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1. Introduction

This paper gives an introduction to some aspects of quantum processes described by
quantum operations and quantum master equations. Quantum operations (quantum
channels) and quantum master equations come into play whenever a mathematical
description of irreversible time behaviour of quantum systems is investigated.

In modeling of physical systems for which time behaviour can be represented by stochastic
processes one assumes that a system in question is described by certain mathematical model,
for example, by random variables in classical case or by sets of non-commuting observables
in quantum case, acting on an abstract probability space. In most cases our assumptions are
not believed to be a fully realistic model of the physical reality, but nevertheless very often it
turns out to be extremely useful.

In the algebraic formulation of quantum mechanics, a fixed quantum mechanical system is
represented by an algebra A of operators acting on some Hilbert space H. In this approach,
the observables of the system are identified with self-adjoint elements in A and the physical
states are given by positive unital functionals on A. We will consider the case when H is
finite-dimensional, then the set of states can be identified with the set of S(H) of density
operators, that is, positive elements in A with unital trace. The evolutions of the system are
described by transformations on the set S(H), or more generally, by linear maps between
S(H) and S(K), where H and K represent two finite-dimensional Hilbert spaces.

Nonclassical correlations among subsystems of a composite quantum system, known as
entanglement, can be precisely described mathematically but in a rather ineffective way.
Here, by an effective way (effective procedure) we mean a method which uses only a finite
number of arithmetic operations on elements of a given density matrix and allows us to
formulate an answer to the question: is a given composite quantum system in a separable or
entangled state?
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2 Open Systems, Entanglement and Quantum Optics

It appears that the questions of the above type can be naturally connected with some
problems of changes in the space of quantum states, that is with some aspects of quantum
dynamics and properties of dynamical maps. Here, by dynamical maps we understand
linear transformations that take one density operator to another. Moreover, this kind of
connection between some linear transformations and states of composed quantum systems
is a one-to-one type. In this context we will discuss the so-called Metzler operators which
play a substantial role in quantum dynamics. By definition, an operator K acting on the
space of hermitian matrices is said to be a Metzler operator if there exists a real number α0

such that for all α > α0 the resolvent of K is positive in the sense that

R(α, K)P(H) ⊆ P(H),

where P(H) denotes the set of semipositive matrices.

In this paper we will discuss some effective methods of study of certain properties of
quantum operations and we will use some methods and results which are typical for the
research area known as noncommutative Perron-Frobenius theory. In particular, in our study of
dynamical maps we will use the natural identifications

Mk(C)⊗ B(H) ∼= Mk(B(H)) ∼= B

(

k
⊕

i=1

H

)

,

where H denotes a finite-dimensional Hilbert space, B(H) represents the set of all linear
operators on H and symbols Mk(A) for k, 2, 3, . . . denote k × k matrices with elements from
an algebra A. In our approach we will concentrate on a quantum analogy of the classical
theory of positive maps also known as Perron-Frobenius theory. The Perron theorem on
entrywise positive matrices and its generalization by Frobenius on entrywise nonnegative
matrices have interested mathematicians since the results appeared at the beginning of last
century. Later these theorems have been generalized to operators on a partially ordered
real Banach spaces. This has motivated several authors to consider linear maps on a finite
dimensional space which leave a fixed cone invariant.

Now, let us fix the notation. Let H denote the Hilbert space associated with a given
quantum system S . By B(H) we will denote the set of all linear continuous operators on
H. Then the set of states of the system S is, by definition, represented by all semi-positive
elements of B(H) with trace equal to one. This set of states we will denote by S(H). The
mentioned above connection between linear maps on S(H) and some operators constructed
on the tensor product H⊗H, is a one-to-one type. One can say that there is a one-to-one
correspondence between properties of the maps

Φ : B(H) → B(H), (1)

such that

Φ(S(H)) ⊆ S(H), (2)

Open Systems, Entanglement and Quantum Optics4
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and properties of linear operators W := J(Φ) on H⊗H, where J denotes this correspondence
[1–4].

At first sight this seems strange that two entirely different issues, namely the inner structure
and properties of operators on H ⊗ H, and maps on the set of states are so strongly
connected. But in fact there exists an intricate and strong link between them — there exists an
isomorphism J between maps on B(H) (these maps very often are called superoperators) and
some properties of operators on H⊗H defined in an appropriate way. At present, various
methods of study of entangled systems based on properties of positive maps are discussed
in hundreds of papers and many monographs and textbooks (cf. [4–8]).

In the beginning of seventies it appeared that some natural questions connected with
fundamentals of quantum mechanics (more precisely, with the theory of open quantum
systems) lead to investigations of linear maps in a real Banach space of self-adjoint operators
on a fixed Hilbert space [9, 32]. This concept of a Banach space with the partial order defined
by a specific cone, namely, the cone of positive semidefinite operators, constitutes a basic
idea in the description of open quantum systems.

In concrete applications one distinguishes two approaches to describe time evolutions
(changes) of an open quantum system. One of them starts from a fixed physical model
defined by a given Hamiltonian which determines the Schrödinger equation (von Neumann
equation) or the master equation with a given generator of time evolution which is, in
general, time dependent.

Summing up, as the fundamental objects in modern quantum theory one considers the set
of states

S (H) := {ρ : H → H; ρ ≥ 0, Trρ = 1} , (3)

and the set of bounded hermitean (self-adjoint) operators

B⋆ (H) := {Q : H → H; Q = Q⋆} . (4)

Time evolutions of systems are governed by linear master equations of the form (in the
so-called Schrödinger picture)

dρ (t)

dt
= K(t)ρ (t) , (5)

or in the dual form (in the so-called Heisenberg picture)

dQ (t)

dt
= L(t)Q (t) , (6)

where superoperators K and L act on operators from the sets S (H) and B⋆ (H), respectively.
They represent dual forms of the same physical idea.

An alternative approach to the dynamics of an open quantum system relies on a stroboscopic
picture and a discrete time evolution. We start from a mathematical construction of a
quantum map on S(H) (in fact on B∗(H)) which is allowed by the general laws of quantum
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4 Open Systems, Entanglement and Quantum Optics

mechanics. Such approach is particulary useful if we want to investigate the set of all possible
operators independently on whether the physical situation is exactly specified.

Both sets S(H) and B∗(H) can be considered as subsets of the vector space B (H) of all
bounded linear operators on H and they can be treated as scenes on which problems
of quantum mechanical systems should be discussed. As in this paper we will consider
finite-dimensional Hilbert spaces, so in fact B (H) denotes the set of all linear operators on
H, dim H = d. If we introduce the scalar product in B (H) by the equality

〈A, B〉 := Tr (A⋆B) , (7)

then B (H) can be regarded as yet another inner product space, namely the Hilbert–Schmidt
space. It is not difficult to see that B⋆ (H) with scalar product defined by (7) is a real vector
space and dim B (H) = d2. It should be stressed that in this case we consider linear maps on
B(H) not only as maps on a vector space but also as maps on B(H) equipped with a natural
structure of an algebra. Such linear maps on the set of operators are called superoperators and
their general form is well known. Namely, for a given superoperator Φ, Φ : B(H) → B(H),
there always exists an operator-sum representation given by

Φ(X) =
κ

∑
i=1

AiXBi , (8)

where Ai, Bi are elements of B(H). A particular class of such maps, the so-called completely
positive maps (or in physical terminology — quantum operations), plays a prominent role in
formulation of evolution of open quantum systems and in the theory of quantum measurements.
In the case of completely positive maps we have in the above formula Bi = A⋆

i for all i =
1, . . . , κ (Kraus theorem). A comprehensive description of these problems from the physical
point of view can be found in books [3, 14].

It is important to observe that most of the papers devoted to the classical Perron-Frobenius
theory of nonnegative linear maps are concerned mainly with the existence problems. The
purpose of this paper is, on the one hand, to connect the Frobenius theory of irreducible
linear operators with the so-called Kraus representation of the completely positive linear
maps and, on the other hand, to show that there exist some effective procedures which
allow us to verify if a given quantum operation (i.e. a given completely positive map) is
irreducible or not. Here by irreducibility we mean the natural generalization of this concept,
introduced by Frobenius in his famous paper of 1912 year ([12]) and based on the specific
block representation of nonnegative matrices, to a geometric approach formulated in terms
of the invariance of faces of a fixed cone. In this context, by an effective procedure we
understand a method which uses only a finite number of arithmetic operations on matrices
Ki (Kraus coefficients) which define a fixed quantum operation (completely positive map)

Φ(X) =
κ

∑
i=1

KiXK∗
i . (9)

Another important question may be formulated in the following way: for a fixed quantum
operation (a superoperator) Φ defined by a set of Kraus operators K1, . . . , Kκ there exists a
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decoherence-free subspace or not. By definition, a decoherence-free subspace (DFS) it is a
subspace of the system’s Hilbert space H which is invariant under non-unitary evolution.
Alternatively formulated, DFS is this part of the system Hilbert space where the system is
decoupled from the environment and thus its evolution is completely unitary. For a given
quantum operation Φ defined by (9) DFS can exist or not. The questions is: can we check
this property in an effective way or not?

The paper is organized as follows. In Section 2 we will review the concepts needed for our
discussion based on geometric and operator theoretic formulation of the Perron-Frobenius
theory and, on the other hand, we describe the structure of the cone of positive definite
operators defined on a given Hilbert space. Moreover, some properties of faces of this cone
are analyzed. Section 3 describes some properties of general positive maps (superoperators),
and their representations as operators acting on doubled Hilbert space H ⊗H. The main
results of the paper are contained in Sections 4 and 5. In Section 4 we formulate some
effective methods of checking whether a given superoperator, i.e. a fixed quantum operation,
is irreducible or not. A similar problem whether a given generator of time evolution in master
equation description of evolution secures positivity of density operators or not, is discussed
in Section 5.

2. Properties of cones

In order to start this section we recall some definitions and facts from the theory of cones
and operators on a partially ordered vector space. A convex closed set K of a real normed
space V is called a wedge iff

αK + βK ⊆ K (10)

for all α, β ≥ 0. A wedge K is called a cone if, in addition, we have

K ∩ (−K) = {0}, (11)

where 0 denotes the zero element of V. If we have the equality V = K − K, then the cone K
is called generating or reproducing (sometimes one also uses the term full cone).

If Φ is a linear transformation on V, Φ : V → V, then we denote by r(Φ) the spectral radius
of Φ, i.e.

r(Φ) := max{|λ| ; λ ∈ σ(Φ)}, (12)

where σ(Φ) denotes the spectrum of Φ. For any cone K we let K◦ denote the interior of K
and by ∂K we denote its boundary.

As is well known any fixed cone K in V determines a partial order in V. For this order we
use the following terminology:

1. x is nonnegative, x ≥ 0, iff x ∈ K;

2. x is positive, x > 0, iff x ≥ 0 and x 6= 0;

3. x is strictly positive, x ≫ 0, iff x ∈ K◦.
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6 Open Systems, Entanglement and Quantum Optics

Now, let us define the concept of face which plays a basic role in the theory of irreducible
operators. Let K be a cone in V. By a face F of K one understands a subset of K which is a
cone and satisfies an extra condition: if 0 ≤ y ≤ x and x ∈ F, then y also belongs to F, y ∈ F.

Of course, if we fixed a basis in V, then we may regard vectors in V as column vectors in Rn.
In this case the positive orthant Rn

+ constitutes a cone in Rn and exact description of ∂Rn
+ is

obvious, namely,

FM := {x ∈ R
n
+ ; xi = 0 if i 6∈ M} , (13)

where M ⊆ {1, 2, . . . , n}.

If E ⊂ K, then we will denote by Ω(E) the intersection of all faces containing E. It is easily
seen that Ω(E) is a face. It is called the face generated by E.

The set of all operators Φ : V → V such that Φ(K) ⊆ K we will denote by Π(K). Let B(V)
be the set of all linear operators on V. Then we have

Π(K) := {Φ ; Φ(K) ⊆ K} ⊆ B(V) (14)

and Π(K) is a cone in B(V). The elements of the set Π(K) are said to be K-nonnegative
operators. In particular, the operator Φ on V is called K-positive in case Φ(K \ {0}) ⊆ Ko. The
set of all K-positive maps will be denoted by Π+(K).

Now we introduce one of the main ideas of the Perron-Frobenius theory both in commutative
and non-commutative case. For a fixed K in V a natural generalization of the concept of an
irreducible matrix is the following: Φ is K-irreducible if and only if Φ leaves invariant no face
of K except {0} and K itself and κ describes the minimal length of Φ. In other words, an
operator in Π(K) is K-reducible iff it leaves invariant a nontrivial face of K.

Another, strictly equivalent, definition of K-irreducibility can be given by the following
theorem: An operator Φ ∈ Π(K) is K-irreducible if and only if no eigenvector of Φ lies on the
boundary of K. In fact, one can say even more: An operator Φ ∈ Π(K) is K-irreducible if and
only if Φ has exactly one (up to scalar multiples) eigenvector in K and this vector belongs to
Ko. Moreover, for any proper cone K we have

Π+(K) ⊆ ˜Π(K) ⊆ Π(K), (15)

where ˜Π(K) denotes the set of all K-irreducible operators. If K = Rn
+, then the both

definitions, Frobenius one and the above, coincide. For details, see e.g. [13, 15]

Some important spectral properties of K-nonnegative operators are summarized in the
following theorems, which one can consider as natural generalizations of well-known
classical results.

Theorem 1. Let Φ ∈ Π+(K). Then we have

a) the spectral radius of the operator Φ is a simple eigenvalue of Φ, greater than the magnitude of any
other eigenvalue;

b) an eigenvector of Φ corresponding to r(Φ) belongs to Ko;

Open Systems, Entanglement and Quantum Optics8
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c) no other eigenvector of Φ (up to scalar multiples) belongs to K.

Theorem 2. Let Φ ∈ Π(K). Then the following hold

a) r(Φ) is an eigenvalue of Φ ;

b) K contains an eigenvector of Φ corresponding to r(Φ) ;

c) if Φ ≤ Ψ, then r(Φ) ≤ r(Ψ).

Theorem 3. Let Φ ∈ ˜Π(K). Then the following hold

a) r(Φ) is a simple eigenvalue of Φ;

b) no eigenvector of Φ lies on the boundary of K ;

c) Φ has exactly one (up to scalar multiples) eigenvector in K and this vector belongs to Ko;

d) (I + Φ)n−1 ∈ Π+(K), where n = dim V.

For proofs of the above theorems consult [13, 17].

We will conclude this section with some comments on the two special cases which are
important from the point of view of physics, namely, K = Rd

+ and K = M+
d (C). Here,

the last symbol denotes the set of all semipositive operators on the space Cd, and Cd is
regarded as a representation of a d-dimensional Hilbert space. For the case K = Rd

+, the
whole story reduces to the classical Perron-Frobenius theory and in statistical physics we use
this theory for the so-called mesoscopic description of classical systems.

The case K = M+
d (C) plays a fundamental role in the description of representations of states

for open quantum systems. In this case, B(H) is a d2-dimensional vector space. According
to (4) we denote by B∗(H) the set of all self-adjoint operators on H which can be naturally
considered as a d2-dimensional real Banach space. At the same time, B(H) can be regarded
as a Hilbert space with the scalar product defined by (7). The vector space B∗(H) of all
Hermitian (self-adjoint) operators on H constitutes an d2-dimensional, real subspace of the
Hilbert-Schmidt space. One can use the “internal structure" of vectors in B∗(H) to define a
positive cone. By definition, a semipositive element of B∗(H) is an operator A on H such that
〈ψ|A|ψ〉 is real and nonnegative for all vectors |ψ〉 from H. Of course, one can equivalently
define a positive element of B(H) as a self-adjoint operator with nonnegative eigenvalues.
The set of all semipositive operators on H we will denote by B+

∗ (H) or P(H). In particular,
if we have the inequality 〈ψ|A|ψ〉 > 0 for all |ψ〉 from H, then we say that A is positive.

Let Pn denote the set of all orthogonal projections, i.e. A ∈ Pn if and only if A ∈ B∗(H)
and A2 = A. With the natural order on projections, namely, A ≤ B iff Im(A) ⊆ Im(B), the
mapping from A ∈ Pn to F(P(H)), where F(K) denotes the set of all faces of K, is an order
preserving isomorphism.

Now, we formulate an important characterization of all faces of any cone P(H). It appears
that each face of P(H)d, where the suffix d denotes dimH, is isomorphic to P(H)m for some
m, where 0 ≤ m ≤ d.
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Theorem 4. If B ∈ P(H) is of rank m, then there exists a unitary U such that

Ω(B) = U∗(P(H)m ⊕ 0d−m)U. (16)

Conversely, if U denotes a unitary operator on H, then U∗(P(H)m ⊕ 0d−m)U for m = 0,1,...,d are
faces of P(H)d.

It is well known that if K is a polyhedral cone, then for all faces of K we have

span F + span F⊳ = V, (17)

where F⊳ denotes the so-called complementary face of F defined by

F⊳ := {z ∈ K∗; 〈z, x〉 = 0 for all x ∈ F} (18)

and V denotes the ambient space of K. The residual subspace of F is meant to measure “to
what extent F is nonpolyhedral". It is defined as

res (F) := (span F + span F⊳)⊥. (19)

A list of several examples of cones, along with the description of their faces and residual
subspaces, is contained in [18].

3. Positive maps on B∗(H)

It is well known that if a linear map Φ : B(H) → B(H) sends the set B∗(H) of all hermitian
elements of B(H) into itself, then Φ can be represented in the form

Φ(X) =
κ

∑
i=1

ai AiXA⋆

i , (20)

where Ai ∈ B(H), and ai for i = 1, 2, ..., κ are real numbers (cf. eg. [3, 19]). In general, all
maps of the above form are hermitian-preserving. However, the representation (20) is not
unique. In general, for a given Φ , there exist many possible representations of the form (20).
For a given Φ the smallest κ in (20) is called the minimal length of Φ and this minimal length
is always smaller or equal to (dimH)2. If we assume that the operators Ai for i = 1, 2, . . . , κ
are linearly independent, then κ in (20) must be minimal.

According to the general definition introduced in Section 2 a positive map Φ is a linear
map from B(H) into itself, which leaves P(H) invariant. Now, Φ is called k-positive if its
k-amplification Φ(k) := Ik ⊗ Φ that is the map

Ik ⊗ Φ : Mk(C)⊗ B(H) → Mk(C)⊗ B(H) (21)

Open Systems, Entanglement and Quantum Optics10
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is positive. Here Mk(C) denotes as usual the set of all k × k complex matrices. It is not
difficult to observe that we can identify the set Mk(C)⊗A, where for simplicity we denote
the algebra B(H) by A, with the set of all k × k matrices Mk(A) with entries from A.

The map Φ is called completely positive if it is k-positive for all k = 1, 2, . . .. This terminology
goes back to Stinespring [20], cf. also [4]. It is well known that for d-dimensional Hilbert
space H, d-positive maps on B(H) are already completely positive [21].

Let us observe that all hermitian-preserving maps which are not only positive but completely
positive can be written in the form (20) with positive ai, i = 1, . . . , κ, i.e. by

Φ(X) =
κ

∑
i=1

KiXK
⋆

i
, (22)

where Ki :=
√

ai Ai, and κ ≤ d2. The above expression is called the Kraus representation
of a completely positive map Φ and, in case of the finite-dimensional Hilbert space H, can
be regarded also as a definition of the completely positive map. This representation is very
useful in quantum information theory. In particular, completely positive maps are used to
describe all quantum operations, quantum channels and to model quantum devices.

Let us observe that an equivalent representation of the evolution described by expression (22)
can be made in terms of the operator W mentioned in Section 1. This operator is connected
in a one-to-one way with the superoperator Φ (quantum map on S(H)) by the formula

W(Φ) := (I ⊗ Φ) (|ψ+〉〈ψ+|) , (23)

where

|ψ+〉 :=
d

∑
i=1

|ei〉 ⊗ |ei〉 , (24)

and {|ei 〉} denotes a basis in H. The operator W, acting on the doubled space H⊗H is, after
normalization, called J-state and the correspondence defined by (23) is called J-isomorphism.
According to the best knowledge of the author this relationship between Φ and W(Φ) was
applied to problems of evolution of quantum systems for the first time in papers cited in [1]
and [2] in the begining of seventies. More details about definition (23) is given in the next
section.

Three decades later it was shown by R. Timoney [22] that a positive map Φ (positive
superoperator) which is m-positive, where m =

⌊√
κ
⌋

must be completely positive. Here
⌊√

κ
⌋

denotes the integer part of the number
√

κ. In other words, if a positive map
Φ : B(H) → B(H), dimH = d, has a minimal length κ and Φ is m-positive, for some
m < n such that (m + 1)2

> κ, then Φ is already completely positive (cf. also [19]).

Now, let us observe that one can apply the results stated in Theorems 1 – 3 from Section 2, to
the particular cone P(H) in B(H), dimH = d. In particular, Theorem 3 describes properties
of irreducible superoperators and according to this theorem we have: for irreducible Φ, the
spectral radius of Φ is a simple eigenvalue of the superoperator and Φ has exactly one (up
to scalar coefficient) eigenvector in P(H) and this vector belongs to P(H) \ ∂P(H). One can
say even more. Let Pd denote the set of all orthogonal projections, i.e. A ∈ Pd iff A2 = A

and A = A∗. Then we have [23]
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Theorem 5. The following statements are equivalent for a positive map on P(H).

1.) There is a nontrivial (that is different from {0} and P(H)) face of P(H) that is invariant under
Φ;

2.) There is nontrivial projection P ∈ Pd and a positive real number λ > 0 such that Φ(P) ≤ λP;

3.) There is a nontrivial projection P ∈ Pd such that the subalgebra P(P(H))P is invariant under
Φ.

In order to produce nontrivial examples of irreducible positive maps and in certain cases to
characterize all irreducible maps within the class of completely positive maps we will use
the following consequences of the Kraus representations of completely positive maps.

A family of closed subspaces of a given Hilbert space is called trivial if this family contains
only {0} and H. For a fixed operator X ∈ B(H) we will denote by Inv (X) the set of all
invariant subspaces of X. Now, we can state the following theorem which is a reformulation
of some results from [23].

Theorem 6 (Farenick). Let Φ denote a superoperator on B(H) which is P(H)-positive. If Φ

is completely positive, then there exist some operators A1, . . . , Aκ such that Φ(X) = ∑j AjXA⋆

j .

Completely positive Φ is irreducible if and only if the Kraus operators Aj do not have a nontrivial
common invariant subspace in H.

To better understand the above theorem, let us observe that if Kraus operators do not have a
common invariant subspace, i.e., are such that ∩jInv(Aj) is trivial and Φ(P) ≤ λP for some
λ ≥ 0 and P ∈ Pn, then we have

〈Φ(P)ψ|ψ〉 =
κ

∑
j=1

〈PAjψ|Ajψ〉 ≤ λ〈Pψ|ψ〉 . (25)

The left-hand side of the above equality is nonnegative for all ψ ∈ H. On the other hand for
ψ ∈ ker P, we have 〈Pψ|ψ〉 = 0 on the right-hand side. In this way the equality (25) implies
that 〈PAjψ|Ajψ〉 = 0 for each j = 1, . . . , κ. This means that 〈PAjψ|PAjψ〉 = 0, if we remember

that P2 = P, P∗ = P. In consequence, ker P ∈ ∩jInv(Aj), that is ker P is either {0} or H.

4. Some effective methods in the study of positive maps

If we compare the set of all linear maps Φ : B(H) → B(H) and the set of all linear operators
on H⊗H, i.e. B(H⊗H), where H is a d-dimensional Hilbert space, then it is easy to see
that these sets represent isomorphic spaces (as two vector spaces with the same dimension).
Because of linearity of maps Φ, any fixed map is fully defined if we know the values of Φ

on elements of arbitrary basis of the space B(H). For example, we know Φ if we know the
values of Φ on elements of B(H) of the form |ei 〉〈 ej|

Φ(Eij) := Φ(|ei 〉〈 ej|) , (26)

Open Systems, Entanglement and Quantum Optics12
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where |ei 〉, for i = 1, . . . , d are orthonormal vectors in H. Usually, we assume that this is the
so-called natural zero-one basis in Cd; |ei 〉 represents vector with 1 on i-th position and zeros
on other places. Let us observe that operators of the form |ei 〉〈 ej| which act on vectors from

Cd by the rule

(|ei 〉〈 ej|)|ψ 〉 = 〈 ej|ψ 〉|ei 〉 (27)

constitute a basis in the space B(H) and are projectors in directions |ei 〉.

Now, an important question is: how to relate, for a given map Φ : B(H) → B(H), an
operator on H ⊗H (that is an element from B(H ⊗H)) in such a way in order to have a
representation of Φ which will be useful for description of properties of this map. In other
words, we look for a specific isomorphism between maps Φ on B(H) and elements from
B(H⊗H). It appears that this isomorphism can be defined in the following way: we take
values Φ(Eij) from (26) and define an element W(Φ) from B(H⊗H) ≡ B(H)⊗ B(H) by the
formula

W(Φ) :=
d

∑
i,j=1

Eij ⊗ Φ(Eij) (28)

which is equivalent to (23).

Now, it can be shown that Φ preserves the cone P(H) of nonnegative operators if and only
if [1, 2]

〈 ϕ| ⊗ 〈ψ|W(Φ)|ϕ 〉 ⊗ |ψ 〉 ≥ 0 (29)

for all |ϕ 〉, |ψ 〉 from H, and Φ is completely positive if and only if operator W(Φ) is
semipositive on H⊗H. We will also use this representation in Section 5, to discuss some
properties of master equations.

On the other hand, we know that any completely positive map (superoperator) on B(H) can
be represented by a set of Kraus operators K1, . . . , Kκ and the superoperator Φ is irreducible
if the operators Kj (j = 1, . . . , κ) do not have a nontrivial common invariant subspace in the
space H. The question connected with the existence of DFS with a fixed dimension can be
also related to the following problem: is it possible to verify whether operators K1, . . . , Kκ

have — or do not have — a common invariant subspace of dimension m < d, by an effective
procedure? For m = 1 an answer to this question was given by Dan Shemesh in 1984 [24].

Theorem 7. Let K1 and K2 denote two matrices acting on H = Cd. A common eigenvector of K1

and K2 exists if and only if the subspace defined by

M1 :=
d−1
⋂

α,β

ker
[

Kα
1 , K

β
2

]

(30)

is nontrivial, that is M1 6= {O} or, in other words, dim M1 > 0. Here the symbol [·, ·] denotes the
commutator of the matrices and α, β ∈ [1, . . . , d − 1].
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The above theorem is connected in natural way with the concept of partially commutative
operators. Two operators K1 and K2 (complex matrices d × d) which do not commute,
[K1, K2] 6= 0, are said to be partially commuting if K1 and K2 have a common invariant
subspace (at least one common eigenvector). The reason for introducing this term is obvious:
if |x 〉 ∈ H is a nonzero vector such that

K1|x 〉 = λ1|x 〉 and K2|x 〉 = λ2|x 〉 , (31)

then there exists a nontrivial common invariant subspace of K1, K2 on which these operators
(matrices) commute.

As it was stressed in [25], the genuine meaning of the subspace M1, can be stated as follows.

Theorem 8. A subspace M1 is invariant with respect to both matrices K1 and K2, and moreover, K1

and K2 commute on M1. Every subspace of H, which is invariant under K1 and K2 and on which K1

and K2 commute is contained in M1.

The condition of Theorem 8, that is dimM1 > 0, can be formulated in a constructive form.
To this end let us define the matrix

O :=
d−1

∑
α,β

[

Kα
1 , K

β
2

]∗[

Kα
1 , K

β
2

]

. (32)

The matrices K1 and K2 have common eigenvectors if and only if the matrix O is singular,
i.e. det O = 0.

It is not difficult to check that if one of the operators K1, K2 has distinct eigenvalues (let say
K1 has this property), then the last expression for O reduces to

O :=
d−1

∑
α

[

Kα
1 , K2

]∗[

Kα
1 , K2

]

, (33)

and the condition detO = 0 is simplified from the point of view of calculations.

One can say even more. If one of operators Kj, j = 1, . . . , κ, has distinct eigenvalues (once
again, let say K1 has this property) then the appropriate operator (matrix) O takes the form

O :=
d−1

∑
α=1

κ

∑
j=2

[

Kα
1 , Kj

]∗[

Kα
1 , Kj

]

, (34)

and the condition detO = 0 tells us that operators K1, . . . , Kκ have a common eigenvector
(Jamiołkowski, in preparation).

Now, using the concept of the so-called standard polynomials and the Amitsur-Levitzki
theorem [27, 28], we can generalize the criterion of Shemesh in another way. Recall that the
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standard polynomial of degree n is the polynomial in non-commuting variables X1, . . . , Xn

of the form

Sr (X1, . . . , Xn) := ∑ sign (σ) Xσ(1) · · · Xσ(n). (35)

The summation here is assumed over all permutations of 1, . . . , n. The importance of the
standard polynomials is underlined by the following Amitsur-Levitzki theorem.

Theorem 9. The full matrix algebra Md (C) satisfies the standard identity
S2d (X1, . . . , X2d) ≡ 0. Moreover, the algebra Md (C) does not satisfy any polynomial of degree less
than 2d.

Let us observe that according to the above theorem, the algebra Md+1 (C) cannot satisfy the
identity for n = 2d. In other words, the algebra Mk (C) satisfies the identity S2d = 0 for k ≤ d
and does not satisfy this identity for k ≥ d + 1.

Now, we are ready to discuss a generalization of the Shemesh theorem. Namely, we introduce
the family of the subspaces

Mk :=
⋂

ker [S2k (N1, . . . , N2k) N2k+1] , (36)

where S2k denotes the standard polynomial of degree 2k and the intersection is taken over all
(2k + 1)-tuples of matrices from the algebra A generated by two elements (Kraus operators
K1 and K2). One can prove:

Theorem 10. Assume that Mk satisfies dimMk > 0. Then Mk is an invariant subspace of A and
elements of this algebra restricted to Mk satisfy the identity S2k ≡ 0; i.e. for all N1, . . . , N2k from A
and X ∈ Mk we have

S2k (N1, . . . , N2k) X = 0. (37)

It is not obvious from (36) that Mk can be constructed by an effective procedure; however, it
is possible to show that these subspaces can be constructed by a finite number of arithmetic
operations [28].

As a conclusion of this section we can say that if in the Kraus representation of any fixed
completely positive map Φ,

Φ(X) =
κ

∑
i=1

KiXK∗
i , (38)

at least two Kraus operators do not have a common eigenvector, then the map Φ is
irreducible. Moreover, using the generalization of Shemesh’s theorem we can check in an
effective way whether the algebra A generated by Kraus operators has a decoherence-free
subspace of dimension m ≥ 2, or not. In particular, according to (34), if one of Kraus’
operators has distinct eigenvalues, the condition that detO = 0 is simplified from the point
of view of efficiency of calculations.
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5. Master equations and Metzler operators

In quantum physics, quantum chemistry and related fields by master equation one
understands linear differential equation of the form

dρ(t)

dt
= K(t)ρ(t) (39)

with the following property: if ρ(t0) belongs to P(H) = B+
∗ (H) and satisfies the condition

Tr(ρ(t0)) = 1, that is ρ(t0) ∈ S(H), then the trajectory emanating from ρ(t0) stays in S(H)
for all t ≥ t0. Here by trajectory we understand the solution t → ρ(t) to equation (39)
with initial condition ρ(t0). In other words, a question of considerable physical, as well as,
theoretical interest is the following. Under what conditions on K(t) does every solution
of (39) which originates in S(H) remains in S(H) for all t ≥ 0. In order to formulate the
answer to this question in general form we say a few words on general solutions of equations
in B∗(H) with time dependent generators.

Let D ⊂ R1 be an interval and let K : D → B∗(H) be a continuous operator-valued function
with domain D. Consider the linear differential equation

dγ(t)

dt
= K(t)γ(t) . (40)

It is well known that for each γ(t0), equation (40) has a unique solution D ∋ t → γ(t) ∈
B∗(H) which is dependent in a linear way on γ(t0). Therefore for each pair t, t0 from D one
can define a linear operator Φ(t, t0), t ≥ t0, by the formula

Φ(t, t0)γ(t0) := γ(t, t0, γ(t0)) , (41)

where γ(t, t0, γ(t0)) satisfies (40), with the initial condition γ(t0).

The operator Φ(t, t0) is usually called the evolution operator or the propagator of the time
evolution defined in B∗(H) by the generator K(t). The following properties characterize the
propagator Φ(t, t0):

1) Φ(t, u) · Φ(u, s) = Φ(t, s) for all t, u, s ∈ D ,

2) Φ(t, s) is differentiable with respect to t and

dΦ(t, s)

dt
= K(t)Φ(t, s) , (42)

3) Φ(t, t) = I for all t ∈ D, where I denotes the identity operator,

4) if K(t) = K for all t ∈ D, then

Φ(t, t0) = exp{(t − t0)K} =
d−1

∑
m=0

αm(t − t0)K
m ,

where αm(t − t0) for m = 0, . . . , d − 1 are some analytic functions defined by the structure
of K (cf. eg. [29]).
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We say that K(t) defines a positive evolution if

Φ(t, t0) ≥ 0 (43)

for all t ≥ t0, t, t0 ∈ D. Here, the positivity of Φ(t, t0) is understood with respect to the cone
P(H) = B+

∗ (H).

An operator K (superoperator with respect to elements of B∗(H)) is characterized by its
spectrum σ(K) and the resolvent set ω(K). Now, a closed operator K is said to be a Metzler
operator if there exists a real number α0 such that for all α > α0 the resolvent of the operator
K is positive, that is,

R(α, K)P(H) ⊆ P(H) . (44)

One uses this terminology since Metzler operators are straightforward generalization of
Metzler matrices. Indeed, let us take the space Rd and a cone Rd

+. Suppose K ∈ Md(R)

is a Metzler matrix, that is there exists b ∈ R1 such that K + bI is positive, which means that
all entries of the matrix are nonnegative real numbers.

One can say immediately that for α > r(K + bI) the resolvent

R(α, K + bI) = (aI − (K + bI))−1 = [(a − b)I − K]−1 (45)

is a positive operator, that is according to the above definition, Metzler matrix represents a
Metzler operator. Vice versa, if K is a Metzler operator, the off-diagonal elements of K ∈
Md(R) are all nonnegative, that is, K is a Metzler matrix.

It follows directly from our definition of Metzler operators that a fixed closed operator K is
a Metzler operator if and only if also K + bI is a Metzler operator for some b ∈ R1. Now,
using the Neumann representation of R(α, K) for large α > 0, one can see that every operator
on finite-dimensional B∗(H) for which there exists b ≥ 0 such that K + bI is positive, is a
Metzler operator on B(H).

It was proved by Elsner [30] that the following conditions for an operator K on any
finite-dimensional Banach space V ordered by a closed, solid, convex cone C are equivalent:

1) K is a Metzler operator,

2) exp(tK) is positive for all t ≥ 0,

3) |x 〉 ∈ C, 〈 v| ∈ C∗, 〈 v|x 〉 = 0 ⇒ 〈 v|Kx 〉 ≥ 0.

The condition 2) is often called exponential positivity or exponential nonnegativity. From 3)
one can see that the Metzler operators constitute a convex cone. However, this cone in not
pointed — it contains all scalar multiples of the identity operator. In fact we can say that the
set of all Metzler operators constitutes a wedge.

Now, let us return to our system B∗(H) and cones P(H) = B+
∗ (H). As we know, in this case

ρ(t) ∈ P(H) for all t ≥ 0 if

〈ψ| ⊗ 〈 ϕ|W(K)|ψ 〉 ⊗ |ϕ 〉 ≥ 0 (46)
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([1] and [2], cf. also [3]). This means that the last inequality (the so-called block positivity
[3]) is a sufficient condition for preservation of positivity by Φ(t, t0) = exp [(t − t0)K]. But
in fact the condition (46) is to strong — it is a sufficient condition but not a necessary. It is
enough to assume that K satisfies the weaker condition — K should be a Metzler operator.

It appears that one can extend the conditions discussed above to the time dependent operator
K(t). Namely, we can state that the operator family K(t) generates a positive evolution of
the interval D if and only if K(t) is Metzler operator for all t ∈ D (cf. [31]).

It is important to observe that the property of being a Metzler operator can be expressed
using the defined in (28) isomorphism W = J(K). Namely, an operator K is a Metzler
operator if and only if for all |ψ 〉, |ϕ 〉 such that they are orthogonal, we have inequality

〈ψ| ⊗ 〈 ϕ|W(K)|ψ 〉 ⊗ |ϕ 〉 ≥ 0 , |ψ 〉 ⊥ |ϕ 〉 . (47)

Indeed, as we know the superoperator K is a Metzler operator if 〈 A|K(B) 〉 ≥ 0 for all
A, B from B+

∗ (H), such that 〈 A|B 〉 = Tr(AB) = 0. Since K is linear it is enough to take
A = |ψ 〉〈ψ| on B = |ϕ 〉〈 ϕ|. Now we obtain 〈 |ψ 〉〈ψ|, |ϕ 〉〈 ϕ| 〉 = 0 iff 〈 ϕ|ψ 〉〈ψ|ϕ 〉 = 0, that
is if |ψ 〉 ⊥ |ϕ 〉, so we obtain

〈 |ψ 〉〈ψ|, K(|ϕ 〉〈 ϕ|) 〉 = 〈 ϕ| (K|ψ 〉〈ψ|) |ϕ 〉 ≥ 0 (48)

for all |ψ 〉 ⊥ |ϕ 〉. Using the results from [1] and [2] we obtain the condition (47).

As it was shown in [32], some necessary and sufficient conditions for a generator of a
quantum dynamical semi-group can also be formulated using the concept of dissipative
operators in the sense of Lumer and Phillips [33]. Namely, if a sequence {P1,P2, . . .} ≡ π
of projection operators on closed subspaces of the Hilbert space H constitutes a discrete
resolution of identity, that is, if

PiPj = δijPj , and ∑Pi = I , (49)

then one can describe the properties of the operator K in the following: a linear operator K

generates a dynamical semigroup iff for every discrete reduction of identity we have

aij(π) ≥ 0 for i 6= j, aii(π) ≤ 0 , (50)

and

∑
i

aij(π) = 0 (51)

where

aij(π) = Tr(Pi(KPj)) (52)

for i, j = 1, 2, . . .. The conditions (50) are quantum analogs of Kolmogorov conditions (cf.
[34]) for discrete Markov processes.

Open Systems, Entanglement and Quantum Optics18
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6. Summary

In Sections 4 and 5 it was shown that one can analyze the properties of superoperators
which are important in modeling of open quantum systems using the natural isomorphisms
defined by relation (28). In some situations this approach gives more effective results than
other methods. On the other hand, other approaches (for example, the method proposed
by Kossakowski, which is based on dissipative operators) give us a beautiful similarity to
classical results of Kolmogorov.
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1. Introduction

Mathematical theory of infinite dimensional Hilbert spaces and the theory of operator
algebras acting in such spaces (or C∗ algebras in a more abstract approach) provide
a standard setting for the formulation of modern quantum mechanics. On the other
hand, experimental and theoretical progress achieved in the field of quantum information
theory in the last two decades has indicated the practical and technological importance
of low-dimensional quantum systems, where only a few basic modes play a significant
role. Such modes can often be effectively decoupled from the rest of the system and
controlled separately, providing physical realizations of qubits, qutrits and other basic
information carriers. Regardless of concrete physical realization, be it photon polarization,
electron or nuclear spin, charge in Josephson junctions to name just a few, the mathematical
description of such systems requires only finite-dimensional Hilbert space language and
finite-dimensional matrix algebras. Such structures are in principle computationally
manageable in sharp contrast to the infinite dimensional ones.

It has to be pointed out, however, that there is a lot of misconception concerning the above
mentioned “manageability” notion in today’s quantum information literature. For instance,
one of the most fundamental errors appearing in innumerable papers is to indiscriminately
resort to the spectral resolution technique for hermitian matrices. Such an operation
cannot be considered computationally effective if the size of the matrix exceeds 4: then it
unavoidably involves solving an algebraic equation of degree 5 or more. Such task can be
achieved only by an approximate numerical process, and therefore any emerging questions
can be answered only up to numerical precision. The latter can be critical, for example, in
checking whether a hermitian matrix has a negative eigenvalue.

Fortunately, in many situations similar to the one just described there are other alternative
ways to obtain a precise answer, avoiding the approximate numerical computations. This

©2012 Michalski, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Michalski; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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is achieved by limiting oneself to the so-called finite rational computational procedures,
involving only finitely many arithmetic operations on initial data so that the data as well
as all intermediate and final computational results belong to the same number field. In
particular, the use of transcendental functions is thus excluded.

The present chapter will be devoted to a review of a few such procedures, important for
applications in quantum information theory. We will concentrate on the questions concerning
not only the effectiveness of such procedures, but also on more detailed computational
complexity issues. To describe better the subject of our considerations and to fix the
terminology, let us consider the already invoked example of checking whether a given
selfadjoint matrix has a negative eigenvalue, which in particular is a crucial ingredient in
entanglement detection procedures. Note that the problem is posed so that the precise
knowledge of the eigenvalue is not essential, it is its sign that matters.

Let A be a hermitian matrix in question and H be the respective Hilbert space. One can
formulate the negative eigenvalue problem in an equivalent form by asking whether A is or is
not positive semidefinite. As it is well known, positive semidefiniteness can be characterized
by several equivalent criteria, each of them being an example of a different effectiveness or
complexity issue. The list of relevant criteria is the following.

1. For each normalized vector |ψ〉 ∈ H one has 〈ψ | Aψ〉 ≥ 0. The test based on this criterion
is ineffective as it involves infinite number of conditions to verify, one for each |ψ〉.

2. All eigenvalues of A are nonnegative. As we have argued above, such test cannot be
considered an effective one either. In general, the correctness of the answer hinges upon
the numerical precision being used. We can call such tests asymptotically effective, meaning
that increased numerical accuracy can yield the definite yes/no answer, but no a priori
fixed precision is sufficient for the correctness of the whole class of such tests.

3. All principal minors of A are nonnegative. This is certainly an effective criterion as it
involves the evaluation of finitely many subdeterminants of A. The computation of a
determinant itself is a finite rational procedure. Note however, that direct application of
the present criterion requires the evaluation of nearly 2n minors, n being the size of A.
Although finite, this number grows very rapidly with n, making the test inefficient. In
practical terms, it may easily take years to complete such a test on the fastest computers,
even for A of moderate size. For example, if A results from an application of some
entanglement test to a mixed state of a system composed of merely 6 qubits, then n = 64
and hence the number of minors to compute is about 264 ≈ 1019. Assuming that our
computing device can evaluate 106 minors per second on average, the time required to
complete such a test would be of the order of 105 years. We characterize the computational
complexity of such procedures by saying that they are nonpolynomial in n. Problems for
which only nonpolynomial solution methods are available are termed intractable.

4. While the test of positive definiteness (Sylvester’s criterion) is much simpler, for it involves
only n leading principal minors of A, it has no counterpart for positive semidefinite
matrices. However, one can easily check that the following recursive procedure based
on Gaussian elimination can be used in this case. By A11 we denote here the submatrix
of A = [aij] obtained by the deletion of its 1st row and 1st column.

(a) If a11 < 0 then A is not positive semidefinite.
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(b) If a11 = 0 then A is not positive semidefinite unless its entire 1st column is null and
A11 is positive semidefinite.

(c) If a11 > 0 then we first perform row-elimination of the entire 1st column of A. Then
A is positive semidefinite iff the resulting A11 is such.

This is again a finite rational procedure. The largest computational effort in completing
such a check is needed when there are no 0 entries in the first column of A and, likewise,
no zeros are produced in A11 by the elimination. Then the recursive check uses the variant
(c) repeatedly, so that the total number of arithmetic operations performed is of the order
of n3. The complexity of the method is thus polynomial and its efficiency is much higher
than that of criterion 3. If as before n = 64, the test will complete in less than 1 second,
assuming the computer speed of 106 rational arithmetic operations per second.

Positive semidefiniteness is certainly a very simple issue, however the above example
highlights a few characteristic aspects of computational complexity. Mathematical problems
often admit many different solution methods which, similarly as in our example, may range
from ineffective to very efficient ones. Effective procedures however can often prove useless
in practice if the computational effort involved grows too fast with the size of input data. The
complexity of problems themselves can be characterized relative to the most efficient solution
methods known for them. In some cases theoretical complexity bounds can be derived for
classes of problems.

In the next section we provide a brief review of fundamental notions of computational
complexity theory.

2. Basic notions of computational complexity theory

In theoretical computer science, algorithms are classified according to their time or space
complexity. Time complexity gives an estimate of how does the number of elementary steps
in the algorithm scale with the size of input data defining an instance of the problem.
Space complexity refers to the scaling of the amount of workspace or extra memory (in
one convention the memory storing input data is not counted) needed in the course of
computation. The complexity of problems is related to their inherent difficulty and is
a theoretical estimate of the computational cost indispensable for their solution. Often
only some lower or upper complexity bounds are known for classes of problems. The
complexity theory uses the formalism of abstract Turing machines to ensure the universality
of conclusions.

It is not our goal to review the complexity theory in its general abstract formulation here,
but rather to provide necessary intuitions for an unacquainted reader. Those familiar with
computational complexity may well skip the current section.

The scaling of solution time or workspace with problem size is expressed using the “big O”
notation.

Definition 1. For two functions f , g : N → R one writes f (n) = O
(

g(n)
)

for n → ∞ if and
only if

∃ M ∈ R and n0 ∈ N such that | f (n)| ≤ M|g(n)| for n > n0 .
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For example, standard square matrix multiplication requires O(n3) arithmetic operations,
n being the matrix size. Since no extra memory beyond that for data storage is needed
for performing the multiplication, the space complexity here is O(n2). The Fast Fourier
Transform performs O(n log n) arithmetic operations on an n element data vector. Evaluation
of a determinant directly from its definition would involve the summation of n! terms,
however more efficient method using Gauss elimination reduces the effort to O(n3)
arithmetic operations. Evaluation of a permanent on the other hand appears more complex
(except for the case of computations over Z2, where −1 ≡ 1(mod2) and hence det A = per A):
the best methods known so far [8, 23] have the complexity of O(n2n).

One of the objectives of the theory is to identify complexity classes, consisting of problems
which can be solved by using only limited type of computational resources, which are
abstractly characterized by restricted classes of Turing machines, most notably the classes
P and NP. The class P consists of problems which can be solved by a deterministic Turing
machine executing a number of steps bounded by a polynomial in the input data size.
The class NP on the other hand consists of problems solvable in polynomial time by a
nondeterministic Turing machine. As the latter can be simulated by a deterministic machine in
exponential time, NP is often conventionally (yet not quite correctly) identified with the class
of problems solved by exponential (nonpolynomial) time deterministic algorithms. Strictly
speaking however, the essential feature of NP problems is that given a random candidate for
a solution it takes no more than polynomial number of steps to verify its correctness or to
reject it. Exponential time deterministic algorithms in NP can be thought of as performing
an extensive “blind” search in the space of potential solutions (which is the actual source
of nonpolynomial complexity) checking each of them at low (i.e. polynomial time) cost. In
contrast, problems in P admit “clever” constructive solution methods.

In practical terms, problems of type P can be solved relatively fast regardless of their size,
while for the NP type ones solution times become impractically long even for moderate size
of input data, c.f. our discussion of positive semidefiniteness verification in the previous
section. The distinction between efficient and inefficient methods is often used as a synonym
for that between P and NP classes.

Obviously P ⊂ NP, but it is a famous open question (although today hardly believed to
hold true) whether P = NP. The quest for an answer to the latter has led to the definition
of various special complexity classes, in particular the class of NP-complete problems, NP-C.
We say that a problem π can be polynomially transformed to another problem π′, in written
π ∝ π′, if the solution of π for input data of size n can be obtained by means of the execution
of an algorithm for π′ at most a polynomial in n number of times on new data translated
from the original input with at most polynomial effort. So if π′ ∈P (resp. in NP), then any
π such that π ∝ π′ is necessarily also in P (resp. NP).

Definition 2. A problem π is NP-complete iff

(i) π ∈ NP;

(ii) ∀ σ ∈ NP σ ∝ π.

If π satisfies only condition (ii), it is said to be NP-hard.
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It may appear that NP-C can well be empty, but it is not so as shown by Cook in [7]. The
first NP-C problem identified by Cook was the satisfiability of Boolean functions: given a
Boolean function F in variables x1, . . . , xn doest there exist a truth/false assignment to all xi

making the value of F true? Cook’s proof gives a method of how to cast, at polynomial cost,
an arbitrary nondeterministic Turing machine into the one computing Boolean functions.

Knowing at least one NP-C problem it becomes easier to identify other ones: if π ∈NP
is such that σ ∝ π for some σ ∈NP-C, then π ∈NP-C. The list of known NP-complete
problems exceeds now 3000 items. By definition, providing a polynomial time solution to any
single NP-C problem would automatically prove that P=NP. Because of this, NP-complete
problems are considered the hardest among NP ones. In other words, it is generally believed
that the search for exact polynomial time solution methods of NP-C problems is a waste of
time. On the other hand, there are numerous problems of practical interest for which neither
a proof of NP-completeness nor an efficient polynomial time solution method are known.
The most notable example is the problem of finding factors of large integers.

It is interesting that a large class of problems in matrix theory which possess an efficient
solution can be reduced to an evaluation of a small number of determinants or, equivalently,
can be expressed, as above, in terms of Gaussian elimination or — still more elementary
reduction — by a series of matrix multiplications. This point of view motivates the interest
in the design of fast matrix multiplication algorithms. Perhaps the best known schema of this
kind is due to V. Strassen (1969) and its complexity is O(n2.81), while more recent method of
Coppersmith and Winograd (1987) improves the efficiency to O(n2.367), the theoretical lower
bound being O(n2).

An example of NP-complete matrix algebra problem is the following [5]: given an n × m
matrix A over Z with n ≤ m, decide whether there exist a vanishing n × n subdeterminant of
A. The evaluation of a permanent is NP-hard, for it is most likely not in NP class. Again, the
existence of a polynomial algorithm for the computation of per A would infer the equality
P=NP. Many complicated counting problems in combinatorics and graph theory can be
reduced to an evaluation of a permanent. Actually, permanent evaluation is #P-complete,
meaning that all counting functions which can be defined in terms of NP problems can be
polynomially reduced to it, [25].

Another important complexity category, from a physicist’s point of view, is the so-called BPP
class (bounded error probabilistic polynomial time) consisting of decision problems solvable
in polynomial time by a probabilistic Turing machine, with the probability of producing wrong
answer bounded from above by a constant 0 ≤ p < 1/2. Less formally, this class corresponds
to Monte Carlo algorithms likely to yield correct answers and running in polynomial time.
Such conditions guarantee that in practice one can perform a relatively short series of
independent runs of the method to learn the correct answer with very high probability. By
Chernoff bound, the probability that incorrect answer appears in a series of runs most of the
time decays exponentially with the series length. If instead of probabilistic one uses quantum
Turing machines, the resulting class is called BQP (bounded error quantum polynomial time).
It is shown that BPP⊂BQP, but little is known so far about the relation of either of the classes
to NP.

Finally, PSPACE is a class of problems solvable by deterministic Turing machines using
at most polynomial in the data size amount of workspace. It is proved that adding
nondeterminism does not alter this class, namely PSPACE=NPSPACE. NP is thus clearly
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NP

NP-C

PSPACE

NP-hard

BPP

BQP

Figure 1. Hypothetical relations among complexity classes.

contained in PSPACE since using workspace of nonpolynomial size would automatically
require nonpolynomial time. Fig. 1 summarizes what has been said above about the
complexity classes.

Last but not least, there are problems which are provably undecidable, meaning that no finite
algorithm can ever resolve them. Among such tasks there is the fascinating tiling problem
[26].

Let us mention also that to date no general effective criteria are known for one of the most
fundamental decision problems in quantum information, namely the determination whether
a given mixed state of a bipartite system is entangled or not. All known exact methods,
apart from those for low-dimensional systems, namely for n = 4 = 2 × 2 and n = 6 = 2 × 3,
involve infinite number of computational tests (local actions of positive maps or, equivalently,
evaluation of expectations of entanglement witnesses). Moreover, no effective method is in
sight despite the two decades of intensive research efforts worldwide.

3. Some computational problems of quantum information theory

Quantum information (QI) theory regards quantum states as information carriers and
quantum evolution of states as acts of information processing. As we have already mentioned
in the Introduction, QI research focuses on low-dimensional quantum systems, qubits, qutrits
and likewise, which appear to be most interesting from the point of view of potential future
large-scale technological applications. Such low dimensional structures can be combined
into multipartite quantum systems, realizing quantum registers and memories. Namely,

given a low-dimensional Hilbert space, e.g. H2 ≃ C
2 for a qubit, the space of the compound
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multipartite system is then

H = H2 ⊗ · · · ⊗H2 = H
⊗n
2 ≃ C

2n

.

Genuinely quantum properties of such systems, most importantly the entanglement of
their states, are proved to underlie the extraordinary efficiency of quantum information
processing, surpassing that of the classical one. In what follows we shall silently assume
finite-dimensionality of all quantum systems in question.

Let us recall that pure states of a quantum systems are represented by vectors in the
respective Hilbert space, |ψ〉 ∈ H, while observables, i.e. measurable physical quantities,
correspond to selfadjoint operators acting on H, i.e. A ∈ B(H) such that A = A∗. In
the finite-dimensional setting they can be identified with Hermitian matrices in the matrix
algebra Mn(C), n = dimH. In passing to mixed states one replaces pure states with the
corresponding 1-dimensional projection operators, |ψ〉〈ψ| ∈ B(H), and one defines the
mixed states as statistical sums of mutually orthogonal projections, ̺ = ∑ pi|ψi〉〈ψi| with real
positive pi summing up to 1. So defined, mixed states are quantum counterparts of classical
discrete probability distributions. Their representatives are called density matrices. It can be
easily seen that density matrices form a convex subset Σ = Σ(H) of B(H) characterized by
positive semidefiniteness and normalization of trace1

̺ ∈ B(H) such that ̺ ≥ 0 and Tr ̺ = 1 .

According to the postulates of quantum mechanics, dynamical evolution of quantum systems
is described by the Schrödinger equation, which, when reformulated for mixed states, takes
the form of von Neumann equation

˙̺ = −i[H, ̺] = −i(H̺ − ̺H) .

Here H denotes the Hamiltonian of the system in question and we have assumed the
convention h̄ = 1. This equation is solved by

̺(t) = U(t)̺(0)U∗(t),

where the unitary propagator has the form U(t) = e−iHt.

Often, when the continuous time dependence of the system state is not the main issue, one
resorts to discretized dynamics, using e.g. the “time one” mapping, ̺′ = U̺U∗. It turns out
that general quantum operations, providing an adequate mathematical description of complex

1 More consistently, mixed states should be regarded as elements of the Hilbert-Schmidt dual of B(H), that is linear
functionals on B(H) acting on observables of the system by expectation ̺(A) = Tr(̺A). For finite-dimensional H

both B and B
∗

are in fact identical with Mn(C), the algebra of complex n × n matrices.
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multi-stage quantum processes, experiments or computations acting on system states have a
more general form of an operator sum

Φ(̺) = ∑ Ki̺K∗
i . (1)

These include, for instance, quantum measurements or transmission of states through noisy
quantum channels. The above so-called Kraus representation is the most general form of a
linear completely positive map Φ : B(H) → B(H). From the point of view of quantum theory
we are interested in the restriction of Φ to the set of density matrices Σ(H). Complete
positivity of Φ ensures that it preserves positivity of states, while an extra assumption is
needed to guarantee the preservation of trace, namely ∑ K∗

i Ki = I, where I denotes the
identity matrix. So, for such Φ we have Φ : Σ → Σ. In QI theory such maps represent general
quantum communication channels and typical questions studied in this context concern e.g.
the effect of Φ on the initial entanglement of the transmitted states, the impact of noise,
decoherence, etc. Let us mention also that Kraus representation, though very useful, has the
defect of not being unique for a given quantum map Φ.

It should be stressed that quantum operations in the above sense are as a rule nonunitary.
Even in the simplest case of Φ represented by two unitary (up to scaling) Kraus terms,
Φ(̺) = U̺U∗ + V̺V∗, the action of Φ is not unitary unless U = V up to a constant factor.
However, this is does not pose a contradiction with postulates of quantum mechanics. Let us
sketch briefly a typical open system scenario leading to nonunitary dynamics.

Suppose that we realistically consider a quantum system not as isolated one, but as remaining
in contact with an external bath, so that the underlying Hilbert space has the structure H =
HS ⊗HB, with HS and HB being respectively the system and the bath spaces. It is natural
then to cast the overall Hamiltonian in the following form:

H = HS ⊗ IB + IS ⊗ HB + HI ,

where HS and HB are the Hamiltonians describing the evolution of the system and bath
alone, HI represents the interaction between them and IS, IB are the respective identity
operators. While the overall system dynamics is unitary

̺(t) = U(t)̺(0)U∗(t) , U(t) = e−iHt ,

it is intractable in such an exact form due to typically huge number of degrees of freedom
of the bath. It is then natural to pass to a statistical description of the system evolution
by averaging the bath out, assuming in addition that initially the system and the bath are
decoupled, that is

̺S(t) = TrB

(

U(t) ̺S(0)⊗ ̺B(0)U∗(t)
)

= ∑
α

Aα(t)̺S(0)A∗
α(t) , (2)

where the Kraus operators emerge as Aα = cα〈βi|U|β j〉 with α enumerating index pairs (i, j)
and |βi〉 being the bath basis states. This is clearly a nonunitary evolution unless all Aα are
the same up to scalar factors — an unlikely event.
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Nevertheless, there may exist a smaller subspace HDF of HS where the reduced dynamics
(2) actually is unitary. This is equivalent to saying that there exists a basis of HS in which all
Kraus operators Aα have simultaneously the block form

Aα =





sαV 0

0 Ãα



 , (3)

where V is unitary on HDF, sα are scaling factors and Ãα are arbitrary operators on H
⊥
DF,

the orthocomplement of HDF in HS. Such a space is called decoherence-free as the coherent
state evolution in this space is isolated from the destructive impact of the bath.

Similarly, one can derive conditions for the existence of a decoherence-free subspace in the
framework of Markovian approximation of an open system dynamics, and they turn out to
have a form consistent with (3) above. Let us recall that the following master equation in the
Gorini-Kosakowski-Sudarshan form provides the most general description of a completely
positive Markovian time evolution of a quantum system interacting with its environment
[11, 20],

˙̺ = −i[H, ̺] +
1

2 ∑
ij

cij

(

[Fi, ̺F∗
j ] + [Fi̺, F∗

j ]
)

, (4)

where the sum collects all the terms responsible for nonunitary decohering dynamics. Thus
H is the system Hamiltonian, the operators Fi are the so-called error fields and they represent
the coupling of the system with its environment, while the hermitian structure matrix [cij]
carries other physically relevant information. Now, if HDF is to be a decoherence-free
subspace, then for any ̺ supported on it the second term in (4) must vanish identically,
so that the resulting dynamics is purely unitary. If one assumes certain robustness, or generic
property in the terminology of [18], of this subspace, meaning that the vanishing of the
nonhamiltonian part is not the result of some fine-tuning among structure parameters cij

but rather the effect of simultaneous vanishing of all individual terms, it can be seen that
HDF must be spanned by common eigenvectors of all error fields. In particular, [Fi, Fj] = 0
on HDF.

Let us now go back to general quantum operations represented by completely positive
trace preserving maps in the form (1). As we have seen, the basic issue in the search
for decoherence free subspaces is the identification of common eigenvectors of all Kraus
operators Ki and maximal common invariant subspaces spanned by them. For reasons
outlined in the introduction, it is impractical to approach this problem by means of direct
evaluation of eigenvectors. As a rule, such computations are prone to numerical errors
and hence the precise identification of common eigenvectors cannot be achieved this way. In
section 5, we will describe an alternative constructive method based on simple linear algebra,
the so-called Shemesh criterion, which allows one to identify common invariant subspaces
of several operators.

We shall conclude this section by mentioning three more situations where the identification
of common invariant subspaces plays a significant role.
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1. Characterization of irreducibility of quantum operations, [14, 15]. Irreducible quantum
operations (superoperators) appear as a natural generalization of the notion of positive
semidefinite irreducible linear operators, treated in particular by Perron-Frobenius theory.
The latter provides a very useful and simple characterization of the spectra of irreducible
operators. It turns out that if a quantum operation Φ is given in terms of Kraus
representation (1), then it is irreducible if and only if the operators Ki do not share a
nontrivial invariant subspace. In other words, no decoherence-free subspace exists for an
irreducible Φ.

2. Identification of sufficient algebras of observables, [12, 13]. To identify an unknown
quantum state ̺, an experimenter has to perform a number of measurements on the
system in question, collecting data that can be used subsequently in the estimation of
̺. Each of these measurements returns an expectation of the measured observable Ai

in the state ̺, that is the quantity Tr(Ai̺). A natural question that emerges is how to
optimize such a data collection, namely how to choose observables Ai to obtain maximum
information with the least experimental effort. Sufficiency of an algebra generated by a
finite collection of observables A = A(A1, . . . , Ap) means that the information acquired
in the measurement process Tr(Ai̺), i = 1, . . . , p, characterizes the state ̺ completely.
One of the rationally verifiable conditions which can be used here is based on Burnside’s
theorem, which allows one to check whether a given set of observables generates the full
matrix algebra Mn or not. This question can again be related with the existence of a
common invariant subspace for the generators of A.

3. Error correcting codes, [6, 17]. This is a more general case than that of the existence
of a decoherence-free subspace. Here, one is interested in establishing the existence of
a subspace HEC, the subscript EC for error correcting, of HS on which the action of
the channel Φ can be effectively inverted, namely, there exists a quantum operation Θ

such that for states ̺ supported on HEC one has Θ(Φ(̺)) = ̺. The motivation behind
such a demand is that the basis states of HEC can be regarded as “code words” which
can unambiguously be unscrambled after transmission through the generally corrupting
channel Φ, and thus they can be used to safely encode portions of information to be sent
through the channel. As shown in [17], the necessary and sufficient condition for the
existence of an EC subspace for an operation Φ resulting from (2) can be phrased in the
following simple algebraic form involving the Kraus operators Aα: there exists a basis of
HS such that for all α, β

A∗
α Aβ =





rαβ I 0

0 Ã∗
α Ãβ



 ,

where as before Ãα, Ãβ are arbitrary operators on H
⊥
EC and R = [rαβ] is a scalar matrix. I

in the upper left block is the identity on HEC. Note that the decoherence-free subspace is
a special case of an EC space, since then from (3) it follows that the matrix R has a very
special form rαβ = s̄αsβ and therefore has rank 1.

4. Characteristic and minimal polynomials

As we have mentioned in the introduction, the precise determination of eigenvalues of a
matrix by means of a finite rational computation is in general impossible. The same is true for
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eigenvectors. One can nevertheless rationally acquire exact knowledge about some spectral
properties of a matrix, for instance by studying its characteristic and minimal polynomials.
Numerous methods for obtaining the polynomials can be found in algebraic literature, and
we are going to recall two of them here.

For an n × n complex matrix A let

χA(λ) = det(λI − A) = λn + p1λn−1 + · · ·+ pn−1λ + pn

be its characteristic polynomial. We will describe the method of undetermined coefficients
— an efficient algorithm yielding the numbers pi. The procedure begins with the evaluation
of auxiliary constants

Dk := χA(k) = det(kI − A) , k = 0, 1, . . . , n − 1 .

Next the following system of linear equations in the unknowns p1, . . . , pn is formed



























pn = D0

1n + p11n−1 + · · · + pn = D1

2n + p12n−1 + · · · + pn = D2

· · · · · · · · ·

(n − 1)n + p1(n − 1)n−1 + · · · + pn = Dn−1

or equivalently











1n−1 1n−2 · · · 1

2n−1 2n−2 · · · 2
...

...
. . .

...

(n − 1)n−1 (n − 1)n−2 · · · n − 1





















p1

p2
...

pn−1











=











D1 − D0 − 1n

D2 − D0 − 2n

...
Dn−1 − D0 − (n − 1)n











.

Writing Sn−1 for the matrix on the left hand side, the solution can be expressed in compact

vector notation as p = S−1
n−1D. Note that Sn−1 is a constant matrix whose inverse can be

computed and stored beforehand and used repeatedly for various input matrices A. The
computational cost is thus limited to the determination of the vector D, and hence is bounded
by O(n4). For comparison, direct expansion expressing the coefficients pi by the sums of i-th
order principal minors of A results in the computation scheme of complexity O(2n).

The minimal polynomial of a A is defined to be the least degree monic polynomial µ (i.e.
with the leading coefficient 1) which annihilates A, µ(A) = 0. Alternatively, it can be given
in the form

µA(λ) = (λ − λ1)
r1 · · · (λ − λk)

rk ,

where λi are distinct eigenvalues of A and ri denotes the order of the largest Jordan block
for λi in the canonical representation of A. Clearly µA divides χA.
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One obvious direct method consists in checking the sequence of matrices

I, A, A2, . . . , Ar

for linear independence, systematically for r = 1, 2, . . .. The least r for which the sequence
turns out to be linearly dependent is the degree of the minimal polynomial µA, and the
respective vanishing linear combination

cr I + cr−1 A + · · · + c1 Ar−1 + c0 Ar = 0

yields, after dividing by c0, the coefficients of µA. This task can be realized by applying
Gauss elimination to the r × n2 matrix whose rows are the reshaped matrices I, A, A2, . . ., i.e.
row vectors obtained by arranging the elements of Ai lexicographicaly row after row. The
complexity of such process is O(n4).

An equivalent method often used in practice is a variant of Krylov subspace algorithm, based
on the following classical theorem.

Theorem 1. For a linear map A : V → V let W1, . . . , Wk be subspaces of V such that

i) W1 + · · ·+ Wk = V, the sum not necessarily being direct,

ii) each Wi is invariant for A,

iii) the restriction A|Wi
has minimal polynomial mi.

Then the minimal polynomial µA of A on V is the least common multiple of m1, . . . , mk.

The algorithm has the following steps.

1. Pick nonzero v ∈ V and iteratively compute its Krylov subspace relative to A,

W = Span{v, Av, . . . , Ad−1v} .

That is, d is the smallest number such that the vectors v, Av, . . . , Adv are linearly
dependent, namely

Adv = c1 Ad−1v + · · · cd−1 Av + cdv .

By construction, the subspace W is invariant for A. It is not difficult to justify that

m(λ) = λd − c1λd−1 − · · · − cd−1λ − cd

is the minimal polynomial of the restriction A|W .

2. Set W1 = W and m1 = m. If W1 = V we are done, otherwise pick v′ 6∈ W1 and repeat step
1 to obtain W2 and m2 and so on. The construction terminates when W1 +W2 + · · ·+Wk =
V.
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3. Find µA as the least common multiple of m1, . . . , mk. This can be done rationally by using
Euclid’s algorithm repeatedly to find first GCD of pairs of polynomials mi.

Most of the computational effort resides here in the construction of Krylov subspaces. For
each new vector Aiv added to W linear dependence is checked by Gaussian elimination.
Altogether no more than n such checks are performed so the complexity bound is O(n4).

Let us conclude this section by mentioning some exemplary problems in quantum physics,
where knowledge of spectral and minimal polynomials plays a role. Firstly, it is the design
of optimal setups for stroboscopic tomography of states [12, 13]. Namely, one has to find
a minimal set of observables and design a stroboscopic measurement, i.e. one performed at
preselected time instants when the measured observables are subdued to time evolution, the
objective being to collect information sufficient for the complete reconstruction of a quantum
state with least experimental effort. To this end, Krylov subspaces of the observables relative
to the generator of the dynamics have to be constructed. The degree of the minimal
polynomial of the dynamics generator is one of the essential parameters appearing in the
design process.

Second set of examples is related to the construction of common invariant subspaces for
families of operators, which finds application e.g. in the identification of decoherence-free
subspaces in open quantum systems. This problem will be discussed in detail in the
next section. It turns out that the construction of such common invariant subspaces
can be simplified considerably if one of the operators has nondegenerate spectrum. The
former property can be tested for an operator A by analyzing the GCD of its characteristic
polynomial and its derivative: the eigenvalues are simple iff χA and χ′

A are relatively prime.
To detect diagonalizability, one has to perform a similar test on the minimal polynomial of
A. An alternative for the Euclidean GCD algorithm is the singularity test of the so-called
associated Sylvester matrix [27].

5. Common invariant subspaces

The problem we are going to discuss now in its simplest version can be formulated as follows:
given two square matrices A, B ∈ Mn decide whether they have an eigenvector in common.
We are interested, of course, in finite rational procedures solving this problem. As it was
indicated in the introduction, naive direct approach by literally finding the eigenspaces of
A and B and comparing them is useless because of finite accuracy of numerics. We will be
concerned with a more general formulation of the problem, namely we will ask whether two
matrices share an invariant subspace of dimension k and how to find such subspace.

In what follows, we will discuss certain finite rational computational procedures detecting
the existence of common invariant subspaces for pairs of operators. There are no known
direct generalizations of such procedures to work for more than two operators at a time.
However, if one can constructively obtain common invariant subspaces for all pairs of
operators in the set A1, . . . , Ap, then taking their intersection one obtains a candidate for
the global solution. It has to be verified though, because the resulting space need not be
invariant for some (or any!) of the operators Ai. The computational complexity of such
a construction will add a factor p2 to that of the process performed for a single pair of
operators. The intersection of p2 subspaces of dimensions bounded by n can be constructed
in time bounded by p2n3.
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5.1. Shemesh criterion and related methods

The basic tool in the detection of common invariant subspaces is the so-called Shemesh
criterion [24]. We use here the standard notation [A, B] for the commutator of matrices A
and B.

Theorem 2 (Shemesh 1984). Matrices A, B ∈ Mn possess a common eigenvector if and only if the
subspace

N =
n−1
⋂

k,l=1

ker
[

Ak, Bl
]

(5)

is of positive dimension. Moreover, N is invariant with respect to both A and B and restrictions of
A and B to N commute. Every common invariant subspace of A and B (on which they commute) is
contained in N.

Let us remark that n above can be replaced by r and s — the degrees of minimal polynomials
of A and B, respectively.

We shall analyze now the complexity of a direct method of checking Shemesh criterion and
that of constructing N — the maximal common invariant subspace of A and B. Let us stress
here that while the existence of a 1-dimensional common invariant subspace (corresponding
to the common eigenvector of A and B) in N is guaranteed by the criterion, it does not answer
any questions concerning k-dimensional common invariant subspaces, 2 ≤ k < dimN, not to
mention the problem of constructing them by finite rational procedures. Such procedure can
be nevertheless easily obtained for the space N. Let us also indicate that no finite rational
method should be expected to yield the common eigenvector in N. If there were one, we
would have a finite method to compute exactly the corresponding eigenvalues of A and B
which is, in general, unfeasible.

To estimate the complexity of Shemesh’s criterion, let us first note that computing the
commutator [A, B] has the same complexity as matrix multiplication2, namely O(n3). The
number of commutators to evaluate in (5) is at most (n − 1)2, so that the total amount of
algebra is bounded here by O(n5). Finally, finding the intersection of kernels can be done
just by means of solving the system of homogeneous linear equations in n variables given by
the n(n − 1)2 × n matrix















[A, B]

[A, B2]

...

[An−1, Bn−1]















. (6)

This is achieved by the Gaussian elimination algorithm again in O(n5) steps, hence the overall
complexity of finding N is O(n5).

2 Of course, one can always lower the exponent 3 to some extent by resorting to fast matrix multiplication schemes.
This may be of practical importance when working with large matrices, here however we are mainly interested in
establishing just polynomial complexity of our procedures.
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An equivalent formulation of Shemesh condition (dimN > 0) is that

det
n−1

∑
k,l=1

[Ak, Bl ]∗ · [Ak, Bl ] = 0

but it does not simplify the computation as the sum above involves (n − 1)2 terms, each one
computable with the arithmetic cost of O(n3) operations.

Let us turn to a more complicated problem of verifying the existence of a common invariant
subspace of prescribed dimension 2 ≤ k < n. This is partly solved by applying the Shemesh
criterion to exterior powers (wedge powers) of A and B. Recall that A∧k is the restriction of

A⊗k to the antisymmetric subspace of
(

C
n)⊗k

. More explicitly, A∧k is an m × m matrix with
m = (n

k), the elements of which are

(

A∧k
)

α,β
= det A[α|β] ,

where α and β stand for multi-indices α = (i1, i2, . . . , ik), with 1 ≤ i1 < i2 < · · · < ik ≤ n.
A[α|β] is a k × k submatrix of A with rows and columns specified by α and respectively β.
The space Nk corresponding to N (= N1) in (5) is now defined by analogy as

Nk =
m−1
⋂

i,j=1

ker
[

(

A∧k
)i

,
(

B∧k
)j
]

. (7)

The trick of using exterior algebra takes advantage of a simple fact that if λ1, . . . , λk are
eigenvalues of A with (linearly independent) eigenvectors v1, . . . , vk then λ1λ2 · · · λk is
an eigenvalue of A∧k with eigenvector v1 ∧ · · · ∧ vk. So if v1, . . . , vk span an invariant
k-dimensional subspace of A and B then obviously v1 ∧ · · · ∧ vk is a common eigenvector
of A∧k and B∧k. The corresponding sufficient condition, however, turns our to be more
complicated. Nontriviality of Nk guarantees the existence of an eigenvector shared by A∧k

and B∧k but it is now an object in the exterior algebra of Cn and, in general, it need not be
decomposable, i.e. of pure product form v = v1 ∧ · · · ∧ vk. Consequently the reconstruction
of a k-dimensional common invariant subspace of A and B from v may no longer be easy
if at all possible. The source of this difficulty resides in the fact that the spectrum of A∧k

or B∧k may be degenerate. This possibility has to be, therefore, excluded by an additional
assumption. As we will see shortly, such an assumption can be further relaxed to another
one postulating the nondegeneracy of eigenvalues of either A or B alone.

The generalized Shemesh criterion [9] takes the following form.

Theorem 3 (Generalized Shemesh Criterion).

Necessity: If A and B have a common invariant subspace of dimension 2 ≤ k < n, then Nk as
defined in (7) has positive dimension (i.e. A∧k and B∧k share an eigenvector).

Sufficiency: Suppose that A∧k has nondegenerate eigenvalues and det B 6= 0. Then if Nk 6= {0},
there exists a common k-dimensional invariant subspace of A and B.
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In order to show how one can simplify the extra conditions in the sufficiency part of the
above theorem, let us note that for an arbitrary matrix C the spectral shift transformation
C 7→ Ct = C − tI does not alter its invariant subspaces. The following two facts proved
in [9] allow one to preprocess, if necessary, the initial matrices A and B so that the extra
requirements are fulfilled, at the same time leaving their invariant subspaces intact.

Fact 1. For any singular complex matrix B, a shift t ∈ N can be computed by a finite rational
procedure so that det(B − tI) 6= 0.

The procedure is very simple: it computes det(B − tI) for t = 1, 2, . . . until a nonzero value
is found. Since the characteristic polynomial of B has no more than n distinct roots, the
computation must terminate in no more than n − 1 steps.

Fact 2. If all eigenvalues of A are nondegenerate and 2 ≤ k < n, then a shift t ∈ N can be
computed by a finite rational procedure so that the matrix (A − tI)∧k also has only simple
eigenvalues.

See [9] for the proof of Fact 2. Its essence is that one can probe subsequent values of the shift
parameter t = 0, 1, . . . until nondegeneracy of eigenvalues occurs, which is shown to happen
after no more than 1

2 kn2k of such tests.

We are equipped now to describe the complete algorithm determining the existence of
k-dimensional invariant subspace common to A and B. Let φA denote the characteristic
polynomial of A.

1. Check whether A has distinct eigenvalues by computing the resultant of φA and φ′
A (as

we have mentioned in Section 3, this can be done conveniently by expressing it as the
determinant of the Sylvester matrix [27] of φA and φ′

A) and checking whether it is nonzero.
If the test fails for A, try the same for B and switch A and B if B has simple eigenvalues.
If both tests fail, the generalized Shemesh criterion cannot be used.

2. If B is singular, apply the spectral shift t as in Fact 1. Replace B with B − tI.

3. Compute the matrix A∧k and check whether it has nondegenerate eigenvalues (see step 1).
If so, go to step 4, otherwise apply the spectral shift to A as described in Fact 2 and repeat
step 3.

4. Compute B∧k and Nk as in (7). If Nk has positive dimension, then A and B have common
k-dimensional invariant subspace.

It should be stressed again that Shemesh criterion yields a “yes/no” answer about the
extistence of a common eigenvector (or, respectively, of k-dimensional common invariant
subspace), but does not help in constructing them.

The complexity of the above algorithm is determined by n and k. The most time-consuming
operations are those performed on the exterior powers of A and B because of their size
m = (n

k), which grows roughly like nk for k = 2, . . . ,
[

n
2

]

. To obtain A∧k, one has to evaluate

m2 minors of A of size k× k, hence the computational cost is bounded by O(k3 n2k). Checking
for nondegeneracy of eigenvalues of A ∈ Mn costs as much as the evaluation of φA, which
can be done in O(n3) steps, plus the cost of computing the (2n − 1)× (2n − 1) determinant
of the respective Sylvester matrix, so its overall complexity is O(n3). Step 3 of the algorithm
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probing possible shift parameters performs no more than O(km2) of nondegeneracy tests,
each at the expense of O(m3) arithmetic operations. Therefore the complexity of step 3
evaluates to O(kn5k). Finally, the complexity of constructing Nk by (7) is, as shown before,
O(m5) or in terms of n and k O(n5k).

The estimation above shows that even for small values of k, although of polynomial time
complexity, the method is not very practical. Already for k = 2, the computational effort is
of the order O(n10) in the worst case.

Let us mention one more recent result [16] which shows that the nondegeneracy condition
can in fact simplify the original Shemesh criterion, slightly reducing its computational
complexity.

Theorem 4 (Jamiołkowski, 2012). Let A have only simple eigenvalues. Then the formula (5) for
the space N in the original Shemesh criterion can be simplified to

N =
n−1
⋂

k=1

ker
[

Ak, B
]

(8)

which reduces the complexity of its construction to O(n4).

Indeed, the number of commutators to evaluate in (8) is now at most n − 1, O(n3) arithmetic
operations each, and the system of homogeneous equations defining N is of the size n(n −
1)× n, so the complexity of solving it is also O(n4).

As the sufficiency part of the generalized Shemesh condition requires the nondegeneracy of
the spectrum of A∧k, so the formula (7) automatically simplifies analogously to

Nk =
m−1
⋂

i=1

ker
[

(

A∧k
)i

, B∧k
]

. (9)

Hence the complexity of finding Nk reduces to O(m4), that is O(n4k).

Let us note, however, that somewhat weaker assumption of diagonalizability of A does
not, in general, lead to a simplification of the Shemesh formula by limiting the number of
commutators that have to be computed. This is illustrated by the following simple example.
Let {e1, . . . , e4} be a basis in which A and B have the following form:

A =









1 1
1 2

3
3









, B =









2 1
2 1

2 1
2









,
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where we have suppressed all zero entries. Note that A is diagonalizable with twofold
degenerate eigenvalue 3. Its minimal polynomial has degree 3. Hence

ker[A, B] ∩ ker[A2, B] = ker[A, B] ∩ ker[A2, B] ∩ ker[A3, B] = Span{e4}

but

ker[A, B] ∩ ker[A2, B] ∩ ker[A, B2] = {0} .

In the next subsection we will explore an alternative approach based on the so-called
polynomial identities for matrix algebras.

5.2. Algebraic approach — polynomial identities

In algebra, polynomial identities are used to characterize various algebraic structures.
We will limit the exposition to a necessary minimum so as to make the present text
self-contained, focusing on applications to common invariant subspace problems.

Definition 3. An algebra A is said to be a polynomial identity algebra (a PI-algebra for short) if
there exists a polynomial P(x1, x2, . . . , xk) over the ring of integers in noncommuting variables xi

such that P(A1, A2, . . . , Ak) = 0 for all k-tuples of the elements Ai of A.

For example, a commutative algebra A is a PI-algebra with the polynomial Q2(x1, x2) =
x1x2 − x2x1. It turns out that special role is played by the so-called standard polynomials
which are natural generalizations of Q2,

Qn(x1, . . . , xn) = ∑
σ∈Sn

sign(σ)xσ(1) · · · xσ(n) , (10)

where the summation extends over the symmetric group Sn. Their importance is exemplified
by the Amitsur-Levitzki theorem on matrix algebras Mn.

Theorem 5 (Amitsur-Levitzki 1950). The full algebra Mn(C) satisfies the standard polynomial
identity of degree 2n,

Q2n(A1, . . . , A2n) ≡ 0 ∀ A1, . . . , A2n ∈ Mn ,

but it does not satisfy any polynomial identity of smaller degree.

In order to make a connection with the problem of common invariant subspaces, let us first
observe that if two matrices A and B share such a subspace W, then W is also invariant for
the entire algebra A(A, B) ⊂ Mn generated by A and B. In what follows we shall denote
this algebra by A for simplicity. So according to the Shemesh criterion (5), A restricted to N1

satisfies the standard polynomial identity Q2 ≡ 0, that is

(C1C2 − C2C1)v = 0 , ∀ C1, C2 ∈ A, ∀ v ∈ N1.

Open Systems, Entanglement and Quantum Optics58



Computational Complexity in the Analysis of Quantum Operations 19

10.5772/56159

Following [2] let us define the family of subspaces

Nk =
⋂

ker [Q2k(C1, . . . , C2k)C2k+1] , (11)

where the intersection extends over all (2k + 1)-tuples of elements Ci ∈ A. It turns out that
A restricted to Nk analogously obeys the identity Q2k ≡ 0. Of course, this is an interesting
property provided that Nk is not just the zero space.

Theorem 6. If Nk of (11) is nontrivial, then it is an invariant subspace for A and this algebra
restricted to Nk satisfies the standard polynomial identity Q2k ≡ 0, that is

Q2k(C1, . . . , C2k)v = 0 , ∀ C1, . . . , Ck ∈ A, ∀ v ∈ Nk.

Any other invariant subspace of A on which this algebra satisfies the identity Q2k ≡ 0 is contained
in Nk.

The proof can be found e.g. in [2]. The usefulness of this theorem can be appreciated by
noting that for subsequent values of k we obtain a filtration

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nn = C
n ,

which can yield partial answers to questions concerning invariant subspaces of specific
dimension. We stress here that each of Nk can be constructed by a finite rational procedure.
Namely, because of linearity of Q2k with respect to each individual variable, to find Nk it
suffices to make each Ci in the intersection (11) run independently through the elements of a
fixed basis of A.

The basis itself can be found by the following general procedure [1]. Consider finite products
of A and B, e.g. AB2 AB (called words over {A, B}) in lexicographic order:

I, A, B, A2, AB, BA, B2, A3, A2B, . . .

Words of a fixed length k form the k-th layer in this sequence. I alone forms here the zeroth
layer. Let Ak be the subspace of Mn spanned collectively by the layers 0 ≤ j ≤ k. Obviously,

A0 ⊂ A1 ⊂ · · · ⊂ Ap = Ap+1

for some p, the symbol ⊂ denoting here the proper inclusion. Then Ap = A(A, B) and the
first p + 1 layers form the spanning set for A.

To discuss the complexity of this procedure, note first that an obvious rough bound for p is
p ≤ n2 − 1, while there are various better estimates known in literature, see e.g. [10, 21, 22],
especially when some knowledge about A and B is available. In particular, if A and B
commute, then p < n, while the best general bound so far is that due to Pappacena [21],

p ≤ n

√

2n2

n − 1
+

1

4
+

n

2
− 2 ∼ O(n3/2) .
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However, bad news is that the k-th layer contains 2k words, so to construct Ak one has to
take account of about 2k+1 words. Then unless p turns out to be much smaller than n, we
are inevitably running here into the domain of nonpolynomial time complexity. So layers are
huge while the dimensions of subspaces Ak are small, not exceeding n2, and consequently
most of the new words from the k-th layer added in the process of forming Ak will turn out
linearly dependent with respect to the earlier processed ones. Yet p saturating the sequence
of inclusions of Ap may very well be comparable with n or even worse than that. The check
whether the next added word increases the dimension of Ak can itself be done by a Gaussian
elimination algorithm at polynomial cost.

Let us analyze in turn the complexity of computing Nk by (11) under the assumption that
a basis of A is given. Similarly as in the case of exterior-algebraic approach described
previously, the time complexity here depends critically on k. Firstly, the number of terms
in the standard polynomial Q2k grows very rapidly being equal (2k)!. Secondly, as indicated
above, the intersection in (11) has to extend over all (2k + 1)-tuples of d basis elements of A,
where d = dimA. Hence the number of terms to account for is d2k+1, which in the worst
case of d ∼ n2 is of the order of O(n4k+2). For k = 2 it is O(n10). We can see again that
such a direct method of construction of Nk can be carried out in practice only for small k.
It is a separate and interesting issue to explore to what extent can prior knowledge of some
properties of A and B simplify the computation of Nk. For instance, the nondegeneracy of
spectra of A or B can be expected to help.

In the discussion of consequences of Theorem 6 the following two corollaries can be
immediately formulated:

1. If W is an invariant subspace of A such that dim W ≤ k, then it is necessarily contained in Nk.

2. A has a nontrivial invariant subspace with dimension not exceeding k iff Nk 6= {0}.

While this constitutes some improvement over the previous exterior-algebraic treatment of
the existence of k-dimensional common invariant subspaces, the very question for a fixed
value of k cannot be fully answered on the basis of Theorem 6 alone. Let us mention here
only, without going into details which prove to be quite technical in this case, some more
results addressing this issue. In [9] the complete solution for k = 2 is given and it is indicated
that in the case of semisimple algebras A there is a complete rational solution for of the
problem for any 1 < k < n. In [3], the following theorem is proved.

Theorem 7. Let A = A(A, B) be a semisimple algebra. Then A has an irreducible3 invariant
subspace of dimension k iff dimNk−1 < dimNk.

Moreover, this result is further extended to arbitrary algebras by means of restricting the
analysis to the so-called socle of A, which is the maximal invariant subspace Λ of A such
that the restriction A|Λ is a semisimple algebra. Hence one can use Theorem 7 for A|Λ.
Then, since Λ can be shown to contain all irreducible invariant subspaces of A, the solution
turns out to be valid also for the original algebra A.

3 W is an irreducible invariant subspace of A if the restriction of A to W coincides with entire Mk , where k is the
dimension of W.
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It should be noted that for a finite-dimensional algebra A checking it for semisimplicity as
well as the construction of the socle of A can all be done by finite rational procedures. They
can be reduced to a Gaussian elimination on a d × d matrix, where d = dimA. Here again
we assume that some basis of A is given, for otherwise we run into the intractable problem
of constructing it.

Finally, let us point the reader to yet another approach [4] discussing a solution of the
common invariant subspace problem in the language of algebraic geometry and Gröbner
bases.

5.3. The application of Burnside’s theorem

Let us begin with the formulation of the theorem.

Theorem 8 (Burnside). Any subalgebra A of Mn(C) whose only invariant subspaces are {0} and
C

n is necessarily equal to Mn(C).

This result can be used to verify whether a given set of operators generates the whole
matrix algebra Mn, so it has natural application in analyzing sufficiency of various sets
of observables. Let us also note that the question of irreducibility of a quantum operation Φ

is equivalent to saying that the collection of Kraus operators for Φ (1) generates Mn.

When A = A(A, B), then Shemesh criterion is the tool that can be used directly to verify the
assumption in Burnside’s theorem: if N = {0} then A(A, B) = Mn. Suppose in turn that the
algebra A is generated by more than two operators, A = A(A1, . . . , Ap). We can adopt the
following strategy.

1. Compute Shemesh kernels N(Ai, Aj) for all pairs of operators.

2. Find the intersection Λ1 =
⋂

i,j N(Ai, Aj). If Λ1 = {0}, then A = Mn, otherwise continue
to step 3.

3. Replace the operators Ai with their restrictions to Λ1, Ai := Ai|Λ1
and carry on steps 1

and 2 to obtain Λ2. If Λ2 = Λ1, then Λ2 is the nontrivial invariant subspace of A and
consequently A 6= Mn. Otherwise iterate 3 with Λ2 in place of Λ1 to obtain Λ3 and so
on.

Clearly we have

Λ1 ⊃ Λ2 ⊃ · · · ⊃ {0} ,

so either all the inclusions above are proper and after a finite number of iterations we must
end up with Λt = {0}, or Λt = Λt+1 6= {0} for some t. Hence this procedure terminates.
Let us estimate its complexity. There are (p

2) ∼ p2 kernels to compute in step one, so its cost

is bounded by O(p2n5). The construction of Λ1 can be realized iteratively with the use of
Gauss elimination at the total cost of at most O(p2n3). Finally, the number of iterations of
step 3 is bounded by the dimension of A, that is by n2. Consequently the upper bound on
the complexity of the entire procedure is O(p2n7).
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6. Conclusions

We have seen that some rational computational procedures, while very useful for quantum
information theoretic analyses, have nonpolynomial time complexity which in principle
disqualifies them from practical applications. The polynomial complexity bounds obtained
for procedures using the Shemesh criterion may also look somewhat pessimistic, yet they
are certainly crude and we believe there is plenty of room for improvement if one uses
some extra knowledge about the operators taking part in the computation. There is an
apparent need for efficient algorithms for the construction of bases of finite-dimensional
algebras — without such methods many of the procedures discussed here cannot be carried
out efficiently. It is possible that some efficient Monte Carlo methods could be designed for
such a class of problems. Such situation is not uncommon in computational algebra, as many
of its problems belong to the BPP class. We hope to address some of these issues in future
research.
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1. Introduction

Mathematical theory of infinite dimensional Hilbert spaces and the theory of operator
algebras acting in such spaces (or C∗ algebras in a more abstract approach) provide
a standard setting for the formulation of modern quantum mechanics. On the other
hand, experimental and theoretical progress achieved in the field of quantum information
theory in the last two decades has indicated the practical and technological importance
of low-dimensional quantum systems, where only a few basic modes play a significant
role. Such modes can often be effectively decoupled from the rest of the system and
controlled separately, providing physical realizations of qubits, qutrits and other basic
information carriers. Regardless of concrete physical realization, be it photon polarization,
electron or nuclear spin, charge in Josephson junctions to name just a few, the mathematical
description of such systems requires only finite-dimensional Hilbert space language and
finite-dimensional matrix algebras. Such structures are in principle computationally
manageable in sharp contrast to the infinite dimensional ones.

It has to be pointed out, however, that there is a lot of misconception concerning the above
mentioned “manageability” notion in today’s quantum information literature. For instance,
one of the most fundamental errors appearing in innumerable papers is to indiscriminately
resort to the spectral resolution technique for hermitian matrices. Such an operation
cannot be considered computationally effective if the size of the matrix exceeds 4: then it
unavoidably involves solving an algebraic equation of degree 5 or more. Such task can be
achieved only by an approximate numerical process, and therefore any emerging questions
can be answered only up to numerical precision. The latter can be critical, for example, in
checking whether a hermitian matrix has a negative eigenvalue.

Fortunately, in many situations similar to the one just described there are other alternative
ways to obtain a precise answer, avoiding the approximate numerical computations. This

©2012 Michalski, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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is achieved by limiting oneself to the so-called finite rational computational procedures,
involving only finitely many arithmetic operations on initial data so that the data as well
as all intermediate and final computational results belong to the same number field. In
particular, the use of transcendental functions is thus excluded.

The present chapter will be devoted to a review of a few such procedures, important for
applications in quantum information theory. We will concentrate on the questions concerning
not only the effectiveness of such procedures, but also on more detailed computational
complexity issues. To describe better the subject of our considerations and to fix the
terminology, let us consider the already invoked example of checking whether a given
selfadjoint matrix has a negative eigenvalue, which in particular is a crucial ingredient in
entanglement detection procedures. Note that the problem is posed so that the precise
knowledge of the eigenvalue is not essential, it is its sign that matters.

Let A be a hermitian matrix in question and H be the respective Hilbert space. One can
formulate the negative eigenvalue problem in an equivalent form by asking whether A is or is
not positive semidefinite. As it is well known, positive semidefiniteness can be characterized
by several equivalent criteria, each of them being an example of a different effectiveness or
complexity issue. The list of relevant criteria is the following.

1. For each normalized vector |ψ〉 ∈ H one has 〈ψ | Aψ〉 ≥ 0. The test based on this criterion
is ineffective as it involves infinite number of conditions to verify, one for each |ψ〉.

2. All eigenvalues of A are nonnegative. As we have argued above, such test cannot be
considered an effective one either. In general, the correctness of the answer hinges upon
the numerical precision being used. We can call such tests asymptotically effective, meaning
that increased numerical accuracy can yield the definite yes/no answer, but no a priori
fixed precision is sufficient for the correctness of the whole class of such tests.

3. All principal minors of A are nonnegative. This is certainly an effective criterion as it
involves the evaluation of finitely many subdeterminants of A. The computation of a
determinant itself is a finite rational procedure. Note however, that direct application of
the present criterion requires the evaluation of nearly 2n minors, n being the size of A.
Although finite, this number grows very rapidly with n, making the test inefficient. In
practical terms, it may easily take years to complete such a test on the fastest computers,
even for A of moderate size. For example, if A results from an application of some
entanglement test to a mixed state of a system composed of merely 6 qubits, then n = 64
and hence the number of minors to compute is about 264 ≈ 1019. Assuming that our
computing device can evaluate 106 minors per second on average, the time required to
complete such a test would be of the order of 105 years. We characterize the computational
complexity of such procedures by saying that they are nonpolynomial in n. Problems for
which only nonpolynomial solution methods are available are termed intractable.

4. While the test of positive definiteness (Sylvester’s criterion) is much simpler, for it involves
only n leading principal minors of A, it has no counterpart for positive semidefinite
matrices. However, one can easily check that the following recursive procedure based
on Gaussian elimination can be used in this case. By A11 we denote here the submatrix
of A = [aij] obtained by the deletion of its 1st row and 1st column.

(a) If a11 < 0 then A is not positive semidefinite.
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(b) If a11 = 0 then A is not positive semidefinite unless its entire 1st column is null and
A11 is positive semidefinite.

(c) If a11 > 0 then we first perform row-elimination of the entire 1st column of A. Then
A is positive semidefinite iff the resulting A11 is such.

This is again a finite rational procedure. The largest computational effort in completing
such a check is needed when there are no 0 entries in the first column of A and, likewise,
no zeros are produced in A11 by the elimination. Then the recursive check uses the variant
(c) repeatedly, so that the total number of arithmetic operations performed is of the order
of n3. The complexity of the method is thus polynomial and its efficiency is much higher
than that of criterion 3. If as before n = 64, the test will complete in less than 1 second,
assuming the computer speed of 106 rational arithmetic operations per second.

Positive semidefiniteness is certainly a very simple issue, however the above example
highlights a few characteristic aspects of computational complexity. Mathematical problems
often admit many different solution methods which, similarly as in our example, may range
from ineffective to very efficient ones. Effective procedures however can often prove useless
in practice if the computational effort involved grows too fast with the size of input data. The
complexity of problems themselves can be characterized relative to the most efficient solution
methods known for them. In some cases theoretical complexity bounds can be derived for
classes of problems.

In the next section we provide a brief review of fundamental notions of computational
complexity theory.

2. Basic notions of computational complexity theory

In theoretical computer science, algorithms are classified according to their time or space
complexity. Time complexity gives an estimate of how does the number of elementary steps
in the algorithm scale with the size of input data defining an instance of the problem.
Space complexity refers to the scaling of the amount of workspace or extra memory (in
one convention the memory storing input data is not counted) needed in the course of
computation. The complexity of problems is related to their inherent difficulty and is
a theoretical estimate of the computational cost indispensable for their solution. Often
only some lower or upper complexity bounds are known for classes of problems. The
complexity theory uses the formalism of abstract Turing machines to ensure the universality
of conclusions.

It is not our goal to review the complexity theory in its general abstract formulation here,
but rather to provide necessary intuitions for an unacquainted reader. Those familiar with
computational complexity may well skip the current section.

The scaling of solution time or workspace with problem size is expressed using the “big O”
notation.

Definition 1. For two functions f , g : N → R one writes f (n) = O
(

g(n)
)

for n → ∞ if and
only if

∃ M ∈ R and n0 ∈ N such that | f (n)| ≤ M|g(n)| for n > n0 .
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For example, standard square matrix multiplication requires O(n3) arithmetic operations,
n being the matrix size. Since no extra memory beyond that for data storage is needed
for performing the multiplication, the space complexity here is O(n2). The Fast Fourier
Transform performs O(n log n) arithmetic operations on an n element data vector. Evaluation
of a determinant directly from its definition would involve the summation of n! terms,
however more efficient method using Gauss elimination reduces the effort to O(n3)
arithmetic operations. Evaluation of a permanent on the other hand appears more complex
(except for the case of computations over Z2, where −1 ≡ 1(mod2) and hence det A = per A):
the best methods known so far [8, 23] have the complexity of O(n2n).

One of the objectives of the theory is to identify complexity classes, consisting of problems
which can be solved by using only limited type of computational resources, which are
abstractly characterized by restricted classes of Turing machines, most notably the classes
P and NP. The class P consists of problems which can be solved by a deterministic Turing
machine executing a number of steps bounded by a polynomial in the input data size.
The class NP on the other hand consists of problems solvable in polynomial time by a
nondeterministic Turing machine. As the latter can be simulated by a deterministic machine in
exponential time, NP is often conventionally (yet not quite correctly) identified with the class
of problems solved by exponential (nonpolynomial) time deterministic algorithms. Strictly
speaking however, the essential feature of NP problems is that given a random candidate for
a solution it takes no more than polynomial number of steps to verify its correctness or to
reject it. Exponential time deterministic algorithms in NP can be thought of as performing
an extensive “blind” search in the space of potential solutions (which is the actual source
of nonpolynomial complexity) checking each of them at low (i.e. polynomial time) cost. In
contrast, problems in P admit “clever” constructive solution methods.

In practical terms, problems of type P can be solved relatively fast regardless of their size,
while for the NP type ones solution times become impractically long even for moderate size
of input data, c.f. our discussion of positive semidefiniteness verification in the previous
section. The distinction between efficient and inefficient methods is often used as a synonym
for that between P and NP classes.

Obviously P ⊂ NP, but it is a famous open question (although today hardly believed to
hold true) whether P = NP. The quest for an answer to the latter has led to the definition
of various special complexity classes, in particular the class of NP-complete problems, NP-C.
We say that a problem π can be polynomially transformed to another problem π′, in written
π ∝ π′, if the solution of π for input data of size n can be obtained by means of the execution
of an algorithm for π′ at most a polynomial in n number of times on new data translated
from the original input with at most polynomial effort. So if π′ ∈P (resp. in NP), then any
π such that π ∝ π′ is necessarily also in P (resp. NP).

Definition 2. A problem π is NP-complete iff

(i) π ∈ NP;

(ii) ∀ σ ∈ NP σ ∝ π.

If π satisfies only condition (ii), it is said to be NP-hard.
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It may appear that NP-C can well be empty, but it is not so as shown by Cook in [7]. The
first NP-C problem identified by Cook was the satisfiability of Boolean functions: given a
Boolean function F in variables x1, . . . , xn doest there exist a truth/false assignment to all xi

making the value of F true? Cook’s proof gives a method of how to cast, at polynomial cost,
an arbitrary nondeterministic Turing machine into the one computing Boolean functions.

Knowing at least one NP-C problem it becomes easier to identify other ones: if π ∈NP
is such that σ ∝ π for some σ ∈NP-C, then π ∈NP-C. The list of known NP-complete
problems exceeds now 3000 items. By definition, providing a polynomial time solution to any
single NP-C problem would automatically prove that P=NP. Because of this, NP-complete
problems are considered the hardest among NP ones. In other words, it is generally believed
that the search for exact polynomial time solution methods of NP-C problems is a waste of
time. On the other hand, there are numerous problems of practical interest for which neither
a proof of NP-completeness nor an efficient polynomial time solution method are known.
The most notable example is the problem of finding factors of large integers.

It is interesting that a large class of problems in matrix theory which possess an efficient
solution can be reduced to an evaluation of a small number of determinants or, equivalently,
can be expressed, as above, in terms of Gaussian elimination or — still more elementary
reduction — by a series of matrix multiplications. This point of view motivates the interest
in the design of fast matrix multiplication algorithms. Perhaps the best known schema of this
kind is due to V. Strassen (1969) and its complexity is O(n2.81), while more recent method of
Coppersmith and Winograd (1987) improves the efficiency to O(n2.367), the theoretical lower
bound being O(n2).

An example of NP-complete matrix algebra problem is the following [5]: given an n × m
matrix A over Z with n ≤ m, decide whether there exist a vanishing n × n subdeterminant of
A. The evaluation of a permanent is NP-hard, for it is most likely not in NP class. Again, the
existence of a polynomial algorithm for the computation of per A would infer the equality
P=NP. Many complicated counting problems in combinatorics and graph theory can be
reduced to an evaluation of a permanent. Actually, permanent evaluation is #P-complete,
meaning that all counting functions which can be defined in terms of NP problems can be
polynomially reduced to it, [25].

Another important complexity category, from a physicist’s point of view, is the so-called BPP
class (bounded error probabilistic polynomial time) consisting of decision problems solvable
in polynomial time by a probabilistic Turing machine, with the probability of producing wrong
answer bounded from above by a constant 0 ≤ p < 1/2. Less formally, this class corresponds
to Monte Carlo algorithms likely to yield correct answers and running in polynomial time.
Such conditions guarantee that in practice one can perform a relatively short series of
independent runs of the method to learn the correct answer with very high probability. By
Chernoff bound, the probability that incorrect answer appears in a series of runs most of the
time decays exponentially with the series length. If instead of probabilistic one uses quantum
Turing machines, the resulting class is called BQP (bounded error quantum polynomial time).
It is shown that BPP⊂BQP, but little is known so far about the relation of either of the classes
to NP.

Finally, PSPACE is a class of problems solvable by deterministic Turing machines using
at most polynomial in the data size amount of workspace. It is proved that adding
nondeterminism does not alter this class, namely PSPACE=NPSPACE. NP is thus clearly
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Figure 1. Hypothetical relations among complexity classes.

contained in PSPACE since using workspace of nonpolynomial size would automatically
require nonpolynomial time. Fig. 1 summarizes what has been said above about the
complexity classes.

Last but not least, there are problems which are provably undecidable, meaning that no finite
algorithm can ever resolve them. Among such tasks there is the fascinating tiling problem
[26].

Let us mention also that to date no general effective criteria are known for one of the most
fundamental decision problems in quantum information, namely the determination whether
a given mixed state of a bipartite system is entangled or not. All known exact methods,
apart from those for low-dimensional systems, namely for n = 4 = 2 × 2 and n = 6 = 2 × 3,
involve infinite number of computational tests (local actions of positive maps or, equivalently,
evaluation of expectations of entanglement witnesses). Moreover, no effective method is in
sight despite the two decades of intensive research efforts worldwide.

3. Some computational problems of quantum information theory

Quantum information (QI) theory regards quantum states as information carriers and
quantum evolution of states as acts of information processing. As we have already mentioned
in the Introduction, QI research focuses on low-dimensional quantum systems, qubits, qutrits
and likewise, which appear to be most interesting from the point of view of potential future
large-scale technological applications. Such low dimensional structures can be combined
into multipartite quantum systems, realizing quantum registers and memories. Namely,

given a low-dimensional Hilbert space, e.g. H2 ≃ C
2 for a qubit, the space of the compound
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multipartite system is then

H = H2 ⊗ · · · ⊗H2 = H
⊗n
2 ≃ C

2n

.

Genuinely quantum properties of such systems, most importantly the entanglement of
their states, are proved to underlie the extraordinary efficiency of quantum information
processing, surpassing that of the classical one. In what follows we shall silently assume
finite-dimensionality of all quantum systems in question.

Let us recall that pure states of a quantum systems are represented by vectors in the
respective Hilbert space, |ψ〉 ∈ H, while observables, i.e. measurable physical quantities,
correspond to selfadjoint operators acting on H, i.e. A ∈ B(H) such that A = A∗. In
the finite-dimensional setting they can be identified with Hermitian matrices in the matrix
algebra Mn(C), n = dimH. In passing to mixed states one replaces pure states with the
corresponding 1-dimensional projection operators, |ψ〉〈ψ| ∈ B(H), and one defines the
mixed states as statistical sums of mutually orthogonal projections, ̺ = ∑ pi|ψi〉〈ψi| with real
positive pi summing up to 1. So defined, mixed states are quantum counterparts of classical
discrete probability distributions. Their representatives are called density matrices. It can be
easily seen that density matrices form a convex subset Σ = Σ(H) of B(H) characterized by
positive semidefiniteness and normalization of trace1

̺ ∈ B(H) such that ̺ ≥ 0 and Tr ̺ = 1 .

According to the postulates of quantum mechanics, dynamical evolution of quantum systems
is described by the Schrödinger equation, which, when reformulated for mixed states, takes
the form of von Neumann equation

˙̺ = −i[H, ̺] = −i(H̺ − ̺H) .

Here H denotes the Hamiltonian of the system in question and we have assumed the
convention h̄ = 1. This equation is solved by

̺(t) = U(t)̺(0)U∗(t),

where the unitary propagator has the form U(t) = e−iHt.

Often, when the continuous time dependence of the system state is not the main issue, one
resorts to discretized dynamics, using e.g. the “time one” mapping, ̺′ = U̺U∗. It turns out
that general quantum operations, providing an adequate mathematical description of complex

1 More consistently, mixed states should be regarded as elements of the Hilbert-Schmidt dual of B(H), that is linear
functionals on B(H) acting on observables of the system by expectation ̺(A) = Tr(̺A). For finite-dimensional H

both B and B
∗

are in fact identical with Mn(C), the algebra of complex n × n matrices.
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multi-stage quantum processes, experiments or computations acting on system states have a
more general form of an operator sum

Φ(̺) = ∑ Ki̺K∗
i . (1)

These include, for instance, quantum measurements or transmission of states through noisy
quantum channels. The above so-called Kraus representation is the most general form of a
linear completely positive map Φ : B(H) → B(H). From the point of view of quantum theory
we are interested in the restriction of Φ to the set of density matrices Σ(H). Complete
positivity of Φ ensures that it preserves positivity of states, while an extra assumption is
needed to guarantee the preservation of trace, namely ∑ K∗

i Ki = I, where I denotes the
identity matrix. So, for such Φ we have Φ : Σ → Σ. In QI theory such maps represent general
quantum communication channels and typical questions studied in this context concern e.g.
the effect of Φ on the initial entanglement of the transmitted states, the impact of noise,
decoherence, etc. Let us mention also that Kraus representation, though very useful, has the
defect of not being unique for a given quantum map Φ.

It should be stressed that quantum operations in the above sense are as a rule nonunitary.
Even in the simplest case of Φ represented by two unitary (up to scaling) Kraus terms,
Φ(̺) = U̺U∗ + V̺V∗, the action of Φ is not unitary unless U = V up to a constant factor.
However, this is does not pose a contradiction with postulates of quantum mechanics. Let us
sketch briefly a typical open system scenario leading to nonunitary dynamics.

Suppose that we realistically consider a quantum system not as isolated one, but as remaining
in contact with an external bath, so that the underlying Hilbert space has the structure H =
HS ⊗HB, with HS and HB being respectively the system and the bath spaces. It is natural
then to cast the overall Hamiltonian in the following form:

H = HS ⊗ IB + IS ⊗ HB + HI ,

where HS and HB are the Hamiltonians describing the evolution of the system and bath
alone, HI represents the interaction between them and IS, IB are the respective identity
operators. While the overall system dynamics is unitary

̺(t) = U(t)̺(0)U∗(t) , U(t) = e−iHt ,

it is intractable in such an exact form due to typically huge number of degrees of freedom
of the bath. It is then natural to pass to a statistical description of the system evolution
by averaging the bath out, assuming in addition that initially the system and the bath are
decoupled, that is

̺S(t) = TrB

(

U(t) ̺S(0)⊗ ̺B(0)U∗(t)
)

= ∑
α

Aα(t)̺S(0)A∗
α(t) , (2)

where the Kraus operators emerge as Aα = cα〈βi|U|β j〉 with α enumerating index pairs (i, j)
and |βi〉 being the bath basis states. This is clearly a nonunitary evolution unless all Aα are
the same up to scalar factors — an unlikely event.
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Nevertheless, there may exist a smaller subspace HDF of HS where the reduced dynamics
(2) actually is unitary. This is equivalent to saying that there exists a basis of HS in which all
Kraus operators Aα have simultaneously the block form

Aα =





sαV 0

0 Ãα



 , (3)

where V is unitary on HDF, sα are scaling factors and Ãα are arbitrary operators on H
⊥
DF,

the orthocomplement of HDF in HS. Such a space is called decoherence-free as the coherent
state evolution in this space is isolated from the destructive impact of the bath.

Similarly, one can derive conditions for the existence of a decoherence-free subspace in the
framework of Markovian approximation of an open system dynamics, and they turn out to
have a form consistent with (3) above. Let us recall that the following master equation in the
Gorini-Kosakowski-Sudarshan form provides the most general description of a completely
positive Markovian time evolution of a quantum system interacting with its environment
[11, 20],

˙̺ = −i[H, ̺] +
1

2 ∑
ij

cij

(

[Fi, ̺F∗
j ] + [Fi̺, F∗

j ]
)

, (4)

where the sum collects all the terms responsible for nonunitary decohering dynamics. Thus
H is the system Hamiltonian, the operators Fi are the so-called error fields and they represent
the coupling of the system with its environment, while the hermitian structure matrix [cij]
carries other physically relevant information. Now, if HDF is to be a decoherence-free
subspace, then for any ̺ supported on it the second term in (4) must vanish identically,
so that the resulting dynamics is purely unitary. If one assumes certain robustness, or generic
property in the terminology of [18], of this subspace, meaning that the vanishing of the
nonhamiltonian part is not the result of some fine-tuning among structure parameters cij

but rather the effect of simultaneous vanishing of all individual terms, it can be seen that
HDF must be spanned by common eigenvectors of all error fields. In particular, [Fi, Fj] = 0
on HDF.

Let us now go back to general quantum operations represented by completely positive
trace preserving maps in the form (1). As we have seen, the basic issue in the search
for decoherence free subspaces is the identification of common eigenvectors of all Kraus
operators Ki and maximal common invariant subspaces spanned by them. For reasons
outlined in the introduction, it is impractical to approach this problem by means of direct
evaluation of eigenvectors. As a rule, such computations are prone to numerical errors
and hence the precise identification of common eigenvectors cannot be achieved this way. In
section 5, we will describe an alternative constructive method based on simple linear algebra,
the so-called Shemesh criterion, which allows one to identify common invariant subspaces
of several operators.

We shall conclude this section by mentioning three more situations where the identification
of common invariant subspaces plays a significant role.
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1. Characterization of irreducibility of quantum operations, [14, 15]. Irreducible quantum
operations (superoperators) appear as a natural generalization of the notion of positive
semidefinite irreducible linear operators, treated in particular by Perron-Frobenius theory.
The latter provides a very useful and simple characterization of the spectra of irreducible
operators. It turns out that if a quantum operation Φ is given in terms of Kraus
representation (1), then it is irreducible if and only if the operators Ki do not share a
nontrivial invariant subspace. In other words, no decoherence-free subspace exists for an
irreducible Φ.

2. Identification of sufficient algebras of observables, [12, 13]. To identify an unknown
quantum state ̺, an experimenter has to perform a number of measurements on the
system in question, collecting data that can be used subsequently in the estimation of
̺. Each of these measurements returns an expectation of the measured observable Ai

in the state ̺, that is the quantity Tr(Ai̺). A natural question that emerges is how to
optimize such a data collection, namely how to choose observables Ai to obtain maximum
information with the least experimental effort. Sufficiency of an algebra generated by a
finite collection of observables A = A(A1, . . . , Ap) means that the information acquired
in the measurement process Tr(Ai̺), i = 1, . . . , p, characterizes the state ̺ completely.
One of the rationally verifiable conditions which can be used here is based on Burnside’s
theorem, which allows one to check whether a given set of observables generates the full
matrix algebra Mn or not. This question can again be related with the existence of a
common invariant subspace for the generators of A.

3. Error correcting codes, [6, 17]. This is a more general case than that of the existence
of a decoherence-free subspace. Here, one is interested in establishing the existence of
a subspace HEC, the subscript EC for error correcting, of HS on which the action of
the channel Φ can be effectively inverted, namely, there exists a quantum operation Θ

such that for states ̺ supported on HEC one has Θ(Φ(̺)) = ̺. The motivation behind
such a demand is that the basis states of HEC can be regarded as “code words” which
can unambiguously be unscrambled after transmission through the generally corrupting
channel Φ, and thus they can be used to safely encode portions of information to be sent
through the channel. As shown in [17], the necessary and sufficient condition for the
existence of an EC subspace for an operation Φ resulting from (2) can be phrased in the
following simple algebraic form involving the Kraus operators Aα: there exists a basis of
HS such that for all α, β

A∗
α Aβ =





rαβ I 0

0 Ã∗
α Ãβ



 ,

where as before Ãα, Ãβ are arbitrary operators on H
⊥
EC and R = [rαβ] is a scalar matrix. I

in the upper left block is the identity on HEC. Note that the decoherence-free subspace is
a special case of an EC space, since then from (3) it follows that the matrix R has a very
special form rαβ = s̄αsβ and therefore has rank 1.

4. Characteristic and minimal polynomials

As we have mentioned in the introduction, the precise determination of eigenvalues of a
matrix by means of a finite rational computation is in general impossible. The same is true for
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eigenvectors. One can nevertheless rationally acquire exact knowledge about some spectral
properties of a matrix, for instance by studying its characteristic and minimal polynomials.
Numerous methods for obtaining the polynomials can be found in algebraic literature, and
we are going to recall two of them here.

For an n × n complex matrix A let

χA(λ) = det(λI − A) = λn + p1λn−1 + · · ·+ pn−1λ + pn

be its characteristic polynomial. We will describe the method of undetermined coefficients
— an efficient algorithm yielding the numbers pi. The procedure begins with the evaluation
of auxiliary constants

Dk := χA(k) = det(kI − A) , k = 0, 1, . . . , n − 1 .

Next the following system of linear equations in the unknowns p1, . . . , pn is formed



























pn = D0

1n + p11n−1 + · · · + pn = D1

2n + p12n−1 + · · · + pn = D2

· · · · · · · · ·

(n − 1)n + p1(n − 1)n−1 + · · · + pn = Dn−1

or equivalently











1n−1 1n−2 · · · 1

2n−1 2n−2 · · · 2
...

...
. . .

...

(n − 1)n−1 (n − 1)n−2 · · · n − 1





















p1

p2
...

pn−1











=











D1 − D0 − 1n

D2 − D0 − 2n

...
Dn−1 − D0 − (n − 1)n











.

Writing Sn−1 for the matrix on the left hand side, the solution can be expressed in compact

vector notation as p = S−1
n−1D. Note that Sn−1 is a constant matrix whose inverse can be

computed and stored beforehand and used repeatedly for various input matrices A. The
computational cost is thus limited to the determination of the vector D, and hence is bounded
by O(n4). For comparison, direct expansion expressing the coefficients pi by the sums of i-th
order principal minors of A results in the computation scheme of complexity O(2n).

The minimal polynomial of a A is defined to be the least degree monic polynomial µ (i.e.
with the leading coefficient 1) which annihilates A, µ(A) = 0. Alternatively, it can be given
in the form

µA(λ) = (λ − λ1)
r1 · · · (λ − λk)

rk ,

where λi are distinct eigenvalues of A and ri denotes the order of the largest Jordan block
for λi in the canonical representation of A. Clearly µA divides χA.
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One obvious direct method consists in checking the sequence of matrices

I, A, A2, . . . , Ar

for linear independence, systematically for r = 1, 2, . . .. The least r for which the sequence
turns out to be linearly dependent is the degree of the minimal polynomial µA, and the
respective vanishing linear combination

cr I + cr−1 A + · · · + c1 Ar−1 + c0 Ar = 0

yields, after dividing by c0, the coefficients of µA. This task can be realized by applying
Gauss elimination to the r × n2 matrix whose rows are the reshaped matrices I, A, A2, . . ., i.e.
row vectors obtained by arranging the elements of Ai lexicographicaly row after row. The
complexity of such process is O(n4).

An equivalent method often used in practice is a variant of Krylov subspace algorithm, based
on the following classical theorem.

Theorem 1. For a linear map A : V → V let W1, . . . , Wk be subspaces of V such that

i) W1 + · · ·+ Wk = V, the sum not necessarily being direct,

ii) each Wi is invariant for A,

iii) the restriction A|Wi
has minimal polynomial mi.

Then the minimal polynomial µA of A on V is the least common multiple of m1, . . . , mk.

The algorithm has the following steps.

1. Pick nonzero v ∈ V and iteratively compute its Krylov subspace relative to A,

W = Span{v, Av, . . . , Ad−1v} .

That is, d is the smallest number such that the vectors v, Av, . . . , Adv are linearly
dependent, namely

Adv = c1 Ad−1v + · · · cd−1 Av + cdv .

By construction, the subspace W is invariant for A. It is not difficult to justify that

m(λ) = λd − c1λd−1 − · · · − cd−1λ − cd

is the minimal polynomial of the restriction A|W .

2. Set W1 = W and m1 = m. If W1 = V we are done, otherwise pick v′ 6∈ W1 and repeat step
1 to obtain W2 and m2 and so on. The construction terminates when W1 +W2 + · · ·+Wk =
V.
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3. Find µA as the least common multiple of m1, . . . , mk. This can be done rationally by using
Euclid’s algorithm repeatedly to find first GCD of pairs of polynomials mi.

Most of the computational effort resides here in the construction of Krylov subspaces. For
each new vector Aiv added to W linear dependence is checked by Gaussian elimination.
Altogether no more than n such checks are performed so the complexity bound is O(n4).

Let us conclude this section by mentioning some exemplary problems in quantum physics,
where knowledge of spectral and minimal polynomials plays a role. Firstly, it is the design
of optimal setups for stroboscopic tomography of states [12, 13]. Namely, one has to find
a minimal set of observables and design a stroboscopic measurement, i.e. one performed at
preselected time instants when the measured observables are subdued to time evolution, the
objective being to collect information sufficient for the complete reconstruction of a quantum
state with least experimental effort. To this end, Krylov subspaces of the observables relative
to the generator of the dynamics have to be constructed. The degree of the minimal
polynomial of the dynamics generator is one of the essential parameters appearing in the
design process.

Second set of examples is related to the construction of common invariant subspaces for
families of operators, which finds application e.g. in the identification of decoherence-free
subspaces in open quantum systems. This problem will be discussed in detail in the
next section. It turns out that the construction of such common invariant subspaces
can be simplified considerably if one of the operators has nondegenerate spectrum. The
former property can be tested for an operator A by analyzing the GCD of its characteristic
polynomial and its derivative: the eigenvalues are simple iff χA and χ′

A are relatively prime.
To detect diagonalizability, one has to perform a similar test on the minimal polynomial of
A. An alternative for the Euclidean GCD algorithm is the singularity test of the so-called
associated Sylvester matrix [27].

5. Common invariant subspaces

The problem we are going to discuss now in its simplest version can be formulated as follows:
given two square matrices A, B ∈ Mn decide whether they have an eigenvector in common.
We are interested, of course, in finite rational procedures solving this problem. As it was
indicated in the introduction, naive direct approach by literally finding the eigenspaces of
A and B and comparing them is useless because of finite accuracy of numerics. We will be
concerned with a more general formulation of the problem, namely we will ask whether two
matrices share an invariant subspace of dimension k and how to find such subspace.

In what follows, we will discuss certain finite rational computational procedures detecting
the existence of common invariant subspaces for pairs of operators. There are no known
direct generalizations of such procedures to work for more than two operators at a time.
However, if one can constructively obtain common invariant subspaces for all pairs of
operators in the set A1, . . . , Ap, then taking their intersection one obtains a candidate for
the global solution. It has to be verified though, because the resulting space need not be
invariant for some (or any!) of the operators Ai. The computational complexity of such
a construction will add a factor p2 to that of the process performed for a single pair of
operators. The intersection of p2 subspaces of dimensions bounded by n can be constructed
in time bounded by p2n3.
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5.1. Shemesh criterion and related methods

The basic tool in the detection of common invariant subspaces is the so-called Shemesh
criterion [24]. We use here the standard notation [A, B] for the commutator of matrices A
and B.

Theorem 2 (Shemesh 1984). Matrices A, B ∈ Mn possess a common eigenvector if and only if the
subspace

N =
n−1
⋂

k,l=1

ker
[

Ak, Bl
]

(5)

is of positive dimension. Moreover, N is invariant with respect to both A and B and restrictions of
A and B to N commute. Every common invariant subspace of A and B (on which they commute) is
contained in N.

Let us remark that n above can be replaced by r and s — the degrees of minimal polynomials
of A and B, respectively.

We shall analyze now the complexity of a direct method of checking Shemesh criterion and
that of constructing N — the maximal common invariant subspace of A and B. Let us stress
here that while the existence of a 1-dimensional common invariant subspace (corresponding
to the common eigenvector of A and B) in N is guaranteed by the criterion, it does not answer
any questions concerning k-dimensional common invariant subspaces, 2 ≤ k < dimN, not to
mention the problem of constructing them by finite rational procedures. Such procedure can
be nevertheless easily obtained for the space N. Let us also indicate that no finite rational
method should be expected to yield the common eigenvector in N. If there were one, we
would have a finite method to compute exactly the corresponding eigenvalues of A and B
which is, in general, unfeasible.

To estimate the complexity of Shemesh’s criterion, let us first note that computing the
commutator [A, B] has the same complexity as matrix multiplication2, namely O(n3). The
number of commutators to evaluate in (5) is at most (n − 1)2, so that the total amount of
algebra is bounded here by O(n5). Finally, finding the intersection of kernels can be done
just by means of solving the system of homogeneous linear equations in n variables given by
the n(n − 1)2 × n matrix















[A, B]

[A, B2]

...

[An−1, Bn−1]















. (6)

This is achieved by the Gaussian elimination algorithm again in O(n5) steps, hence the overall
complexity of finding N is O(n5).

2 Of course, one can always lower the exponent 3 to some extent by resorting to fast matrix multiplication schemes.
This may be of practical importance when working with large matrices, here however we are mainly interested in
establishing just polynomial complexity of our procedures.
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An equivalent formulation of Shemesh condition (dimN > 0) is that

det
n−1

∑
k,l=1

[Ak, Bl ]∗ · [Ak, Bl ] = 0

but it does not simplify the computation as the sum above involves (n − 1)2 terms, each one
computable with the arithmetic cost of O(n3) operations.

Let us turn to a more complicated problem of verifying the existence of a common invariant
subspace of prescribed dimension 2 ≤ k < n. This is partly solved by applying the Shemesh
criterion to exterior powers (wedge powers) of A and B. Recall that A∧k is the restriction of

A⊗k to the antisymmetric subspace of
(

C
n)⊗k

. More explicitly, A∧k is an m × m matrix with
m = (n

k), the elements of which are

(

A∧k
)

α,β
= det A[α|β] ,

where α and β stand for multi-indices α = (i1, i2, . . . , ik), with 1 ≤ i1 < i2 < · · · < ik ≤ n.
A[α|β] is a k × k submatrix of A with rows and columns specified by α and respectively β.
The space Nk corresponding to N (= N1) in (5) is now defined by analogy as

Nk =
m−1
⋂

i,j=1

ker
[

(

A∧k
)i

,
(

B∧k
)j
]

. (7)

The trick of using exterior algebra takes advantage of a simple fact that if λ1, . . . , λk are
eigenvalues of A with (linearly independent) eigenvectors v1, . . . , vk then λ1λ2 · · · λk is
an eigenvalue of A∧k with eigenvector v1 ∧ · · · ∧ vk. So if v1, . . . , vk span an invariant
k-dimensional subspace of A and B then obviously v1 ∧ · · · ∧ vk is a common eigenvector
of A∧k and B∧k. The corresponding sufficient condition, however, turns our to be more
complicated. Nontriviality of Nk guarantees the existence of an eigenvector shared by A∧k

and B∧k but it is now an object in the exterior algebra of Cn and, in general, it need not be
decomposable, i.e. of pure product form v = v1 ∧ · · · ∧ vk. Consequently the reconstruction
of a k-dimensional common invariant subspace of A and B from v may no longer be easy
if at all possible. The source of this difficulty resides in the fact that the spectrum of A∧k

or B∧k may be degenerate. This possibility has to be, therefore, excluded by an additional
assumption. As we will see shortly, such an assumption can be further relaxed to another
one postulating the nondegeneracy of eigenvalues of either A or B alone.

The generalized Shemesh criterion [9] takes the following form.

Theorem 3 (Generalized Shemesh Criterion).

Necessity: If A and B have a common invariant subspace of dimension 2 ≤ k < n, then Nk as
defined in (7) has positive dimension (i.e. A∧k and B∧k share an eigenvector).

Sufficiency: Suppose that A∧k has nondegenerate eigenvalues and det B 6= 0. Then if Nk 6= {0},
there exists a common k-dimensional invariant subspace of A and B.
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In order to show how one can simplify the extra conditions in the sufficiency part of the
above theorem, let us note that for an arbitrary matrix C the spectral shift transformation
C 7→ Ct = C − tI does not alter its invariant subspaces. The following two facts proved
in [9] allow one to preprocess, if necessary, the initial matrices A and B so that the extra
requirements are fulfilled, at the same time leaving their invariant subspaces intact.

Fact 1. For any singular complex matrix B, a shift t ∈ N can be computed by a finite rational
procedure so that det(B − tI) 6= 0.

The procedure is very simple: it computes det(B − tI) for t = 1, 2, . . . until a nonzero value
is found. Since the characteristic polynomial of B has no more than n distinct roots, the
computation must terminate in no more than n − 1 steps.

Fact 2. If all eigenvalues of A are nondegenerate and 2 ≤ k < n, then a shift t ∈ N can be
computed by a finite rational procedure so that the matrix (A − tI)∧k also has only simple
eigenvalues.

See [9] for the proof of Fact 2. Its essence is that one can probe subsequent values of the shift
parameter t = 0, 1, . . . until nondegeneracy of eigenvalues occurs, which is shown to happen
after no more than 1

2 kn2k of such tests.

We are equipped now to describe the complete algorithm determining the existence of
k-dimensional invariant subspace common to A and B. Let φA denote the characteristic
polynomial of A.

1. Check whether A has distinct eigenvalues by computing the resultant of φA and φ′
A (as

we have mentioned in Section 3, this can be done conveniently by expressing it as the
determinant of the Sylvester matrix [27] of φA and φ′

A) and checking whether it is nonzero.
If the test fails for A, try the same for B and switch A and B if B has simple eigenvalues.
If both tests fail, the generalized Shemesh criterion cannot be used.

2. If B is singular, apply the spectral shift t as in Fact 1. Replace B with B − tI.

3. Compute the matrix A∧k and check whether it has nondegenerate eigenvalues (see step 1).
If so, go to step 4, otherwise apply the spectral shift to A as described in Fact 2 and repeat
step 3.

4. Compute B∧k and Nk as in (7). If Nk has positive dimension, then A and B have common
k-dimensional invariant subspace.

It should be stressed again that Shemesh criterion yields a “yes/no” answer about the
extistence of a common eigenvector (or, respectively, of k-dimensional common invariant
subspace), but does not help in constructing them.

The complexity of the above algorithm is determined by n and k. The most time-consuming
operations are those performed on the exterior powers of A and B because of their size
m = (n

k), which grows roughly like nk for k = 2, . . . ,
[

n
2

]

. To obtain A∧k, one has to evaluate

m2 minors of A of size k× k, hence the computational cost is bounded by O(k3 n2k). Checking
for nondegeneracy of eigenvalues of A ∈ Mn costs as much as the evaluation of φA, which
can be done in O(n3) steps, plus the cost of computing the (2n − 1)× (2n − 1) determinant
of the respective Sylvester matrix, so its overall complexity is O(n3). Step 3 of the algorithm
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probing possible shift parameters performs no more than O(km2) of nondegeneracy tests,
each at the expense of O(m3) arithmetic operations. Therefore the complexity of step 3
evaluates to O(kn5k). Finally, the complexity of constructing Nk by (7) is, as shown before,
O(m5) or in terms of n and k O(n5k).

The estimation above shows that even for small values of k, although of polynomial time
complexity, the method is not very practical. Already for k = 2, the computational effort is
of the order O(n10) in the worst case.

Let us mention one more recent result [16] which shows that the nondegeneracy condition
can in fact simplify the original Shemesh criterion, slightly reducing its computational
complexity.

Theorem 4 (Jamiołkowski, 2012). Let A have only simple eigenvalues. Then the formula (5) for
the space N in the original Shemesh criterion can be simplified to

N =
n−1
⋂

k=1

ker
[

Ak, B
]

(8)

which reduces the complexity of its construction to O(n4).

Indeed, the number of commutators to evaluate in (8) is now at most n − 1, O(n3) arithmetic
operations each, and the system of homogeneous equations defining N is of the size n(n −
1)× n, so the complexity of solving it is also O(n4).

As the sufficiency part of the generalized Shemesh condition requires the nondegeneracy of
the spectrum of A∧k, so the formula (7) automatically simplifies analogously to

Nk =
m−1
⋂

i=1

ker
[

(

A∧k
)i

, B∧k
]

. (9)

Hence the complexity of finding Nk reduces to O(m4), that is O(n4k).

Let us note, however, that somewhat weaker assumption of diagonalizability of A does
not, in general, lead to a simplification of the Shemesh formula by limiting the number of
commutators that have to be computed. This is illustrated by the following simple example.
Let {e1, . . . , e4} be a basis in which A and B have the following form:

A =









1 1
1 2

3
3









, B =









2 1
2 1

2 1
2









,

Computational Complexity in the Analysis of Quantum Operations
http://dx.doi.org/10.5772/56159

57



18 Open Systems, Entanglement and Quantum Optics

where we have suppressed all zero entries. Note that A is diagonalizable with twofold
degenerate eigenvalue 3. Its minimal polynomial has degree 3. Hence

ker[A, B] ∩ ker[A2, B] = ker[A, B] ∩ ker[A2, B] ∩ ker[A3, B] = Span{e4}

but

ker[A, B] ∩ ker[A2, B] ∩ ker[A, B2] = {0} .

In the next subsection we will explore an alternative approach based on the so-called
polynomial identities for matrix algebras.

5.2. Algebraic approach — polynomial identities

In algebra, polynomial identities are used to characterize various algebraic structures.
We will limit the exposition to a necessary minimum so as to make the present text
self-contained, focusing on applications to common invariant subspace problems.

Definition 3. An algebra A is said to be a polynomial identity algebra (a PI-algebra for short) if
there exists a polynomial P(x1, x2, . . . , xk) over the ring of integers in noncommuting variables xi

such that P(A1, A2, . . . , Ak) = 0 for all k-tuples of the elements Ai of A.

For example, a commutative algebra A is a PI-algebra with the polynomial Q2(x1, x2) =
x1x2 − x2x1. It turns out that special role is played by the so-called standard polynomials
which are natural generalizations of Q2,

Qn(x1, . . . , xn) = ∑
σ∈Sn

sign(σ)xσ(1) · · · xσ(n) , (10)

where the summation extends over the symmetric group Sn. Their importance is exemplified
by the Amitsur-Levitzki theorem on matrix algebras Mn.

Theorem 5 (Amitsur-Levitzki 1950). The full algebra Mn(C) satisfies the standard polynomial
identity of degree 2n,

Q2n(A1, . . . , A2n) ≡ 0 ∀ A1, . . . , A2n ∈ Mn ,

but it does not satisfy any polynomial identity of smaller degree.

In order to make a connection with the problem of common invariant subspaces, let us first
observe that if two matrices A and B share such a subspace W, then W is also invariant for
the entire algebra A(A, B) ⊂ Mn generated by A and B. In what follows we shall denote
this algebra by A for simplicity. So according to the Shemesh criterion (5), A restricted to N1

satisfies the standard polynomial identity Q2 ≡ 0, that is

(C1C2 − C2C1)v = 0 , ∀ C1, C2 ∈ A, ∀ v ∈ N1.
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Following [2] let us define the family of subspaces

Nk =
⋂

ker [Q2k(C1, . . . , C2k)C2k+1] , (11)

where the intersection extends over all (2k + 1)-tuples of elements Ci ∈ A. It turns out that
A restricted to Nk analogously obeys the identity Q2k ≡ 0. Of course, this is an interesting
property provided that Nk is not just the zero space.

Theorem 6. If Nk of (11) is nontrivial, then it is an invariant subspace for A and this algebra
restricted to Nk satisfies the standard polynomial identity Q2k ≡ 0, that is

Q2k(C1, . . . , C2k)v = 0 , ∀ C1, . . . , Ck ∈ A, ∀ v ∈ Nk.

Any other invariant subspace of A on which this algebra satisfies the identity Q2k ≡ 0 is contained
in Nk.

The proof can be found e.g. in [2]. The usefulness of this theorem can be appreciated by
noting that for subsequent values of k we obtain a filtration

{0} = N0 ⊂ N1 ⊂ · · · ⊂ Nn = C
n ,

which can yield partial answers to questions concerning invariant subspaces of specific
dimension. We stress here that each of Nk can be constructed by a finite rational procedure.
Namely, because of linearity of Q2k with respect to each individual variable, to find Nk it
suffices to make each Ci in the intersection (11) run independently through the elements of a
fixed basis of A.

The basis itself can be found by the following general procedure [1]. Consider finite products
of A and B, e.g. AB2 AB (called words over {A, B}) in lexicographic order:

I, A, B, A2, AB, BA, B2, A3, A2B, . . .

Words of a fixed length k form the k-th layer in this sequence. I alone forms here the zeroth
layer. Let Ak be the subspace of Mn spanned collectively by the layers 0 ≤ j ≤ k. Obviously,

A0 ⊂ A1 ⊂ · · · ⊂ Ap = Ap+1

for some p, the symbol ⊂ denoting here the proper inclusion. Then Ap = A(A, B) and the
first p + 1 layers form the spanning set for A.

To discuss the complexity of this procedure, note first that an obvious rough bound for p is
p ≤ n2 − 1, while there are various better estimates known in literature, see e.g. [10, 21, 22],
especially when some knowledge about A and B is available. In particular, if A and B
commute, then p < n, while the best general bound so far is that due to Pappacena [21],

p ≤ n

√

2n2

n − 1
+

1

4
+

n

2
− 2 ∼ O(n3/2) .
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However, bad news is that the k-th layer contains 2k words, so to construct Ak one has to
take account of about 2k+1 words. Then unless p turns out to be much smaller than n, we
are inevitably running here into the domain of nonpolynomial time complexity. So layers are
huge while the dimensions of subspaces Ak are small, not exceeding n2, and consequently
most of the new words from the k-th layer added in the process of forming Ak will turn out
linearly dependent with respect to the earlier processed ones. Yet p saturating the sequence
of inclusions of Ap may very well be comparable with n or even worse than that. The check
whether the next added word increases the dimension of Ak can itself be done by a Gaussian
elimination algorithm at polynomial cost.

Let us analyze in turn the complexity of computing Nk by (11) under the assumption that
a basis of A is given. Similarly as in the case of exterior-algebraic approach described
previously, the time complexity here depends critically on k. Firstly, the number of terms
in the standard polynomial Q2k grows very rapidly being equal (2k)!. Secondly, as indicated
above, the intersection in (11) has to extend over all (2k + 1)-tuples of d basis elements of A,
where d = dimA. Hence the number of terms to account for is d2k+1, which in the worst
case of d ∼ n2 is of the order of O(n4k+2). For k = 2 it is O(n10). We can see again that
such a direct method of construction of Nk can be carried out in practice only for small k.
It is a separate and interesting issue to explore to what extent can prior knowledge of some
properties of A and B simplify the computation of Nk. For instance, the nondegeneracy of
spectra of A or B can be expected to help.

In the discussion of consequences of Theorem 6 the following two corollaries can be
immediately formulated:

1. If W is an invariant subspace of A such that dim W ≤ k, then it is necessarily contained in Nk.

2. A has a nontrivial invariant subspace with dimension not exceeding k iff Nk 6= {0}.

While this constitutes some improvement over the previous exterior-algebraic treatment of
the existence of k-dimensional common invariant subspaces, the very question for a fixed
value of k cannot be fully answered on the basis of Theorem 6 alone. Let us mention here
only, without going into details which prove to be quite technical in this case, some more
results addressing this issue. In [9] the complete solution for k = 2 is given and it is indicated
that in the case of semisimple algebras A there is a complete rational solution for of the
problem for any 1 < k < n. In [3], the following theorem is proved.

Theorem 7. Let A = A(A, B) be a semisimple algebra. Then A has an irreducible3 invariant
subspace of dimension k iff dimNk−1 < dimNk.

Moreover, this result is further extended to arbitrary algebras by means of restricting the
analysis to the so-called socle of A, which is the maximal invariant subspace Λ of A such
that the restriction A|Λ is a semisimple algebra. Hence one can use Theorem 7 for A|Λ.
Then, since Λ can be shown to contain all irreducible invariant subspaces of A, the solution
turns out to be valid also for the original algebra A.

3 W is an irreducible invariant subspace of A if the restriction of A to W coincides with entire Mk , where k is the
dimension of W.
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It should be noted that for a finite-dimensional algebra A checking it for semisimplicity as
well as the construction of the socle of A can all be done by finite rational procedures. They
can be reduced to a Gaussian elimination on a d × d matrix, where d = dimA. Here again
we assume that some basis of A is given, for otherwise we run into the intractable problem
of constructing it.

Finally, let us point the reader to yet another approach [4] discussing a solution of the
common invariant subspace problem in the language of algebraic geometry and Gröbner
bases.

5.3. The application of Burnside’s theorem

Let us begin with the formulation of the theorem.

Theorem 8 (Burnside). Any subalgebra A of Mn(C) whose only invariant subspaces are {0} and
C

n is necessarily equal to Mn(C).

This result can be used to verify whether a given set of operators generates the whole
matrix algebra Mn, so it has natural application in analyzing sufficiency of various sets
of observables. Let us also note that the question of irreducibility of a quantum operation Φ

is equivalent to saying that the collection of Kraus operators for Φ (1) generates Mn.

When A = A(A, B), then Shemesh criterion is the tool that can be used directly to verify the
assumption in Burnside’s theorem: if N = {0} then A(A, B) = Mn. Suppose in turn that the
algebra A is generated by more than two operators, A = A(A1, . . . , Ap). We can adopt the
following strategy.

1. Compute Shemesh kernels N(Ai, Aj) for all pairs of operators.

2. Find the intersection Λ1 =
⋂

i,j N(Ai, Aj). If Λ1 = {0}, then A = Mn, otherwise continue
to step 3.

3. Replace the operators Ai with their restrictions to Λ1, Ai := Ai|Λ1
and carry on steps 1

and 2 to obtain Λ2. If Λ2 = Λ1, then Λ2 is the nontrivial invariant subspace of A and
consequently A 6= Mn. Otherwise iterate 3 with Λ2 in place of Λ1 to obtain Λ3 and so
on.

Clearly we have

Λ1 ⊃ Λ2 ⊃ · · · ⊃ {0} ,

so either all the inclusions above are proper and after a finite number of iterations we must
end up with Λt = {0}, or Λt = Λt+1 6= {0} for some t. Hence this procedure terminates.
Let us estimate its complexity. There are (p

2) ∼ p2 kernels to compute in step one, so its cost

is bounded by O(p2n5). The construction of Λ1 can be realized iteratively with the use of
Gauss elimination at the total cost of at most O(p2n3). Finally, the number of iterations of
step 3 is bounded by the dimension of A, that is by n2. Consequently the upper bound on
the complexity of the entire procedure is O(p2n7).
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6. Conclusions

We have seen that some rational computational procedures, while very useful for quantum
information theoretic analyses, have nonpolynomial time complexity which in principle
disqualifies them from practical applications. The polynomial complexity bounds obtained
for procedures using the Shemesh criterion may also look somewhat pessimistic, yet they
are certainly crude and we believe there is plenty of room for improvement if one uses
some extra knowledge about the operators taking part in the computation. There is an
apparent need for efficient algorithms for the construction of bases of finite-dimensional
algebras — without such methods many of the procedures discussed here cannot be carried
out efficiently. It is possible that some efficient Monte Carlo methods could be designed for
such a class of problems. Such situation is not uncommon in computational algebra, as many
of its problems belong to the BPP class. We hope to address some of these issues in future
research.
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Chapter 4

Quantum Communication Processes and Their
Complexity

Noboru Watanabe

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56356

1. Introduction

The complex systems and their dynamics are treated various way. Ohya looked for synthe‐
sizing method to treat complex systems. He established Information Dynamics [36] which is
a new concept unifying the dynamics of a state and the complexity of the system itself. By
applying Information Dynamics, one can discuss in a unified frame the problems such as in
mathematics, physics, biology, information science. Information Dynamics is growing as one
of the research fields, for instance, the international journal named "Open Systems and
Information Dynamics" in 1992 has appeared. In ID, there are two types of complexity, that is,
(a) a complexity of state describing system itself and (b) a transmitted complexity between two
systems. Entropies of classical and quantum information theory are the example of the
complexities of (a) and (b).

Shannon [52] found that the entropy, introduced in physical systems by Clausius and Boltz‐
mann, can be used to express the amount of information by means of communication proc‐
esses, and he proposed the so-called information communication theory at the middle part of
the 20th century. In his information theory, the entropy and the mutual entropy (information)
are most important concepts. The entropy relates to the complexity of ID measuring the
amount of information of the state of system. The mutual entropy (information) corresponds
to the transmitted complexity of ID representing the amount of information correctly trans‐
mitted from the initial system to the final system through a channel, and it was extended to
the mutual entropy on the continuous probability space by Gelfand– Kolmogorov - Yaglom
[17,23], which was defined by using the relative entropy of two states by Kullback-Leibler [26].

Laser is often used in the current communication. A formulation of information theory being
able to treat quantum effects is necessary, which is the so-called quantum information theory.
The quantum information theory is important in both mathematics and engineering. It has been
developed with quantum entropy theory and quantum probability. In quantum information

© 2013 Watanabe; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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theory, one of the important problems is to investigate how much information is exactly
transmitted to the output system from the input system through a quantum channel. The amount
of information of the quantum input system is described by the quantum entropy defined by
von Neumann [29] in 1932. The C*-entropy was introduced in [33,35] and its property is
discussed in [28,21]. The quantum relative entropy was introduced by Umegaki [55] and it is
extended to general quantum system by Araki [4,5], Uhlmann [54] and Donald [14]. Further‐
more, it had been required to extend the Shannon’s mutual entropy (information) of classical
information theory to that in the quantum one. The classical mutual entropy is defined by using
the joint probability expressing a correlation between the input system and the output system.
However, it was shown by Urbanik [56] that in quantum system there does not generally exists
a joint probability distribution. The semi-classical mutual entropy was introduced by Holevo,
Livitin, Ingarden [18,20] for classical input and output passing through a possible quantum
channel. By introducing a new notion, the so-called compound state, in 1983 Ohya formulat‐
ed the mutual entropy [31,32] in a complete quantum mechanical system (i.e., input state, output
state and channel are all quantum mechanical), which is called the Ohya mutual entropy. It was
generalized to C*-algebra in [Oent84]. The quantum capacity [40] is defined by taking the
supremum for the Ohya mutual entropy. By using the Ohya quantum mutual entropy, one can
discuss the efficiency of the information transmission in quantum systems [28,27,44,34,35],
which allows the detailed analysis of optical communication processes. Concerning quantum
communication processes, several studies have been done in [31,32,35,40,41]. Recently, several
mutual entropy type measures (Lindblad - Nielsen entropy [10] and Coherent entropy [6]) were
defined by using the entropy exchange. One can classify these mutual entropy type measures
by calculating their measures for the quantum channel. These entropy type complexities are
explained in [39,43].

The entangled state is an important concept for quantum theory and it has been studied
recently by several authors. One of the remarkable formulations to search the entanglement
state is the Jamiolkowski’s isomorphism [22]. It might be related to the construction of the
compound state in quantum communication processes. One can discuss the entangled state
generated by the beam splitting and the squeezed state.

The classical dynamical (or Kolmogorov-Sinai) entropy S(T) [23] for a measure preserving
transformation T was defined on a message space through finite partitions of the measurable
space. The classical coding theorems of Shannon are important tools to analyze communication
processes which have been formulated by the mean dynamical entropy and the mean dynam‐
ical mutual entropy. The mean dynamical entropy represents the amount of information per
one letter of a signal sequence sent from the input source, and the mean dynamical mutual
entropy does the amount of information per one letter of the signal received in the output
system. In this chapter, we will discuss the complexity of the quantum dynamical system to
calculate the mean mutual entropy with respect to the modulated initial states and the
attenuation channel for the quantum dynamical systems [59].

The quantum dynamical entropy (QDE) was studied by Connes-Størmer [13], Emch [15],
Connes-Narnhofer-Thirring [12], Alicki-Fannes [3], and others [9,48,19,57,11]. Their dynamical
entropies were defined in the observable spaces. Recently, the quantum dynamical entropy
and the quantum dynamical mutual entropy were studied by the present authors [34,35]: (1)
the dynamical entropy is defined in the state spaces through the complexity of Information
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Dynamics [36]. (2) It is defined through the quantum Markov chain (QMC) was done in [2].
(3) The dynamical entropy for a completely positive (CP) map was defined in [25]. In this
chapter, we will discuss the complexity of the quantum dynamical process to calculate the
generalized AOW entropy given by KOW entropy for the noisy optical channel [58].

2. Quantum channels

The signal of the input quantum system is transmitted through a physical device, which is
called a quantum channel. The concept of channel has been performed an important role in
the progress of the quantum information communication theory. The mathematical represen‐
tation of the quantum channel is a mapping from the input state space to the output state space.
In particular, the attenuation channel [31] and the noisy optical channel [44] are remarkable
examples of the quantum channels describing the quantum optical communication processes.
These channels are related to the mathematical desctiption of the beam splitter.

Here we review the definition of the quantum channels.

Let (B(ℋ1), �(ℋ1)) and (B(ℋ2), �(ℋ2)) be input and output systems, respectively, where
B(ℋk ) is the set of all bounded linear operators on a separable Hilbert space ℋk  and �(ℋk )
is the set of all density operators on ℋk  (k =1, 2). Quantum channel Λ ∗ is a mapping from�(ℋ1) to �(ℋ2).

1. Λ ∗ is called a linear channel if Λ ∗ satisfies Λ ∗(λρ1 + (1−λ)ρ2)=λΛ ∗(ρ1) + (1−λ)Λ ∗(ρ2) for
any ρ1, ρ2∈�(ℋ1) and any λ∈ 0, 1 .

2. Λ ∗ is called a completely positive (CP) channel if Λ ∗ is linear and its dual map Λ from
B(ℋ2) to B(ℋ1) holds

∑
i, j=1

n

Ai
∗Λ(Bi

∗Bj)Aj ≥0

for any n∈N , any Bj∈B(ℋ2) and any Aj∈B(ℋ1), where the dual map Λ of Λ ∗ is defined by
trΛ ∗(ρ)B = trρΛ(B) for any ρ∈�(ℋ1) and any B∈B(ℋ2). Almost all physical transformations
can be described by the CP channel [30,39,21,46, 43].

3. Quantum communication processes

Let �1 and �2 be two Hilbert spaces expressing noise and loss systems, respectively. Quantum
communication process including the influence of noise and loss is denoted by the following
scheme [31]: Let ρ be an input state in �(ℋ1), ζ be a noise state in �(�1).
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�(ℋ1) Λ ∗
→ �(ℋ2)

γ ∗↓ ↑a∗�(ℋ1⊗�1) Π ∗
↔ �(ℋ2⊗�2)

The above maps γ ∗, a∗ are given as

γ ∗(ρ)=ρ⊗ ξ, ρ∈�(ℋ1),
a∗(σ)= tr�2

σ, σ∈ �(ℋ2⊗�2).

The map Π ∗ is a CP channel from �(ℋ1⊗�1) to �(ℋ2⊗�2) given by physical properties of
the device transmitting signals. Hence the channel for the above process is given as

Λ ∗(ρ)≡ tr�2
Π ∗( ρ⊗ ζ)= (a∗◦Π ∗◦γ ∗)(ρ)

for any ρ∈�(ℋ1). Based on this scheme, the noisy optical channel is constructed as follows:

4. Noisy optical channel

Noisy optical channel Λ ∗ with a noise state ζ was defined by Ohya and NW [44] such as

Λ ∗(ρ)≡ tr�2
Π ∗(ρ⊗ ζ)= tr�2

V (ρ⊗ ζ)V ∗,

where ζ = |m1 m1 |  is the m1 photon number state in �(�1) and V  is a mapping from ℋ1⊗�1

to ℋ2⊗�2 denoted by

V (|n1 ⊗ |m1 )=∑
j=0

n1+m1

Cj
n1,m1 | j ⊗ |n1 + m1− j ,

where

Cj
n1,m1 =∑

r=L

K

(−1)n1+ j−r n1 !m1 ! j ! (n1 + m1− j) !
r ! (n1− j) ! ( j − r) ! (m1− j + r) ! α m1− j+2r(− β̄)n1+ j−2r ,

and |n1  is the n1 photon number state vector in ℋ1, and α, β are complex numbers satisfying
|α | 2 + |β | 2 =1. K  and L  are constants given by K =min{n1, j}, L =max{m1− j, 0}. We have
the following theorem.

Theorem The noisy optical channel Λ ∗ with noise state |m m |  is described by

Λ ∗(ρ)=∑
i=0

∞

OiV Q (m)ρQ (m)∗V ∗Oi
∗,
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where Q (m)≡
l=0
∞ (| yl ⊗ |m ) yl | ,  Oi ≡ k =0

∞ | zk ( zk | ⊗ i |), {| yl } is a CONS in ℋ1, {| zk } is a

CONS in ℋ2 and {| i } is the set of number states in �2.

In particular for the coherent input states

ρ = |ξ ξ | ⊗ |κ κ | ∈�(ℋ1⊗�1),

the output state of Π ∗ is obtained by

Π ∗(|ξ ξ | ⊗ |κ κ |)= |αξ + βκ αξ + βκ | ⊗ | − β̄ξ + ᾱκ − β̄ξ + ᾱκ | .

|κ κ |
↓

|ξ ξ | → → |αξ + βκ αξ + βκ |
↓

| − β̄ξ + ᾱκ − β̄ξ + ᾱκ |

5. Attenuation channel

The noisy optical channel with a vacuum noise is called the attenuation channel introduced in
[31] by

Λ0
∗(ρ)≡ tr�2

Π0
∗(ρ⊗ ζ0)= tr�2

V0(ρ⊗ |0 0|)V0
∗,

where |0 0|  is the vacuum state in �(�1) and V0 is a mapping from ℋ1⊗�1 to ℋ2⊗�2

given by

V0(|n1 ⊗ |0 )=∑
j

n1

Cj
n1 | j ⊗ |n1− j ,

Cj
n1 =

n1 !
j ! (n1− j) ! α j(− β̄)n1− j

In particular, for the coherent input state

ρ = |ξ ξ | ⊗ |0 0| ∈�(ℋ1⊗�1),

one can obtain the output state

Π0
∗(|ξ ξ | ⊗ |0 0|)= |αξ αξ | ⊗ | − β̄ξ − β̄ξ | .

Lifting ℰ0
∗ from �(ℋ) to �(ℋ⊗�) in the sense of Accardi and Ohya [1] is denoted by

ℰ0
∗(|ξ ξ |)= |αξ αξ | ⊗ |βξ βξ | .
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ℰ0
∗ (or Π0

∗) is called a beam splitting. Based on liftings, the beam splitting was studied by
Accardi - Ohya [1] and Fichtner - Freudenberg - Libsher [16].

6. Information dynamics

We are interested to study the dynamics of state change or the complexity of state for several
systems. Information dynamics (ID) is a new concept introduced by Ohya [36] to construct a
theory under the ID's framework by synthesizing these investigating schemes. In ID, a
complexity of state describing system itself and a transmitted complexity between two systems
are used. The examples of these complexities are the Shannon's entropy and the mutual
entropy (information) in classical entropy theory. In quantum entropy theory, it was known
that the von Neumann entropy and the Ohya mutual entropy relate to these complexities.
Recently, several mutual entropy type measures (the Lindblad - Nielsen entropy [10] and the
Coherent entropy [6]) were proposed by means of the entropy exchange for an input state and
a channel.

7. Concept of information dynamics

Ohya introduced Information Dynamics (ID) synthesizing dynamics of state change and
complexity of state. Based on ID, one can study various problems of physics and other fields.
Channel and two complexities are key concepts of ID. Two kinds of complexities C �(ρ),
T �(ρ;Λ ∗) are used in ID. C �(ρ)is a complexity of a state ρ measured from a subset � and
T �(ρ;Λ ∗) is a transmitted complexity according to the state change from ρ to Λ ∗ρ. Let �, �̄, �t

be subsets of �(ℋ1),  �(ℋ2),  �(ℋ1⊗ℋ2), respectively. These complexities should fulfill the
following conditions as follows:

8. Complexity of system

1. For any ρ∈�, C �(ρ) is nonnegative (i.e., C �(ρ)≥0 )

2. For a bijection j from ex�(ℋ1) to ex�(ℋ1),

C �(ρ)=C �( j(ρ))

is hold, where ex�(ℋ1) is the set of all extremal points of �(ℋ1).

3. For ρ⊗ σ∈�(ℋ1⊗ℋ2), ρ∈�(ℋ1), σ∈�(ℋ2),

C �t(ρ⊗ σ)=C �(ρ) + C �̄(σ)
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It means that the complexity of the state ρ⊗ σof totally independent systems are given by the
sum of the complexities of the states ρ and σ.

9. Transmitted complexity

(1’) For any ρ∈� and a channel Λ ∗, T �(ρ;Λ ∗) is nonnegative (i.e., T �(ρ;Λ ∗)≥0 )

(4) C �(ρ) and T �(ρ;Λ ∗) satisfy the following inequality 0≤T �(ρ;Λ ∗)≤C �(ρ).

(5) If the channel Λ ∗ is given by the identity map id , then T �(ρ; id )=C �(ρ) is hold.

The examples of the above complexities are the Shannon entropy S (p) for C �(p) and the
classical mutual entropy I (p;Λ ∗) for T �(p;Λ ∗), respectively Let us consider these complexities
for quantum communication processes.

10. Quantum entropy

Since the present optical communication is using the optical signal including quantum effect,
it is necessary to construct new information theory dealing with those quantum phenomena
in order to discuss the efficiency of information transmission of optical communication
processes rigorously. The quantum information theory is important in both mathematics and
engineering, and it contains several topics, for instance, quantum entropy theory, quantum
communication theory, quantum teleportation, quantum entanglement, quantum algorithm,
quantum coding theory and so on. It has been developed with quantum entropy theory and
quantum probability. In quantum information theory, one of the important problems is to
investigate how much information is exactly transmitted to the output system from the input
system through a quantum channel. The amount of information of the quantum communica‐
tion system is described by the quantum mutual entropy defined by Ohya [31], based on the
quantum entropy by von Neumann [29], and the quantum relative entropy by Umegaki [55],
Araki [4] and Uhlmann [54]. The quantum information theory directly relates to quantum
communication theory, for instance, [40,41,45]. One of the most important communication
processes is quantum teleportation, whose new treatment was studied in [24]. It is important
to classify quantum states. One of such classifications is to study entanglement and separability
of states (see [7,8]). There have been lots of trials in finite dimensional Hilbert spaces. Quantum
mechanics should be basically discussed in infinite dimensional Hilbert spaces. We have to
study such a classification in infinite dimensional Hilbert spaces.

10.1. Von Neumann entropy

The study of the entropy in quantum system was begun by von Neumann [29] in 1932. For
any state given by the density operator ρ, the von Neumann entropy is defined by

S (ρ)= − trρlogρ, ∀ρ∈�(ℋ).
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Since the von Neumann entropy satisfies the conditions (1),(2),(3) of the complexity of state of
ID, it seems to be considered as an example of the complexity of state C(ρ)=S (ρ).

10.2. Entropy for general systems

Here we briefly explain Let us comment general entropies of states in C*-dynamical systems.
The C*-entropy (�-mixing entropy) was introduced by Ohya in [33,35] and its property is
discussed in [28,21].

Let (�, �(�), α(G)) be a C*-dynamical system and � be a weak* compact and convex subset
of �(�). For example, � is given by �(�) (the set of all states on �), I (α) (the set of all invariant
states for α), K (α) (the set of all KMS states),and so on. Every state φ∈� has a maximal measure
μ pseudosupported on ex� such that

φ = ∫�ωdμ,

where ex� is the set of all extreme points of �. The measure μ giving the above decomposition
is not unique unless � is a Choquet simplex. The set of all such measures is denoted by Mφ(�)
and Dφ(�)is the subset of Mφ(�) constituted by

D(�)= {Mφ(�); ∃μk⊂ℝ+ and {φk }⊂ exS

s.t . ∑
k

μk =1, μ =∑
k

μkδ(φk )}
where δ(φ) is the Dirac measure concentrated on an initial state φ. For a measure μ∈Dφ(�),
the entropy type functional H (μ) is given by

H (μ)= −∑
k

μk logμk .

For a state φ∈� with respect to �, Ohya introduced the C*-entropy (�-mixing entropy) [33,35]
defined by

S �(φ)= { inf{H (μ); μ∈Dφ(�)}
+∞ if Dφ(�)=∅ .

It describes the amount of information of the state φ measured from the subsystem �. If�=�(�), then S �(�)(φ) is denoted by S (φ). This entropy is an extension of the von Neumann
entropy mentioned above.

10.3. Quantum relative entropy

The classical relative entropy in continuous probability space was defined by Kullback-Leibler
[26]. It was developed in noncommutative probability space. The quantum relative entropy
was first defined by Umegaki [55] for σ-finite von Neumann algebras, which denotes a certain
difference between two states. It was extended by Araki [4] and Uhlmann [54] for general von
Neumann algebras and *-algebras, respectively.
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10.4. Umegakirelative entropy

The relative entropy of two states was introduced by Umegaki in [55] for σ-finite and semi-
finite von Neumann algebras. Corresponding to the classical relative entropy, for two density
operators ρ and σ, it is defined as

S (ρ, σ)= {trρ(logρ − logσ) (s(ρ)≪ s(σ)),
∞ (else),

where s(ρ)≪ s(σ) means the support projection s(σ) of σ is greater than the support projection
s(ρ) of ρ. It means a certain difference between two quantum states ρ and σ. The Umegaki’s
relative entropy satisfies (1) positivity, (2) joint convexity, (3) symmetry, (4) additivity, (5)
lower semicontinuity, (6) monotonicity. Araki [4] and Uhlmann [54] extended this relative
entropy for more general quantum systems.

10.5. Relative entropy for general systems

The relative entropy for two general states was introduced by Araki [4,5] in von Neumann
algebra and Uhlmann [54] in *-algebra. The above properties are held for these relative
entropies.

10.5.1. Araki's relative entropy[4,5]

Let � be a σ-finite von Neumann algebra acting on a Hilbert space ℋ and φ, ψ be normal
states on � given by φ(⋅ )= x, ⋅ x  and ψ(⋅ )= y, ⋅ y  with x, y∈� (i.e., � is a positive natural
cone) ⊂ℋ. On the domain �y + (I − s�′

(y))ℋ, the operator Sx ,y is defined by

Sx ,y(Ay + z)= s�(y)A∗x,  A∈� (z∈ℋ is satisfying s�′
(y)z =0),

where s�(y) (the �-support of y) is the projection from ℋ to {�′y}−. Using this Sx ,y, the
relative modular operator Δx ,y is defined as Δx ,y =(Sx ,y)∗Sx , ȳ, whose spectral decomposition

is denoted by ∫0
∞

λdex ,y(λ) (Sx , ȳ is the closure of Sx ,y). Then the Araki’s relative entropy is given

by

Definition The Araki’s relative entropy of φ and ψ is defined by

S (ψ, φ)= {∫0∞logλd y, ex ,y(λ)y (ψ≪φ),

∞ (otherwise),

where ψ≪φ means that φ(A∗A)=0 implies ψ(A∗A)=0 for A∈�.

10.5.2. Uhlmann's relative entropy[54]

Let ℒ be a complex linear space and p, q be two semi-norms on ℒ. H (ℒ(p, q)) is the set of all
positive Hermitian forms α on ℒ satisfying |α(x, y)| ≤ p(x)q(y) for all x, y∈ℒ. For x∈ℒ,
the quadratical mean QM (p, q) of p and q is defined by
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QM (p, q)(x)=sup{α(x, x)1/2; α∈H (ℒ(p, q))}.

For each x∈ℒ, there exists a family of semi-norms pt(x) of t∈ 0, 1 , which is called the
quadratical interpolation from p to q, satisfying the following conditions:

1. For any x∈ℒ, pt(x) is continuous in t ,

2. p1/2 =QM (p, q)

3. pt /2 =QM (p, pt) (∀ t∈ 0, 1 )

4. p(t+1)/2 =QM (pt , q) (∀ t∈ 0, 1 )

This semi-norm pt  is denoted by QIt(p, q). It is shown that for any positive Hermitianforms
α, β, there exists a unique function QFt(α, β) of t∈ 0, 1  with values in the set H (ℒ(p, q)) such

that QFt(α, β)(x, x)1/2 is the quadratical interpolation from α(x, x)1/2 to β(x, x)1/2. For x∈ℒ,
the relative entropy functional S (α, β)(x) of α and β is defined as

S (α, β)(x)= − lim
t→+0

inf
1
t {QFt(α, β)(x, x)−α(x, x)}.

Let ℒ be a *-algebra �. For positive linear functional φ, ψ on �, two Hermitian forms φ L , ψ R

are given by φ L (A, B)=φ(A∗B) and ψ R(A, B)=ψ(BA∗).

Definition The Uhlmann’s relative entropy of φ and ψ is defined by

S (ψ, φ)=S (ψ R, φ L )(I ).

10.5.3. Ohya mutual entropy [31]

The Ohya mutual entropy [31] with respect to the initial state ρ and a quantum channel Λ ∗ is
described by

I (ρ;Λ ∗)≡sup{∑
n

S (Λ ∗En, Λ ∗ρ), ρ =∑
n

λnEn},
where S (⋅ , ⋅ ) is the Umegaki's relative entropy and ρ =∑

n
λnEn represents a Schatten-von

Neumann (one dimensional orthogonal) decomposition [49] of ρ. Since the Schatten-von
Neumann decomposion of a state ρ is not unique unless all eigenvalues of ρ do not degenerate,
the Ohya mutual entropy is defined by taking a supremum for all Schatten-von Neumann
decomposion of a state ρ. Then the Ohya mutual entropy satisfies the following Shannon's
type inequality [31]

0≤ I (ρ, Λ ∗)≤min{S (ρ), S (Λ ∗ρ)},

where S (ρ) is the von Neumann entropy. This inequalities show that the Ohya mutual entropy
represents the amount of information correctly carried from the input system to the output
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system through the quantum channel. The capacity denotes the ability of the information
transmission of the communication processes, which was studied in [40,41,45].

For a certain set �⊂S (ℋ1) satisfying some physical conditions, the capacity of quantum

channel Λ ∗ [40] is defined by

Cq
�(Λ ∗)≡sup{I (ρ;Λ ∗);ρ∈�}.

If �=S (ℋ1) holds, then the capacity is denoted by Cq(Λ ∗). Then the following theorem for the
attenuation channel was proved in [40].

Theorem For a subset �n ≡ {ρ∈S (ℋ1);dims(ρ)=n},  the capacity of the attenuation channel Λ0
∗

satisfies

Cq
�n(Λ0

∗)= logn,

where s(ρ) is the support projection of ρ.

10.6. Mutual entropy for general systems

Based on the classical relative entropy, the mutual entropy was discussed by Shannon to study
the information transmission in classical systems and it was extended by Ohya [33,34,35] for
fully general quantum systems.

Let (�, �(�), α(G)) be a unital C ∗-system and � be a weak* compact convex subset of �(�).
For an initial state φ∈� and a channel Λ ∗ : �(�)→�(ℬ), two compound states are

Φμ
�= ∫�ω⊗Λ ∗ω dμ,

Φ0 =φ⊗Λ ∗φ.

The compound state Φμ
� expresses the correlation between the input state φ and the output

state Λ ∗φ. The mutual entropy with respect to � and μ is given by

Iμ
�(φ ; Λ ∗)=S(Φμ

�, Φ0)
and the mutual entropy with respect to � is defined by Ohya [33] as

I �(φ ;Λ ∗)=sup{Iμ
�(φ ;Λ ∗) ; μ∈Mφ(�)}.

10.7. Mutual entropy type complexity

Shor [53] and Bennet et al [6,10] proposed the mutual type measures so-called the coherent
entropy and the Lindblad-Nielson entropy by using the entropy exchange [50] defined by

Se(ρ, Λ ∗)= − trW logW ,

where W  is a matrix W =(W ij)i , j with
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W ij ≡ tr Ai
∗ρAj

for a state ρ concerning a Stinespring-Sudarshan-Kraus form

Λ ∗(⋅ )≡∑ j Aj
∗⋅Aj,

of a channel Λ ∗. Then the coherent entropy IC(ρ; Λ ∗) [53] and the Lindblad-Nielson entropy

IL (ρ; Λ ∗) [10] are given by

IC(ρ; Λ ∗)≡S (Λ ∗ρ)−Se(ρ, Λ ∗),

IL (ρ; Λ ∗)≡S (ρ) + S (Λ ∗ρ)−Se(ρ, Λ ∗).

In this section, we compare with these mutual types measures. By comparing these mutual
entropies for quantum information communication processes, we have the following theorem
[47]:

Theorem Let {Aj} be a projection valued measure withdim Aj =1. For arbitrary state ρ and the

quantum channel Λ ∗(⋅ )≡∑ j Aj ⋅Aj
∗, one has

1. 0≤ I (ρ; Λ ∗)≤min{S (ρ), S (Λ ∗ρ)} (Ohya mutual entropy),

2. IC(ρ; Λ ∗)=0 (coherent entropy),

3. IL (ρ; Λ ∗)=S (ρ) (Lindblad-Nielsen entropy).

For the attenuation channel Λ0
∗, one can obtain the following theorems [47]:

Theorem For any state ρ =∑
n

λn |n n |  and the attenuation channel Λ0
∗ with

|α | 2 = |β | 2 = 1
2 , one has

1. 0≤ I (ρ; Λ0
∗)≤min{S (ρ), S (Λ0

∗ρ)} (Ohya mutual entropy),

2. IC(ρ; Λ0
∗)=0 (coherent entropy),

3. IL (ρ; Λ0
∗)=S (ρ) (Lindblad-Nielsen entropy).

Theorem For the attenuation channel Λ0
∗ and the input state ρ =λ |0 0| + (1−λ)|θ θ | , we

have

1. 0≤ I (ρ; Λ0
∗)≤min{S (ρ), S (Λ0

∗ρ)} (Ohya mutual entropy),

2. −S (ρ)≤ IC(ρ; Λ0
∗)≤S(ρ) (coherent entropy),

3. 0≤ IL (ρ; Λ0
∗)≤2S (ρ) (Lindblad-Nielsen entropy).
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The above Theorem shows that the coherent entropy IC(ρ; Λ0
∗) takes a minus value for

|α | 2 < |β | 2 and the Lindblad-Nielsen entropy IL (ρ; Λ0
∗) is greater than the von Neumann

entropy of the input state ρ for |α | 2 > |β | 2. Therefore Ohya mutual entropy is most suitable
one for discussing the efficiency of information transmission in quantum processes. Since the
above theorems and other results [47] we could conclude that Ohya mutual entropy might be
most suitable one for discussing the efficiency of information transmission in quantum
communication processes. It means that Ohya mutual entropy can be considered as the
transmitted complexity for quantum communication processes.

11. Quantum dynamical entropy

The classical dynamical (or Kolmogorov-Sinai) entropy S(T) [23] for a measure preserving
transformation T was defined on a message space through finite partitions of the measurable
space.

The classical coding theorems of Shannon are important tools to analyse communication
processes which have been formulated by the mean dynamical entropy and the mean dynam‐
ical mutual entropy. The mean dynamical entropy represents the amount of information per
one letter of a signal sequence sent from an input source, and the mean dynamical mutual
entropy does the amount of information per one letter of the signal received in an output
system.

The quantum dynamical entropy (QDE) was studied by Connes-Størmer [13], Emch [15],
Connes- Narnhofer-Thirring [12], Alicki-Fannes [3], and others [9,48,19,57,11]. Their dynami‐
cal entropies were defined in the observable spaces. Recently, the quantum dynamical entropy
and the quantum dynamical mutual entropy were studied by the present authors [34,35]: (1)
The dynamical entropy is defined in the state spaces through the complexity of Information
Dynamics [36]. (2) It is defined through the quantum Markov chain (QMC) was done in [2].
(3) The dynamical entropy for a completely positive (CP) maps was introduced in [25].

12. Mean entropy and mean mutual entropy

The classical Shannon ‘s coding theorems are important subject to study communication
processes which have been formulated by the mean entropy and the mean mutual entropy
based on the classical dynamical entropy. The mean entropy shows the amount of information
per one letter of a signal sequence of an input source, and the mean mutual entropy denotes
the amount of information per one letter of the signal received in an output system. Those
mean entropies were extended in general quantum systems.

In this section, we briefly explain a new formulation of quantum mean mutual entropy of K-
S type given by Ohya [35,27].
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In quantum information theory, a stationary information source is denoted by a C ∗ triple
(�, �(�), θ�) with a stationary state φ with respect to θ�; that is, � is a unital C ∗-algebra,�(�) is the set of all states over �, θ� is an automorphism of �, and φ∈�(�) is a state over� with φ◦θ�=φ.

Let an output C ∗-dynamical system be the triple (ℬ, �(ℬ), θℬ), and Λ ∗ : �(�)→�(ℬ) be a

covariant channel which is a dual of a completely positive unital map Λ : ℬ→� such that
Λ◦θℬ =θ�◦Λ.

In this section, we explain functional Sμ
�(φ;α M ), S �(φ;α M ), Iμ

�(φ;α M , β N ) and I �(φ;α M , β N )

introduced in [35,27] for a pair of finite sequences of α M =(α1, α2, ⋯ , αM ), β N =(β1, β2, ⋯ , βN )

of completely positive unital maps αm : �m →�, βn : ℬn →ℬ where �m and ℬn (m =1, ⋯ , M ,

n =1, ⋯ , N ) are finite dimensional unital C ∗-algebras.

Let � be a weak * convex subset of �(�) and φ be a state in �. We denote the set of all regular
Borel probability measures μ on the state space �(�) of � by Mφ(�), so that μ is maximal in

the Choquet ordering and μ represents φ = ∫S (�)
ωdμ(ω). Such measures is taken by extremal

decomposition measures for φ, Using Choquet's theorem, one can be shown that there exits
such measures for any state φ∈�(�). For a given finite sequences of completely positive unital
maps αm : �m →� from finite dimensional unitalC ∗-algebras �m (m =1, ⋯ , M ) and a given

extremal decomposition measure μ of φ, the compound state of α1
∗φ, α2

∗φ, ⋯ , αM
∗φ on the

tensor product algebra ⊗
m=1

M �m is given by [35,27]

Φμ
�(α M )= ∫S (�)

⊗
m=1

M

αm
∗ωdμ(ω).

Furthermore Φμ
�(α M ∪β N ) is a compound state of Φμ

�(α M ) and Φμ
�(β N ) with

α M ∪β N ≡ (α1, α2, ⋯ , αM , β1, β2, ⋯ , βN ) constructed as

Φμ
S (α M ∪β N )= ∫S (A)

(⊗
m=1

M

αm
∗ω)⊗ (⊗

n=1

N

βn
∗ω)dμ

For any pair (α M , β N ) of finite sequences α M =(α1, ⋯ , αM ) and β N =(β1, ⋯ , βN ) of completely

positive unital maps αm : �m →�, βn : ℬn →� from finite dimensional unital C ∗ -algebras
and any extremal decomposition measure μ of φ, the entropy functional Sμ and the mutual
entropy functional Iμ are defined in [35,27] such as
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Sμ
�(φ;α M )= ∫S (A)S (⊗

m=1

M

αm
∗ω, Φμ

�(α M ))dμ(ω),

Iμ
�(φ;α M , β N )=S(Φμ

S(α M ∪β N ), Φμ
�(α M )⊗Φμ

�(β N )),
where S (⋅ , ⋅ ) is the relative entropy.

For a given pair of finite sequences of completely positive unitalmaps α M =(α1, ⋯ , αM ),

β N =(β1, ⋯ , βN ), the functional S �(φ;α M ) (resp. I �(φ;α M , β N ) ) is given in [35,27] by taking

the supremum of Sμ
�(φ;α M ) (resp. Iμ

�(φ;α M , β N )) for all possible extremal decompositions
μ's of φ:

S �(φ;α M )=sup{Sμ
�(φ;α M ); μ∈Mφ(�)},

I �(φ;α M , β N )=sup{Iμ
�(φ;α M , β N ); μ∈Mφ(�)}.

Let � (resp. ℬ) be a unital C ∗-algebra with a fixed automorphism θ� (resp. θℬ), Λ be a
covariant completely positive unital map from ℬ to �, and φ be an invariant state over �, i.e.,
φ◦θ�=φ.

α N ≡ (α, θ�◦α, ⋯ , θ�N −1◦α),
βΛ

N ≡ (Λ◦β, Λ◦θℬ◦β, ⋯ , Λ◦θℬ
N −1◦β).

For each completely positive unital map α : �0 →� (resp. β : ℬ0 →ℬ ) from a finite dimen‐

sional unital C ∗-algebra �0 (resp. ℬ0) to � (resp. ℬ), S̃�(φ;θ�, α), Ĩ �(φ;Λ ∗, θ�, θℬ, α, β) are
given in [35,27] by

S̃�(φ;θ�, α)= liminf
N →∞

1
N S �(φ;α N ),

Ĩ �(φ;Λ ∗, θ�, θℬ, α, β)= liminf
N →∞

1
N I �(φ;α M , β N ).

The functional S̃�(φ;θ�) and Ĩ �(φ;Λ ∗, θ�, θℬ) are defined by taking the supremum for all
possible �0's, α's, ℬ0's, and β's:

S̃�(φ;θ�)=sup
α

S̃�(φ;θ�, α),

Ĩ �(φ;Λ ∗, θ�, θℬ)=sup
α,β

Ĩ �(φ;Λ ∗, θ�, θℬ, α, β).

Then the fundamental inequality in information theory holds for S̃�(φ;θ�) and

Ĩ �(φ;Λ ∗, θ�, θℬ) [35].

12.1. Proposition

0≤ Ĩ �(φ;Λ ∗, θ�, θℬ)≤min{S̃�(φ;θ�), S̃�(Λ ∗φ;θℬ)}.
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These functional S̃�(φ;θ�) and Ĩ �(φ;Λ ∗, θ�, θℬ) are constructed from the functional

Sμ
�(φ;α N ) and Iμ

�(φ;α N , β N ) coming from information theory and these functionals are
obtained by using a channel transformation, so that those functionals contains the dynamical
entropy as a special case [35,27]. Moreover these functionals contain usual K-S entropies as
follows [35,27].

Proposition If �k , � are abelian C ∗-algebras and each αk  is an embedding, then our func‐
tionals coincide with classical K-S entropies:

Sμ
�(�)(φ;α M )=Sμ

classical(∨
m=1

M

Ãm),
Iμ
�(�)(φ;α M , βid

N )= Iμ
classical(∨

m=1

M

Ãm, ∨
n=1

N

B̃n)
for any finite partitions Ãm, B̃n of a probability space (Ω, �, φ).

In general quantum structure, we have the following theorems [35,27].

Theorem Let αm be a sequence of completely positive maps αm : �m →� such that there exist

completely positive maps αm
′ : �→�m satisfying αm◦αm

′ → id� in the pointwise topology.
Then:

S̃�(φ;θ�)= lim
m→∞

S̃�(φ;θ�, αm).

Theorem Let αm and βm be sequences of completely positive maps αm : �m →� and

βm : ℬm →ℬ such that there exist completely positive maps αm
′ : �→�m and βm

′ : ℬ→ℬm

satisfying αm◦αm
′ → id� and βm◦βm

′ → idℬ in the pointwise topology. Then one has

Ĩ �(φ;Λ ∗, θ�, θℬ)= lim
m→∞

Ĩ �(φ;Λ ∗, θ�, θℬ, αm, βm).

The above theorem is a Kolmogorov-Sinai type convergence theorem for the mutual entropy
[35,27,28,34].

In particular, a quantum extension of classical formulation for information transmission giving

a basis of Shannon's coding theorems can be considered in the case that A=⊗
−∞

∞

A0, B =⊗
−∞

∞

B0,

S =� and θA, θB are shift operators, both denoted by θ. In this case, the channel capacity is
defined as [40,41,45,46,38,39,42,43]

C̃(Λ ∗)≡sup{Ĩ �(φ ; Λ ∗ , θ) ; φ∈�}.

Using this capacity, one can consider Shannon's coding theorems in fully quantum systems.
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13. Computations of mean entropies for modulated states

Based on the paper [59], we here explain general modulated states and briefly review some
examples of modulated states (PPM, OOK, PSK).

Let {a1, ⋯ , aN } be an alphabet set constructing the input signals and N ≡ {E1, ⋯ , EN } be the set
of one dimensional projections on a Hilbert space ℋ satisfying

1. En⊥Em (n ≠m)

2. En corresponds to the alphabet an.

We denote the set of all density operators on ℋ generated by

�0≡ {ρ0 =∑
n=1

N

λnEn;ρ0≥0, trρ0 =1},
where an element of �0 represents a state of the quantum input system. The state is transmitted
from the quantum input system to the quantum modulator in order to send information
effectively, whose transmitted state is called the quantum modulated state. The quantum
modulated states are denoted as follows: Let M  be an ideal modulator and N ≡ {E1

(M ), ⋯ , EN
(M )}

be the set of one dimensional projections on a Hilbert space ℋM  for modulated signals
satisfying

En
(M )⊥Em

(M )(n ≠m), and we represent the set of all density operators on ℋM  by

�0
(M )≡ {ρ0

(M ) =∑
n=1

N

μnEn
(M ); ρ0

(M )≥0, trρ0
(M ) =1},

where an element of �0
(M ) represents a modulated state of the quantum input system. There

are many expressions for the modulations. In this section, we take the modulated states by
means of the photon number states.

γM
∗ is a modulator M  if γM

∗(En)= En
(M ) is a map from �0 to �0

(M ) satisfying (1) γM  is a completely

positive unital map from �0 to �. Moreover γIM
∗  is called an ideal modulator IM  if (1)

γIM
∗ (En)= En

(M ) is a modulator from �0 to �0
(M ), γIM

∗ (En)⊥γIM
∗ (Em) for any orthogonal En∈�0.

Some examples of ideal modulator are given as follows:

1. For any En∈�0, the PPM (Pulse Position Modulator) is defined by

γPPM
∗ (En)≡En

(PPM )

= E0
PAM ⊗ ⋯ ⊗ E0

(PAM )⊗ Ed
(PAM )⊗ E0

(PAM )⊗ ⋯E0
(PAM )

where E0
(PAM ) is the vacuum state on ℋ(PAM ).

2. For E1, E2∈�0, the OOK (On-Off Keying) is defined by
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γOOK
∗ (E1)≡E1

(OOK ) = |0> <0| ,

γOOK
∗ (E2)≡E2

(OOK ) = |κ > <κ |
where |κ > <κ |  is the coherent state on ℋOOK .

3. For E1, E2∈S0, the PSK (Phase Shift Keying) is defined by

γPSK
∗ (E1)≡E1

(PSK ) = | −κ > < −κ | ,

γPSK
∗ (E2)≡E2

(PSK ) = |κ > <κ |
where |κ > <κ | , | −κ > < −κ |  are the coherent states on ℌPSK .

Now we briefly review the calculation of the mean mutual entropy of K-S type for the
modulated state (PSK) by means of the coherent state. Other calculations are obtained in [59].

α(IM )
N , β(IM )

N  are given by

α(IM )
N ≡ (α◦γ̃(IM ), θ�◦α◦γ̃(IM ), ⋯ , θ�N −1◦α◦γ̃(IM )),

β(IM )
N ≡ (γ̃(IM )◦Λ◦β, γ̃(IM )◦Λ◦θℬ◦β, ⋯ , γ̃(IM )◦Λ◦θℬ

N −1◦β),

where Λ̃ ≡⊗
i=−∞

∞

Λ and γ̃(IM )≡⊗
i=−∞

∞

γ(IM ) are held.

PSK. For an initial state ρ =⊗
i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, let ρi =ν | −κ −κ | + (1−ν)|κ κ |  (0≤ν ≤1). The

Schatten decomposition of ρi is obtained as

ρi =∑
ni=1

2

λni
Eni

(PSK ),

where the eigenvalues λni
 of ρi are

λ1 =
1
2

{1 + 1−4ν(1−ν) (1−exp( − |2κ | 2))},

λ2 =
1
2

{1− 1−4ν(1−ν) (1−exp( − |2κ | 2))}.

Two projections Eni

(PSK ) (ni =1, 2) and the eigenvectors | eni

(PSK )  of λni
 (ni =1, 2) are given by

Eni

(PSK ) = | eni

(PSK ) eni

(PSK ) | ,

| eni

(PSK ) =ani
| −κ + bni

|κ , (ni =1, 2),

where
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|bni
| 2 =

1
τni

2 + 2exp(− |κ | 2) τni
+ 1

,

|ani
| 2 =τni

2 |bni
| 2,

ani
bni
¯ =anī

bni
=τni

|bni
| 2

τ1 =
− (1−2ν) + 1−4ν(1−ν) (1−exp(− |2κ | 2))

2(1−ν) exp( − |κ | 2) ,

τ2 =
− (1−2ν)− 1−4ν(1−ν) (1−exp(− |2κ | 2))

2(1−ν) exp(− |κ | 2) .

For the above initial state Eni

(PSK ), one can obtain the output state for the attenuation channel

Λ ∗ as follows:

Λ ∗Eni

(PSK ) =∑
ni

′=1

2

λ
⌢

ni , ni
′E
⌢

ni , ni
′

(PSK )

(ni =1, 2),

where the eigenvalues λ
⌢

ni , ni
′ of Λ ∗Eni

(OOK ) are given by ( ni = 1, 2)

λ
⌢

ni , 1 =
1
2 {1 + 1−4μni

(1−μni
) (1− | uni , 1, uni , 2 | 2)},

λ
⌢

ni , 2 =
1
2 {1− 1−4μni

(1−μni
) (1− | uni , 1, uni , 2 | 2)},

μni
=

1
2 (1 + exp(− (1−η) |κ | 2))

τni

2 + 2exp(− |ακ | 2) τni
+ 1

τni

2 + 2exp(− |κ | 2) τni
+ 1

.

| uni , ni
′, uni , ni

′ | 2 =1,

uni , 1, uni , 2 =
τni

2−1

(τni

2 + 1)2−4exp(− |2ακ | 2) τni

2
(ni =1, 2).

E
⌢

ni , ni
′

(PSK )

are the eigenstates with respect to λ
⌢

ni , ni
′. Then we have

ΦE (α(PSK )
N )=⊗

i=0

N −1

γ(PSK )
∗ ◦α ∗◦θA

∗i(ρ)=⊗
i=0

N −1

γ(PSK )
∗ (ρi)

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
) (⊗

i=0

N −1

Eni

(PSK ))
When Λ ∗ is given by the attenuation channel, we get
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ΦE (βΛ(PSK )
N )=⊗

i=0

N −1

β ∗◦θB
∗i◦Λ ∗◦γ(PSK )

∗ (ρ)

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
) (⊗

i=0

N −1

Λ ∗Eni

(PSK ))
The compound states through the attenuation channel Λ ∗ becomes

ΦE (α(PSK )
N ∪βΛ(PSK )

N )

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
)∑

n0
′=1

2

⋯∑
nN −1

′ =1

2 (∏
k ′=0

N −1

λ
⌢

n
k ′, n

k ′
′ )

× (⊗
i=0

N −1

Eni

(PSK ))⊗ (⊗
i ′=0

N −1

E
⌢

n
i ′, n

i ′
′

(PSK ))
ΦE (α(PSK )

N )⊗ΦE (βΛ(PSK )
N )

=∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
)∑

m0=1

2

⋯ ∑
mN −1=1

2 (∏
k ′=0

N −1

λm
k ′

)
×∑

m ′
0=0

2

⋯ ∑
m ′

N −1=0

2 (∏
k"=0

N −1

λ
⌢

mk ", mk "
′ )

× (⊗
i=0

N −1

Eni

(PSK ))⊗ (⊗
i ′=0

N −1

E
⌢

m
i ′, m

i ′
′

(PSK ) )
Lemma For an initial state ρ =⊗

i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, we have

IE (ρ; α(PSK )
N , β(PSK )

N )

=∑
n0

′=1

2

⋯∑
nN −1

′ =1

2

∑
n0=1

2

⋯∑
nN −1=1

2 (∏
k=0

N −1

λnk
λ
⌢

nk , nk
′)log k =0

N −1λ
⌢

nk , nk
′

m0=1
2 ⋯

mN −1=1
2 (

k ′=0
N −1λm

k ′
λ
⌢

m
k ′, n

k ′
′ ) .

By using the above lemma, we have the following theorem.

Theorem For an initial state ρ =⊗
i=−∞

∞

ρi∈⊗
i=−∞

∞

Si, we have

S̃ (ρ; θA, α(PSK )
N )= lim

N →∞

1
N S (ρ; α(PSK )

N )= −∑
n=1

2

λnlogλn

and
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Ĩ (ρ; Λ ∗, θ�, θ�, α(PSK )
N , β(PSK )

N )=∑
n ′=1

2

∑
n=1

2

λnλ
⌢

n, n ′log
λ
⌢

n, n ′

∑m=1
2 λmλ

⌢
m, n ′

.

14. KOW dynamical entropy

In this section, we briefly explain the definition of the KOW entropy according to [25].

For a normal state ω on B(�) and a normal, unital CP linear map Γ from B(�)⊗ B(ℋ) to
B(�)⊗ B(ℋ), one can define a transition expectation E Γ,ω from B(�)⊗ B(ℋ) to B(ℋ) by

E Γ,ω(Ã)=ω(Γ(Ã))= tr�ω̃Γ(Ã), ∀ Ã∈B(�)⊗ B(ℋ)

in the sense of [1,25], where ω̃∈�(�) is a density operator associated to ω. The dual map E  is
a lifting from �(ℋ) to �(�⊗ℋ) by

E ∗Γ,ω(ρ)=Γ ∗(ω̃⊗ρ).

in the sense of Accardi and Ohya [1]. For a normal, unital CP map Λ from B(ℋ) to B(ℋ) and
the identity map id  on B(�), the transition expectation

EΛ
Γ,ω(Ã)=ω((id ⊗Λ)Γ(Ã)), ∀ Ã∈B(�)⊗ B(ℋ)

and the lifting is defined by

EΛ
∗Γ,ω(ρ)=Γ ∗(ω̃⊗Λ ∗(ρ)), ∀ρ∈�(ℋ),

where id ⊗Λ is a normal, unital CP map from B(�)⊗ B(ℋ) to B(�)⊗ B(ℋ) and Λ ∗ is a
quantum channel [30,21,31,39,44,46,43] from �(ℋ) to �(ℋ) with respect to an input signal
state ρ and a noise state ω̃. Based on the following relation

tr(⊗1
n�)⊗ℋΦΛ,n

∗Γ,ω(ρ)(A1⊗ ⋯ ⊗ An⊗ B)

≡ trℋρ(EΛ
Γ,ω(A1⊗ EΛ

Γ,ω(A2⊗ ⋯An−1⊗ EΛ
Γ,ω(An⊗ B)⋯ )))

for all A1, A2, ⋯ , An∈B(�), B∈B(ℋ) and any ρ∈�(ℋ), a lifting ΦΛ,n
∗Γ,ω from �(ℋ) to�((⊗1

n�)⊗ℋ) and marginal states are given by

ρΛ,n
Γ,ω ≡ trℋΦΛ,n

∗Γ,ω(ρ)∈�(⊗1
n �) and ρ̄Λ,n

Γ,ω ≡ tr⊗1
n�ΦΛ,n

∗Γ,ω(ρ)∈�(ℋ)

where ΦΛ,n
∗Γ,ω(ρ) is a compound state with respect to ρ̄Λ,n

Γ,ω and ρΛ,n
Γ,ω in the sense of [25,31] .

Definition The quantum dynamical entropy with respect to Λ, ρ, Γ and ω is defined by

S̃ (Λ;ρ, Γ, ω)≡ limsup
n→∞

1
n S (ρΛ,n

Γ,ω),
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where S (ρΛ,n
Γ,ω) is the von Neumann entropy of ρΛ,n

Γ,ω∈�(⊗1
n�) defined by

S (ρΛ,n
Γ,ω)= − trρΛ,n

Γ,ωlogρΛ,n
Γ,ω. The dynamical entropy with respect to Λ and ρ is defined as

S̃ (Λ;ρ)≡sup{�(Λ;ρ, Γ, ω);Γ, ω}.

15. Formulation of generalized AF and AOW entropies by KOW entropy

In this section, I briefly explain the generalized AF and AOW entropies based on the KOW
entropy [25].

For a finite operational partition of unity γ1, ⋯ , γd∈B(ℋ), i.e., ∑
i=1

d
γi
∗γi = I , and a normal unital

CP map Λ from B(ℋ) to B(ℋ), transition expectations EΛ
γ from Md ⊗ B(ℋ) to B(ℋ) and EΛ

γ(0)

from Md
0⊗ B(ℋ) to B(ℋ) are defined by

EΛ
γ(∑

i, j=1

d

Eij⊗ Aij)≡∑
i, j=1

d

Λ(γi
∗Aijγj),

EΛ
γ(0)(∑

i, j=1

d

Eij⊗ Aij)≡∑
i=1

d

Λ(γi
∗Aiiγi),

where Eij = | ei ej |  with normalized vectors ei∈ℋ, i =1, 2, ⋯ , d ≤dimℋ, Md  in B(ℋ) is the

d ×d  matrix algebra and Md
0 is a subalgebra of Md  consisting of diagonal elements of Md . Then

the quantum Markov states

ρΛ,n
γ = ∑

i1,⋯,in=1

d

∑
j1,⋯, jn=1

d

trℋρΛ(W j1i1(Λ(W j2i2(⋯Λ(W jnin(Iℋ))))))

× Ei1 j1
⊗ ⋯ ⊗ Ein jn

and ρΛ,n
γ(0) is obtained by

ρΛ,n
γ(0) = ∑

i1,⋯,in=1

d

trℋρΛ(W i1i1(Λ(W i2i2(⋯Λ(W inin(Iℋ))))))Ei1i1
⊗ ⋯ ⊗ Einin

= ∑
i1,⋯,in=1

d

pi1,⋯,in
Ei1i1

⊗ ⋯ ⊗ Einin
,

where

W ij(A)≡γi
∗Aγj, A∈B(ℋ),

W ij
∗(ρ)≡γjργi

∗, ρ∈�(ℋ),
pi1,⋯,in

≡ trℋρΛ(W i1i1(Λ(W i2i2(⋯Λ(W inin(Iℋ))))))
= trℋW inin

∗ (Λ ∗⋯Λ ∗(W i2i2
∗(Λ ∗(W i1i1

∗(Λ ∗(ρ)))))).
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Therefore the generalized AF entropy S̃ ℬ(Λ;ρ) and the generalized AOW entropy S̃ ℬ
(0)(Λ;ρ) of

Λ and ρ with respect to a finite dimensional subalgebra ℬ⊂B(ℋ) are obtained by

S̃ ℬ(Λ;ρ)≡ sup
{γi}⊂ℬ

S̃(Λ;ρ, {γi}),

S̃ ℬ
(0)(Λ;ρ)≡ sup

{γi} ⊂ℬ

(0)
S̃(Λ;ρ, {γi}),

where the dynamical entropies S̃ (Λ;ρ, {γi}) and S̃ (0)(Λ;ρ, {γi}) are given by

S̃ (Λ;ρ, {γi})≡ limsup
n→∞

1
n S(ρΛ,n

γ ),

S̃ (0)(Λ;ρ, {γi})≡ limsup
n→∞

1
n S (ρΛ,n

γ(0)).

16. Computations of generalized AOW entropy for modulated states

Then we have the following theorem [25]:

16.1. Theorem

S̃ ℬ(Λ;ρ)≤ S̃ ℬ
(0)(Λ;ρ).

S̃ ℬ
(0)(Λ;ρ) is equal to the AOW entropy if {γi} is PVM (projection valued measure) and Λ is given

by an automorphism θ. S̃ ℬ(Λ;ρ) is equal to the AF entropy if {γi
∗γi} is POV (positive operator

valued measure) and Λ is given by an automorphism θ. For the noisy optical channel, the
generalized AOW entropy can be obtained in [58] as follows.

Theorem [58] When ρ is given by ρ =λ |0 0| + (1−λ)|ξ ξ |  and Λ ∗ is the noisy optical
channel with the cohetent noise |κ κ |  and parameters α, β satisfying |α | 2 + |β | 2 =1,  the
quantum dynamical entropy with respect to Λ,  ρ and {γj} is obtained by

S̃ (0)(Λ;ρ, {γj})= −∑
j,k

qk , jqjlogqk , j,

where

qj =λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2

qk , j =νj
+ | xk , yj

+ | 2 + (1−νj
+)| xk , yj

− | 2,

| yj
+ =aj

+ |βκ + bj
+ |αξ + βκ ,

| yj
− =aj

−|βκ −bj
−|αξ + βκ ,
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aj
+ =εj

+aj,

aj
−=εj

−aj, bj
+ =εj

+bj,

bj
−=εj

−bj,

εj
+ =

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1

τj
2 + 2exp(− 1

2 |αξ | 2)τj + 1
,

εj
−=

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1

τj
2−2exp(− 1

2 |αξ | 2)τj + 1
,

νj
+ =

1
2 (1 + exp(− 1

2 (1− |α | 2)|ξ | 2)) 1
(εj

+)2 ,

τj =
− (1−2λ)

2(1−λ)exp(− 1
2 |ξ | 2) + (−1) j 1−4λ(1−λ)(1−exp(− |ξ | 2))

2(1−λ)exp(− 1
2 |ξ | 2) ,

|bj | 2 =
1

τj
2 + 2exp(− 1

2 |ξ | 2)τj + 1
,

|aj | 2 =τj
2 |bj | 2, ā jbj =ajb̄ j =τj |bj | 2

Theorem [58] For n≧3, the above compound state ρΛ,n
γ(0) is written by

ρΛ,n
γ(0) = ∑

j1,⋯, jn=1

2

q j1,⋯, jn
⊗
k=1

n

| x jk
x jk | ,

where

q j1,⋯, jn
≡ trℋW jn jn

∗ (Λ ∗(⋯Λ ∗(W j2 j2

∗ (Λ ∗(W j1 j1

∗ (Λ ∗(ρ)))))⋯ )),
Λ ∗(ρ)=λ |βκ βκ | + (1−λ)|αξ + βκ αξ + βκ | ,
W jj

∗(Λ ∗(ρ))≡γj
∗Λ ∗(ρ)γj =(λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2)| xj xj | .

Based on [40,41,45,46], one can obtain

Λ ∗(| xj xj |)=νj
+ | yj

+ yj
+ | + (1−νj

+)| yj
− yj

−| .

Thus we have

q j1,⋯, jn
=∏

k=2

n

(ν jk −1
+ | x jk

, y jk −1
+ | 2 + (1−ν jk −1

+ )| x jk
, y jk −1

− | 2)
× (λ | βκ, xj | 2 + (1−λ)| αξ + βκ, xj | 2)

=∏
k=2

n

q jk , jk −1
q j1

.
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If 
j
qk , jqj =qk  is hold ,  then we get the dynamical entropy with respect to Λ, ρ and {γj} such as

S̃ (0)(Λ;ρ, {γj})= −∑
j,k

qk , jqjlogqk , j.
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1. Introduction

Light propagation in material media has been the subject of interest for centuries. In
particular it has been known that the refraction index, defined as the ratio of the phase
velocities in vacuum and in a medium, depends on the light colour, which is known
as dispersion. The theory of electromagnetic waves based on Maxwell electrodynamics
provided a coherent description of light propagation, which in a material medium is
influenced by the medium’s polarization. To describe the latter a theory of the atomic
medium is required. A simple model of the medium, consisting of classical damped
oscillators allowed one to describe the medium’s linear response to the propagating field in
terms of an electric susceptibility, being in the crudest approximation a Lorentzian function
of the light frequency. A causal character of the propagation process implied the analytical
properties of the susceptibility. This in turn allowed for drawing important conclusions about
the dynamics of propagation and the evolution of the pulse shape, including the presence of
the pulse precursors [1].

The birth of quantum mechanics made it possible to describe the atomic structure of the
medium in a more sophisticated way. A description of an atom in terms of a wave function,
being a superposition of eigenfunctions of a free atom (restricted to a subspace of the states
accessible really of virtually due to interaction with light), and of atomic eigenenergies
provided a more modern approach to resonant transitions. To account for relaxation, first
of all for spontaneous emission, it appeared useful to generalize the quantum formalism by
admitting density matrices which after introducing relaxation terms fulfill the optical Bloch
equations. The latter equations, completed with the Maxwell equations for the propagating
field, treated either classically or quantum-mechanically, constitute a full description of the
propagation [2].

A new epoch in the history of studies on light propagation has begun when one realized that
by irradiating the medium by an additional (control) field or fields one can completely alter
the conditions for the propagation of the probe beam. A striking and important example
is the electromagnetically induced transparency (EIT) [3, 4] which consists in making the

©2012 Raczyński et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Raczyński et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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medium transparent for a pulse resonant with some atomic transition by switching on a
strong control laser field, coupling two unpopulated levels. During the last twenty or so years
hundreds of papers have been published, studying, both theoretically and experimentally,
more and more sophisticated variations of EIT. They include atoms with more active states,
coupled by more control fields in various configurations. By admitting the control fields
to adiabatically change in time it has become possible to dynamically change the optical
properties of the medium while the probe pulse travels inside it [5]. In particular one can
reduce the pulse group velocity and finally stop the pulse by switching the control field off;
by switching it on again one can release the stored pulse, preserving the phase relations. One
can also increase the group velocity or even make it negative. If the control field is in the form
of a standing wave, the optical properties of the medium become periodic so the medium
resembles a solid state structure [5], which can thus be created on demand with optical
means. All those fascinating ways of a precise dynamical control of the optical properties
of the medium by optical means reveal new aspects of quantum optics and are supposed to
lead to constructing efficient tools for photonics, e.g., quantum memories, quantum switches,
multiplexers or, as optimists believe, to designing optically based quantum computers.

Those developments justify the present work the aim of which is to give an introductory
review of some of optically dressed atomic systems and to present a method of a theoretical
description of their optical properties and of a pulse propagation in such media. In the
following chapters we first give a short general theory of wave propagation in atomic media
with a few active states. We consider the particular cases of the two-level system, the so-called
Λ system, the tripod system and the double Λ system. We show in particular how light
propagation and storage can be described in terms of so-called dark state polaritons, being
a joint atom+field excitations. We also discuss the situation in which the probe field is
described quantum-mechanically which is necessary in the case of a few-photon quantum
pulse. In a separate chapter we present atomic models allowing for superluminality, i.e. the
pulse’s group velocity being negative or larger than the light velocity in vacuum. The final
part is devoted to periodic media, a kind of metamaterials, created by optical means. [6].

In our work we remain within the paradigm of the probe field being weak enough to
be treated in the linear approximation while the control fields, treated nonperturbatively,
are strong enough or couple unpopulated levels so that propagation effects for them can
be neglected. We thus leave aside a great part of nonlinear quantum optics dealing with
nonlinear effects for the propagating fields.

The bibliography of the field includes hundreds of papers and quickly grows; reviews of
various aspects of light propagation in coherently driven atomic media are also available
[4, 5, 7, 8]. The list of papers cited here, though obviously not complete, should provide the
reader with good tracks for further studies.

2. General theory of light propagation

Consider a quasi-one-dimensional propagation of a probe light pulse in an atomic medium.
It is governed by the wave equation stemming from the Maxwell equations

∂2E1(z, t)

∂z2
−

1

c2

∂2E1(z, t)

∂t2
= µ0

∂2P1(z, t)

∂t2
, (1)
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where E1(z, t) = e1E1(z, t) is the electric field of the probe pulse propagating along the z
axis and having polarization e1, P1(z, t) = e1P1(z, t) is the medium polarization, i.e. the
induced dipole moment per unit volume and µ0 is the vacuum magnetic permeability. Both
the electric field and the polarization can be expressed in terms of slowly varying complex
amplitudes ǫ1(z, t) and p1(z, t) and a term rapidly oscillating in time and space

E1(z, t) = ǫ1(z, t) exp[i(k1z − ω1t)] + c.c.,

P1(z, t) = p1(z, t) exp[i(k1z − ω1t)] + c.c., (2)

where ω1 is the pulse’s central frequency and k1 = ω1/c; the latter relation, exact for the
propagation in vacuum, means that only dilute media are considered, in which the refraction
index does not differ much from unity. For not too short pulses one can make the slowly
varying envelope approximation (SVEA) [9] which consists in discarding second-order
derivatives of ǫ1 and first- and second-order derivatives of p1, which leads to the propagation
equation of the form

∂ǫ1(z, t)

∂t
+ c

∂ǫ1(z, t)

∂z
= i

ω1

2ǫ0
p1(z, t), (3)

where ǫ0 is the vacuum electric permittivity. If the medium response to the pulse is linear
and spatially local, its polarization p1(z, t) is expressed by a memory time integral

p1(z, t) = ǫ0

∫ t

−∞
χ(t − t′)ǫ1(z, t′)dt′, (4)

or, after the Fourier transformation with respect to time,

p1(z, ω) = ǫ0χ(ω)ǫ1(z, ω), (5)

where ω is the Fourier variable and χ is the electric susceptibility. The refraction index is

n(ω) =
√

1 + χ(ω) ≈ 1 + 1
2 χ(ω). Note that the functions in the time or frequency domains

are here distinguished only by their arguments. The propagation equation in the Fourier
picture takes the form

(−iω + c
∂

∂z
)ǫ1(z, ω) = i

ω1

2
χ(ω)ǫ1(z, ω). (6)

The last equation can be easily solved and, after returning to the time domain, the solution
reads

ǫ1(z, t) =
1

2π

∫ ∞

−∞
ǫ1(0, ω) exp

(

− iωt
)

exp
[

i
ωz

c
+ i

ω1z

2c
χ(ω)

]

dω. (7)

In the case of spectrally not too wide pulses one can approximate the susceptibility by the
lowest terms of its Taylor expansion at the line centre

χ(ω) ≡ χ′(ω) + iχ′′(ω) ≈ χ′(0) + iχ′′(0) +
dχ′(0)

dω
ω. (8)
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In such a case one can write the pulse as

ǫ1(z, t) = exp
(

i
ω1χ′(0)z

2c
−

ω1χ′′(0)z

2c

)

ǫ1(0, t −
z

vg
), (9)

where the group velocity of the pulse is

vg = c(1 +
ω1

2

dχ′(0)

dω
)−1. (10)

This means that the pulse moves with the velocity vg, with its shape essentially unchanged
apart from an exponential modification of its height (Lambert-Beer law) and an overall phase
shift. The group velocity is approximately the velocity of the pulse maximum (exactly if
there is no damping). A positive value of χ′′(0) corresponds to an exponential damping
(absorption) while its negative value - to a negative absorption (gain). Note that derivative of
the real part of the susceptibility may be positive (normal dispersion) or negative (anomalous
dispersion); in the latter case the group velocity may exceed the light velocity in vacuum or
even become negative.

The medium total polarization, due to the total laser field applied to the system, can be
expressed in terms of the quantum-mechanical mean value of the dipole moment d

P1(z, t) = NTrρ(z, t)d, (11)

where N is the number of atoms per unit volume while ρ(z, t) is the atomic density matrix. It
is assumed that atoms, which do not interact with each other, are distributed in a continuous
way, with their position along the sample denoted by z.

The atom-field interaction for the atomic system irradiated by the probe field and possibly
other control fields is described in the electric dipole approximation, so the hamiltonian for
the atom in the position z reads

H = Hat − E1(z, t)d (12)

and the time evolution of ρ is given by the von Neumann equation with some additional
phenomenological relaxation terms, known in this context as optical Bloch equation

ih̄ρ̇ = [H, ρ]− iΓρ. (13)

The set of Maxwell-Bloch equations provide a complete description of a weak pulse
propagation in a dispersive medium. It is assumed that an atom can be represented by a
model including a few states a, b, c, ... and each laser field couples a pair of them. Let the
probe field 1 be resonant with the transition a − b, i.e. it couples the states a (upper) and b
(lower) of energies Ea and Eb such that Ea − Eb ≈ h̄ω1. Due to a lack of resonance or selection
rules this field does not couple any other pair of states. Then the part of medium polarization
responsible for propagation effects for the field 1 is P1 = N(ρabdba + ρbadab). In the matrix
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elements of the density matrix one can separate the factor quickly oscillating in time and
space, i.e. ρab(z, t) = σab(z, t) exp[i(k1z − ω1t)]. A comparison of the terms including the
same quickly oscillating factors (the rotating wave approximation - RWA) allows one to write
the propagation equation as

( ∂

∂t
+ c

∂

∂z

)

ǫ1(z, t) = i
Nω1dba

2ǫ0
σab(z, t), (14)

or in the Fourier picture

(

− iω + c
∂

∂z

)

ǫ1(z, ω) = i
Nω1dba

2ǫ0
σab(z, ω). (15)

Instead of using the field amplitude ǫ1 one often introduces the so-called Rabi frequency
Ω1 ≡ ǫ1dab/h̄, which accounts for the strength of the atom-field coupling for a given
transition. The propagation equation Eq. (15) reads then

(−iω + c
∂

∂z
)Ω1(z, ω) = i

Nω1|dba|
2

2ǫ0h̄
σab(z, ω) ≡ iκ2

1σab(z, ω). (16)

The density matrix element ρab or equivalently σab (so-called atomic coherence) is obtained
from the Bloch equations for a particular atom and coupling model. One need not write
down the complete set of those equations due to the assumption of a perturbational treatment
of the coupling field E1. If there were no other sources of this coherence this means that
the populations remain unchanged in this approximation and the coherences involving two
initially unpopulated states are equal to zero.

3. Light propagation in a few-level atomic media

In this section we review the most important atom-field configurations in the case of
which coherent interactions modify the optical properties of an atomic medium. Each of
them reveals new physical phenomena and provides one with new means to control the
propagation of the probe pulse.

3.1. Two-level atom

In the simplest case of a two-level atom irradiated by the probe field alone [9] (see Figure 1),
the only essential equation (i.e. such that it contributes in the first-order perturbation theory
with respect to the probe field) is

ih̄ρ̇ab(z, t) = (Ea − Eb − ih̄γab)ρab(z, t)− E1(z, t)dab(ρbb − ρaa), (17)

where ρaa and ρbb are initial (and unchanging) populations of the excited state (a) and ground
state (b), respectively, and γab is the relaxation rate for the coherence ρab. In the simplest case,
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b

a

Figure 1. The level and coupling scheme for a two-level system.

in which the spontaneous emission is the only mechanism of relaxation, γab is one half of
the relaxation rate for the population of the excited state [2].

After separating the rapidly oscillating terms and introducing the Rabi frequency one obtains

iσ̇ab(z, t) = (−δab − iγab)σab(z, t)− Ω1(σbb − σaa), (18)

where δab ≡ (Eb + h̄ω1 − Ea)/h̄ is the laser field detuning, σaa ≡ ρaa and σbb ≡ ρbb. After the
Fourier transformation one obtains the coherence in the frequency domain (we assume that
there is no contribution to σab other than that due to the probe field)

σab(z, ω) = −
Ω1(z, ω)

ω + δab + iγab

(σbb − σaa). (19)

Thus the propagation equation reads

(−iω + c
∂

∂z
)Ω1(z, ω) =

iω1

2
χ(ω)Ω1(z, ω), (20)

with the elelectric susceptibility given by

χ(ω) = −
N|dab|

2

ǫ0h̄

1

ω + δab + iγab

(σbb − σaa). (21)

Note that in the typical case of an unprepared medium, i.e. one being intially in the ground
state, σbb = 1, σaa = 0. Then one has to do with absorption and anomalous dispersion.
A typical susceptibility is shown in Figure 2; this plot as well as the following plots of the
electric susceptibility are shown for typical values of atomic parameters. The group velocity
calculated according to Eq. (10) is larger than c or even negative but absorption at the line
center is so strong that the pulse is absorbed just after it has entered the medium and its
peak does not even travel inside it. If one has the population inversion, i.e. σaa > σbb

the pulse becomes amplified during its propagation. However, one must remember that
after it has become strong enough the populations are changed until saturation occurs; such
nonperturbative effects are not taken into account in this work.
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Figure 2. The real (solid, blue line) and imaginary (dashed, red line) parts of the electric susceptibility for a two-level system.

3.2. Λ configuration

Compared with the two-level system, the Λ system includes one additional long-living lower
state c. The states b and c may for example be hyperfine or Zeeman states in the lowest atomic
electron state. An additional strong laser field E2 (control field) couples resonantly or almost
resonantly the unpopulated states a and c [2]. The level and coupling scheme is shown in
Figure 3.

b

a

W
1 W

2

c

Figure 3. The coupling and level scheme for a Λ system.

The amplitude of the control field is assumed constant both in space and in time. This means
that the propagation effects for the control field are neglected; this is justified for a strong
control field coupling unpopulated states. The control field is written as

E2(z, t) = E20 exp[i(k2z − ω2t)] + c.c. (22)
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In the case of the only populated state b, σbb(z, t) = 1 and the set of essential Bloch equations
includes two of them

ih̄ρ̇ab = (Ea − Eb − ih̄γab)ρab − E1dab − E2dacρcb,

ih̄ρ̇cb = (Ec − Eb − ih̄γcb)ρcb − E2dcaρab. (23)

After separating the rapidly oscillating factor, i.e setting ρcb = σcb exp[i((k1 − k2)z − (ω1 −
ω2)t)] the equations take the form

iσ̇ab = (−δab − iγab)σab − Ω1 − Ω2σcb,

iσ̇cb = (−δab + δac − iγcb)σcb − Ω∗
2σab, (24)

where the Rabi frequency connected with the control field is given by Ω2 = E20dac/h̄, δac =
(Ec + h̄ω2 − Ea)/h̄ is the detuning of the control field and γcb is the relaxation rate for the
coherence between the lower states; it is due to collisions between the atoms and collisions
of atoms with the walls of the cell and is usually smaller by a few orders of magnitude than
γab.

In the Fourier picture the equations read

(ω + δab + iγab)σab(z, ω) = −Ω1(z, ω)− Ω2σcb(z, ω),

(ω + δab − δac + iγcb)σcb(z, ω) = −Ω∗
2σcb(z, ω), (25)

From the above equations one can calculate the coherence σab(z, ω) and then the
susceptibility which takes the form

χ(ω) = −
N|dab|

2

ǫ0h̄

1

ω + δab + iγab −
|Ω2|2

ω+δab−δac+iγcb

. (26)

A comparison of the susceptibilities for two-level and Λ systems (see Figures 2 and 4) reveals
that switching the control field on leads to producing a dip in the Lorentzian absorption
profile, called a transparency window. This means that a resonant probe beam which
otherwise would be strongly absorbed, is now transmitted almost without losses. Such a
process is known as electromagnetically induced transparency (EIT) [3]. The dispersion
inside the transparency window becomes normal, with the slope which increases for a
decreasing control field. For a negligible relaxation rate γcb the absorption dip reaches zero.
This means that the medium has become transparent for the probe pulse which travels with a
reduced group velocity. The width of the transparency window is proportional to the square
of the control field amplitude.
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Figure 4. The real (solid, blue line) and imaginary (dashed, red line) parts of the electric susceptibility for a Λ system.

The Maxwell-Bloch equations in the simplest case of resonant (δab = δac = 0) and
relaxationless conditions (γab = γcb = 0) read

(
∂

∂t
+ c

∂

∂z
)Ω1(z, t) = iκ2

1σab(z, t),

iσ̇ab(z, t) = −Ω1(z, t)− Ω2(t)σcb(z, t), (27)

iσ̇cb(z, t) = −Ω2(t)σab(z, t),

where for simplicity Ω2 is assumed real.

In the adiabatic approximation (σ̇ab = 0) their solution can be written in terms of the
so-called dark state polariton Ψ(z, t) [10] which is a joint atom-field excitation and provides
an illustrative insight into the mechanism of propagation

Ψ(z, t) = Ω1(z, t) cos θ(t)− κ1σcb(z, t) sin θ(t), (28)

where the mixing angle θ(t) is defined by the relation tan θ(t) = κ1/Ω2(t). The polariton
satisfies the equation

( ∂

∂t
+ c cos2 θ(t)

∂

∂z

)

Ψ(z, t) = 0, (29)

the solution of which is

Ψ(z, t) = Ψ(z − c

∫

t

0
cos2 θ(τ)dτ, t = 0). (30)
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The probe field Rabi frequency and the atomic coherence are expressed by the polariton Ψ

Ω1(z, t) = Ψ(z, t) cos θ(t),

σcb(z, t) = −
1

κ1
Ψ(z, t) sin θ(t). (31)

This means that the polariton travels inside the medium without changing its shape, with
the velocity dependent on the current value of the control field amplitude. For a decreasing
control field the share of the probe field in the polariton decreases and that of the atomic
coherence - grows. A gradual switch-off of the control field implies a slowdown of the pulse
which can be "stopped" in the limit of Ω2 → 0. The width of the transparency window
gradually decreases, but the pulse’s spectral width is compressed as well [10] so it remains
inside the transparency window all the time. Switching the control field on again maps the
coherence back into the electromagnetic field, with the phase relations being preserved. This
is true provided the relaxation at the storage stage, represented by the relaxation rate γcb,
has not destroyed the phase relations. In practice the times for which a pulse can be stored
range from miliseconds in hot gases to seconds in solids. In the language of polaritons light
slowdown, stopping and release mean that one changes the ratio of the field and atomic
components of the polariton: for a strong control field cos θ is almost unity so the polariton
is built mainly of the field component; on the opposite, for the control field being switched
off sin θ = 1, which means that the polariton has become purely atomic. One should stress
that the expression "light stopping", though illustrative, is a semantic misuse: when the
pulse is "stopped", photons constituting the pulse do not exist any more. They have been
mapped into an atomic excitation represented by the coherence σcb; their energy has not been
absorbed by atoms but has rather been pumped to the control field. The pulse can be restored
by switching the control field on, which provides an inverse mapping of the atomic coherence
back into photons. Therefore "light storage" is a more proper term which is commonly used
in this context. The successful experiments with stopped light were performed by Liu et al.

in cold gases [11], Phillips et al. in atomic vapours [12] and Turukhin et al. in a solid state
[13].

Another way of explaining electromagnetically induced transparency applies the notion of
dressed states. Consider the subspace spanned by the states a and c (the energy Ec of the
latter being moved by the photon energy h̄ω2), coupled by the interaction Ω2. The dressed
states are eigenvectors of the hamiltonian restricted to this subspace. The eigenenergies
are shifted from their bare values; if the control field is at resonance the shift is equal to
±Ω2. If the probe photon’s frequency ω1 is tuned right in the middle between the dressed
eigenenergies, the transition amplitudes from the state b interfere destructively. This can
be clearly seen if one writes the electric susceptibility for the Λ system in the resonant and
relaxationless conditions as

χ(ω) = −
N|dab|

2

2ǫ0h̄
(

1

ω + Ω2
+

1

ω − Ω2
), (32)

where the dipole matrix elements between the state b and the dressed states have been
expressed by those between b and the bare states (this is where the factor 1

2 has come from).
Indeed, at the centre of the lineshape (ω = 0) the susceptibility takes zero value.
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This theory can also be formulated in the fully quantum version [10]. The probe
electromagnetic field is quantized

ǫ̂1(z, t) = ǫ̂+(z, t) + ǫ̂−(z, t) = ∑
k

gk âk exp
(

i[(k − k1)z − (ωk − ω1)t]
)

+ h.c., (33)

where gk =
√

h̄ωk
2ǫ0V , V being the quantization volume, âk and â†

k are photon annihilation and

creation operators in the mode k and resonance has been assumed: Ea − Eb = h̄ω1. The
atomic excitations are also quantized: for an atom in the position z define the flip operator

σ̂bc(z, t) = |b >< c| exp
(

− i[(k1 − k2)z − (ω1 − ω2)t]
)

, (34)

and similarly for other pairs of the indices a, b, c. The time evolution is now governed by
the Heisenberg equations of motion. They can be completed by relaxation terms and the
corresponding Langevin forces; the latter effect can however be neglected in the timescale
of the process [10]; also the relaxation terms will be skipped in the ideal picture presented
below. The equations have the same form as Eqs.(24) except that the matrices σ should be
transposed. In the adiabatic approximation the solutions can again be written in terms of the
polariton field operator

Ψ̂(z, t) =
1

g
√

L

(

ǫ̂+1 cos θ −
h̄κ1

dab
σ̂bc sin θ

)

, (35)

where θ is the same mixing angle as before, g is the value of gk for the central frequency, L is
the length of the sample and dab and Ω2 are supposed to be real. Note that it was necessary to
adopt a different normalization than previously to assure fulfilling the commutation relations
typical of creation and annihilation operators

[Ψ̂(z, t), Ψ̂†(z′, t] = δ(z − z′), (36)

valid provided the relation σ̂bb ≈ 1 holds, which is true in the first-order of perturbation.
The quantum polariton can thus be interpreted as a quasiparticle, being a mixture of the
electromagnetic and atomic excitations, the shares of which depend on the current value of
the control field. The quantum polariton field operator satisfies the same equation as the
classical one (cf. Eq. (29)) and the solution in the adiabatic approximation is

Ψ̂(z, t) = Ψ̂(z − c
∫ t

0
cos2 θ(τ)dτ, t = 0). (37)

This means that the evolution of the polariton field operator consists just in changing its
position. In particular, switching the control field first off and then on effects in turning
the photon into the atomic excitation and back into the photon with certainty and without
changing the photon state. Instead of describing creation and annihilation of a quasiparticle
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at point z one can introduce a family of orthonormal wavepackets f j(z) and introduce the
corresponding operators

Ψ̂(j, t) =
∫

dz f ∗j (z)Ψ̂(z, t). (38)

The propagation, storage and release of a single photon accompanied by the atomic excitation
characterized by the wave packet f j are described by the state

|1j(t) >= Ψ̂†(j, t)|0 >, (39)

where |0 > is the vacuum state and |1j(t) > is a one-polariton state corresponding to
the wave packet f j. This picture constitutes a basis for possible applications to quantum
information processing. An information coded in a single photon state can be written down
(stored) as an atomic excitation by switching the control field off and later read out through
releasing the photon due to switching the control field on again. In this way one obtains a
kind of a quantum memory. The information may be processed inside the memory if the
atomic excitation is subject to some controlled transformation during the storage stage. In
this particular case of a three-level system it is only the photon phase which can be changed.
However, admitting additional active atomic states and additional control fields enables one
to perform more sophisticated information processing (see below).

3.3. Tripod configuration

Compared with the Λ configuration, the tripod configuration includes another additional
long-living lower state d and a second control field E3 coupling that state with a (see Figure
5), that is

E3 = E30 exp[i(k3z − ω3t)] + c.c., (40)

and the corresponding Rabi frequency is Ω3 = E30dad/h̄. Note that it is also possible to
consider such a system with two probe fields and one control field or even three fields of
comparable intensities but those problems will not be discussed here.

a

b c d

W
1

W
3W

2

Figure 5. The level and coupling scheme for a tripod system; the field 1 is the probe field, the fields 2 and 3 are control fields.

The essential Bloch equations in the Fourier domain have the form

(ω + δab + iγab)σab(z, ω) = −Ω1(z, ω)− Ω2σcb(z, ω)− Ω3σdb(z, t),

(ω + δab − δac + iγcb)σcb(z, ω) = −Ω∗
2σcb(z, ω), (41)

(ω + δab − δad + iγdb)σdb(z, ω) = −Ω∗
3σdb(z, ω),
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where σdb is the density matrix element after separating the rapidly oscillating factor, i.e.
ρdb = σdb exp[i((k1 − k3)z − (ω1 − ω3)t)], δad = (Ed + h̄ω3 − Ea)/h̄ is the detuning of the
second control field and γdb is the relaxation rate for the coherence σdb. The coherence
σab(z, ω) can be obtained to yield the suscpetibility

χ(ω) = −
N|dab|

2

ǫ0h̄

1

ω + δab + iγab −
|Ω2|2

ω+δab−δcb+iγcb
− |Ω3|2

ω+δab−δdb+iγdb

. (42)

The above susceptibility for the tripod system exhibits in general two transparency windows
of different widths and different slopes of the normal dispersion curve (see Figure 6, cf. also
Ref. [14]); the latter means that the group velocity in the two windows is different. This
asymmetry depends on the model parameters. Speaking in terms of the dressed states one
can say that now the subspace in which prediagonalization performed is three dimensional
(it is spanned by the states a, c, d), so there are three dressed levels and two frequency regions
for which the destructive interference is observed. In general one can analyze configurations
including a populated ground state and n unpopulated lower levels, coupled by n control
fields with the upper short-living level. The probe field will then experience n transparency
windows. If the initial state of the medium is coherently prepared one can observe new
effects: two resonant pulses may parametrically generate a third one [15].
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Figure 6. The real (solid, blue line) and imaginary (dashed, red line) parts of the electric susceptibility for a tripod system.

The polariton description in the case of the tripod configuration, both in the classical and
quantum versions, is similar to that for the Λ system but requires some modifications [16, 17].
Two polaritons are necessary to describe the adiabatic evolution: they are now built of the
electromagnetic component and two atomic excitations. In the quantum version they are
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represented by the operators

Ψ̂1(z, t) =
1

g
√

L
[ǫ̂+1 cos θ −

h̄κ1

dab
(σ̂bc cos φ + σ̂bd sin φ) sin θ],

Ψ̂2(z, t) =
1

g
√

L

h̄κ1

dab
(σ̂bc sin φ − σ̂bd cos φ) sin θ, (43)

where tan φ = Ω3
Ω2

and for simplicity it has been assumed again that the Rabi frequencies of
the control fields are real. The equations of motion for the two polaritons read

(
∂

∂t
+ c cos2 θ(t)

∂

∂z
)Ψ̂1(z, t) = φ̇Ψ̂2(z, t) sin θ,

∂

∂t
Ψ̂2(z, t) = φ̇Ψ̂1(z, t) sin θ. (44)

Thus if the control fields change at the same rate, i.e. φ = const, the polaritons evolve
uncoupled; the first one travels with the velocity c cos2 θ otherwise unchanged, while the
second one is constant in time. Changing the control fields so that φ → π

2 − φ while
θ = π

2 means an exchange of the polaritons. In particular the sample may serve as a beam
splitter in the time domain [17]: one has to store a single photon in a combination of the
atomic excitations using a configuration of the control fields corresponding to some angle
φ = φ0 = const. If a combination of the control field corresponding to a different angle
φ = φ1 = const is applied the photon will be released with the probability cos2(φ1 − φ0).
The second part of the release operation corresponding to the angle π

2 − φ1 will liberate

the photon with probability sin2(φ1 − φ0). The whole operation becomes even more flexible
if one admits changing the phases of the control fields. An interesting extrapolation of
this idea is a suggestion of a two-photon interference experiment of the Hong-Ou-Mandel
[19] type in the time domain. It consists in an independent storing of two photons in two
successive steps and in releasing them, also in two steps, using different combinations of
the control fields than at the storage stage. For a special combination of the control fields
the result is the photon coalescence in one of the two release channels [17], which can be
considered an analogue of the Mandel dip in the standard realization. Note that quantum
statistical properties, usually concerning photons, can be investigated and modified for the
quasiparticles represented by polaritons. In particular, one can store light, perform an
operation on the atomic excitations, which changes the statistical properties of the polariton
(being a purely atomic excitation at the storage stage), and release light of modified statistical
properties.

The picture becomes even more complicated if one applies nonproportional control fields,
such that φ̇ 6= 0. Figure 7 shows an example the pulse’s space-time dependence in the case in
which the pulse has been stopped by proportional fields but the releasing field Ω3 precedes
Ω2. It can be seen that the pulse is released in two stages: in the first one the field Ω3 liberates
the part of the pulse trapped in σdb while in the second one both control fields liberate the
pulse from both atomic excitations. Note that the velocities of the two pulse components
become equal only after the amplitude of the second control field has reached its final value.
A part of the excitation remains in general trapped inside the medium.
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Figure 7. The space-time evolution of the probe field in the case of storing a pulse by proportional control fields and its release

by the control fields of the same shape but shifted in time.

Another interesting application was proposed by Wang at al. [18], who demonstrated how to
obtain a one-photon time-entangled state by storing a single photon and later releasing it in
successive steps using different combinations of the control fields. Light storage in a medium
of rubidium atoms in the tripod configuration has recently been realized experimentally [20].

3.4. Double Λ configuration

Compared with the single Λ system, the double Λ system considered here includes an
additional upper state d coupled with the ground, populated, state b with a second weak
probe field E3 = ǫ3(z, t) exp[i(k3z−ω3t)] + c.c., and with the unpopulated state c by a second
control field of a constant amplitude E4 = E40 exp[i(k4z − ω4t)] + c.c. (see Figure 8).

b

a

d

W
1

W
3

W
4

W
2

c

Figure 8. The level and coupling scheme for the double Λ system.

One thus has to do with two Λ’s: b − a − c and b − d − c. Light propagation in a medium
of such a configuration has been investigated in a number of papers [21–25]. It was
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shown in particular that an adiabatic propagation was possible only for such pulses that
Ω1/Ω2 = Ω3/Ω4. In the general case pulse matching occurs during the first stage of
propagation. The essential Bloch equations read

ih̄ρ̇ab = (Ea − Eb − ih̄γab)ρab − E1dab − E2dacρcb,

ih̄ρ̇db = (Ed − Eb − ih̄γdb)ρdb − E3ddb − E4ddcρcb, (45)

ih̄ρ̇cb = (Ec − Eb − ih̄γcb)ρcb − E2dcaρab − E4dcdρdb,

where use has been made of the fact that ρbb = 1. Again one can separate the rapidly
oscillating factors by substituting additionally ρdb = σdb exp[i(k3z − ω3t)], introduce the
detuning (Eb + h̄ω3 − Ed)/h̄ ≡ δdb and the Rabi frequencies Ω3(z, t) ≡ ǫ3(z, t)ddb/h̄ and
Ω4 ≡ E40ddc/h̄ . The above equations take the form

iσ̇ab = (−δab − iγab)σab − Ω1 − Ω2σcb,

iσ̇db = (−δdb − iγdb)σdb − Ω3 − Ω4σcb exp(iφ), (46)

iσ̇cb = (−δab + δac − iγcb)σcb − Ω∗
2σab − Ω∗

4σdb exp(−iφ),

where φ ≡ (k1 − k2 − k3 + k4)z − (ω1 − ω2 − ω3 + ω4)t is a time- and space-dependent
phase factor. The analysis of the propagation in the general case of an arbitrary φ would
require Floquet expansions with respect to the four-wave detuning; in what follows it will be
assumed that φ = 0. In this case the equations in the frequancy domain read

(ω + δab + iγab)σab(z, ω) = −Ω1(z, ω)− Ω2σcb(z, ω),

(ω + δdb + iγdb)σdb(z, ω) = −Ω3(z, ω)− Ω4σcb(z, ω), (47)

(ω + δab − δac + iγcb)σcb(z, ω) = −Ω∗
2σab(z, ω)− Ω∗

4σdb(z, ω).

The above equations can be solved with respect to the matrix elements of σ. The solutions
can be used in the propagation equations for the two probe fields Ω1 and Ω3

(

− iω + c
∂

∂z

)

Ω1(z, ω) = iκ2
1σab(z, ω),

(

− iω + c
∂

∂z

)

Ω3(z, ω) = iκ2
3σdb(z, ω), (48)

where κ2
1 ≡ Nω1|dab |

2

2ǫ0 h̄ and κ2
3 ≡ Nω3|ddb |

2

2ǫ0 h̄ . One finally obtains coupled propagation equations

for the two fields

(

− iω + c
∂

∂z

)

Ωj(z, ω) = i ∑
k=1,3

Mjk(ω)Ωk(z, ω), j = 1, 3, (49)
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where

M11(ω) = −
κ2

1

W(ω)
[(ω + δdb + iγdb)(ω + δab − δac + iγcb)− |Ω4|

2],

M33(ω) = −
κ2

3

W(ω)
[(ω + δab + iγab)(ω + δab − δac + iγcb)− |Ω2|

2], (50)

M13(ω) = −
κ2

1

W(ω)
Ω2Ω∗

4 ,

M31(ω) = −
κ2

3

W(ω)
Ω∗

2Ω4,

(51)

and

W(ω) = (ω + δab + iγab)(ω + δdb + iγdb)(ω + δab − δac + iγcb)

−(ω + δab + iγab)|Ω4|
2 − (ω + δdb + iγdb)|Ω2|

2. (52)

The propagation equations may be decoupled by a linear ω-dependent transformation
diagonalizing the matrix M

U(ω)−1 M(ω)U(ω) = Md(ω), (53)

where Md is the diagonal matrix with

Md
11 =

1

2
(M11 + M33) +

√

1

4
(M11 − M33)2 + M13 M31, (54)

Md
33 =

1

2
(M11 + M33)−

√

1

4
(M11 − M33)2 + M13 M31. (55)

(56)

As a consequence, after taking the inverse Fourier transform the solutions Ωj(z, t) in the time
domain can be written as

Ωj(z, t) =
1

2π

∫ ∞

−∞
dω exp

(

− iω(t −
z

c
)
)

∑
k,m=1,3

Ujk(ω) exp
( iz

c
(Md

kk(ω)
)

U−1
km (ω)Ωm(z = 0, ω),

j = 1, 3. (57)

Thus each of the probe pulses’ amplitudes can be considered a superposition of two
components, each of which propagates as an analogue of a single pulse with Md

kk playing the
role of ω1

2 χ(ω). It appears that one of those "susceptibilities" resembles that for a two-level
system while the other one - that for a Λ system. This can be seen from their analytical
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form in some special cases. For example when κ1 = κ3, δab = δdb and γab = γdb the
expressions forMd

kk
are identical (apart from the factor ω1) with the expressions for the

susceptibilities given by Eqs. (26) and (21). One can also see that for γcb = 0 at the line
centre ω = 0 the "susceptibility" Md

33(ω = 0) = 0 so the absorption is zero. This means
that one of the superpositions of the pulse amplitudes quickly disappears while the other
can propagate unchanged in the conditions of the electromagnetically induced transparency.
Disappearance of the former means a transformation of a part of each of the pulses into the
other one rather than absorbing the electromagnetic field by the medium. One can also say
that pulse matching has occurred which means that the shapes of the two pulses have become
adjusted. A description of pulse propagation for such a system can also be formulated in
terms of classical [23, 24] or quantum polaritons [25].

4. Superluminal pulses

The notion of the group velocity may still make sense if it happens that its value exceeds
that of the light velocity in vacuum or is negative; this depends on the sign and value of the
derivative dχ′(0)/dω [1, 26] (see Eq. (10) ). Remember that in the case of a two-level atom
the absorption is so strong that the group velocity does not correspond to the velocity of
the pulse maximum. The situation may be different in the case of the so-called gain doublet
[27, 28]. This is a configuration in which there are two closely spaced upper states coupled
with the ground state with the probe pulse and the system is prepared so that population
inversion occurs.

The electric susceptibility (see Figure 9) resembles then that for the Λ system in the dressed
states version

χ(ω) =
C

ω + δ + iγ
+

C

ω − δ + iγ
, (58)

where, in contradistinction to the case discussed previously, C is now a positive constant and
ω = 0 means laser tuning in the middle of the doublet.

-30 -10 10 30
Ω�H2ΠL @MHzD

-0.00003

0.00003

Χ

Figure 9. The real (solid, blue line) and imaginary (dashed, red line) parts of the electric susceptibility for a gain doublet.
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In this case the dispersion is anomalous but the gain (negative absorption) is not too large.
For positive vg it is almost the velocity of the pulse maximum which moves more quickly
than light.

The case of a negative pulse velocity requires more care. It is nonintuitive because the pulse
does not any more remain a compact structure. Consider a sample ranging from z = 0 to
z = L. The pulse amplitude should be written as

Ω1(z, t) =
1

2π

∫ ∞

−∞
dωΩ1(z = 0, ω) exp

[

− iω(t −
z

c
) + i

ω1

2c

∫ z

0
χ(z′, ω)dz′

]

(59)

where the susceptibility is constant inside the sample but is zero outside it. Performing the
integration yields

Ω1(z, t) =
1

2π

∫ ∞

−∞
dωΩ1(z = 0, ω) exp

[

− iω(t−
z

c
)+ i

ω1

2c
χ(ω)Θ(z)

(

zΘ(L− z)+ LΘ(z− L)
)]

,

(60)
where Θ is the step function. The pulse history is presented in the series of plots in Figure
10 (see also Ref. [29]). When an incoming pulse approaches the entrance of the sample a
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Figure 10. Snapshots of the pulse in arbitrary units, at time instants -18 (a), -10 (b), -5 (c), -3(d), -1 (e), 0 (f), 3 (g), 6 (h); the

sample ranges from z = 0 to z = 10, the pulse velocity in vacuum vg = 1 while in the medium vg = −1.5. The area of the
sample has been shaded.

pair of pulses is created at its exit: one inside the sample and the other outside it. The latter
moves away from the sample while the former moves backwards with the velocity vg < 0.
At the entrance the incoming pulse vanishes and so does that moving backwards inside. The
final result is that that the pulse has left the medium earlier than would a pulse traveling in
vacuum.

The simplest case in which such effects can in principle be observed is again the Λ system
in which however it is the state c which is occupied. Other possible realizations are, e.g., the
Λ system with two fields of slightly different frequencies, coupling the the populated state c
with a (see the experimental work of Dogariu et al. [27]), or the double Λ system with two
closely spaced upper levels a and d coupled with the level c by a single control field, with
an additional incoherent pump transferring the population from b to c (see Figure 11), or the
N-system [30] .
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Figure 11. A possible level and coupling scheme for a system with gain doublet. Rop is the strength of an incoherent pump.

It is very important to stress that superluminality does not violate causality. It has been
shown that neither energy [31] nor information [32] are transferred more quickly than light
in vacuum. The proof is based on noticing that the energy of the pulses created at the end
of the sample is in some sense "borrowed" from the energy stored inside the medium and
not from the energy of the incoming pulse. Another point is that a transfer of information
requires a nonanalytical pulse, the spectrum of which is very wide, so it contains a part,
built of components of frequencies far from resonance, which propagates unaffected by the
medium.

5. Standing-wave control field

New effects occur in a Λ system if the control field is taken in the form of a standing or
quasi-standing wave, i.e. one has

E2(z, t) =
[

E20+ exp(ik2z) + E20− exp(−ik2z)
]

exp(−iω2t) + c.c., (61)

where the subscripts ± correspond to the direction propagation parallel or antiparallel to the
z axis. Such a field makes the optical properties of the medium periodic in space [6, 33, 34].
If the induced lattice fits the incident wave, i.e. k1 = k2, which also means ω1 = ω2, then
in addition to transmission and absorption the incident probe field can be reflected and
the methods of describing the propagation are adopted from the solid state physics (Bragg
scattering). The probe field including now both the forward and backward propagating
components can be written in the two-mode approximation [34]

E1(z, t) =
[

ǫ1+(z, t) exp(ik2z) + ǫ1−(z, t) exp(−ik2z)
]

exp(−iω1t) + c.c., (62)

where ǫ1± are slowly varying. After considerations similar to those presented in the case
of the typical Λ system (the only difference is that now one has to transform off rapid
oscillations in time but not in space) one obtains the electric susceptibility rapidly varying in
space in the form (cf. eq. (26))

χ(z, ω) = −
N|dab|

2

ǫ0h̄

1

ω + δab + iγab −
Ω2

2++Ω2
2−+2Ω2+Ω2− cos 2k2z

ω+δab−δac+iγcb

, (63)

where Ω2± = dacE20±/h̄.
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The above function can be expanded into the Fourier series

χ(z, ω) = χ0(ω) +
∞

∑
j=1

χ2j(ω)
(

exp(2ijk2z) + exp(−2ijk2z)
)

. (64)

The coupled propagation equations for the two slowly varying components of the probe field
read in the frequency domain

(

i
∂

∂z
+

ω

c
+

ω1

2c
χ0(ω)

)

Ω1+(z, ω) +
ω1

2c
χ2(ω)Ω1−(z, ω) = 0,

(

−i
∂

∂z
+

ω

c
+

ω1

2c
χ0(ω)

)

Ω1−(zω) +
ω1

2c
χ2(ω)Ω1+(z, ω) = 0, (65)

where use has been made of the fact that ω1 ≈ ω2 and the Rabi frequencies for both
components of the probe field have been introduced Ω1± = dabǫ1±/h̄. The solutions of
the above equations read

Ω1+(z, ω) = Ω+
1+(ω) exp(iQz) + Ω−

1+(ω) exp(−iQz),

Ω1−(z, ω) = Ω+
1−(ω) exp(iQz) + Ω−

1−(ω) exp(−iQz), (66)

where the wavevector Q(ω), the so-called Bloch vector, is given by

Q(ω) =
1

c

√

(

ω +
ω1

2
χ0(ω)

)2
−

(ω1

2
χ2(ω)

)2
, (67)

and the superscripts ± distinguish between the two solutions of the differential equations.

The z-independent functions Ω±
1± in the above equations should be chosen to guarantee

fulfilling the boundary conditions, usually Ω1+(0, ω) = Ω10(ω), Ω1−(L, ω) = 0, which
corresponds to an incoming wave of the amplitude Ω10(ω) entering the sample at z = 0 and
to the reflected wave equal to zero at its end L. The solutions of Eqs. (65) then read

Ω1+(z, ω) = Ω10(ω)
N2 exp[iQ(z − L)]− N1 exp[−iQ(z − L)]

N2 exp[−iQL]− N1 exp[iQL]
,

Ω1−(z, ω) = Ω10(ω)
ω2

2c
χ2(ω)

− exp[iQ(z − L)] + exp[−iQ(z − L)]

N2 exp[−iQL]− N1 exp[iQL]
, (68)

where N1 = −Q + ω
c + ω2

2c χ0 and N2 = Q + ω
c + ω2

2c χ0. The above expressions can be used
to obtain the transmission and reflection spectra for the probe beam

T(ω) = |
Ω1+(L, ω)

Ω10(ω)
|2, R(ω) = |

Ω1−(0, ω)

Ω10(ω)
|2, (69)
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which, together with the dispersion relation Q = Q(ω), are subject of an experimental
verification. A band structure has been created in the medium. In the frequency ranges
where ℜ(Q) is small and ℑ(Q) is considerable, one has to do with band gaps. For incident
pulses of such frequencies transmission is forbidden while reflection is strong.

In a more general case, in which the wavenumbers k1 and k2 are different, one can make the
lattice fit the incident wave by inclining the control beams by an angle β with respect to the

z axis so that k′2 ≡ k2 cos
β
2 ≈ k1 [6]. This means that one should use k′2 instead k2 in the

Fourier expansion of the electric susceptibility and in the two-mode expansion of the probe
field. The above formulae take then the form

Q(ω) =
1

c cos
β
2

√

(

ω
ω1

ω2
+

ω2
1 − ω2

2 cos2 β
2

2ω2
+

ω2
1

2ω2
χ0(ω)

)2
−
( ω2

1

2ω2
χ2(ω)

)2
, (70)

and

N1 = −Q +
1

c

(

ω
ω1

ω2
+

ω2
1 − ω2

2 cos2 β
2

2ω2
+

ω2
1

2ω2
χ0(ω)

)

,

N2 = Q +
1

c

(

ω
ω1

ω2
+

ω2
1 − ω2

2 cos2 β
2

2ω2
+

ω2
1

2ω2
χ0(ω)

)

. (71)

A typical dispersion relation Q(ω) and the corresponding transmission and reflection spectra
are shown in Figures 12 and 13. In the interval (stop band) in which the dispersion is
almost zero with nonzero absorption the reflection is almost perfect while a narrow transition
peak reaches unity where ℑ(Q) ≈ 0. In analogy to the solid state we thus have to do
with metamaterials, the optical properties of which can be created on demand with optical
methods.
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Figure 12. The real (solid, blue line) and imaginary (dashed, red line) parts of the electric susceptibility for a lambda system

with control field in the form of quasi-standing wave and a small beam defelction angle β.
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Figure 13. The transmission (dashed, red line) and reflection (solid, blue line) spectra.

6. Conclusions

Various situations - generalizations of electromagnetically induced transparency - have
been reviewed in which a weak probe beam of light propagates in an atomic medium
which coherently interacts with an additional control field or fields. A unified theoretical
description of the particular cases, based on Maxwell-Bloch equations, has been given both
for classical and quantum probe fields. The considered cases include in particular EIT, light
storage, light processing at the storage stage, pulse matching, superluminality and Bragg
scattering on an optically created structure.
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1. Introduction

An important physical intuition that led to the Copenhagen interpretation of quantum
mechanics is the Heisenberg uncertainty relation (HUR) which is a consequence of the
noncommutativity between two conjugate observables. Our ability of observation is
intrinsically limited by the HUR, quantifying an amount of inevitable and uncontrollable
disturbance on measurements (Ozawa, 2004).

Though the HUR is one of the most fundamental results of the whole quantum mechanics,
some drawbacks concerning its quantitative formulation are reported. As the expectation
value of the commutator between two arbitrary noncommuting operators, the value of
the HUR is not a fixed lower bound and varies depending on quantum state (Deutsch,
1983). Moreover, in some cases, the ordinary measure of uncertainty, i.e., the variance of
canonical variables, based on the Heisenberg-type formulation is divergent (Abe et al., 2002).

These shortcommings are highly nontrivial issues in the context of information sciences.
Thereby, the theory of informational entropy is proposed as an alternate optimal measure of
uncertainty. The adequacy of the entropic uncertainty relations (EURs) as an uncertainty
measure is owing to the fact that they only regard the probabilities of the different
outcomes of a measurement, whereas the HUR the variances of the measured values
themselves (Werner, 2004). According to Khinchin’s axioms (Ash, 1990) for the requirements
of common information measures, information measures should be dependent exclusively
on a probability distribution (Pennini & Plastino, 2007). Thank to active research and
technological progress associated with quantum information theory (Nielsen & Chuang,
2000; Choi et al., 2011), the entropic uncertainty band now became a new concept in quantum
physics.

©2012 Choi, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.© 2013 Choi; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2 Open Systems, Entanglement and Quantum Optics

Information theory proposed by Shannon (Shannon, 1948a; Shannon, 1948b) is important
as information-theoretic uncertainty measures in quantum physics but even in other areas
such as signal and/or image processing. Essential unity of overall statistical information
for a system can be demonstrated from the Shannon information, enabling us to know
how information could be quantified with absolute precision. Another good measure of
uncertainty or randomness is the Fisher information (Fisher, 1925) which appears as the basic
ingredient in bounding entropy production. The Fisher information is a measure of accuracy
in statistical theory and useful to estimate ultimate limits of quantum measurements.

Recently, quantum information theory besides the fundamental quantum optics has aroused
great interest due to its potential applicability in three sub-regions which are quantum
computation, quantum communication, and quantum cryptography. Information theory has
contributed to the development of the modern quantum computation (Nielsen & Chuang,
2000) and became a cornerstone in quantum mechanics. A remarkable ability of quantum
computers is that they can carry out certain computational tasks exponentially faster than
classical computers utilizing the entanglement and superposition principle.

Stimulated by these recent trends, this chapter is devoted to the study of information theory
for optical waves in complex time-varying media with emphasis on the quantal information
measures and informational entropies. Information theoretic uncertainty relations and the
information measures of Shannon and Fisher will be managed. The EUR of the system
will also be treated, quantifying its physically allowed minimum value using the invariant
operator theory established by Lewis and Riesenfeld (Lewis, 1967; Lewis & Riesenfeld,
1969). Invariant operator theory is crucial for studying quantum properties of complicated
time-varying systems, since it, in general, gives exact quantum solutions for a system
described by time-dependent Hamiltonian so far as its counterpart classical solutions are
known.

2. Quantum optical waves in time-varying media

Let us consider optical waves propagating through a linear medium that has time-dependent
electromagnetic parameters. Electromagnetic properties of the medium are in principle
determined by three electromagnetic parameters such as electric permittivity ǫ, magnetic
permeability µ, and conductivity σ. If one or more parameters among them vary with
time, the medium is designated as a time-varying one. Coulomb gauge will be taken for
convenience under the assumption that the medium have no net charge distributions. Then
the scalar potential vanishes and, consequently, the vector potential is the only potential
needed to consider when we develop quantum theory of electromagnetic wave phenomena.
Regarding this fact, the quantum properties of optical waves in time-varying media are
described in detail in Refs. (Choi & Yeon, 2005; Choi, 2012; Choi et al, 2012) and they
will be briefly surveyed in this section as a preliminary step for the study of information
theory.

According to separation of variables method, it is favorable to put vector potential in the
form

A(r, t) = ∑
l

ul(r)ql(t). (1)
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Then, considering the fact that the fields and current density obey the relations, D = ǫ(t)E,
B = µ(t)H, and J = σ(t)E, in linear media, we derive equation of motion for ql from Maxwell
equations as (Choi, 2012; Choi, 2010a; Pedrosa & Rosas, 2009)

q̈l + {[ǫ̇(t) + σ(t)]/ǫ(t)}q̇l + ω2
l (t)ql = 0. (2)

Here, the angular frequency (natural frequency) is given by ωl(t) = c(t)kl where c(t) is
the speed of light in media and kl(= |kl |) is the wave number. Because electromagnetic
parameters vary with time, c(t) can be represented as a time-dependent form, i.e., c(t) =
1/

√

µ(t)ǫ(t). However, kl(= |kl |) is constant since it does not affected by time-variance of
the parameters.

The formula of mode function ul(r) depends on the geometrical boundary condition in
media (Choi & Yeon, 2005). For example, it is given by ulν(r) = V−1/2 ε̂ lν exp (±ikl · r) (ν =
1, 2) for the fields propagating under the periodic boundary condition, where V is the volume
of the space, ε̂ lν is a unit vector in the direction of polarization designated by ν.

From Hamilton’s equations of motion, q̇l = ∂Hl/∂pl and ṗl = −∂Hl/∂ql , the classical
Hamiltonian that gives Eq. (3) can be easily established. Then, by converting canonical
variables, ql and pl , into quantum operators, q̂l and p̂l , from the resultant classical
Hamiltonian, we have the quantum Hamiltonian such that (Choi et al., 2012)

Ĥl(q̂l , p̂l , t) =
1

2ǫ0
e−Λ(t) p̂2

l + b(t)(q̂l p̂l + p̂l q̂l) +
1

2
ǫ0eΛ(t)̟2

l (t)q̂
2
l , (3)

where p̂l = −ih̄(∂/∂ql), ǫ0 = ǫ(0), b(t) is an arbitrary time function, and

Λ(t) =
∫ t

0
dt′[ǫ̇(t′) + σ(t′)]/ǫ(t′), (4)

̟2
l (t) = ω2

l (t) + 2ḃ(t) + 2b(t)[ǫ̇(t) + σ(t)]/ǫ(t) + 4b2(t). (5)

The complete Hamiltonian is obtained by summing all individual Hamiltonians: Ĥ =
∑l Ĥl(q̂l , p̂l , t).

From now on, let us treat the wave of a particular mode and drop the under subscript l
for convenience. It is well known that quantum problems of optical waves in nonstationary
media are described in terms of classical solutions of the system. Some researchers use
real classical solutions (Choi, 2012; Pedrosa & Rosas, 2009) and others imaginary solutions
(Angelow & Trifonov, 2010; Malkin et al., 1970). In this chapter, real solutions of classical
equation of motion for q will be considered. Since Eq. (2) is a second order differential
equation, there are two linearly independent classical solutions. Let us denote them as s1(t)
and s2(t), respectively. Then, we can define an Wronskian of the form

Ω = 2ǫ0eΛ(t)
[

s1(t)
ds2(t)

dt
−

ds1(t)

dt
s2(t)

]

. (6)

This will be used at later time, considering only the case that Ω > 0 for convenience.
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When we study quantum problem of a system that is described by a time-dependent
Hamiltonian such as Eq. (3), it is very convenient to introduce an invariant operator
of the system. Such idea (invariant operator method) is firstly devised by Lewis and
Riesenfeld (Lewis, 1967; Lewis & Riesenfeld, 1969) in a time-dependent harmonic oscillator
as mentioned in the introductory part and now became one of potential tools for
investigating quantum characteristics of time-dependent Hamiltonian systems. By solving
the Liouville-von Neumann equation of the form

dK̂

dt
=

∂K̂

∂t
+

1

ih̄
[K̂, Ĥ] = 0, (7)

we obtain the invariant operator of the system as (Choi, 2004)

K̂ = h̄Ω

(

â† â +
1

2

)

, (8)

where Ω is chosen to be positive from Eq. (6) and â and â† are annihilation and creation
operators, respectively, that are given by

â =

√

1

h̄Ω

{[

Ω

2s(t)
− iǫ0eΛ(t)

(

ds(t)

dt
− 2b(t)s(t)

)]

q̂ + is(t) p̂

}

, (9)

â† =

√

1

h̄Ω

{[

Ω

2s(t)
+ iǫ0eΛ(t)

(

ds(t)

dt
− 2b(t)s(t)

)]

q̂ − is(t) p̂

}

, (10)

with

s(t) =
√

s2
1(t) + s2

2(t). (11)

Since the system is somewhat complicate, let us develop our theory with b(t) = 0 from now
on. Then, Eq. (5) just reduces to ̟l(t) = ωl(t). Since the formula of Eq. (8) is very similar
to the familiar Hamiltonian of the simple harmonic oscillator, we can solve its eigenvalue
equation via well known conventional method. The zero-point eigenstate φ0(q, t) of K̂ is
obtained from âφ0(q, t) = 0. Once φ0(q, t) is obtained, nth eigenstates are also derived by
acting â† on φ0(q, t) n times. Hence we finally have (Choi, 2012)

φn(q, t) =
4

√

δ(t)

π

1
√

2nn!
Hn

(

√

δ(t)q

)

× exp

{

−
δ(t)

2

[

1 − i
2ǫ0eΛ(t)s(t)

Ω

ds(t)

dt

]

q2

}

, (12)

where δ(t) = Ω/[2h̄s2(t)] and Hn are Hermite polynomials.
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According to the theory of Lewis-Riesenfeld invariant, the wave functions that satisfy the
Schrödinger equation are given in terms of φn(q, t):

ψn(q, t) = φn(q, t) exp[iθn(t)], (13)

where θn(t) are time-dependent phases of the wave functions. By substituting Eq. (13) with
Eq. (3) into the Schrödinger equation, we derive the phases to be θn(t) = − (n + 1/2) η(t)
where (Choi, 2012)

η(t) =
Ω

2ǫ0

∫ t

0

dt′

s2(t′)eΛ(t′)
+ η(0). (14)

The probability densities in both q and p spaces are given by the square of wave functions,
i.e., ρn(q) = |ψn(q, t)|2 and ρ̃n(p) = | ˜ψn(p, t)|2, respectively. From Eq. (13) and its Fourier
component, we see that

ρn(q) =

√

δ(t)

π

1

2nn!

{

Hn[
√

δ(t)q]

}2

e−δ(t)q2
, (15)

ρ̃n(p) =

√

δ′(t)

π

1

2nn!

{

Hn[
√

δ′(t)p]

}2

e−δ′(t)p2
, (16)

where
δ′(t) =

2Ω

h̄

[

Ω2

s2(t)
+ 4ǫ2

0e2Λ(t)
(

ds(t)
dt

)2
] . (17)

The wave functions and the probability densities derived here will be used in subsequent
sections in order to develop the information theory of the system.

3. Information measures for thermalized quantum optical fields

Informations of a physical system can be obtained from the statistical analysis of results of
a measurement performed on it. There are two important information measures. One is
the Shannon information and the other is the Fisher information. The Shannon information
is also called as the Wehrl entropy in some literatures (Wehrl, 1979; Pennini & Plastino,
2004) and suitable for measuring uncertainties relevant to both quantum and thermal effects
whereas quantum effect is overlooked in the concept of ordinary entropy. The Fisher
information which is also well known in the field of information theory provides the
extreme physical information through a potential variational principle. To manage these
informations, we start from the establishment of density operator for the electromagnetic
field equilibrated with its environment of temperature T. Density operator of the system
obeys the Liouville-von Neumann equation such that (Choi et al., 2011)

∂ ˆ̺(t)

∂t
+

1

ih̄
[ ˆ̺(t), Ĥ] = 0. (18)
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6 Open Systems, Entanglement and Quantum Optics

Considering the fact that invariant operator given in Eq. (8) is also established via the
Liouville-von Neumann equation, we can easily construct density operator as a function
of the invariant operator. This implies that the Hamiltonian Ĥ in the density operator of the
simple harmonic oscillator should be replaced by a function of the invariant operator y(0)K̂,

where y(0){= [2ǫ0eΛ(0)s2(0)]−1} is inserted for the purpose of dimensional consideration.
Thus we have the density operator in the form

ˆ̺(t) =
1

Z
e−βh̄W(â† â+1/2), (19)

where W = y(0)Ω, Z is a partition function, β = kbT, and kb is Boltzmann’s constant. If we
consider Fock state expression, the above equation can be expand to be

̺(t) =
1

Z

∞

∑
n=0

|φn(t)〉e
−βh̄W(n+1/2)〈φn(t)|, (20)

while the partition function becomes

Z =
∞

∑
n=0

〈φn(t)|e
−βh̄W(â† â+1/2)|φn(t)〉. (21)

If we consider that the coherent state is the most classical-like quantum state, a semiclassical
distribution function associated with the coherent state may be useful for the description of
information measures. As is well known, the coherent state |α〉 is obtained by solving the
eigenvalue equation of â:

â|α〉 = α|α〉. (22)

Now we introduce the semiclassical distribution function µ̺(α) related with the density
operator via the equation (Anderson & Halliwell, 1993)

µ̺(α) = 〈α|̺(t)|α〉. (23)

This is sometimes referred to as the Husimi distribution function (Husimi, 1940) and appears
frequently in the study relevant to the Wigner distribution function for thermalized quantum
systems. The Wigner distribution function is regarded as a qusi-distribution function because
some parts of it are not positive but negative. In spite of the ambiguity in interpreting
this negative value as a distribution function, the Wigner distribution function meets all
requirements of both quantum and statistical mechanics, i.e., it gives correct expectation
values of quantum mechanical observables. In fact, the Husimi distribution function can
also be constructed from the Wigner distribution function through a mathematical procedure
known as "Gaussian smearing" (Anderson & Halliwell, 1993). Since this smearing washes out
the negative part, the negativity problem is resolved by the Hisimi’s work. But it is interesting
to note that new drawbacks are raised in that case, which state that the probabilities of
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different samplings of q and p, relevant to the Husimi distribution function, cannot be
represented by mutually exclusive states due to the lack of orthogonality of coherent states
used for example in Eq. (23) (Anderson & Halliwell, 1993; Nasiri, 2005). This weak point
is however almost fully negligible in the actual study of the system, allowing us to use the
Husimi distribution function as a powerful means in the realm of semiclassical statistical
physics.

Notice that coherent state can be rewritten in the form

|α〉 = D̂(α)|φ0(t)〉, (24)

where D̂(α) is the displacement operator of the form D̂(α) = eαâ†−α∗ â. A little algebra leads
to

|α〉 = exp

(

−
1

2
|α|2

)

∑
n

αn

√
n!
|φn(t)〉. (25)

Hence, the coherent state is expanded in terms of Fock state wave functions. Now using Eqs.
(20) and (25), we can evaluate Eq. (23) to be

µ̺(α) =
1

Z

∞

∑
n=0

e−βh̄W(n+1/2)|〈φn(t)|α〉|
2

=
1 − e−βh̄W

exp[(1 − e−βh̄W)|α|2]
. (26)

Here, we used a well known relation in photon statistics, which is

|〈φn(t)|α〉|
2 =

|α|2n

n!
e−|α|2 . (27)

As you can see, the Husimi distribution function is strongly related to the coherent state
and it provides necessary concepts for establishment of both the Shannon and the Fisher
informations. If we consider Eqs. (9) and (22), α (with b(t) = 0) can be written as

α =

√

1

h̄Ω

{[

Ω

2s(t)
+ iǫ0eΛ(t) ds(t)

dt

]

q + is(t)p

}

. (28)

Hence there are innumerable number of α-samples that correspond to different pair of (q,p),
which need to be examined for measurement.

A natural measure of uncertainty in information theory is the Shannon information as
mentioned earlier. The Shannon information is defined as (Anderson & Halliwell, 1993)

IS = −
∫

d2α

π
µ̺(α) ln µ̺(α), (29)
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where d2α = dRe(α) dIm(α). With the use of Eq. (26), we easily derive it:

IS = 1 + ln
1

1 − e−βh̄W
. (30)

This is independent of time and, in the limiting case of fields propagating in
time-independent media that have no conductivity, W becomes natural frequency of light,
leading this formula to correspond to that of the simple harmonic oscillator (Pennini &
Plastino, 2004). This approaches to IS ≃ ln[kbT/(h̄W)] for sufficiently high temperature,
yielding the dominance of the thermal fluctuation and, consequently, permitting the
quantum fluctuation to be neglected. On the other hand, as T decreases toward absolute
zero, the Shannon information is always larger than unity (IS ≥ 1). This condition is known
as the Lieb-Wehrl condition because it is conjectured by Wehrl (Wehrl, 1979) and proved
by Lieb (Lieb, 1978). From this we can see that IS has a lower bound which is connected
with pure quantum effects. Therefore, while usual entropy is suitable for a measure of
uncertainty originated only from thermal fluctuation, IS plays more universal uncertainty
measure covering both thermal and quantum regimes (Anderson & Halliwell, 1993).

Other potential measures of information are the Fisher informations which enable us to
assess intrinsic accuracy in the statistical estimation theory. Let us consider a system
described by the stochastic variable α = α(x) with a physical parameter x. When we describe
a measurement of α in order to infer x from the measurement, it is useful to introduce the
coherent-state-related Fisher information that is expressed in the form

IF,x =
∫

d2α

π
f (α(x); x)

(

∂ ln f (α(x); x)

∂x

)2

. (31)

In fact, there are many different scenarios of this information depending on the choice of
x. For a more general definition of the Fisher information, you can refer to Ref. (Pennini &
Plastino, 2004).

If we take f (α(x); x) = µ̺(α) and x = β, the Fisher’s information measure can be written as
(Pennini & Plastino, 2004)

IF,β =
∫

d2α

π
µ̺(α)

(

∂ ln µ̺(α)

∂β

)2

. (32)

Since β is the parameter to be estimated here, Iβ reflects the change of µ̺ according to the
variation of temperature. A straightforward calculation yields

IF,β =

(

h̄W

eβh̄W − 1

)2

. (33)

This is independent of time and of course agree, in the limit of the simple harmonic oscillator
case, to the well known formula of Pennini and Plastino (Pennini & Plastino, 2004). Hence,
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the change of electromagnetic parameters with time does not affect to the value of β. IF,β

reduces to zero at absolute zero-temperature (T → 0), leading to agreement with the third
law of thermodynamics (Pennini & Plastino, 2007).

Another typical form of the Fisher informations worth to be concerned is the one obtained
with the choice of f (α(x); x) = µ̺(α) and x = {q, p} (Pennini et al, 1998):

IF,{q,p} =
∫

d2α

π
µ̺(α)

[

σqq,α

(

∂ ln µ̺(α)

∂q

)2

+ σpp,α

(

∂ ln µ̺(α)

∂p

)2
]

, (34)

where σqq,α and σpp,α are variances of q and p in the Glauber coherent state, respectively.
Notice that σqq,α and σpp,α are inserted here in order to consider the weight of two
independent terms in Eq. (34). As you can see, this information is jointly determined by
means of canonical variables q and p. To evaluate this, we need

σqq,α = 〈α|q̂2|α〉 − 〈α|q̂|α〉2, (35)

σpp,α = 〈α| p̂2|α〉 − 〈α| p̂|α〉2. (36)

It may be favorable to represent q̂ and p̂ in terms of â and â† at this stage. They are easily
obtained form the inverse representation of Eqs. (9) and (10) to be

q̂ =
√

h̄/Ωs(t)[â + â†], (37)

p̂ =
√

h̄

[(

ǫ0eΛ(t)
√

Ω

ds(t)

dt
− i

√
Ω

2s(t)

)

â +

(

ǫ0eΛ(t)
√

Ω

ds(t)

dt
+ i

√
Ω

2s(t)

)

â†

]

. (38)

Thus with the use of these, Eqs. (35) and (36) become

σqq,α =
h̄s2(t)

Ω
, (39)

σpp,α =
h̄Ω

4s2(t)

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]

. (40)

A little evaluation after substituting these quantities into Eq. (34) leads to

IF,{q,p} =

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]

(1 − e−βh̄W). (41)

Notice that this varies depending on time. In case that the time dependence of every
electromagnetic parameters vanishes and σ → 0, this reduces to that of the simple harmonic
oscillator limit, IF,{q,p} = 1 − e−βh̄ω , where natural frequency ω is constant, which exactly
agrees with the result of Pennini and Plastino (Pennini & Plastino, 2004).
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4. Husimi uncertainties and uncertainty relations

Uncertainty principle is one of intrinsic features of quantum mechanics, which distinguishes
it from classical mechanics. Aside form conventional procedure to obtain uncertainty
relation, it may be instructive to compute a somewhat different uncertainty relation for
optical waves through a complete mathematical description of the Husimi distribution
function. Bearing in mind this, let us see the uncertainty of canonical variables, associated
with information measures, and their corresponding uncertainty relation. The definition of
uncertainties suitable for this purpose are

σµ,qq(t) = 〈q̂2〉µ − 〈q̂〉2
µ, (42)

σµ,pp(t) = 〈 p̂2〉µ − 〈 p̂〉2
µ, (43)

σµ,qp(t) = 〈q̂ p̂ + p̂q̂〉µ/2 − 〈q̂〉µ〈 p̂〉µ, (44)

where 〈Ôl〉µ (l = 1, 2) with an arbitrary operator Ô is the expectation value relevant to the
Husimi distribution function and can be evaluated from

〈Ôl〉µ =
∫

d2α

π
Olµ̺(α). (45)

While 〈q̂〉µ = 0 and 〈 p̂〉µ = 0 for l = 1, the rigorous algebra for higher orders give

〈q̂2〉µ =
2h̄s2(t)

Ω
R(β), (46)

〈 p̂2〉µ =
h̄Ω

2s2(t)

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]

R(β), (47)

〈q̂ p̂ + p̂q̂〉µ = 4h̄ǫ0eΛ(t) s(t)

Ω

ds(t)

dt
R(β), (48)

where

R(β) =
1

1 − e−βh̄W
+

1

2
. (49)

Thus we readily have

σµ,qq =
2h̄s2(t)

Ω
R(β), (50)

σµ,pp =
h̄Ω

2s2(t)

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]

R(β). (51)

Like other types of uncertainties in physics, the relationship between σµ,qq and σµ,pp is rather
unique, i.e., if one of them become large the other become small, and there is nothing
whatever one can do about it.
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We can represent the uncertainty product σµ and the generalized uncertainty product Σµ in
the form

σµ = [σµ,qq(t)σµ,pp(t)]
1/2, (52)

Σµ = [σµ,qq(t)σµ,pp(t)− σµ,qp
2(t)]1/2. (53)

Through the use of Eqs. (50) and (51), we get

σµ = h̄

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]1/2

R(β), (54)

Σµ = h̄R(β). (55)

Notice that σµ varies depending on time, while Σµ does not and is more simple form. The
relationship between σµ and usual thermal uncertainty relations σ obtained using the method
of thermofield dynamics (Choi, 2010b; Leplae et al., 1974) are given by σµ = r(β)σ where

r(β) = (3eβh̄W − 1)/(eβh̄W + 1).

5. Entropies and entropic uncertainty relations

The HUR is employed in many statistical and physical analyses of optical data measured
from experiments. This is a mathematical outcome of the nonlocal Fourier analysis (Bohr,
1928) and we can simply represent it by multiplying standard deviations of q and p together.
From measurements, simultaneous prediction of q and p with high precision for both beyond
certain limits levied by quantum mechanics is impossible according to the Heisenberg
uncertainty principle. It is plausible to use the HUR as a measure of the spread when
the curve of distribution involves only a simple hump such as the case of Gaussian type.
However, the HUR is known to be inadequate when the distribution of the statistical data is
somewhat complicated or reveals two or more humps (Bialynicki-Birula, 1984; Majernik &
Richterek, 1997).

For this reason, the EUR is suggested as an alternative to the HUR by Bialynicki-Birula and
Mycielski (Biatynicki-Birula & Mycielski, 1975). To study the EUR, we start from entropies
of q and p associated with the Shannon’s information theory:

S(ρn) = −
∫

ρn(q) ln ρn(q)dq, (56)

S(ρ̃n) = −
∫

ρ̃n(p) ln ρ̃n(p)dp. (57)

By executing some algebra after inserting Eqs. (15) and (16) into the above equations, we get

S(ρn) = −
1

2
ln

Ω

2h̄s2(t)
+ ln(2nn!

√
π) + n +

1

2
−

1

2nn!
√

π
E(Hn), (58)
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S(ρ̃n) =
1

2
ln

{

h̄

2Ω

[

Ω2

s2(t)
+ 4ǫ2

0e2Λ(t)
(

ds(t)

dt

)2
]}

+ ln(2nn!
√

π) + n +
1

2

−
1

2nn!
√

π
E(Hn), (59)

where E(Hn) are entropies of Hermite polynomials of the form (Dehesa et al, 2001)

E(Hn) =
∫ ∞

−∞
[Hn(y)]

2e−y2
ln([Hn(y)]

2)dy. (60)

By adding Eqs. (58) and (59) together,

UE = S(ρn) + S(ρ̃n), (61)

we obtain the alternative uncertainty relation, so-called the EUR such that

UE =
1

2
ln

{

h̄2

[

1 + 4ǫ2
0e2Λ(t) s2(t)

Ω2

(

ds(t)

dt

)2
]}

+ 2 ln(2nn!
√

π)

+2n + 1 −
2

2nn!
√

π
E(Hn). (62)

The EUR is always larger than or at least equal to a minimum value known as the BBM
(Bialynicki-Birula and Mycielski) inequality: UE ≥ 1+ ln π ≃ 2.14473 (Haldar & Chakrabarti,
2012). Of course, Eq. (62) also satisfy this inequality. The BBM inequality tells us a lower
bound of the uncertainty relation and the equality holds for the case of the simple harmonic
oscillation of fields with n = 0.

The EUR with evolution in time, as well as information entropy itself, is a potential tool to
demonstrate the effects of time dependence of electromagnetic parameters on the evolution
of the system and, consequently, it deserves a special interest. The genera1 form of the EUR
can also be extended to not only other pairs of observables such as photon number and phase
but also more higher dimensional systems even up to infinite dimensions.

6. Application to a special system

The application of the theory developed in the previous sections to a particular system may
provide a better understanding of information theory for the system to us. Let us see the
case that ǫ(t) = ǫ0, σ(t) = 0, and

µ(t) = µ0
1 + h

1 + h cos(ω0t)
, (63)
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where µ0[= µ(0)], h, and ω0 are real constants and |h| ≪ 1. Then, the classical solutions of
Eq. (2) are given by

s1(t) = s0Ceν(ω0t/2,−νh/2), (64)

s2(t) = s0Seν(ω0t/2,−νh/2), (65)

where s0 is a real constant, Ceν and Seν are Mathieu functions of the cosine and the sine
elliptics, respectively, and ν = 4k2/[ǫ0µ0ω2

0(1+ h)]. Figure 1 is information measures for this
system, plotted as a function of time. Whereas IS and IF,β do not vary with time, IF,{q,p}
oscillates as time goes by.

Figure 1. The time evolution of IF,{q,p}. The values of (k, h) used here are (1, 0.1) for solid red line, (3, 0.1) for long dashed
blue line, and (3, 0.2) for short dashed green line. Other parameters are taken to be ǫ0 = 1, µ0 = 1, β = 1, h̄ = 1, ω0 = 5,
and s0 = 1.

In case of h → 0, the natural frequency in Eq. (2) become constant and W → ω. Then, Eqs.
(64) and (65) become s1 = s0 cos ωt and s2 = s0 sin ωt, respectively. We can confirm in this
situation that our principal results, Eqs. (30), (33), (41), (54), and (62) reduce to those of the
wave described by the simple harmonic oscillator as expected.

7. Summary and conclusion

Information theories of optical waves traveling through arbitrary time-varying media are
studied on the basis of invariant operator theory. The time-dependent Hamiltonian that gives
classical equation of motion for the time function q(t) of vector potential is constructed. The
quadratic invariant operator is obtained from the Liouville-von Neumann equation given
in Eq. (7) and it is used as a basic tool for developing information theory of the system.
The eigenstates φn(q, t) of the invariant operator are identified using the annihilation and
the creation operators. From these eigenstates, we are possible to obtain the Schrödinger
solutions, i.e., the wave functions ψn(q, t), since ψn(q, t) is merely given in terms of φn(q, t).
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Figure 2. The Uncertainty product σµ (thick solid red line) together with σµ,qq (long dashed blue line) and σµ,pp (short dashed

green line). The values of (k, h) used here are (1, 0.1) for (a) and (3, 0.1) for (b). Other parameters are taken to be ǫ0 = 1,
µ0 = 1, β = 1, h̄ = 1, ω0 = 5, and s0 = 1.

The semiclassical distribution function µ̺(α) is the expectation value of ˆ̺(t) in the coherent
state which is the very classical-like quantum state. From Eq. (30), we see that the
Shannon information does not vary with time. However, Eq. (41) shows that the Fisher
information IF,{q,p} varies depending on time. It is known that the localization of the density
is determined in accordance with the Fisher information (Romera et al, 2005). For this
reason, the Fisher measure is regarded as a local measure while the Shannon information
is a global information measure of the spreading of density. Local information measures
vary depending on various derivatives of the probability density whereas global information
measures follow the Kinchin’s axiom for information theory (Pennini & Plastino, 2007;
Plastino & Casas, 2011).
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Figure 3. The EUR UE (thick solid red line) together with S(ρn) (long dashed blue line) and S(ρ̃n) (short dashed green line).
The values of (k, h) used here are (1, 0.1) for (a), (3, 0.1) for (b), and (3, 0.2) for (c). Other parameters are taken to be ǫ0 = 1,
µ0 = 1, h̄ = 1, ω0 = 5, n = 0, and s0 = 1.

Two kinds of uncertainty products relevant to the Husimi distribution function are
considered: one is the usual uncertainty product σµ and the other is the more generalized
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product Σµ defined in Eq. (53). While σµ varies as time goes by Σµ is constant and both have
particular relations with those in standard thermal state.

Fock state representation of the Shannon entropies in q- and p-spaces are derived and given
in Eqs. (58) and (59), respectively. The EUR which is an alternative uncertainty relation is
obtained by adding these two entropies. The EUR is more advantageous than the HUR
in the context of information theory. The information theory is not only important in
modern technology of quantum computing, cryptography, and communication, its area
is now extended to a wide range of emerging fields that require rigorous data analysis
like neural systems and human brain. Further developments of theoretical and physical
backgrounds for analyzing statistical data obtained from a measurement beyond standard
formulation are necessary in order to promote the advance of such relevant sciences and
technologies.
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