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Further, the electronic specific heat increases 
discontinuously at Tc and vanishes 
exponentially near T=0.
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Further, the electronic specific heat increases 
discontinuously at Tc and vanishes 
exponentially near T=0.

This and other evidence, indicates the 
existence of an energy gap in the single 
particle electronic energy spectrum.
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This is known as the isotope effect and 
indicates that the electron-phonon interaction 
is implicated in the transition into the 
superconducting state.
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Discussing these same phenomena today we 
would be obligated to say that 

Superconductors show no d.c. resistance except in certain 
instances when they do.

Type I superconductors show a Meissner effect, while type II 
superconductors do not.

Some superconductors show a specific heat curve such as 
the one above, while others do not.

Some superconductors seem to have no energy gap and 
others show no isotope effect.
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The Sommerfeld-Bloch individual particle model 
(refined as Landau’s Fermi liquid theory) gives a fairly 
good description of normal metals but no hint of 
superconductivity.

The normal ground 
state wavefunction is 
a filled Fermi sphere 
for both spin 
directions.
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The average energy in the superconducting transition 
may be estimated from Tc as 10-8 eV/atom.

Thus, the qualitative changes that occur at the 
transition temperature involve an energy change 
orders of magnitude smaller than the Coulomb 
energy. 

This huge energy difference contributed to the great 
difficulty of the problem.

Superconductivity was thought to occur due to an 
interaction between electrons.



But the Coulomb interaction is present in every 
metal; some of them are superconductors, and some 
are not, so one is led to guess that this 
interaction,even with its large energy, is somehow 
irrelevant.



But the Coulomb interaction is present in every 
metal; some of them are superconductors, and some 
are not, so one is led to guess that this 
interaction,even with its large energy, is somehow 
irrelevant.

After the work of Fröhlich, Bardeen and Pines the 
interaction that produces superconductivity was 
believed to arise due to phonon exchange which, 
under some conditions, would be an attractive 
interaction between electrons near the Fermi 
surface.
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If there is an attractive interaction between 
electrons a very large number of these states 
interact with each other.

The system is very degenerate.
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It is split from the continuum by a volume 
independent energy gap, displaying, the now well-
known, essential singularity in the coupling 
constant.
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The energy of a ground state composed of such 
“bound” pair states would be proportional to       
and therefore inversely proportional to the 
isotopic mass as expected.
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In addition, the exponential factor seemed to give a 
natural explanation of why the transition energy 
into the superconducting state is so small.

The energy of a ground state composed of such 
“bound” pair states would be proportional to       
and therefore inversely proportional to the 
isotopic mass as expected.
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However in the actual situation the pairs overlap.

BCS solves this problem by introducing a wave 
function that satisfies the Pauli exclusion principle 
and that contains the many overlapping non-
interacting pairs.

One can estimate that      to      pairs occupy the 
same volume.  
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Typically the pair function,            , extends        
         cm; this has come to be called off- diagonal 
long range order.
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The idealized BCS theory reproduces the 
“simple” facts of superconductivity:

Meissner effect

Specific heat

Isotope effect

The energy gap

Zero resistivity
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The circles are the experimental data of Hebel and  Slichter 
(1959), the crosses data of Redfield and Anderson (1959).
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Comparison with the BCS theory 

The circles are the experimental data of Hebel and  
Slichter (1959), the crosses data of Redfield and 
Anderson (1959).

Nuclear Spin Relaxation  

Data from Morse and Bohm (1957)

 Ultrasonic Attenuation



“...such a striking phenomenon as superconductivity 
[was] ... nothing more exciting than a footling small 
interaction between atoms and lattice vibrations.”
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Pairing in:

Nucleii

Neutron stars

Helium 3

Color superconductivity in dense quark matter



Transition Between Bose Einstein 
and BCS Condensation



The interaction between Fermions in Bose-Einstein 
condensates can be varied, using the Feshbach 
resonance, changing the range of the  pair wave 
function

Transition Between Bose Einstein 
and BCS Condensation



The interaction between Fermions in Bose-Einstein 
condensates can be varied, using the Feshbach 
resonance, changing the range of the  pair wave 
function

Transition Between Bose Einstein 
and BCS Condensation

  χ↑↓(r
1
− r

2
)



The interaction between Fermions in Bose-Einstein 
condensates can be varied, using the Feshbach 
resonance, changing the range of the  pair wave 
function

so that a transition between a Bose Einstein and a BCS 
condensation can be seen.

Transition Between Bose Einstein 
and BCS Condensation
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is the model for the Higgs field broken symmetry of 
the standard model of elementary particles and fields
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Type ll superconductors have been developed that 
can carry high currents as well as sustain very large 
magnetic fields.
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Some commonly used materials for both civilian and military applications 
are niobium-tin and niobium-titanium.  Niobium-titanium is often chosen 
because of its superior mechanical properties.  It has a critical magnetic 
field of 15 Tesla and a critical temperature of 10 K. 
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Japanese superconducting magnetically levitated train



Superconducting magnet used to detonate mines



Many other military and civilian applications are 
either contemplated or in use:



Many other military and civilian applications are 
either contemplated or in use:

High energy accelerators and detectors



Many other military and civilian applications are 
either contemplated or in use:

High energy accelerators and detectors

Magnetic energy power storage 



Many other military and civilian applications are 
either contemplated or in use:

High energy accelerators and detectors

Magnetic energy power storage 

Toroidal fusion reactors



Many other military and civilian applications are 
either contemplated or in use:

High energy accelerators and detectors

Magnetic energy power storage 

Toroidal fusion reactors

.



Many other military and civilian applications are 
either contemplated or in use:

High energy accelerators and detectors

Magnetic energy power storage 

Toroidal fusion reactors

.

.



Superconductor Electronics



Josephson Junctions

Superconductor Electronics



Josephson Junctions

Superconductor Electronics

1 2

superconductors

barrier



Superconducting Quantum Interference Devices 
(SQUIDS)



Superconducting Quantum Interference Devices 
(SQUIDS)



Superconducting Quantum Interference Devices 
(SQUIDS)

Very sensitive measurement of magnetic fields
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Gravity waves

Tests of General Relatvity
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Quantum Computing

Single pair box

The single pair box utilizes a Josephson junction between 
two superconducting electrodes. Pairs can tunnel 
coherently through such junctions. This may serve as a 
qubit.

barrier

superconducting
electrodes
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High Tc Superconductors

These materials can be superconducting at  liquid 
nitrogen temperatures making possible long 
distance transmission of electric power as well as all 
of the other applications we have discussed but at 
higher temperatures.

Nuclear electric power plants in remote areas.

Hydrogen economy.
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In 1887 Edward Bellamy wrote, with a certain optimism:

If we could have devised an arrangement 
for providing everybody with music in 
their homes, perfect in quality, unlimited 
in quantity, suited to every mood, and 
beginning and ceasing at will, 

we should have considered the limit of 
human felicity already attained, and 
ceased to strive for further 
improvements.










