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Chapter 1

Review of Fundamental Relations
for Optical Phenomena

References:

• G. Bekefi and A.H. Barrett, Electromagnetic Vibrations Waves and Radiation, MIT
Press, Cambridge, MA

• J.D. Jackson, Classical Electrodynamics, Wiley, New York, 1975

• Bassani and Pastori–Parravicini, Electronic States and Optical Transitions in Solids,
Pergamon Press, NY (1975).

• Yu and Cardona, Fundamentals of Semiconductors, Springer Verlag (1996)

1.1 Introductory Remarks on Optical Probes

The optical properties of solids provide an important tool for studying energy band struc-
ture, impurity levels, excitons, localized defects, lattice vibrations, and certain magnetic
excitations. In such experiments, we measure some observable, such as reflectivity, trans-
mission, absorption, ellipsometry or light scattering; from these measurements we deduce
the dielectric function ε(ω), the optical conductivity σ(ω), or the fundamental excitation
frequencies. It is the frequency-dependent complex dielectric function ε(ω) or the complex
conductivity σ(ω), which is directly related to the energy band structure of solids.

The central question is the relationship between experimental observations and the
electronic energy levels (energy bands) of the solid. In the infrared photon energy region,
information on the phonon branches is obtained. These issues are the major concern of
Part II of this course.
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1.2 The Complex dielectric function and the complex optical
conductivity

The complex dielectric function and complex optical conductivity are introduced through
Maxwell’s equations (c.g.s. units)

∇× ~H − 1

c

∂ ~D

∂t
=

4π

c
~j (1.1)

∇× ~E +
1

c

∂ ~B

∂t
= 0 (1.2)

∇ · ~D = 0 (1.3)

∇ · ~B = 0 (1.4)

where we have assumed that the charge density is zero.
The constitutive equations are written as:

~D = ε ~E (1.5)

~B = µ ~H (1.6)

~j = σ ~E (1.7)

Equation 1.5 defines the quantity ε from which the concept of the complex dielectric func-
tion will be developed. When we discuss non–linear optics (see Chapter 11), these linear
constitutive equations (Eqs. 1.5–1.7) must be generalized to include higher order terms in
~E ~E and ~E ~E ~E. From Maxwell’s equations and the constitutive equations, we obtain a wave
equation for the field variables ~E and ~H:

∇2 ~E =
εµ

c2
∂2 ~E

∂t2
+

4πσµ

c2
∂ ~E

∂t
(1.8)

and

∇2 ~H =
εµ

c2
∂2 ~H

∂t2
+

4πσµ

c2
∂ ~H

∂t
. (1.9)

For optical fields, we must look for a sinusoidal solution to Eqs. 1.8 and 1.9

~E = ~E0e
i( ~K·~r−ωt) (1.10)

where ~K is a complex propagation constant and ω is the frequency of the light. A solution
similar to Eq. 1.10 is obtained for the ~H field. The real part of ~K can be identified as a
wave vector, while the imaginary part of ~K accounts for attenuation of the wave inside the
solid. Substitution of the plane wave solution Eq. 1.10 into the wave equation Eq. 1.8 yields
the following relation for K:

−K2 = −εµω
2

c2
− 4πiσµω

c2
. (1.11)

If there were no losses (or attenuation), K would be equal to

K0 =
ω

c

√
εµ (1.12)
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and would be real, but since there are losses we write

K =
ω

c

√
εcomplexµ (1.13)

where we have defined the complex dielectric function as

εcomplex = ε+
4πiσ

ω
= ε1 + iε2. (1.14)

As shown in Eq. 1.14 it is customary to write ε1 and ε2 for the real and imaginary parts of
εcomplex. From the definition in Eq. 1.14 it also follows that

εcomplex =
4πi

ω

[

σ +
εω

4πi

]

=
4πi

ω
σcomplex, (1.15)

where we define the complex conductivity σcomplex as:

σcomplex = σ +
εω

4πi
(1.16)

Now that we have defined the complex dielectric function εcomplex and the complex
conductivity σcomplex, we will relate these quantities in two ways:

1. to observables such as the reflectivity which we measure in the laboratory,

2. to properties of the solid such as the carrier density, relaxation time, effective masses,
energy band gaps, etc.

After substitution for K in Eq. 1.10, the solution Eq. 1.11 to the wave equation (Eq. 1.8)
yields a plane wave

~E(z, t) = ~E0e
−iωt exp



i
ωz

c

√
εµ

√

1 +
4πiσ

εω



 . (1.17)

For the wave propagating in vacuum (ε = 1, µ = 1, σ = 0), Eq. 1.17 reduces to a simple plane
wave solution, while if the wave is propagating in a medium of finite electrical conductivity,
the amplitude of the wave exponentially decays over a characteristic distance δ given by

δ =
c

ωÑ2(ω)
=

c

ωk̃(ω)
(1.18)

where δ is called the optical skin depth, and k̃ is the imaginary part of the complex index
of refraction (also called the extinction coefficient)

Ñ(ω) =
√
µεcomplex =

√

εµ

(

1 +
4πiσ

εω

)

= ñ(ω) + ik̃(ω). (1.19)

This means that the intensity of the electric field, |E|2, falls off to 1/e of its value at the
surface in a distance

1

αabs
=

c

2ωk̃(ω)
(1.20)
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where αabs(ω) is the absorption coefficient for the solid at frequency ω.
Since light is described by a transverse wave, there are two possible orthogonal direc-

tions for the ~E vector in a plane normal to the propagation direction and these directions
determine the polarization of the light. For cubic materials, the index of refraction is the
same along the two transverse directions. However, for anisotropic media, the indices of
refraction may be different for the two polarization directions, as is further discussed in
§2.1.

1.3 Relation of Complex Dielectric Function to Observables

In relating εcomplex and σcomplex to the observables, it is convenient to introduce a complex
index of refraction Ñcomplex

Ñcomplex =
√
µεcomplex (1.21)

where
K =

ω

c
Ñcomplex (1.22)

and where Ñcomplex is usually written in terms of its real and imaginary parts (see Eq. 1.19)

Ñcomplex = ñ+ ik̃ = Ñ1 + iÑ2. (1.23)

The quantities ñ and k̃ are collectively called the optical constants of the solid, where
ñ is the index of refraction and k̃ is the extinction coefficient. (We use the tilde over the
optical constants ñ and k̃ to distinguish them from the carrier density and wave vector which
are denoted by n and k). The extinction coefficient k̃ vanishes for lossless materials. For
non-magnetic materials, we can take µ = 1, and this will be done in writing the equations
below.

With this definition for Ñcomplex, we can relate

εcomplex = ε1 + iε2 = (ñ+ ik̃)2 (1.24)

yielding the important relations
ε1 = ñ2 − k̃2 (1.25)

ε2 = 2ñk̃ (1.26)

where we note that ε1, ε2, ñ and k̃ are all frequency dependent.
Many measurements of the optical properties of solids involve the normal incidence

reflectivity which is illustrated in Fig. 1.1. Inside the solid, the wave will be attenuated.
We assume for the present discussion that the solid is thick enough so that reflections from
the back surface can be neglected. We can then write the wave inside the solid for this
one-dimensional propagation problem as

Ex = E0e
i(Kz−ωt) (1.27)

where the complex propagation constant for the light is given by K = (ω/c) Ñcomplex.
On the other hand, in free space we have both an incident and a reflected wave:

Ex = E1e
i(ωz

c
−ωt) + E2e

i(−ωz
c
−ωt). (1.28)
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Figure 1.1: Schematic diagram for normal incidence reflectivity.

From Eqs. 1.27 and 1.28, the continuity of Ex across the surface of the solid requires that

E0 = E1 + E2. (1.29)

With ~E in the x direction, the second relation between E0, E1, and E2 follows from the
continuity condition for tangential Hy across the boundary of the solid. From Maxwell’s
equation (Eq. 1.2) we have

∇× ~E = −µ
c

∂ ~H

∂t
=
iµω

c
~H (1.30)

which results in
∂Ex
∂z

=
iµω

c
Hy. (1.31)

The continuity condition on Hy thus yields a continuity relation for ∂Ex/∂z so that from
Eq. 1.31

E0K = E1
ω

c
− E2

ω

c
= E0

ω

c
Ñcomplex (1.32)

or

E1 − E2 = E0Ñcomplex. (1.33)

The normal incidence reflectivity R is then written as

R =

∣

∣

∣

∣

E2

E1

∣

∣

∣

∣

2

(1.34)

which is most conveniently related to the reflection coefficient r given by

r =
E2

E1
. (1.35)
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From Eqs. 1.29 and 1.33, we have the results

E2 =
1

2
E0(1− Ñcomplex) (1.36)

E1 =
1

2
E0(1 + Ñcomplex) (1.37)

so that the normal incidence reflectivity becomes

R =

∣

∣

∣

∣

∣

1− Ñcomplex

1 + Ñcomplex

∣

∣

∣

∣

∣

2

=
(1− ñ)2 + k̃2

(1 + ñ)2 + k̃2
(1.38)

where the reflectivity R is a number less than unity. We have now related one of the
physical observables to the optical constants. To relate these results to the power absorbed
and transmitted at normal incidence, we utilize the following relation which expresses the
idea that all the incident power is either reflected, absorbed, or transmitted

1 = R+A+ T (1.39)

whereR, A, and T are, respectively, the fraction of the power that is reflected, absorbed, and
transmitted as illustrated in Fig. 1.1. At high temperatures, the most common observable
is the emissivity, which is equal to the absorbed power for a black body or is equal to 1−R
assuming T =0. As a homework exercise, it is instructive to derive expressions for R and
T when we have relaxed the restriction of no reflection from the back surface. Multiple
reflections are encountered in thin films.

The discussion thus far has been directed toward relating the complex dielectric function
or the complex conductivity to physical observables. If we know the optical constants, then
we can find the reflectivity. We now want to ask the opposite question. Suppose we know
the reflectivity, can we find the optical constants? Since there are two optical constants,
ñ and k̃ , we need to make two independent measurements, such as the reflectivity at two
different angles of incidence.

Nevertheless, even if we limit ourselves to normal incidence reflectivity measurements,
we can still obtain both ñ and k̃ provided that we make these reflectivity measurements
for all frequencies. This is possible because the real and imaginary parts of a complex
physical function are not independent. Because of causality, ñ(ω) and k̃(ω) are related
through the Kramers–Kronig relation, which we will discuss in Chapter 6. Since normal
incidence measurements are easier to carry out in practice, it is quite possible to study
the optical properties of solids with just normal incidence measurements, and then do a
Kramers–Kronig analysis of the reflectivity data to obtain the frequency–dependent di-
electric functions ε1(ω) and ε2(ω) or the frequency–dependent optical constants ñ(ω) and
k̃(ω).

In treating a solid, we will need to consider contributions to the optical properties from
various electronic energy band processes. To begin with, there are intraband processes
which correspond to the electronic conduction by free carriers, and hence are more important
in conducting materials such as metals, semimetals and degenerate semiconductors. These
intraband processes can be understood in their simplest terms by the classical Drude theory,
or in more detail by the classical Boltzmann equation or the quantum mechanical density
matrix technique. In addition to the intraband (free carrier) processes, there are interband
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processes which correspond to the absorption of electromagnetic radiation by an electron
in an occupied state below the Fermi level, thereby inducing a transition to an unoccupied
state in a higher band. This interband process is intrinsically a quantum mechanical process
and must be discussed in terms of quantum mechanical concepts. In practice, we consider
in detail the contribution of only a few energy bands to optical properties; in many cases
we also restrict ourselves to detailed consideration of only a portion of the Brillouin zone
where strong interband transitions occur. The intraband and interband contributions that
are neglected are treated in an approximate way by introducing a core dielectric constant
which is often taken to be independent of frequency and external parameters.

1.4 Units for Frequency Measurements

The frequency of light is measured in several different units in the literature. The relation
between the various units are: 1 eV = 8065.5 cm−1 = 2.418 × 1014 Hz = 11,600 K. Also
1 eV corresponds to a wavelength of 1.2398 µm, and 1 cm−1 = 0.12398 meV = 3× 1010 Hz.
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Chapter 2

Drude Theory–Free Carrier
Contribution to the Optical
Properties

2.1 The Free Carrier Contribution

In this chapter we relate the optical constants to the electronic properties of the solid. One
major contribution to the dielectric function is through the “free carriers”. Such free carrier
contributions are very important in semiconductors and metals, and can be understood in
terms of a simple classical conductivity model, called the Drude model. This model is based
on the classical equations of motion of an electron in an optical electric field, and gives the
simplest theory of the optical constants. The classical equation for the drift velocity of the
carrier ~v is given by

m
d~v

dt
+
m~v

τ
= e ~E0e

−iωt (2.1)

where the relaxation time τ is introduced to provide a damping term, (m~v/τ), and a sinu-
soidally time-dependent electric field provides the driving force. To respond to a sinusoidal
applied field, the electrons undergo a sinusoidal motion which can be described as

~v = ~v0e
−iωt (2.2)

so that Eq. 2.1 becomes

(−miω +
m

τ
)~v0 = e ~E0 (2.3)

and the amplitudes ~v0 and ~E0 are thereby related. The current density ~j is related to the
drift velocity ~v0 and to the carrier density n by

~j = ne~v0 = σ ~E0 (2.4)

thereby introducing the electrical conductivity σ. Substitution for the drift velocity v0 yields

~v0 =
e ~E0

(m/τ)− imω (2.5)
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into Eq. 2.4 yields the complex conductivity

σ =
ne2τ

m(1− iωτ) . (2.6)

In writing σ in the Drude expression (Eq. 2.6) for the free carrier conduction, we have sup-
pressed the subscript in σcomplex, as is conventionally done in the literature. In what follows
we will always write σ and ε to denote the complex conductivity and complex dielectric
constant and suppress subscripts “complex” in order to simplify the notation. A more ele-
gant derivation of the Drude expression can be made from the Boltzmann formulation, as
is done in Part I of the notes. In a real solid, the same result as given above follows when
the effective mass approximation can be used. Following the results for the dc conductivity
obtained in Part I, an electric field applied in one direction can produce a force in another
direction because of the anisotropy of the constant energy surfaces in solids. Because of the
anisotropy of the effective mass in solids, ~j and ~E are related by the tensorial relation,

jα = σαβEβ (2.7)

thereby defining the conductivity tensor σαβ as a second rank tensor. For perfectly free
electrons in an isotropic (or cubic) medium, the conductivity tensor is written as:

↔
σ=







σ 0 0
0 σ 0
0 0 σ






(2.8)

and we have our usual scalar expression ~j = σ ~E. However, in a solid, σαβ can have off-
diagonal terms, because the effective mass tensors are related to the curvature of the energy
bands E(~k) by

(

1

m

)

αβ
=

1

h̄2
∂2E(~k)

∂kα∂kβ
. (2.9)

The tensorial properties of the conductivity follow directly from the dependence of the
conductivity on the reciprocal effective mass tensor.

As an example, semiconductors such as CdS and ZnO exhibit the wurtzite structure,
which is a non-cubic structure. These semiconductors are uniaxial and contain an optic axis

(which for the wurtzite structure is along the c-axis), along which the velocity of propagation
of light is independent of the polarization direction. Along other directions, the velocity
of light is different for the two polarization directions, giving rise to a phenomenon called
birefringence. Crystals with tetragonal or hexagonal symmetry are uniaxial. Crystals with
lower symmetry have two axes along which light propagates at the same velocity for the
two polarizations of light, and are therefore called biaxial.

Even though the constant energy surfaces for a large number of the common semicon-
ductors are described by ellipsoids and the effective masses of the carriers are given by
an effective mass tensor, it is a general result that for cubic materials (in the absence of
externally applied stresses and magnetic fields), the conductivity for all electrons and all
the holes is described by a single scalar quantity σ. To describe conduction processes in
hexagonal materials we need to introduce two constants: σ‖ for conduction along the high
symmetry axis and σ⊥ for conduction in the basal plane. These results can be directly
demonstrated by summing the contributions to the conductivity from all carrier pockets.
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In narrow gap semiconductors, mαβ is itself a function of energy. If this is the case, the
Drude formula is valid when mαβ is evaluated at the Fermi level and n is the total carrier
density. Suppose now that the only conduction mechanism that we are treating in detail is
the free carrier mechanism. Then we would consider all other contributions in terms of the
core dielectric constant εcore to obtain for the total complex dielectric function

ε(ω) = εcore(ω) + 4πiσ/ω (2.10)

so that

σ(ω) =

(

ne2τ/m∗
)

(1− iωτ)−1 (2.11)

in which 4πσ/ω denotes the imaginary part of the free carrier contribution. If there were
no free carrier absorption, σ = 0 and ε = εcore, and in empty space ε = εcore = 1. From the
Drude theory,

ε = εcore +
4πi

ω

ne2τ

m(1− iωτ) = (ε1 + iε2) = (n1 + ik2)
2. (2.12)

It is of interest to consider the expression in Eq. 2.12 in two limiting cases: low and high
frequencies.

2.2 Low Frequency Response: ωτ ¿ 1

In the low frequency regime (ωτ ¿ 1) we obtain from Eq. 2.12

ε ' εcore +
4πine2τ

mω
. (2.13)

Since the free carrier term in Eq. 2.13 shows a 1/ω dependence as ω → 0, this term dominates
in the low frequency limit. The core dielectric constant is typically 16 for geranium, 12 for
silicon and perhaps 100 or more, for narrow gap semiconductors like PbTe. It is also of
interest to note that the core contribution and free carrier contribution are out of phase.

To find the optical constants ñ and k̃ we need to take the square root of ε. Since we
will see below that ñ and k̃ are large, we can for the moment ignore the core contribution
to obtain:

√
ε '

√

4πne2τ

mω

√
i = ñ+ ik̃ (2.14)

and using the identity √
i = e

πi
4 =

1 + i√
2

(2.15)

we see that in the low frequency limit ñ ≈ k̃, and that ñ and k̃ are both large. Therefore
the normal incidence reflectivity can be written as

R =
(ñ− 12) + k̃2

(ñ+ 12) + k̃2
' ñ2 + k̃2 − 2ñ

ñ2 + k̃2 + 2ñ
= 1− 4ñ

ñ2 + k̃2
' 1− 2

ñ
. (2.16)

Thus, the Drude theory shows that at low frequencies a material with a large concentration
of free carriers (e.g., a metal) is a perfect reflector.
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2.3 High Frequency Response; ωτ À 1

In this limit, Eq. 2.12 can be approximated by:

ε ' εcore −
4πne2

mω2
. (2.17)

As the frequency becomes large, the 1/ω2 dependence of the free carrier contribution guar-
antees that free carrier effects will become less important, and other processes will dominate.
In practice, these other processes are the interband processes which in Eq. 2.17 are dealt
with in a very simplified form through the core dielectric constant εcore. Using this approx-
imation in the high frequency limit, we can neglect the free carrier contribution in Eq. 2.17
to obtain √

ε ∼= √εcore = real. (2.18)

Equation 2.18 implies that ñ > 0 and k̃ = 0 in the limit of ωτ À 1, with

R → (ñ− 1)2

(ñ+ 1)2
(2.19)

where ñ =
√
εcore. Thus, in the limit of very high frequencies, the Drude contribution is

unimportant and the behavior of all materials is like that for a dielectric.

2.4 The Plasma Frequency

Thus, at very low frequencies the optical properties of semiconductors exhibit a metal-like
behavior, while at very high frequencies their optical properties are like those of insulators.
A characteristic frequency at which the material changes from a metallic to a dielectric
response is called the plasma frequency ω̂p, which is defined as that frequency at which the
real part of the dielectric function vanishes ε1(ω̂p) = 0. According to the Drude theory
(Eq. 2.12), we have

ε = ε1 + iε2 = εcore +
4πi

ω

ne2τ

m(1− iωτ) ·
(

1 + iωτ

1 + iωτ

)

(2.20)

where we have written ε in a form which exhibits its real and imaginary parts explicitly.
We can then write the real and imaginary parts ε1(ω) and ε2(ω) as:

ε1(ω) = εcore −
4πne2τ2

m(1 + ω2τ2)
ε2(ω) =

4π

ω

ne2τ

m(1 + ω2τ2)
. (2.21)

The free carrier term makes a negative contribution to ε1 which tends to cancel the core
contribution shown schematically in Fig. 2.1.

We see in Fig. 2.1 that ε1(ω) vanishes at some frequency (ω̂p) so that we can write

ε1(ω̂p) = 0 = εcore −
4πne2τ2

m(1 + ω̂2
pτ

2)
(2.22)

which yields

ω̂2
p =

4πne2

mεcore
− 1

τ2
= ω2

p −
1

τ2
. (2.23)
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Figure 2.1: The frequency dependence
ε1(ω), showing the definition of the
plasma frequency ω̂p by the relation
ε1(ω̂p) = 0.

Since the term (−1/τ 2) in Eq. 2.23 is usually small compared with ω2
p, it is customary to

neglect this term and to identify the plasma frequency with ωp defined by

ω2
p =

4πne2

mεcore
(2.24)

in which screening of free carriers occurs through the core dielectric constant εcore of the
medium. If εcore is too small, then ε1(ω) never goes positive and there is no plasma fre-
quency. The condition for the existence of a plasma frequency is

εcore >
4πne2τ2

m
. (2.25)

The quantity ωp in Eq. 2.24 is called the screened plasma frequency in the literature.
Another quantity called the unscreened plasma frequency obtained from Eq. 2.24 by setting
εcore = 1 is also used in the literature.

The general appearance of the reflectivity as a function of photon energy for a degenerate
semiconductor or a metal is shown in Fig. 2.2. At low frequencies, free carrier conduction
dominates, and the reflectivity is ' 100%. In the high frequency limit, we have

R ∼ (ñ− 1)2

(ñ+ 1)2
, (2.26)

which also is large, if ñ À1. In the vicinity of the plasma frequency, ε1(ω1) is small by
definition; furthermore, ε2(ωp) is also small, since from Eq. 2.21

ε2(ωp) =

(

4π

mωp

)

ne2τ

1 + (ωpτ)2
(2.27)
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Figure 2.2: Reflectivity vs ω for a metal
or a degenerate semiconductor in a fre-
quency range where interband transi-
tions are not important and the plasma
frequency ωp occurs near the minimum
in reflectivity R.

and if ωpτ À 1

ε2(ωp) ∼=
εcore
ωpτ

(2.28)

so that ε2(ωp) is often small. With ε1(ωp) = 0, we have from Eq. 1.25 ñ ∼= k̃, and ε2(ωp) =
2ñk̃ ' 2ñ2. We thus see that ñ tends to be small near ωp and consequently R is also
small (see Fig. 2.2). The steepness of the dip at the plasma frequency is governed by the
relaxation time τ ; the longer the relaxation time τ , the sharper the plasma structure.

In metals, free carrier effects are almost always studied by reflectivity techniques because
of the high optical absorption of metals at low frequency. For metals, the free carrier
conductivity appears to be quite well described by the simple Drude theory. In studying free
carrier effects in semiconductors, it is usually more accurate to use absorption techniques,
which are discussed in Chapter 11. Because of the connection between the optical and the
electrical properties of a solid through the conductivity tensor, transparent materials are
expected to be poor electrical conductors while highly reflecting materials are expected to
be reasonably good electrical conductors. It is, however, possible for a material to have its
plasma frequency just below visible frequencies, so that the material will be a good electrical
conductor, yet be transparent at visible frequencies. Because of the close connection between
the optical and electrical properties, free carrier effects are sometimes exploited in the
determination of the carrier density in instances where Hall effect measurements are difficult
to make.

The contribution of holes to the optical conduction is of the same sign as for the electrons,
since the conductivity depends on an even power of the charge (σ ∝ e2). In terms of the
complex dielectric constant, we can write the contribution from electrons and holes as

ε = εcore +
4πi

ω

[

nee
2τe

me(1− iωτe)
+

nhe
2τh

mh(1− iωτh)

]

(2.29)

where the parameters ne, τe, and me pertain to the electron carriers and nh, τh, and mh

are for the holes. The plasma frequency is again found by setting ε1(ω) = 0. If there are
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multiple electron or hole carrier pockets, as is common for semiconductors, the contributions
from each carrier type is additive, using a formula similar to Eq. 2.29.

We will now treat another conduction process in Chapter 3 which is due to interband
transitions. In the above discussion, interband transitions were included in an extremely
approximate way. That is, interband transitions were treated through a frequency indepen-
dent core dielectric constant εcore (see Eq. 2.12). In Chapter 3 we consider the frequency
dependence of this important contribution.
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Chapter 3

Interband Transitions

3.1 The Interband Transition Process

In a semiconductor at low frequencies, the principal electronic conduction mechanism is
associated with free carriers. As the photon energy increases and becomes comparable to
the energy gap, a new conduction process can occur. A photon can excite an electron
from an occupied state in the valence band to an unoccupied state in the conduction band.
This is called an interband transition and is represented schematically by the picture in
Fig. 3.1. In this process the photon is absorbed, an excited electronic state is formed and
a hole is left behind. This process is quantum mechanical in nature. We now discuss the
factors that are important in these transitions.

1. We expect interband transitions to have a threshold energy at the energy gap. That
is, we expect the frequency dependence of the real part of the conductivity σ1(ω) due
to an interband transition to exhibit a threshold as shown in Fig. 3.2 for an allowed
electronic transition.

2. The transitions are either direct (conserve crystal momentum ~k: Ev(~k)→ Ec(~k)) or
indirect (a phonon is involved because the ~k vectors for the valence and conduction
bands differ by the phonon wave vector ~q). Conservation of crystal momentum yields
~kvalence = ~kconduction ± ~qphonon. In discussing the direct transitions, one might wonder
about conservation of crystal momentum with regard to the photon. The reason we
need not be concerned with the momentum of the photon is that it is very small in
comparison to Brillouin zone dimensions. For a typical optical wavelength of 6000
Å, the wave vector for the photon K = 2π/λ ∼ 105cm−1, while a typical dimension
across the Brillouin zone is 108cm−1. Thus, typical direct optical interband processes
excite an electron from a valence to a conduction band without a significant change
in the wave vector.

3. The transitions depend on the coupling between the valence and conduction bands
and this is measured by the magnitude of the momentum matrix elements coupling
the valence band state v and the conduction band state c: |〈v|~p|c〉|2. This dependence
results from Fermi’s “Golden Rule” (see Chapter A) and from the discussion on the
perturbation interaction H′ for the electromagnetic field with electrons in the solid
(which is discussed in §3.2).
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Figure 3.1: Schematic diagram of an
allowed interband transition.

Figure 3.2: Real part of the conduc-
tivity for an allowed optical transition.
We note that σ1(ω) = (ω/4π)ε2(ω).
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4. Because of the Pauli Exclusion Principle, an interband transition occurs from an
occupied state below the Fermi level to an unoccupied state above the Fermi level.

5. Photons of a particular energy are more effective in producing an interband transition
if the energy separation between the 2 bands is nearly constant over many ~k values.
In that case, there are many initial and final states which can be coupled by the same
photon energy. This is perhaps easier to see if we allow a photon to have a small
band width. That band width will be effective over many ~k values if Ec(~k) − Ev(~k)
doesn’t vary rapidly with ~k. Thus, we expect the interband transitions to be most
important for ~k values near band extrema. That is, in Fig. 3.1 we see that states
around ~k = 0 make the largest contribution per unit bandwidth of the optical source.
It is also for this reason that optical measurements are so important in studying energy
band structure; the optical structure emphasizes band extrema and therefore provides
information about the energy bands at specific points in the Brillouin zone.

Although we will not derive the expression for the interband contribution to the con-
ductivity, we will write it down here to show how all the physical ideas that were discussed
above enter into the conductivity equation. We now write the conductivity tensor relat-
ing the interband current density jα in the direction α which flows upon application of an
electric field Eβ in direction β

jα = σαβEβ (3.1)

as

σαβ = − e2

m2

∑

i,j

[f(Ei)− f(Ej)]

Ei − Ej

〈i|pα|j〉〈j|pβ |i〉
[−iω + 1/τ + (i/h̄)(Ei − Ej)]

(3.2)

in which the sum in Eq. 3.2 is over all valence and conduction band states labelled by i
and j. Structure in the optical conductivity arises through a singularity in the resonant
denominator of Eq. 3.2 [−iω + 1/τ + (i/h̄)(Ei − Ej)] discussed above under properties (1)
and (5).

The appearance of the Fermi functions f(Ei) − f(Ej) follows from the Pauli principle
in property (4). The dependence of the conductivity on the momentum matrix elements
accounts for the tensorial properties of σαβ (interband) and relates to properties (2) and
(3).

In semiconductors, interband transitions usually occur at frequencies above which free
carrier contributions are important. If we now want to consider the total complex dielectric
constant, we would write

ε = εcore +
4πi

ω
[σDrude + σinterband] . (3.3)

The term εcore contains the contributions from all processes that are not considered
explicitly in Eq. 3.3; this would include both intraband and interband transitions that
are not treated explicitly. We have now dealt with the two most important processes
(intraband and interband) involved in studies of electronic properties of solids.

If we think of the optical properties for various classes of materials, it is clear from
Fig. 3.3 that major differences will be found from one class of materials to another.
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Figure 3.3: Structure of the valence
band states and the lowest conduction
band state at the Γ–point in germa-
nium.
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Figure 3.4: Absorption coefficient of
germanium at the absorption edge cor-

responding to the transitions Γ
3/2
25′ →

Γ2′(D1) and Γ
1/2
25′ → Γ2′(D2). The en-

ergy separation between the Γ
1/2
25′ and

Γ
3/2
25′ bands is determined by the en-

ergy differences between theD1 andD2

structures.

3.1.1 Insulators

Here the band gap is sufficiently large so that at room temperature, essentially no carriers are
thermally excited across the band gap. This means that there is no free carrier absorption
and that interband transitions only become important at relatively high photon energies
(above the visible). Thus, insulators frequently are optically transparent.

3.1.2 Semiconductors

Here the band gap is small enough so that appreciable thermal excitation of carriers occurs
at room temperature. Thus there is often appreciable free carrier absorption at room
temperature either through thermal excitation or doping. In addition, interband transitions
occur in the infrared and visible. As an example, consider the direct interband transition in
germanium and its relation to the optical absorption. In the curve in Fig. 3.4, we see that
the optical absorption due to optical excitation across the indirect bandgap at 0.7 eV is very
small compared with the absorption due to the direct interband transition shown in Fig. 3.4.
(For a brief discussion of the spin–orbit interaction as it affects interband transitions see
§3.4.)

3.1.3 Metals

Here free carrier absorption is extremely important. Typical plasma frequencies are h̄ωp ∼=
10 eV which occur far out in the ultraviolet. In the case of metals, interband transitions
typically occur at frequencies where free carrier effects are still important. Semimetals, like
metals, exhibit only a weak temperature dependence with carrier densities almost inde-
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pendent of temperature. Although the carrier densities are low, the high carrier mobilities
nevertheless guarantee a large contribution of the free carriers to the optical conductivity.

3.2 Form of the Hamiltonian in an Electromagnetic Field

A proof that the optical field is inserted into the Hamiltonian in the form ~p → ~p − e ~A/c
follows. Consider the classical equation of motion:

d

dt
(m~v) = e

[

~E +
1

c
(~v × ~H)

]

= e

[

−~∇φ− 1

c

∂ ~A

∂t
+

1

c
~v × (~∇× ~A)

]

(3.4)

where φ and ~A are, respectively, the scalar and vector potentials, and ~E and ~B are the
electric and magnetic fields given by

~E=−~∇φ− (1/c)∂ ~A/∂t

~B=~∇× ~A.
(3.5)

Using standard vector identities, the equation of motion Eq. 3.4 becomes

d

dt
(m~v +

e

c
~A) = ~∇(−eφ) + e

c
~∇( ~A · ~v) (3.6)

where [~∇( ~A · ~v)]j denotes vi∂Ai/∂xj in which we have used the Einstein summation con-
vention that repeated indices are summed and where we have used the vector relations

dA

dt
=
∂ ~A

∂t
+ (~v · ~∇) ~A (3.7)

and

[~v × (~∇× ~A)]i = vj
∂Aj

∂xi
− vj

∂Ai

∂xj
. (3.8)

If we write the Hamiltonian as

H =
1

2m
(~p− e

c
~A)2 + eφ (3.9)

and then use Hamilton’s equations

~v =
∂H
∂~p

=
1

m
(~p− e

c
~A) (3.10)

~̇p = −~∇H = −e~∇φ+
e

c
~∇( ~A · ~v) (3.11)

we can show that Eqs. 3.4 and 3.6 are satisfied, thereby verifying that Eq. 3.9 is the proper
form of the Hamiltonian in the presence of an electromagnetic field, which has the same
form as the Hamiltonian without an optical field except that ~p → ~p − (e/c) ~A. The same
transcription is used when light is applied to a solid and is then called the Luttinger tran-
scription. The Luttinger transcription is used in the effective mass approximation where
the periodic potential is replaced by the introduction of ~k → −(1/i)~∇ and m→ m∗.
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The reason why interband transitions depend on the momentum matrix element can
be understood from perturbation theory. At any instance of time, the Hamiltonian for an
electron in a solid in the presence of an optical field is

H =
(~p− e/c ~A)2

2m
+ V (~r) =

p2

2m
+ V (~r)− e

mc
~A · ~p+ e2A2

2mc2
(3.12)

in which ~A is the vector potential due to the optical fields, V(~r) is the periodic potential.
Thus, the one-electron Hamiltonian without optical fields is

H0 =
p2

2m
+ V (~r) (3.13)

and the optical perturbation terms are

H′ = − e

mc
~A · ~p+ e2A2

2mc2
. (3.14)

Optical fields are generally very weak (unless generated by powerful lasers) and we usually
consider only the term linear in ~A, the linear response regime. The form of the Hamiltonian
in the presence of an electromagnetic field is derived in this section, while the momentum
matrix elements 〈v|~p|c〉 which determine the strength of optical transitions also govern the
magnitudes of the effective mass components (see §3.3). This is another reason why optical
studies are very important.

To return to the Hamiltonian for an electromagnetic field (Eq. 3.9), the coupling of the
valence and conduction bands through the optical fields depends on the matrix element for
the coupling to the electromagnetic field perturbation

H′ ∼= − e

mc
~p · ~A. (3.15)

With regard to the spatial dependence of the vector potential we can write

~A = ~A0 exp[i( ~K · ~r − ωt)] (3.16)

where for a loss-less medium K = ñω/c = 2πñ/λ is a slowly varying function of ~r since
2πñ/λ is much smaller than typical wave vectors in solids. Here ñ, ω, and λ are, respectively,
the real part of the index of refraction, the optical frequency, and the wavelength of light.

3.3 Relation between Momentum Matrix Elements and the
Effective Mass

Because of the relation between the momentum matrix element 〈v|~p|c〉, which governs the
electromagnetic interaction with electrons and solids, and the band curvature (∂2E/∂kα∂kβ),
the energy band diagrams provide important information on the strength of optical tran-
sitions. Correspondingly, knowledge of the optical properties can be used to infer experi-
mental information about E(~k).

We now derive the relation between the momentum matrix element coupling the va-
lence and conduction bands 〈v|~p|c〉 and the band curvature (∂2E/∂kα∂kβ). We start with
Schr̈odinger’s equation in a periodic potential V (~r) having the Bloch solutions

ψ
n~k
(~r) = ei

~k·~ru
n~k
(~r), (3.17)
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Hψ
n~k
(~r) = En(~k)ψn~k(~r) =

[

p2

2m
+ V (~r)

]

ei
~k·~ru

n~k
(~r) = En(~k)e

i~k·~ru
n~k
(~r). (3.18)

Since ~p is an operator (h̄/i)~∇, we can write

~pei
~k·~ru

n~k
(~r) = ei

~k·~r(~p+ h̄~k)u
n~k
(~r). (3.19)

Therefore the differential equation for u
n~k
(~r) becomes

[

p2

2m
+ V (~r) +

h̄~k · ~p
m

+
h̄2k2

2m

]

u
n~k
(~r) = En(~k)un~k(~r) (3.20)

giving the following differential equation for the periodic function unk(~r) = unk(~r + ~Rm)
[

p2

2m
+ V (~r) +

h̄~k · ~p
m

]

u
n~k
(~r) =

[

En(~k)−
h̄2k2

2m

]

u
n~k
(~r) (3.21)

which we write as follows to put Eq. 3.21 in the canonical form for application of the
perturbation theory formulae

H0 =
p2

2m
+ V (~r) (3.22)

H′ = h̄~k · ~p
m

(3.23)

En(~k) = En(~k)−
h̄2k2

2m
(3.24)

to yield
[H0 +H′]un~k(~r) = En(~k)un~k(~r). (3.25)

Assume that we know the solution to Eq. 3.25 about a special point ~k0 in the Brillouin zone
which could be a band extremum, such as ~k0 = 0. Then the perturbation formulae Eqs. 3.22–
3.25 allow us to find the energy and wave function for states near ~k0. For simplicity, we carry
out the expansion about the center of the Brillouin zone ~k = 0, which is the most important
case in practice; the extension of this argument to an energy extremum at arbitrary ~k0 is
immediate. Perturbation theory then gives:

En(~k) = En(0) + (un,0|H′|un,0) +
∑

n′ 6=n

(un,0|H′|un′,0)(un′,0|H′|un,0)
En(0)− En′(0)

. (3.26)

The first order term (un,0|H′|un,0) in Eq. 3.26 normally vanishes about an extremum because
of inversion symmetry, with H′ being odd under inversion and the two wavefunctions unk(~r)
both being even or both being odd. Since

H′ = h̄~k · ~p
m

(3.27)

the matrix element is then written as

(un,0|H′|un′,0) =
h̄

m
~k · (un,0|~p|un′,0). (3.28)

We now apply Eq. 3.26 to optical transitions, for the simplest case of a two band model.
Here we assume that:
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1. bands n and n′ (valence (v) and conduction (c) bands) are close to each other and far
from other bands

2. interband transitions occur between these two bands separated by an energy gap Eg.

We note that the perturbation theory is written in terms of the energy En(k)

En(k) = En(~k)−
h̄2k2

2m
. (3.29)

Assuming that the first order term in perturbation theory (Eq. 3.26) can be neglected by
parity (even and oddness) arguments, we obtain for En(k) about ~k= 0

En(~k) = En(0) +
h̄2

m2
kαkβ

|(v|pα|c)(c|pβ|v)|
Eg

(3.30)

or in terms of the energy eigenvalues of Schrödinger’s equation (Eq. 3.18)

En(~k) = En(0) +
h̄2k2

2m
+
h̄2

m2
kαkβ

|(v|pα|c)(c|pβ|v)|
Eg

. (3.31)

We define the effective mass tensor by the relation

En(~k) = En(0) +
h̄2

2

∑

α,β

kαkβ

(

1

m∗

)

αβ
(3.32)

so that
(

1

m∗

)

αβ
=
δαβ
m

+
2

m2

|(v|pα|c)(c|pβ|v)|
Eg

(3.33)

where δαβ is the unit matrix. This discussion shows that the non-vanishing momentum
matrix element is responsible for the inequality between the free electronm and the effective
mass m∗ in the solid. With regard to the optical properties of solids we note that the same
momentum matrix element that governs the effective mass formula (Eq. 3.33) also governs
the electromagnetic interaction given by Eq. 3.15. Thus small effective masses tend to give
rise to strong coupling between valence and conduction bands and large values for |(v|p|c)|2.
On the other hand, small effective masses lead to a small density of states because of the
m∗3/2 dependence of the density of states.

3.4 Spin-Orbit Interaction in Solids

Reference:

• Jones and March, pp. 85-87, 89-94.

• Eisberg and Resnick, Quantum Physics pp. 278-281.

A spin angular momentum Sz = h̄/2 and a magnetic moment µB = |e|h̄/2mc = 0.927×
10−20 erg/gauss is associated with each electron. The magnetic moment and spin angular
momentum for the free electron are related by

~µ =
−|e|
mc

~S =
−|e|
mc
· h̄
2
Ŝ (3.34)
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Figure 3.5: Schematic diagram showing
the splitting of the ` = 1 level by the
spin–orbit interaction.

(Ŝ is a unit vector along ~S), and ~µ and ~S are oppositely directed because the electron is
negatively charged.

An electron in an atom sees a magnetic field because of its own orbital motion and
consequently there is an interaction called the spin-orbit interaction whereby the magnetic
field due to the orbital motion of the electron tends to line up its magnetic moment along
the magnetic field:

H′S.O. = −~µ · ~H. (3.35)

H′S.O. =
1

2m2c2
(∇V × ~p) · ~S (3.36)

since e ~E ∼ −~∇V . For an atom Eq. 3.36 results in

HS.O.atom = ξ(r)~L · ~S. (3.37)

A detailed discussion of this topic is found in any standard quantum mechanics text.
This spin-orbit interaction gives rise to a spin-orbit splitting of the atomic levels corre-

sponding to different values of the total angular momentum J

~J = ~L+ ~S (3.38)

where ~L and ~S, respectively, denote the orbital and spin angular momentum. Thus

~J · ~J = (~L+ ~S) · (~L+ ~S) = ~L · ~L+ ~S · ~S + (~L · ~S + ~S · ~L) (3.39)

in which the operators ~L and ~S commute.
We take matrix elements in the |j, `, s,mj〉 representation, because m`,ms are not good

quantum numbers, to obtain, with j = |`− s|, (|`− s|+ 1), . . . , `+ s,

j(j + 1) = `(`+ 1) + s(s+ 1) + 2〈~L · ~S〉 (3.40)

so that the expectation value of ~L · ~S in the |j, `, s,mj〉 representation becomes:

〈~L · ~S〉 = 1

2
[j(j + 1)− `(`+ 1)− s(s+ 1)] (3.41)

For p states, ` = 1, s = 1/2 and j = 3/2 or 1/2 as shown in Fig. 3.5. From Eq. 3.41 we
can find the expectation value of 〈~L · ~S〉. In particular, we note that the degeneracy of
an s-state is unaffected by the spin-orbit interaction. On the other hand, a d-state is split
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up into a doublet D5/2 (6-fold degenerate) and D3/2 (4-fold degenerate). Thus, the spin-
orbit interaction does not lift all the degeneracy for atomic states. To lift this additional
degeneracy it is necessary to apply a magnetic field.

The magnitude of the spin-orbit interaction depends also on the expectation value of
ξ(r) defined by the following relation,

〈n, j, `, s,mj |H′S.O.|n, j, `, s,mj〉 = 〈j, `, s,mj |~L · ~S|j, `, s,mj〉
∫ ∞

0
Rn` ξ(r) Rn` dr (3.42)

where the atomic wave function is written

Φ = Y`m(θ, φ)Rn`(r) (3.43)

and Rn`(r) denotes the radial part of the atomic wave function. We note that the integral
over r in Eq. 3.42 increases rapidly with atomic number (∼ Z3 or Z4). The physical reason
behind this sensitive dependence on Z is that heavier atoms have more electrons generating
larger H fields, and therefore a greater spin-orbit splitting results.

References for tabulated spin-orbit splittings are:

• C.E. Moore – Atomic Energy Levels (National Bureau of Standards, Circular #467),
vol. 1 (1949), vol. 2 (1952) and vol. 3 (1958). These references give the measured
spectroscopic levels for any atom in a large number of excited configurations. The
lowest Z values are in vol. 1, the highest in vol. 3.

• F. Herman and S. Skillman – Atomic Structure Calculation (Prentice-Hall, Inc. 1963).
Most complete listing of calculated atomic levels.

• Landolt and Bornstein – Physical and Chemical Tables (many volumes in Reference
section in the Science Library).

For most atomic species that are important in semiconductor physics, the spin-orbit
interaction is important. Some typical values are:

semiconductor atomic number Γ-point splitting

diamond Z = 6 ∆ = 0.006eV
silicon Z = 14 ∆ = 0.044eV

germanium Z = 32 ∆ = 0.290eV
tin Z = 50 ∆ = 0.527eV

InSb

In Z = 49 ∆ = 0.274eV
Sb Z = 51 ∆ = 0.815eV

GaAs

Ga Z = 31 ∆ = 0.103eV
As Z = 33 ∆ = 0.364eV

PbTe, HgTe

Pb Z = 82 ∆ = 1.746eV
Hg Z = 80 ∆ = 1.131eV
Te Z = 52 ∆ = 1.143eV
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Figure 3.6: Energy bands of Ge: (a) without and (b) with spin–orbit interaction.

The listing above gives the Γ point splittings. The spin-orbit splittings are k-dependent
and at the L-point are typically about 2/3 of the Γ point value.

The one-electron Hamiltonian for a solid including spin-orbit interaction is from Eq. 3.36

H =
p2

2m
+ V (r)− 1

2m2c2
(∇V × ~p) · ~S. (3.44)

When the electron spin is considered, the wave functions consist of a spatial and a spin part.
The effect of the spin-orbit interaction is to introduce a partial lifting of the degeneracy
of band states at high symmetry points in the Brillouin zone. Also, it is a convention in
the literature to use a different labeling scheme for the energy bands when the spin-orbit
interaction is included. To show the effect of the spin-orbit interaction on the energy bands
of a semiconductor, consider the energy bands for germanium. We show in Fig. 3.6 the
E(~k) vs. ~k along the ∆(100) axis, Λ(111) axis and Σ(110) axes for no spin-orbit interaction
and with spin-orbit interaction.

As an example of the effect of the spin-orbit interaction, consider the valence band at
the Γ-point (~k = 0) which is labeled by Γ25′ when there is no spin-orbit interaction. The
Γ25′ band is triply degenerate at ~k = 0, each of the three orbital levels containing a spin up
and a spin down electron. With spin-orbit interaction, this band splits into the Γ+

8 (doubly
degenerate) band and the Γ+

7 (non-degenerate) band. In the literature, the Γ+
7 band is

called the split-off band. In germanium the band gap is 0.8eV and the splitting between
the Γ+

8 and Γ+
7 bands is 0.3eV. However, in InSb, the spin-orbit interaction is large and the

separation between the upper valence band and the split-off band is 0.9eV, which is much
larger than the band gap of 0.2eV between the valence and conduction bands.
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Chapter 4

The Joint Density of States and
Critical Points

References:

• Jones and March, Theoretical Solid State Physics: pp. 806-814

• Bassani and Pastori–Parravicini, Electronic States and Optical Transitions in Solids:
chapter 5

• Yu and Cardona, Fundamentals of Semiconductors, pp. 251-258

• Madelung, Introduction to Solid State Theory: pp. 262-271

4.1 The Joint Density of States

The detailed calculation of the contribution to ε(ω) due to interband transitions is rather
difficult. It is therefore instructive to obtain an approximate answer by use of the Fermi
Golden Rule (Eq. A.32). The Golden Rule gives us the probability per unit time W~k

that

a photon of energy h̄ω makes a transition at a given ~k point:

W~k
∼= 2π

h̄
|〈v|H′|c〉|2δ[Ec(~k)− Ev(~k)− h̄ω] (4.1)

where the matrix element for the electromagnetic perturbation H′ is taken between the
valence and conduction band Bloch states at wave vector ~k and the δ-function δ[Ec−Ev−h̄ω]
which expresses energy conservation is also evaluated at ~k. In writing Eq. 4.1, we exploit the
fact that the wave vector for the light is small compared to the Brillouin zone dimensions.
Because the electronic states in the Brillouin zone are quasi–continuous functions of ~k, to
obtain the lineshape for an interband transition, we must integrate over ~k. Recognizing
that both the perturbation matrix elements and the joint density of states are ~k-dependent,
we obtain upon integration of Eq. 4.1 over ~k space

W =
2π

h̄

∫

|〈v|H′|c〉|2 2

8π3
δ(Ec(~k)− Ev(~k)− h̄ω) d3k (4.2)
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for a 3D system. For 2D and 1D systems, we replace [d3k/(2π)3] by [d2k/(2π)2] and
[dk/(2π)], respectively. The perturbation Hamiltonian for the electromagnetic interaction
is simply

H′ = −e
~A · ~p
mc

(4.3)

where the time dependence of the vector potential ~A has already been taken into account,
so that ~A is a vector with only spatial dependence. In taking matrix elements of the pertur-
bation Hamiltonian, we need then only consider matrix elements of the momentum operator
connecting the valence and conduction bands. In practical cases it is often not necessary
to evaluate these matrix elements explicitly because it is precisely these momentum matrix
elements that determine the experimentally measured effective masses (see §3.3). If we
assume for simplicity that |〈v|H′|c〉|2 is independent of ~k, then the remaining integral is the
joint density of states between the valence and conduction bands ρcv(h̄ω). For a 3D system,
we thus define ρcv(h̄ω) as

ρcv(h̄ω) ≡
2

8π3

∫

δ[Ec(~k)− Ev(~k)− h̄ω] d3k (4.4)

and ρcv(h̄ω) is the number of states per unit volume per unit energy range which occur with
an energy difference between the conduction and valence bands equal to the photon energy.
As explained above, ρcv(h̄ω) can be evaluated in a similar manner for 2D and 1D systems.

We would now like to look at this joint density of states (Eq. 4.4) in more detail to
see why the optical properties of solids give unique information about the energy band
structure. The main point is that optical measurements provide information about the
bands at particular ~k points in the Brillouin zone, usually points of high symmetry and near
energy band extrema. This can be understood by casting ρcv(h̄ω) in a more transparent
form. We start with the definition of the joint density of states given in Eq. 4.4. It is
convenient to convert this integral over ~k-space to an integral over energy. This is done by
introducing a constant energy surface S in k-space such that the energy difference Ec−Ev =
h̄ω is the photon energy. Then we can introduce the constant energy surfaces S and S+dS
in reciprocal space as corresponding to a constant energy difference between the conduction
and valence bands at each ~k point and:

d3k = dS dkn (4.5)

where dkn is an element of a wave vector normal to S, as shown in Fig. 4.1.

By definition of the gradient, we have |∇kE|dkn = dE so that for surfaces with energy
difference Ec − Ev we write:

|∇k(Ec − Ev)|dkn = d(Ec − Ev). (4.6)

Therefore

d3k = dkndS = dS

[

d(Ec − Ev)

|∇k(Ec − Ev)|

]

(4.7)

so that

ρcv(h̄ω) =
2

8π3

∫ ∫ ∫

dS d(Ec − Ev)δ(Ec − Ev − h̄ω)
|∇k(Ec − Ev)|

. (4.8)
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Figure 4.1: Adjacent constant energy
difference surfaces in reciprocal space,
S and S + dS, where the energy differ-
ence is between valence and conduction
bands, and dkn is the normal to these
constant energy difference surfaces.

We now carry out the integral over d(Ec − Ev) to obtain

ρcv(h̄ω) =
2

8π3

∫ ∫

dS

|∇k(Ec − Ev)|Ec−Ev=h̄ω
. (4.9)

Of special interest are those points in the Brillouin zone where (Ec −Ev) is stationary and
∇k(Ec − Ev) vanishes. At such points, called joint critical points, the denominator of the
integrand in Eq. 4.9 vanishes and especially large contributions can be made to ρcv(h̄ω).
This can be understood on the basis of physical considerations. Around critical points, the
photon energy h̄ω = (Ec−Ev) is effective in inducing electronic transitions over a relatively
larger region of the Brillouin zone than would be the case for transitions about non-critical
points. The relatively large contributions to the transition probability for critical points
gives rise to “structure” observed in the frequency dependence of the optical properties of
solids. Critical points generally occur at high symmetry points in the Brillouin zone, though
this is not necessarily the case.

As an illustration, let us consider the energy bands of the semiconductor germanium
(see Fig. 4.2). Here we see that both the valence and conduction bands have extrema at
the Γ point, ~k = 0, although the lowest conduction band minimum is located at the L
point. For the band extrema at ~k = 0, the condition [Ec(k = 0) − Ev(k = 0)] = h̄ω gives
rise to critical points in the joint density of states. Notice also that around the L points,
extrema occur in both valence and conduction bands, and a critical point therefore results.
Since the energy difference [Ec −Ev] has a relatively small gradient as we move away from
the L point, this critical point participates more fully in the interband transitions. In fact,
for germanium, Fig. 4.2 shows that there are large regions along the (100) and (111) axes
where the energy separation between valence and conduction bands (Ec − Ev) is roughly
constant. These large regions in k-space make very large contributions to the dielectric
function. We can see these features directly by looking at the frequency dependence of the
real and imaginary parts of the dielectric function for germanium (see Fig. 4.3). Here we
see that at low photon energies (below ∼2 eV), where the interband transitions from the
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Figure 4.2: E(~k) for a few high symme-
try directions in germanium, neglecting
the spin-orbit interaction.

Γ25′ valence band to the Γ2′ conduction band dominate, the contributions to the real and
imaginary parts of the dielectric function are small. On the other hand, the contributions
from the large regions of the Brillouin zone along the (100) and (111) axes between 2 and
5 eV are very much more important, as is seen in Fig. 4.3 for both ε1(ω) and ε2(ω).

In describing this contribution to the dielectric function of germanium we say that the
valence and conduction bands track each other and in this way produce a large joint density
of states over large regions of the Brillouin zone. A similar situation occurs in silicon and in
common III-V semiconductors. The diagram in Fig. 4.2 shows that beyond ∼ 5 eV there is
no longer any significant tracking of the valence and conduction bands. Consequently, the
magnitudes of ε1(ω) and ε2(ω) fall sharply beyond ∼ 5 eV. The absolute magnitudes of ε1
and ε2 for germanium and other semiconductors crystallizing in the diamond or zincblende
structure are relatively large. We will see shortly when we discuss the Kramers-Kronig
relations in §6.1 that these large magnitudes of ε1 and ε2 are responsible for the large value
of ε1(ω → 0) in these materials. For germanium ε1(0) is 16 from Fig. 4.3.

4.2 Critical Points

For a 3D system, critical points (often called Van Hove singularities) are classified into four
categories depending on whether the band separations are increasing or decreasing as we
move away from the critical point. This information is found by expanding [Ec(~k)−Ev(~k)]
in a Taylor series around the critical point ~k0 which is at an energy difference extremum.
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Figure 4.3: Frequency dependence of the real (ε1) and imaginary (ε2) parts of the dielectric
function for germanium. The solid curves are obtained from an analysis of experimental
normal-incidence reflectivity data while the dots are calculated from an energy band model.
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Figure 4.4: Summary of the joint density of states for a 3D system near each of the distinct
type of critical point.

Thus,

Ec(~k)− Ev(~k) = Eg( ~k0) +
3
∑

i=1

ai(ki − k0i)2 (4.10)

where the energy gap at the expansion point is written as Eg( ~k0) and the sum is over
the three directions x, y, and z. The coefficients ai represent the second derivative of the
energy difference ∂2

∂k2
i

[Ec(~k)−Ev(~k)]. The classification of the critical points in a 3D system

shown in Fig. 4.4 is made according to how many ai coefficients in Eq. 4.10 are negative.
The shapes given for the joint density of states curves of Fig. 4.4 are obtained as is here
illustrated for the case of an M0 singularity for a 3D system. In the case of 2D and 1D
systems, there are 3 and 2 types of critical points, respectively, using the same definition of
the coefficients ai to define the type of critical point.

As an example we will calculate ρcv(h̄ω) for an M0 singularity in a 3D system assuming
simple parabolic bands (see Fig. 4.5). Here,

Ec(~k) =
Eg
2

+
h̄2k2

2mc
(4.11)
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Figure 4.5: Bands associated with a M0 critical point for a 3D system.

and

Ev(~k) =
−Eg

2
− h̄2k2

2mv
(4.12)

where Eg is the energy gap, and mc and mv are effective masses for the conduction and
valence bands, respectively, and mv is taken as a positive number. We thus obtain

Ec(~k)− Ev(~k) = Eg +
h̄2k2

2

(

1

mc
+

1

mv

)

= Eg +
h̄2k2

2mr
(4.13)

where we define the reduced mass mr through the relation

1

mr
=

1

mc
+

1

mv
. (4.14)

Taking the gradient of Ec − Ev yields

∇k(Ec − Ev) =
h̄2~k

mr
(4.15)

so that the joint density of states becomes

ρcv(h̄ω) =
2

8π3

∫

dS

|∇k(Ec − Ev)|Ec−Ev=h̄ω
(4.16)

or

ρcv(h̄ω) =
2

8π3

[

4π

h̄2

(

k2mr

k

)]

Ec−Ev=h̄ω
=

[

mr

π2h̄2
k

]

Ec−Ev=h̄ω
. (4.17)

We evaluate k in Eq. 4.17 from the condition

Ec − Ev = h̄ω = Eg +
h̄2k2

2mr
(4.18)

or

k =

[

2mr

h̄2
(h̄ω − Eg)

]1/2

(4.19)
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Figure 4.6: Two cases of band extrema which are associated with M0 critical points. (a)
Conduction band minimum and a valence band maximum and (b) Both bands showing
minima.

so that

ρcv(h̄ω) =
1

2π2

[

2mr

h̄2

]3/2√

h̄ω − Eg (4.20)

as shown in Fig. 4.4 for an M0 critical point. The expression for ρcv(h̄ω) in Eq. 4.20 is not
singular but represents a discontinuity in slope at h̄ω = Eg. This discontinuity in slope
corresponds to a threshold for the absorption process, as discussed in Chapter 5.

On the other hand, the situation is quite different for the joint density of states cor-
responding to an M0 critical point for a 3D system in a magnetic field, as we will see in
Part III of the class notes. At a critical point, the joint density of states in a magnetic
field does show singularities where the density of states in a magnetic field becomes infinite.
These singularities in a magnetic field make it possible to carry out resonance experiments
in solids, despite the quasi–continuum of the energy levels in the energy bands E(~k).

We note that we can have M0-type critical points for bands that look like Fig. 4.6a or
like Fig. 4.6b. It is clear that the difference Ec −Ev in Fig. 4.6b varies more slowly around
the critical point than it does in Fig. 4.6a. Thus, bands that tend to “track” each other
have an exceptionally high joint density of states and contribute strongly to the optical
properties. Examples of bands that track each other are found in common semiconductors
like germanium along the Λ (111) direction (see Figs. 4.2 and 4.3).

In addition to the M0 critical points, we have M1, M2, and M3 critical points in 3D
systems. The functional forms for the joint density of states for h̄ω < Eg and h̄ω > Eg

are given in Table 4.1. From the table we see that in 2D, the M0 and M2 critical points
correspond to discontinuities in the joint density of states at Eg, while the M1 singularity
corresponds to a saddle point logarithmic divergence. In the case of the 1D system, both
the M0 and M1 critical points are singular.
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Table 4.1: Functional form for the joint density of states for various types of singularities
below and above the energy gap Eg for 3D, 2D, and 1D systems ρvc(h̄ω).

Type h̄ω < Eg h̄ω > Eg

3D M0 0 (h̄ω − Eg)
1/2

M1 C − (Eg − h̄ω)1/2 C

M2 C C − (h̄ω − Eg)
1/2

M3 (Eg − h̄ω)1/2 0

2D M0 0 C
M1 − ln(Eg − h̄ω) − ln(h̄ω − Eg)
M2 C 0

1D M0 0 (h̄ω − Eg)
−1/2

M0 (Eg − h̄ω)−1/2 0
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Chapter 5

Absorption of Light in Solids

References:

• Ziman, Principles of the Theory of Solids: Chapter 8

• Bassani and Pastori–Parravicini, Electronic States and Optical Transitions in Solids:
chapter 5

• Yu and Cardona, Fundamentals of Semiconductors, Chapter 6

• Wolfe, Holonyak and Stillman, Physical Properties of Semiconductors, Chapter 7

5.1 The Absorption Coefficient

Measurement of the absorption of light is one of the most important techniques for optical
measurements in solids. In the absorption measurements, we are concerned with the light
intensity I(z) after traversal of a thickness z of material as compared with the incident
intensity I0, thereby defining the absorption coefficient αabs(ω):

I(z) = I0e
−αabs(ω)z (5.1)

where the absorption constant is shown schematically in Fig. 5.1. Since the intensity I(z)
depends on the square of the field variables, it immediately follows that

αabs(ω) = 2
ωk̃(ω)

c
(5.2)

where the factor of 2 results from the definition of αabs(ω) in terms of the light intensity,
which is proportional to the square of the fields. This expression tells us that the absorption
coefficient is proportional to k̃(ω), the imaginary part of the complex index of refraction
(extinction coefficient), so that k̃ is usually associated with power loss. We note that Eq. 5.2
applies to free carrier absorption in semiconductors in the limit ωτ À 1, and ω À ωp.

We will now show that the frequency dependence of the absorption coefficient is quite
different for the various physical processes which occur in the optical properties of solids.
We will consider here the frequency dependence of the absorption coefficient for:

1. Free carrier absorption
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Figure 5.1: Frequency dependence
of the absorption coefficient near a
threshold for interband transitions.

(a) typical semiconductor αabs(ω) ∼ ω−2

(b) metals at low frequencies αabs(ω) ∼ ω
1

2

2. Direct interband transitions

(a) form of absorption coefficient αabs(ω) ∼ (h̄ω−Eg)
1
2

h̄ω

(b) conservation of crystal momentum

(c) relation between m∗ and momentum matrix element

(d) form of αabs(ω) for direct forbidden transition ∼ (h̄ω−Eg)
3
2

h̄ω

3. Indirect interband transitions

(a) form of absorption coefficient αabs(ω) ∼ (h̄ω − Eg ± h̄ωq)2

(b) phonon absorption and emission processes

The summary given above is for 3D systems. In the case of 2D and 1D systems, the
functional dependence is sensitive to the dimensionality of the system for each process.

5.2 Free Carrier Absorption in Semiconductors

For free carrier absorption we use the relation for the complex dielectric function ε(ω) =
ε1(ω) + iε2(ω) given by

ε(ω) = ε0 +
4πiσ

ω
(5.3)

where ε0 is the core dielectric constant in the optical frequency range above the lattice mode
frequencies and ε0 is here assumed to be independent of ω. The electronic polarizability
is related to the frequency dependent electrical conductivity by the frequency dependent
Drude term

σ =
ne2τ

m∗(1− iωτ) . (5.4)
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The plasma frequency ωp is then given by the vanishing of ε1(ω), that is ε1(ωp) = 0 or

ω2
p =

4πne2

m∗ε0
. (5.5)

For semiconductors, the core dielectric constant ε0 is typically a large number and the
contribution due to the free carriers is small at infrared and visible frequencies. For metals,
the free carrier absorption is dominant over the entire optical frequency range.

For semiconductors, the typical frequency range of interest is that above the optical
phonon frequencies, and for these frequencies it is generally true that ωτ À 1. We can then
write:

ε(ω) = ε0 +
4πine2τ(1 + iωτ)

m∗ω[1 + (ωτ)2]
= ε0 +

iε0ω
2
pτ(1 + iωτ)

ω[1 + (ωτ)2]
(5.6)

or for ωτ À 1

ε(ω) ' ε0 +
iε0ω

2
pτ

2

ω3τ3
−
ε0ω

2
p

ω2
. (5.7)

In the range of interest for optical measurements in a semiconductor, the relation ω À ωp
is satisfied. It is then convenient to express the complex dielectric function ε(ω) in terms
of the optical constants ñ(ω) and k̃(ω) according to the definition ε(ω) = [ñ(ω) + ik̃(ω)]2

where ñ(ω) is the index of refraction and k̃(ω) is the extinction coefficient. We can then
write for the real part of the dielectric function:

ε1(ω) ≡ ñ2(ω)− k̃2(ω) ≈ ε0 (5.8)

where the index of refraction ñ(ω) is large and the extinction coefficient k̃(ω) is small. For
the imaginary part of the dielectric function, we have

ε2(ω) ≡ 2ñ(ω)k̃(ω) ≈ 2
√
ε0 k̃(ω) =

ε0ω
2
pτ

2

ω3τ3
(5.9)

which is small, since ωp ¿ ω. Thus the absorption coefficient can be written as:

αabs(ω) =
2ωk̃(ω)

c
' 2ω

c

ε0ω
2
p

2
√
ε0ω3τ

=

√
ε0ω

2
p

cω2τ
(5.10)

and thus αabs(ω) is proportional to 1/ω2 or to λ2 for free carrier absorption in semicon-
ductors for the case where ωτ À 1 and ω À ωp. Figure 5.2 shows a plot of the optical
absorption coefficient for InAs vs wavelength on a log-log plot for various carrier densities,
showing that αabs(ω) ∼ λp where p is between 2 and 3 for a wide range of donor con-
centrations. The dependence of the reflectivity spectra (vs wavelength) for various donor
concentrations for heavily doped n-type InSb is shown in Fig. 5.3. The dependence of the
plasma frequency on the carrier concentration is readily visible from these data.

5.3 Free Carrier Absorption in Metals

The typical limits for metals are somewhat different than for semiconductors. In particular
we consider here the case where ωτ ¿ 1, ω ¿ ωp, |ε0| ¿ 4πσ/ω, so that ñ ' k̃. Thus we
obtain

ε(ω) ' 4πiσ

ω
' 4πine2τ

ωm∗
' iε2(ω) ≡ 2iñk̃ ' 2ik̃2 (5.11)
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Figure 5.2: Free carrier absorption in
n-type InAs at room temperature for
six different carrier concentrations (in
units of 1017 cm−3) A: 0.28; B: 0.85; C:
1.4; D: 2.5; E: 7.8; and F: 39.0.
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Figure 5.3: Plasma edges observed in
the room temperature reflectivity spec-
tra of n-type InSb with carrier con-
centration n varying between 3.5 ×
1017 cm−3 and 4.0 × 1018 cm−3. The
solid curves are theoretical fits to the
experimental points, including consid-
eration of the energy dependence of m∗

due to the strong interband coupling
(called non-parabolic effects).
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This gives us for the extinction coefficient k̃(ω)

k̃(ω) =

√

2πne2τ

m∗ω
(5.12)

and the absorption coefficient becomes:

αabs(ω) =
2ωk̃(ω)

c
=

√

8πωne2τ

m∗c2
(5.13)

For this limit αabs(ω) is proportional to
√
ω. Usually, the convenient observable for metals

is the reflectivity. In the limit appropriate for metals, ñ = k̃, and both ñ and k̃ are large.
We thus have

R =
(ñ− 1)2 + k̃2

(ñ+ 1)2 + k̃2
=
ñ2 − 2ñ+ 1 + k̃2

ñ2 + 2ñ+ 1 + k̃2
= 1− 4ñ

ñ2 + k̃2 + 2ñ+ 1
(5.14)

R ≈ 1− 4ñ

ñ2 + k̃2
≈ 1− 2

ñ
. (5.15)

But from Eq. 5.12 and the condition ñ ≈ k̃ À 1, we obtain

ñ(ω) '
√

2πme2τ

m∗ω
(5.16)

so that the reflectivity goes as

R(ω) ' 1− 2

√

m∗ω

2πne2τ
. (5.17)

Equation 5.17 is known as the Hagen-Rubens relation which holds well for most metals in
the infrared region of the spectrum. This formula also applies to degenerate semiconductors
below the plasma frequency.

5.4 Direct Interband Transitions

To calculate the absorption due to direct interband transitions we go back to the defini-
tion for the absorption coefficient αabs(ω) which is defined as the power removed from the
incident beam per unit volume per unit incident flux of electromagnetic energy:

αabs(ω) =
(h̄ω)× number of transitions/unit volume/unit time

incident electromagnetic flux
. (5.18)

The incident electromagnetic flux is calculated from the Poynting vector

~S =
c

8π
Re( ~E∗ × ~H). (5.19)

It is convenient to relate the field variables to the vector potential:

~E = −1

c

∂ ~A

∂t
=
iω

c
~A (5.20)
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µ ~H = ~B = ~∇× ~A. (5.21)

In non–magnetic materials we can take the permeability µ to be unity. In taking the curl
of ~A, we assume a plane wave form

~A = ~A0e
i( ~K·~r−ωt) (5.22)

where the propagation constant for the light is denoted by the wave vector ~K. We thus
obtain for the Poynting vector

~S =
c

8π
Re

[

− iω

c
~A∗ × (i ~K × ~A)

]

(5.23)

or
~S =

ω

8π
Re

[

( ~A∗ · ~A) ~K − ( ~A∗ · ~K) ~A

]

. (5.24)

Utilizing the fact that for a transverse plane wave ~A∗ · ~K = 0, we obtain

~S =
ω

8π

ñω

c
|A|2K̂ (5.25)

where ñ denotes the real part of the complex index of refraction and K̂ is a unit vector along
the Poynting vector. This quantity | ~S| in Eq. 5.25 becomes the denominator in Eq. 5.18
which is the expression defining the absorption coefficient. The transition probability/unit
time/unit volume is calculated from the “Fermi Golden Rule”

W =
2π

h̄
| H′vc |2 ρcv(h̄ω). (5.26)

If we wish to consider the absorption process at finite temperature, we also need to include
the Fermi functions to represent the occupation of the states at finite temperature

f(Ev)[1− f(Ec)]− f(Ec)[1− f(Ev)] (5.27)

in which the first group of terms represents the absorption process which depends on the
valence band (v) being nearly full and the conduction band (c) being nearly empty. The
second group of terms represents the emission process which proceeds if there are occupied
conduction states and unoccupied valence states. Clearly, the Fermi functions in Eq. 5.27
simply reduce to [f(Ev) − f(Ec)]. The matrix elements |H′vc|2 in Eq. 5.26 can be written
in terms of the electromagnetic interaction Hamiltonian

H′vc = 〈v|H′em|c〉 = −
(

e

mc

)

〈v| ~A(~r, t) · ~p|c〉. (5.28)

We show in §5.5 that the matrix element 〈v| ~A(~r, t)·~p|c〉 coupling the valence and conduction
bands for the electromagnetic interaction is diagonal in wave vector ~k since the wave vector
for light ~K is small relative to Brillouin zone dimensions. As a result also the spatial
dependence of the vector potential can be ignored. Thus the square of the matrix elements
coupling the valence and conduction bands becomes

|H′vc|2 =
(

e

mc

)2

|A|2|〈v|p|c〉|2, (5.29)
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where |〈v|p|c〉|2 couples states with the same electron wave vector in the valence and conduc-
tion bands. Since |〈v|p|c〉|2 is slowly varying with k in comparison to ρcv(h̄ω) it is convenient
to neglect the k dependence of |〈v|p|c〉|2 and evaluate this quantity at the Mi critical point.
Thus for direct interband transitions, we obtain the following expression for the absorption
coefficient

αabs(ω) =
(h̄ω)[2πh̄ ( e

mc)
2|A|2|〈v|p|c〉|2ρcv(h̄ω)][f(Ev)− f(Ec)]

ω
8π

ñω
c |A|2

(5.30)

or

αabs(ω) =
16π2e2

m2cñω
|〈v|p|c〉|2ρcv(h̄ω)[f(Ev)− f(Ec)] (5.31)

where ñ in Eqs. 5.30 and 5.31 denotes the index of refraction.

To get an idea of the functional forms of the quantities in Eq. 5.31, we will consider a
rather simplified picture of two simple parabolic bands with an allowed optical transition,
i.e., a non-vanishing momentum matrix element coupling them. Writing the joint density
of states from Eq. 4.4 for the case of an M0 critical point (as occurs near k = 0 for many
semiconductors)

ρcv(h̄ω) =
1

2π2

(

2mr

h̄2

)3/2√

h̄ω − Eg (5.32)

where mr is the reduced mass for the valence and conduction bands, we can estimate the
absorption coefficient αabs(ω). At very low temperature, a semiconductor has an essentially
filled valence band and an empty conduction band; that is f(Ev) = 1 and f(Ec) = 0. We
can estimate |〈v|p|c〉|2 from the effective mass sum–rule (Eq. 3.33)

|〈v|p|c〉|2 ' m0Eg
2

m0

m∗
(5.33)

where m0 is the free electron mass. After substitution of Eqs. 5.32 and 5.33 into Eq. 5.31 we
obtain the following frequency dependence for the absorption coefficient for direct allowed
transitions:

αabs(ω) ∝
1

ω

√

h̄ω − Eg (5.34)

so that the direct optically–allowed interband transitions are characterized by a threshold at
the energy gap Eg as shown in Fig. 5.1. We thus see a very different frequency dependence
of αabs(ω) for the various physical processes.

It is sometimes convenient to express the absorption in terms of the imaginary part of
the dielectric function

ε2(ω) =
ñc

ω
αabs(ω) (5.35)

which from Eq. 5.31 becomes

ε2(ω) =

(

4πe

mω

)2

|〈v|p|c〉|2ρcv(h̄ω)[f(Ev)− f(Ec)]. (5.36)

If we introduce the dimensionless quantity fvc, which is usually called the oscillator strength
and is defined by

fvc =
2|〈v|p|c〉|2

m[Ec(k)− Ev(k)]
=

2|〈v|p|c〉|2
mh̄ω

, (5.37)

43



Figure 5.4: Plot of the square of
the absorption coefficient of PbS
as a function of photon energy
showing the linear dependence of
[αabs(ω)]

2 on h̄ω. The intercept
with the x-axis defines the direct
energy gap.

we obtain the following result for ε2(ω) at T = 0

ε2(ω) =

(

8π2e2h̄

mω

)

fvcρcv(h̄ω). (5.38)

We further discuss how ε1(ω) for interband transitions is obtained from ε2(ω) in §6.2 using
the Kramers–Kronig relation.

To illustrate the fit between these simple models and the behavior of the absorption
coefficient near the fundamental absorption edge, we show in Fig. 5.4 a plot of [αabs]

2 vs
h̄ω for PbS, with the intercept of [αabs]

2 on the photon energy axis giving the direct energy
band gap. By plotting αabs(ω) on a log scale vs h̄ω, a value for the energy gap can also be
obtained as shown in Fig. 5.5 for InSb.

The derivation of the functional form for the absorption coefficient for direct forbidden
transitions proceeds as in the derivation of Eq. 5.31, except that |〈v|p|c〉|2 is now dependent
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Figure 5.5: Semilogarithmic plot
of the absorption coefficient of
InSb at 5 K as a function of pho-
ton energy. The filled circles rep-
resent experimental results. The
curves have been calculated us-
ing various models. Best results
are obtained when the depen-
dence of the matrix elements on
k are included. The intercept
with the x-axis gives the direct
bandgap of InSb.
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on k2 so that αabs(ω) follows a (h̄ω − Eg)
3/2 dependence for direct forbidden interband

transitions.

5.4.1 Temperature Dependence of Eg

Because of the expansion and contraction of the lattice with temperature, the various band
parameters, particularly the energy gap is temperature dependent. Although calculations
are available to predict and account for the T dependence of the band gap at the funda-
mental absorption edge (threshold), Eg(T ) is best found by empirical fits. We give below
expressions for such fits which are useful for research purposes

Eg(T ) = 1.165− 2.84× 10−4T (eV) Si

Eg(T ) = 0.742− 3.90× 10−4T (eV) Ge

Eg(T ) = 1.522− 5.8×10−4T 2

T+300 (eV) GaAs

Eg(T ) = 2.338− 6.2×10−4T 2

T+460 (eV) GaP

For Group IV and III–V compound semiconductors, Eg(T ) decreases with increasing T , as
shown above, but for IV–VI compounds, Eg(T ) increases with increasing T .

5.4.2 Dependence of Absorption Edge on Fermi Energy

For lightly doped semiconductors, EF lies in the bandgap and the absorption edge occurs at
Eg, neglecting excitonic effects which are discussed in Chapter 7. However, for heavily doped
semiconductors, EF lies in the valence or conduction bands and the threshold for optical
absorption is shifted. This shift in the absorption edge is often referred to as the Burstein
shift, and is illustrated in Fig. 5.6 where it is shown that the threshold for absorption occurs
when

h̄ω = Eg +
h̄2k2BS

2

(

1

m∗e
+

1

m∗h

)

= Eg +
h̄2k2BS
2m∗r

= EF − 4kBT (5.39)

in which m∗r is the reduced mass, (1/m∗r) = (1/m∗e) + (1/m∗h), kBS is the wave vector
corresponding to the Burstein shift defined in Eq. 5.39.

Referring to Eq. 5.27 where we introduce the probability that the initial state is occupied
and the final state is unoccupied, we find that since doping affects the position of the
Fermi level, the Fermi functions will depend on carrier concentration for heavily doped
semiconductors. In particular the quantity (1− f0) denoting the availability of final states
will be affected by the Burstein shift. If we write

h̄2k2

2m∗e
= E − Ec (5.40)

where Ec is the energy at the bottom of the conduction band, then the probability that the
final state is empty is

1− f0 =
1

1 + exp[(EF − E)/kBT ]
=

1

1 + exp

[

EF−E
kBT

− (h̄ω−Eg)m∗
h

(m∗
e+m

∗
h
)kBT

] (5.41)

and Eq. 5.41 should be used for the probability of final states in evaluating f(Ec) in Eq. 5.31.
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Figure 5.6: Diagram showing how the fundamental absorption edge of an n-type semicon-
ductor is shifted to higher energy by doping. The wave vector for the Burstein shift kBS is
defined in Eq. 5.39.

5.4.3 Dependence of Absorption Edge on Applied Electric Field

The electron wave functions in the valence and conduction bands have an exponentially
decaying amplitude in the energy gap. In the presence of an electric field ~E, a valence band
electron must tunnel through a triangular barrier to reach the conduction band. In the
absence of photon absorption, the height of the barrier is Eg and its thickness is Eg/e| ~E|
where | ~E| is the magnitude of the electric field, as shown in Fig. 5.7(a). The effect of the
photon, as shown in Fig. 5.7(b), is to lower the barrier thickness to

t(h̄ω) =
Eg − h̄ω
e| ~E|

(5.42)

so that the tunneling probability is enhanced by photon absorption. Figure 5.8 shows that
the absorption edge is effectively lowered by the presence of the electric field, and the effect
of the electric field on αabs is particularly pronounced below the zero field band gap. The
effect of an electric field on the fundamental absorption edge is called the Franz–Keldysh
effect.

5.5 Conservation of Crystal Momentum in Direct Optical
Transitions

For clarity we now show why the momentum matrix elements coupling two Bloch states
for a perfect crystal are diagonal in ~k and conserve crystal momentum. It is this property
of the momentum matrix elements that is responsible for direct interband transitions. We
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Figure 5.7: Energy band diagram in an electric field showing the wavefunction overlap (a)
without and (b) with absorption of a photon of energy h̄ω.

write the momentum matrix elements coupling two bands (for example, the valence and
conduction bands) as

〈n′~k′|~p|n,~k〉 =
∫

d3re−i
~k′·~ru∗n′k′(~r)

(

h̄

i
~∇
)

ei
~k·~runk(~r). (5.43)

Operating with ~∇ on the product function of the Bloch state yields

〈n′~k′|~p|n,~k〉 =
∫

d3re−i
~k′·~ru∗n′k′(~r)e

i~k·~r(h̄~k +
h̄

i
~∇)unk(~r). (5.44)

Now the term in h̄~k can be integrated immediately to give h̄~kδnn′δ(~k − ~k′) and is thus
diagonal in both band index and crystal momentum. This term therefore does not give rise
to interband transitions. The remaining term in Eq. 5.44 is

∫

d3rei(
~k−~k′)·~r h̄

i
u∗n′k′(~r)~∇unk(~r). (5.45)

The function u∗n′k′(~r)
~∇unk(~r) in Eq. 5.45 is periodic under the translation ~r → ~r + ~Rn

where ~Rn is any lattice vector. But any spatially periodic function can be Fourier expanded

∑

m

Fme
i ~Gm·~r =

h̄

i
u∗n′k′(~r)∇unk(~r) (5.46)

in terms of the reciprocal lattice vectors ~Gm. We thus obtain for the integral in Eq. 5.45
∫

d3rei(
~k−~k′)·~rFme

i ~Gm·~r (5.47)
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Figure 5.8: Electric field and photon energy dependence of the band-to-band absorption for
GaAs.
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Figure 5.9: Indirect optically induced transitions of electrons (a) from the initial state 0 in
the valence band to final states 1 and 2 in the conduction band and (b) from initial states
1 and 2 in the valence band to final state 0 in the conduction band. In both (a) and (b) a
phonon labeled by (h̄ωs, qs) is absorbed in the indirect transition process.

which vanishes unless
~k − ~k′ + ~Gm = 0. (5.48)

Since ~k− ~k′ must be within the first Brillouin zone, ~k and ~k′ can only differ by the reciprocal
lattice vector ~Gm ≡ 0. Thus Eq. 5.47 vanishes unless ~k = ~k′ and we have demonstrated that
because of the periodicity of the crystal lattice, the momentum matrix elements coupling
two bands can only do so at the same value of crystal momentum ~k. Since the probability
for optical transitions involves the same momentum matrix elements as occur in the deter-
mination of the effective mass in the transport properties, study of the optical properties
of a solid also bears an important relation to the transport properties of that material.

5.6 Indirect Interband Transitions

In making indirect transitions, the semiconductor can either emit or absorb a phonon of
energy h̄ωq

h̄ω = Ef − Ei ± h̄ωq (5.49)

in which Ef and Ei are, respectively, the energies of the final and initial electron states and
the ± signs refer to phonon emission (+ sign) or absorption (– sign).

To review indirect interband transitions in a semiconductor, we derive below an ex-
pression for the absorption coefficient for the situation where a phonon is absorbed in the
indirect process, as shown schematically in Fig. 5.9. Similar arguments can then be applied
to the case where a phonon is emitted.
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Figure 5.10: Schematic diagram of an
indirect transition showing the nota-
tion used in the text. Ec is the en-
ergy of the L-point conduction band at
wave vector kc, while Ec is the thermal
energy gap. The valence band max-
imum Ev is taken at the zero of en-
ergy. En and (~kn − ~kc), respectively,
denote the energy and momentum of
an excited electron, while Ep and ~kp,
respectively, denote the corresponding
parameters for the holes near ~k = 0. It
is customary to place the zero of energy
at the valence band maximum.

The conservation of energy principle is applied to the total process, consisting of the
direct optical transition and the absorption of a phonon h̄ωq, yielding

h̄ω = Eg − h̄ωq +
h̄2(~kn − ~kc)2

2mn
+
h̄2k2p
2mp

(5.50)

in which the notation in Eq. 5.50 is defined in Fig. 5.10, and Eg is the thermal gap or
energy difference between the conduction band minimum (e.g., at L) and the valence band
maximum at Γ. The negative sign in front of the phonon energy h̄ωq in Eq. 5.50 corresponds

to the phonon absorption process. In Eq. 5.50, the term h̄(~kn − ~kc) denotes the difference
between the crystal momentum h̄~kn of an excited electron in the L–point conduction band
and the crystal momentum h̄~kc at the L–point conduction band minimum. Thus the kinetic
energy of the excited electron with crystal momentum h̄~kn is

En − Ec =
h̄2(~kn − ~kc)2

2mn
(5.51)

where En is the energy above the conduction band minimum Ec, and mn in Eq. 5.51 is the
effective mass of an electron near the conduction band minimum.

Since the valence band extremum is at ~k = 0, then h̄~kp is the crystal momentum for the
hole that is created when the electron is excited, corresponding to the kinetic energy of the
hole

Ep =
h̄2k2p
2mp

. (5.52)
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The sign convention that is used in this discussion is to take Ep as a positive number and
the zero of energy is taken at the valence band maximum (see Fig. 5.10). In terms of these
sign conventions, conservation of energy yields

h̄ω = Eg − h̄ωq + (En − Ec) + Ep (5.53)

and conservation of momentum requires

~q = ~kn − ~kp (5.54)

where ~q is the wave vector for the absorbed phonon.
We now find the frequency dependence of the absorption edge for indirect transitions in

order to make a distinction between direct and indirect transitions just from looking at the
frequency dependence of the optical absorption data. Let us then consider the transition
from some specific initial state Ep to a specific final state En. The density of states ρc(En)
(number of states/unit volume/unit energy range) for the final state conduction band has
an energy dependence given by

ρc(En) ∝ (En − Ec)
1/2. (5.55)

Using the conservation of energy relation in Eq. 5.53, ρc(En) can be expressed in terms of
Ep as

ρc(En) ∝ (h̄ω − Eg − Ep + h̄ωq)
1/2. (5.56)

Thus we see that transitions to a state En take place from a range of initial states, since
Ep can vary between Ep = 0 where all of the kinetic energy is given to the electron and the
opposite limit where En −Ec = 0 and all of the kinetic energy is given to the hole. Let the
energy δ denote the range of possible valence band energies between these limits

δ = h̄ω − Eg + h̄ωq. (5.57)

The density of initial states for the valence band has an energy dependence given by

ρv(Ep) ∝ E1/2
p (5.58)

where we are using the convention Ev ≡ 0 for defining the zero of energy, so that Ep

vanishes at the top of the valence band. Thus the effective density of states for the phonon
absorption process is found by summing over all Ep values which conserve energy,

ρ(h̄ω) ∝
∫ δ

0
ρc(En)ρv(Ep)dEp ∝

∫ δ

0

√

δ − Ep

√

Ep dEp. (5.59)

The integral in Eq. 5.59 can be carried out through integration by parts, utilizing the
notation u = Ep, and v = δ − Ep, and writing the limits of the integration in terms of the
variable Ep

∫ δ

0

√
uv du =

δ − 2v

4

√
uv

∣

∣

∣

∣

δ

0
+
δ2

4
tan−1

√

u

δ − u

∣

∣

∣

∣

∣

δ

0

=
δ2π

8
. (5.60)

Substitution in Eq. 5.57 for δ in Eqs. 5.59 and 5.60 results in

ρ(h̄ω) ∝ π

8
(h̄ω − Eg + h̄ωq)

2 (5.61)
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which gives the frequency dependence for the indirect interband transitions involving phonon
absorption. Also, the probability for the absorption of a phonon is proportional to the Bose-
Einstein factor

n(h̄ωq) =
1

exp(h̄ωq/kBT )− 1
(5.62)

so that the absorption coefficient for indirect transitions in which a phonon is absorbed
becomes

αabs(ω) = Ca
(h̄ω − Eg + h̄ωq)

2

exp(h̄ωq/kBT )− 1
(5.63)

where Ca is a constant for the phonon absorption process.
To find the absorption coefficient for the indirect absorption process that involves the

emission of a phonon, we must find the effective density of states for the emission process.
The derivation in this case is very similar to that given above for phonon absorption, except
that the energy conservation condition now involves the phonon energy with the opposite
sign. Furthermore, the probability of emission of a phonon is proportional to [n(h̄ωq) + 1]
which is given by

[n(h̄ωq) + 1] = 1 + [eh̄ωq/kBT − 1]−1 =
1

1− e−h̄ωq/kBT (5.64)

so that the absorption constant for phonon emission becomes

αems(ω) = Ce
(h̄ω − Eg − h̄ωq)2

1− exp(−h̄ωq/kBT )
(5.65)

where Ce is a constant for the phonon emission process.
At low temperatures, the phonon emission process dominates because there are so few

phonons available for the absorption process. Furthermore, as a function of photon en-
ergy, different thresholds are obtained for the absorption and emission processes. In the
absorption process, absorption starts when h̄ω = Eg − h̄ωq (see Fig. 5.11), while for the
emission process, the optical absorption starts when h̄ω = Eg+ h̄ωq. So if we plot

√

αabs(ω)
vs h̄ω, as is shown in Fig. 5.11, then

√

αabs(ω) in the low photon energy range will go as
√

αabs(ω) ∝ (h̄ω − Eg + h̄ωq) while
√

αems(ω) will be proportional to (h̄ω − Eg − h̄ωq).
Experimentally, a superposition of the absorption and emission processes will be observed.

Some experimental data illustrating indirect interband transitions are given in Fig. 5.12.
The shift of the curves in Fig. 5.12 as a function of photon energy is due to the temperature
dependence of the indirect gap in silicon. In Fig. 5.12 it is easy to separate out the lower
energy absorption contribution which is associated with the phonon absorption process
(compare Figs. 5.11 and 5.12). At higher energies it is also easy to separate out the phonon
emission contribution. By carrying out measurements at several different temperatures it
is possible to obtain a more accurate value for h̄ωq. Figure 5.12 shows that the phonon
absorption process becomes more favorable as the temperature is raised, while the emission
process is less sensitive to temperature. The physical reason behind this is that for the
absorption process to occur in the first place, phonons of the appropriate wave vector
must be available. In Ge the phonon assisted process requires phonons of wave vector ~q
extending from Γ to L, while for Si we need a phonon ~q–vector from Γ to ∆min (where
∆min corresponds to the ∆ point conduction band minimum). Since lattice vibrations
are thermally excited, there are few available phonons at low temperatures, but more are
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Figure 5.11: Schematic diagram show-
ing the frequency dependence of the
square root of the absorption coefficient
for indirect interband transitions near
the thresholds for the phonon emis-
sion and absorption processes. The
curves are for four different temper-
atures. At the lowest temperature
(T4) the phonon emission process domi-
nates, while at the highest temperature
(T1) the phonon absorption process is
most important at low photon energies.
The magnitude of twice the phonon en-
ergy is indicated.

available at high temperatures. On the other hand, phonon emission does not depend upon
the availability of phonons since the emission process itself generates phonons; for this
reason the phonon emission process is relatively insensitive to temperature.

Since silicon is a relatively hard material (with a Debye temperature of θD = 658 K)
there will only be a few large wavevector phonons excited at room temperature. Therefore
the phonon emission process will dominate in the optical absorption for photon energies
where such emission is energetically possible. These arguments account for the different
slopes observed for the phonon absorption and emission contributions to the absorption
coefficient of Fig. 5.12.

Another complication that arises in real materials is that there are several types of
phonons present for a given ~q-vector, i.e., there are acoustic and optical branches and for
each branch there are longitudinal and transverse modes. An example of the analysis of
optical absorption data to obtain the frequencies of the various phonons at q = 0 is given in

Fig. 5.13 where α
1/2
abs vs h̄ω is plotted for the indirect gap semiconductor GaP, from which

it is possible to measure h̄ωq for various LO, LA, TO and TA phonons. Today such optical
data are seldom taken, because it is now customary to use inelastic neutron diffraction data
to plot out the entire dispersion curve for each of the phonon branches. When the phonon
frequencies are high, electron energy loss spectroscopy can be helpful in obtaining ωq(q) for
the various phonon branches as is discussed in Chapter 12.
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Figure 5.12: Plots of the square root of the absorption coefficients of Si versus photon
energy at several temperatures. The two segments of a straight line drawn through the
experimental points represent the two contributions associated with phonon absorption
and emission. (From Macfarlane, et al., Phys. Rev. 111, 1249 (1958)).
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Figure 5.13: Plots of the square root of
the absorption coefficients of GaP vs
photon energy at two different temper-
atures. The labels denote the various
absorption thresholds associated with
the emission of various phonon modes.
The observation of these phonon modes
is made possible by the enhanced ab-
sorption associated with excitons at the
absorption threshold (see Chapter 7).
The apparent shift in the phonon fre-
quencies is in most part due to the vari-
ation of the bandgap energy with tem-
perature (see Figs. 5.11 and 5.12).

56



Chapter 6

Optical Properties of Solids Over a
Wide Frequency Range

6.1 Kramers–Kronig Relations

References

• Jones and March, Theoretical Solid State Physics: pp. 787-793

• Jackson, Classical Electrodynamics: pp. 306-312

Measurement of the absorption coefficient gives the imaginary part of the complex index
of refraction while the reflectivity is sensitive to a complicated combination of ε1(ω) and
ε2(ω). Thus from measurements such as αabs(ω) we often have insufficient information to
determine ε1(ω) and ε2(ω) independently. However, if we know either ε1(ω) or ε2(ω) over
a wide frequency range, then ε2(ω) or ε1(ω) can be determined from the Kramers–Kronig
relation given by

ε1(ω)− 1 =
2

π
P
∫ ∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ (6.1)

and

ε2(ω) = −
2

π
P
∫ ∞

0

ω′ε1(ω
′)

ω′2 − ω2
dω′ (6.2)

in which P denotes the principal value. These relations are based on causality, linear
response theory and the boundedness of physical observables.

The Kramers–Kronig relations relate ε1(ω) and ε2(ω) so that if either of these functions
is known as a function of ω the other is completely determined. Because of the form of these
relations, it is clear that the main contribution to ε1(ω) comes from the behavior of ε2(ω

′)
near ω′ ≈ ω due to the resonant denominator in Eqs. 6.1 and 6.2. What this means is that
to obtain ε1(ω) we really should know ε2(ω

′) for all ω′, but it is more important to know
ε2(ω

′) in the frequency range about ω than elsewhere. This property is greatly exploited
in the analysis of reflectivity data, where measurements are available over a finite range of
ω′ values. Some kind of extrapolation procedure must be used for those frequencies ω ′ that
are experimentally unavailable. We now give a derivation of the Kramers–Kronig relations
after some introductory material.
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This theorem is generally familiar to electrical engineers in another context. If a system
is linear and obeys causality (i.e., there is no output before the input is applied), then the
real and imaginary parts of the system function are related by a Hilbert transform. Let us
now apply this causality concept to the polarization in a solid. We have the constitutive
equation which defines the polarization of the solid:

ε ~E = ~D = ~E + 4π ~P (6.3)

so that
~P =

ε− 1

4π
~E ≡ α(ω) ~E (6.4)

where α(ω) defines the polarizability, and ~P is the polarization/unit volume or the response
of the solid to an applied field ~E. The polarizability α(ω) in electrical engineering language
is the system function

α(ω) = αr(ω) + iαi(ω) (6.5)

in which we have explicitly written the real and imaginary parts αr(ω) and αi(ω), respec-
tively. Let E(t) = E0δ(t) be an impulse field at t = 0. Then from the definition of a
δ-function, we have:

E(t) = E0δ(t) =
E0

π

∫ ∞

0−
cosωtdω. (6.6)

The response to this impulse field yields an in-phase term proportional to αr(ω) and an
out-of-phase term proportional to αi(ω), where the polarization vector is given by

~P (t) =
E0

π

∫ ∞

0−

[

αr(ω) cosωt+ αi(ω) sinωt

]

dω, (6.7)

in which α(ω) is written for the complex polarizability (see Eq. 6.5). Since ~P (t) obeys
causality and is bounded, we find that the integral of α(ω)e−iωt is well behaved along the
contour C ′ as R →∞ and no contribution to the integral is made along the contour C ′ in
the upper half plane (see Fig. 6.1). Furthermore, the causality condition that ~P (t) vanishes
for t < 0 requires that α(ω) have no poles in the upper half plane shown in Fig. 6.1.

To find an explicit expression for α(ω) we must generate a pole on the real axis. Then
we can isolate the behavior of α(ω) at some point ω0 by taking the principal value of the
integral. We do this with the help of Cauchy’s theorem. Since α(ω) has no poles in the upper
half-plane, the function [α(ω)/(ω − ω0)] will have a single pole at ω = ω0 (see Fig. 6.2). If
we run our contour just above the real axis, there are no poles in the upper-half plane and
the integral around the closed contour vanishes:

∮

α(ω)dω

ω − ω0
= 0. (6.8)

Let us now consider the integral taken over the various portions of this closed contour:
∫

C′

α(ω)

ω − ω0
dω +

∫ ω0−ε

−R

α(ω)

ω − ω0
dω +

∫

C

α(ω)

ω − ω0
dω +

∫ R

ω0+ε

α(ω)dω

ω − ω0
= 0. (6.9)

The contribution over the contour C ′ vanishes since α(ω) remains bounded, while 1
ω−ω0

→ 0
as R→∞ (see Fig. 6.2). Along the contour C, we use Cauchy’s theorem to obtain

lim
ε→0

∫

C

α(ω)

ω − ω0
dω = −πiα(ω0) (6.10)
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Figure 6.1: Contours used in evaluating the complex polarizability integral of Eq. 6.7.

Figure 6.2: Contour used to evaluate Eq. 6.9.
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in which α(ω0) is the residue of α(ω) at ω = ω0 and the minus sign is written because the
contour C is taken clockwise. We further define the principal part P of the integral in the
limit R→∞ and ε→ 0 as

lim
R→∞

ε→0

∫ ω0−ε

−R

α(ω)

ω − ω0
dω +

∫ R

ω0+ε

α(ω)

ω − ω0
dω → P

∫ ∞

−∞

α(ω)

ω − ω0
dω. (6.11)

The vanishing of the integral in Eq. 6.8 thus results in the relation

αr(ω0) + iαi(ω0) =
1

πi
P
∫ ∞

−∞

αr(ω) + iαi(ω)

ω − ω0
dω. (6.12)

Equating real and imaginary parts of Eq. 6.12, we get the following relations which hold
for −∞ < ω <∞;

αr(ω0) =
1

π
P
∫ ∞

−∞

αi(ω)

ω − ω0
dω (6.13)

where αr(ω) is even and

αi(ω0) =
−1
π
P
∫ ∞

−∞

αr(ω)

ω − ω0
dω (6.14)

where αi(ω) is odd.
We would like to write these relations in terms of integrals over positive frequencies. We

can do this by utilizing the even- and oddness of αr(ω) and αi(ω). If we now multiply the
integrand by (ω + ω0)/(ω + ω0) and make use of the even- and oddness of the integrands,
we get:

αr(ω0) =
1

π
P
∫ ∞

−∞

αi(ω)(ω + ω0)

ω2 − ω2
0

dω =
2

π
P
∫ ∞

0

ωαi(ω)dω

ω2 − ω2
0

(6.15)

αi(ω0) =
−1
π
P
∫ ∞

−∞

αr(ω)(ω + ω0)

ω2 − ω2
0

dω = − 2

π
P
∫ ∞

0

ω0αr(ω)dω

ω2 − ω2
0

. (6.16)

We have now obtained the Kramers–Kronig relations. To avoid explicit use of the principal
value of a function, we can subtract out the singularity at ω0, by writing

αr(ω0) + iαi(ω0) =
1

πi

∫ ∞

−∞

(

α(ω)− α(ω0)
ω − ω0

)(

ω + ω0
ω + ω0

)

dω. (6.17)

Using the evenness and oddness of αr(ω) and αi(ω) we then obtain

αr(ω0) =
2

π

∫ ∞

0

ωαi(ω)− ω0αi(ω0)
ω2 − ω2

0

dω (6.18)

and

αi(ω0) = −
2

π

∫ ∞

0

ω0αr(ω)− ω0αr(ω0)
ω2 − ω2

0

dω. (6.19)

To obtain the Kramers–Kronig relations for the dielectric constant itself just substitute

ε(ω) = 1 + 4πα(ω) = ε1(ω) + iε2(ω) (6.20)

to obtain

ε1(ω0)− 1 =
2

π

∫ ∞

0

ω′ε2(ω
′)− ω0ε2(ω0)
ω′2 − ω2

0

dω′ (6.21)
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ε2(ω0) =
−2
π

∫ ∞

0

ω0ε1(ω
′)− ω0ε1(ω0)
ω′2 − ω2

0

dω′. (6.22)

The Kramers–Kronig relations are very general and depend, as we have seen, on the
assumptions of causality, linearity and boundedness. From this point of view, the real and
imaginary parts of a “physical” quantity Q can be related by making the identification

Qreal → αr (6.23)

Qimaginary → αi. (6.24)

Thus, we can identify ε1(ω) − 1 with αr(ω), and ε2(ω) with αi(ω). The reason, of course,
why the identification αr(ω) is made with [ε1(ω) − 1] rather than with ε1(ω) is that if
ε2(ω) ≡ 0 for all ω, we want ε1(ω) ≡ 1 for all ω (the dielectric constant for free space).

Thus, if we are interested in constructing a Kramers–Kronig relation for the optical
constants, then we again want to make the identification for (ñ+ ik̃)

[ñ(ω)− 1]→ αr(ω) (6.25)

k̃(ω)→ αi(ω). (6.26)

From Eqs. 6.21 and 6.22, we obtain the Kramers–Kronig relations for the optical con-
stants ñ(ω) and k̃(ω)

ñ(ω)− 1 =
2

π

∫ ∞

0

ω′k̃(ω′)− ωk̃(ω)
ω′2 − ω2

dω′ (6.27)

and

k̃(ω) = − 2

π

∫ ∞

0

ωñ(ω′)− ωñ(ω)
ω′2 − ω2

dω′ (6.28)

where we utilize the definition relating the complex dielectric function ε(ω) to the optical
constants ñ(ω) and k̃(ω) where ε(ω) = [ñ(ω) + ik̃(ω)]2.

It is useful to relate the optical constants to the reflection coefficient r(ω) exp[iθ(ω)]
defined by

r(ω) exp[iθ(ω)] =
ñ(ω)− 1 + ik̃(ω)

ñ(ω) + 1 + ik̃(ω)
(6.29)

and the reflectivity is given as R(ω) = r2(ω). From Eq. 6.29, we can then write

ñ(ω) =
1− r2(ω)

1 + r2(ω)− 2r(ω) cos θ(ω)
(6.30)

k̃(ω) =
2r(ω) sin θ(ω)

1 + r2(ω)− 2r(ω) cos θ(ω)
(6.31)

so that once r(ω) and θ(ω) are found, the optical constants ñ(ω) and k̃(ω) are determined.
In practice r(ω) and θ(ω) are found from the reflectivity R which is measured over a wide
frequency range and is modeled outside the measured range. A Kramers–Kronig relation
can be written for the conjugate variables ln r(ω) and θ(ω), from which θ(ω) is found:

ln r(ω) =
2

π

∫ ∞

0

ω′θ(ω′)− ωθ(ω)
ω′2 − ω2

dω′ (6.32)
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θ(ω) = −2ω

π

∫ ∞

0

ln r(ω′)− ln r(ω)

ω′2 − ω2
dω′. (6.33)

where lnR(ω) = 2 ln r(ω).

From a knowledge of the frequency dependent reflectivity R(ω), the reflection coefficient
r(ω) and the phase of the reflectivity coefficient θ(ω) can be found. We can then find the
frequency dependence of the optical constants ñ(ω) and k̃(ω) which in turn yields the
frequency dependent dielectric functions ε1(ω) and ε2(ω). Starting with the experimental
data for the reflectivity R(ω) for germanium in Fig. 6.3(a), the Kramers–Kronig relations
are used to obtain results for ε1(ω) and ε2(ω) for germanium as shown in Fig. 6.3(b).

The Kramers–Kronig relations for the conjugate variables ε1(ω) and ε2(ω); ñ(ω) and
k̃(ω); and ln r(ω) and θ(ω) are widely used in quantitative studies of the optical properties
of specific materials, as for example germanium in Fig. 6.3.

6.2 Optical Properties and Band Structure

If we are interested in studying the optical properties near the band edge such as the
onset of indirect transitions or of the lowest direct interband transitions, then we should
carry out absorption measurements (Chapter 5) to determine the absorption coefficient
αabs(ω) and thus identify the type of process that is dominant (indirect, direct, allowed,
forbidden, etc.) at the band edge. However, if we are interested in the optical properties of
a semiconductor over a wide energy range, then we want to treat all bands and transitions
within a few eV from the Fermi level on an equal footing. Away from the band edge,
the absorption coefficients become too high for the absorption technique to be useful, and
reflectivity measurements are made instead. Experimentally, it is most convenient to carry
out reflectivity measurements at normal incidence. From these measurements, the Kramers–
Kronig analysis (see §6.1) is used to get the phase angle θ(ω) for some frequency ω0, if the
reflection coefficient r(ω) is known throughout the entire range of photon energies

θ(ω0) = −
2ω0
π

∫ ∞

0

ln r(ω)− ln r(ω0)

ω2 − ω2
0

dω. (6.34)

From a knowledge of r(ω) and θ(ω), we can then find the frequency dependence of the
optical constants ñ(ω) and k̃(ω) using Eqs. 6.30 and 6.31 and the frequency dependent
dielectric function

ε1(ω) = ñ2 − k̃2 (6.35)

ε2(ω) = 2ñk̃. (6.36)

As an example of such an analysis, let us consider the case of the semiconductor germanium.
The normal incidence reflectivity is given in Fig. 6.3(a) and the results of the Kramers–
Kronig analysis described above are given for ε1(ω) and ε2(ω) in Fig. 6.3(b).

Corresponding to the structure in the reflectivity, there will be structure observed in the
real and imaginary parts of the dielectric function. These structures in the reflectivity data
are then identified with special features in the energy band structure. It is interesting to
note that the indirect transition (0.66 eV) from the Γ25′ valence band to the L1 conduction
band (see Part I of the notes) has almost no impact on the reflectivity data. Nor does the
direct band gap, which is responsible for the fundamental absorption edge in germanium,
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Figure 6.3: (a) Frequency depen-
dence of the reflectivity of Ge
over a wide frequency range. (b)
Plot of the real [ε1(ω)] and imag-
inary [ε2(ω)] parts of the dielec-
tric functions for Ge obtained
by a Kramers–Kronig analysis of
(a).
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Table 6.1: The measured energies (eV) of the prominent structures in the optical spectra
of some semiconductors with the diamond and zinc-blende structures. All energies are low
temperature values except that of the E0 transition in Si, which was measured at room
temperature.

Transition Si Ge GaAs InP GaP

E0 4.185 0.898 1.5192 1.4236 2.869
E0 +∆0 4.229 1.184 1.859 1.532 2.949
E1 3.45 2.222 3.017 3.15 3.785
E1 +∆1 – 2.41 3.245 3.835 –
E′0 3.378 3.206 4.488 4.54 4.77
E′0 +∆′0 – 3.39 4.659 – –
E2 4.33 4.49 5.11 5.05 5.21
E′1 5.5 5.65 6.63 – 6.8

have a significant effect on the reflectivity data. These effects are small on the scale of the
reflectivity structures shown in Fig. 6.3(a) and must be looked for with great care in a narrow
frequency range where structure in the absorption data is found. The big contribution to the
dielectric constant comes from interband transitions L3′ → L1 for which the joint density
of states is large over large volumes of the Brillouin zone. The sharp rise in ε2(ω) at 2.1
eV is associated with the L3′ → L1 transition. For higher photon energies, large volumes
of the Brillouin zone contribute until a photon energy of about 5 eV is reached. Above this
photon energy, we cannot find bands that track each other closely enough to give interband
transitions with intensities of large magnitude.

6.3 Modulated Reflectivity Experiments

If we wish to study the critical point contribution to the optical reflectivity in more detail,
it is useful to carry out modulated reflectivity measurements. If, for example, a small
periodic perturbation is applied to a sample then there will be a change in reflectivity at
the frequency of that perturbation. The frequency dependence of this change in reflectivity
is small (parts in 103 or 104) but it is measurable. As an example, we show in Fig. 6.4,
results for the reflectivity R(ω) and for the wavelength modulated reflectivity (1/R)(dR/dE)
of GaAs. Structure at E0 would be identified with the direct band gap, while the structure
at E0+∆0 corresponds to a transition from the split-off valence band at ~k = 0 which arises
through the spin-orbit interaction. The transitions at E1 and E1 + ∆ correspond to Λ
point and L point transitions, also showing spin-orbit splitting. Also identified in Fig. 6.5
are the E0′ transition from the ∆7 valence band to the ∆6 conduction band, and the E2

transition from X5 → X5 at the X point. Although the band structure and notation given
in Fig. 6.5 applies to Ge in detail, the results for other group IV and III–V semiconductors
is qualitatively similar, with values for the pertinent interband transitions given in Table 6.1
for Si, Ge, GaAs, InP and GaP.

In the vicinity of a critical point, the denominator in the joint density of states is small,
so that a small change in photon energy can produce a significant change in the joint density
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Figure 6.4: Reflectance and
frequency modulated reflectance
spectra for GaAs. (a) Room tem-
perature reflectance spectrum
and (b) the wavelength mod-
ulated spectrum (1/R)(dR/dE)
(the solid curve is experimen-
tal and the broken curve is cal-
culated using a pseudopotential
band structure model. Adapted
from Yu and Cardona).
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Figure 6.5: The band structure
of Ge including spin-orbit inter-
action and showing the various
direct transitions responsible for
the structures that are observed
in the imaginary part of the di-
electric function ε2(ω) and in the
modulated reflectivity. Although
the band structure in this figure
is for Ge, a similar notation is
used to identify the various inter-
band transitions in other group
IV or III–V compound semicon-
ductors (see Table 6.1).

of states. Hence, modulation spectroscopy techniques emphasize critical points. There are
a number of parameters that can be varied in these modulation spectroscopy experiments:

electric field – electro-reflectance
wavelength – wavelength modulation
stress – piezoreflectance
light intensity – photo-reflectance
temperature – thermo-reflectance.

The various modulated reflectivity experiments are complementary rather than yielding
identical information. For example, certain structures in the reflectance respond more
sensitively to one type of modulation than to another. If we wish to look at structure
associated with the L point (111 direction) transitions, then a stress along the (100) direction
will not produce as important a symmetry change as application of stress along a (111)
direction; with a stress along a (111) direction, the ellipsoid having its longitudinal axis
along (111) will be affected one way while the other three ellipsoids will be affected in
another way. However, stress along the (100) direction treats all ellipsoids in the same way.

The reason why modulation spectroscopy emphasizes critical points can be seen by the
following argument. For a direct interband transition, the optical absorption coefficient has
a frequency dependence

αabs(ω) = C

√

(h̄ω − Eg)

h̄ω
. (6.37)

Therefore, a plot of αabs(ω) vs. h̄ω exhibits a threshold [Fig. 6.6(a)], but no singularity in
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Figure 6.6: (a) The frequency dependence of the optical absorption coefficient showing
a threshold for interband transitions at the band gap. (b) The derivative of (a) which
is measured in the modulated reflectivity shows a sharp singularity associated with the
threshold energy.

the frequency plot. However, when we take the derivative of Eq. 6.37

∂αabs(ω)

∂ω
=

C

2ω
(h̄ω − Eg)

−1/2 − C

h̄ω2
(h̄ω − Eg)

1/2 (6.38)

a sharp structure is obtained in the modulated reflectivity due to the singularity in the first
term of Eq. 6.37 at h̄ω = Eg [see Fig. 6.6(b)]. If we modulate the light with any arbitrary
parameter x, then

∂αabs
∂x

=
∂αabs
∂ω

∂ω

∂x
, (6.39)

and structure in the reflectivity is expected as x is varied.
Thus all modulation parameters can be expected to produce singularities in the optical

absorption. For some variables such as stress, the modulated signal is sensitive to both the
magnitude and the direction of the stress relative to the crystal axes. For thermomodula-
tion, the spectrum is sensitive to the magnitude of the thermal pulses, but the response is
independent of crystalline direction. Thermomodulation is, however, especially sensitive to
transitions from and to the Fermi level.

Thus, the various modulation techniques can be used in optical studies to obtain addi-
tional information about symmetry, which can then be used for more reliable identification
of structure in the optical properties. The modulation technique specifically emphasizes
interband transitions associated with particular points in the Brillouin zone. The identifi-
cation of where in the Brillouin zone a particular transition is occurring is one of the most
important and difficult problems in optical studies of solids. It is often not the case that
we have reliable band models available to us when we start to do optical studies. For this
reason, symmetry is a very powerful tool for the study of optical properties.

The high sensitivity of modulation spectroscopy provides valuable information about
the band structure that would be difficult to obtain otherwise, and some examples are cited
below. One example of the use of modulation spectroscopy is to determine the tempera-
ture dependence of the bandgap of a semiconductor, as shown in Fig. 6.7 for the direct Γ
point gap in Ge. This measurement takes advantage of the high resolution of modulation
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Figure 6.7: Temperature depen-
dence of the direct gap (E0) of
Ge.
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Figure 6.8: Dependence of the
energies of the E0, E0 +∆0, E1,
E1 + ∆1, E′0, and E2 electro-
reflectance peaks on x in the
Ge1−xSix alloy system at room
temperature.

spectroscopy and is especially useful for measurements at elevated temperatures. Another
example is the dependence of the various band separations identified in Fig. 6.5 as a func-
tion of alloy concentration x in Ge1−xSix alloys (Fig. 6.8). Here again the high resolution
of the modulation spectroscopy is utilized. A third example is the isotope dependence of
the direct absorption edge of Ge as shown in Fig. 6.9. Modulation spectroscopy has also
been applied to studying interband transitions in metals. For example, Fig. 6.10 shows
modulated spectroscopy results from a gold surface taken with both the thermal modu-
lation and piezoreflectance techniques. The results show that transitions involving states
at the Fermi level (either initial or final states) are more sensitively seen using thermal
modulation because small temperature variations affect the Fermi tail of the distribution
function strongly. Thus, thermo-reflectance measurements on the noble metals give a great
deal of well–resolved structure, compared with electro-reflectance and piezoreflectance mea-
surements as illustrated in Fig. 6.10. In this figure, we see that in gold the piezoreflectance
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Figure 6.9: Photo-modulated re-
flectivity of Ge showing the E0

direct gap at k = 0 of single crys-
tals of nearly isotopically pure
70Ge, 74Ge, and 76Ge, at T =
6 K. Note the remarkable depen-
dence of E0 on isotopic composi-
tion.

Figure 6.10: Thermo-reflectance and normal incidence reflectivity spectra of gold near liquid
nitrogen temperature (from W.J. Scouler, Phys. Rev. Letters 18, 445 (1967)) together with
the room temperature piezoreflectance spectrum (M. Garfunkel, J.J. Tiemann, and W.E.
Engeler, Phys. Rev. 148, 698 (1966)).
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is much more sensitive than ordinary reflectivity measurements near 4 eV, but the ther-
moreflectance technique is most powerful for transitions made to states near the Fermi
level.

6.4 Ellipsometry and Measurement of Optical Constants

Ellipsometry is a standard method for measuring the complex dielectric function or the
complex optical constants Ñ = ñ + ik̃ of a material. Since two quantities are measured
in an ellipsometry measurement, ñ and k̃ can both be determined at a single frequency.
The ellipsometry measurements are usually made over a range of frequencies, especially
for frequencies well above the fundamental absorption edge where semiconductors become
highly absorbing. At these higher frequencies very thin samples would be needed if the
method of interference fringes were used to determine ñ, which is a very simple method for
measuring the wavelength in a non-absorbing medium. One drawback of the ellipsometry
technique is the high sensitivity of the technique to the quality and cleanliness of the sur-
face. Ellipsometry is limited by precision considerations to measurements on samples with
absorption coefficients αabs > 1 − 10 cm−1. Ellipsometers can be made to operate in the
near infrared, visible and near ultraviolet frequency regimes, and data acquisition can be
made fast enough to do real time monitoring of ε(ω).

In the ellipsometry method the reflected light with polarizations “p” (parallel) and “s”
(perpendicular) to the plane of incidence [see Fig. 6.11(a)] is measured as a function of the
angle of incidence φ and the frequency of the light. The corresponding reflectancesRs = |rs|2
andRp = |rp|2 are related to the complex dielectric function ε(ω) = ε1(ω)+iε2(ω) = (ñ+ik̃)2

by the Fresnel equations which can be derived from the boundary conditions on the fields
at the interface between two surfaces with complex dielectric functions εa and εs as shown
in Fig. 6.11(a). From the figure the complex reflection coefficients for polarizations s and p
are

rs =
Esr
Esi

=
Ña cosφ− Ñs cosφt

Ña cosφ+ Ñs cosφt
(6.40)

and

rp =
Epr
Epi

=
εsÑa cosφ− εaÑs cosφt

εsÑa cosφ+ εaÑs cosφt
(6.41)

in which

Ñs cosφt = (εs − εa sin2 φ)1/2 (6.42)

and rs and rp are the respective reflection coefficients, εs and Ñs denote the complex
dielectric function and complex index of refraction within the medium, while εa and Ña are
the corresponding quantities outside the medium (which is usually vacuum or air). When
linearly polarized light, that is neither s- nor p-polarized, is incident on a medium at an
oblique angle of incidence, the reflected light will be elliptically polarized. The ratio (σr) of
the complex reflectivity coefficients rp/rs ≡ σr is then a complex variable which is measured
experimentally in terms of its phase (or the phase shift relative to the linearly polarized
incident light) and its magnitude, which is the ratio of the axes of the polarization ellipse
of the reflected light [see Fig. 6.11(a)]. These are the two measurements that are made in
ellipsometry. The complex dielectric function of the medium εs(ω) = ε1(ω) + iε2(ω) can
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Figure 6.11: (a) Electric field vectors resolved into p and s components, for light incident
(i), reflected (r), and transmitted (t) at an interface between media of complex indices of
refraction Ña and Ñs. The propagation vectors are labeled by ~ki, ~kr, and ~kt. (b) Schematic
diagram of an ellipsometer, where P and S denote polarizations parallel and perpendicular
to the plane of incidence, respectively.

then be determined from the angle φ, the complex σr, and the dielectric function εa of the
ambient environment using the relation

εs = εa sin
2 φ+ εa sin

2 φ tan2 φ

(

1− σr
1 + σr

)2

, (6.43)

and in a vacuum environment εa = 1.
The experimental set-up for ellipsometry measurements is shown in Fig. 6.11(b). Light

from a tunable light source is passed through a monochromator to select a frequency ω and
the light is then polarized linearly along direction ~E to yield the Is and Ip incident light

intensities. After reflection, the light is elliptically polarized along ~E(t) as a result of the
phase shift Epr and Esr have each experienced. The compensator introduces a phase shift
−θ which cancels the +θ phase shift induced by the reflection at the sample surface, so that
the light becomes linearly polarized again as it enters the analyzer. If the light is polarized
at an angle of π/2 with respect to the analyzer setting, then no light reaches the detector.
Thus at every angle of incidence and every frequency, ε(ω, φ) is determined by Eq. 6.43
from measurement of the magnitude and phase of σr.

Another common method to determine the optical constants is by measurement of the
normal incidence reflectivity over a wide frequency range and using the Kramers–Kronig
analysis as discussed in §6.2 to determine the optical constants ñ(ω) and k̃(ω).
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Chapter 7

Impurities and Excitons

7.1 Impurity Level Spectroscopy

Selected impurities are frequently introduced into semiconductors to make them n–type or
p–type. The introduction of impurities into a crystal lattice not only shifts the Fermi level,
but also results in a perturbation to the periodic potential, giving rise to bound impurity
levels which often occur in the band gap of the semiconductor.

Impurities and defects in semiconductors can be classified according to whether they
result in a minor or major perturbation to the periodic potential. Any disturbance to the
periodic potential results in energy levels differing from the energy levels of the perfect
crystal. However, when these levels occur within the energy band gap of a semiconductor
or of an insulator, they are most readily identified, and these are the levels which give rise
to well–defined optical spectra. Impurity levels are classified into two categories:

1. shallow levels,

2. deep levels,

corresponding, respectively, to a minor or a major perturbation of the periodic potential.
Impurities are also classified according to whether they give rise to electron carriers (donors)
or hole carriers (acceptors). We will now discuss the optical spectra for impurities.

7.2 Shallow Impurity Levels

An example of a shallow impurity level in a semiconductor is a hydrogenic donor level
in a semiconductor like Si, Ge or the III-V compounds. Let us briefly review the origin
of shallow donor levels in n–type semiconductors, where conduction is predominantly by
electron carriers.

Suppose we add donor impurities such as arsenic, which has 5 valence electrons, to
germanium which has 4 valence electrons (see Part I, Fig. 4.1). Each germanium atom in
the perfect crystal makes 4 bonds to its tetrahedrally placed neighbors. For the arsenic
impurity in the germanium lattice, four of the valence electrons will participate in the
tetrahedral bonding to the germanium neighbors, but the fifth electron will be attracted
back to the arsenic impurity site because the arsenic ion on the site has a positive charge.
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Figure 7.1: Hydrogenic impurity levels in a semiconductor.

This interaction is described by the Coulomb perturbation Hamiltonian,

H′(r) = − e2

ε0r
(7.1)

where ε0 is the static dielectric constant which is 16 for germanium and 12 for silicon.
This Coulomb interaction is a screened Coulomb potential, screened by the static dielectric
constant. The approximation of taking ε0 to be independent of distance is however not
valid for values of r comparable to lattice dimensions, as discussed below.

In simple terms, H′ given by Eq. 7.1 is the same as in the hydrogen atom except that
the charge is now e/

√
ε0 and the mass which enters the kinetic energy is the effective mass

m∗. Since the levels in the hydrogen atom are given by the Bohr energy levels Ehydrogen
n

Ehydrogen
n = − m0e

4

2h̄2n2
(7.2)

then the energy levels in the hydrogenic impurity problem are to a first approximation given
by hydrogenic levels E impurity

n

Eimpurity
n = − m∗e4

2h̄2ε20n
2
. (7.3)

The impurity levels are shown in Fig. 7.1 where the donor levels are seen to lie in the gap
below the conduction band minimum.

For the hydrogen atom Ehydrogen
1 = −13.6eV, but for germanium E impurity

1 ∼ 6 × 10−3

eV where we have used a value of m∗ = 0.12m0 representing an average of the effective
mass over the entire conduction band pocket. From measurements such as the optical
absorption we find that the thermal energy gap (which is the energy difference between the
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L point lowest conduction band and the Γ point highest valence band) is 0.66 eV at room
temperature. But the donor level manifold is only 6× 10−3 eV wide (ranging from the E1

level to the ionization limit) so that these impurity levels are very close to the bottom of
the conduction band.

Another quantity of interest in this connection is the “orbital radius” of the impurity.
Unless the orbital radius is greater than a few lattice dimensions, it is not meaningful to
use a dielectric constant independent of ~r in constructing the perturbation Hamiltonian,
since the dielectric constant used there is conceptually meaningful only for a continuum.
Therefore, it is of interest to calculate the hydrogen Bohr radius using the usual recipe for
the hydrogen atom

rhydrogenn =
n2h̄2

m0e2
(7.4)

where h̄ = 1.054 × 10−27 erg/sec, the mass of the free electron is m0 = 9.1 × 10−28 g, and
the charge on the electron is e = 4.8 × 10−10 esu. The value for the Bohr radius in the
hydrogen atom is rhydrogen1 = 0.5Å and for the screened hydrogenic states in the impurity
problem, we have

rimpurity
n =

n2h̄2ε0
m∗e2

(7.5)

which is larger than the hydrogen Bohr radius by a factor ε0m0/m
∗. Using typical numbers

for germanium we get the ground state radius rimpurity
1 ∼ 70Å. Thus, the electron travels

over many lattice sites in germanium and the dielectric constant approximation used in
Eq. 7.1 is valid.

From this discussion we see that only a very small energy is needed to ionize a bound
donor electron into the conduction band, and because this binding energy is small, these
hydrogenic donor levels are called shallow impurity levels. Since rimpurity

n À a where a
is the lattice constant, these electrons are well localized in momentum space according to
the uncertainty principle. Shallow donor levels are associated with the k–point where the
conduction band minima occur.

Thus the simple hydrogenic view of impurity levels in a semiconductor predicts that the
impurity spectrum should only depend on the host material and on the charge difference
between the host and impurity. To see how well this model works, let us look at the
experimental results summarized in Fig. 7.2. This picture is for silicon where the Bohr
radius is ≈ 20Å. Here the agreement with the hydrogenic type model is good except for the
ground state, where the dielectric constant approximation is not as valid as for germanium.
The actual calculation referred to in this picture is solved for the case where the effective
mass tensor components are included in the calculation. Such a calculation cannot be done
exactly for an ellipsoidal constant energy surface

[

− h̄2

2

(

∂2/∂x2

ml
+

(∂2/∂y2 + ∂2/∂z2)

mt

)

− e2

εr

]

ψ(~r) = Eψ(~r) (7.6)

for which ml 6= mt but can be done exactly for the hydrogen atom for which ml = mt. In
practice Eq. 7.6 is solved using a variational principle. To take into account that for small r,
we have ε(r)→ 1 and for large r, we have ε(r)→ ε0 where ε0 is the static dielectric constant,
a spatial dependence for ε(r) thus needs to be assumed and this spatial dependence can
be incorporated into the variational calculation. The inclusion of screening effects by the
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Figure 7.2: Energy levels of donor
states in silicon, experiment and the-
ory. In recent work very good agree-
ment is achieved between theory and
experiment in transitions between shal-
low impurity states at low temperature
(4 K) and low carrier concentrations
(∼1014/cm3).

introduction of a spatial dependence to the dielectric function ε(r), is called the “central
cell correction” (see Part I §4.3).

The impurity spectra are studied most directly by infrared absorption and transmission
measurements. As an example of such spectra we see in Fig. 7.3 the absorption spectrum
from phosphorus impurities in Si. Note that the photon energies used in these measurements
are small so that far infrared frequencies must be employed. The ground state donor level
is a 1s state and allowed transitions are made to a variety of p–states. Since the constant
energy surface is ellipsoidal, the 2p levels break up into a 2p(ml = 0) level and a 2p(ml = ±1)
level which is doubly degenerate (see Fig. 7.3). Transitions from the 1s to both kinds of
p levels occur, and account for the sharp features in the spectrum shown. The sensitivity
of the spectra is somewhat improved using modulated spectroscopy techniques as shown in
Fig. 7.4, where transitions to higher quantum states (n = 6) can be resolved and to higher
angular momentum states (f levels where ` = 3), noting that electric dipole transitions
always occur between states of opposite parity. For both Figs. 7.3 and 7.4, the initial state
is the 1s impurity ground state. Analysis of such spectra gives the location of the donor
impurity levels including the location of the ground state donor level, which is more difficult
to calculate because of the central cell correction.

In absorption measurements the impurity level transitions are observed as peaks. On
the other hand, impurity spectra can also be taken using transmission techniques, where
the impurity level transitions appear as minima in the transmission spectra.

76



Figure 7.3: Absorption spectrum of phosphorus donors in Si for a sample at liquid helium
temperature containing ∼ 1.2× 1014 cm−3 phosphorus. The inset shows the 2p0 line on an
expanded horizontal scale.

7.3 Departures from the Hydrogenic Model

While the simple hydrogenic model works well for the donor states in silicon and germanium,
it does not work so well for the degenerate valence bands. In this case the spectra are
sensitive to the impurity species from column III in the periodic table, because the valence
band masses are heavier and the effective Bohr radius is therefore more comparable to the
lattice constant. Calculations for the acceptor impurity levels are now sufficiently accurate
so that good agreement between theory and experiment is obtained in recent work.

It would be naive to assume that the simple hydrogenic model works for all kinds of
impurity centers. If the effective Bohr radius is comparable with atomic separations, then
clearly the Coulomb potential of the impurity center is not a small perturbation to the
periodic potential seen by an electron. Specific cases where the impurity radius becomes
small are materials with either (1) a largem∗ or (2) a small ε0 which imply a small interband
coupling. When these conditions are put into Eqs. 7.3 and 7.5, we see that a small Bohr
radius corresponds to a large En value. Thus “deep” impurity levels are not well described
by simple effective mass theory. In order to make any progress at all with deep impurity
level problems, we must consider the energy band structure throughout the Brillouin zone.
When an electron is localized in real space, a suitable description in momentum space must
include a large range of ~k values.

When the impurity concentration becomes so large that the Bohr orbits for neighboring
impurity sites start to overlap, the impurity levels start to broaden, and eventually impurity
bands are formed. These impurity bands tend to be only half filled because of the Coulomb
repulsion which inhibits placement of both a spin up and a spin down carrier in the same
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Figure 7.4: Photo-thermal ionization spectrum of phosphorus-doped Si measured by mod-
ulation spectroscopy. The inset shows schematically the photo-thermal ionization process
for a donor atom.
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impurity level. When these impurity bands lie close to a conduction or valence band ex-
tremum, the coalescence of these impurity levels with band states produces band tailing.
This band tailing results in a smearing out of the threshold of the fundamental absorption
edge as observed in absorption measurements. When the impurity band broadening be-
comes sufficiently large that the electron wavefunction extends to adjacent sites, metallic
conduction can occur. The onset of metallic conduction is called the Mott metal–insulator
transition.

7.4 Vacancies, Color Centers and Interstitials

Closely related to the impurity problem is the vacancy problem. When a compound semi-
conductor crystallizes, the melt usually is slightly off stoichiometry with respect to the
concentration of anions and cations. As an example suppose we prepare PbTe with Pb and
Te concentrations in the melt that are stoichiometric to 0.01%. This means that there will
be a slight excess of one of the atoms or slight deficiency of the other. This deficiency shows
up in the crystal lattice as a vacancy or the absence of an atom. Such a vacancy repre-
sents a strong local perturbation of the crystal potential which again cannot be modeled in
terms of hydrogenic impurity models. Such vacancy centers further tend to attract impurity
atoms to form vacancy-impurity complexes. Such defects are difficult to model theoreti-
cally because their spatial localization requires participation of energy states throughout
the Brillouin zone. Such centers generally give rise to energy states within the band gap of
semiconductors and insulators. Such defect centers are often studied by optical techniques.

One important defect in ionic insulating crystals is the F-center (“Farbe” or color center).
We see in Fig. 7.5 that the negative ion vacancy acts like a +ve charge (absence of a −ve
charge). This effective +ve charge tends to bind an electron. The binding of an electron
to a −ve ion vacancy is called an F-center. These F-centers give rise to absorption bands
in the visible. Without F-centers, these crystals are usually clear and transparent. The
F-center absorption band causes crystals with defects to appear colored, having the color
of the transmitted light. When the crystals are heated to high enough temperatures, these
defects can be made to anneal and the absorption bands disappear. This is called bleaching.

Many other color centers are found in ionic crystals. For example, we can have a hole
bound to a +ve ion vacancy. We can also have a defect formed by a vacancy that is bound to
any impurity atom, forming a vacancy-impurity complex, which can bind a charged carrier.
Or we can have two adjacent vacancies (one +ve and the other −ve) binding an electron
and a hole. Further generalizations are also found. These defect centers are collectively
called color centers and each color center has its characteristic absorption band. In Fig. 7.6
we see an example of absorption bands due to F-centers in several alkali halides. In all cases
the absorption bands are very broad, in contrast with the sharp impurity lines which are
observed in the far infrared for shallow impurity level transitions (see Figs. 7.3 and 7.4). In
the case of the vacancy there is a considerable lattice distortion around each vacancy site
as the neighboring atoms rearrange their electronic bonding arrangements.

A few comments are in order about the classification of point defects. In Fig. 7.7
various types of point defects are shown. Figure 7.7(a) illustrates a perfect ionic crystal.
Figure 7.7(b) shows an ionic crystal with vacancies. This particular collection of vacancies is
of the Schottky type (equal numbers of positive and negative ion vacancies). Schottky point
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Figure 7.5: Diagram of a nega-
tive ion vacancy or F–center in
an ionic crystal.

Figure 7.6: Examples of F–center absorption lines in various alkali halide ionic crystals.
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defects also include neutral vacancies. Finally Fig. 7.7(c) shows both vacancies and inter-
stitials. When a + (–) ion vacancy is near a + (–) ion interstitials, this defect configuration
is called a Frenkel-type point defect.

We will now use simple statistical mechanical arguments to estimate the concentration
of Schottky defects. Let Es be the energy required to take an atom from a lattice site inside
the crystal to the surface. If n is the number of vacancies, the change in internal energy
resulting from vacancy generation is U = nEs. Now the number of ways that n vacancy
sites can be picked from N lattice sites is N !/[(N−n)!n!], so that the formation of vacancies
results in an increase in entropy of

S = kB ln
N !

(N − n)!n! (7.7)

and a change in free energy

F = U − TS = nEs − kBT ln
N !

(N − n)!n! . (7.8)

Using Stirling’s approximation for lnx! when x is large, we write

lnx! ∼= x lnx− x. (7.9)

Equilibrium is achieved when (∂F/∂n) = 0, so that at equilibrium we have

Es = kBT

[

∂

∂n
ln

N !

(N − n)!n!

]

= kBT ln
N − n
n

(7.10)

from which we write
n

N − n = e
− Es
kBT (7.11)

or
n

N
∼ exp

[

− Es
kBT

]

(7.12)

since n ¿ N . The vacancy density is small because for Es ∼ 1eV , T ∼ 300K, (n/N) ∼
e−40 ∼ 10−17.

In the case of vacancy pair formation in an ionic crystal (Schottky defect), the number
of ways to make n separated pairs is [N !/(N − n)!n!]2 so that for Schottky vacancy pair
formation

np
N
∼ exp

[

− Ep
2kBT

]

(7.13)

where np is the pair vacancy density and Ep is the energy required for pair formation.

These arguments can readily be extended to the formation of Frenkel defects and it can
be shown that if N ′ is the density of possible interstitial sites, then the density of occupied
interstitial sites is

ni ' (NN ′)
1

2 exp

[

− Ei
2kBT

]

(7.14)

where Ei is the energy to remove an atom from a lattice site to form an interstitial defect
site.
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Figure 7.7: Schematic of various
possible arrangements of both
vacancies and interstitials. (a) a
perfect ionic crystal, (b) an ionic
crystal with positive and nega-
tive ion vacancies and (c) an ionic
crystal with positive and nega-
tive ion vacancies and intersti-
tials.
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7.5 Spectroscopy of Excitons

An exciton denotes a system of an electron and a hole bound together by their Coulomb
interaction. When a photon excites an electron into the conduction band, a hole is left
behind in the valence band; the electron, having a negative charge will be attracted to
this hole and may (provided the energy is not too large) bind to the positively charged
hole forming an exciton. Thus, the exciton binding energy is attractive and represents a
lower energy state than the band states. Excitons are important in the optical spectra of
bulk semiconductors especially at low temperature. Exciton levels are important for device
applications since light emitting diodes and semiconductor lasers often involve excitons.
However, because of the confinement of carriers in quantum wells, exciton effects become
much more important in the case of quantum wells, superlattices and devices based on these
deliberately structured materials (see Part I §8.3.1 of class notes). The topic of excitons in
low dimensional semiconductor systems is discussed in §7.7.

We will now use the effective mass approximation to find the exciton spectrum near an
interband threshold and we assume that the exciton was created by a photon with energy
slightly less than the direct energy gap Eg. The Schrödinger equation for the two-body
exciton packet wave function Φ is written in the effective mass approximation as:

[

p2e
2m∗e

+
p2h
2m∗h

− e2

ε0|~re − ~rh|

]

Φ = EΦ (7.15)

thereby including the Coulomb binding energy of the electron–hole pair. For simplicity, we
assume that the dielectric constant ε0 is independent of ~re and ~rh corresponding to a large
spatial extension of the exciton in a semiconductor. We introduce new coordinates for the
spatial separation ~r between the electron and hole

~r = ~re − ~rh (7.16)

and for the center of mass coordinate ~ρ given by

~ρ =
m∗e~re +m∗h~rh
m∗e +m∗h

. (7.17)

We now separate the Schrödinger equation (Eq. 7.15) into an equation for the relative
motion of the electron and hole in the exciton wave packet F (~r) and an equation of motion
for the center of mass G(~ρ)

Φ(~re, ~rh) = F (~r)G(~ρ). (7.18)

Thus Eq. 7.15 becomes

[

p2ρ
2(m∗e +m∗h)

+
p2r
2m∗r

− e2

ε0r

]

F (~r)G(~ρ) = EF (~r)G(~ρ) (7.19)

where the reduced effective mass µ∗ is given by

1

m∗r
=

1

m∗e
+

1

m∗h
(7.20)
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to obtain an eigenvalue equation for G(~ρ)

[

p2ρ
2(m∗e +m∗h)

]

G(~ρ) = ΛG(~ρ) (7.21)

which is of the free particle form and has eigenvalues

Λ(K) =
h̄2K2

2(m∗e +m∗h)
(7.22)

where K is the wave vector of the exciton. The free particle solutions for the center of mass
problem of Eq. 7.22 show that the exciton can move freely as a unit through the crystal.
The momentum of the center of mass for a direct band gap exciton is small because of the
small amount of momentum imparted to the excitation by the light.

We thus obtain the Schrödinger equation in the coordinate system of relative motion:

[

p2r
2m∗r

− e2

ε0r

]

F (~r) = EnF (~r) (7.23)

where Eq. 7.23 has the functional form of the Schrödinger equation for a hydrogen atom
with eigenvalues En for quantum numbers n (where n = 1, 2, . . .) given by

En = − m∗re
4

2h̄2ε20n
2
, (7.24)

and the total energy for the exciton is then

E = Λ(K) + En. (7.25)

The energy levels of Eq. 7.24 look like the donor impurity spectrum but instead of the
effective mass of the conduction band m∗e we now have the reduced effective mass m∗r given
by Eq. 7.20. Since m∗r has a smaller magnitude than m∗e as seen in Eq. 7.20, we conclude
that the exciton binding energy is less than the impurity ionization energy for a particular
solid. An example of a spectrum showing exciton effects is presented in Fig. 7.8. The points
are experimental and the solid curves are a fit of the data points to ε2(ω) for excitons given
by

ε2(ω) =
8π|(v|p|c)|2m∗3r

3ω2ε30

∞
∑

n=1

1

n3
δ(ω − ωn), (7.26)

where the sum is over all the exciton bound states. From Table 7.1 we see that the binding
energy for excitons for GaAs is 4.9 meV and the effective Bohr radius is 112Å, which is
many lattice spacings. The various exciton lines contributing to the exciton absorption
profiles in Fig. 7.8 are unresolved even for the data shown for the lowest temperature of
21 K. A material for which the higher exciton energy levels (n = 2, 3, . . .) of the Rydberg
series are resolved is Cu2O as can be seen in Fig. 7.9. The observation of these higher
states is attributed to the forbidden nature of the coupling of the valence and conduction
bands, giving rise to a strict selection rule that only allows coupling to exciton states with
p symmetry. Since n ≥ 2 is required to have p exciton states the n = 1 exciton is forbidden,
and the exciton lines start at n = 2. The transitions are sharp, and well resolved exciton
lines up to n = 5 can be identified in Fig. 7.9.
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Table 7.1: Exciton binding energy (E1) and Bohr radius (r1) in some direct bandgap semi-
conductors with the zinc-blende structure (from Yu and Cardona).

Semiconductor E1 (meV) E1 (theory) (meV) r1 (Å)

GaAs 4.9 4.4 112
InP 5.1 5.14 113
CdTe 11 10.71 12.2
ZnTe 13 11.21 11.5
ZnSe 19.9 22.87 10.7
ZnS 29 38.02 10.22

Figure 7.8: Excitonic ab-
sorption spectra in GaAs
near its bandgap for sev-
eral sample temperatures.
The lines drawn through
the 21, 90 and 294 K data
points represent fits with
theory.
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Figure 7.9: Low temperature absorp-
tion spectrum of Cu2O (plotted as the
log of the transmission) showing the
excitonic p series associated with its
“dipole-forbidden” band edge in Cu2O.

The exciton spectrum appears quite similar to the impurity spectrum of shallow impu-
rity states. These two types of spectra are distinguished through their respective depen-
dences on impurity concentration. Suppose that we start with a very pure sample (1014

impurities/cm3) and then dope the sample lightly (to 1016 impurities/cm3). If the spectrum
is due to donor impurity levels, the intensity of the lines would tend to increase and perhaps
broaden somewhat. If, on the other hand, the spectrum is associated with an exciton, the
spectrum would be attenuated because of screening effects associated with the charged im-
purities. Exciton states in 3D semiconductors are generally observed in very pure samples
and at very low temperatures. The criterion is that the average Bohr orbit of the exciton
is less than the distance between impurities. For the sake of this argument, consider an
excitonic radius of ∼ 100Å. If an impurity ion is located within this effective Bohr radius,
then the electron–hole Coulomb interaction is screened by the impurity ion and the sharp
spectrum associated with the excitons will disappear. A carrier concentration of 1016/cm3

corresponds to finding an impurity ion within every 100Å from some lattice point. Thus
the electron–hole coupling can be screened out by a charged impurity concentration as low
as 1016/cm3. Low temperatures are needed to yield an energy separation of the exciton
levels that is larger than kBT . Increasing the temperature shifts the absorption edge and
broadens the exciton line in GaAs. At a temperature of 20 K we have kBT ' 1.7 meV which
is nearly as large as the exciton binding energy of 4.9 meV found in Table 7.1, explaining
why no well resolved exciton spectrum for higher quantum states is observed. For the case
of Cu2O, the exciton binding energy of the ground state (1s), were it to exist, would be
97 meV, neglecting central cell corrections. The large exciton binding energy in Cu2O also
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helps with the resolution of the higher quantum exciton states.

7.6 Classification of Excitons

The exciton model discussed above is appropriate for a free exciton and a direct exciton. For
the direct exciton, the initial excitation is accomplished in a ~k-conserving process without
the intervention of phonons. In materials like silicon and germanium, the thermal band
gap corresponds to an indirect energy gap. For these materials, the exciton is formed by an
indirect phonon-assisted process and the exciton is consequently called an indirect exciton.

Indirect excitons can be formed either with the emission or absorption of a phonon.
Since excitons are more important at low temperatures, the emission process is much more
likely than the absorption process. Because of the large difference in crystal momentum
h̄~k between the valence band extremum and the lowest conduction band minimum in these
indirect gap semiconductors, the exciton may acquire a large center of mass momentum
corresponding to the momentum of the absorbed or emitted phonon h̄~q. For the indirect
exciton, a large range of crystal momentum h̄~k values are possible and hence the exciton
levels spread out into bands as shown in the lower dashed rectangle of Fig. 7.10. This
portion of the figure also appears in more detail in the upper left-hand corner. In Fig. 7.10
we also show in the upper right-hand corner the direct exciton associated with the Γ point
conduction band for various temperatures. The shift in the absorption edge is associated
with the decrease in band gap with increasing temperature. In Fig. 7.10, the individual
exciton lines are not resolved – a lower temperature would be needed for that.

Addition of impurities to suppress the exciton formation does not help with the identi-
fication of bandgaps in semiconductors since the presence of impurities broadens the band
edges. It is for this reason that energy gaps are best found from optical data in the presence
of a magnetic field, to be discussed in connection with magnetism (Part III of this course).

For small distances from the impurity site or for small electron-hole separations, the
effective mass approximation must be modified to consider central cell corrections explicitly.
For example, central cell corrections are very important in Cu2O so that the binding energy
attributed to the 1s state is 133 meV, whereas the binding energy deduced from the Rydberg
series shown in Fig. 7.9 indicates a binding energy of 97 meV.

The kinds of excitons we have been considering above are called free excitons. In contrast
to these, are excitations called bound excitons. It is often the case that an electron and hole
may achieve a lower energy state by locating themselves near some impurity site, in which
case the exciton is called a bound exciton and has a larger binding energy. Bound excitons
are observed in typical semi-conducting materials, along with free excitons.

Another category of excitons that occurs in semiconductors is the molecular excitons.
Just as the energy of two hydrogen atoms decreases in forming molecular hydrogen H2,
the energy of two free (or bound) excitons may decrease on binding to form a molecular
state. More complicated exciton complexes can be contemplated and some of these have
been observed experimentally.

As the exciton density increases, further interaction occurs and eventually a quantum
fluid called the electron-hole drop is formed. Unlike other fluids, both the negatively and
positively charged particles in the electron-hole fluid have light masses. A high electron-hole
density can be achieved in indirect band gap semiconductors such as silicon and germanium
because of the long lifetimes of the electron-hole excitations in these materials. In treating
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Figure 7.10: Plot of the square root of the absorption coefficient vs. h̄ω for Ge for various
temperatures showing the effect of the excitons. Features associated with both indirect and
direct excitons are found.
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Figure 7.11: Recombination radiation (or photoluminescence spectrum) of free electrons
(FE) and of electron-hole drops (EHD) in Ge at 3.04 K. The Fermi energy in the electron-
hole drop is εF and the cohesive energy of the electron-hole drop with respect to a free
exciton is φs = 1.8 meV. The critical concentration and temperature for forming an electron-
hole drop in Ge are respectively 2.6× 1017/cm3 and 6.7 K.

the electron-hole drops theoretically, the electrons and holes are regarded as free particles
moving in an effective potential due to the other electrons and holes. Because of the Pauli
exclusion principle, no two electrons (or holes) can have the same set of quantum numbers.
For this reason like particles tend to repel each other spatially, but unlike particles do not
experience this repulsion. Thus electron-hole pairs are formed and these pairs can be bound
to each other to form an electron-hole drop. These electron-hole drops have been studied in
the emission or luminescence spectra (see Chapter 8). Results for the luminescence spectra
of Ge and Si at very low temperatures (T ≤ 2K) are shown in Fig. 7.11. Luminescence
spectra for germanium provide experimental evidence for electron-hole drops for electron-
hole concentrations exceeding 1017/cm3.

In insulators (as for example alkali halides), excitons are particularly important, but
here they tend to be well localized in space because the effective masses of any carriers that
are well localized tend to be large. These localized excitons, called Frenkel excitons, are
much more strongly bound and must be considered on the basis of a much more complicated
theory. It is only for the excitons which extend over many lattice sites, theWannier excitons,
that effective mass theory can be used. And even here many-body effects must be considered
to solve the problem with any degree of accuracy – already an electron bound to a hole is
a two–body problem so that one–electron effective mass theory is generally not completely
valid.

In studying the optical absorption of the direct gap, the presence of excitons complicates
the determination of the direct energy gap, particularly in alkali halides where the exciton
binding energy is large. Referring to Fig. 7.12(a), both Γ-point and L-point excitons are
identified in the alkali halide ionic crystal KBr. The correspondence of the optical structure
with the E(~k) diagram is shown by comparison of Figs. 7.12(a) and (b). Here it is seen
that the Frenkel exciton lines dominate the spectrum at the absorption edge and we also
see huge shifts in energy between the exciton lines and the direct absorption edge. These
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Figure 7.12: (a) A spectrum of the optical density of KBr showing Frenkel excitons. The
optical density is defined as log(1/T ) where T is the optical transmission. (b) The energy
bands of KBr, as inferred from tight-binding calculations of the valence bands and the
assignments of interband edges in optical experiments. We note that the spectrum is dom-
inated by exciton effects and that direct band edge contributions are much less important
and the binding energy is on the order of an electron volt.
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figures show the dominance of strongly bound, localized Frenkel excitons in the spectra of
alkali halides.

Excitons involve the presence of an electron-hole pair. If instead, an electron is intro-
duced into the conduction band of an ionic crystal, a charge rearrangement occurs. This
charge rearrangement partially screens the electron, thereby reducing its effective charge.
When an electric field is now applied and the charge starts to move through the crystal, it
moves together with this lattice polarization. The electron together with its lattice polar-
ization is called a polaron. While excitons are important in describing the optical properties
of ionic or partly ionic materials, polarons are important in describing the transport prop-
erties of such materials. The presence of polarons leads to thermally activated mobilities,
which says that a potential barrier must be overcome to move an electron together with
its lattice polarization through the crystal. The presence of polaron effects also results
in an enhancement in the effective mass of the electron. Just as one categorizes excitons
as weakly bound (Wannier) or strongly bound (Frenkel), a polaron may behave as a free
particle with a relatively weak enhancement of the effective mass (a large polaron) or may
be in a bound state with a finite excitation energy (a small polaron), depending on the
strength of the electron-phonon coupling. Large polarons are typically seen in weakly ionic
semiconductors, and small polarons in strongly ionic, large-gap materials. Direct evidence
for large polarons in semiconductors has come from optical experiments in a magnetic field
in the region where the cyclotron frequency ωc is close to the optical phonon frequency ωLO.

7.7 Optical Transitions in Quantum Well Structures

Optical studies are extremely important in the study of quantum wells and superlattices.
For example, the most direct evidence for bound states in quantum wells comes from optical
absorption measurements. To illustrate such optical experiments consider a GaAs quantum
well bounded on either side by the wider gap semiconductor AlxGa1−xAs. Because of the
excellent lattice matching between GaAs and AlxGa1−xAs, these materials have provided
the prototype semiconductor superlattice for study of the 2D electron gas. The threshold
for absorption is now no longer the band gap of bulk GaAs but rather the energy separation
between the highest lying bound state of the valence band and the lowest bound state of
the conduction band. Since the valence band of GaAs is degenerate at ~k = 0 and consists of
light and heavy holes, there will be two n = 1 levels in the valence band. Since En ∝ 1/m∗

for the quantum well n = 1 bound state level, the heavy hole subband extremum will be
closer in energy to the band edge than that of the light hole as shown on the left side
of Fig. 7.13. Also the density of states for the heavy hole subband will be greater than
that of the light hole subband by a factor of 2mhh

∗/mlh
∗. The optical absorption will thus

show two peaks near the optical threshold as illustrated in the diagram in Fig. 7.13. These
data are for a sample with a quantum well width of 50Å, which is small enough to contain
a single bound state (n = 1). Since the optical absorption from a single quantum well
is very weak, the experiment is usually performed in superlattice structures containing a
periodic array of many equivalent quantum wells. In forming the superlattice structure, it
is important that the barrier between the quantum wells is not too small in extent, because
for small spatial separations between quantum wells and low band offsets at the interfaces,
the eigenfunctions in adjacent wells become coupled and we no longer have a 2D electron
gas in the quantum well.
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Figure 7.13: Optical
excitations in a quan-
tum well where the va-
lence band has light
and heavy holes (as in
GaAs). The optical
density is defined as
log(1/T ) where T is
the transmission.

Figure 7.14: Frequency dependence of
the absorption for GaAs/Al0.2Ga0.8As
heterostructure superlattices of differ-
ent thicknesses at optical frequencies.
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For wider quantum wells containing several bound states (see Figs. 7.14 and 7.15),
a series of absorption peaks are found for the various bound states, and the interband
transitions follow the selection rule ∆n = 0. This selection rule follows because of the
orthogonality of wave functions for different states n and n′. Thus to get a large n matrix
element for coupling valence and conduction band states, n′ and n must be equal. As
the width of the quantum well increases, the spectral features associated with transitions
to the bound states become smaller in intensity and more closely spaced and eventually
cannot be resolved. For the thickest films, the quantum levels are too close to each other
to be resolved and only the bulk exciton peak is seen. For the 210Å quantum well (see
Fig. 7.14), transitions for all 4 bound states within the quantum well are observed. In
addition, excitonic behavior is observed on the n = 1 peak. For the 140 Å well, the
transitions are broader, and effects due to the light and heavy hole levels can be seen
through the distorted lineshape (see Fig. 7.14. To observe transitions to higher bound
states, the spectra in Fig. 7.15 are taken for a quantum well width of 316 Å, for which
transitions up to (6,6) are resolved. For such wide quantum wells, the contributions from
the light holes are only seen clearly when a transition for a light hole state is not close to a
heavy hole transition because of the lower density of states for the light holes (see Fig. 7.15).

Exciton effects are significantly more pronounced in quantum well structures than in
bulk semiconductors, as can be understood from the following considerations. When the
width d1 of the quantum well is less than the diameter of the exciton Bohr orbit, the
electron–hole separation will be limited by the quantum well width rather than by the larger
Bohr radius, thereby significantly increasing the Coulomb binding energy and the intensity
of the exciton peaks. Thus small quantum well widths enhance exciton effects. Normally
sharp exciton peaks in bulk GaAs are observed only at low temperature (T ¿ 77K); but
in quantum well structures, excitons can be observed at room temperature, as shown in
Fig. 7.14, which should be compared with Fig. 7.8 for 3D bulk GaAs.

The reason why the exciton line intensities are so much stronger in the quantum well
structures is due to the reduction in the radius of the effective real space Bohr orbits,
thereby allowing more k band–states to contribute to the optical transition. This argument
is analogous to arguments made to explain why the exciton intensities for the alkali halides
are huge [see Fig. 7.12(a)]. In the alkali halides the excitons have very small real space Bohr
orbits so that large regions of k space can contribute to the exciton excitation.

In the case of the quantum well structures, two exciton peaks are observed because the
bound states for heavy and light holes have different energies, in contrast to the case of
bulk GaAs where the j = 3/2 valence band states are degenerate at k = 0. This property
was already noted in connection with Fig. 7.13 for the bound state energies. Because of
the large phonon density available at room temperature, the ionization time for excitons
is only 3 × 10−13 sec. Also the presence of the electron–hole plasma strongly modifies the
optical constants, so that the optical constants are strongly dependent on the light intensity,
thereby giving rise to non–linear effects that are not easily observed in 3D semiconductors.

Because of the small binding energy of these exciton states, modest electric fields have a
relatively large effect on the photon energy of the exciton peaks and on the optical constants.
Application of an electric field perpendicular to the layers of the superlattice confines the
electron and hole wave functions at opposite ends of the quantum well, as shown in Fig. 7.16.
Because of this spatial separation, the excitons become relatively long lived and now

recombine on a time scale of 10−9 sec. Also because of the quantum confinement, it is
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Figure 7.15: Transmission spectrum of a GaAs/AlGaAs multi-quantum well (well width =
316 Å) measured as a function of photon energy at low temperature (right panel). The
peaks labeled (n, n) have been identified with optical transitions from the nth heavy hole
(hh) and light hole (lh) subbands to the nth conduction subband as shown by arrows in
the band diagram in the left panel. The values of the band offsets used in the analysis are
given in the diagram, but these are not the most recent values.

94



Figure 7.16: Excitonic wave functions
in a GaAs quantum well without (left)
and with (right) an applied electric
field. Because of the triangular poten-
tials that are created by the electric
field in the z–direction, the quantum
well retains the electron and hole in
a bound state at electric fields much
higher than would be possible in the
bulk classical ionization field.

Figure 7.17: The absorption spec-
tra in GaAs/Ga1−xAlxAs heterostruc-
tures for various values of applied elec-
tric field illustrating the large changes
in optical properties produced by the
quantum confined Stark shift. The
electric fields normal to the layer
planes are: (a) 104 V/cm, (b) 5× 104

V/cm, and (c) 7.5× 104 V/cm.
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possible to apply much higher (50 times) electric fields than is possible for an ionization
field in a bulk semiconductor, thereby producing very large Stark red shifts of the exciton
peaks, as shown in Fig. 7.17. This electric field effect on the exciton levels is called the
quantum confined Stark effect. This effect is not observed in bulk semiconductors. The
large electric field–induced change in the optical absorption that is seen in Fig. 7.17 has
been exploited for device applications.

The following mechanism is proposed to explain the quantum confined Stark effect when
the electric field is applied perpendicular to the layers. This electric field pulls the electrons
and holes towards opposite sides of the layers as shown in Fig. 7.16 resulting in an overall
net reduction in the attractive energy of the electron–hole pair and a corresponding Stark
(electric field induced) shift in the exciton absorption. Two separate reasons explain the
strong exciton peaks in quantum well structures. Firstly the walls of the quantum wells
impede the electron and hole from tunneling out of the wells. Secondly, because the wells are
narrow (e.g., ∼ 100Å) compared to the three–dimensional (3D) exciton size (e.g., ∼ 200Å),
the electron–hole interaction, although slightly weakened by the separation of electron and
hole, is still strong, and well defined excitonic states can still exist. Thus exciton resonances
can remain to much higher fields than would be possible in the absence of this confinement,
and large absorption shifts can be seen without excessive broadening.
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Chapter 8

Luminescence and
Photoconductivity

8.1 Classification of Luminescence Processes

Luminescence denotes the emission of radiation by a solid in excess of the amount emitted
in thermal equilibrium. Since luminescence is basically a non-equilibrium phenomena, it
requires excitation by light, electron beams, current injection, etc., which generally act to
create excess electrons, holes, or both. The effects of electron–hole recombination give rise
to recombination radiation or luminescence.

One classification of luminescent processes is based on the source of the excitation energy.
The most important excitation sources are

1. photoluminescence by optical radiation,

2. electroluminescence by electric fields or currents,

3. cathodoluminescence by electron beams (or cathode rays),

4. radioluminescence by other energetic particles or high energy radiation.

A second classification of luminescent processes pertains to the time that the light is emitted

relative to the initial excitation. If the emission is fast (
<∼ 10−8 sec is a typical lifetime

for an atomic excited state), then the process is fluorescent. The emission from most
photoconductors is of the fluorescent variety. For some materials, the emission process is
slow and can last for minutes or hours. These materials are phosphorescent and are called
phosphors.

Let us first consider luminescent processes of the fluorescent type with fast emission
times. The electronic transitions which follow the excitation and which result in luminescent
emission are generally the same for the various types of excitations. Figure 8.1 shows a
schematic diagram of the basic transitions in a semiconductor. These may be classified as
follows:

1. Transitions involving chemical impurities or physical defects (such as lattice vacan-
cies):
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Figure 8.1: Basic transitions in a semi-
conductor for the luminescent process.
After H.F. Ivey, IEEE J.Q.E. 2, 713
(1966). • = electrons: ◦ = holes.

(a) conduction band to acceptor.

(b) donor to valence band.

(c) donor to acceptor (pair emission).

2. Interband transitions:

(a) intrinsic or edge emission corresponding very closely in energy to the band gap,
though phonons and/or excitons may also be involved

(b) higher energy emission involving energetic or “hot” carriers, sometimes related
to avalanche emission, where “hot” carriers refers to highly energetic carriers
well above thermal equilibrium levels.

3. Intraband transitions involving “hot” carriers, sometimes called deceleration emission.

It should be pointed out that the various transitions mentioned above do not occur in
the same material or under the same conditions. Nor are all electronic transitions radiative.
Phonon emission provides a non-radiative mechanism for the relaxation of an excited state
in a solid to the lowest equilibrium ground state. An efficient luminescent material is one
in which radiative transitions predominate over nonradiative ones.

When electron–hole pairs are generated by external excitations, radiative transitions
resulting from the hole–electron recombination may occur. The radiative transitions in
which the sum of electron and photon wavevectors is conserved are called direct transitions
as opposed to indirect transitions which involve scattering agents such as phonons.

8.2 Emission and Absorption

For a given material the emission progagility will depend on the photon energy and on the
temperature. The emission rate Rvc(ω) for the transition from the conduction band (c) to

98



Figure 8.2: Luminescence
emission spectrum in an
n-type InSb crystal with
an electron concentration
of 5× 1013cm−3. The peak
at 0.234 eV is due to inter-
band recombinative emis-
sion. The peak at 0.212 eV
(multiplied by 200) is due
to phonon-assisted band-
to-band transitions. (A.
Mooradian and H.Y. Fan,
Phys. Rev. 148, 873
(1966).)

the valence band (v) is related to the absorption rate Pvc(ω) by the relation

Rcv(ω) = Pvc(ω)ρ(ω) (8.1)

where ρ(ω) is the Planck distribution at temperature T

ρ(ω) =
2

π

ω2n3r
c3[exp(h̄ω/kBT )− 1]

(8.2)

and the absorption rate is given by

Pvc(ω) =
α(ω)c

nr
(8.3)

so that the frequency and temperature dependence of the emission rate is given by

Rcv(ω) =
2

π

ω2n2rαω

c2[exp(h̄ω/kBT )− 1]
. (8.4)

Basically, Rcv(ω) shows high emission at frequencies where the absorption is large, so that
emission spectroscopy can be used as a technique to study various aspects of the band
structure. For example, Fig. 8.2 shows luminescence from the conduction band of InSb
to the valence band (band-to-band process) at 0.234 eV from the conduction band to an
acceptor impurity level at 0.228 eV and luminescence that is phonon assisted at 0.212 eV
involving phonon absorption.

For intrinsic or band-to-band transitions, the peak intensity occurs near the energy
gap and the width of the spectral line (at half value of peak intensity) is proportional to
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Figure 8.3: Direct and indirect intrin-
sic radiation recombination in Ge. The
70K spectrum is experimental and is in
the energy range appropriate for indi-
rect transitions assisted by longitudi-
nal acoustic (LA) phonons. The circles
are calculated from absorption data for
both types of transitions. The free car-
rier densities at the direct and indirect
conduction band minima and at the va-
lence band maximum are denoted by
n0, n, and p, respectively.
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the thermal broadening energy kBT . For extrinsic transitions, the peak emission intensity
occurs near the transition energy, but the broadening is greater than for the intrinsic band-
to-band emission shown in Fig. 8.3.

The general problem of luminescence is not only to determine the luminescent mecha-
nisms and the emission spectra, as discussed above, but also to determine the luminescent
efficiency. For a given input excitation energy, the radiative recombination process is in
direct competition with the non-radiative processes. Luminescent efficiency is defined as
the ratio of the energy associated with the radiative process to the total input energy.

Among the fastest emission luminescent processes, electroluminescence, or excitation by
an electric field or current, has been one of the most widely utilized for device applications.
Electroluminescence is excited in a variety of ways including intrinsic, injection, avalanche,
and tunneling processes.

1. Intrinsic process. When a powder of a semiconductor, (e.g., ZnS) is embedded
in a dielectric (plastic or glass), and exposed to an alternating electric field, usually
at audio frequencies, electroluminescence may occur. Generally the efficiency is low
(∼ 1%) and such materials are used primarily in display devices. The mechanism
is mainly due to impact ionization by accelerated electrons and/or field emission of
electrons from trapping centers.

2. Injection. Under forward-bias conditions, the injection of minority carriers in a p−n
junction can give rise to radiative recombination. The energy level band diagram for a
Cd-doped GaP p−n junction is shown in the Fig. 8.4. Several different transitions for
electron-hole recombination are indicated. The relative intensity of the red and the
green bands can be varied by varying the impurity concentrations. The brightness of
the red-light emission from the GaP p−n junction at room temperature is sufficiently
high to merit electro-luminescent applications, as an example, GaP light-emitting-
diodes (LEDs) for numeric displays in pocket electronic calculators.

At the present time, the highest electro-luminescent efficiency has been obtained ex-
perimentally in forward-biased GaAs diodes. This is expected because (1) the forward-
bias injection is a very efficient method since electric energy can be converted directly
into photons; (2) GaAs is a direct-gap semiconductor. Thus, the radiative recombi-
nation process is a first-order transitions process (no phonon involved); and (3) GaAs
has the most advanced materials technology of all the direct-gap semiconductors.

3. Avalanche. When a p−n junction or a metal semiconductor contact is reverse-biased
into avalanche breakdown, the electron-hole pairs generated by impact ionization may
result in emission of either interband (avalanche emission) or intraband (deceleration
emission) transitions, respectively.

4. Tunneling. Electroluminescence can result from tunneling into forward-biased and
reverse-biased junctions. In addition, light emission can occur in reverse-biased metal-
semi-conductor contacts.

Fast emission luminescence also is of importance to semiconducting lasers. Lumines-
cence is an incoherence emission process in contrast with laser action which involves the
coherent emission of radiation in executing a radiative transition. The coherence is usually

101



Figure 8.4: Energy level diagram for a Cd-doped GaP p− n junction where Cd-O denotes
an cadmium-oxygen complex. Transitions between the exciton level of the Cd-O complex to
the acceptor level of Cd give rise to red light emission. Transitions between the donor level
(S) and acceptor level (Cd) give rise to the green light emission. (b) Measured emission
spectrum from a GaP diode in which the color associated with the various luminescent
peaks are shown. (After M. Gershenzon, Bell Sys. Tech. J. 45, 1599 (1966).)
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Figure 8.5: Schematic of the phospho-
rescence process of the thallium+ acti-
vator in KCl. The emission is down-
shifted from the absorption. This is
an illustration of the Franck–Condon
Principle.

enhanced by polishing the sample faces to form an optical cavity. Examples of solid state
lasers are the ruby laser and the direct gap semiconductor lasers. Optical and electrical
pumping are the most common methods of exciting laser action in solid state lasers.

Finally, we conclude the discussion of electroluminescence in semiconductors with a short
discussion of slow emission luminescence, i.e. phosphorescence. Phosphorescent materials
exhibit afterglow effects and are consequently important in various optical display devices.
These phosphors often do not exhibit large photoconductivities. That is to say, although
the electrons that were produced survive for a long time, they are bound to particular defect
centers and do not readily carry charge through the crystal.

In Fig. 8.5 we show an example of how a phosphor works in an alkali halide such as KCl
with a small amount of Tl impurities. The thallium defects act as recombination centers.
If these recombination centers are very efficient at producing recombination radiation they
are called activators; Tl in KCl acts as an activator. In this system, the excitation occurs
at higher energy than the emission. The Franck-Condon principle states that the atoms
in the solid do not change their internuclear separations during an electronic transition. We
now explain how emitted light is downshifted in frequency from the exciting light. The Tl+

ion in the ground or unexcited state occupies some configuration close to the symmetric
center of a K+ ion which the Tl+ ion might be replacing. When excited, the Tl+ ion finds
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Figure 8.6: Schematic diagram of the
experimental arrangement for measur-
ing the photoconductivity.

a lower energy state in a lower symmetry position near one of the Cl− ions as shown on the
top of Fig. 8.5. The absorption is made from the ground state energy (point A in Fig. 8.5)
to an excited state with the same configuration. Phonon interactions then will bring the
electron to the equilibrium position C. Achievement of equilibrium (B → C) will take a
longer time than the electronic transitions (A → B). Emission from C → D again occurs
in accordance with the Franck-Condon principle and the readjustment to the equilibrium
configuration A proceeds by phonon processes.

8.3 Photoconductivity

Photoconductivity is observed when light is incident on a poorly conducting material, (e.g.,
an insulator or semiconductor), and the photon energy is sufficiently high to excite an elec-
tron from an occupied valence state to an unoccupied conduction state. In such interband
transitions both the electron and hole will contribute to the electrical conductivity if a volt-
age is applied across the sample as shown in the schematic experimental arrangement in
Fig. 8.6. Since the threshold for photoconduction occurs at h̄ω = Eg, measurement of the
photoconductivity can be used to determine the band gap for non-conducting materials.
Photoconductivity is often the concept used for the design of practical optical detectors.

The photoconduction process increases the electrical conductivity ∆σ due to the increase
in the density of electrons (∆n) and (∆p) resulting from photo-excitation:

∆σ

σ
=

∆nµn +∆pµp
nµn + pµp

(8.5)

in which µn + µp are respectively, the electron and hole mobilities. Since the carriers are
generated in pairs in the photo-excitation process ∆n = ∆p. In preparing materials for
application as photoconductors, it is desirable to have a high mobility material with a low
intrinsic carrier concentration, and long electron–hole recombination times to maximize the
photo-excited carrier density concentration. CdS is an example of a good photoconductive
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material. In CdS, it is possible to change the conductivity by ∼ 10 orders of magnitude
through carrier generation by light. These large changes in electrical conductivity can be
utilized in a variety of device applications such as: light meters, photo-detectors, “electric
eye” control applications, optically activated switches, and information storage.

To measure photo-currents, photo-excited carriers are collected at the external elec-
trodes. In the steady state, free carriers are continually created by the incident light. At
the same time, they annihilate each other through electron-hole recombination. To pro-
duce a large photocurrent, it is desirable to have a long free carrier lifetime τ ′ or a slow
recombination time. If G is the rate of generation of electrons per unit volume due to
photo-excitation, then the photo-excited electron density in the steady state will be given
by

∆n = Gτ ′. (8.6)

The generation rate G will in turn be proportional to the photon flux incident on the
photoconductor. Whereas slow recombination rates are essential to the operation of photo-
conductors, rapid recombination rates are necessary for luminescent materials.

In the recombination process, an electron and hole annihilate each other, emitting a
photon in a radiative process. In real materials, the recombination process tends to be
accelerated by certain defect sites. When such defects tend to be present in relatively
greater concentrations at the surface, the process is called surface recombination. In
bulk, the density of recombination centers can be made low for a very pure and “good”
crystal. A typical concentration in a high quality Si crystal would be ∼ 1012 cm−3.

Photo-excited carriers can also be eliminated from the conduction process by electron
and hole traps. These traps differ from recombination centers insofar as traps preferentially
eliminate a single type of carrier. In practice, hole traps seem to be more common than
electron traps. For example, in the silver halides which are important in the photographic
process, the hole is trapped almost as soon as it is produced and photoconduction occurs
through the electrons.

Electron and neutron irradiation produce both recombination centers and traps in photo-
conducting materials. Thus, special precautions must be exercised in using photo-detectors
in a high radiation environment or on satellites which are expected to pass through regions
of high radiation fluences.

Trapped electrons can be released by thermal or optical excitation. For example, con-
sider a p-type sample of Ge which has been doped with Mn, Ni, Co, Fe. At low temperatures
EF will be near the top of the valence band and the acceptor impurity states will have very
few electrons in them. Photons energetic enough to take an electron from the valence band
to these impurity levels will result in hole carriers in the valence bands. The deep acceptor
levels for these impurities are above the top of the valence band by 0.16 eV for Mn, 0.22eV
for Ni, 0.25 eV for Co and 0.35 eV for Fe. The thresholds observed for photoconductivity
in these p-type Ge samples are shown in Fig. 8.7 and the experimental results are in good
agreement with this interpretation. The large increase in photoconductivity at 0.7eV cor-
responds to an interband transition and the threshold for this process is independent of the
impurity species.

The excess carrier lifetime can be measured by using light pulses and observing the
decay in the photocurrent through measurement of the voltage across a calibrated load
resistor R in the external circuit as shown in Fig. 8.8. Using a light chopper, light pulses
can be generated as indicated in Fig. 8.9. For each light pulse, the carrier density will build
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Figure 8.7: Photoconductance spec-
trum in bulk Ge with various dopants.

Figure 8.8: Schematic of a circuit used
to measure the excess carrier lifetime
through decay in the photocurrent.

Figure 8.9: Schematic experimental
time dependence of light pulses and
of the corresponding photoconductiv-
ity signal.
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Figure 8.10: Experimental de-
pendence of the photocurrent on
light irradiation for CdS. A lin-
ear response is observed for low
light levels.

up and then decay exponentially with a characteristic time equal to the lifetime τ ′ of the
excess carriers.

In the interpretation of these experiments corrections must be made for surface re-
combination. To study a given material, the pulse repetition rate is adjusted to match
approximately the excess carriers decay lifetime. For long lifetimes (∼ 10−3 sec), a mechan-
ical chopper arrangement is appropriate. On the other hand, for short lifetimes a spark
source can be used to give light pulse of ∼ 10−8 sec duration. For extremely short lifetimes,
lasers with pulses well below ∼ 10−10 seconds are available.

To get an idea of the magnitude involved in the photoconduction process, we show in
Fig. 8.10 some data for CdS, a common photoconductor. This plot of photoconductive
response versus illumination level shows that the photocurrent is almost a linear function
of the illumination intensity for low intensities but is non-linear at high illumination levels.
The dark current refers to the background current that flows in the absence of incident
light. Thus, the Fig. 8.10 shows that an incident power as small as 5× 10−8 watts results
in a photocurrent 50 times greater than the dark current.
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Chapter 10

Optical Study of Lattice Vibrations

References:

• Kittel, ISSP 6th edition, Ch 10.

• Ashcroft and Mermin, Ch 27.

• Yu and Cardona, Fundamentals of Semiconductors, pp. 251-258

10.1 Lattice Vibrations in Semiconductors

10.1.1 General Considerations

The lattice vibrations in semiconductors are described in terms of 3N branches for the
phonon dispersion relations whereN is the number of atoms per primitive unit cell. Three of
these branches are the acoustic branches, and the remaining 3N−3 are the optical branches.
The optical lattice modes at ~q = 0 are sensitively studied by infrared spectroscopy (optical
reflectivity or transmission) for odd parity modes, including those for which the normal
mode vibrations involve a dipole moment. Raman spectroscopy provides a complementary
tool to infrared spectroscopy, insofar as Raman spectroscopy is sensitive to even parity
modes. Since the group IV semiconductors have inversion symmetry, the optical phonon
branch is Raman active but is not seen in infrared spectroscopy. The III–V compound
semiconductors, however, do not have inversion symmetry, so that the optical modes for
semiconductors such as GaAs are both infrared-active and Raman-active. A schematic
optical absorption curve to a semiconductor is shown in Fig. 10.1.

Since the wavevector for light is very much smaller than the Brillouin zone dimensions,
conservation of momentum requires the wave vector for the phonon ~qphonon that is created
or absorbed to be much smaller than Brillouin zone dimensions, so that the wave vectors
for phonons that are observed in first order infrared or Raman processes are close to ~q = 0.
Since thermal neutrons can have a wide range of momentum values, neutron spectroscopy
using thermal neutrons as a probe allows exploration of the phonon branches over a wide
range of ~qphonon. Since heat in a semiconductor is dominantly carried by the acoustic
phonons, information about the acoustic phonons is also provided by thermal conductivity
studies.
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Figure 10.1: Hypothetical absorption spectrum for a typical III-V semiconductor as a func-
tion of phonon energy.

We now review the interaction of the electromagnetic field with an oscillating dipole
due to a lattice vibration. Crystals composed of two different atomic species (like NaCl)
can have vibrating ions at finite temperatures. When these ions are vibrating in an optic
mode ← ⊕ →← ª →, a vibrating dipole is created and this dipole can interact with
the electromagnetic field. In discussing this interaction, we wish to focus attention on the
following points which are discussed more fully in the text below:

1. The existence of two characteristic frequencies for the vibrations in a solid in the
presence of light:

• ωt = transverse optical phonon frequency (TO)

• ω` = longitudinal optical phonon frequency (LO)

The description of the LO and TO phonons is provided by the polariton model which
accounts for the interaction between light and phonon excitations. Because of the very
small wavevector of the incident photons, the phonons which are optically excited will
also have very small wavevectors. Therefore, ωt and ω` are taken as the phonon
frequencies at ~q = 0 for the TO and LO phonon dispersion curves.

2. These two frequencies are observable experimentally either through an infrared ab-
sorption, transmission, or reflection experiment (infrared activity) or through a scat-
tering experiment (Raman activity). A transparent dielectric becomes lossy as ω

109



increases above ωt. The transverse optical phonon frequency ωt corresponds to a
resonance in the dielectric function

ε(ω) = ε∞ +
const

ω2
t − ω2

(10.1)

where ε∞ is the high frequency dielectric function (appropriate to electronic excitation
processes) and a resonance in ε(ω) occurs at the TO phonon frequency ω = ωt. The
strong frequency dependence of the dielectric function (large dispersion) near ωt is
exploited in designing prisms for monochromators. The frequency ωt is also called the
reststrahl frequency.

3. The frequency ω` is the frequency at which the real part of the dielectric function
vanishes ε1(ω`) = 0. It will be shown below that ω` is the longitudinal optical phonon
frequency corresponding to ~q = 0 (zero wave vector). By group theory, it can be
shown that the lattice modes at ~q = 0 for a cubic crystal are three-fold degenerate.
This degeneracy is lifted by the electromagnetic interaction in polar materials to give a
splitting between the LO and TO modes. An example of the reflectivity of a normally
transparent material in the region where phonon excitation processes dominate is
shown in Fig. 10.2. From the diagram, we see that for ωt < ω < ω`, the dielectric is
both highly reflective and lossy. This range between ωt and ω` is also observed as an
absorption band in infrared absorption studies.

4. The dielectric function ε(ω) approaches the static dielectric constant ε0 as ω → 0.
Also, ε(ω) approaches the high frequency dielectric function ε∞ as ω approaches
frequencies that are large compared with ωt and ω`. Even when we consider ω to be
large, we are still thinking of ω as being very much smaller than typical interband
electronic frequencies. Lattice modes typically are important in the wavelength range
10 ≤ λ ≤ 100µm or 0.01 ≤ h̄ω ≤ 0.1eV or 50 ≤ ω ≤ 1000 cm−1.

5. The quantities ε0, ε∞, ωt and ω` are not independent, but are related by a very general
relation called the Lyddane–Sachs–Teller relation:

ω2
`

ω2
t

=
ε0
ε∞

(10.2)

which is written here for a crystal with two atoms/unit cell.

10.2 Dielectric Constant and Polarizability

The polarizability α of an atom is defined in terms of the local electric field at the atom,

p = αElocal. (10.3)

The polarizability is an atomic property, the the dielectric constant will depend on the
manner in which the atoms are assembled to form a crystal. For a non-spherical atom α
will be a tensor. The polarization of a crystal may be approximated as the product of the
polarizabilities of the atoms times the local electric fields,

P =
∑

j

Njpj =
∑

j

NjαjElocal(j), (10.4)
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Figure 10.2: Reflectivity of a thick crystal of NaCl vs. wave length at several temperatures.
The nominal values of ω` and ωt at room temperature correspond to wavelengths of 38 and
61 microns, respectively. The additional structure seen in the reflectivity spectrum near ω`
is associated with defects.
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where Nj is the concentration and αj the polarizability of atoms or ions j, and Elocal(j) is
the local field at atomic sites j. If the local field is given by the Lorentz relation, then

P = (
∑

j

Njαj)

(

E +
4π

3
P

)

. (10.5)

Solving for the susceptibility

χ =
P

E
=

∑

j Njαj

1− 4π
3

∑

j Njαj
. (10.6)

Using the definition ε = 1 + 4πχ one obtains the Clausius–Mossotti relation

ε− 1

ε+ 2
=

4π

3

∑

j

Njαj . (10.7)

This relates the dielectric constant to the electronic polarizability, but only for crystal
structures for which the Lorentz local field relation applies.

10.3 Polariton Dispersion Relations

The statements 1–5 in §10.1 provide an overview on optical studies of lattice modes. In
this section we discuss the polariton dispersion relations which describe the interaction of
light with the electric dipole moment associated with infrared absorption, and the LO–TO
splitting of the normal mode vibration of the atoms in the solid arising from these dispersion
relations.

Consider the equation of motion of an ion in a solid using the normal mode coordinate
~r, so that harmonic motion yields

m~̈r = −κ~r + e ~E = −mω2~r (10.8)

where
~E = ~E0e

−iωt (10.9)

and −κ~r represents a lattice restoring force while e ~E is the force due to the actual electric
field ~E at an ion site. Maxwell’s equations give us

curl ~H =
1

c
~̇D =

1

c
( ~̇E + 4π ~̇P ) = − iω

c
( ~E + 4π ~P ) (10.10)

curl ~E = −1

c
~̇H =

iω

c
~H (10.11)

We also have a constitutive equation which tells us that the total polarization arises from
an ionic contribution N ′e~r where N ′ is the number of optical modes per unit volume and
from an electronic contribution nα ~E, where n is the electron concentration and α is the
electronic polarizability:

~P = N ′e~r + nα~E. (10.12)

Equations 10.8, 10.10, 10.11 and 10.12 represent 4 equations in the 4 variables ~E, ~H,~r, and
~P .
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In writing Eq. 10.12 for the polarization vector ~P , we have considered two degrees of
freedom: the ion system and the electron system. We further assume that these polariza-
tions are accomplished independently. In formulating this calculation, the electric field in
all equations is the applied electric field, since it is assumed that the lattice polarization
effects are weak. In more sophisticated treatments, we must consider the effect of local
field corrections when the dielectric function is large, as occurs for example in the case of
ferroelectrics.

We now seek plane wave solutions for transverse wave propagation: ( ~E, ~H) in the xy
plane and perpendicular to the Poynting vector, ~S = [c/(8π)]Re( ~E∗× ~H), and the Poynting
vector is taken along the z direction

Ex = E0
xe
−i(ωt−Kz) (10.13)

Hy = H0
ye
−i(ωt−Kz) (10.14)

Px = P 0
xe
−i(ωt−Kz) (10.15)

rx = r0xe
−i(ωt−Kz). (10.16)

Here K is the wave vector for the light, K = 2π/λ. Using values for λ typical for lattice
modes in NaCl, we have λ ∼ 60µm and K ∼ 103cm−1. Substitution of the harmonic
solutions in Eqs. 10.13–10.16 into the 4 equations (Eqs. 10.8, 10.10, 10.11 and 10.12) for
the four variables ~E, ~H, ~r, and ~P yields:

iKHy −
iω

c
Ex −

4πiω

c
Px = 0 (10.17)

−iKEx +
iω

c
Hy = 0 (10.18)

−ω2rx +
κ

m
rx −

e

m
Ex = 0 (10.19)

Px −N ′erx − nαEx = 0. (10.20)

Equations 10.17–10.20 form 4 equations in 4 unknowns. To have a non-trivial solution
to Eqs. 10.17–10.20, the coefficient determinant must vanish. We arrange the coefficient
determinant following the order of the variables in Eqs. 10.13–10.16: (Ex Hy Px rx)
:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ω/c −K 4πω/c 0

K −ω/c 0 0

e/m 0 0 ω2 − κ/m

−nα 0 1 −N ′e

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (10.21)

Multiplying out the determinant in Eq. 10.21, we get a quadratic equation in ω2

ω4[1 + 4πnα]− ω2
[

c2K2 +
κ

m
+

4πN ′e2

m
+

4πnακ

m

]

+K2c2
κ

m
= 0. (10.22)

Equation 10.22 is more conveniently written in terms of the parameters ε∞, ε0, and ωT
where these parameters are defined in Eqs. 10.23, 10.25 and 10.27 given below:
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1. The high frequency dielectric constant ε∞ is written as ε∞ = 1 + 4πP∞/E, and
is the parameter normally used to express the optical core dielectric constant when
discussing electronic processes studied by optical techniques. From the equation of
motion (Eq. 10.8), we conclude that at high frequencies (ω À ωT and we show below
that ωT is the transverse optical frequency), the ionic displacement is small, for oth-
erwise the acceleration would tend to ∞. Thus as the frequency increases, the ions
contribute less and less to the polarization vector. We thus have the result P∞ = nαE,
so that the electronic contribution dominates and

ε∞ = 1 + 4πnα. (10.23)

2. The low frequency (ω ¿ ωT ) dielectric constant is written as ε0. At ω = 0 the
equation of motion Eq. 10.8 yields ~r = e ~E/κ so that the polarization vector at zero
frequency is

~P0 = [
N ′e2

κ
+ nα] ~E; (10.24)

and

ε0 = 1 + 4π[
N ′e2

κ
+ nα]. (10.25)

At a general frequency ω, we must from Eqs. 10.8 and 10.12 write

ε(ω) = 1 + 4π[
N ′e2

κ−mω2
+ nα]. (10.26)

3. Finally, we introduce a frequency ωT defined as

ω2
T ≡

κ

m
(10.27)

which depends only on the restoring forces and not on the externally applied field.
Of course, these restoring forces will depend on internal fields, since electromagnetic
interactions are responsible for producing these lattice vibrations in the first place. We
will later identify ωT with ωt, the transverse optical phonon frequency. Substitution
of ε∞, ε0, and ωT into Eq. 10.22 yields the polarization dispersion relation

ω4ε∞ − ω2[c2K2 + ω2
T ε0] + ω2

T c
2K2 = 0. (10.28)

Equation 10.28 has two solutions

ω2 =
1

2ε∞
(ω2

T ε0 + c2K2)±
(

1

4ε2∞
(ω2

T ε0 + c2K2)2 − ω2
TK

2 c
2

ε∞

)1/2

(10.29)

which are shown graphically in Fig. 10.3. Each solution in Eq. 10.29 is twofold degener-
ate, since ~E can be chosen in any arbitrary direction perpendicular to the propagation
vector. The coupled excitation of the transverse optical phonon to the electromagnetic
radiation is called the polariton and the picture in Fig. 10.3 is called the polariton
dispersion relation. There is also a longitudinal direction for both the light and the
lattice vibrations; for this case there is no coupling between the light and the phonons
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Figure 10.3: Polariton dispersion relations showing the coupling between the transverse lat-
tice vibrations and the electromagnetic radiation. In this figure, we clearly see the splitting
of the LO and TO modes (ωL − ωT ) induced by the ionicity of the solid.

and the frequency is the same as in the absence of light. We therefore obtain a to-
tal of 6 modes for the 3 coupled optical lattice modes and the three electromagnetic
modes (two transverse modes representing photons and one longitudinal mode). It is
of interest to examine the solutions of Eq. 10.29 for small and large K vectors where
we must remember that the scale of the K–vectors for light is a scale of 103 − 104

cm−1 rather than 108cm−1 which describes the Brillouin zone dimension, correspond-
ing to Brillouin zone dimensions. Thus the whole picture shown in Fig. 10.3 occurs
essentially at ~q = 0 when plotting phonon dispersion relations ωq(~q) for wave vectors
~q in the Brillouin zone.

At small K vectors (|K| ¿ 104 cm−1), we have two solutions to Eq. 10.29. The
positive solution is given by

ω2 =
1

ε∞
(ω2

T ε0 + c2K2) (10.30)

which gives

ω2
T ε0/ε∞ ≡ ω2

L, (10.31)

thus defining the frequency ωL. In writing this solution we neglected the term c2K2 as
K → 0. This solution corresponds to the phonon branch with finite frequency at K = 0
and hence is an optical phonon mode. We will call this frequency ωL and later we will
identify ωL with the longitudinal optical phonon mode frequency, ω`. We shall see that the
above definition is equivalent to taking frequency ω` as the frequency where the real part of
the dielectric function vanishes ε1(ω`) ≡ 0. We also remember, that the longitudinal optical
(LO) phonon does not interact with the electromagnetic field. For a phonon–electromagnetic
interaction, we require that the electric field be transverse to the direction of propagation.
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With regard to the negative solution of Eq. 10.29, we expand the square root term in
Eq. 10.29 to obtain:

ω2 =
ω2
TK

2c2

ω2
T ε0 + c2K2

(10.32)

or

ω2 ' c2K2

ε0
(10.33)

yielding the photon–like mode with a linear K dependence

ω =
cK√
ε0

for ω ¿ ωT . (10.34)

At largeK values (|K| ∼ 105cm−1), we solve the quadratic equation given by Eq. 10.29 in
the large K limit and obtain positive and negative solutions. Using a binomial expansion for
Eq. 10.29, we obtain the following positive and negative solutions. For the positive solution,
i.e., K large, we obtain

ω2 ' 1

ε∞
(ω2

T ε0 + c2K2) =
c2K2

ε∞
. (10.35)

This is clearly the photon-like mode, since

ω =
cK√
ε∞

for ω À ωT . (10.36)

This result is almost identical to Eq. 10.34 obtained in the low K limit, except that now
we have ε∞ instead of ε0. Correspondingly, the phonon-like mode for large K arises from
the negative solution:

ω2 ' ω2
TK

2c2

ω2
T ε0 + c2K2

' ω2
T . (10.37)

We have thus introduced two frequencies: ωT and ωL and from the definition of ωL we
obtain the Lyddane–Sachs–Teller relation

ω2
`

ω2
T

=
ε0
ε∞

. (10.38)

Now, ωT and ωL have well-defined meanings with regard to the dielectric function as
can be seen in Fig. 10.3. From Eq. 10.12, we have for the polarization due to ions and
electrons:

~P = N ′e~r + nα~E (10.39)

while the equation of motion, Eq. 10.8, (F = ma) gives

−mω2~r = −κ~r + e ~E (10.40)

yielding

~r =
e ~E

κ−mω2
=

e ~E/m

ω2
T − ω2

(10.41)

so that
P

E
=
ε(ω)− 1

4π
=
N ′e2/m

ω2
T − ω2

+
ε∞ − 1

4π
, (10.42)
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since the electronic polarizability term is nα = (ε∞ − 1)/4π. We therefore obtain:

ε(ω) = ε∞ +
4πN ′e2/m

ω2
T − ω2

(10.43)

where ε∞ represents the contribution from the electronic polarizability and the resonant
term represents the lattice contribution. Neglecting damping, we have the result |ε(ω)| → ∞
as ω → ωT , where the transverse optical phonon frequency ω = ωT is interpreted as the
frequency at which the dielectric function ε(ω) is resonant. The name reststrahl frequency
denotes that frequency ωT where light is maximally absorbed by the medium.

We would now like to get a more physical idea about ω`. So far ω` has been introduced
as the phonon mode of the polariton curve in Fig. 10.3 near k = 0. From Eq. 10.43 we have
the relation

ε0 = ε∞ +
4πN ′e2

mω2
T

(10.44)

where ε0 is defined by ε0 ≡ ε(ω = 0), so that

4πN ′e2

m
= ω2

T (ε0 − ε∞) (10.45)

and ωt = ωT is the frequency where ε(ω) is resonant. Thus from Eqs. 10.1 and 10.43, we
can write

ε(ω) = ε∞ +
(ε0 − ε∞)

(1− ω2/ω2
t )

= ε∞ +
(ε0 − ε∞)

(1− ω2/ω2
T )

(10.46)

so that ωT = ωt. We define ω` as the frequency at which the dielectric function vanishes
ε(ω`) ≡ 0 so that setting ε(ω) = 0 in Eq. 10.46 yields

ε∞ =
(ε∞ − ε0)
(1− ω2

` /ω
2
t )

(10.47)

or
ω2
`

ω2
t

=
ε0
ε∞

. (10.48)

Thus, the frequency ω`, which yields a zero in the dielectric function, also satisfies the
Lyddane-Sachs-Teller relation (Eq. 10.48).

We illustrate the properties of ω` and ωt in Fig. 10.4 where we see that the frequency
dependence of the dielectric function ε(ω) has two special features:

• a zero of ε(ω) occurring at ω`

• an infinity or pole of ε(ω) occurring at ωt.

For ωt < ω < ω`, the dielectric function ε(ω) is negative, so that losses must occur and
transmission is consequently poor. The frequency difference between the two characteristic
frequencies ω` and ωt depends on the ionicity of the crystal. Thus, predominantly covalent
materials like InSb which have weak ionicity have a smaller ω` − ωt splitting than alkali
halide crystals which are highly ionic. For weakly polar materials like InSb, the treatment of
the electric field given here is adequate. For highly polar materials, one must also consider
the local fields, as distinct from the applied field. These local fields tend to increase the
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Figure 10.4: The dielectric function ε(ω) plotted as a function of normalized frequency
ω/ωT . When damping is included, the real part of the dielectric function remains finite at
ωT .
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separation between ωt and ω`, pulling ωt to low frequencies. Since mechanically hard
materials tend to have high Debye temperatures and high phonon frequencies, the passage
of ωt toward zero for ferroelectric materials (extremely high dielectric function and capable
of spontaneous polarization) is referred to as the appearance of a “soft mode”.

The Lyddane-Sachs-Teller relation is more general than the derivation given here would
imply. This relation can be extended to cover anisotropic materials with any number of
optical modes. In this context we can write the frequency dependence of the symmetrized
dielectric tensor function associated with symmetry µ as

εµ(ω) = εµ(∞) +
p
∑

j=1

fµ,jω
2
T,j

ω2
T,j − ω2 − iγjω

(10.49)

where fµ,j is the oscillator strength, γj is the damping of mode j, and p is the number
of modes with symmetry µ. An example where this would apply is the case of tetragonal
symmetry where µ could refer to the in-plane modes (Eu symmetry) or to the out-of-plane
modes (A2u symmetry). Figure 10.5 shows the measured reflectivity for the lattice modes
of TeO2 which has 4 formula units per unit cell (12 atoms/unit cell) can be described
by a model based on Eq. 10.49 for polarization of the electromagnetic field parallel and
perpendicular to the tetragonal axis.

Setting the damping terms in Eq. 10.49 to zero, γj = 0, we obtain the result

ε(ω)

ε(∞)
=

p
∏

j=1

(ω2
l,j − ω2

ω2
t,j − ω2

)

(10.50)

which leads to the generalized Lyddane–Sachs–Teller relation

ε0
ε∞

=
ε(0)

ε(∞)
=

p
∏

j=1

(ω2
l,j

ω2
t,j

)

. (10.51)

Equation 10.51 can be generalized for anisotropic crystals by writing Eq. 10.50 for each
component, keeping in mind that the optical selection rules differ for each component. The
dependence of the reflectivity on polarization and on temperature is illustrated for the
tetragonal crystal TeO2 in Fig. 10.5.

To find the LO and TO modes associated with Eq. 10.49, we would look for zeros and
poles of the dielectric function for a general direction of light propagation. For example, in
a tetragonal crystal we can write

ε(θ, ω) =
ε‖(ω)ε⊥(ω)

ε‖(ω) cos2 θ + ε⊥(ω) sin
2 θ
. (10.52)

The observation of LO and TO phonon frequencies by optical measurements is made
using two basically different techniques. In one approach, we make absorption, reflection or
transmission measurements, while in the other approach, light scattering measurements are
made. These are often complementary methods for the following reason. Many important
crystals have inversion symmetry (e.g., the NaCl structure). In this case, the phonon modes
are purely odd or purely even. If the odd parity modes have dipole moments and couple
directly to the electromagnetic fields, then they are infrared active. On the other hand,
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Figure 10.5: Reflectivity in paratel-
luride, TeO2, for (a) ~E parallel and
(b,c) perpendicular to the tetragonal
axis at 295 K (b). The polarization
~E ‖ the tetragonal axis has only the
A2u modes allowed whereas for ~E ⊥ the
tetragonal axis has only the E2u modes
allowed. The points are experimental
and the solid line is a model based on
Eq. 10.49. (After Korn, et al., Phys.
Rev. B8, 768 (1973).)
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the even parity modes are not infrared active but instead may be Raman active and can
be observed in a light scattering experiment. Thus, by doing both infrared absorption
and Raman scattering measurements we can find both even and odd parity optical phonon
modes, except for the silent modes which because of other symmetry requirements are
neither infrared nor Raman active. These concepts are discussed in detail in the group
theory course.

In modeling the phonon and free carrier contributions to the dielectric function it can
happen that these phenomena occur over a common frequency range. In this case, we write
the complex dielectric function for an isotropic semiconductor as follows in analyzing optical
data

εµ(ω)

εµ(∞)
=

(

1−
ω2
p

ω(ω + iγp)

)

+
p
∑

j=1

ω2
L,j − ω2

T,j

ω2
T,j − ω2 − iωγj

(10.53)

where the first and second terms are, respectively, the free carrier and the infrared-active
phonon contributions to the dielectric function. In Eq. 10.53, ωp is the screened electronic
plasma frequency (ω2

p = 4πne2/m∗ε(∞), and ε(∞) is the core dielectric constant used to
approximate the higher frequency electronic polarizability). The phonon contribution to
Eq. 10.53 depends on ωL,j and ωT,j which are the j–th longitudinal and transverse optic
mode frequencies, while γj and γp are the phonon and plasma damping factors, respectively.

The model given by Eq. 10.53 can, for example, be used to model the optical properties
of the anisotropic compound La2CuO4 which becomes a high Tc superconductor, upon
addition of a small concentration of Sr. In this case it is important to obtain polarized
reflectivity measurements on oriented single crystals, and to carry out the Kramers–Kronig
analysis of reflectivity data for each of the polarization components separately.

10.4 Light Scattering

Light scattering techniques provide an exceedingly useful tool to study fundamental exci-
tations in solids, such as phonons, because light can be scattered from solids inelastically,
whereby the incident and scattered photons have different frequencies. Inelastic light scat-
tering became an important tool for the study of excitations in solids in the mid-1960’s with
the advent of laser light sources, because the inelastically scattered light is typically only
∼ 10−7 of the intensity of the incident light.

In the light scattering experiments shown schematically in Fig. 10.6, conservation of
energy gives:

ω = ω0 ± ωq (10.54)

and conservation of momentum gives:

~K = ~K0 ± ~q (10.55)

where the “0” subscript refers to the incident light, ~K refers to the wave vector of the light
and “~q” refers to the wave vector for the excitation in the solid. Since K0 = 2π/λ is very
small compared with the Brillouin zone dimensions, measurement of the angular dependence
of ωq(~q) can then be used to provide dispersion relations for the excitations near ~q = 0. If

ωq ¿ ω0, then | ~K| ' | ~K0|, and we have |q| ' 2| ~K0| sin(θ/2) so that |qmax| = 2K0.
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Figure 10.6: Raman scattering of a photon showing both phonon emission (Stokes) and
absorption (anti–Stokes) processes. The scattering process is called Brillouin scattering
when an acoustic phonon is involved and polariton (Raman) scattering when an optical
phonon is involved. Similar processes occur with magnons, plasmons or any other excitation
of the solid with the correct symmetry.

If the excitation is an acoustic phonon, the inelastic light scattering process is called
Brillouin scattering, while light scattering by optical phonons is called Raman scat-
tering. Raman and Brillouin scattering also denote light scattering processes due to other
elementary excitations in solids.

The light scattering can be understood on the basis of classical electromagnetic theory.
When an electric field ~E is applied to a solid, a polarization ~P results

~P =
↔
α · ~E (10.56)

where
↔
α is the polarizability tensor of the atom in the solid, indicating that the positive

charge moves in one direction and the negative charge in the opposite direction under
the influence of the applied field. In the light scattering experiments, the electric field is
oscillating at an optical frequency ω0

~E = ~E0 sinω0t. (10.57)

The lattice vibrations in the solid modulate the polarizability of the atoms themselves

α = α0 + α1 sinωqt. (10.58)

so that the polarization which is induced by the applied electric field is:

~P= ~E0(α0 + α1 sinωqt) sinω0t

= ~E0

[

α0 sin(ω0t) +
1
2α1 cos(ω0 − ωq)t− 1

2α1 cos(ω0 + ωq)t

]

.

(10.59)

Thus we see in Fig. 10.7 that light will be scattered elastically at frequency ω0 (Raleigh
scattering) and also inelastically, being modulated downward by the natural vibration fre-
quency ωq of the atom (Stokes process) or upward by the same frequency ωq (anti-Stokes
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Figure 10.7: Schematic diagram of
light scattering spectrum showing the
central unshifted Rayleigh line, the up-
shifted anti-Stokes line (emission pro-
cess), and the downshifted Stokes line
(absorption process). The ratio of the
Stokes to anti-Stokes can be used to es-
timate the temperature of the phonon
system.

process). The light scattering process can also be viewed from a quantum mechanical per-
spective. If the “system” is initially in a state E ′′, then light scattering can excite the
“system” to a higher energy state E ′ shown in Fig. 10.8a by absorption of an excitation
energy (E′−E′′). Similarly, the “system” can initially be in a state E ′ and light scattering
can serve to bring the system to a final state of lower energy E ′′ by emission of an excitation
of energy (E ′ − E′′) as shown in Fig. 10.8b. The matrix element of the polarization vector
between initial and final states is written (when expressed in terms of quantum mechanics)
as

~Pnm =

∫

Ψ∗n ~PΨmd
3r = ~E ·

∫

Ψ∗n
↔
α Ψmd

3r (10.60)

where the polarizability
↔
α is a second rank symmetrical tensor. The Stokes and anti-Stokes

processes arise from consideration of the phase factors in this matrix element: Ψm has a
phase factor e−iEmt/h̄ while Ψ∗n has a phase factor e+iEnt/h̄. The polarizability tensor has a
phase factor e±iωqt so that the integration implied by Eq. 10.60 yields

Em − En ± h̄ωq = 0. (10.61)

We should remember that the optical absorption process is governed by themomentum
matrix element which is a radial vector. Of particular significance is the case of a crystal
with inversion symmetry whereby the momentum operator is an odd function, but the
polarizability tensor is an even function. This characteristic feature has an important
consequence; namely electronic absorption processes are sensitive to transitions between
states of opposite parity (parity meaning even or odd), while light scattering is sensitive
to transitions between states of similar parity. For this reason, light scattering and optical
absorption are considered to be complementary spectroscopies, and together form basic
tools for the study of the optical properties of elementary excitations in solids.

It is important to draw a clear distinction between Raman scattering and fluorescence.
In Raman scattering, the intermediate states shown in Fig. 10.8a,b are “virtual” states and
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Figure 10.8: Schematic energy level di-
agram for the (a) Stokes and (b) anti-
Stokes processes. In this figure the
solid lines denote real processes and the
dashed lines virtual processes.
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don’t have to correspond to eigenstates of the physical “system”— any optical excitation
frequency will in principle suffice. In fluorescence, on the other hand, the optical excitation
state must be a real state of the system and in this case a real absorption of light occurs,
followed by a real emission at a different frequency.

The major reason why these two processes are sometimes confused is that Raman scat-
tering in solids often has a much higher intensity when h̄ω0 is equal to an energy band gap
and this effect is called resonant Raman scattering. In such cases, the fluorescent emission
differs from the Raman process because fluorescent phenomena take a finite time to occur.

Typical Raman traces are shown in Fig. 10.9 for several III-V compound semiconductors.
The laser wavelength is 1.06 µm (Nd:YAG laser) which is a photon energy below the band
gap for each material. The scattered light is collected at 90◦ with respect to the incident light
and both the LO and TO phonon modes at ~q = 0 are observed. For the case of the group
IV semiconductors there is no LO–TO splitting and only a single optical Raman-allowed
mode is observed (at 519 cm−1 for Si). What is measured in Fig. 10.9 is the frequency
shift between the incident and scattered light beams. For the range of phonon wave vectors
where Raman scattering can be carried out, this technique is the most accurate method
available for the measurement of the dispersion relations near the Brillouin zone center.

By doing the Raman scattering experiment with polarized light, it is possible to get
information on the symmetry of the lattice vibrations by monitoring the polarization of
both the incident and scattered radiation. This approach is important in the identification
of phonon frequencies with specific lattice normal modes.

The inelastic neutron scattering technique, though less accurate than Raman scattering,
has the advantage of providing information about phonons throughout the Brillouin zone.
By using neutrons of low energy (thermal neutrons), it is possible to make the neutron
wavelengths comparable to the lattice dimensions, in which case the inelastic scattering by
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Figure 10.9: Raman spectra of three zinc-blende-type semiconductors showing the TO and
LO phonons in both Stokes and anti-Stokes scattering.
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a lattice vibration can cause a large momentum transfer to the neutron.

10.5 Feynman Diagrams for Light Scattering

Feynman diagrams are useful for keeping track of various processes that may occur in an
inelastic scattering process that absorbs or creates an excitation. The basic notation used in
drawing Feynman diagrams consists of propagators such as electrons, phonons or photons
and vertices where interactions occur, as shown in Fig. 10.10(g).

The rules in drawing Feynman diagrams are:

• Excitations such as photon, phonons and electron-hole pairs in Raman scattering are
represented by lines (or propagators) as shown in Fig. 10.10(g). These propagators can
be labeled with properties of the excitations, such as their wavevectors, frequencies
and polarizations.

• The interaction between two excitations is represented by an intersection of their
propagators. This intersection is known as a vertex and is sometimes highlighted by
a symbol such as a filled circle or empty rectangle.

• Propagators are drawn with an arrow to indicate whether they are created or annihi-
lated in an interaction. Arrows pointing towards a vertex represent excitations which
are annihilated. Those pointing away from the vertex are created.

• When several interactions are involved they are always assumed to proceed sequen-
tially from the left to the right as a function of time.

• Once a diagram has been drawn for a certain process, other possible processes are
derived by permuting the time order in which the vertices occur in this diagram.

The basic diagram for the Raman process is given in Fig. 10.10(a) taken from the Yu
and Cardona book on “Fundamentals of Semiconductors.” The other permutations of (a)
obtained by different orders of the vertices are given in Figs. 10.10(b–f). We then use the
Fermi Golden rule for each diagram, multiplying the contributions from each vertex. For
example, the first vertex in Fig. 10.10(a) contributes a term to the scattering probability
per unit time of the form

〈n|HeR(ωi)|i〉
[h̄ωi − (En − Ei)]

where the sign (+) corresponds to absorption and (−) to emission and HeR(ωi) denotes the
interaction between the electron and the electromagnetic radiation field. The interaction
for the second vertex He−ion(ωi) between the electron and the lattice vibrations of the ion
(or the electron-phonon interaction) and the corresponding energy denominator is

h̄ωi − (En − Ei)− h̄ωq − (En′ − En) = [h̄ωi − h̄ωq − (En′ − Ei)]

and for the third vertex the denominator becomes [h̄ωi − h̄ωq − h̄ωs − (En′ −Ei)] but since
the initial and final electron energies are the same, energy conservation requires δ(h̄ωi −
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Figure 10.10: Feynman diagrams for
the six scattering processes that con-
tribute to one-phonon (Stokes) Raman
scattering. (Taken from Yu and Car-
dona.) (g) Symbols used in drawing
Feynman diagrams to represent Raman
scattering.
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h̄ωq − h̄ωs) to yield the probability per unit time for Raman scattering for diagram (a):

Pph(ωs) =

(

2π
h̄

)∣

∣

∣

∣

∑

n,n′
〈i|HeR(ωs)|n

′〉〈n′|He−ion|n〉〈n|HeR(ωi)|i〉
[h̄ωi−(En−Ei)][h̄ωi−h̄ωq−(En′−Ei)]

∣

∣

∣

∣

2

×δ(h̄ωi − h̄ωq − h̄ωs).
(10.62)

Then summing over the other 5 diagrams yields the result

Pph(ωs) =

(

2π
h̄

)∣

∣

∣

∣

∑

n,n′
〈i|HeR(ωi)|n〉〈n|He−ion|n

′〉〈n′|HeR(ωs)|i〉
[h̄ωi−(En−Ei)][h̄ωi−h̄ωq−(En′−Ei)]

+ 〈i|HeR(ωi)|n〉〈n|HeR(ωs)|n
′〉〈n′|He−ion|i〉

[h̄ωi−(En−Ei)][h̄ωi−h̄ωs−(En′−Ei)]

+ 〈i|HeR(ωs)|n〉〈n|He−ion|n
′〉〈n′|HeR(ωi)|i〉

[−h̄ωs−(En−Ei)][−h̄ωs−h̄ωq−(En′−Ei)]

+ 〈i|HeR(ωs)|n〉〈n|HeR(ωi)|n
′〉〈n|He−ion|n

′〉
[−h̄ωs−(En−Ei)][−h̄ωs+h̄ωi−(En′−Ei)]

+ 〈i|He−ion|n〉〈n|HeR(ωi)|n
′〉〈n′|HeR(ωs)|i〉

[−h̄ωq−(En−Ei)][−h̄ωq+h̄ωi−(En′−Ei)]

+ 〈i|He−ion|n〉〈n|HeR(ωs)|n
′〉〈n′|HeR(ωi)|i〉

[−h̄ωq−(En−Ei)][−h̄ωq−h̄ωs−(En′−Ei)]

∣

∣

∣

∣

2

×δ(h̄ωi − h̄ωs − h̄ωq).

(10.63)

Although Eq. 10.63 is not generally used to calculate scattering intensities directly, Feynman
diagrams similar to those in Fig. 10.10 are widely used in physics.

10.6 Raman Spectra in Quantum Wells and Superlattices

Raman spectroscopy has also been used to study quantum well and superlattice phenom-
ena. One important example is the use of Raman spectroscopy to elucidate zone folding
phenomena in the phonon branches of a superlattice of quantum wells. Since the Raman
effect is highly sensitive to phonon frequencies, this technique can be used to characterize
quantum wells and superlattices with regard to the composition of an alloy constituent
(e.g., the composition x of an alloy such as SixGe1−x). The Raman effect can then be used
to determine the amount of strain in each constituent from measurement of the phonon
frequencies.

Zone folding effects in the phonon dispersion relations are demonstrated in a superlattice
of [GaAs (13.6Å)/AlAs (11.4Å)] ×1720 periods. The observed Raman spectra are shown
in Figs. 10.11(a) and (b), demonstrating the zone folding of the LA branch. The difference
in the force constants between the GaAs and AlAs constituents causes splittings of the
zone–folded phonon branch, as shown in Fig. 10.11(c). The peaks in the Raman spectrum
at ∼ 64 cm−1 and ∼ 66 cm−1 are identified and labeled with the zone folded modes of the
LA branch with symmetries A

(1)
1 and B

(1)
2 , consistent with the polarization of the incident

and scattered photons. At higher frequencies the Raman spectrum of Fig. 10.11(a) shows
additional structure related to the zone folded LO phonon branch. Here we note that
the normally three–fold levels of T symmetry of the cubic crystal are split into E and B2

symmetries in the superlattice because of its lower tetragonal symmetry. The two–fold level
of E symmetry can be further split by the LO–TO splitting which occurs in ionic solids.
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Figure 10.11: (a) Raman spectra of a superlattice consisting of 1720 periods of a 13.6 Å
GaAs quantum well and a 11.4 Å AlAs barrier. The polarizations for the incident and
scattered light are arranged so that only longitudinal phonons are observed. (b) Dispersion
of the LA phonons in the superlattice. (c) An expanded view of the 65 cm−1 region of the
zone folded LA branch near ~k ≈ 0. (C. Colvard, T.A. Grant, M.V. Klein, R. Merlin, R.
Fischer, H. Morkoc and A.C. Gossard, Phys. Rev. B31, 2080 (1985).)
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As another example, Raman spectroscopy can be used as a compositional characteriza-
tion technique to confirm the chemical composition of a semiconductor alloy. This charac-
terization is based on the identification of the Raman-active modes and the measurement
of their frequency shifts and their relative intensities. The strain induced by the lattice
mismatch at the interface between Si0.5Ge0.5 and a GaAs (110) surface is responsible for
the dependence of the frequency shifts of the Ge-Ge, Si-Si and Si-Ge phonon lines on the
thickness of the quantum wells in the spectra shown in Fig. 10.12 for Si0.5Ge0.5 layers of
various thicknesses on a GaAs (110) surface. Since phonon frequencies depend on (K/M)1/2

(where K is the force constant and M is the ion mass) the mode frequencies of the Ge–Ge,
Ge–Si and Si–Si optical mode vibrations are very different as seen in Fig. 10.12. Therefore
the amount of interface strain can be sensitively monitored by Raman scattering. Note the
disappearance of the GaAs Raman lines (associated with the substrate) as the thickness of
the Si0.5Ge0.5 overlayer increases.
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Figure 10.12: Raman spectra for various
thicknesses of Si0.5Ge0.5 on an GaAs (110)
substrate. Here the dependence of the Si–
Si, Ge–Ge, and Si–Ge bond lengths on the
thickness of the Si0.5Ge0.5 layer can readily be
seen. The samples were grown at 720 K and
the measurements were made at 80 K using
a laser with a wavelength of 457.9 nm. (G.
Abstreiter, H. Brugger, T. Wolf, H. Jorke and
H.J. Herzog, Phys. Rev. Lett. 54, 2441 (1985).
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Chapter 11

Non-Linear Optics
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11.1 Introductory Comments

Non-linear optics became an important field of activity in the 1960’s with the advent of
high power laser sources such as:

CO2 at 10.6 µm
YAG:Nd3+ at 1.06 µm
ruby at 6943 Å
argon at 5145 Å

The topics we will consider under heading of non-linear optics are:

1. harmonic generation

2. paramagnetic oscillation

3. frequency conversion.

The significant point in non-linear optics is that, when the electromagnetic fields become
strong enough, the dielectric function becomes dependent on the electric field ~E. We write
the total dielectric function as

εT = ε+
↔
εNL · ~E (11.1)
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where ε is the linear response and
↔
εNL · ~E represents the non-linear term. Thus, non-

linear effects become more important as the magnitude of the electric field is increased. To
observe non-linear effects, we require fields of magnitude | ~E| ∼ 106 volt/cm. Fields of this
magnitude are readily available with high power laser sources. Non–linear effects are of
great importance in quantum well structures.

It is sometimes more convenient to express these non-linear effects in terms of the
polarization per unit volume ~P

~P =
↔
χ0

~E+
↔
χ1

~E ~E+
↔
χ2

~E ~E ~E + · · · (11.2)

where
↔
χ0 is the linear susceptibility tensor,

↔
χ1 is the lowest order non-linear susceptibility

important in non-linear materials with no center of inversion; and
↔
χ2 is the second order

non-linear susceptibility which comes into play for non-linear effects in cubic crystals with
a center of inversion for which the first order term vanishes by symmetry.

For the present discussion we will only consider the lowest order non-linear term:

~PNL =
↔
χ1 · ~E ~E (11.3)

where NL denotes non–linear and the non-linear susceptibility is in reality a 3rd rank tensor
in the same sense that χ0 for the linear response is a second rank tensor in an actual solid

state medium. Likewise
↔
χ2 in Eq. 11.2 is a 4th rank tensor. We will not make any use of

the tensorial properties of χ1 here, because we want to keep things simple.
Maxwell’s equations in this case become

~∇× ~E +
µ0
c

(

∂ ~H

∂t

)

= 0 ~∇× ~H − ε0
c

(

∂ ~E

∂t

)

=
4π

c

(

∂

∂t

)

↔
χ1 · ~E ~E (11.4)

where the term in χ1 · ~E ~E is the non-linear term. We thus obtain the non-linear wave
equation

∇2 ~E − ε0µ0
c2

(

∂2 ~E

∂t2

)

=
4πµ0
c2

(

∂2

∂t2

)

↔
χ1 · ~E ~E. (11.5)

The wave equation without the non-linear term has plane wave eigen functions. That is, if
we have an incident field with more than one frequency

E =

[

~E1e
i(K1z−ω1t) + ~E2e

i(K2z−ω2t)
]

, (11.6)

the wave equation

∇2 ~E − ε0µ0
c2

(

∂2 ~E

∂t2

)

= 0 (11.7)

is valid for each of the waves in Eq. 11.6. This insures that no mixing occurs and each
frequency propagates independently through the linear medium.

Now what does the non-linear term do? Here we have to take a product ~E ~E. Clearly
we will get terms at 2ω1 and 2ω2 (frequency doubling or second harmonic generation) and
also at [ω1 + ω2] (frequency mixing). This means that we now no longer have plane wave
solutions

~Ei = ~Eiei(Kiz−ωit) (11.8)
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for ~Ei polarized along x̂, where ~Ei is a constant amplitude. Instead we must look for a more
generalized form. For example, we could seek a solution of the form of a modified plane
wave

~Ei = ~Ei(z)ei(Kiz−ωit) (11.9)

where ~Ei(z) now has a weak z dependence. This approach is in the spirit of perturbation
theory. Now in taking spatial derivatives of Ei we will get two terms

∂Ei
∂z

=

[

∂Ei
∂z

+ iKiEi
]

ei(Kiz−ωit) (11.10)

where the term in iKiEi is the large term and the term in ∂Ei/∂z represents the small
perturbation. Thus in taking two derivatives we will get

∂2Ei
∂z2

= iKi

[

2
∂Ei
∂z

+ iKiEi
]

ei(Kiz−ωit), (11.11)

retaining only the lowest order term in the perturbation.
We will now show that coupling to frequency ω3 is possible for waves at frequencies ω1

and ω2 provided that ω3 = ω1 + ω2. From the wave equation Eq. 11.5, we see that if the
incident field has two frequencies ω1 and ω2, we will get a perturbation driving term on the
right hand side of the non-linear wave equation and also a perturbation term on the left
hand side of this equation due to the z dependence of Ei(z). Assuming a solution at some
frequency ω3 (to be determined from the wave equation, Eq. 11.7) we can write an equation
for the right and left hand perturbation terms

2iK3

(

∂E3
∂z

)

ei(K3z−ω3t) = −(ω1 + ω2)
2
(

4πµ0
c2

)

χ1 · E1E2ei(K1z−ω1t)ei(K2z−ω2t) (11.12)

To satisfy the right hand side of Eq. 11.5 we need to match the time phase terms on the
left hand side, yielding

ω3 = ω1 + ω2, (11.13)

which indicates that mixing has occurred.
Because of the dispersion properties of crystals, the wave vector for light K will be a

function of ω and we cannot in general cancel the phases for all frequencies. Thus, some
mismatch ∆K = K3 − (K1 +K2) will generally occur. Phase matching is achieved when
∆K ≡ 0 and in this case the three waves will be coherent. In free space, phase matching
is automatically satisfied since there is no nonlinear response in free space. In a solid,
K = ñω/c where ñ is the index of refraction. Solids have the property that the optical
constants are frequency-dependent so that in general ñω1 + ñω2 6= ñω3 . If, however, ∆K is
small, phase matching is approximately satisfied. In fact, provided that the phase changes
by less than π, some coherence will be achieved. We thus introduce a phase coherence
length `c defined as `c = π/∆K over which some degree of coherence is achieved.

11.2 Second Harmonic Generation

For the non–linear process corresponding to second harmonic generation we have ω1 =
ω2 = ω and ω3 = 2ω. The non-linear contribution to the polarization will be proportional
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to (Eω)
2 and the power generated at 2ω will be proportional to (Eω)

4. If phase matching
is achieved, the power produced at the second harmonic will be maximized. For phase
matching we require

ω3ñ3 = ω1ñ1 + ω2ñ2 (11.14)

or
2ωñ3 = 2ωñ1, (11.15)

which can be written more conveniently as ñ2ω = ñω, which says that we require the index
of refraction at 2ω to be equal to the index at frequency ω for phase matching.

For solids, the index of refraction ñ will generally be frequency dependent, so phase
matching would seem difficult to achieve. By using anisotropic materials and selecting
particular directions of propagation, it is sometimes possible to arrange matters so that ñω
for one polarization direction is equal to ñ2ω for another polarization direction. Efficient
harmonic generation has been achieved using the semiconductor Te, which crystallizes in
a hexagonal structure and has a rather different index of refraction for the polarization
~E ‖ ~c than for ~E ⊥ ~c. To achieve frequency doubling in Te, it is convenient to use a CO2

laser source, since Te which has a band gap of 0.344 eV is quite transparent at both ω and
2ω for the CO2 laser line at 10.6µm. With frequency doubling, it is possible to convert
infrared light to visible radiation and thus to utilize the highly developed technology for
the detection of visible light signals. The process of second harmonic generation need not
be considered a small or weak effect. High conversion efficiencies (> 50%) can be achieved.

11.2.1 Parametric Oscillation

Here laser power is applied to a non-linear crystal at a pump frequency ω3. Oscillations are
induced in the crystal at frequencies ω1 and ω2, the signal and idler frequencies respectively.
The signal and idler frequencies are determined by the frequency condition

ω3 = ω1 + ω2 (11.16)

and the phase matching condition

∆K = 0, K3 = (K1 +K2). (11.17)

It is only when phase matching occurs that the two waves will interact sufficiently to produce
any measurable non–linear effects. The phase matching condition can also be written as

ω3ñ3 = ω1ñ1 + ω2ñ2 (11.18)

where ñ1 and ñ2 are refractive indices at frequencies ω1 and ω2 and are determined by the
propagation direction and polarization of the modes at ω1 and ω2. In non-cubic materials,
the index of refraction depends on the direction of the ~E field relative to the crystallographic
directions. Thus, by changing the propagation direction of the pump frequency relative to
the crystal optic axis (e.g., the “c” axis in a hexagonal crystal like Te), it is possible to “tune”
the signal and idler frequencies ω1 and ω2. Furthermore, since the indices are temperature
dependent, “tuning” can also be accomplished by varying the temperature of the non-linear
crystal; tuning with application of uniaxial stress can also be accomplished. Parametric
oscillation need not be a small effect. Using a Q-switched ruby laser as a pump at 6943
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Å on a non-linear LiNbO3 crystal, a signal at 1.04µm and an idler at 2.08µm have been
achieved with 60 kW of signal power generated for 270 kW of input power or a conversion
efficiency of ∼ 20%. Tuning with a parametric oscillator between 0.54µm and 3.7µm has
also been achieved.

11.2.2 Frequency Conversion

For frequency conversion, two frequencies are applied to a non-linear crystal and the sum
frequency (up converter) or difference frequency (down converter) is generated. In this
experiment, we might impose a high power signal at a pump frequency ω3 and a lower
power signal at ω2. These signals mix in the non-linear medium to produce a signal at

ω1 = ω3 − ω2 (down converter) (11.19)

or at
ω1 = ω3 + ω2 (up− converter). (11.20)

Phase matching determines whether up-conversion or down-conversion actually occurs. The
power from the signal at ω3 drives the system at frequencies ω1 and ω2, and as a function
of length of the non-linear crystal, the amounts of power at ω1 and ω2 can be varied. Thus,
by choosing the length properly the conversion of power to frequency ω1 can be maximized.

Frequency conversion is attractive for practical applications because up-conversion can
be exploited to convert an infrared signal into the visible region where detectors are fast
and sensitive. Down-converters can be exploited to create a different frequency in the far
infrared where high power sources have been unavailable until about 1965, when some far
infrared lasers were first built. For example, the two strong CO2 laser lines at 10.6µm and
9.6µm can be mixed to get a far infrared signal.
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Chapter 12

Electron Spectroscopy and Surface
Science
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12.1 Photoemission Electron Spectroscopy

12.1.1 Introduction

Photoemission is one of the most important of the electron spectroscopy techniques. In
photoemission, the excitation particle is the photon and the excited particle is the electron.
What we measure is the dielectric response function which gives us information about ele-
mentary excitations and the electronic structures of the solid. Depending on the excitation
energies, photoemission measures the density of states, energy distribution of the joint den-
sity of states, and probes the valence bands and the core levels. With the advent of the use
of synchrotron radiation and angle-resolved spectroscopy, the mapping of the electron en-
ergy bands has become possible. Other electron spectroscopies or related surface techniques
include:

1. ESCA (Electron Spectroscopy for Chemical Analysis) which measures the chemical
shift and thereby probes the local environment and oxidation state of the compound
– also called x-ray photoelectron spectroscopy (XPS)

2. AES (Auger Electron Spectroscopy) is a two electron process mainly used for elemental
analysis of surface constituents

3. X-ray Fluorescence again is mainly used for elemental (chemical) analysis

4. ELS (Electron Loss Spectroscopy) which like optical spectroscopy gives the dielectric
function of the material – also called electron energy loss spectroscopy (EELS)

5. LEED (Low Energy Electron Diffraction) mainly used for structural analysis.
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6. RHEED (Reflection High Energy Electron Diffraction) mainly used for in situ char-
acterization of superlattices during layer-by-layer growth.

7. STM (Scanning Tunneling Microscopy) which is used to obtain atomic resolution of
atoms and molecules on surfaces.

All of the above, except LEED, involve an inelastic scattering mechanism.
In photoemission the photoelectric current (I) can be written in the form

I = I(E, θe, φe, ~σ; h̄ω, ~ρp, θp, φp) (12.1)

where E, θe, ψe, ~σ are respectively the kinetic energy, polar angle, azimuthal angle, and
spin of the electron, and ω, ~ρp, θp, φp are respectively the frequency, polarization, polar
angle, and azimuthal angle of the photon. For the various experimental measurements,
different variables are held constant. The most common quantities that are measured in
photoemission experiments include

1. EDC (Energy Distribution Curves) where the photoelectron current is observed as a
function of electron energy I = I(E) with all other parameters held constant

2. CIS (Constant Initial State Spectroscopy) where h̄ω − E is kept constant, and the
photoelectron current is measured as a function of electron energy and photon energy
I = I(E, h̄ω)|E−h̄ω=const

3. CFS (Constant Final State Spectroscopy) where I = I(h̄ω) is measured

4. ARPS (Angular Resolved Photoemission Spectroscopy) where the angles are allowed
to vary.

Historically, photoemission was first used to study the work function of solids, and to
study core levels in molecules. Both UPS (Ultraviolet Photoelectron Spectroscopy) and
XPS (X-ray Photoelectron Spectroscopy) were used to probe core levels.

In the photoemission process light incident on a sample is absorbed in a length char-
acterized by the optical skin depth. In this optical skin depth, electrons can be excited
to ionization states and are eventually emitted. Because of the much stronger interaction
of electrons with matter (in contrast to the case of photons), the characteristic absorption
length for the photo-excited electrons is much smaller than that for the exciting photons
and as a consequence, only electrons that are excited close to the surface will be emitted.
By applying an electric field to the sample, some of the electrons generated in the optical
excitation process are collected and their kinetic energy is measured. The following two
quantities are observed in standard photoemission studies:

1. the photoelectric yield (defined as the number of electrons that are produced per unit
of incident photon flux) as a function of photon energy,

2. the energy distribution of the emitted electrons, for various values of the incident
photon energy.

These measurements provide information on interband transitions through analysis of struc-
ture in the photoelectric yield curves, and on the density of valence states through the shape
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Figure 12.1: The potential barrier at a surface
showing the work function.

of the electron distribution curves. Because this technique provides one of the few methods
for studying the density of states (particularly for low lying valence states), this has become
an important measurement technique. Furthermore because of its surface sensitivity, ul-
traviolet photoemission spectroscopy provides a useful tool for contrasting electronic states
characteristic of the surface relative to states characterizing the bulk.

In describing the photoemission process in a metal, we make use of the model for the
potential barrier at a surface shown in Fig. 12.1. In so–doing, we illustrate one of the
classical applications of the photoemission process in measuring the work function of a
solid.

In this model we assume that our surface is in the x−y plane, and that pz is the electron
momentum (in the direction normal to this surface) which the electron acquires through the
photo-excitation process. From the diagram, we see that it will be possible for this electron
to escape from the surface (by photoemission) provided that

p2z
2m

+ h̄ω ≥ E0 (12.2)

where E0 is called the vacuum level, located at an energy h̄ω0 above the band extremum.
The work function eφ represents the minimum kinetic energy that an electron must be given
by the light in order to escape from the surface (see Fig. 12.1). For the electron to retain
any information about its initial state the mean free path (see Fig. 12.2) must be greater
than the penetration depth of the exciting radiation.

The photocurrent I will then be proportional to the number of electrons escaping from
the surface of the metal

I = e

∫ ∞

0
pzn(pz)D(pz)dpz (12.3)

where D(pz) is the escape probability for an electron of momentum pz and n(pz) is the cor-
responding electron density, which can be expressed through the Fermi distribution function

n(pz) =
2

h̄3

∫ ∞

−∞
dpxdpy

1

e(
p2

2m
−EF )/kBT + 1

(12.4)

The discussion given above is appropriate to photoemission from a metal. In the case
of semiconductors there is an energy gap and the Fermi level lies in this energy gap, in
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Figure 12.2: The mean free path for an elec-
tron in various materials as a function of en-
ergy.

Figure 12.3: Schematic diagram of the states
near the Fermi energy of a semiconductor.

contrast to the situation in metals where the Fermi level lies at the top of the occupied
electron states within an energy band. For semiconductors, the work function eφ is still
defined relative to the Fermi level but the threshold energy is now increased to eφ+δ where
δ is the energy difference between the highest lying valence band maximum and the Fermi
level as seen in Fig. 12.3.

For semiconductors it is customary also to refer to the electron affinity, denoted by Ea

on the diagram and representing the energy difference between the vacuum level E0 and the
bottom of the conduction band. We can see how interband transitions are detected in the
photoemission process by the following argument. Suppose that Ea < Eg. The threshold
for photoemission requires the incident photons to have an energy of at least:

h̄ω > eφ+ δ = Ea + Eg. (12.5)

The photoemission process will dominate until the photo-emitted electrons are them-
selves energetic enough to make electron-hole pairs through collisions with other electrons.
The threshold for this secondary interband transition process (whereby the photo-excited
electron has enough energy to produce a second photoelectron) is

h̄ω > (Ea + Eg) + Eg = Ea + 2Eg. (12.6)

140



Figure 12.4: Quantum yield vs. photon energy
above the threshold energy.

The threshold for this interband process gives rise to structure in the photoemission
distribution curves identified with interband transitions.

We call this general field of study photoemission spectroscopy. The advent of the the-
oretical development of the electronic structure of solids in the 50’s made the microscopic
understanding of photoemission possible. Furthermore, instrumental advances in high vac-
uum technology in the late 60’s extended the photon range of ultraviolet photoelectron
spectroscopy (UPS) to greater than 6 eV. Simultaneously the use of synchrotron radiation
as a light source gives tunability of the excitation frequency and high power densities from
the visible to hard x–ray frequencies. Angle resolved techniques are now commonly used to
gain an understanding of the electronic structure of solids.

In the photoemission process, three basic things must happen: (3-step model)

1. optical excitation of an electron from an occupied state

2. transport of the photo-excited electron to the surface

3. the electron must escape from the surface and into the vacuum region

In order for the electron to escape from the surface into the vacuum region where the
electron is collected, it must have sufficient kinetic energy. Measurements of the photoelec-
tric yield exhibit a threshold energy and thereby provide a measure of the work function.
Photoelectric yield data are plotted in terms of the quantum yield (defined as the number
of electrons emitted per incident photon) vs. photon energy as shown in Fig. 12.4.

12.1.2 Energy Distribution Curves

Of greater interest however is the energy distribution of the photo-emitted electrons N(E)
which is defined as the number of electrons emitted with energy E in the range ∆E relative
to the total number of electrons produced per photon. We show that the probability that an
electron of energy E is produced is proportional to the initial density of states at energy (E−
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h̄ω) written as g(E− h̄ω). The intensity profile of the electrons emitted in a photoemission
experiment will contain both the primary electrons which suffer no inelastic collisions, and
the secondary electrons that suffer at least one inelastic collision. The photoelectric current
can then be written as

I(E,ω) = Ip(E,ω) + Is(E,ω) (12.7)

where Ip, Is are respectively identified with primary and secondary electrons. Ip depends
on three factors according to the three-step model:

Ip(E,ω) = P (E,ω) · T (E) ·D(E) (12.8)

where P (E,ω) is the probability that a photoelectron of energy E is excited by a photon
of energy h̄ω, T (E) is the transmission function of the excited electrons and D(E) is the
escape function of the excited electron. We can write T (E) as

T (E) =
λe(E)/λph(ω)

1 + λe(E)/λph(ω)
(12.9)

where λe is the mean free path of the electrons and λph is the attenuation length of photon.
Likewise, we can write D(E) as

D(E) =











1
2 [1− (EF+φE )

1

2 ] for E > EF + eφ

0 otherwise

(12.10)

where EF denotes the Fermi level and φ is the work function. If we consider only bulk
states, and direct transitions, the energy distribution takes the form

P (E,ω) ∼ Σn,n′

∫

d3kδ(En′(~k)− En(~k)− h̄ω)δ(En′(~k)− E) (12.11)

The first δ function represents the joint density of states for optical absorption and the
second δ function selects out the energy that is set by the energy analyzer. Thus the
structures of the EDCs (energy distribution curves) mimic those of the joint density of
states and thus give information concerning the joint density of states. The experimental
data for the photo-emitted electron energy distribution are taken for a variety of photon
energies as shown in the curves in Fig. 12.5 and N(E) is plotted as a function of (E− h̄ω) in
order to relate the electron energy distributions to the density of states at the same initial
energy. Peaks in the density of initial states give rise to peaks in N(E) at the same value
of E − h̄ω, independent of the energy of the photons involved in the excitation process.
Each curve in Fig. 12.5 for aluminum is labeled by the incident photon energy. The dashed
curve is a density of states curve for the occupied electron states in aluminum obtained from
the interpretation of these data. Note the threshold appearing at the Fermi level. Since
the onset of interband transitions corresponds to discontinuities in the density of states
spectrum, the EDC curves can also be used to identify interband transitions. To interpret
valence band states we make use of the fact that d-bands have low dispersion and therefore
a high density of states over a narrow energy region, while s- and p-bands have a low density
of states over a wide energy region (see Fig. 12.5).

Since laboratory ultraviolet sources are weak and difficult to work with, it is common
to use a monolayer of cesium on the surface to lower the work function and the threshold
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Figure 12.5: Energy distribution curves for
photoelectrons in aluminum for various pho-
ton energies. The dashed curve shows the den-
sity of states over a wide energy region.

energy for the photoemission process. This allows the photoemission experiments to be
carried out at somewhat lower photon energies where laboratory sources are more intense.
More recently, intense synchrotron radiation ultraviolet sources have become available at
a few of the national accelerator facilities and this has accelerated the development of
photoemission spectroscopy research.

If we allow non–direct transitions to occur, then the energy distribution function P (E,ω)
takes the form

P (E,ω) ∼ Σnn′

∫

d3kd3k′|〈n′|~p|n〉|2δ(En′(~k′)− En(~k)− h̄ω)δ(En′(~k′)− E). (12.12)

If we rewrite P (E,ω) as

P (E,ω) ∼ Σn

∫

d3kδ[E − h̄ω − En(~k)]
∑

n′

∫

d3k′δ[En′(~k′)− E]|〈n′|~p|n〉|2 (12.13)

then P (E,ω) is expressed as a weighted average of the initial and final density of states.
Thus indirect transitions can be invoked to explain stationary structures in the EDCs as
we scan the photon frequency.

Modifications to the three step model have been made to include the possibility of an
energy dependent electron mean free path

λe(E) = vgTe(E) =
1

h̄
|∇kE(~k)|Te(E) (12.14)

and the possibility that the transmission function Te(E) is described by more than one core
state that couples to Bloch states. In Eq. 12.14 vg denotes the group velocity.
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12.1.3 Angle Resolved Photoelectron Spectroscopy

Advances in angle-resolved photoemission have made photoemission an even more powerful
experimental technique especially for the study of electronic band structure. If one measures
the kinetic energy and the propagation direction of the electron by the conservation of wave
vector parallel to the surface, we obtain

~K|| = ~k|| + ~G|| (12.15)

where ~K and ~k are respectively the wave vectors in vacuum and in the solid and ~G is a
reciprocal lattice vector of the solid. Wave vector conservation together with the energy
conservation

E = Ef (~k) (12.16)

where Ef (~k) denotes the energy of the electron and the zero of energy is taken at the vacuum
level gives

E =
h̄2

2m
(K2

⊥ + ~K2
||) (12.17)

h̄2K2
⊥

2m
= Ef (~k)−

h̄2(~k|| + ~G||)
2

2m
(12.18)

allowing the determination of Ef (~k) as a function of ~k‖ from photoemission data. Thus with
a good band structure calculation the energy for all the directions of the bulk photoemission
are determined. The functional form of Eq. 12.18 is especially suitable for layered materials
due to the fact that the k⊥ dispersion is very small. Thus for layered materials the band
structure is approximately 2-dimensional. Each peak in the EDC will give rise to a point on
the E vs. ~k|| plot and thus E vs. k can then be mapped uniquely. For a three-dimensional
system, a knowledge of the energy band structure is needed since k⊥ is not determined if
Ef (~k) is not known.

12.1.4 Synchrotron Radiation Sources

Before the availability of synchrotron radiation, photoemission was carried out using a few
strong discrete line sources. Synchrotron radiation has provided us with a strong tunable
source from the infrared to the x-ray region of the electromagnetic spectrum. Synchrotron
radiation is emitted by electrons in circular accelerators, such as synchrotrons and storage
rings. This radiation is a consequence of the centripetal acceleration of the particle moving
in a circular path at relativistic velocities (close to the velocity of light). The energy to
produce this radiation is supplied by particle accelerators.

Synchrotron radiation has a number of properties which make it extremely useful. First,
this photon source can be extremely intense, several orders of magnitude more intense than
other broad-band sources. Second, it can have a very broad frequency spectrum, including
the ultraviolet and x-ray regions where there are no other intense, tunable sources. The
center of the spectrum is near the energy

h̄ω =
γ3h̄c

R
(12.19)
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Figure 12.6: Radiation emission pattern of
electrons in circular motion: Case I, non-
relativistic electrons. Case II, relativistic
electrons. Synchrotron radiation sources
operate under case II.

where

γ =
E

mc2
(12.20)

is the ratio of the accelerator energy to the particle’s rest energy, and

R =
γmc2

eB
(12.21)

is the radius of the circular path. For example, a 1 GeV accelerator with a 1 tesla magnetic
field and a radius of 3 meters gives h̄ω of about 1 keV. The third important property of
synchrotron radiation is that it is highly collimated, being confined to a narrow “searchlight”
beam in the direction tangent to the orbit with angular spread ∼ γ−1 radians as shown in
Fig. 12.6.

A fourth useful property is the high degree of polarization of the radiation in the plane
of the orbit. Fifth, devices called “wigglers” and “undulators” have recently been developed
which enhance the intensity of the radiation in a particular part of the spectrum, adding
one or two orders of magnitude to the already high intensity in the desired region.

The first experiments using synchrotron radiation were carried out in the so-called par-
asitic mode, at synchrotrons being used for particle physics research where the accelerators
are optimized for the particular set of particle-physics experiments being carried out. Fur-
thermore these synchrotrons operate in a pulsed mode, where the electrons are accelerated
in bunches up to the maximum energy desired. The desired maximum energy may vary
from experiment to experiment. An example of the spectral distribution available from the
Stanford SLAC facility is shown in Fig. 12.7.

Dedicated sources of synchrotron radiation are becoming increasingly available, such as
the National Light Source at Brookhaven National Laboratory, for both the UV and x-ray
regions. These are operated as storage rings, where the electron beam is maintained at a
constant energy for long periods of time. Some synchrotron radiation work is still being
done in the parasitic mode at storage rings being used for colliding-beam high-energy physics
experiments, but here the beam currents are lower and hence the radiation is weaker.

The new synchrotron radiation sources have made possible many new experiments, not
only advances in photoemission such as angle-resolved experiments, but also advances in
crystal structure determination, microlithography, x-ray fluorescence, and the determination
of local environments on surfaces using x-ray absorption fine structure (EXAFS).
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Figure 12.7: Photon intensity vs. photon en-
ergy for various maximum accelerator ener-
gies E0 showing the spectral distribution of a
synchrotron radiation source. The photon en-
ergy at which the maximum photon intensity
occurs is denoted by εc on the figure.

12.2 Surface Science

12.2.1 Introduction

Many electron devices depend on the electronic properties of surfaces. Because of the
geometrical effect of a two-dimensional surface, atoms at a surface have fewer neighbors
than similar atoms in the bulk. Therefore, the electronic energy levels at surfaces are
different from what they are in the bulk. For example, a silicon atom in bulk silicon
is surrounded by four tetrahedral bonds. On the surface, a silicon atom will have fewer
bonds, and the surface valence electrons that do not participate in bonding are described
as dangling bonds. These surface valence electrons give rise to new electronic states called
surface states. When the surface states are located in the band gap of a semiconductor or
insulator, they are more readily detected. A probe of electronic energy states with a skin
depth δ that is large δ À a compared with a lattice constant a is sensitive to the bulk
electronic states because the surface atoms comprise a small fraction of the total number
of atoms that are probed. On the other hand, a probe with a short skin depth (such as
electrons in the ten and hundred eV range) is especially sensitive to the surface atoms.

In addition, impurity atoms are preferentially adsorbed on the surface. These impurity
atoms also give rise to surface states. Since adsorbed impurity atoms are important in
catalyzed chemical reactions, there is considerable interest in studying these surface states.
At the present time there is a great deal of work being done on the study of surfaces
and on their electronic surface states. One reason is the availability of new experimental
probes, such as the photoemission experiments already discussed and the STM probes
discussed in this chapter, using ultra-high vacuum equipment. A second reason is the
recent improvement in the calculation of surface states and of the total energy of different
surface structures. A third reason is related to the smaller dimensions of semiconductor
electronic devices and the increasing importance of surfaces in these devices.

A number of different experimental techniques are used to study surfaces. The photoe-
mission process discussed in §12.1 is sensitive to surface states especially for incident photon
energies close to the photoemission threshold. In this limit, only electrons near the surface
will have enough kinetic energy to escape because of the strong electron-electron interaction.
As discussed above, photoemission provides information on the occupied valence states.
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Figure 12.8: Bragg condition for x-ray diffrac-
tion from rows of atoms.

12.2.2 Electron Diffraction

Another common technique is low energy electron diffraction (LEED). This technique is
especially sensitive to atomic arrangements on the surface and is analogous to the x-ray
diffraction techniques that are used to establish the crystal structure in the bulk solid. LEED
experiments can be carried out to study the structure of clean surfaces or of adsorbed species
on surfaces. The positions of the LEED spots on a photograph establish the periodicity of
the intrinsic surface structure.

Because of the small penetration depth for low energy electrons (E < 100eV), the LEED
technique emphasizes the surface structure. The LEED spot pattern that is formed is due
to the constructive interference of reflections of the electron beam through scattering of
rows of atoms rather than planes of atoms as occur in three-dimensional x-ray diffraction
illustrated in Fig. 12.8. Since the Bragg law in this case corresponds to rows of atoms, the
surface structure that is probed is indexed by a two-dimensional lattice. In many cases the
surface structure forms a superlattice relative to the substrate. This rearrangement of the
surface atoms takes place because of the dangling bonds, which would otherwise occur at
the surface. The rearrangement partially satisfies the bonding requirements. Within the
surface, rows of atoms may move closer together or farther apart, and the surface atoms
may move in or out relative to the inner layers of atoms. Such a rearrangement of the
surface atoms is called reconstruction. Surface reconstruction is illustrated in Fig. 12.9 for
the case of a (110) GaAs surface. The corresponding change in the surface density of states
is shown in Fig. 12.10. The surface is highly sensitive to the presence of adsorbed atoms.
Figure 12.11 shows the modification to the surface density of states of a (110) surface of
GaAs upon exposure to oxygen, as measured in this case by photoemission (see §12.1).

The notation used to describe the surface structure is in terms of (1) the length of the
lattice vectors in the superlattice relative to those of the substrate and (2) the angle of
rotation of the superlattice coordinate system relative to that of the substrate. Illustrated
in Fig. 12.12 are examples of (2×2)R0◦ and (

√
3×
√
3)R30◦ superlattices. Note in the case

of the (
√
3×
√
3)R30◦ superlattice that the coordinate system of the superlattice makes an

angle of 30◦ with respect to that of the substrate.

The LEED technique is used to study the structure of pristine surfaces. In many cases,
the surface structure may be different from the bulk structure because the surface atoms
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Figure 12.9: A schematic diagram of the elec-
tronic and spatial configurations of the GaAs
(110) surface. The As atoms have moved out-
ward and the Ga atoms inward compared to
the positions in the bulk of the crystal.

Figure 12.10: The local density of surface states
(solid line) for the bond relaxation model of the
GaAs (110) surface. Electronic states located
on the first two layers of Ga and As atoms are
shown.
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Figure 12.11: Energy distribution curves from the upper part of the valence band of two
different GaAs (110) crystals. The effects of a small oxygen exposure on the Fermi level
pinning and valence band structure are also shown.

Figure 12.12: This figure illustrates two possible commensurate structures for adsorbed
atoms on a honeycomb triangular lattice substrate. (a) The (2 × 2)R0◦ structure and (b)
the (

√
3×
√
3)R30◦ structure.
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Figure 12.13:
Schematic di-
agram of an
MBE system.

have fewer nearest neighbors. In general, one would thus expect the bond lengths (normal
to the surface) for the surface atoms to be slightly shorter than in the bulk.

In addition, the LEED techniques can be used to determine the structure of adsorbed
species in the coverage range from below one monolayer to perhaps two monolayers. The
analysis of LEED patterns in general is more complex than for x-ray diffraction because
of multiple electron scattering phenomena. For many surface structures, other evidence in
addition to LEED data is needed to determine the surface structure unambiguously.

The standard in situ characterization technique for MBE growth of semiconductor su-
perlattices (see Fig. 12.13) is RHEED (reflection high energy electron diffractometry). The
RHEED measurements are carried out at almost glancing angles of incidence to accentu-
ate the surface sensitivity. The RHEED measurements provide a diffraction pattern on a
fluorescent screen which is used to monitor the growth, providing information on the:

• structure of the growing surface and smoothness of surface

• surface reconstruction

• growth dynamics through observation of intensity oscillations

• evolution of surface impurities.

Some examples of RHEED patterns from the growth of InSb on a CdTe (001) substrate,
looking down a [110] direction (glancing angle) are seen in Fig. 12.14. After 5 sec of InSb
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Figure 12.14: Reflection high–energy electron diffraction patterns at 20KeV and at a glanc-
ing [110] angle characterizing the growth of InSb on CdTe (001): (a) after 5 sec; (b) after
75 sec; (c) after 115 sec; (d) after 160 sec, to yield an InSb quantum well of 160Å. (After
L. A. Kolodziejski, Gunshor, Otsuka, Datta, Becker, and Nurmikko, IEEE J. Quantum
Electronics, vol. QE22, 1666 (1986)).
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growth (∼ 1Å/sec growth rate), a spotty diffraction pattern is seen (Fig. 12.14a), indicative
of the formation of islands of InSb on the CdTe substrate. As the growth proceeds over a∼75
sec time period, the islands get large enough to join up and form a smooth surface, yielding
the more uniform streak pattern. This streak pattern develops further with increasing
deposition time. The diffraction patterns for later times (75 sec and beyond) show a central
diffraction line characteristic of the bulk material, and some weak sidebands characteristic of
the surface reconstruction. The surface reconstruction sidebands indicate a surface structure
that is also periodic but with a different structure than the bulk, due to the relaxation of
the solid to tie up the dangling bonds at the surface.

12.2.3 Electron Energy Loss Spectroscopy, EELS

Electron energy loss spectroscopy (EELS or ELS) is another commonly used technique
in surface science. In electron energy loss spectroscopy, a primary electron with an energy
of perhaps 100 eV will excite an electron in a filled initial state to an empty excited state.
The electronic structure of the valence band states is determined by examination of the
energy spectrum of the emitted secondary electrons. In the interpretation of these energy
loss studies, no correction need be made for the work function for the electron, since the
same potential energy drop is experienced for both the primary and secondary electrons at
the surface potential barrier.

The EELS technique is conceptually the same as Raman scattering (§10.4 of notes Part
II) or inelastic neutron scattering. An incident electron of energy Ei is scattered by an
electron in the solid, imparting (or absorbing) an energy h̄ω to (from) the electron in the
solid to achieve an energy Ef for the scattered electron using conservation of energy:

Ei − Ef = h̄ω. (12.22)

Likewise momentum is conserved to yield the relation

~ki − ~kf = ~q. (12.23)

Unlike the case of Raman scattering, the incident electrons in the EELS experiment can
have a large range of wave vectors ~ki so that the change in momentum for the electron in the
solid can be comparable to Brillouin zone dimensions. Since the incident electrons typically
have energies up to ∼ 100eV with wave vectors up to ~ki ≈ 5Å−1, the EELS technique can
probe a wider wave vector range in the E(~k) diagram than is commonly probed in an optical
reflectivity measurement.

EELS is different from optical absorption and Raman scattering in that it is sensitive to
different aspects of the electronic structure of solids because the probe is a charged particle
rather than a photon. An incident light wave is characterized by its electric field ~E. The
rate of absorption of the light or the power loss is proportional to

Im( ~E · ~D) ∝ Im(ε)| ~E|2 ∝ ε2(ω)| ~E|2 (12.24)

where the imaginary Im(ε) = ε2(ω) and ~D = ε ~E is the displacement vector while ε = ε1+iε2
is the complex dielectric constant. Optical absorption occurs preferentially at peaks in ε2(ω).
On the other hand, an incident electron sets up a free charge density ρ(r) which determines
the displacement vector ~D through the Maxwell equation

~∇ · ~D = 4πρ (12.25)
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Figure 12.15: Schematic di-
agram of the Auger process.
E = E`′ − E` − E`′′
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For an incident electron beam, the electron energy loss rate is proportional to

Im( ~E · ~D) = Im(
1

ε
)| ~D|2 = ε2

ε21 + ε22
| ~D|2 (12.26)

Thus in the EELS experiment peaks in the energy loss rate occur both near peaks in ε2(ω) (if
|ε1(ω)| À |ε2(ω)| in this frequency region), and also near zeros in ε1(ω) (where ε2(ω) often
remains small), corresponding to longitudinal modes. The most important longitudinal
mode is the plasma mode, which is usually a prominent feature in EELS data.

The standard EELS technique is limited by the small penetration depth of the electrons
relative to that for photons. EELS is thus primarily a surface technique. By using electron
beams of higher energy and near normal incidence, EELS can be applied to study the
electronic structure of the bulk. To emphasize the electronic structure near the surface, low
energy electrons are used at grazing angles of incidence.

12.2.4 Auger Electron Spectroscopy (AES)

To determine the chemical species present on a surface, Auger Electron Spectroscopy (AES)
is commonly used. In this technique an electron beam of several keV is incident on the
surface. An electron in this primary incident beam will excite an inner core electron,
creating a hole in this inner core electron state, which we will label as state `. An electron
in some higher-lying state `′ in the same atom will quickly fall into the hole state `. At
the same time, a second electron in a state `′′ also in the same atom will be ionized. This
second electron will acquire kinetic energy E such that energy is conserved in the total
Auger process. Thus in the Auger process (see Fig. 12.15) there are three quantum states
involved: `, `′, `′′. What is measured is the energy spectrum of the emitted secondary
electrons. In this spectrum, peaks in the intensity profile are identified with specific core
states of the atom participating in the Auger process. Since each atomic species has its
own characteristic core state spectrum, the Auger spectrum provides an excellent tool for
the identification of atomic species. Furthermore, the intensity of the Auger lines provides
a measure of the concentration of each atomic species. Because of the strong interaction
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Figure 12.16: Schematic dia-
gram for the x-ray fluorescence
process.
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of electrons with matter, electrons will be emitted only from atoms near the surface and
for this reason Auger electron spectroscopy preferentially studies the chemical species at
or near (within ∼ 40Å) the free surface. Typical Auger electron spectroscopy equipment
contains an Argon ion sputtering gun, permitting the removal of surface atoms so that the
Auger experiments can be carried out as a function of depth into the surface by a method
called depth profiling. Use of the depth profiling technique is destructive to the sample,
leaving a tiny hole behind.

X-ray fluorescence measurements are also used to identify the chemical species present in
a given species. In the x-ray fluorescence technique, x-rays (energies ∼ 50keV) are incident
on a sample and eject an electron from a core state ` in the atom of the solid. An electron
in a level `′ (see Fig. 12.16) will fall into the state `, releasing a photon with energy E`′−E`

which is measured.

The emitted x-rays thus have characteristic energies corresponding to the core level for
each atom, thereby allowing identification of the chemical species. The intensity of the
characteristic emission lines are related to the concentration of each of the chemical species.
X-ray fluorescence (see Fig. 12.16) is a non-destructive method for chemical analysis and
has a penetration depth of ∼ 1µm. This technique is usually available when doing scanning
electron microscopy (SEM) studies and is called EDX.

12.2.5 EXAFS

Another powerful experimental method for studying solids is Extended X-ray Absorption
Fine Structure (EXAFS), which has been applied to the study of surfaces. Figure 12.17
shows a typical x-ray absorption spectrum, in the region of an inner-shell ionization energy.
The photon energy at the absorption edge is equal to the minimum of threshold energy
required to excite an electron from an inner tightly-bound atomic level to an unbound or
continuum state. The region of higher photon energies, which is about 1-2 keV above the
absorption edge, is called the EXAFS region; small oscillations in the absorption strength
are produced by interference between the wave function for the outgoing electron state and
the wave-functions reflected from neighboring atoms in the solid or on the surface. (See
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Figure 12.17: Schematic of x-
ray absorption spectrum show-
ing the threshold region (in-
cluding pre-edge and edge re-
gion) and the EXAFS spec-
trum.
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EXAFS structure is shown in Fig. 12.17).
To analyze the EXAFS region, the final state of the electron φf (r) is written as

φf (r) = φf,`(r) + ΣkjφSC(r −Rj) (12.27)

where φf,`(r) is the final state of the absorption process, centered at the particular atom
with angular momentum quantum number ` and which corresponds to a particular energy
E above the threshold, and φSC is a reflected wave corresponding to the scattering of the
electron in state φf,`(r) from a neighboring atom at position Rj . If one knows, from atomic
physics experiments or theory, the phase shifts δj corresponding to scattering from each of
the neighboring chemical species, then the position Rj of these neighbors can in principle
be determined, since the EXAFS amplitude is proportional to: (see a chapter on scattering
theory in a quantum mechanics text such as Schiff, Chapter 5 or Sakurai, Chapter 7.)

α(E) ∝ |〈φi|H′|φf 〉|2 ∝
∑

j

F (|~Rj |)Im(f(π)e2ik|
~Rj |e2iδj) (12.28)

where φi is the initial atomic state, H′ is the optical perturbation Hamiltonian, F is a
smooth function of |~Rj |, and k ∝ (2mE/h̄2)

1

2 is the wave vector of the ejected electrons,
while f(π) is the amplitude for scattering the ejected electron at 180◦, back towards the
emitting atom. Because of the factor exp(2ik| ~Rj |), the EXAFS amplitude is essentially the

Fourier transform of the probability distribution of nearest-neighbor separations | ~Rj |. The
Fourier transform of the probability distribution, is then compared to the function calculated
for a given model of the structure to test the validity of that model. In Eq. 12.28, φf is the
wavefunction for the final state and δj is phase shift for an atom at position j. Figure 12.18
gives an example of the power of the EXAFS technique. Here EXAFS spectra are shown
for a clean ruthenium surface and for surfaces exposed to two different oxidation conditions.
The analysis of each trace is shown on the right to extract the pertinent nearest neighbor
distances.

Equipment to carry out the various surface science experiments mentioned above is
very expensive and the techniques are generally useful in many areas of solid state research.
Therefore we have a number of experimental systems available through the Central Facili-
ties of the Center for Materials Science and Engineering (Building 13). The LEED, ESCA
(Electron Spectroscopy for Chemical Analysis) and AES equipment is in the Surface An-
alytical Laboratory (4th floor), EELS measurements can be done with the transmission
electron microscope (basement 13-1027) and x-ray fluorescence measurements can be made
with the scanning electron microscope using the KEVEX attachments (2nd floor) or with
an electron microprobe (basement level). A range of scanning electron microscopes (SEM),
transmission electron microscopes (TEM), and scanning transmission microscopes (STEM)
are also available in the Building 13 Central Facilities.

12.2.6 Scanning Tunneling Microscopy

The scanning tunneling microscope (STM) provides a unique and powerful new tool for the
direct determination of real space surface structure at the atomic level, including nonperi-
odic structures. In this microscope, a small metal tip is brought close enough to the surface
to permit electron tunneling between the tip and the surface. The tip scans the surface in
two–dimensions (hence the name scanning tunneling microscope). By adjusting the height
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Figure 12.18: Extended ab-
sorption edge fine structure
(EXAFS) is shown in (a) for
thinly dispersed pure ruthe-
nium metal, (b) for ruthenium
partially covered with O2 at
25◦, and (c) for ruthenium
mostly converted to RuO2 at
400◦C. Curves d, e and f are
the Fourier transforms of a, b
and c, from which the number
and bond distances of nearest-
neighbor atoms may be de-
rived.
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Figure 12.19: Schematic of a scanning tunneling
microscope and of its operation.

of the tip above the surface to maintain a constant tunneling current, it is possible to obtain
a contour map of the surface. The announcement of the successful observation of surface
structure on an atomic scale with the STM in 1982 created tremendous excitement in the
solid state community.

Some useful references and reviews are listed below.
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Referring to Fig. 12.19, the piezo–drives Px and Py scan the metal tip over the surface.
The control unit (CU) applies the appropriate voltage to the piezo–drive Pz to maintain a
constant tunneling current JT at constant tunnel voltage VT . For a constant work function,
the voltages applied to the piezo–drives Px, Py, and Pz yield the topography of the surface
directly, whereas modulation of the tunnel distance z by ∆z gives a measure of the work
function. The dotted line in Fig. 12.19 indicates the z displacement in a y scan at a surface
step.

The very high resolution of the STM depends on the exponential dependence of the
tunneling current on the distance z between the tip and the scanned surface. If Φ is the
average barrier height for tunneling (the average work function Φ = (Φ1 + Φ2)/2 between
the tip and the surface), then the tunneling current is given by

JT = J0 exp (−2κz) (12.29)
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where

h̄2κ2 = 2mΦ (12.30)

and m is the free electron mass, so that

JT = J0 exp (−AΦ1/2z) (12.31)

where

A = 2(2m/h̄2)1/2 = 1.025 Å
−1

eV−1/2 (12.32)

and

J0 = (e2/h̄)(κ/4π2z). (12.33)

The tunneling probe tip in a typical instrument may be prepared to have a radius between
a few thousand angstroms to 1µm, but containing some sharp mini-tips close to the atomic
limit as shown schematically in Fig. 12.19. The extreme sensitivity of the tunneling current
on the gap width selects the extremal mini-tip protuberance (' 10Å) for operation of the
STM.

The very fine tips of the STM can resolve monatomic steps within 10 Å lateral resolution,
as indicated in Fig. 12.20 for the case of steps on a clean Au (100) surface (G. Binnig, H.
Rohrer, Ch. Gerber and E. Stoll, Surface Science 114, 321 (1984)). To give the order of
magnitude of the sensitivity of the STM due to the exponential dependence of the current
on distance z, an increase in distance of 1 Å results in an order of magnitude decrease in
tunneling current.

From Eq. 12.31, we see that scanning the tunneling tip at constant tunneling current
implies that Φ1/2z = constant. Thus for constant work function of the substrate, the
displacement in the z direction is adjusted to yield z = constant during the scan. The
voltage applied to the piezo–drive Pz to achieve z = constant thus provides a record of the
surface topography along the scan. Figure 12.20 shows scanning tunneling micrographs of a
gold (100) surface, exhibiting atomically flat terraces with monolayer steps. The tunneling
current is sensitive not only to the topographical features but also to the local electronic
structure. A good deal of effort has been devoted to disentangling the contributions to the
tunneling current from each of these two effects.

Electronic and chemical surface properties manifest themselves primarily in the voltage
dependence of the tunneling current. They appear as specific features in the local I − V ,
V − z or I − z characteristics, where z is the distance between the tip and the surface.
In practice, electronic or chemical images are obtained by recording dI/dV or dI/dz while
scanning and controlling the gap width, and while keeping the average current constant.
Depicted in Fig. 12.21 is an example of such scanning tunneling spectroscopic (STS) imaging
on a Ni (100) surface (R. Garcia, J.J. Saenz and N. Garcia, Phys. Rev. B33, 4439 (1986)).
In trace (a) showing a plot of dI/dV vs V , the strong peak at 0.8 V is attributed to surface
nickel oxide. In (b), the surface is imaged with respect to that spectroscopic feature (top)
by taking scans of dI/dV at 0.8 V in the y direction. On the bottom of (b), topographic
I = constant scans are taken at the indicated voltages. Whereas the STS images differ
dramatically, the STM images remain essentially unchanged. Because of the usually close
relation of the tip–to–sample spacing at I = constant with the topography, of dI/dV with
the local density of states, and of dI/dz with the local barrier height (or work function),
it is possible to separate the various effects observed with STM. Associated images are
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Figure 12.20: STM image of a clean Au (100) surface obtained at a constant tunneling
current of 1 nA, showing the terraces and monolayer step lines. The wavy structure can be
resolved into individual atomic rows. The divisions on the axes correspond to spacings of
5 Å(G. Binnig, H. Rohrer, Ch. Gerber and E. Stoll, Surface Science 114, 321 (1984)).
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Figure 12.21: Spectroscopic and struc-
tural imaging of NiO on a Ni (100) sur-
face. Shown in (a) is dI/dV vs. V from
an oxide–covered region. The strong
peak at 0.8 V is characteristic of NiO.
The STS and STM images shown in (b)
were obtained at the indicated bias volt-
ages of 0.8 and 1.3 V. An oxide island to
the left is evident in the STS image ob-
tained at 0.8 V. Spatial separations in
units of the NiO lattice spacing are in-
dicated at the left (bottom). The oxide
island is hardly noticeable in the STM
images. The divisions on the y axis cor-
respond to spacings of 5 Å (R. Garcia,
J.J. Saenz and N. Garcia, Phys. Rev.

B33, 4439 (1986)).
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Figure 12.22: STM relief of a (111)
Si surface showing the (7 × 7) unit
cells with a superposed model for
the (7 × 7) structure. The diagram
covers a scan area of 60Å×60Å.
Original work by G. Binnig, H.
Rohrer, Ch. Gerber and E. Weibel,
Phys. Rev. Lett. 50, 120 (1983).

often referred to as “topographical or STM” images, “spectroscopic or STS” images, and
“work–function profiles”, respectively.

An important aspect of the STM is its apparent nondestructive nature. In normal
operation, no perceptible irreversible damage to the sample surface occurs as a result of
its use. On the other hand, the STM can be used to intentionally induce permanent local
structural or chemical modifications.

One of the most noteworthy achievements of the STM has been the direct observation
of surface reconstruction in silicon (G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys.
Rev. Lett. 50, 120 (1983); G. Binnig and H. Rohrer, IBM Journal of Research and De-

velopment 30, 355 (1986); J.E. Demuth, R.J. Hamers, R.M. Tromp and M.E. Welland,
IBM Journal of Research and Development 30, 396 (1986)). Surface reconstruction per-
tains to a different surface structure relative to that of the bulk due to the broken bonds
at the surface discontinuity. It has been known for some time that the surface structure
of semiconductors differs from that of the bulk because of the different number of nearest
neighbors available for bonding. It had been conjectured that the (111) surface of Si when
heated above 900◦C exhibits a (7 × 7) surface reconstruction, though many uncertainties
remained about whether the (7× 7) reconstruction was correct and where the atoms were
located within the unit cell. With the STM, the (7 × 7) surface reconstruction has been
vividly demonstrated, as shown in Fig. 12.22. This picture of the (7 × 7) reconstruction
was obtained on a sample previously heated at 900◦C in high vacuum to remove any surface
oxide layer. The STM micrograph was taken at a 2.9 V positive tip potential. The (7× 7)
rhombohedral unit cell is clearly seen in the scan in Fig. 12.22, bounded by lines on minima
with deep corners. Each unit cell contains 12 maxima and the diagonals are determined to
be 46 ± 1 Å and 29 ± 4 Å, in good agreement with the crystallographically determined
values of 46.56 Å and 26.88 Å, respectively.
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Figure 12.23: Schematic diagram
of the Atomic Force Microscope
(AFM). An STM is used to mea-
sure the displacements of the probe
tip as it scans the surface of an in-
sulating sample.

Figure 12.24: AFM images of grooves etched in Si for three increased magnifications. The
highest magnification scans show the details of the groove substructure which is only 50Å
high. (Y. Martin, C.C. Williams, and H.K. Wickramasinghe, J. Appl. Phys. 61, 4723
(1987)).

Following the successful development of the scanning tunneling microscope, several re-
lated instruments have emerged. One of the more important of these instruments is the
atomic force microscope (AFM). The forces measured by this instrument are the interatomic
forces between the surface atoms under investigation and the apex atoms of a very sharp
diamond tip fixed on a conducting cantilever (see Fig. 12.23). Bending of the cantilever
by the interatomic forces is monitored by the tunneling current between the cantilever and
an STM tip. Scanning the diamond tip across the conducting or insulating surface under
investigation at constant interatomic force yields a topographical image of the surface. The
AFM image is composed of contours of constant force between the imaged surface and a
probe tip, and permits measurement of surface contours of both conductors and insulators;
the present versions of the STM are not able to make topographical maps of insulators.

Although atomic resolution has been achieved on graphite surfaces, this technique will
be more widely exploited in the study of larger-scale features on real surfaces under normal
laboratory conditions. Recent work at IBM (see Fig. 12.24) shows an application of the
AFM to examine the groves in a reactive-ion-etched silicon wafer after oxidation in air.
The different microstructures on top of and in the grooves are associated with the etching
method and are clearly resolved by the AFM over a wide range of scales, even though the
surface is insulating. At the highest resolution, features as small as 50Å high are easily
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seen.
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Chapter 13

Amorphous Semiconductors

References
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13.1 Introduction

There are many materials which are of scientific and technological interest which are not
single crystals, or even microcrystalline. The general category of amorphous materials is
defined as including materials which have no crystalline order; that is, their x–ray diffrac-
tion patterns consist of thick diffuse rings or halos instead of sharp spots. Usually excluded
from this definition are polycrystalline materials which consist of small crystallites in ran-
dom orientations. Since, as we shall discuss below, amorphous materials often do possess
considerable short–range order, the distinction between polycrystalline and amorphous ma-
terials blurs as the crystallite size is reduced. There are a number of substances, such as
Ge and Si, which can be prepared in all three forms: single–crystal, polycrystalline and
amorphous.

Amorphous materials can be prepared in several ways, depending on the material. Ma-
terials called glasses can be formed by cooling from the liquid state. These materials are
not in thermal equilibrium and can be classified as super-cooled liquids with an extremely
high viscosity. Some materials cannot be cooled fast enough to avoid crystallization. Splat
cooling (or rapid solidification) is often used to prepare metallic glasses. In this process a
liquid stream is shot onto a thermally conducting substrate. Some of the splat–cooled met-
als exhibit microcrystalline ordering. There are also a number of techniques for deposition
from the vapor state, such as sputtering, or for condensation from a chemically reactive
vapor such as silane (SiH4) to prepare (hydrogenated) amorphous Si.

Many amorphous materials can be called semiconductors in the sense that they are
neither good conductors nor good insulators, but instead are poor conductors. Many are
also similar to their crystalline counterparts in that they possess an optical gap. The reason
for this general behavior seems to be that, even though the amorphous structure is quite
random over long distances, there still seems to be considerable short–range order with
local bonding requirements generally satisfied. Although these materials are full of defects,
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Figure 13.1: Distribution of neighbor dis-
tances G(r) for Ge, from EXAFS data,
shown for both crystalline and amorphous
germanium.

there are not many electrons which are involved in the process to carry electric current. In
addition, because of the spatial disorder resulting in strong carrier scattering, the carriers
mobilities are low. A further consequence of the tendency for bonding to be satisfied is that
the electrical properties of many amorphous semiconductors tend to be insensitive to the
presence of large concentrations of impurities.

There are two major categories of amorphous semiconductors. The first consists of the
tetrahedrally bonded materials, primarily Ge and Si but also including amorphous III–
V semiconductors. The second major category consists of the chalcogenide or lone–pair
semiconductors, which means the elements Se, S or Te (column VI) and compounds and
alloys containing these elements.

13.1.1 Structure of Amorphous Semiconductors

The major attribute of the structure of amorphous materials is the lack of long–range order
or the absence of a periodic lattice. In spite of this, there is considerable similarity in
the local environments of amorphous and crystalline materials. For example, the EXAFS
measurements for Ge shown in Fig. 13.1 indicate that the first and second–nearest–neighbor
distances are the same and that differences only appear at the third–and higher–neighbor
distances.

Not only are these short–range bond lengths usually preserved, but also bond angles tend
to be the same. Some amorphous materials have been modeled successfully as continuously
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Figure 13.2: The diamond structure show-
ing the atoms 1 and 2 are in a staggered
configuration and are crystallographically
distinct in the perfect crystal.

perturbed from their crystalline form. However there is also some evidence from x–ray
diffraction for more drastic changes. For example, one can view crystalline germanium
or silicon as containing distorted 6–fold rings (see Fig. 13.2 for the diamond structure).
Amorphous germanium and silicon also seem to contain some 5–fold rings.

13.1.2 Electronic States

It is evident that Bloch’s theorem no longer holds in amorphous materials; hence electronic
states cannot be characterized by a ~k vector confined to a single Brillouin zone. In other
words, ~k is no longer a good quantum number. Thus one can no longer use the powerful
energy–band theory which predicts bands of extended electronic states with forbidden gaps,
and which we use to differentiate conductors from insulators.

In practice the electronic properties of an amorphous material do not differ as drastically
as one might expect from those of the crystalline material. Consider the data for the
resistivity of a number of materials at temperatures near their melting points, as shown in
Fig. 13.3. Where small jumps do occur at the melting point, these are correlated with small
discontinuous volume changes. When the volume does not change, as for HgTe or CdTe,
neither does the resistivity. Evidently the conduction properties are remarkably similar
even though the structure has changed drastically. We note here that for the column IV
semiconductors (Si, Ge, Sn), the molten material is metallic and octahedrally coordinated.

Without the powerful simplification of Bloch’s theorem, it is extremely difficult to calcu-
late the electronic states in amorphous materials. Without a ~k–vector one cannot calculate
E(~k). Instead one attempts to calculate directly a density of states ρ(E), and also an av-
erage energy–dependent mobility µ(E). One starts by noting the similarity of amorphous
and crystalline electronic properties and especially their similarity with respect to short–
range order. Recently much progress has been made using various types of cluster models.
The general result, as shown in Fig. 13.4, is that the crystalline density of states, which
has sharp features called Van Hove singularities at critical points where ∂E/∂~k = 0, is
smoothed out and broadened at the critical points (see §4.2). This is shown experimentally
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Figure 13.3: Resistivity as a function of
temperature for several materials in both
the crystalline and liquid states. The melt-
ing temperature in each case is indicated
by an arrow.

Figure 13.4: (a) Density of elec-
tronic states as a function of en-
ergy for a single band of a crystalline
solid. The sharp behavior at the
band edges and in the interior rep-
resents the effects of Van Hove sin-
gularities. (b) Density of electronic
states as a function of energy for a
single band of an amorphous solid.
All Van Hove singularities have dis-
appeared.
(The Van Hove singularities are the
M0,M1,M2,M3 singularities in the
joint density of states discussed in
§4.2).)
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Figure 13.5: Ultraviolet photoemission re-
sults (top) for the density of states for trig-
onal (solid line) and amorphous (dashed
line) Se. Photoemission results (bottom)
on trigonal (solid line) and amorphous
(dashed line) Te.

in the photoemission results in Fig. 13.5 for the valence bands of trigonal (crystalline) and
amorphous Se and Te.

In order to find the transport properties of an amorphous material, one needs to know
not only the density of states ρ(E) at each energy E, but also the mobility µ(E) which
may be a function of ρ(E). Broadly, one distinguishes extended states, similar to states in
periodic crystals which have finite amplitude throughout the material, and finite mobility,
from localized states which have a significant amplitude only in a small region of the material
and have extremely small mobility. An example of such a localized state, in a nearly perfect
crystal, is an impurity state in which the electron is localized in a hydrogen–like orbit
around a donor ion. Such states have sharp features in a density–of–states diagram near
the conduction–band minimum or, for acceptors near, the valence–band maximum, as shown
in Fig. 13.6(b). If there is a large enough impurity concentration, these states can broaden
into impurity bands which can merge into the conduction or valence bands. However, if the
material itself is disordered or amorphous, the states near the band edges are themselves
localized.

This subject of localized vs. extended states has been treated extensively, most notably
by Mott and by Anderson who shared the Nobel Prize in Physics in 1977 for this work.
Mott developed the concept of the mobility edge, postulating a relatively sharp demarcation
between localized and extended states, giving rise to a mobility gap which is considerably
larger than the forbidden gap in the density of states, as illustrated in Fig. 13.7. The
mechanism for localization in states near the energy band edges is illustrated in Fig. 13.8,
and is due to Fritzsche. According to this model disorder produces a spatial variation in
the conduction and valence band edges, giving rise to local conduction–band minima or
valence–band maxima which trap electrons or holes.
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Figure 13.6: Density of states n(E) for
(a) a perfect crystal, (b) a crystal with a
few donors and acceptors, and (c) a crys-
tal with a larger number of imperfections
where the impurity levels have broadened
into impurity bands.

Figure 13.7: Sketch of the Mott–CFO
(Cohen–Fritzsche–Ovshinsky) model for
covalent disordered semiconductors having
a three–dimensional cross–linked network
structure. The critical energies Ec and Ev

define the mobility gap. For T > 0, the
mobility µ(E) may be finite in the gap be-
cause of thermally assisted tunneling. Here
EF denotes the Fermi energy. The distri-
bution of localized gap states may be non–
monotonic when defect states of a certain
energy are prevalent.
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Figure 13.8: Potential fluctuations of the initial and final electron states for the optical
transitions corresponding to the optical gap E0. The left hand side shows the density of
states. The region of localized states lies between Ec and Ev. Note that the short range
potential wells which give rise to many of the localized states are not shown here. This
figure shows only that part of the long wavelength potential fluctuations which cause a
parallel shift of the valence and conduction band states. The part which causes a spatial
variation of E0 is omitted for clarity (after Fritzsche).

An important difference between the tetrahedrally–bonded amorphous semiconductors
and the chalcogenide materials is that the former have large numbers of unpaired spins, as
observed in electron spin resonance experiments, and the chalcogenides have no measurable
density of spins. A large number of unpaired spins is expected in a material containing
a large number of broken or “dangling” bonds, each bond being occupied only by one
electron instead of two electrons of opposite spin. The lack of unpaired spins has been
explained by the valence–alternation–pair model of Kastner, Adler and and Fritzsche. The
chalcogen atoms have 4 electrons in an outer (unfilled) p shell. In the lowest–energy bonding
configuration, two of these electrons form bonds with neighboring atoms, and two are in
non–bonding or “lone–pair” states. Thus both crystalline and amorphous Se, for example,
contain chains of atoms, each bonded to two neighbors. In the amorphous material a Se
atom can also be triply–bonded in a trigonal configuration, leaving the fourth p electron in
a higher–energy, non–bonding state (with unpaired spin). However, the total energy can
be reduced if this extra electron migrates to another triply–bonded Se atom nearby. First,
two of the bonds on this second atom break, leaving only one electron in a bonding orbital.
The two electrons from the broken bonds join the single electron in the lone–pair orbitals.
Then the new electron can enter this atom as a fourth lone–pair electron. Kastner, Adler
and Fritzsche argued that this is an energetically favorable configuration. The result, as
shown in Fig. 13.9, is a large density of equal number of positive and negative ions but with
all electron spins paired. Structurally, this picture implies that chalcogenide glasses contain
a large number of linked chains (by triply–bonded atoms) as well as nearby broken chains
(ending in singly–bonded atoms), which provides an explanation for the fact that these
materials are more resistant to crystallization (“better glasses”) than the tetrahedrally–
bonded materials.

At the left of Fig. 13.9 two selenium atoms, each of which is triply bonded, serve to
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Figure 13.9: Valence–alternation pairs can form in a neutral chalcogenide–glass matrix
without any major displacement of its atoms, leading to a sharp reduction in total energy.

cross–link two molecular chains of doubly bonded atoms. A valence–alternation pair can
be produced (right) by a spontaneous break of the cross–linkage, combined with the simul-
taneous transfer of an electron from one of the triply bonded selenium atoms to an atom
near the one where the cross–link was broken. Since such electronic transfers reduce the
total energy of the solid, nearly all the trigonally bonded selenium atoms become members
of a valence–alternation pair. Important physical consequences follow, including the almost
complete disappearance of electrons with unpaired spins and the appearance of large but
equal concentrations of positively and negatively charged traps in chalcogenide glasses. The
consequences of this high disorder (in the chalcogenides) for the electronic density of states
is shown in Fig. 13.10.

On the left is shown the broadened conduction band and valence bands, with the mo-
bility edges, for an amorphous tetrahedrally bonded semiconductor. Cohen, Ovshinsky and
Fritzsche postulated that (whatever the details of the structure), the high disorder in the
chalcogenides produces overlapping densities of states, as shown in the right side of the fig-
ure, so that electrons will lower their energy by migrating to new localized states, creating
large charge separation as in the valence–alternation model.

The distinguishing feature of the bands in amorphous solids is the replacement of the
sharp band edges present in crystals by what are called “band tails” or localized states,
that extend into the energy gap. The localized states are separated from the extended
states in the main part of the bands by “mobility edges”. The region that lies between the
mobility edges of the valence and conduction bands is the “mobility gap” (see Fig. 13.10).
It plays the same role in amorphous semiconductors that the energy gap plays in crystalline
semiconductors. Chemical impurities or defects in the configuration of local bands can lead
to sharp structural changes (not shown) in the mobility gap. The result of the large density
of localized states in the mobility gap is a high density of positively and negatively charged
traps, which decrease the mobility of the carriers and make the material less sensitive to
efforts to control its conductivity by doping.

This density of states model explains the fact that the chalcogenide glasses are much
less sensitive to doping than the tetrahedrally coordinated materials. Impurity states, in-
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Figure 13.10: Amorphous semiconductors that are not strongly disordered (left) have va-
lence and conduction bands similar to those in the corresponding crystalline semiconductor.
If the disorder is large, as is expected in multicomponent glasses (right), the band tails of
the valence and conduction bands can overlap in the mobility gap. This leads to a redistri-
bution of electric charge as electrons move from one localized state to another in order to
lower their energy.

troduced in or just outside the band tails, make only a negligible change in the already–
appreciable density of states in this region. If, on the other hand, the bands do not overlap,
impurity states in or just outside the band tails can make a large change in the density of
states. Thus they can, at finite temperatures, become a source of carriers in the conducting
or extended states.

13.1.3 Optical Properties

Amorphous semiconductors have optical spectra similar to their crystalline counterparts in
that they possess an optical gap or absorption edge. However, all sharp features, includ-
ing the band edge absorption, are considerably broadened, as shown for the case of the
chalcogenide semiconductor As2S3 in Fig. 13.11. The reflectance spectra for crystalline,
amorphous and liquid Ge are given in Fig. 13.12. These data show that the amorphous ma-
terial more closely resembles the crystalline material than the liquid which shows metallic
behavior at low frequencies.

As was the case for the photoemission measurements, the broadened optical spectra
result from the broadened density of states for the amorphous materials. In fact, since ~k
is no longer a good quantum number, one can expect that transitions would be allowed
between any pair of valence and conduction band states. The absorption coefficient in this
picture is proportional to

α(ω) = (const/ω)

∫

dE ρ(E)ρ(E + h̄ω)|M(E) |2 (13.1)

where ρ(E) is the density of states, ω is the optical frequency, and M(E) is a generalized
momentum matrix element. Mott has argued that M = 1 for transitions involving two
extended states and for one extended and one localized state, but that M is negligible for
transitions involving two localized states (which will have negligible spatial overlap). Thus
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Figure 13.11: Absorption edge of crys-
talline c–As2S3 for 2 directions of light po-
larization relative to the c–axis compared
with the absorption edge of amorphous a–
As2S3.

Figure 13.12: Fundamental reflection spec-
tra due to electronic transitions in crys-
talline, amorphous and liquid Ge. The re-
sults are consistent with the metallic trans-
port properties of liquid Ge.
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the optical gap should be at a different energy h̄ω = Eopt than the mobility edge. Mott
argued that the density of states ρ(E) ' (E − E0) is a linear function of E near the band
edges E0, giving

α(ω) = const
(h̄ω − Eopt)

2

ω
. (13.2)

Unfortunately this argument is not of general validity, but is nevertheless used to estimate

Eopt by plotting (αh̄ω)
1

2 vs. ω and extrapolating the straight–line behavior to zero frequency.

The amorphous chalcogenides exhibit remarkable luminescence behavior, with a large
shift to lower energy of the luminescence peak relative to Eopt, by as much as 1/2 Eopt.
This is attributed to a large electron–lattice interaction: the excited state of the optical
transition produces an atomic or bond rearrangement sufficient to cause a large shift in the
energies of both the excited and ground states.

13.1.4 Transport Properties

Transport measurements on amorphous semiconductors have proved difficult to interpret,
partly because of differences in the measured transport results arising from differences in
methods of sample preparation. Because of the low mobilities, Hall data have been difficult
to obtain, and thermopower data have been difficult to interpret. Attempts to measure mo-
bilities using transition–time methods resulted in the discovery of non–dispersive transport:
a pocket of charge injected at one side of the sample does not propagate to the other side
with fixed velocity but instead spreads out in time because of the large number of traps
which have a large distribution of release times. These measurements have been exploited
by Professor Kastner’s group at MIT to give new data on the electronic density of states in
amorphous As2Se3.

13.1.5 Applications of Amorphous Semiconductors

The most successful application of amorphous semiconductors has been the use of amor-
phous Se films for Xerography. In this process, one surface of the film is charged. When
light reflected from the white area of the original page strikes the Se film, electron–hole
pairs are formed, which then migrate to the surface and neutralize the charge. These areas
on the Se film do not attract the small charged black “toner” particles, resulting in areas
which do not print (white on the copy). The unaffected (black) areas retain their charge,
do attract toner, and do print on the copy.

Another important application is for solar cells and thin film transistors, where the
substantial reduction in cost of producing large areas of amorphous rather than crystalline
films has the potential to offset their lower efficiency.

An effect which caused some excitement several years ago was the observation by Ovshin-
sky and others of reversible switching behavior in chalcogenide semiconductors. This has
been shown to be due to an electronic mechanism, the filling of traps with carriers above a
threshold current, producing a sharp drop in the resistance. A second type of switching is
associated with the formation of small crystalline regions. These effects have been exploited
in computer memory devices.
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13.2 Amorphous Semiconductor Superlattices.

The extraction of quantitative information from the study of amorphous semiconductor
superlattices offers considerable challenge, because the number of variables is large (band
offsets, masses, band gaps, mobility edges, chemistry, etc.) On the other hand, superlattices
introduce one element of order (z–axis periodicity) in an otherwise disordered system; the
superlattice periodicity may perhaps be exploited to learn new physics about this class of
materials.

Early achievements in the field of amorphous semiconductor superlattices (B. Abeles and
T. Tiedje, Phys. Rev. Lett. 51, 2003 (1983)) indicated that superlattices can be synthesized
with alternate layers of amorphous semiconductors such as a–Si:H, a–Ge:H, a–SiNx:H and
a–Si1−xCx:H where the a denotes amorphous and the :H denotes the addition of hydrogen to
tie up the dangling bonds in the amorphous semiconductor. Unlike the case in crystalline
materials, lattice matching is not an issue in the synthesis of amorphous semiconductor
superlattices.

The amorphous superlattices are prepared by a plasma–assisted chemical vapor deposi-
tion (CVD) method in which the composition of the reactive gases is changed periodically in
the reaction chamber. This process has some similarities to the MOCVD technique discussed
in connection with heterojunction crystalline semiconductor superlattices. The plasma as-
sisted technique allows deposition to occur at lower substrate temperatures, thereby achiev-
ing sharper interfaces. The amorphous films can be deposited on quartz substrates. The
residence time of the gases in the reactor (SiH4 for preparing a–Si:H, and SiH4 + NH3 for
preparing a–Si1−xNx:H) can be as short as 1 sec while the time to grow a monolayer is ∼
3 sec. (see Fig. 13.13). Thus the gases in the reactor can be exchanged rapidly enough to
achieve sharp interfaces. The plasma discharge is maintained continuously while the gases
are changed.

The superlattice periodicity is monitored during the growth process, and the periodicity
is confirmed after the film is deposited by x–ray diffraction, as shown in Fig. 13.13. Because
of the random atomic arrangements in the layer planes of the two constituents a–Si:H and
a–Si1−xNx:H, there is no periodicity within the layers d1 and d2, so that the only periodicity
found with the x–ray characterization experiment is that due to the periodicity d = d1+d2.
From the width of the x–ray peaks, the authors deduce an rms fluctuation in the layer
thickness of ∆d ∼ 5 Å where d = 41 + 27 = 68 Å.

Although no direct observation has been made of bound states in the quantum wells
of amorphous semiconductors, the optical absorption measurements of Fig. 13.14 show an
increase in the optical bandgap Eg as the quantum well width decreases, where the optical
gap was determined from the energy dependence of the absorption coefficient using the
relation α ∼ (h̄ω − Eg)

2/ω, which normally is valid for bulk amorphous semiconductors.

The temperature dependence of the photoluminescence of the amorphous semiconduc-
tor superlattice is similar to that of the bulk, showing an exp(−T/T0) dependence, except
that for the superlattice the characteristic temperature, T0 increases as the width of the
quantum well decreases, as shown in Fig. 13.15. Also, the energy width E0 of the localized
state distribution in the Urbach tail for amorphous semiconductors shows a similar increase
as the width of the quantum well decreases (see Fig. 13.15), indicating that the distribu-
tion of localized states broadens as the layer thickness decreases. It is expected that the
superlattices will have a small effect on localized states that are deep in the band tail, but
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Figure 13.13: X–ray (1.54 Å) diffraction
pattern vs. scattering angle (lower scale)
and d spacing (upper scale) of a a–Si:H (41
Å)/a–SiNx:H (27 Å) superlattice with 41
periods on a quartz substrate. The inset
shows the energy–band diagram assumed
for the superlattice. The conduction band
offset U = 1.05 eV is indicated on the fig-
ure.

Figure 13.14: Optical–absorption coeffi-
cient α vs. photon energy E for a–Si:H/a–
SiNx:H superlattices with varying a–Si:H
layer thickness L and a constant a–SiNx:H
layer thickness of 27 Å. Also given in the
figure is the absorption coefficient α for a–
SiNx:H films prepared under the same con-
ditions.
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Figure 13.15: Dependence of the optical
gap on the a–Si:H sublayer thickness L
with the a–SiNx:H thickness held fixed at
27Å. The solid line is a calculated curve
based on the band diagram in Fig. 13.13,
assuming effective masses of unity. Depen-
dence of the Urbach slope parameter E0

(left scale) and photoluminescence quench-
ing parameter T0 (right side) on the a–Si:H
layer thickness.

a large effect on the energy of the weakly localized shallow states.

178



Appendix A

Time Dependent Perturbation
Theory

References

• Eisberg, Fundamentals of Modern Physics, Ch. 9

• Schiff, Quantum Mechanics, Ch. 8

A.1 General Formulation

To proceed further with the formal development of the optical properties of solids, we
need to consider how to handle the effect of time-dependent electromagnetic fields quantum
mechanically. The most important case of interest is the one where the external field
is a sinusoidal function of time. For most practical applications, the external fields are
sufficiently weak, so that their effect can be handled within the framework of perturbation
theory. If the perturbation has an explicit time dependence, it must be handled by time-
dependent perturbation theory. Practical problems which are handled by time-dependent
perturbation theory include such subjects as magnetic resonance (nuclear and electronic
spin), cyclotron resonance and optical properties of solids. We give here a brief review of
the subject.

In doing time-dependent perturbation theory we write the total Hamiltonian H as:

H = H0 +H′(t) (A.1)

where H0 is the unperturbed Hamiltonian and H′(t) is the time-dependent perturbation.
We assume here that we know how to solve the unperturbed time independent problem for
its eigenvalues En and corresponding eigenfunctions un.

H0un = Enun. (A.2)

Since H′(t) has an explicit time dependence, then “energy” is no longer a “constant of the
motion”. Since we no longer have stationary, time-independent solutions, we must use the
time-dependent form of Schrödinger’s equation, which is:

ih̄
∂ψ

∂t
= Hψ = (H0 +H′)ψ. (A.3)
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Now, if we didn’t have the perturbation term H′(t) to contend with, we would set

ψ(~r, t) = un(~r)e
−iEnt/h̄ (A.4)

where un(~r) is independent of time and satisfies Eq. A.2. Thus all the time dependence of
ψ(~r, t) is contained in the phase factor e−iEnt/h̄. For H′(t) = 0, it immediately follows that

ih̄
∂ψ

∂t
= Enψ (A.5)

which yields the time-independent Schrödinger equation. With the perturbation present,
we expand the time dependent functions ψ(~r, t) in terms of the complete set un(~r)e

−iEnt/h̄

ψ(~r, t) =
∑

n

an(t)un(~r) e
−iEnt/h̄ (A.6)

where the an(t) are the time-dependent expansion coefficients. Substituting Eq. A.6 in the
time-dependent Schrödinger equation (Eq. A.3) we obtain:

ih̄
∑

n ȧn(t)une
−iEnt/h̄ +

∑

n an(t)unEne
−iEnt/h̄=

∑

n an(t)[H0 +H′(t)]une−iEnt/h̄

=
∑

n an(t)[En +H′(t)]une−iEnt/h̄
(A.7)

where ȧn(t) denotes the time derivative dan(t)/dt. We note that because of Eq. A.2 the
second term on the left hand side of Eq. A.7 is canceled by the first term on the right hand
side.

We now multiply on the left hand side of Eq. A.7 by u∗k(~r) and integrate over all space.
If we make use of the orthogonality of the eigenfunctions

∫

u∗k(~r)un(~r)d
3r = δn,k (A.8)

we obtain from Eq. A.7

ih̄
∑

n

ȧn(t)une
−iEnt/h̄ =

∑

n

an(t)H′(t)une−iEnt/h̄ (A.9)

the result:
ih̄ ȧke

−iEkt/h̄ =
∑

n

an〈k|H′(t)|n〉e−iEnt/h̄ (A.10)

where we have written the matrix element

〈k|H′(t)|n〉 =
∫

u∗k(~r)H′(t)un(~r)d3r. (A.11)

Since H′(t) is time-dependent, so is the matrix element time-dependent, even though, the
matrix element is taken between stationary states. We thus obtain the result

ih̄ȧk(t) =
∑

n

an(t)〈k|H′(t)|n〉ei(Ek−En)t/h̄. (A.12)

If we set
h̄ωkn = Ek − En (A.13)
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where ωkn is the Bohr frequency between states k and n, we have

ȧk(t) =
1

ih̄

∑

n

an(t)e
iωknt〈k|H′(t)|n〉 (A.14)

in which the indicated matrix element is taken between eigenstates of the unperturbed
Hamiltonian H0. So far, no perturbation theory has been used and the result given in
Eq. A.14 is exact. We notice that the unperturbed Hamiltonian is completely absent from
Eq. A.14. Nevertheless, its energy eigenvalues appear in ωkn and its eigenfunctions in the
matrix element 〈k|H′(t)|n〉.

In applying perturbation theory, we consider the matrix element 〈k|H(t)|n〉 to be small,
and we write each time-dependent amplitude as an expansion in perturbation theory

an = a(0)n + a(1)n + a(2)n + · · · =
∞
∑

i=0

a(i)n (A.15)

where the superscript gives the order of the term. Thus a
(0)
n is the zeroth order term and

a
(i)
n is the ith order correction to an. From Eq. A.14, we see that ak(t) changes its value with

time only because of the time dependent perturbation. Thus, the unperturbed situation
(0th order perturbation theory) must give no time dependence in zeroth order

ȧ(0)m = 0 (A.16)

and the first order correction yields:

ȧ(1)m = 1/ih̄
∑

n

a(0)n 〈m|H′(t)|n〉eiωmnt. (A.17)

In the application of perturbation theory we assume, for example, that if we start in an

eigenstate n = `, only the coefficient a
(0)
` will be appreciably large. Then all other terms in

the sum can be neglected. This gives us in 1st order perturbation theory:

ȧ(1)m =
1

ih̄
a
(0)
` 〈m|H′|`〉eiωm`t (A.18)

where a
(0)
` is approximately unity.

For many cases of interest, this integration over the time variable can be performed and

a
(1)
m rather than its time derivative is obtained. The two simple cases that can be integrated

easily are:

1. The perturbation H′ is constant but is turned on at some time (t = 0) and we look at
the amplitudes of the wave function in the various states after the perturbation has
been acting for some time t > 0.

2. The perturbation H′ has a sinusoidal time dependence with frequency ω. This is the
situation for all resonant phenomena.

Let us first consider case (1). Then

a(1)m (t) =
1

ih̄

∫ t

0
〈m|H′|`〉eiωm`t

′

dt′ =
〈m|H′|`〉

ih̄

[eiωm`t − 1]

iωm`
. (A.19)
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Figure A.1: Plot of sin2(ω′t/2)/ω′2 vs.
ω′, a function which enters the calcu-
lation of time–dependent perturbation
problems.

Similarly, for case (2), we can write

H′(t) = H′(0)e±iωt (A.20)

to show the explicit time dependence, so that upon integration we obtain for the amplitudes

a
(1)
m (t)

a(1)m (t) =
1

ih̄
〈m|H′(0)|`〉

∫ t

0
ei(ωm`±ω)t

′

dt′ =
1

ih̄
〈m|H′(0)|`〉e

i(ωm`±ω)t − 1

i(ωm` ± ω)
. (A.21)

We interpret the time dependent amplitudes |a(1)m (t)|2 as the probability of finding the
system in a state m after a time t has elapsed since the perturbation was applied; the
system was initially in a state ` 6= m.

We thus obtain for case (1) given by Eq. A.19

|a(1)m (t)|2 =
( |〈m|H′|`〉|2

h̄2

)( |eiωm`t − 1|2
ω2
m`

)

(A.22)

|a(1)m (t)|2 =
( |〈m|H′|`〉|2

h̄2

)(

4 sin2(ωm`t/2)

ω2
m`

)

(A.23)

Clearly for case (2), the same result follows except that ωm` is replaced by (ωm`±ω) where
ω is the applied frequency and a resonant denominator results for the transition probability
amplitude. It is clear from the above arguments that for both cases (1) and (2), the explicit
time dependence is contained in an oscillatory term of the form [sin2(ω′t/2)/ω′2] where
ω′ = ωm` for the case (1) and ω′ = ωm` ± ω for case (2). This function was previously
encountered in diffraction theory and looks like that shown in Fig. A.1. Of special interest
here is the fact that the main contribution to this function comes for ω ′ ∼= 0, with the height
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of the main peak proportional to t2/4 and the width proportional to 1/t. This means that
the area under the central peak goes as t. If we think of |am(t)|2 as the probability of finding
the system in a state m, then for case (2), where we have a perturbation with frequency
ω, the system attempts to make a transition from a state ` to a state m with a transition
probability proportional to the time the perturbation acts. If we then wait long enough, a
system in an energy state ` will make a transition to a state m, if photons of the resonant
frequency ω`m are present.

A.2 Fermi Golden Rule

Since the transition probability is proportional to the time the perturbation acts, it is
therefore useful to deal with a quantity called the transition probability per unit time and
the relation giving this quantity is called the Golden Rule (named by Fermi and often called
Fermi’s Golden Rule).

In deriving the Golden Rule from Eq. A.19, we must consider the system exposed to the
perturbation for a time sufficiently long so that we can make a meaningful measurement
within the framework of the Heisenberg uncertainty principle:

∆E∆t ∼ h (A.24)

so that the uncertainty in energy (or frequency) during the time that the perturbation acts
is

∆E ∼ h/t (A.25)

or

∆ω`m ∼ 2π/t. (A.26)

But this is precisely the period of the oscillatory function shown in Fig. A.1. In this context,
we must think of the concept of transition probability/unit time as encompassing a range
of energies and times consistent with the uncertainty principle. In the case of solids, it is
quite natural to do this anyhow, because the wave vector ~k is a quasi-continuous variable.
That is, there are a large number of k states which have energies close to a given energy.
The quantum states labeled by wave vector ~k are close together in a solid having about
1022 atoms/cm3. Since the photon source itself has a bandwidth, we would automatically
want to consider a range of energy differences δh̄ω′. From this point of view, we introduce
the transition probability/unit time Wm for making a transition to a state m

Wm =
1

t

∑

m′≈m

| a(1)m′ (t) |2 (A.27)

where the summation is carried out over a range of energy states consistent with the un-
certainty principle; ∆ωmm′ ∼ 2π/t.

Substituting for |a(1)m′ (t)|2 from Eq. A.23, we have

|a(1)m (t)|2 =
(

4|〈m|H′|`〉|2
h̄2

)(

sin2(ω′t/2)

ω′2

)

(A.28)
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and the summation is replaced by an integration over a narrow energy range weighted by
the density of states ρ(Em) which gives the number of states per unit energy range. We
thus obtain

Wm =
1

h̄2t

∫

|4H′m′`|2
(

sin2(ωm′`t/2)

ω2
m′`

)

ρ(Em′) dEm′ (A.29)

where we have written H′m′` for the matrix element 〈m′|H′|`〉. But, by hypothesis, we
are only considering energies within a small energy range Em′ around Em and over this
range the matrix elements and density of final states will not be varying. However, the
function [sin2(ω′t/2)/ω′2] will be varying rapidly, as can be seen from Fig. A.1. Therefore,
it is adequate to integrate Eq. A.29 only over the rapidly varying function [sin2(ωt/2)]/ω2.
Writing dE = h̄dω′, we obtain;

Wm '
(

4|H′m`|2ρ(Em)

th̄2

)∫ (

sin2 ω′t
2

ω′2

)

dω′. (A.30)

The most important contribution to the integral in Eq. A.30 comes from values of ω close
to ω′. On the other hand, we know how to do this integral between −∞ and +∞, since

∫ ∞

−∞
(sin2 x/x2)dx = π. (A.31)

Therefore we can write an approximate relation from Eq. A.30 by setting x = ω ′t/2

Wm
∼= (2π/h̄)|H′m`|2ρ(Em) (A.32)

which is often called Fermi’s Golden Rule. In the subsequent sections, we will apply the
Fermi Golden Rule to calculate the optical properties of solids.

If the initial state is a discrete level (such as donor impurity level) and the final state is
a continuum (such as conduction band), then the Fermi Golden Rule (Eq. A.32) as written
yields the transition probability per unit time and ρ(Em) is interpreted as the density of
final states. Likewise if the final state is discrete and the initial state is a continuum, Wm

also gives the transition probability per unit time, only in this case ρ(Em) is interpreted as
the density of initial states.

For many important applications in solid state physics, the transitions of interest are
between a continuum of initial states and a continuum of final states. In this case the Fermi
Golden Rule must be interpreted in terms of a joint density of states, whereby the initial
and final states are separated by the photon energy h̄ω inducing the transition. These issues
are discussed in Chapter 4.

A.3 Time Dependent 2nd Order Perturbation Theory

This second order treatment is needed for indirect optical transitions, where

H = H0 + λH′ (A.33)

and λ ¿ 1. Here H0ψ0 = ih̄∂ψ0/∂t. Expand ψ, the solution to Eq. A.33 in terms of the
complete set of functions denoted by ψ0 ≡ |n,~k〉

ψ =
∑

n,~k

an(~k, t)e
− i
h̄
En(~k)t|n,~k〉 (A.34)
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where |n,~k〉 is a Bloch function describing the eigenstates of the unperturbed problem

Hψ = ih̄ψ̇ (A.35)

∑

n~k
an(~k, t)En(~k)e

− i
h̄
En(~k)t|n,~k〉+∑

n,~k
an(~k, t)e

− i
h̄
En(~k)tλH′|n,~k〉

= ih̄
∑

n,~k
ȧn(~k, t)e

− i
h̄
En(~k)t|n,~k〉+∑

n,~k
an(~k, t)e

− i
h̄
En(~k)t|n,~k〉

(A.36)

which gives

ȧm(~k
′, t) =

1

ih̄

∑

n,~k

an(~k, t)e
i
h̄
(Em(~k′)t−En(~k)t)〈m,~k′|λH′|n,~k〉 (A.37)

We expand
am(~k

′, t) = a(0)m + λa(1)m + λ2a(2)m + . . . (A.38)

and let aj(~k, 0) = 1, and all others an(~k, 0) = 0 where n 6= j.
To first order, as before,

λ2ȧ(1)m (~k′, t) =
1

ih̄
λa(0)n (~k, t) exp

[

i

h̄
[Em(~k

′)− En(~k)]t

]

〈m,~k′|λH′|n,~k〉 (A.39)

or

a(1)m (~k′, t) =
1

ih̄

∫ t

0
dt′ exp

[

i

h̄
[Em(~k

′)− En(~k)]t

]

〈m,~k′|λH′|n,~k〉 (A.40)

To second order

λ2ȧ(2)m (~k′, t) =
1

ih̄

∑

n,~k

λa(1)n (~k, t) exp

[

i

h̄
[Em(~k

′)− En(~k)]t

]

〈m,~k′|λH′|n,~k〉 (A.41)

or

ȧ
(2)
m (~k′, t) = − 1

h̄2
∑

n,~k
a
(1)
n (~k, t) exp

{

i
h̄ [Em(

~k′)− En(~k)]t

}

〈m,~k′|λH′|n,~k〉

×
∫ t
0 dt

′ exp

{

i
h̄ [En(

~k′)− Ei(~k)]t
′

}

〈n,~k′|λH′|i,~k〉
(A.42)

We write the time dependence of the perturbation Hamiltonian explicitly as

H′ =
∑

α

He−iωαt (A.43)

and then Eq. A.42 can be written, after integrating twice

|a(2)f (~kf , t)|2 = 2πh̄t
∑

m,~k,α,α′

|〈f |H′α′ |m,~k〉|2|〈m,~k|H′α|i〉|2

(Em(~k)− Ei − h̄ωα)2
δ(Ef − Ei − h̄ωα − h̄ωα′) (A.44)

This second-order time-dependent perturbation theory expression is used to derive the prob-
ability of an indirect interband transition.
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Appendix B

Harmonic Oscillators, Phonons,
and the Electron-Phonon
Interaction

B.1 Harmonic Oscillators

In this section we review the solution of the harmonic oscillator problem in quantum me-
chanics using raising and lowering operators. The Hamiltonian for this problem is written
as:

H =
p2

2m
+

1

2
κx2. (B.1)

Classically, we know that the frequency of oscillation is given by ω =
√

κ/m so that

H =
p2

2m
+

1

2
mω2x2. (B.2)

We define the lowering and raising operators a and a†, respectively, by

a =
p− iωmx√

2h̄ωm
(B.3)

and

a† =
p+ iωmx√

2h̄ωm
. (B.4)

Since [p, x] = h̄/i, then it follows that

[a, a†] = 1 (B.5)

so that

H =
1

2m

[

(p+ iωmx)(p− iωmx) +mh̄ω

]

(B.6)

= h̄ω[a†a+ 1/2]. (B.7)
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Let

N = a†a (B.8)

denote the number operator and we denote its eigenstates by |n〉, so that

N |n〉 = n|n〉 (B.9)

where n is any real integer. However

〈n|N |n〉 = 〈n|a†a|n〉 = 〈y|y〉 = n ≥ 0 (B.10)

where |y〉 = a|n〉 implies that n is a non–negative integer. We note with regard to Eq. B.10
that the absolute value square of any wavefunction cannot be negative, because quantum
mechanically, this quantity signifies a probability. Hence n is positive number or zero.

The action of the lowering operator is found from consideration of

Na|n〉 = a†aa|n〉 = (aa† − 1)a|n〉 = (n− 1)a|n〉. (B.11)

Hence we find that

a|n〉 = c|n− 1〉. (B.12)

However from Eq. B.10, we have

〈n|a†a|n〉 = |c|2, (B.13)

and also from Eq. B.10 we have

〈n|a†a|n〉 = n, (B.14)

so that

c =
√
n (B.15)

and

a|n〉 =
√
n|n− 1〉. (B.16)

Since the operator a lowers the quantum number of the state, a is called the annihilation or
lowering operator. From this argument you can also see that n has to be an integer. The
null state is obtained for n = 0.

To obtain the raising operator consider,

Na†|n〉 = a†aa†|n〉 = a†(1 + a†a)|n〉 = (n+ 1)a†|n〉. (B.17)

Hence we obtain

a†|n〉 =
√
n+ 1|n+ 1〉 (B.18)

so that a† is called a creation operator or a raising operator. Finally, for the Hamiltonian
in Eq. B.7 we write

H|n〉 = h̄ω[N + 1/2]|n〉 = h̄ω(n+ 1/2)|n〉 (B.19)

so that the eigenvalues for the harmonic oscillator are written as:

E = h̄ω(n+ 1/2) n = 0, 1, 2, . . . . (B.20)

187



Figure B.1: 1D spring model

B.2 Phonons

In this section we relate the lattice vibrations to harmonic oscillators and identify the
quanta of the lattice vibrations with phonons. Consider the 1-D model with springs shown
in Fig. B.1 The Hamiltonian for this case is written as

H =
N
∑

s=1

(

p2s
2ms

+
1

2
κ(qs+1 − qs)2

)

(B.21)

This equation doesn’t look like a set of independent harmonic oscillators since qs and qs+1

are coupled. To obtain normal mode solutions we write

qs=

(

1/
√
N

)

∑

kQke
iksa

ps=

(

1/
√
N

)

∑

k Pke
iksa.

(B.22)

These Qk’s and Pk’s are called phonon coordinates. It can be verified that

[ps, qs′ ] = (h̄/i)δss′ (B.23)

implies that
[Pk, Qk′ ] = (h̄/i)δkk′ . (B.24)

The Hamiltonian for 1D lattice vibrations in phonon coordinates is

H =
∑

k

(

1

2
P †kPk +

1

2
ω2
kQ

†
kQk

)

(B.25)

and gives rise to the 1–D phonon dispersion relation (see Fig. B.2)

ωk ≡
√

2κ(1− cos ka) =

(

4κ/m

)1/2

| sin(ka/2)|. (B.26)

This is all in Kittel ISSP, see pp 611-615 (Sixth edition). Again let

ak =
iP †k + ωkQk√

2h̄ωk
, (B.27)

a†k =
−iPk + ωkQ

†
k√

2h̄ωk
(B.28)
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Figure B.2: Phonon dispersion relation.

represent the annihilation and creation operators. The Hamiltonian written in terms of the
creation and annihilation operators becomes

H =
∑

k

h̄ωk(a
†
kak + 1/2) (B.29)

yielding energy eigenvalues
E =

∑

k

(nk + 1/2)h̄ωk (B.30)

The quantum excitation in this case is called a phonon, and the state vector of a system of
phonons is written as |n1, n2, . . . , nk, . . .〉. To annihilate or create a phonon in mode k we
then write

ak|n1, n2, . . . , nk, . . .〉 =
√
nk |n1, n2, . . . , nk − 1, . . .〉 (B.31)

a†k|n1, n2, . . . , nk, . . .〉 =
√
nk + 1 |n1, n2, . . . , nk + 1, . . .〉 (B.32)

from which the probabilities nk and (nk +1) are obtained for the annihilation and creation
processes.

B.3 Phonons in 3D Crystals

We give some examples of the phonon is 3D crystals. The first example is the zone center
atomic displacements in graphite shown in Fig. B.3. Graphite has 4 carbon atoms per unit
cell, thus 12 zone center modes. There are 3 acoustic modes and 9 optic modes.

The next example is the phonon dispersion curves for diamond shown in Fig. B.4.
Diamond has 2 carbon atoms per fcc unit cell, thus 6 branches. The zone center optic
modes are Raman active. There are 3 acoustic branches and 3 are optic modes.

The next example is the phonon dispersion curves for silicon shown in Fig. B.5. Silicon
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Figure B.3: Zone center optical phonon modes in graphite.
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Figure B.4: Phonon dispersion curves in diamond.

Figure B.5: Phonon dispersion curves in silicon.
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Figure B.6: Phonon dispersion curves in silicon.

like diamond has 2 atoms per fcc unit cell, thus 6 branches. The zone center optic modes
are Raman active. There are 3 acoustic branches and 3 are optic modes.

The next example is the phonon dispersion curves for GaAs shown in Fig. B.6. GaAs
like diamond has 2 atoms per fcc unit cell, thus 6 branches. However the two atoms are
different and GaAs lacks inversion symmetry. The zone center optic modes are both infrared
and Raman active. There are 3 acoustic branches and 3 are optic modes.

B.4 Electron-Phonon Interaction

The basic Hamiltonian for the electron-lattice system is

H =
∑

k

p2k
2m

+
1

2

′
∑

kk′

e2

|~rk − ~rk′ |
+
∑

i

P 2
i

2M
+

1

2

′
∑

ii′

Vion(~Ri− ~Ri′)+
∑

k,i

Vel−ion(~rk− ~Ri) (B.33)

where

H = Helectron +Hion +Helectron−ion. (B.34)

The electron-ion interaction term can be separated into two parts: the interaction of elec-
trons with ions in their equilibrium positions, and an additional term due to lattice vibra-
tions:

Hel−ion = H0
el−ion +Hel−phonon (B.35)

∑

k,i

Vel−ion(~rk − ~Ri) =
∑

k,i

Vel−ion(~rk − (~R0
i + ~si)) (B.36)

=
∑

k,i

Vel−ion(~rk − ~R0
i )

−
∑

k,i

~si · ∇Vel−ion(~rk − ~R0
i ) (B.37)

= H0
el−ion +Hel−phonon. (B.38)
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In solving the Hamiltonian H of Eq. B.33 we seek a solution of the total problem in the
form

Ψ = ψ(~r1, ~r2, · · · ~R1, ~R2, · · ·)ϕ(~R1, ~R2, · · ·) (B.39)

such that
HΨ = EΨ. (B.40)

We then use an adiabatic approximation, which solves the electron part of the Hamiltonian
by

(Helectron +H0
el−ion)ψ = Eelψ. (B.41)

Neglecting the Hel−phonon term, which we consider as a perturbation, we write:

Hionϕ = (E − Eel)ϕ = Eionϕ (B.42)

and we have thus decoupled the electron-lattice system.
Equation B.42 gives us the phonon spectra and harmonic oscillator like wave functions,

as discussed in the previous section (§B.2). The term that was left out in the above discus-
sion is the electron–phonon interaction

Hel−phonon = −
∑

k,i

~si · ∇Vel−ion(~rk − ~R0
i ) (B.43)

which we now treat as a perturbation. We rewrite Eq. B.42 by introducing the normal
coordinates

~si =
1√
NM

∑

~q,j

Q~q,je
i~q·~R0

i êj (B.44)

where j is polarization index and êj is a unit displacement vector for mode j. Hence we
obtain

Hel−phonon = −
∑

k,i

1√
NM

∑

~q,j

Q~q,je
i~q·~R0

i êj · ∇Vel−ion(~rk − ~R0
i ) (B.45)

where

Q~q,j =

(

h̄

2ω~q,j

)
1

2

(a~q,j + a†−~q,j). (B.46)

Writing the time dependence explicitly for the raising and lowering operators

a~q,j(t) = a~q,je
−iω~q,jt (B.47)

a†~q,j(t) = a†~q,je
iω~q,jt (B.48)

we obtain

Hel−phonon = −
∑

~q,j

(

h̄

2MNω~q,j

)
1

2

(a~q,je
−iω~q,jt + a†~q,je

iω~q,jt)

×
∑

k,i

(ei~q
~R0
i + ei~q

~R0
i )êj · ∇Vel−ion(~rk − ~R0

i ) (B.49)

which can be written as

Hel−phonon = −
∑

~q,j

(

h̄

2NMω~q,j

)
1

2



a~q,j
∑

k,i

ei(~q
~R0
i−ω~q,jt)êj · ∇(~rk − ~R0

i ) + c.c.



(B.50)
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If we are only interested in the interaction of one electron and a phonon on a particular
branch, say the longitudinal acoustic branch, then we drop the summation over j and k and
write

Hel−phonon = −
∑

~q

(

h̄

2NMω~q

)
1

2

(

a~q
∑

i

ei(~q·
~R0
i−ω~qt)ê · ~∇Vel−ion(~r − ~R0

i ) + c.c.

)

(B.51)

where the 1st term in the bracket corresponds to phonon absorption and the c.c. term
corresponds to phonon emission.

WithHel−phonon in hand, we can solve transport problems (e.g., τ due to phonon scatter-
ing) and optical problems (e.g., indirect transitions) directly, since all these problems involve
matrix elements 〈f |Hel−phonon|i〉 coupling initial and final states i and f , respectively.
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