

 ( )























 +

−
+

=

b
ziw

r

b
zi

zr
21

exp21

A,A
2
0

2

 [1.63] 
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where b is the so-called confocal parameter, a measure of the longitudinal extent of the focal 
region of the Gaussian beam: 
 

 2
0

2
02 kwwb ==

λ
π  [1.64] 

 
 
In the Figure the characteristics of such a Gaussian beam is depicted. 
 

 
 
 
Fig.: (a) Intensity distribution of a Gaussian laser beam. (b) Variation of the beam radius w and wavefront radius 
of curvature R with position z. (c) Relation between the beam waist radius w0 and the confocal parameter b. 
 

In case of harmonic generation with Gaussian beams the above amplitude expressions may 
be used. If A1 is the amplitude of the wave at the fundamental frequency then the q-th nonlinear 
polarization may be expressed as: 

 
 ( ) qq

q 1Ap χ=  [1.65] 
 

and the amplitude Aq of frequency qω must obey the equation (use [1.65] and the paraxial 
wave equation [1.58]). 
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 ( ) kziqqq
qT

q
q e

cz
ik ∆−−=∇+

∂
∂

12

2
2 4

2 AA
A

χ
πω

 [1.66] 

where the phase-mismatch is defined as: 
 

 ∆k=kq− qk1 [1.67] 
For the amplitude of the fundamental we use [1.63] and for the harmonic we adopt the trial 
solution: 

 ( ) ( )
























 +

−
+

=

b
ziw

qr

b
zi

z
zr q

q 21
exp21

A
,A

2
0

2

 [1.68] 

This is a function with a confocal parameter equal to that of the fundamental wave. After 
inserting the trial [1.67] into the wave equation [1.66] it follows that: 
 

 ( )
11 21

A2A −

∆






 +

= q

kzi
qq

q

b
zi

e
nc
qi

dz
d χωπ  [1.69] 

The equation may be integrated: 
 

 ( ) ( ) ( )zzkF
nc
qiz q

qq
q ,,A2A 01 ∆= χωπ  [1.70] 

where the so-called phase-matching integral: 
 

 ( ) '
'21

,,
0

1

'

0 dz

b
iz

ezzkF
z

z
q

kzi

q ∫ −

∆−






 +

=∆  [1.71] 

is over the length of the nonlinear medium, starting at z0. The harmonic radiation is generated 
with a confocal parameter b, similar to that of the fundamental wave. The beam waist radius is 
therefore narrower by a factor of q . 

The integral can be evaluated numerically and in approximating cases also analytically. If 
b>>z the result for a situation of plane waves should follow. In the limiting case b<<z the 
fundamental wave is focused tightly. If the boundary conditions range over the complete focus, 
in the approximation [-∞,∞], the integral can be evaluated via contour integration resulting in: 

 

 ( ) '
'21

,, 1

'

0 dz

b
iz

ezzkF q

kzi

q ∫
∞

∞−
−

∆−






 +

=∆  [1.72] 

which yields in two limiting cases: 
 

0=qF  for 0≥∆k  [1.73] 
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So in the tight-focusing limit there is no yield of harmonics for ∆k>0. Only in case of ∆k≤0 
harmonics are generated. This condition corresponds to media with negative dispersion at the 
frequency of the harmonic. 
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Chapter 2 
 

Second Harmonic Generation 
 
 
2.1 SECOND HARMONIC GENERATION AND PHASE MATCHING 
 
Starting out from the coupled wave equations, assuming just a single input field, 
so ( ) ( )zEzE 21 = , a radiation field ( )zE3  may be generated: 
 

 ( ) ( ) ( ) ( )zkkiezdEizEzE
dz
d

3122
1

3

3
3

3
3 22

−−−−=
ε
µω

ε
µσ  [2.1] 

 
Under the assumptions: 
- that there is a nonzero nonlinear coefficient d; this implies a certain symmetry of the medium; 
- that there is no absorption in the medium, so the conductivity term may be neglected; 
- there is only little production of the wave at ω3, so that the field amplitudes are not affected by 
the conversion process; 
- the wave vector mismatch is now: 
  
 ( ) ( )ωω kkk 22 −=∆  [2.2] 
  
the coupled wave equation can be integrated straightforwardly: 
 

 ( )( ) ( ) ( ) dzedEizE kzi∫ ∆−= ω
ε

µω ω
ω 2

2
2  [2.3] 

 
where the integration is over the length of the medium (and the overlap of light beams) between 
0 and L. The integration yields, assuming that E(2ω)(0) =0: 
 

 ( )( ) ( ) ( )
k

edELE
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∆
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∆ 12
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2 ω
ε

µω ω
ω  [2.4] 

 
The output intensity of the second harmonic is proportional to: 

 ( )( ) ( )( ) ( ) 2
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LELE ω
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If the beams are written in terms of beam intensities, so of power per unit area A, then it 
follows that the conversion efficiency for second harmonic generation is: 
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From this derivation we learn that: 
- the conversion efficiency is proportional to the power density, so the total amount of 
generated light at the second harmonic is proportional to [P(ω)]2. Thus second harmonic 
generation is a process that is non-linear in the power dependence. 
- the efficiency is equal to the square of the nonlinear coefficient d, or in other terms 
proportional to |χ(2)|2 

- the efficiency is proportional with L2 and a "sinc"-function involving L; it seems that longer 
crystals will produce more second harmonic; we will see that this effect will be restricted. 
- the efficiency is optimal if ∆k=0 and this is a condition that generally cannot be met in 
ordinary media; we will see that in birefringent media this condition, that can be written as 
k(2ω)=2k(ω), and also the breakdown of inversion symmetry can be met at the same time. 
The condition of ∆k=0 is referred to as the phase-matching condition. With the use of k=nω/c 
the phase matching relation is given by Eq. [2.2]. 
For ordinary waves in a medium there is always dispersion, with the consequence that: 
 
 ( ) ( )ωω nn >2  [2.7] 
 
so always ∆k≠0. The physical consequence of the dispersion is that the two waves: 
 
 ( ) ( )[ ]ziktiEtzE ω

ωω ω −= exp,  [2.8] 
 ( ) ( )[ ]ziktiEtzE ω

ωω ω 2
22 2exp, −=   

 
will run out of phase and therefore the process of coherent generation of radiation at frequency 
2ω will be stopped and even reversed if the phases differ by 1800. Then destructive interference 
will take place and the original build up of the wave at 2ω will be destroyed. After a distance l 
for which holds: 
 
 ∆k l  = π [2.9] 
 
the amplitude is at maximum. The particular length Lc=2l  is called the coherence length; it is 
the maximum crystal length useful in producing the second harmonic: 
 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )ωωωωωω
λ

ω
πππ

nnnn
c

kkk
Lc −

=
−

=
−

=
∆

= 222 422
22  [2.10] 

 
For some typical values of a wavelength λ= 1µm and a dispersion of n(2ω) - n(ω) = 10-2 we find 
a coherence length of Lc=50 µm. So in the equation derived above the dependence on the 
length L2 is to be replaced by a dependence on Lc2.  
The proof of the coherence length effect was given in an experiment by Maker et al.2 In a 
simple experimental setup with a rotating crystal and a transmission filter for the frequency 2ω 

                                                 
2 P.D. Maker, R.W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. 8, 19 (1962). 
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the variation of the produced second harmonic power was measured with variation of the angle 
of rotation of the crystal. 
 

 
 
In a situation with ∆k≠0 in the first coherence length Lc power at 2ω is produced. In the second 
coherence length also a field E2ω is generated, but this is out of phase with the propagating 
field E2ω that was generated in the first coherence length. In these parts the intensity at 
frequency 2ω will be coupled back into a wave at the fundamental frequency ω. As a net result 
the power will decrease.  
So we find for a particular crystal length L: 
 
 L = 2n Lc → P(2ω) = 0 [2.11] 
 L = (2n+1) Lc → P(2ω) = optimum  
 
As the crystal length we understand the path length of the light beam through the crystal, and 
this is dependent on the incident angle θ of the incoming beam onto the crystal surface: 
 
 L = d cos θ [2.12] 
 
with d the thickness of the crystal. By varying the angle of rotation the effective length of the 
crystal will change and therewith the number of coherence lengths. This oscillatory effect of the 
second harmonic power was first observed by Maker et al.2 and the oscillations are called 
Maker fringes.  

 
Fig.: adapted from ref [2]. 

 
If the phase matching condition could be fulfilled by some means then instead of the coherence 
length of Lc=50 µm the full length of a crystal of e.g. 2 cm could be used. This would lead to 
an increase of second harmonic power of a factor 1.6x105. This condition can be met in a 
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special class of crystals, the so-called birefringent crystals, that are known to have some 
peculiar and complicated properties, even in the realm of linear optics.  
 
 
2.2 WAVE PROPAGATION IN ANISOTROPIC MEDIA; INTERMEZZO 
 
In an anisotropic medium the induced polarization is not always parallel to the applied electric 
field. The susceptibility that governs the electromagnetic response of the medium is not just a 
scalar but a tensor of rank two. Physically this effect may be understood from the fact that the 
ordering of atoms in a crystal is not identical along different directions. The polarization is: 
 
 P = ε0 χ E [2.13] 
 
or in components (in SI units): 
 
 P1 = ε0 (χ11 E1 +χ12 E2 +χ13 E3) 
 P2 = ε0 (χ21 E1 +χ22 E2 +χ23 E3) [2.14] 
 P3 = ε0 (χ31 E1 +χ32 E2 +χ33 E3) 
 
The 9 elements of a second order tensor χ depend on the choice of a coordinate frame. From 
formal tensor theory it follows that there are three invariants in three dimensions for a second 
order tensor. As a consequence for a particular choice of axes x, y and z, the so-called principal 
dielectric axes of the crystal (that are not necessarily orthogonal) there will be only 3 non-zero 
elements left. The dielectric tensor can also be written in the form of Maxwell's displacement 
vector: 
 
 D = ε0 E + P = ε0 (1+χij) E = εij E [2.15] 
 
where the susceptibility tensor χij is replaced by the dielectric permittivity tensor εij. 
A monochromatic plane wave of angular frequency ω can be expressed with electric and 
magnetic field components, E exp(iωt - ik• r) and H exp(iωt - ik• r), where k is the wave 
vector, a vector in the direction of wave propagation. It is the vector that in Huygens theory is 
the normal to the wave front. It is equal to: 
 
 k = nω/c s [2.16] 
 
with n the index of refraction and s a unit vector. In nonmagnetic media Maxwell's equations 
are: 

 
 ∇∇∇∇  x E = - (∂/∂t) B [2.17] 
 ∇∇∇∇  x H = (∂/∂t) D 
 
From these equations we will determine now the relative orientations of the vectors k, H, E and 
D. The derivatives, in case of plane waves may be written as: 
 
 ∇∇∇∇    →  - i k = -inω/c s [2.18] 
 (∂/∂t) →   iω 
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and by insertion of the plane waves in the Maxwell equations we obtain: 
 
 k x E = + µ0ω H [2.19] 
 k x H = -ω D 
 
From these equalities we learn that H and D are vectors perpendicular to the wave vector k. 
Also H and D are a pair of perpendicular vectors, because of the second relation. So we 
conclude that H and D constitute a proper transverse wave in an orthogonal frame with k. For 
the electric field vector E the following statements hold: 
- E is perpendicular to H 
- D=εE; if ε is a scalar then E is along the direction of D and then E is perpendicular to the 
wave vector k. But in an anisotropic medium, where ε is a tensor, the vector E is no longer 
perpendicular to k. 

 
 
An important physical consequence for the wave propagation in anisotropic media follows from 
this. The Poynting vector: 
 
 S = E x H [2.20] 
 
is not along k. So the direction of energy flow is different from the direction of the wave vector. 
In other words the phase velocity and the group velocity of the light beam are different, not only 
in size but also in direction.  

By eliminating H from the above equations we find: 
 

 k x (k x E) = - µ0ω2 D 
 
Using the vector relation Ax(BxC)=B(A�C)-C(A�B) we obtain: 
 
 k x (k x E) = k(k�E)-E(k�k) = - µ0ω2 D [2.22] 
 
so in terms of the unit vector s: 
 
 D = n2ε0 [ E - s(s�E)] [2.23] 
 
Now we choose a coordinate frame (x,y,z) corresponding to the principal dielectric axes of the 
medium. In this frame: 
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[2.24] 
 
where of course the permittivities of the medium will be different along the various principal 
axes. Then it follows for i=x,y,z that : 
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and by rearranging: 
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[2.26] 

Forming the scalar product D�s = Dxsx+Dysy+Dzsz =0, because D and s are perpendicular then 
gives: 
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[2.27] 
This equation is known as Fresnel's equation. This equation is quadratic in n and will therefore 
have two independent solutions n' and n". So there are also two different waves D'(n') and 
D"(n") that obey Fresnel's equation. A calculation of the dot product of the two solutions yields, 
by making use of Eq. [2.27]: 
 

 ( ) ∑






−





−

⋅=⋅
zyx

nn

s
,, 0

2
0

2

2
22

0

"
1

'
1

"'

αα

α

ε
ε

ε
ε

ε EsDD

 

 

 ( ) ( )
( ) ∑



























−

+







−

−
⋅=

zyx

n

s

n

s
nn

nn
,, 0

2

2

0
2

2

22

2
22

0

"
1

'
1"'

"'

α

α

α

α

ε
ε

ε
ε

ε Es  [2.28] 

 
where the summation index α is over coordinates x, y and z. So we find for the two solutions of 
the Fresnel equation: 
 
 D'�D" =0 [2.29] 
 
A general result is: an anisotropic crystal can transmit waves that are plane polarized in one of 
two mutually orthogonal directions. These two waves see different refractive indices n' and n". 
Also the direction of energy flow is now perpendicular to the wave front. If an incoming light 
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beam is not polarized in one of the two allowed transmittance modes then the transmission may 
be calculated by first taking the projections of the polarizations of the incoming wave onto D' 
and D". 
 
 
 
2.2.a REFRACTION AT A BOUNDARY OF AN ANISOTROPIC MEDIUM 
 

Consider a plane wave incident on the surface of an anisotropic crystal. The polarization of 
the incoming beam is in general a mixture of the two different polarization eigenmodes, 
denoted with D' and D" in the above. So in general, except for the specific case where the 
polarization is exactly along one of the principal axes of the crystal, the polarization of the 
refracted beam is partly along D' and partly along D". These polarization waves are solutions to 
the Fresnel equation for different indices of refraction. So one wave with polarization D' 
undergoes refraction corresponding to n', while the second polarization component D" is 
refracted by an index n". Different indices of refraction at a boundary implies that the 
propagation direction of the two beams with D' and D" is different. In the figure it is graphically 
shown how to determine the direction of propagation at a boundary with n0 at one side and n' 
and n" at the other side. 

 

  
 

Fig.: Double refraction at a boundary of an anisotropic medium and the graphic method of determining θ1 and θ2. 

 
A kinematic condition for refraction requires that: 
 
 k0 sinθ0 = k1 sinθ1 = k2 sinθ2 [2.30] 
 
with the index 0 referring to the incoming wave and 1 and 2 referring to the refracted waves. 

The physical effect of double refraction or birefringence is thus explained. An incoming 
wave with polarization D0 is split into two waves with orthogonal polarizations that transmit 
under different angles through a crystal. 
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2.2.b THE INDEX ELLIPSOID 
 

 
The energy density of the stored electric field in a medium is known to be: 
 

 ( )DE ⋅=
2
1

eU
 

[2.31] 

 
With a coordinate frame of principal axes (x,y,z) and the relation Di = εiEi for i=x,y,z a surface 
of constant energy in D-space is given by: 
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Now write eU2Dr =  (so r relates to a normalized polarization vector) and ni2=εi the 
equation reduces to a formula for a three dimensional ellipsoid: 
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[2.33] 

 
This ellipsoid can be used to find the two indices of refraction for the two polarizations of a 
wave with a wave vector in a specific direction s. For a certain direction of the wave vector the 
plane normal to s intersecting the ellipsoid forms a two-dimensional ellipse. The two axes of 
this ellipse then determine the two indices of refraction. These axes are parallel to the direction 
of the vectors D1,2 of the two allowed solutions of the Fresnel equation. 

Consideration of a so-called uniaxial crystal simplifies the geometry somewhat. A uniaxial 
crystal, in contrast to a bi-axial crystal, has a single optical axis. In terms of the index ellipsoid 
this becomes a three-dimensional body with cylindrical symmetry. Two indices of refraction are 
identical, so the plane intersecting perpendicular to the one optical axis forms a circle. If z is 
taken as the axis of cylindrical symmetry (the optical axis of a uniaxial crystal) then the 
principal indices of refraction are: 
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and the equation for the index ellipsoid becomes: 
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If the direction of the wave vector s now makes a certain angle θ to the optic z-axis then the 
indices of refraction for both the polarization components can be found from the intersecting 
plane of the ellipsoid perpendicular to the vector s. The coordinate frame is chosen such that the 
vector s is in the y-z-plane; because of the cylindrical symmetry around the z-axis this may be 
done without loss of generality. 

The dark plane of intersection forms a two-dimensional ellipse with two principal axes. The 
two allowed polarization directions are parallel to the axes of the ellipse: 
- one polarized along the x-axis; this wave has the polarization vector perpendicular to the optic 
axis and is defined as the ordinary wave; it transmits with index no.  
- one polarized in the x-y plane but perpendicular to s; this wave , with the polarization vector 
in the plane with the optic axis is called the extraordinary wave. 

For clarity the projection of the ellipsoid onto the y-z plane is shown separately. The 
polarization of the ordinary wave now points perpendicular to the paper. 

 

   
The polarization of the extraordinary wave is along the vector OA and the index of refraction is 
ne(θ). From the figure it follows that that for an arbitrary angle θ the relations hold: 
 
 z = ne(θ) sinθ [2.35] 
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 y = ne(θ) cosθ 
 
The equation of the ellipse (projection of the ellipsoid with x=0) is: 
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[2.36] 

 
Combining these results yields an equation for the index of refraction experienced by the 
extraordinary wave in a birefringent crystal: 
 

 ( ) 2
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2
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eoe nnn
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θ
+=  [2.37] 

 
So the index is dependent on the direction of propagation of the wave vector. In the special case 
of θ=0, when the wave vector is along the optical axis, there is no birefringence; both 
polarizations experience an index no. If the wave vector s is perpendicular to the optic axis two 
waves will travel through the medium with indices no and ne. The index of the extraordinary 
wave then reaches a maximum (for positive birefringence ne>no) or a minimum (for negative 
birefringence ne<no). 

Usually the refractive indices are represented with a Sellmeier equation of the form: 
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/1 νν −
+

−
+=

E
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Where A, B, C, D, and E are parameters to be derived from experiment. For the important 
crystals ADP and KDP the Sellmeier constants are: 
 
 ADP KDP 
 ne no ne no 

  
Table : adapted from ref 3 

 

 
2.3 THE NONLINEAR COEFFICIENT 
 
In the framework of Maxwell�s equations usually a factor χ(2)

ijk(ω1,ω2,ω3) is used as the second 
order non-linear susceptibility. Here χ(2) obeys the general rules for a 2nd rank tensor and it can 
be shown, that as a result of the free permutation of ωi there are 27 independent components. 
From the experimentalists view usually a non-linear coefficient d is used, that may be defined 
as: 

                                                 
3 Zernike, J. Opt. Soc. Am. 54, 1215 (1964). 
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 ( )2

2
1

ijkijkd χ=  [2.39] 

But is usually written in a contracted form to represent the nonlinear polarization as: 
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 [2.40] 

Note that sometimes the factors 2 are included in the dij coefficients, leading to some confusion. 
It can be shown (beyond the scope of these lectures; for further reading see ref.4) 

- Only 18 of the tensor elements in dij are independent; 
- In crystals with a center of symmetry all dij =0, consistent with Eq. [1.5]; 
- Of the 32 existing crystal classes, 21 are non-centro-symmetric; 
- There is one crystal class (Class 1: triclinic system) with the lowest symmetry and 18 
independent elements; in the figure shown the connected elements have the same value; 

  
 
- Additional symmetry is imposed by Kleinman�s conjecture: if the nonlinear polarization is of 
purely electronic origin and if the crystal is lossless in the spectral range of interest the i,j and k 
can be freely permuted and this gives rise to additional symmetry; 
- For quartz (belonging to crystal class 32) the d-matrix reads as (if Kleinman�s symmetry is 
imposed): 
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- For each symmetry class the effective nonlinear polarization can be derived for each type of 
phase-matching; a few examples are listed below (adapted from ref. 5). The important crystals 
ADP and KDP and their analogues belong to the point group 42m, and hence have tetragonal 
symmetry. 
 
 
 
 
 
 

                                                 
4 J.F. Nye, Physical Properties of Crystals, Oxford, 1960 
5 Zernike and Midwinter, Applied Nonlinear Optics, J. Wiley & Sons, 1973 
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Effective nonlinear coefficient deff: 
 
Class 32 with Kleinman symmetry without Kleinman symmetry 

Type I (e+e→o) d11cos2θsin3φ d11cos2θsin3φ-d14sin2θ 
Type II (e+o→e) -same- d11cos2θsin3φ+d14sinθcosθ 
Type I (o+o→e) d11cosθsin3φ d11cosθsin3φ 
Type II (e+o→o) -same- d11cosθsin3φ 

 
Class 42m with Kleinman symmetry without Kleinman symmetry 

Type I (e+e→o) d14cos2θsin2φ d14cos2θsin2φ 
Type II (e+o→e) -same- (d14+d36)sinθcosθcos2φ 
Type I (o+o→e) -d41sinθsin2φ -d36sinθsin2φ 
Type II (e+o→o) -same- -d14sinθsin2φ 
Note that not all processes indicated yield effective second harmonic power under all 
conditions. Of course phase-matching is required for a specific combination of wavelengths, 
and therewith the angles θ and φ become fixed at these values. Note also that the dij are material 
properties of the specific crystals. 
 
 
 
 
2.4 PHASE MATCHING IN BIREFRINGENT MEDIA 
 

In section 2.1 we have found that in isotropic media the phase matching condition ∆k=0 
cannot be obtained, because of the phenomenon of dispersion. In anisotropic media the 
ordinary and extraordinary waves can be mixed and phase matching can be obtained, because 
it is possible to "tune" the index of refraction of the transmitted extraordinary wave by varying 
the angle θ between the k-vector and the optical axis of the medium: 

 

 ( )
θθ

θ
2222 cossin eo

oe
e

nn
nnn
+

=  [2.42] 

 
In anisotropic media the effect of dispersion, i.e. the wavelength dependence of the index of 
refraction, is of course also present. As a result the indices on  and en  and therewith ( )θen  are a 
function of frequency of the incoming light.  

KDP is obviously a crystal with negative birefringence (ne<no). The dispersion curves for 
this material are also plotted in the following figure: 



 29 

  
The figure should be understood as follows. The two curves for no and ne represent the 
maximum and the minimum attainable index of refraction in the crystal, and the whole range in 
between the two curves covers the possible indices of refraction. 

Considering this wide range of possible indices, and particularly the tunability of the index 
by the setting of the optic axis, the phase matching relation ∆k=0 for second harmonic 
generation may be fulfilled in a crystal. This condition is met when: 

 
 ωω 2nn =  [2.43] 
 
Because of dispersion it will still not be possible to meet the conditions ωω 2

oo nn =  or 
( ) ( )θθ ωω

ee nn =2 , but in the case of a negatively birefringent crystal (ne< no) there will exist an 
angle θm for which the following condition can be met: 
 
 ( ) ωω θ ome nn =2  [2.44] 

 
Before solving in an algebraic way the equations in order to find the particular angle for 

which the phase matching condition is fulfilled, the so-called phase matching angle, we will 
first adopt a geometrical procedure to clarify the problem. The problem is that of a crystal that 
is birefringent and dispersive at the same time. The index surfaces for ordinary and extra-
ordinary rays can be drawn at both the frequencies ω and 2ω. So we have four different index 
surfaces as shown in the figure (for a negative birefringent crystal): 
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Note the interpretation of index surfaces: they are drawn such that the indices on  and ( )θen  are 
found at the crossings of the ellipsoids with the k-vector. 
The index surfaces for on at frequency 2ω (outward circle)  and for en  at frequency ω (inner 
ellipse) are shown as dotted curves, because they are not important for the phase matching 
problem in negatively birefringent media. The curves for on  at frequency ω and for en at 
frequency 2ω determine the phase matching angle. At the point where the circle of ω

on  crosses 
the ellipse of ω2

en  the phase matching condition is met. The relation then holds for the 
particular angle θm between the optical axis and the k-vector as shown in the figure. 

Algebraically the problem of finding the phase matching angle can also be solved. At 
frequency 2ω the equation for the index ellipsoid is: 

 

 ( )
( ) ( ) memo

oe
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nn

nnn
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cossin +
=  [2.45] 

 
In order to obtain phase matching this needs to equal ω

on . Thus we obtain an equation with an 
unknown variable θm and involving a sin2θm and a cos2θm function which may be solved for 
sin2θm: 
 

 ( ) ( )
( ) ( ) 2222

222
2sin −−

−−

−
−=

ωω

ωω

θ
oe

oo
m

nn
nn  [2.46] 

 
Let us now consider some of the physics behind the mathematical equations. Phase matching, 
so efficient frequency doubling, is achieved when a beam travels through a crystal under a 
particular angle θm between the k-vector and the optical axis. It should be noted that the angle 
θm is defined for propagation within the crystal; for all calculations (or experiments on finding 
the phase matching angle) starting from a ray impinging under a certain angle on a crystal 
surface refraction at the boundary has to be taken into account. Because of the dispersive effect 
on all three parameters in the above equation ( ω

on , ω2
on , and ω2

en ) the phase matching angle 
will be different for frequency doubling of different frequencies ω. It was assumed that the ray 
at frequency ω was an ordinary ray (so polarized perpendicular to the optical axis) while the 
second harmonic is an extra-ordinary ray (polarized in the plane of the optical axis). Thus we 
find that in this process the polarization of the second harmonic is perpendicular to the 
polarization of the fundamental. In this example we assumed that the crystal was negatively 
birefringent; the phase matching condition was found for an ordinary fundamental and an 
extraordinary second harmonic. Considering index surfaces of positively birefringent media 
will show that the phase matching condition is fulfilled for an extraordinary fundamental and 
an ordinary second harmonic. 

The phase matching condition for sum-frequency mixing was originally written as: 
 

 ∆k = k3-k1-k2 [2.47] 
 
The process of frequency doubling or second harmonic generation can also be understood as a 
process of sum-frequency mixing of an ordinary and an extraordinary wave at the same 
frequency within a crystal. In that case the phase matching relation ∆k=0 reduces to: 
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 ( ) ( )[ ]θθ ωωω
eoe nnn +=

2
12  [2.48] 

 
This relation may be fulfilled, for certain angles θm in negatively birefringent crystals. In 
positively birefringent crystals another condition holds: 
 

 ( )[ ]θωωω
eoo nnn +=

2
12  [2.49] 

 
In both cases ( )θω

en  and/or ( )θω2
en  may be expressed in terms of the four parameters ( )θω

en , 
ω
on , ω2

en , and ω2
on , and the equation may be solved to find the particular phase matching angle 

θm. It is obvious that the thus found phase-matching angle θm in the two different cases is 
different, although in both the processes the frequency is doubled. 

Commonly a distinction is made between these different Types of Phase-matching: 
 
 

TYPE I phase matching Eoω + Eoω →  Ee2ω negative birefringence 
 and Eeω + Eeω →  Eo2ω positive birefringence 
 
TYPE II phase matching Eoω + Eeω →  Ee2ω negative birefringence 
 and Eoω + Eeω →  Eo2ω positive birefringence 
 
 
 
2.5 OPENING ANGLE 
 
Consider Type I phase-matching and a negatively birefringent crystal. The phase-matching 
relation is: 
 

 ( )[ ] 02 2 =−=∆ ωω θω
oe nn

c
k  [2.50] 

which is satisfied for a certain angle θm. In order to evaluate a Taylor expansion around the 
optimum phase matching angle (θ-θm) the first derivative of ∆k with respect to θ is calculated: 
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 [2.51] 
so: 

   

dk

dθ θm
= −

ω
c
no

3
ne

−2 −no
−2( )sin 2θm

 [2.52] 
 
where in the last step it was used that ne(2ω)(θ)=no and the value of the angle was set at θ=θm.  
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So the spread in allowed k-values is proportional to the spread in angles around the phase 
matching angle θm: 
 

   
∆k=

2β
L

∆θ
 [2.53] 

 
with: 
 
   β ∝ sin2θm  [2.54] 
 
The power of the second harmonic generated thus becomes: 
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2 ∝
sin2 β θ − θm( )[ ]

β θ −θm( )[ ]2

 [2.55] 
 
This relation was verified in an experiment on frequency doubling in a KDP-crystal: 
For the particular example of a KDP crystal, with a certain thickness L=1.23 cm and index 
parameters it is found that the full spread in angles that allow for phase matching is 0.1o of 
angular variation. The concept of opening angle may be understood in different ways: 
- for a fixed wavelength λ, in a focused light beam the angular convergence angle should not 
exceed this 0.1o, otherwise the efficiency of the process will be reduced. 
- in case of a co-linear light beam, the wavelength spread ∆λ around a center wavelength λ is 
related to a spread in wave-vectors: 
 

 
λ
λ∆−=∆

k
k   [2.56] 

As a result only a limited bandwidth around the center wavelength is efficiently frequency 
doubled because of the opening angle. 

The experiment again (as in the experiment on the Maker fringes) proofs that phase 
matching plays a role in second harmonic generation. It is important to note that at θm=90o the 
first term in the Taylor expansion is zero. Then the second order term in the expansion has to 
be taken, and then: 
 
 ( )2θ∆∝∆k   [2.57] 
 



 33 

So a small spread in angle ∆θ will allow for a large spread in the wave-vector domain. Also the 
bandwidth that may be efficiently frequency doubled is larger. This effect at θm=90o is dubbed 
non-critical phase-matching. 
Note that the concept of angle tuning is particularly important for the frequency doubling of 
large bandwidth short pulse lasers. 
 
 
2.6 PHASE MATCHING BY ANGLE TUNING 
 

In the above we have seen that under certain conditions of polarization of incoming waves, 
vs the birefringence of the material phase matching can be achieved for second harmonic 
generation at specific wavelengths. The indices of refraction for ordinary and extraordinary rays 
for the LiIO3 crystal are given in the Table (from ref 6)  

 
With the method described in the preceding paragraphs the phase-matching angle for second 
harmonic generation is as a function of the fundamental wavelength (for type I phase 
matching). 
 

  
Fig.: Calculated phase matching angles for type I for SHG in LiIO3; obtained from ref7 

 
When using this crystal for frequency doubling of a scanning tunable laser, the angle θm has to 
be tuned, while scanning the fundamental. In general phase matching in a particular crystal can 
be achieved down to wavelengths λ(90o), where the angle reaches a value of θm=90o. In LiIO3 
the situation is different: it starts absorbing at 295 nm, and therefore SHG is not possible 
beyond fundamental wavelengths of 590 nm. 
                                                 
6 Nath and Haussuhl, Appl. Phys.Lett 12, 186 (1968) 
 
7 W. Ubachs, PhD Thesis, Nijmegen University 1986 
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2.7 PHASE MATCHING BY TEMPERATURE TUNING 
 

Before this point it was assumed that the indices of refraction are just dependent on the 
angles of k-vector and polarization of the transmitted wave in the crystal. In reality the indices 
will depend on all external influences that will influence the lattice spacings in the three 
dimensions of the crystal. In principle all four parameters ω

en , ω
on , ω2

en , and ω2
on  are dependent 

of the temperature. Qualitatively it may be understood that the phase-matching condition ∆k=0 
can be achieved by merely changing the temperature of the crystal. Of course the angle setting 
of θm will remain important. There is a class of crystals, similar to KDP, that is particularly 
suited for temperature tuning; moreover phase matching may be achieved at θm=90o.  
By changing the temperature both the conditions of: 

 
 ∆k = 0 and  θm=90o 

 
are fulfilled at different wavelengths. The figure shows the temperature tuning curves for two 
crystals: ADP and KDP. 

 

 
 
 
Temperature tuning has several advantages: 
a) The properties of walk-off are unimportant if phase matching is obtained at an angle of 
θm=90o. This situation is called non-critical phase matching. 
b) At this angle the ray travels along the optical axis and there is no effect of double refraction 
and optical activity in the medium. This makes temperature tuning very suitable for use in intra-
cavity phase-matching of SHG, because these side effects would additional losses to the lasing 
process. 
c) At θm=90o the first order expansion term in the Taylor series for the derivation of the 
opening angle, containing a factor sin2θm, disappears and we find that for non-critical phase 
matching: 
 
 ( )2θ∆∝∆k  [2.58] 
 
So at non-critical phase matching larger opening angles are allowed. 
d) At θm=90o the nonlinear coefficient deff is largest. 
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2.8 QUASI PHASE-MATCHING BY PERIODIC POLING 
 
In angle phase-matching some angles of propagation are not possible; hence some elements of 
the dij tensor element cannot be accessed. The underlying problem is that the phase of the 
second harmonic changes with respect to the fundamental, due to the different light speeds in 
the crystal: dispersion. In each coherence length, defined in [2.10], the nonlinear polarization 
wave is shifted in phase by π radians, and the relative phase slips by π/2. After the first 
coherence length, the phase has slipped into a regime where energy is lost from the field. The 
idea behind an alternative way of phase-matching is to adjust the phase of the non-linear 
polarization appropriately after each coherence length. Under those circumstances the non-
linear intensity will grow (monotonically), although less rapid as in case of perfect phase-
matching. This condition of quasi phase-matching (QPM) can be achieved in a so-called 
periodically poled crystal. 
 

  
 
Material segments with the optical axis alternating in reverse directions are stacked together. 
From the perspective of the propagating wave the segments are rotated by 180o to the effect that 
the phase shift built up in the first Lc is decreased again in the next Lc. The phase relation 
between the generated optical field and the time derivative of the driving nonlinear polarization 
for SHG are sketched in the figure. 
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Although this idea of QPM was conceived by Bloembergen, already in the early days of non-
linear optics, it is only through recent progress in crystal technology that such periodically 
poled materials can be grown. The period Λ of the crystal modulation is in most applications on 
the order of 10 µm. Technologically the growth of such materials does not proceed forming a 
stack of thin wafers. A more practical approach is to use ferro-electric crystals (LiNbO3 is an 
important one) forming regions of periodically reversed polarization domains by applying 
electric fields; these domains remain intact when the applied field is switched off. 
 
The most rapid growth of the second harmonic is obtained by changing the sign of the 
polarization (and thus the sign of the non-linear coefficient) every coherence length. This 
situation is illustrated in part (a) of the figure obtained from ref 8: 

  
 
 
Curve A represents the condition of perfect phase-matching over the length of the entire crystal. 
Curve C represents the case of phase-mismatch with a coherence length of phase-match of lc. 
Curve B1 represents the case where the polarization is flipped after every coherence length. In 
the lower part of the figure curve B3 represents third order QPM: every three coherence lengths 
the nonlinear coefficient is flipped. The harmonic yield is less in third order QPM, but the 
technological requirements are less strict in view of the larger domain structures, so it is useful 
in some conditions. It can be shown by using Fourier analysis, that a full polarization switch is 
not necessary: even a period modulation of the nonlinear coefficient already enhances the SHG 
output. 
 
The coupled wave equation can be written again as: 
 

 ( ) [ ]zkizdE
dz
d 'exp2 ∆−Γ=  [2.59] 

                                                 
8 M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quant. Electr. 28, 2631 (1992) 
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where Γ represent the usual factor cnEi 2

2
1 /ω=Γ . The second harmonic at the end of the 

sample L is then: 
 

 ( ) ( ) [ ]dzzkizdLE
L

'exp
0

2 ∆−Γ= ∫  [2.60] 

In the trivial case that ( ) effdzd =  and 0' =∆k  the second harmonic field is: 
 
 ( ) LdLE effΓ=2  [2.61] 
In the real space description the function d(z) can be assumed to consist of domains with effd±  
with sign changes at positions jz . Let kg  the sign and kl  the length of the kth domain, then 
[2.60] can be integrated to: 
 

 ( ) ( )[ ]1
1

2 'exp'exp
' −

=

∆−−∆−
∆
Γ

= ∑ kk

N

k
k

eff zkizkig
k
di

E  [2.62] 

 
with N the number of domains. The sign changes in a perfect structure occur at positions: 
 
 ( )k

k
ki ze 10,

'0 −=∆−  [2.63] 
where '0k∆  is the wave vector mismatch at the design wavelength, and for mth order QPM: 
 
 ck mklz =0,  [2.63] 
For a perfect structure, without phase errors at the boundaries the generated field yields: 
 

 L
m

dgiE effideal π
2

1,2 Γ≈  [2.64] 

We see that in an interaction with perfect mth order QPM, the effective non-linearity is reduced 
by a factor of πm/2  with respect to a conventional phase-matched interaction. 

Since the crystals have to be grown at specific poling periodicity Λ they match only a single 
wavelength. SHG at any other wavelength gives rise to a mismatch and reduced SHG output. 
Additionally the domain structure is never perfect, also giving rise to boundary mismatches. 
 
 
2.9 PUMP DEPLETION IN SECOND HARMONIC GENERATION 
 

The conversion efficiency for second harmonic generation was calculated in the 
approximation that the efficiency ηSHG <<1. In case of large conversion efficiencies other 
processes have to be taken into consideration also. In a generalized picture apart from the sum-
frequency process, in which a new frequency ω3 is generated, also reverse processes take place 
when the intensity at ω3 becomes large: 

 
 ω1 + ω2  →  ω3  
 ω3  - ω2  →  ω1  [2.65] 
 ω3  - ω1  →  ω2 
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We go back to the coupled wave equations and we define amplitudes Ai and coefficients αi: 

 i
i

i
i E

n
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ω
=  and 

i

i
i εµ

σα
0

=  [2.66] 

Then the coupled wave equations become the coupled amplitude equations: 
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dz
d ∆−∗−−= 23111 2

1 κα   
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 kzieAAiAA
dz
d ∆−−= 21333 2

1 κα  

where κ was defined as: 
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The terms proportional with the αi coefficients represent linear polarization effects, such as 
absorptions in the media. Some assumptions are made now: 
 
 αi = 0    so no absorptions 
 ω1 = ω2 for frequency doubling  
 ∆k = 0    a phase matched combination of waves (holds for all processes) 
 
Then: 

 ∗−= 131 AAiA
dz
d κ  

 2
13 2

1 AiA
dz
d κ−=  [2.69] 

 
In fact there is no field with amplitude A2, because of the degeneracy ω1 = ω2 the factor 1/2 
comes in the second equation. Now we choose A1(0) to be a real amplitude and we rewrite 
A3'=-iA3, then we obtain: 

 131 ' AAA
dz
d κ−=  

 2
13 2

1' AA
dz
d κ=  [2.70] 

 
We calculate: 
 

 ( )( )[ ] 0''42'2 3311
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2
1 =+=+ A

dz
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dz
dAzAA
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d  [2.71] 

 
so in the crystal (assuming no input at ω3): 
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If we consider: 
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µ ==  [2.73] 

 
and also that: 
 
 ibarii hNI ω∝  [2.74] 
 
We find that 2

iA  is proportional to the number of photons in the beam. So the fact that 
( ) ( )[ ]2

3
2
1 '2 zAzA +  = constant has the physical meaning that for every 2 photons taken away at 

the fundamental, there is one generated in the second harmonic beam. Energy is thus conserved 
because ω3 = 2ω1. 
The differential equation in A3' is: 
 

 ( ) ( )[ ] 0'20
2
1' 2

3
2
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with a solution: 
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So for the conversion efficiency we find: 
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If ( ) zA κ01 → ∞, then ( )zA '3 → ( ) 2/1/01A  and hence ( )2
3 ' zA  → ( ) ( )2

1 02/1 A , so the 
number of input photons will be converted into half the number of frequency doubled photons. 
The figure shows the deviation at high input powers from the quadratic behavior.  
Note that from this analysis it follows that conversion efficiencies larger than 50% are 
possible. 
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Chapter 3 
 

The optical parametric oscillator 
 
3.1 PARAMETRIC AMPLIFICATION 
 

Now we consider a non-linear medium with two co-linear incoming light beams; one high 
power at frequency ω3 (the pump beam), and a low power beam at frequency ω3 (the signal 
beam). The intense pump beam will amplify the signal beam under conditions of phase-
matching for the non-linear process: 

 
 ω3  → ω1 + ω2. [3.1] 
 
With the amplification of the signal beam a third beam at frequency ω2 is generated, the so-
called idler beam. Again we start from the coupled wave equations, derived above with some 
assumptions: 

- no losses, αi = 0, 
- ∆k = 0, a phase-matched combination of waves 
- similar definition of κ 

 

 
dA1

dz
= −1

2
iκA3A2

*
e

−i∆kz

 [3.2] 

   

dA2
*

dz
=

1
2
iκA1A3

*
ei∆kz

 [3.3] 
 
Also we assume that the pump intensity will not be depleted, so A3(z) = A3(0) and we define: 
 
 g = κA3 0( ) [3.4] 
 
The coupled amplitude equations reduce to: 
 

   

dA1

dz
= −

1
2
igA2

*

 [3.5] 

   

dA2
*

dz
=

1
2
igA1

 [3.6] 
 
With boundary conditions a small signal field at z=0, A1(0), and A2(0)=0 these differential 
equations may be solved to: 
 

 
A1(z) = A1(0)cosh gz

2
  
 

  
   [3.7] 

   
A2

* (z) = iA1(0)sinh
gz

2
  
 

 
  [3.8] 

 
For gz>0 a reasonable approximation is: 
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 A1(z)
2 = A2 (z)

2 ∝ egz [3.9] 
 
So both waves at frequencies ω1 and ω2 are found to grow with a gain factor g. It may be 
proven straightforwardly from the coupled amplitude equations (with the assumption that the 
αi=0) that: 
 

   
−
d

dz
A3A3

* =
d

dz
A1A1

* =
d

dz
A2A2

*

 [3.10] 
 
Where AiAi* is the photon flux of a wave, the physical meaning of this relation is that for each 
photon taken away from the pump beam, two photons are created: one at the signal frequency 
ω1 and one at the idler with ω2. This may also be expressed as the Manley-Rowe relation: 
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ω3

  
  
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 
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ω1
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 = ∆

P2

ω2
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  

  
  
 

 [3.11] 
 
 
3.2 PARAMETRIC OSCILLATION 
 

In the preceding paragraph we have seen that a pump beam at frequency ω3 can provide via a 
non-linear interaction in a phase-matched medium, simultaneous amplification of optical waves 
at the signal wave ω1 and the idler wave ω2; with the condition that ω3=ω1+ω2. In such a 
system there was found to be parametric gain. Parametric denotes here that the process depends 
on a parameter, namely the phase-matching condition ∆k=0. 

Placed inside an optical resonator the parametric gain will at some threshold pumping cause 
simultaneous oscillation at signal and idler waves. Similar to lasing operation in a resonator 
(where the gain is derived from a population inversion) the oscillation will start from noise 
photons. A device based on parametric gain in a resonator is called an optical parametric 
oscillator or in short OPO. 
 

  
 
We will first look at a threshold for oscillation. Such a threshold will be reached when the 
parametric gain equals the losses in the resonator. Under those conditions the coupled amplitude 
equations will be in steady state: 
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dA1

dz
=
dA2

dz  [3.12] 
 
so in steady state, with αi the absorption losses and g the parametric gain: 
 

 
− 1

2
α1A1 − 1

2
igA2

* = 0
 [3.13] 

 
1
2
igA1 −

1
2

α2A2
* = 0

 [3.14] 
 
This set of coupled linear equations has a nontrivial solution at this threshold if: 
 
 g2 = α1α2 [3.15] 
 
We may also conclude that above threshold oscillation will occur if: 
 
 g2 > α1α2 [3.16] 
 
 
3.3 TUNING OF AN OPO 
 

Parametric amplification and oscillation may be viewed upon as an inverse sum-frequency 
process, for which the same phase-matching conditions will hold; it is these phase-matching 
conditions that determine which frequencies ω1 and ω2 will be generated at a certain setting of 
the angle of the crystal with respect to the wave vector k3 of the pump beam. 

 
 ∆k = 0  → k3 = k1 + k2 [3.17] 
 
for co-linear beams the following relation must hold in order to achieve phase-matching: 
 
 n3ω3 = n1ω1 + n2ω2 [3.18] 
 
Of course the conservation of energy is a strict condition for frequency conversion in an OPO: 
 
 ω3 = ω1 + ω2 [3.19] 
 
Again, because of dispersion in any medium these relations can only be met under the special 
conditions of anisotropic crystals with a tunable index; and again we distinguish between Type I 
and II phase-matching conditions. For example: 
 ω1 and ω2 are ordinary waves with index, respectively n1o and n2o 
 ω3 is an extraordinary wave with index n3e(θ) 
So Type I phase-matched oscillation is obtained at ω1 and ω2 at a specific angle θ=θm, with the 
condition: 
 

   
n3
e θm( )=

n1ω1 +n2ω2

ω3  [3.20] 
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At each specific phase- match angle θm the OPO will produce a particular combination of two 
frequencies that obey the phase-matching condition. 

Next we consider what will happen if we rotate the angle θ of the crystal for an amount ∆θ; 
so θm → θm+∆θ. As the pump frequency ω3 is fixed at the phase-matched frequencies will 
change: 

 
 ω1 → ω1 + ∆ω1 [3.21] 
 ω2 → ω2 + ∆ω2 [3.22] 
 
because of energy conservation: ∆ω1=-∆ω2. All the indices of refraction will change: 
 
 n1 → n1 + ∆n1 
 n2 → n2 + ∆n2 [3.23] 
 n3 → n3 + ∆n3 
 
Note that the index at the pump frequency changes, because it is an extraordinary wave and the 
angle has been rotated; the index of the signal and idler wave change because of dispersion; so 
the changes in the indices are: 
 

 
∆n1 =

∂n1

∂ω1 ω1
∆ω1

 frequency dependence [3.24] 

   

∆n2 =
∂n2

∂ω2 ω2
∆ω2

 frequency dependence [3.25] 

   
∆n3 =

∂n3

∂θ θm
∆θ

 angle dependence [3.26] 
 
With these relations a new phase-matching condition has to be satisfied, although at a different 
angle θm+∆θ: 
 
 (n3+∆n3)ω3 = (n1+∆n1)(ω1+∆ω1) + (n2+∆n2)(ω2+∆ω2) [3.27] 
 
so: 
 n3ω3+∆n3ω3 = n1ω1+∆n1ω1+n1∆ω1+∆n1∆ω1+n2ω2+ω2∆n2-n2∆ω1-∆n2∆ω1 [3.28] 
 
Here ∆ω2=-∆ω1 was used. With use of the original phase-matching relation at θ=θm (underlined 
parts) and neglect of second order derivatives, such as ∆n1∆ω1, we solve for ∆ω1: 
 

 
∆ω1 =

ω3∆n3 −ω1∆n1 − ω2∆n2

n1 − n2  [3.28] 
 
Substituting the above relations in the equation for ∆ω1 gives: 
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ω3
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∆θ − ω1
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∂ω1
∆ω1 + ω2

∂n2

∂ω2
∆ω1

n1 −n2  [3.29] 
Solving ∆ω1: 
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∂θ
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ω3
∂n3
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n1 −n2( )+ ω1
∂n1

∂ω1
− ω2

∂n2

∂ω2

 

 
 

 

 
 

 [3.30] 
In the paragraph on the opening angle for phase-matched second harmonic generation the 
derivative dk/dθ was determined at the phase matched angle θm. Also k was written in terms of 
the index of refraction of an extraordinary wave ne(θ). Now we use this result for the derivative 
∂n3/∂θ: 
 

   

∂n3

∂θ θm
= −

1
2
no

3 ne
−2 ω3( )−no

−2 ω3( )[ ]sin 2θm

 [3.31] 
Finally we have obtained an equation for the angle dependence of the generated frequency of 
the signal wave as a function of the indices of refraction and their dispersion relations. 
 

 

∂ω1

∂θ
=

− 1
2
no

3 ω3( )ω3 ne
−2 ω3( )−no

−2 ω3( )[ ]sin 2θm

n1 −n2( )+ ω1
∂n1

∂ω1

− ω2
∂n2

∂ω2

 

 
 

 

 
 

 [3.32] 
In an experiment with an OPO, the parameters ω3 and therewith no(ω3), ne(ω3), are constant. If 
the indices of the medium are known, and their frequency dependence then the dependence of 
the frequency of the signal wave ω1 as a function of the angle θ may be calculated numerically, 
using the above equation. Such an angle tuning curve for an OPO based on a BaB2O4 crystal 
(also called BBO) is shown in the following figure. The wavelength of both the signal and the 
corresponding idler (energy conservation) at the particular easily accessible pump wavelength 
of 354.7 nm is shown. 
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Thus we find that such a device, an OPO based on the material BBO, and pumped by the UV-
output of a Nd-YAG laser, is a source for coherent radiation in the wavelength range 420-2500 
nm, this means the whole visible and near infrared part of the spectrum. (Wavelengths longer 
than 2.5 mm are absorbed in the BBO-material). And the tuning of such a device may be simply 
arranged by rotating the crystal over an angle from 22 to 33 degrees. 
 
 
3.4 BANDWIDTH  OF THE OPO 
 

As a consequence of the opening angle associated with a sum-frequency mixing process 
even under the conditions of a perfectly parallel pump beam at ω3 with an infinitely narrow 
bandwidth ∆ω3 the signal and idler waves will have certain widths ∆ω1 and ∆ω2 in the 
frequency domain. The opening angle corresponds to a wavelength range that may be 
determined from the analysis in the preceding paragraph. Particularly at the degeneracy point, 
i.e. where signal and idler waves have the same frequency, a small variation in the tuning angle 
corresponds to a large frequency spread; so the bandwidth will be very large here.  

An additional broadening effect on the output of an OPO is caused by the pump beam 
divergence. Because of a spatial spread of k-vectors non-co-linear phase-matching also occurs. 
This will cause an increase of the opening angle and therewith an increase of bandwidth. 

For the example of an OPO based on a BBO-crystal the linewidth for the signal has been 
calculated for two different beam divergencies of 0.1 mrad and 0.5 mrad and a pump 
wavelength of 354.7 nm. Note that the bandwidth of the pump laser is not taken into account. 
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3.5 PUBLIC DOMAIN SOFTWARE 
 
Calculations of phase-matching properties and effective non-linear coefficients, particularly in 
the case of bi-axial crystals are quite intricate. A large number of research papers on this topic 
have been published as well as several textbooks.  

A sophisticated computer program to calculate all relevant nonlinear properties has been 
designed by A.V. Smith of Sandia National Laboratories, Albuquerque, New Mexico. The 
program �SNLO� has been made publicly available at: 

 
http://www.sandia.gov/imrl/XWEB1128/xxtal.htm 
 

and is regularly updated for new materials and new measurements of e.g. refractive indices. It is 
equipped with plotting routines to produce phase-matching curves for OPO�s as well as 
effective non-linear coefficients deff for all processes and crystals. It also includes the use of 
periodically poled materials and the construction of resonators for intra-cavity frequency 
conversion. 

A typical display for the calculation of phase-matching angles for an OPO pumped at 350 
nm is shown for the CLBO crystal. 
 
 

 

http://www.sandia.gov/imrl/XWEB1128/xxtal.htm
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Chapter 4 

 
Quantum theory of the nonlinear susceptibility 

 
4.1 SCHRöDINGER EQUATION; PERTURBATION THEORY 
 

Similar to Chapter 2 we adopt Schrödingers equation as a starting point for a derivation of 
nonlinear susceptibilities. Again this treatment, based on the properties of the atomic wave 
function will have a restricted validity. Particularly for the relaxation processes upon resonant 
excitation the outcome will lack validity and a more complex density matrix formalism may be 
used for a proper description. Note also that the present description is semi-classical; the 
electromagnetic field is not quantized. It is assumed that all properties of the atoms can be 
described in terms of the wave function, which is a solution to the time-dependent Schrödinger 
equation: 
 

 
ih

∂Ψ
∂t

= � H Ψ
 [4.1] 

 
where H�  is the Hamilton operator that may be written as: 
 

   
� H = � H 0 + � V t( ) [4.2] 

   
� V t( )= − � µ ⋅E t( ) [4.3] 

   
E t( )= E ωn( )e−iωnt

n
∑

 [4.4] 
 
� H 0  represents the Hamiltonian for a free atom, ( )tV�  the interaction of the atom with the external 

electromagnetic field E(t), which is written in an expansion of frequency components. In order 
to solve [4.1] in terms of a perturbation expansion the Hamiltonian is written: 
 

   
� H = � H 0 + λ � V t( ) [4.5] 

 
where λ is a continuously varying parameter, and a solution of the wave function is seeked as a 
power series: 
 
 ( ) ( )( ) ( )( ) ( )( )+Ψ+Ψ+Ψ=Ψ t,t,t,t, 2210 rrrr λλ  [4.6] 
 
Now a solution is required for every value of λ and all terms in λN satisfy the equation 
separately. When the wave function [4.6] is inserted in [4.1] a set of equations is obtained: 
 

   
ih

∂Ψ 0( )

∂t
= � H 0Ψ 0( )

  

   
ih

∂Ψ N( )

∂t
= � H 0Ψ N( ) + � V Ψ N −1( )

 , N=1,2,3, .. [4.7] 
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We assume that initially the atom is in its ground state |g>, represented by a solution of 0H� : 
 

 ( )( ) ( ) 






 −=Ψ
h

tiEgexput, g
0 rr  [4.8] 

The energy eigenfunctions for the free atom form a complete set, and this set is now used as a 
basis for the description of the higher order wave functions: 
 
 ( )( ) ( )( ) ( ) tiNN e ω−∑=Ψ rr gp utat,  [4.9] 

 
The amplitude ( )( )ta N

p  gives the probability that up to N-th order in the perturbation the atom is 
in the eigenstate |p> at time t. Inserting [4.9] into wave equation [4.7] a set of equations for the 
amplitudes is found: 
 

 ( ) ( ) ( ) ( ) ti
p

p

Nti
p

p

N pp ee
t

ih ωω −−− ∑∑ =
∂
∂ rr uV�aua 1

pp  [4.10] 

 
The left side of [4.10] is multiplied by um* and through the use of the ortho-normality relation: 
 

   um
*∫ und

3r= δmn  [4.11] 
 
dynamical equations for the probability amplitudes, similar to [2.15] and [2.16] follow: 
 

 

∂am
N( )

∂t
=

1
ih

ap
N −1( ) � V mpe

iωmpt

p
∑

 [4.12] 
 
where the definitions are used: 
 

   
� V mp = um

� V un = um
*∫ � V und

3r
 [4.13] 

 ωmp = ωm − ωp [4.14] 
 
Note that the derivation is exactly the same as in Chapter 2, but now for a multi-level system. If 
the amplitude up to order N-1 is determined Eq. [4.12] can be used straightforward to calculate 
the amplitude of order N through integration: 
 

 
am
N( ) =

1
ih

dt'
−∞

t
∫ � V mp t'( )ap

N −1( )
t'( )eiωmpt'

p
∑

 [4.15] 
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4.2 CALCULATION OF PROBABILITY AMPLITUDES  
 

Equation [4.15] in fact represents a set of dynamical equations, from which the probability 
amplitudes up to all orders may be derived. The resulting wave functions then govern the 
behavior of the atoms under influence of the radiation field. As a starting point we assume that 
the atom is initially in the ground state, so: 
 

   
ap

0( ) = δpg [4.16] 
 
This delta function is now inserted in the integral equation [4.15]. Following the above 
definitions we set: 
 

   

� V mp t'( )= − ump
k
∑ ⋅E ωk( )e−iωkt'

 [4.17] 
 
and the transition dipole moment: 
 

 ump = um
*∫ � µ upd

3
r [4.18] 

 
Now the integral [4.15] is easily evaluated, and when it is assumed that at t=-∞ there is no 
contribution the following result follows: 
 

 
am

1( ) = 1
h

umg ⋅E ωk( )
ωmg − ωk

e
iωmg −ωk( )t

k
∑

 [4.19] 
 
Now when the first order perturbation amplitude is found the second order can be derived from 
integrating Eq. [4.15] once more: 
 

 
an

2( ) =
1
h

unm ⋅E ωl( )[ ]
ωng− ωk − ωl( )m

∑
umg ⋅E ωk( )[ ]
ωmg − ωk( ) e

iωng−ωk−ωl( )t
kl
∑

 [4.20] 
 
The same procedure once more yields the third order amplitudes: 
 

  

as
3( ) =

1
h

usn⋅E ωr( )[ ]
ωsg− ωp− ωq − ωr( )mn

∑
unm ⋅E ωq( )[ ]

ωng− ωp− ωq( )
umg ⋅E ωp( )[ ]
ωmg − ωp( )pqr

∑
 

 ×e
iωsg−ωp−ωq−ωr( )t [4.21] 

 
With this derivation of the probability amplitudes we also have obtained the time-dependence of 
the wave functions under the influence of the external field, i.e. the response of the medium up 
to third order. The susceptibility functions representing this response will now be evaluated. 
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4.3 FIRST ORDER SUSCEPTIBILITY 
 

In the preceding paragraph the wave function of the system is determined. In the perturbation 
expansion λ is set at 1, then Ψ follows through Eq. [4.6] and [4.9]. The expectation value of the 
electric dipole moment is given by: 
 

   
� p = Ψ � µ Ψ  [4.22] 

 
The lowest order contribution to this dipole moment, i.e. the one linear in the field amplitude is 
then: 
 

   
� p 1( ) = Ψ 0( ) � µ Ψ 1( ) + Ψ 1( ) � µ Ψ 0( )

 [4.23] 
 
The wave function in 0-th order is given by [4.8] and in 1-st order by [4.9], after inserting the 
first order amplitude, calculated in [4.19]. Substituting these results then yields: 
 

   

� p 1( ) =
1
h

µgm µmg ⋅E ωp( )[ ]
ωmg − ωp

e
−iωpt+

µmg ⋅E ωp( )[ ]* µmg
ωmg

* − ωp

e
iωpt

  

 
 
 

 

 
 
 m

∑
p
∑

 [4.24] 
 
This equation involves a summation over all positive and negative field frequencies. Moreover 
we have allowed the possibility of complex frequencies (see below). In the second term of 
[4.24] the field frequency is replaced by its negative counterpart, which is allowed because all 
possible frequency combinations appear in the summations. For negative frequencies [4.40] is 
applied. Then it is found: 
 

   

� p 1( ) =
1
h

µgm µmg ⋅E ωp( )[ ]
ωmg − ωp

+
µmg ⋅E ωp( )[ ]µmg

ωmg
* + ωp

  

 
 
 

 

 
 
 e

−iωpt

m
∑

p
∑

 [4.25] 
 
This result can be used for the calculation of the linear susceptibility. The macroscopic 
susceptibility is: 
 

   

� P 1( ) = N � p 1( ) = P 1( ) ωp( )
p
∑ e

−iωpt

 [4.26] 
 
where the last part is an expansion of the polarization in Fourier components. Note that the 
polarizations as derived above have a vector character. Eq. [4.25] involves a dot product of the 
electric dipole moment and the electric field vector and the resulting scalar is then multiplied by 
the dipole moment, a vector. If the linear susceptibility is defined as follows: 
 

   

Pi
1( ) = χij

1( )
j
∑ Ej ωp( )

 [4.27] 
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an expression for the linear susceptibility is found: 
 

   

χij
1( ) ωp( )=

N

h

µgm
i µmg

j

ωmg − ωp
+

µgm
j µmg

i

ωmg
* + ωp

  

 
  

  

  
  

m
∑

 [4.28] 
 
The second term is called the anti-resonant contribution that is usually negligible. If g denotes 
the ground state it can never become resonant. In the figure below the contributions to the linear 
susceptibility are represented in a so-called energy diagram. 
 

  
 Fig.: The resonant and anti-resonant contributions to the linear susceptibility 
 

The frequencies formally represent a complex quantity in above expressions. If the 
frequencies are written as: 
 

   
ωmg = ωmg

0 −i
Γm
2  [4.29] 

 
where ω0 is a real transition frequency and Γ the population decay rate of the upper level |m>. 
This inclusion of damping only accounts for the phenomena that are related to population 
effects and not to dephasing processes that are not accompanied by transfer of population. In 
other terms: [4.29] only describes T1 processes and not T2 processes (in the language of NMR) 
 
 
 
4.4 SECOND ORDER SUSCEPTIBILITY 
 

Now that the wave function Ψ is known up to all orders of N, through the description in 
temrs of dynamical amplitudes [4.19-4.21] the higher order polarization terms can be gathered. 
Including all terms that contain a second order contribution in the applied electric field the 
second order polarization can be written: 
 

   
� p 2( ) = Ψ 0( ) � µ Ψ 2( ) + Ψ 1( ) � µ Ψ 1( ) + Ψ 2( ) � µ Ψ 0( )

 [4.30] 
 
Inserting the wave function and amplitudes then gives an expression: 
 

 
� p 2( ) = 1

h2 (
µgn µnm ⋅E ωq( )[ ] µmg ⋅E ωp( )[ ]

ωng− ωp− ωq( )ωmg − ωp( ) e
−iωp+ωq( )t

mn
∑

pq
∑

 

   

+
µng⋅ E ωq( )[ ]* µnm µmg ⋅E ωp( )[ ]

ωng
* − ωq( )ωmg − ωp( ) e

−iωp−ωq( )t
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+
µng⋅ E ωq( )[ ]* µmn ⋅E ωp( )[ ]* µmg

ωng
* − ωq( )ωmg

* − ωp− ωq( ) e
−iωp+ωq( )t

 [4.31] 
Again by replacing -ωq by ωq in the second term, which is allowed because the summation over 
p and q are independent, the equation may be written as: 
 

   

� p 2( ) =
1
h2

µgn µnm ⋅E ωq( )[ ] µmg ⋅E ωp( )[ ]
ωng− ωp− ωq( )ωmg − ωp( )

 
 
 

  mn
∑

pq
∑ +

µgn ⋅E ωq( )[ ]µnm µmg ⋅E ωp( )[ ]
ωng

* + ωq( )ωmg − ωp( )  
 

   

+
µgn ⋅E ωq( )[ ] µnm ⋅E ωp( )[ ]µmg

ωng
* + ωq( )ωmg

* + ωp + ωq( )
 
 
 

  
e

−iωp+ωq( )t

 [4.32] 
If now, similar to Eq. [4.26] the second order polarization is defined and written in a Fourier 
series expansion: 
 

   

� P 2( ) = N � p 2( ) = P 2( ) ωp( )
p
∑ e

−iωpt

 [4.33] 
Along the same lines as in [4.27] a second order susceptibility χ(2) is defined through: 
 

 
Pi

2( ) = χiijk
2( ) ωp + ωq,ωp,ωq( )Ejωq( )Ek ωp( )

pq( )
∑

jk
∑

 [4.34] 
then an expression for this second order nonlinear susceptibility follows in a straightforward 
manner: 

 
χijk

2( ) ωp + ωq,ωq,ωp( )= N

h2 ℑ I
µgn
i µnm

j µmg
k

ωng− ωp − ωq( )ωmg − ωp( )
 
 
 

  mn
∑

  

   

+
µgn
j µnm

i µmg
k

ωng
* + ωq( )ωmg − ωp( )

  

+
µgn
j µnm

k µmg
i

ωng
* + ωq( )ωmg

* + ωp+ ωq( )
 
 
 

   [4.35] 
Here the expression is somewhat simplified by the inclusion of the so-called intrinsic 
permutation operator ℑ I. Frequencies ωp and ωq are to be permuted and the contributions 
included in the expression for χ(2). Cartesian indices i and j have to be permuted with these 
fields. Eq. [4.35] is written in this form to ensure that the resulting expression indeed obeys the 
condition of intrinsic permutation symmetry. Thus 6 terms appear in the expression for χ(2); 
with the use of the permutation operator χ(2) may be written as a sum of three terms that can 
each be expressed as an energy diagram. 
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4.5 THIRD ORDER NONLINEAR SUSCEPTIBILITY 
 

The procedure for the derivation of the third order nonlinear susceptibility is exactly similar 
to the derivation of the second order, shown above. First the polarization is defined: 
 

 
� p 3( ) = Ψ 0( ) � µ Ψ 3( ) + Ψ 1( ) � µ Ψ 2( ) + Ψ 2( ) � µ Ψ 1( ) + Ψ 3( ) � µ Ψ 0( )

 [4.36] 
 
where terms up to the third order in the field are retained. Evaluation yields: 
 

  

� p 3( ) =
1
h3

µgν µνn ⋅E ωr( )[ ] µnm ⋅E ωq( )[ ] µmg ⋅ E ωp( )[ ]
ωνg− ωr− ωq− ωp( )ωng− ωq− ωp( )ωmg − ωp( )

 
 
 

  mnν
∑

pqr
∑

×e
−iωp+ωq+ωr( )t

 

 

   

+
µνg ⋅E ωr( )[ ]*µνn µnm ⋅E ωq( )[ ]µmg ⋅E ωp( )[ ]

ωνg
* − ωr( )ωng− ωq− ωp( )ωmg − ωp( )

  ×e
−iωp+ωq−ωr( )t

 
 

   

+
µνg ⋅E ωr( )[ ]* µnν ⋅ E ωq( )[ ]* µnm µmg ⋅E ωp( )[ ]

ωνg
* − ωr( )ωng

* − ωr− ωq( )ωmg − ωp( )
  ×e

−iωp−ωq−ωr( )t
 

 

   

+
µνg ⋅E ωr( )[ ]* µnν ⋅E ωq( )[ ]* µmn ⋅ E ωp( )[ ]* µmg

ωνg
* − ωr( )ωng

* − ωr− ωq( )ωmg
* − ωr− ωq − ωp( )

  
×e

−iωp+ωq+ωr( )t 
 
  

  [4.37] 
 
Replacing negative frequencies by their positive counterparts and making use of [4.40] yields: 
 

   

� p 3( ) =
1
h3

µgν µνn ⋅E ωr( )[ ] µnm ⋅E ωq( )[ ] µmg ⋅ E ωp( )[ ]
ωνg− ωr− ωq− ωp( )ωng− ωq− ωp( )ωmg − ωp( )

 
 
 

  mnν
∑

pqr
∑

 
 

  

+
µgν ⋅E ωr( )[ ]µνn µnm ⋅E ωq( )[ ]µmg ⋅ E ωp( )[ ]

ωνg
* + ωr( )ωng− ωq− ωp( )ωmg − ωp( )

  

+
µgν ⋅E ωr( )[ ] µνn ⋅E ωq( )[ ]µnm µmg ⋅ E ωp( )[ ]

ωνg
* + ωr( )ωng

* + ωr+ ωq( )ωmg − ωp( )  

  

   

+
µgν ⋅ E ωr( )[ ] µνn ⋅E ωq( )[ ] µnm ⋅E ωp( )[ ]µmg

ωνg
* + ωr( )ωng

* + ωr+ ωq( )ωmg
* + ωr+ ωq+ ωp( )

 
 
 

    
×e

−iωp+ωq+ωr( )t 
 
  [4.38] 

 
Again defining the macroscopic nonlinear polarization and expanding in Fourier components: 
 

   

� P 3( ) = N � p 3( ) = P 2( ) ωs( )
s
∑ e−iωst

 [4.39] 
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Writing the nonlinear third order polarization as a function of a third order nonlinear 
susceptibility χ(3): 
 

 
Pk

3( ) ωp+ ωq + ωr( )= χkjih
3( ) ωσ,ωr,ωq,ωq( )Ej ωr( )Eiωq( )Eh ωp( )

pqr( )
∑

hij
∑

 
[4.40] 

 
giving an expression for χ(3): 
 

   
χkjih

3( ) ωσ ,ωr,ωq,ωp( )=
N

h3 ℑ I
mnν
∑

 
  

   

×
µgν
k µνn

j µnm
i µmg

h

ωνg− ωr− ωq −ωp( )ωng− ωq −ωp( )ωmg − ωp( )
 
 
 

   

   

+
µgν
j µνn

k µnm
i µmg

h

ωνg
* + ωr( )ωng− ωq − ωp( )ωmg −ωp( )

 [4.41] 

   

+
µgν
j µνn

i µnm
k µmg

h

ωνg
* + ωr( )ωng

* + ωr+ ωq( )ωmg − ωp( )
 

   

+
µgν
j µνn

i µnm
h µmg

k

ωνg
* + ωr( )ωng

* + ωr+ ωq( )ωmg
* + ωr+ ωq+ ωp( )

 
 
 

  

 
where again the intrinsic permutation operator is used. Eq. [4.41] contains 4 terms but if the 
complete expression for χ(3) is written by evaluating ℑ I then it actually contains 24 terms. 
Eq.[4.41] can also be viewed in terms of energy diagrams as displayed in the figure. 
 

  
 Fig.: Locations of the resonances of each term in the expression [4.41] for the third-order susceptibility. 

 
The contents of this chapter are adapted from ref. 9 

                                                 
9 R.W. Boyd, Nonlinear Optics, Academic Press 1992 
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Chapter 5 
 

Coherent Raman Scattering in Gases 
 
5.1.  THIRD ORDER NONLINEAR SUSCEPTIBILITY 
 

In general, when no external fields are applied, the rule of inversion symmetry holds for 
gaseous media and thus all even order susceptibility tensors, as proven in Ch. 1, have zero 
elements: 

 
 ( ) 02 =nχ  [5.1] 
 
and as a consequence all even orders of the non-linear polarization cancel: 
 
 ( ) 02 =nP  [5.2] 
 
Thus the first term of importance, which rules the non-linear optical behavior of gases, is the 
one of third order (in SI units): 
 
 ( )EEEP 3

0χε=NL  [5.2] 
 
Here χ(3) is a material property that governs the nonlinear response of a medium and all 
nonlinear processes occurring in that medium. It is therefore important to notice some aspects of 
χ(3), even before starting a treatment of specific nonlinear processes. 
 
1) A general expression of the third order nonlinear susceptibility was derived in Ch. 4. This 
expression consists of different terms, all having a different functional dependence on the input 
frequencies, the transition dipole moments describing the interaction matrix element for a single 
wave with quantum states of the medium, and the so-called resonance denominators. Perhaps 
most important are these resonance denominators that are the origin of resonance enhancement. 
Because the third order nonlinear processes are generally weak the resonance processes are 
usually dominant. 
 
2) χ(3) is a fourth rank tensor; so in the most general sense it contains 81 independent elements 
written as χ(3)ijkl; for the specific case of an isotropic medium there are only 3 independent 
elements. In cases where all incident electric field vectors are chosen linear and parallel χ(3) 

may be considered as a scalar function. 
 
3) The generation of light by nonlinear optical processes is fully governed by the third order 
nonlinear susceptibility χ(3). Of course this holds in the approximation that the higher order 
contributions, like the ones proportional to χ(5), may be neglected. Furthermore the linear 
processes, governed by χ(1), such as diffraction and absorption will play an important role in the 
propagation of input waves and the newly generated waves.  
 
A distinction may be made between two ways in which the nonlinear susceptibility χ(3) may be 
involved in the generation or amplification of waves. These are discussed in 5.1.1 and 5.1.2. 
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5.1.1 NON-LINEAR GAIN PROCESSES 
 
Processes in which there occurs a direct coupling of waves, where one of the waves already 
present at the input is amplified with a certain gain factor. An example is the production of 
stimulated Stokes (Raman) radiation, where it is not even necessary that a strong light beam is 
present at the input; a source of Stokes noise-photons (always present of course) will do. 
Characteristic for these types of processes is that the intensity of the nonlinearly generated (or 
amplified) light beam is dependent on Imχ(3). In case this Imχ(3) is negative, there is effective 
gain in the medium. These processes will be called nonlinear gain processes. 
 
 
5.1.2 FOUR WAVE-MIXING PROCESSES 
 
b) Processes in which input waves of three different frequencies (in degenerate cases: only two 
or even one) effectively mix to generate a new wave at a different frequency. In that case the 
description is as follows. A polarization is generated at a new frequency ωs: 
 
 ( )

321
3

0 EEEP χε=NL  [5.4] 
 
Inserting this polarization as a source terms into Maxwell's Wave Equation yields that a new 
wave at a certain modulation frequency is generated, proportional to this PNL: 
 
 NLPE ∝4  [5.5] 
 
And we find that the intensity of this wave is proportional to: 
 

 ( ) 2322
4 χ∝∝= NLNLI PE  [5.6] 

 
These types of processes, that depend on the absolute square of the non-linear susceptibility are 
called Four-Wave-Mixing processes. 
 
 
5.2 SPONTANEOUS RAMAN SCATTERING 
 

Raman scattering is a two-photon linear inelastic light scattering process. The elastic 
counterpart is the well-known Rayleigh scattering process. In spontaneous Raman scattering the 
light is emitted in random directions (although for polarized light there may be preferred 
directions, depending also on the molecular mode). In Raman scattering an incoming photon 
with energy 1ωh  is scattered by a molecule to an outgoing photon with energy 2ωh , which is 
different from 1ωh . In principle the incident frequency is not resonant with the medium. The 
difference in energy is absorbed or released by internal modes in the molecule, such as 
vibrational or rotational modes. The process in which energy is absorbed (red shifted photon 
produced) is called a Stokes process, whereas it is called Anti-Stokes in case of energy release 
(blue shifted photon produced).  

For Raman processes in molecules specific selection rules are observed. First of all the parity 
of initial state and final state is the same, such as is always the case in a two-photon process. In 
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polyatomic molecules therefore only specific vibrational modes can be excited, that conserve 
the symmetry. In diatomic molecules there is no restriction on symmetry, as there is only a 
single symmetric vibration. Usually only modes ∆v=1 are excited, although extremely weak 
overtone modes have been observed in spontaneous Raman scattering. For rotations the 
selection rules ∆J=-2, ∆J=0 and ∆J=+2 apply. Purely rotational (then the ∆J=0 transitions form 
the Rayleigh peak) and rovibrational excitations are possible. Below a schematic energy 
diagram is displayed for a purely rotational Raman spectrum, taken from ref 10. 

 

  
 
 
5.3 STIMULATED RAMAN SCATTERING 
 

In spontaneous Raman scattering all Raman modes are excited at the same time and all 
frequencies are generated simultaneously. In stimulated Raman scattering one of these new 
fields is enhanced, similar as a particular mode in a laser is amplified. As a result a directional 
beam with high coherence is produced, with great similarities to a laser beam. 

We go back to the Maxwell Wave equation that was derived in the general section on non-
linear optics and we assume that the medium is nonconductive (σ=0) and non-magnetic (µ=1): 
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∂−∇ µµεε  [5.7] 

 
It is important to realize that this equation holds for a specific frequency ω, and in fact it should 
be considered for each frequency component of a Fourier decomposition of the frequency 
dependence of the waves; the index i refers to a specific frequency component. For each 
combination of three frequencies that add up to ω there is a corresponding term in the non-
linear polarization. In fact the nonlinear polarization PNL couples the waves of different 
frequencies, in this case the pump wave and the Stokes wave. The resonant terms (where two 
frequencies match with the Raman shift of the medium) are large, so all combinations of 
frequencies at resonance will be considered. Some simplifying approximations will be made 
now in order to find physical solutions: 
a) one dimensional plane waves, for input and generated frequencies 

                                                 
10 G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand 1950 
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b) the concept of different orientations of the polarization vector is dropped 
c) the slowly varying amplitude approximation is assumed again 
d) the intensity of the pump is considered constant (no pump depletion) 
e) the stationary limit or the steady state approximation 
 
One of the frequency components will be written as: 
 
 ( ) ( ) ( )tiett ωω −⋅= rkrArE ,,,  [5.8] 
 
where k points in the direction of propagation of the wave (the wave vector). We then find: 
 
 ( )[ ] ( )tieki ω−⋅−∇⋅+∇=∇ rkAAkAE 222 2  [5.9] 
 
The energy transfer among waves is usually insignificant over distances of the order of their 
wavelengths and therefore we expect the variation of the amplitude to be small over one 
wavelength (slowly varying amplitude approximation): 
 
 ( )AkA ∇⋅<<∇ 2  [5.10] 
 
For the time derivative we find: 
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And we assume that the variation of the amplitude in time is slow compared to the frequency ω: 
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∂ ω2

2

 [5.12] 

 
The non-linear polarization PNL is a perturbation in the wave equation and it is a small quantity 
compared to εrε0E, so not only the second but also the first time derivative of its amplitude can 
be ignored and only the term -ω2PNL is retained.  

Now we turn to the approximation of the stationary limit. On some typical timescale the 
stimulated Raman scattering process may be considered as a stationary process, even though the 
physical process is induced with pulsed lasers. The typical time scale is related to the relaxation 
time of the excitation, and this is again related to the characteristic linewidth for stimulated 
Raman scattering. For hydrogen these numbers are ∆ω=0.01 cm-1 and TR=1.7 ns; verify that 
these numbers are related through the Fourier transform. So for pulsed lasers with time 
durations of 5 ns the steady state limit is still valid. So we neglect the term with 2iω∂/∂t A. 
Furthermore for εr we take the imaginary part ε"r. Thus we obtain the coupled amplitude 
equation for stimulated Raman scattering; 
 
 ( ) ( )tiNL

r eii ωωµωµεε −⋅−−=+∇⋅ rkPAAk 2
0

2
00"2  [5.13] 

 
For wave propagation in one direction along a z-axis this reduces to: 
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 ( ) ( ) ( ) ( )tiNL
SSS

SSei
dr
d ωβα −⋅−=+ rkrPrArA  [5.14] 

 
and with nω is the index of refraction at frequency ω: 
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5.4 FIRST STOKES GENERATION 
 

It is necessary for a description to restrict the couplings to a few waves only. Consider the 
case where only the laser frequency and the so-called first Stokes are important. Assume the 
laser beam of constant intensity and propagating along the z-axis. Only Eq. [5.14] for the Stokes 
intensity remains to be solved. The growth of the Stokes beam depends on the attenuation 
constant α and the imaginary part of the nonlinear polarization. This nonlinear polarization 
consists of two terms: 
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where 2

PA  and 2
1SA  are the intensities of pump and first Stokes respectively. χ1 is resonant 

at ωS1-ωP, while in χ2 no combination of frequencies is in resonance. χ2 is real and only 
modifies the refractive index. These nonlinear polarizations are inserted in the coupled equation 
[5.14] and then the phase factors all cancel giving: 
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The solution to this equation depends on the input intensity at ωS1: 
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The real part of χ1 and χ2 only modify the refractive index, so a phase shift is introduced. A 
new wave at the Stokes frequency is built up if there is somehow some initial amplitude at the 
Stokes frequency and if the first exponential has a positive value. Then the imaginary part of χ1 
must be negative. Then a gain coefficient for stimulated Raman scattering may be defined as: 

 

 ( )3
1

2
0 Im χβε Pg A−=  [5.19] 

 
Of course the gain g must also be larger than the losses α, similar to the condition in a laser. 
A very important point for the occurrence of Stimulated Raman scattering is the requirement 
that the imaginary part of the relevant term in χ(3) is negative. In the figure the nonlinear Raman 
susceptibilities are displayed: 
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Note that at the Anti-stokes frequency the imaginary part of the χ(3)-term, which is negative for 
Stokes generation, is positive for Anti-Stokes generation. Therefore the term: 
 
 ( )( )11

3 ,;; ASPPAS ωωωωχ −−  [5.20] 
 
cannot give rise to the generation of an Anti-Stokes beam in a similar way as it generates a 
Stokes beam. Stimulated Anti-Stokes can be produced through other nonlinear coupling 
mechanisms, for example through the term: 
 
 ( )( )11

3 ,;; SPPAS ωωωωχ −−  [5.21] 
 
Via this and also other terms stimulated Anti-Stokes beams can be efficiently generated. Note 
however that in these processes phase-matching plays a role. 

 
Verify that all exponentials containing frequencies have cancelled because of conservation of 

energy. Because the exponentials with the wave vectors have cancelled as well in the derivation 
there is in principal no preferential (or phase-matched) directionality for amplification of the 
first Stokes beam. But of course it will be amplified in the volume of the laser beam. The profile 
of the generated radiation will therefore resemble the profile of the incident pump beam. This 
process of First Stokes generation is a non-phase-matched or a non-parametric nonlinear 
optical process. 

 
Rather high conversion efficiencies can be obtained for first Stokes generation. As soon as 

S1 reaches high enough intensities it can act as a pump source to produce S2 radiation and so 
on. In this way higher order Stokes beams resembling the spatial profile of the pump beam can 
be generated. These higher order Stokes-shifted frequencies correspond to: 

 
 ωSn = ωSn - nωRaman [5.22] 
 
where ωRaman is the material excitation frequency of the medium. It should be noted that on the 
microscopic scale in higher order Stokes shifting different molecules are transferred into the 
first vibrationally excited state, and that vibrational overtones are not excited (i.e. excitation into 
v=2 or v=3). If this were the case anharmonicity shifts for the higher order Stokes frequencies 
would necessarily result, and these are not observed. 

The figure below shows the efficiency curves for the production of the first, second and third 
Stokes frequencies of an input laser beam with characteristics: 20 mJ in 5 ns at λ=266 nm 
focused with f=50 cm. The horizontal axis shows the pressure (in atm) of H2 in the Raman cell. 
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Note that at high pressures (6 Bar) the intensity of the first and even the second Stokes beam are 
higher than that of the fundamental input beam. 

 

  
 

5.5.  RAMAN SHIFTING IN HYDROGEN 
 

In the above we have learned that the frequency of a pump laser may be efficiently Raman 
shifted towards the red (Stokes generation) or to the blue (Anti-Stokes generation). With the 
help of this technique wavelength regions, which are not easily accessible for tunable dye lasers 
may come into reach. We recall some important properties of H2 as a Raman shifting medium: 
- large Raman shift (4155.26 cm-1), the largest of all molecules 
- nearly all molecules in a single quantum state |v=0, J=1> 
- a small relaxation width Γ=0.01 cm-1, so shifted frequencies of narrow bandwidth are 
produced. 
These properties make that H2-gas, available at high pressures against low costs, is ultimately 
suitable as a Raman shifting medium. Starting out from a Nd-YAG pumped dye laser (with 
DCM-dye) the following regions can be covered using Stokes shifting: 
 

pump 615 - 660 nm 
1st Stokes 826 - 909 nm 
2nd Stokes 1258 - 1461 nm 
3rd Stokes 2635 - 3722 nm 
 

Use of other dyes may cover the ranges in between. Anti-Stokes Raman shifting has been 
employed to generate radiation in the vacuum ultraviolet, though at low powers. Starting out 
from a XeCl-excimer laser pumping a DMQ-dye up to the 12th Anti-Stokes are observed with a 
(tunable) wavelength down to 129 nm. 
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 Fig.: From ref 11 . 

 
 
5.6  COHERENT ANTI-STOKES RAMAN SPECTROSCOPY (CARS) 
 

CARS is a Four-wave mixing process in which a new frequency ωas=2ω1-ω2 is generated. In 
the language of Raman spectroscopy this frequency is called the Anti-Stokes frequency, if there 
is a Raman resonance at ω1-ω2. The nonlinear polarization may be written as: 

 
 PCARS(ωs) = χ(3)(ωas=2ω1-ω2) E(ω1)E(ω1)E(ω2)* [5.23] 
 
The generated intensity in a medium with length L is then: 
 

 ( )( ) 



∝

2
sinc2

2
1

232 ∆kLIII ASASCARS ωχω  [5.24] 

 
The last factor in the equation determines the necessary conditions of phase matching, similar to 
the example of second harmonic generation or the OPO. However, if CARS is performed in a 
dilute gaseous medium there is almost no dispersion, so the value of the phase mismatch: 
 
 ∆∆∆∆k = kas - (2k1 -k2) 
 
is small and nearly negligible even in the case of a co-linear beam geometry. In general the 
phase matching condition can also be fulfilled in non-co-linear geometries. In such a case a 
wave vector diagram may be constructed. From the direction and magnitude of the incoming 
wave vectors k1 and k2 the direction of the generated wave vector: 
 kas = 2k1 -k2 
may be calculated. Also three dimensional phase matching diagrams may be applied. The 
technique of "BOXCARS" takes advantage of this: a beam is generated in a direction, where 
there is no input beam. The name originates in the box-like structure of the wave vector 
diagram. 

                                                 
11 H. Wallmeier and H. Zacharias, Appl. Phys. B45 (1988) 263 
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CARS is generally applied for the detection of molecular species, so the quantum structure of 
molecules needs to be considered in the evaluation of the nonlinear susceptibility χ(3). In most 
relevant molecules there are no electronic transitions from the occupied ground states involving 
visible photons that are used in a CARS experiment. In a CARS energy level diagram: 

  
 
the quantum states at the one-photon electronic level are therefore represented by "virtual 
states". For CARS the different vibrational and rotational levels in molecules are important. In 
the sequence of the four photon interactions appearing in the non-linear susceptibility, states |1> 
and |3> are the virtual electronic states, denoted by |i>, whereas level |2> is a rovibrational state 
of the molecule, with the same electronic character. The expression for χ(3) reduces to: 
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where the ±-signs refer to the fact that different terms will appear in the expression with 
different combinations of signs.  

In the Born-Oppenheimer approximation the transition moments, such as 0iµ , may be 
written in a product of independent electronic, vibrational and rotational parts. The electronic 
and vibrational parts then take the place of the Raman cross-section. Thus: 

 

 ( )
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CARS d
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
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
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∝ σχ 3  [5.26] 

 
Note that this implies that the CARS-signal is proportional to the square of the Raman cross 
section. Note also that in CARS signals are proportional to the density squared (N2), in contrast 
to most spectroscopic techniques. 
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Similar to the spontaneous Raman effect, where only the vibrational transitions of ∆v=1 
occur, this holds also, and for the same reason in the coherent Raman effect, CARS. This 
implies also that the rotational selection rules will be the same for CARS as for spontaneous 
Raman scattering. For simple diatomic molecules such as N2, H2, and CO ∆J= -2, 0, 2 
rotational transitions are possible, denoted by O, Q and S-branches. Generally the equation for 
the CARS-susceptibility is then written as: 

 

 ( )
( ) NR

vv

JJJ

i
SN χ
ωωω

χ +
Γ−−−

∝
0021

3  [5.27] 

 
where NJ represents the population of a particular rotational state, SJJ' is the rotational 
linestrength factors (Placzek-Teller coefficients) and the summation is over all populated states 
with quantum number J. χNR is generally added for the contribution the to CARS signal of the 
non-resonant terms in the non-linear susceptibility. 
 

 
 

The resulting equation for the nonlinear susceptibility has important consequences for the 
CARS-spectrum. A spectral resonance is found whenever the denominator approaches a zero-
value. This happens for: 

 
 021 vωωω =−  [5.28] 
A spectral line is found if the difference in energy (in fact frequency) of the two incoming 
waves equals a Raman resonance in the molecule; an important condition is that the transition 
ωv0 is Raman-allowed, i.e. fulfills the Raman selection rules. Because in the expression there is 
a summation over all initially populated rotational levels with quantum numbers J in the 
spectrum, and because of the appearance of 3 branches (O,Q and P) the spectrum will consist of 
3 times J lines. These lines are centered at a Raman shift of ωv0. Γv0 represents a damping 
factor that is related to the time scale of relaxation of the vibrational excitation in the molecule; 
ultimately this damping factor will determine the linewidth to be observed in the spectrum. An 
example of a vibrational CARS-spectrum is given above. 
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Apart from the above described vibrational CARS processes, where a rotational structure is 
superimposed on the vibrational transition, also a purely rotational CARS spectrum may be 
observed. The energy difference ωv0 of a vibrational excitation is then to be replaced by the 
much smaller energy difference of a rotational excitation ωJJ'. In rotational CARS the quantum 
states J' probed by the energy difference ω1-ω2  may be populated initially. Therefore the 
expression for the susceptibility has to be replaced by:  
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i
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Examples of purely rotational CARS spectra for N2, O2 and CO molecules are shown below. 
Note that the full spectrum covers less than 200 cm-1; moreover the lowest J lines are shifted 
from the so-called pump-frequency ω1 by only 20 cm-1. For visible wavelengths of the 
commonly used Nd-YAG laser at 532 nm this corresponds to a shift of only 0.5 nm; in order to 
retrieve the CARS-signal from the background stray-light from the pump-laser BOXCARS 
configurations are helpful. 
 

 
 

Fig.: Rotational CARS spectra of N2, O2 and CO recorded in the BOXCARS configuration, from ref. 12 

 
The population factors NJ and NJ' are dependent of the temperature. In thermodynamic 
equilibrium these are equal to: 
 

 ( ) ( )







 +−+∝
Tk
JJBJN

B

rot
J

1exp12  [5.30] 

 
where Brot is the rotational constant of the probed molecule and kB the Boltzmann constant. In 
the expression for the nonlinear susceptibility the rotational line-strengths SJJ' can be calculated 
and the expressions for NJ and NJ' substituted. The observed line intensities of a spectrum may 
then be fitted to a temperature. As such this procedure is a non-intrusive temperature probe for a 
medium. An example of temperature dependent CARS spectra is shown below. 
 

                                                 
12 B. Dick and A. Gierulski, Applied Physics B40, 1 (1986) 
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Fig: Temperature dependent CARS spectra, the non-intrusive thermometer. Also from ref 12 
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Chapter 6 
 

The production of vacuum ultraviolet radiation by FWM 
 
6.1. THIRD HARMONIC GENERATION 
 
A theoretical analysis of third harmonic generation (THG) was first given by Armstrong, 
Bloembergen, Ducuing and Pershan in their seminal paper in 196213. Experiments in isotropic 
crystals (note that third harmonic generation can occur in media with inversion symmetry) were 
then performed by Maker et al.14 THG in gaseous media was first reported by Ward and New15. 
Although metal atom vapors were shown to have large third order nonlinear susceptibilities by 
the group of Sorokin16, noble gases are particularly suitable for use in the vacuum ultraviolet for 
reasons of transparency. 

Starting equations for describing THG are again the coupled wave equations derived from 
Maxwell theory: 

 

 ( ) NL
q

q
q ck

qi
dz
d PE

22 ωπ=  [6.1] 

 
where qE  and NL

qP  are the Fourier components of the electric field and the nonlinear 
polarization at the frequency qω. [6.1] represents two coupled equations with q=1,3. The 
electric field is defined as: 
 
 ( ) [ ]ziktz qqq exp,�EE =  [6.2] 
 
and the nonlinear polarization can be written as: 
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where the term with ( )3

Tχ  is responsible for the actual THG and the other terms give rise to 
intensity dependent index of refraction. Also a similar equation for NL

1P  can be written, that 
couples the fields 1E  and 3E  nonlinearly to a polarization at frequency ω 17. 
 
Before proceeding with theory it should be realized that THG depends on: 

- phase matching, in combination with focused beams giving rise to the Gouy phase 
- the nonlinear susceptibility involving transition dipole moments of the atoms 
- the occurrence of resonances in the atomic level structure, also related to ( )3χ  

 

                                                 
13 J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, Phys. Rev. 127, 1918 (1962). 
14 P.D. Maker, R.W. Terhune, and C.M. Savage, Proceedings of the Third International Conference on Quantum 
Electronics, Paris, 1963 (Columbia University Press 1964, p. 1559). 
15 G.H.C. New and J.F. Ward, Phys. Rev. Lett. 19, 556 (1967); J.F. Ward and G.H.C. New, Phys. Rev. 185, 57 
(1969) 
16 R.T. Hodgson, P.P. Sorokin, and J.J. Wynne, Phys. Rev. Lett. 32, 343 (1974). 
17 H.B. Puell and C.R. Vidal, IEEE J. Quant. Electr. 14, 364 (1978). 
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6.2. PHASE MATCHING UNDER FOCUSING CONDITIONS 
 
In this paragraph, which is based on ref 18, a comparison is made between three four-wave 
mixing processes: 
 
 4321 ωωωω →++  I  
 4321 ωωωω →−+  II [6.4] 
 4321 ωωωω →−−  III  
 
The fundamental electric field is written as: 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]tititit 332211 expexpexpRe, ωωω −+−+−= rErErErE  [6.5] 
 
The fundamental beams at 1ω , 2ω  and 3ω  are lowest order Gaussian and propagate along the z-
axis: 
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with the confocal parameter defined as in [1.64]: 
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Here 0w  is the beam waist radius, n the index of refraction, 0λ  the vacuum wavelength, and θ  
the far-field diffraction half angle. ξ  is a normalized coordinate along z, defined as: 
 

 ( )
b

fz −= 2ξ  [6.8] 

 
where f is the position of the focus (beam waist) along the z-axis. 

In the analysis the fundamental and generated beams are considered as linearly polarized (all 
along the same axis), so the vector nature of the fields and the tensor nature of the nonlinear 
susceptibility may be dropped. The polarization at the generated frequency 4ω can be written as: 
 
 ( ) ( ) ( )[ ]tiPtP 444 expRe, ω−= rr  [6.9] 
with: 

 ( ) ( ) ( ) ( ) ( )rrrr 32132144 ,,;
2
3 EEENP ωωωωχ −=   

 ( ) ( ) ( ) ( ) ( )rrrr ∗−−= 32132144 ,,;
2
3 EEENP ωωωωχ  [6.10] 

 ( ) ( ) ( ) ( ) ( )rrrr ∗∗−−−= 32132144 ,,;
2
3 EEENP ωωωωχ   

                                                 
18 G.C. Bjorklund, IEEE J. Quant. Electr. 11, 287 (1975) 
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with χ the nonlinear susceptibility per atom and N the number density of atoms in the nonlinear 
medium. When two or three of the input frequencies are degenerate, the factor of 3/2 must be 
changed to ¾ or ¼). 

Now the polarization at 4ω  for process I becomes: 
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with 'k  the wave vector for the generated field in process I, which is set equal to "k  for future 
use: 
 
 "' 321 kkkkk =++=  [6.12] 
 
The factor B(z) defined as B(z)=0 for z < 0 and B(z)=1 for z > 0 signifies that the space at z <0 is 
vacuum, while the nonlinear medium exists at z>0. 
For the process II one finds similarly: 
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where "k is as before and 'k  is defined as 321' kkkk −+= : 
Similarly for process III: 
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with 321' kkkk −−=  
The next step is to perform a Fourier decomposition of ( )r4P  to determine the amplitudes of the 
plane wave components of the driving polarization. The amplitude with wave vector K is 
defined by: 
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This frequency component can be inserted in Maxwell�s equation: 
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where 4k  and 0k  are the wave vectors of the generated radiation in the medium and in vacuum 
respectively. It was shown that this equation can be solved under certain realistic conditions and 
with the wave vector mismatch: 
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 '4 kkk −=∆  [6.17] 
 
yielding for process I; 
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with the integration boundary defined as bf /2=ζ .  
For processes II a slightly different expression results: 
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with the function H defined as: 
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For process III a similar expression can be retained. 

 
The equations [6.28] and [6.29] are important results for harmonic conversion in a medium 

contained in a cell of length L with the entrance window at z = 0, the focus at z = f and 
parameters ( ) bfL /2 −=ξ  and bf /2=ζ . The expressions give the generated field at the 
position z = L. i.e. at the �end� of the cell. 

 
General conclusions can be drawn from these expressions.  
1) If "' kk =  then the generated beam has a lowest order Gaussian mode. Inspection of the 

equations reveals that this holds for process I, but not for the processes II and III. The 
sum- and difference frequency mixing yield higher order transverse modes, even if the 
fundamentals are lowest order Gaussian. The mismatch may be represented by the ratio: 

'/" kk . 
2) In all processes ( )r4E  is circularly symmetric around the z-axis. The total generated 

power at 4ω  is obtained by performing integrals (transverse in space) of the form: 
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Then dimensionless functions can be defined of the form: 
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where j refers to the specific process (I, II, III). The integrated intensity depends on 
dimensionless parameters kb∆ , b/L, f/L and k�/k�.  
 
It can be shown that with all wave vectors expressed in units of cm-1, b in cm, N in atoms/cm3, χ 
in ESU/atom and the powers P  in Watts then the total generated power 4P  is expresses as: 
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The efficiency factor is η = 6.318 x 10-4 for three different beams, η = 1.580 x 10-4 for two 
degenerate beams and η = 1.755 x 10-5 for three degenerate beams (so for THG). 
 
For process I the phase-matching integral FI  is: 
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In the so-called tight-focusing limit, where b is short compared to the cell (b<<L), the entire 
focal region is contained within the cell ( ∞→ξ  and ∞→ζ ), and the focus put half-way into 
the cell (f/L = 0.5) the integral can be solved in closed form: 
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For the other two processes expressions can be found by integration if the deviation from a 
Gaussian is neglected (so "' kk =  is set): 
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This leads us to another important general conclusion (holding for the case of tight focusing): 
THG is only possible for the condition 0<∆k , so for the condition of negative phase mismatch. 
Process II is possible for all signs in the phase mismatch, while process III is only possible for 

0≥∆k . 
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6.3 NUMERICAL APPROACH TO THE PHASE MATCHING INTEGRALS 
 
In this section the functions Fj will be inspected in case of non-exact tight-focusing conditions. 
For this purpose the integrals contained in Fj can be evaluated numerically. The first example is 
that of FI for b/L = small shown in the figure: 
 

  
Fig: FI versus b∆k for b/L < 0.1and f/L=0.5 

 
And for processes II and III: 
 
 

  
Fig: FII (left) and FIII (right) versus b∆k for b/L < 0.1and f/L=0.5 and varying values for k�/k� 

 
These figures show that slight variations of the exact tight-focusing condition (b/L is small) 
does not affect the outcome of the integrals. The effect of deviation from Gaussian profiles in 
the generated beam is more profound as is shown in the lower figures for k�/k� up to 3. The 
decrease in generated power reflects the lack of overlap of the beams of differing transverse 
profiles. 
For process II the optimum conversion is at ∆k=0, while for processes I and III this optimum is 
at a nonzero value of b∆k, for process I at negative phase mismatch and for process III at 
positive phase mismatch. 
 
Opposite to the case of tight-focusing is that of the plane-wave limit. This is the condition at 
which b/L >> 0. Then the result is found19: 
 
                                                 
19 R.B. Miles and S.E. Harris, IEEE J. Quant. Electr. 9, 470 (1973). 
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The value of k�/k� does not influence the values of Fj in the plane wave limit. The evolution of 
the integral FI when proceeding from the tight-focusing to the plane-wave limit with 
intermediate cases can be evaluated numerically as shown in the figure: 
 

  
Fig: FI versus b∆k for f/L=0.5 and various b/L (left b/L = 0 � 2.0; right b/L = 0 � 3);  

Note the varying vertical scale on the right. 
 
This shows that at b/L = 3 the peak has shifted already toward ∆k = 0. Note also that the peak of 
the integral has decreased by an order of magnitude in the plane-wave limit. This results in 
another important conclusion of the algebra: tight focusing is more efficient in generating 
harmonics. 
 
Now also the effect of positioning the focus in the cell can be studied by evaluating the phase-
matching integrals. First for the near tight-focusing condition b/L = 0.1 the focal position is 
shifted from f/L = 0.5 to 1.5; results are shown in the figure: 
 

  
Fig: FI versus b∆k for b/L=0.1 and various f/L 0.5 to 1.5)  

 
It shows that as long as the focus is contained in the cell no serious changes occur; only when 
the focus shifts outside the cell region the intensity reduces drastically. In fact, when f/L = 1.5 
the focus is outside the cell and the condition is like in the plane-wave limit. 

A similar evaluation can be performed for the true plane-wave limit, when b/L = 10. The 
values for the integral remains relatively unchanged as long as the cell is located close to the 
beam waist location. For f/L = 20 the focus is twice the distance of the confocal parameter b/L = 
10. 
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Fig: FI versus b∆k for b/L=10 and various f/L 0.5 to 20)  

 
Similar calculations can be performed in the intermediate cases for the integrals FII and FIII. In 
these cases the effect of non-overlapping spatial beams plays a role, an effect of 1'/" ≠kk . By 
numerically evaluating the field distribution ( )2

4 RE  as a function of the transverse coordinate 
R, and then for each value of b∆k this phenomenon can be investigated. A typical evolution of 
this far-field pattern is shown for process II with k�/k� =3. 
 

  
 

Fig: Far-field intensity distribution versus b∆k for f/L=0.5, b/L =0.1 and k�/k�=3.0 
 
Note that for small values of b∆k a nearly Gaussian transverse beam profile is found and that for 
high values of b∆k a ring-like structure is obtained. 
 
 
6.4 PHYSICAL INTERPRETATION OF PHASE MATCHING INTEGRALS 
 
It is found that the amplitude of the driving polarization strongly peaks in the region of the 
fundamental beam waists. This is very well understandable: harmonic conversion occurs at the 
focus where the intensity is high. In the case of tight-focusing the boundaries of the generating 
region are located at 2−=ξ  and 2=ξ  (or z = f-b and z = f+b). In the case of loose focusing 
the boundaries are located at the input and output windows. From the definition of the Gaussian 
beam [6.6] it can be seen: 
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that a focused lowest order Gaussian beam undergoes a shift in phase by arctanξ  as it 
propagates through the waist region (the Gouy phase). The driving polarization then experiences 
phase shifts of: 3arctanξ  for process I, arctanξ  for process II, and -arctanξ  for process III. 

It is assumed that the optimum conversion efficiency occurs when the generated radiation is 
in phase with the driving field. The generated beam may be considered to experience a phase 
shift of arctanξ . Thus a slip of phase between the driving polarization and the generated region 
occurs of 2arctanξ  for process I, -2arctanξ  for process III, while process II remains in phase. 
The slip in phases causes destructive interference in different portions of the generating region. 

These phase slips are compensated to some degree by the dispersion effects in the medium, 
i.e. the wave vector mismatch ∆k. The optimum value of ∆k, ∆kopt is the value at which 
cancellation occurs. For the case of tight focusing this is at; 
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For the analysis in the plane wave limit the factors 2.2 are to be replaced by 4. 
 
 
6.5 OPTIMIZING DENSITY IN THE NONLINEAR MEDIUM 
 
It was derived that the total power generated obeys the proportionality relation: 
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The parameters P1, P2, P3, χ and k�/k� are considered to be constant and thus an optimization 
procedure aims at maximizing the quantity jFN 2  by varying the parameters N, b∆k, b/L and f/L.  
 
When N is a parameter independent of the other ones the density may be increase for 
optimization. Then the parameter b∆k should be set at ∆kopt as defined in [6.39]. The value for 
b∆k may be altered by changing b or ∆k. But in the tight focusing approximation b/L should 
remain within 0.1, so the focal condition cannot be varied at will. In order to make ∆k a 
parameter independent of N, another medium with a specific dispersion can be mixed. 
 
When N is a parameter dependent on b∆k optimization can proceed differently. One important 
case is when ∆k is constrained proportional to N, b is constrained to be constant and N is a free 
parameter. Then the quantity ( )'/",/,/,2 kkLfLbkbFk j ∆∆  should be optimized; this quantity 
is not dimensionless and depends on b. Hence a dimensionless quantity is defined: 
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and the quantity to be optimized is ( ) ( )'/",/,/,/1 2 kkLfLbkbGb j ∆ . The function GI is plotted 
below as a function of b∆k for certain f/L parameters: 
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Fig: GI versus b∆k, b/L =0.1(tight focus) and f/L=0.5, 0.75 and 0.85 

 
So for tight focusing the specific value of f (focal position) does not matter, as long as the entire 
waist is contained in the cell. 
 
Since N is the only free parameter, the optimization procedure is to adjust b∆k to maximize Gj 
by adjusting N. Let ( )optkb∆ the value of b∆k which corresponds to the peak of Gj. Define the 
constant of proportionality: 
 
 Nk α=∆  [6.42] 
 
Then the optimization procedure reduces to adjusting N to the value ( ) bkbN optopt α/∆= . The 
total generated power is then: 
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where the factor η is defined above Gj is at the peak of the function as displayed e.g. in the 
figures above (GI) or below (GII): 

  
Fig: GII versus b∆k, b/L =0.1(tight focus), f/L=0.5and k�/k�=1.0, 1.5, 3.0. 

 
Again it may be noted that α must be negative for process I and that for process II α may both 
have positive and negative values. 
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6.6 DISPERSION CHARACTERISTICS OF THE NOBLE GASES 
 
In the above the phase matching properties for the tight-focusing and the plane-wave limit were 
derived, as well as numerical procedures for intermediate cases. The generated third harmonic 
power produced by a beam at the center of a cell of length L can be expressed as: 
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with η = 8.215 x 10-2, P in Watts, ( )3χ  in esu, λ (wavelength of generated beam) in cm. 

In the tight focusing limit (b<<L) this results in [6.34]: 
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with a maximum of FI of 5.343 at kb∆ =-2. 

In the plane-wave limit (b>>L) a result is obtained [6.37]: 
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with a maximum of 22 /4 bL at k∆ =0. 
A requirement for a rather tightly focused beam is that the medium should be negatively 
disperse. In the example of section 6.5 a value for k∆  was obtained in a fit; it is also possible to 
calculate the dispersion a medium. 
First it should be considered that through THG usually short wavelengths are generated, thus 
reaching the region of dense level structure in the atoms constituting the medium. For the 
following analysis we refer to ref 20. 

In the region of the bound states the refractive index is given by: 
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where er = 2.8181 x 10-13 cm is the classical electron radius, fi the oscillator strength of the ith 
transition, and λi the wavelength of this transition. 

For the region of the continuum the transitions into the continuum are considered, that 
usually are broadened: 
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with σ(cm2) the photo-ionization cross section and σ (cm-1)= 1−λ . 

By taking the cross sections and oscillator strength from the literature (a large number of 
papers, listed in 20) the k vector mismatch per atom, defined as C, can be calculated: 
                                                 
20 R. Mahon, T.J. McIlrath, V.P. Myerscough, D.W. Koopman, IEEE J. Quant. Electr. 15, 444 (1979). 
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λ
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where λ is the vacuum wavelength of the generated harmonic. 

In the figures the calculated values for C are plotted for three noble gas atoms. Negative 
signs are represented by the gray shaded regions: 
 

  
 
 
So in the gray shaded wavelength regions efficient third harmonic generation can be obtained. In 
some regions of wavelength there the refractive index strongly varies with wavelength. This 
gives rise to strong oscillations in THG yield and may even produce bandwidth filtering20. 
 
 
6.7 THIRD HARMONIC GENERATION IN XENON 
 
The theories on the phase-matching were tested in an experiment on third harmonic generation 
in Xenon, in the case of tight focusing near the center of the cell (so f/L = 0.5) with λ1 = 354.7 
nm and λ3 = 118.2 nm. b/L was adjusted to 0.025. The pressure dependent harmonic yield, 
plotted in the figure, was compared with the theory as established here. In fact the function 

( )1,5.0,0,kbGI ∆  was fitted to the data resulting in a value:  
∆k = (-5.99 x 10-17) NXe (cgs units). 

  
Fig: Relative power output at 118.2 nm for THG in Xenon 
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The yield of THG in Xenon gas can be measured and compared with calculation of a phase-
matching integral. Results of ref 21 are reproduced in the figure. It should be noted that the 
experiment was performed in a gas jet with a limited interaction length of only a few times b. 

  
Fig: THG in Xenon as a function of wavelength in the range102-110 nm; 

Upper curve: measured THG yield; Lower curve: calculated FI for b = 0.3 mm and 30 torr in a gas jet 
 
Important conclusions on THG can be drawn from this figure: 

1) The main features in the wavelength dependent THG can be explained by the phase-
matching integral. 

2) Resonances in the THG yield occur in many cases �at the blue� side of the ns and nd 
atomic one-photon resonances. 

 
 
6.8 RESONANCE ENHANCED VUV-PRODUCTION 
 
The nonlinear susceptibility can generally be written as: 
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It is an obvious result that the non-linear susceptibility blows up if one of the denominators is in 
resonance. This may occur if one of the applied electric fields has a frequency that matches the 
spacing between level energies in the medium. This may happen at the one, two or three photon 
level. A resonance at the one-photon level has the disadvantage that the incident field is strongly 
absorbed in the medium, therewith giving rise to many unwanted effects. Absorption at the 
three photon level implies that the generated field is (re)absorbed in the medium, also an 
unwanted effect. Resonances at the two-photon level do not have these disadvantages. In such 
case the nonlinear susceptibility becomes: 
                                                 
21 A. Lago, PhD Thesis, University of Bielefeld, 1986 
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where the summation over j states is dropped in favor of the one selected two-photon resonant 
state 'J ; the summation over g  is also dropped, since only one ground state plays a role in 
the noble gases considered here. The resonance denominator has been given a 
phenomenological damping term to prevent ( )3χ  of growing to infinity, which is unphysical. 

Two two-photon resonance-enhanced processes are feasible: sum and difference frequency 
mixing, as shown in the figure. 
 

  
Fig: Energy level scheme in an atom; left two-photon resonant sum-frequency mixing; right: difference frequency 

mixing. Dashed lines are virtual levels; solid lines are real energy levels. 
 
The level structure of the noble gases is particularly suitable to take advantage of resonance 
enhancement. Many levels are available for two-photon excitation in the ultraviolet: 200-250 
nm, as shown in the list, adapted from ref 22. These wavelengths can nowadays be produced 
with tunable pulsed lasers, particularly with BBO-crystals for frequency doubling. Recently 
two-photon resonance-enhanced sum-frequency mixing was demonstrated in Argon, using 
wavelengths λ < 200 nm 23. 
 

  
 
Note the important difference between the two processes described here. Sum-frequency mixing 
is a process I and must obey the FI phase integral with optimum at negative dispersion, while 

                                                 
22 K. Miyazaki, H. Sakai, and T. Sato, Appl. Opt. 28, 699 (1989). 
23 H. Palm and F. Merkt, Appl. Phys. Lett. 73, 157 (1998). 
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the difference frequency mixing is a process II and must obey the FII phase integral with 
optimum near k∆ = 0. 
 
 
6.9 POLARIZATION PROPERTIES 
 
In the previous sections the polarization properties in the harmonic conversion processes are 
neglected. Polarization is associated with the vector character of the electromagnetic fields, 
coupled by susceptibilities that have a tensor nature. The third order nonlinear polarization can 
be written as: 
 
 ( ) ( ) kji

kjir γβασαβγσ χωωωω EEEP 3,,; ∝  [6.52] 
 
where the indices i,j,k,r refer to the frequencies and σ,α,β,γ, to the spatial coordinates of the 
vectors. Hence ( )3χ  is a tensor of rank 3 with 81 elements that represents the response of a 
medium induced by polarizations of the input fields. Here ( )3χ  is written as a single term; in 
fact there are many (see Chapter 4) with differing frequency dependences. The nonlinear 
susceptibility can be written: 
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where a general summation over �terms� is taken, each having a different frequency 
dependence. Here the term is written that is generally the most resonant for THG. The matrix 
elements ba r  contain the electronic transition dipole moments that have an explicit vector 
character. 

In four-wave mixing it is of importance to note that it is a coherent �cycling� process. Four 
waves interact in such a way that no population transfer occurs. Hence g  and g  at the 
beginning and end of the loop. This is of importance for the derivation of polarization 
dependence. The summation over populated ground states g  can be dropped in the case of 
atoms where only a singly populated ground state exists (particularly for noble gases). The states 
can be written in terms of quantum numbers and their projections; the angular momentum 
quantum number is of importance here: ii MJi =  with neglect of the electronic character and 
fine structure. Using methods from atomic physics (the Wigner-Eckart theorem) a transition 
dipole moment can be decomposed as: 
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where the superscript (1) denotes a first rank tensor and the Wigner-6j symbols are introduced. 
The angular momentum characteristics associated with the non-linear susceptibility is then: 
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Polarization selection rules in four-wave mixing arise from this expression. Only specific 
combinations of the qj lead to a non-zero angular part. In fact the qj are the projections of the 
dipole moment on a basis of spherical harmonics: q = 0 linear polarization, q= 1 and q= -1 right 
and left-handed circular polarization. 

1) For the case of all polarizations linear along the same axis: 0321 === qqq . This is 
possible and yields also 04 =q . So the third harmonic is polarized along the input beam. 

2) Third harmonic generation with circularly polarized light: 1321 === qqq  is not 
possible. 

3) In case of two-photon resonant sum- or difference frequency mixing there is a real level 
in the atom with a specific quantum number Jj. It follows that Jj = 1 is not possible. If 
the intermediate level has either Jj = 0 or Jj = 2 there are solutions, hat also determine the 
polarization of the generated light. The table gives the options with calculated 
polarization factors deriving from the sequence of Wigner-6j symbols. 
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6.10 PULSED JETS 
 
From a practical perspective it should be realized that below the so-called LiF-cutoff at 105 nm 
there are no window materials available for experiments; the region below 105 nm is usually 
called the extreme ultraviolet (XUV). So no exit windows can be employed to close off the cell. 
A pulsed jet, first employed by Kung24, can deliver the gaseous non-linear medium; in the figure 
below such a setup is shown, although still with a LiF exit window. This window can be 
replaced by a narrow orifice; differential pumping techniques can sustain vacuum conditions at 
the detector side, such that wavelengths λ < 105 nm can also propagate. Note that under these 
conditions the interaction length L can no longer be freely chosen. 
 

  
Fig: Experimental setup as used in ref24 

 

                                                 
24 A.H. Kung, Opt. Lett. 8, 24 (1983). 


	Contents

