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Abstract

We review the progress in the theory of one-dimensional (1D) Fermi liquids which has
occurred over the past decade. The usual Fermi liquid theory based on a quasi-particle
picture, breaks down in one dimension because of the Peierls divergence in the particle-
hole bubble producing anomalous dimensions of operators, and because of charge-spin
separation. Both are related to the importance of scattering processes transferring finite
momentum. A description of the low-energy properties of gapless one-dimensional quan-
tum systems can be based on the exactly solvable Luttinger model which incorporates
these features, and whose correlation functions can be calculated. Special properties of
the eigenvalue spectrum, parameterized by one renormalized velocity and one effective
coupling constant per degree of freedom fully describe the physics of this model. Other
gapless 1D models share these properties in a low-energy subspace. The concept of a
“Luttinger liquid” implies that their low-energy properties are described by an effective
Luttinger model, and constitutes the universality class of these quantum systems. Once
the mapping on the Luttinger model is achieved, one has an asymptotically exact solution
of the 1D many-body problem. Lattice models identified as Luttinger liquids include the
1D Hubbard model off half-filling, and variants such as the t — J- or the extended Hub-
bard model. Also 1D electron-phonon systems or metals with impurities can be Luttinger
liquids, as well as the edge states in the quantum Hall effect.

We discuss in detail various solutions of the Luttinger model which emphasize different
aspects of the physics of 1D Fermi liquids. Correlation functions are calculated in detail
using bosonization, and the relation of this method to other approaches is discussed. The
correlation functions decay as non-universal power-laws, and scaling relations between
their exponents are parameterized by the effective coupling constant. Charge-spin sepa-
ration only shows up in dynamical correlations. The Luttinger liquid concept is developed
from perturbations of the Luttinger model. Mainly specializing to the 1D Hubbard model,
we review a variety of mappings for complicated models of interacting electrons onto Lut-
tinger models, and thereby obtain their correlation functions. We also discuss the generic
behaviour of systems not falling into the Luttinger liquid universality class because of
gaps in their low-energy spectrum. The Mott transition provides an example for the tran-
sition from Luttinger to non-Luttinger behaviour, and recent results on this problem are
summarized. Coupling chains by interactions or tunneling allows transverse coherence
to establish in the single- or two-particle dynamics, and drives the systems away from a
Luttinger liquid. We discuss the influence of charge-spin separation and of the anomalous
dimensions on the transverse dynamics of the electrons. The edge states in the quan-



tum Hall effect provide a realization of a modified, chiral Luttinger liquid whose detailed
properties differ from those of the standard model. The article closes with a summary
of experiments which can be interpreted in favour of Luttinger liquid-correlations in the
“normal” state of quasi-1D organic conductors and superconductors, charge density wave
systems, and semiconductors in the quantum Hall regime.
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Chapter 1

Introduction

1.1 Motivation

Strongly correlated fermions are an important problem in solid state physics. Over the
last one or two decades, experiments on many classes of materials have provided evidence
that strong correlations are a central ingredient for the understanding of their physical
properties. Among them are the heavy fermion compounds, the high-7. superconductors,
a variety of intimately related organic metals, superconductors, and insulators, just to
name a few. Also in normal metals, the interactions between the electrons are rather
strong, although the correlations may be much weaker than in the systems mentioned
before. The effective dimension of the electron gas plays an important role in correlating
interacting fermions, and the materials listed are essentially three-(3D), two-(2D), and
one-dimensional (1D), respectively. Correlations are also very important in semiconduc-
tor heterostructures and quantum wires, being two- or one-dimensional, including the
Quantum Hall regime.

The theoretical description of strongly interacting electrons poses a formidable prob-
lem. Exact solutions of specific models usually are impossible, exception made for certain
one-dimensional models to be discussed later. Fortunately, such exact solutions are rarely
required (and more rarely even practical) when comparing with experiment. Most mea-
surements, in fact, only probe correlations on energy scales small compared to the Fermi
energy Er so that only the low-energy sector of a given model is of importance. More-
over, only at low energies can we hope to excite only a few degrees of freedom, for which
a meaningful comparison to theoretical predictions can be attempted.

Correlated fermions in three dimensions are a well studied problem. Their theo-
retical description, by Fermi liquid theory, is approximate but well understood [[il, B].
It becomes an asymptotically exact solution for low energies and small wavevectors
(E — Ep, |k| = krp, T — 0). The limitation to low energies is instrumental here
because, together with Fermi statistics, it implies that the phase space for excitations is
severely restricted. In one dimension, there is a variety of exactly solvable models, which
have been known for quite a time, but a deeper understanding of their mutual relation-
ships and their relevance for describing the generic low-energy physics, close to the 1D



Fermi surface, has emerged only rather recently. These relations as well as the properties
of such one-dimensional Fermi liquids, or following Haldane “Luttinger liquids” [, are
the main subjects of this review article. Here we shall use the terms “one-dimensional
Fermi liquids” and “Luttinger liquids” synonymously, although, as we show below, Fermi
liquid behaviour as it is established in 3D is not possible in 1D.

Fermi liquid theory is based on (but not exhausted by) a picture of quasi-particles
evolving out of the particles (holes) of a Fermi gas upon adiabatically switching on in-
teractions [, f]. They are in one-to-one correspondence with the bare particles and,
specifically, carry the same quantum numbers and obey Fermi-Dirac statistics. The free
Fermi gas thus is the solvable model on which Fermi liquid theory is built. The electron-
electron interaction has three main effects: (i) it renormalizes the kinematic parameters of
the quasi-particles such as the effective mass, and the thermodynamic properties (specific
heat, susceptibility), described by the Landau parameters F®*; (ii) it gives them a finite
lifetime diverging, however, as T ~ (E — Er)~2 as the Fermi surface is approached, so that
the quasi-particles are robust against small displacements away from Fp; (iii) it introduces
new collective modes. The existence of quasi-particles formally shows up through a finite
jump zj,. of the momentum distribution function n(k) at the Fermi surface, corresponding
to a finite residue of the quasi-particle pole in the electron’s Green function.

One-dimensional Fermi liquids are very special in that they retain a Fermi surface
(if defined as the set of points where the momentum distribution or its derivatives have
singularities) enclosing the same k-space volume as that of free fermions, in agreement
with Luttinger’s theorem [[]. However, there are no fermionic quasi-particles, and their
elementary excitations are rather bosonic collective charge and spin fluctuations dispers-
ing with different velocities. An incoming electron decays into such charge and spin
excitations which then spatially separate with time (charge-spin separation). The corre-
lations between these excitations are anomalous and show up as interaction-dependent
nonuniversal power-laws in many physical quantities where those of ordinary metals are
characterized by universal (interaction independent) powers.

To be more specific, a list of salient properties of such 1D Fermi liquids includes: (i)
a continuous momentum distribution function n(k), varying with as | k — kg |* with an
interaction-dependent exponent «, and a pseudogap in the single-particle density of states
x| w |*, consequences of the non-existence of fermionic quasi-particles (the quasi-particle
residue vanishes as zx ~ |k — kp|* as k — kp); (ii) similar power-law behaviour in all
correlation functions, specifically in those for superconducting and spin or charge den-
sity wave fluctuations, with universal scaling relations between the different nonuniversal
exponents, which depend only on one effective coupling constant per degree of freedom;
(iii) finite spin and charge response at small wavevectors, and a finite Drude weight in
the conductivity; (iv) charge-spin separation; (v) persistent currents quantized in units of
2kp. All these properties can be described in terms of only two effective parameters per
degree of freedom which take over in 1D the role of the Landau parameters familiar from
Fermi liquid theory.

The reasons for these peculiar properties are found in the very special Fermi surface
topology of 1D fermions producing both singular particle-hole response and severe conser-



vation laws. In a 1D chain, one has simply two Fermi “points” +kp, and the Fermi surface
of an array of chains consists of two parallel sheets (in the absence of interchain hopping).
In both cases, one has perfect nesting, namely one complete Fermi sheet can be trans-
lated onto the other by a single wavevector £2kr. This produces a singular particle-hole
response at 2kp, the well-known Peierls instability [J]. This type of response is assumed
finite in Fermi liquid theory but, in 1D, is divergent for repulsive forward scattering (or
attractive backscattering, the case considered by Peierls), leading to a breakdown of the
Fermi liquid description. In addition, we have, as in 3D, the BCS singularity for attrac-
tive interactions [i]. On the other hand, the disjoint Fermi surface gives a well-defined
dispersion, i.e. particle-like character, to the low-energy particle-hole excitations. They
now can be taken as the building blocks upon which to construct a description of the 1D
low-energy physics.

These properties are generic for one-dimensional Fermi liquids but particularly promi-
nent in a 1D model of interacting fermions proposed by Luttinger [[]] and Tomonaga [§]
and solved exactly by Mattis and Lieb [[]. All correlation functions of the Luttinger
model can be computed exactly, so that one has direct access to all physical properties
of interest. The notion of a “Luttinger liquid” was coined by Haldane to describe these
universal low-energy properties of gapless 1D quantum systems, and to emphasize that an
asymptotic (w — 0,¢ — 0) description can be based on the Luttinger model in much the
same way as the Fermi liquid theory in 3D is based on the free Fermi gas. The basic ideas
and procedures had been discussed earlier by Efetov and Larkin [[[]J] but passed largely
unnoticed. The name “Tomonaga — Luttinger liquid” might be more appropriate to give
credit to Tomonaga’s important early contribution but has not become widely popular
today.

Despite this apparently very different set of physical properties, there are also sim-
ilarities in the structures of Fermi and Luttinger liquids. Some concepts make these
similarities particularly apparent: conformal field theory, where we essentially exploit the
fact that both Fermi and Luttinger liquids (the former in 1D, of course) are critical, in
the language of the theory of phase transitions, and possess the same central charge; a
description of both theories based on Ward identities (i.e. symmetries and conservation
laws), and the notion of a “Landau-Luttinger liquid”, where one formulates a Fermi liquid
picture for the pseudo-particles appearing in the exact Bethe-Ansatz solution of models
like the 1D Hubbard model. Other methods, often more suitable for the practical calcu-
lations required by a solid state physicist, like bosonization, more strongly emphasize the
differences between Fermi and Luttinger liquids.

In two dimensions, the applicability of Fermi liquid theory, specifically to the high-T.
problem, is quite controversial. In fact, much of the recent interest in Luttinger liquids
is due to Anderson’s observation that the normal state properties of the 2D high-T, su-
perconductors are strikingly different from all known metals and cannot be reconciled
with Fermi-liquid theory; they are more similar to properties of 1D models [I1]]. An-
derson proposed that the essential physics be contained in the 2D Hubbard model and
suggested a picture of a “tomographic Luttinger liquid” for the ground state and the
low-energy excitations of this model, building on Haldane’s earlier work in 1D, to give



a more systematic basis to these conjectured non-Fermi liquid properties of the high-T.
superconductors. Arguments have been advanced, however, also in favour of Fermi-liquid
physics [[J]. In addition a theory somewhat intermediate between Fermi and Luttinger
liquids, a “marginal Fermi liquid” has been proposed [[3], where the quasi-particle residue
21, vanishes logarithmically as k — kgr. (We parenthetically note that there is no simple
solvable model, like the Fermi gas, or the Luttinger model, onto which one could build the
marginal Fermi liquid phenomenology [L3]. Very recent work seems to indicate, however,
that certain impurity models do produce marginal Fermi liquid behaviour [[4].)

While the relevance of Anderson’s ideas is still quite controversial and no unambigu-
ous formal justification has been published to date, they have refocussed attention on
1D models as paradigms for the breakdown of Fermi-liquid theory: there are few other
instances where this has been established firmly. The main progress of the last years, to
be reviewed here, is related to the realization that, in 1D, a variety of models allows es-
sentially exact calculations of the physical properties of “exotic” non-Fermi-liquid metals.
Emphasis has been directed in two main directions. (i) The relation of models defined on a
lattice, such as the 1D Hubbard model, to continuum theories of the Tomonaga-Luttinger
type. There had been a widespread opinion, that the lattice models would be appropriate
to model the limit of strong electron-electron interactions, while the field theories would
be better suited for weak-coupling situations. It has now become clear that this is not so,
and that the continuum theories rather are the asymptotic low-energy limits of the lattice
models even at arbitrarily strong coupling. Moreover, this mapping has provided us with
several algorithms to extract the effective parameters of the continuum models from the
(either Bethe Ansatz or numerical) solution of the lattice models. It therefore provides
an asymptotically exact solution to the 1D many-body problem. We now can compute
essentially all correlation functions for lattice models, an impossible task if one wanted to
use the lattice solution directly. (ii) The calculation of physical properties from the now
known correlation function allows to work out the distinctive difference of such Luttinger
liquids from the predictions of Fermi liquid theory in higher dimensions, so as to get tools
for the diagnosis of non-Fermi liquid behaviour.

With the general excitement in the community over the spectacular physics of the high-
T, superconductors, it has been somewhat forgotten that there are many families of organic
and inorganic quasi-1D metals [[3, [[] which do deviate strikingly from Fermi-liquid
behaviour (at least from ordinary metals) in their normal state, and undergo a variety of
low-temperature phase transitions into, e. g., charge or spin density wave (CDW/SDW)
insulating phases or even become superconducting. The normal state properties of these
materials are often highly anisotropic and justify application of 1D theory. We therefore
possess a laboratory playground where we can confront theoretical evaluations of the
distinctive properties of such “Luttinger liquids” with experimental reality — in a situation
where the theoretical basis (namely one-dimensionality) is quite firmly established from
experiment.

There is thus at least a threefold motivation to study models of 1D interacting elec-
trons: (i) The search for a coherent description of the quasi-1D metals whose “exotic”
properties have been studied over nearly two decades and which continue to be the focus
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of intense experimental efforts. (ii) 1D models as a paradigm for “metallic” systems which
are not Fermi liquids. The detailed calculations possible here will hopefully sharpen our
understanding of critical requirements for the breakdown of Fermi-liquid theory in gen-
eral, and how such scenarios translate into experimental reality. There are only a few
established examples of non-Fermi liquid metals in higher dimension such as the multi-
channel Kondo problem, but even these reduce, due to the spherical symmetry commonly
assumed, to effective 1D problems [[7]. (iii) The possibility of finding exact solutions to
nontrivial many-body problems.

1.2 Purpose and structure of this review

This article will present a practical introduction to Luttinger liquids. It attempts to
combine a review of the progress of the last couple of years with a self-contained and
pedagogical presentation of the Luttinger model, its solution, and its properties (i.e.
correlation functions) and especially emphasize bosonization as a simple practical means
both to solve the model and to calculate correlation functions. Based on this, we carry on
to the notion of a Luttinger liquid and a discussion of the various methods employed to
map a complicated 1D many-body problem onto the relatively simple Luttinger model.
For all models to be discussed, the emphasis will be on their properties, i.e. correlation
functions, which ultimately can be compared with experiment. I also hope to demonstrate
that the Luttinger liquid often is a useful device if none of the exact nonperturbative
methods to compute correlation exponents works: incorporating all essential features of
the 1D Fermi liquid, it is presumably the best possible starting point for a renormalization
group analysis of the problem at hand.

On the other hand, we shall be quite schematic concerning the methods used to achieve
an exact solution of the (lattice) models we are interested in, such as the Bethe Ansatz
or numerical diagonalization techniques. We shall be more concerned with the various
methods which have been invented to extract effective Luttinger parameters given a cer-
tain type of solution of the starting models, to compare their virtues and drawbacks
and emphasize their complementarity. Moreover, we do not attempt to present a com-
plete overview of the numerous 1D models used to describe strongly correlated electrons.
Rather, we shall concentrate on a few of them, most often the paradigmatic Hubbard
model. The methods discussed often can be applied without significant changes to other
models the reader might be more interested in.

The field of 1D Fermi liquids is not new. Stimulated by and stimulating the research on
quasi-1D organic conductors in the seventies and early eighties, a number of useful review
articles has been available for some time. The meanwhile classical reviews of Sélyom [[L§]
and Emery [[[J] contain much material on the use of renormalization group (with respect
to a 1D Fermi gas) to treat the singularities generated perturbatively by the 1D inter-
actions. There is also material on the solution of the Tomonaga-Luttinger model either
by bosonization (in a somewhat approximate but for many purposes sufficient form) and
through the use of Ward identities. We are extremely brief on papers duely covered there.



Our presentation here will be limited to abelian bosonization. Nonabelian bosonization,
retaining manifestly the SU(2)-invariance in the spin sector, is reviewed by Affleck [B{].
Firsov, Prigodin, and Seidel ] and Bourbonnais and Caron [P2] more strongly emphasize
phase transitions in real materials made of coupled 1D chains, and especially the paper by
Bourbonnais and Caron gives a very modern presentation combining functional integral
representations with renormalization group. A classical review on the earlier work on
organic conductors is by Jérome and Schulz [[J] and the more recent developments have
been summarized by Jérome B3] and Williams et al. [24]. A pedagogical overview of both
experimental and theoretical aspects can be found in the Proceedings of the 1986 NATO-
ASI in Magog (Canada) [BJ] while the latest progress on organic materials is collected in
the Proceedings of the biannual Synthetic Metals conferences [[[]. Some subjects do not
receive due coverage in this article: concerning the Bethe Ansatz, there are reviews by
Sutherland [§], Korepin et al. 7, and Izyumov and Skryabin [P§], and there is also a
vast literature on conformal field theory [29]. Other problems of high current interest, and
intimately related to our subject, could not be included for restrictions in space and time:
spin chains, which can be related by a variety of methods to 1D interacting fermions;
all developments starting from the Calogero-Sutherland model; one-dimensional bosons;
persistent currents in mesoscopic rings, where interesting contributions originate from the
study of 1D fermions despite the 3D spherical Fermi surface in the real materials, and
many more. We hope that others take up the challenge to review these active areas.

This article is structured as follows. Chapter 2 will complement this brief introduction
in that it discusses the breakdown of the Fermi liquid on a more technical level and
identifies the relevant features of one-dimensionality. Specifically we show (i) how the
Peierls divergence produces an instability of the 1D Fermi gas in the presence of repulsive
interactions, (ii) how the breakdown of a quasi-particle picture can be seen in a second-
order perturbation calculation, and (iii) where Landau’s derivation of a transport equation
crashes in 1D.

Chapter | will present a detailed discussion of the Luttinger model from various angles.
In Section B.I], we argue that a universal low-energy description of 1D Fermi liquids
can be based on this model. We define the Hamiltonian and discuss its symmetries
and conservation laws which are essential for all solutions. In Section B.2.]], we give a
solution using a boson representation of the Hamiltonian, before constructing an explicit
operator identity between fermions and these bosons in Section [5.2.2. This representation
is fruitfully employed in Section for a calculation of the Luttinger model correlation
functions. The manifestation of charge-spin separation in dynamical correlations is the
subject of Section B.4. An alternative method of solution based on the equations of motion
of the Green functions, and on Ward identities, is presented in Section B.J. Another
alternative for constructing a boson representation of the fermions, conformal field theory,
is introduced in Section B.6 and shown to be fully equivalent to the operator approach of
the earlier sections.

The Luttinger model is based on very strong restrictions on the dispersion and inter-
action of the particles. In Chapter [l we shall pass beyond these restrictions and show
that the Luttinger physics still is conserved in a low-energy subspace of more realistic



models. This is conjectured in Section [L1], and then case studies are presented to its
support. With nonlinear band dispersion (Section [.J), the fermion operators acquire
higher harmonics in kp. Large-momentum transfer scattering in (Section f.3) lifts unre-
alistic degeneracies of Luttinger model correlation functions by logarithmic corrections.
The correlations of various lattice models are evaluated in Section [l.4. Electron-phonon
systems or dirty 1D metals can also have Luttinger liquid correlations, and we touch upon
these problems in Section [£.]. Section [E.6 shows that rich transport phenomena occur as
one goes away from the simple Luttinger model. Finally, in Section [1.4, we show that the
low-energy physics of the 1D Hubbard model is determined by low-energy excitations in
the charge-momentum- and spin-rapidity-distribution functions, and that in each sector,
one can therefore formulate a Fermi-liquid theory for its excitations.

Not all 1D systems are Luttinger liquids. In some cases, there are gaps in either the
charge or spin excitation spectra, and phase separation can occur (at least in models).
Chapter [ discusses these cases. We expand especially on the Mott transition in Section
b9 which has been studied in considerable detail during the past years.

In Chapter i, we go beyond the framework of the Luttinger liquid outlined before.
We discuss multi-band models in Section p.1l An important issue has been the crossover
from the 1D Luttinger liquid to higher-dimensional behaviour. We elaborate on this
problem in Section .2 Finally, we describe the modelling of edge excitations supporting
the transport in the quantum Hall effect in terms of a chiral Luttinger liquid in Section
b.3. While the general features are similar to the standard Luttinger liquid, the edge
excitations have irrational charges and constitute a new universality class, described by a
conformal field theory with central charge ¢ # 1.

This review closes with a summary of experiments which provide (often controver-
sial) evidence for Luttinger liquid correlations in several classes of materials. We discuss
organic conductors and superconductors, inorganic charge density wave systems, and
semiconductors in the quantum Hall regime.

The general approach chosen here is to give some space to the discussion of the basic
methods used in this field in the last decade and to some selected examples. This nec-
essarily requires selection, often biased by the author’s prejudices, and many important
papers are discussed only briefly. It is hoped that the general discussion will give tools,
and that the overview on the current status give orientation to the reader to locate and
appreciate the original articles relevant to him. Although I have tried to incorporate a
maximum of the published literature available to me, space restrictions did not allow to
do so systematically. I apologize to all those whose contributions have not received due
coverage.



Chapter 2

Fermi liquid theory and its failure in
one dimension

2.1 The Fermi liquid

Macroscopic properties of ordinary (3D) metals can be described remarkably well by the
model of a Fermi gas although the interactions are not weak. Why is this possible? The
answer is provided by Landau’s theory of the Fermi liquid [, B].

The key observation is that macroscopic properties involve only excitations of the
system on energy scales (say temperatures) small compared to the Fermi energy. The state
of the system can be specified in terms of its ground state, i.e. its Fermi surface, and its
low-lying elementary excitations — a rarified gas of “quasi-particles”. These quasi-particles
evolve continuously out of the states of a free Fermi gas when interactions are switched
on adiabatically, and are in one-to-one correspondence with the bare particles (adiabatic
continuity). They possess the same quantum numbers as the original particles, but their
dynamical properties are renormalized by the interactions. This scenario emerges because
the phase space for scattering of particles is severly restricted by Fermi statistics: at low
temperatures, most particles are frozen inside the Fermi sea, and only a fraction T'/Tr < 1
participate in the scattering processes. Apart those originating from the requirement of
stability there are, however, no restrictions on the magnitude of the effective interactions
between the quasi-particles, as measured by the Landau parameters. The restriction to
low-lying excitations implying low densities of excitations, and Fermi statistics are enough
to ensure Fermi liquid properties.

The ground state of a gas of free particles is fully described by its momentum distribu-
tion function ng(k). For the interacting system, it can be specified by the quasi-particle
distribution function which is the same as that of the bare particles in the free system.
Excitations are then determined by the deviations they produce in the momentum dis-
tribution with respect to the ground state, dn(k) = n(k) — no(k). So long as there are
few excitations, dn(k) is small. The change in energy 0 E associated with quasi-particle



excitations can then be expanded in powers of dn(k)

5E =3 [eo(k) — ] dn(k) + % 3 on(k) £k, K)on(K) + ... . (2.1)
Kk k K/

where f(k, k') is the quasi-particle interaction and p is the chemical potential. Although
the single-particle term is of first order in 0n(k) and the interaction term of second order,
they are in fact of equal importance and the second term cannot be neglected: the notion
of a quasi-particle making sense only in the neighbourhood of the Fermi surface, eo(k) —
is small there and of the same sign as on(k).

On a more formal level, the Green function of an electron is

1
€Q(k) — W — Z(k,w) 7

Gk,w) = (2.2)
where £¢(k) is the bare dispersion and Y(k,w) is the self-energy containing all the many-
body effects. The poles of the Green functions give the single-particle excitation energies,
and the imaginary part of the self-energy provides the damping of these excitations.
Y(k,w) is, for fixed k, a smooth function of w and continuous in k. This guarantees
solutions to the equation

cok) —w—X(k,w)=0 |, (2.3)

determining the single particle excitation energies. One hopes that there is only a single
solution to this equation — but this need not be so. In fact, having a single solution — the
quasi-particle pole with finite residue [f]

b= (1 - W) <1 (2.4

w=e(k)

Ow

—implies a normal Fermi liquid. We shall see below that the the breakdown of Fermi liquid
theory in 1D is signalled by the appearance of multiple solutions or vanishing of 2. The
quasi-particle residue 2, gives the magnitude of the jump of the momentum distribution
function of the bare particles at the Fermi surface [fl]. Expanding the self-energy to second
order, the Green function close to the Fermi surface becomes

— (7. w * ’ '
G(k,w) = Gine(k,w) + w —v(|k| — kp) + i usign(|k| — kp) (k| — kr)? 2

There is no damping of the quasi-particles at the Fermi surface. They will exist off the
Fermi surface only to the extent that their damping is sufficiently small (their lifetime
long enough) to make them behave like an eigenstate over a reasonably long time scale.
Damping of a quasi-particle with energy w is provided by complex configurations of quasi-
particle-quasi-hole excitations. They also produce incoherent background ImG;,.(w) in
the spectral function which, interfering with the coherent part, gives ImG(w) oc w? for
w — 0 at finite k. Eq. (B) is to be compared to the 1D Green functions derived
in Chapter B.J, and to that of the marginal Fermi liquid whose quasi-particle residue
vanishes as

2k ~—1/In|ek)| for ek) —pu=0 . (2.6)



The quasi-particle is the central concept in the theory of the Fermi liquid. From
the quasi-particle picture, Landau derived, in his first paper, a Boltzmann-like transport
equation for the Fermi liquid [[]. To this end, one assumes that spatially inhomogeneous
excitations in the system take place on a macroscopic scale only, so that the wavevector k
remains a good quantum number at least within a volume of macroscopic size. One can
then define a local distribution function dn(k,r). The time evolution of this distribution
is then given by

w + vi - Von(k,r) + d(ex — 1) %: f(k,K)vy - Von(k',r) = I[n] | (2.7)
where I[n], the collision term, is a functional of n(k,r) and the velocity vy = Vie(k).
Since dn and 0(ex — p) appear, it is clear that this equation applies only close to the
Fermi surface. Notice that the assumption of variation of n(k, r) over macroscopic length
scales implies coarse graining any underlying microscopic theory over length scales at
least of the order of the thermal de Broglie length £ ~ vp/mT. & measures the length
over which the quasi-particles loose their phase coherence. Moreover, due to the collision
term, (B.7) contains dissipation, produced by the elimination of degrees of freedom in the
coarse graining process.

Subsequently however, Landau was able to derive the same equation from the general
formalism of many-body theory without making reference to the quasi-particle picture [,
and one could conceive generalizations of the Fermi liquid theory based on this equation.
For the one-dimensional Fermi liquid, however, the analogon of the Landau-Boltzmann
transport equation has not yet been derived, and the usual derivation fails in 1D. In the
remainder of this article, we shall base our notion of a Fermi liquid on the quasi-particle
picture.

2.2 Breakdown of Fermi liquid theory in one dimen-
sion

Adiabatic continuity is, a priori, a hypothesis which needs verification: while it works
for repulsive interactions in 3D, it cannot be justified for attractive interactions where a
transition to superconductivity takes place — but neither can it be justified for repulsive
interactions in 1D, the case of highest interest in the present article. Here, we discuss
where Fermi liquid theory breaks down in 1D. The first discussion is rather qualitative and
handwaving. A second one computes the perturbation corrections in the Green function
of a 1D Fermi gas due to some interactions and therefore probes quasi-particles. The
third part finally indicates where the derivation of Landau’s quasi-particle interactions
and transport equation breaks down and suggests that also the latter will have a new
shape in 1D.

On the microscopic level, the central problem in the theory of 1D interacting electrons
is the Peierls instability [f], Figure 2.1: 1D electrons spontaneously open a gap at the
Fermi surface when they are coupled adiabatically to phonons with wave vector 2kr. The
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mechanism operates, however, also for electron-electron interactions. The particle-hole
susceptibility in Figure 2.1 diverges as In[max(vpq, w)] if momentum 2kr+¢ and frequency
w are transferred through the bubble. Its origin is the nesting property of the 1D Fermi
surface: one piece of the Fermi surface can be matched identically onto the other by a
“translation” with @) = £2kg. (In higher dimensions, in the generic case, a given 2k only
matches two points — a Fermi surface part of measure zero.) Summing up a particle-hole
ladder, i.e. doing a mean-field theory, one would predict a (charge or spin) density wave
instability at some finite temperature for repulsive interactions — implying that there can
be no Fermi liquid in 1D. The finite transition temperature is, of course, unphysical and an
artefact of mean-field theory. It is removed by realizing that, since the Peierls channel is as
divergent as the Cooper pairing channel, both types of instabilities interfere and one has
to solve at least a “parquet” of diagrams [B(]. The Peierls—Cooper interference conveys a
marked non-mean-field character to this problem: mean-field theories are constructed by
selecting one important series of diagrams. Here two of them interfere and compete! The
1D Fermi gas is inherently unstable towards any finite interaction, suggesting that it is
not a good point of departure for analyzing interacting electrons in 1D. (Notwithstanding
this statement, much progress in our understanding of 1D fermions is due perturbing the
1D Fermi gas by electron-electron interaction [[§].) There is thus urgent need for new
low-energy phenomenology, similar in spirit to the Fermi liquid picture, but adapted to
the specific problems of 1D electrons.

The breakdown of Fermi liquid theory in 1D is also visible in a second order pertur-
bation calculation, as we will demonstrate now. We consider a simplified problem of 1D
electrons with a density-density interaction parameterized by a coupling constant g. We
calculate the self-energy ¥,(¢,w) in Eq. () in second order perturbation theory. The
relevant diagrams are shown in Figure 2.2. Anticipating on the next Chapters, we limit
ourselves to (forward) scattering processes transferring only small momentum ¢ < kp,
and discuss the relevant processes separately in order to avoid obscuring interferences.
All arguments are robust, however.

We start with the process where all scattering partners are on the same side r» = + of
the Fermi surface, to be called g, hereafter [the Hamiltonian is written out in Eq. (B.4)].
So long as g4 is independent of momentum transfer, Hartree and Fock terms will cancel
each other for scattering partners having the same spin. If they have opposite spin (g4 ),
(b) and (d) are absent, and (a) only renormalizes the chemical potential. The self-energy
(c) can be calculated and injected into (B-7). The pole of the Green function should give
the energy for quasi-particle excitations, but here we obtain two solutions

W= (vFi | % ) (rk — kg) (2.8)
This violates the single-pole assumption at the origin of the Fermi liquid. Anticipating
Chapter [J the meaning of the two poles is clear: charge-spin separation. The two poles
are not converged into a single pole by higher order terms, which generate more and more
poles around the two found in Eq. (-§) and finally merge into a branch cut, giving this
model the specific spectral features discussed in detail in Section B.4.
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We now turn to forward scattering where both partners are on opposite sides of the
Fermi surface [labelled gy hereafter, cf. Eq. (B-3)]. We drop spin indices since one has
only the Hartree diagrams (a) (renormalizing again the chemical potential) and (c¢) both
for gy and go,. Diagram (c) contains a counterpropagating electron-hole pair at +kp.
This is precisely the Peierls bubble from Fig. 2.1 which gives a logarithmic dependence to
Y (k,w). The pole in the Green function (P-2)) now has a residue z ~ —1/In|rk—kp| — 0
as k — kp. Any quasi-particle character of the excitation fades away as we approach the
Fermi surface! Again, higher order terms cannot restore the quasi-particle pole. They
produce higher powers of the logarithm which sum up to a power law. These ubiquitous
power laws have been mentioned in the Introduction and will be discussed in more detail
in Chapter B.

A complete and rigorous microscopic justification of the Landau theory can be given
[B]. Here, we limit ourselves to a sketch of where these arguments break down in 1D. The
quasi-particle interaction f(k, k") defined via Landau’s expansion of the total energy (2.1)
is related through

f(k, k') = 2mizpzp }Ji—rpo E—% U(k, Ep, K, Ep;q,w) (2.9)
to the complete particle-hole interaction vertex I'(k, E, k', E'; q,w). Notice that no mo-
mentum transfer is involved in the quasi-particle interaction. The complete particle-hole
interaction I is related to the irreducible one I by the Bethe-Salpeter equation which we
only display graphically in Figure 2.3. Singularities in I" are required for eventually desta-
bilizing quasi-particles (I' determines the two-particle Green function which is coupled,
via the interaction, into the single-particle Green function). So long as I is nonsingular,
singular I' can only arise from the internal Green functions in the right diagram in Figure
2.3. Physically, they represent that part of the effective interaction which is mediated
by propagating particles. There are, in fact, such singularities when the difference of
(four-)momenta on the internal lines tends to zero. Due to the particular limit involved
in Eq. (239), the quasi-particle interaction is not sensitive to these singularities and re-
mains regular. The singularities matter, however, in opposite (forward scattering) limit
w =0, ¢ — 0 when momentum transfer is allowed. Then collective (zero sound) modes
can be excited. Their velocity, however, exceeds the Fermi velocity so that they do not
interfere with the quasi-particles.

Now consider one dimension. As we have seen in Figure 2.1 above there is a logarithmic
singularity in the (Peierls) particle-hole susceptibility at ¢ = 2kp. It is clear from Figure
2.3 that the Peierls bubble gives an additional divergence in the Bethe-Salpeter equation
when the momentum of the internal Green functions differs by 2kr whereas the derivation
of Landau theory assumes this vertex to be finite at 2kr. Moreover, the Peierls divergence
is worse than that at ¢ = 0 in that the internal momentum integrals sample the full
bandwidth; at small g, the pole structure of the singular part is such that one only
integrates over a slice of width ¢. This is why the singularity does not enter the quasi-
particle interaction. The two-particle Green function then carries the singularity in I" into
the single-particle Green function where it will ruin the quasi-particle pole.
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The quasi-particle interaction f(k, ') in (.9) does not involve momentum transfer
between the quasi-particles. In other words, the components of the interaction which
do transfer momentum are irrelevant in 3D. This is very different from 1D where, on
dimensional grounds, these interactions are marginal and cannot be neglected compared
to those which do not transfer momentum. This finally generates charge-spin separation.
We shall give a more detailed argument in the next chapter, at the end of Section B.T.3,
after we have introduced the relevant Hamiltonian. A reduction of the interactions to an
effective quasi-particle interaction (R.9) cannot be operated in 1D.

Any search for an extension or a replacement of Fermi liquid theory in 1D must neces-
sarily incorporate in a consistent manner the Peierls divergence and momentum transfer
in the interaction process. This is what the Luttinger liquid approach, to be discussed
in the next chapter, does. A valid though less satisfactory alternative, starting from a
1D Fermi gas, is offered by either solving parquet equations or performing renormaliza-
tion group as “devices” to sum up consistently the offending divergences discussed here

(8, BUJ-

13



Chapter 3

The Luttinger model

3.1 Low-energy phenomenology in 1D — the Luttinger
model

3.1.1 Ground state and elementary excitations of 1D fermions

We have seen in the previous chapters that both the Peierls singularity and charge-spin
separation, both related to the small phase space in 1D, spoil a Fermi liquid description
of 1D correlated fermions and require new approaches. On the other hand, the rewarding
feature of 1D physics is that the particle-hole excitations acquire well-defined particle-
like dispersion in the long-wavelength limit ¢ — 0, Figure 3.1. These collective density
fluctuations obey approximately bosonic commutation relations and can indeed be used
to construct the new low-energy phenomenology called for.

To describe the low-energy physics, we need to know the ground state and the ele-
mentary excitations. Consider a system with Ny electrons in a system of length L. In the
absence of external fields, the ground state of the free system is the Fermi sea |F'S) with
krp = Nomw/2L. In general, the ground state may be different, however. In a magnetic
field, the number of up- and down-spins, is different, kpy # kp|, and in an electric field,
the number of right- and left-moving fermions is different, ]{75;_) #+ —k%_), producing a net
magnetization and current, respectively. Varying the chemical potential changes all four
kr. With respect to the reference state given by kg, one can therefore introduce four
numbers N, ; measuring the addition or removal of fermions, above or below the reference
kg, in the channel (r, s), where r labels the dispersion branch close to rkr and s the spin.
The total charge and spin as well as charge and spin currents with respect to the reference
state are obtained by linear combination.

What are the elementary excitations? For the free system, one could add a fermion
in a k-state with |k| > kp and create a quasi-particle. However, we have seen in the
preceding chapter that these quasi-particles are not stable against turning on interactions.
Next consider particle-hole excitations ], +qCelF'S), Fig. 3.1 (left). Firstly, notice that the
electron and hole created travel at the same group velocity and therefore form an almost
bound state which is certainly extremely susceptible to interactions, particularly in 1D.
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Secondly, for small ¢ where the dispersion is almost linear, there is a huge degeneracy
Llq|/2m of these excitations with energy w(q). We can form “particles”, corresponding to
the linear dispersion branch w(q) o |g| for ¢ — 0 in Fig. 3.1, by coherently superposing
particle-hole excitations with different k, Eq. (B-) below. These fluctuations are also
present in the Fermi liquid but there, the low-energy spectral region (w < vpkp, 0 <
q < 2kp) is filled in. The presence of these finite-q low-energy states allows the decay of
these excitations into their constituent quasi-particles and therefore is responsible for a
kind of “chemical” equilibrium between quasi-particles and collective excitations. In 1D
this decay into quasi-particles is not possible and makes these charge- (spin-) fluctuations
stable elementary excitations of the system. They have bosonic commutation properties.

With respect to our reference state |F'S), there are thus two types of elementary exci-

tations: (i) the charge and spin and their corresponding current excitations which change
)

. and thus the number of fermions in the system [B], and (ii)

the Fermi wavevectors kg
the collective bosonic charge and spin-density fluctuations. There are no stable quasi-
particles, and the addition of a fermion generates both types of elementary excitations,
cf. Eq. (B:41)) below.

These features are generic to 1D gapless quantum systems but are particularly promi-
nent in the exactly solvable Luttinger model. In the following, we describe and solve this
model before we turn, in the next chapter, to the reduction of microscopic lattice models

(e.g. Hubbard model) onto effective Luttinger Hamiltonians.

3.1.2 Tomonaga-Luttinger Hamiltonian

The Tomonaga-Luttinger model describes 1D right- and left-moving fermions through the
Hamiltonian [J], [ -[Bl, [B]-[B3

H = Hy+H,+H,; |,

Hy, = Z vp(rk — kp) : cikscrks D

r.k,s
1
o = 7> 920/ (P)0s.v + 921 (P)0s—o | P15 (D) (D) (3.3)
Dp,s,s’
1
H4 - ﬁ [94”(]9)5875/ + g4l(p)587—8’} : pr,s(p)pr,s’(_p) B (34)
r,p,S,s’

ks describes fermions with momentum & and spin s on the two branches (r = 4) of the
dispersion varying linearly [e,.(k) = vp(rk — kp)] about the two Fermi points +kp.

pT,S(p) = Z : C;r",k—l—p,scﬁkﬁ = Z (C;r",k—l—p,scﬁk,s - 6470<Ci,k,sc7"7k,8>0) (35>
k k

is the density fluctuation operator (describing the “particles” introduced above), and
: ... : denotes normal ordering, defined by the second equality. The Tomonaga and
Luttinger models are distinguished by different cutoff prescriptions on the dispersion. In
the Tomonaga model [§ there is a finite bandwidth cutoff ko, i.e. the allowed k-space
states for branch r are rkr — kg < k < rkr + ko. This simulates the finite bandwidth of all
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real physical systems but, unfortunately, only allows an asymptotically exact solution. In
the Luttinger model [[], on the contrary, the dispersion extents to infinity: —oo < k < oo
for both branches. In order to obtain physically meaningful results, all the negative energy
states have to be occupied. The presence of these unphysical states is not expected to
affect the low-energy physics of the model (Jw| < EF, |q| < kr). (A thorough discussion
of various cutoff procedures is given by Sélyom [I§] and Apostol [Bf].) The normal ordering
convention in Egs. (B.2) and (B.5) is necessary to avoid reference to the infinite quantity
Zk<cikscrks>, the total particle number, which is ill-defined. The coupling constants g
and g, measure the strength of forward scattering (momentum transfer |¢| < kr) between
particles on different or on the same branch of the dispersion, respectively, Figure 3.2.
They may depend on the relative orientation of the spin of the scattering particles. The
interaction terms with p = 0 give the change in Hartree-Fock energy of the system upon
addition of particles, and those with finite p describe the scattering of the elementary
excitations.

An exact solution of the Luttinger model is possible [B, [, BI, B4 if a cutoff A is
imposed on the momentum transfer of the interactions [B, B1l]. The coupling “constants”
gi(p) therefore depend on the momentum transfer (below, we shall exhibit explicitly this
momentum dependence only where necessary).

3.1.3 Symmetries and conservation laws

The possibility for an exact solution of the Luttinger model can be traced back to severe
conservation laws. The Hamiltonian not only conserves the total charge and spin of the

system
[N,,H| =0 , [Ny, H =0 (3.6)

but is does so separately on each branch r

[N,

T,0

H =0, [N, Hl=0, or [N,s,H=0 . (3.7)
Clearly, this implies conservation of the charge and spin currents

J,,H =0, [J,,H]=0, or [Js,H =0 . (3.8)
Consequently, the Hamiltonian is invariant under the gauge transformations
Ups(2) — exp(if,) Vys(x) (3.9)

for each branch separately. Expressed differently, the Luttinger model possesses, in addi-
tion to the usual gauge symmetry U, (z) — exp(if)¥,s(z), a chiral symmetry

U,s(x) — exp(ird)V,q(z) . (3.10)

The physical origin of these conservation laws is the restriction of the interaction Hamil-
tonian Hy + H, to small momentum transfer (forward) scattering: processes scattering
particles across the Fermi surface are excluded from the model.
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For specific values of the interaction constants

g2, = 9o, and gy =gs1 (3.11)

the Hamiltonian is invariant under a spin-rotation
\DTS(z) - ngs’\prs’ ([L’) 3 (312)

where 55 = (exp[i€2-0])ss is a SU(2)-matrix. As will be seen below, correlation functions
are spin-rotation invariant also when only the left equation in (B.11)) is fulfilled.

The linear dispersion and the normal ordering involved in the density operators (B.5)
makes the model charge-conjugation symmetric [V, (z) — Wi (x)]. While a more com-
plete model need not be charge conjugation symmetric, linearizing the dispersion amounts
to a constant-density-of-states approximation — often employed also in higher-dimensional
systems. Finally, when g 5 & = ga,5 s the Luttinger model can be considered as the small
momentum transfer limit of a physical Hamiltonian involving only density-density inter-
actions.

Conservation of total charge and spin applies to most models commonly studied. Their
conservation separately on each branch is, however, a specific property of the Luttinger
model and not shared by more realistic 1D models. There, it holds in a low-energy
subspace if interaction terms not commuting with the charge and spin currents are irrel-
evant. If they are relevant, the low-energy physics is characterized by different (possibly
reduced) symmetries and cannot be described by an effective Luttinger model. Two such
interaction processes are depicted in Figure 3.3. g1, describes exchange scattering across
the Fermi surface and spoils spin current conservation but respects charge current con-
servation. g¢s; is Umklapp scattering of two particles in the same direction across the
Fermi surface and destroys charge current conservation while conserving the spin current.
However, momentum conservation usually inactivates g3, , except for commensurate band
fillings. Other interaction processes violating both charge and spin current conservation
are possible, too.

Charge conjugation and spin rotation occur as separate symmetries because of the
interactions. The free Hamiltonian has a higher symmetry which, however, is broken
by the interaction terms. The go-interaction does not commute with the kinetic energy
[Ha, Ho| # 0. It therefore can modify the ground state by exciting particle-hole pairs out
of the Fermi sea. On the other hand, g, commutes [Hy, Hy] = 0. With this term alone
the Fermi sea remains the ground state. Its influence is limited to removing degeneracies
in the excitations, as can a magnetic field or a hopping matrix element between chains.

The corresponding interactions are present also in higher dimensions. Still, it seems
that they play no role there. The reason is that these interactions are marginal or scale
invariant in 1D, in a renormalization group sense, while they are irrelevant in D > 1
and drop out of the problem. Marginality means that the coupling constant does not
change under a change in the length (or energy) scale while relevance or irrelevance
imply an increase resp. decrease of the coupling constant as the length (energy) scale is
increased (decreased). The marginality of g and g4 can be seen by simple power counting.
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Taking the length scale to have canonical dimension [L] = 1, the Hamiltonian has [H| =
—1, the fermion operator has [V,(x)] = —1/2 and the density operator [p.(z)] = —1.
Consequently [g2] = [g4] = 0 i.e. go and g4 do not change with scale. The dimension of
U,.(z) can be changed by the presence of marginal operators of go-type but not by those of
gs-type. The dimension of p,(x) is not changed by marginal interactions. Notice that the
coupling constants g; transfer momentum in the scattering process, and their marginality
implies that this momentum transfer cannot be neglected on any length (energy) scale.
In contrast, the momentum transfer of interactions in 3D can be neglected because the
interaction is irrelevant (the explicit prefactor L™ in Hiy gives it a dimension —2).

To see the consequences of this marginality, and in particular of g4, inject a particle
into the second empty plane wave state above the Fermi surface |¢1) = CLF ranyns FS)-
Where can it be transferred by H, which conserves the energy? The only allowed process
relaxes it into the first empty state above the Fermi surface and excites the last particle
from the Fermi sea to the same empty state: |po) = Hy|p1) = C;F+2W/L7_SCkF7_SCLF+2W/L78
|F'S). Now, within this two-state subsystem {|¢1), |@2)}, the Hamiltonian reduces to the

4'UF7T/L 294J_/L
H= . 1
< 294J_/L 4’UF7T/L (3 3>

matrix

The diagonal terms come from the kinetic energy, and the 1/L-factor comes in from
the quantization of the k-vectors, and the off-diagonal interaction terms are proportional
to 1/L because of the explicit normalization factor in the Hamiltonian H,. Interaction
and kinetic energy both scale with 1/L and are of equal importance! Carrying through
the same argument in 3D, the kinetic terms will continue to scale with 1/L while the
interaction terms scale with 1/L? and therefore can safely be neglected at finite momentum
transfer [B7. The new eigenvalues are (47/L)(vr % g4, /27) suggesting that the particles
have split into two objects propagating at two different renormalized velocities v,, =
vp + g41 /27 — charge-spin separation.

The argument continues to hold as one injects the particles at higher momenta 2nz/L
where H, couples it to n — 1 other states of lower energy. It also carries over to the go-
interaction. Due to the non-conservation of energy, however, an infinite number of states
are coupled to the particle at any momentum. Momentum transfer scattering, therefore,
can never be neglected in 1D, and a reduction to a quasi-particle interaction (2.9) cannot
be justified in any circumstances. The marginality of forward scattering with finite mo-
mentum transfer in 1D is at the origin both of the anomalous correlation exponents and
charge-spin separation which we shall discuss in more detail in the subsequent sections.
It is the important difference to higher-dimensional systems.

3.2 Boson solution of the Luttinger model

A variety of solutions for the Luttinger model have been produced in the past. Histori-
cally, the first solution involved a boson representation of the Hamiltonian [J] and will be
reviewed first. This solution was “completed” by the construction of a boson representa-
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tion for the fermion operators [B9, BJ] which has been made rigorous by Haldane [ and
Heidenreich et al. [BT]. It emphasizes the differences between Fermi liquids in one and in
higher dimensions. Methods developed in Fermi liquid theory, more strongly emphasizing
similarities between 1D and 3D Fermi liquids, have also been used to solve the Luttinger
model B4, BY| and are reviewed in Section B.3.

3.2.1 Diagonalization of Hamiltonian

The Tomonaga-Luttinger model (BZ]), (although using Luttinger’s version with infinite
bands and a momentum transfer cutoff in the interactions throughout, we shall often
attach Tomonaga’s name to the model, too) describes ezcitations with respect to a ground
state described by the Fermi wave vector kp = (7/2)(No/L) where Ny is the number of
physical electrons in a chain of length L. Due to the unphysical negative energy states,
Ny # Snelch corsdo; the left-hand side of this equation is finite, the right-hand side is
infinite. The infinitely extended dispersion introduces many more subtleties into the model
which are crucial to obtain a correct solution. There are three important steps in achieving
a complete solution of this model: (i) the realization that due to the infinite dispersion,
the p,s(p) obey exact boson commutation relations [[]; (ii) a representation of the free
Hamiltonian (B-J) as a bilinear in these boson operators [J]; (iii) the explicit construction
of a boson representation for the fermion operators W,(z) = (1/v/L) X}, Cois exp(ikz).

“Normally” (the precise meaning of this will become apparent below) density operators
commute [ps(p1), ps(p2)] = 0 because their Fourier transforms p,(z) = ¥i(x)¥,(z) are
local objects. This is no longer true for Luttinger’s density operators because of the
fermion doubling

U(z) = ¥, 4(z) ; Chs = »  O(rk)crps - (3.14)

r=4

©(x) is the step function. There is now a nonlocal relation between the physical fermions
U (x) and the right- and left-moving ¥, ((x)

1

L/2 t ) m Y
Z/ dy K(y) V! (x +vy) with K(y) = — cot (—) , (3.15)
—J-L/2 ’ L L
and the density operators no longer commute.
The commutator of the density operators is

[Prs(D)s P (=P = OB D7 (el i psCrbimnis = ChpipoprsCrns) (3.16)
k

In a finite band containing both +kp (cx s without the subscript r), it is permissible to
change the summation variable & — k+p’ in the second term which makes the commutator
vanish. For the Tomonaga model (finite bands around +kg), for p # p’ one has an
operator acting on the states near the band edges rkr + kg, and the approximate bosonic
commutators of the Tomonaga model are obtained by neglecting these band edge terms.
For p = p' one measures the difference in the number of occupied states at k and k+p, i.e.
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p — making the commutator a finite number. For infinite bands (Luttinger model), one
manipulates the (ill-defined) difference of two infinite quantities, and one must introduce
normal ordered operators, Eq. (B-J), into the right hand side of Eq. (B.1§). The problem
of the band edge terms is then rigorously absent since there is no band edge left, and for
p = p' the argument for the Tomonaga model carries over:

[pr,s(p)> pr’,s’(_p,)] = 57“,7“’55,8’ Z : C;I:‘7k+p7gc7",k)+pl,8 - C;]H_p_pl,scr,k,s :
k
+ 57",7"’53,3’6;0,;0’ ZKnr,k—l—p,s)O - <nrks>0]
k
rpL
= 5.8, u5, P 3.17
’ ) p,p 27T ( )

One can safely change the summation variable in the first line of (B.I7) because the
operators are normal-ordered; the two terms add up to zero, leaving the contribution of
the second line. In the Tomonaga model with finite bands for right- and left-movers, the
boson algebra obtains approximately (for wave vectors far from the band edges) because
one works with truncated density operators. The algebra (BI7) is known as the U(1)
Kac-Moody algebra in field theory, and the nonvanishing of the commutator (B-I7) due
to the infinite number of negative energy states (Luttinger model) or the cutoff procedure
(Tomonaga model) is called an “anomaly”.

Acting on the ground state of the free Hamiltonian Hy, the p,s(p) behave either as
creation or annihilation operators, depending on sign(p)

p+.5(=p)[0) = p—s(p)|0) =0 for p>0 . (3.18)

To complete the algebra, it is necessary to construct a ladder operator U, which changes
the fermion number without affecting the bosonic excitations. This operator is necessary
again because of the infinite dispersion: since there are no upper and lower limits to the
number of particles, the number operator cannot be expressed in terms of raising and
lowering operators. Haldane and Heidenreich et al. have given such a construction in
terms of the bosons p, s(p) and the fermions ¥, 4(z) [, BI], cf. below.

There are several ways to see that the free fermion Hamiltonian Hy, Eq. (B.9), is
equivalent to an operator bilinear in the bosons p,s(p). The simplest one [[] is to examine
the commutator

[Ho, pr.s(p)] = vr 7D prs(p) (3.19)
which is obviously compatible with

™
Hy = TF > i prs(P)prs(—p) : + const. (3.20)
r,p#0,s

The equivalence of the Hamiltonians (B.9) and (B.2() is known as Kronig’s identity [Bg],
and is valid at fixed particle number. If particles are added to the system , the “+const.”
becomes important, however, because one must add their kinetic energy to the Hamilto-
nian. We put them into the lowest available states above the Fermi sea (other states can
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be reached by acting with the boson operators). The complete Hamiltonian then takes
the form

MU

Hy = —= > prs(p)prs(=p): (3.21)
r,p#0,s
T
+ ﬁ - |:UN(N+75 + N—,8)2 + ,UJ(N-F,S — N—,s)2:| ,
(-1)7 = —(=nF | (vs =vNy =vy =vF) ,

where the N, s = p.s(p = 0), Eq. (B.5), are taken relative to their (infinite) ground state
value and therefore measure excitations with respect to a given ground state charge. The
symmetric combination Ny = 3. N, ; measures charge and the antisymmetric combination
Js = >, N, s measures current excitations, both carrying spin s. Total charge and spin,
as well as charge and spin currents, are obtained by the appropriate sums over s. These
quantities specify the number and the left-right asymmetry of the fermions added to the
reference state (N = No/2, J; = 0). The equality of the three velocities in (B:2]]) to
the bare one only holds for the free model and is violated by interactions (the Hartree-
Fock energy of the added particles appears as the ¢ = 0 components of the interaction
Hamiltonian). Including the charge and current excitations, (B.2) and (B.21]) possess the
same spectrum, by construction. That the multiplicities of the levels also are equal can
be proved by calculating the grand partition function both in the fermion (B.9) and in the
boson (B.2]]) representation. Thus the fermionic and bosonic Hilbert spaces are identical.

Why are such two different representations of the same Hamiltonian possible? (i)
Reconsider the elementary particle-hole excitations in Figure 3.1. They acquire a well-
defined particle-like character in 1D as ¢ — 0. In the Luttinger model the low-¢ branch
of their dispersion is strictly linear in ¢q. Decay of these excitations in the constituent
particles and holes is forbidden on account of 1D kinematics — it would involve states
in the void low-frequency part of the spectrum. There should thus be a representation
of the Hamiltonian, which describes ezcitations, in terms of these particles alternative
to the original fermionic one. Moreover, the absence of dispersion implies that these
excitations do not interact: one excitation with momentum ¢ 4+ ¢’ has the same energy
as two excitations with momenta ¢ and ¢’. Certainly, these collective modes also exist
in higher dimensions, but so does the electron-hole continuum which permits their decay
into quasi-particles and quasi-holes. (ii) An intimately related observation is that the
particle and the hole created in such an excitation, travel at the same group velocity and
therefore form an almost bound state which surely is extremely susceptible to dramatic
modification by interactions where, in any case, momentum transfer cannot be neglected.
(iii) All states with even (odd) fermion charge N — Ny have excitation energies that are
even (odd) multiples of mvr/L. In other words, the spectrum effectively becomes that of
a harmonic oscillator. This fact again suggests that an equivalent boson representation
of Hy should be possible. (iv) The Kac-Moody algebra (B.I7) can be obtained either by
representing p,s(p) as a fermion bilinear () or as the gradient of true bosonic field @, (z)
[Eq. (B-40) below]. Since the algebra is unique, the two representations must be equivalent.
While for the noninteracting problem, the two representations are true alternatives, the
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success of bosonization is related to the fact that the bosonic one becomes more “natural”
once interactions are introduced.

Now the Luttinger Hamiltonian can be diagonalized by a Bogoliubov transformation
B, B, BY]. First transform to charge and spin variables

() = %wmwup)} , Nr,p=%[Nr,T+Nr,u ,
1

7v) = om0 = us0)] Nr,ozﬁm—zvr,u (3

We only include the z-component of the spin density operator working within abelian
bosonization. At this point, the SU(2)-spin transformation properties of the fermions
(B-12) has been broken down to U(1) [just like the gauge transformation (B.9) for the
charges|, and likewise for the symmetry of the Hamiltonian, even if (B.I1]) is satisfied.
One can keep the spin densities transforming explicitly according to SU(2)

/(1) = 3 WL, (#)0s Uy (1) (3.23)

s,s’

and represent the Hamiltonian in terms of the U(1)-p,- and SU(2)-S,-fields. In this way,
one can keep SU(2)-invariance manifest at every stage of the calculation. The price to be
paid is, however, a significantly more complicated boson respresentation which will not

be reviewed here [0, BY].
The interactions transform as

Gip = % (gi” + gu) y Gic = % (Qin - gu) . (3.24)

The Hamiltonian then becomes (v = p, o henceforth)

Hy = % v (p)vr(—p) (3.25)
vrp#0
+ % |:UNI/(N+V + N—u)2 + UJI/(N—I—I/ - N—I/>2j| (UNI/ =V = UF) )
H = =S e (-p) (326)
He = 75 gu) wown(-n): (3.27)

vrp

We diagonalize by the canonical transformation

H = % He ™ p(p)=e v, (pe ™
5. = S S () - vl (3.29

The v,’s explicitly transform as

r(p) = v,(p) cosh[&, (p)] + v_.(p) sinh[&, (p)] (3.29)
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and H is diagonal under the condition

_ 26w | TVF T 90(p) — g2 (p)
) = J TUp + ga(P) + g2 (p) (3:30)

For repulsive interactions, K, < 1 while for attraction K, > 1. The diagonal form is then

T PN
= 7 2w n@n(-p): (3.31)
rvp#0
T
+ ﬁ |:/UNV(N+I/ + N—I/)2 + UJV(N—H/ - N—I/)2:| )
with vy,vy, =02 ie. vy, =v,/K, and vy =v,K, . (3.32)

(The N,,-operators are not changed by the canonical transformation.) The renormalized
charge and spin fluctuation velocity is

0(p) = $ [UF N 94;(29)]2 ~ [gzu(p)r ’ (3.33)

T
and therefore
UNy =VF+ G0 + 920 , Vo =VF+ G4 — G2 (334)

and the limit p — 0 is implied whenever p is not exhibited explicitly. Due to the momen-
tum transfer cutoff A, we have asymptotically

K, for p<A
1 for p>A

v, for p<KA

3.35
vp for p>A ( )

K0 - | w) - {

Egs. (B31) and (B39) are the central constitutive relations for the Luttinger model
and the Luttinger liquid hypothesis discussed in the next chapter will postulate that these
relations continue to hold in a low-energy subspace of all solvable gapless 1D models. The
quantity K,(p — 0), Eq. (B.30), is the essential renormalized coupling constant for each
degree of freedom, and physically plays the role of a stiffness constant. K, governs the
power-law decay of most correlation functions. The two parameters v, and K, completely
describe the low-energy physics of each degree of freedom v of the model. That there are
just two such parameters is not surprising: the Hamiltonian has only two parameters gs,
and g4, and we just get back what we have put in. Important are the following facts:
(i) the three different velocities in the problem are all renormalized by the interactions,
Eq. (B.32), and describe different physical processes. wv,, the renormalized Fermi (or
“sound”) velocity governs the bosonic excitations; vy, is related to the fermionic charge
excitations, i.e., for ¥ = p measures the shift in chemical potential upon varying the
Fermi wave vector oy = vn,0kr and, for v = o the relation of the magnetic field to
the magnetization M = vn,(kpy — kpy). vy, finally measures the energy necessary to
create persistent charge or spin currents on the periodic chain. (ii) All three velocities are
properties of the spectrum of the model. Spectra can, however, be calculated either exactly
by Bethe Ansatz (e.g. Hubbard model) or to high accuracy with numerical methods, and
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the velocities can then be determined. (iii) The three velocities determine the renormalized
coupling constant K, which in turn determines all correlation functions of the Luttinger
model. It is now obvious how Eq. (B:33) turns the Luttinger model into a very useful
device for accessing the correlation functions of all 1D gapless models.

One prominent property of the Luttinger model — charge-spin separation — is manifest
here: charge and spin fluctuations propagate with different velocities and will therefore
separate in time. In realistic models, charge-spin separation will be dynamically generated
close to their Fermi surface. In the Luttinger model describing just this subspace, it has
become a manifest property of the model.

Collective charge density and spin density fluctuations propagating with different ve-
locities do also occur in higher dimensional models, and in particular in the Fermi liquid.
This is not special to 1D. Dramatic consequences in 1D arise, however, from the lack
of robustness of hypothetical quasi-particles with respect to these elementary excitations
separating in time. Quasi-particles do not exist in 1D systems with charge-spin separa-
tion. This may again be traced back to the lack of a continuum of low-energy excitations
for 0 < ¢ < 2kp, (Figure 3.1): in 1D there is no way how these collective modes can decay
into the hypothetical constituent quasi-particles (holes) which therefore never reappear
once interactions have been introduced. The absence of quasi-particles is most directly
seen in the single-particle spectral function which cannot be written in a form similar to
Eq. (B.3). Detailed results can be found in Section B.4.

Labelling the charge-localization (Mott-Hubbard) transitions generated by strong Cou-
lomb interactions as “charge-spin separation” is somewhat misleading. It happens in
higher dimensions, too. At issue are the excitations out of this state, and whether there
are quasi-particles at low energies. Of course, there may be borderline cases, where the
quasi-particle residue in (273) is small but finite, and most of the spectral weight resides
in the collective modes.

Charge-spin separation is also visible in the many-particle correlation functions. This
is trivial, and also happens in higher dimension, for the small-¢ parts of density and
spin density correlation functions. The novel feature of the correlation functions in 1D
is the appearance of two separate singularities close to 2kr (and, partly, higher multiples
thereof) where a single one is expected in the absence of charge-spin separation. This will
also be discussed in Section B.4. Before, we need to find a practical representation of the
fermion operator in terms of the bosons diagonalizing the Hamiltonian in order to be able
to calculate correlation functions.

3.2.2 Bosonization

A completely satisfactory boson solution of the Luttinger model also requires an explicit
representation of the fermion operators W, (x) in terms of the bosons p,s(p). Then any
correlation function can be given an equivalent boson representation and, the diagonal
Hamiltonian being a simple boson bilinear, the calculation of any of these correlation
functions becomes almost trivial, reducing to Gaussian averages.

Pioneering work in this direction was performed by Luther and Peschel [BZ] and Mattis
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[B3]. They proposed a bosonization formula which allowed an asymptotic calculation of
correlation functions but was certainly not an operator identity transforming between
fermions and bosons. The cutoff procedures and the interpretation of these cutoffs were
ambiguous [Bf]. Field theorists proposed similar constructions at the same time [[Q].

A precise formulation of such an operator identity was given independently by Haldane
[B] and Heidenreich et al. [B], and involves the construction of the (unitary) ladder
operator U, ;. This operator increases by unity the number of fermions with spin s on
branch r and must commute with the boson operators with finite momentum. It is
sufficient for that purpose to consider states |N, ;) where all states below a certain wave
vector are filled and above empty:

Ur,s‘Nr,s NF,§> == ‘Nr,s +1 NF,§> 5 [pr,s(p % 0)7 Ur’,s’] =0 (336)

in evident notation. A natural guess is to put the new fermion into the first free level
above the reference state, occupied up to | kg + 27N, /L |,

_ ! t (2N, s+ 1)m
Ur,s - \/Z ; Crks o (Tk [kF + I ‘|> (337)

L " 2N, 1
~ VI | da vl (@) exp (z’r lkF + #] :c>

Its commutator with the bosons does, however, not vanish

57"7"’53 s’ L ; . (2Nrs + 1)7T
;] = ) ) 1pT ) . .
peslp), Uy = 7 | dw e w, (@) exp <u~ [k:F e ] :):) (3.38)

The idea now is to introduce, into Eq. (B.37), a bosonic field ¢, ,(x) whose commutators
with p,s(p) compensate the unwanted commutator from V¥, ;. One then has

U., = L/Lala:eml‘“me_i‘z’lvs(””) Ul () e~ rs(@) (3.39)
) \/Z 0 r,s
with
T ) 27 e—alpl/2—ipz
¢r,s(x) = _—Nr,s + lim | — 7@(rp)pr,s(_p) (340)
L a=0 \ L p£0 | p |

which is the desired operator. This expression can be inverted for U, ;(x), now given in
terms of bosons and the ladder operator, and compactified into
ei?”(k‘p—ﬂ'/L)SE

Vel = ™ e

UL exp (E 10, (x) — O,(x) + 5 {rdy (x) - @Ax)}])

(3.41)
The two phase fields are
z'ﬂ' e_a|p|/2_ipx T
b(@) =72 ——— )+ - Ny + Noo) 7 (3.42)
p
p#0
and ol/2—i
i e~ P/ T
O,(x) = = ——[ve(p) —v-(p)] + (Vo = Ny)— (3.43)
L p#0 p L
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and are constructed from the ¢, , and qbi,,s plus commutator terms. The charge density
operator is related to ®, by

_@ 0P, ()

T Or

px) = V2[pi(x) + p-(2)] = (3.44)

where the factor v/2 comes from (B23), and there is an analogous expression for the spin
density. O, (x) is related to the momentum canonically conjugate to @, (x)

1

™

M, (x) = = > e P20 [y (p) — v (p)] + (Ny — N_,) (3.45)
L 220 L
by
O,(z) =1 / d= 10, (=) (3.46)
and the commutation relations are
(@, (), 11, ()] = @b, 0(x — a) (3.47)
[®,(z), 0, (2)] = zg5 sign(z' — z) . (3.48)

We can rewrite the Hamiltonian in terms of these phase fields as

H= % Zyj/d:c {vJV 1L (z) + vy <aq>§x(x)>2} : (3.49)

making obvious the equivalence to the Gaussian model of statistical mechanics. Under

the Bogoliubov transformation (B:2§), the phase fields transform as

b, — d,\/K, and  0,—06,/\/K, (3.50)

if we neglect the momentum dependence of the interactions g(p) so that the K, can be
taken outside the summations in (B.43) and (B.43). These expressions can now be em-
ployed for calculating arbitrary correlation functions. Examples are given in the following.
There is also a more physical way of arriving at the general boson structure of the
fermion operators [}, fZ]. Define a boson field @, ;(x) by 09, s(z)/0x = —7p, s(x) where
p describes density fluctuations. Introducing a particle at site x creates a kink of amplitude
7 in the field @, ;, i.e. the phases of all other particles have to shift to accommodate the
new particle. This field can be considered as a dynamical implementation of the Fermi
surface phase shifts appearing in Anderson’s arguments in favour of a Luttinger liquid
in 2D [LI]. Since displacement operators are exponentials of momentum operators, one
could guess VU, ((x) ~ explir [*  dzIl,  (2)] where II, 4(2) is the momentum canonically
conjugate to @, ;(z). This operator commutes, however, with itself. The required change

of sign at x = 2/ is achieved by multiplying with exp[+i®, ;(x)] which yields
U, s(x) ~ ili% % exp |irkpr — ir®, o(x) + i /:Odzﬂm(z)] . (3.51)

This is essentially the Luther—Peschel-Mattis formula [B2, which contains all the im-
portant bosonic terms for the calculation of physical properties but does not have the
status of an operator identity in the full Hilbert space of the Luttinger model.
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3.2.2.1 Spinless fermions

At various stages of this article, we will need spinless fermions, either because of their
physical relevance as elementary charge excitations (holons) in the Hubbard and related
models, or just for simplification. Here, we compile the most important formulae from
the preceding paragraphs for spinless fermions.

The Hamiltonian is obtained by dropping the spin label and summations in (B.2) —

(B4, i.e.

0 = % 3 2 pr(P)pr(=p) : +% (N +.77) (3.52)
+ %zpz <gz(p)p+(p)/)—(p) + g4§p) Z L pr(p)pr(—p) :> (3.53)

with N, J = N, = N_. The Hamiltonian is diagonalized as
o=y %@ : pr(p)pr(—p) - +%(’UNN2 +v;J?%) + const. (3.54)

with the velocities

2 2
0 0 0) — g2(0
o) = J o+ ST TRy 8OO, 040 —0®)
2T 2 o o

(3.55)

and the stiffness “constant”

2mvp + g4(p) — g2(p)

K(p) = - 3.56
(») J 21vr + 4(p) + g2(p) (3.56)

Finally, the bosonization identity for spinless fermions is

' eir(kp—w/L)x
oI T

The fields ®(x) and ©(x) are given by the expressions (B.49) and (B.43) for the charges,
and the operators p,(p) now refer to spinless fermions. With these fields, the Hamiltonian

Ul exp (—i[r®(z) — O(x)]) . (3.57)

the has the following phase representation

H-L [a {mm?(x) Tox <8‘gf>) } | (3.59)

3.3 Physical Properties of the Luttinger Model — Ther-
modynamics and Correlation Functions

The machinery set up in the preceding section is extremely useful in calculating correlation
functions. A remarkable feature of the Luttinger model is that all correlation functions can
be calculated exactly. With the boson representation of an operator, all the expectation
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values reduce to Gaussian averages, as we shall show on some examples here. The linear
response of an operator B in a system described by a Hamiltonian H,, coupled to an
external field a(z,t) by the operators A(z), i.e. H = Hy+ [dx a(z,t) A(zx) is related,
through the Kubo formulae, to correlation functions of the system in the absence of the
external field (in the interaction picture and assuming translational invariance)

(Ba1) = (BeOwn)+ [ O:OXBA(x—x’,t—t’)a(m’,t’)dm’dt’ ,
XBA(Ivt) = —i@(t)<[B(l’,t),A(O,O)]>a:0 . (359)

x is called susceptibility, response function, retarded correlation function, etc. There
are many closely related functions and below, we shall denote all of them as Rgyu or, if
symmetric, simply as R 4, with some exception for cases of special relevance. Within linear
response theory, the Luttinger model can make predictions for all possible measurements.

3.3.1 Thermodynamics and transport

The Luttinger model has a specific heat linear in temperature

v 1 [fvp wp
c(T)=~T %2 <v_p + E) . (3.60)
The linearity is both characteristic of the underlying fermions (linear specific heat in
any dimension) as well as of the bosonic excitations (phonons in 1D also have a linear
specific heat). o is the coefficient of free electrons which can be calculated from both
representations as

k%

3

the density of states of the free Luttinger model being a constant N(E) = 2/mvp including

21k

3’UF

N(Er) =

- (3.61)

spin and both branches. The spin susceptibility and compressibility are

1 10%E 1 10°E

1_1%F) 1 _19E(®) (3.62)

x L 002 k L 0On?
where FEj is the ground state energy as a function of the particle (spin) density n (o).
Throughout this article, we denote the average particle density (band filling factor) by
n and the density fluctuations by p(z). The susceptibilities are renormalized by the

interactions

2K, 2 2K 2
= and k=—"—""2L=—"+ | (3.63)

Ty TUNo TV, TUNp

X:

They are related to the renormalized velocities for the charge (spin) excitations defined
in Eq. (B-34)). This is expected, of course, because vy, measures the change in energy
upon changing the number of electrons in the system, cf. (B-31)). As we shall see below,
spin-rotation invariance requires K, = 1.

The electrical conductivity is determined from the current-current correlations through
the Kubo formula

o) = L [9 + R (3.64)

W LT
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where the first term is the diamagnetic part and the (second) paramagnetic term is given
in terms of the retarded current-current correlation function

RF(w) = —% /0 C /0 T atli(z, 1), §(0,0)]) e (3.65)

The Drude weight D in fact is a susceptibility and is related to the derivative of the
ground state energy with respect to an applied flux ¢ [[IJ

T PE(®)

$=0

A flux creates a “persistent” current in a Luttinger ring, and the appearance of v;, here
should not surprise from (B.31]) again. 2v,;, = 2v,K, plays the role of the plasma frequency
in 1D [{4].

One has to be careful in the definition of the current operators. Naively, one has
j(z) = V2vup [pi(x) — p_(7)] = V2upIl,(x). A more careful evaluation via the continuity
equation Opp(zt) + 0,j(xt) = 0 gives, however,

jlat) = ggép(ajt) = V20, K11, (2t) = V20,11, (xt) . (3.67)

The difference is due to the fact that, in the Luttinger model, g, may be different from
g4 and the density does not necessarily commute with the interaction Hamiltonian, as it
does in a well-defined lattice model. Notice, however, that v,K, = v;,; if the Luttinger
model is derived from a well-defined lattice model with density-density interactions only,
g2 = ¢gay is required and, using Eq. (B.34)), one obtains v;, = vp, i.e. the current
operators are not renormalized by interactions. This applies to galilean invariant models
in general where, in the limit ¢ — 0, the current becomes proportional to momentum
which is conserved by the interactions [fJ]. Consequently, as can be shown by two partial
integrations on Eq. (B-69) producing

o(w) =l Re (i) [die ([ [Hjat)], (5@ 0)]) . (369
one has R¥(w) = 0 ], so that the conductivity reduces to a pure Drude peak
0(w) =2v;,0(w) = 2vpd(w) (3.69)

with an interaction-independent strength. This relation has been derived by a number of
people [4, G, {7, Y.

There are a few most remarkable facts about these unspectacular formulae. (i) The
finiteness of the susceptibilities characterizes the system as a “normal metal”. It is highly
nontrivial in view of the ubiquitous divergences we shall encounter in the following sec-
tions. The physical origin lies in the strong conservation laws of the 1D phase space in the
absence of backscattering [If. (ii) These quantities can be calculated both in a fermion
representation where one considers the charge excitations N, and uses (B.67), and from
the ¢ — 0 limit of bosonic correlation functions which we shall compute in Section B.5.
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The result is the same. The reason will be given below [7]. (iii) The boson representation
gives the susceptibilities in absolute magnitude for lattice models provided parameters are
identified correctly [f7]. One can invert the procedure and use these relations to identify
the parameters of a low-energy boson theory for lattice models from (B-62) [0, A8, [9].
(iv) They can be obtained from the energy alone which can be calculated either from an

exact solution or accurately with numerical diagonalization where correlation functions
are not readily available [{§, ]].

3.3.2 Single- and two-particle correlation functions

The thermodynamic properties do not differ from the Fermi liquid. There, compressibility
and susceptibility are renormalized by interactions, too, and the renormalization is given
by the Landau parameters £{j and F§. We neither see the anomalous power-laws not the
effects of charge-spin separation highlighted earlier. To this end, we carry on to the space-
and/or time-dependent correlation functions

Ro(z,t) = —iO(t) <[O(x,t), o'(0, 0)L> (3.70)

of various operators O of interest. [...]1 denotes commutator or anticommutator for
bosons and fermions, respectively. Other, e.g. time-ordered, correlation functions are
obtained in a similar way.

We give a rather explicit calculation for the single-electron Green function

Gralat) = —iO(t) ({ Wy (1), W], (00)}) = —i0(1) (Glat) + G(~z — 1)) (3.71)

where U, () has been defined in Eq. (B.41)), to sketch how such a calculation works in
practice, and to give some formulae useful for the work with boson operators. In (B.71]), we
have incorporated that G is diagonal in r and s. Using the bosonization identity (B.41])
in (B.71)), we first commute the UJ.-operator from W, () at the left of the expression
through the exponentials until it arrives at the right, where Wi (0) has a U,,. Being
unitary, we have Ul U, = 1. What are the terms we pick up during the commutations?
U,s commutes with p,s(p # 0) by construction, so that the only nonvanishing terms come
from the operators N,s measuring the charge excitations in the phase fields ¢, and O,.
These terms, however, involve prefactors 1/L so that their contribution vanishes in the
limit L — oo. If we are interested in this thermodynamic limit, we can neglect both the
U,s- and N,,-operators altogether. We see that the Luther-Peschel-Mattis formula (B.51])
(neglecting the U, ;- and N, ;-operators) gives the exact asymptotic behaviour of the Green
function! (This statement is not completely true for the many-particle functions: U,
anticommutes with U,. . if at least one index is different. When one considers operators O
pairing W, (=) with different indices, as we do in almost all two-particle functions below,
the U,, will produce phase factors. The exponent of the power-law is unaffected by these
phase factors but logarithmic or prefactor corrections crucially depend on them [pd].)
After diagonalizing the Hamiltonian, the Green function becomes (dropping the indices
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N eirkF:c i B N i 5 B
G(zt) = lim <exp <_ﬁ {T’(I)p(llft) - @p(:vt)D exp <ﬁ [r<1>p(00) - @,,(OO)}>> X

a—0 2T
p
~ ~ )

<exp (-% 1, (o) — @o(m]) exp (ﬁ (1, (00) — 60(00)}>> 37

g

X

However, we keep the momentum dependence of the interactions and do not use (B-5(); we
denote the transformed fields by ®, and ©,. Moreover, since the p-phase fields commute
with the o-fields, we have separated the exponentials into products involving only p and
o separately. (...), denotes the expectation value with the v-part of the Hamiltonian.
Next we use the important relation

eteB = AVBAB2  lidif [A, B e C (3.73)

to merge all v-phase fields into one exponential. The commutators contribute exp[C, (xt)]
with

Cutat) =~ S (R + gl it + 20 cos D]
(xt) = —— _ (p) + 18in v, t| 4+ 27 cos (v, (p)t
L p#0 p b Ku(p) PP P
(3.74)
The expectation value (eA*?) = exp[D, (zt)] is evaluated using
exp A) = exp <%(A2>) (3.75)

valid for a linear form in boson operators whose exponential is averaged with a harmonic
oscillator (Gaussian) Hamiltonian. We find

2 e—alpl+Ip')/2
A = g 2;; T (3.76)
X Rgi@R(p)VR(P ) pl_p[p/ (7” K,(P)+R Ki(P)) (e—iP(m—RvV(p) ) 1)
with
Ny — g Lpl O(rp) X
(v (p)vr(P)) = Op—pr o <exp v, (p)p/2kT] — 1 +O(—rp) {1 + o o ()P 2R = 1}) .

(3.77)
For T = 0, to be treated first, the Bose-Einstein distribution vanishes for p # 0, and we
can rearrange e“7e”” so that

1
Culat) + Dy(at) = —3 VY (wt) + V¥ (at) = 20V (at)] (3.78)
1 food .
Vi(xt) = 5/0 ?pe_o‘pKfl(p) [l—cos(px)e_zv”(p)pt} , (3.79)
. '
Vo (xt) = %/0 ?pe_o‘p sin(pz)e~ PPt (3.80)
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All correlation functions can be expressed in terms of V3 and V4.

Now remember that in the Luttinger model a momentum transfer cutoff must be
imposed on the interactions, and the asymptotic values of K, and v, are given by (B.39).
Taking e.g. V., we split the integral in two terms by adding and subtracting [...] on the
right-hand side [p]], p3]. Taking together (K, — 1)[...], the important contributions will
come from p < 1/A, and we can replace v, (p) — v, there. The contribution of this term
to V. then becomes

K,—1 A + vt +ix K,—1 A + vt —ix
z 1 + - - 1 + - 3.81
1 “( A% >+ 1 “( A% ) sy
where the cutoff A’ is given by
AY 1 oo dp
(o] =- /—K,, 1 (K, —1)e o] 82
0 (5) = [ L R -1 (8- )] (3582

A is arbitrary but finite. Since (B.81]) would be obtained by taking an exponential cutoff
on K,(p) — 1, (B:82) amounts to finding an equivalent exponential cutoff to the cutoff
of arbitrary form contained in K,(p). In the following, we assume that there is a single
cutoff A in the problem independent of the indices + and v. In the second term from V|
the only interaction-dependent quantity is v, (p). Here it is simplest to use the fact that
(B-8T]) can be obtained with an exponential cutoff A, add and subtract exp(—Ap) and use
v, resp. vp for the integrals weighted at small or large momentum. V; is treated in the
same way. The final result is then [[§, 1], FZ, (approximate expressions have been
given by many others)

~ 1 . A+ i(vet — 1 A2 T
G(l’,t) _ 2_627’191:90 hn]o + 7j(’UF - TLL’) H . < < » _ 2)
T a=0 o+ i(vpt —1x) 25, \/A +i(vt —rz) \(A+ivt) +a
(3.83)
The exponent is
1 1
y=—- (K, +——-2)>0 . 3.84
L < "%, > (3:84)

Eq. (B:83) gives the wniversal behaviour of the Green function, which is independent
of detailed cutoff forms. Nonuniversal contributions which have been eliminated by the
trick of adding, subtracting and recombining terms above, can also be evaluated [p4].
The spinless fermion result can be obtained by putting formally K, = K, = K and
Up = Vo =V [’ @]

For t = 0, the Green function decays as

Go() ~ ™17 a=2»"7>0 . (3.85)

The exponent « appears in all single-particle properties. «/2 is the “anomalous dimen-
sion” of the fermion operators. [It has become customary to use a both for the exponent
of the Green function and for the infinitesimal in the bosonization identity (B.41)); the
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context usually identifies clearly which « is referred to, and confusion seems unlikely.]
From G, one can derive the momentum distribution function [53, @, 57

1 .
n(k) ~ 3~ Cisign(k — kp) | k — kp | —Ca(k — k) (3.86)

which does not have a jump at kg but rather a continuous power-law variation. An
exact calculation of the prefactors is also possible [BJ]. In (B.8@) the breakdown of Fermi
liquid theory and the absence of quasi-particles are evident. Fermi liquids have a jump
discontinuity of amplitude 2, < 1 at kp where z;, is the wave-function renormalization
constant, Eq. (2.4). However, the velocities do not enter and charge-spin separation does
not manifest itself, and only the absence of quasi-particles due to the Peierls-type coupling
of the two Fermi points is probed. The single-particle density of states N(w) varies as a
power-law

N(w) ~| w|* (3.87)
with the same exponent . Again, exact but lengthy expressions are available [BJ).

The density-density correlation function consists out of several pieces, corresponding
to the wave vectors ¢ = 0 (p), ¢ = £2kr (CDW), and ¢ ~ +4kp (4kp-CDW), and, in
principle, higher multiples
_V20%,(x)

—— (3.88)

Oy(x) = ZPT,S(x) = \/52 pr(x) =

Ocpw(z) = Z\Ifls(x)\lf_s(x)
1

= el Uy UL exp {=2ikpa + v2i [0,(x) + s0,(x)] ) (3.89)

% exp {—2@'sz£ + \/iz@p(a:)} cos[V2®, ()]
Oue@) = S0 @)W, @)V, @)¥_.(a)

Q

— ﬁ exp {—4i/€px + \/giq)p(x)} . (3.90)

In the Luttinger model, the U, -ladder operators give only contributions vanishing in the
thermodynamic limit L — oo and have been dropped after (B.89) [see however the remark
after Eq. (B-71))]. Notice also that Oy, involves four fermions in the Luttinger model but,
as will be explained below, is part of the (two-particle) density operator in lattice models.
Moreover, the wavelength A = 27 /4kr = (Ny/L)™! equals the inverse particle density.
Establishment of 4kp-CDW long-range order therefore corresponds to the formation of
a Wigner crystal, and we shall be interested in this possibility as well as its short-range
ordered variant below. The expectation values are evaluated exactly as in the case of the
Green function above, so that we only give the asymptotic decay laws

Kp
= 91
Rﬁ(x) (71'213')2 ) (3 9 )
RCD[/{/(LL’) ~ COS(Q]{?FLL’) SL’_2+O{CDW , Qcpw = 2— Kp - Ko y (392)
Rupp(r) ~ cos(dkpz) x 2To%r | gy, =2—4K, |
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We see that the 4kp-correlations decay very fast at weak-coupling but become competitive
with the 2kp ones when K, decreases [B§]. For K, = 1, 4kp correlations dominate over
2kp for K, < 1/3.

The other correlation functions follow similar power-laws. Long wavelength spin fluc-
tuations follow (B91)) with K, — K,. For later use, we also give the operators for the
x,y, z-components of the SDW correlations

OSDW,m(x) = Z\Pl,s(x>\ll—,—s(x>

— % exp {—27:]{5}7‘117 + \/5@'(1),)(:6)] cos [\/i@g(:c)} (3.94)
OSDW,y(z) = —izs‘l’i,s(x)‘l’—,—s(f)
- Lo (20 + /20, ()] sin [V20, ()] (3.95)

T
OSDW,Z(x) = Z S\Iliri-,s(x>\1l—,s(x)
= 7:—@ exp [—27:]{5}7‘117 + ﬁiq)p(x)} sin [\/5(1)0(56)} : (3.96)
The correlation functions decay as

Rspw(x) ~ cos(2kpx)x 2tasow (3.97)

O‘SDWx = aSDWy:2_Kp_K;1 s OéSDWZZQ—Kp—KJ . (398

Singlet (SS) and triplet (TS) superconducting correlations do not oscillate and decay with
exponents

ass = 2—-K,' - K, | (3.99)
arsy = 2—-K;'-K, |, arga =2-K;' - K;' (3.100)

Each correlation function has its proper special combination of the two parameters K, in
the power-law exponent which therefore parameterize completely the scaling laws between
the exponents. Remember also that K, relates the three velocities for each degree of
freedom, i.e. the spectrum of low-lying eigenvalues (B-37). Different is only the correlation
function of the long-wavelength charge or spin fluctuations. The operator v(x)v(0) is
marginal with a scaling dimension —2 and does not acquire an anomalous dimension.
Also its correlation function does not depend on a cutoff (in the other expressions, it has
simply been suppressed), as has been discussed in Section B.3.1.

The three components of the spin density and triplet superconductivity operators
have very different representations in terms of the phase fields ®,(x) and ©,(z), and
their correlation functions differ (at least formally) even in the exponents. This is so
because our abelian bosonization scheme treats o, on a special footing and breaks the
spin-rotation symmetry SU(2) down to U(1). In the absence of external magnetic fields
or spin-anisotropic interactions, the correlation functions must be spin-rotation invariant.
We see that this requires K, = 1. We shall assume this to be the case throughout this
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article except when stated to the contrary. Again, nonabelian bosonization would allow
to keep the spin-rotation invariance manifest at every stage of the calculation.

The Green function’s « is invariant under K, — 1/K, and therefore does not depend in
an important way on the sign of the interaction. It is positive and, had one only go, would
be symmetric in attraction and repulsion. It is only g, which slightly changes the modulus
of a when g; — —g;. a = 0 is possible only when the fluctuations on all branches are free
— the system may still be interacting, though, if g, # 0. On the other hand, the many-
particle correlations do depend on the sign of the interactions: K, < 1 for repulsion,
and K, > 1 for attraction. Consequently, for repulsive interactions, the 2k density
wave correlations decay more slowly than for free fermions (~ z72), while for attractive
coupling, the superconducting correlations decay slowest. At first sight surprising will be
the fact that the correlation functions of density and spin density (as well as those for
singlet and triplet superconductivity) are strictly degenerate in the spin-rotation invariant
Luttinger model. This is quite counterintuitive, and nature is certainly richer than such
simple-minded results. On the other hand, the Luttinger liquid hypothesis requires that
this degeneracy of exponents carries over to more realistic models. The resolution of this
puzzle will be postponed to Chapter .

If one is interested in finite temperatures, there are several possibilities. (i) One can use
the conformal invariance of the Luttinger model to map the 7" = 0 correlation functions
onto those at 7" # 0. This will be demonstrated in the next section, Eq. (B.I5§). (ii) One
can introduce Matsubara frequencies and calculate the boson propagators ~ D, (x7) at
imaginary times. (iii) One can simply use the Bose-Einstein distribution ngg(p) at finite
temperature in (B.77). This will decorate the integrals appearing in (B-79) and partly
those in (B:80) with factors coth(fv,p/2). The integrals can still be evaluated in terms
of logarithms of Gamma functions which, for small temperatures essentially add terms
In{r[z £ iv,t]/ sinh(7[z £ iv,t]/v,0)} to (B.B1). If z > v, 03, the hyperbolic sine will grow
exponentially, and correlation functions like (B.93) will therefore decay exponentially on
a scale set by the thermal coherence length {7 = mvp/T. If & > 1/A, the power-laws
discussed before will still show up in the window in between.

Transforming to k-space, one has to distinguish between the instantaneous and static
correlation functions. Given a correlation function in x-space

Ri(x) ~ cos(nkpz)x ™2t | R(t) ~ t72% | (3.101)
the instantaneous and static correlations behave as
Ri(k,t =0) ~ (k — nkp)"™* | Ri(k,w=0) ~ (k —nkp)™ | (3.102)

respectively, with equivalent formulae for the w-dependent local and ¢ = O-functions. For
free fermions, the static correlations have a logarithmic divergence which is changed into
a power law divergence by even weak interactions. On the other hand, the instantaneous
correlations are nonsingular usually (though possibly enhanced), and singularities can
only be brought up by rather strong interactions. Divergences of this kind have been
observed both in computer simulations and in X-ray scattering on quasi-1D materials,
and will be discussed below.
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We have not discussed charge-spin separation in detail yet. While it is contained in
the full expression for the Green function (B.83), it does not influence the long-distance
or time properties of the correlation functions. It is clear that this subtle feature of
1D interacting fermions can only be probed in dynamic, ¢- and w-resolved correlation
functions.

3.4 Dynamical correlations: the spectral properties
of Luttinger liquids

Fermi liquid theory breaks down in 1D for two reasons: (i) the anomalous dimensions
of the fermion operators, giving rise to the nonuniversal power laws discussed in the
preceding section, and (ii) charge-spin separation. Either of them is sufficient to kill all
quasi-particles in the neighbourhood of the Fermi surface, and both together will certainly
cooperate. However, all correlation functions of the previous section are affected only by
the anomalous dimensions. Much effort has been devoted to the study of these functions
over the last decade.

On the other hand, for a long time much less has been known about the dynamical
(r — and t— resp. ¢ — and w—dependent) correlations. Also, how to measure charge-spin
separation? Since this phenomenon is characterized by different propagation velocities
for charge and spin fluctuations, fully dynamical correlation functions are needed to put
it into evidence. The single-particle spectral function p,(q,w) is defined as

1
pro(qsw) = ——ImGro(rk + ¢, + ) (3.103)

where G, is the retarded Green function (B.71)), (B.83). There is no principal difficulty
in computing this quantity. All we need to do is Fourier transform. This can be done
quite easily for spinless fermions or for the one-branch Luttinger liquid (g2 = 0) but is
laborious for the full model for s = 1/2-fermions we are most interested in.

With spinless fermions we can single out the influence of the anomalous fermion di-
mensions. This is the generic structure [B2, B3, F4, B9, B0): At ¢ = 0 (i.e. k = kp),
p(0,w) ~[ w [T
of the d-function in Fermi liquid theory. Clearly, as the 1D correlations increase from

, i.e. a power-law divergence (or cusp-singularity for a > 1) instead

zero, spectral weight is pushed away from the Fermi surface by the virtual particle-hole
excitations generated by go. Let us increase ¢. In a Fermi liquid, the J-function would
disperse with ¢ and broaden but essentially conserve its shape. In the Luttinger liquid,
p(q,w) strongly deforms: There is a power law singularity p(g,w) ~ O(w—vq)(w—vg)°~!
at positive frequencies (for ¢ > 0) and a weaker singularity ~ O(—w — vq)(—w — vq)"*
at negative frequencies. In the positive frequency contribution — particle creation above
the Fermi surface — spectral weight of an incoming particle is boosted to higher energies
by the particle-hole excitations on both branches. The negative frequency contribution
describes the destruction of particles above the Fermi surface present in the ground state
as a result of particle-hole excitations. As ¢ increases, the negative frequency part is
exponentially suppressed and all the spectral weight is transferred to positive frequencies.
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For the “one-branch” Luttinger liquid (g2 = 0, charge-spin separation only), one has
finite spectral weight only at positive frequencies (for ¢ > 0) between v,q and v,q with
inverse-square-root divergences at the edges [B3, f9, B1]. At kp, the spectral function
reduces to d(w) and the momentum distribution is a step function with a jump of unity at
kp, in agreement with Luttinger’s theorem []. Although this seems to imply a Fermi liquid
it is clear that the physical picture is quite different and that the notion of a quasi-particle
does not make sense because the d-function does not survive the slightest displacement
from the Fermi surface. The incident electron decays into multiple particle-hole-like
charge and spin fluctuations which all live on the same branch as the incoming fermion.
It is immediately apparent that n(k) and, more generally, any quantity depending on k
or w alone will fail to detect charge-spin separation. It can be seen only in quantities
depending on both q and w.

We now turn to the spectral properties of the s = 1/2-Luttinger liquid [53, b4, B9, B0,
B7]. We limit ourselves to the spin-rotation invariant case (7, = 0). Fig. 3.6 displays the
dispersion of p(q,w) for small ¢ and o = 0.125. It is apparent that the spectral function
carries features both from the spinless fermions (synonymous with “anomalous fermion
dimensions”) and the one-branch problem (“charge-spin separation”). At very small g,
on the scale of the Figure, p looks pretty much like the spinless fermions’ function. As
q increases, the negative frequency weight (very small anyway) is transferred to positive
frequency but, most importantly, the generic two-peak structure of the spectral function
becomes apparent. The exponent of the singularity at v,q is 2y, —1/2 while it is v, —1/2
at the v,g-singularity and ~, at —v,q. Since 7, = 1/16 here, the correction to the one-
branch case is quite insignificant here and the charge-spin separation aspect is clearly
dominant at finite ¢. The weight above/below fwv,q originating from the anomalous
dimensions is barely visible. As « increases, the various power-law divergences weaken and
finally transform into cusp-singularities. At the same time, the spectral function becomes
much less structured, and spectral weight is shifted by the electronic correlations both to
above/below £v,q, more reminiscent of the spinless fermion problem. As the correlations
increase, the features originating from charge-spin separation are more and more obscured
by transfers of spectral weight over significant energy scales. The important scale here is
the energy of the charge fluctuations +v,q.

The spectral function in Figure 3.6 obeys to the sum rule

/OO dwprs(q,w) =1 forall ¢ . (3.104)

The single-particle density of states N(w) has already been discussed above. A local sum
rule is not satisfied by N(w) unless g4y = 0 [B]]] as is the case for local interactions; in
general (long-range interactions), one has [53, 62, 63

1 oo dk

/Ooodw [Now(@) = No@)] = == [~ Zau(h) . (3.105)

No(w) = 1/27vr being the noninteracting density of states. It is satisfied, however, by
the Tomonaga model with a finite bandwidth cutoff [f3]. Here, as usual, [(*dwN(w) = n,
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the particle density which is not changed by the interactions. The failure of the local
sum rule in the Luttinger model is certainly due to the introduction of the unphysical
negative-energy states which are sampled in the frequency integral.

The many-particle spectral functions display similar features. Fig. 3.7 displays the
charge [S(¢,w)] and spin [x(g,w)] structure factors at 2kpr and the charge factor at 4kp
[Si(q,w)] [B], B4]. Again there are power-law singularities at w = +v,q and +v,q but
the functions now are symmetric because the CDW and SDW operators mix left- and
right-moving particles. At weak coupling, there are cusps, and only as K, < 1/2 do
they turn into divergences. Further interesting is the fact that the 2k CDW and SDW
fluctuations are sensitive to charge-spin separation but the 4kz-CDW is not. This is easy
to understand from the boson representation of these operators (B.89) — (B.94): the 2kp-
operators necessarily involve the ®, or ©,-fields in addition to ®,. The only divergent
4kp-operator, however, only depends on the charge field ®,. 4kp-operators involving the
spin degrees of freedom are never divergent.

3.5 Alternative methods

3.5.1 Green function methods

There are alternative routes for solving the Tomonaga-Luttinger model, based on dia-
grammatic methods or equations of motion for the Green function. They provide an
interpretation of the novel physics of the Luttinger liquid from the standpoint of con-
ventional many-body theory, and therefore stress the formal similarities of Fermi and
Luttinger liquids while the bosonization approach more strongly emphasizes their differ-
ences. Moreover, the connection between symmetries, conservation laws and the low-
energy structure of 1D Fermi liquids may become more apparent in this approach which
we outline now. It has been pioneered by Dzyaloshinskii and Larkin for a spinless variant
of the model, Eq. (B:59) [B4] and followed and extended by others [[§, BY, i, 64

The power of the 1D conservation laws can be gauged from the fact that our ar-
guments for the breakdown of Fermi liquid theory in 1D in Section P.1] were based on
divergences encountered in a perturbation treatment of the self-energy corrections to the
1D Green functions. As a consequence of Ward identities, vertex and self-energy correc-
tion cancel exactly in some quantities (such as density-density correlation functions) and
to such a large extent in others that meaningful answers are obtained and all results of
the bosonization approach reproduced.

What are Ward identities? They are specific relations between the vertex operators
and (single or n-particle) Green functions of a theory, translating its conservation laws i.e.
its symmetries, into a Green function formalism which describes the dynamics of the ex-
citations. Vertex operators couple the charges and currents of a system to external fields.
They involve the corresponding density operator (e.g. p(p), j,(p)) plus two (more gen-
erally 2n) fermions. The equation of motion for the vertex operator in general produces
Green functions involving even more particles. If the charge is conserved, however, p(p)
obeys the continuity equation. Combining it with the equation of motion of the simple
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vertex described, yields just the difference of the two single-particle propagators involved,
instead of complicated objects involving intermediate excitations. The principle is easy:
use the continuity equation associated with the conserved charge to reduce the equations
of motion for the object under consideration, then Fourier transform the resulting expres-
sion to recover an algebraic relation. This is particularly transparent for density-density
response which we study now before carrying on to the single-particle Green function.

In Section B.1.3, we had studied the conservation of charge and spin separately on
each branch of the dispersion. This generates the following continuity equations for the
charge and spin densities and currents from the Heisenberg equations of motion

D ), H) = s (0. (3.106)
;97 (a]; D ap ), H = —owy p (0, 1) (3.107)

with the total charge (v = p) and spin (v = ) densities and currents

v(p) => v:(p) and j,(p) =D rv,(p) . (3.108)

T

In the Green function approach, it is the physical charge and spin densities which enter
the various operators. For this reason, we define in this section, and only in this section

vr(p) = pr1(p) £ pri(p) (3.109)

at variance with the remainder of this paper. This will avoid a confusing proliferation of
factors v/2 due to the different definition in (B23). The “axial” charge and spin densities
and currents (named after similar constructions appearing in field theory) are

7(p) =3 rv(p) and j,.(p) = v:(p) (3.110)

T

and are identical to the usual currents and charges, Eq. (B.10§), respectively. vz, and vy,
are the velocities for charge and current excitations [§] defined earlier (B.39).
Notice in passing that both equations can be put together to produce the equations
of motion of a harmonic oscillator [Ag]
*v(p,t)

T + VjvUNv p2 V(pu t) =0 ) (3111>

indicating that the charge (spin) density fluctuations are the elementary excitations of the
systems which propagate with an effective (sound) velocity /v, Un,. The conservation
laws thus completely determine the dynamics of our system.

For illustration, we investigate the density-density correlation function

Ryp(q,w) = /_O:Odtemep(q’t) 3 R,p(q,t) = _%<TP(Qat)P(—Q>O)> . (3.112)

T is the time ordering operator. Applying i0; to this equation and using (B.106)), we have

OR,(q,t) _ 1

i—52= = 2us,0(Ti, (0, t)p(—4,0)) + %5(t)<[p(q), (=) (3.113)

39



where the last term originates from taking the time derivatives of the step functions
implied by time ordering but vanishes on account of the commutator algebra Eq. (B.17).
A first Ward identity is obtained from the Fourier transform

wR,p(q,w) = v1pa R, p(q,w) =0 . (3.114)

Similar Ward identities can be derived for R;,,(¢q,w) (with the difference that [j,(q), p(q)]
# 0) and for the axial charges and currents (B.110). The second derivative of the density-
density correlation function is then

PR,,(q, 21 o>
% UJvapqupp(%t) + Lﬂé(t) ) (3.115)
t s
which is Fourier transformed into
2 v .
Ryp(q,w) = Wﬁ with v, = \/Us,Un, . (3.116)

Eq. (B.I13) is an example of a very simple — yet manifestly powerful — Ward identity.
Metzner and Di Castro [[Iff] give many more.
Now consider the single-particle Green function

Grak, 1) = —i{Tera (D)l (5, 0)) (3.117)

which obeys the equation of motion [BJ]

(@ — 10pk) Grs(k, w) = 1 —l—ZZ/ (9201 = 26,080 ) Pk, b + g, + 2., 2)
(1 = 26,08, ) F (ki + g0 + g, Q)] (3.118)

To get (BI11§), take i0,G,s(k,t) using the Heisenberg equation of motion and Fourier
transform; deriving the T-operator gives the 1, taking the commutator with Hy gives
rvpkG,s, and the commutators with Hy and H, and using (B:29) to go from the p, to
the v,, gives the vertex functions

Flyo(kytas by, to; qt) = —(Tvp (qt)cps (K, t2)cl (K, 1)) (3.119)

r'rs

Continuing now without using (B.106) would lead to a hopeless hierarchy of equations.
However, (B.119) obeys a remarkable Ward identity

qFy (b, wik+q,w+Q;¢,Q) = rm(1-20,,405 | )Ry 1, (¢, Q) [Grs(k,w) — Grs(k + q,w + Q)]
(3.120)
which helps to simplify the problem. The one-branch density-density correlation function

i HW+T(ZNL/(+U(I)2)‘1/2 for r — 1!
_ wwt _ m w—(vy
Ry, v. (4, 0) = L /dte L (gt (~a0)) = %(U‘Z—z__gyéf/z forr = —r/
(3.121)
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can itself be derived from (B.I13) and related Ward identities. One can now eliminate
the vertex function from (B.I1§) and close the equation of motion for the Green function.
The resulting integral equation is then solved by Fourier transforming back to a real space
differential equation and taking into account boundary and analyticity conditions. The
result agrees with the expression (B83) up to details of cutoff procedures. Notice that
the Ward identity for F, . (B-I20) involves the chiral (charge and spin) density operators

v,. It therefore is the consequence of two separate Ward identities, one for the density

T’T’S

> - v which is present also in the many-body problem in higher dimensions, and a new
one involving the axial density Y, rv, which is new and related to the disconnected 1D
Fermi “surface” and the absence of backscattering in the Luttinger model.

In these two examples, we have rederived results via Ward identities which are also
quite easy to derive from bosonization. There are others where the derivation via Ward
identities are easier than with bosonization. An example is the intra- or inter-branch
polarization bubble II? ,(¢,w) which is related to the density correlation function (BI12])
by Dyson’s equation

Rprprr (q7 w) = Hfr’(qv w) + Z Hﬁt (q7 w)gtt’pRpt/pT/ (q7 w) ) (3122>

tt’

represented graphically in Figure 3.4. g,,/, denotes go, or gs,. The polarization II, is
given by the irreducible vertex A? . and the exact single-particle Green functions G,

dk;dQ
I ZZ/ (b, 2 g, w0+ Qi g, 0) G (k, Q)G (k4 ¢, Q+w) (3.123)

as shown in Fig. 3.5. A is obtained from F' by amputating the external fermion legs, i.e.
dividing by the product of the two Green functions involved in (B-I2() and taking only
the interaction-irreducible part of F'. II must be a wildly divergent function because the
Green functions have divergences and the vertex corrections certainly have divergences,
too! This is not true, however, and with the Ward identity (B.120), converted into one
for A, one obtains the simple, finite results

7 (qw) = 0 (3.124)
ki
() = o= % / Gra(k, ) = Grall + ¢, 2 + )]
T q
= ——— =1 : 3.125
Tw— Upq rr (Q> w) ( )

This result is remarkable: all vertex and self-energy corrections have cancelled out as
a consequence of the Ward identities, and the polarization is identical to ITI?©) of free
fermions. Eq. (B.129) then reduces to a standard RPA summation, showing that RPA
is exact for the density-density correlation functions. Moreover, the charge and spin
susceptibilities lim, . lim,_o R,, (¢, w) are finite, in agreement with (B.63). The Luttinger
liquids therefore are “normal” metals. This is entirely due to the conservation laws and
Ward identities which enforce the cancellation of all divergences which would occur in a
diagrammatic development.
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Of course, one can also compute all the many-particle Green functions, and construct
the same picture as in the preceding sections using the standard many-body formalism.
We reemphasize that in the exact solutions we had found, both the Ward identities related
to the charges (currents) and to the axial charges (currents) were essential. It is the latter
one that gives the one-dimensional Fermi liquids their special properties.

Similar results can also be obtained by more diagram-based techniques [[§, B4, f. In
this case, the Ward identities are expressed by the theorem that closed fermion loops with
more than two fermion lines vanish (equivalent in the vanishing of the transverse current
in quantum electrodynamics). The limitation to forward scattering only in the Luttinger
model implies that a closed fermion line has all of its parts on a definite branch r.

Moreover, one can use the Ward identities to construct a field-theoretical renormaliza-
tion group formulation of the Luttinger model with respect to the free Fermi gas [6, B4
This verifies that all couplings are dimensionless, and that consequently, the beta-function

99\ _

Blg) = A (8_/\) =0 (3.126)
at the Luttinger liquid fixed point. The density operators do not acquire anomalous
dimensions, and the coupling constants are renormalization group invariants. It also
verifies the correctness of the earlier scaling Ansatz [[[§.

3.5.2 Other bosonic schemes

In Section B.2.7, we have solved the Luttinger model via a boson representation of the
Hamiltonian and of the fermion operators. Other bosonic approaches, based on functional
integrals and a Hubbard-Stratonovich decoupling have been developed in the past [f]], p7].
They are closer to the methods used in quantum field theory than Haldane’s operator
approach. They also provide an exact solution of the model, and reproduce all the results
obtained by the two methods presented above. Which one to use is rather a matter of
taste and background than of the specific nature of the problem at hand.

A bosonic scheme widely used for strongly correlated fermions are “slave bosons” and
one may naturally wonder if there is any relation to the bosonization discussed above.
Slave bosons are usually applied to problems where double occupancy of lattice sites is
dynamically forbidden because of strong electronic repulsion. One tries to circumvent the
difficult treatment of inequality constraints (such as (n;) < 1) by introducing additional
particles into an enlarged Hilbert space whereby the inequality constraint translates into
an equality constraint which can be solved by Lagrange multipliers. Properties are then
obtained by projecting back onto the physical Hilbert space. From these remarks, it is
quite clear that slave bosons and the Tomonaga-Luttinger bosons are two distinct entities.
While the latter are the elementary excitations of the 1D Fermi liquid, the former are, in
the first place, a bookkeeping device to obtain good approximations to fermionic proper-
ties. Still, slave bosons have been used successfully, together with standard bosonization,
to obtain low-energy properties of, e.g., the U = oo Hubbard model [p§. A deeper knowl-
edge of differences and similarities of both types of bosons is, however, just beginning to

emerge [B9.
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3.6 Conformal field theory and bosonization

In the language of the theory of phase transitions, one-dimensional Fermi liquids are
critical at T'= 0. An arbitrary system, close to a second order phase transition, exhibits
strong precursor fluctuations of the ordered phase, whose typical size is measured by the
correlation length & ~ |(T'—T.)/T.|~" which diverges as the critical point 7T, is approached.
Thermodynamic properties (specific heat, magnetization, etc.) exhibit similar divergences
whose sole origin is the divergence in £. Therefore, their critical exponents can be related
by scaling relations to v and the dimension of space. These scaling relations only depend
on the symmetry of the theory (universality). At the critical point, correlation functions
decay as power-laws of distance and time with some critical exponents which generally
can be calculated from the model under consideration [fJ]. The power-law correlations of
one-dimensional Fermi liquids found in Section B.3, show explicitly that we have a T'= 0
quantum critical point.

3.6.1 Conformal invariance at a critical point

Conformal field theory is a powerful means of characterizing universality classes of critical
systems in 2D statistical mechanics or 1D quantum field theories [time playing the role
of a second dimension, these theories in fact are (14-1)D] in terms of a single dimension-
less number, the central charge ¢ of the underlying Virasoro algebra [RY]. The critical
exponents are the scaling dimensions of the various operators in a conformally invariant
theory and, generically, are fully determined by c¢. A notable exception are theories with
central charge ¢ = 1 such as the Gaussian model, of particular relevance to the problems
considered here, where the exponents (scaling dimensions) depend on a single effective
coupling constant of the model. Both the central charge and the scaling dimensions can
be computed from the finite-size scaling properties of the ground state energy and the
low-lying excitations [B9, [[T]. This is important because these quantities can be computed
accurately either by Bethe Ansatz (for models solvable by the technique) or, in any case,
by numerical diagonalization.

What are the symmetries of systems at a critical point? It is certainly translationally
and rotationally invariant. Quantum field theories, in addition are Lorentz invariant but
in (1+1)D, Lorentz invariance reduces to rotations in the x = (z,t)-plane. As we have
seen above, a system at criticality, in addition is characterized by scale invariance,

X — AX . (3.127)

It turns out that the combined rotational and scale invariance implies that the system
is invariant under a wider symmetry group, the global conformal group. On a classical
level, conformal transformations are general coordinate transformations which leave the
angles between two vectors invariant. In dimension D > 2, the global conformal group is
finite-dimensional, and so is the associated Lie algebra of its generators. There is a finite
number of constraints, and these allow for an evaluation of the two-point and three-point
correlation functions, but not for the higher ones.
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The situation is different in two dimensions, where all correlation functions can be
determined. Consider a general coordinate transformation

x —x =x+£(x) . (3.128)

For this transformation to be conformal, & must satisfy certain constraints which can
be expressed in a differential equation (Killing-Cartan equation). In general dimension
D, this leaves for £(x) a polynomial of second degree in x (with tensor coefficients). In
two dimensions, however, the Killing-Cartan equation reduces to the Cauchy-Riemann
equation, and therefore all analytic functions are allowed for conformal transformations.
This group of transformations, called local conformal group, is much wider than the global
conformal group encountered before. It is then natural to switch to complex variables
z,Z = x1 + ix9, so that we have

z—z2+E(2) = f(2) , z—z2+8(2) = f(z) . (3.129)

To determine the algebra corresponding to the local conformal group, we need the com-
mutation relations of the generators of the transformations. Since £*(z) and f(z) are
analytic, they can be expanded in a Laurent series

&)= Y &2"" (3.130)
[and a similar equation for £(Z)], and we find the generators of the local conformal trans-
formations

lo(2) = —2"T10, | ln(2) = —2""o, | neZ . (3.131)

These generators obey the local conformal algebra

Uy ] = (M — )i [l 0] = (M — 1)l U, €n] =0 . (3.132)

This infinite dimensional algebra is called the classical Virasoro algebra. (The global
conformal algebra is generated by {¢_1, {o, ¢1}.) Since the two algebras are independent,
one may take z and Z as independent, corresponding to the natural variables for left- and
right-moving objects; the physical theory then lives on z = z*.

We now go to the quantum (or statistical mechanics) case. How do fields and corre-
lation functions of a quantum field theory transform under conformal transformations?
In general, an infinitesimal symmetry variation in a field ¢ is generated by d¢¢p = £[Q, ]
where () is the conserved charge associated with the symmetry. Local coordinate trans-
formations are generated by the charges constructed from the stress-energy tensor T;;.
Rotational invariance constrains 7;; to be symmetric, and scale invariance requires its
trace to vanish; then conformal invariance does not impose additional constraints showing
that it is implied by rotational and dilatational invariance. Translating these conditions
into the complex variables z and Z, one can show that only the diagonal components

T(2)=T..(2) and T(2)=T:(2) (3.133)
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do not vanish. In the radial quantization scheme, the conserved charge then becomes
1 o
Q=3 f [d=T(2)6(z) + dzT(2)E(2)] (3.134)
which generates a field variation

Ogg0(w, W) = % /{dz [T(2)6(2), (w, )] + dz [T(2)E(), d(w,w)|} . (3.135)

In general, it is difficult at this point to proceed further without having explicit expressions
at hand. There is, however, a distinctive class of fields, to be called primary fields, for
which

b ed(w, w) = (hD.E7(2) + € (2)0: + hd:E7(2) + €(2)0:) d(w, w) (3.136)

which can be recognized as the infinitesimal version of
o (or\"(ar\" o
otwo) ~ (5) (52 strtw. feon - (3.137)

All other fields are called secondary fields. h and h are two real numbers, the conformal
weights of the field ¢. The combinations A = h+h and s = h—h are the scaling dimension
and spin of the field ¢, respectively [if one works in a basis of eigenstates of Ly and Ly, the
combinations Lo+ Lo and (Lo — Lg) are generators of dilations and rotations, respectively].
Eq. (BI37) is the transformation law of a complex tensor of rank h, h. Normally, such
a tensor transforms with integer powers of df/0z and df/0z which are the number of
z and Zz indices; here, however, one could conceive also noninteger exponents. They are
called anomalous dimensions. As a consequence, the scaling dimension of the field ¢ also
can become anomalous. We have seen examples in the Luttinger model in the preceding
section.

One reason for the special status of primary fields is that one can derive (in fact in any
dimension) some of their correlation functions from the transformation property (B.130).
The two-point function G® = (¢;(21, 21 )pa(22, Z2)) must be invariant under a conformal

transformation (B:129)

0 eGP (21, 2;) = (g g1)d2) + (D10 eda) =0 . (3.138)

Using the transformation law (B.136), one can derive a differential equation for G? which
can be solved to yield
Cra

2h52h
212212

G (z,7) = (3.139)
where z;; = z; — 2z; and Ci2 < da, A, is a constant. The three-point function G®) can
be determined in a similar manner, but the four-point function, at the present stage of
development, can only be determined up to a function of the cross-ratio z12234/213224-

Not all fields are primary fields. For the primary fields to transform according to
(B-136), the operator product expansion (OPE) of the stress-energy tensor with ¢ for
short distances must go as

T(2)(w, @) = " $(w, @) + ——ub(w,@) + ... (3.140)
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where radial ordering is implied, and there is an equivalent equation for the anti-holomorphic
(left-moving) piece of the stress-energy tensor. (In the following, we always imply the ex-
istence of such equivalent equations for the anti-holomorphic dependences.) A secondary
field has a higher than double-pole singularity in its OPE with 7'(z). The most prominent
representative is 7'(z) itself

T)T(w) = — L 4 2 p(w) 4 —

(z—w)t (2 —w)? Z—w

oT(z) . (3.141)

The coefficient ¢ (= ¢ > 0) is called the central charge. It cannot be determined by
the requirement of conformal invariance alone, and will depend on the theory studied.
Different values of ¢ will imply different universality classes.

The nonvanishing of ¢ represents an anomaly which often occurs in problems with
local symmetries. It means that a classical symmetry cannot be implemented quantum-
mechanically due to renormalization effects. Therefore not all fields but only the primary
fields transform according to (B.13(). As will be seen below, T'(z) determines the change in
action under a local coordinate transformation. In a path-integral formalism, the anomaly
in T" then implies that the complete measure cannot be made conformally invariant. The
anomaly is also called Schwinger term. As examples, for a free boson ¢(z), T(z) =:
[0.0(2))? : /2 and ¢ = 1; free real (Majorana) fermions 1)(z), relevant for the 2D Ising
model, have T'(z) =: ¥(2)0,¢(2) : /2 and ¢ = 1/2; finally, free complex (Dirac) fermions
U(z2), relevant for the Luttinger model, have T'(2) =i : [0, UT(2)]¥(z) — ¥1(2)0,¥(z) : /2
and ¢ = 1 like the bosons.

This anomaly has important consequences for the algebra of the generators of the local
conformal transformations on the quantum level. Just as above on the classical level, one
can derive the algebra of the generators from a Laurent expansion of the stress-energy
tensor -

T(z)= > L,z "% . (3.142)

Using (B.I41]), we obtain the Virasoro algebra with central extension ¢

C
(Lo, L] = (n—m)Lyym + E(n?’ —N)0pimo
(Lo, Lol = (1 — ) Loy + %(n?’ — )nimo (3.143)
(Lo L| = 0

The classical Virasoro algebra is recovered for ¢ = 0. Every conformal quantum field
theory defines a representation of (B:I43) with some central charge ¢,¢é. The L, are the
generators of transformations of quantum fields associated with the monomial of degree
n+1in z. For £*(z) = —&,2", we have

0¢(2,2) = —&u[Ln, ¢(2,2)] . (3.144)
Unitarity constrains the generators to satisfy

Ll =L_, (3.145)
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and regularity of the stress-energy tensor at the origin implies
Ln0)=0, m>-1 and LI|0)=0, m<-1 (3.146)

in their action on the vacuum |0).
There are two more important properties of the stress-energy tensor. Under a local
conformal transformation to 2z’ = f(z), it transforms as
/ dZ, ? / c /
T(z) — T(z)=|—] T(Z)+={,2} , (3.147)
dz 12
83 / 3 82 \2
0.2 2(0.7)?

(3.148)

The first term in (B.147) translates the fact that 7'(z) is a field of conformal weight (2, 0)
in agreement with (B.141]) above, while the second term contains the conformal anomaly.
(B-143) is known as the Schwarzian derivative.

We now turn to the representations of the Virasoro algebra, i.e. the states of our
Hilbert space. In general, the representations of symmetry groups are constructed from
highest weight vectors (states). Such a highest weight state |h) is created by the action
of a holomorphic primary field ¢ on the vacuum, at the origin

h) = ¢(0)]0) ,  Lolh) =hlh) , Luh)=0 , n>0 . (3.149)

|h) is thus eigenstate of Ly. The L,, n > 0 are the lowering operators annihilating |h).
The corresponding raising operators are L_,, n > 0 and, acting on |h), generate the
descendant states

Lop . L_n]0)#£0 | 1<nm <...<ny . (3.150)

They form a basis for the representation vector space. The eigenvalue of Lj on the state
(B.150) is A +mny + ...+ ng. The highest weight state |h) has the lowest eigenvalue among
all the states that can be created out of it by acting with the raising operators. It is the
ground state in a given sector of the theory. The descendants are the excited states. The
L, (n > 0) act as an infinite number of harmonic oscillator annihilation operators, and
the LT = L_, then are the creation operators. The level of the state (B.150) is >, na,
and the level associated with an operator L_, is n. The number of basis vectors on a
given level N is P(N), the number of partitions of N. The conformal weight of all the
descendant states on level N is h + N. The vector space generated from |h) is called
Verma module.

All states (and fields) in a conformal field theory can be grouped into conformal families
(towers). They consist of a highest weight state |h) and all the descendant states generated
by the application of the raising operators L_,. The different highest weight states are
obtained from the action of the different primary fields ¢, (z) [or, more generally, ¢,(z, Z)]
on the vacuum according to (B.149). The conformal families offer a very convenient way
to classify the excitations in the system and the spectrum of the scaling dimensions.
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All correlation functions involving secondary fields can be calculated from those con-
taining primary fields only, by acting on them with a differential operator obtained from
the transformation property (B.144). From global conformal invariance, we also know the
two-point correlation functions of the primary fields, Eq. (B.I139), and can construct the
three-point function according to the same scheme. What about the n-point function for
primary fields? It may happen that on a given level of the theory, say k, the states are not
linearly independent but that there is a combination of states that vanishes (the family
is then said to be degenerate at level k). The equation describing this degeneracy can
then be transformed into a differential equation to be satisfied for an arbitrary correlation
function of primary fields, if at least one of them is degenerate. In this way, it is possible
to obtain, for conformal field theories with degenerate families, all correlation functions.

Unitary representations of the Virasoro algebra only exist for certain values of ¢ and

h
c>1l , h=>0 (3.151)
6 [(m+1)p —mg]* — 1
= 1- h = 3.152
ore m(m+1) ’ pa(m) 4m(m+ 1) ( )
with m = 3,4,... , 1<p<m-1, 1<q¢<p ,

and at least the discrete series (B-I59) does indeed have degenerate families. The models
belonging to this discrete series have quantized critical exponents [[J] contained in (B.159).
The most famous among them is the 2D Ising model with ¢ = 1/2.

Up to now, we have implicitly assumed that our fields are defined in the infinite 2-
plane. What happens when we consider finite systems? From Eq. (B14d), we deduce
that

o0 Lm
e = 3 <0 ’zm+2 0> —0 (3.153)
in the infinite complex z plane. Now use the exponential transformation
2mi L
Z = exp (%u) : U= log z (3.154)

to map the infinite z-plane onto a strip (u) of width L with periodic boundary conditions.
Observe that under this transformation, the mode expansion (B.I43) simply becomes a
Fourier transformation, and the Virasoro generators L, become the Fourier coefficients of
the stress-energy tensor. We obtain

Tap0) = (Tyael2) — 50,23 (%) (3.155)

and with (B-I53) therefore

(Tomip(u)) = 2—64 (%)2 : (3.156)

The stress-energy tensor measures the cost of energy [change in the action 65 = (—1/27) X
[ T;;0:;d?r] of a change in metric. One can now calculate the change in energy associated
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with another (nonconformal) transformation, a horizontal dilatation of the u-strip [u} =
(14 €)uy, ufy = uy] which changes the length of the system, and integrate to find

CcTm

B(L) = B(s0) = o7

(3.157)
where F(L) is the energy per unit length [[[1]. This formula is extremely important
because it allows us to determine the value of the central charge from calculations on
finite systems! Moreover, it suggests an interpretation of the anomaly (B.143) as a Casimir
effect, i.e. a shift in the energy due to the finite geometry of the system. The mathematical
reason is that the local conformal transformations (with the exception of the global ones)
are (i) usually not defined in all points of the complex plane and (ii) are not one-to-one
mappings of the complex plane on itself.

The exponential transformation (B.154) is also important to obtain the scaling dimen-
sions of primary fields from finite-size calculations [[J]. The two-point correlation function
of a primary operator ¢(z,z) with conformal weights h, h transforms under a conformal
transformation (B.154) into

(m/L)**

O ) = ahe(a — )/ L) (simblr(a — )/ L]

(3.158)

[Notice in passing: correlation functions at finite temperature 1/5 must satisfy periodic
boundary conditions in the Matsubara time 7 = it. (B-I5§) then gives directly the finite
temperature expressions for the correlation functions of the preceding section if we put
L = 2vf3, as suggested in Section B.J.] Writing u = u; + ius and going on the physical
surface © = u*, this can be expanded as

((u, D, 7)) = (2%) > aay exp[-2m(A + N + N)(ur — u})/L]
x exp[2mi(s + N — N)(ug — uy)/L] . (3.159)

Here, A and s are scaling dimension and spin of the operator, respectively. The correlation
function can also be calculated using operators ¢(us) which act on the states |n, k) of a
Hilbert space

(D(uw)p(u)) = > (0]¢(uz)|n, kye~En=Eotu=v)(n E|d(uy)[0) (3.160)

n

where the matrix elements depend on uy as exp(ikug) with momentum k. Comparing
(B-159) with (B.160), we find that energies and momenta scale as

EP(N,N) = EP +2m0(A+N+N)/L , (3.161)

n

ED(N,N) = k) 4 2r(s+N—N)/L . (3.162)

Here, the energies are taken on the system of length L, and v is the velocity of the
excitations. In (BI63), we have allowed for a finite momentum k() of the highest weight
state in the conformal tower built by the primary field ¢, extrapolated to the infinite
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system. Eqs. (BI61), (B-163) show that on a finite strip, each primary operator generates
the whole spectrum of scaling dimensions and momenta of the conformal tower, i.e. also
those of the descendant operators at level (N, N).

There are thus two ways to obtain the scaling dimensions and correlation functions
of a conformal field theory; (i) one can construct the stress-energy tensor; from its trans-
formation properties (B-147) or its OPE with itself (B-I4])), one can deduce ¢, and from
its OPE with other fields one obtains their scaling dimensions (B.140). (ii) one can study
the finite size scaling behaviour of the ground state and a set of excited states, and ob-
tain the central charge from Eq. (B.I57). Going back now from z,z = z* to (x,t) and
extrapolating L — oo, the correlation functions of a primary (h,h) field ¢(xt) are then

given from (B.139)
ik(w)xei%(w)x

(3.163)

<¢(It)¢(00)> = (ZL’ + z'vt)Qh(:E _ Z"Ut)ﬂl

and those of the descendant fields have the same structure with the corresponding (h +
N,h+ N).

3.6.2 The Gaussian model

The first problem beyond the discrete classification scheme (B.152) — also the most impor-
tant in the context of the present article — is given by theories with central charge ¢ = 1
and realized by free bosons, precisely the spinless Luttinger model, or the Gaussian model
of statistical mechanics. Here, we give a conformal field theory analysis. The action for
free bosons is given by

1 _ . _
S=o / dz dZ(0.0)(0:0) , B =d(z,2) | (3.164)

and the equivalence to the Luttinger model is clear when represented in terms of phase
fields (B.49) or (B.5§). The model is critical and manifestly conformally invariant, and
remains so even upon introducing a dimensionless coupling constant g as a prefactor in S,
for all values of g [cf. below after Eq. (B.187)]. The solution of the equations of motion

can be given in terms of left- and right-moving (holomorphic and anti-holomorphic) fields
®(z,2) = [p(2) + ¢(2)]/2 where z,Z = x & iy. Their correlation functions are

(9(2)o(w)) = —log(z —w) (0(2)0(w)) = —log(z — @) . (3.165)
The fields ¢(z) are not conformal fields, but their derivatives are. To show this, we
need the stress-energy tensor which can be identified from the change in the action S5 =
(=1/27) [ T;;0:£;d*r under a conformal transformation r — r + ¢ of the fields ¢ as (after
going to the complex z-plane)

T(z) = —% [00(2))? = _%clzii% l@gb <z + g) 0¢ (z - g) - %] , (3.166)

where the identity defines the normal-ordering convention. From the OPE of ¢ with the
stress-energy tensor, we find
0 1
T(:)00(w) = 220

(2 —w)?

wa2¢(w) +... (3.167)

z —
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which, comparing with Eq. (B.I4(), indeed identifies d¢ as a primary field with conformal
weights (1,0). It is now possible to write down a mode expansion (Laurent series) for the

field 9 (2)

I =ioe(z) = 3 Zﬁl , Jn:f;—;z"J(Z) . (3.168)

n=—oo

Again, on a cylinder, i.e. periodic boundary conditions for a (141)D field theory, the J,
simply are the Fourier components of the current J(z). Their algebra from (B.16§) is

[Jns Iin] = Nontmo (3.169)

the U(1)-Kac-Moody algebra. We immediately note that the algebra of the J,, (i) up to
the factor n which can be absorbed into a redefinition of .J,,, is a bosonic one, and (ii)
is identical to the algebra satisfied by the Luttinger density operators p,s, Eq. (B.17).
Physically, this identifies the J,, as (chiral) density fluctuation modes or currents, which
is the same because we look at a single branch only. The modes with n < 0 are creation
operators, and those with n > 0 are annihilation operators

Jn|0) =0 for n>0 . (3.170)

The correlation function of the currents J(z) = id¢(z) is

1
(J(2)J(w)) = o) (3.171)
z—w)
from (B-I39) and the conformal weights (1,0). Of course, for free bosons, these results
can also be obtained directly by simply calculating a Gaussian integral.
Eq. (B-169) is a special case of a more general expression
[Je I8 = f e Te .+ knd®Snimo (3.172)

n“m

satisfied by the current generators J¢ of a more general Lie group, e.g. SU(2) as appears
in nonabelian bosonization schemes [BQ]. £ are its structure constants, and the integer
k is the level of the Kac-Moody algebra. The central charge of the associated Virasoro
algebra is related to the level k by ¢ = 3k/(k + 2). We do not go into further details
here, although we shall encounter an example of a U(1)-Kac-Moody algebra with ¢ # 1
in Section .3 when we discuss the chiral Luttinger liquids formed by the edge excitations
in the fractional quantum Hall effect.

One can also consider “vertex operators” : explia¢(z)| : which, from their OPE with
T(z), are identified as primary fields with weights (a?/2,0). This determines the decay
of their correlation functions, which, like all Gaussian model correlations, can also be
evaluated explicitly

1

(: @) .; gmiadw) ) — e 9@Pw) — =
—w)r

(3.173)
The first equality is (B.79) and the second equality has been obtained with (B.165).
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Up to now, we have been silent on a parameter of the theory — the compactification
radius R. This is a parameter of the theory, and one can either fix it from certain
constraints on the vertex operators, or give it from the outset and then determine the
operators which are well-behaved. Single-valuedness of the vertex operators implies that
the fields ¢(z) must be compactified with a compactification radius R (obey periodic
boundary conditions on a circle with radius R)

p+2rR=¢ R=n/a . (3.174)

In general, the vertex operators : exp[icg(z)] : have weird commutation relations. We can

require, however, the object
Ul (2) =: explicg(x)] : (3.175)

to obey fermionic anticommutation relations with W(z) and with its antiholomorphic
counterparts Wi(2), ¥(z), and to commute with the currents [A{]
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(3.176)

This imposes a = 1 for free fermions. : exp[i¢(z)] : then creates a (1,0) state from the
vacuum. One can also prove that the current J;(z2) =: Ui(2)¥(z) : written as a fermion
bilinear is identical to the bosonic current J,(z) = i0¢(z) where the field ¢ is precisely
the one appearing in the exponential in (B.177), making the identity of the fermion and
boson representations complete.

The Kac-Moody generators J,, are extremely useful in classifying the excitations in
our model. The Hamiltonian is related to the stress-energy tensor through [z is the spatial
coordinate of the image of z on the cylinder]

1
o

[T +7@)]de T(x):%;J(x)J(x):+i (2—”) . (3177)

" 24\ L

The constant shows that our model has a central charge ¢ = 1. Putting together the mode
expansions (B:I43), (B:I6§) and the exponential transform (B:I54)), and realizing that the
transformation to the cylinder generates an anomaly similar to (B-147) in : J(z)J(2) :, we
find the generators of the Virasoro algebra

27T 1 o0 .27 v e
iy - —/ do M T(g) = & Jod 6
L 2w Jo ver (z) L n:z_:oo

cm

— 1
The L,, satisfy the Virasoro algebra (B.14J) with central charge ¢ = 1 among them, and
(L, Jon] = —mdpim (3.179)

with the generators of the Kac-Moody algebra. To every Kac-Moody algebra, there is an
associated Virasoro algebra, and the present construction of the Virasoro generators from
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the Kac-Moody ones is due to Sugawara. Specializing (B.179) to n = 0 yields (taking only

one chiral component)
2w

H, J] = —fme . (3.180)
showing that the J,, act as raising (m < 0) and lowering (m > 0) operators of a harmonic
spectrum. The spectrum is harmonic because of the linearized dispersion and the equal
k-spacing. Moreover, Eq. (B.170) implies that the state |0) is annihilated by the Virasoro
generators (B.I7§) with n > 0, and therefore qualifies as a highest-weight state.

The J,, can be used to algebraically generate this spectrum and its conformal tower
(family) of descendant states from a reference state |0). We suppose this state completely
filled up to some energy, call it Fermi energy, Er = 0. By applying the J,, with m < 0, we
make a particle-hole excitation with energy —m by raising a particle from below the Fermi
energy into an unoccupied state above, —m levels higher. The energy level structure of

the Hamiltonian carries over to the descendants created from the reference state |0)

Jny oo [0Y £ 0 1<m<..<n , (3.181)

as in Eq. (BI50) for the Virasoro generators. The level of the state (BI81) is Y, ng,
(n; > 0), and the level associated with a single generator J_,, is m (> 0). The energy
of the state equals its level in units of 27/L. Of course, such a description is redundant:
a state at level N can be generated in P(N) ways; P(N) is the number of partitions of
N. At level N, we have an N-particle-N-hole excitation. The Kac-Moody algebra can
therefore be used to classify the particle-hole excitations from a reference state.

There are states which the currents cannot create from our Fermi sea |0): those with
additional particles, i.e. a total charge () with respect to |0), and specifically the lowest-
energy states |()) where the @) particles occupy the first () states above the Fermi level.
We anticipate that there is an infinity of such states, and each of them will be the highest
weight state in the sector with total charge () of the theory. From our discussion, it is
clear that the vertex operators (with o = 1 for a free theory)

Ul(2) =: explig(2)] : (3.182)

creates a chiral fermion. The chiral state |@Q) then is created out of |0) by

Q) = expliQé(2)] < [0) (3.183)
The energy of a state |@) is
E(Q) - E(0) = UF%QQ | (3.184)

Acting on |@), the Kac-Moody generators J_,, will again create the full spectrum of
particle-hole excitations in the sector |Q).

There are more general operators than (B:I87). One can build them by combining
fields of both chiralities, writing e.g.

Wl (2,2) = exp (i |amnd(2) + Gmnd(2)]) (3.185)
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Its scaling dimension is (a2, + a2,,)/2, and o and @ are related to the compactification

radius R by
1/m nR 1/m nR
=— | =+ — Ny = — | — — — ) 1
mn 2<R+2) o Gmn 2(R 2) (3-186)

Its physical meaning is quite clear. Increasing m means increasing the charge for both
chiralities \Ifin0|Q, Q) = |Q +m,Q + m). Increasing n transfers charge from one chirality
to the other, i.e. creates a finite persistent current \Ifgn|Q, Q) = |Q +n,Q —n) [this is an
example of a primary operator with k() % 0 in (B.162)]. Wi . creates charge or current
excitations, or combinations thereof. As for W,(z), the particles making up these charge
and current excitations are fermions only at the particular compactification radius R = 1.
Else, they are more general objects.

The Luttinger or Gaussian model has operators with continuously varying exponents.
Responsible for this are dimension (1, 1) marginal operators which take the model along
a whole critical line. The simplest of these operators is

g =91 [z az0.2)0.9) (3.187)
2T

which is proportional to the free action (B.164) and whose only effect is to introduce
the coupling constant g as a prefactor into S. The effect of this interaction can simply
be absorbed by redefining the fields ¢ — ¢/,/g. With this redefinition, the effective
a — af,/g in the vertex operators changes accordingly, and consequently both their
compactification radius and their conformal weight. When the compactification radius
R # 1, Ul no longer describes a fermion but a more complicated object. In the Luttinger
model, the go-interaction is such a marginal operator, coupling currents of both chiralities.
From Eq. (B.I79) it is obvious then that S’ generates continuously varying exponents in
the correlation functions, and varying g sweeps the model over a whole critical line.

By transforming the phase-field representation of the spinless Luttinger model
into an imaginary time (7 = it) action, one obtains the Gaussian model with an effective
coupling constant ¢ = K. Importantly, the coupling constant g depends essentially on
go. Finite g4 only renormalizes the effective go but, alone, is not able to give g # 1. This
is quite easy to understand because it only changes the Fermi velocity of the Luttinger
model and is therefore absorbed when going to the second spatial coordinate y = vr.

More interesting is the case when the interactions are not of current-current type, or
when the theory is formulated on a lattice so that the identification of the conformal
operators is far from obvious. Mironov and Zabrodin have given a simple application of
the methods discussed above to interacting spinless fermions (or bosons) [4]

H= /Ode 0, (x) Dstb() + /OLdl" dy V(@) ¥ (y) Ve —y) v) o) . (3.188)

V(z) is a repulsive pair interaction of rather general form. The density of particles is
n = N/L and kr = mn. The model can be solved by Bethe Ansatz for V(x) = §(x) but
most of the results are expected to carry over for reasonable longer-range potentials.
From the finite-size scaling formula for the ground state energy (BI57), one finds
¢ = 1 which puts it in the Gaussian (Luttinger liquid) universality class. Now we want
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to find the correlation function of some local operator O(x). To this end, one must
compute up to order 1/L the energy of the lowest excited state |¢) whose matrix element
(0|0(z)|p) # 0 for L — oo. Then, one can use Eq. (B.I63) if its scaling dimension
and spin is known from (B.I6])) and (B:I62). As an example, one can make particle-
hole excitations [p(z)] with momentum 2mm /L (m small). From their excitation energies
linear in m, one can deduce the renormalized sound velocity v and A = +s = 1. Of
course, this is in agreement with our earlier discussion where we found that the currents
of the Gaussian model are (1,0) or (0,1) fields. Next, make an excitation at constant
particle number with k(()flo) = 2nkp where the particle-hole spectrum goes to zero. In a
free system, this would correspond to applying the operator \If(T]n to the Fermi sea. The
Bethe Ansatz gives the energy change dFy, = (2r/L)(2kpn?/v) and, using (B.161), the
scaling dimension Ay, = 2kzn?/v. Comparing with (B:I8§), one finds a compactification
radius R? = 2kp/v. One can also add pairs of particles or a single particle, where a
selection rule enforces half-integer n. The energy shift is given by (B-I6]]) with a scaling
dimension (B:I8F) with m = 1,n = 1/2 and the R found above. The Green function
and the CDW correlation functions (corresponding to the low-energy excitation at 2kp
discussed before) are then

G(z) ~ cos(kpa)z VP12 Ropw () ~ cos(2kpx)z 2 | R*=2kp/v=K .
(3.189)
The exponents satisfy the scaling relations of the spinless Luttinger model, and the corre-
lation exponent K has been identified in the last equality. (The factor 4 difference in R?
to Mironov and Zabrodin [[4] must be due to a different prefactor [2/7] of the Gaussian
action.)

The close correspondence of conformal field theory and the operator approach to
bosonization should be apparent now, at least for the case ¢ = 1 of the Luttinger and
Gaussian models. Density fluctuations (currents), charge and current excitations, and
fermion raising and lowering operators all appear either in an operator approach based
on a Hilbert space, or in an algebraic formalism based on the U(1)-Kac-Moody algebra,
which is satisfied by the currents as a consequence of the U(1)-gauge symmetry (B.9) cor-
responding to the conservation of left- and right-moving particles separately. The main
problem in the operator approach is the explicit identification of the coupling constant of
the Luttinger model which then determines all correlation functions. In conformal field
theory, we must determine the scaling dimensions of the various primary operators. As
will be discussed in the next chapter, in both cases the spectrum of low-lying eigenvalues
is sufficient for that purpose, showing once more the full equivalence between bosonization
and conformal field theory. Which one to use is a matter of taste.

The preceding analysis of the interacting spinless fermions foreshadows the application
of conformal field theory to rather general models of interacting electrons. We shall discuss
this topic in the next chapter, where some other methods for extracting the low-energy
physics will also be presented.
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Chapter 4

The Luttinger Liquid

4.1 The conjecture

The Luttinger model can be solved exactly at any interaction strength, except for too
strong attraction where the model becomes unstable towards phase separation (forma-
tion of electron droplets; Section p.J). However, it contains drastic approximations with
respect to a realistic many-body problem: (i) its dispersion is strictly linear, and (ii) the
electron-electron interaction is limited to forward scattering only. The possibility of an
exact solution is precisely related to these two approximations.

One may therefore wonder if these approximations are essential in the sense that the
Luttinger physics is lost in any different model or if, on the contrary, this physics is robust.
In this case, only parameters (K, v,) would be renormalized close to the Fermi surface,
but the structure of the low-energy theory would be identical to the Luttinger model.
Of course, further away from the Fermi surface, new phenomena such as boson-boson
interactions or lifetime effects could occur but it would be guaranteed that they fade
away as (k — kg, w, T) — 0. This is what happens in the Fermi liquid. The Luttinger
model would then represent the generic behaviour of gapless 1D quantum systems, and
one could build upon it the universal low-energy phenomenology for all 1D metals (the
Luttinger liquid) called for by the breakdown of the Fermi liquid in 1D (Chapter P).

Haldane, in the early 1980’s, conjectured that this was indeed possible and supported
this conjecture with a series of case studies of models solvable by Bethe Ansatz [£9, [].
He also demonstrated that certain features mapped away when passing to the Luttinger
model, such as curvature in the dispersion, only introduce nonsingular, perturbative in-
teractions among the bosons [J] which disappear as one goes to the long-wavelength or
low-frequency limit. Haldane’s conjecture has meanwhile been verified in an impressive
number of instances some of which will be discussed below and, to my knowledge, no
counterexample has been discovered yet.

What is the content of this “Luttinger liquid conjecture”? Given any 1D model of cor-
related quantum particles (in 1D not even necessarily fermions) and let there be a branch
of gapless excitations: then the Luttinger model is the stable low-energy fixed point of the
original model (or at least its gapless degrees of freedom). In other words, the asymptotic
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low-energy properties of the degree of freedom associated with this branch are described by
an effective (renormalized) Luttinger model, in particular with one renormalized Fermi
velocity v, and one renormalized effective coupling (stiffness) constant K,, up to per-
turbative boson-boson interactions. All properties found for the Luttinger model: (i)
absence of fermionic quasi-particles in the vicinity of the Fermi surface, (ii) anomalous
dimensions of the fermion operators producing nonuniversal power-law correlations, (iii)
charge-spin separation, (iv) the universal relations among the nonuniversal exponents of
the correlation functions, among the velocities for sound, charge, and current excitations
and between velocities and the effective renormalized coupling constants, carry over to the
low-energy sector of the model under consideration. The nontrivial task remaining then is
to determine the two central quantities of the Luttinger liquid, the renormalized velocity
v, and the renormalized effective coupling constant K, from the original model. Once
this is achieved, one has an asymptotically exact solution of the 1D many-body problem.
This is what most of this chapter will be about.

A word of caution is required for systems with several degrees of freedom. If all
degrees of freedom remain gapless, the low-energy fixed point will be a Luttinger liquid
in the sense described. If some degrees of freedom become gapped while others do not,
the physics within the gapless degrees of freedom can be described as a Luttinger liquid
while all quantities involving gapped degrees of freedom will deviate qualitatively from
the Luttinger liquid. In Chapter [, we will give examples for this kind of situation.

When mapping a more realistic model of interacting electrons in 1D onto the Luttinger
model, complications arise from two sources: (i) the dispersion of these models is not lin-
ear; (ii) the interactions generally do not only contain the forward scattering processes
included in, and solved by the Luttinger model but also the large momentum transfer
backward (spin exchange) and Umklapp scattering (for commensurate band filling) de-
picted in Fig. 3.3. Moreover if the interactions are not weak, states far from the Fermi
surface are coupled to the Fermi surface states; curvature and interaction could then con-
spire to invalidate the Luttinger liquid picture. That none of this in fact happens, was
demonstrated by Haldane [B, f9].

There are two basic ways of proceeding. One can start from a Luttinger model and
extend it by various interactions and other features, and then study the stability and
renormalization of the Luttinger model solution. The alternative is to start directly from
a realistic model of 1D correlated fermions, possibly on a lattice, and search for either
Luttinger liquid-correlations or the specific Luttinger liquid properties of the spectrum of
charge, current and sound excitations, Eq. (B.32). The organization of the chapter will
follow roughly this order.
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4.2 Luttinger model with nonlinear dispersion — the
emergence of higher harmonics

Haldane extended the Luttinger Hamiltonian, Eqs. (B])—(B4), by terms modelling non-
linear dispersion

é?r(l{?) = ’UF(’/’]{?—]{ZF)
(’l“k‘—k’p)g . (41)

1
k—k —(rk — kp)?

= vrlrk ki) + oDk = ke o
The third order term is necessary to ensure stability, and A > 3/4 is required then.
(EJ)) can be bosonized, and one obtains quadratic terms of the usual structure (B.2])),
with parameters renormalized by m and A, but also cubic and quartic boson terms. The
quadratic form can be diagonalized as usual and the remaining terms are written as (for
spinless fermions for simplicity [J])

A -

o (x) : 4.2
48m2UF T(I) ? ( )

R
oH =Y o [ dui &
XT:QW o 6m o)+

where the fields ®,(z) = [r®,(z) — ©,(z)]/V2 are given in terms of the phase fields of
Egs. (B.42) and (B.43) and the tilde implies that the Bogoliubov transformed fields (B.50)
enter. 0 H describes boson-boson interactions. Their appearance is quite clear physically
because, for a curved dispersion, two fluctuations with wave vector ¢ and ¢’ will have an
energy different from a single one with ¢ + ¢: fluctuations interact. Fortunately, 6 H is
harmless: one can either (i) argue, using renormalization group, that these higher order
boson terms are irrelevant and therefore do not influence the fixed point physics described
by the quadratic ones, or (ii) as did Haldane, perform a systematic 1/m-expansion to
find that the model still obeys the constitutive Luttinger liquid relations (B-33) between
velocities and coupling constant, and that the relation of K to the correlation function
exponents, Eqs. (B:89) — (B-100), also remains unchanged. Only the values of K and the
velocities change.

There is, however, another important effect caused by the nonlinear dispersion: the
appearance, in the physical fermion operators W(z), of higher harmonics in the chiral
fermion operators ¥, (x) which generates components with 3kg, 5kg,... in the fermion
fields and with 4kp, 6kp,... in the pair fields. Consequently, the single-particle Green
function acquires components at 3kp, 5kp ..., and e.g. the density-density correlations
get oscillations at 4kp, 6kp ... in addition to the usual ones at small ¢ and at 2kgr. These
components are not present in the Luttinger model but may appear in any more general
model with nonlinear dispersion (k). They are necessary for constructing local density
and fermion operators.

This becomes apparent when one attempts to construct a representation for excitations
on all length scales from the long-wavelength ones which dominate the low-energy physics
[ET]. Recall from our bosonization procedure in Section that the field ®(x) had a
kink of amplitude 7 at the location of each particle. The location of the (th particle then
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is given by ®(z) = Ir. When going from the smeared, long-wavelength density operators
pr(x) to a physical local operator p(z), it is sufficient to multiply by a delta function
> 0[®(x) — Im] to locate the individual particles. The local density then is written as

p(z) =[n+E@)] > exp2im{®(z)+ kpz}] |, (4.3)
where n = N/L is the average density, and the field Z(x) describes the long-wavelength
fluctuations. The fermion field essentially is the square-root

e}

U(z) ~/n+E(x)exp [iO(z)] > exp[(2m+ 1)i{®(z) + kpz}] | (4.4)

m=—00

but the sum must contain only odd terms to ensure the anticommutation property. O(x)
and ®(z) have been introduced in (B.43) and (B.43), and =Z(z) commutes with O(x)
as [O(x),=(2')] = id0(x — 2’). Moreover, describing charge density fluctuations, Z(zx) is
related to ®(x) by 0,P(x) = —7[n + Z(x)]. An equation equivalent to (f.4) for spin-
1/2 fermions can be constructed easily. The correlation exponents associated with these
higher harmonics are then deduced with the methods of Section B3 [B].

In the Luttinger model with its linear dispersion, only the components with m = 0, +1
are present in ([.J) and those with m = —1, 0 in (f4). This is related to the fact that
in the Luttinger model, the mean current is [from the continuity equation (B.106) for
q — 0] j = v;J/L, and is strictly conserved because J is a good quantum number [{].
With 6H [Eq. (EJ)] containing the nonlinearity, the current operator as determined from
the continuity equation contains higher-order boson terms, and a simple relation to the
quantum number J only obtains close to the Fermi surface. In order to allow for a
fermionic representation of this complex current operator, the physical fermions must
contain the higher harmonics in the chiral fermions.

4.3 Backward and Umklapp scattering

We now turn to the problem of non-Luttinger interactions. The Luttinger model includes
only the forward scattering interactions g, and g4, Eqs. (B-3) and (B.4)). This is certainly
very restrictive since any realistic model, say with an interaction

1

Hipy = Z Z V(Q)Ci-i—q,scz’—q,s’Ck’,s’ck,s (45)

kik,7q787sl

will also contain components of V(q) with ¢ large, specifically g &~ 2kp. The restriction to
forward scattering is, however, absolutely essential in guaranteeing the exact solvability
of the Luttinger model.

In any realistic theory, these offending interactions will be there. The most important
processes are depicted in Figure 3.3. The contributions to the Hamiltonian are

mo= o) [ e W)U () () () (4.6)
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_ 29 / dz cos[v/3®, (z)] (4.7)

(2mar)?
Hy, = %Z /0 : do : Ul ()Wl _ (2)V__ (2)¥_(2) +Hec.: (4.8)
= (22%)2 / dx cos[V/8D,(x)] . (4.9)

The first term represents exchange scattering of two counterpropagating particles with
opposite spin across the Fermi surface (momentum transfer ~ 2kp) and violates spin-
current conservation. [SU(2)-invariant backscattering would imply the presence of a gy-
term in the Hamiltonian which, after bosonization, can however be absorbed into g, —
G2v — g1)/2.] The second term is Umklapp scattering of two particles moving in the same
direction. The product of four fermion fields in Eq. ([.§) contains a factor exp(4ikprx)
which, generally, oscillates rapidly and suppresses contributions from this term. For
half-filled bands, however, 4kr equals a reciprocal lattice vector +27/a, and Umklapp
scattering becomes important. Charge-spin separation is respected here. This is not
generic. However all purely electronic processes coupling charge and spin, i.e. arising
from four fermion operators, are less relevant than (£.4) and (£.8) [B0].

For the Luttinger liquid phenomenology to survive one must demonstrate that, al-
though these interactions certainly renormalize velocities and stiffness constant, they do
not destroy the universal relations among them nor those between K and the correlation
function exponents. To map the low-energy physics onto a Luttinger model, one then has
to (i) check that there are (how many?) branches with gapless excitations; (ii) for each
branch determine the relevant renormalized velocity and coupling constant; (iii) insert
these into the Luttinger liquid expressions for the quantities of interest. If this works, it
is proven that the originally offending interactions are irrelevant at the Luttinger liquid
fixed point and that their only effect was a quantitative renormalization of the Luttinger
liquid parameters.

This is the spirit of all approaches to a Luttinger liquid description of interacting
1D electrons. It is most explicit in the renormalization group method if one accepts the
limitation to weak coupling, and we shall treat H;, in this way. While more power-
ful mappings of lattice models onto the Tomonaga-Luttinger model are available now,
in conjunction with renormalization group, such “direct” extensions of the Tomonaga-
Luttinger model give a clear and simple idea of how the renormalized effective parameters
in the Luttinger liquid are generated. Moreover, many problems beyond the 1D electron-
electron-interaction models, such as coupling to phonons or scattering by impurities, only
become tractable with this approach. Also renormalization group allows to determine
corrections to the simple power-law decay (B.99) — (B.100) of correlation functions of the
Luttinger model which are absolutely essential to obtain a correct picture of the physics
of more complicated models. Finally, much of the early understanding of what is now
called “Luttinger liquid” was based on continuum models [[§, [[9], by that time most often
running under the label “g-ology”, and renormalization group was the most important
tool for their understanding.

We derive renormalization group equations for Hy, following a method described by
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Chui and Lee [[f§]. There are other ways to formulate the renormalization group; they have
been reviewed in detail elsewhere [I§, [[9, BJ|. First diagonalize the Luttinger part of H,
(shorthand for all terms containing o-operators). Then compute the partition function
Zy, = (exp—[FH,) in the Matsubara formalism of imaginary times 7 = it. Z, can be
expanded in H;, and the expectation value be evaluated with respect to the diagonal

<(g;l)2>2n/ (]2'n[ %) exp [2}(02%- In (“;%Pﬂ . (4.10)

part

1
Zy =Y
o (n!)? i i>j
The 2D vector r = (z,v,7) and ¢; = 1 for i = 1...n and —1 else. Z, is now identified
as the partition function of a classical 2D Coulomb gas with charges ¢;, at a fictitious
temperature 3cqg = 4K, and a fugacity g,,/(27)? For this problem Kosterlitz and
Thouless [77] derived a set of renormalization group equations which translate into

2
dZ" _ —%Kﬁ <%) , dflzf — g (2—2K,) . (4.11)
They describe the flow of the effective coupling constants g;,; and K,, shown in Figure
4.1, when short-distance degrees of freedom (between o and ae’) are integrated out. Here
« is reinterpreted as a short-distance cutoff parameter which may be of the order of a
lattice constant. The coupling constants must be rescaled so as to maintain the Fermi
surface physics and the asymptotic correlations invariant. There are two different types
of flow. (i) Assume K, sufficiently large so that |g; | decreases with increasing ¢ (lower
right part of Fig. 4.1). If this remains so even for ¢/ — oo, the renormalization group
trajectory will flow into a fixed point g7, = 0 and K, — K. g;, has dropped out of
the problem, i.e. at long distances the model behaves effectively as a Luttinger model
with a renormalized K. The fixed point is spin-rotation invariant if it turns out that
K} = 1. Then the flow is precisely along the separatrix. This is one example of a
Luttinger liquid. [Even then, during intermediate stages of the calculation, one may have
K,(¢) # 1; this apparent breaking and final restoration of SU(2)-invariance is typical of
abelian bosonization.] (ii) If the bare K, is not large enough compared to | g1, |, K, will
flow towards 0 but more importantly | gi; | will increase. Derived from a perturbation
expansion, the renormalization group manifestly looses its sense. It is clear that the
system flows away from the Luttinger liquid fixed line, and the diverging | g, | signals
an instability of the model towards a different ground state whose accurate description
must, however, be based on different methods. This regime will be the subject of Section
b..

So long as the system is not half-filled, the charge exponent K, is not renormalized.
At half-filling, the situation in the charge degrees of freedom is isomorphic to the spin
part discussed here. It is sufficient to change ¢g1; — g3, K, — K, and carry over the
Equations ([.IT]). Also more complicated models where charge-spin coupling is impor-
tant can be treated in this way [b0]. The application to phonons and impurities will be
discussed below.
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The essential weakness of the renormalization group approach is its limitation to weak
coupling, being derived from perturbation expansions. This limitation has been overcome
by several methods which will be discussed in the subsequent sections.

Before, however, we discuss in more details the correlation functions of such a Luttinger
liquid where all non-Luttinger interactions have become irrelevant. A first idea about the
correlations is obtained by inserting the fixed point value K into the correlation functions
of Section B.J. This is the standard procedure in the renormalization group treatment of
critical points [[[(]. In particular, we would then find a degeneracy of exponents between
SDW and CDW, and SS and TS, no matter what the precise fixed point values K.
Anticipating that the non-half-filled repulsive Hubbard model can be described, at least
for small U, by (B.1))+(f.G), it is clear that this cannot be the whole story.

Let us consider the 2kp-SDW, correlation function for definiteness. The SDW,-
operator is

OSDW Z S\If )W, 4(x) = ;—; exp [Qikpzz — \/Eiép(x)} sin {\/EZ(I)U(:E)}

(4.12)
Now consider the time-ordered correlation function (again in imaginary-time formalism)

— Rspw.(r) = (T:0spw.(r)Okpy.(0))
_ ZiaTr (TTOSDWZ(r)ogDWZ(o)exp [ /OﬁdeH(T)D . (4.13)

where H = Hyu + Hy. and the trace (Tr) is performed over o and p. The charge part

is trivial and gives the Luttinger result |r|=%e

. In the spin part, use Wick’s theorem to
expand the exponential in Hy,. This will generate nonvanishing contributions at all even
orders which are essentially those contained in the partition function Z, multiplied by
OO'. In addition to these terms there will, however, be important new terms in odd
orders of Hy, not present in the partition sum [7§, [(9]. They arise from contracting the

o-part of the SDW -operators with Hy |
<sin [ 2Kg<ba(r)} sin { 2KJ(I>U(O)] COS [ 8KU(I>U(r1)]>
1
-3 <exp 2K, [@,(r) + Dy (0) — 28, (r1)] + H.c.> . (4.14)

These expectation values do not vanish because the prefactor of the ®,-field in the cor-
relation function is half of that in the perturbation operator or, in other words, because
the \IIT_7S\II+,s—components of the SDW -operator also occur as factors in H;,. In the
Coulomb gas language, this is equivalent to saying that one considers the screening of two
test charges ¢/2 by charges —q. The terms up to second order can be reexponentiated in
the spirit of a cumulant expansion. Now it is important to integrate up the correlation
function along the whole renormalization group trajectory [, [9). The spin-part of the
correlation function then becomes

RSDW (r; a)—exp( K,In —+/g7w dl’ + 2/ [gu ] Tdﬁ’) . (4.15)

TV,
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If scaling goes to weak coupling, the integrals can be extended to infinity and the usual
expressions involving the fixed-point exponent K} follow. Notice, however, that an ulti-
mate cutoff is provided by the observation scale |r| (if not by temperature or system size)
so that the integration cannot go beyond ¢* = In|r|/a. The correlation function then
decays as

e\ [ |
RSDWZ(I'):<E> hl; > ngl y (416)

where we have reintroduced the contribution from the charge density fluctuations. In
doing the integrals, we have used explicitly the fact that we scale along critical line
(the separatrix in Fig. 4.1) so that the logarithmic corrections only obtain in the spin-
rotation invariant case. In this case, one recovers expressions identical to (f.1) for the
2- and y-components of the SDW correlation function although, involving ©,-fields, the
intermediate expressions are quite different. The charge density wave and superconducting
correlations decay as

Repw(x) ~ 175 2 el | Res(r) ~ [l 57" =2 e, Ryg(r) ~ 1|51 /2 r]

(4.17)
There is no logarithmic correction to the 4kz-CDW function because it does not involve
spin fluctuations. It is remarkable that at this level, the degeneracy of the CDW and SDW
correlation functions and between SS and TS is lifted: they have the same exponents,
correctly given by the Luttinger model but the correlations are logarithmically stronger
for SDW and TS. For repulsive interactions, magnetic correlations must dominate! If
we have attractive backscattering g;, — —¢;, with K, left unchanged, CDW and SS
will be logarithmically enhanced over SDW and TS [just exchange the log-exponents in
(E16) and (EI7)]. Finally, if spin-rotation invariance is broken and there is an easy plane
anisotropy, g;, scales to zero faster. In this case, the integration along the trajectory
only gives prefactor corrections to the power-law correlations [f9]. These results can
be transposed straightforwardly to commensurate systems when Umklapp scattering is
irrelevant [B(].

The phase diagram in the g, | — K ,-plane obtained in the absence of Umklapp scattering
is displayed in Figure 4.2. At g;; > 0, the dominant divergences are SDW for K, < 1 and
TS for K, > 1. Subdominant fluctuations are indicated in parenthesis, and the preceding
discussion shows that CDW and SS have the same exponents as SDW and TS but are
disfavoured by their logarithmic corrections. We have assumed the system to be spin-
rotation invariant, and consequently, the fixed-point K* = 1. For g;; < 0, a spin gap
opens through a Kosterlitz-Thouless transition, and formally K> = 0. Here, CDW and
SS have the strongest divergences for K, < 1 and K, > 1, respectively. They also diverge
in the regimes 1 < K, <2 and 1/2 < K, <1, respectively, though with a weaker power
than the dominant fluctuations.

Logarithmic corrections to the free energy of statistical models whose fermionic de-
scription contains a marginally irrelevant Umklapp operator and which are related to the
singularities found here in the correlation functions, had been discovered earlier by Black
and Emery [B(].
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4.4 Lattice models: Hubbard & Co.

A variety of nontrivial lattice models can be solved exactly in 1D, for which no exact
solution exists in higher dimension. A non-exhaustive list contains the Heisenberg model
[BY], the Hubbard model [B9, BJ] and various long-range, supersymmetric or degenerate
extensions, the supersymmetric ¢ — J-model [B4-[Bq], and others. Solvable continuum
models include, apart the Tomonaga-Luttinger model discussed above and the Luther-
Emery model reviewed in Section 5.1, the massive and massless Thirring model [R7] and
the interacting Bose gas [Bg]. Exact solutions are due to a large extent to very strong
conservation laws arising from the restricted phase space for 1D fermions.

We briefly discuss some important lattice models. A central role is played by the
Hubbard model, and our treatment of Luttinger liquid correlations in lattice models will
be centered on this model. We therefore also present a short summary of important
Bethe-Ansatz results for this model to make this section more self-contained.

4.4.1 Models
The Hubbard model [BZ] is described by the Hamiltonian

U
Hywy = —t Y ¢l i+ 3 S (nis — 1/2)(ni—s — 1/2) — Y _mis (4.18)

<%,7>s 8

where ¢; s describes fermions with spin s in Wannier orbitals at site ¢, n; s = czscm, U is the
repulsion of two electrons on the same site and i the chemical potential. One can also fix
the band filling to 7 = Nejectrons/NVsites- < @, > restricts the sum to nearest neighbours.
This model is the simplest approximation for strongly correlated electrons in a crystal
lattice. The model is exactly solvable, cf. Section [[.4.2. For a long time, it was believed
that the Hubbard model describes the strong-coupling limit of the 1D Fermi liquid while
the Tomonaga-Luttinger model rather would represent the weak-coupling case. To show
that this is not the case, and that both are closely related, is a major purpose of Section
KA.

Various more realistic extensions can be considered. In some cases, it is necessary
to add longer-range interactions between the electrons. The extended Hubbard model
50, B

Heuv = Hag, +V Z N;MNi41 (419)

includes interactions between neighbouring sites, but one may obviously go to longer
interaction range [such as 1/r 0] or a Yukawa form exp(—r)/r]. In contrast to the
Hubbard model, this Hamiltonian is no longer exactly solvable. Also “off-diagonal” terms,
i.e. interactions coupling charge densities on site to those on bonds, can be added [PI]-[Pq]

H = HHub + X Z (C;'r:LsCi,s + HC) (n@_s + ni+17_s) . (420)

An important feature here is the breaking of charge-conjugation symmetry generated
by X. This term goes beyond the zero-differential-overlap approximation. A critical
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discussion of the approximations involved in going from a realistic correlation problem
to the Hubbard model in a 1D context has been given by Painelli and Girlando [PZ] and
Campbell et al. [P].

At U > 0 and half-filled band, the Hubbard model has an insulating ground state
whose spin fluctuations are described by an effective Heisenberg model [BI]] with an (an-
tiferromagnetic) exchange integral J = 4t?/U. For a nearly half-filled Hubbard model,
it is more convenient to think in terms of a few holes doped into such an antiferromag-
netic Heisenberg system. For large U, double occupancy of lattice sites is dynamically
forbidden, and the energy scales for charge fluctuations (~ ¢) and for spin fluctuations
(~ J < t) are well separated. One can then simplify the problem by projecting out the
states in the Hilbert space involving double occupancies. In a restricted Hilbert space
containing only singly-occupied and empty sites, one finds in second order in ¢/U the
following Hamiltonian (¢t — J-model, [B4]-[8d))

Hy_j=-t)_ {(1 - ni,—s)cj,sci-i-l,s(l — Niy1,—s) + H~C~} +J) [Si “Sip1 — %nini—i-l

Z Z (4.21)
The fermions c¢; s now behave as spinless fermions, and S; = 37 o CZS(U )s.s/Cisr are spin
operators. This model can be solved in two limits. For J = 0, it reduces to the U = oo-
Hubbard model which describes free spinless fermions, and for J/t = 2, it possesses an
additional supersymmetry and can be solved by Bethe Ansatz [B4|-[8G]. The ¢ — J-model
approximates the strong-coupling limit of the Hubbard model only for J < ¢. Models
with other interactions or more bands can, however, be approximated in a low-energy
subspace by a t — J-model with sizable J [07. Both the ¢ — J and the Hubbard model
can be extended to include additional degeneracies [0§]. Another interesting extension
consists in introducing longer-range hopping [P9] or spin exchange. We shall not say much
on these variants here.

Most of the methods discussed below for extracting the Luttinger liquid parameters
from one of these models will work, with minor modifications, also for the others with sim-
ilar structure. When a model is not solvable by Bethe-Ansatz, numerical diagonalization
can provide similar information. We therefore limit our discussion as much as possible to
the quite generic case of the Hubbard model and only briefly discuss changes occurring
when passing to other systems. In the following section, we list some important elements
of the Bethe-Ansatz which are helpful for understanding the mapping onto the Luttinger
liquid.

4.4.2 Bethe Ansatz

The 1D Hubbard model has been solved exactly via Bethe Ansatz by Lieb and Wu [BJ
(for pedagogical reviews on the Bethe Ansatz, see Sutherland [2g], Korepin et al. [B7],
Izyumov and Skryabin [B§] or Nozieres [I[00]), and the ground state energy and some
thermodynamic quantities can be obtained [[[0]]-[[03]. Also the excitation spectrum of
some collective modes has been computed quite early [[04, [[0F]. The basic physical

picture emerging from these initial studies is as follows. For U > 0, the system is metallic
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whenever the band is not half-filled (Nejectrons 7# Nsites = L/a with lattice constant a):
the chemical potential for adding a particle to N- and N — 1-particle systems are equal.
Exactly at half-filling, one finds a difference (~ /U exp(—1/U) for U — 0 and ~ U for
U — oo B3, [04]) between these two quantities indicating that the system has turned
into a Mott insulator for any U > 0. Finite U > 0 obviously prohibits double occupancy
of sites, all sites are now (singly) occupied and no low-energy charge excitations possible.
The lower Hubbard band is completely filled, and the upper Hubbard band is empty in
the ground state. The spins are coupled through an effective antiferromagnetic exchange
integral J = 4t?/U, and their dynamics reduces to a Heisenberg model.

At half-filling, the U < 0-sector is related to the U > 0 one by a particle-hole trans-
formation ¢; ; — (—1)%378 for a single spin direction only, say s =T, exchanging the role
of charge and spin degrees of freedom, and the charge gap discussed above turns into a
spin gap: occupying sites with two electrons with antiparallel spins is favoured. These
pairs are mobile and the charge excitations massless. There are no singular features in
the Bethe Ansatz for U < 0 as a function of band-filling implying that the picture applies
to the whole U < 0-sector [[L0]].

These results can be obtained qualitatively, and for U/t < 1 also quantitatively, with
the renormalization group methods described in the preceding section. The coupling
constants are g;; = Ua, i = 1,...,4 (g3, only occurs for half-filled bands), and the Fermi
velocity is vp = 2tasin(kra).

Bethe’s Ansatz provides a solution for all interaction strengths and band-fillings [BJ].
We sketch the principal ideas, following Noziéres [[07]. The Bethe Ansatz relies on the
following facts. (i) Due to energy and momentum conservation, in 1D a two-particle
collision classically and quantum-mechanically conserves both momenta individually. The
particles then only can be exchanged or phase-shifted, and the two-particle wave-function
asymptotically (|z; — 23] — o0) obeys

U(xy, 25) = ae'®ro1ken2) o peilhaeathazs) (4.22)

The Bethe Ansatz postulates this behaviour for all distances between the particles. (ii)
A three-particle collision does not conserve individual momenta ezcept if the scattering
matrix factorizes. This factorization implies another conservation law. For N particles,
one then has N conservation laws, expressed by {k;} = {k;}. (iii) The Hilbert space of
the Hamiltonian separates in N! quadrants each characterized by a permutation P of the
N particles, ordered in one quadrant as 1 < 7y < 29 < ...xy < L. The N-particle
wave-function there becomes

U(21,...,ay) = APl (4.23)

Fermi or Bose statistics determines its continuation into the other sectors. (iv) The
amplitude A[P] is determined by the conditions of continuity of ¥ as x; — x;1; and
periodic boundary conditions W(z1,...,xy) = ¥(xs,..., 2y, 21 + L). The problem is the
computation of A[P]. (v) Introducing spin, suppose we have N electrons, M of which
have spin |, on a lattice with L sites x;. One must then ensure that the factorization
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of the S-matrix is not perturbed by the spin indices (Yang-Baxter conditions). There
is then a second permutation () for the spin labels, and the wave function where the
M down-spins occupy the sites xy...xy and the N — M up-spins the sites zp11 ... 25
is denoted by W(x1,...,Zp, Tare1,---,2n). The Bethe Ansatz postulates that in each
quadrant characterized by @, ie. 1 < zg, < 29, < ...2¢9, < L, the wave function is

given by B3

U(z1, . o T, Tty - - - TN) = Z (@, P]exp ( ka]xQ]> ) (4.24)
P
The N numbers k; are determined from the coupled Lieb-Wu equations (u = U/4t)
M ink; — A
orl; = Lk;—23 arctan (M> , (4.25)
=1 u
N - M
A, —sink; Ay — A

2rJ, = 2 arctan <¢> — 2> arctan <7ﬁ> ) (4.26)

— U - 2u

j p=1
integer ) even
I, = fM= 4.2
/ { half — odd — integer ' { odd ' (4.27)
integer ) odd
= fN—-—M=
Ja { half — odd — integer ' { even
The total energy and momentum of the system are then
N N

E=-2t) cosk; , P=>k . (4.28)

i=1

Eqs. ({24) — (E2§) give the exact energy and wavefunction of the 1D Hubbard
model. The quantum numbers k; are the momenta of the particles characterizing the
orbital degrees of freedom. Unlike for free particles, they are not equally spaced but
shifted by the presence of the other particles. The A, are called rapidities and describe
the spin state. On the other hand, the integers or half-odd-integers I; and J, are equally
spaced. The ground state is obtained by occupying the levels with minimal |I;| and
|Jo|- Therefore the distribution of ¢; = 27I;/L and p, = 2wJ,/L is given by a Fermi
distribution © (kg +kr| —¢;) and ©(kp; — p, ), respectively. In the absence of a magnetic
field, the ground state has kpy + kp| = 2kr and kr| = kg, so that the ¢; have a doubled
Fermi wavevector while the p, have the normal kp.

This splitting of the Fermi surface into two can be clarified further by studying the
elementary excitations. Two of them are obtained by making a hole either in the [;- or in
the J,-distribution. In the first case, one obtains a charged, spinless holon, in the second
case a neutral spin-1/2 spinon. Both holon and spinon live in the lower Hubbard band.
There are other solitonic excitations involving doubly occupied sites which therefore build
up the upper Hubbard band [[0F]. In general, holons and spinons are not independent,
and the Lieb-Wu equations ([.:25)), (£:24) imply that they interact. Introducing a real hole
will affect both channels. Moreover, the representation of physical electrons and holes in
terms of holons and spinons is not known to date.
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The interaction of holons and spinons complicates the calculation of their dispersion.
Simple results are obtained only for weak or strong U. Then, the holons obey

4t cos(qa/2) — 2t cos(kpa) for u <1
M) (q) = 4.29
=) { 2t cos(qa) for u>1 (429)
Their Fermi surface is at k") = 2k, 5%1) = —u. The spinon have dispersion
) (g) = 2t[cos(qa) — cos(kpa)] for u <1 (4.30)
(7/2)Jeppcos(ga/n)  for u>>1
The effective exchange integral is
42 sin(27mn)
Jeff = 7 <n - T) . (431)

The dispersion is only defined for ¢ < B = kr, and the energy becomes zero at kr. The
first feature translates the reduced Brillouin zone of the compressed Heisenberg chain,
and the second one implies that spinon-antispinon pairs can be created spontaneously.

The wavefunction (f.:29) is not of much practical value due to its enormous complex-
ity: in fact, there are about N!? expansion coefficients A[Q, P]! In the calculation of
the wavefunction, there is no gain with respect to brute-force exact diagonalization. A
calculation of correlation functions, and especially of their asymptotic behaviour, based
on the Bethe Ansatz is therefore elusive.

Important simplifications occur in the limit U — oo [I07. The members on the left-
hand sides of Eqgs. (f25) and ([26]) are of order O(UY). For the equalities to hold, the
A on the right-hand sides must be proportional to u: A, = 2u), making the sin k;-terms
negligible. This simplifies the Lieb-Wu equations to

M
2rnl; = Lk;+2)_ arctan(2)g) (4.32)
A=1
M
2rJ, = 2Narctan (2)\,) —2 Y arctan(Aq — Ag) . (4.33)
p=1

The equations for k; and A, now decouple and can be solved successively. Concomitant
with this decoupling is a decoupling of the wave function (for the quadrant Q)

U(2y, .. &0, Targn,s - - 2y) = (—1)9 det [eikixm} (y1,--- ym) (4.34)

into a charge and a spin part. det[...] is a Slater determinant involving only the particle
positions irrespective of their spin, i.e. describing free spinless fermions. ®(yy,...,yn) is
the Bethe Ansatz wave function of a Heisenberg chain [R1]] of the N spins, characterized
through the positions of the M down-spins, on a compressed lattice of just N sites. This
decoupling of the wave function means a complete charge-spin separation over all energy
scales in the U — oo-Hubbard model and is correct to O(1/u).
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The wave function (f.34) can be evaluated numerically for much bigger systems than
(E24) and, combined with either finite-size scaling or further analytical work, allows to
discuss the asymptotic low-energy properties and the critical exponents of correlation
functions. Applications will be discussed in the following section. We also note that there
is a systematic large-U expansion for the distribution functions of the momenta k£ and
rapidities A [[[08

4.4.3 Low-energy properties of one-dimensional lattice models

In the first part of this section, we shall discuss various successful methods to derive the
correlation exponents of interacting electrons in 1D lattices, taking the Hubbard model
as an example. At the end, we briefly summarize the physical picture and then outline
the changes occurring when going to the variants introduced in Section f.4.1].

Early studies of correlation functions heavily relied on numerical simulation of Hub-
bard and extended Hubbard models. Hirsch and Scalapino used quantum Monte Carlo
techniques to directly study the density and spin density correlation functions at various
band-fillings and interaction strengths on lattices of 20 — 40 sites at temperatures down
to about ¢/15 [I09]. Of course, both the finite temperatures and the accuracy of the
simulations did not allow a determination of the correlation exponents and thus of K,
but one main point of concern was the doubling of the wave vector of divergence in the
charge density response from 2k to 4k as interactions are increased and/or V' is turned
on. This could be rephrased in terms of the present language as under what conditions
K,+1 < (>)4K,ie K, < (>)1/3 which marks the value where 2kp- and 4kp-responses
are equally divergent. Quite generally, it was found that increasing U decreases the 2k p-
CDW-correlations but somewhat increases the 4kp-CDW as U — oo. The decrease at
2k was less, however, if charge density fluctuations were measured on the bonds between
lattice sites (bond order wave, BOW) rather than on the lattice sites themselves. The
2kp-SDW correlations were enhanced by U. This is quite easy to understand physically:
U generates antiferromagnetic spin exchange but suppresses on-site charge fluctuations
while intersite fluctuations remain unaffected, at least at lowest order in U. On the other
hand, for U — o0, the electrons behave as spinless fermions with a Peierls divergence
vector of 2/{;55?:0) = 4k§§:1/ 2), Adding a nearest-neighbour repulsion V' strongly favours
the 4kr-CDW, especially on-site and in quarter-filled bands, also enhances the SDW and
further suppresses the 2kp-CDW: the energies due to both U and V' are minimized when
the particles occupy every second site, i.e. forming a 4kp-CDW.

The suppression of the 2kp-CDW by U and V is interesting in view of the general
expression for the density correlations in a Luttinger liquid, Egs. (B.99) and (B.103) which
imply that both exponents of divergence at 2kp and 4kp increase with decreasing K, and
thus with increasing U and V. The suppression of the 2kz-CDW then must be due to the
influence of U on its prefactor which must decrease as U increases. Hirsch and Scalapino

demonstrate this by showing that, at low enough temperature and various U, both SDW
and CDW diverge with the same exponent but that the scale where the asymptotic be-
haviour is observed, is vastly different and, in fact, very low for the CDWs [[09]. A related
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suppression of 2kp-CDW correlations due to the prefactor (with a concomitant enhance-
ment of SDW and BOW) can also demonstrated for a half-filled band in renormalization
group [

More extended results on the influence of band-filling and interaction range on the
competition of 2kp- and 4kr-CDWs have been produced by Mazumdar, Dixit, and Bloch
[TI0]. They also propose a qualitative but systematic picture predicting the appearance
of 2kp- or 4kp-CDWs, in terms of the contribution to the ground state wave function of
certain extreme symmetry broken configurations and the barriers to resonance between
them. Specifically, for the quarter-filled band, finite V' is necessary to promote a 4kp-
CDW but an eventual second-neighbour repulsion V5 must be small: V5, < V/2. For
1/2 < n < 2/3, however, a new kind of defect-CDW with periodicity m/a is found
possible and competes with the 4k one, depending on the precise values of the interaction
constants. Long-range interactions are necessary to stabilize a 4kp-CDW for n > 2/3,
and the generic CDW will be at 2kr. The competition between 2kp- and 4kp-CDWs
will reappear below in terms of the Luttinger parameter K, being smaller or larger than
1/3. For the special case of n = 1/2, electron-phonon coupling has also been included
recently [[1]. Also, a more systematic theory for a Luttinger liquid floating on top of a
commensurate CDW, e.g. with gcpw = 7/a, will be given at the end of this section [[13].

Subsequent work rather turned attention to single-particle properties and to the ques-
tion of (non)-Fermi-liquid behaviour in the 1D Hubbard model. Several quantum Monte
Carlo studies indicated a finite jump in the momentum distribution function n(k) at kp,
to be compared with the Luttinger prediction (B.86) [[T3]-[I16]. Notice, however, that
Equation (B.8d) applies to an infinite system. Finite size effects give n(k) a finite jump

at kr whose scaling is governed by the exponent « [p7], [1]
An(kp) =n(kp — /L) —n(kp +7/L) ~ L™ | (4.35)

subsequently identified in improved simulations [[17]. The absence of any significant
rounding expected from the power-law behaviour in n(k), up to about 200 lattice sites
indicates, however, that the asymptotic Luttinger regime in the 1D Hubbard model is
confined to a tiny momentum slice around the Fermi surface, whose smallness, in fact,
remains surprising. (With reference to the different scales in different quantities, identi-
fied by Hirsch and Scalapino [[09] and discussed above, this does not necessarily imply
that Luttinger liquid correlations in all other quantities are confined to such small mo-
mentum/energy scales.)

Sorella et al. also studied the divergences of the density and spin density correlation
functions of the 1D Hubbard model and could identify the different exponents from finite-
size scaling [[17]. In particular, they were able to verify the scaling relations between
acpw, aspw, and au,., Eqs. (B-99) — (B.-9§), implied by their dependence upon K, alone
(K, = 1 for SU(2)-invariance), and they found an upper limit o = 1/8 as U — oo,
implying K, > 1/2.

These exponents can be determined exactly from the U — oo Bethe wave function
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[[07]. We study the momentum distribution function

n(k) = {clycrs) = %Zl@sqs)eik(j—na | (4.36)
s

At this stage, the real-space representation of the Bethe wave function can be used. In
order to transfer an electron from site [ to j, we have to take out of the Slater determinant
one spinless fermion at [ and reinsert it at j. At the same time, the spin configuration is
changed: we must take out of the Heisenberg chain the spin at [’, corresponding to the
electron at [ (I # I’ because of the compressed lattice), and insert it again at j' correspond-
ing to the new electron site 7 which can also be viewed as permuting neighbouring spins
successively between I’ and j'. Then, one has to sum over all configurations of the spin-
less fermions, as implied by the average (...) in ({.36) taken over the wavefunction ({.34).
The permutation of two neighbouring spins is mediated by the operator 2S; - S;11 + 1/2
so that the evaluation of the spin contribution to n(k) requires calculation a correlation
function of 7 — [ of these operators for each configuration of spinless fermions. The charge
contribution, on the other hand, is just the product of two Slater determinants.

Ogata and Shiba solved these functions numerically and obtained a function n(k)
characterized by a jump at kp and, surprisingly at that time, another weak singularity at
3kp, shown in Fig. 4.3. Both of these facts were somewhat surprising because the spinless
fermions’ n(k) jumps at 2kpr which thus appeared a natural candidate for Fermi surface
of the U — oo-Hubbard model. However, the electrons involved in n(k) both contain a
charge and a spin component, and the spins feed back into the charges by the kernel on the
right-hand side of (.33). The (re-)appearance of kr and 3k is due to oscillations with
wavevector +2kp in the spin contribution to n(k). A careful finite-size-scaling analysis
showed that the apparent jump at kr would fade away as . — oo and that the variation of
n(k) with system size was compatible with the Luttinger liquid power law (B:8) with an
exponent o &~ 0.14. The 3kp-singularity was shown to be due an excitation of kp-fermions
to 3kr accompanied by creation of electron-hole pairs with -2k, and is also required by
the picture of Section 4.2. They also studied the spin-spin correlation function at ¢ = 2kp.
From the singularity observed as a function of ¢ they inferred a decay in real space as
Rspw (z) ~ cos(2kpz)z~* while their results for the Heisenberg model were consistent
with the known form ~ cos(rz)In*/?(z)/x [79, 1.

An analytical evaluation of these quantities is also possible [[19]-[[21]. Parola and
Sorella started from an evaluation of the spin-spin correlation function [[19]

r+1

<S5, Sy >= Z Psp(j)Su(ij—1) (4.37)
j=2

where Sg(7) is the (known) spin correlation function of the Heisenberg model and P§(j)
is the probability of finding j (spinless) particles between 0 and r with one at 0 and one at
r. The evaluation of this latter quantity is difficult but at least asymptotically possible,

and one finds
In'/?r

<8, Sy >~ (:0:5(2/@:7")37/2 ,
”

(4.38)
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which is consistent with the Luttinger liquid function (B.98) provided K, = 1/2. This
implies an exponent @ = 1/8 for the momentum distribution function n(k) of the U = oco-
Hubbard model at kg, in quite good agreement with the numerical data of Ogata and
Shiba. Parola and Sorella could recalculate analytically the momentum distribution,
following the procedure by Ogata and Shiba and, fixing two open parameters so as to
reproduce the behaviour at kg, were able to identify the exponent at 3kp as agg, = 9/8
[[20], a value also found by others [B3, [29].

Anderson and Ren compute the correlation exponents of the Hubbard model in the
U — oo-limit in a more physical way [[27]. They observe that the Ogata-Shiba wave
function implies charge-spin separation only for those excitations which take place solely
in one channel. If we consider correlation functions of excitations affecting both channels,
phase shifts will arise in the distribution of the momenta {k;} due to changes in the
rapidity-distribution. This is due to the kernel on the right-hand side of Eq. (f.37), and
to the parity effects in the distributions of the quantum numbers I; and J, in the Lieb-
Wu equations, cf. ([:27). As an example, the Green function for the holon at +2kp is
GW (z,t) ~ e¥Fr% /(z — v, t) and involves only charge degrees of freedom: if one adds an
I; to the system, the rapidities do not change. Removing a spinon at —kp, i.e. a J,, there
is a phase shift of d19r, = 7/2 of all holon momenta in the same direction. The spinon
Green function, which for the Heisenberg model is e*7*/\/x —v,t, will therefore also
contain a contribution from the phase shift of the holons which reduces the overlap with
the “unshifted” ground state wave function. This introduces a factor (x £ v,t)~(¢/ 27) for
the phase shifts on each side of the momentum distribution. The 2k p-spin-spin correlation
function consists of a right-moving particle (spinon) and a left-moving hole (antispinon).
Each of them shifts the k;-distribution in the same direction, so that the total phase shift
is 049, = 7 on each side. Putting everything together, we have

cos(2kpx)
S(xt) - S =
(S(zt) - S(00)) (@ — 0o0)2(z + 0st) 2(z — 0 1) A (z + v ) /A
= 2732 cos(2kpx) for t=0 . (4.39)

The 4kp-CDW only involves a right-moving holon and a left-moving antiholon, and there-
fore is decoupled from the spins
cos(4kpx)
Oupp (21) 0L, (00)) =
< 4/€F(x ) 4kp( )) (LL’—Upt)(LL’—i-Upt)
Other interesting examples are provided by the kp- and 3kpg-pieces of the single-particle
Green function. Here, one has to take out (add) both a holon and a spinon. One can

(4.40)

take out the holon at 2kr and the spinon at —kp. The removal of the spinon shifts the
holon momenta by /2 in the positive direction, and this phase shift cancels a quarter of
the 2m-shift caused by the holon removal at 2kp: dor, = 37/2 while 6_o5, = 7/2. This
process determines the kp-component. One can, however, also take out the spinon at
+kp, and then the ensuing phase shift adds to that of the holon removal do,, = 57/2.
This determines the 3kr-Green function. We have
expli(2kp £ kr)z]
x — v,t) 2 (x — v,t) FUD (2 4 v,t)1/16

Glep k) (2t) = ( (4.41)
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All these correlation functions agree with the Luttinger liquid expressions taken at K, =
1/2.

The removal or addition of spinons and holons can also be interpreted in terms of
the charge and current excitations of a Luttinger liquid in the charge and spin channels.
One can consider the 3kg-component of the Green function as being due to an additional
current excitation with momentum 2kr with respect to the kp-piece. Anderson and Ren
also prove that the correlation exponents of the Green function, which can be derived from
the kernels of the Lieb-Wu equations (£.25) and ({£.26) 5], are precisely the Fermi-surface
phase shifts due to the insertion of an additional particle [[27].

The applicability of these methods is, however, quite restricted: (i) there are many
models which cannot be solved exactly, and (ii) even if a Bethe Ansatz solution is available,
manageable simplifications generally only occur in special limits such as U — oo for the
Hubbard model. On the other hand, the notion of a Luttinger liquid is based on the
low-energy properties of a many-body problem, and a priori, a complete solution is not
required. Following Haldane [ and Section B:2.9, a Luttinger liquid can be identified
and its characteristic parameters determined by using only the low-energy spectrum of
the lattice Hamiltonian. These can be found reliably either from an exact solution or by
numerical diagonalization.

One general method is due to Efetov and Larkin [[0] and Haldane [B, 9] where it
was formulated for a spinless fermion system, and then extended by Schulz [i3, {g] for
models of S = 1/2-electrons. Here, one formulates an effective Luttinger Hamiltonian for
the low-energy physics and then identifies its parameters K, v, from the properties of the
exact solution. Central to this approach is the use of the relations between the correlation
exponents [, and the renormalized velocities [I9] vy, = v,/ K,,; vy, = v, K,, Eq. (B:33).
To identify the Luttinger liquid one must, in principle, determine the three velocities
Uy, Uny, and vy, per degree of freedom and check that they satisfy (B.32). K, is then
obtained automatically. In practice, this programme is rarely carried out to this point
(with the notable exception of [7]). Rather, one assumes (B.33) to hold and determines
both v, and vy, which are sufficient to yield the remaining parameters K,. vy, = v,/ K,
is related to the compressibility x by Eq. (B:63) ! = L™'0?E/0n* = mun,/2, and
the change of the ground state energy with particle density n can be readily determined
by Bethe Ansatz or numerical methods. A similar relation (B-63) for vy, = v,/ K, to
the magnetic susceptibility can be explored in the spin sector. If the system is spin-
rotation invariant, K, = 1 and v, is found. In the charge sector, v, must be determined
independently from the low-energy spectrum of charge excitations. To identify which
type of excitations in the Bethe Ansatz is relevant, one can realize, as does Schulz [[],
from the boson representation (B.90) that the 4kp-CDW operator involves only charge
degrees of freedom and then argue that power-law decay of this correlation function must
originate from gapless excitations at that wavevector. These “particle-hole” excitations
have been known since a long time [[[07], and their velocity is

'Up — lim 5(1{?0,])0)

4.42
»=0 p(ko, po) ( )
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Operationally, in the Bethe Ansatz wave function, take one particle with pseudo-momentum
ko out of the filled (charge) pseudo-Fermi sea and put it into one of the empty states above
at pseudo-momentum pg. Find the energy e(ko, po) and (physical) momentum p(ko, po)
associated with this excitation; then take the limit p — 0. This gives v,, and K, is
then determined, too. Ultimately, the correlation exponent K, is fully determined by
thermodynamic properties |, [0, E, E9].

This procedure does not suffer from the limitations of perturbative renormalization
group and allows an exact calculation of the Luttinger liquid parameters. Being related
to properties of the eigenvalue spectrum, it can easily be adapted to numerical exact
diagonalization studies. One concern might be finite size effects because the numerical
solutions are confined to small systems. They are, however, not critical here since the
energies of the low-lying states usually converge rather quickly to the infinite system limit.

One can also apply conformal field theory methods to determine the correlation ex-
ponents of the Hubbard model. Conformal field theory, as we have sketched it in Section
B0, requires a Lorentz-invariant system [29. This is the case for spinless fermions (or
models of the same universality class) with only one branch of gapless excitations, and
has consequently been applied to such problems with great success [[[4]. The Hubbard
model and all other models in the universality class of a spin-1/2 Luttinger liquid are not
Lorentz-invariant because the spin and charge velocities v, # v, play the roles of two dif-
ferent velocities of light. Each channel v taken by itself is conformally invariant, however,
described by a Virasoro algebra with central charge ¢, = 1. The complete theory is then
described by a semidirect product of these Virasoro algebras, and the scaling dimensions
of operators now depend, instead of a single coupling constant, on an N x N-matrix of
coupling constants, the “dressed charge matrix”, for an N-component system [[23].

Frahm and Korepin have applied these methods to the 1D Hubbard model in order
to deduce the long-distance asymptotics of its correlation functions [[24]. The idea is the
following: the elements of the dressed charge matrix

= Zee Zes | _ ee(ko)  Ees(No)
Z_<Zsc Zss>_<ssc<k:o> @S(Ao)) (4.43)

(and, of course, the velocities of the gapless excitations v,) can be evaluated from the
Bethe Ansatz. Its entries £ obey equations derived from and similar to the Lieb-Wu
equations (f.25), (:26), with the limit L — oo taken. ko and Aq are the cutoffs in the
distribution functions of the momenta and rapidities. The entries of the dressed charge
matrix are related to thermodynamic quantities of the model in much the same way as
the effective coupling constant of spinless fermions is. For example, Frahm and Korepin

find [[27]
> (ko) = mun’ (4.44)

where k is the compressibility and n the charge density. Comparing (£44) to (B:62),

we see that £2.(ko) is essentially K,, up to a factor n?. This formula has been derived

independently by Kawakami and Yang [[27], who use earlier Bethe Ansatz evaluations of

on the thermodynamic properties in order to get &.. as a function of the system parameters.
These authors, however, neglect the off-diagonal elements of the dressed charge matrix.
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In analogy to Section B.6, conformal invariance then determines the scaling dimensions
of (primary and descendant) operators. The role of the coupling constant g of the Gaussian
model is now played by the matrix Z. AN, and D), later grouped into vectors AN
and D, count the charges (c) and spins (s) added by the field ¢ to the Bethe Ansatz
distribution and are (up to linear combination) the changes in the charge and current
excitations of the Luttinger model [[2§. The ground state has AN = D = 0. Allowed
values of D depend on AN. For example, for a fermion operator cith’T, AN = (1,0),
D = (£1/2,F1/2), for Citknl’ AN = (1,1), D = (0,£1/2), and for the density operator
p, one has AN = 0. Numbers chs) characterize descendent fields ¢ at level EN?ES).
Primary fields have chs = 0, and finite values describe secondary fields. The correlation
functions of the primary and descendent fields ¢+ with scaling dimensions A* are given
by conformal field theory as

exp[—2iD,.Pr 1] exp[—2i(D,. + Ds)Pr | x]

(2 — iw,t)2A8 (& + i0,t) 22 (& — 10 t)2D7 (2 + ivgt)2Ds

(pa+(x,t)pa=(0,0)) =

(4.45)

which is a direct generalization of (B.I63) to a two-component system.

As in Section .6, the central charge and the scaling dimensions can be obtained from
the finite size corrections to the energy of the ground state and the energies and momenta
of low-lying excited states of the system. For ¢ = 1 in both the charge and spin channel,

(B.157) generalizes to

Eo(L) — Leo = (v, + v,) + O <l> , (4.46)

T
6L L

where the symbol O(1/L) stands for terms decaying faster than 1/L. Ej is the ground
state energy at size L, and ¢y is the energy density in the infinite system. Eq. (f4G) must
be verified by the solution. Egs. (BI6])) and (B-169) for energy and momentum of the

low-lying excitations are given by

E(AN,D)— By — 2% [0p(AF + A7) + v, (AF +A7)] + O <%> , (4.47)
P(AN,D)— P, — 2% (Af = A7 + A — A7) +2D,Pey +2(D, + D,)Pr .

On the other hand, these quantities can be computed from the Bethe Ansatz (or numer-
ically) as

2 1
E(AN,D) - By = = {ZANT (2 - (diag[vp,v,]) - 271 - AN (4.48)
1
+ D" Z - (ding[vy, va)) - 27 - D + 0, (NS + No) + 0, (NS + N} +0 (Z) ,
2
P(AN,D)— Py = % [ANT D + Nf — N; + N} — N7 }4+2D.Ppy+2(De+ D) Pr,|
Comparing Eqgs. (F.48) to (f.47) one deduces the scaling dimensions
Z AN, — ZosAN, 2
+ . Ss c cs s +
2A(AN,D) = (ZCCDC + 7, D, 2 ) LONE
ZCCANS - ZscANc 2
2A*(AN,D) = (chDc+ ZeDy £ 5 do 7 ) +2NE . (4.49)
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In order to obtain the correlation functions of the Hubbard model, on would have
to expand the physical operators O in terms of the conformal fields. This is usually
not possible. On the other hand, the quantum numbers of the intermediate states can be
determined from the representation of the operators O in terms of the electron creation and
annihilation operators. We have given examples above. Then, the complete asymptotic
behaviour of the correlation functions can be given in terms of the scaling dimensions and
thus in terms of the dressed charge matrix Z whose entries depend on U and the bandfilling
n. As an example, the first few terms of the complete density-density correlation function
are given by Frahm and Korepin [[24] and, in the absence of a magnetic field, reduce to
Eqgs. (B.91))-(B-93) when the appropriate K, is inserted there. In this way, the conformal
fields contributing to the density-density correlations are not explicitly identified. The
knowledge of their scaling dimensions is sufficient to determine their contribution to the
correlation function. Penc and Solyom have finally deduced explicit Tomonaga-Luttinger
coupling constants ¢; from the dressed charge matrix and the scaling dimensions of the
Hubbard model [T24].

While the asymptotic correlation exponents agree with the approach by Schulz [fi2,
ig] and Kawakami and Yang [[25], there are some subtle differences. In general, in
the absence of magnetic fields, Z is not diagonal as naively expected for charge-spin
separation. However, one of the matrix elements Z.; = 0 and Z,. = Z../2 which gives
critical exponents identical to those for a charge-spin separating system as assumed by
Schulz. One can include an external magnetic field [[27]. Then, there is no longer a simple
relation between the elements of Z, the exponents now differ from those derived under
the assumption of charge-spin separation, and charge and spin are strongly coupled. On
the other hand, the dressed charge matrix is probably not a good quantity to “measure”
charge-spin separation, because it does not change in any essential way in the limit U — oo
where we know [[[07] that the product form of the Bethe wavefunction implies complete
charge-spin separation.

The dependence of K, on U and n is shown in Fig. 4.4, and that of the velocities v, in
Fig. 4.5 [A§]. For small U, the variation of K, with U is consistent with the perturbative
result K, ~ 1 — U/mvp, and the slope varies with bandfilling due to the n-dependence of
the Fermi velocity vp = 2tsin(nmn/2). At larger U, K, deviates from a straight line and
K, — 1/2 for U — oo for all n. K, =1/2 is also the limit for n — 0 for any U > 0 which
is quite obvious due to the n-dependence of vp. Also K, — 1/2 for n — 1,(U > 0), cf.
below. The velocities v, — vp for U — 0 as expected, and as U — o0, v, = 2tsin(mn)
and v, = (27t?/U)[1 — sin(27n)/(27n)]. While v, &< n for all U and small n, v, o n? for
U >0 and xxn for U =0.

These parameters can then be inserted into the results obtained in Section B.J to obtain
the correlation functions of the Hubbard model as a function of U and n. In particular,
for U — o0, one obtains o — 1/8, acpw.spw — 1/2 and ayg, — 0. The properties of
the charge degrees of freedom in this limit can be straightforwardly understood in terms
of spinless fermions, in agreement with the factorization of the Bethe wave function. E.g.
the 4kp-part of the density-density correlations is simply the 2kp-CDW of free spinless
fermions with a doubled Fermi wavevector. The large-U limit of v, is simply the Fermi
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velocity of free spinless fermions with a hopping integral . Also close to half-filling even
at finite U, a spinless fermion picture applies: here one best thinks in terms of a few
holes doped into the insulating half-filled band, and the repulsion U is accounted for
by treating them as spinless fermions. When there are very few of them, their mutual
interaction will be negligible. This explains the value K, = 1/2 found for all U as n — 1.
The spinless fermion picture also implies that the prefactor of the 2kp-part of the density-
density correlation function must vanish as U — oo. More care has to be taken for spin
or single-particle correlations. The ground state of the Hubbard model can be viewed as
containing a number of holons appropriate to the doping level but no spinons. In this
way, it becomes clear that the characteristic wave vector for the SDW oscillations 2kp
shifts with doping due to the introduction of holes although in a local picture, there are no
configurations of parallel neighbouring spins [f3]. The motion of holons disrupts the spin
correlations and therefore leads to a more rapid decay of the spin-spin correlations than in
the half-filled band or a Heisenberg antiferromagnet. Introducing a hole (or an electron)
creates, however, a holon at +2kr and a spinon at +kp, and therefore the single-particle
Green function oscillates with wavevectors kp, 3kp, etc.

The low-energy spectral function of the Hubbard model, obtained by inserting o =
1/8 for the limit U — oo into the Luttinger model, is shown in Fig. 3.6. It is clearly
dominated by the spectral weight between v, and v,, and the weight above/below +uv,
is quite negligible. Comparison to functions of models with either charge-spin separation
or anomalous dimensions only, suggests that charge-spin separation is the dominant non-
Fermi-liquid feature in the 1D Hubbard model [53, B9, B0]. Even for infinite repulsion,
the anomalous correlations are quite weak. Physically, this implies that the power-laws
in the correlations are most sensitive to the range of the interaction, taken finite in the
Luttinger but zero in the Hubbard model, while the influence of short-range interactions
is strong on charge-spin separation. This allows to rationalize the small momentum range,
where Luttinger liquid behaviour is seen in n(k) in Figure 4.3. Unfortunately, no signature
of charge-spin separation has been detected in a Monte-Carlo simulation of the spectral
function directly of the Hubbard model [[2§. This could be due to finite system size
and/or temperature, but certainly needs further study.

Correlation functions of the t — J-model behave in a similar manner and also identify
it as a Luttinger liquid [[29, [[3(]. Specifically, at the supersymmetric point J/t = 2,
where the model is solvable by Bethe Ansatz, conformal field theory allows to derive the
dependence of K, on band-filling [[29], in a similar manner as for the Hubbard model.
It obeys to the same limits as for the U > 0 Hubbard model 1 > K, > 1 /2 but tends
towards the free value for the nearly empty band, while in this limit the Hubbard model
behaves as if U — oo. On going away from the supersymmetric point, the model is
no longer solvable, and one has to turn to numerical diagonalization on small clusters
to obtain the correlation exponents [[3(]. Again, one uses Eq. (B.69) to obtain v,/K,
and separately studies the spectrum of the charge excitations. While K, continues to
obey to the lower bound K, > 1/2 (the equality holding for empty bands at J < 2t,
half-filled bands at J < 3.5t and at J = 0 for any filling), K, > 1 now occurs for
larger values of J. Egs. (8.99) and (B.100) imply a region of dominant superconducting
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fluctuations. According to the general scaling arguments above, logarithmic corrections
would favour the triplet type if the spins are massless, while opening of a spin gap would
make singlet superconductivity dominate. Evidence for a spin gap has been produced
by using variational wavefunctions, a procedure to be discussed below [[31]. Imada and
Hatsugai also measured spin correlation functions in their Monte Carlo simulations [[[Tq].
While for small J/t, their results are quite close to those of the Hubbard model found by
Hirsch and Scalapino [[09], the spin correlations become commensurate, i.e. peaked at
q = m/a rather than at 2kr as J increases. In this regime, the holes in the ¢ — J-model
probably act as mobile defects in a short-range-ordered antiferromagnetic background.
Finally, in the large-.J region (> 2...3.5¢ depending on n), phase separation occurs: here
the attraction due to the interaction terms in Eq. (f.21)) is optimized at the expense of
the kinetic energy. The point J = 2¢, n = 0 is possibly singular and K, there may depend
on the order of the limits.

The phase diagram and the Luttinger liquid correlations of the ¢ — J-model have also
been established from variational wave functions [[37], [33, [33]. This result is particularly
noteworthy because these functions can be generalized into higher dimensions where exact
solutions generally are not possible and numerical studies are severely limited by finite
size effects (Section [6.9). Recall that, on a technical level, a major problem in treating the
t — J-model with analytical methods, is the implementation of the constraint of excluded

double occupancy. This constraint is implemented, however, in a variational wave function
due to Gutzwiller [[34]

e) =[]0 —nmini)|FS) with [FS) = T] cyeyl0) (4.50)

7 |k“<k‘p

where |F'S) is the filled Fermi sea and |0) the vacuum. This wave function yields rather
good energies but the correlation hole between two particles it contains is too short. The
momentum distribution has a sharp jump at kg but the spin correlations (at n = 1) are
pretty close to the exact ones for a Heisenberg chain [[[35]. To find a way to increase the
range of correlations, notice the following. |¥) provides an exact solution to spin chains
with an exchange integral falling off as J o< r=2 [[3@]. In the course of this solution, it
has been shown that |¥s) can be rewritten as

[] sin? [% (ry — rj)} L 5D

i<j

Wq) = Z det(e'%"7) det(e™i"7) H ST(rj)|FM)

where |F'M) denotes the fully (up)- spin-polarized ferromagnetic chain and j labels the
sites of the overturned spins. The size of the correlation hole can now be increased simply
by increasing the power of the sines (Jastrow factor):

) =TT Jsin [T =1

all i<y

W) (452)

where the notation under the product sign emphaised that in this product, the positions
enter irrespective of the particles’ spin direction. (|W,) is also related to the quantum
Hall effect as will be seen in Section .3). This can be seen quite explicitly from |, |? =
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[li<jexp(=V;;) with Vi; oc —vInlz — 2| and z; = exp(2mir;/L), which represents the
partition function of hard core objects with a logarithmic interaction [[33. It therefore
can serve as a natural starting point for a variational treatment of the ¢t — J-model.
Correlation functions show power-law behaviour compatible with the Luttinger liquid
form, Section B.3, whose exponents now depend on the optimal value of v which is obtained
from variational Monte Carlo simulations. One can establish an explicit relation

oo 1
P w41

(4.53)

to the Luttinger exponent K,, and the numerical data are in good agreement. (f53) can
be derived either by finding a solvable model whose ground state is given by [¢,). K, can
then be extracted from the spectrum of low-lying states exactly as for the Hubbard model
above [[37. Another possibility is to computed explicitly the momentum distribution
and then identify the exponent to Eq. (B.83) [[3§. Finally, by applying increasing powers
of the Hamiltonian to |V, ), one can obtain increasingly accurate approximations to the
exact ground state (provided that it is not orthogonal to the trial state |W¥,)), and this
method has allowed to uncover evidence for the formation of a spin gap in a region of very
low carrier density and large J/t close to the phase separation instability. In this limit, the
system is a singlet superconductor. The resulting phase diagram is given in Figure 4.6,
where “attractive Luttinger” stands for dominant TS and “repulsive Luttinger” implies
dominant SDW correlations in a Luttinger liquid. The ¢ — J-model can be generalized to
include a J o 72 exchange, and its solutions are quite close to the Gutzwiller-Jastrow
form discussed above.

One can also formulate Hubbard- and ¢t — J-type models with long-range hopping
which, in the limit of half-filled band, reduce to the Haldane-Shastry spin chain [pg].
These models are exactly solvable but the solution in general is not Jastrow form. Away
from half-filling, they have Luttinger liquid low-energy physics. One important element
of these models is chirality, i.e. the hopping term must be constructed in such a way that
the electronic dispersion contains only a single linear branch, corresponding to right-(or
left-) moving particles alone. In this situation, the only allowed effective interaction of the
electrons is of gs-type, Eq. (B-4), while g; = go = g3 =