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Abstract

The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual
experiment, is currently tackled by solving models. After a general introduction to the subject, we review the many
dynamical models proposed over the years for elucidating quantum measurements. The approaches range from stan-
dard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum-classical
methods, to consistent histories and to modifications of the quantum equations. Next, a flexible and rather realistic
quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a
magnetic memory simulated by a Curie–Weiss magnet, including N � 1 spins weakly coupled to a phonon bath. Ini-
tially prepared in a metastable paramagnetic state, it may transit to either its up or down ferromagnetic state, triggered
by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical
equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which
ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement
due to violations of some conditions are discussed, as well as attempts of incompatible measurements. The first steps
consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D̂(t). Its off-diagonal blocks
in a basis selected by the spin-pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer.
Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer
time scale, the trend towards equilibrium of the magnet produces a final state D̂(tf) that involves correlations between
the system and the indications of the pointer, thus ensuring registration. Although D̂(tf) has the form expected for
ideal measurements, it only describes a large set of runs, whereas consideration of individual runs is needed to elu-
cidate the quantum measurement problem. This question is approached within a specified version of the statistical
interpretation. There the difficulty lies in a quantum ambiguity: There exist many incompatible decompositions of
the density matrix D̂(tf) into a sum of sub-matrices, so that one cannot infer from its sole determination the states
that would describe small subsets of runs. This difficulty is overcome by a dynamical mechanism based on suitable
interactions within the apparatus, which produce a special combination of relaxation and decoherence associated with
the broken invariance of the pointer. Any subset of runs thus reaches over a brief delay a stable state which satisfies
the same hierarchic property as in classical probability theory; the reduction of the state for each individual run fol-
lows. Standard quantum statistical mechanics alone appears sufficient to explain the occurrence of a unique answer
in each run and the emergence of classicality in a measurement process. Finally, pedagogical exercises are proposed
and lessons for future works on models are suggested, while the statistical interpretation is promoted for teaching.

Keywords: quantum measurement problem, statistical interpretation, apparatus, pointer, dynamical models, ideal
and imperfect measurements, collapse of the wavefunction, decoherence, truncation, reduction, registration
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1. General features of quantum measurements1

For this thing is too heavy for thee,2

thou art not able to perform it thyself alone3

Exodus 18.184

In spite of a century of progress and success, quantum mechanics still gives rise to passionate discussions about its5

interpretation. Understanding quantum measurements is an important issue in this respect, since measurements are a6

priviledged means to grasp the microscopic physical quantities. Two major steps in this direction were already taken7

in the early days. In 1926, Born gave the expression of the probabilities2 of the various possible outcomes of an ideal8

quantum measurement [1]. In 1927 Heisenberg conceived the first models of quantum measuruments [2, 3] that were9

five years later extended and formalized by von Neumann [4]. Since then, many theorists have worked out models of10

quantum measurements, with the aim of understanding not merely the dynamics of such processes, but in particular11

solving the so-called measurement problem. This problem is raised by a conceptual contrast between quantum theory,12

which is irreducibly probabilistic, and our macroscopic experience, in which an individual process results in a well13

defined outcome. If a measurement is treated as a quantum physical process, in which the tested system interacts14

with an apparatus, the superposition principle seems to preclude the occurrence of a unique outcome, whereas each15

single run of a quantum measurement should yield a unique result. The challenge has remained to fully explain how16

this property emerges, ideally without introducing new ingredients, that is, from the mere laws of quantum mechanics17

alone. Many authors have tackled this deep problem of measurements with the help of models so as to get insight18

on the interpretation of quantum mechanics. For historical overviews of the respective steps in the development of19

the theory and its interpretation, see the books by Jammer [5, 6] and by Mehra and Rechenberg [7]. The tasks we20

undertake in this paper are first to review these works, then to solve in full detail a specific family of dynamical models21

and to finally draw conclusions from their solutions.22

2Born wrote: “Will man dieses Resultat korpuskular umdeuten, so ist nur eine Interpretation möglich: Φn,m(α, β, γ) bestimmt die
Wahrscheinlichkeit1) dafür, daß das aus der z-Richtung kommende Elektron in die durch α, β, γ bestimmte Richtung [· · ·] geworfen wird”, with
the footnote: “1) Anmerkung bei der Korrektur: Genauere Überlegung zeigt, daß die Wahrscheinlichkeit dem Quadrat der Größe Φnm proportional
ist”. In translation from Wheeler and Zurek [8]: “Only one interpretation is possible: Φn,m gives the probability1) for the electron . . . ”, and the
footnote: “ 1) Addition in proof: More careful consideration shows that the probability is proportional to the square of the quantity Φn,m.”
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1.1. Measurements and interpretation of quantum mechanics23

When you can measure what you are speaking about,24

and express it in numbers, you know something about it25

Lord Kelvin26

Few textbooks of quantum mechanics dwell upon questions of interpretation or upon quantum measurements, in27

spite of their importance in the comprehension of the theory. Generations of students have therefore stumbled over28

the problem of measurement, before leaving it aside when they pursued research work. Most physicists have never29

returned to it, considering that it is not worth spending time on a problem which “probably cannot be solved” and30

which has in practice little implication on physical predictions. Such a fatalistic attitude has emerged after the efforts of31

the brightest physicists, including Einstein, Bohr, de Broglie, von Neumann and Wigner, failed to lead to a universally32

accepted solution or even viewpoint; see for reviews [4, 8, 9, 10, 11, 12, 13, 14]. However, the measurement problem33

has never been forgotten, owing to its intimate connection with the foundations of quantum mechanics, which it may34

help to formulate more sharply, and owing to its philosophical implications.35

In this review we shall focus on the simplest measurements, ideal projective measurements [1], and shall consider36

non-idealities and unsuccessful processes only occasionally and in section 8. While standard courses deal mainly with37

this type of measurement, it is interesting to mention that the first experiment based on a nearly ideal measurement38

was carried out only recently [15]. An optical analog of a von Neumann measurement has been proposed too [16].39

Experimentalists meet the theoretical discussions about quantum measurements with a feeling of speaking differ-40

ent languages. While theorists ponder about the initial pure state of the apparatus, the collapse of its wave packet41

and the question “when and in which basis does this collapse occur” and “how does this collapse agree with the42

Schrödinger equation”, experimentalists deal with different issues, such as choosing an appropriate apparatus for the43

desired experiment or stabilizing it before the measurement starts. If an experimentalist were asked to describe one44

cubic nanometer of his apparatus in theoretical terms, he would surely start with a quantum mechanical approach.45

But this raises the question whether it is possible to describe the whole apparatus, and also its dynamics, i. e., the46

dynamics and outcome of the measurement, by quantum mechanics itself. It is this question that we shall answer47

positively in the present work, thus closing the gap between what experimentalists intuitively feel and the formulation48

of the theory of ideal quantum measurements. To do so, we shall consider models that encompass the points relevant49

to experimentalists.50

As said above, for theorists there has remained another unsolved paradox, even deeper than previous ones, the so-51

called quantum measurement problem: How can quantum mechanics, with its superposition principle, be compatible52

with the fact that each individual run of a quantum measurement yields a well-defined outcome? This uniqueness53

is at variance with the description of the measurement process by means of a pure state, the evolution of which is54

governed by the Schrödinger equation. Many workers believe that the quantum measurement problem cannot be55

answered within quantum mechanics. Some of them then hope that a hypothetical “sub-quantum theory”, more basic56

than standard quantum mechanics, might predict what happens in individual systems [17, 18, 19, 20]. Our purpose57

is, however, to prove that the probabilistic framework of quantum mechanics is sufficient to explain that the outcome58

of a single measurement is unique although unpredictable within this probabilistic framework (section 11). We thus59

wish to show that quantum theory not only predicts the probabilities for the various possible outcomes of a set of60

measurements – as a minimalist attitude would state – but also accounts for the uniqueness of the result of each run.61

A measurement is the only means through which information may be gained about a physical system S [4, 8, 9, 10,62

11, 12, 13, 14, 21, 22]. Both in classical and in quantum physics, it is a dynamical process which couples this system63

S to another system, the apparatus A. Some correlations are thereby generated between the initial (and possibly final)64

state of S and the final state of A. Observation of A, in particular the value indicated by its pointer, then allows us to65

gain by inference some quantitative information about S. A measurement thus involves, in one way or another, the66

observers3. It also has statistical features, through unavoidable uncertainties and, more deeply, through the irreducibly67

probabilistic nature of our description of quantum systems.68

Throughout decades many thoughts were therefore devoted to quantum measurements in relation to the interpre-69

tation of quantum theory. Both Einstein [23] and de Broglie [24] spent much time on such questions after their first70

3We shall make the case that observation itself does not influence the outcome of the quantum measurement
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discovery; the issue of quantum measurements was formulated by Heisenberg [2, 3] and put in a mathematically pre-71

cise form by von Neumann [4]; the foundations of quantum mechanics were reconsidered in this light by people like72

Bohm [18, 19] or Everett [25, 26] in the fifties; hidden variables were discussed by Bell in the sixties [27]; the use of a73

statistical interpretation to analyze quantum measurements was then advocated by Park [28], Blokhintsev [10, 11] and74

Ballentine [9] (subtleties of the statistical interpretation are underlined by Home and Whitaker [29]); the most relevant75

papers were collected by Wheeler and Zurek in 1983 [8]. Earlier reviews on this problem were given by London and76

Bauer [30] and Wigner [13]. We can presently witness a renewed interest for measurement theory; among many recent77

contributions we may mention the book of de Muynck [31] and the review articles by Schlosshauer [32] and Zurek78

[33]. Extensive references are given in the pedagogical article [34] and book [35] by Laloë which review paradoxes79

and interpretations of quantum mechanics. Indeed, these questions have escaped the realm of speculation owing to80

progresses in experimental physics which allow to tackle the foundations of quantum mechanics from different an-81

gles. Not only Bell’s inequalities [27, 34, 36] but also the Greenberger–Horne–Zeilinger (GHZ) logical paradox [37]82

have been tested experimentally [38]. Moreover, rather than considering cases where quantum interference terms (the83

infamous “Schrödinger cat problem” [8, 13, 39]) vanish owing to decoherence processes [40], experimentalists have84

become able to control these very interferences [41], which are essential to describe the physics of quantum superpo-85

sitions of macroscopic states and to explore the new possibilities offered by quantum information [22, 42]. Examples86

include left and right going currents in superconducting circuits [15, 43, 44, 45], macroscopic atomic ensembles [41]87

and entangled mechanical oscillators [46].88

1.1.1. Quantum versus classical measurements89

When the cat and the mouse agree, the grocer is ruined90

Iranian proverb91

The difficulties arise from two major differences between quantum and classical measurements, stressed in most92

textbooks [4, 3, 47, 48].93

(i) In classical physics it was legitimate to imagine that quantities such as the position and the momentum of a94

structureless particle like an electron might in principle be measured with increasingly large precision; this allowed95

us to regard both of them as well-defined physical quantities. (We return in section 10 to the meaning of physical96

quantities and of states within the statistical interpretation of quantum mechanics.) This is no longer true in quan-97

tum mechanics, where we cannot forget about the random nature of physical quantities. Statistical fluctuations are98

unavoidable, as exemplified by Heisenberg’s inequality [2, 3]: we cannot even think of values that would be taken99

simultaneously by non-commuting quantities whether or not we measure them. In general both the theory and the100

measurements provide us only with probabilities.101

Consider a measurement of an observable ŝ of the system S of interest4, having eigenvectors |si〉 and eigenvalues si.102

It is an experiment in which S interacts with an apparatus A that has the following property [4, 13, 30, 47]. A physical103

quantity Â pertaining to the apparatus A may take at the end of the process one value among a set Ai which are in104

one-to-one correspondence with si. If initially S lies in the state |si〉, the final value Ai will be produced with certainty,105

and a repeated experiment will always yield the observed result Ai, informing us that S was in |si〉 However, within106

this scope, S should generally lie initially in a state represented by a wave function which is a linear combination,107

|ψ〉 =
∑

i

ψi |si〉 , (1.1)

of the eigenvectors |si〉. Born’s rule then states that the probability of observing in a given experiment the result Ai108

equals |ψi|
2 [1]. An axiomatic derivation of the Born’s rule is given in [50]; see [32, 33] for a modern perspective on109

the rule. Quantum mechanics does not allow us to predict which will be the outcome Ai of an individual measurement,110

but provides us with the full statistics of repeated measurements of ŝ performed on elements of an ensemble described111

by the state |ψ〉. The frequency of occurrence of each Ai in repeated experiments informs us about the moduli |ψi|
2, but112

not about the phases of these coefficients. In contrast to a classical state, a quantum state |ψ〉, even pure, always refers113

to an ensemble, and cannot be determined by means of a unique measurement performed on a single system [49]. It114

4The eigenvalues of ŝ are assumed here to be non-degenerate. The general case will be considered in § 1.2.3
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cannot even be fully determined by repeated measurements of the single observable ŝ, since only the values of the115

amplitudes |ψi| can thus be estimated.116

(ii) A second qualitative difference between classical and quantum physics lies in the perturbation of the system S117

brought in by a measurement. Classically one may imagine that this perturbation could be made weaker and weaker,118

so that S is practically left in its initial state while A registers one of its properties. However, a quantum measurement119

is carried on with an apparatus A much larger than the tested object S; an extreme example is provided by the huge120

detectors used in particle physics. Such a process may go so far as to destroy S, as for a photon detected in a121

photomultiplier. It is natural to wonder whether the perturbation of S has a lower bound. Much work has therefore122

been devoted to the ideal measurements, those which preserve at least the statistics of the observable ŝ in the final123

state of S, also referred to as non-demolition experiments or as measurements of the first kind [31]. Such ideal124

measurements are often described by assuming that the apparatus A starts in a pure state5. Then by writing that, if S125

lies initially in the state |si〉 and A in the state |0〉, the measurement leaves S unchanged: the compound system S + A126

evolves from |si〉 |0〉 to |si〉 |Ai〉, where |Ai〉 is an eigenvector of Â associated with Ai. If however, as was first discussed127

by von Neumann, the initial state of S has the general form (1.1), S + A may reach any possible final state |si〉 |Ai〉128

depending on the result Ai observed. In this occurrence the system S is left in |si〉 and A in |Ai〉, and according to129

Born’s rule, this occurs with the probability |ψi|
2. As explained in § 1.1.4, for this it is necessary (but not sufficient) to130

require that the final density operator describing S + A for the whole set of runs of the measurement has the diagonal131

form5
132 ∑

i

|si〉 |Ai〉 |ψi|
2 〈Ai| 〈si| , (1.2)

rather than the full form (1.3) below. Thus, not only is the state of the apparatus modified in a way controlled by the ob-133

ject, as it should in any classical or quantal measurement that provides us with information on S, but the marginal state134

of the quantum system is also necessarily modified (it becomes
∑

i |si〉 |ψi|
2 〈si|), even by such an ideal measurement135

(except in the trivial case where (1.1) contains a single term, as it happens when one repeats the measurement).136

1.1.2. Truncation versus reduction137

Ashes to ashes, dust to dust138

Genesis 3:19139

The rules of quantum measurements that we have recalled display a well known contradiction between the prin-140

ciples of quantum mechanics. On the one hand, if the measurement process leads the initial pure state |si〉|0〉 into141

|si〉|Ai〉, the linearity of the wave functions of the compound system S + A and the unitarity of the evolution of the142

wave functions of S + A governed by the Schrödinger equation imply that the final density operator of S + A issued143

from (1.1) should be5
144 ∑

i j

|si〉 |Ai〉ψiψ
∗
j〈A j|〈s j|. (1.3)

On the other hand, according to Born’s rule [1] and von Neumann’s analysis [4], each run of an ideal measurement145

should lead from the initial pure state |ψ〉 |0〉 to one or another of the pure states |si〉 |Ai〉 with the probability |ψi|
2; the146

final density operator accounting for a large statistical ensemble E of runs should be the mixture (1.2) rather than the147

superposition (1.3). In the orthodox Copenhagen interpretation, two separate postulates of evolution are introduced,148

one for the hamiltonian motion governed by the Schrödinger equation, the other for measurements which lead the149

system from |ψ〉 to one or the other of the states |si〉, depending on the value Ai observed. This lack of consistency is150

unsatisfactory and other explanations have been searched for (§ 1.3.1 and section 2).151

It should be noted that the loss of the off-diagonal elements takes place in a well-defined basis, the one in which152

both the tested observable ŝ of S and the pointer variable Â of A are diagonal (such a basis always exists since the153

joint Hilbert space of S + A is the tensor product of the spaces of S and A). In usual decoherence processes, it is154

5 Here we follow a current line of thinking in the literature called von Neumann-Wigner theory of ideal measurements. In subsection 1.2 we
argue that it is not realistic to assume that A may start in a pure state and end up in a pure state
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the interaction between the system and some external bath which selects the basis in which off-diagonal elements are155

truncated [32, 33]. We have therefore to elucidate this preferred basis paradox, and to explain why the truncation156

which replaces (1.3) by (1.2) takes place in the specific basis selected by the measuring apparatus.157

The occurrence in (1.3) of the off-diagonal i , j terms is by itself an essential feature of an interaction process158

between two systems in quantum mechanics. There exist numerous experiments in which a pair of systems is left159

after interaction in a state of the form (1.3), not only at the microscopic scale, but even for macroscopic objects,160

involving for instance quantum superpositions of superconducting currents. Such experiments allow us to observe161

purely quantum coherences represented by off-diagonal terms i , j.162

However, such off-diagonal “Schrödinger cat” terms, which contradict both Born’s rule [1] and von Neumann’s163

reduction [4], must disappear at the end of a measurement process. Their absence is usually termed as the “reduction”164

or the “collapse” of the wave packet, or of the state. Unfortunately, depending on the authors, these words may have165

different meanings; we need to define precisely our vocabulary. Consider first a large set E of runs of a measurement166

performed on identical systems S initially prepared in the state |ψ〉, and interacting with A initially in the state |0〉.167

The density operator of S + A should evolve from |ψ〉|0〉〈0|〈ψ| to (1.2). We will term as “truncation” the elimination168

during the process of the off-diagonal blocks i , j of the density operator describing the joint system S + A for the169

whole set E of runs. If instead of the full set E we focus on a single run, the process should end up in one among170

the states |si〉 |Ai〉. We will designate as “reduction” the transformation of the initial state of S + A into such a final171

“reduced state”, for a single run of the measurement.172

One of the paradoxes of the measurement theory lies in the existence of several possible final states issued from173

the same initial state. Reduction thus seems to imply a bifurcation in the dynamics, whereas the Schrödinger equation174

entails a one-to-one correspondence between the initial and final states of the isolated system S + A.175

We stress that both above definitions refer to S + A. Some authors apply the words reduction or collapse to the sole176

tested system S. To avoid confusion, we will call “weak reduction” the transformation of the initial state |ψ〉〈ψ| of S into177

the pure state |ψi〉〈ψi| for a single run, and “weak truncation” its transformation into the mixed state
∑

i |ψi〉 |ψi|
2 〈ψi|178

for a large ensemble E of runs. In fact, the latter marginal density operator of S can be obtained by tracing out A,179

not only from the joint truncated state (1.2) of S+A, but also merely from the non-truncated state (1.3), so that the180

question seems to have been eluded. However, such a viewpoint, in which the apparatus is disregarded, cannot provide181

an answer to the measurement problem. The very aim of a measurement is to create correlations between S and A182

and to read the indications of A so as to derive indirectly information about S; but the elimination of the apparatus183

suppresses both the correlations between S and A and the information gained by reading A.184

Physically, a set of repeated experiments involving interaction of S and A can be regarded as a measurement only185

if we observe on A in each run some well defined result Ai, with probability |ψi|
2. For an ideal measurement we186

should be able to predict that S is then left in the corresponding state |si〉. Explaining these features requires that187

the considered dynamical model produces in each run one of the reduced states |si〉 |Ai〉. The quantum measurement188

problem thus amounts to the proof, not only of truncation, but also of reduction. This will be achieved in section 11 for189

a model of quantum statistical mechanics. As stressed by Bohr and Wigner, the reduction, interpreted as expressing190

the “uniqueness of physical reality”, is at variance with the superposition principle which produces the final state191

(1.3). The challenge is to solve this contradiction, answering Wigner’s wish: “The simplest way that one may try to192

reduce the two kinds of changes of the state vector to a single kind is to describe the whole process of measurement193

as an event in time, governed by the quantum mechanical equations of motion”. Our purpose is to show that this is194

feasible, contrary to Wigner’s own negative conclusion [13].195

1.1.3. Selection of outcomes196

Non-discrimination is a cross-cutting principle197

United Nations human rights, 1996198

When after a run of an ideal measurement, S is left in |si〉, a second measurement performed on the same system199

leaves this state unchanged and yields the same indication Ai of the pointer. Reduction, even weak, thus implies200

repeatability. Conversely, repeatability implies weak truncation, that is, the loss in the marginal density of S of the201

elements i , j during the first one of the successive measurement processes [52].202

Apart from having been truncated, the final density operator (1.2) of S + A for the whole set E of runs displays an203

essential feature, the complete correlation between the indication Ai of the pointer and the state |si〉 of S. We will term204
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as “registration” the establishment of these correlations. If they are produced, we can ascertain that, if the pointer205

takes a well defined value Ai in some run, its observation will imply that ŝ takes with certainty the corresponding206

eigenvalue si at the end of this run. Sorting the runs according to the outcome Ai allows us to split the ensemble207

E into subensembles Ei, each one labelled by i and described by the state |si〉|Ai〉
5. Selection of the subensemble208

Ei by filtering the values Ai therefore allows us to set S into this subensemble Ei described by the density operator209

|si〉|Ai〉〈Ai|〈si|. It is then possible to sort the runs according to the indication Ai of the pointer. Selecting thus the210

subensemble Ei by filtering Ai allows us to set S into the given state |si〉 with a view to future experiments on S. An211

ideal measurement followed by filtering can therefore be used as a preparation of the state of S [53]. We will make212

the argument more precise in § 10.2.2 and § 11.3.2.213

Note that some authors call “measurement” a single run of the experiment, or a repeated experiment in which the214

occurrence of some given eigenvalue of ŝ is detected, and in which only the corresponding events are selected for the215

outcoming system S. Here we use the term “measurement” to designate a repeated experiment performed on a large216

ensemble of identically prepared systems which informs us about all possible values si of the observable ŝ of S, and217

the term “ideal measurement” if the process perturbs S as little as allowed by quantum mechanics, in the sense that218

it does not affect the statistics of the observables that commute with ŝ. We do not regard the sorting as part of the219

measurement, but as a subsequent operation, and prefer to reserve the word “preparation through measurement” to220

such processes including a selection.221

1.2. The need for quantum statistical mechanics222

Om een paardendief te vangen heb je een paardendief nodig6
223

Un coupable en cache un autre7
224

Dutch and French proverbs225

We wish for consistency to use quantum mechanics for treating the dynamics of the interaction process between226

the apparatus and the tested system. However, the apparatus must be a macroscopic object in order to allow the227

outcome to be read off from the final position of its pointer. The natural framework to reconcile these requirements is228

non-equilibrium quantum statistical mechanics, and not quantum mechanics of pure states as presented above. It will229

appear that not only the registration process can be addressed in this way, but also the truncation and the reduction.230

1.2.1. Irreversibility of measurement processes231

The first time ever I saw your face232

I thought the sun rose in your eyes233

Written by Ewan MacColl, sung by Roberta Flack234

Among the features that we wish to explain, the truncation compels us to describe states by means of density235

operators. The sole use of pure states (quantum states describable by a wave function or a ket), is prohibited by236

the form of (1.2), which is in general a statistical mixture. Even if we start from a pure state |ψ〉 |0〉, we must end237

up with the truncated mixed state (1.2) through an irreversible process. This irreversibility is also exhibited by the238

fact the same final state (1.2) is reached if one starts from different initial states of the form (1.1) deduced from one239

another through changes of the phases of the coefficients ψi. Such a feature is associated with the disappearance of240

the specifically quantum correlations between S and A described by the off-diagonal terms of (1.3).241

Actually, there is a second cause of irreversibility in any effective measurement process. The apparatus A should242

register the result Ai in a robust and permanent way, so that it can be read off by any observer. Such a registration,243

which is often overlooked in the literature on measurements, is needed for practical reasons especially since we244

wish to explore microscopic objects. Moreover, its very existence allows us to disregard the observers in quantum245

measurements. Once the measurement has been registered, the result becomes objective and can be read off at any time246

by any observer. It can also be processed automatically, without being read off. Registration requires an amplification247

within the apparatus of a signal produced by interaction with the microscopic system S. For instance, in a bubble248

chamber, the apparatus in its initial state involves a liquid, overheated in a metastable phase. In spite of the weakness249

6To catch a horse thief, you need a horse thief
7One culprit hides another
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of the interaction between the particle to be detected and this liquid, amplification and registration of its track can250

be achieved owing to local transition towards the stable gaseous phase. This stage of the measurement process thus251

requires an irreversible phenomenon. It is governed by the kinetics of bubble formation under the influence of the252

particle and implies a dumping of free energy. Similar remarks hold for photographic plates, photomultipliers and253

other types of detectors.254

Since the amplification and the registration of the measurement results require the apparatus A to be a large object255

so as to behave irreversibly, we must use quantum statistical mechanics to describe A. In particular, the above as-256

sumption that A lay initially in a pure state |0〉 was unrealistic – nevertheless this assumption is frequent in theoretical257

works on measurements, see e.g. [25, 32, 33]. Indeed, preparing an object in a pure state requires controlling a258

complete set of commuting observables, performing their measurement and selecting the outcome (§ 1.1.3). While259

such operations are feasible for a few variables, they cannot be carried out for a macroscopic apparatus nor even for260

a mesoscopic apparatus involving, say, 1000 particles. What the experimentalist does in a quantum measurement is261

quite the opposite [10, 11, 3, 31]: rather than purifying the initial state of A, he lets it stabilize macroscopically by262

controlling a few collective parameters such as the temperature of the apparatus. The adequate theoretical represen-263

tation of the initial state of A, which is a mixed state, is therefore a density operator denoted as R̂(0). Using pure264

states in thought experiments or models would require averaging so as to reproduce the actual situation (§ 10.2.3 and265

§ 12.1.4). Moreover the initial state of A should be metastable, which requires a sudden change of, e.g., temperature.266

Likewise the final possible stable marginal states of A are not pure. As we know from quantum statistical physics,267

each of them, characterized by the value of the pointer variable Ai that will be observed, should again be described268

by means of a density operator R̂i, and not by means of pure states |Ai〉 as in (1.3). Indeed, the number of state269

vectors associated with a sharp value of the macroscopic pointer variable Ai is huge for any actual measurement: As270

always for large systems, we must allow for small fluctuations, negligible in relative value, around the mean value271

Ai = trAÂR̂i. The fact that the possible final states R̂i are exclusive is expressed by trAR̂iR̂ j ' 0 for j , i, which272

implies273

R̂iR̂ j→ 0 for N → ∞ when i , j. (1.4)

In words, these macroscopic pointer states are practically orthogonal.274

1.2.2. The paradox of irreversibility275

La vida es sueño8
276

Calderón de la Barca277

If we disregard the system S, the irreversible process leading A from the initial state R̂ (0) to one among the final278

states R̂i is reminiscent of relaxation processes in statistical physics, and the measurement problem raises the same279

type of puzzle as the paradox of irreversibility. In all problems of statistical mechanics, the evolution is governed at280

the microscopic level by equations that are invariant under time-reversal: Hamilton or Liouville equations in classical281

physics, Schrödinger, or Liouville–von Neumann equations in quantum physics. Such equations are reversible and282

conserve the von Neumann entropy, which measures our missing information. Nevertheless we observe at our scale283

an irreversibility, measured by an increase of macroscopic entropy. The explanation of this paradox, see, e.g., [54,284

55, 56, 57, 58, 59], relies on the large number of microscopic degrees of freedom of thermodynamic systems, on285

statistical considerations and on plausible assumptions about the dynamics and about the initial state of the system.286

Let us illustrate these ideas by recalling the historic example of a classical gas, for which the elucidation of the287

paradox was initiated by Boltzmann [54, 55, 56]. The microscopic state of a set of N structureless particles enclosed288

in a vessel is represented at each time by a point ξ(t) in the 6N-dimensional phase space, the trajectory of which is289

generated by Hamilton’s equations, the energy E being conserved. We have to understand why, starting at the time290

t = 0 from a more or less arbitrary initial state with energy E, we always observe that the gas reaches at the final time291

tf a state which macroscopically has the equilibrium properties associated with N and E, to wit, homogeneity and292

Maxwellian distribution of momenta – whereas a converse transformation is never seen in spite of the reversibility293

of the dynamics. As we are not interested in a single individual process but in generic features, we can resort to294

8Life is a dream
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statistical considerations. We therefore consider an initial macroscopic state Sinit characterized by given values of the295

(non uniform) densities of particles, of energy, and of momentum in ordinary space. Microscopically, Sinit can be296

realized by any point ξinit lying in some volume Ωinit of phase space. On the other hand, consider the volume ΩE in297

phase space characterized by the total energy E. A crucial fact is that the immense majority of points ξ with energy298

E have macroscopically the equilibrium properties (homogeneity and Maxwellian distribution): the volume Ωeq of299

phase space associated with equilibrium occupies nearly the whole volume Ωeq/ΩE ' 1. Moreover, the volume ΩE300

is enormously larger than Ωinit. We understand these properties by noting that the phase space volumes characterized301

by some macroscopic property are proportional to the exponential of the thermodynamic entropy. In particular, the302

ratio Ωeq/Ωinit is the exponential of the increase of entropy from Sinit to Seq, which is large as N. We note then that303

Hamiltonian dynamics implies Liouville’s theorem. The bunch of trajectories issued from the points ξ(0) in Ωinit304

therefore reach at the time tf a final volume Ωf = Ωinit that occupies only a tiny part of ΩE , but which otherwise is305

expected to have nothing special owing to the complexity of the dynamics of collisions. Thus most end points ξ(tf)306

of these trajectories are expected to be typical points of ΩE , that is, to lie in the equilibrium region Ωeq. Conversely,307

starting from an arbitrary point of ΩE or of Ωeq, the probability of reaching a point that differs macroscopically308

from equilibrium is extremely small, since such points occupy a negligible volume in phase space compared to the309

equilibrium points. The inconceivably large value of Poincaré’s recurrence time is also related to this geometry of310

phase space asociated with the macroscopic size of the system.311

The above argument has been made rigorous [54, 55, 56] by merging the dynamics and the statistics, that is,312

by studying the evolution of the density in phase space, the probability distribution which encompasses the bunch of313

trajectories evoked above. Indeed, it is easier to control theoretically the Liouville equation than to study the individual314

Hamiltonian trajectories and their statistics for random initial conditions. The initial state of the gas is now described315

by a non-equilibrium density in the 6N-dimensional phase space. Our full information about this initial state, or the316

full order contained in it, is conserved by the microscopic evolution owing to the Liouville theorem. However, the317

successive collisions produce correlations between larger and larger numbers of particles. Thus, while after some318

time the gas reaches at the macroscopic scale the features of thermodynamic equilibrium, the initial order gets hidden319

into microscopic variables, namely many-particle correlations, that are inaccessible. Because the number of degrees of320

freedom is large – and it is actually gigantic for any macroscopic object – this order cannot be retrieved (except in some321

exceptional controlled dynamical phenomena such as spin echoes [60, 61, 62, 63, 64, 65]). In any real situation, it is322

therefore impossible to recover, for instance, a non-uniform density from the very complicated correlations created323

during the relaxation process. For all practical purposes, we can safely keep track, even theoretically, only of the324

correlations between a number of particles small compared to the total number of particles of the system: the exact325

final density in phase space cannot then be distinguished from a thermodynamic equilibrium distribution. It is this326

dropping of information about undetectable and ineffective degrees of freedom, impossible to describe even with the327

largest computers, which raises the macroscopic entropy [54, 55, 56, 57, 58]. Such approximations can be justified328

mathematically through limiting processes where N → ∞.329

Altogether, irreversibility can be derived rigorously for the Boltzmann gas under assumptions of smoothness and330

approximate factorization of the single particle density. The change of scale modifies qualitatively the properties of331

the dynamics, for all accessible times and for all accessible physical variables. The emergence of an irreversible332

relaxation from the reversible microscopic dynamics is a statistical phenomenon which becomes nearly deterministic333

owing to the large number of particles. We shall encounter similar features in quantum measurement processes.334

1.2.3. Quantum measurements in the language of statistical physics335

Now the whole earth was of one language and of one speech9
336

9Metaphorically, the discovery of quantum theory and the lack of agreement about its interpretation may be phrased in the next lines of Genesis
11 [66]: 2. And it came to pass, as they journeyed from the east, that they found a plane in the land of Shinar; and they dwelt there. 3. And they
said one to another, Go to, let us make brick, and burn them throughly. And they had brick for stone, and slime had they for mortar. 4. And they
said, Go to, let us build a city, and a tower whose top may reach unto heaven; and let us make us a name, lest we be scattered abroad upon the face
of the whole earth. 5. And the Lord came down to see the city and the tower, which the children of men builded. 6. And the Lord said, Behold, the
people is one, and they have all one language; and this they begin to do: and now nothing will be restrained from them, which they have imagined
to do. 7. Go to, let us go down, and there confound their language, that they may not understand one another’s speech. 8. So the Lord scattered
them abroad from thence upon the face of all the earth: and they left off to build the city. 9. Therefore is the name of it called Babel; because the
Lord did there confound the language of all the earth: and from thence did the Lord scatter them abroad upon the face of all the earth
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Genesis 11:1337

The theoretical description of a measurement process should be inspired by the above ideas. Actually, a measure-338

ment process looks like a relaxation process, but with several complications. On the one hand, the final stable state of339

A is not unique, and the dynamical process can have several possible outcomes for A. In photodetection (the eye, a340

photomultiplier), one just detects whether an avalanche has or not been created by the arrival of a photon. In a mag-341

netic dot, one detects the direction of the magnetization. The apparatus is therefore comparable to a material which,342

in statistical physics, has a broken invariance and can relax towards one equilibrium phase or another, starting from343

a single metastable phase. On the other hand, the evolution of A towards one among the final states R̂i characterized344

by the variable Ai should be triggered by interaction with S, in a way depending on the initial microscopic state of S345

and, for an ideal measurement, the final microscopic state of S should be correlated to the outcome Ai. Thus, contrary346

to theories of standard relaxation processes in statistical physics, the theory of a measurement process will require a347

simultaneous control of microscopic and macroscopic variables. In the coupled evolution of A and S which involves348

truncation and registration, coarse graining will be adequate for A, becoming exact in the limit of a large A, but not349

for S. Moreover the final state of S + A keeps memory of the initial state of S, at least partly. The very essence of a350

measurement lies in this feature, whereas memory effects are rarely considered in standard relaxation processes.351

Denoting by r̂ (0) and R̂(0) the density operators of the system S and the apparatus A, respectively, before the352

measurement, the initial state of S+A is characterized in the language of quantum statistical mechanics by the density353

operator354

D̂ (0) = r̂ (0) ⊗ R̂ (0) . (1.5)

In the Schrödinger picture, where the wave functions evolve according to the Schrödinger equation while observables355

are time-independent, the density operator D̂(t) = exp(−iĤt/~)D̂(0) exp(iĤt/~) of the compound system S + A356

evolves according to the Liouville-von Neumann equation of motion357

i~
dD̂
dt

= [Ĥ, D̂] ≡ ĤD̂ − D̂Ĥ, (1.6)

where Ĥ is the Hamiltonian of S + A including the interaction between S and A. By solving (1.6) with the initial358

condition (1.5), we find the expectation value 〈Â(t)〉 of any observable Â of S + A at the time t as tr[D̂(t)Â] (see359

subsection 10.1 and Appendix G).360

We first wish to show that, for an ideal measurement, the final density operator of S + A which represents the361

outcome af a large set E of runs at the time tf has the form362

D̂ (tf) =
∑

i

(
Π̂ir̂ (0) Π̂i

)
⊗ R̂i =

∑
i

pir̂i ⊗ R̂i, (1.7)

where Π̂i denotes the projection operator (satisfying Π̂iΠ̂ j = δi jΠ̂i) on the eigenspace si of ŝ in the Hilbert space of S,363

with ŝ =
∑

i siΠ̂i and
∑

i Π̂i = Î. (If the eigenvalue si is non-degenerate, Π̂i is simply equal to |si〉〈si|.) We have denoted364

by365

r̂i =
1
pi

Π̂ir̂(0)Π̂i (1.8)

the corresponding normalized projected state (which reduces to |si〉〈si| if si is non-degenerate), and by366

pi ≡ trSr̂(0)Π̂i (1.9)

the normalizing factor (which reduces to rii(0) if si is non-degenerate). The expression (1.7) generalizes (1.2) to367

arbitrary density operators; we will use the same vocabulary as in § 1.1.2 to designate its various features. This368

generalization was first conceived by Lüders [67]. The lack in (1.7) of off-diagonal blocks i , j in a basis where ŝ369

is diagonal expresses truncation. The correlations between the states r̂i for S and the states R̂i for A, displayed in its370

diagonal blocks, express registration; they are encoded in 〈Π̂i(Â − Ai)2〉 = 0 for each i, a consequence of (1.7), which371

means that in an ideal measurement ŝ takes the value si when Â takes the value Ai.372
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We further wish to show that reduction takes place, i.e., that the set E of runs can unambiguously be split into373

subsets Ei including a proportion pi of runs, in such a way that for each subset the final state of S + A is D̂i = r̂i ⊗ R̂i.374

This property obviously requires that (1.7) is satisfied, since by putting back together the subensembles Ei we recover375

for E the state
∑

i piD̂i of S + A. Nevertheless, due to a quantum queerness (§ 10.2.3), we cannot conversely infer from376

the latter state the existence of physical subensembles Ei described by the reduced statesDi. In fact, the very selection377

of some specific outcome labelled by the index i requires the reading of the indication Ai of the pointer (§ 1.1.3), but378

it is not granted from (1.7) that each run provides such a well-defined indication. This problem will be solved for the379

Curie–Weiss model in section 11.380

Tracing out the apparatus from (1.7) provides the marginal state for the tested system S after measurement, which381

is represented for the whole set of runs by the density operator382

r̂ (tf) ≡ trAD̂(tf) =
∑

i

pir̂i =
∑

i

Π̂ir̂(0)Π̂i =
∑

i

pi|si〉〈si| =
∑

i

rii(0)|si〉〈si|. (1.10)

The last two expressions in (1.10) hold when the eigenvalues si of ŝ are non-degenerate. Symmetrically, the final383

marginal state of the apparatus384

R̂ (tf) = trS D̂(tf) =
∑

i

piR̂i (1.11)

is consistent with the occurrence with a probability pi of its indication Ai. The expression (1.10) is the result of weak385

truncation, while the selection of the runs characterized by the outcome Ai produces for S the weak reduction into the386

state r̂i. The latter process constitutes a preparation of S. As already noted in § 1.1.2, the fact that simply tracing out387

A may lead to a (weakly) truncated or a reduced state for S solves in no way the physics of the measurement process,388

a well known weakness of some models [10, 11, 31, 68, 69].389

1.2.4. Entropy changes in a measurement390

Discussions about entropy have produced quite a bit of heat391

Anonymous392

When von Neumann set up in 1932 the formalism of quantum statistical mechanics [4], he introduced density393

operators D̂ as quantum analogues of probability distributions, and he associated with any of them a number, its394

entropy S [D̂] = −tr D̂ ln D̂. In case D̂ describes a system in thermodynamic equilibrium, S [D̂] is identified with395

the entropy of thermodynamics10. Inspired by these ideas, Shannon founded in 1948 the theory of communication,396

which relies on a quantitative estimate of the amount of information carried by a message [70]. Among the various397

possible messages that are expected to be emitted, each one i has some probability pi to occur; by receiving the specific398

message i we gain an amount − ln pi of information. Shannon’s entropy S [p] = −
∑

i pi ln pi characterizes the average399

amount of information which is missing when the message has not yet been acknowledged. Returning to quantum400

mechanics, a new interpretation of von Neumann’s entropy is thus obtained [71, 72, 73]. When a system (or rather401

a statistical ensemble of systems prepared under similar conditions, in which the considered system is embedded) is402

described by some density operator D̂, the associated von Neumann entropy can be regarded as an extension of the403

Shannon entropy: it characterizes a lack of information due to the probabilistic description of the system. It has thus a404

partly subjective nature, since it measures our uncertainty. One can also identify it with disorder [58, 72, 73, 74, 75].405

As measurement processes are means for gathering information, quantitative estimates of the amounts of information406

involved are provided by the changes of the von Neumann entropies of the systems S, A and S + A. We gather below407

the various results found in the literature and their interpretation.408

The equation of motion of S + A is deterministic and reversible, and some manipulations justified by the large409

size of A are necessary, as in any relaxation problem, to understand how the state of S + A may end as (1.7). Strictly410

speaking, the Liouville-von Neumann evolution (1.6) conserves the von Neumann entropy −tr D̂ ln D̂ associated with411

10With this definition, S is dimensionless. In thermodynamic units, S is obtained by multiplying its present expression by Boltzmann’s constant
1.38 · 10−23 JK−1. Likewise, if we wish to express Shannon’s entropy in bits, its expression should be divided by ln 2
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the whole set of degrees of freedom of S + A; in principle no information is lost. However, in statistical physics,412

irreversibility means that information (identified with order) is transferred towards inaccessible degrees of freedom,413

in the form of many-particle correlations, without possibility of return in a reasonable delay. A measure of this loss414

of information is provided by the “relevant entropy” [58, 72, 73, 74, 75], which is the von Neumann entropy of the415

state that results from the elimination of the information about such inaccessible correlations. Here the truncated state416

D̂(tf) should have the latter status: As regards all accessible degrees of freedom, D̂(tf) should be equivalent to the state417

issued from D̂(0) through the equation of motion (1.6), but we got rid in D̂(tf) of the irrelevant correlations involving418

a very large number of elements of the macroscopic apparatus A; such correlations are irremediably lost.419

We can therefore measure the irreversibility of the measurement process leading from D̂(0) to D̂(tf) by the fol-420

lowing entropy balance. The von Neumann entropy of the initial state (1.5) is split into contributions from S and A,421

respectively, as422

S
[
D̂ (0)

]
= −tr D̂ (0) ln D̂ (0) = S S [r̂ (0)] + S A

[
R̂ (0)

]
, (1.12)

whereas that of the final state (1.7) is423

S
[
D̂ (tf)

]
= S S [r̂ (tf)] +

∑
i

piS A

[
R̂i

]
, (1.13)

where r̂ (tf) is the marginal state (1.10) of S at the final time11. This equality entails separate contributions from S and424

A. The increase of entropy from (1.12) to (1.13) clearly arises from the two above-mentioned reasons, truncation and425

registration. On the one hand, when the density operator r̂ (0) involves off-diagonal blocks Π̂ir̂ (0) Π̂ j (i , j), their426

truncation raises the entropy. On the other hand, a robust registration requires that the possible final states R̂i of A are427

more stable than the initial state R̂ (0), so that their entropy is larger. The latter effect dominates because the apparatus428

is large, typically S A will be macroscopic and S S microscopic.429

An apparatus is a device which allows us to gain some information on the state of S by reading the outcomes Ai.430

The price we have to pay for being thus able to determine the probabilities (1.9) is a complete loss of information431

about the off-diagonal elements Π̂ir̂ (0) Π̂ j (i , j) of the initial state of S12, and a rise in the thermodynamic entropy432

of the apparatus. More generally, in other types of quantum measurements, some information about a system may be433

gained only at the expense of erasing other information about this system [76] (see subsection 2.5).434

The quantitative estimation of the gains and losses of information in the measurement process is provided by an435

entropic analysis, reviewed in [22, 72, 77]. Applications of entropy for quantifying the uncertainties in quantum436

measurements are also discussed in [78]. We recall here the properties of the entropy of the marginal state of S and437

their interpretation in terms of information. We have just noted that S S [r̂ (tf)] − S S [r̂ (0)], which is non-negative,438

measures the increase of entropy of S due to weak truncation. This means that, in case we know r̂(0), the interaction439

with A (without reading the pointer) lets us loose the amount of information S S [r̂ (tf)]−S S [r̂ (0)] about all observables440

that do not commute with ŝ [72, 77]. In fact, this loss is the largest possible among the set of states that preserve441

the whole information about the observables commuting with ŝ. Any state of S that provides, for all observables442

commuting with ŝ, the same expectation values as r̂(tf) is less disordered than r̂(tf), and has an entropy lower than443

S S[r̂(tf)]. In other words, among all the processes that leave the statistics of the observables commuting with ŝ444

unchanged, the ideal measurement of ŝ is the one which destroys the largest amount of information (about the other445

observables of S).446

Reading the pointer value Ai, which occurs with probability pi, allows us to ascertain (for the considered ideal447

measurement) that S is in the state r̂i after the measurement. By acknowledging the outcomes of a large sequence448

of runs of the measurement, we gain therefore on average some amount of information given on the one hand by the449

Shannon entropy −
∑

i pi ln pi, and equal on the other hand to the difference between the entropies of the final state450

and of its separate components,451

11The latter expression is found by using the orthogonality R̂iR̂ j = 0 for i , j, so that −D̂(tf ) ln D̂(tf ) is equal to the sum of its separate blocks,∑
i pi r̂i ⊗ R̂i(− ln pi − ln r̂i − ln R̂i), and hence the entropy of D̂(tf ) is a sum of contributions arising from each i. The trace over A of the first two

terms leads to
∑

i pi r̂i(− ln pi − ln r̂i), the trace over S of which may be identified with the entropy S S[r̂(tf )] of (1.10); the trace of the last term leads
to the last sum in (1.13)

12In the language of section 1.1: Loss of information about the phases of the ψi
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S S [r̂(tf)] −
∑

i

piS S [r̂i] = −
∑

i

pi ln pi ≥ 0. (1.14)

The equality expresses additivity of information, or of uncertainty, at the end of the process, when we have not yet read452

the outcomes Ai: Our uncertainty S S[r̂(tf)], when we know directly that r̂(tf), the density operator of the final state,453

encompasses all possible marginal final states r̂i, each with its probability pi, is given by the left-hand side of (1.14).454

It is the same as if we proceed in two steps. As we have not yet read Ai, we have a total uncertainty S S [r̂(tf)] because455

we miss the corresponding amount of Shannon information −
∑

i pi ln pi about the outcomes; and we miss also, with456

the probability pi for each possible occurrence of Ai, some information on S equal to S [r̂i], the entropy of the state457

r̂i. As it stands, the equality (1.14) also expresses the equivalence between negentropy and information [74, 79, 80]:458

sorting the ensemble of systems S according to the outcome i lowers the entropy by a quantity equal on average to459

the left-hand side of (1.14), while reading the indication Ai of the pointer provides, in Shannon’s sense, an additional460

amount of information − ln pi, on average equal to the right-hand side.461

Two inequalities are satisfied in the whole process, including the sorting of results:462

−
∑

i

pi ln pi ≥ S S [r̂(0)] −
∑

i

piS S [r̂i] ≥ 0. (1.15)

The first inequality expresses that the additivity of the information gained on the final state r̂(tf) of S by acknowledging463

the probabilities pi, as expressed by (1.14), is spoiled in quantum mechanics when one considers the whole process,464

due to the quantum perturbation of the initial state of S which eliminates its off diagonal sectors. The second inequality,465

derived in [81], expresses that measurements yield a positive balance of information about S in spite of the losses466

resulting from the perturbation of S. Indeed, this inequality means that, on average over many runs of the measurement467

process, and after sorting of the outcomes, the entropy of S has decreased, i. e., more information on S is available at468

the time tf than at the initial time. The equality holds only if all possible final states r̂i of S have the same entropy.469

Note finally that, if we wish to perform repeated quantum measurements in a closed cycle, we must reset the470

apparatus in its original metastable state. As for a thermal machine, this requires lowering the entropy and costs some471

supply of energy.472

1.3. Towards a solution of the measurement problem?473

                                 . 13
474

Russian proverb475

The quantum measurement problem arises from the acknowledgement that individual measurements provide well-476

defined outcomes. Standard quantum mechanics yields only probabilistic results and thus seems unable to explain such477

a behavior. We have advocated above the use of quantum statistical physics, which seems even less adapted to draw478

conclusions about individual systems. Most of the present work will be devoted to show how a statistical approach479

may nevertheless solve the measurement problem as will be discussed in section 11. We begin with a brief survey of480

the more current approaches.481

1.3.1. Various approaches482

14
483 Ջորին յոթը գետում լողալ գիտի, բայց ջուր տեսնելիս բոլորը մոռանում է:

Armenian proverb484

In the early days of quantum mechanics, the apparatus was supposed to behave classically, escaping the realm485

of quantum theory [82, 83, 84]. A similar idea survives in theoretical or experimental works exploring the possible486

13Visiting is good, but home is better
14The mule can swim over seven rivers, but as soon as it sees the water it forgets everything
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existence of a border between small or large, or between simple and complex objects, which would separate the487

domains of validity of quantum and classical physics (Heisenberg’s cut [3]).488

Another current viewpoint has attributed the reduction15 in a measurement to the “act of observing the result”.489

Again, the observer himself, who is exterior to the system, is not described in the framework of quantum mechanics. In490

Rovelli’s relational interpretation [85] a quantum mechanical description of some object is regarded as a codification of491

its properties which is “observer-dependent”, that is, relative to a particular apparatus. Then, while a first “observer” A492

who gathers information about S regards reduction as real, a second observer testing S + A can consider that reduction493

has not taken place. In the many-worlds interpretation, reduction is even denied, and regarded as a delusion due to the494

limitations of the human mind [25, 26]. From another angle, people who wish to apply quantum theory to the whole495

universe, even have a non-trivial task in defining what is observation. A more rational attitude is taken within the496

consistent histories approach, in which one is careful with defining when and where the events happen, but in which497

one holds that the measurements simply reveal the pre-existing values of events (this approach is discussed below in498

section 2.9). For interpretations of quantum mechanics, see Bohm’s textbook [86] and for interpretations based on499

entanglement and information, see Peres [22] and Jaeger [87].500

The reduction may be regarded as a bifurcation in the evolution of the considered system, which may end up501

in different possible states |si〉 although it has been prepared in the single initial state |ψ〉. In the de Broglie–Bohm502

interpretation involving both waves and classical-like trajectories, the wave function |ψ(t)〉 appears both as arising503

from the density of trajectories and as guiding their dynamics. The randomness of quantum mechanics then arises504

merely from a randomness in the initial points of the set of trajectories. During a measurement process, the single505

initial bundle of trajectories, associated with |ψ〉, is split into separate bundles, each of which is associated with a wave506

function |si〉. While this interpretation accounts for the bifurcation and for the uniqueness of the outcome of each run507

of a measurement process, it is not widely accepted [18, 19, 24, 35, 88].508

A more recent line of thought, going “beyond the quantum” [20] relies on modification of the Schrödinger509

mechanics by additional non-linear and stochastic terms; see Refs. [17, 89, 90] for review. Such generalizations are510

based in the belief, emphasized in the standard Copenhagen interpretation of quantum mechanics, that the Schrödinger511

equation is unable to describe the joint evolution of a system S and an apparatus A, so that a special separate postulate512

is needed to account for the rules of quantum measurements, in particular reduction. Indeed, a hamiltonian evolution513

seems to preclude the emergence of a single result in each single realization of a measurement [4, 13, 30].514

We will focus below on the most conservative approach where S + A is treated as an isolated quantum object515

governed by a Hamiltonian, and yet where reduction can be understood. The measurement is not considered on formal516

and general grounds as in many conceptual works aimed mainly at the interpretation of quantum mechanics, but it517

is fully analyzed as a dynamical process. Unfortunately the theory of specific experimental measurement processes518

based on hamiltonian dynamics is made difficult by the complexity of a real measuring apparatus. One can gain full519

insight only by solving models that mimic actual measurements. The formal issue is first to show how S + A, which520

starts from the state (1.5) and evolves along (1.6), may reach a final state of the truncated and correlated form (1.7),521

then to explain how dynamics may provide for each run of the experiment one among the reduced states D̂i.522

The realization of such a program should meet the major challenge raised long ago by Bell [91]: “So long as523

the wave packet reduction is an essential component, and so long as we do not know exactly when and how it takes524

over from the Schrödinger equation, we do not have an exact and unambiguous formulation of our most fundamental525

physical theory”. Indeed, a full understanding of quantum mechanics requires knowledge of the time scales involved526

in measurements.527

Knowing how the truncation, then the reduction proceed in time, how long they take, is a prerequisite for clearing528

up the meaning of this phenomenon. On the other hand, the registration is part of the measurement; it is important529

to exhibit the time scale on which it takes place, to determine whether it interferes with the reduction or not, and to530

know when and how the correlations between S and A are established. These are the tasks we undertake in the body531

of this work on a specific but flexible model. We resume in sections 9 and 11 how the solution of this model answers532

such questions.533

15We use the word “reduction” in the meaning specified in § 1.1.2, although the same word is often used in the literature to designate what we
call “truncation” so as to distinguish the two concepts
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1.3.2. Outline534

We review in section 2 the works that tackled the program sketched above, and discuss to which extent they535

satisfy the various features that we stressed in the introduction. For instance, do they explain reduction by relying536

on a full dynamical solution of the Liouville–von Neumann equation for the considered model, or do they only537

invoke environment-induced decoherence? Do they solve the preferred basis paradox? Do they account for a robust538

registration? Do they produce the time scales involved in the process?539

In section 3 we present the Curie–Weiss model, which encompasses many properties of the previous models and540

on which we will focus afterwards. It is sufficiently simple to be completely solvable, sufficiently elaborate to account541

for all characteristics of ideal quantum measurements, and sufficiently realistic to resemble actual experiments: The542

apparatus simulates a magnetic dot, a standard registering device.543

The detailed dynamical solution of this model is worked out in sections 4 to 7, some calculations being given in544

appendices. After analysing the equations of motion of S + A (section 4), we exhibit several time scales. The trun-545

cation rapidly takes place (section 5). It is then made irremediable owing to two alternative mechanisms (section 6).546

Amplification and registration require much longer delays since they involve a macroscopic change of the apparatus547

and energy exchange with the bath (section 7).548

Solving several variants of the Curie–Weiss model allows us to explore various dynamical processes which can be549

interpreted either as imperfect measurements or as failures (section 8). In particular, we study what happens when the550

pointer has few degrees of freedom or when one tries to simultaneously measure non-commuting observables. The551

calculations are less simple than for the original model, but are included in the text for completeness.552

The results of sections 4 to 8 are resumed and analysed in section 9, which also presents some simplified deriva-553

tions suited for tutorial purposes. However, truncation and registration, explained in sections 5 to 7 for the Curie–554

Weiss model, are only prerequisites for elucidating the quantum measurement problem, which moreover requires an555

explanation of reduction.556

Before we tackle this remaining task, we need to make more precise the conceptual framework on which we rely,557

since reduction is tightly related with the interpretation of quantum mechanics. The statistical interpretation, in a form558

presented in section 10, appears as the most natural and consistent one in this respect.559

We are then in position to work out the occurrence of reduction within the framework of the statistical interpre-560

tation. This is achieved in section 11 for a modified Curie–Weiss model, in which very weak but still sufficiently561

elaborate interactions within the apparatus are implemented. The uniqueness of the result of a single measurement, as562

well as the occurrence of classical probabilities, are thus seen to emerge only from the dynamics of the measurement563

process.564

Lessons for future work are drawn in section 12, and some open problems are suggested in section 13.565

The reader interested only in the outcomes may skip the technical sections 4 to 8, and focus upon section 9, which566

gathers all the outcomes of the dynamics in the Curie–Weiss model. This section can be regarded as a self-contained567

reading guide, and as a basis on which the conclusions of sections 10 to 12 will be founded.568

1.3.3. Terminology employed for the basic concepts569

Authors do not always assign the same meaning to some current words. In order to avoid misunderstandings, we570

gather here the definitions that we are using throughout.571

• Observable: an operator that represents a physical quantity of a system572

• Statistical ensemble: a real or virtual set of systems prepared under identical conditions.573

• Quantum state: a mathematical object from which all the probabilistic properties of a statistical ensemble of574

systems can be obtained. (Strictly speaking, the state of an individual system refers to a thought ensemble575

in which it is embedded, since this state has a probabilistic nature.) States are generally represented by a576

density operator (or, in a given basis, a density matrix) which encompasses the expectation values of all the577

observables. Pure states are characterized by an absence of statistical fluctuations for some complete set of578

commuting observables.579
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• Measurement: a dynamical process which involves an apparatus A coupled to a tested system S and which580

provides information about one observable ŝ of S. The time-dependent state of the compound system S + A581

describes a statistical ensemble of runs, not individual runs. With this definition, the reading of the outcomes582

and the selection of the results are not encompassed in the “measurement”, nor in the “truncation” and the583

“registration”.584

• Individual run of a measurement: a single interaction process between tested system and apparatus (prepared585

in a metastable state), followed by the reading of the outcome.586

• Ideal measurement: a measurement which does not perturb the observables of S that commute with ŝ.587

• Truncation; disappearance of Schrödinger cat states: the disappearance, at the end of the measurement process,588

of the off-diagonal blocks of the density matrix of S + A describing the whole set of runs, in a basis where ŝ is589

diagonal16,17
590

• Reduction: for an individual run of the measurement, assignment of a state to S+A at the end of the process16,17.591

• Decoherence: in general, a decay of the off-diagonal blocks of a density matrix under the effect of a random592

environment, such as a thermal bath.593

• Pointer; pointer variable: a part of the apparatus which undergoes a change that can be read off or registered.594

In general the pointer should be macroscopic and the pointer variable should be collective.595

• Registration: the creation during a measurement of correlations between S and the macroscopic pointer of A.596

• Selection: the sorting of the runs of an ideal measurement, after truncation and registration, according to the597

indication of the pointer. The original ensemble that underwent the process is thus split into subensembles598

characterized by a well-defined value of ŝ. Measurement followed by selection may constitute a preparation.599

• Hierarchic structure of subensembles: a property required to solve the quantum measurement problem. Namely,600

the final state associated with any subset of runs of the measurement should have the same form as for the whole601

set (§ 11.2.1).602

2. The approach based on models603

Point n’est besoin d’espérer pour entreprendre,604

ni de réussir pour persévérer18
605

Charles le Téméraire and William of Orange606

We have briefly surveyed in § 1.3.1 many theoretical ideas intended to elucidate the problem of quantum measure-607

ments. We feel that it is more appropriate to think along the lines of an experimentalist who performs measurements608

in his laboratory. For this reason, it is instructive to formulate and solve models with this scope. We review in this sec-609

tion various models in which S + A is treated as a compound system which evolves during the measurement process610

according to the standard rules of quantum mechanics. The existing models are roughly divided into related classes.611

Several models serve to elucidate open problems. Besides specific models, we shall discuss several more general612

approaches to quantum measurements (e.g., the decoherence and consistent histories approaches).613

16 We will refrain from using popular terms such as “collapse of the wave function” or “reduction of the wave packet”
17 We use the terms “weak truncation” and “weak reduction” for the same operations as truncation and reduction, but perfomed on the marginal

density matrix of the tested system S, and not on the density matrix of the compound system S+A
18It is not necessary to hope for undertaking, neither to succeed for persevering
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2.1. Heisenberg–von Neumann setup614

Before you milk a cow, tie it up615

South African proverb616

A general set-up of quantum measurement was proposed and analysed by Heisenberg [2, 3]. His ideas were617

formalized by von Neumann who proposed the very first mathematically rigorous model of quantum measurement618

[4]. An early review on this subject is by London and Bauer [30], in the sixties it was carefully reviewed by Wigner619

[13]; see [92] for a modern review.620

Von Neumann formulated the measurement process as a coupling between two quantum systems with a specific621

interaction Hamiltonian that involves the (tensor) product between the measured observable of the tested system and622

the pointer variable, an observable of the apparatus. This interaction conserves the measured observable and ensures a623

correlation between the tested quantity and the pointer obervable. In one way or another the von Neumann interaction624

Hamiltonian is applied in all subsequent models of ideal quantum measurements. However, von Neumannn’s model625

does not account for the differences between the microscopic [system] and macroscopic [apparatus] scales. As a main626

consequence, it does not have a mechanism to ensure the specific classical correlations (in the final state of the system627

+ apparatus) necessary for the proper interpretation of a quantum measurement. Another drawback of this approach628

is its requirement for the initial state of the measuring system (the apparatus) to be a pure state (so it is described629

by a single wave function). Moreover, this should be a specific pure state, where fluctuations of the pointer variable630

are small. Both of these features are unrealistic. In addition, and most importantly, the von Neumann model does631

not account for the features of truncation and reduction; it only shows weak reduction (see terminology in § 1.1.2632

and § 1.3.3). This fact led von Neumann (and later on Wigner [13]) to postulate – on top of the usual Schrödinger633

evolution – a specific dynamic process that is supposed to achieve the reduction [4].634

With all these specific features it is not surprising that the von Neumann model has only one characteristic time635

driven by the interaction Hamiltonian. Over this time the apparatus variable gets correlated with the initial state of the636

measured system.637

Jauch considers the main problem of the original von Neumann model, i.e. that in the final state it does not ensure638

specific classical correlations between the apparatus and the system [93]. A solution of this problem is attempted639

within the lines suggested (using his words) during “the heroic period of quantum mechanics” that is looking for640

classical features of the apparatus. To this end, Jauch introduces the concept of equivalence between two states (as641

represented by density matrices): two states are equivalent with respect to a set of observables, if these observables642

cannot distinguish one of these states from another [93]. Next, he shows that for the von Neumann model there is a643

natural set of commuting (hence classical) observables, so that with respect to this set the final state of the model is644

not distinguishable from the one having the needed classical correlations. At the same time Jauch accepts that some645

other observable of the system and the apparatus can distinguish these states. Next, he makes an attempt to define646

the measurement event via his concept of classical equivalence. In our opinion this attempt is interesting, but not647

successful.648

2.2. Quantum–classical models: an open issue?649

Gooi geen oude schoenen weg voor je nieuwe hebt19
650

Dutch proverb651

Following suggestions of Bohr that the proper quantum measurement should imply a classical apparatus [82,652

83, 84], there were several attempts to work out interaction between a quantum and an explicitly classical system653

[94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]. (Neither Bohr [82, 83], nor Landau and654

Lifshitz [84] who present Bohr’s opinion in quite detail, consider the proper interaction processes.) This subject655

is referred to as hybrid (quantum–classical) dynamics. Besides the measurement theory it is supposed to apply in656

quantum chemistry [94, 95] (where the full modeling of quantum degrees of freedom is difficult) and in quantum657

gravity [109], where the proper quantum dynamics of the gravitational field is not known. There are several versions658

of the hybrid dynamics. The situation, where the classical degree of freedom is of a mean-field type is especially659

19Don’t throw away old shoes before you have new ones
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well-known [94, 95]. In that case the hybrid dynamics can be derived variationally from a simple combination of660

quantum and classical Lagrangian. More refined versions of the hybrid dynamics attempt to describe interactions661

between the classical degree(s) of freedom and quantum fluctuations. Such theories are supposed to be closed and662

self-consistent, and (if they really exist) they would somehow get the same fundamental status as their limiting cases,663

i.e., as quantum and classical mechanics. The numerous attempts to formulate such fundamental quantum–classical664

theories have encountered severe difficulties [97, 98, 99, 100, 101, 102, 103, 104, 105]. There are no–go theorems665

showing in which specific sense such theories cannot exist [106, 107].666

As far as the quantum measurement issues are concerned, the hybrid dynamical models have not received the667

attention they deserve. This is surprising, because Bohr’s insistence on the classicality of the apparatus is widely668

known and frequently repeated. The existing works are summarized as follows. Diosi and co-authors stated that their669

scheme for the hybrid dynamics is useful for quantum measurements [97, 98], albeit that they did not come with670

a more or less explicit analysis. Later on Terno has shown that the problem of a quantum measurement cannot be671

solved via a certain class of hybrid dynamic systems [110]. His arguments rely on the fact that the majority of hybrid672

system have pathological features in one way or another. Terno also reviews some earlier attempts, in particular by673

him in collaboration with Peres [105], to describe quantum measurements via hybrid dynamics; see the book of Peres674

[22] for preliminary ideas within this approach. However, recently Hall and Reginato [108, 111] suggest a scheme675

for the hybrid dynamics that seems to be free of pathological features. This scheme is based on coupled quantum676

and classical ensembles. A related set-up of hybrid dynamics is proposed by Elze and coworkers based on a path-677

integral formulation [112], see also [113]. If Hall and Reginato’s claim is true that such schemes can circumvent678

no-go theorems [108, 111], it should be interesting to look again at the features of quantum measurements from679

the perspective of an explicitly classical apparatus: Bohr’s program can still be opened! A modern view on the680

Copenhagen interpretation developed by (among others) Bohr is presented in Refs. [114, 115].681

Everitt, Munro and Spiller discuss a measurement model which, while fully quantum mechanical, makes use of682

analogy with classical features of the apparatus [116]. The model consists of a two-level system (the measured683

system), the apparatus, which is a one-dimensional quartic oscillator under external driving, and an environment684

whose influence on the system + apparatus is described within the Lindblad master-equation approach and its quantum685

state diffusion unravelling [117]. The main point of this work is that the apparatus can display the chaotic features686

of a damped forced non-linear oscillator (and is thus not related to Hamiltonian chaos). Everitt, Munro and Spiller687

make use of this point for the following reason: The feature of chaos allows one to distinguish quantum from classical688

regimes for the apparatus (this is not fundamental - simply a convenience for demonstrating a quantum to classical689

transition). The model reproduces certain features expected from individual measurement outcomes, but this happens690

at the cost of unravelling the master equation, a relatively arbitrary procedure of going from density matrices to691

random wavefunctions. The authors of Ref. [116] are aware of this arbitrariness and attempt to minimize it. It should692

be noted that, as one would expect, in the classical limit the choice of how to unravel seems to have no effect ons693

the emergence of a classical dynamic (see, for example, [118]). This implies that the results of [116] may well be694

independent of the unravelling – but this has yet to be demonstrated.695

In Ref. [119] Blanchard and Jadczyk discuss a quantum-classical model for measurements. They present it as a696

minimal phenomenological model for describing quantum measurements within the concept of an explicitly classical697

apparatus. In contrast to other quantum-classical models, Blanchard and Jadczyk consider a dissipative interaction698

between the quantum and classical subsystems. This interaction is modeled by a completely positive map. These699

maps are frequently applied for describing an open-system quantum dynamics, where the target system couples with700

an external environment; see e.g. Refs. [120, 121, 122]. (However, this is certainly not the only possibility for an701

open-system quantum dynamics; see in this context Ref. [123].) Blanchard and Jadczyk found a simple form of702

the completely map that suffices for accounting (phenomenologically) for certain features of quantum measurements,703

such the response of the pointer classical states to the initial state of the quantum system, as well as the proper final704

state of the quantum system.705

This approach is generalized in [124], where Blanchard and Jadczyk account for the emergence of events during706

the quantum measurements. This is done by introducing an additional phenomenological step thereby the quantum-707

classical dynamics for the quantum density matrix and classical probability distribution is regarded as the result of708

averaging over the states of some underlying stochastic process (a procedure akin to unraveling the open-system709

quantum master equation). The stochastic process – which gives rise to what Blanchard and Jadczyk call event-710

enhanced quantum theory – is formulated in the tensor product of the classical subsystem’s event space and the711
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quantum subsystem’s Hilbert space.712

In our opinion this approach to quantum measurements has an extensively phenomenological character, a fact713

well-admitted by Blanchard and Jadczyk. On the other hand, its central idea that the emergence of measurement714

events should be related to specific features of the measuring apparatus is certainly valuable and will be developed in715

the present work.716

In closing this subsection we note that the relation between quantum and classical has yet another, geometrical717

twist, because the pure-state quantum dynamics (described by the Schrödinger equation) can be exactly mapped718

to a classical Hamiltonian dynamics evolving in a suitable classical symplectic space [125, 126, 127]. Quantum719

aspects (such as uncertainties and the Planck’s constant) are then reflected via a Riemannian metrics in this space720

[126, 127]; see also [128] for a recent review. This is a geometrical counterpart to the usual algebraic description of721

quantum mechanics, and is considered to be a potentially rich source for various generalizations of quantum mechanics722

[128, 129]. A formulation of the quantum measurement problem in this language was attempted in [129]. We note723

that so far this approach is basically restricted to pure states (see, however, [127] in this context).724

Further references on crucial aspects of the quantum-to-classical transition are [130, 131, 132].725

2.3. Explicitly infinite apparatus: Coleman–Hepp and related models726

What I cannot build, I cannot understand727

Richard Feynman728

Several authors argued that once the quantum measurement apparatus is supposed to be a macroscopic system, the729

most natural framework for describing measurements is to assume that it is explicitly infinite; see the review by Bub730

[133]. C∗-algebras is the standard tool for dealing with this situation [134]. Its main pecularity is that there are (many)731

inequivalent unitary representations of the algebra of observables, i.e., certain superpositions between wavefunctions732

cannot be physical states (in contrast to finite-dimensional Hilbert spaces) [133]. This is supposed to be helpful in733

constructing measurement models. Hepp proposed first such models [12]. He starts his investigation by stating some734

among the goals of quantum measurement models. In particular, he stresses that an important feature of the problem735

is in getting classical correlations between the measured observable and the pointer variable of the apparatus, and736

that quantum mechanics is a theory that describes probabilities of certain events. Hepp then argues that the quantum737

measurement problem can be solved, i.e., the required classical correlations can be established dynamically, if one738

restricts oneself to macroscopic observables. He then moves to concrete models, which are solved in the C∗-algebraic739

framework. The infinite system approach is also employed in the quantum measurement model proposed by Whitten-740

Wolfe and Emch [135].741

However, working with an infinite measuring apparatus hides the physical meaning of the approach, because742

some important dynamic scales of the quantum measurement do depend on the number of degrees of freedom of the743

apparatus [68]. In particular, the truncation time may tend to zero in the limit of an infinite apparatus and cannot then744

be evaluated. Thus, making the apparatus explicitly infinite (instead of taking it large, but finite) misses an important745

piece of physics, and does not allow to understand which features of the quantum measurement will survive for a746

apparatus having a mesoscopic scale.747

Hepp also studies several exactly solvable models, which demonstrate various aspects of his proposal. One of748

them—proposed to Hepp by Coleman and nowadays called the Coleman–Hepp model— describes an ultra-relativistic749

particle interacting with a linear chain of spins. Hepp analyzes this model in the infinite apparatus situation; this750

has several drawbacks, e.g., the overall measurement time is obviously infinite. The physical representation of the751

Coleman–Hepp Hamiltonian is improved by Nakazato and Pascazio [136]. They show that the basic conclusions on752

the Coleman–Hepp Hamiltonian approach can survive in a more realistic model, where the self-energy of the spin753

chain is taken into account. Nakazato and Pascazio also discuss subtleties involved in taking the thermodynamic754

limit for the model [136]. The Coleman–Hepp model with a large but finite number of the apparatus particles is755

studied by Sewell [137, 138, 139]. He improves on previous treatments by carefully calculating the dependence of756

the characteristic times of the model on this number, and discusses possible imperfections of the measurement model757

arising from a finite number of particles.758

Using the example of the Coleman–Hepp model, Bell demonstrates explicitly [91] that the specific features of759

the quantum measurement hold only for a certain class of observables, including macroscopic observables [69, 137,760

138, 139]. It is then possible to construct an observable for which those features do not hold [91]. We recall that the761
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same holds in the irreversibility problem: it is always possible to construct an observable of a macroscopic system762

(having a large, but finite number of particles) that will not show the signs of irreversible dynamics, i.e., it will not763

be subject to relaxation. Bell takes this aspect as an essential drawback and states that the quantum measurement was764

not and cannot be solved within a statistical mechanics approach [91]. Our attitude in the present paper is different.765

We believe that although concrete models of quantum measurements may have various drawbacks, the resolution of766

the measurement problem is definitely to be sought along the routes of quantum statistical mechanics. The fact that767

certain restrictions on the set of observables are needed, simply indicates that, similar to irreversibility, a quantum768

measurement is an emergent phenomenon of a large system – the tested system combined with the apparatus – over769

some characteristic time.770

2.4. Quantum statistical models771

If I have a thousand ideas and only one turns out to be good, I am satisfied772

Alfred Bernhard Nobel773

Here we describe several models based on quantum statistical mechanics. In contrast to the previous chapter, these774

models do not invoke anything beyond the standard quantum mechanics of finite though large systems.775

Green proposed a realistic model of quantum measurement [140]. He emphasizes the necessity of describing the776

apparatus via a mixed, quasi-equilibrium state and stresses that the initial state of the apparatus should be macroscopic777

and metastable. The model studied in [140] includes a spin- 1
2 particle interacting with two thermal baths at different778

temperatures. The two-temperature situation serves to simulate metastability. The tested particle switches interaction779

between the baths. By registering the amount of heat flow through the baths (a macroscopic pointer variable), one780

can draw certain conclusions about the initial state of the spin. Off-diagonal terms of the spin density matrix are781

suppressed via a mechanism akin to inhomogeneous broadening. However, an explicit analysis of the dynamic regime782

and its characteristic times is absent.783

Cini studies a simple model for the quantum measurement process which illustrates some of the aspects related to784

the macroscopic character of the apparatus [141]. The model is exactly solvable and can be boiled down to a spin- 1
2785

particle (tested spin) interacting with a spin-L particle (apparatus). The interaction Hamiltonian is ∝ σzLz, where σz786

and Lz are, respectively, the third components of the spin- 1
2 and spin L. Cini shows that in the limit L � 1 and for a787

sufficiently long interaction time, the off-diagonal terms introduced by an (arbitrary) initial state of the tested spin give788

negligible contributions to the observed quantities, i.e., to the variables of the tested spin and the collective variables789

of the apparatus. The characteristic times of this process are analyzed, as well as the situation with a large but finite790

value of L.791

In Refs. [10, 11] Blokhintsev studies, within the statistical interpretation of quantum mechanics, several inter-792

esting measurement models with a metastable initial state of the apparatus: an incoming test particle interacting793

with an apparatus-particle in a metastable potential well, a test neutron triggering a nuclear chain reaction, et cetera.794

Though the considered models are physically appealing, the involved measurement apparatuses are frequently not795

really macroscopic. Neither does Blokhintsev pay proper attention to the correlations between the system and the796

apparatus in the final state.797

Requardt studies a quantum measurement model, in which due to collisional interaction with the tested system,798

the pointer variable of a macroscopic measuring apparatus undergoes a coherent motion, in which the momentum799

correlates with the values of the measured observable (coordinate) [142]. It is stressed that for the approach to have800

a proper physical meaning, the apparatus should have a large but finite number of degrees of freedom. However,801

no detailed account of characteristic measurement times is given. Requardt also assumes that the initial state of the802

measurement apparatus is described by a wave function, which is merely consistent with the macroscopic information803

initially available on this apparatus. He focuses on those aspects of the model which will likely survive in a more804

general theory of quantum measurements; see in this context his later work [69] that is reviewed below.805

An interesting statistical mechanical model of quantum measurement was proposed and studied in Ref. [143] by806

Gaveau and Schulman. The role of apparatus is played by a one-dimensional Ising spin model. Two basic energy807

parameters of the model are an external field and the spin-spin coupling (exchange coupling). An external field is808

tuned in such a way that a spontaneous flipping of one spin is energetically not beneficial, while the characteristic809

time of flipping two spins simultaneously is very large. This requirement of metastability puts an upper limit on the810

number of spins in the apparatus. The tested spin 1
2 interacts only with one spin of the apparatus; this is definitely an811
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advantage of this model. The spin-apparatus interaction creates a domino effect bringing the apparatus to a unique812

ferrromagnetic state. This happens for the tested spin pointing up. For the tested spin pointing down nothing happens,813

since in this state the tested spin does not interact with the apparatus. Characteristic times of the measurement are814

not studied in detail, though Gaveau and Schulman calculate the overall relaxation time and the decay time of the815

metastable state. It is unclear whether this model is supposed to work for an arbitrary initial state of the tested spin.816

Ref. [144] by Merlin studies a quantum mechanical model for distinguishing two different types of bosonic par-817

ticles. The model is inspired by Glaser’s chamber device, and has the realistic feature that the bosonic particle to be818

tested interacts only with one particle of the apparatus (which by itself is made out of bosons). The initial state of819

the apparatus is described by a pure state and it is formally metastable (formally, because this is not a thermodynamic820

metastability). The relaxation process is not accounted for explicitly; its consequences are simply postulated. No821

analysis of characteristic relaxation times is presented. Merlin analyses the relation of measurement processes with822

the phenomenon of spontaneous symmetry breaking.823

2.4.1. Spontaneous symmetry breaking824

Bezint eer ge begint20
825

Dutch proverb826

The role of spontaneous symmetry breaking as an essential ingredient of the quantum measurement process is827

underlined in papers by Grady [145], Fioroni and Immirzi [146] and Pankovic and Predojevic [147]. They stress that828

superpositions of vacuum states are not allowed in quantum field theory, since these superpositions do not satisfy the829

cluster property. All three approaches stay mainly at a qualitative level, though Fioroni and Immirzi go somewhat830

further in relating ideas on quantum measurement process to specific first-order phase transition scenarios. An earlier831

discussion on symmetry breaking, quantum measurements and geometrical concepts of quantum field theory is given832

by Ne’eman [148].833

Ref. [149] by Zimanyi and Vladar also emphasizes the relevance of phase transitions and symmetry breaking for834

quantum measurements. They explicitly adopt the statistical interpretation of quantum mechanics. General statements835

are illustrated via the Caldeira-Leggett model [150, 151, 152, 153]: a two-level system coupled to a bath of harmonic836

oscillators. This model undergoes a second-order phase transition with relatively weak decay of off-diganonal terms837

in the thermodynamic limit, provided that the coupling of the two-level system to the bath is sufficiently strong. The838

authors speculate about extending their results to first-order phase transitions. A dynamical consideration is basically839

absent and the physical meaning of the pointer variable is not clear.840

Thus the concept of spontaneous symmetry breaking is frequently discussed in the context of quantum measure-841

ment models (although it is not anymore strictly spontaneous, but driven by the interaction with the system of which842

the observable is to be measured). It is also an essential feature of the approach discussed in the present paper. It843

should however be noted that so far only one scenario of symmetry breaking has been considered in the context of844

quantum measurements (the one that can be called the classical scenario), where the higher temperature extremum845

of the free energy becomes unstable (or at least metastable) and the system moves to another, more stable state (with846

lower free energy). Another scenario is known for certain quantum systems (e.g., quantum antiferromagnets) with a847

low-temperature spontaneously symmetry broken state; see, e.g., [154]. Here the non-symmetric state is not an eigen-848

state of the Hamiltonian, and (in general) does not have less energy than the unstable ground state. The consequences849

of this (quantum) scenario for quantum measurements are so far not explored. However, recently van Wezel, van den850

Brink and Zaanen studied specific decoherence mechanisms that are induced by this scenario of symmetry breaking.851

[154].852

2.4.2. System-pointer-bath models853

Je moet met de juiste wapens ten strijde trekken21
854

Dutch proverb855

20Reflect before you start
21You must go into battle with the right weapons
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Refs. [155] by Haake and Walls and [156] by Haake and Zukowski study a measurement of a discrete-spectrum856

variable coupled to a single-particle apparatus (the meter). The latter is a harmonic oscillator, and it interacts with857

a thermal bath, which is modeled via harmonic oscillators. The interaction between the tested system and the meter858

is impulsive (it lasts a short time) and involves the tensor product of the measured observable and the momentum859

of the meter. There are two characteristic times here: on the shorter time, the impulsive interaction correlates the860

states of the object and of the meter, while on the longer time scale the state of the meter becomes classical under861

the influence of the thermal bath, and the probability distribution of the meter coordinate is prepared via mixing well-862

localized probability distributions centered at the eigenvalues of the measured quantity, with the weights satisfying863

the Born rule [1]. (This sequence of processes roughly corresponds to the ideas of decoherence theory; see below for864

more detail.) At an even longer time scale the meter will completely thermalize and forget about its interaction with865

the tested system. The authors of [155, 156] also consider a situation where the meter becomes unstable under the866

influence of the thermal bath, since it now feels an inverted parabolic potential. Then the selection of the concrete867

branch of instability can be driven by the interaction with the object. Since the initial state of such an unstable868

oscillator is not properly metastable, one has to select a special regime where the spontaneous instability decay can869

be neglected.870

The quantum measurement model studied in [157] by Venugopalan is in many aspects similar to models investi-871

gated in [155, 156]. The author stresses relations of the studied model to ideas from the decoherence theory.872

Ref. [158] by the present authors investigates a model of quantum measurement where the macroscopic measure-873

ment apparatus is modeled as an ideal Bose gas, in which the amplitude of the condensate is taken as the pointer874

variable. The model is essentially based on the properties of irreversibility and of ergodicity breaking, which are875

inherent in the model apparatus. The measurement process takes place in two steps: First, the truncation of the state876

of the tested system takes place, this process is governed by the apparatus-system interaction. During the second step877

classical correlations are established between the apparatus and the tested system over the much longer time scale of878

equilibration of the apparatus. While the model allows to understand some basic features of the quantum measurement879

as a driven phase-transition, its dynamical treatment contains definite drawbacks. First, the Markov approximation880

for the apparatus-bath interaction, though correct for large times, is incorrectly employed for very short times, which881

greatly overestimates the truncation time. Another drawback is that the model is based on the phase transition in an882

ideal Bose gas. This transition is known to have certain pathological features (as compared to a more realistic phase-883

transition in a weakly interacting Bose gas). Though the authors believe that this fact did not influence the qualitative884

outcomes of the model, it is certainly desirable to have better models, where the phase transition scenario would be885

generic and robust. Such models will be considered in later chapters of this work.886

In Ref. [159, 160] Spehner and Haake present a measurement model that in several aspects improves upon previous887

models. The model includes the tested system, an oscillator (generally anharmonic), which plays the role of apparatus,888

and a thermal bath coupled to the oscillator. The time scales of the model are set in such a way that the correlations889

between the measured observable of the system and the pointer variable of the apparatus (here the momentum of the890

anharmonic oscillator) and the decay of the off-diagonal terms of the tested system density matrix are established891

simultaneously. This implies realistically that no macroscopic superpositions are generated. In addition, the initial892

state of the apparatus and its bath is not assumed to be factorized, which makes it possible to study strong (and also893

anharmonic) apparatus-bath couplings.894

Ref. [161] by Mozyrsky and Privman studies a quantum measurement model, which consists of three parts: the895

tested system, the apparatus and a thermal bath that directly couples to the system (and not to the apparatus). The896

initial state of the apparatus is not metastable, it is chosen to be an equilibrium state. The dynamics of the mea-897

sured observable of the system is neglected in the course of measurement. The authors of [161] show that after898

some decoherence time their model is able to reproduce specific correlations that are expected for a proper quantum899

measurement.900

Omnès recently studied a model for a quantum measurement [162]. The pointer variable of the apparatus is sup-901

posed to be its (collective) coordinate. The introduction of the measurement process is accompanied by a discussion902

on self-organization. For solving this Omnès partially involves the mean-field method, because the many-body appa-903

ratus density matrix is substituted by the tensor product of the partial density matrices. The dynamics of the model904

involves both decoherence and reduction. These two different processes are analysed together and sometimes in rather905

common terms, which can obscure important physical differences between them. In the second part Omnès studies906

fluctuations of the observation probabilities for various measurement results. These fluctuations are said to arise due907
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to a coupling with an external environment modeled as a phonon bath.908

Van Kampen stresses the importance of considering a macroscopic and metastable measuring apparatus and pro-909

poses a model that is supposed to illustrate the main aspects of the measurement process [14]. The model consists of910

a single atom interacting with a multi-mode electromagnetic field, which is playing the role of apparatus. The emitted911

photon that is generated correlates with the value of the measured observable. The apparatus can be macroscopic912

(since the vacuum has many modes), but its (thermodynamically) metastable character is questionable. The model913

is not solved in detail, and its main dynamical consequences are not analyzed. Nevertheless, van Kampen offers a914

qualitative analysis of this model, which appears to support the common intuition on quantum measurements. The915

resulting insights are summarized in his “ten theorems” on quantum measurements.916

2.4.3. Towards model-independent approaches917

Qui se soucie de chaque petite plume ne devrait pas faire le lit22
918

Swiss proverb919

Sewell [137, 138, 139] and independently Requardt [69] attempt to put the results obtained from several models920

into a single model-independent approach, which presumably may pave a way towards a general theory of quantum921

measurements. The basic starting point of the approach is that the measuring apparatus, being a many-body quantum922

system, does have a set of macroscopic, mutually commuting observables {A1, . . . , AM}withM a macroscopic integer.923

The commutation is approximate for a large, but finite number of reservoir particles, but it becomes exact in the924

thermodynamic limit for the apparatus. Each Ak is typically a normalized sum over a large number of apparatus925

particles. The set {A1, . . . , AM} is now partioned into macroscopic cells; each such cell refers to some subspace in the926

Hilbert space formed by a common eigenvector. The cells are distinguished from each other by certain combinations of927

the eigenvalues of {A1, . . . , AM}. The purpose of partioning into cells is to correlate each eigenvalue of the microscopic928

observable to be measured with the corresponding cell. In the simplest situation the latter set reduces to just one929

observable A, while two cells refer to the subspace formed by the eigenvectors of A associated with positive or negative930

eigenvalues. Further derivations, which so far were carried out on the levels of models only [69, 137, 138, 139],931

amount to showing that a specific coupling between the system and the apparatus can produce their joint final state,932

which from the viewpoint of observables Ak ⊗ S — where S is any observable of the microscopic measured system933

— does have several features required for a good (or even ideal) quantum measurement.934

2.4.4. Ergodic theory approach935

Wenn I wieder, wieder komm 23
936

From the German folk song “Muß I denn”937

Daneri, Loinger and Prosperi approach quantum measurements via the quantum ergodic theory [21]. Such an938

approach was anticipated in the late forties by the works of Jordan [163] and Ludwig [164]. Daneri, Loinger and939

Prosperi model the measuring apparatus as a macroscopic system, which in addition to energy has another conserved940

quantity, which serves the role of the pointer variable. Under the influence of the system to be measured this conser-941

vation is broken, and there is a possibility to correlate different values of the measured observable with the pointer942

values. Daneri, Loinger and Prosperi invoke the basic assumption of ergodic theory and treat the overall density943

matrix via time-averaging [21]. The time-averaged density matrix satisfies the necessary requirements for an ideal944

measurement. However, the use of the time-averaging does not allow to understand the dynamics of the quantum945

measurement process, because no information about the actual dynamical time scales is retained in the time-averaged946

density matrix. Also, although the initial state of the measuring apparatus does have some properties of metastability,947

it is not really metastable in the thermodynamic sense.948

The publication of the paper by Daneri, Loinger and Prosperi in early sixties induced a hot debate on the measure-949

ment problem; see [165] for a historical outline. We shall not attempt to review this debate here, but only mention950

one aspect of it: Tausk (see [165] for a description of his unpublished work) and later on Jauch, Wigner and Yanase951

[166] criticize the approach by Daneri, Loinger and Prosperi via the argument of an interaction free measurement.952

22Who cares about every little feather should not make the bed
23When I come, come again
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This type of measurements is first discussed by Renninger [167]. The argument goes as follows: sometimes one953

can gather information about the measured system even without any macroscopic process generated in the measuring954

apparatus. This can happen, for instance, in the double-slit experiment when the apparatus measuring the coordinate955

of the particle is placed only at one slit. Then the non-detection by this apparatus will — ideally — indicate that the956

particle passed through the other slit. The argument thus intends to demonstrate that quantum measurements need not957

be related to macroscopic (or irreversible) processes. This argument however does not present any special difficulty958

within the statistical interpretation of quantum mechanics, where both the wavefunction and the density matrix refer959

to an ensemble of identically prepared system. Although it is true that not every single realization of the apparatus-960

particle interaction has to be related to a macroscopic process, the probabilities of getting various measurement results961

do rely on macroscopic processes in the measuring apparatus.962

2.5. No-go theorems and small measuring apparatuses963

Non ho l’età, per amarti24
964

Lyrics by Mario Penzeri, sung by Gigliola Cinquetti965

The quantum measurement process is regarded as a fundamental problem, also because over the years several966

no–go theorems were established showing that the proper conditions for quantum measurement cannot be satisfied967

if they are demanded as exact features of the final state of the apparatus [13, 168, 169, 170]. The first such theorem968

was established by Wigner [13]. Then several extensions of this theorem were elaborated by Fine [171] and Shimony969

with co-authors [168, 169, 170]. The presentation by Fine is especially clear, as it starts from the minimal conditions970

required from a quantum measurement [171]. After stating the no-go theorem, Fine proceeds to discuss in which971

sense one should look for approximate schemes that satisfy the measurement conditions, a general program motivating972

also the present study. The results of Refs. [168, 169, 170] show that even when allowing certain imperfections in973

the apparatus functioning, the quantum measurement problem remains unsolvable in the sense that the existence of974

specific classical correlations in the final state of the system + apparatus cannnot be ensured; see also in this context975

the recent review by Bassi and Ghirardi [17]. In our viewpoint, the no-go theorems do not preclude approximate976

satisfaction of the quantum measurement requirements – owing to a macroscopic size of the apparatus.977

Turning this point over, one may ask which features of proper quantum measurements (as displayed by successful978

models of this phenomenon) would survive for an apparatus that is not macroscopically large. There are several979

different ways to pose this question, e.g., below we shall study the measuring apparatus (that already performs well980

in the macroscopic limit) for a large but finite number of particles. Another approach was recently worked out by981

Allahverdyan and Hovhannisyan [76]. They assume that the measuring apparatus is a finite system, and study system-982

apparatus interaction setups that lead to transferring certain matrix elements of the unknown density matrix λ of the983

system into those of the final state r̃ of the apparatus. Such a transfer process represents one essential aspect of the984

quantum measurement with a macroscopic apparatus. No further limitations on the interaction are introduced, because985

the purpose is to understand the implications of the transfer on the final state of the system. It is shown that the transfer986

process eliminates from the final state of the system the memory about the transferred matrix elements (or certain other987

ones) [76]. In particular, if one diagonal matrix element is transferred, r̃aa = λaa, the memory on all non-diagonal988

elements λa,b or λb,a related to this diagonal element is completely eliminated from the final density operator of the989

system (the memory on other non-diagonal elements λcd, where c , a and d , a may be preserved). Thus, the general990

aspect of state disturbance in quantum measurements is the loss of memory about off-diagonal elements, rather than991

diagonalization (which means the vanishing of the off-diagonal elements).992

2.6. An open problem: A model for a non-statistical interpretation of the measurement process.993

We can’t go on forever, with suspicious minds994

Written by Mark James, sung by Elvis Presley995

The statistical interpretation together with supporting models does provide a consistent view on measurements996

within the standard quantum mechanics. However, it should be important to understand whether there are other997

24I do not have the age to love you
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consistent approaches from within the standard quantum formalism that can provide an alternative view on quantum998

measurements. Indeed, it cannot be excluded that the real quantum measurement is a wide notion, which combines999

instances of different interpretations. In the present review we will not cover approaches that introduce additional1000

ingredients to the standard quantum theory, and will only mention them in subsection 2.8.1001

We focus only on one alternative to the statistical interpretation, which is essentially close to the Copenhagen1002

interpretation [82, 83, 84, 172] and is based on effectively non-linear Schrödinger equation. We should however stress1003

that so far the approach did not yet provide a fully consistent and unifying picture of quantum measurements even for1004

one model.1005

Recently Brox, Olaussen and Nguyen approached quantum measurements via a non-linear Schrödinger equation1006

[173]. The authors explicitly adhere to a version of the Copenhagen interpretation, where the wave function (the1007

pure quantum state) refers to a single system. They present a model which is able to account for single measurement1008

events. The model consists of a spin- 1
2 (the system to be measured), a ferromagnet (the measuring apparatus), and1009

the apparatus environment. The overall system is described by a pure wavefunction. The ferromagnetic apparatus1010

is prepared in an (unbiased) initial state with zero magnetization. The two ground states of the ferromagnet have1011

a lower energy and, respectively, positive and negative magnetization. Moving towards one of these states under1012

influence of the tested system is supposed to amplify the weak signal coming from this tested system. (The latter1013

features will also play an important role in the models to be considered in detail later on.) The environment is1014

modeled as a spin-glass: environmental spins interact with random (positive or negative) coupling constants. So far1015

all these factors are more or less standard, and — as stressed by the authors — these factors alone cannot account1016

for a solution of the measurement problem within an interpretation that ascribes the wavefunction to a single system.1017

The new point introduced by Brox, Olaussen and Nguyen is that the effective interaction between the apparatus and1018

the measured system is non-linear in the wavefunction: it contains an analogue of a self-induced magnetic field [173].1019

In contrast to the existing approaches, where non-linearity in the Schrödinger equation are introduced axiomatically,1020

Brox, Olaussen and Nguyen state that their non-linearity can in fact emerge from the Hartree-Fock approach: it is1021

known that in certain situations (the Vlasov limit) the many-body Schrödinger equation can be reduced to a non-linear1022

equation for the single-particle wave function [174]. Examples of this are the Gross-Pitaevskii equation for Bose1023

condensates [174] or the non-linear equation arising during quantum feedback control [175]. However, the statement1024

by Brox, Olaussen and Nguyen on the emergent non-linearity is not really proven, which is an essential drawback.1025

Leaving this problem aside, these authors show numerically that the specific nonlinearity in the system-apparatus1026

interaction may lead to a definite, albeit random, measurement result. The statistics of this randomness approximately1027

satisfies the Born rule [1], which emerges due to the macroscopic size of the apparatus. The cause of this randomness1028

is the classical randomness related to the choice of the spin-glass interaction constants in the environment [173], i.e.,1029

for different such choices (each one still ensuring the proper relaxation of the apparatus) one gets different single-1030

measurement results. Thus in this approach the cause of the randomness in measurement results is not the irreducible1031

quantum randomness, but rather the usual classical randomness, which is practically unavoidable in the preparation of1032

a macroscopic environment. Brox, Olaussen and Nguyen argue that the nonlinearity in the system-bath interaction —1033

which is crucial for obtaining all the above effects — need not be large, since the amplification may be ensured by a1034

large size of the ferromagnet [173]. Their actual numerical calculations are however carried out only for moderate-size1035

spin systems.1036

2.7. Decoherence theory1037

Coherence is needed under all circumstances1038

Anonymous1039

Presently it is often believed that decoherence theory solves the quantum measurement problem. So let us intro-1040

duce this concept. Decoherence refers to a process, where due to coupling with an external environment, off-diagonal1041

elements of the system density matrix decay in time; see [32, 33, 40, 176, 177, 178, 179] for reviews. The basis where1042

this decay happens is selected by the structure of the system-environment coupling. In this way the system acquires1043

some classical features.1044

Decoherence is well known since the late 40’s [181]. One celebrated example is spin relaxation in NMR ex-1045

periments. The decay of the transverse polarization, perpendicular to the permanently applied field, is in general1046

characterized by the relaxation time T2; it can be viewed as a decoherence of the spin system, since it exhibits the1047
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decay of the off-diagonal contributions to the spin density matrix in the representation where the applied Hamiltonian1048

is diagonal [182, 183]. Another standard example is related to the Pauli equation for an open quantum system weakly1049

coupled to an external thermal bath [184]. This equation can be visualized as a classical stochastic process during1050

which the system transits from one energy level to another.1051

More recently decoherence has attracted attention as a mechanism of quantum-to-classical transition, and was1052

applied to the quantum measurement problem [32, 33, 40, 176, 177, 178, 179]. The standard pattern of such an appli-1053

cation relies on an initial impulsive interaction of the von Neumann type which correlates (entangles) the measuring1054

apparatus with the system to be measured. Generally, this step is rather unrealistic, since it realizes macroscopic1055

superpositions, which were never seen in any realistic measurement or any measurement model. Next, one assumes1056

a specific environment for the apparatus, with the environment-apparatus interaction Hamiltonian directly related to1057

the variable to be measured. Moreover, within the decoherence approach it is stressed – e.g., by Zurek in [33] and1058

by Milburn and Walls in [178] – that the observable to-be-measured is determined during the process generated by1059

the apparatus-environment interaction. The latter is supposed to diagonalize the density matrix of the system plus the1060

apparatus in a suitable basis. This second step is again unrealistic, since it assumes that the variable to be measured,1061

which is normally under control of the experimentalist, must somehow correlate with the structure of the system’s en-1062

vironment, which – by its very definition – is out of direct control. To put it in metaphoric terms, decoherence theory1063

asserts that the surrounding air measures a person’s size. But without explicit pointer variable that can be read off, this1064

is not what one normally understands under measuring a person’s size; we consider measurement without a readable1065

pointer variable merely as a linguistic redefinition of the concept, that obscures the real issue. These criticisms of the1066

decoherence theory approach agree with the recent analysis by Requardt [69].1067

One even notes that, as far as the problem of quantum-to-classical transition is concerned, the decoherence cannot1068

be regarded as the only – or even as the basic – mechanism of this transition. As convincingly argued by Wiebe1069

and Ballentine [132] and Ballentine [185], realistic macroscopic Hamiltonian systems can – and sometimes even1070

should – achieve the classical limit without invoking any decoherence effect. This concerns both chaotic and regular1071

Hamiltonian systems, although the concrete scenarios of approaching the classical limit differ for the two cases.1072

In spite of these caveats that prevent decoherence theory to provide the solution, it has been valuable in shaping1073

the ideas on quantum measurement models, In particular, this concerns a recent attempt by Omnès to develop a1074

general theory of decoherence via ideas and methods of non-equilibrium statistical mechanics [88] (see also [162]1075

that we reviewed above). Among the issues addressed in [88] is the generality of the system-environment structure1076

that leads to decoherence, the physical meaning of separating the system from the environment, and the relation of the1077

decoherence theory to the hydrodynamic description.1078

2.8. Seeking the solution outside quantum mechanics1079

No, no, you’re not thinking; you’re just being logical1080

Niels Bohr1081

Though this review will restrict itself to approaches to quantum measurements within the standard quantum me-1082

chanics, we briefly list for completeness a number of attempts to seek the solution for the quantum measurement1083

problem beyond it. The de Broglie–Bohm approach [18, 19, 24] is currently one of the most popular alternatives to1084

the standard quantum mechanics. It introduces an additional set of variables (coordinates of the physical particles)1085

and represents the Schrödinger equation as an equation of motion for those particles, in addition to the motion of the1086

wavefunction, which keeps the physical meaning of a separate entity (guiding field). Hence in this picture there are1087

two fundamental and separate entities: particles and fields. Recently Smolin attempted to construct a version of the1088

de Broglie–Bohm approach, where the wavefunction is substituted by certain phase-variables, which, together with1089

coordinates, are supposed to be features of particles [186]. In this context see also a related contribution by Schmelzer,1090

where the fundamental character of the wavefunction is likewise negated [187]. The approach by Smolin is coined in1091

terms of a real ensemble, which — in contrast to ensembles of non-interacting objects invoked for validation of any1092

probabilistic theory — does contain highly-nonlocal (distance independent) interactions between its constituents. It is1093

presently unclear to which extent this substitution of the wavefunction by phase-variables will increase the eligibility1094

of the de Broglie–Bohm approach, while Smolin does not discuss the issues of measurement that are known to be1095

non-trivial within the approach [18, 19, 189].1096
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Another popular alternative is the spontaneous localization approach by Ghirardi, Rimini and Weber [190]. This1097

approach is based on a non-linear and stochastic generalization of the Schrödinger equation such that the collapse1098

of the wavefunction happens spontaneously (i.e., without any measurement) with a certain rate governed by classical1099

white noise. Bassi and Ghirardi recently reviewed this and related approaches in full detail [17]; other useful sources1100

are the book by Adler [191] and the review paper by Pearle [192]. Spontaneous localization models in the energy basis1101

are especially interesting, since they conserve the average energy of the quantum system; this subject is reviewed by1102

Brody and Hughston [193]. Non-linear modifications of the Schrödinger equation have by now a long history [89,1103

90, 194, 195, 196, 197, 198]. All of them in one way or another combine non-linearities with classical randomness.1104

The first such model was introduced by Bohm and Bub [194] starting from certain hidden-variables assumption. The1105

approaches that followed were either oriented towards resolving the quantum measurement problem [89, 196, 197] or1106

trying to obtain fundamentally nonlinear generalizations of the Schrödinger equation and quantum mechanics [198].1107

Several approaches of the former type were unified within a formalism proposed by Grigorenko [90]. Recently1108

Svetlichny presented a resource letter on fundamental (i.e., not emerging from the usual, linear theory) non-linearities1109

in quantum mechanics, where he also discusses their possible origin [199]. Some of those approaches based on1110

nonlinear generalizations of the Schrödinger equation were confronted to experiments, see e.g. Refs. [200, 201], but1111

so far with negative result.1112

A very different approach was taken by De Raedt and Michielsen, who simulate the measurement process by1113

specifying a set of simple rules that mimic the various components of the measurement setup, such as beam splitters,1114

polarizers and detectors. They perform numerical simulations using algorithms that the mimic the underlying events,1115

and are able to reproduce the statistical distributions given by quantum mechanics [202, 203].1116

2.9. A short review on consistent histories1117

To understand the future you must know the past1118

Tyler Maret1119

The consistent histories approach negates the fundamental need of measurements for understanding quantum1120

measurements (quantum mechanics without measurements). It was proposed by Griffiths [204] based on earlier ideas1121

of Aharonov, Bergmann and Lebowitz [205]. The approach is reviewed, e.g., by Griffiths [206], Gell-Mann [207],1122

Hohenberg [208], and Omnès [209]. It aims to develop an interpretation of quantum mechanics valid for a closed1123

system of any size and any number of particles, the evolution of which is governed by the Liouville–von Neumann1124

(or Heisenberg) equation. Within this approach the notion of an event—together with its probability—is defined from1125

the outset and “measurements”, which do not involve any interaction between the system and some apparatus, simply1126

reveal the pre-existing values of physical quantities. In particular, it is not necessary to invoke either the micro-1127

macro separation or statistical assumptions on the initial states needed to derive the irreversibility aspect of quantum1128

measurements. All of these may still be needed to describe concrete measurements, but the fundamental need for1129

understanding quantum measurements from the viewpoint of statistical mechanics would be gone, if the consistent1130

histories approach is viable or, at least, will turn out to be really viable in the end.1131

However, as it stands presently the approach produces results at variance with predictions of the measurement-1132

based quantum mechanics [210] (then it is not important which specific interpretation one prescribes). Hence, within1133

its present status, the consistent histories approach cannot be a substitute for the statistical mechanics-based theory of1134

quantum measurements. Some authors by-pass problems of the consistent histories approach and state that it is useful1135

as a paradox-free reformulation of the standard mecanics; see e.g. the recent review by Hohenberg [208] and the book1136

by Griffiths [206]. In fact the opposite is true: as we explain below, the consistent histories approach adds paradoxes1137

that do not exist within the statistical interpretation of quantum mechanics.1138

2.9.1. Deeper into consistent histories1139

The easiest method of introducing the consistent histories approach is to highlight as soon as possible its differ-1140

ences with respect to the standard measurement-based approach. Let us start with the quantum mechanics formula for1141

the probability of two consecutive measurementsM(t1) andM(t2) carried at times t1 and t2 (t2 > t1):1142

pt1,t2
[
i, j|M(t1),M(t2)

]
= tr

[
Π j(t2)Πi(t1)ρΠi(t1)Π j(t2)

]
, (2.1)
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where ρ is the initial state of the system, Πi(t1) with
∑

i Πi(t1) = 1 and Π j(t2) with sum
∑

i Πi(t2) = 1 are the projectors1143

for the physical quantities (represented by Hermitean operators) A(t1) and B(t2) measured at the times t1 and t2,1144

respectively. For simplicity we assume the Heisenberg representation, and do not write in (2.1) explicit indices for1145

A and B. What is however necessary to do is to indicate that the joint probability in (2.1) is explicitly conditional1146

on the two measurements M(t1) and M(t2). As expected, the meaning of (2.1) is that the measurement at time t11147

(with probabilities given by Born’s rule) is accompanied by selection of the subensemble referring to the result i. The1148

members of this subensemble are then measured at the time t2. Generalization to n-time measurements is obvious.1149

What now the consistent histories approach does is to skip the context-dependence in (2.1) and regard the resulting1150

probabilities p[i, j] as a description of events taking place spontaneously, i.e. without any measurement and without1151

any selection of outcome. The cost to pay is that the initial state ρ and the projectors Πi(t1) and Π j(t2) have to satisfy1152

a special consistency condition (without this condition the events are not defined):1153

tr
[
Π j(t2)Πi(t1)ρΠi′ (t1)Π j′ (t2)

]
= δii′δ j j′ pt1,t2 [i, j], (2.2)

where δii′ is the Kronecker delta. As a consequence of (2.2), one can sum out the first (i. e., the earlier) random1154

variable and and using the completeness relation
∑

i Πi(t1) = 1 get the probability for the second event alone:1155

pt2 [ j] =
∑

i

pt1,t2 [i, j] = tr
[
Π j(t2)ρΠ j(t2)

]
. (2.3)

Note that without condition (2.2), i.e. just staying within the standard approach (2.1), Eq. (2.3) would not hold,1156

e.g. generally
∑

i pt1,t2 [i, j|M(t1),M(t2)] still depends on M(t1) and is not equal to pt2 [ j|M(t2)] (probability of the1157

outcome j in the second measurement provided that no first measurement was done). This is natural, since quantum1158

measurements generally do perturb the state of the measured system. Hence (2.2) selects only those situations, where1159

this perturbation is seemingly absent.1160

Any time-ordered sequence of events defines a history. A set of histories satisfying (2.2) is called a consistent1161

histories set. Due to (2.2), the overall probability of the consistent histories sums to one.1162

In effect (2.2) forbids superpositions; hence, it is called decoherence condition [206, 207, 208]. One notes that1163

(2.2) is sufficient, but not necessary for deriving (2.3). Hence, certain weaker conditions instead of (2.2) were also1164

studied [204], but generally they do not satisfy the straightforward statistical independence conditions (independently1165

evolving systems have independent probabilities) [211].1166

It was however noted that the consistent histories approach can produce predictions at variance with the measure-1167

ment based quantum mechanics [210]. The simplest example of such a situation is given in [212]. Consider a quantum1168

system with zero Hamiltonian in the pure initial state1169

ρ = |φ〉〈φ|, |φ〉 =
1
√

3
[|a1〉 + |a2〉 + |a3〉], (2.4)

where the vectors {|ak〉}
3
k=1 are orthonormal: 〈ak |ak′〉 = δkk′ . Define a two-event history with projectors1170

{Π1(t1) = |a1〉〈a1|,Π2(t1) = 1 − |a1〉〈a1|} and {Π1(t2) = |ψ〉〈ψ|,Π2(t2) = 1 − |ψ〉〈ψ|}, t2 > t1, (2.5)

where1171

|ψ〉 =
1
√

3
[|a1〉 + |a2〉 − |a3〉]. (2.6)

This history is consistent, since conditions (2.2) hold due to 〈φ|ψ〉 = 〈φ|a1〉〈a1|ψ〉. One now calculates1172

pt1,t2 [a1, ψ] = tr
[
Π1(t2)Π1(t1)ρΠ1(t1)Π1(t2)

]
= 〈ψ|a1〉〈a1|φ〉〈φ|a1〉〈a1|ψ〉 =

1
9
, (2.7)

1173

pt2 [ψ] = tr
[
Π1(t2)ρΠ1(t2)

]
= |〈ψ|φ〉|2 =

1
9
. (2.8)



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 33

Given two probabilities (2.7) and (2.8) one can calculate the following conditional probability:1174

pt1 |t2 [a1|ψ] =
pt1,t2 [a1, ψ]

pt2 [ψ]
= 1. (2.9)

Yet another two-event consistent history is defined with projectors1175

{Π̃1(t1) = |a2〉〈a2|, Π̃2(t1) = 1 − |a2〉〈a2|} and {Π1(t2) = |ψ〉〈ψ|,Π2(t2) = 1 − |ψ〉〈ψ|}, t2 > t1. (2.10)

Comparing (2.10) with (2.5) we note that the first measurement at t1 is different, i.e. it refers to measuring a different1176

physical observable. Analogously to (2.9) we calculate for the second consistent history1177

pt1 |t2 [a2|ψ] = 1. (2.11)

The consistent histories (2.5) and (2.10) share one event, ψ, at the later time. On the basis of this event (2.9) retrodicts1178

with probability one (i.e., with certainty) that a1 happened. Likewise, (2.11) retrodicts with certainty that a2 happened.1179

But the events a1 and a2 are mutually incompatible, since their projectors are orthogonal, 〈a1|a2〉 = 0: if one happened,1180

the other one could not happen.1181

Note that such an inconsistency is excluded within the measurement-based approach. There the analogues of (2.9)1182

and (2.11) refer to different contexts [different measurements]: they read, respectively, p[a1|ψ,M(t1),M(t2)] = 1 and1183

p[a2|ψ, M̃(t1),M(t2)] = 1. It is not surprising that different contexts,M(t1) , M̃(t1), force conditional probabilities1184

to retrodict incompatible events. Naturally, if within the standard approach one makes the same measurements the1185

incompatible events cannot happen, e.g. p[a1|ψ,M(t1),M(t2)] × p[a2|ψ,M(t1),M(t2)] = 0, because the second1186

probability is zero.1187

Following Kent [210] we interpret this effect as a disagreement between the predictions (or more precisely: the1188

retrodictions) of the consistent history approach versus those of the measurement-based quantum mechanics. In1189

response to Kent, Griffiths and Hartle suggested that for avoiding above paradoxes, predictions and retrodictions of1190

the approach are to be restricted to a single consistent history [212, 213]. Conceptually, this seems to betray the1191

very point of the approach, because in effect it brings back the necessity of fixing the context within which a given1192

consistent history takes place. And what fixes this context, once measurements are absent?1193

Another possible opinion is that condition (2.2) is not strong enough to prevent a disagreement with the measure-1194

ment based approach, and one should look for a better condition for defining events [214, 215]. To our knowledge,1195

such a condition is so far not found. Bassi and Ghirardi [216] pointed out another logical problem with the consistent1196

histories approach. This produced another debate on the logical consistency of the approach [217, 218], which we1197

will not discuss here.1198

We hold the opinion that in spite of being certainly thought-provoking and interesting, the consistent histories1199

approach, as it presently stands, cannot be a substitute for the theory of quantum measurements: Both conceptually1200

and practically we still need to understand what is going on in realistic measurements, with their imperfections, and1201

what are the perturbations induced on the system by its interaction with a measuring apparatus.1202

2.10. What we learned from these models1203

25
1204 Ձկնորսը ձկանը ասեց. "Ի՞նչ կա-չկա ծովում": 

"Ասելիք շատ ունեմ, բայց բերանս լիքը ջուր է":
Armenian proverb1205

Each one of the above models enlightens one or another among the many aspects of quantum measurements.1206

However, none of them reproduces the whole set of desired features: truncation and reduction of S + A, Born’s rule,1207

uniqueness of the outcome of a single process, complete scenario of the joint evolution of S + A, with an evaluation of1208

its characteristic times, metastability of the initial state of A, amplification within A of the signal, unbiased and robust1209

registration by A in the final state, accurate establishment between S and the pointer variable of A of the correlations1210

that characterize an ideal measurement, influence of the parameters of the model on possible imperfections of the1211

measurement. In particular, permanent registration requires the pointer to be macroscopic. In the following we1212

study in detail a model, introduced in Refs. [68, 219, 220, 221, 222, 223, 224], which encompasses these various1213

requirements.1214

25Fisherman: “What’s the news from the sea?” Fish: “I have a lot to say, but my mouth is full of water”
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3. A Curie–Weiss model for quantum measurements1215

3.1. General features1216

We take for S, the system to be measured, the simplest quantum system, namely a spin 1
2 (or any two-level1217

system). The observable ŝ to be measured is its third Pauli matrix ŝz, with eigenvalues si equal to ±1. The statistics1218

of this observable should not change significantly during the measurement process [4, 13, 225]. Hence ŝz should be1219

conservative, i.e., should commute with the Hamiltonian of S + A, at least nearly.1220

We have stressed at the end of § 1.2.1 that the apparatus A should lie initially in a metastable state [226, 227], and1221

finally in either one of several possible stable states (see section 2 for other models of this type). This suggests to take1222

for A, as in several models described in section 2, a quantum system that may undergo a phase transition with broken1223

invariance. The initial state R̂ (0) of A is the metastable phase with unbroken invariance. The states R̂i represent the1224

stable phases with broken invariance, in each of which registration can be permanent. The symmetry between the1225

outcomes prevents any bias.1226

Here we need two such stable states, in one–to–one correspondence with the two eigenvalues si of ŝz. The simplest1227

system which satisfies these properties is an Ising model [227]. Conciliating mathematical tractability and realistic1228

features, we thus take as apparatus A = M + B, a model that simulates a magnetic dot: The magnetic degrees of1229

freedom M consist of N � 1 spins with Pauli operators σ̂(n)
a (n = 1, 2, · · · ,N; a = x, y, z), which read for each n1230

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, σ̂0 =

(
1 0
0 1

)
, (3.1)

where σ̂0 is the corresponding identity matrix; σ̂ = (σ̂x, σ̂y, σ̂z) denotes the vector spin operator. The non-magnetic1231

degrees of freedom such as phonons behave as a thermal bath B (Fig. 3.1). Anisotropic interactions between these1232

spins can generate Ising ferromagnetism below the Curie temperature Tc. As pointer variable Â we take the order1233

parameter, which is the magnetization in the z-direction (within normalization), as represented by the quantum ob-1234

servable1235

m̂ =
1
N

N∑
n=1

σ̂(n)
z . (3.2)

We let N remain finite, which will allow us to keep control of the equations of motion. It should however be sufficiently1236

large so as to ensure the required properties of phase transitions: The relaxation from R̂(0) to either one of the two1237

states R̂i, at the temperature T (below Tc) imposed by the bath B, should be irreversible, the fluctuations of the order1238

parameter m̂ in each equilibrium state R̂i should be weak (as 1/
√

N), and the transition between these two states R̂i1239

should be nearly forbidden.1240

The initial state R̂ (0) of A is the metastable paramagnetic state. We expect the final state (1.7) of S + A to involve1241

for A the two stable ferromagnetic states R̂i, i = ↑ or ↓, that we denote as R̂⇑ or R̂⇓, respectively26. The equilibrium1242

temperature T will be imposed to M by the phonon bath [174, 120] through weak coupling between the magnetic and1243

non-magnetic degrees of freedom. Within small fluctuations, the order parameter (3.2) vanishes in R̂ (0) and takes two1244

opposite values in the states R̂⇑ and R̂⇓, Ai ≡ 〈m̂〉i equal to +mF for i =↑ and to −mF for i =↓27. As in real magnetic1245

registration devices [228], information will be stored by A in the form of the sign of the magnetization.1246

3.2. The Hamiltonian1247

I ask not for a lighter burden, but for broader shoulders1248

Jewish proverb1249

26Here and in the following, single arrows ↑, ↓ will denote the spin S, while double arrows ⇑, ⇓ denote the magnet M
27Note that the values Ai = ±mF, which we wish to come out associated with the eigenvalues si = ±1, are determined from equilibrium statistical

mechanics; they are not the eigenvalues of Â ≡ m̂, which range from −1 to +1 with spacing 2/N, but thermodynamic expectation values around
which small fluctuations of order 1/

√
N occur
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A

S M B
g γ

N, J T, Γ

Figure 3.1: The Curie-Weiss measurement model and its parameters. The system S is a spin ŝ. The apparatus A includes a magnet M and a bath B.
The magnet, which acts as a pointer, consists of N spins coupled to one another through an Ising interaction J. The phonon bath B is characterized
by its temperature T and a Debye cutoff Γ. It interacts with M through a spin-boson coupling γ. The process is triggered by the interaction g
between the measured observable ŝz and the magnetization per spin, m̂, of the pointer.

The full Hamiltonian can be decomposed into terms associated with the system, with the apparatus and with their1250

coupling:1251

Ĥ = ĤS + ĤSA + ĤA. (3.3)

3.2.1. The system1252

As indicated above, for an ideal measurement the observable ŝ should commute with Ĥ [13, 158, 225]. The1253

simplest self-Hamiltonian that ensures this property (no evolution of S without coupling to A), is the trivial one,1254

ĤS = 0. (3.4)

This property is required for ideal measurements, during the process of which the statistics of the tested observable1255

should not be affected. More generally, in order to describe an imperfect measurement where ŝ may move noticeably1256

during the measurement (subsection 8.2), we shall introduce there a magnetic field acting on the tested spin.1257

The coupling between the tested system and the apparatus,1258

ĤSA = −gŝz

N∑
n=1

σ̂(n)
z = −Ngŝzm̂, (3.5)

has the usual form of a spin-spin coupling in the z-direction [227], and the constant g > 0 characterizes its strength.1259

As wished, it commutes with ŝz. We have assumed that the range of the interaction between the spin S and the N spins1260

of M is large compared to the size of the magnetic dot, so that we can disregard the space-dependence of the coupling.1261

The occurrence of the factor N in (3.5) should not worry us, since we will not take the thermodynamic limit N → ∞.1262

Although sufficiently large to ensure the existence of a clear phase transition, N is finite. We shall resume in § 9.4 the1263

conditions that N should satisfy. In a realistic setting, the interaction between S and M would first be turned on, then1264

turned off continuously, while the tested spin approaches the dot then moves away. For simplicity we assume ĤSA to1265

be turned on suddenly at the initial time t = 0, and it will be turned off at a final time tf , as we discuss below28.1266

3.2.2. The magnet1267

The apparatus A consists, as indicated above, of a magnet M and a phonon bath B (Fig. 3.1), and its Hamiltonian1268

can be decomposed into1269

ĤA = ĤM + ĤB + ĤMB. (3.6)

The magnetic part is chosen as [228]1270

ĤM = −N
∑
q=2,4

Jq
m̂q

q
= −NJ2

m̂2

2
− NJ4

m̂4

4
, (3.7)

28Contrary to the switching on, this switching off need not be performed suddenly since mF is close to m⇑
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where the magnetization operator m̂ was defined by (3.2). It couples all q-plets of spins σ̂(n) symmetrically, with1271

the same coupling constant JqN1−q for each q-plet. (The factor N1−q is introduced only for convenience.) The1272

space-independence of this coupling is fairly realistic for a small magnetic dot, as in (3.5). The interaction is fully1273

anisotropic, involving only the z-components. The exponents q are even in order to ensure the up-down symmetry of1274

the apparatus. The term q = 4 describes so-called super-exchange interactions as realized for metamagnets [228]. We1275

shall only consider ferromagnetic interactions (J2 > 0 or J4 > 0 or both).1276

We will see in § 3.3.4 that the Hamiltonian (3.6) produces a paramagnetic equilibrium state at high temperature1277

and two ferromagnetic states at low temperature, with a transition of second order for J2 > 3J4, of first order for1278

3J4 > J2. The former case is exemplified by the Curie–Weiss Ising model for an anisotropic magnetic dot [227], with1279

pairwise interactions in σ̂(n)
z σ̂

(p)
z , recovered here for J4 = 0,1280

ĤM = −
J2N

2
m̂2 = −

J2

2N

N∑
i, j=1

σ̂(i)
z σ̂

( j)
z , (q = 2). (3.8)

Likewise, the first-order case is exemplified by letting J2 = 0, keeping in (3.6) only the quartic “super-exchange”1281

term:1282

ĤM = −
J4N

4
m̂4 = −

J4

4N3

N∑
i, j,k,l=1

σ̂(i)
z σ̂

( j)
z σ̂(k)

z σ̂(l)
z , (q = 4). (3.9)

The more physical case (3.6) of mixtures of q = 2 and q = 4 terms will not differ qualitatively from either one1283

of the two pure cases q = 2 or q = 4. It will therefore be sufficient for our purpose, in section 7, to illustrate the two1284

situations J2 > 3J4 and J2 < 3J4 by working out the Hamiltonians (3.8) and (3.9), respectively. We may summarize1285

these two cases by HM = −(NJ/q)m̂q with q = 2 and 4, respectively.1286

Using A as a measurement apparatus requires the lifetime of the initial state to be larger than the overall mea-1287

surement time. An advantage of a first-order transition is the local stability of the paramagnetic state, even below the1288

transition temperature, which ensures a much larger lifetime as in the case of a second order transition. We shall see,1289

however (§ 7.3.2), that the required condition can be satisfied even for q = 2 alone (i.e., for J4 = 0).1290

3.2.3. The phonon bath1291

The interaction between the magnet and the bath, which drives the apparatus to equilibrium, is taken as a standard1292

spin-boson Hamiltonian [174, 120, 121]1293

ĤMB =
√
γ

N∑
n=1

(
σ̂(n)

x B̂(n)
x + σ̂(n)

y B̂(n)
y + σ̂(n)

z B̂(n)
z

)
≡
√
γ

N∑
n=1

∑
a=x,y,z

σ̂(n)
a B̂(n)

a , (3.10)

which couples each component a = x, y, z of each spin σ̂(n) with some hermitean linear combination B̂(n)
a of phonon1294

operators. The dimensionless constant γ � 1 characterizes the strength of the thermal coupling between M and B,1295

which is weak.1296

For simplicity, we require that the bath acts independently for each spin degree of freedom n, a. (The so-called1297

independent baths approximation.) This can be achieved (i) by introducing Debye phonon modes labelled by the pair1298

of indices k, l, with eigenfrequencies ωk depending only on k, so that the bath Hamiltonian is1299

ĤB =
∑
k,l

~ωkb̂†k,lb̂k,l, (3.11)

and (ii) by assuming that the coefficients C in1300

B̂(n)
a =

∑
k,l

[
C (n, a; k, l) b̂k,l + C∗ (n, a; k, l) b̂†k,l

]
(3.12)

are such that1301 ∑
l

C (n, a; k, l) C∗ (m, b; k, l) = δn,mδa,b c (ωk) . (3.13)
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D̂





D̂

{
S
M
B

r̂

R̂M

R̂B

}
R̂

A

S M B
g γ

N, J T, Γ

Figure 3.2: Notations for the density operators of the system S + A and the subsystems M and B of A. The full density matrix D̂ is parametrized
by its submatrices R̂i j (with i, j = ±1 or ↑, ↓), the density matrix D̂ of S + M by its submatrices R̂i j. The marginal density operator of S is denoted
as r̂ and the one of A as R̂. The marginal density operator of M itself is denoted as R̂M and the one of B as R̂B.

This requires the number of values of the index l to be at least equal to 3N. For instance, we may associate with each1302

component a of each spin σ̂(n) a different set of phonon modes, labelled by k, n, a, identifying l as (n, a), and thus1303

define ĤB and B̂(n)
a as1304

ĤB =

N∑
n=1

∑
a=x,y,z

∑
k

~ωkb̂†(n)
k,a b̂(n)

k,a, (3.14)

B̂(n)
a =

∑
k

√
c (ωk)

(
b̂(n)

k,a + b̂†(n)
k,a

)
. (3.15)

We shall see in § 3.3.2 that the various choices of the phonon set, of the spectrum (3.11) and of the operators (3.12)1305

coupled to the spins are equivalent, in the sense that the joint dynamics of S + M will depend only on the spectrum ωk1306

and on the coefficients c (ωk).1307

The spin-boson coupling (3.10) between M and B will be sufficient for our purpose up to section 9. This inter-1308

action, of the Glauber type, does not commute with ĤM, a property needed for registration, since M has to release1309

energy when relaxing from its initial metastable paramagnetic state to one of its final stable ferromagnetic states at1310

the temperature T . However, the complete solution of the measurement problem presented in section 11 will require1311

more complicated interactions. We will therefore introduce in § 11.2.3 a small but random coupling between the spins1312

of M, and in § 11.2.4 a more realistic small coupling between M and B, of the Suzuki type, which produces flip-flops1313

of the spins of M without changing the value of the energy that M would have with only the terms (3.8) and/or (3.9).1314

3.3. Structure of the states1315

If you do not enter the tiger’s cave, you will not catch its cub1316

Japanese proverb1317

3.3.1. Notations1318

The full state D̂ of the system evolves according to the Liouville–von Neumann equation (1.6), which we have to1319

solve. It will be convenient to define through partial traces, at any instant t, the following marginal density operators:1320

r̂ for the tested system S, R̂ for the apparatus A, R̂M for the magnet M, R̂B for the bath, and D̂ for S + M after1321

elimination of the bath (as depicted schematically in Fig. 3.2), according to1322

r̂ = trAD̂, R̂ = trSD̂, R̂M = trBR̂ = trS,BD̂, R̂B = trS,MD̂, D̂ = trBD̂. (3.16)

The expectation value of any observable Â pertaining, for instance, to the subsystem S + M of S + A (including1323

products of spin operators ŝa and σ̂(n)
a ) can equivalently be evaluated as 〈Â〉 = trS +AD̂Â or as 〈Â〉 = trS +MD̂Â.1324

As indicated in subsection 1.2, the apparatus A is a large system, treated by methods of statistical mechanics,1325

while we need to follow in detail the microscopic degrees of freedom of the system S and their correlations with A.1326

To this aim, we shall analyze the full state D̂ of the system into several sectors, characterized by the eigenvalues of ŝz.1327

Namely, in the two-dimensional eigenbasis of ŝz for S, |↑〉, |↓〉, with eigenvalues si = +1 for i =↑ and si = −1 for i =↓,1328

D̂ can be decomposed into the four blocks1329
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D̂ =

(
R̂↑↑ R̂↑↓

R̂↓↑ R̂↓↓

)
, (3.17)

where each R̂i j is an operator in the space of the apparatus. We shall also use the partial traces (see again Fig. 3.2)1330

R̂i j = trBR̂i j, D̂ = trBD̂ =

(
R̂↑↑ R̂↑↓
R̂↓↑ R̂↓↓

)
(3.18)

over the bath; each R̂i j is an operator in the 2N-dimensional space of the magnet. Indeed, we are not interested in the1331

evolution of the bath variables, and we shall eliminate B by relying on the weakness of its coupling (3.10) with M.1332

The operators R̂i j code our full statistical information about S and M. We shall use the notation R̂i j whenever we refer1333

to S + M and R̂M when referring to M alone. The magnet M is thus described by R̂M = R̂↑↑ + R̂↓↓, the system S alone1334

by the matrix elements ri j = trMR̂i j of r̂. The correlations of ŝz, ŝx or ŝy with and any function of the observables σ̂(n)
a1335

(a = x, y, z , n = 1 , . . . N) are represented by R̂↑↑ − R̂↓↓, R̂↑↓ + R̂↓↑, iR̂↑↓ − iR̂↓↑, respectively. The operators R̂↑↑ and R̂↓↓1336

are hermitean positive, but not normalized, whereas R̂↓↑ = R̂†
↑↓

. Notice that we now have from (3.16) – (3.18)1337

ri j = trAR̂i j = trMR̂i j, R̂ = R̂↑↑ + R̂↓↓, R̂M = R̂↑↑ + R̂↓↓, R̂B = trM(R̂↑↑ + R̂↓↓). (3.19)

All these elements are functions of the time t which elapses from the beginning of the measurement at t = 0 when1338

ĤSA is switched on to the final value tf that we will evaluate in section 7. To introduce further notation, we mention1339

that the combined system S + A = S + M + B should end up in1340

D̂(tf) =

(
p↑R̂⇑ 0

0 p↓R̂⇓

)
= p↑ |↑〉〈↑| ⊗ R̂⇑ + p↓ |↓〉〈↓| ⊗ R̂⇓ =

∑
i

pi D̂i, (3.20)

where R̂⇑ (R̂⇓) is density matrix of the thermodynamically stable state of the magnet and bath, after the measurement,1341

in which the magnetization is up, taking the value m⇑(g) (down, taking the value m⇓(g)); these events should occur1342

with probabilities p↑ and p↓, respectively29. The Born rule then predicts that p↑ = trSr̂(0)Π↑ = r↑↑(0) and p↓ = r↓↓(0).1343

Since no off-diagonal terms occur in (3.20), a point that we wish to explain, and since we expect B to remain1344

nearly in its intial equilibrium state, we may trace out the bath, as is standard in classical and quantum thermal1345

physics, without losing significant information. It will therefore be sufficient for our purpose to show that the final1346

state is1347

D̂(tf) =

(
p↑R̂M⇑ 0

0 p↓R̂M⇓

)
= p↑ |↑〉〈↑| ⊗ R̂M⇑ + p↓ |↓〉〈↓| ⊗ R̂M⇓, (3.21)

now referring to the magnet M and tested spin S alone.1348

Returning to Eq. (3.19), we note that from any density operator R̂ of the magnet we can derive the probabilities1349

Pdis
M (m) for m̂ to take the eigenvalues m, where “dis” denotes their discreteness. These N + 1 eigenvalues,1350

m = −1, − 1 +
2
N
, . . . , 1 −

2
N
, 1, (3.22)

have equal spacings δm = 2/N and multiplicities1351

G (m) =
N![

1
2 N (1 + m)

]
!
[

1
2 N (1 − m)

]
!

=

√
2

πN
(
1 − m2) exp

[
N

(
−

1 + m
2

ln
1 + m

2
−

1 − m
2

ln
1 − m

2

)
+ O

(
1
N

)]
.(3.23)

Denoting by δm̂,m the projection operator on the subspace m of m̂, the dimension of which is G (m), we have1352

29Notice that in the final state we denote properties of the tested system by ↑, ↓ and of the apparatus by ⇑, ⇓. In sums like (1.7) we will also use
i =↑, ↓, or sometimes i = ±1
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Pdis
M (m, t) = trMR̂M(t)δm̂,m. (3.24)

In the limit N � 1, where m becomes basically a continuous variable, we shall later work with the functions PM(m, t)1353

PM(m, t) =
N
2

Pdis
M (m, t),

∫ 1

−1
dm PM(m, t) =

∑
m

Pdis
M (m, t) = 1, (3.25)

that have a finite and smooth limit for N → ∞, and use similar relations between the functions Pi j and Pdis
i j , and Ca1354

and Cdis
a , introduced next.1355

In what follows, the density operators R̂M will most often depend only on the observables σ̂(n)
z and be symmetric1356

functions of these observables. Hence, R̂M will reduce to a mere function of the operator m̂ defined by (3.2). In such a1357

circumstance, eq. (3.24) can be inverted: the knowledge of PM (m) is then sufficient to determine the density operator1358

R̂M, through a simple replacement of the scalar m by the operator m̂ in1359

R̂M(t) =
1

G (m̂)
Pdis

M (m̂, t) . (3.26)

The expectation value of any product of operators σ̂(n)
a of the magnet can then be expressed in terms of Pdis

M (m). For1360

instance, the two-spin correlations (n , p) are related to the second moment of Pdis
M (m) by1361

trS,AD̂σ̂
(n)
a σ̂

(p)
b = trMR̂Mσ̂

(n)
a σ̂

(p)
b =

δa,zδb,z

N − 1

N ∑
m

Pdis
M (m) m2 − 1

 . (3.27)

Likewise, when the operators R̂i j in (3.18) depend only on m̂, we can parameterize them at each time, according1362

to1363

R̂i j(t) =
1

G (m̂)
Pdis

i j (m̂, t) , (3.28)

by functions Pdis
i j (m) defined on the set (3.22) of values of m, with [Pdis

i j (m)]∗ = Pdis
ji (m). (For the moment we refrain1364

from denoting the explicit t dependence.) All statistical properties of S + M at the considered time can then be1365

expressed in terms of these functions Pdis
i j (m). Indeed the combinations1366

Cdis
x (m) = Pdis

↑↓
(m) + Pdis

↓↑
(m), Cdis

y = iPdis
↑↓
− iPdis

↓↑
, Cdis

z = Pdis
↑↑
− Pdis

↓↓
(3.29)

encompass all the correlations between ŝx, ŝy or ŝz and any number of spins of the apparatus. In particular, the1367

expectation values of the components of ŝ are given by1368

trD̂ŝa =
∑

m

Cdis
a (m) =

∫ 1

−1
dm Ca (m) , (3.30)

with the continuous functions Ca(m) = 1
2 NCdis

a (m) as in (3.25), while the correlations between ŝ and one spin of M are1369

trD̂ŝaσ̂
(n)
b = δb,z

∑
m

Cdis
a (m) m = δb,z

∫ 1

−1
dm Ca (m) m. (3.31)

Correlations of ŝ with many spins of M involve higher moments of Cdis
a (m) as in eq. (3.27). We can interpret Pdis

↑↑
(m)1370

as the joint probability to find S in |↑〉 and m̂ equal to m, so that Pdis
↑↑

(m) + Pdis
↓↓

(m) = Pdis
M (m) reduces to the probability1371

Pdis
M (m) which characterizes through (3.26) the marginal state of M.1372
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3.3.2. Equilibrium state of the bath1373

C’est si bon30
1374

Music by Henri Betti, sung by Yves Montand1375

At the initial time, the bath is set into equilibrium at the temperature T = 1/β31. The density operator of the bath,1376

R̂B (0) =
1

ZB
e−βĤB , (3.32)

when ĤB is given by (3.11), describes the set of phonons at equilibrium in independent modes.1377

As shown in section 4.2 the bath will be involved in our problem only through its autocorrelation function in the1378

equilibrium state (3.32), defined in the Heisenberg picture (see § 10.1.2) by1379

trB

[
R̂B (0) B̂(n)

a (t) B̂(p)
b (t′)

]
= δn,pδa,b K (t − t′) , (3.33)

B̂(n)
a (t) ≡ Û†B (t) B̂(n)

a ÛB (t) , (3.34)

ÛB (t) = e−iĤBt/~, (3.35)

in terms of the evolution operator ÛB(t) of B alone. The bath operators (3.12) have been defined in such a way that1380

the equilibrium expectation value of B(n)
a (t) vanishes [174, 120, 121]. Moreover, the condition (3.13) ensures that the1381

equilibrium correlations between different operators B̂(n)
a (t) and B̂(p)

b (t′) vanish, unless a = b and n = p, and that the1382

autocorrelations for n = p, a = b are all the same, thus defining a unique function K (t) in (3.33). We introduce the1383

Fourier transform and its inverse,1384

K̃ (ω) =

∫ +∞

−∞

dt e−iωtK (t) , K(t) =
1

2π

∫ +∞

−∞

dω eiωtK̃ (ω) (3.36)

and choose for K̃(ω) the simplest expression having the required properties, namely the quasi-Ohmic form [151, 152,1385

174, 120, 121]1386

K̃ (ω) =
~2

4
ωe−|ω|/Γ

eβ~ω − 1
. (3.37)

The temperature dependence accounts for the quantum bosonic nature of the phonons [174, 120, 121]. The Debye1387

cutoff Γ characterizes the largest frequencies of the bath, and is assumed to be larger than all other frequencies entering1388

our problem. The normalization is fixed so as to let the constant γ entering (3.10) be dimensionless.1389

The form (3.37) of K̃ (ω) describes the spectral function of the Nyquist-noise correlator, which is the quantum1390

generalization of the classical white noise. It can be obtained directly through general reasonings based on the detailed1391

balance and the approach to equilibrium [174, 120]. We can also derive it from the expressions (3.11) for ĤB, (3.12)1392

and (3.34) for B̂(n)
a (t), and (3.32) for R̂B (0), which under general conditions provide a universal model for the bath1393

[174, 120, 121]. Indeed, by inserting these expressions into the left-hand side of (3.33), we recover the diagonal1394

form of the right-hand side owing to (3.13), which relates c(ω) to the bath Hamiltonian ĤB, with the autocorrelation1395

function K (t) given by1396

K (t) =
∑

k

c (ωk)
(

eiωk t

eβ~ωk − 1
+

e−iωk t

1 − e−β~ωk

)
=

∫ ∞

0
dωρ (ω) c (ω)

(
eiωt

eβ~ω − 1
+

e−iωt

1 − e−β~ω

)
. (3.38)

30It’s so good
31We use units where Boltzmann’s constant is equal to one [226]; otherwise, T and β = 1/T should be replaced throughout by kBT and 1/kBT ,

respectively
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We have expressed above K (t) in terms of the density of modes1397

ρ (ω) =
∑

k

δ (ω − ωk) , (3.39)

and this provides1398

K̃ (ω) = 2πρ (|ω|) c (|ω|)
sgnω

eβ~ω − 1
. (3.40)

In agreement with Kubo’s relation, we also find for the dissipative response1399 ∫ +∞

−∞

dte−iωt trB

{
R̂B (0)

[
B̂(n)

a (t) , B̂(p)
b (0)

]}
= −2πρ (|ω|) c (|ω|) sgnω. (3.41)

In the limit of a spectrum ωk of the phonon modes sufficiently dense so that the relevant values of t/~ and β are small1400

compared to the inverse level spacing of the phonon modes, we can regard ρ (ω) c (ω) as a continuous function. In the1401

quasi-Ohmic regime [151, 152, 153, 174, 120, 121], the dissipative response at low frequencies is proportional to ω,1402

as obvious for a friction-dominated harmonic oscillator. We thus take (for ω > 0)1403

ρ (ω) c (ω) =
~2

8π
ωe−ω/Γ, (3.42)

where ω is called the Ohmic factor, and where we include a Debye cutoff Γ on the phonon spectrum and a proper1404

normalization. Then (3.40) reduces to the assumed expression (3.37).1405

3.3.3. Initial state1406

In the beginning was the Word1407

Genesis 1.11408

In the initial state D̂ (0) = r̂ (0) ⊗ R̂ (0) where S and A are statistically independent, the 2 × 2 density matrix r̂ (0)1409

of S is arbitrary, with elements r↑↑ (0), r↑↓ (0), r↓↑ (0) and r↓↓ (0) satisfying1410

r↑↑ (0) + r↓↓ (0) = 1, r↑↓ (0) = r∗↓↑ (0) , r↑↑ (0) r↓↓ (0) ≥ r↑↓ (0) r↓↑ (0) . (3.43)

According to the discussion of the section 3.1, the initial density operator R̂ (0) of the apparatus describes the1411

magnetic dot in a metastable paramagnetic state. As justified below, we take for it the factorized form1412

R̂ (0) = R̂M (0) ⊗ R̂B (0) , (3.44)

where the bath is in the equilibrium state (3.32), at the temperature T = 1/β lower than the transition temperature of1413

M, while the magnet with Hamiltonian (3.6) is in a paramagnetic equilibrium state at a temperature T0 = 1/β0 higher1414

than its transition temperature:1415

R̂M (0) =
1

ZM
e−β0ĤM . (3.45)

How can the apparatus be actually initialized in the non-equilibrium state (3.44) at the time t = 0? This ini-1416

tialization takes place during the time interval −τinit < t < 0. The apparatus is first set at earlier times into equi-1417

librium at the temperature T0. Due to the smallness of γ, its density operator is then factorized and proportional to1418

exp[−β0(ĤM + ĤB)]. At the time −τinit the phonon bath is suddenly cooled down to T . We shall evaluate in § 7.3.21419

the relaxation time of M towards its equilibrium ferromagnetic states under the effect of B at the temperature T . Due1420

to the weakness of the coupling γ, this time turns out to be much longer than the duration of the experiment. We can1421

safely assume τinit to be much shorter than this relaxation time so that M remains unaffected by the cooling. On the1422

other hand, the quasi continuous nature of the spectrum of B can allow the phonon-phonon interactions (which we1423

have disregarded when writing (3.11)) to establish the equilibrium of B at the temperature T within a time shorter1424

than τinit. It is thus realistic to imagine an initial state of the form (3.44).1425

An alternative method of initialization consists in applying to the magnetic dot a strong radiofrequency field,1426

which acts on M but not on B. The bath can thus be thermalized at the required temperature, lower than the transition1427



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 42

temperature of M, while the populations of spins of M oriented in either direction are equalized. The magnet is then1428

in a paramagnetic state, as if it were thermalized at an infinite temperature T0 in spite of the presence of a cold bath.1429

In that case we have the initial state (see Eq. (3.1))1430

R̂M(0) =
1

2N

N∏
n=1

σ̂(n)
0 . (3.46)

The initial density operator (3.45) of M being simply a function of the operator m̂, we can characterize it as in1431

(3.24) by the probabilities Pdis
M (m, 0) for m̂ to take the values (3.22). Those probabilities are the normalized product1432

of the degeneracy (3.23) and the Boltzmann factor,1433

Pdis
M (m, 0) =

1
Z0

G(m) exp
[

N
T0

( J2

2
m2 +

J4

4
m4

)]
, Z0 =

∑
m

G(m) exp
[

N
T0

( J2

2
m2 +

J4

4
m4

)]
. (3.47)

For sufficiently large N, the distribution PM (m, 0) = 1
2 NPdis

M (m, 0) is peaked around m = 0, with the Gaussian shape1434

PM (m, 0) '
1

√
2π∆m

e−m2/2∆m2
=

√
N

2πδ2
0

e−Nm2/2δ2
0 . (3.48)

This peak, which has a narrow width of the form1435

∆m =

√〈
m2〉 =

δ0
√

N
, (3.49)

involves a large number, of order
√

N, of eigenvalues (3.22), so that the spectrum can be treated as a continuum1436

(except in sections 5.3 and 6). For the Hamiltonian (3.9) with q = 4, only the multiplicity (3.23) contributes to ∆m,1437

so that the paramagnetic initial state (3.45) is characterized at any initial temperature T0 by the distribution PM (m, 0)1438

equal to1439

PM (m, 0) = PM0 (m) =
1

2N G(m) ≡

√
N
2π

e−Nm2/2. (3.50)

For the general Hamiltonian (3.7), the width is larger, due to correlations between spins, and given by1440

δ0 =

√
T0

T0 − J2
, ∆m =

√
T0

N(T0 − J2)
. (3.51)

In the pure q = 2 case with Hamiltonian (3.8), and in general in case J2 > 0, the temperature T0 of initialization1441

should be sufficiently higher than the Curie temperature so that δ2
0 � N, which ensures the narrowness of the peak.1442

For an initialization caused by a radiofrequency, the initial distribution is again (3.50).1443

3.3.4. Ferromagnetic equilibrium states of the magnet1444

We expect the final state (1.7) of S + A after measurement to involve the two ferromagnetic equilibrium states R̂i,1445

i = ⇑ or ⇓. As above these states R̂i of the apparatus factorize, in the weak coupling limit (γ � 1), into the product1446

of (3.32) for the bath and a ferromagnetic equilibrium state R̂Mi for the magnet M. It is tempting to tackle broken1447

invariance by means of the mean-field approximation, which becomes exact at equilibrium for infinite N owing to1448

the long range of the interactions [227, 228]. However, we are interested in a finite, though large, value of N, and1449

the probability distribution PMi (m) associated with R̂Mi has a significant width around the mean-field value for m.1450

Moreover, we shall see in subsection 7.3 that, in spite of the constancy of the interaction between all spins, the1451

time-dependent mean-field approximation may fail even for large N. We will study there the dynamics of the whole1452

distribution PM (m, t) including the final regime where it is expected to tend to PM⇑ (m) or PM⇓ (m), and will determine1453
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in particular the lifetime of the metastable state (3.44). We focus here on equilibrium only. For later convenience we1454

include an external field h acting on the spins of the apparatus, so as to arrive from (3.7) at32
1455

ĤM = −Nhm̂ − NJ2
m̂2

2
− NJ4

m̂4

4
. (3.52)

As in (3.26) we characterize the canonical equilibrium density operator of the magnet R̂M = (1/ZM) exp[−βĤM],1456

which depends only on the operator m̂, by the probability distribution1457

PM (m) =

√
N

ZM
√

8π
e−βF(m), (3.53)

where m takes the discrete values mi given by (3.22); the exponent of (3.53) introduces the free energy function1458

F (m) = −NJ2
m2

2
− NJ4

m4

4
− Nhm + NT

(
1 + m

2
ln

1 + m
2

+
1 − m

2
ln

1 − m
2

)
+

T
2

ln
1 − m2

4
+ O

(
1
N

)
, (3.54)

which arises from the Hamiltonian (3.52) and from the multiplicity G(m) given by (3.23). The distribution (3.53)1459

displays narrow peaks at the minima of F (m), and the equilibrium free energy −T ln ZM is equal for large N to the1460

absolute minimum of (3.54). The function F (m) reaches its extrema at values of m given by the self-consistent1461

equation1462

m
(
1 −

1
N

)
= tanh

[
β
(
h + J2m + J4m3

)]
, (3.55)

which as expected reduces to the mean-field result for large N. In the vicinity of a minimum of F (m) at m = mi, the1463

probability PM (m) presents around each mi a nearly Gaussian peak, given within normalization by1464

PMi (m) ∝ exp
−N

2

 1
1 − m2

i

− βJ2 − 3βJ4m2
i

 (m − mi)2 −
N
3

 mi

(1 − m2
i )2
− 3βJ4mi

 (m − mi)3
 . (3.56)

This peak is located at a distance of order 1/N from the mean-field value, it has a width of order 1/
√

N and a weak1465

asymmetry. The possible values of m are dense within the peak, with equal spacing δm = 2/N. With each such peak1466

PMi (m) is associated through (3.25), (3.26) a density operator R̂i of the magnet M which may describe a locally stable1467

equilibrium. Depending on the values of J2 and J4 and on the temperature, there may exist one, two or three such1468

locally stable states. We note the corresponding average magnetizations mi, for arbitrary h, as mP for a paramagnetic1469

state and as m⇑ and m⇓ for the ferromagnetic states, with m⇑ > 0, m⇓ < 0. We also note as ±mF the ferromagnetic1470

magnetizations for h = 0. When h tends to 0 (as happens at the end of the measurement where we set g → 0), mP1471

tends to 0, m⇑ to +mF and m⇓ to −mF, namely1472

m⇑(h > 0) > 0, m⇓(h > 0) < 0, m⇑(−h) = −m⇓(h), mF = m⇑(h→+0) = −m⇓(h→+0). (3.57)

For h = 0, the system M is invariant under change of sign of m [227]. This invariance is spontaneously broken1473

below some temperature [227]. In the case q = 2 of the Ising interaction (3.8), there is above the Curie temperature1474

Tc = J2 a single paramagnetic peak PM0 (m) at mP = 0, given by (3.48), (3.51), and for T < J2 two symmetric1475

ferromagnetic peaks (3.56), i = ⇑ or ⇓, at the points m⇑ = mF and m⇓ = −mF, given by mF = tanh βJ2mF. These peaks1476

are well separated provided1477

N
2

 1
1 − m2

F

− βJ2

 m2
F � 1, (3.58)

32In section 7 we shall identify h with +g in the sector R̂↑↑ of D̂, or with −g in its sector R̂↓↓, where g is the coupling between S and A, while a
true field in the y-direction will be introduced in section 8.2 and denoted by b, see Eq. (8.46)
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in which case they characterize two different equilibrium ferromagnetic states. This condition is satisfied for large N1478

and βJ2 − 1 finite; near βJ2 = 1, where m2
F ∼ 3 (βJ2 − 1), the two states R̂⇑ and R̂⇓ still have no overlap as soon as the1479

temperature differs significantly from the critical temperature, as1480

J2 − T
T

�
1
√

3N
. (3.59)

This property is needed to ensure a faithful registration by M of the measurement. Little is changed for the Hamiltonian1481

(3.7) with J4 > 0 but still J2 > 3J4.1482

T = 0.5 J

0.4 J

0.35 J

0.3 J0.2 J

-1 -0.5 0.5 1
m

-0.55

-0.65

-0.75

F�NT

Figure 3.3: The free energy F in units of NT for a pure quartic interaction (eq. (3.9), evaluated from Eq. (3.54) with h = 0, as function of the
magnetization m at various temperatures. There is always a local paramagnetic minimum at m = 0. A first-order transition occurs at Tc = 0.363J4,
below which the ferromagnetic states associated with the minima at ±mF near ± 1 become the most stable.

Still for h = 0, but in the case 3J4 > J2 of a first-order transition, F (m) has a minimum at m = 0 if T > J21483

and hence (3.53) has there a peak as (3.50) at m = 0 whatever the temperature, see Fig. 3.3. For the pure quartic1484

interaction of Eq. (3.9), the two additional ferromagnetic peaks PM⇑ (m) and PM⇓ (m) appear around m⇑ = mF = 0.8891485

and m⇓ = −mF when the temperature T is lower than 0.496J4. As T decreases, mF given by mF = tanh βJ4m3
F increases1486

and the value of the minimum F (mF) decreases; the weight (3.53) is transferred from PM0 (m) to PM⇑ (m) and PM⇓ (m).1487

A first-order transition occurs when F (mF) = F (0), for Tc = 0.363J4 and mF = 0.9906, from the paramagnetic to the1488

two ferromagnetic states, although the paramagnetic state remains locally stable. The spontaneous magnetization mF1489

is always very close to 1, behaving as 1 − mF ∼ 2 exp(−2J4/T ).1490

For the general Hamiltonian (3.7), it is a simple exercise to study the cross-over between first and second-order1491

transitions, which takes place for mi � 1. To this aim, the free energy (3.54) is expanded as1492

F(m) − F(0)
N

≈ (T − J2)
m2

2
+ (T − 3J4)

m4

12
+ T

m6

30
, (3.60)

and its shape and minima are studied as function of J2, J4 and T . This approximation holds for |T − J2| � J2,1493

|3J4 − J2| � J2. For J2 > 3J4, the second-order transition takes place at Tc = J2 whatever J4. For 3J4 > J2, the1494

first-order transition temperature Tc is given by Tc− J2 ∼ 5(3J4− J2)2/48J2, and the equilibrium magnetization jumps1495

from 0 to ±mF, with m2
F ∼ 5(3J4− J2)/4J2. The paramagnetic state is locally stable down to T > J2, the ferromagnetic1496

states up to T − J2 < (4/3)(Tc − J2). When 3J4 > J2, a metastability with a long lifetime of the paramagnetic state is1497

thus ensured if the bath temperature satisfies Tc > T > J2.1498

Strictly speaking, the canonical equilibrium state of M below the transition temperature, characterized by (3.53),1499

has for h = 0 and finite N the form1500

R̂Meq =
1
2

(R̂M⇑ + R̂M⇓ ). (3.61)
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However this state is not necessarily the one reached at the end of a relaxation process governed by the bath B, when1501

a field h, even weak, is present: this field acts as a source which breaks the invariance. The determination of the1502

state R̂M (tf) reached at the end of a relaxation process involving the thermal bath B and a weak field h requires a1503

dynamical study which will be worked out in subsection 7.3. This is related to the ergodicity breaking: if a weak field1504

is applied, then switched off, the full canonical state (3.61) is still recovered, but only after an unrealistically long time1505

(for N � 1). For finite times the equilibrium state of the magnet is to be found by restricting the full canonical state1506

(3.61) to its component having a magnetization with the definite sign determined by the weak external field. This1507

is the essence of the spontaneous symmetry breaking. However, for our situation this well-known recipe should be1508

supported by dynamical considerations; see in this respect section 11.1509

In our model of measurement, the situation is similar, though slightly more complicated. The system-apparatus1510

coupling (3.5) plays the rôle of an operator-valued source, with eigenvalues behaving as a field h = g or h = −g. We1511

shall determine in section 7 towards which state M is driven under the conjugate action of the bath B and of the system1512

S, depending on the parameters of the model.1513

h = 0

0.02 J

0.04 J

-0.5 -0.25 0.25 0.5
m

-0.55

-0.65

F�NT

Figure 3.4: The effect of a positive field h on F(m) for q = 4 at temperature T = 0.2J4. As h increases the paramagnetic minimum mP shifts
towards positive m. At the critical field hc = 0.0357J4 this local minimum disappears, and the curve has an inflexion point with vanishing slope at
m = mc = 0.268. For larger fields, like in the displayed case g = 0.04J4, the locally stable paramagnetic state disappears, and there remain only the
two ferromagnetic states, the most stable one with positive magnetization m⇑ ' 1 and the metastable one with negative magnetization m⇓ ' −1.

As a preliminary step, let us examine here the effect on the free energy (3.54) of a small positive field h. Consider1514

first the minima of F (m) [226, 227]. The two ferromagnetic minima m⇑ and m⇓ given by (3.55) are slightly shifted1515

away from mF and −mF, and F
(
m⇑

)
− F (mF) behaves as −NhmF. Hence, as soon as exp{−β

[
F

(
m⇑

)
− F

(
m⇓

)]
} ∼1516

exp(2βNhmF) � 1, only the single peak PM⇑ (m) around m⇑ ' mF contributes to (3.53), so that the canonical equi-1517

librium state of M has the form R̂Meq = R̂M⇑. The shape of F (m) will also be relevant for the dynamics. For1518

a second order transition, although F (m) has when h = 0 a maximum at m = 0, its stationarity allows the state1519

R̂M (m, 0) ∝ PM(m̂, 0) given by (3.48) to have a long lifetime for N � 1. The introduction of h produces a negative1520

slope −Nh at m = 0, which suggests that the dynamics will let 〈m〉 increase. For a first order transition, the situation is1521

different (Fig. 3.4). If h is sufficiently small, F (m) retains its paramagnetic minimum, the position of which is shifted1522

as mP ∼ h/T ; the paramagnetic state R̂M (0) remains locally stable. It may decay towards a stable ferromagnetic state1523

only through mechanisms of thermal activation or quantum tunnelling, processes with very large characteristic times,1524

of exponential order in N. However, there is a threshold hc above which this paramagnetic minimum of F (m), which1525

then lies at m = mc, disappears. The value of hc is found by eliminating m = mc between the equations d2F/dm2 = 01526

and dF/dm = 0. In the pure q = 4 case (J2 = 0) on which we focus as an illustration for first order transitions, we find1527

2m2
c = 1 −

√
1 − 4T/3J4, hc = 1

2 T ln[1 + mc)/(1 − mc)] − J4m3
c . At the transition temperature Tc = 0.363J4, we have1528

mc = 0.375 and hc = 0.0904J4; for T = 0.2J4, we obtain mc = 0.268 and hc = 0.036J4; for T � J4, mc behaves as1529
√

T/3J4 and hc as
√

4T 3/27J4. Provided h > hc, F (m) has now a negative slope in the whole interval 0 < m < mF.1530

We can thus expect, in our measurement problem, that the registration will take place in a reasonable delay, either1531

for a first order transition if the coupling g is larger than hc, or for a second order transition. In the latter case, it will1532

be necessary to check, however, that the lifetime of the initial state is larger than the duration of the measurement.1533
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This will be done in § 7.3.2.1534

4. Equations of motion1535

Τὰ πάντα ῥεı̈33
1536

Quoted from Heraklitos by Plato and Simplicius1537

In this technical section, we rewrite the dynamical equations for our model in a form which will help us, in the1538

continuation, to discuss the physical features of the solution. We will make no other approximation than the weak1539

spin-phonon coupling, γ � 1, and will derive the equations up to first order in γ. In subsection 4.5, we take advantage1540

of the large size of the apparatus, N � 1, to reduce the equations of motion into a pair of partial differential equations.1541

4.1. A conserved quantity, the measured component of the spin, and the Born rule1542

All the world’s Great Journeys begin with the first step1543

A 1000 miles journey starts with a single step1544

Tibetan and Aboriginal Australian proverbs1545

Since ĤS = 0 and since ŝx and ŝy do not occur in the coupling (3.5) between S and A, we can already conclude1546

that ŝz is conserved during the ideal measurement, viz. i~dŝz/dt = [ŝz, Ĥ] = 0. This implies that the diagonal elements1547

of the density matrix of the spin are conserved, viz. r↑↑(tf) = r↑↑(t) = r↑↑(0) and r↓↓(tf) = r↓↓(0). The result is1548

consistent with Born’s rule: we expect the probabilities for the possible outcomes of an ideal measurement to be given1549

by the diagonal elements of the initial density matrix of S. But r↑↓ and r↓↑, on the other hand, are not conserved (viz.1550

[ŝa, Ĥ] , 0 for a = x, y), and they will evolve and ultimately vanish34.1551

4.2. Eliminating the bath variables1552

Don’t call the alligator a big-mouth till you have crossed the river1553

Brazilian proverb1554

A complete description of the measurement process requires at least the solution, in the Hilbert space of S + A, of1555

the Liouville–von Neumann equation of motion [226]1556

i~
dD̂
dt

=
[
Ĥ, D̂

]
, (4.1)

with the initial condition1557

D̂ (0) = r̂ (0) ⊗ R̂M (0) ⊗ R̂B (0) = D̂ (0) ⊗ R̂B (0) . (4.2)

We are not interested, however, in the bath variables, and the knowledge of D̂ (t) = trBD̂ (t) is sufficient for our1558

purpose. As usual in non-equilibrium statistical mechanics [174, 120, 121, 229], we rely on the weakness of the1559

coupling ĤMB between the magnet and the bath, so as to treat perturbatively the dissipative effect of the bath.1560

Let us therefore split the Hamiltonian (3.3) into Ĥ = Ĥ0 + ĤMB + ĤB with Ĥ0 = ĤS + ĤSA + ĤM. Regarding the1561

coupling ĤMB as a perturbation, we introduce the unperturbed evolution operators, namely (3.35) for the bath, and1562

Û0 (t) = e−iĤ0t/~, Ĥ0 = −gNŝzm̂ − N
∑
q=2,4

Jq

q
m̂q, (4.3)

for S + M. We can then expand the full evolution operator in powers of the coupling
√
γ, in the interaction picture,1563

and take the trace over B of eq. (4.1) so as to generate finally an equation of motion for the density operator D̂(t) of S1564

+ M. This calculation is worked out in Appendix A.1565

33Everything flows
34This has the popular name “decay of Schrödinger cat terms”, or “death of Schrödinger cats”
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The result involves the autocorrelation function K(t) of the bath, defined by (3.32) – (3.35) and expressed in our1566

model by (3.36), (3.37). It also involves the operators σ̂(n)
a (u) in the space of S + M, defined in terms of the memory1567

time u = t − t′ by1568

σ̂(n)
a (u) ≡ Û0 (t) Û†0

(
t′
)
σ̂(n)

a Û0
(
t′
)

Û†0 (t) = Û0 (u) σ̂(n)
a Û†0 (u) . (4.4)

It holds that σ̂(n)
a (0) = σ̂(n)

a . Altogether we obtain a differential equation for D̂ (t), the kernel of which involves times1569

earlier than t through K (u) and σ̂(n)
a (u) [174, 120, 121]:1570

dD̂
dt
−

1
i~

[
Ĥ0, D̂

]
=

γ

~2

∫ t

0
du

∑
n,a

{
K (u)

[
σ̂(n)

a (u) D̂, σ̂(n)
a

]
+ K (−u)

[
σ̂(n)

a , D̂σ̂(n)
a (u)

]}
+ O

(
γ2

)
. (4.5)

As anticipated in § 3.3.2, the phonon bath occurs in this equation, which governs the dynamics of S + M, only through1571

the function K (t), the memory time being the time-range ~/2πT of K (t) [174, 120, 121].1572

4.3. Decoupled equations of motion1573

In our model, the Hamiltonian commutes with the measured observable ŝz, hence with the projection operators1574

Π̂i onto the states |↑〉 and |↓〉 of S. The equations for the operators Π̂iD̂Π̂ j are therefore decoupled. We can replace1575

the equation (4.5) for D̂ in the Hilbert space of S + M by a set of four equations for the operators R̂i j defined by1576

(3.18) in the Hilbert space of M. We shall later see (section 8.2) that this simplification underlies the ideality of the1577

measurement process.1578

The Hamiltonian Ĥ0 in the space S+M gives rise to two Hamiltonians Ĥ↑ and Ĥ↓ in the space M, which according1579

to (3.5) and (3.7) are simply two functions of the observable m̂, given by1580

Ĥi = Hi (m̂) = −gNsim̂ − N
∑
q=2,4

Jq

q
m̂q, (i =↑, ↓) (4.6)

with si = +1 (or −1) for i =↑ (or ↓). These Hamiltonians Ĥi, which describe interacting spins σ̂(n) in an external field1581

gsi, occur in (4.5) both directly and through the operators1582

σ̂(n)
a (u, i) = e−iĤiu/~σ̂(n)

a eiĤiu/~, (4.7)

obtained by projection of (4.4), using (4.3), with Π̂i and reduction to the Hilbert space of M.1583

The equation (4.5) for D̂(t) which governs the joint dynamics of S+M thus reduces to the four differential equations1584

in the Hilbert space of M (we recall that i, j =↑, ↓ or ±1):1585

dR̂i j(t)
dt

−
ĤiR̂i j(t) − R̂i j(t)Ĥ j

i~
=

γ

~2

∫ t

0
du

∑
n,a

{
K (u)

[
σ̂(n)

a (u, i) R̂i j(t), σ̂(n)
a

]
+ K (−u)

[
σ̂(n)

a , R̂i j(t)σ̂(n)
a (u, j)

]}
. (4.8)

4.4. Reduction to scalar equations1586

4.4.1. Representing the pointer by a scalar variable1587

Even a small star shines in the darkness1588

Finnish proverb1589

For each operator R̂i j, the initial conditions are given according to (3.43) and (3.44) by1590

R̂i j (0) = ri j (0) R̂M (0) , (4.9)

and R̂M (0) expressed by the Gibbs state (3.45) is simply a function of the operator m̂. We show in Appendix B that1591

this property is preserved for R̂i j (t) by the evolution (4.8), owing to the form (4.6) of Ĥi and in spite of the occurrence1592

of the separate operators σ̂(n)
a in the right-hand side.1593

We can therefore parametrize, as anticipated at the end of § 3.3.1, at each t, the operators R̂i j in the form R̂i j =1594

Pdis
i j (m̂)/G(m̂). Their equations of motion (4.8) are then diagonal in the eigenspace of m̂, and are therefore equivalent1595

to scalar equations which govern the functions Pi j(m) = (N/2)Pdis
i j (m) of the variable m taking the discrete values1596

(3.22).1597
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4.4.2. Equations of motion for Pi j (m, t)1598

The equations resulting from this parametrization are derived in Appendix B. The integrals over u entering (4.8)1599

yield the functions1600

K̃t> (ω) =

∫ t

0
due−iωuK (u) =

1
2πi

∫ +∞

−∞

dω′K̃
(
ω′

) ei(ω′−ω)t − 1
ω′ − ω

, (4.10)

and1601

K̃t< (ω) =

∫ t

0
dueiωuK (−u) =

∫ 0

−t
due−iωuK (u) =

[
K̃t> (ω)

]∗
=

1
2πi

∫ +∞

−∞

dω′K̃
(
ω′

) 1 − ei(ω−ω′)t

ω′ − ω
, (4.11)

where ω takes, depending on the considered term, the values Ω+
↑
, Ω−
↑
, Ω+
↓
, Ω−
↓
, given by1602

~Ω±i (m) = Hi(m ± δm) − Hi(m), (i =↑, ↓), (4.12)

in terms of the Hamiltonians (4.6) and of the level spacing δm = 2/N. They satisfy the relations1603

Ω±i (m ∓ δm) = −Ω∓i (m). (4.13)

The quantities (4.12) are interpreted as excitation energies of the magnet M arising from the flip of one of its spins in1604

the presence of the tested spin S (with value si); the sign + (−) refers to a down-up (up-down) spin flip. Their explicit1605

values are:1606

~Ω±i (m) = ∓2gsi + 2J2(∓m −
1
N

) + 2J4(∓m3 −
3m2

N
∓

4m
N2 −

2
N3 ), (4.14)

with s↑ = 1, s↓ = −1.1607

The operators σ̂(n)
x and σ̂(n)

y which enter (4.8) are shown in Appendix B to produce a flip of the spin σ̂(n), that is, a1608

shift of the operator m̂ into m̂ ± δm. We introduce the notations1609

∆± f (m) = f (m±) − f (m) , m± = m ± δm, δm =
2
N
. (4.15)

The resulting dynamical equations for Pi j(m, t) take different forms for the diagonal and for the off-diagonal1610

components. On the one hand, the first diagonal block of D̂ is parameterized by the joint probabilities P↑↑ (m, t) to1611

find S in |↑〉 and m̂ equal to m at the time t. These probabilities evolve according to1612

dP↑↑ (m, t)
dt

=
γN
~2

{
∆+

[
(1 + m) K̃t

(
Ω−↑ (m)

)
P↑↑ (m, t)

]
+ ∆−

[
(1 − m) K̃t

(
Ω+
↑ (m)

)
P↑↑ (m, t)

]}
, (4.16)

with initial condition P↑↑ (m, 0) = r↑↑ (0) PM (m, 0) given by (3.48); likewise for P↓↓ (m), which involves the frequen-1613

cies Ω∓
↓
(m). The factor K̃t (ω) is expressed by the combination of two terms,1614

K̃t (ω) ≡ K̃t> (ω) + K̃t< (ω) =

∫ +t

−t
due−iωuK (u) =

∫ ∞

−∞

dω′

π

sin (ω′ − ω) t
ω′ − ω

K̃
(
ω′

)
. (4.17)

It is real and tends to K̃ (ω), given in Eq. (3.37), at times t larger than the range ~/2πT of K (t) [174, 120, 121]. This1615

may be anticipated from the relation sin[(ω′ − ω)t]/π(ω′ − ω) → δ(ω′ − ω) for t → ∞ and it may be demonstrated1616

with help of the contour integration techniques of Appendix D, which we leave as a student exercise, see § 9.6.1.1617
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On the other hand, the sets P↑↓ (m, t) and P↓↑ = P?
↑↓

which parameterize the off-diagonal blocks of D̂, and which1618

are related through (3.29) to the correlations between ŝx or ŝy and any number of spins of M, evolve according to1619

d
dt

P↑↓ (m, t) −
2iNgm

~
P↑↓ (m, t) =

γN
~2

{
∆+

[
(1 + m) K̃−(m, t)P↑↓ (m, t)

]
+ ∆−

[
(1 − m) K̃+(m, t)P↑↓ (m, t)

]}
, (4.18)

with initial condition P↑↓ (m, 0) = r↑↓ (0) PM (m, 0). Here K̃t> and K̃t< enter the combination1620

K̃±(m, t) ≡ K̃t>

[
Ω±↑ (m)

]
+ K̃t<

[
Ω±↓ (m)

]
. (4.19)

4.4.3. Interpretation as quantum balance equations1621

Je moet je evenwicht bewaren35
1622

Dutch expression1623

Our basic equations (4.16) and (4.18) fully describe the dynamics of the measurement. The diagonal equation1624

(4.16) can be interpreted as a balance equation [174, 120, 121]. Its first term represents elementary processes in1625

which one among the spins σ(n) flips from σ(n)
z = +1 to σ(n)

z = −1. For the value m of the magnetization, a value1626

taken with probability P↑↑ (m, t) at the time t, there are 1
2 N (1 + m) spins pointing upwards, and the probability for1627

one of these spins to flip down between the times t and t + dt under the effect of the phonon bath can be read off1628

from (4.18) to be equal to 2γ~−2K̃t

(
Ω−
↑

)
dt. This process produces a decrease of P↑↑ (m) and it is accounted for by the1629

negative contribution (which arises from the second part of ∆+ and is proportional to −P↑↑(m, t)) to the first term in the1630

right-hand side of (4.16). The coefficient K̃t (ω) depends on the temperature T of the bath B, on the duration t of its1631

interaction with M, and on the energy ~ω that it has transferred to M; this energy is evaluated for P↑↑ (or P↓↓) as if the1632

spins of M were submitted to an external field +g (or −g). The first term in (4.16) also contains a positive contribution1633

arising from the same process, for which the magnetization decreases from m+δm to m, thus raising P↑↑ (m) by a term1634

proportional to P↑↑ (m + δm). Likewise, the second term in the right-hand side of (4.16) describes the negative and1635

positive changes of P↑↑ (m) arising from the flip of a single spin from σ(n)
z = −1 to σ(n)

z = +1. Quantum mechanics1636

occurs in (4.16) through the expression (3.37) of K̃ (ω); the flipping probabilities do not depend on the factor ~, owing1637

to the factor ~2 that enters K̃(ω) and the fact that we have chosen the dimensionless coupling constant γ, but their1638

quantum nature is still expressed by the Bose-Einstein occupation number.1639

The equation (4.18) for P↑↓ has additional quantum features. Dealing with an off-diagonal block, it involves1640

simultaneously the two Hamiltonians Ĥ↑ and Ĥ↓ of Eq. (4.6) in the Hilbert space of M, through the expression (4.12)1641

of Ω±
↑,↓. The quantities P↑↓ and P↓↑ are complex and cannot be interpreted as probabilities, although we recognize in1642

the right-hand side the same type of balance as in Eq. (4.16). In fact, while
∑

m Pdis
↑↑

(m) = 1 −
∑

m Pdis
↓↓

(m), or in the1643

N � 1 limit
∫

dm P↑↑ (m) = 1−
∫

dm P↓↓ (m), remains constant in time because the sum over m of the right-hand side1644

of (4.16) vanishes, the term in the left-hand side of (4.18), which arises from Hi−H j, prevents
∑

m Pdis
↑↓

(m) from being1645

constant; It will, actually, lead to the disappearance of these “Schrödinger cat” terms.1646

Comparison of the right-hand sides of (4.16) and (4.18) shows moreover that the bath acts in different ways on the1647

diagonal and off-diagonal blocks of the density operator D̂ of S + M.1648

4.5. Large N expansion1649

Except in subsection 8.1 we shall deal with a magnetic dot sufficiently large so that N � 1. The set of values1650

(3.22) on which the distributions Pi j (m, t) are defined then become dense on the interval −1 ≤ m ≤ +1. At the initial1651

time, Pi j (m, 0), proportional to (3.48), extends over a range of order 1/
√

N while the spacing of the discrete values1652

of m is δm = 2/N. The initial distributions Pi j are thus smooth on the scale δm, and P↑↑ and P↓↓ will remain smooth1653

at later times. It is therefore legitimate to interpolate the set of values of the diagonal quantities Pii (m, t) defined at1654

the discrete points (3.22) into a continuous function of m. If we assume the two resulting functions Pii to be several1655

times differentiable with respect to m, the discrete equation (4.16) satisfied by the original distributions will give rise1656

35You have to keep your balance
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to continuous equations, which we shall derive below, involving an asymptotic expansion in powers of 1/N. Within1657

exponentially small corrections, the characteristic functions associated with Pii(m, t) then reduce to integrals:1658

Ψii (λ, t) ≡
∑

m

Pdis
ii (m, t) eiλm =

∫
dmPii (m, t) eiλm, (4.20)

provided λ � N. The moments of Pii (m) of order less than N can also be evaluated as integrals.1659

However, the left-hand side of Eq. (4.18) generates for finite times rapid variations of P↑↓(m, t) and P↓↑(m, t) as1660

functions of m, and it will be necessary in sections 5 and 6 to account for the discrete nature of m. When writing1661

below the equations of motion for these quantities in the large N limit, we will take care of this difficulty.1662

The differences ∆± defined by (4.15) satisfy1663

∆±[ f (m)g(m)] =
[
∆± f (m)

]
g(m) + f (m)

[
∆±g(m)

]
+

[
∆± f (m)

] [
∆±g(m)

]
, (4.21)

and give rise to derivatives with respect to m according to1664

∆± f (m) ≈ ±
2
N
∂ f (m)
∂m

+
2

N2

∂2 f (m)
∂m2 ±

4
3N3

∂3 f (m)
∂m3 . (4.22)

We can also expand the excitation energies ~Ω±i , defined by (4.12) and (4.6), for large N as1665

Ω±i (m) ≈ ∓2ωi −
2
N

dωi

dm
=

(
1 ±

1
N

d
dm

)
(∓2ωi), (4.23)

where we introduced the quantity1666

~ωi = −
1
N

dHi

dm
= gsi + J2m + J4m3, (si = ±1), (4.24)

interpreted as the effective energy of a single spin of M coupled to the other spins of M and to the tested spin S.1667

The above expansions will allow us to transform, for large N, the equations of motion for Pi j into partial differential1668

equations. In case ∂Pi j/∂m is finite for large N, we can simply replace in (4.16) and (4.18) N∆± by ±2∂/∂m and Ω±i1669

by ∓2ωi. However, such a situation is exceptional; we shall encounter it only in § 7.3.2. In general Pi j will behave1670

for large N as A exp NB. This property, exhibited at t = 0 in §§ 3.3.3 and 3.3.4, is preserved by the dynamics. As1671

∂Pi j/∂t involves leading contributions of orders N and 1, we need to include in the right-hand sides of (4.16) and1672

(4.18) contributions of the same two orders. Let us therefore introduce the functions1673

Xi j(m, t) ≡
1
N
∂ ln Pi j

∂m
=

1
NPi j

∂Pi j

∂m
, (4.25)

which contain parts of order 1 and 1/N, and their derivatives1674

X′i j ≡
1
N
∂2 ln Pi j

∂m2 =
∂Xi j

∂m
, (4.26)

which can be truncated at finite order in N. The discrete increments of Pi j are thus expanded as1675

∆±Pi j = Pi j

[
exp(∆± ln Pi j) − 1

]
≈ Pi j

[
exp

(
±2Xi j +

2
N

X′i j

)
− 1 + O

(
1

N2

)]
≈ Pi j

exp
(
±2Xi j

)
− 1 +

2X′i j

N
exp

(
±2Xi j

)
+ O

(
1

N2

) . (4.27)
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We express (4.16) by using the full relation (4.21), with f = P↑↑ and g = (1 ± m)K̃t(Ω∓↑ ), by evaluating ∆± f from1676

(4.27), and by inserting (4.13) into ∆±g. This yields1677

∂P↑↑
∂t
≈

2γ
~2 P↑↑

{
N sinh X↑↑

[
(1 + m)K̃t(Ω−↑ )eX↑↑ − (1 − m)K̃t(Ω+

↑ )e−X↑↑
]

+eX↑↑ ∂

∂m

[
(1 + m)K̃t(2ω↑)eX↑↑

]
− e−X↑↑ ∂

∂m

[
(1 − m)K̃t(−2ω↑)e−X↑↑

]
+ O

(
1
N

)}
. (4.28)

The first term on the right-hand side determines the evolution of the exponent of P↑↑, which contains parts of order1678

N, but contains also contributions of order 1 arising from the terms of order 1/N of (4.23) and of X↑↑. The remaining1679

terms determine the evolution of the amplitude of P↑↑. The bath term of the equation (4.18) for P↑↓(m, t) (and for1680

P↓↑ = P∗
↑↓

) has a similar form, again obtained from all the terms in (4.21) and (4.27), namely, using the notation1681

(4.19):1682

∂P↑↓
∂t
−

2iNgm
~

P↑↓ ≈
2γ
~2 P↑↓

{
N sinh X↑↓

[
(1 + m)K̃−(m, t)eX↑↓ − (1 − m)K̃+(m, t)e−X↑↓

]
+eX↑↓ ∂

∂m

[
(1 + m)K̃−(m, t)eX↑↓

]
− e−X↑↓ ∂

∂m

[
(1 − m)K̃+(m, t)e−X↑↓

]
+ O

(
1
N

)}
. (4.29)

A further simplification occurs for large N in the diagonal sector. Then P↑↑, which is real, takes significant values1683

only in the vicinity of the maximum of ln P↑↑. This maximum is reached at a point m = µ(t), and P↑↑ is concentrated1684

in a range for |m − µ(t)| of order 1/
√

N 36. In this range, X↑↑ is proportional to µ(t) − m, and it is therefore of order1685

1/
√

N37. We can therefore expand (4.28) in powers of X↑↑, noting also that X′
↑↑

is finite, and collect the X↑↑, X2
↑↑

, X′
↑↑

1686

and X↑↑X′↑↑ terms. Thus, if we disregard the exponentially small tails of the distribution P↑↑, which do not contribute1687

to physical quantities, we find at the considered order, using (4.25) and (4.26),1688

∂P↑↑
∂t
≈

∂

∂m
[
−v (m, t) P↑↑

]
+

1
N

∂2

∂m2

[
w (m, t) P↑↑

]
, (4.30)

where1689

v (m, t) =
2γ
~2

[
(1 − m) K̃t

(
−2ω↑

)
− (1 + m) K̃t

(
2ω↑

)]
+ O

(
1
N

)
, (4.31)

w (m, t) =
2γ
~2

[
(1 − m) K̃t

(
−2ω↑

)
+ (1 + m) K̃t

(
2ω↑

)]
+ O

(
1
N

)
. (4.32)

The next contribution to the right hand side of (4.30) would be −2vX↑↑X′↑↑P↑↑, of order 1/
√

N. We have replaced in v1690

and w the frequencies Ω±
↑

by ∓2ω↑, which has the sole effect of shifting the position and width of the distribution P↑↑1691

by a quantity of order 1/N. As shown by the original equation (4.28), the two terms of (4.30) have the same order of1692

magnitude (in spite of the presence of the factor 1/N in the second one) when P↑↑ has an exponential form in N. Only1693

the first one contributes if P↑↑ becomes smooth (§ 7.3.2). The equation for P↓↓ is obtained from (4.30) by changing g1694

into −g.1695

In the regime where the registration will take place (§ 7.1.1), we shall be allowed to replace K̃t(±2ωi) by K̃(±2ωi),1696

which according to (3.37) is equal to1697

K̃(±2ωi) =
~2ωi

4
[
coth(β~ωi) ∓ 1

]
exp

(
−

2|ωi|

Γ

)
, (i =↑, ↓). (4.33)

36Numerically we find for N = 1000 extended distributions, see Figs. 7.5 and 7.6, since the typical peak width 1/
√

N is still sizable
37This property does not hold for P↑↓, since X↑↓ contains a term 2igt/~ arising from the left hand side of (4.29)
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Eqs. (4.31) and (4.32) will thereby be simplified.1698

The final equations (4.29) and (4.30), with the initial conditions Pi j(m, 0) = ri jPM(m, 0) expressed by (3.48),1699

describe the evolution of S + M during the measurement process. We will work them out in sections 5 to 7. The1700

various quantities entering them were defined by (4.25) and (4.26) for Xi j and X′i j, by (4.31) and (4.32) for v and w,1701

by (3.37), (4.10), (4.11), (4.17) and (4.19) for K̃t>, K̃t<, K̃t and K̃±, respectively, and by (4.24) for ωi.1702

The dynamics of P↑↓ has a purely quantum nature. The left-hand side of (4.29) governs the evolution of the1703

normalization
∫

dmP↑↓(m, t), equal to the off-diagonal element r↑↓(t) of the marginal state r̂(t) of S. The bath gives1704

rise on the right-hand side to a non-linear partial differential structure, which arises from the discrete nature of the1705

spectrum of m̂.1706

The final equation of motion (4.30) for P↑↑ has the form of a Fokker–Planck equation [229, 230], which describes1707

a stochastic motion of the variable m. Its coefficient v, which depends on m and t, can be interpreted as a drift velocity,1708

while its coefficient w characterizes a diffusion process. This analogy with a classical diffusion process, should not,1709

however, hide the quantum origin of the diffusion term, which is as sizeable for large N as the drift term. While the1710

drift term comes out by bluntly taking the continuous limit of (4.16), the diffusion term originates, as shown by the1711

above derivation, from the conjugate effect of two features: (i) the smallness of the fluctuations of m, and (ii) the1712

discreteness of the spectrum of the pointer observable m̂. Although the pointer is macroscopic, its quantum nature is1713

essential, not only in the off-diagonal sector, but also in the diagonal sector which accounts for the registration of the1714

result.1715

5. Very short times: truncation1716

Alea iacta est38
1717

Julius Caesar1718

1719

Since the coupling γ of the magnet M with the bath B is weak, some time is required before B acts significantly1720

on M. In the present section, we therefore study the behavior of S + M at times sufficiently short so that we can1721

neglect the right-hand sides of (4.16) and (4.18). We shall see that the state D̂(t) of S + A is then truncated, that is, its1722

off-diagonal blocks R̂↑↓ and R̂↓↑ rapidly decay, while the diagonal blocks are still unaffected.1723

5.1. The truncation mechanism1724

5.1.1. The truncation time1725

When their right-hand sides are dropped, the equations (4.16) and (4.18) with the appropriate boundary conditions1726

are readily solved as1727

P↑↑ (m, t) = r↑↑ (0) PM (m, 0) , P↓↓ (m, t) = r↓↓ (0) PM (m, 0) , (5.1)
P↑↓ (m, t) =

[
P↓↑ (m, t)

]∗
= r↑↓ (0) PM (m, 0) e2iNgmt/~. (5.2)

From the viewpoint of the tested spin S, these equations describe a Larmor precession around the z-axis [60], under1728

the action of an effective magnetic field Ngm which depends on the state of M. From the viewpoint of the magnet1729

M, we shall see in § 5.1.3 that the phase occurring in (5.2) generates time-dependent correlations between M and the1730

transverse components of s.1731

The expectation values 〈ŝa (t)〉 of the components of s are found from (3.29) by summing (5.1) and (5.2) over1732

m. These equations are valid for arbitrary N and arbitrary time t as long as the bath is inactive. If N is sufficiently1733

large and t sufficiently small so that the summand is a smooth function on the scale δm = 2/N, that is, if N � 1 and1734

t � ~/g, we can use (4.20) to replace the summation over m by an integration. These conditions will be fulfilled in1735

subsections 5.1 and 5.2; we shall relax the second one in subsection 5.3 where we study the effects of the discreteness1736

of m. Using the expression (3.48), (3.49) of PM (m, 0), we find by integrating (5.2) over m:1737

r↑↓ (t) = r↑↓ (0) e−(t/τtrunc)2
, (5.3)

38The die is cast
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or equivalently1738

〈ŝa (t)〉 = 〈ŝa (0)〉 e−(t/τtrunc)2
, (a = x,y), (5.4)

〈ŝz (t)〉 = 〈ŝz (0)〉 , (5.5)

where we introduced the truncation time1739

τtrunc ≡
~

√
2 Ng∆m

=
~

√
2N δ0g

. (5.6)

Although P↑↓(m, t) is merely an oscillating function of t for each value of m, the summation over m has given rise to1740

a damping. This property arises from the dephasing that exists between the oscillations for different values of m.1741

In the case T0 = ∞ of a fully disordered initial state, we may solve directly (4.8) (without right-hand side) from the1742

initial condition (4.9). We obtain, for arbitrary N, R̂↑↓(t) = r↑↓(0)2−N exp(2iNgm̂t/~), whence by using the definition1743

(3.2) of m̂ and taking the trace over M, we find the exact result39
1744

r↑↓(t) = r↑↓(0)
(
cos

2gt
~

)N

, (5.7)

which reduces to (5.3) for times of order τtrunc.1745

Thus, over a time scale of order τtrunc, the transverse components of the spin S decay and vanish while the z-1746

component is unaltered: the off-diagonal elements r↑↓ = r∗
↓↑

of the marginal density matrix of S disappear during the1747

very first stage of the measurement process. It was to be expected that the apparatus, which is a large object, has a1748

rapid and strong effect on the much smaller system S. In the present model, this rapidity arises from the large number1749

N of spins of the magnet, which shows up through the factor 1/
√

N in the expression (5.6) of τtrunc.1750

As we shall see in § 5.1.3, the off-diagonal block R̂↑↓ = R̂
†

↓↑
of the full density matrix D̂ of S + A is proportional1751

to r̂↑↓ (t) and its elements also decrease as exp[−(t/τtrunc)2], at least those elements which determine correlations1752

involving a number of spins of M small compared to N. In the vocabulary of 1.3.3, truncation therefore takes place1753

for the overall system S + A over the brief initial time lapse τtrunc, while Eq. (5.3) describes weak truncation for S.1754

The quantum nature of the truncation process manifests itself through the occurrence of two different Hamiltonians1755

Ĥ↑ and Ĥ↓ in the Hilbert space of M. Both of them occur in the dynamical equation (4.18) for P↑↓, whereas only Ĥ↑1756

occurs in (4.16) for P↑↑ through Ω±
↑
, and likewise only Ĥ↓ for P↓↓, through Ω±

↓
.1757

The truncation time τtrunc is inversely proportional to the coupling g between ŝz and each spin σ̂(n)
z of the magnet. It1758

does not depend directly on the couplings Jq (q = 2, 4) between the spins σ̂(n)
z . Indeed, the dynamical equations (4.16),1759

(4.18) without bath-magnet coupling involve only H↑ (m) − H↓ (m), so that the interactions ĤM which are responsible1760

for ferromagnetism cancel out therein. These interactions occur only through the right-hand side which describes the1761

effect of the bath. They also appear indirectly in τtrunc through the factor δ0 of ∆m given by (3.51), in the case q = 21762

of an Ising magnet M. When J2 , 0, the occurrence of δ0 > 1 thus contributes to accelerate the truncation process.1763

5.1.2. Truncation versus decoherence: a general phenomenon1764

It is often said [32, 33, 40, 176, 177, 178, 179] that “von Neumann’s reduction is a decoherence effect”. (The tra-1765

ditional word “reduction” covers in the literature both concepts of “truncation” and “reduction” as defined in § 1.3.3.)1766

As is well known, decoherence is the rapid destruction of coherent superpositions of distinct pure states induced by1767

a random environment, such as a thermal bath. In the latter seminal case, the characteristic decoherence time has1768

the form of ~/T divided by some power of the number of degrees of freedom of the system and by a dimensionless1769

coupling constant between the system and the bath (see also our discussion of the decoherence approach in section 2).1770

Here, things are different. As we have just seen and as will be studied below in detail, the initial truncation process1771

involves only the magnet. Although the bath is part of the apparatus, it has no effect here and the characteristic trun-1772

cation time τtrunc does not depend on the bath temperature. Indeed the dimensional factor of (5.6) is ~/g, and not ~/T .1773

39An equivalent way to derive this result is to employ (3.28) for making the identification Pdis
↑↓

(m, t) = G(m) × r↑↓(0)2−N exp(2iNgmt/~), and to
sum over the values (3.22) of m
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The thermal fluctuations are replaced by the fluctuation ∆m of the pointer variable, which does not depend on T0 for1774

q = 4 and which decreases with T0 as (3.51) for q = 2.1775

The fact that the truncation is controlled only by the coupling of the pointer variable m̂ with S is exhibited by1776

the occurrence, in (5.6), of its number N of degrees of freedom of M. Registration of sz requires this variable to be1777

collective, so that N � 1. However, long before registration begins to take place in A through the influence on D̂ of1778

r↑↑ (0) and r↓↓ (0), the large size of the detector entails the loss of r↑↓ (0) and r↓↑ (0).1779

Moreover, the basis in which the truncation takes place is selected by the very design of the apparatus. It depends1780

on the observable which is being measured. Had we proceeded to measure ŝx instead of ŝz, we would have changed1781

the orientation of the magnetic dot; the part of the initial state r̂ (0) of S that gets lost would have been different.1782

Contrary to standard decoherence, truncation is here a controlled effect.1783

Altogether, it is only the pointer degrees of freedom directly coupled to S that are responsible for the rapid trunca-1784

tion. As such, it is a dephasing. The effects of the bath are important (sections 6.2 and 7), but do not infer on the initial1785

truncation process, on the time scale τtrunc. We consider it therefore confusing to use the term “decoherence” for the1786

decay of the off-diagonal blocks in a quantum measurement, since its mechanism can be fundamentally different from1787

a standard environment-induced decoherence. Here the truncation is a consequence of dephasing between oscillatory1788

terms which should be summed to generate the physical quantities40.1789

The above considerations hold for the class of models of quantum measurements for which the pointer has many1790

degrees of freedom directly coupled to S [68, 159, 160] (see also [179] in this context). We have already found for1791

the truncation time a behavior analogous to (5.6) in a model where the detector is a Bose gas [158], with a scaling1792

in N−1/4 instead of N−1/2. More generally, suppose we wish to measure an arbitrary observable ŝ of a microscopic1793

system S, with discrete eigenvalues si and corresponding projections Π̂i. The result should be registered by some1794

pointer variable m̂ of an apparatus A coupled to ŝ. The full Hamiltonian has still the form (3.3), and it is natural to1795

assume that the system–apparatus coupling has the same form1796

ĤSA = −Ngŝm̂, (general operators ŝ, m̂) (5.8)

as (3.5). The coupling constant g refers to each one of the N elements of the collective pointer, so that a factor N1797

appears in (5.8) as in (3.5), if m̂ is dimensionless and normalized in such a way that the range of its relevant eigenvalues1798

is finite when N becomes large. The truncated density matrix r̂ (t) is made of blocks 〈iα| r̂ | jβ〉 where α takes as many1799

values as the dimension of Π̂i. It can be obtained as1800

〈iα| r̂ (t) | jβ〉 =
∑

m

〈iα| P (m, t) | jβ〉 , (5.9)

where 〈iα| P (m, t) | jβ〉, which generalizes P↑↓ (m, t), is defined by1801

〈iα| P (m, t) | jβ〉 = 〈iα| trA

(
δm̂,mD̂

)
| jβ〉 . (5.10)

We have denoted by m the eigenvalues of m̂, and by δm̂,m the projection operator on m in the Hilbert space of A. The1802

quantity (5.10) satisfies an equation of motion dominated by (5.8):1803 [
i~

d
dt

+ Ng(si − s j)m
]
〈iα| P (m, t) | jβ〉 ' 0. (5.11)

In fact, the terms arising from ĤS (which need no longer vanish but only commute with ŝ) and from ĤA (which1804

commutes with the initial density operator R̂ (0)) are small during the initial instants compared to the term arising1805

from the coupling ĤSA. We therefore find for short times1806

〈iα| r̂ (t) | jβ〉 = 〈iα| r̂ (0) | jβ〉 trAR̂ (0) eiNg(si−s j)m̂t/~. (5.12)

The rapidly oscillating terms in the right-hand side interfere destructively as in (5.3) on a short time, if m̂ has a1807

dense spectrum and an initial distribution involving many eigenvalues. Each contribution is merely oscillating, but the1808

40In section 6.2 we shall discuss the effects of decoherence by the bath, which does take place, but long after the truncation time scale
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summation over eigenvalues produces a relaxation. (We come back to this point in subsection 5.2 and in § 12.2.3.)1809

This decrease takes place on a time scale of order ~/Ngδs∆m, where δs is the level spacing of the measured observable1810

ŝ and ∆m is the width of the distribution of eigenvalues of m̂ in the initial state of the apparatus. Leaving aside the1811

later stages of the measurement process, we thus acknowledge the generality of the present truncation mechanism,1812

and that of the expression (5.6) for the truncation time in the spin 1
2 situation where δs = 2.1813

5.1.3. Establishment and disappearance of correlations1814

Let us now examine how the apparatus evolves during this first stage of the measurement process, described by1815

Eqs. (5.1) and (5.2). The first equation implies that the marginal density operator R̂M (t) = R̂↑↑ (t) + R̂↓↓ (t) of M1816

remains unchanged. This property agrees with the idea that M, a large object, has a strong influence on S, a small1817

object, but that conversely a long time is required before M is affected by its interaction with S. Eqs. (5.1) also imply1818

that no correlation is created between ŝz and M.1819

However, although R̂M (t) = R̂ (0), correlations are created between M and the transverse component ŝx (or ŝy)1820

of S. These correlations are described by the quantities Cx = P↑↓ + P↓↑ and Cy = i
(
P↑↓ − P↓↑

)
introduced in (3.29).1821

Since R̂↑↓ is a function of m̂ only, the components σ̂(n)
x and σ̂(n)

y of the spins of M remain statistically independent,1822

with 〈σ̂(n)
x 〉 = 〈σ̂(n)

y 〉 = 0 and with the quantum fluctuations 〈σ̂(n)2
x 〉 = 〈σ̂(n)2

y 〉 = 1. The correlations between M and S1823

involve only the z-component of the spins σ̂(n) of the magnet and the x- or y-component of the tested spin s. We can1824

derive them as functions of time from the generating function1825

Ψ↑↓(λ, t) ≡
∞∑

k=0

ikλk

k!
〈ŝ−m̂k(t)〉 =

∑
m

Pdis
↑↓

(m, t)eiλm = r↑↓(0)
∑

m

Pdis
M (m, 0)e2iNgmt/~+iλm, (5.13)

where ŝ− = 1
2 (ŝx − iŝy). In fact, whereas Ψ↑↓ (λ, t) generates the expectation values 〈ŝ−m̂k〉, the correlations 〈ŝ−m̂k〉c1826

are defined by the cumulant expansion1827

Ψ↑↓(λ, t) =

∞∑
k=0

ikλk

k!
〈ŝ−m̂k〉c

 ∞∑
k′=0

ik
′

λk′

k′!
〈m̂k′〉

 =

∞∑
k=0

ikλk

k!
〈ŝ−m̂k〉c exp

 ∞∑
k′=1

ik
′

λk′

k′!
〈m̂k′〉c

 , (5.14)

which factors out the correlations 〈m̂k′〉c within M. The latter correlations are the same as at the initial time, so that1828

we shall derive the correlations between S and M from1829

∞∑
k=0

ikλk

k!
〈ŝ−m̂k(t)〉c = r↑↓(0)

Ψ↑↓(λ, t)
Ψ↑↓(λ, 0)

. (5.15)

For correlations involving not too many spins (we will discuss this point in § 5.3.2), we can again replace the1830

summation over m in (5.13) by an integral. Since PM(m, 0) is a Gaussian, the sole non-trivial cumulant 〈m̂k〉c is1831

〈m̂2〉 = ∆m2, given by (3.48), (3.49), and we get from (5.13) and (5.15)1832

∞∑
k=0

ikλk

k!
〈ŝ−m̂k(t)〉c = r↑↓(0) exp

(
−

t2

τ2
trunc
−
√

2
t

τtrunc
λ∆m

)
= r↑↓(t) exp

(
−
√

2
t

τtrunc
λ∆m

)
. (5.16)

At first order in λ, the correlations between S and any single spin of M are thus expressed by1833

〈ŝxσ̂
(n)
z (t)〉 = 〈ŝxm̂ (t)〉c =

∑
m

Cdis
x (m, t) m =

√
2

t
τtrunc

〈ŝy (t)〉∆m =
√

2
t

τtrunc
〈ŝy (0)〉e−(t/τtrunc)2

∆m,

〈ŝyσ̂
(n)
z (t)〉 = 〈ŝym̂ (t)〉c =

∑
m

Cdis
y (m, t) m = −

√
2

t
τtrunc

〈ŝx (t)〉∆m, (5.17)

where we used (5.4). These correlations first increase, reach a maximum for t = τtrunc/
√

2, then decrease along with1834

〈ŝx (t)〉 and 〈ŝy (t)〉 (Fig. 5.1). At this maximum, their values satisfy1835

〈ŝxm̂ (t)〉
∆m

= 〈ŝy (t)〉 =
〈ŝy (0)〉
√

e
,

〈ŝym̂ (t)〉
∆m

= −
〈ŝx (0)〉
√

e
. (5.18)
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They do not lie far below the bound yielded by Heisenberg’s inequality1836

|〈ŝxm̂〉|2 =

∣∣∣∣∣ 1
2i
〈[ŝy − 〈ŝy〉, ŝzm̂]〉

∣∣∣∣∣2 ≤ (
1 − 〈ŝy〉

2
)
∆m2, (5.19)

which implies at all times1837 (
2t2

τ2
trunc

+ 1
)
〈ŝy(t)〉2 ≤ 1, (5.20)

since the left-hand side of (5.20) is 2/e at the maximum of (5.17).1838

The next order correlations are obtained from (5.16) as (a = x, y)1839

〈ŝam̂2 (t)〉c ≡ 〈ŝam̂2 (t)〉 − 〈ŝa (t)〉〈m̂2〉 = −
2t2

τ2
trunc
〈ŝa (t)〉∆m2. (5.21)

These correlations again increase, but more slowly than (5.17), reach (in absolute value) a maximum later, at t = τtrunc,1840

equal to (−2/e)〈ŝa (0)〉∆m2, then decrease together with 〈ŝa (t)〉. Accordingly, the correlations between ŝx and two1841

spins of M, evaluated as in (3.27), are given by1842

〈ŝxσ̂
(n)
a σ̂

(p)
b (t)〉c = 〈ŝx (t)〉

δa,zδb,z

N − 1

(
−

2t2

τ2
trunc

N∆m2 − 1
)
, (5.22)

which for large N behaves as (5.21).1843

Likewise, (5.16) together with (5.3) provides the hierarchy of correlations through the real and imaginary parts of1844

〈(ŝx − iŝy)m̂k (t)〉c = 〈(ŝx − iŝy) (0)〉
(
i
√

2
t

τtrunc
∆m

)k

e−(t/τtrunc)2
, (5.23)

with ∆m from (3.51). This expression also holds for more detailed correlations such as 〈ŝaσ̂
(1)
z σ̂(2)

z · · · σ̂
(k)
z (t)〉c within1845

corrections of order 1/N as in eq. (5.22), provided k/N is small.1846

Altogether (Fig. 5.1) the correlations (5.23) scale as ∆mk =
(
δ0/
√

N
)k

. If the rank k is odd, 〈ŝxm̂k (t)〉c is propor-1847

tional to 〈ŝy (0)〉, if k is even, it is proportional to 〈ŝx (0)〉, with alternating signs. The correlations of rank k depend1848

on time as (t/τtrunc)k exp[− (t/τtrunc)2]. Hence, correlations of higher and higher rank begin to grow later and later, in1849

agreement with the factor tk, and they reach a maximum later and later, at the time t = τtrunc
√

k/2. For even k, the1850

maximum of
∣∣∣〈ŝxm̂k (t)〉c

∣∣∣ is given by1851

max

∣∣∣∣∣∣ 〈ŝxm̂k (t)〉c
〈ŝx (0)〉∆mk

∣∣∣∣∣∣ =
1
k!

(
2k
e

)k/2 (
k
2

)
! '

1
√

2
, (5.24)

which is nearly independent of k.1852

5.1.4. The truncation, a cascade process1853

Het viel in gruzelementen41
1854

Dutch saying1855

The mechanism of truncation in the present model is therefore comparable to a current mechanism of irreversibility1856

in statistical mechanics (§ 1.2.2). In a classical Boltzmann gas, initially off-equilibrium with a non-uniform density,1857

the relaxation toward uniform density takes place through the establishment of correlations between a larger and1858

larger number of particles, under the effect of successive collisions [54, 55, 56]. Here, similar features occur although1859

quantum dynamics is essential. The relaxation (5.4) of the off-diagonal elements r↑↓ = r∗
↓↑

of the marginal state r̂ of S1860

is accompanied by the generation, owing to the coupling ĤSA, of correlations between S and M.1861

41It fell and broke into tiny pieces
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Figure 5.1: The relative correlations corr = 〈(ŝx − iŝy)m̂k(t)〉c/〈(ŝx − iŝy)(0)〉(i
√

2∆m)k from Eq. (5.23), as function of t/τtrunc. For k = 0 〈ŝx(t)〉
decreases as a Gaussian. The curves for k = 1, 2 and 3 show that the correlations develop, reach a maximum, then disappear later and later.

Such correlations, absent at the initial time, are built up and fade out in a cascade, as shown by eq. (5.23) and1862

Fig. 5.1. Let us characterize the state R̂ of S + M by the expectation values and correlations of the operators ŝa1863

and σ̂(n)
a . The order of S, initially embedded in the expectation values of the transverse components r↑↓ (0) of the1864

spin ŝ, is progressively transferred to correlations (5.17) between these components and one spin of M, then in turn1865

to correlations (5.22) with two spins, with three spins, and so on. The larger the rank k of the correlations, the1866

smaller they are, as ∆mk ∼ 1/Nk/2 (Eq. (5.23)); but the larger their number is, as N!/k! (N − k)! ≈ Nk/k!. Their1867

time-dependence, in tk exp [− (t/τtrunc)2], shows how they blow up and blow out successively.1868

As a specific feature of our model of quantum measurement, the interaction process does not affect the marginal1869

statistical state of M. All the multiple correlations produced by the coupling ĤSA lie astride S and M.1870

Truncation, defined as the disappearance of the off-diagonal blocks R̂↑↓ = R̂↓↑ of the full density matrix D̂ of S+A,1871

or equivalently of the expectation values of all operators involving ŝx or ŝy, results from the proportionality of R̂↑↓ (t) to1872

r↑↓ (t), within a polynomial coefficient in t associated with the factor tk in the k-th rank correlations. Initially, only few1873

among the 2N×2N elements of the matrix R̂↑↓ (0) do not vanish, those which correspond to 2r↑↓ (0) = 〈ŝx (0)〉−i〈ŝy (0)〉1874

and to PM (m, 0) given by (3.48). The very many elements of R̂↑↓ (0) which describe correlations between ŝx or1875

ŝy and the spins of M, absent at the initial time, grow, while an overall factor exp[−(t/τtrunc)2] damps R̂↑↓ (t). At1876

times τtrunc � t � ~/g, all elements of R̂↑↓ (t) and hence of R̂↑↓ (t) have become negligibly small42. In principle,1877

no information is lost since the equations of motion are reversible; in particular, the commutation of Ĥ with the1878

projections Π̂↑ and Π̂↓, together with the equation of motion (4.1), implies that i~d(R̂↑↓R̂↓↑)/dt = [Ĥ, R̂↑↓R̂↓↑], and1879

hence that trAR̂↑↓R̂
†

↑↓
is constant in time and remains equal to |r↑↓(0)|2trA[R̂(0)]2. However, the initial datum r↑↓ (0)1880

gets spread among very many matrix elements of R̂↑↓ which nearly vanish, exactly as in the irreversibility paradox1881

(§ 1.2.2).1882

If N could be made infinite, the progressive creation of correlations would provide a rigorous mathematical charac-1883

terization of the irreversibility of the truncation process, as for relaxation processes in statistical mechanics. Consider,1884

for some fixed value of K, the set of correlations (5.23) of ranks k such that 0 ≤ k ≤ K, including 〈ŝx〉 and 〈ŝy〉 for1885

k = 0. All correlations of this set vanish in the limit N → ∞ for fixed t, since τtrunc then tends to 0. (The coupling1886

constant g may depend on N, in which case it should satisfy Ng2 → ∞.) This property holds even for infinite K,1887

provided K → ∞ after N → ∞, a limit which characterizes the irreversibility. However, such a limit is not uni-1888

form: the reversibility of the underlying dynamics manifests itself through the finiteness of high-order correlations for1889

sufficiently large t (§ 5.3.2).1890

Anyhow N is not allowed in physics to go to infinity, since the time τtrunc would unrealistically vanish. For large1891

but finite N, there is no rigorous qualitative characterization of irreversibility, neither in this model of measurement1892

nor in statistical mechanics, but the above discussion remains relevant. In fact, physically, it is legitimate to regard1893

as equal to zero a quantity which is less than some small bound, and to regard as unobservable and irrelevant all1894

42The latter implication follows because the bath contributions cannot raise the S + A correlations
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correlations which involve a number k of spins exceeding some bound K much smaller than N. We shall return to this1895

issue in § 12.2.3.1896

5.2. Randomness of the initial state of the magnet1897

Initial states R̂ (0) that can actually be prepared at least in a thought experiment, such as the paramagnetic canonical1898

equilibrium distribution of § 3.3.3, involve large randomness. In particular, if the initialization temperature T0 is1899

sufficiently large, the state (3.46), i. e., R̂M (0) = 2−N ∏
n σ̂

(n)
0 , is the most disordered statistical state of M; in such a1900

case, PM (m, 0) is given by (3.50). We explore in this subsection how the truncation process is modified for other, less1901

random, initial states of M.1902

5.2.1. Arbitrary initial states1903

The derivations of the equations of motion in subsections 4.1 and 4.2 were general, irrespective of the initial state.1904

However, in subsections 4.3 and 5.1 we have relied on the fact that R̂M (0) depends only on m̂. In order to deal with an1905

arbitrary initial state R̂M (0), we return to eq. (4.8), where we can as above neglect for very short times the coupling1906

with the bath. The operators R̂i j (t) and Ĥi in the Hilbert space of M no longer commute because R̂i j now involves1907

spin operators other than m̂. However, the probabilities and correlations Pi j (m, t) defined by (3.24) still satisfy Eqs.1908

(B.13) of Appendix B without right-hand side. Hence the expressions (5.1) and (5.2) for Pi j (m) at short times hold1909

for any initial state R̂M (0), with PM (m, 0) given by trMR̂M (0) δm̂,m.1910

The various expressions (5.4), (5.5), (5.6), (5.17), (5.21), (5.23) relied only on the Gaussian shape of the probabil-1911

ity distribution PM (0,m) associated with the initial state. They will therefore remain valid for any initial state R̂M (0)1912

that provides a narrow distribution PM (m, 0), centered at m = 0 and having a width ∆m small (∆m � 1) though large1913

compared to the level spacing, viz. ∆m � 2/N. Indeed, within corrections of relative order 1/N, such distributions1914

are equivalent to a Gaussian. The second condition (∆m � 2/N) ensures that τtrunc is much shorter than ~/g, another1915

characteristic time that we shall introduce in § 5.3.1.1916

In fact, the behavior in 1/
√

N for ∆m is generic, so that the truncation time has in general the same expression1917

(5.6) as for a paramagnetic canonical equilibrium state, with δ0 defined by δ2
0 = NtrMR̂M (0) m̂2. The dynamics of1918

the truncation process described above holds for most possible initial states of the apparatus: decay of 〈ŝx (t)〉 and1919

〈ŝy(t)〉; generation of a cascade of correlations 〈ŝam̂k (t)〉 of order ∆mk between the transverse components of the spin1920

S and the pointer variable m̂; increase, then decay of the very many matrix elements of R̂↑↓ (t), which are small as1921 (√
2 ∆m t/τtrunc

)k
exp[− (t/τtrunc)2] for t � ~/g.1922

In case the initial density operator R̂M (0) is a symmetric function of the N spins, the correlations between ŝx or ŝy1923

and the z-components of the individual spins of M are still given by expressions such as (5.22). However, in general,1924

R̂M (0) no longer depends on the operator m̂ only; it involves transverse components σ̂(n)
x or σ̂(n)

y , and so does R̂↑↓ (t),1925

which now includes correlations of ŝx or ŝy with x- or y-components of the spins σ̂(n). The knowledge of P↑↓ (m, t) is1926

in this case not sufficient to fully determine R̂↑↓ (t), since (3.24) holds but not (3.26).1927

The proportionality of the truncation time τtrunc = ~/
√

2 Ng∆m to the inverse of the fluctuation ∆m shows that the1928

truncation is a disorder effect, since ∆m measures the randomness of the pointer variable in the initial state. This is1929

easy to understand: S sees an effective magnetic field Ngm which is random through m, and it is this very randomness1930

which causes the relaxation. The existence of such a randomness in the initial state, even though it is small as 1/
√

N,1931

is necessary to ensure the transfer of the initial order embodied in r↑↓ (0) into the cascade of correlations between S1932

and M and to entail a brief truncation time τtrunc. Boltzmann’s elucidation of the irreversibility paradox also relied on1933

statistical considerations about the initial state of a classical gas which will relax to equilibrium.1934

5.2.2. Pure versus mixed initial state1935

It is therefore natural to wonder whether the truncation of the state would still take place for pure initial states of1936

M, which are the least random ones in quantum physics, in contrast to the paramagnetic state (3.46) or (3.50) which1937

is the most random one. To answer this question, we first consider the pure state with density operator1938

R̂M (0) =

N∏
n=1

1
2

(
1 + σ̂(n)

x

)
, (5.25)
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in which all spins σ̂(n) point in the x-direction. This initialization may be achieved by submitting M to a strong field in1939

the x-direction and letting it thermalize with a cold bath B for a long duration before the beginning of the measurement.1940

The fluctuation of m̂ in the state (5.25) is 1/
√

N. Hence, for this pure initial state of M, the truncation takes place1941

exactly as for the fully disordered initial paramagnetic state, since both yield the same probability distribution (3.50)1942

for m.1943

A similar conclusion holds for the most general factorized pure state, with density operator1944

R̂M (0) =

N∏
n=1

1
2

(
1 + u(n)

· σ̂(n)
)
, (5.26)

where the u(n) are arbitrary unit vectors pointing in different directions43. The fluctuation ∆m, then given by1945

δ2
0 = N∆m2 =

1
N

N∑
n=1

[
1 −

(
u(n)

z

)2
]
, (5.27)

is in general sufficiently large to ensure again the properties of subsection 5.1, which depend on R̂M (0) only through1946

∆m.1947

Incoherent or coherent superpositions of such pure states will yield the same effects. We will return to this point1948

in § 12.1.4, noting conversely that an irreversibility which occurs for a mixed state is also statistically present in most1949

of the pure states that underlie it.1950

Quantum mechanics brings in another feature: a given mixed state can be regarded as a superposition of pure states1951

in many different ways. For instance, the completely disordered paramagnetic state (3.46), R̂M (0) = 2−N ∏
n σ̂

(n)
0 , can1952

be described by saying that each spin points at random in the +z or in the −z-direction; it can also be described as1953

an incoherent superposition of the pure states (5.26) with randomly oriented vectors u(n). This ambiguity makes the1954

analysis into pure components of a quantum mixed state unphysical (§ 10.2.3).1955

Let us stress that the statistical or quantum nature of the fluctuations ∆m of the pointer variable in the initial state1956

is irrelevant as regards the truncation process. In the most random state (3.46) this fluctuation 1/
√

N appears as purely1957

statistical; it would be just the same for “classical spins” having only a z-component with random values ±1. In the1958

pure state (5.25), it is merely quantal; indeed, its value 1/
√

N is the lower bound provided by Heisenberg’s inequality1959

∆m2
y∆m2

z ≥
1
4

∣∣∣∣〈[m̂y, m̂z

]〉∣∣∣∣2 =
1

N2 〈m̂x〉
2 (5.28)

for the operators m̂a = N−1 ∑
n σ̂

(n)
a (a = x, y, z), with here ∆my = ∆mz = 1/

√
N, 〈m̂x〉 = 1. Differences between these1960

two situations arise only at later times, through the coupling ĤMB with the bath.1961

5.2.3. Squeezed initial states1962

Zo moet je niet beginnen44
1963

Dutch expression1964

There exist states R̂M (0), which we will term as “squeezed”, for which the fluctuation ∆m is of smaller order than1965

1/
√

N. An extreme case in which ∆m = 0 is, for even N, a pure state in which N/2 spins point in the +z-direction,1966

N/2 in the −z-direction; then PM (m, 0) = δm,0. Coherent or incoherent superpositions of such states yield the same1967

distribution PM (m, 0) = δm,0, in particular the microcanonical paramagnetic state R̂M (0) = δm̂,0[(N/2)!]2/N!. In all1968

such cases, m and ∆m exactly vanish so that the Hamiltonian and the initial state of S + M satisfy (ĤSA +ĤM)D̂(0) = 0,1969

D̂(0)(ĤSA + ĤM) = 0. According to Eq. (4.8), nothing will happen, both in the diagonal and off-diagonal sectors, until1970

the bath begins to act through the weak terms of the right-hand side. The above mechanism of truncation based on1971

the coupling between S and M thus fails for the states D̂(0) such that PM(m, 0) = δm,0, whether these states are pure1972

or not.1973

43The consideration of such a state is academic since it would be impossible, even in a thought experiment, to set M in it
44You should not begin in this way
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The situation is similar for slightly less squeezed states in which the fluctuation ∆m is of the order of the level1974

spacing δm = 2/N, with about half of the spins nearly oriented in the +z-direction and half in the −z-direction. When1975

the bath B is disregarded, the off-diagonal block R̂↑↓ (t) then evolves, as shown by (5.2), on a time scale of order ~/2g1976

instead of the much smaller truncation time (5.6), of order 1/
√

N.1977

In such cases the truncation will appear (contrary to our discussion of § 5.1.2) as a phenomenon of the decoherence1978

type, governed indirectly by B through ĤSA and ĤMB, and taking place on a time scale much longer than τtrunc. This1979

circumstance occurs in many models of measurement, see section 2, in particular those for which S is not coupled1980

with many degrees of freedom of the pointer. It is clearly the large size of M which is responsible here for the fast1981

truncation. We return to this point in § 8.1.4.1982

Here again, we recover ideas that were introduced to elucidate the irreversibility paradox. In a Boltzmann gas, one1983

can theoretically imagine initial states with a uniform density which would give rise after some time to a macroscopic1984

inhomogeneity [55, 56]. But such states are extremely scarce and involve subtle specific correlations. Producing one1985

of them would involve the impossible task of handling the particles one by one. However, for the present truncation1986

mechanism, the initial states of M such that the off-diagonal blocks of the density matrix fail to decay irreversibily1987

are much less exceptional. While the simplest types of preparation of the apparatus, such as setting M in a canonical1988

paramagnetic state through interaction with a warm bath (§ 3.3.3), yield a fluctuation ∆m of order 1/
√

N, we can1989

imagine producing squeezed states even through macroscopic means. For instance, a microcanonical paramagnetic1990

type of initial state of M could be obtained by separating the sample of N spins into two equal pieces, by setting1991

them (using a cold bath and opposite magnetic fields) into ferromagnetic states with opposite magnetizations, and by1992

mixing them again. Some spin-conserving interaction can then randomize the orientations before the initial time of1993

the measurement process. We can also imagine, as in modern experiments on optical lattices, switching on and off a1994

strong antiferromagnetic interaction to equalize the numbers of spins pointing up and down.1995

5.3. Consequences of discreteness1996

Hij keek of hij water zag branden45
1997

Dutch proverb1998

Somewhat surprisingly since N is large, it appears that the discreteness of the pointer variable m has specific1999

implications in the off-diagonal blocks of the density matrix. We shall later see that such effects do not occur in the2000

diagonal sectors related to registration.2001

5.3.1. The recurrence time2002

De klok is rond gegaan46
2003

Dutch expression2004

Although we have displayed the truncation of the state as an irreversible process on the time scale τtrunc, the2005

dynamics of our model without the bath is so simple that we expect the reversibility of the equations of motion to2006

manifest itself for finite N. As a matter of fact, the irreversibility arises as usual (§ 1.2.2) from an approximate2007

treatment, justified only under the conditions considered above: large N, short time, correlations of finite order. This2008

approximation, which underlined the results (5.4) and (5.16) of subsections 5.1 and 5.2, consisted in treating m as a2009

continuous variable. We now go beyond it by returning to the expression (5.13), which is exact if the bath is inactive2010

(γ = 0), and by taking into account the discreteness of the spectrum of m̂.2011

For N � 1, we can still use for PM (m, 0) the Gaussian form (3.48) based on (3.23). The generating function2012

(5.13) then reads2013

Ψ↑↓ (λ, t) = r↑↓ (0)

√
2
π

1
N∆m

∑
m

exp
[
−

m2

2∆m2 + iπNm
t

τrecur
+ iλm

]
, (5.29)

where we have introduced the recurrence time2014

τrecur ≡
π~
2g

= π
√

2
∆m
δm

τtrunc. (5.30)

45He looked as if he saw water burn, i.e., he was very surprised
46The clock has made a turn
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The values (3.22) of m that contribute to the sum (5.28) are equally spaced, at distances δm = 2/N. The replacement2015

of this sum by an integral, which was performed in § 5.1.3, is legitimate only if t � τrecur and |λ| � N. When the time2016

t increases and begins to approach τrecur within a delay of order τtrunc, the correlations undergo an inverse cascade:2017

Simpler and simpler correlations are gradually generated from correlations involving a huge number of spins of M.2018

This process is the time-reversed of the one described in § 5.1.3. When t reaches τrecur, or a multiple of it, the various2019

terms of (5.29) add up, instead of interfering destructively as when t is of order of τtrunc. In fact, the generating2020

function (5.29) satisfies2021

Ψ↑↓ (λ, t + τrecur) = (−1)N Ψ↑↓ (λ, t) , (5.31)

so that without the bath the state D̂ (t) of S + M evolves periodically, returning to its initial expression r̂ (0) ⊗ R̂ (0) at2022

equally spaced times: the Schrödinger cat terms revive.2023

This recurrence is a quantum phenomenon [55, 56]. It arises from the discreteness and regularity of the spectrum2024

of the pointer variable operator m̂, and from the oversimplified nature of the model solved in the present section, which2025

includes only the part (3.5) of the Hamiltonian. We will exhibit in section 6 two mechanisms which, in less crude2026

models, modify the dynamics on time scales larger than τtrunc and prevent recurrences from occurring.2027

The recurrence time (5.30) is much longer than the truncation time, since ∆m/δm = 1
2δ0
√

N. Thus, long after2028

the initial order carried by the transverse components 〈ŝx〉 and 〈ŝy〉 of the spin S has dissolved into numerous and2029

weak correlations, this order revives through an inverse cascade. At the time τrecur, S gets decorrelated from M, with2030

r↑↓ (τrecur) = (−1)N r↑↓ (0). The memory of the off-diagonal elements, which was hidden in correlations, was only2031

dephased, it was not lost for good, and it emerges back. Such a behavior of the transverse components of the spin S2032

is reminiscent of the behavior of the transverse magnetization in spin echo experiments [60, 61, 62, 63, 64, 65]. By2033

itself it is a dephasing which can cohere again, and will do so unless other mechanisms (see section 6) prevent this.2034

5.3.2. High-order correlations2035

Het kan altijd beter47
2036

Anonymous (Dutch)2037

We can write Ψ↑↓ (λ, t) given by (5.29) more explicitly, for large N, by formally extending the summation over m2038

beyond −1 and +1, which is innocuous, and by using Poisson’s summation formula, which reads2039

∑
m

f (m) =
N
2

+∞∑
p=−∞

(−1)pN
∫

dm e−iπNmp f (m) . (5.32)

As a result, we get2040

Ψ↑↓ (λ, t) = r↑↓ (0)
+∞∑

p=−∞

(−1)pN exp
(

iλ∆m
√

2
+ i

t − pτrecur

τtrunc

)2

, (5.33)

which is nothing but a sum of contributions deduced from (5.15), (5.16) and (5.3) by repeated shifts of t (with alter-2041

nating signs for odd N). This obviously periodic expression exhibits the recurrences and the corrections to the results2042

of subsections 5.1 and 5.2 due to the discreteness of m.2043

In fact, Ψ↑↓ (λ, t) is related to the elliptic function θ3 [231] through2044

Ψ↑↓ (λ, t)
r↑↓ (0)

= exp
(

iλ∆m
√

2
+

it
τtrunc

)2

θ3

[
1
2

(
iλδ2

0 + η + iπN2∆m2 t
τrecur

)
,

N2∆m2

2

]
=

√
2
π

1
N∆m

exp
−η  iπt

τrecur
+

iλ
N

+
1

2Nδ2
0

 θ3

 t
τrecur

−
i

Nπ

iλ +
η

δ2
0

 , 2
π2N2∆m2

 , (5.34)

with η = 0 for even N, η = 1 for odd N. It satisfies two periodicity properties, (5.31) and2045

47It can always be better
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Ψ↑↓

λ − 2i
δ2

0

, t
 = exp

 2πit
τrecur

+
2iλ
N

+
2

Nδ2
0

 Ψ↑↓ (λ, t) . (5.35)

According to (5.15) and (5.33) the dominant corrections to the results of § 5.1.3 are given for t � τrecur by the2046

terms p = ±1 in Ψ↑↓ (λ, t) and Ψ↑↓ (λ, 0), that is,2047

〈ŝ−m̂k〉c = r↑↓ (0) exp
(
−

t2

τ2
trunc

) (
i
√

2∆m
)k

( t
τtrunc

)k

+ (−1)N Ak(t) exp
(
−
τ2

recur

τ2
trunc

) ,
Ak(t) ≡

(
t − τrecur

τtrunc

)k

exp
(

2tτrecur

τ2
trunc

)
+

(
t + τrecur

τtrunc

)k

exp
(
−2tτrecur

τ2
trunc

)
+

[
(−1)k+1 − 1

] (τrecur

τtrunc

)k

. (5.36)

For t → 0, the correction behaves as t2 or t depending on whether k is even or odd, whereas the main contribution2048

behaves as tk. However the coefficient is so small that this correction is negligible as soon as t > τtrunc exp(−π2Nδ2
0/2k),2049

an extremely short time for k � N.2050

We expected the expression (5.23) for the correlations to become invalid for large k. In fact, the values of interest2051

for t are of order τtrunc, or of τtrunc
√

k for large k, since the correlations reach their maximum at t = τtrunc
√

k/2. In this2052

range, the correction in (5.36) is dominated by the first term of Ak(t), which is negligibly small provided2053 (
t

τtrunc

)k

�

(
τrecur

τtrunc

)k

exp
[
−
τrecur(τrecur − 2t)

τ2
trunc

]
. (5.37)

Hence, in the relevant range t ∼ τtrunc
√

k, the expression (5.23) for the correlations of rank k is valid provided2054

k �
π2Nδ2

0

2 ln (τrecur/t)
, (5.38)

but the simple shape (5.23) does not hold for correlations between a number k of particles violating (5.38).2055

In fact, when t becomes sizeable compared to τrecur, the generating function (5.33) is dominated by the terms p = 02056

and p = 1. The correlations take, for arbitrary k, the form2057

〈ŝ−m̂k〉c = r↑↓(0)
(
iπδ2

0

)k

(

t
τrecur

)k

exp
(
−

t2

τ2
trunc

)
+

(
τrecur − t
τrecur

)k

exp
[
−

(τrecur − t)2

τ2
trunc

] . (5.39)

They are all exponentially small for N � 1 since τ2
recur/τ

2
trunc is large as N. The large rank correlations dominate. If for2058

instance t is half the recurrence time, both terms of (5.39) have the same size, and apart from the overall exponential2059

exp(−Nπ2δ2
0/8) the correlations increase with k by the factor (πδ2

0/2)k, where δ0 ≥ 1.2060

6. Irreversibility of the truncation2061

Quare fremuerunt gentes, et populi meditati sunt inania?48
2062

Psalm 22063

The sole consideration of the interaction between the tested spin S and the pointer M has been sufficient to explain2064

and analyze the truncation of the state, which takes place on the time scale τtrunc, at the very early stage of the2065

measurement process. However this Hamiltonian (Eq. (3.5)) is so simple that if it were alone it would give rise to2066

recurrences around the times τrecur, 2τrecur, ... . In fact the evolution is modified by other processes, which as we shall2067

see hinder the possibility of recurrence and render the truncation irreversible on any reachable time scale.2068

48Why do the heathen rage, and the people imagine a vain thing?
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6.1. Destructive interferences2069

Bis repetita (non) placent49
2070

diverted from Horace2071

We still neglect in this subsection the effects of the phonon bath (keeping γ = 0), but will show that the recurrent2072

behavior exhibited in § 5.3.1 is suppressed by a small change in the model, which makes it a little less idealized.2073

6.1.1. Spread of the coupling constants2074

When we introduced the interaction (3.5) between S and A, we assumed that the coupling constants between the2075

tested spin ŝ and each of the spins σ̂(n) of the apparatus were all the same. However, even though the range of the2076

forces is long compared to the size of the magnetic dot, these forces can be different, at least slightly. This is similar2077

to the inhomogeneous broadening effect well known in NMR physics [60, 61, 62, 63, 64, 65]. We thus replace here2078

ĤSA by the more general interaction2079

Ĥ′SA = −ŝz

N∑
n=1

(g + δgn) σ̂(n)
z , (6.1)

where the couplings g + δgn are constant in time and have the small dispersion2080

δg2 =
1
N

N∑
n=1

δg2
n,

N∑
n=1

δgn = 0. (6.2)

The equations of motion (4.8) for D̂, the right-hand side of which we disregard, remain valid, with the effective2081

Hamiltonian2082

Ĥi = −si

∑
n

(g + δgn) σ̂(n)
z −

∑
q

NJq

q
m̂q (6.3)

instead of (4.6). This Hamiltonian, as well as the initial conditions R̂i j (0) = ri j (0) R̂M (0), depends only on the com-2083

muting observables σ̂(n)
z . Hence the latter property is also satisfied by the operators R̂i j (t) at all times. Accordingly,2084

R̂↑↑ (t) and R̂↓↓ (t) remain constant, and the part ĤM of Ĥi does not contribute to the equation for R̂↑↓ (t), which is2085

readily solved as2086

R̂↑↓ (t) = r↑↓ (0) R̂M (0) exp
2i
~

Ngm̂t +

N∑
n=1

δgnσ̂
(n)
z t

 , (6.4)

with R̂M (0) given in terms of m̂ by (3.45). Notice that here the operator R̂↑↓ does not depend only on m̂.2087

If R̂M (0) is the most random paramagnetic state (3.46), produced for q = 2 by initializing the apparatus with2088

T0 � J or with a strong RF field, or for q = 4 with any temperature higher than the transition, (6.4) takes the form2089

R̂↑↓ (t) = r↑↓ (0)
N∏

n=1

1
2

[
σ̂(n)

0 cos
2 (g + δgn) t

~
+ iσ̂(n)

z sin
2 (g + δgn) t

~

]
. (6.5)

The off-diagonal elements of the state of S thus evolve according to2090

r↑↓ (t) = r↑↓ (0)
N∏

n=1

cos
2 (g + δgn) t

~
. (6.6)

The right-hand side behaves as (5.4) for δg � g as long as t is of order τtrunc. However, it is expected to remain2091

extremely small at later times since the factors of (6.6) interfere destructively unless t is close to a multiple of2092

π~/2 (g + δgn) for most n. In particular, the successive recurrences which occurred in § 4.4.1 at the times τrecur,2093

2τrecur, ... for δg = 0 and γ = 0 are now absent provided the deviations δgn are sufficiently large. We thus obtain a2094

permanent truncation if we have at the time t = τrecur2095

49Repetitions are (not) appreciated
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1 �
N∏

n=1

cos
πδgn

g
≈

N∏
n=1

e−π
2δg2

n/2g2
= e−π

2 ∑
n δg2

n/2g2
= e−Nπ2δg2/2g2

, (6.7)

that is,2096

δg
g
�

1
π

√
2
N
. (6.8)

Provided this condition is satisfied, all results of subsections 5.1 and 5.2 hold, even for large times. The whole set of2097

correlations 〈ŝ−m̂k〉c, first created by the coupling (6.1), disappear for not too large k after a time of order τtrunc
√

k, and2098

do not revive as t becomes larger. As in usual irreversible processes of statistical mechanics, it is mathematically not2099

excluded that (6.6) takes significant values around some values of t, if N is not too large and if many deviations δgn2100

are arithmetically related to one another; but this can occur only for extremely large times, physically out of reach, as2101

shown in § 6.1.2.2102

These conclusions hold for an arbitrary initial state (3.45). The expression (6.4) is the product of R̂↑↓ (t), as2103

evaluated in section 5 for δg = 0, by the phase factor2104

N∏
n=1

exp
2iδgnσ

(n)
z t

~

 . (6.9)

A generic set of coupling constants satisfying (6.2) provides the same results as if they were chosen at random, with2105

a narrow gaussian distribution of width δg. Replacing then (6.9) by its expectation value, we find that the whole2106

statistics of S + M (without the bath) is governed by the product of the generating function (5.33) by [60]2107

N∏
n=1

exp
(
2iδgnσ

(n)
z t/~

)
= e−(t/τM

irrev)
2

, (6.10)

which introduces a characteristic decay time2108

τM
irrev =

~
√

2Nδg
. (6.11)

This damping factor suppresses all the recurrent terms with p , 0 in (5.33) if δg satisfies the condition (6.8). Since the2109

exponent of (6.10) is (δg/gδ0)2 (t/τtrunc)2, the first correlations 〈ŝ−m̂k (t)〉c are left unchanged if δg � g, while those2110

of higher order are overdamped as exp(−kδg/2gδ0) for large k since (t/τtrunc)2 = k/2 at their maximum.2111

Thus, the truncation of the state produced on the time scale τtrunc by the coupling Ĥ′SA of eq. (6.1), characterized2112

by the decay (5.4) of 〈ŝx (t)〉 and 〈ŝy (t)〉 and by the time dependence (5.23) of 〈ŝ−m̂k (t)〉c, is fully irreversible. The2113

time τM
irrev characterizes this irreversibility induced by the magnet M alone, caused by the dispersion of the constants2114

g + δgn which couple ŝ with the elements σ̂(n)
z of the pointer variable. If τM

irrev is such that τtrunc � τM
irrev � τrecur, that2115

is, when (6.8) is satisfied, the off-diagonal blocks R̂↑↓(t) of D̂(t) remain negligible on time scales of order τrecur. We2116

will show in § 6.1.2 that recurrences might still occur, but at inaccessibly large times.2117

6.1.2. Generality of the direct damping mechanism2118

We have just seen that a modification of the direct coupling between the tested spin S and the magnet M, without2119

any intervention of the bath, is sufficient to prevent the existence of recurrences after the initial damping of the off-2120

diagonal blocks of D̂. In fact, recurrences took place in § 5.3.1 only because our original model was peculiar, involving2121

a complete symmetry between the N spins which constitute the pointer. We will now show that the mechanism2122

of irreversibility of § 6.1.1, based merely on the direct coupling between the tested system and the pointer of the2123

apparatus, is quite general: it occurs as soon as the pointer presents no regularity.2124

Let us therefore return to the wide class of models introduced in § 5.1.2, characterized by a coupling2125

ĤSA = −Ngŝm̂, (general operators ŝ, m̂) (6.12)
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between the measured observable ŝ of the system S and the pointer observable m̂ of the apparatus A. We assume that2126

the pointer, which has N degrees of freedom, has no symmetry feature, so that the spectrum of m̂ displays neither2127

systematic degeneracies nor arithmetic properties. We disregard the other degrees of freedom of A, in particular the2128

indirect coupling with the bath. The model considered above in § 6.1.1 enters this general frame, since its Hamiltonian2129

(6.1) takes the form (6.12) if we identify our ŝz with the general ŝ and if we redefine m̂ as2130

m̂ =
1
N

N∑
n=1

(
1 +

δgn

g

)
σ̂(n)

z . (6.13)

Indeed, provided the condition (6.8) is satisfied, the 2N eigenvalues of (6.13) are randomly distributed over the interval2131

(−1, 1) instead of occurring at the values (3.22) with the huge multiplicities (3.23).2132

In all such models governed by the Hamiltonian (6.12), the off-diagonal elements of r̂ behave as (5.12) so that2133

their time-dependence, and more generally that of the off-diagonal blocks of R̂, has the form2134

F (t) =
1
Q

Q∑
q=1

eiωqt. (6.14)

Indeed, the matrix element (5.11) is a sum of exponentials involving the eigenfrequencies2135

ωq ≡
Ng(si − s j)mq

~
, (6.15)

where mq are the eigenvalues of m̂. The number Q of these eigenfrequencies is large as an exponential of the number2136

N of microscopic degrees of freedom of the pointer, for instance Q = 2N for (6.13). To study a generic situation,2137

we can regard the eigenvalues mq or the set ωq as independent random variables. Their distribution is governed by2138

the density of eigenvalues of m̂ and by the initial density operator R̂ (0) of the apparatus which enters (5.12) and2139

which describes a metastable equilibrium. For sufficiently large N, we can take for each dimensionless mq a narrow2140

symmetric gaussian distribution, with width of relative order 1/
√

N. The statistics of F (t) that we will study then2141

follows from the probability distribution for the frequencies ωq,2142

p
(
ωq

)
=

1
√

2π∆ω
exp

− ω2
q

2∆ω2

 , (6.16)

where ∆ω is of order
√

N due to the factor N entering the definition (6.15) of ωq. This problem has been tackled long2143

ago by Kac [232].2144

We first note that the expectation value of F (t) for this random distribution of frequencies,2145

F (t) = e−∆ω2t2/2, (6.17)

decays exactly, for all times, as the Gaussian (5.3) with a truncation time τtrunc =
√

2/∆ω, encompassing the expres-2146

sion (5.6) that we found for short times in our original model. This result holds for most sets ωq, since the statistical2147

fluctuations and correlations of F (t), given by2148

F (t) F (t′) − F (t) F (t′) = 1
Q

(
e−∆ω2(t+t′)2/2 − e−∆ω2(t2+t′2)/2

)
, (6.18)

F (t) F∗ (t′) − F (t) F∗ (t′) = 1
Q

(
e−∆ω2(t−t′)2/2 − e−∆ω2(t2+t′2)/2

)
, (6.19)

are small for large Q.2149

Nevertheless, for any specific choice of the set ωq, nothing prevents the real part of F (t) from reaching significant2150

values at some times t large as t � ∆ω, due to the tail of its probability distribution. Given some positive number f2151

(less than 1), say f = 0.2, we define the recurrence time τrecur as the typical delay we have to wait on average before2152

<F (t) rises back up to f . We evaluate this time in Appendix C. For f sufficiently small so that ln[I0 (2 f )] ' f 2, a2153

property which holds for f = 0.2, we find2154
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τrecur =
2π
∆ω

exp
(
Q f 2

)
= π
√

2τtrunc exp
(
Q f 2

)
. (6.20)

As Q behaves as an exponential of N, this generic recurrence time is inaccessibly large. Even for a pointer2155

involving only N = 10 spins, in which case Q = 2N = 210, and for f = 0.2, we have τrecur/τtrunc = 2.7 · 1018. The2156

destructive interferences taking place between the various terms of (5.12) explain not only the truncation of the state2157

(§ 5.1.2) but also, owing to the randomness of the coupling, the irretrievable nature of this decay process over any2158

reasonable time lapse, in spite of the unitarity of the evolution.2159

Although we expect the eigenfrequencies ωq associated with a large pointer to be distributed irregularly, the2160

distribution (6.16) chosen above, for which they are completely random and uncorrelated, is not generic. Indeed,2161

according to (6.15), these eigenfrequencies are quantum objects, directly related to the eigenvalues mq of the operator2162

m̂. A more realistic model should therefore rely on the idea that m̂ is a complicated operator, which is reasonably2163

represented by a random matrix. As well known, the eigenvalues of a random matrix are correlated: they repell2164

according to Wigner’s law. The above study should therefore be extended to random matrices m̂ instead of random2165

uncorrelated frequencies ωq, using the techniques of the random matrix theory [233]. We expect the recurrence time2166

thus obtained to be shorter than above, due to the correlations among the set ωq, but still to remain considerably longer2167

than with the regular specrum of § 5.3.1.2168

6.2. Effect of the bath on the initial truncation2169

You can’t fight City Hall2170

Saying2171

Returning to our original model of subsection 3.2 with a uniform coupling g between S and the spins of M, we2172

now take into account the effect, on the off-diagonal blocks of D, of the coupling γ between M and B. We thus start2173

from eq. (4.29), to be solved for times of the order of the recurrence time. We will show that the damping due to the2174

bath can prevent P↑↓ and hence R̂↑↓ from becoming significant at all times t larger than τtrunc, in spite of the regularity2175

of the spectrum of m̂ which leads to the anomalously short recurrence time π~/2g of (5.30)50.2176

Readers interested mainly in the physics of the truncation may jump to § 9.6.1, where the mathematics is simplified2177

using insights gained about the behavior of the equation of motion for t � ~/T through the rigorous approach of2178

§ 6.2.1 and of appendix D.2179

6.2.1. Determination of P↑↓(t)2180

We have found recurrences in P↑↓(m, t) by solving (4.18) without right-hand side and by taking into account the2181

discreteness of m (§ 5.3.1). The terms arising from the bath will modify for each m the modulus and the phase of2182

Pdis
↑↓

(m, t) = (2/N)P↑↓(m, t).2183

In order to study these changes, we rely on the equation of motion (4.18), the right-hand side of which has been2184

obtained in the large N limit while keeping however the values of m discrete as in § 5.3.1. Note first that the functions2185

K̃t>(ω) and K̃t<(ω) defined by Eqs. (4.10) and (4.11), respectively, are complex conjugate for the same value of ω. It2186

then results from Eq. (4.18) together with its initial condition that 51
2187

P↑↓(−m, t) = P∗↑↓(m, t) = P↓↑(m, t). (6.21)

For γ = 0, the solution of (4.18) with the initial condition (3.46) is given by (5.2). Starting from this expression,2188

we parametrize P↑↓(m, t) as2189

P↑↓(m, t) = r↑↓(0)

√
N

2πδ2
0

exp
−Nm2

2δ2
0

+
2iNgmt

~
− NA(m, t)

 , (6.22)

50For the related, effective decay of R↑↓ (t) and R↓↑ (t), see § 12.2.3
51Changing g into −g would also change P↑↓ (m, t) into P∗

↑↓
(m, t), but we shall stick to the ferromagnetic interaction g > 0
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Figure 6.1: The damping function B(t) issued from the interaction of the magnet with the bath. This function is measured in units of the dimen-
sionless magnet-bath coupling constant γ, and the time is measured in units of the recurrence time τrecur = π~/2g. The parameters are T = 0.2J
and g = 0.045J and ~Γ = 50

√
π/2 J. After an initial t4 growth, the curve is quasi linear with periodic oscillations. “Anti-damping” with dB/dt < 0

occurs during the delay ατrecur before each recurrence (Eq.(6.33)). The condition NB(τrecur) � 1 entails the irreversible suppression of all the
recurrences. Bullets denote the local maxima (see (6.36)) and the local minima at integer values of t/τrecur.

in terms of the function A(m, t), to be determined at first order in γ from Eq. (4.29) with the initial condition A(m, 0) =2190

0. For large N, A(m, t) contains contributions of orders 1 and 1/N. Its complete expression is exhibited in Appendix2191

D in terms of the autocorrelation function K(t) of the bath (Eq. (D.3)).2192

The distribution P↑↓(m, t) takes significant values only within a sharp peak centered at m = 0 with a width of order2193

1/
√

N. We can therefore consistently expand A(m, t) in powers of m up to second order, according to2194

A(m, t) ≈ B(t) − iΘ(t)m +
1
2

D(t)m2, (6.23)

so that we can write from (6.22) and (6.23) the expression for Pdis
↑↓

= (2/N)P↑↓ in the form2195

Pdis
↑↓

(m, t) = r↑↓(0)

√
2

πNδ2
0

exp

−NB(t) + iN
[
2gt
~

+ Θ(t)
]

m − N
 1
δ2

0

+ D(t)
 m2

2

 . (6.24)

The functions B(t), Θ(t) and D(t), proportional to γ, describe the effect of the bath on the off-diagonal blocks of the2196

density matrix of S + M. They are real on account of (6.21). The overall factor exp[−NB(t)] governs the amplitude of2197

Pdis
↑↓

. The term Θ(t) modifies the oscillations which arose from the coupling between S and M. The term D(t) modifies2198

the width of the peak of Pdis
↑↓

. The explicit expressions of these functions, given by (D.15) for B(t), (D.26) for Θ(t) and2199

(D.29) for D(t), are derived in appendix D from the equation of motion (D.3) for A(m, t), which itself results directly2200

from Eq. (4.29) for Pdis
↑↓

. We analyze them below.2201

6.2.2. The damping function2202

The main effect of the bath is the introduction in (6.23) of the overall factor exp[−NB(t)], which produces a2203

damping of the off-diagonal blocks R̂↑↓ and R̂↓↑ of the density matrix D̂ of S + M. The expression for B(t) derives2204

from Eq. (D.8) and is given explicitly by2205

B(t) = γ

∫ ∞

0

dωω
π

coth
~ω
2T

exp
(
−
ω

Γ

) { sin2 Ωt
2(ω2 −Ω2)

+
Ω2(1 − cosωt cos Ωt) − ωΩ sinωt sin Ωt

(ω2 −Ω2)2

}
, (6.25)

with Ω = 2g/~. The ω-integral can be carried out analytically if one replaces in the spectrum of phonon modes (3.37)2206

the Debye cutoff by a quasi Lorentzian one, see Eq. (D.10) and the connection (D.11) between the cutoff parameters;2207
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the result for B is given in (D.15). The function B(t) of Eq. (D.15), or, nearly equivalently, Eq. (6.25), is illustrated2208

by fig. 6.1. We discuss here its main features in the limiting cases of interest.2209

Consider first the short times t � 1/Γ. This range covers the delay τtrunc during which the truncation takes place,2210

but it is much shorter than the recurrence time. We have shown in Appendix D that B(t) behaves for t � 1/Γ as2211

B(t) ∼
γΓ2g2

2π~2 t4, (6.26)

increasing slowly as shown by fig. 6.1. If NB(t) remains sufficiently small during the whole truncation process so that2212

exp[−NB(t)] remains close to 1, the bath is ineffective over the delay τtrunc. This takes place under the condition2213

NB(τtrunc) = N
γΓ2g2

2π~2 τ
4
trunc =

γ~2Γ2

8πNδ4
0g2
� 1, (6.27)

which is easily satisfied in spite of the large value of ~Γ/g, since γ � 1 and N � 1. Then the coupling with the2214

bath does not interfere with the truncation by the magnet studied in section 5. Otherwise, if NB(τtrunc) is finite, the2215

damping by B, which behaves as an exponential of −t4, enhances the truncation effect in exp[−(t/τtrunc)2] of M, and2216

reduces the tails of the curves of fig. 5.1.2217

Consider now the times t larger than ~/2πT , which is the memory time of the kernel K(t). We are then in2218

the Markovian regime. This range of times encompasses the recurrences which in the absence of the bath occur2219

periodically at the times t = pτrecur, with τrecur = π~/2g. Under the condition t � ~/2πT , we show in Appendix D2220

Eq. (D.18)), that B(t) has the form2221

B(t) =
γπ

4
coth

g
T

(
t

τrecur
−

1
2π

sin
2πt
τrecur

)
+
γ

4π
ln

~Γ

2πT

(
1 − cos

2πt
τrecur

)
. (6.28)

On average, B(t) thus increases linearly along with the first term of (6.28), as exhibited by fig. 6.1. Hence, the bath2222

generates in this region t � ~/2πT the exponential damping2223

exp[−NB(t)] ∼ exp
− t
τB

irrev

 , (6.29)

where the decay is characterized by the bath-induced irreversibility time2224

τB
irrev =

2~ tanh g/T
Nγg

. (6.30)

The recurrences, at t = pτrecur, are therefore attenuated by the factor2225

exp
− pτrecur

τB
irrev

 = exp
(
−

pπNγ
4 tanh g/T

)
. (6.31)

Thus, all recurrences are irreversibly suppressed, so that the initial truncation becomes definitive, provided the cou-2226

pling between M and B is sufficiently strong so as to satisfy NB(τrecur) � 1, or equivalently τB
irrev � τrecur, that2227

is:2228

γ �
4 tanh g/T

πN
. (6.32)

In case T � g, the irreversibility time2229
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τB
irrev ∼

2~
NγT

(6.33)

depends only on the temperature of the bath, on the number of spins of the magnet, and on the magnet-bath coupling,2230

irrespective of the system-magnet coupling.2231

In spite of the smallness of γ, the large value of N makes the condition (6.32) easy to satisfy. In fact, if the hardly2232

more stringent condition NB(~/2πT ) � 1, that is, Nγ � 4π, is satisfied, we have NB(t) � 1 in the region t � ~/2πT2233

where the approximation (6.28) holds. Thus, although B(t) is quasi linear in this region, the exponential shape of the2234

decay (6.29), with its characteristic time τB
irrev, loses physical relevance since exp[−NB(t)] is there practically zero.2235

In this same region t � ~/2πT , the expression (6.28) of B(t) involves oscillatory contributions superimposed to2236

the linear increase considered above (fig. 6.1). In fact, the time derivative2237

τrecur

γ

dB
dt

=

(
π

2
coth

g
T

sin
πt
τrecur

+ ln
~Γ

2πT
cos

πt
τrecur

)
sin

πt
τrecur

. (6.34)

of B(t) is periodic, with period τrecur, and it vanishes at the times t such that2238

sin
πt
τrecur

= 0 or tan
πt
τrecur

= −
2
π

ln
~Γ

2πT
tanh

g
T
. (6.35)

The first set of zeros occur at the recurrence times pτrecur, which are local minima of B(t). The second set provide2239

local maxima, which occur somewhat earlier than the recurences (fig. 6.1), at the times2240

t = (p − α)τrecur, α =
1
π

arctan
(

2
π

ln
~Γ

2πT
tanh

g
T

)
. (6.36)

An unexpected quantum effect thus takes place in the off-diagonal blocks of the density matrix of S + M. Usually, a2241

bath produces a monotonous relaxation. Here, the damping factor exp[−NB(t)], which results from the coupling of M2242

with the bath, increases between the times (p−α)τrecur and pτrecur. During these periods, the system S + M undergoes2243

an “anti-damping”. This has no incidence on our measurement process, since the recurrences are anyhow killed under2244

the condition (6.29) and since their duration, τtrunc, is short compared to the delay ατrecur. One may imagine, however,2245

other processes that would exhibit a similar effect.2246

6.2.3. Time-dependence of physical quantities2247

All the off-diagonal physical quantities, to wit, the expectation values 〈ŝx(t)〉, 〈ŝy(t)〉, and the correlations between2248

ŝx or ŝy and any number of spins of the apparatus are embedded in the generating function Ψ↑↓(λ, t) defined as in2249

(5.13). As we recalled in § 6.2.1, we must sum over the discrete values (3.22) of m, rather than integrate over m; the2250

distinction between summation and integration becomes crucial when the time t reaches τrecur , since then the period2251

in m of the oscillations of Pdis
↑↓

(m, t) becomes as small as the level spacing. From (6.23), we see that the characteristic2252

function, modified by the bath terms, has the same form as in § 5.3.2 within multiplication by exp[−NB(t)] and within2253

modification of the phase and of the width of Pdis
↑↓

(m, t).2254

Let us first consider the effect of Θ(t). Its introduction changes the phase of P↑↓ according to2255

2iNgmt
~

7→
2iNgmt

~
+ iNΘ(t)m. (6.37)

Hence, the occurrence of the term Θ(t) might shift the recurrences, which take place when2256

2gt
~

+ Θ(t) = pπ. (6.38)
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However, the expression of Θ(t) derived in the appendix D, Eq. (D.26),2257

Θ(t) ∼ −
γ

8g

 2
δ2

0

− 1
 T + J2

 [1 − cos
2πt
τrecur

]
. (6.39)

vanishes for t = pτrecur = pπ~/2g, so that the replacement (6.34) does not affect the values of the recurrence times.2258

Between these recurrence times, the truncation makes all correlations of finite rank negligible even in the absence of2259

the bath, as if Pdis
↑↓

did vanish; then, the phase of Pdis
↑↓

is irrelevant. Altogether, Θ(t) is completely ineffective.2260

Likewise, the term D(t) is relevant only at the recurrence times. We evaluate it in Eq. (D.29) as2261

D(pτrecur) ' pη, η =
πγ

2
J2

g

( J2

3T
− 1

)
. (6.40)

This term changes the width of the distribution Pdis
↑↓

(m, t) by a small relative amount of order γ � 1, according to2262

∆m =
δ0
√

N
7→ ∆mp =

δ0√
N(1 + pηδ2

0)
= ∆m(1 −

1
2

pηδ2
0). (6.41)

The width therefore increases if J2 < 3T , or decreases if J2 > 3T , but this effect is signficant only if the recurrences2263

are still visible, that is, if the condition (6.32) is not satisfied.2264

The expression (5.33) of the generating function is thus modified into2265

Ψ↑↓(λ, t) = r↑↓(0)e−NB(t)
∞∑

p=−∞

(−1)pN exp
(

iλ∆mp
√

2
+ i

t − pτrecur

τtrunc

)2

. (6.42)

The crucial change is the presence of the damping factor exp[−NB(t)], which invalidates the periodicity (5.30) of2266

Ψ↑↓(λ, t) and which inhibits the recurrences. Moreover, for any t > 0, the terms p < 0 in (6.42) are negligible, since2267

they involve (for t = 0) the factor exp[−(pτrecur/τtrunc)2]. Thus, under the conditions (6.27) and (6.32), the sum (6.42)2268

reduces at all times to its term p = 0. Accordingly, it is legitimate to express for arbitrary times P↑↓ as2269

P↑↓(m, t) = P↑↓(m, 0) exp
[
2iNgmt

~
− NB(t)

]
, (6.43)

and to treat m as a continuous variable. As a consequence, the full density matrix of S + M, which results from (3.26),2270

has off-diagonal blocks given by2271

R̂↑↓(t) = r↑↓(0)R̂M(0) exp
[
2iNgmt

~
− NB(t)

]
, (6.44)

where we recall the expressions (D.15), (6.26) and (6.28) for B(t).2272

Altogether, as regards the evolution of the physical quantities 〈ŝam̂k(t)〉 (a = x or y), nothing is changed in the2273

results of § 5.1.3 on the scale t � τrecur ; these results are summarized by Eq. (5.22) and illustrated by fig. 5.1. For2274

t � τB
irrev, the factor exp[−NB(t)] makes all these off-diagonal quantities vanish irremediably, including the high-rank2275

correlations of § 5.3.2.2276

In spite of the simplicity of this result, our derivation was heavy because we wanted to produce a rigorous proof.2277

It turned out that the interaction between the spins of M, which occurs both through δ0 in the initial state of M and2278

through J2 in the dynamics generated by the bath, has a negligible effect. Taking this property for granted, treating2279

M as a set of independent spins and admitting that for t � ~/2πT the autocorrelation function of the bath enters the2280

dynamical equation through (D.21), we present in § 9.6.1 a simpler derivation, which may be used for tutorial purposes2281

and which has an intuitive interpretation: Both the precession of ŝ and the damping of R̂↑↓(t) by the bath arise from a2282

dynamical process in which each spin of M is independently driven by its interaction with S and independently relaxes2283

under the effect of the bath B.2284
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6.2.4. The off-diagonal bath effect, an ongoing decoherence process regulated by the tested observable2285

Het houdt maar niet op52
2286

Dutch expression2287

The damping described above has two unusual features: on the one hand (fig. 6.1), its coefficient does not2288

monotonically decrease; on the other hand, it is governed by a resonance effect. However, it has also clearly the2289

features of a standard decoherence [32, 33, 40, 176, 177, 178, 179]. It takes place in the compound system S + M2290

under the influence of B which plays the role of an environment. The decay (6.29) is quasi-exponential, apart from2291

non-essential oscillations. The expression (6.33) of the irreversibility time τB
irrev = 2~/NγT (for T � g) is typical of a2292

bath-induced decoherence: It is inversely proportional to the temperature T of B, to the number N which characterizes2293

the size of the system S + M, and to the coupling γ of this system with its environment, which is here the bath.2294

Nevertheless, we have stressed (§ 5.1.2) that the fundamental mechanism of the initial truncation of the state D̂(t)2295

of S + M has not such a status of decoherence. It takes place in the brief delay τtrunc = ~/
√

Nδ0g, during which the2296

bath does not yet have any effect. Contrary to decoherence, this dephasing process is internal to the system S + M,2297

and does not involve its environment B. It is governed by the direct coupling g between S and the pointer M, as shown2298

by the expression of the truncation time. It is during delays of order τtrunc that the phenomena described in section 52299

occur – decay of the average transverse components of the spin S, creation then disappearance of correlations with2300

higher and higher rank (§ 5.1.3 and fig. 5.1). The bath has no effect on this truncation proper.2301

When the bath begins to act, that is, when NB(t) becomes significant, the truncation can be considered as prac-2302

tically achieved since Eq (6.27) is easily satisfied. The only tracks that remain from the original blocks R̂↑↓(0) and2303

R̂↓↑(0) of D̂(0) are correlations of very high rank (§ 5.3.2), so that the state D̂(t) cannot be distinguished at such2304

times from a state without off-diagonal blocks. However, if the Hamiltonian did reduce solely to ĤSA (Eq. (3.5)), the2305

simplicity of the dynamics would produce, from these hidden correlations, a revival of the initial state D̂(0), taking2306

place just before τrecur , during a delay of order τtrunc. The weak interaction γ with the bath wipes out the high rank2307

correlations, at times t such that τtrunc � t � τrecur for which they are the only remainder of r↑↓(0). Their destruction2308

prevents the inverse cascade from taking place and thus suppresses all recurrences.2309

The interaction between S and M does not only produce the initial truncation of D̂ described in section 5. It is also2310

an essential ingredient in the very mechanism of decoherence by the bath B. Indeed, the interaction (3.10) between M2311

and B is isotropic, so that it is the coupling between S and M which should govern the selection of the basis in which2312

the suppression of recurrences will occur after the initial truncation. To understand how this ongoing preferred basis2313

problem is solved, let us return to the derivation of the expression (6.25) for the damping term B(t), valid in the time2314

range of the bath-induced irreversibility. This expression arose from the integral (D.8), to wit,2315

dB
dt

=
4γ sin Ωt
π~2

∫ ∞

−∞

dω K̃(ω)
Ω(cos Ωt − cosωt)

ω2 −Ω2 (6.45)

which analyzes the influence, on the damping, of the various frequencies ω of the autocorrelation function K̃(ω) of2316

the phonon bath. The effect of the system-magnet interaction g is embedded in the frequency Ω = 2g/~ = π/τrecur,2317

directly related to the period of the recurrences. In appendix D, we have shown that the quasi-linear behaviour of2318

B(t) results from the approximation (D.20) for the last factor of (6.45): This factor is peaked around ω = ±Ω for2319

t � ~/2πT . The integral (6.45) then reduces to2320

dB(t)
dt

=
γ

~2

[
K̃(Ω) + K̃(−Ω)

]
(1 − cos 2Ωt), (6.46)

the constant part of which produces the dominant, linear term B ∝ t of (6.28). In the autocorrelation function K̃(ω)2321

which controls the damping by B in the equation of motion of S + M, ~ω is the energy of the phonon that is created2322

or annihilated by interaction with a spin of the magnet (§ 3.2.2). Thus, through a resonance effect arising from the2323

peak of the integrand in (6.44), the frequency ω of the phonons that contribute to the damping adjusts itself onto the2324

52It keeps going on
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frequency Ω = 2g/~ associated with the precession of the spins of the magnet under the influence of the tested spin.2325

Owing to this resonance effect, the bath acts mainly through the frequency of the recurrences. Accordingly, phonons2326

with energy ~ω close to the energy ~Ω = 2g of a spin flip in M (see Eq. (3.5)) are continuously absorbed and emitted,2327

and this produces the shrinking of the off-diagonal blocks R̂↑↓ and R̂↓↑. The effect is cumulative, since B ∝ t. The2328

decoherence by the bath is thus continuously piloted by the coupling of the magnet with S.2329

In conclusion, the initial truncation and its further consolidation are in the present model the results of an interplay2330

between the three interacting objects, S, M and B. The main effect, on the time scale τtrunc, arises from the coupling2331

between S and the many degrees of freedom of M, and it should not be regarded as decoherence. Rather, it is2332

a dephasing effect as known in nuclear magnetic resonance. Viewing the magnet M as “some kind of bath or of2333

environment”, as is often done, disregards the essential role of M: to act as the pointer that indicates the outcome2334

of the quantum measurement. Such an idea also confers too much extension to the concept of bath or environment.2335

Decoherence usually requires some randomness of the environment, and we have seen (§ 5.2.2) that truncation may2336

occur even if the initial state of M is pure.2337

The mechanisms that warrant, on a longer time scale τM
irrev or τB

irrev, the permanence of the truncation can be2338

regarded as adjuvants of the main initial truncation process, since they become active after all accessible off-diagonal2339

expectation values and correlations have (provisionally) disappeared. We saw in subsection 6.1 that the intervention2340

of B is not necessary to entail this irreversibility, which can result from a dispersion of the coupling constants gn.2341

For the more efficient mechanism of suppression of recurrences of subsection 6.2, we have just stressed that it is a2342

decoherence process arising from the phonon thermal bath but steered by the spin-magnet coupling.2343

In section 7, we turn to the most essential role of the bath B in the measurement, to allow the registration of the2344

outcome by the pointer.2345

7. Registration2346

Wie schrijft, die blijft53
2347

Les paroles s’envolent, les écrits restent54
2348

Dutch and French proverbs2349

The main issue in a measurement process is the establishment of correlations between S and A, which will allow2350

us to gain information on S through observation of A [10, 11, 31, 48, 84]. As shown in § 5.1.3, the process creates2351

correlations in the off-diagonal blocks R̂↑↓(t) and R̂↓↑(t) of the density matrix D̂(t) of S + A, but those which survive2352

after the brief truncation time τtrunc involve a large number of spins σ̂(n) of M and are inobservable. The considered2353

quantum measurement thus cannot provide information on the off-diagonal elements r↑↓(0) of the density matrix r̂(0)2354

of S. We now show, by studying the dynamics of the diagonal blocks of D̂(t), how M can register the statistical2355

information embedded in r↑↑(0) and r↓↓(0) through creation of system-apparatus correlations. If we can select the2356

outcome, a question discussed in section 11, the process can be used as a preparation of S in the pure state |↑〉 or |↓〉.2357

The registration process presents two qualitatively different behaviours, depending on the nature of the phase2358

transition of the magnet, of second order if the parameters of its Hamiltonian (3.7) satisfy J2 > 3J4, of first order if2359

they satisfy 3J4 > J2. Recalling our discussion in § 3.3.2, we will exemplify these two situations with the two pure2360

cases q = 2 and q = 4. In the former case, for J2 ≡ J and J4 = 0, the Hamiltonian is expressed by (3.8); in the latter2361

case, for J4 ≡ J and J2 = 0, it is expressed by (3.9). We summarize these two cases by HM = −(NJ/q)m̂q with q = 22362

and 4, respectively.2363

7.1. Properties of the dynamical equations2364

The dynamics of the diagonal blocks R̂↑↑(t) of D̂(t) results for large N from the equation (4.30) for the scalar2365

function P↑↑(t), with initial condition P↑↑(0) = r↑↑(0)PM(m, 0). The initial distribution PM(m, 0) for the magnetization2366

of M, given by (3.48), is a Gaussian, peaked around m = 0 with the small width δ0/
√

N. We have noted (subsection2367

53Who writes, stays
54Words fly away, writings stay
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4.4) the analogy of the equation of motion (4.30) with a Fokker-Planck equation [230] for the random variable m2368

submitted to the effects of the thermal bath B. In this equation, which reads2369

∂P↑↑
∂t

=
∂

∂m
(
−vP↑↑

)
+

1
N

∂2

∂m2

(
wP↑↑

)
, (7.1)

the first term describes a drift, the second one a diffusion [230]. The drift velocity v(m, t) is a function of m and t2370

defined by (4.31), whereas the diffusion coefficient w↑↑(m, t) is defined by (4.32). The normalization of P↑↑ remains2371

unchanged in time:2372 ∫
dmP↑↑(m, t) =

∫
dmP↑↑(m, 0) = r↑↑(0), (7.2)

so that the ratio P(m, t) = P↑↑(m, t)/r↑↑(0) can be interpreted as a conditional probability of m if sz = 1.2373

7.1.1. Initial and Markovian regimes2374

For very short times such that t � 1/Γ, we have2375

K̃t(ω) ∼ 2tK(0) =
~2

4π
Γ2t, (7.3)

and hence2376

v ∼ −
γ

π
Γ2mt, w ∼

γ

π
Γ2t . (7.4)

The solution of (7.1) then provides a Gaussian which remains centered at m = 0. Its width
√

D/N decays for q = 2,2377

δ0 > 1 as2378

D(t) = δ2
0 − (δ2

0 − 1)
[
1 − exp

(
−
γ

π
Γ2t2

)]
, (7.5)

and is constant (D = δ2
0 = 1) for q = 4. Anyhow, on the considered time scale, the change in P↑↑(m, t) is not perceptible2379

since γ � 1. The registration may begin to take place only for larger times.2380

The weakness of the magnet-bath coupling γ implies that the time scale of the registration is larger than the2381

memory time ~/2πT of K(t). Then K̃t(ω) defined by (4.17) reduces to K̃(ω), that is, to (3.37). The equation of2382

motion (7.1) for P↑↑ becomes Markovian [120, 121, 174], with v and w depending only on m and not on t. As soon as2383

t � ~/2πT , P↑↑ thus evolves in a short-memory regime. Its equation of motion is invariant under time translation.2384

The explicit expressions (4.31) and (4.32) of v↑↑ and w become in this regime2385

v(m) = γω↑(1 − m coth β~ω↑), (7.6)
w(m) = γω↑(coth β~ω↑ − m), (7.7)

where ~ω↑ = g + J2m + J4m3 (including both q = 2 and q = 4) from the definition (4.24). These functions contain in2386

fact an extra factor exp(−2|ω↑|/Γ), which we disregard since the Debye cutoff is large:2387

~Γ � g, ~Γ � J. (7.8)

While the diffusion coefficient w(m) is everywhere positive, the drift velocity v(m) changes sign at the values m = mi2388

that are solutions of (3.55). We illustrate the behavior of v(m) in Figs. 7.1 for q = 2 and 7.2 for q = 4.2389

7.1.2. Classical features2390

We have stressed (subsection 4.4) that the drift term in (7.1) is “classical”, in the sense that it comes out for large2391

N by taking the continuous limit of the spectrum of m̂, and that the diffusion term, although relevant in this large N2392

limit, results from the discreteness of the spectrum of m̂ and has therefore a quantum origin. We can, however, forget2393

this origin and regard this diffusion term as a “classical” stochastic effect. As a preliminary exercise, we show below2394
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Figure 7.1: The drift velocity field V(m) = ~v(m)/γT = β(Jm+g)[1−m coth β(Jm+g)] for second-order transitions (q = 2, i. e., J2 = J, J4 = 0), at
the temperature T = 0.65J. The fixed points, the zeroes of V(m), are the extrema of the free energy F(m). For g=0, the attractive fixed points lie at
±mF = ±0.87. For g=0.05J, the two attractive fixed points lie at m⇑ = 0.90 and m⇓ = 0.84, and the repulsive bifurcation lies at m = −mB = −0.14.
For g = 0 the attractive fixed points lie at ±mF = ±0.91.
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Figure 7.2: The drift velocity field V(m) = ~v(m)/γT = β(Jm3 + g)[1 − m coth β(Jm3 + g)] for first-order transitions (q = 4, i. e., J2 = 0, J4 = J)
at T = 0.2J and for various couplings g. The zeroes of V(m) are the extrema of the free energy F(m) (see Figs. 3.3 and 3.4). For g = 0 there
are three attractive fixed points, mP = 0 and ±mF with mF = 1 − 9.1 · 10−5 and two repulsive fixed points, at ±0.465, close to ±

√
T/J = ±0.447.

For increasing g, mP increases up to mc = 0.268 until g reaches hc = 0.0357 J. For larger g, the paramagnetic fixed point mP disappears together
with the positive repulsive point, and, since V is positive for all m > 0, the distribution of m can easily move from values near 0 to values near mF,
“rolling down the hill” of F(m). If g is too small, V(m) vanishes with a negative slope at the attractive paramagnetic fixed point mP near the origin;
the distrbution of m then ends up around mP and the apparatus returns to its paramagnetic state when g is switched off so that the registration fails.



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 75

that an empirical classical approach of the registration provides us at least with a drift, similar to the one occurring in2395

eq. (7.1).2396

For times t � τtrunc it is legitimate to disregard the off-diagonal blocks R̂↑↓ and R̂↓↑ of D̂, and the process that takes2397

place later on involves only P↑↑ and P↓↓. (In our present model the blocks evolve independently anyhow). This process2398

looks like the measurement of a “classical discrete spin” which would take only two values +1 and −1 with respective2399

probabilities r↑↑(0) and r↓↓(0); the x- and y-components play no role. The magnet M also behaves, in the present2400

diagonal sectors, as a collection of N classical spins σ(n)
z , the x- and y-components of which can be disregarded. The2401

dynamics of M is governed by its coupling with the thermal bath B. If this coupling is treated classically, we recover2402

a standard problem in classical statistical mechanics [60, 234, 235, 236, 237]. Indeed, the dynamics of2403

P(m, t) =
P↑↑(m, t)

r↑↑(0)
(7.9)

is the same as the relaxation of the random order parameter m of an Ising magnet, submitted to a magnetic field h = g2404

and weakly coupled to the bath B at a temperature lower than the transition temperature. Likewise, P↓↓(m, t)/r↓↓(0)2405

behaves as the time-dependent probability distribution for m in a magnetic field h = −g.2406

Such dynamics have been considered long since, see e.g. [60, 61, 62, 63, 64, 65, 234, 235, 236, 237]. The variables2407

σ(n)
z are regarded as c-numbers, which can take the two values ±1. Due to the presence of transverse spin components2408

at the quantum level they may flip with a transition rate imposed by the bath. Since N is large, it seems natural to2409

assume that the variance of m remains weak at all times, as D(t)/N. (In fact, this property fails in circumstances that2410

we shall discuss in subsection 7.3.) The probability distribution P is then equivalent to a Gaussian,2411

P(m, t) =

√
N

2πD(t)
exp

{
−

N[m − µ(t)]2

2D(t)

}
, (7.10)

In the present classical approximation we neglect D, assuming that m is nearly equal to the expectation value µ(t).2412

This quantity is expected to evolve according to an equation of the form2413

dµ(t)
dt

= v(µ(t)). (7.11)

In our case v is given by Eq. (7.6). This type of evolution has been considered many times in the literature. In order2414

to establish this law and to determine the form of the function v, most authors start from a balance equation governing2415

the probability that each spin σ(n)
z takes the values σi = ±1 (with i =↑ or ↓). The bath induces a transition probability2416

Wi(m) per unit time, which governs the possible flip of each spin from σi to −σi, in a configuration where the total2417

spin is
∑

i σi = Nm. A detailed balance property must be satisfied, relating two inverse processes, that is, relating Wi2418

and W−i; it ensures that the Boltzmann-Gibbs distribution for the magnet at the temperature of the bath is stationary,2419

to wit,2420

W−i[m − (2/N)σi]
Wi(m)

= exp[−β∆Ei(m)], (7.12)

where ∆Ei (m) is the energy brought in by one spin flip from σi to −σi. For large N, we have ∆Ei = 2σi(h + Jmq−1)2421

(which reads for general couplings ∆Ei = 2σi(h + J2m + J4m3)), so that Wi(m) depends on σi as2422

Wi(m) =
1

2θ(m)
[1 + tanh βσi(h + Jmq−1)], (7.13)

including a transition time θ(m) which may depend on m and on the temperature T = β−1 of B. (Indeed, W−i(m),2423

obtained from Wi by changing σi into σ−i = −σi, satisfies (7.12).) As explained in § 4.4.3, a balance provides the2424

variation during the time dt of the probabilities Pdis(m, t) as function of the flipping probability Wi(m)dt of each spin.2425

The continuous limit then generates, as in the derivation of Eq. (4.30), the drift coefficient2426

v(m) =
1

θ(m)
[tanh β(h + Jmq−1) − m]. (7.14)
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Various forms for θ(m) can be found in the works devoted to this subject; they are based either on phenomenology2427

or on an approximate solution of models [234, 235, 236, 237]. In all cases the stable fixed points of the motion2428

(7.11), at which v(m) vanishes, are the values mi given for large N by (3.55), where the free energy (3.54) is minimal.2429

However, the time-dependence of µ(t) = 〈m〉 as well as the behavior of higher order cumulants of m depend on the2430

coefficient θ(m). For instance, while θ is a constant in [234], it is proportional to tanh β(h + Jmq−1) in [236] and [237];2431

it still has another form if v(m) is taken to be proportional to −dF/dm.2432

In the present, fully quantum approach, which relies on the Hamiltonian introduced in subsection 3.2, the drift2433

velocity v(m) has been found to take the specific form (7.6) in the Markovian regime t � ~/2πT . We can then identify2434

the coefficient θ(m) of (7.14) with2435

θ(m) =
~ tanh β(h + Jmq−1)

γ(h + Jmq−1)
. (7.15)

With this form of θ(m), which arises from a quantum microscopic theory, the dynamical equation (7.11) keeps a2436

satisfactory behavior when h or m becomes negative, contrary to the ad hoc choice θ(m) ∝ tanh β(h + Jmq−1). It2437

provides, for q = 2, as shown in § 7.3.2, a long lifetime for the paramagnetic state, and better low temperature features2438

than for θ(m) =constant.2439

Altogether, our final equations for the evolution of the diagonal blocks of D̂ are, at least in the Markovian regime,2440

similar to equations readily found from a classical phenomenology. However, the quantum starting point and the2441

rather realistic features of our model provide us unambiguously with the form (7.6) for the drift velocity, which meets2442

several natural requirements in limiting cases. The occurrence of Planck’s constant in (7.15) reveals the quantum2443

origin of our classical-like equation. Moreover, quantum mechanics is also at the origin of the diffusion term and it2444

provides the explicit form (7.7) for w. Finally, by varying the parameters of the model, we can discuss the validity of2445

this equation and explore other regimes.2446

7.1.3. H-theorem and dissipation2447

In order to exhibit the dissipative nature of our quantum equations of motion for P↑↑ and P↓↓ in the Markovian2448

regime, we establish here an associated H-theorem [230]. This theorem holds for any Markovian dynamics, with2449

or without detailed balance. We start from the general, discrete equation (4.16), valid even for small N, where2450

K̃t(ω) is replaced by K̃(ω). We consider the probability Pdis(m, t) = (2/N)P(m, t), normalized under summation,2451

which encompasses Pdis
↑↑

(m, t)/r↑↑(0) for h = g > 0 and Pdis
↓↓

(m, t)/r↓↓(0) for h = −g < 0, and denote as E(m) =2452

−hNm − JNq−1mq the Hamiltonian (4.6) with h = ±g. We associate with Pdis(m, t) the time-dependent entropy2453

S (t) = −
∑

m

Pdis(m, t) ln
Pdis(m, t)

G(m)
, (7.16)

where the denominator G(m) accounts for the multiplicity (3.23) of m, and the average energy2454

U(t) =
∑

m

Pdis(m, t)E(m). (7.17)

The time-dependence of the dynamical free energy Fdyn(t) = U(t) − TS (t) is found by inserting the equations of2455

motion (4.16) for the set P(m, t) into2456

dFdyn

dt
=

∑
m

dPdis(m, t)
dt

[
E(m) + T ln

Pdis(m, t)
G(m)

]
. (7.18)

The resulting expression is simplified through summation by parts, using2457 ∑
m

[
∆+ f1(m)

]
f2(m) =

∑
m

f1(m)[∆− f2(m)] = −
∑

m

f1(m+)[∆+ f2(m)], (7.19)

with the notations (4.15). (No boundary term arises here.) This yields2458

dFdyn(t)
dt

= −
Nγ
β~2

∑
m

[
(1 + m+)eβ∆+E(m)Pdis(m+, t) − (1 − m)Pdis(m, t)

]
K̃[~−1∆+E(m)] ∆+

[
ln

Pdis(m, t)eβE(m)

G(m)

]
, (7.20)
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where we used K̃(−ω) = K̃(ω) exp β~ω. Noting that (1 − m)G(m) = (1 + m+)G(m+), we find2459

dFdyn(t)
dt

= −
γN
4β~

∑
m

(1 − m)G(m)
∆+E(m)

∆+ exp βE(m)
e−|∆+E(m)|/~Γ∆+

[
Pdis(m, t)eβE(m)

G(m)

]
∆+

[
ln

Pdis(m, t)eβE(m)

G(m)

]
. (7.21)

The last two factors in (7.21) have the same sign, while the previous ones are positive, so that each term in the2460

sum is negative. Thus the dynamical free energy is a decreasing function of time. The quantity −βdFdyn/dt can be2461

interpreted as the dissipation rate (or the entropy production) of the compound system M+B, that is, the increase per2462

unit time of the entropy (7.16) of the magnet plus the increase −βdU/dt of the entropy of the bath. In fact the entropy2463

of M is lower in the final state than in the initial state, but the increase of entropy of B associated with the energy2464

dumping dominates the balance. The negativity of (7.21) characterizes the irreversibility of the registration.2465

The right-hand side of (7.21) vanishes only if all its terms vanish, that is, if Pdis(m, t) exp[βE(m)]/G(m) does2466

not depend on m. This takes place for large times, when the dynamical free energy F(t) has decreased down to the2467

minimum allowed by the definitions (7.16), (7.17). We then reach the limit Pdis(m) ∝ G(m) exp[−βE(m)], which2468

is the distribution associated with the canonical equilibrium of M for the Hamiltonian E(m̂), that is, with the static2469

free energy55. We have thus proven for our model the following property, often encountered in statistical physics2470

[174, 230]. The same probability distribution for m arises in two different circumstances. (i) In equilibrium statistical2471

mechanics, (§ 3.3.4), Pdis (m) follows from the Boltzmann-Gibbs distribution R̂M ∝ exp[−βĤM] for the magnet alone.2472

(ii) In non-equilibrium statistical mechanics, it comes out as the asymptotic distribution reached in the long time limit2473

when M is weakly coupled to the bath.2474

It is only in the Markovian regime that the dynamical free energy is ensured to decrease. Consider in particular,2475

for the quadratic coupling q = 2, the evolution of Pdis(m, t) on very short times, which involves the narrowing (7.5)2476

of the initial peak. The free energy associated with a Gaussian distribution centered at m = 0, with a time-dependent2477

variance D(t)/N, is2478

Fdyn(t) =
∑

m

Pdis(m, t)
[
−gNm −

1
2

JNm2 + T ln
Pdis(m, t)

G(m)

]
= −

1
2

(JD + T − T D + T ln D). (7.22)

The time-dependence of D is expressed for short times t � Γ−1 by (7.5). The initial value δ2
0 of D(t) being given by2479

(3.51), we find2480

dFdyn

dt
=
γΓ2t
π

J2(T0 − T )
T0(T0 − J)

. (7.23)

Thus at the very beginning of the evolution, Fdyn slightly increases, whereas for t � ~/2πT it steadily decreases2481

according to (7.21). In fact, the negative sign of v in the initial non-Markovian regime (7.4) indicates that, for very2482

short times, the fixed point near m = 0 is stable although the bath temperature is lower than J.2483

7.1.4. Approach to quasi-equilibrium2484

56
2485 Անձրևոտ օրը շատերը կասեն. "Ջուր տար, քո հավերին լողացրու":

Armenian proverb2486

The above proof that the system eventually reaches the canonical equilibrium state R̂M ∝ exp(−βĤM) is mathe-2487

matically correct for finite N and t → ∞. However, this result is not completely relevant physically in the large N2488

limit. Indeed, the times that we consider should be attainable in practice, and “large times” does not mean “infinite2489

times” in the mathematical sense [55, 56].2490

55The notions of dynamical (moderate time) and static (infinite time) free energy are well known in the theory of glasses and spin glasses, see e.g.
[238, 239, 240]. In corresponding mean field models, they differ strongly; here, however, the dynamical free energy simply refers to processes close
to equilibrium and decreases down to the static equilibrium free energy in agreement with the macroscopic Clausius–Duhem inequality [56, 73]

56On a rainy day many people offer to bathe your chickens
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In order to analyze this situation, we note that the summand of (7.21) contains a factor Pdis(m, t); thus the ranges2491

of m over which Pdis(m, t) is not sizeable should be disregarded. When the time has become sufficiently large so that2492

the rate of decrease of F(t) has slowed down, a regime is reached where Pdis(m, t) exp[βE(m)]/G(m) is nearly time-2493

independent and nearly constant (as function of m) in any interval where Pdis(m, t) is not small. Within a multiplicative2494

factor, Pdis(m, t) is then locally close to exp[−βF(m)] where F(m) = U(m) − T ln G(m) is given by (3.54). It is thus2495

concentrated in peaks, narrow as 1/
√

N and located in the vicinity of points mi where F(m) has a local minimum.2496

Above the transition temperature, or when the field h = ±g is sufficiently large, there is only one such peak, and the2497

asymptotic form of Pdis(m, t) is unique. However, below the critical temperature, two separate peaks may occur for2498

q = 2, and two or three peaks for q = 4, depending on the size of h.2499

In such a case, Pdis(m, t) can be split into a sum of non-overlapping contributions Pdis
Mi(m, t), located respectively2500

near mi and expected to evolve towards the equilibrium distributions Pdis
Mi(m) expressed by (3.56). Since for sufficiently2501

long times Pdis(m, t) is concentrated around its maxima mi with a shape approaching the Gaussian (3.56), its equation2502

of motion (7.1) does not allow for transfers from one peak to another over any reasonable delay. (Delays exponentially2503

large with N are physically inaccessible.) Once such a regime has been attained, each term Pdis
Mi(m, t) evolves inde-2504

pendently according to (7.1). Its normalization remains constant, and its shape tends asymptotically to (3.56). Hence,2505

below the transition temperature, ergodicity is broken in the physical sense. (A breaking of ergodicity may occur in2506

a mathematically rigorous sense only for infinite N or zero noise.) If the system starts from a configuration close to2507

some mi, it explores, during a physically large time, only the configurations for which m lies around mi. Configura-2508

tions with the same energy but with values of m around other minima of F(m) remain out of reach. This phenomenon2509

is essential if we want to use M as the pointer of a measurement apparatus. If the spin S lies upwards, its interaction2510

with A should lead to values of m that fluctuate weakly around +mF, not around −mF. Ergodicity would imply that2511

A spends the same average time in all configurations having the same energy, whatever the sign of m [55, 56], once2512

the interaction ĤSA is turned off. The breaking of invariance is thus implemented through the dynamics: unphysical2513

times, exponentially large with N, would be needed to reach the symmetric state exp(−βĤM).2514

In analogy with what happens in glasses and spin glasses [238, 239, 240], for physical large times t, the asymptotic2515

value of Fdyn(t) is not necessarily the absolute minimum of F(m). It is a weighted average of the free energies of the2516

stable and metastable states, with magnetizations mi. The weights, that is, the normalizations of the contributions2517

Pdis
Mi(m, t) to Pdis(m, t) are determined by the initial distribution Pdis(m, 0), and they depend on N and on the couplings2518

g and J which enter the equations of motion. For an ideal measurement, we require the process to end up at a single2519

peak, +mF for Pdis
↑↑

, −mF for Pdis
↓↓

(subsection 7.2). Otherwise, if M may reach either one of the two ferromagnetic2520

states ±mF, the measurement is not faithful; we will determine in § 7.3.3 its probability of failure.2521

In the present regime where the variations with m of PeβE/G are slow, we can safely write the continuous limit of2522

the H-theorem (7.21) by expressing the discrete variations ∆+ over the interval δm = 2/N as derivatives. We then find2523

the dissipation rate as (we switch to the function P(m) = (N/2)Pdis(m) and to an integral over m)2524

−
1
T

dFdyn

dt
=

γNT
~

∫
dm P(m, t)φ(m)[coth φ(m) − m]

×

[
1

NP
∂P
∂m
−

tanh φ(m) − m
1 − m tanh φ(m)

] [
1

NP
∂P
∂m
− φ(m) +

1
2

ln
1 + m
1 − m

]
, (7.24)

where we use the notation2525

φ(m) = β(h + Jmq−1), h = ±g. (7.25)

For large N, the term (1/NP)dP/dm is not negligible in case ln P is proportional to N, that is, in the vicinity of a narrow2526

peak with width 1/
√

N. The expression (7.24) is not obviously positive. However, once P(m, t) =
∑

i=±1 PMi(m, t)2527

has evolved into a sum of separate terms represented by peaks around the values mi, we can write the dissipation as2528

a sum of contributions, each of which we expand around mi. The last two brackets of (7.24) then differ only at order2529

(m − mi)3, and we get the obviously positive integrand2530

−
1
T

dFdyn

dt
=
γNT
~

∑
i=±1

∫
dm PMi(m, t)φ(m)[coth φ(m) − m] (7.26)



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 79

×

 1
NPMi

∂PMi

∂m
+

 1
1 − m2

i

− (q − 1)βJmq−2
i

 (m − mi) +

 mi

(1 − m2
i )2
−

(q − 1)(q − 2)
2

βJmq−3
i

 (m − mi)2
2

.

We thus check that Fdyn(t) decreases, down to the weighted sum of free energies associated with the stable or2531

metastable equilibrium distributions (3.56). In fact, among the stationary solutions of (7.1), those which satisfy2532

vP −
1
N

d(wP)
dm

= 0, (7.27)

with v and w given by (7.6) and (7.7), coincide with (3.56) around the values of mi given by (3.55), not only in the2533

mean-field approximation but also including the corrections that we retained in those formulae.2534

7.2. Registration times2535

Quid est ergo tempus? Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio 57
2536

Saint Augustine2537

In the present subsection, we study the evolution of the distribution P↑↑(m, t), which is such that (1/N) ln P↑↑ is2538

finite for large N. This property holds at t = 0 and hence at all times. As a consequence, P↑↑ presents a narrow2539

peak with width of order 1/
√

N, and it is equivalent to a Gaussian. We first note that the evolution (7.1) conserves its2540

normalization r↑↑(0). The ratio (7.9) can then be parametrized as in (7.10) by the position µ(t) of the peak and by its2541

width parameter D(t), which are both finite for large N.2542

7.2.1. Motion of a single narrow peak2543

The equations of motion for µ(t) and D(t) are derived by taking the first moments of the equation (7.1) for P↑↑(m, t).2544

Integration over m of (7.1) first entails the conservation in time of the normalization r↑↑(0) of
∫

dmP↑↑(m, t). We then2545

integrate (7.1) over m after multiplication, first by m−µ(t), second by N[m−µ(t)]2−D(t), using on the right-hand side2546

an integration by parts and the steepest descents method. To wit, expanding v(m, t) and w(m, t) in powers of m − µ(t),2547

we rely on the vanishing of the integrals of m − µ(t) and of N[m − µ(t)]2 − D(t) when weighted by P↑↓(m, t), and we2548

neglect for k > 1 the integrals of [m − µ(t)]2k, which are small as N−k. This yields for sufficiently large N2549

dµ(t)
dt

= v[µ(t), t], (7.28)

1
2

dD(t)
dt

=
∂v[µ(t), t]

∂µ
D(t) + w[µ(t), t]. (7.29)

At the very beginning of the evolution, when t is not yet large compared to ~/2πT , Eqs. (7.28) and (7.29) should2550

be solved self-consistently, using the expressions (4.31) for v and (4.32) for w. However, if the coupling γ is weak,2551

the Markovian regime is reached before the shape of P↑↑ is significantly changed. We can thus solve (7.28) and (7.29)2552

with the time-independent forms (7.6) and (7.7) for v and w, the initial conditions being µ(0) = 0 , D(0) = δ2
0.2553

The solution of (7.28) is then, for t � ~/2πT ,2554

t =

∫ µ

0

dµ′

v(µ′)
=

~
γT

∫ µ

0

dµ′

φ(µ′)[1 − µ′ coth φ(µ′)]
, (7.30)

where the function φ is defined by (7.25) with h = +g. Inversion of (7.30) provides the motion µ(t) of the peak of2555

P↑↑(m, t). For P↓↓, we have to change g into −g in (7.25), and µ (t) expressed by (7.30) is then negative.2556

If N is very large, the probabilistic nature of the registration process fades out and the magnetization is located2557

at µ(t) with near certainty. The evaluation of the time dependence of µ(t) may be proposed to students as an exercise2558

(§ 9.6.2). Results for quadratic coupling (q = 2) and for quartic coupling (q = 4), which exemplify second and2559

first-order transitions, respectively, are illustrated by Fig. 7.3 and by Fig. 7.4, respectively. The evolution from the2560

initial paramagnetic state to the final ferromagnetic state exhibits several stages, which will be studied in § 7.2.3 for2561

q = 2 and in § 7.2.4 for q = 4.2562

57What then is time? If no one asks me, I know what it is; if I wish to explain it to him who asks, I do not know
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Figure 7.3: The average magnetization µ(t) for a quadratic interaction (q = 2) goes from zero to m⇑. The time dependence, given by (7.30), results
from the local velocity of Fig. 7.1. The parameters are T = 0.65J and g = 0.05J, while the time scale is τJ = ~/γJ. One can distinguish the three
stages of §7.2.3, characterized by the first registration time τreg = [J/(J−T )] τJ = 2.86 τJ (eq. (7.44)) and the second registration time τ′reg = 8.4τJ
(eq. (7.48)): (i) Increase, first linearly as (g/J)(t/τJ) = 0.05t/τJ , then exponentially according to (7.42), with a coefficient mB = g/(J − T ) = 0.143
and a time scale τreg. After a delay of a few τreg, the coupling may be switched off without spoiling the registration. (ii) Rise, according to (7.47),
up to mF −

1
2 mB = 0.80 reached at the second registration time τ′reg. (iii) Exponential relaxation towards m⇑ = 0.90 (or mF = 0.87 if g is switched

off) according to (7.49) with the time scale 1.6τJ .
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Figure 7.4: The average magnetization µ(t) for a quartic interaction (q = 4) goes from zero to m⇑ ' 1. The time dependence, given by (7.30), results
from the local velocity of Fig. 7.2. The parameters are T = 0.2J and g = 0.045J while the time scale is τJ = ~/γJ. The characteristic registration
time τreg = 38τJ is now given by (7.52). (Note that it is much larger than for a quadratic interaction.) The initial increase of µ(t) takes place, first
linearly as (g/J) t/τJ = 0.045t/τJ , then slows down according to (7.51), with a coefficient g/J = 0.045 and a time scale τ1 = (g/J) τJ . The region
of mc = 0.268, where the drift velocity is small, is a bottleneck: around this point, reached at the time t = 1

2 τreg, the average magnetization µ(t)
lingers according to (7.53) where δmc = 0.11. It then increases rapidly so as to reach at the time τreg a value close to mF ' 1, and finally reaches
mF exponentially on the time scale τJ .



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 81

The width of the peak is obtained by regarding D as a function of µ(t) and by solving the equation for dD/dµ that2563

results from (7.28) and (7.29). This yields2564

D(µ) = v2(µ)
 δ2

0

v2(0)
+

∫ µ

0

dµ′ 2w(µ′)
v3(µ′)

 = φ2(µ)[1 − µ coth φ(µ)]2

 δ2
0

β2g2 +

∫ µ

0

dµ′ 2[coth φ(µ′) − µ′]
φ2(µ′)[1 − µ′ coth φ(µ′)]3

 . (7.31)

To analyze this evolution of D(t), we first drop the term in w from the equation of motion (7.1) of PM(m, t). This2565

simplified equation describes a deterministic flow in the space of m, with a local drift velocity v(m). For any initial2566

condition, its solution is the mapping2567

PM(m, t) =
1

v(m)

∫
dm′PM(m′, 0) δ

(
t −

∫ m

m′

dm′′

v(m′′)

)
, (7.32)

where m′ is the initial point of the trajectory that reaches m at the time t. For a distribution (7.10) peaked at all times,2568

we recover from (7.32) the motion (7.30) of the maximum of P↑↑(m, t) and the first term of the variance (7.31). If only2569

the drift term were present, the width of the peak would vary as v(µ): Indeed, in a range of m where the drift velocity2570

increases with m, the front of the peak progresses more rapidly than its tail so that the width increases, and conversely.2571

The second term of (7.31) arises from the term in w. Since w(m) is positive, it describes a diffusion which widens2572

the distribution. This effect of w is enhanced when v is small. In particular, by the end of the evolution when µ(t)2573

tends to a zero mi of v(m) with ∂v/∂m < 0, the competition between the narrowing through v and the widening2574

through w leads to the equilibrium variance D = −(dv/dµ)−1w, irrespective of the initial width. This value is given by2575

D−1 = (1 − m2
i )−1 − (q − 1)βJmq−2

i , in agreement with (3.56) and with (7.27).2576

We have noted that the drift velocity v(m) has at each point the same sign as −dF/dm, where F is the free energy2577

(3.54), and that the zeroes mi of v(m), which are the fixed points of the drift motion, coincide with the extrema of F.2578

At such an extremum, given by (3.55), we have2579

−
dv
dm

=
γ

N~
2φ(mi)

sinh 2φ(mi)
d2F
dm2 . (7.33)

The minima of F correspond to attractive fixed points, with negative slope of v(m), its maxima to repulsive points,2580

that is, bifurcations. In the present case of a narrow distribution, µ(t) thus increases from µ(0) = 0 to the smallest2581

positive minimum mi of F(m), which is reached asymptotically for large times. However, the present hypothesis of a2582

single narrow peak is valid only if P(m, t) lies entirely and at all times in a region of m free of bifurcations. We will2583

discuss in subsection 7.3 the situation where P lies astride a bifurcation, either at the initial time or a little later on, if2584

a tail due to diffusion crosses the bifurcation.2585

7.2.2. Threshold for the system-apparatus coupling; possibilities of failure2586

If you are not big enough to lose, you are not big enough to win2587

Walter Reuther2588

The measurement is successful only if P (m, t) ≡ P↑↑(m, t)/r↑↑(0), which is interpreted as the conditional probabil-2589

ity distribution for m if sz = +1, approaches for large times the narrow normalized peak (3.56) located at the positive2590

ferromagnetic solution m⇑ of (3.55) with h = +g, close to mF for g � T 58. This goal can be achieved only if (i) the2591

center µ(t) of the peak approaches m⇑; (ii) its width remains small at all times so that the above derivation is valid.2592

(i) The first condition is relevant only for a first-order transition (q = 4), since m⇑ is anyhow the only attractive2593

fixed point in the region m > 0 for a second-order transition (q = 2). For quartic interactions, the first minimum of2594

F(m) that occurs for increasing m is not necessarily m⇑ (Fig. 7.2). Indeed, we have seen (end of § 3.3.4 and Fig. 3.4)2595

that for a field lower than2596

hc = Tarctanh mc − Jm3
c ≈

2
3

Tmc, m2
c =

1
2
−

1
2

√
1 −

4T
3J
≈

T
3J

+
T 2

9J2 , (7.34)

58We recall Eq. (3.57) where m⇑ ' +1 and m⇓ ' −1 are defined as the fixed points at finite g, and mF and −mF as their g→ 0 limits, respectively
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the free energy F(m) has not only a ferromagnetic minimum at m⇑, but also a local paramagnetic minimum mP at a2597

smaller value of m. Hence, if the spin-apparatus coupling g is smaller than hc, µ(t) reaches for large times the locally2598

stable point mP in the sector ↑↑. It reaches −mP in the sector ↓↓, so that the apparatus seems to distinguish the values2599

sz = ±1 of S. However, if the coupling is switched off at the end of the process, the magnetization m of M returns to 02600

in both cases. The result of the measurement thus cannot be registered robustly for g < hc.2601

The center µ(t) of the peak may escape the region of the origin only if g > hc (Fig. 7.2). Relying on the smallness2602

of T/3J (equal to 0.121 at the transition temperature), we can simplify the expression of hc as in (7.34), so that this2603

threshold for g is (q = 4):2604

g > hc '
2T
3

√
T
3J
. (7.35)

Under this condition, the peak µ(t) of P↑↑(m, t) reaches for large times m⇑, close to the magnetization mF of the2605

ferromagnetic state. If the coupling g is removed sufficiently after µ(t) has passed the maximum of F(m), the peak is2606

expected to end up at mF. Likewise, the peak of P↓↓(m, t) reaches −mF at the end of the same process. The apparatus2607

is non-ergodic and the memory of its triggering by S may be kept forever under the necessary (but not sufficient)2608

condition (7.35).2609

(ii) The second requirement involves the width of the distribution P↑↑(m, t) and the location −mB < 0 of the2610

repulsive fixed point, at which F(m) is maximum. Consider first the pure drift flow (7.32) without diffusion, for which2611

−mB is a bifurcation. The part m > −mB of P↑↑(m, 0) is properly shifted upwards so as to reach eventually the vicinity2612

of the positive ferromagnetic value +mF; however its tail m < −mB is pushed towards the negative magnetization2613

−mF. If the relative weight of this tail is not negligible, false measurements, for which the value −mF is registered2614

by A although sz equals +1, can occur with a sizeable probability. Such a failure is excluded for q = 4, because mB2615

is then much larger than the width 1/
√

N of P↑↑(m, 0); for instance, in the case q = 4 we have mB = 0.544 for the2616

parameters T = 0.2J and g = 0.045J (which satisfy (7.35)). However, in the case q = 2 and g � J − T , the point2617

−mB with2618

mB '
g

J − T
, (7.36)

lies close to the origin (Fig. 7.1), and a risk exists that the initial Gaussian distribution in exp(−Nm2/2δ2
0) extends2619

below −mB if g is too small. The probability of getting a wrong result is significant if the condition δ0 � mB
√

N is2620

not fulfilled. We return to this point in § 7.3.3.2621

Moreover, in this case q = 2, the lower bound thus guessed for the coupling,2622

g = (J − T )mB �
(J − T )δ0
√

N
, (7.37)

is not sufficient to ensure a faithful registration. The diffusive process, which tends to increase D(t) and thus to thicken2623

the dangerous tail m < −mB of the probability distribution P↑↑(m, t), raises the probability of a false registration2624

towards −mF instead of +mF. In order to trust the Ansatz (7.10) and the ensuing solution (7.30), (7.31) for P↑↑(m, t),2625

we need D(t) to remain at all times sufficiently small so that P↑↑(m, t) is negligible for m < −mB. This is expressed,2626

when taking µ(t) as a variable instead of t, as2627

D(µ)
N(mB + µ)2 � 1 (7.38)

for any µ between 0 and mF: The width
√

D/N of the peak of P↑↑(m, t) should not increase much faster than its2628

position µ. For sufficiently small g, we have mB � mF, and we only need to impose (7.38) for times such that µ (t)2629

lies in an interval 0 < µ (t) < µmax such that mB � µmax � T/J. In this range we can evaluate D(µ) from (7.31) by2630

simplifying tanh φ(µ) into φ(µ), which yields2631

D(µ)
(mB + µ)2 =

δ2
0

m2
B

+
T

J − T

 1
m2

B

−
1

(mB + µ)2

 . (7.39)
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This ratio increases in time from δ2
0/m

2
B to δ2

1/m
2
B, where2632

δ2
1 = δ2

0 +
T

J − T
=

T0

T0 − J
+

T
J − T

, (7.40)

so that the left-hand side of (7.38) remains at all times smaller than δ2
1/Nm2

B. The lower bound on g required to exclude2633

false registrations is therefore (q = 2)2634

g �
(J − T )δ1
√

N
, (7.41)

a condition more stringent than (7.37) if J − T � J. Altogether, for q = 2 the system-apparatus coupling may for2635

large N be small, for instance as N1/3, provided it satisfies (7.41).2636

For q = 4, and more generally for a first-order transition (3J4 > J2), the lower bound found as (7.35) remains2637

finite for large N: A free energy barrier of order N has to be overpassed. Moreover, the diffusion hinders the trend2638

of m to increase and may push part of the distribution P↑↑(m, t) leftwards, especially its left tail, while its peak moves2639

rightwards. The widening of P↑↑(m, t) when the barrier is being reached should not be too large, and this effect raises2640

further the threshold for g. We shall show in § 7.2.4 that the condition (7.35) should thus be strengthened into (7.57).2641

Another difference between first- and second order transitions lies in the possible values of the temperature. For2642

q = 2, if T lies near the critical temperature J, the minima mi of F(m) are very sensitive to g and the ferromagnetic2643

value mF in the absence of a field is small as
√

3(J − T )/J. Using M as the pointer of a measurement apparatus2644

requires the temperature to lie sufficiently below J. For q = 4, registration is still possible if T lies near the transition2645

temperature, and even above, although in this case the ferromagnetic states are not the most stable ones for h = 0.2646

However, the coupling g should then be sufficiently strong.2647

7.2.3. The registration process for a second-order transition2648

Assuming g to satisfy (7.41) and mF to be significantly large, we resume the dynamics of P↑↑(m, t) for q = 2 so as2649

to exhibit its characteristic times. After a short delay of order ~/T , most of the process takes place in the Markovian2650

regime, and the Gaussian Ansatz (7.10) is justified. We can distinguish three stages in the evolution of P↑↑(m, t),2651

which are exhibited on the example of Figs. 7.3 and 7.5.2652

(i) During the first stage, as long as µ(t) � mF, we can replace φ(m) coth φ(m) by 1 in v and w, so that the drift2653

velocity v behaves (Fig. 7.1) as2654

v(m) ≈
γT
~

[g + Jm
T

− m
]

=
γ(J − T )(mB + m)

~
, (7.42)

and the diffusion coefficient as w ≈ γT/~. Integration of (7.30) then yields the motion2655

µ(t) ∼ mB(et/τreg − 1) =
g

J − T
(et/τreg − 1) (7.43)

for the center of the peak, with the characteristic time2656

τreg =
~

γ(J − T )
. (7.44)

After beginning to move as µ ∼ γgt/~, the distribution shifts away from the origin faster and faster. Once µ has2657

reached values of the order of several times mB, (J − T ) µ becomes larger than g, so that v(µ) does not depend much2658

on g. It little matters for the subsequent evolution whether the coupling g is present or not. Thus, after t/τreg reaches2659

2 or 3, the spin-apparatus coupling may be switched off and the increase of µ goes on nearly unchanged. In fact, the2660

distribution moves towards mF rather than m⇑, but mF−m⇑ is small, less than g/J. We shall call τreg the first registration2661

time. After it, M will necessarily reach the ferromagnetic state +mF, independent of S, although the evolution is not2662

achieved yet.2663

We have seen that during this first stage the width (7.39) is governed both by the drift which yields the factor2664

(mB + µ)2, increasing as e2t/τreg , and by the diffusion which raises δ0 up to δ1.2665
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(ii) During the second stage µ(t) rises rapidly from mB to mF, since the drift velocity v(µ) is no longer small. The2666

distribution has become wide, and its width is now governed mainly by the drift term. Matching D(µ) with (7.39) for2667

µ larger than mB yields the width2668 √
D(µ)

N
∼

τregδ1

mB
√

N
v(µ) =

~δ1

γg
√

N
v(µ), (7.45)

which varies proportionally to v (µ).The drift velocity v(m) first increases and then decreases as function of m (Fig.2669

7.1), down to 0 for m = m⇑ ' mF. Accordingly, the width D(t) increases as function of time, then decreases (Fig. 7.5).2670

The time dependence (7.30) of µ(t) and hence of D(t) is evaluated explicitly in the Appendix E.1, where µ is related2671

to t through Eq. (E.2), that is,2672

t
τreg

= ln
mB + µ

mB
+ a ln

m2
F

m2
F − µ

2
, (7.46)

where the coefficient a, given by2673

a =
T (J − T )

J[T − J(1 − m2
F)]
, (7.47)

lies between 1
2 and 1.2674

We define the second registration time τ′reg as the delay taken by the average magnetization µ(t) to go from the2675

paramagnetic value µ = 0 to the value mF −
1
2 mB close to mF. From the equation (7.46) that relates µ to t, we find this2676

second registration time, the duration of the second stage, much longer than the first, as2677

τ′reg = τreg(1 + a) ln
mF

mB
, (7.48)

(iii) The third stage of the registration, the establishment of thermal equilibrium, has been studied in § 7.1.32678

and § 7.1.4. While µ(t) tends exponentially to m⇑ (or to mF if the coupling g has been switched off), we saw that2679

the equilibrium width of P↑↑(m, t) is reached as a result of competition between the drift, which according to (7.45)2680

narrows the distribution, and the diffusion which becomes again relevant and tends to widen it. It is shown in the2681

Appendix E.1 that the final relaxation takes place, for times t − τ′reg ∼ τreg, according to2682

µ(t) = mF

1 − 1
2

(
mF

mB

)1/a

exp
(
−

t
aτreg

) . (7.49)

At low temperatures, T � J, we have mF ∼ 1, mB ∼ g/J, a ∼ 1. If T lies close to the transition temperature,2683

J − T � J, we have m2
F ∼ 3(J − T )/J, mB = g/(J − T ) and a ∼ 1

2 .2684

The above scenario for the registration process is illustrated by Fig. 7.5 which represents a numerical solution of2685

the equation for P (m, t) = P↑↑(m, t)/r↑↑ (0). The curves exhibit the motion from 0 to mF of the center µ(t) of the peak2686

(also shown by Fig. 7.3), its large initial widening, the intermediate regime where the width
√

D(t)/N is proportional2687

to µ(t), and the final adjustment of µ and D to their equilibrium values in the ferromagnetic state. Except near the2688

initial and final state, the width is not small although we have taken a fairly large value N = 1000, but one can see that2689

the Gaussian approximation used for P↑↑(m, t) is sufficient and that the resulting formulae given above for µ(t) and2690

D(t) fit the curves. While a mean-field theory neglecting the fluctuations is satisfactory at equilibrium, the dynamics2691

entails large fluctuations of m at intermediate times.2692

7.2.4. The registration process for a first-order transition2693

The process is different when the interaction is quartic (q = 4), a case that we chose to exemplify the first-order2694

transitions which occur when 3J4 > J2. The spin-apparatus coupling g must then at least be larger than the threshold2695

(7.35) to ensure that v(m) remains positive up to m⇑, which now lies near mF ' 1 (Figs. 3.3 and 7.2). At the beginning2696

of the evolution, we find from v(m) ≈ (γ/~)(g − Tm), using g � T , the motion2697
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Figure 7.5: The registration process for a quadratic interaction (q = 2). The probability density P(m, t) = P↑↑(m, t)/r↑↑(0) for the magnetization m
of M is represented at different times. The parameters were chosen as N = 1000, T = 0.65J and g = 0.05J as in Figs. 7.1 and 7.3. The time scale is
here the registration time τreg = ~/γ(J − T ) = 2.86 τJ . After a few times τreg the evolution is no longer sensitive to the system-apparatus coupling
g. In the initial fully disordered paramagnetic state (T0 = ∞), P(m, 0) is a Gaussian centered at m = 0 with width 1/

√
N. In the course of time,

the peak of P considerably widens, then narrows and reaches eventually the equilibrium ferromagnetic distribution with positive magnetization
m⇑ = 0.90, which is given by (3.56). The repulsive fixed point lies at −mB with mB = 0.14 and no weight is found below this. The second
registration time, at which µ(t) reaches 0.80, is τ′reg = 3τreg. It is seen that beyond this, the peak at m⇑ quickly builds up.

µ(t) ≈
g
T

(1 − e−t/τ1 ), τ1 =
~
γT

. (7.50)

Like for q = 2, the peak shifts first as µ ∼ γgt/~, but here its motion slows down as t increases, instead of escaping2698

more and more rapidly off the paramagnetic region, as exhibited on the example of Figs. 7.4 and 7.6. Extrapolation2699

of (7.50) towards times larger than τ1 is not possible, since µ would then not go beyond g/T , and could not reach mF.2700

In fact, v(m) does not vanish at m = g/T as implied by the above approximation but only decreases down to a positive2701

minimum near mc ' 3hc/2T according to (7.34). The vicinity of mc is thus a bottleneck for the motion from µ = 0 to2702

µ = 1 of the peak of P↑↑(m, t): This motion is the slowest around mc. The determination of the evolution of P↑↑(m, t),2703

embedded in µ(t) and D(t), and the evaluation of the registration time thus require a control of the shape of v(m), not2704

only near its zeroes, but also near its minimum (Fig. 7.2).2705

Let us recall the parameters which characterize v(m). For g = 0, it has 5 zeroes. Three of them correspond to2706

the attractive fixed points ±mF ' ±1 and 0 associated with the ferromagnetic and paramagnetic states. The other two2707

are repulsive, producing a bifurcation in the flow of P(m, t); they are located at m ' ±
√

T/J, that is, at m ' ±mc
√

32708

according to (7.34). When g increases and becomes larger than hc, there remain the two ferromagnetic points, while2709

the repulsive point −mc
√

3 is shifted towards −mB ' −2mc. The paramagnetic point and the repulsive point mc
√

32710

converge towards each other, giving rise to the minimum of v(m) near m = mc. The value of v(m) at this minimum is2711

expressed by2712

~
γT

v(mc) '
δm2

c

mc
, δmc '

√
(g − hc)mc

T
, hc '

2
3

Tmc, mc =

√
T
3J
. (7.51)

We construct in Appendix E.2, for δmc � mc and mc small, a parametrization of v(m) which reproduces all these2713

features, so as to derive an algebraic approximation (E.12) which expresses the time dependence of µ(t) over all times.2714

After the initial evolution (7.50) of µ(t) for t � τ1 = ~/γT , the motion of the peak P↑↑(m, t) is characterized by a2715

much larger time scale. We define the registration time as2716

τreg =
π~
γT

√
mcT

g − hc
. (7.52)
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The bottleneck stage takes place around 1
2τreg. Between the times t = 1

4τreg and t = 3
4τreg, the average magnetization2717

µ(t) lingers in the narrow range mc ± δmc, according to (Fig. 7.4)2718

µ(t) = mc − δmccotan
πt
τreg

. (7.53)

It is shown in Appendix E.2 that, under the considered conditions on the parameters, µ(t) rises thereafter rapidly2719

according to (E.15), and that the full time taken by the peak µ(t) of P↑↑(m, t) to go from 0 to the close vicinity of 1 is2720

τreg (Eq. (7.52)). It is also shown in Appendix E.2 that the final relaxation takes place on the short time scale ~/γJ.2721

We have focused on the location of the peak of P↑↑(m, t). The consideration of its width D(t) is essential to2722

determine when S and A may be decoupled. During the bottleneck stage, the sole drift effect would produce a2723

narrowing of D(t) around t = 1
2τreg expressed by the first term of (7.31), but the smallness of v(m) enhances the2724

second term, so that the diffusion acts during a long time and produces a large widening of D(t). By using the2725

parabolic approximation for v(m), which is represented by the first term of (E.11), and by replacing w(m) by γT/~,2726

we obtain, with µ(t) expressed by (7.53),2727

D(µ) ∼ 2mc

[
(µ − mc)2 + δm2

c

] ∫ µ

0

dµ′

[(µ′ − mc)2 + δm2
c]3

. (7.54)

After the bottleneck has been passed, the diffusion may again be neglected. From (7.31) and (7.54), we find for all2728

values of µ(t) such that µ − mc � δmc2729

D(µ) ∼
3π~2m3

c

4γ2T 2δm5
c

v2(µ) =
3π
√

Tmc

4(g − hc)5/2 (Jµ3 + g)2[1 − µ coth β(Jµ3 + g)]2, (7.55)

where we used (7.6), (7.51) and (4.24). Without any diffusion, the coefficient of v2(µ) would have been 1/v2(0) =2730

9~2/4γ2T 2m2
c ; both factors v(µ) are multiplied by the large factor

√
π/3(mc/δmc)5/2 due to diffusion.2731

The distribution P↑↑(m, t) thus extends, at times larger than 3
4τreg, over the region µ(t) ±

√
D(t)/N. The first2732

registration time has been defined in § 7.2.3 as the time after which S and A can be decoupled without affecting the2733

process. When g is switched off (g → 0), a repulsive fixed point appears at the zero m = mc
√

3 of v(m). In order to2734

ensure a proper registration we need this decoupling to take place after the whole distribution P↑↑(m, t) has passed this2735

bifurcation, that is, at a time toff such that2736

µ(toff) −
√

D(toff)/N > mc
√

3. (7.56)

The time dependence (E.15) of µ shows that the lower bound of toff is equal to τreg within a correction of order2737

τ1 � τreg. Moreover, we need the distribution to be sufficiently narrow so that (7.56) is satisfied after g is switched2738

off. Taking for instance µ(toff) = 2mc, which according to (E.15) is reached at the time toff = τreg(1 − 0.25 δmc/mc),2739

we thus find, by inserting (7.55) with µ = 2mc and g ' hc into (7.56), by using (7.51) and evaluating the last bracket2740

of (7.55) for mc = 0.268, a further lower bound for the coupling g in our first order case q = 4:2741

g − hc

hc
� 8

( J
NT

)2/5

. (7.57)

The first registration time, which governs the possibility of decoupling, and the second one, which is the delay2742

after which the pointer variable approaches the equilibrium value, are therefore nearly the same, namely τreg, contrary2743

to the case q = 2 of a second order transition (§ 7.2.3).2744

The registration process for q = 4 is illustrated by Figs. 7.4 and 7.6, obtained through numerical integration. The2745

time dependence of µ(t) as well as the widening of the distribution are influenced by the existence of the minimum2746

for the drift velocity. Although in this example g lies above the threshold hc, N is not sufficiently large to fulfil the2747

condition (7.57). The widening is so large that a significant part of the weight P(m, t) remains for a long time below2748

the bifurcation mc
√

3 which appears when g is switched off. The bound (7.57) was evaluated by requiring that such a2749

switching off takes place after the average magnetization µ passes 2mc = 0.54. Here however, for N = 1000, T = 0.2J2750



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 87

and g = 0.045J, the bound is very stringent, since we cannot switch off g before µ has reached (at the time 1.09τreg2751

found from (E.15)) the value 1 − 13 · 10−5, close to the equilibrium value mF = 1 − 9 · 10−5.2752

Altogether, for q = 2 as well as for q = 4, we can check that the approximate algebraic treatment of §§ 7.2.3 and2753

7.2.4 fits the numerical solution of Eq. (7.1) exemplified by the figures 7.3 to 7.6. In both cases, the registration times2754

(7.44) and (7.48) for q = 2 or (7.52) for q = 4, which characterize the evolution of the diagonal blocks of the density2755

matrix of the total system D̂, are much longer than the truncation time (5.6) over which the off-diagonal blocks decay.2756

Two reasons conspire to ensure this large ratio: the weakness of the coupling γ between magnet and bath, which2757

makes τreg large; and the large value of N, which makes τtrunc small.2758
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Figure 7.6: The registration process for quartic interactions (q = 4). The probability density P(m, t) = P↑↑(m, t)/r↑↑(0) as function of m is
represented at different times up to t = 1.5 τreg. The parameters are chosen as N = 1000, T = 0.2J and g = 0.045J as in Fig 7.4. The time scale is
here the registration time τreg = 38τJ = 38~/γJ, which is large due to the existence of a bottleneck around mc = 0.268. The coupling g exceeds
the critical value hc = 0.0357J needed for proper registration, but since (g − hc)/hc is small, the drift velocity has a low positive minimum at 0.270
near mc (Fig. 7.2). Around this minimum, reached at the time 1

2 τreg, the peak shifts slowly and widens much. Then, the motion fastens and the
peak narrows rapidly, coming close to ferromagnetism around the time τreg, after which equilibrium is exponentially reached.

7.3. Giant fluctuations of the magnetization2759

Be the change that you want to see in the world2760

Mohandas Gandhi2761

We have studied in subsection 7.2 the evolution of the probability distribution P(m, t) = P↑↑(m, t)/r↑↑(0) of the2762

magnetization of M in case this distribution presents a single peak (7.10) at all times. This occurs when P(m, t) always2763

remains entirely located, except for negligible tails, on a single side of the bifurcation −mB of the drift flow v(m). We2764

will now consider the case of an active bifurcation [241, 242, 243, 244, 245]: The initial distribution is split during2765

the evolution into two parts evolving towards +mF and −mF. This situation is relevant to our measurement process for2766

q = 2 in regard to two questions: (i) How fast should one perform the cooling of the bath before the initial time, and2767

the switching on of the system-apparatus interaction around the initial time? (ii) What is the percentage of errors of2768

registration if the coupling g is so small that it violates the condition (7.41)?2769

7.3.1. Dynamics of the invariance breaking2770

In order to answer the above two questions, we first determine the Green’s function for the equation of motion2771

(7.1) which governs P(m, t) for q = 2 in the Markovian regime. This will allow us to deal with an arbitrary initial2772

condition. The Green’s function G(m,m′, t − t′) is characterized by the equation2773

∂

∂t
G(m,m′, t − t′) +

∂

∂m
[v(m)G(m,m′, t − t′)] −

1
N

∂2

∂m2 [w(m)G(m,m′, t − t′)] = δ(m − m′)δ(t − t′), (7.58)
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with G(m,m′, t− t′) = 0 for t < t′. We have replaced the initial time 0 by a running time t′ in order to take advantage of2774

the convolution property of G. The functions v(m) and w(m) defined by (7.6) and (7.7) involve a field h which stands2775

either for an applied external field if A = M+B evolves alone (a case that could appear but which we do not consider),2776

or for ±g if we consider P↑↑ or P↓↓ if A is coupled to S during the measurement. We wish to face the situation in which2777

P(m, t) lies, at least after some time, astride the bifurcation point −mB = −h/(J − T ). Such a situation has extensively2778

been studied [241, 242, 243, 244, 245], and we adapt the existing methods to the present problem which is similar to2779

Suzuki’s model.2780

We first note that the initial distribution P(m, t′ = 0) is concentrated near the origin, a property thus satisfied by2781

the variable m′ in G(m,m′, t). In this region, it is legitimate to simplify v(m′) and w(m′) into2782

v(m′) ≈
γ

~
[h + (J − T )m′], w(m′) ≈

γT
~
, (7.59)

where we also used h � T . In order to implement this simplification which holds only for m′ � 1, we replace the2783

forward equation (7.58) in terms of t which characterizes G(m,m′, t − t′) by the equivalent backward equation, for2784

∂G(m,m′, t − t′)/∂t′, in terms of the initial time t′ which runs down from t to 0. This equation is written and solved in2785

Appendix F. The distribution P(m, t) is then given by2786

P(m, t) =

∫
dm′G(m,m′, t)P(m′, 0). (7.60)

We derive below several approximations for P(m, t), which are valid in limiting cases. These various results are2787

encompassed by the general expression (F.13)–(F.15) for P(m, t), obtained through the less elementary approach of2788

Appendix F.2789

As in § 7.2.3, the evolution takes place in three stages [241, 242, 243, 244, 245]: (i) widening of the initial2790

distribution, which here takes place over the bifurcation −mB; (ii) drift on both sides of −mB towards +mF and −mF;2791

(iii) narrowing around +mF and −mF of the two final peaks, which evolve separately towards equilibrium. We shall2792

not need to consider here the last stage, the approach to quasi-equilibrium, that we studied in § 7.1.4.2793

The probability distribution P(m, t) is thus expressed in terms of the initial distribution P(m, 0) by (7.60), at all2794

times, except during the final equilibration. If P(m, 0) is a narrow Gaussian peak centered at m = µ0 with a width2795

δ0/
√

N, we can use the expression (F.10) of G, which yields2796

P(m, t) =
v(µ′)
v(m)

√
N
2π

1
δ1(t)

exp
−N

2
(µ′ − µ0)2

δ2
1 (t)

 . (7.61)

The function µ′(m, t) is defined for arbitrary values of m by2797

t =

∫ m

µ′(m,t)

dm′′

v(m′′)
, (7.62)

while the variance that enters (7.61) is determined by2798

δ2
1(t) ≡ δ2

0 +
T

J − T
(1 − e−2t/τreg ) ≡ δ2

1 −
T

J − T
e−2t/τreg , δ2

1 ≡
T0

T0 − J
+

T
J − T

. (7.63)

With time, it increases from δ2
0/N to δ2

1/N.2799

7.3.2. Spontaneous relaxation of the initial paramagnetic state2800

The registration process that we studied in § 7.2.3 is the same as the relaxation, for q = 2 and T < J, of the2801

initial paramagnetic state (3.48) towards the positive ferromagnetic state +mF in the presence of a sufficiently large2802

positive external field h. We now consider the situation in which A evolves in the absence of a field. The process will2803

describe the dynamics of the spontaneous symmetry breaking, which leads from the unstable symmetric paramagnetic2804

distribution PM(m, 0) to the ferromagnetic distribution (3.56) for +mF and −mF, occurring with equal probabilities.2805

We present below an approximate analytic solution, and illustrate it by Fig. 7.7 which relies on a numerical solution.2806
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Figure 7.7: Relaxation of an unstable paramagnetic state (q = 2) in the absence of a field (g = 0). The probability distribution PM(m, t) is
represented at several times. As in Figs. 7.3 and 7.5 the parameters are N = 1000 and T = 0.65J. First the Gaussian paramagnetic peak around
m = 0 with width 1/

√
N widens considerably. Around t = τflat = 2.2τreg, the distribution extends over most of the interval −mF,+mF (mF = 0.872)

and is nearly flat. Then, two peaks progressively build up, moving towards −mF and +mF. Finally each peak tends to the Gaussian ferromagnetic
equilibrium shape, the curves at t = 10τreg and 25τreg basically coincide.

Apart from the final stage, the result is given by (7.61) with µ0 = 0, δ2
0 = T0/(T0 − J), and v(m) = (γ/~)Jm[1 −2807

m coth(Jm/T )]. During the first stage, we have v(m) ∼ m/τreg and hence µ′ ∼ me−t/τreg , so that (7.61) reduces to2808

PM(m, t) =

√
N
2π

e−t/τreg

δ1 (t)
exp

−Nm2e−2t/τreg

2δ2
1(t)

 . (7.64)

On the time scale τreg = ~/γ(J − T ), this distribution widens exponentially, with the variance2809

1
N

[
δ2

1e2t/τreg −
T

J − T

]
, δ2

1 ≡
T0

T0 − J
+

T
J − T

. (7.65)

As in § 7.2.3, the widening is first induced by the diffusion term, which is then relayed by the gradient of the drift2810

velocity v(m). However, the effect is much stronger here because the distribution remains centered around m = 0.2811

In fact, at times of order τreg ln
√

N, the width of the peak of PM(m, t) is no longer of order 1/
√

N, but it is finite2812

for large N. If we define the lifetime τpara of the paramagnetic state as the delay during which this width is less that2813

α, say α = 1/10, it equals (for α
√

N � 1)2814

τpara = τreg lnα
√

N =
~

γ(J − T )
lnα
√

N. (7.66)

The second stage of the evolution is then reached (Fig. 7.7). An analytic expression of PM(m, t) can then be found2815

by using the Mittag-Leffler approximation (E.1) for v(m) (with h = 0). The relation between µ′, m and t becomes2816

t
τreg

= ln
m
µ′

+ a ln
m2

F − µ
′2

m2
F − m2

, (7.67)

where the coefficient a, defined by (7.47), lies between 1
2 for J −T � J and 1 for T � J. In this stage, when t � τreg,2817

the distribution2818

PM(m, t) =
µ′(m2

F − µ
′2)

m(m2
F − m2)

m2
F + (2a − 1)m2

m2
F + (2a − 1)µ′2

√
N

2πδ2
1

exp
−Nµ′2

2δ2
1

 , (7.68)

depends on time only through µ′. It flattens while widening. In particular, around the time2819

τflat = τreg ln

mF

δ1

√
N
6a

 , (7.69)
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it behaves for small m as2820

PM(m, t) ≈
1

mF

√
3
π

e−(t−τflat)/τreg

1 +
3am2

m2
F

[
1 − e−2(t−τflat)/τreg

]
+ O

m4

m4
F

 . (7.70)

When t reaches τflat, the distribution PM(m, τflat) has widened so much that it has become nearly flat: The probabilities2821

of the possible values (3.22) of m are nearly the same on a range which extends over most of the interval −mF, +mF.2822

This property agrees with the value of 1
2 NPM(0, τflat) = 0.98/mF; the coefficient of the term in (m/mF)4, equal to2823

−a(8a − 5
2 ), yields a correction −(0.93 m/mF)4 for small mF, −(1.53 m/mF)4 for large mF.2824

When t increases beyond τflat, the distribution begins to deplete near m = 0 and two originally not pronounced2825

maxima appear there (Fig. 7.7), which move apart as2826

m = ±mF

√
6(t − τflat)

(16a − 5)τreg
. (7.71)

They then become sharper and sharper as they move towards ±mF. When they get well separated, PM(m, t) is concen-2827

trated in two symmetric regions, below mF and above −mF, and it reaches a scaling regime [241, 242, 243, 244, 245]2828

in which (for m > 0)2829

µ′(m, t) ∼ mFe−t/τreg

[
mF

2(mF − m)

]2

(7.72)

is small, of order 1/
√

N. If we define, with a ( 1
2 < a < 1) given by Eq. (7.47),2830

ξ(m, t) ≡

√
N
2
µ′(m, t)
δ1

=
√

3a
[

mF

2(mF − m)

]a

e−(t−τflat)/τreg , (7.73)

PM(m, t) takes in the region m > 0, ξ > 0, the form2831

PM(m, t) ≈
1
√
π

∂ξ

∂m
e−ξ

2
. (7.74)

Its maximum lies at the point mmax given by2832

ξ(m, t) =

√
a + 1

2a
,

mF − mmax

mF
=

1
2

(
6a2

a + 1

)1/(2a)

e−(t−τflat)/aτreg , (7.75)

which approaches mF exponentially, and its shape is strongly asymmetric. In particular, its tail above mmax is short,2833

whereas its tail below mmax extends far as 1/(mmax − m)a+1; only moments 〈(mF − m)k〉 with k < a exist.2834

After a delay of order aτreg ln
√

N, the width of the peaks of PM(m, t) and their distance to ±mF reach an order of2835

magnitude 1/
√

N. The diffusion term becomes active, and each peak tends to the Gaussian shape (3.56) as in § 7.1.4.2836

This crossover could be expressed explicitly by writing the Green’s function for m and m′ near mF (as we did near 0 in2837

§ 7.3.1) and by taking (7.74) as initial condition. All the above features fit the numerical solution shown by Fig. 7.7.2838

In our measurement problem, q = 2, the above evolution begins to take place at the time −τinit at which the2839

apparatus is initialized (§ 3.3.3). Before t = −τinit, paramagnetic equilibrium has been reached at the temperature2840

T0 > J, and the initial distribution of m is given by (3.48), (3.49) (3.51). The sudden cooling of the bath down to the2841

temperature T < J lets the evolution (7.64) start at the time −τinit. We wish that, at the time t = 0 when the coupling2842

g is switched on and the measurement begins, the distribution PM(m, 0) is still narrow, close to (3.48). We thus need2843

δ1(τinit) to be of the order of δ0, that is,2844

2τinit

τreg
< δ2

0
J − T

T
=

T0

T0 − J
J − T

T
. (7.76)

The bath should be cooled down and the system-apparatus interaction ĤSA should be switched on over a delay τinit2845

not larger than the registration time τreg = ~/γ(J − T ).2846
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The situation is more favourable in case the initial depolarized state of the spins of M is generated by a radiofre-2847

quency field rather than through equilibration with the phonon bath at a high but finite temperature T0. In this case,2848

a sudden cooling of the bath at the time −τinit is not needed. The bath can beforehand be cooled at the required2849

temperature T lower than Tc = J. At the time −τinit, the spins are suddenly set by the field into their most disordered2850

state, a process which hardly affects the bath since γ � 1. The above discussion then holds as if T0 were infinite.2851

If a weak field h0 is accidentally present during the preparation by thermalization of the initial paramagnetic state,2852

it should not produce a bias in the measurement. This field shifts the initial expectation value 〈m〉 of m from 0 to2853

µ0 = h0/(T0 − J), which enters (7.61). At the time 0, 〈m〉 has become µ0 exp(τinit/τreg), so that the residual field h0 is2854

ineffective provided µ0 < δ0, that is for2855

h0 <

√
T0(T0 − J)

N
. (7.77)

The success of the measurement process thus requires the conditions (7.76) and (7.77) on the parameters τinit, T0, h02856

that characterize the preparation of the initial state of the apparatus.2857

For a quartic interaction (q = 4), the initial paramagnetic state is metastable rather than unstable. Its spontaneous2858

decay in the absence of a field requires m to cross the potential barrier of the free energy which ensures metastability,2859

as shown by Fig. 3.3. At temperatures T below the transition point but not too low, the dynamics is governed by an2860

activation process, with a characteristic duration of order (~/γJ) exp(∆F/T ), where ∆F is the height of the barrier, for2861

instance ∆F = 0.054NT for T = 0.2J. The lifetime of the paramagnetic state is thus exponentially larger than the2862

registration time for large N, so that there is no hurry in performing the measurement after preparation of the initial2863

state.2864

7.3.3. Probability of wrong registrations for second order phase transitions of the magnet2865

We have seen (§ 7.2.3) how the magnet M, under the conjugate effect of B and S, reaches quasi certainly the2866

final magnetization +mF in the sector ↑↑ where sz = +1, provided g is not too small. We expect that if the condition2867

(7.41) on g is violated, the apparatus will indicate, with some probability P−, the wrong magnetization −mF, although2868

sz = +1. The evolution of P↑↑(m, t) in such a situation is illustrated by Fig. 7.8. A similar failure may occur if the2869

average magnetization µ0 in the initial state is not 0 but takes a negative value due to a biased preparation.2870
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Figure 7.8: Wrong registration for quadratic interactions (q = 2). The probability distribution P(m, t) is represented at different times for the
same parameters N = 1000 and T = 0.65 as in Fig. 7.5, but the coupling g = 0.03J is now sufficiently weak so that the apparatus registers the
magnetization −mF with a significant probability P−, although the system has a spin sz = +1. Like in Fig. 7.7, the probability distribution flattens
before the two ferromagnetic peaks emerge (with weights P+ and P−).

The probability P− of a wrong registration −mF for sz = +1 arises from values m < mB < 0 and reads2871

P− =

∫ mB

−1
dm

P↑↑(m, t)
r↑↑ (0)

≡

∫ mB

−1
dm P (m, t) , (7.78)
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where the time t is in principle such that P↑↑(m, t) has reached its equilibrium shape, with two peaks around +mF2872

and −mF. In fact, we do not need the final equilibrium to have been reached since (7.78) remains constant after P↑↑2873

has split into two separate parts. And even the latter condition is not necessary: After the time τreg the diffusion term2874

becomes inactive and the evolution of P↑↑(m, t) is governed by the pure drift Green’s function (F.7); then there is no2875

longer any transfer of weight across the bifurcation −mB = −g/(J − T ). We can therefore evaluate (7.78) at the rather2876

early stage when the distribution has not yet spread out beyond the small m region where (7.59) holds, provided we2877

take t � τreg.2878

We thus use the expression (7.61) of P↑↑(m, t) valid during the first stage of the process, which reads2879

P(m, t) = e−t/τreg

√
N
2π

1
δ1(t)

exp
− N

2δ2
1(t)

[
(m + mB)e−t/τreg − mB − µ0

]2
 . (7.79)

By taking (m + mB)e−t/τreg as variable we check that the integral (7.78) depends on time only through the exponential2880

in (7.63), so that it remains constant as soon as t � τreg, when the second stage of the evolution is reached. We2881

eventually find:2882

P− =
1
2

erfc λ, λ ≡

√
N
2

1
δ1

(mB + µ0), (7.80)

where the error function, defined by2883

erfc λ =
2
√
π

∫ ∞

λ

dξe−ξ
2
, (7.81)

behaves for λ � 1 as2884

erfc λ ∼
1
√
πλ

e−λ
2
. (7.82)

The diffusion which takes place during the first stage of the evolution has changed in (7.80) the initial width δ0 into2885

δ1, given by (7.40).2886

For µ0 = 0, the probability of error becomes sizeable when
√

Ng/J is not sufficiently large. For example, for T =2887

0.65J and g = 0.03J, we find numerically P− = 21%, 13%, 5.4%, 1.15% and 0.065% for N = 250, 500, 1000, 20002888

and 4000, respectively. These data are reasonably fitted by the approximation P−(N) = 1.2 N−1/4 exp(−0.0014N) for2889

(7.80). The result for N = 1000 is illustrated by the weight of the peak near −mF in Fig. 7.8. False registrations were2890

also present with the data of Fig. 7.5 (N = 1000, T = 0.65J, g = 0.05J), with a probability P− = 0.36%, but the effect2891

is too small to be visible on the scale of the figure.2892

The occurrence of a negative µ0 increases P−, an effect which, with the above data, becomes sizeable for |µ0| ∼2893

0.05. For P↓↓ the percentage of errors is given by (7.80) with µ0 changed into −µ0 in λ.2894

We write for completeness in Appendix F the evolution of the shape of P(m, t). This is not crucial for the mea-2895

surement problem (for which P↑↑ (m, t) = r↑↑ (0) P (m, t)), but it is relevant for the dynamics of the phase tran-2896

sition, depending on the initial conditions and on the presence of a parasite field. Here again, Suzuki’s regime2897

[241, 242, 243, 244, 245], where the distribution is no longer peaked, is reached for t � τreg. Now P(m, t) is2898

asymmetric, but it still has a quasi linear behavior in a wide range around m = 0 when τ ' τflat (see Eqs. (7.69),2899

(7.70)).2900

7.3.4. Possible failure of registration for first order transitions2901

Quem não tem cão, caça com gato 59
2902

Portuguese proverb2903

The situation is quite different for first-order transitions (q = 4) as regards the possibility of wrong registrations.2904

Note first that F(m) has a high maximum for negative m between 0 and m⇓ < 0 (Figs. 3.3 and 3.4), which constitutes a2905

practically impassable barrier that diffusion is not sufficient to overcome. Accordingly, the zero of v(m) at m = −mB '2906

−2mc is a repulsive fixed point (Fig.7.2 and § 7.2.4), which prevents the distribution from developing a tail below it.2907

We shall therefore never find any registration with negative ferromagnetic magnetization in the sector sz = +1.2908

59If you don’t have a dog, hunt with a cat
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Figure 7.9: Failure of measurement for quartic interactions (q = 4). The probability distribution P(m, t) is represented at times up to 10 τJ , where
τJ = ~/γJ. The parameters are N = 1000 and T = 0.2 as in Figs. 7.4 and 7.6, but here g = 0.01J lies below the threshold hc. The peak evolves
towards metastable paramagnetic equilibrium in the presence of the field g, but g is too small to allow crossing the barrier and reaching the more
stable ferromagnetic equilibrium around mF ' 1. Switching off the coupling g brings back the distribution to its original place around 0, so that no
proper registration is achieved.

Nevertheless, we have seen (§ 7.2.2) that registration is possible only if the coupling g exceeds hc. For g < hc,2909

the peak of P(m) initially at m = 0 moves upwards in the sector ↑↑ associated with sz = +1 (Fig. 7.9), and ends2910

up by stabilizing at the first attractive point encountered, at m = mP (Fig. 7.2). Symmetrically, the distribution of2911

P↓↓(m) ends up at −mP. However this difference between the two values of sz cannot be regarded as a registration2912

since switching off the coupling g between S and A brings back both distributions P↑↑ and P↓↓ to the initial Gaussian2913

shape around m = 0. The apparatus A then always relaxes back to the locally stable paramagnetic state.2914

Finally, if the coupling g, although larger than the threshold hc, is close to it, the registration takes place correctly2915

provided this coupling remains active until the distribution P↑↑(m) has completely passed the bifurcation mc
√

3 oc-2916

curring for g = 0 (Eq. (7.56)). The lower bound toff of the time when g can thus be safely switched off is close to τreg2917

(which is also close to the time needed to reach ferromagnetic equilibrium).2918

In case S and A are decoupled too early, so that the condition (7.56) is violated, the tail of P↑↑(m, t) lying below2919

the bifurcation m = mc
√

3 is pushed back towards the paramagnetic region m ≈ 0. If the decoupling g → 0 is made2920

suddenly at the time toff , the probability P0 of such events can be evaluated as in § 7.3.3 in terms of the error function2921

by integration of P↑↑(m, toff) from m = −1 up to mc. It represents the probability of aborted measurement processes,2922

for which the apparatus returns to its neutral paramagnetic state without giving any indication, while S is left in the2923

state | ↑〉. In a set of repeated measurements, a proportion P0 of runs are not registered at all, the other ones being2924

registered correctly.2925

7.3.5. Erasure of the pointer indication2926

As shown in §§ 7.2.3 and 7.2.4, the registration is achieved at a time tf sufficiently larger than the delay τreg after2927

which S and M have been decoupled. The state D̂(tf) of S + A is then given by the expected expression (1.7). Within2928

the considered approximations, the distributions P↑↑(m, t) and P↓↓(m, t) no longer evolve for t > tf , and remain fully2929

concentrated near mF and −mF, respectively, so that the results can be read out or processed at any observation time2930

tobs > tf . However, the breaking of invariance, on which we rely to assert that the two ferromagnetic states of the2931

pointer are stationary, is rigorous only in the large N limit. Strictly speaking, for finite N, the states R̂M⇑ and R̂M⇓2932

reached by M at this stage in each sector are not in equilibrium (though they may have a long lifetime). Indeed,2933

in the Markovian regime, we have shown in § 7.1.3 that the evolution of M under the influence of the thermal bath2934

cannot stop until PM(m, t) becomes proportional to G(m) exp[−βE(m)], with E(m) = −JNq−1mq. Otherwise, the time-2935

derivative (7.21) of the free energy F(m) of the state R̂M(t) cannot vanish. The limit reached by R̂↑↑(t)/r↑↑(0) (and of2936

R̂↓↓(t)/r↓↓(0)) is then 1
2 (R̂M⇑+ R̂M⇓). Hence, when the latter true equilibrium state for finite N is attained, the indication2937

of the pointer is completely random. We have lost all information about the initial state of S, and the spin S has been2938

completely depolarized whatever its initial state: the result of the measurement has been washed out. We denote as2939
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τeras the characteristic time which governs this erasure of the indication of the pointer.2940

It is therefore essential to read or process the registered data before such a loss of memory begins to occur60. The2941

observation must take place at a time tobs much shorter than the erasure time:2942

τreg < tf < tobs � τeras. (7.83)

The dynamics of the erasure, a process leading M from R̂M⇑ or R̂M⇓ to the state 1
2 (R̂M⇑ + R̂M⇓) of complete2943

equilibrium, is governed by the Eq. (4.16) for PM(m, t) (with K̃t(ω) replaced by K̃(ω) and g = 0), which retains the2944

quantum character of the apparatus. We will rely on this equation in subsection 8.1 where studying the Curie–Weiss2945

model in the extreme case of N = 2. For the larger values of N and the temperatures considered here, we can use its2946

continuous semi-classical limit (7.1), to be solved for an initial condition expressed by (3.54) with mi = mF or −mF.2947

Here we have to deal with the progressive, very slow leakage of the distribution PM(m, t) from one of the ferromagnetic2948

states to the other through the free energy barrier that separates them. This mechanism, disregarded in §§ 7.2.3, 7.2.4,2949

7.3.3 and 7.3.4, is controlled by the weak tail of the distribution PM(m, t) which extends into the regions of m where2950

F(m) is largest. The drift term of (7.1) alone would repel the distribution P↑↑(m, t) and keep it concentrated near mF.2951

An essential role is now played by the diffusion term, which tends to flatten this distribution over the whole range of2952

m, and thus allows the leak towards −mF. Rather than solving this equation, it will be sufficient for our purpose to2953

rely on a semi-phenomenological argument: Under the considered conditions, the full equilibration is an activation2954

process governed by the height of the free energy barrier. Denoting as ∆F the difference between the maximum of2955

F(m) and its minimum, Fferro, we thus estimate the time scale of erasure as:2956

τeras ∼
~
γJ

exp
∆F
T
, (7.84)

which is large as an exponential of N. In order to use the process as a measurement, we need this time to be much2957

larger than the registration time so that we are able to satisfy (7.83), which yields2958

J
J − T

� exp
∆F
T
, (q = 2);

J
T

√
mcT

g − hc
� exp

∆F
T
, (q = 4). (7.85)

From (3.54) (taken for h = 0), we find the numerical value of ∆F/T for the examples of figs. 7.5 and 7.6, namely2959

0.130N for q = 2, T = 0.065J, and 0.607N for q = 4, T = 0.2J (see fig. 3.3). The condition (7.85) sets again a lower2960

bound on N to allow successful measurements, N � 25 for the example with quadratic interactions, N � 7 for the2961

example with quartic interactions. Such a condition is violated for a non-macroscopic apparatus, in particular in the2962

model with N = 2 treated below in subsection 8.1 which will require special care to ensure registration.2963

7.3.6. “Buridan’s ass”effect: hesitation2964

In the case of a second-order transition (q = 2), the subsections 7.2 and 7.3, illustrated by Figs. 7.5, 7.7 and 7.8,2965

show off the occurrence, for the evolution of the probability distribution P(m, t), of two contrasted regimes, depending2966

whether the bifurcation −mB is active or not. The mathematical problem is the same as for many problems of statistical2967

mechanics involving dynamics of instabilities, such as directed Brownian motion near an unstable fixed point, and it2968

has been extensively studied [241, 242, 243, 244, 245]. The most remarkable feature is the behavior exemplified by2969

Fig. 7.7: For a long duration, the random magnetization m hesitates so much between the two stable values +mF and2970

−mF that a wide range of values of m in the interval −mF, +mF have nearly equal probabilities. We have proposed to2971

term this anomalous situation Buridan’s ass effect [222], referring to the celebrated argument attributed to Buridan,2972

a dialectician of the first half of the XIVth century: An ass placed just half way between two identical bales of hay2973

would theoretically stay there indefinitely and starve to death, because the absence of causal reason to choose one bale2974

or the other would let it hesitate for ever, at least according to Buridan61.2975

60Photographs on film or paper fade out after some time
61The effect was never observed, though, at the farm where the last author of this work grew up
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In fact, major qualitative differences distinguish the situation in which the final state +mF is reached with probabil-2976

ity P+ = 1 (subsection 7.2) from the situation in which significant probabilities P+ and P− to reach either +mF or −mF2977

exist (subsection 7.3). In the first case, the peak of P(m, t) moves simply from 0 to +mF; the fluctuation of m remains2978

of order 1/
√

N at all times, even when it is largest, at the time when the average drift velocity v(µ) is maximum (Eq.2979

(7.45)). In the second case, the exponential rise of the fluctuations of m leads, during a long period, to a broad and flat2980

distribution P(m, t), with a shape independent of N.2981

In both cases, we encountered (for q = 2) the same time scale τreg = ~/γ(J − T ), which characterizes the first2982

stage of the motion described by either (7.43), (7.39) or (7.79). However, in the first case, P+ ' 1, the duration2983

(7.48) of the whole process is just the product of τreg by a factor independent of N, of order 2 ln[mF(J − T )/g], as also2984

shown by (E.6), whereas in the second case, P+ < 1, the dynamics becomes infinitely slow in the large N limit. The2985

characteristic time τflat at which the distribution is flat, given by (7.69), is of order τreg ln[
√

NmF(J − T )/J]. Suzuki’s2986

scaling regime [241, 242, 243, 244, 245] is attained over times of order τflat. Then P(m, t) does not depend on N for2987

N → ∞, but the duration of the relaxation process is large as ln
√

N. It is this long delay which allows the initial2988

distribution, narrow as 1/
√

N, to broaden enormously instead of being shifted towards one side.2989

Buridan’s argument has been regarded as a forerunner of the idea of probability. The infinite time during which2990

the ass remains at m = 0 is recovered here for N → ∞. An infinite duration of the process is also found in the absence2991

of diffusion in the limit of a narrow initial distribution (δ0 → 0). The flatness of P(m, t) at times of order τflat means2992

that at such times we cannot predict at all where the ass will be on the interval −mF, +mF, an idea that Buridan could2993

not emit before the elaboration of the concept of probability. The counterpart of the field h, for Buridan’s ass, would2994

be a strong wind which pushes it; the counterpart of µ0 would be a different distance from the two bales of hay; in2995

both of these cases, the behavior of the ass becomes predictable within small fluctuations.2996

Since the slowing factor which distinguishes the time scales in the two regimes is logarithmic, very large values2997

of N are required to exhibit a large ratio for the relaxation times. In Figs. 7.5, 7.7 and 7.8 we have taken N = 1000 so2998

as to make the fluctuations in 1/
√

N visible. As a consequence, the duration of the registration is hardly larger in Fig.2999

7.7 than in Fig. 7.5.3000

Except during the final equilibration, the magnet keeps during its evolution some memory of its initial state3001

through δ1 (Eq. (7.40)). If the bifurcation is inactive (§ 7.2.3), this quantity occurs through the variance (7.45) of3002

the distribution. If it is active (§ 7.3.2), it occurs through the time scale τflat, but not through the shape of P(m, t).3003

Our model of the ferromagnet is well-known for being exactly solvable at equilibrium in the large N limit by3004

means of a static mean-field approach. In the single peak regime, the dynamics expressed by (7.30) is also the same as3005

the outcome of a time-dependent mean-field approach. However, in the regime leading to two peaks at +mF and −mF,3006

no mean-field approximation can describe the dynamics even for large N, due to the giant fluctuations. The intuitive3007

idea that the variable m, because it is macroscopic, should display fluctuations small as 1/
√

N is then wrong, except3008

near the initial time or for each peak of P(m, t) near the final equilibrium.3009

The giant fluctuations of m which occur in Buridan’s ass regime may be regarded as a dynamic counterpart of3010

the fluctuations that occur at equilibrium at the critical point T = J [226, 227]. In both cases, the order parameter,3011

although macroscopic, presents large fluctuations in the large N limit, so that its treatment requires statistical mechan-3012

ics. Although no temperature can be associated with M during the relaxation process, the transition from T0 > J to3013

T < J involves intermediate states which behave as in the critical region. The well-known critical fluctuations and3014

critical slowing down manifest themselves here by the large uncertainty on m displayed during a long delay by P(m, t).3015

Suzuki’s slowing down and flattening [241, 242, 243, 244, 245] take place not only in the symmetric case (§ 7.3.2),3016

but also in the asymmetric case (§ 7.3.3), provided P− is sizeable. Thus the occurrence of Buridan’s ass effect3017

is governed by the non vanishing of the probabilities P+ and P− of +mF and −mF in the final state. Everything3018

takes place as if the behavior were governed by final causes: The process is deterministic if the target is unique; it3019

displays large uncertainties and is slow if hesitation may lead to one target or to the other. These features reflect in a3020

probabilistic language, first, the slowness of the pure drift motion near the bifurcation which implies a long random3021

delay to set m into motion, and, second, the importance of the diffusion term there.3022
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8. Imperfect measurements, failures and multiple measurements3023

Niet al wat blinkt is goud 62
3024

Tout ce qui brille n’est pas or 62
3025

Dutch and french proverbs3026

In sections 5 to 7, we have solved our model under conditions on the various parameters which ensure that the3027

measurement is ideal. We will resume these conditions in section 9.4. We explore beforehand some situations in3028

which they may be violated, so as to set forth how each violation prevents the dynamical process from being usable as3029

a quantum measurement. We have already seen that, in case the spin-apparatus interaction presents no randomness,3030

the magnet-bath interaction should not be too small; otherwise, recurrence would occur in the off-diagonal blocks3031

of the density operator, and would thus prevent their truncation (§ 5.1). We have also shown how a spin-apparatus3032

coupling that is too weak may prevent the registration to take place for q = 4 (§ 7.2.2 and § 7.2.4), or may lead to3033

wrong results for q = 2 (§ 7.3.3). We study below what happens if the number of degrees of freedom of the pointer3034

is small, by letting N = 2 (subsection 8.1); see [141, 143] for model studies along this line. We then examine the3035

importance of the commutation [4, 13, 225, 246, 247, 248] of the measured observable with the Hamiltonian of the3036

system (subsection 8.2). Finally we exhibit a process which might allow imperfect simultaneous measurements of3037

non-commuting observables (subsection 8.3) [249, 250, 251, 252, 253, 254].3038

The solution of these extensions of the Curie–Weiss model involves many technicalities that we could not skip.3039

The reader interested only in the results will find them in subsection 9.5.3040

8.1. Microscopic pointer3041

Ce que je sais le mieux, c’est mon commencement63
3042

Jean Racine, Les Plaideurs3043

In the above sections, we have relied on the large number N of degrees of freedom of the magnet M. As the statis-3044

tical fluctuations of the magnetization m are then weak, the magnet can behave as a macroscopic pointer with classical3045

features. Moreover the truncation time τtrunc is the shortest among all the characteristic times (section 5) because it3046

behaves as 1/
√

N. The large value of N was also used (section 7) to describe the registration process by means of a3047

partial differential equation. It is natural to wonder whether a small value of N can preserve the characteristic proper-3048

ties of a quantum measurement. Actually the irreversibility of any measurement process (subsection 6.2) requires the3049

apparatus to be large. In subsection 6.1, we showed that the irreversibility of the truncation can be ensured by a large3050

value of N and a randomness in the couplings gn, n = 1, · · · ,N (subsection 6.2); but this irreversibility, as well as that3051

of the registration (section 7), can also be caused by the large size of the bath. For small N, the irreversibility of both3052

the truncation and the registration should be ensured by the bath. We now study the extreme situation in which N = 2.3053

8.1.1. Need for a low temperature3054

For N = 2 the magnetization m̂ has the eigenvalue m = 0 with multiplicity 2, regarded as “paramagnetic”, and two3055

non-degenerate eigenvalues m = +1 and m = −1 regarded as “ferromagnetic”. Since m̂4 = m̂2, we may set J4 = 0 and3056

denote J2 = J. The corresponding eigenenergies of ĤM are 0 and −J, and those of the Hamiltonian Ĥi of Eq. (4.6)3057

are −2gsim − Jm2.3058

The equations of motion of § 4.4.2 involve only the two frequencies ω±, defined by3059

~ω± ≡ J ± 2g, (8.1)

and they have the detailed form (notice that Pi j ≡
1
2 NPdis

i j = Pdis
i j for N = 2)3060

62All that glitters is not gold
63What I know the best I shall begin with
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dP↑↑(0, t)
dt

=
2γ
~2

{
2P↑↑(1, t)K̃t(ω+) + 2P↑↑(−1, t)K̃t(ω−) − P↑↑(0, t)

[
K̃t(−ω+) + K̃t(−ω−)

]}
, (8.2)

dP↑↑(±1, t)
dt

=
2γ
~2

[
P↑↑(0, t)K̃t(−ω±) − 2P↑↑(±1, t)K̃t(ω±)

]
, (8.3)

dP↑↓(0, t)
dt

=
2γ
~2

{
2P↑↓(1, t)

[
K̃t>(ω+) + K̃t<(ω−)

]
+ 2P↑↓(−1, t)

[
K̃t>(ω−) + K̃t<(ω+)

]
−P↑↓(0, t)

[
K̃t(−ω+) + K̃t(−ω−)

]}
, (8.4)

dP↑↓(±1, t)
dt

∓
4ig
~

P↑↓(±1, t) =
2γ
~2

{
P↑↓(0, t)

[
K̃t>(−ω±) + K̃t<(−ω∓)

]
− 2P↑↓(±1, t)

[
K̃t>(ω±) + K̃t<(ω∓)

]}
.(8.5)

As initial state for M we take the “paramagnetic” one, PM(0) = 1, PM(±1) = 0, prepared by letting T0 � J or with a3061

radiofrequency field as in § 3.3.3. (We recall that PM = P↑↑+P↓↓.) The initial conditions are thus Pi j(m, 0) = ri j(0)δm,0.3062

In order to identify the process with an ideal measurement, we need at least to find at sufficiently large times3063

(i) the truncation, expressed by P↑↓(m, t) → 0, and (ii) the system-pointer correlations expressed by P↑↑(m, t) →3064

r↑↑(0)δm,1 and P↓↓(m, t) → r↓↓(0)δm,−1. This requires, for the magnet in contact with the bath, a long lifetime for3065

the “ferromagnetic” states m = +1 and m = −1. However, the breaking of invariance, which for large N allows3066

the ferromagnetic state where m is concentrated near +mF to be stable, cannot occur here: Nothing hinders here the3067

coupling with the bath to induce transitions from m = +1 to m = −1 through m = 0, so that for large times P(+1, t)3068

and P(−1, t), where P(m, t) ≡ P↑↑(m, t)/r↑↑(0), tend to a common value close to 1
2 for T � J.3069

This is made obvious by the expression of (7.21) of the H-theorem. The dissipation in the Markovian regime3070

[174, 120, 121] reads here3071

dF(t)
dt

= −
γ

2β
ω+e−|ω+ |/Γ

eβ~ω+ − 1

[
P(0, t)eβ~ω+ − 2P(1, t)

]
ln

P(0, t)eβ~ω+

2P(1, t)
+ [ω+ 7→ ω−, P(1, t) 7→ P(−1, t)] , (8.6)

and the free energy decreases until the equilibrium 2PM(±1) = PM(0) exp β~ω± is reached. The only possibility3072

to preserve a long lifetime for the state m = +1 is to have a low transition rate from m = +1 to m = 0, that is,3073

according to (8.2), a small K̃t(ω+). This quantity is dominated in the Markovian regime by a factor exp(−β~ω+).3074

Hence, unless T � J, the apparatus cannot keep the result of the measurement registered during a significant time,3075

after the interaction with S has been switched off. If this condition is satisfied, we may expect to reach for some lapse3076

of time a state where P(1, t) = P↑↑(1, t)/r↑↑(0) remains close to 1 while P(0, t) is small as P(−1, t).3077

Moreover, a faithful registration requires that the coupling g with S is sufficiently large so that the final state, in3078

the evolution of P↑↑(m, t), has a very small probability to yield m = −1. Since in the Markovian regime the transition3079

probabilities in (8.2) and (8.3) depend on g through ω± = J ± 2g in K̃(ω±) and K̃(−ω±) [174, 120, 121], and since this3080

dependence arises mainly from exp β~ω±, we must have exp 4βg � 1. The coupling g should moreover not modify3081

much the spectrum, so that we are led to impose the conditions3082

T � 4g � J. (8.7)

8.1.2. Relaxation of the apparatus alone3083

Laat hem maar met rust64
3084

Dutch expression3085

As we did in § 7.3.2 for large N, we focus here on the evolution of the probabilities P(m, t) ≡ P↑↑(m, t)/r↑↑(0) for3086

the apparatus alone. It is governed by equations (8.2) and (8.3) in which ω+ = ω− = J/~. For a weak coupling γ we3087

expect that the Markovian regime, where K̃t(ω) = K̃(ω) will be reached before the probabilities have deviated much3088

from their initial value. The equations of motion then reduce to3089

τ
dP(0, t)

dt
= e−J/T [P(1, t) + P(−1, t)] − P(0, t), τ

dP(±1, t)
dt

=
1
2

P(0, t) − e−J/T P(±1, t), (8.8)

64Better leave him alone
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where we made use of3090

K̃
( J
~

)
= e−J/T K̃

(
−

J
~

)
=

~J
4

e−J/~Γ

eJ/T − 1
, (8.9)

as well as J/T � 1 and J/~Γ � 1, and where we defined a characteristic time related to the spin-spin coupling as3091

τ ≡ τJ =
~
γJ
. (8.10)

The Markovian approximation is justified provided this characteristic time scale τ is longer than the time t after which3092

K̃t(ω) = K̃(ω), that is, for3093

γ �
T
J
. (8.11)

The general solution of (8.8), obtained by diagonalization, is expressed by3094

P(0, t) + P(1, t) + P(−1, t) = 1,

P(0, t) − e−J/T [P(1, t) + P(−1, t)] ∝ exp
[
−

t
τ

(1 + e−J/T )
]
≈ exp

(
−

t
τ

)
, (8.12)

P(1, t) − P(−1, t) ∝ exp
(
−

t
τ

e−J/T
)
.

Let us first consider the relaxation of the initial paramagnetic state, for which P(0, 0) = 1 and P(±1, 0) = 0. We3095

find from the above equations3096

P(0, t) =
e−t/τ + e−J/T

1 + e−J/T , P(1, t) = P(−1, t) =
1 − e−t/τ

2(1 + e−J/T )
. (8.13)

The lifetime of this initial unstable state is therefore τ = ~/γJ. In a measurement, the interaction g between S and3097

A must thus be switched on rapidly after the preparation (§ 3.3.3), in a delay τinit � τ so that P(0) is still close to 13098

when the measurement process begins.3099

We now evaluate the delay τobs during which the pointer keeps its value and can be observed, after the measure-3100

ment is achieved and after the coupling with S is switched off. If in the sector ↑↑ the value m = 1 is reached at some3101

time t1 with a near certainty, the probabilities evolve later on, according to the above equations, as3102

P(0, t1 + t) =
(1 − e−t/τ)e−J/T

1 + e−J/T , P(±1, t1 + t) =
1
2

[
1 + e−t/τe−J/T

1 + e−J/T ± exp
(
−

t
τ

e−J/T
)]
. (8.14)

As expected, the information is lost for t → ∞, or, more precisely, for t � τ exp(J/T ), since P(1, t) and P(−1, t) then3103

tend to 1
2 . However, during the time lapse τ � t � τ exp(J/T ), P(1, t) retains a value 1 − 1

2 exp(−J/T ) close to 1,3104

so that the probability of a false registration is then weak. Although microscopic, the pointer is a rather robust and3105

reliable device provided T � J, on the time scale t � τobs where the observation time is3106

τobs = τeJ/T =
~
γJ

eJ/T . (8.15)

8.1.3. Registration3107

We now study the time-dependence of the registration process, and determine the probability to reach a false3108

result, that is, to find m = −1 in the sector ↑↑. In the Markovian regime and under the conditions (8.7), the equations3109

of motion (8.2), (8.3) for the probabilities P(m, t) = P↑↑(m, t)/r↑↑(0) read3110

τ
dP(0, t)

dt
= e−(J+2g)/T P(1, t) + e−(J−2g)/T P(−1, t) − P(0, t), (8.16)

τ
dP(±1, t)

dt
=

1
2

P(0, t) − e−(J±2g)/T P(±1, t). (8.17)
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We have disregarded in each term contributions of relative order exp(−J/T ) and 2g/J. The general solution of Eqs.3111

(8.16), (8.17) is obtained by diagonalizing their 3 × 3 matrix. Its three eigenvalues −z are the solutions of3112

z3 − z2
(
1 + 2e−J/T cosh

2g
T

)
+ ze−J/T

(
cosh

2g
T

+ e−J/T
)

= 0, (8.18)

that is, apart from z = 0,3113

z =
1
2

+ e−J/T cosh
2g
T
±

1
2

√
1 + 4e−2J/T sinh2 2g

T
, (8.19)

which under the conditions (8.7) reduce to z ' 1 and z ' exp(−J/T ) cosh 2g/T ' 1
2 exp[−(J − 2g)/T ]. The corre-3114

sponding characteristic times τ/z are therefore τ = ~/γJ and3115

τreg = 2τe(J−2g)/T =
2~
γJ

e(J−2g)/T . (8.20)

The solutions of (8.16) and (8.17) are then given by3116

P(0, t) + P(1, t) + P(−1, t) = 1, (8.21)
P(0, t) − e−(J+2g)/T P(1, t) − e−(J−2g)/T P(−1, t) ∝ e−t/τ, (8.22)

P(1, t) − P(−1, t) − tanh
2g
T
∝ e−t/τreg . (8.23)

The decay time τ associated with the combination (8.22) is much shorter than the time τreg which occurs in (8.23).3117

With the initial condition P(0, 0) = 1 we obtain, dropping contributions small as exp(−J/T ),3118

P(0, t) = e−t/τ, (8.24)

P(1, t) =
1
2

[(
1 − e−t/τ

)
+ tanh

2g
T

(
1 − e−t/τreg

)]
, (8.25)

P(−1, t) =
1
2

[(
1 − e−t/τ

)
− tanh

2g
T

(
1 − e−t/τreg

)]
. (8.26)

The evolution takes place in two stages, first on the time scale τ = ~/γJ, then on the much larger time scale τreg =3119

2τ exp[(J − 2g)/T ].3120

During the first stage, M relaxes from the paramagnetic initial state m = 0 to both “ferromagnetic” states m = +13121

and m = −1, with equal probabilities, as in the spontaneous process where g = 0. At the end of this stage, at times3122

τ � t � τreg we reach a nearly stationary situation in which P(0, t) is small as 2 exp(−J/T ), while P(1, t) and P(−1, t)3123

are close to 1
2 . Unexpectedly, in spite of the presence of the coupling g which is large compared to T , the magnet3124

M remains for a long time in a state close to the equilibrium state which would be associated to g = 0, without any3125

invariance breaking. This behavior arises from the large value of the transition probabilities from m = 0 to m = ±1,3126

which are proportional to K̃(−ω±). For J ± 2g � T , the latter quantity reduces to ~(J ± 2g)/4, which is not sensitive3127

to g for 2g � J.3128

In contrast to the situation for large N, the magnet thus begins to lose memory of its initial state. For N � 1, it3129

was the coupling g which triggered the evolution of M, inducing the motion of the peak of P↑↑(m, t), initially at m = 0,3130

towards larger and larger values of m. Only an initial state involving values m < −mB led to false results at the end of3131

the process. Here, rather surprisingly, the two possible results m = +1 and m = −1 come out nearly symmetrically3132

after the first stage of the process, for τ � t � τreg. In fact we do not even need the initial state to be “paramagnetic”.3133

On this time scale, any initial state for which P(1, 0) = P(−1, 0) leads to P(1, t) = P(−1, t) ' 1
2 . (An arbitrary initial3134

condition would lead to P(±1, t) = P(±1, 0) + 1
2 P(0, 0).)3135

Fortunately, when t approaches τreg the effect of g is felt. For t � τreg the probabilities P(m, t) reach the values3136

P(1, t) =
1

1 + e−4g/T , P(−1, t) =
e−4g/T

1 + e−4g/T , P(0, t) = 2e−J/T , (8.27)
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which correspond to the thermal equilibrium of M in the field g. Thus, the probability of a false measurement is here3137

P− = e−4g/T , (8.28)

and it is small if the conditions (8.7) are satisfied. On the other hand, the registration time is τreg, and the registration3138

can be achieved only if the interaction ĤSA remains switched on during a delay larger than τreg. After this delay, if we3139

switch off the coupling g, the result remains registered for a time which allows observation, since τobs, determined in3140

§ 8.1.2, is much larger than τtrunc.3141

Thus, not only the first stage of the registration process is odd, but also the second one. The mechanism at play3142

in section 7 was a dynamical breaking of invariance whereas here we have to rely on the establishment of thermal3143

equilibrium in the presence of g. The coupling should be kept active for a long time until the values (8.27) are reached,3144

whereas for N � 1, only the beginning of the evolution of P↑↑(m, t) required the presence of the coupling g; afterwards3145

P↑↑ reached the ferromagnetic peak at m = mF, and remained there stably.3146

For N = 2 the possibility of registration on the time scale τreg relies on the form of the transition probabilities3147

from m = ±1 to m = 0, which are proportional to K̃(ω±). Although small as exp(−β~ω±)K̃(−ω±), these transition3148

probabilities contain a factor exp(−β~ω±) ∝ exp(∓2g/T ) which, since 2g � T , strongly distinguishes +1 from −1,3149

whereas K̃(−ω+) ' K̃(−ω−). Hence the transition rate from m = −1 to m = 0, behaving as exp[−(J − 2g)/T ], allows3150

P(0) to slowly increase at the expense of P(−1), then to rapidly decay symmetrically. Since the transition rate from3151

m = +1 to m = 0, behaving as exp[−(J + 2g)/T ], is much weaker, the resulting increase of P(1) remains gained.3152

Altogether P(1, t) rises in two steps, from 0 to 1
2 on the time scale τ, then from 1

2 to nearly 1 on the time scale τreg, as3153

shown by (8.25). Meanwhile, P(−1, t) rises from 0 to 1
2 , then decreases back to 0, ensuring a correct registration only3154

at the end of the process, while P(0, t) remains nearly 0 between τ and τreg.3155

8.1.4. Truncation3156

It remains to study the evolution of the off-diagonal blocks of the density operator D̂, which are characterized3157

by the three functions of time P↑↓(m, t). Their equations of motion (8.4), (8.5) involve oscillations in P↑↓(±1, t) with3158

frequency 2g/π~ generated by the coupling g with S and by a relaxation process generated by the bath. Since the3159

oscillations are not necessarily rapid, and since γ is small, the damping effect of the bath is expected to occur over3160

times large compared to ~/T , so that we can again work in the Markovian regime. Moreover, since g � J, we are led3161

to replace ω+ and ω− in K̃t> and K̃t< by J~. Hence, we can replace, for instance, K̃t>(ω+) + K̃t<(ω−) by K̃(J/~).3162

The equations of motion for the set P↑↓(m, t) are thus simplified into3163

τ
dP↑↓(0, t)

dt
= ε

[
P↑↓(1, t) + P↑↓(−1, t)

]
− P↑↓(0, t), (8.29)

τ
dP↑↓(±1, t)

dt
= ±iλP↑↓(±1, t) +

1
2

P↑↓(0, t) − εP↑↓(±1, t), (8.30)

where ε and λ are defined by3164

ε = e−J/T , λ =
4g
γJ
, (8.31)

with γ � 1, g � T � J. The truncation process is governed by the interplay between the oscillations in P(±1, t),3165

generated by the coupling g between M and S, and the damping due to the bath. The two dimensionless parameters λ3166

and ε characterize these effects.3167

The eigenvalues of the matrix relating −τdP↑↓(m, t)/dt to P↑↓(m, t) are the solutions of the equation3168

(z − 1)[(z − ε)2 + λ2] − ε(z − ε) = 0. (8.32)

The largest eigenvalue behaves for T � J as3169

z0 ≈ 1 +
ε

1 + λ2 +
ε2λ2(1 − λ2)

(1 + λ2)3 , (8.33)

whereas the other two eigenvalues z1 and z2, obtained from3170

z2 − zε
(

1 + 2λ2

1 + λ2 +
ε2λ2(λ2 − 1)

(1 + λ2)3

)
+ λ2

(
1 −

ε

1 + λ2 +
ε2(1 + λ4)
(1 + λ2)3

)
= 0, (8.34)
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have a real part small as ε. The solution of (8.29), (8.30), with the initial condition P↑↓(m, 0) = r↑↓(0)δm,0 is given by3171

P↑↓(0, t) = r↑↓(0)
[
e−z0t/τ −

(z1 − ε)2 + λ2

(z0 − z1)(z1 − z2)
(e−z1t/τ − e−z0t/τ) −

(z2 − ε)2 + λ2

(z0 − z2)(z2 − z1)
(e−z2t/τ − e−z0t/τ)

]
, (8.35)

P↑↓(±1, t) = r↑↓(0)
[

z1 − ε ∓ iλ
2(z0 − z1)(z1 − z2)

(
e−z1t/τ − e−z0t/τ

)
+

z2 − ε ∓ iλ
2(z0 − z2)(z2 − z1)

(
e−z2t/τ − e−z0t/τ

)]
. (8.36)

According to (8.35), the first term of P↑↓(0, t) is damped for ε � 1 over the time scale τ = ~/γJ, just as P↑↑(0, t)3172

in the registration process. However, here again, the other two quantities |P↑↓(±1, t)| increase in the meanwhile and3173

the truncation of the state is far from being achieved after the time τ. In fact, all three components P↑↓(m, t) survive3174

over a much longer delay, which depends on the ratio 2λ/ε.3175

In the overdamped situation 2λ < ε or 8g < γJ exp(−J/T ), the eigenvalues3176

z1,2 =
1
2
ε ±

1
2

√
ε2 − 4λ2 (8.37)

are real, so that we get, in addition to the relaxation time τ, two much longer off-diagonal relaxation times, τ1,2 =3177

τ/z1,2. The long-time behavior of P↑↓(m, t), governed by z2, is3178

P↑↓(0, t) ∼ r↑↓(0)
ε(ε +

√
ε2 − 4λ2)

2
√
ε2 − 4λ2

e−t/τtrunc , P↑↓(±1, t) ∼ r↑↓(0)
ε ± 2iλ +

√
ε2 − 4λ2

4
√
ε2 − 4λ2

e−t/τtrunc . (8.38)

The truncation time3179

τtrunc =
τ

2λ2

(
ε +
√
ε2 − 4λ2

)
=

~γJ
32g2

e−J/T +

√
e−2J/T −

64g2

γ2J2

 , (8.39)

which characterizes the decay of 〈ŝx〉, 〈ŝx〉, and of their correlations with m̂, is here much longer than the registration3180

time (10), since τtrunc/τreg is of order (ε/2λ)2 exp(2g/T ), and even larger than τobs. The quantities P↑↓(m, t) remain for3181

a long time proportional to r↑↓(0), with a coefficient of order 1 for P↑↓(±1, t), of order ε for P↑↓(0, t). Truncation is3182

thus here a much slower process than registration: equilibrium is reached much faster for the diagonal elements (8.27)3183

than for the off-diagonal ones which are long to disappear. Let us stress that for the present case of a small apparatus,3184

they disappear due to the bath (“environment-induced decoherence” [32, 33, 40, 176, 177, 178, 179]) rather than, as3185

in our previous discussion of a large apparatus, due to fast dephasing caused by the large size of M.3186

For 2λ > ε, we are in an oscillatory situation, where the eigenvalues3187

z1,2 =
ε

2
1 + 2λ2

1 + λ2 ± i

√
λ2 −

ε2

4
−

ελ2

1 + λ2 (8.40)

are complex conjugate. (Nothing prevents λ = 4g/γJ from being large.) The long-time behavior is given by3188

P↑↓(0, t) ∼
εr↑↓(0)

(1 + λ2)2 e−t/τtrunc

(1 − λ2) cos
2πt
θ

+
2λ2√

λ2 − ε2/4
sin

2πt
θ

 ,
P↑↓(±1, t) ∼

r↑↓(0)
2(1 ± iλ)

e−t/τtrunc

cos
2πt
θ
±

iλ√
λ2 − ε2/4

sin
2πt
θ

 , (8.41)

with a truncation time3189

τtrunc =
2(1 + λ2)
ε(1 + 2λ2)

τ =
2~eJ/T (1 + λ2)
γJ(1 + 2λ2)

=
1 + λ2

1 + 2λ2 τrege2g/T , (8.42)

again much larger than the registration time. While being damped, these functions oscillate with a period3190
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θ =
2πτ√

λ2 − ε2/4
(8.43)

shorter than τtrunc if 2λ > ε
√

4π2 + 1. The truncation time (8.42) practically does not depend on g (within a factor3191

2 when 2λ varies from ε to ∞), in contrast to both the truncation time of section 5 and the irreversibility time of3192

section 6. The present truncation time is comparable to the lifetime τobs of an initial pure state m = +1 when it3193

spontaneously decays towards m = ±1 with equal probabilities (§ 8.1.2). Hence in both cases the truncation takes3194

place over the delay during which the result of the measurement can be observed.3195

For λ � ε and t � τ, the off-diagonal contributions (8.41) to D̂ are governed by3196

P↑↓(±1, t) ∼
r↑↓(0)

2(1 ± iλ)
e−t/τred±iλt/τ. (8.44)

The effects on M of S and B are well separated: the oscillations are the same as for γ = 0, while the decay, with3197

characteristic time τ/ε = (~/γJ) exp(J/T ), is a pure effect of the bath. The amplitude becomes small for λ � 1, that3198

is, g � γJ.3199

8.1.5. Is this process with bath-induced decoherence a measurement?3200

When the number N of degrees of freedom of the pointer is small as here, the present model appears as a specific3201

example among the general class of models considered by Spehner and Haake [159, 160]. As shown by these3202

authors, the truncation is then governed by the large number of degrees of freedom of the bath, not of the pointer;3203

the truncation is then not faster than the registration. Our detailed study allows us to compare the mechanisms of two3204

types of processes, for large N and for small N.3205

We have seen (§ 8.1.3) that for N = 2 as for N � 1 both couplings g and γ between S , M and B establish3206

the diagonal correlations between ŝz and m̂ needed to establish Born’s rule. This result is embedded in the values3207

reached by P↑↑ and P↓↓ after the time τreg = (2~/γJ) exp[(J − 2g)/T ], much longer than the lifetime τ = ~/γJ of3208

the initial state in the absence of a field or a coupling. Although this property is one important feature of a quantum3209

measurement, its mechanism is here only a relaxation towards thermal equilibrium. The registration is fragile and3210

does not survive beyond a delay τobs = (~/γJ) exp(J/T ) once the coupling with S is switched off. For larger N, the3211

existence of a spontaneously broken invariance ensured the long lifetime of the ferromagnetic states, and hence the3212

robust registration of the measurement.3213

Another feature of a quantum measurement, the truncation of the state that represents a large set of runs, has also3214

been recovered for N = 2, but with an unsatisfactorily long time scale. For large N, the truncation process took3215

place rapidly and was achieved before the registration in the apparatus really began, but here, whatever the parameters3216

ε and λ, the expectation values 〈ŝx〉, 〈ŝy〉 and the off-diagonal correlations embedded in P↑↓ and P↓↑ fade out over a3217

truncation time τtrunc given by (8.39) or (8.42), which is longer than the registration time and even than the observation3218

time if 2λ � ε. It is difficult to regard such a slow decay as the “collapse” of the state.3219

By studying the case N = 2, we wished to test whether an environment-induced decoherence [32, 33, 40, 176,3220

177, 178, 179] might cause truncation. Here the “environment” is the bath B, which is the source of irreversibility. It3221

imposes thermal equilibrium to S + M, hence suppressing gradually the off-diagonal elements of D̂ which vanish at3222

equilibrium, a suppression that we defined as “truncation”. However, usually, decoherence time scales are the shortest3223

of all; here, for N = 2, contrary to what happened for N � 1, the truncation time is not shorter than the registration3224

time.3225

The effect of the bath is therefore quite different for large and for small N. For N � 1, we have seen in §§ 5.1.2 and3226

6.2.4 that the rapid initial truncation was ensured by the large size of the pointer M, whereas bath-induced decoherence3227

played only a minor role, being only one among the two possible mechanisms of suppression of recurrences. For N =3228

2, the truncation itself is caused by the bath, but we cannot really distinguish decoherence from thermal equilibration:3229

Although the dynamics of the diagonal and off-diagonal blocks of D̂ are decoupled, there is no neat separation of time3230

scales for the truncation and the registration.3231

A last feature of measurements, the uniqueness of the outcome of individual runs, is essential as it conditions both3232

Born’s rule and von Neumann’s reduction. We have stressed (§§ 1.1.2 and 1.3.3) that truncation, which concerns the3233
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large set of runs of the measurement, does not imply reduction, which concerns individual runs. The latter property3234

will be proven in section 11 for the Curie–Weiss model; its explanation will rely on a coupling between the large3235

number of eigenstates of M involved for N � 1 in each ferromagnetic equilibrium state. Here, for N = 2, the3236

“ferromagnetic” state is non degenerate, and that mechanism cannot be invoked.3237

Anyhow, the process that we described cannot be regarded for N = 2 as a full measurement. Being microscopic,3238

the pair of spins M is not a “pointer” that can be observed directly. In order to get a stable signal, which provides3239

us with information and which we may use at a macroscopic level, we need to couple M to a genuine macroscopic3240

apparatus. This should be done after the time τreg = (2~/γJ) exp[(J − 2g)/T ] when the correlations P↑↑(m, t) =3241

r↑↑(0)δm,1 and P↓↓(m, t) = r↓↓(0)δm,−1 have been created between S and M. Then, S and M should be decoupled, and3242

the measurement of m should be performed in the delay τobs = (~/γJ) exp(J/T ). In this hypothetical process, the3243

decoupling of S and M will entail truncation, the correlations which survive for the duration τred = 2τobs in P↑↓ and3244

P↓↑ being destroyed.3245

Altogether, it is not legitimate for small N to regard M + B as a “measurement apparatus”, since nothing can be3246

said about individual runs. Anyhow, registering robustly the outcomes of the process so as to read them during a long3247

delay requires a further apparatus involving a macroscopic pointer. The system M, even accompanied with its bath, is3248

not more than a quantum device coupled to S. However, its marginal state is represented by a diagonal density matrix,3249

in the basis which diagonalizes m̂, so that the respective probabilities of m = 0, m = +1 and m = −1, from which we3250

may infer r↑↑(0) and r↓↓(0), can be determined by means of an apparatus with classical features.3251

8.1.6. Can one simultaneously “measure” non-commuting variables?3252

Je kunt niet alles tegelijk doen65
3253

Dutch saying3254

Although the process described above cannot be regarded as an ideal measurement, we have seen that it allows us3255

to determine the diagonal elements r↑↑(0) and r↓↓(0) of the density matrix of S at the initial time. Surprisingly, the same3256

device may also give us access to the off-diagonal elements, owing to the pathologically slow truncation. Imagine S3257

and M are decoupled at some time τdec of order τred. For 2λ � ε, this time can be shorter than the observation time,3258

so that a rapid measurement of m will inform us statistically on r↑↑(0) and r↓↓(0). However, the transverse components3259

of the spin S have not disapppeared on average, and r↑↓(τdec) is given at the decoupling time and later on by3260

r↑↓(τdec) =
∑

m

P↑↓(m, τdec) = r↑↓(0)
ε +
√
ε2 − 4λ2

2
√
ε2 − 4λ2

e−τdec/τred . (8.45)

A subsequent measurement on S in the x-direction at a time t > τdec will then provide r↑↓(t) + r↓↑(t) = 2<r↓↑(τdec).3261

If the various parameters entering (8.45) are well controlled, we can thus, through repeated measurements, determine3262

indirectly r↑↓(0) + r↓↑(0), as well as r↑↑(0) and r↓↓(0).3263

Note, however, that such a procedure gives us access only to the statistical properties of the initial state of S, and3264

that von Neumann’s reduction is precluded.3265

Thus a unique experimental setting may be used to determine the statistics of the non-commuting observables ŝx3266

and ŝz. This possibility is reminiscent of a general result [255]; see also [256, 257]. Suppose we wish to determine all3267

the matrix elements ri j of the unknown n × n density matrix of a system S at the initial time. Coupling during some3268

delay S with a similar auxiliary system S′, the initial state of which is known, leads to some density matrix for the3269

compound system. The set ri j is thus mapped onto the n2 diagonal elements of the latter. These diagonal elements3270

may be measured simultaneously by means of a single apparatus, and inversion of the mapping yields the whole set3271

ri j. Here the magnet M plays the role of the auxiliary system S′; we can thus understand the paradoxical possibility3272

of determining the statistics of both ŝx and ŝz with a single device.3273

In this context we note that the simultaneous measurement of non-commuting observables is an important chap-3274

ter of modern quantum mechanics. Its recent developments are given in [249, 250, 251, 252, 253] (among other3275

references) and reviewed in [254].3276

With this setup we can also repeat measurements in the z-direction and see how much lapse should be in between3277

to avoid non-idealities.3278

65You can’t do everything at the same time
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8.2. Measuring a non-conserved quantity3279

L’homme est plein d’imperfections, mais ce n’est pas3280

étonnant si l’on songe à l’époque où il a été créé 66
3281

Alphonse Allais3282

It has been stressed by Wigner [258] that an observable that does not commute with some conserved quantity of3283

the total system (tested system S plus apparatus A) cannot be measured exactly, and the probability of unsuccessful3284

experiments has been estimated by Araki and Yanase [225, 259]. (Modern developments of this Wigner-Araki-Yanase3285

limitation are given in [246, 247, 248].) However, neither the irreversibility nor the dynamics of the measurement3286

process were considered. We focus here on the extreme case in which Wigner’s conserved quantity is the energy3287

itself. We have assumed till now that the measured observable ŝz commuted with the full Hamiltonian of S + A. This3288

has allowed us to split the dynamical analysis into two separate parts: The diagonal blocks R↑↑, R↓↓ of the full density3289

matrix of S + A are not coupled to the off-diagonal blocks R↑↓, R↓↑. This gives rise, for N � 1, to a large ratio between3290

the time scales that characterize the truncation and the registration.3291

We will discuss, by solving a slightly modified version of our model, under which conditions one can still measure3292

a quantity which is not conserved. We allow therefore transitions between different eigenvalues of ŝz, by introducing3293

a magnetic field that acts on S. The part ĤS of the Hamiltonian, instead of vanishing as in (3.4), is taken as3294

ĤS = −bŝy. (8.46)

We take as measuring device a large, Ising magnet, with q = 2 and N � 1.3295

We wish to study how the additional field affects the dynamics of the measurement. We shall therefore work out3296

the equations at lowest order in b, which however need not be finite as N → ∞. In fact, a crucial parameter turns out3297

to be the combination b/g
√

N.3298

8.2.1. The changes in the dynamics3299

Plus ça change, plus c’est la même chose67
3300

French saying3301

3302

The formalism of subsection 4.2 remains unchanged, the unperturbed Hamiltonian being now3303

Ĥ0 = ĤS + ĤSA + ĤM = −bŝy − Ngm̂ŝz −
1
2

JNm̂2. (8.47)

The additional contribution (8.46) enters the basic equation (4.5) in two different ways.3304

(i) On the left-hand side, the term −
[
ĤS, D̂

]
/i~ yields a contribution3305

b
~

(
R̂↑↓ + R̂↓↑ R̂↓↓ − R̂↑↑
R̂↓↓ − R̂↑↑ −R̂↑↓ − R̂↓↑

)
(8.48)

to dD̂/dt which couples the diagonal and off-diagonal sectors of (3.18). Accordingly, we must add to the right-hand3306

side of the equation of motion (4.16) for dP↑↑/dt the term ~−1b(P↑↓ + P↓↑), and subtract it from the equation for3307

dP↓↓/dt; we should add to the equations (4.18) for dP↑↓/dt and dP↓↑/dt the term ~−1b(P↓↓ − P↑↑).3308

(ii) The presence of ĤS in Ĥ0 has another, indirect effect. The operators σ̂(n)
a (u) defined by (4.4), which enter the3309

right-hand side of eq. (4.5), no longer commute with ŝz. In fact, while σ̂(n)
z (u) still equals σ̂(n)

z , the operators3310

σ̂(n)
+ (u) =

[
σ̂(n)
− (u)

]†
= σ̂(n)

+ e−iĤ0(m̂+δm)u/~eiĤ0(m̂)u/~ = e−iĤ0(m̂)u/~eiĤ0(m̂−δm)u/~σ̂(n)
+ (8.49)

now contain contributions in ŝx and ŝy, which can be found by using the expression (8.47) of Ĥ0 and the identity3311

exp(i a · ŝ) = cos(a) + i sin(a) a · ŝ/a. For N � 1 and arbitrary b, we should therefore modify the bath terms in dPi j/dt3312

by using the expression3313

66Man is full of imperfections, but this is not surprising if one considers when he was created
67The more it changes, the more it remains the same
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σ̂(n)
+ (u) = σ̂(n) exp

[
2im̂u
~

(
J + Ng2 Ngm̂ŝz + bŝy

N2g2m̂2 + b2

)]
, (8.50)

instead of (B.7); we have dropped in the square bracket contributions that oscillate rapidly as exp
(
2iu

√
N2g2m̂2 + b2/~

)
3314

with factors ŝx and coefficients of order 1/N.3315

Except in § 8.2.5 we assume that S and A remain coupled at all times. Their joint distribution D̂(t) is then expected3316

to be driven by the bath B to an equilibrium D̂(tf) ∝ exp(−Ĥ0/T ) at large times. The temperature T is imposed by the3317

factor K(u) that enters the equation of motion (4.5), while Ĥ0 is imposed by the form of σ̂(n)
a (u). The additional terms3318

in (8.50) are needed to ensure that S + M reaches the required equilibrium state. As discussed in § 7.1.4, invariance3319

is broken in the final state. Its density operator involves two incoherent contributions, for which the magnetization of3320

M lies either close to +mF or close to −mF. In the first one, the marginal state of S is r̂(tf) ∝ exp
[(

bŝy + NgmF ŝz

)
/T

]
.3321

If b � Ng, a condition that we will impose from now on, this state cannot be distinguished from the projection3322

on sz = +1. As when b = 0, the sign of the observed magnetization ±mF of M is fully correlated with that of the3323

z-component of the spin S in the final state, while 〈ŝx(tf)〉 = 〈ŝy(tf)〉 = 0. If dynamical stability of subensembles is3324

ensured as in § 11.2.3, the process is consistent with von Neumann’s reduction, and it can be used as a preparation.3325

Nevertheless, nothing warrants the weights of the two possible outcomes, +mF, sz = +1 and −mF, sz = −1, to3326

be equal to the diagonal elements r↑↑(0) and r↓↓(0) of the initial density matrix: Born’s rule may be violated. A full3327

study of the dynamics is required to evaluate these weights, so as to determine whether the process is still a faithful3328

measurement.3329

This study will be simplified by noting that the expression (8.50) depends on b only through the ratio b/Ngm̂. Once3330

the registration has been established, at times of order τreg, the relevant eigenvalues of m̂, of order mB, are finite for3331

large N and the field b does not contribute to σ̂(n)
a (u) since b � Ng. For short times, during the measurement process,3332

the distribution of m is Gaussian, with a width of order 1/
√

N, so that b may contribute significantly to σ̂(n)
a (u) if b3333

is of order g
√

N. However, we have shown (section 6) that for the off-diagonal blocks the bath terms in (4.29) have3334

the sole effect of inhibiting the recurrences in P↑↓(m, t). Anyhow, such recurrences are not seen when m is treated as3335

a continuous variable. We shall therefore rely on the simplified equations of motion3336

∂P↑↓
∂t
−

2iNgm
~

P↑↓ =
∂P↓↑
∂t

+
2iNgm

~
P↓↑ =

b
~

(
P↓↓ − P↑↑

)
. (8.51)

As regards the diagonal blocks we shall disregard b not only at times of order τreg, but even earlier. This is3337

legitimate if b � g
√

N; if b is of order g
√

N, such an approximation retains the main effects of the bath, driving the3338

distributions P↑↑(m, t) and P↓↓(m, t) apart from −mB and +mB, respectively, and widening them. We write therefore:3339

∂P↑↑
∂t

+
∂

∂m
(
v↑↑P↑↑

)
−

1
N

∂2

∂m2

(
wP↑↑

)
=

b
~

(
P↑↓ + P↓↑

)
, (8.52)

∂P↓↓
∂t

+
∂

∂m
(
v↓↓P↓↓

)
−

1
N

∂2

∂m2

(
wP↓↓

)
= −

b
~

(
P↑↓ + P↓↑

)
. (8.53)

(Here we should distinguish the drift velocities v↑↑ and v↓↓, but the diffusion coefficients are equal.) Since the outcome3340

of the registration is governed by the first stage studied in § 7.2.3(i), and since the Markovian regime (§ 7.1.1) is3341

reached nearly from the outset, we shall use the simplified forms3342

v↑↑ =
γ

~
[g + (J − T )m] =

1
τreg

(mB + m), w =
γT
~
, (8.54)

for the drift velocity and the diffusion coefficient; v↓↓ follows from v↑↑ by changing g into −g.3343

We have to solve (8.51), (8.52) and (8.53) with initial conditions Pi j(m, 0)/ri j(0) = PM(m, 0) expressed by (3.48).3344

The drift and diffusion induced by the bath terms are slow since γ � 1, and the distribution PM(m, t) = P↑↑(m, t) +3345

P↓↓(m, t) of the magnetization of M can be regarded as constant on the time scales τred and τLarmor = π~/b, which is3346

the period of the precession of the spin S when it does not interact with A. Over a short lapse around any time t, the3347



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 106

coupled equations for Cx = P↑↓ + P↓↑, Cy = iP↑↓ − iP↓↑ and Cz = P↑↑ − P↓↓ simply describe, for each m, a Larmor3348

precession of S [60, 61, 62, 63, 64, 65] submitted to the field b along ŷ and to the field Ngm along ẑ, where m is a3349

classical random variable governed by the probability distribution PM(m, t). The slow evolution of PM(m, t) is coupled3350

to this rapid precession through (8.52) and (8.53).3351

8.2.2. Ongoing truncation3352

We first eliminate the off-diagonal contributions by formally solving (8.51) as3353

P↑↓(m, t) = P∗↓↑ = r↑↓(0)e2iNgmt/~PM(m, 0) −
b
~

∫ t

0
dt′ e2iNgm(t−t′)/~ [

P↑↑(m, t′) − P↓↓(m, t′)
]
. (8.55)

The physical quantities (except for correlations involving a large number of spins of M, see § 5.1.3) are obtained by3354

summing over m with a weight smooth on the scale 1/
√

N. The first term of (8.55), the same as in section 5 then3355

yields a factor decaying as exp[−(t/τred)2], with τred = ~/gδ0
√

2N, due to destructive interferences.3356

However, the second term survives much later because the precession induced by the field b along ŷ couples3357

2P↑↓ = Cx − iCy to Cz = P↑↑ − P↓↓ at all times t. truncation takes place through the oscillatory factor in the integral,3358

which hinders the effect of precession except at times t′ just before t. Truncation is an ongoing process, which may3359

take place (if b is sufficiently large) for t � τred: The non-conservation of the measured quantity sz tends to feed up3360

the off-diagonal components R̂↑↓ and R̂↓↑ of the density matrix D̂ of S + M. In compensation, R̂↑↑ and R̂↓↓ may be3361

progressively eroded through the right-hand side of (8.52) and (8.53).3362

At lowest order in b, we can rewrite explicitly the second term of (8.55) by replacing P↑↑ by3363

P(0)
↑↑

(m, t) = r↑↑(0)
√

N
2πD(t)

exp
[
−

N
2D(t)

(
m + mB − mBet/τreg

)2
]
, (8.56)

D(t) = δ2
0e2t/τreg +

T
J − T

(
e2t/τreg − 1

)
, τreg =

~
γ(J − T )

,

that we evaluated for b = 0 in section 7. We have simplified the general expression (7.61) by noting that the final3364

outcome will depend only on the first stage of the registration, when t is of order τreg. For P(0)
↓↓

we have to change3365

r↑↑(0) into r↓↓(0) and mB = g/(J − T ) into −mB.3366

8.2.3. Leakage3367

The expectation values of ŝx or ŝy and their correlations with the pointer variable m̂ are now found as in § 5.1.33368

through summation over m of P↑↓(m, t)eiλm. At times t long compared to τred and short compared to τreg, we find the3369

characteristic function3370

Ψ↑↓(λ, t) ≡ 〈ŝ−eiλm̂(t)〉 =

∫
dm P↑↓(m, t)eiλm ' −

b
~

∫
dm

∫ t

0
dt′e2iNgm(t−t′)/~+iλm

[
P(0)
↑↑

(m, t′) − P(0)
↓↓

(m, t′)
]
(8.57)

= −
b
~

∫ t

0
dt′r↑↑(0) exp

− (
t − t′

τred
+

λδ0
√

2N

)2

+
2it′

τleak

(
t − t′

τred
+

λδ0
√

2N

) − {
r↑↑ 7→ r↓↓, τleak 7→ −τleak

}
.

We have recombined the parameters so as to express the exponent in terms of two characteristic times, the truncation3371

time τred = ~/gδ0
√

2N introduced in (5.6) and the leakage time3372

τleak =

√
2
N
~δ0

γg
=

√
2
N
τredδ0

mB
=

2τredδ
2
0

γ
. (8.58)

Integration over t′ can be performed in the limit τleak � τred, by noting that the dominant contribution arises from the3373

region t − t′ � t, which yields in terms of the error function (7.81)3374

Ψ↑↓(λ, t) = −
b

2gδ0

√
π

2N
e−(t/τleak)2

[
r↑↑(0)erfc

(
−

it
τleak

+
λδ0
√

2N

)
− r↓↓(0)erfc

(
it
τleak

+
λδ0
√

2N

)]
. (8.59)
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The leakage time characterizes the dynamics of the transfer of polarization from the z-direction towards the x- and3375

y-directions. It is much shorter than the registration time, since N � 1 and γ � 1. It also characterizes the delay over3376

which the distribution P(0)
↑↑

(m, t) keeps a significant value at the origin: The peak of P(0)
↑↑

with width δ0/
√

N, moves as3377

mB(et/τreg − 1) ∼ mBt/τreg, and at the time t = τleak we have P(0)
↑↑

(0, τleak)/P(0)
↑↑

(0, 0) = 1/e.3378

Using the properties of the error function we can derive from Eq. (8.59), which is valid at times t � τred such that3379

the memory of 2r↑↓(0) = 〈ŝx(0)〉 − i〈ŝy(0)〉 is lost, by expanding the first equality of (8.57) in powers of λ, the results3380

〈ŝx(t)〉 = −
b

gδ0

√
π

2N
〈ŝz(0)〉 exp

− (
t

τleak

)2 , (8.60)

〈ŝy(t)〉 ≈
b

gδ0

√
2
N

t
τleak

1 − 2
3

(
t

τleak

)2 , t � τleak, (8.61)

〈ŝy(t)〉 ∼
b

gδ0

1
√

2N

τleak

t
, t � τleak. (8.62)

where we also used that r↑↑(0) − r↓↓(0) = 〈ŝz(0)〉 and r↑↑(0) + r↓↓(0) = 1. For t of order τleak these results are of order3381

b∆m/gδ2
0, with ∆m = δ0/

√
N (see Eq. (3.49)). Because 1− erfc(z) = erf(z) is imaginary for imaginary values of z, the3382

correlations 〈ŝxm̂k(t)〉, k ≥ 1, vanish in this approximation, while 〈ŝym̂k(t)〉 involves an extra factor ∆mk, for instance:3383

〈ŝym̂(t)〉 =
b

gN
〈ŝz(0)〉 =

b ∆m2

gδ2
0

〈ŝz(0)〉, 〈ŝym̂2(t)〉 =
bδ0
√

2
gN3/2

t
τleak

=
b
√

2 ∆m3

gδ2
0

t
τleak

. (8.63)

To understand these behaviors, we remember that the spin S is submitted to the field b in the y-direction and to the3384

random field Ngm in the z-direction, where m has a fluctuation δ0/
√

N and an expectation value which varies as3385

±mBt/τreg = ±
√

2/Nδ0t/τleak if the spin S is polarized in the ±z-direction. The stationary value of 〈ŝym̂(t)〉 agrees3386

with the value of the random field applied to S. The precession around ŷ explains the factor −b〈ŝz(0)〉 in 〈ŝx(t)〉. The3387

rotation around z hinders 〈ŝx(t)〉 through randomness of m, its effects are characterized by the parameter Ngm, of order3388

gδ0
√

N. This explains the occurrence of this parameter in the denominator. Moreover, this same rotation around ẑ3389

feeds up 〈ŝy(t)〉 from 〈ŝx(t)〉, and it takes place in a direction depending on the sign of m; as soon as registration begins,3390

this sign of m is on average positive for sz = +1, negative for sz = −1.Thus the two rotations around ŷ and ẑ yield3391

a polarization along x̂ with a sign opposite to that along ẑ, whereas the polarization along ŷ is positive whatever that3392

along ẑ. When t � τleak, the random values of m are all positive (for P↑↑) or all negative (for P↓↓), with a modulus3393

larger than 1/
√

N. Hence S precesses around an axis close to +ẑ or −ẑ, even if b is of order g
√

N, so that the leakage3394

from Cz towards Cx and Cy is inhibited for such times. Altogether, the duration of the effect is τleak, and its size is3395

characterized by the dimensionless parameter b/g
√

N.3396

8.2.4. Possibility of an ideal measurement3397

We wish to find an upper bound on the field b such that the process can be used as a measurement. Obviously, if3398

the Larmor period τLarmor = π~/b is longer than the registration time τreg = ~/γ(J − T ), we can completely disregard3399

the field. However, we shall see that this condition, b � πγ(J − T ), is too stringent and that even large violations of3400

the conservation law of the measured quantity ŝz do not prevent an ideal measurement.3401

We therefore turn to the registration, still assuming that S and A remain coupled till the end of the process. At3402

lowest order in b, the right-hand side of (8.52) and (8.53) is expressed by (8.55) with (8.56). The Green’s functions3403

G↑ and G↓ of the left-hand sides are given by (F.10) with h = +g and h = −g, respectively. We thus find P↑↑(m, t)3404

through convolution of G↑(m,m′, t − t′) with the initial condition δ(t′)P(0)
↑↑

(m, t′), with3405

b
~

C(0)
x (m′, t′) =

b
~

[
P(0)
↑↓

(m′, t′) + P(0)
↓↑

(m′, t′)
]
, (8.64)

and with3406



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 108

b
~

C(1)
x (m′, t′) = −

2b2

~2

∫ t′

0
dt′′ cos

[
2Ngm′(t′ − t′′)/~

] [
P(0)
↑↑

(m′, t′) − P(0)
↓↓

(m′, t′)
]
. (8.65)

For P↓↓ we change G↑ into G↓ and Cx into −Cx. The zeroth-order contribution, evaluated in section 7, corresponds to3407

an ideal measurement. The first-order correction in b, P(1)
↑↑

issued from C(0)
x , depends on the transverse initial conditions3408

r↑↓(0), while the second-order correction, P(2)
↑↑

issued from C(1)
x , depends, as the main term, on r↑↑(0) = 1 − r↓↓(0).3409

Performing the Gaussian integrals on m′, we find:3410

P(1)
↑↑

(m, t) =
2b
~
<

∫
dm′dt′G↑(m,m′, t − t′)P(0)

↑↓
(m′, t′)

=
2b
~
<

∫ t

0
dt′r↑↓(0)

√
N
2π

e−(t−t′)/τreg

δ1(t − t′)
exp

− N
2δ2

1(t − t′)

[
µ′2 + 4g2δ2

0δ
2
2

t′2

~2 − 4igδ2
0µ
′ t
′

~

] , (8.66)

P(2)
↑↑

(m, t) = −
2b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′r↑↑(0)

√
N
2π

e−(t−t′+t′′)/τreg

δ1(t − t′ + t′′)

× exp
− Ne−2t′′/τreg

2δ2
1(t − t′ + t′′)

[
(µ′ − µ′′)2 + 4g2e2t′′/τregδ2

1(t′′)δ2
2

(t − t′′)2

~2 − 4ig
(
e2t′′/τregδ2

1(t′′)µ′ + δ2
2µ
′′
) t′ − t′′

~

] ,
−

{
r↑↑ 7→ r↓↓; µ′′ 7→ −µ′′

}
, (8.67)

where δ1(t) was defined by (7.63), where δ2
2 ≡ δ

2
1(t − t′) − δ2

0 = T [1 − e−2(t−t′)/τreg ]/(J − T ), where µ′ ≡ −mB + (m +3411

mB) exp[−(t − t′)/τreg] and where µ′′ ≡ mB[exp(t′′/τreg)−1]. These expressions hold for times t of order τreg. For later3412

times, the part of P↑↑(m, t) for which m is above (below) the bifurcation −mB (with mB = g/(J − T )) develops a peak3413

around +mF (−mF). For P↓↓, we have to change the sign in P(1)
↑↑

and P(2)
↑↑

and to replace mB by −mB in µ′; the bifurcation3414

in +mB. The probability of finding sz = +1 and m ' mF at the end of the measurement is thus
∫ 1
−mB

dm P↑↑(m, t), while3415 ∫ −mB

−1 dmP↑↑(m, t) corresponds to sz = 1 and m ' −mF. Since
∫ 1
−mB

dm P(0)
↑↑

(m, t) = r↑↑(0) and
∫ −mB

−1 dm P(0)
↑↑

(m, t) = 0,3416

the contributions P(0)
↑↑

to P↑↑ and P(0)
↓↓

to P↓↓ correspond to an ideal measurement. The corrections of order b and b2 to3417

P↑↑ and P↓↓ give thus rise to violations of Born’s rule, governed at first order in b by the off-diagonal elements r↑↓(0),3418

r↓↑(0) of the initial density matrix of S, and at second order by the diagonal elements r↑↑(0), r↓↓(0). For instance,3419 ∫ 1
−mB

dm P(2)
↑↑

(m, t) and
∫ −mB

−1 dm P(2)
↑↑

(m, t) are the contributions of these initial diagonal elements to the wrong counts3420

+mF and −mF, respectively, associated with sz = +1 in the final state of S.3421

In order to estimate these deviations due to non-conservation of ŝz, we evaluate, as we did for the transverse3422

quantities (8.60-8.62), the expectation values 〈ŝz(t)〉, 〈m̂(t)〉, 〈ŝzm̂(t)〉 issued from (8.66) and (8.67). For times t � τred3423

and t not much longer than τreg, we find3424

〈ŝz(t)〉 =

∫
dm

[
P↑↑(m, t) − P↓↓(m, t)

]
= r↑↑(0) − r↓↓(0) +

4b
~
<

∫ t

0
dt′r↑↓(0) exp

− (
t′

τred

)2
−

4b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′[r↑↑(0) − r↓↓(0)] exp

− (
t′ − t′′

τred

)2

+ 2i
t′′

τleak

(
t′ − t′′

τred

)
= 〈ŝz(0)〉 +

b
gδ0

√
π

2N
〈ŝx(0)〉 −

b2

2Nγg2 〈ŝz(0)〉
[
1 − erfc

(
t
τred

)]
; (8.68)

we noted that only short times t′, t′′ and t′ − t′′ contribute. A similar calculation provides3425

〈m̂(t)〉 =

∫
dm m

[
P↑↑(m, t) + P↓↓(m, t)

]
= 〈ŝz(t)〉mB

(
et/τreg − 1

)
. (8.69)

For t � τleak, 〈ŝz(t)〉 tends to a constant which differs from the value 〈ŝz(0)〉 expected for an ideal measurement. The3426

ratio 〈m̂(t)〉/〈ŝz(t)〉 is, however, the same as in section 7 where b = 0. Finally the correlation is obtained as3427
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〈ŝzm̂(t)〉 =

∫
dm m

[
P↑↑(m, t) − P↓↓(m, t)

]
= mB

(
et/τreg − 1

)
+

4b
~
<

∫ t

0
dt′r↑↓(0)2igδ2

0
t′

~
et/τreg exp

− (
t′

τred

)2
−

4b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′

(
µ′′ + 2igδ2

0
t′ − t′′

~
et/τreg

)
exp

− (
t′ − t′′

τred

)2

+ 2i
t′′

τleak

(
t′ − t′′

τred

)
= mB

(
et/τreg − 1

)
+

b
Ng
〈ŝy(0)〉et/τred ; (8.70)

the terms in b2 cancel out. As in (8.61), (8.62) the correlation 〈ŝzm̂(t)〉 is weaker by a factor
√

N than the expectation3428

value 〈ŝz(t)〉.3429

Altogether, the field b enters all the results (8.50), (8.60-8.62) and (8.68-8.70) through the combination b/g
√

N.3430

However, the dominant deviation from Born’s rule, arising from the last term of (8.68), also involves the coupling γ3431

of M with B. The process can therefore be regarded as an ideal measurement provided3432

b � g
√

Nγ. (8.71)

Contrary to the probability of an unsuccessful measurement found in [225], which depended solely on the size of3433

the apparatus, the present condition involves b, which characterizes the magnitude of the violation, as well as the3434

couplings, g between S and M, and γ between M and B, which characterize the dynamics of the process. A large3435

number N of degrees of freedom of the pointer and/or a large coupling g inhibit the transitions between sz = +1 and3436

sz = −1 induced by ĤS, making the leakage time short and rendering the field b ineffective. If g is small, approaching3437

the lower bound (7.41), the constraint (8.71) becomes stringent, since γ � 1. Too weak a coupling γ with the bath3438

makes the registration so slow that b has time to spoil the measurement during the leakage delay.3439

8.2.5. Switching on and off the system-apparatus interaction3440

Haastige spoed is zelden goed68
3441

Dutch proverb3442

The condition (8.71), which ensures that the process behaves as an ideal measurement although ŝz is not conserved,3443

has been established by assuming that S and A interact from the time t = 0 to the time t = tf at which the pointer has3444

reached ±mF. However, in a realistic ideal measurement, S and A should be decoupled both before t = 0 and after3445

some time larger than τreg. At such times, the observable ŝz to be tested suffers oscillations with period τLarmor = πb/~,3446

which may be rapid. Two problems then arise.3447

(i) The repeated process informs us through reading of M about the diagonal elements of the density matrix r̂ of3448

S, not at any time, but at the time when the coupling g is switched on, that we took as the origin of time t = 0. Before3449

this time, the diagonal elements r↑↑(t) and r↓↓(t) oscillate freely with the period τLarmor. If we wish the outcomes of3450

M to be meaningful, we need to control, within a latitude small compared to τLarmor, the time at which the interaction3451

is turned on. Moreover, this coupling must occur suddenly: The time during which g rises from 0 to its actual value3452

should be short, much shorter than the leakage time.3453

(ii) Suppose that the coupling g is switched off at some time τdec larger than τreg, the condition (8.71) being3454

satisfied. At this decoupling time P↑↑(m, τdec) presents a peak for m > 0, with weight
∫

dm m P↑↑(m, τdec) = r↑↑(0),3455

P↓↓(m, τdec) a peak for m < 0 with weight r↓↓(0), while P↑↓(m, τdec) vanishes. Afterwards the system and the apparatus3456

evolve independently. The Larmor precession of S [60, 61, 62, 63, 64, 65] manifests itself through oscillations of3457 ∫
dm

[
P↑↑(m, t) − P↓↓(m, t)

]
and of

∫
dm

[
P↑↓(m, t) + P↓↑(m, t)

]
, while M relaxes under the influence of the bath B.3458

The two peaks of the probability distribution PM(m, t) = P↑↑(m, t) + P↓↓(m, t) move apart, towards +mF and −mF,3459

respectively. At the final time tf , once the apparatus has reached equilibrium with broken invariance, we can observe3460

on the pointer the outcomes +mF with probability r↑↑(0), or −mF with probability r↓↓(0). Thus the counting rate agrees3461

with Born’s rule. However the process is not an ideal measurement in von Neumann’s sense: Even if the outcome of3462

68Being quick is hardly ever good
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A is well-defined at each run (section 11), it is correlated not with the state of S at the final reading time, but only3463

with its state r̂(τdec) at the decoupling time, a state which has been kept unchanged since the truncation owing to the3464

interaction of S with M. Selecting the events with +mF at the time tf cannot be used as a preparation of S in the state3465

|↑〉, since r̂(t) has evolved after the decoupling.3466

8.3. Attempt to simultaneously measure non-commutative variables3467

Je moet niet teveel hooi op je vork nemen69
3468

Qui trop embrasse mal étreint 70
3469

Dutch and French proverbs3470

Books of quantum mechanics tell that a precise simultaneous measurement of non-commuting variables is impos-3471

sible [10, 11, 31, 48, 84]. It is, however, physically sensible to imagine a setting with which we would try to perform3472

such a measurement approximately [249, 250, 251, 252, 253, 254, 260]. It is interesting to analyze the corresponding3473

dynamical process so as to understand how it differs from a standard measurement.3474

Consider first successive measurements. In a first stage the component ŝz of the spin S is tested by coupling S to3475

A between the time t = 0 and some time τdec at which ĤSA is switched off. If τdec is larger than the registration time3476

τreg, the apparatus A produces m = mF with probability r↑↑(0) and m = −mF with probability r↓↓(0). An interaction3477

ĤSA′ is then switched on between S and a second apparatus A′, analogous to A but coupled to the component ŝv of3478

ŝ in some v-direction. It is the new diagonal marginal state r̂(τdec), equal to the diagonal part of r̂(0), which is then3479

tested by A′. In this measurement of ŝv the probability of reading m′ = +mF on A′ and finding ŝ in the v-direction3480

is r↑↑(0) cos2 1
2θ + r↓↓(0) sin2 1

2θ, where θ and φ are the Euler angles of v. The measurement of ŝv alone would have3481

provided the additional contribution <r↑↓(0) sin θeiφ. We therefore recover dynamically all the standard predictions3482

of quantum mechanics.3483

Things will be different if the second apparatus is switched on too soon after the first one or at the same time.3484

8.3.1. A model with two apparatuses3485

Life is really simple, but we insist on making it complicated3486

Confucius3487

Let us imagine we attempt to measure simultaneously the non-commuting components ŝz and ŝx of the spin ŝ. To3488

this aim we extend our model by assuming that, starting from the time t = 0, S is coupled with two apparatuses A3489

and A′ of the same type as above, A′ being suited to the measurement of ŝx. We denote by γ′, g′, N′, J′, T ′, . . . ,3490

the parameters of the second apparatus. The overall Hamiltonian Ĥ = ĤSA + ĤSA′ + ĤA + ĤA′ thus involves, in3491

addition to the contributions defined in subsection 3.2, the Hamiltonian ĤA′ of the second apparatus A′, analogous to3492

ĤA = ĤM + ĤB + ĤMB, with magnetization m′ = (1/N′)
∑N′

n=1 σ̂
′
x

(n), and the coupling term3493

ĤSA′ = −N′g′ ŝxm̂′ (8.72)

of A′ and S. The solution of the Liouville–von Neumann equation for S + A+A′ should determine how the indications3494

of A and A′ can inform us about the initial state r̂(0) of S, and how the final state of S is correlated with these3495

indications.3496

We readily note that such a dynamical process can not behave as an ideal measurement, since we expect that,3497

whatever the initial state r̂(0) of S, its final state will be perturbed.3498

The equations of motion are worked out as in section 4. After elimination of the baths B and B′ at lowest order3499

in γ and γ′, the density operator D̂ of S + M + M′ can be parametrized as in § 3.3.1 and § 4.4.1 by four functions3500

Pi j(m,m′, t), where i, j =↑, ↓ refer to S, and where the magnetizations m and m′ behave as random variables. However,3501

since the functions Pi j are now coupled, it is more suitable to express the dynamics in terms of PMM′ (m,m′, t) =3502

P↑↑+ P↓↓, which describes the joint probability distribution of m and m′, and of the set Ca(m,m′, t) defined for a = x, y3503

69You should not put too much hay on your fork
70He who embraces too much fails to catch



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–187 111

and z by (3.29), which describe the correlations between ŝa and the two magnets M and M′. The density operator D̂(t)3504

of S + M + M′ generalizing (3.18), with (3.25), (3.28) and (3.29), is3505

D̂(t) =
2

NN′G(m̂)G(m̂′)
[
PMM′ (m̂, m̂′, t) + C(m̂, m̂′, t) · ŝ

]
. (8.73)

(There is no ambiguity in this definition, since m̂ and m̂′ commute.) The full dynamics are thus governed by coupled3506

equations for the functions PMM′ (m,m′, t) and C(m,m′, t) which parametrize D̂(t). The initial state D̂(0) is factorized3507

as r̂(0) ⊗ R̂M(0) ⊗ R̂M′ (0), where R̂M(0) and R̂M′ (0) describe the metastable paramagnetic states (3.45) of M and M′,3508

so that the initial conditions are3509

PMM′ (m,m′, 0) = PM(m, 0)PM′ (m′, 0), C(m,m′, 0) = PMM′ (m,m′, 0)〈ŝ(0)〉, (8.74)

where PM(m, 0) and PM′ (m′, 0) have the Gaussian form (3.48) and where 〈ŝ(0)〉 is the initial polarization of S.3510

Two types of contributions enter ∂PMM′/∂t and ∂C/∂t, the first one active on the time scale τtrunc, and the second3511

one on the time scale τreg, but these time scales need not be very different here. On the one hand, for given m and m′,3512

the coupling ĤSA + ĤSA′ of S with the magnets M and M′ behaves as a magnetic field b applied to S. This effective3513

field is equal to3514

b(m,m′) =
2Ngm
~

ẑ +
2N′g′m′

~
x̂ = bû, b(m,m′) ≡ |b(m,m′)| =

2
~

√
N2g2m2 + N′2g′2m′2, (8.75)

where ẑ and x̂ are the unit vectors in the z- and x-direction, respectively. This yields to ∂C/∂t the contribution3515 [
∂C(m,m′, t)

∂t

]
MM′

= −b(m,m′) × C(m,m′, t). (8.76)

Both the Larmor frequency b and the precession axis, characterized by the unit vector û = b/b in the x−z plane, depend3516

on m and m′ (whereas the precession axis was fixed along ẑ for a single apparatus). The distribution PMM′ (m,m′, t) is3517

insensitive to the part ĤSA + ĤSA′ of the Hamiltonian, and therefore evolves slowly, only under the effect of the baths.3518

On the other hand, ∂PMM′/∂t and ∂C/∂t involve contributions from the baths B and B′, which can be derived from3519

the right-hand sides of (4.30) and (4.29). They couple all four functions PMM′ and C, they are characterized by the time3520

scale τreg, and they depend on all parameters of the model. In contrast with what happened for a single apparatus, the3521

effects of the precession (8.76) and of the baths can no longer be separated. Indeed, the precession tends to eliminate3522

the components of C(m,m′, t) that are perpendicular to b, but the baths tend to continuously activate the creation3523

of such components. The truncation, which for a single apparatus involved only the off-diagonal sectors and was3524

achieved after a brief delay, is now replaced by an overall damping process taking place along with the registration,3525

under the simultaneous contradictory effects of the couplings of M and M′ with S and with the baths.3526

Such an interplay, together with the coupling of four functions PMM′ , C of three variables m, m′, t, make the3527

equations of motion difficult to solve, whether analytically or numerically. A qualitative analysis will, however,3528

suffice to provide us with some interesting conclusions.3529

8.3.2. Structure of the outcome3530

Note first that the positivity of the density operator (8.73), maintained by the dynamics, is expressed by the3531

condition3532

PMM′ (m,m′, t) ≥ |C(m,m′, t)|, (8.77)

which holds at any time.3533

The outcome of the process is characterized by the limit, for t larger than the registration time τreg, of the distribu-3534

tions PMM′ and C. In this last stage of the evolution, the interaction of M with the bath B is expected to drive it towards3535

either one of the two equilibrium states at temperature T , for which the normalized distribution PM⇑(m) (or PM⇓(m))3536

expressed by (3.56) is concentrated near m = +mF (or m = −mF). In order to avoid the possibility of a final relaxation3537

of M towards its metastable paramagnetic state, which may produce failures as in § 7.3.4, we consider here only a3538

quadratic coupling J2. Likewise, M′ is stabilized into either one of the ferromagnetic states P′M′⇑(m
′) (or PM′⇓(m′))3539
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with m′ ' +m′F (or m′ = −m′F). Hence, PMM′ (m,m′, t), which describes the statistics of the indications of the pointers,3540

ends up as a sum of four narrow peaks which settle at m = εmF, m′ = ε′m′F, with ε = ±1, ε′ = ±1, to wit,3541

PMM′ (m,m′, t) 7→
∑
ε=±1

∑
ε′=±1

Pεε′PMε(m)PM′ε′ (m′). (8.78)

The weights Pεε′ of these peaks characterize the proportions of counts detected on M and M′ in repeated experiments;3542

they are the only observed quantities.3543

The precession (8.76) together with smoothing over m and m′ eliminates the component Cy of C, so that the3544

subsequent evolution keeps no memory of Cy(m,m′, 0). Thus, among the initial data (8.74) pertaining to S, only3545

〈ŝx(0)〉 and 〈ŝz(0)〉 are relevant to the determination of the final state: the frequencies Pεε′ of the outcomes depend3546

only on 〈ŝx(0)〉 and 〈ŝz(0)〉 (and on the parameters of the apparatuses).3547

If 〈ŝx(0)〉 = 〈ŝz(0)〉 = 0 we have Pεε′ = 1
4 due to the symmetry m↔ −m, m′ ↔ −m′. Likewise, if 〈ŝx(0)〉 = 0, the3548

symmetry m′ ↔ −m′ implies that P++ = P+− and P−+ = P−−. Since the equations of motion are linear, P++ − P−+ is3549

in this situation proportional to 〈ŝz(0)〉; we define the proportionality coefficient λ by Pε+ = 1
4 (1 + ελ〈ŝz(0)〉). In the3550

situation 〈ŝz(0)〉 = 0 we have similarly P+ε′ = P−ε′ = 1
4 (1 + ε′λ′〈ŝx(0)〉). Relying on the linearity of the equations of3551

motion, we find altogether for an arbitrary initial state of S the general form for the probabilities Pεε′ :3552

Pεε′ =
1
4

(
1 + ελ〈ŝz(0)〉 + ε′λ′〈ŝx(0)〉

)
, (8.79)

where 〈ŝz(0)〉 = r↑↑(0) − r↓↓(0), 〈ŝx(0)〉 = r↑↓(0) + r↓↑(0). We term λ and λ′ the efficiency factors.3553

In the long time limit, the functions C(m.m′, t) also tend to sums of four peaks located at m = ±mF, m′ = ±m′F, as3554

implied by (8.77). With each peak is associated a direction uεε′ , given by (8.75) where m = εmF, m′ = ε′m′F, around3555

which the precession (8.76) takes place. The truncation process eliminates the component of C perpendicular to uεε′ ,3556

for each peak. Thus, if in their final state the apparatuses M and M′ indicate εmF, ε′m′F, the spin S is lead into a state3557

partly polarized in the direction uεε′ of the effective field b generated by the two ferromagnets.3558

8.3.3. A fully informative statistical process3559

A well-defined indication for both pointers M and M′ can be obtained here in each individual run, because the3560

argument of § 11.2.3 holds separately for the apparatuses A and A′ at the end of the process. A mere counting of the3561

pair of outcomes ε, ε′ then provides experimentally the probability (8.79).3562

However, the present process cannot be regarded as an ideal measurement. On the one hand, the above-mentioned3563

correlations between the final state of S and the indications of the apparatus are not complete; they are limited by3564

the inequality (8.77). In an ideal measurement the correlation must be complete: if the apparatuses are such that3565

they provide well-defined outcomes at each run (section 11), and if for a given run we read +mF on the apparatus M3566

measuring ŝz, the spin S must have been led by the ideal process into the pure state |↑〉. Here we cannot make such3567

assertions about an individual system, and we cannot use the process as a preparation.3568

On the other hand, in an ideal measurement, the outcome of the process is unique for both S and M in case S is3569

initially in an eigenstate of the tested quantity. Suppose the spin S is initially oriented up in the z-direction, that is,3570

r̂(0) = |↑〉〈↑|. The response of the apparatuses M and M′ is given by (8.79) as3571

P++ = P+− =
1
4

(1 + λ), P−+ = P−− =
1
4

(1 − λ), (8.80)

so that there exists a probability 1
2 (1 − λ) to read the wrong result −mF on M. Indeed, without even solving the3572

equations of motion to express the efficiency factors λ and λ′ in terms of the various parameters of the model, we can3573

assert that λ is smaller than 1: Because all Pεε′ must be non-negative for any initial state of S, and because (8.79) has3574

the form 1
4 (1 + a · 〈ŝ(0)〉), we must have |a| < 1, so that λ and λ′ should satisfy3575

λ2 + λ′2 ≤ 1, (8.81)

and because not only ŝz but also ŝx are tested, λ′ should be non zero so that the probability of failure 1
2 (1− λ) is finite.3576

It is therefore clear why the attempt to perform a simultaneous ideal measurement of ŝx and ŝz fails. Both Born’s rule3577

and von Neumann’s truncation are violated.3578
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Nevertheless, consider a set of repeated experiments in which we read simultaneously the indications of the two3579

apparatuses M and M′. If the runs are sufficiently numerous, we can determine the probabilities Pεε′ from the fre-3580

quencies of occurrence of the four possible outcomes ±mF, ±mF′ . Let us assume that the coefficients λ, λ′, which3581

depend on the parameters of the model, take significant values. This requires an adequate choice of these parameters.3582

In particular, the couplings g and g′, needed to trigger the beginning of the registration, should however be small3583

and should soon be switched off so as to reduce the blurring effect of the precession around b. This smallness is3584

consistent with the choice of a second order transition for M, already noted. Finally, the couplings γ, γ′ should ensure3585

registration before disorder is settled. Under such conditions, inversion of eq. (8.79) yields3586

〈ŝz(0)〉 = r↑↑(0) − r↓↓(0) =
1
λ

(P++ + P+− − P−+ − P−−),

〈ŝx(0)〉 = r↑↓(0) + r↓↑(0) =
1
λ′

(P++ − P+− + P−+ − P−−). (8.82)

Thus, a sequence of repeated experiments reveals the initial expectation values of both ŝz and ŝx, although these3587

observables do not commute.3588

Paradoxically, as regards the determination of an unknown initial density matrix, the present process is more3589

informative than an ideal measurement with a single apparatus [254]. Repeated measurements of ŝz yield r↑↑(0) (and3590

r↓↓(0)) through counting of the outcomes ±mF of M. Here we moreover find through repeated experiments the real3591

part of r↑↓(0). However, more numerous runs are needed to reach a given precision if λ and λ′ are small. (If the3592

parameters of the model are such that λ and λ′ nearly vanish, the relaxation of M and M′ is not controlled by S, all3593

Pεε′ lie close to 1
4 , and the observation of the outcomes is not informative since they are fully random.)3594

More generally, for a repeated process using three apparatuses M, M′ and M′′ coupled to ŝz, ŝx and ŝy, respectively,3595

the statistics of readings allows us to determine simultaneously all matrix elements of the initial density operator r̂(0).3596

The considered single compound apparatus thus provides full statistical information about the state r̂(0) of S. Our3597

knowledge is gained indirectly, through an expression of the type (8.82) which involves both statistics and calibration3598

so as to determine the parameters λ, λ′ and λ′′. A process of the present type, although it violates the standard rules of3599

the ideal measurement, can be regarded as a complete statistical measurement of the initial state of S. The knowledge3600

of the efficiency factors allows us to determine simultaneously the statistics of the observables currently regarded as3601

incompatible. The price to pay is the loss of precision due to the fact that the efficiency factors are less than 1, which3602

requires a large number of runs.3603

The dynamics thus establish a one-to-one correspondence between the initial density matrix of S, which embeds3604

the whole quantum probablistic information on S, and the classical probabilities of the various indications that may3605

be registered by the apparatuses at the final time. The possibility of such a mapping was considered in [68]. The3606

size of the domain in which the counting rates may lie is limited; for instance, if S is initially polarized along z in3607

(8.79), no Pεε′ can lie beyond the interval [ 1
4 (1 − λ), 1

4 (1 + λ)]. The limited size of the domain for the probabilities3608

of the apparatus indications is needed to reconcile the classical nature of these probabilities with the peculiarities3609

of the quantum probabilities of S that arise from non commutation. It also sets limitations on the precision of the3610

measurement.3611

Motivated by the physics of spin-orbit interaction in solids, Sokolovski and Sherman recently studied a model3612

related to (8.72) [261]. Two components of the spin 1
2 couple not with collective magnetizations as in (8.72), but with3613

the components of the momentum (the proper kinetic energy is neglected so that these are the only two terms in the3614

Hamiltonian). The motivation for studing this model is the same as above: to understand the physics of simultaneous3615

measurement for two non-commuting observables [261]. The authors show that, as a result of interaction, the average3616

components of the momentum get correlated with the time-averaged values of the spin [instead of the initial values of3617

the spin as in (8.78), (8.79)]. This difference relates to the fact that the model by Sokolovski and Sherman does not3618

have macroscopic measuring apparatuses that would enforce relaxation in time.3619

8.3.4. Testing Bell’s inequality3620

Bell’s inequality for an EPR [51] pair of spins is expressed in the CHSH form as [262]3621
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|〈ŝ(1)
a ŝ(2)

a′ 〉 + 〈ŝ
(1)
b ŝ(2)

a′ 〉 + 〈ŝ
(1)
a ŝ(2)

b′ 〉 − 〈ŝ
(1)
b ŝ(2)

b′ 〉| ≤ 2, (8.83)

which holds for classical random variables s = ±1. If ŝ(1)
a and ŝ(1)

b are the components of a quantum spin ŝ(1) in the3622

two fixed directions a and b, ŝ(2)
a′ and ŝ(2)

b′ the components the other spin ŝ(2) in directions a′ and b′, the left-hand side3623

of (8.83) can rise up to 2
√

2 71.3624

Standard measurement devices allow us to test simultaneously a pair of commuting observables, for instance ŝ(1)
a3625

and ŝ(2)
a′ . At least theoretically, the counting rates in repeated runs directly provide their correlation, namely 〈ŝ(1)

a ŝ(2)
a′ 〉.3626

However, since ŝ(1)
a and ŝ(1)

b , as well as ŝ(2)
a′ and ŝ(2)

b′ do not commute, we need four different settings to determine3627

the four terms of (8.83). Checking the violation of Bells inequalities thus requires combining the outcomes of four3628

incompatible experimental contexts [264, 265, 266], in each of which the spin pair is being tested through repeated3629

runs. This necessity may be regarded as a “contextuality loophole” [267, 268]. Either hidden variables exist, and3630

they cannot be governed by ordinary probabilities and ordinary logic, since there is no global distribution function3631

that would yield as marginals the partial results tested in the four different contexts. Or we must admit that quantum3632

mechanics forbids us to put together the results of these different measurements. The latter alternative is favoured3633

by the solution of models, in which the values of physical quantities do not pre-exist but are produced during a3634

measurement process owing to the interaction between the system and the apparatus. Since these values reflect the3635

reality of the system only within its context, it appears inconsistent to put them together [264, 265, 266, 267, 268].3636

In the present situation it is tempting to imagine using a combination of apparatuses of the previous type so as to3637

simultaneously test all four non-commuting observables ŝ(1)
a , ŝ(1)

b , ŝ(2)
a′ , and ŝ(2)

b′ through repeated runs. Such a unique3638

experimental setting would bypass the contextuality loophole. However, as shown in § 8.3.3, the counting rates of the3639

two apparatuses associated with the components ŝ(1)
a and ŝ(1)

b of the first spin are not directly related to the statistics of3640

these components, but only reflect them through an efficiency factor λ at most equal to 1/
√

2. For the pair of spins,3641

one can deduce a correlation such as 〈ŝ(1)
a ŝ(2)

a′ 〉 from the statistical indications of the corresponding apparatuses, but3642

this quantum correlation is at least equal to twice the associated observed correlation (since 1/λ2 > 2).3643

Thus, with this experimental setting which circumvents the contextuallity loophole, the correlations directly ex-3644

hibited by the counting rates satisfy Bell’s inequality; this is natural since the outcomes of the macroscopic apparatus3645

are measured simultaneously and therefore have a classical nature [269]. However, from these very observations,3646

we can use standard quantum mechanics to analyse the results. We thus infer indirectly from the observations, by3647

using a mapping of the type (8.82), the tested quantum correlations (8.83) between spins components. Within a single3648

set of repeated experiments where the various data are simultaneously registered, we thus acknowledge the viola-3649

tion of Bell’s inequality. Here this violation no longer appears as a consequence of merging incompatible sets of3650

measurements, but as a consequence of a theoretical analysis of the ordinary correlations produced in the apparatus.3651

9. Analysis of the results3652

And the rain from heaven was restrained3653

Genesis 8.23654

In section 3 we have introduced the Curie–Weiss model for the quantum measurement of a spin 1
2 and in sections3655

4–8 we have discussed the dynamics of the density operator characterizing a large set of runs. For the readers who3656

have not desired to go through all the details, and for those who did, we resume here the main points as a separate3657

reading guide, and add pedagogical hints for making students familiar with the matter and techniques. We will discuss3658

the solution of the quantum measurement problem for this model in section 11 by considering properties of individual3659

runs.3660

9.1. Requirements for models of quantum measurements3661

J’ai perdu mon Eurydice72
3662

71For the establishment of Bell-type equalities for SQUIDs, see Jaeger et al. [263]
72I lost my Euridice
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Che farò senza Euridice?73
3663

Christoph Willibald Gluck, Orphée et Eurydice; Orfeo ed Euridice3664

A model accounting for the various properties of ideal quantum measurements should in principle satisfy the3665

following requirements (“R”):3666

R1: simulate as much as possible real experiments;3667

R2: ensure unbiased, robust and permanent registration by the pointer of A, which should therefore be macroscopic;3668

the pointer should give at each run a well-defined indication, which requires sufficiently complex interactions within3669

the apparatus (dynamical stability and hierarchic structure of subensembles, see § 11.2.1);3670

R3: involve an apparatus initially in a metastable state and evolving towards one or another stable state under the3671

influence of S, so as to amplify this signal; the transition of A, instead of occurring spontaneously, is triggered by S;3672

R4: include a bath where the free energy released because of the irreversibility of the process may be dumped;3673

R5: be solvable so as to provide a complete scenario of the joint evolution of S + A and to exhibit the characteristic3674

times;3675

R6: conserve the tested observable;3676

R7: lead to a final state devoid of “Schrödinger cats”; for the whole set of runs (truncation, § 1.3.3), and to a von3677

Neumann reduced state for each individual run;3678

R8: satisfy Born’s rule for the registered results;3679

R9: produce, for ideal measurements or preparations, the required diagonal correlations between the tested system S3680

and the indication of the pointer, as coded in the expression (9.1) for the final state of S + A;3681

R10: be sufficiently flexible to allow discussing processes that are not perfect measurements.3682

These features need not be fulfilled with mathematical rigor. A physical scope is sufficient, where violations may3683

occur over unreachable time scales or with a negligible probability.3684

9.2. Features of the Curie–Weiss model3685

The above Curie–Weiss model is satisfactory in this respect (except for the requirement R2 which will be discussed3686

in § 11.2.1). Its choice (section 3) has relied on a compromise between two conflicting requirements. On the one hand,3687

the apparatus A simulates a real object, a magnetic dot which behaves as a magnetic memory. On the other hand, the3688

Hamiltonian of S + A is sufficiently simple so as to afford an explicit and detailed dynamical solution. The registration3689

device is schematized as a set M of N Ising spins (the magnet). The size of the dot is supposed to be much smaller than3690

the range of the interactions, both among the N spins and between them and the tested spin S. We further simplify by3691

taking into account only interactions between the z-components of the spins of M and S. Finally, as in a real magnetic3692

dot, phonons (with a quasi-ohmic behavior [120, 121, 151, 152, 174]) behave as a thermal bath B which ensures3693

equilibrium in the final state (Fig. 3.1). In spite of the schematic nature of the model, its solution turns out to exhibit3694

a rich structure and to display the various features listed in subsection 9.1.3695

In particular, the choice for A = M + B of a system which can undergo a phase transition implies many properties3696

desirable for a measuring apparatus. The weakness of the interaction γ between each spin of the magnet M and3697

the phonon bath B, maintained at a temperature T lower than Tc, ensures a long lifetime for the initial metastable3698

paramagnetic state. By itself, the system M+B would ultimately relax spontaneously towards a stable state, but here3699

its transition is triggered by S. The symmetry breaking in the dynamics of the measurement produces either one of3700

the two possible final stable ferromagnetic states, in one-to-one correspondence with the eigenvalues of the tested3701

observable ŝz of the system S, so that the sign of the final magnetization can behave as a pointer. It is this breaking3702

of symmetry which underlies registration, entailing the irreversibility of the transition from the paramagnetic to either3703

73What shall I do without Euridice?
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one of the ferromagnetic macroscopic states. Moreover, the built-in symmetry between the two possible outcomes of3704

A prevents the appearance of bias.3705

An essential property of a measurement, often overlooked, is the ability of the apparatus A to register the indication3706

of the pointer. Here this is ensured by the large value of the number N of spins of M, which entails a neat separation3707

between the two ferromagnetic states of M and their extremely long lifetime. This stability warrants a permanent3708

and robust registration. The large value of N is also an essential ingredient in the proof of the uniqueness of the3709

indication fo the pointer in each run (§ 11.2.3). In both the paramagnetic state and the ferromagnetic states, the3710

pointer variable m presents statistical fluctuations negligible as 1/
√

N. Moreover, breaking of invariance makes3711

quantum coherences ineffective (§ 11.2.3). The nature of the order parameter, a macroscopic magnetization, also3712

makes the result accessible to reading, processing or printing. These properties cannot be implemented in models for3713

which the pointer is a microscopic object.3714

The coupling between the tested spin S and the apparatus A has been chosen in such a way that the observable ŝz3715

is conserved, [ŝz, Ĥ] = 0, so as to remain unperturbed during its measurement. This coupling triggers the beginning3716

of the registration process, which thereby ends up in a situation which informs us about the the physical state of S at3717

a certain moment, so that the process might be used as a measurement. This requires a sufficiently large value of the3718

coupling constant g which characterizes the interaction of S and M.3719

Once the probability distribution of the magnetization m has left the vicinity of m = 0 to move towards either3720

+mF or −mF, the motion of this pointer is driven by the bath through the coupling γ between M and B. Somewhat3721

later the interaction g between S and A becomes ineffective and can be switched off. It is the interplay between the3722

metastability of the initial state of A, the initial triggering of M by S, and the ensuing action of B on M which ensures3723

an amplification of the initial perturbation. This amplification is necessary since the indication of the pointer M, which3724

is macroscopic, should reflect an effect caused by the tested system S, which is microscopic — the very essence of a3725

measurement.3726

Such a number of adequate properties makes this model attractive, but technical developments were needed to3727

elaborate in sections 4 to 7 a rigorous proof that the final state of S + A has the form (1.7), viz.3728

D̂ (tf) =
∑

i

(
Π̂ir̂ (0) Π̂i

)
⊗ R̂i =

∑
i

pir̂i ⊗ R̂i, (9.1)

where r̂ describes S and R̂ describes A. This form encompasses most among the required specific features of ideal3729

quantum measurements, in particular the absence of off-diagonal terms. These developments have allowed us to3730

discuss the conditions under which the process might be used as a measurement, and also to explore what happens if3731

one or another condition is violated.3732

Note, however, that the final form (9.1) of the density operator of S + A concerns the statistics of a large set of runs3733

of the measurement. This form is necessary, but not sufficient, to ensure that the interaction process can be regarded3734

as an ideal measurement. It remains to elaborate the physical interpretation of this result by turning to individual3735

measurements. We postpone his task to section 11.3736

9.3. Scenario of the Curie–Weiss ideal measurement: the characteristic time scales3737

The above study (sections 4–7) of the dynamical process undergone by S + A has revealed several successive steps3738

involving different time scales.3739

9.3.1. Preparation3740

Co se doma uvar̆ı́, to se doma snı́ 74
3741

Czech proverb3742

Before S and A are coupled, A should be prepared in a metastable state. Indeed, in the old days of photography3743

the unexposed film was metastable and could not be prevented from evolving in the dark on a time scale of months. In3744

our magnetic case, for quartic interactions within M, the lifetime of the paramagnetic initial state is extremely large,3745

74What is cooked home is eaten home
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exponentially large in N. For quadratic interactions with coupling constant J, it was evaluated in section § 7.3.2 (eq.3746

(7.66)) as3747

τpara =
~

γ(J − T )
lnα
√

N, (9.2)

where α is typically of order 1/10, and it is larger than all other characteristic times for α
√

N � 1. We can thus engage3748

the measurement process by switching on the interaction between S and M during the delay τpara after preparation of3749

A, before the paramagnetic state is spontaneously spoiled.3750

9.3.2. Truncation3751

Let us recall (§ 3.3.2 and Fig. 3.2) our decomposition of the density matrix D̂ of the total system S + A into blocks3752

with definite value sz =↑, ↓ of the tested spin component ŝz:3753

D̂ =

(
R̂↑↑ R̂↑↓

R̂↓↑ R̂↓↓

)
. (9.3)

The first stage of the measurement process is the truncation, defined as the disappearance of the off-diagonal blocks3754

R̂↑↓ and R̂↓↑ of the full density matrix (section 5). It takes place during the truncation time3755

τred =
~

√
2Nδ0g

, (9.4)

which is governed by the coupling constant g between S and M and the size N of the pointer (the fluctuation of M3756

in the paramagnetic state is δ0/
√

N). This characteristic time is the shortest of all; its briefness reflects an effect3757

produced by a macroscopic object, the pointer M, on a microscopic one, the tested system S. During the delay τred,3758

the off-diagonal components a = x, y of the spin S decay on average as 〈ŝa(t)〉 = 〈ŝa(0)〉 exp[−(t/τred)2].3759

Over the time scale τred, only the off-diagonal blocks R̂↑↓ = R̂
†

↓↑
of the overall density matrix D̂ of S + A are3760

affected by the evolution. Correlations between S and M, involving larger and larger numbers k = 1, 2, · · · of spins3761

of M, such as 〈ŝam̂k(t)〉c ∝ tk exp[−(t/τred)2] (a = x, y) are successively created in a cascade: They develop later3762

and later, each one reaches a small maximum for t = τred
√

k/2 and then tends to zero (§ 5.1.3 and Fig. 5.1). The3763

information originally carried by the off-diagonal elements of the initial density matrix of S are thus transferred3764

towards correlations which couple the system S with more and more spins of M and eventually decline (§ 5.1.4).3765

When t increases far beyond τred, all the matrix elements of R̂↑↓ that contribute to correlations of rank k � N tend to3766

zero. Correlations of higher rank k, for large but finite N, are the residue of reversibility of the microscopic evolution3767

generated by ĤSA (§ 5.3.2).3768

If the total Hamiltonian of S + A did reduce to the coupling ĤSA = −Ngŝzm̂ which produces the above behavior,3769

the truncation would be provisional, since S + A would periodically return to its initial state with the recurrence time3770

τrecur =
π~
2g
, (9.5)

much larger than τred (§ 5.3.1). As in spin-echo experiments, the extremely small but extremely numerous correlations3771

created by the interaction between S and the many spins of M would conspire to progressively reconstruct the off-3772

diagonal blocks of the initial uncorrelated state of S + A: The reversibility and simplicity of the dynamics would ruin3773

the initial truncation.3774

Two possible mechanisms can prevent such recurrences to occur. In subsection 6.1 we slightly modify the model,3775

taking into account the (realistic) possibility of a spread δg in the coupling constants gn between S and each spin3776

of the magnet M. The Hamiltonian (6.1) with the conditions (6.2) then produces the same initial truncation as with3777

constant g, over the same characteristic time τred, but recurrences are now ruled out owing to the dispersion of the3778

gn, which produces an extra damping as exp[−(t/τM
irrev)2]. The irreversibility time induced by the spreading δg in the3779

spin-magnet couplings,3780

τM
irrev =

~
√

2Nδg
, (9.6)
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is intermediate between τred and τrecur provided δg is sufficiently large, viz. g/
√

N � δg � g. As usual for a reversible3781

linear evolution, a recurrence phenomenon still occurs here, but the recurrence time is inaccessibly large as shown in3782

§ 6.1.2 (see eq. (6.20)). The numerous but weak correlations between S and M, issued from the off-diagonal blocks3783

of the initial density matrix of S, are therefore completely ineffective over any reasonable time lapse.3784

An alternative mechanism can also rule out any recurrence, even if the couplings between S and the spins are all3785

equal (subsection 6.2). In this case, the required irreversibility is induced by the bath, which produces an extra decay,3786

as exp[−NB(t)], of the off-diagonal blocks (the shape of B(t) is shown in Fig 6.1). The initial truncation of section 5,3787

for t � 1/Γ, is not affected by the interaction with the bath if NB(τred) � 1, that is, if3788

γ~2Γ2

8πNδ4
0g2
� 1, (9.7)

where Γ is the Debye cutoff on the phonon frequencies. At times t such that t � ~/2πT , B(t) is quasi linear and the3789

bath produces an exponential decay, as exp(−t/τB
irrev), where the bath-induced irreversibility time is defined as3790

τB
irrev =

2~ tanh g/T
Nγg

'
2~

NγT
. (9.8)

This expression is a typical decoherence time, inversely proportional to the temperature T of B, to the bath-magnet3791

coupling γ and to the number N of degrees of freedom of the system S + M. The p-th recurrence is then damped by a3792

factor exp(−pτrecur/τ
B
irrev), so that the phonon bath eliminates all recurrences if τB

irrev � τrecur.3793

At this stage, the truncation is achieved in the sense that the off-diagonal blocks R̂↑↓(t) and R̂↓↑(t) of the density3794

operator (9.3) of S + A have practically disappeared in a definitive way. The off-diagonal correlations created during3795

the truncation process have been irremediably destroyed at the end of this process, whereas the diagonal correlations3796

needed to register in A the tested properties of S are not yet created. See also § 11.2.3 below.3797

9.3.3. Registration3798

Just after the above processes are achieved, the diagonal blocks R̂↑↑(t) and R̂↓↓(t) as well as the marginal density3799

operator R̂(t) = trSD̂(t) = R̂↑↑(t) + R̂↓↓(t) of A remain nearly unaffected. The process cannot yet be regarded as a3800

measurement: The pointer gives no indication, m is still small, and no correlation exists between A and the initial state3801

of S.3802

The registration then starts and proceeds on time scales much larger than the above ones. It is a slower process3803

because it leads to a change of a macroscopic object, the apparatus, triggered by the microscopic S. After a brief3804

transient regime, the process becomes Markovian (§ 7.1.1). The evolution of each of the two diagonal blocks R̂↑↑(t)3805

or R̂↓↓(t) can be expressed in terms of that of the corresponding probability distribution P↑↑(m, t) or P↓↓(m, t) for the3806

magnetization of M, which obeys an equation of the Fokker-Planck type [230]. This equation, presenting classical3807

features (§ 7.1.2), is governed for P↑↑(m, t) by a drift velocity v(m) given by (7.6) and illustrated by Figs. 7.1 and 7.2,3808

and by a diffusion coefficient given by (7.7). The irreversibility of the process is exhibited by an H-theorem (§ 7.1.3)3809

which implies the decrease of the free energy of M. Thus, the total entropy of M + B increases, and some energy3810

is dumped from M to B, while the transition leads from the paramagnetic to either one of the ferromagnetic states.3811

The existence of two possible final states is associated with breaking of ergodicity, discussed for finite but large N in3812

§ 7.1.4 and subsection 7.3.3813

For purely quadratic interactions within M (the coupling (3.7) having the form Jm̂2), the registration proceeds3814

in three stages (§ 7.2.3), illustrated by Figs. 7.3 and 7.5. Firstly the distribution P↑↑(m, t), initially a paramagnetic3815

symmetric peak around m = 0, is shifted faster and faster towards the positive direction of m and it widens, under the3816

conjugate effects of both S and B. For suitably chosen parameters, after a delay given by Eq. (7.44),3817

τreg =
~

γ(J − T )
, (9.9)

that we term the first registration time, P↑↑(m, t) is entirely located in the positive region of m, its tail in the region3818

m < 0 has then become negligible. Symmetrically, P↓↓(m, t) lies entirely in the m < 0 region for t > τreg. Thereafter3819
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the coupling between M and S becomes ineffective and may be switched off, so that the registration is virtually, but3820

not yet fully, achieved at this time τreg.3821

The last two stages describe a standard relaxation process for which the tested system S is no longer relevant.3822

The stochastic motion of m is first governed mainly by the contribution of B to the drift of the magnetization m. The3823

distribution P↑↑(m, t) moves rapidly towards +mF, first widening, then narrowing. We term as second registration time3824

τ′reg the delay needed for the average magnetization to go from 0 to the vicinity of mF. It is expressed by Eq. (7.48),3825

together with (7.47) and (7.36). During the third stage of the registration, both the drift and the diffusion generated3826

by B establish thermal equilibrium of the pointer in an exponential process, and stabilize the distribution P↑↑(m, t)3827

around +mF. Thus, R̂↑↑(t) ends up as r↑↑(0)R̂⇑, where R̂⇑ denotes the ferromagnetic equilibrium state with positive3828

magnetization, and, likewise, R̂↓↓(t) ends up as r↓↓(0)R̂⇓.3829

For purely quartic interactions within M (coupling as Jm̂4), or for 3J4 > J2, the transition is of first order. We can3830

again distinguish in the registration the above three stages (§ 7.2.4), illustrated by Figs 7.4 and 7.6. Here the first stage3831

is slowed down by the need to pass through the bottleneck m ' mc given by (7.34). The widening of the distribution3832

P↑↑(m, t) is much larger than for quadratic interactions, because diffusion is effective during the large duration of the3833

bottleneck stage. Both the first and the second registration times defined above are nearly equal here, and given by3834

(7.51), that is,3835

τreg =
π~
γT

√
mcT

g − hc
, mc '

√
T
3J
, hc '

2
3

Tmc. (9.10)

The last stage is again an exponential relaxation towards the ferromagnetic state +mF for P↑↑(m, t).3836

The ratio τreg/τred between the registration and truncation times, proportional to
√

N/γ, is large for two reasons, the3837

weakness of γ and the large value of N. As usual in statistical mechanics, the coexistence of very different time scales is3838

associated here with exact and approximate conservation laws, expressed by [ŝz, Ĥ] = 0 and [m̂, Ĥ] = [m̂, ĤMB] ∝
√
γ,3839

which is small because γ � 1.3840

If N is finite, the registration is not permanent. However, the characteristic time of erasure τeras is much larger3841

than the registration time τreg by a factor behaving as an exponential of N (§ 7.3.5).3842

The time scales involved in this Curie–Weiss measurement process present some analogy with the relaxation3843

times in nuclear magnetic resonance [182, 183]. The truncation, i. e., the disappearance of the transverse components3844

〈ŝx〉 and 〈ŝy〉 and of their correlations with A, can be compared to the transverse relaxation in nuclear magnetic3845

resonance (NMR). The truncation time τred, as well as is the relaxation time T ∗2 associated in NMR with a dispersion3846

in the precession frequencies of the spins of a sample due to a non-uniformity of the field along z, are durations of3847

dephasing processes in which complex exponentials interfere destructively. By themselves, these phenomena give rise3848

to recurrences (in our model of measurement) or to spin echoes (in NMR). The bath-induced irreversibility time τB
irrev3849

is comparable to the relaxation time T2: both characterize decoherence effects, namely the damping of recurrences3850

in the measurement, and the complete transverse relaxation which damps the echoes in NMR. Finally the registration3851

time characterizes the equilibration of the diagonal blocks of the density matrix D̂, in the same way as the relaxation3852

time T1 characterizes the equilibration of the longitudinal polarization of the spins submitted to the field along z.3853

The above summary exhibits the different roles played by the two coupling constants. On the one hand, truncation3854

is ensured entirely by the coupling g between S and M. Moreover, the beginning of the registration is also governed3855

by g, which selects one of the alternative ferromagnetic states and which should therefore be sufficiently large. On the3856

other hand, the coupling γ between M and B governs the registration, since the relaxation of M towards ferromagnetic3857

equilibrium requires a dumping of energy in the bath.3858

9.4. Conditions for ideality of the measurement3859

What you do not wish for yourself, do not do to others3860

Confucius3861

Strictly speaking, for finite values of the parameters of the model, the process that we have studied cannot be an3862

ideal measurement in a mathematical sense. However, in a physical sense, the situation is comparable to the solution3863

of the irreversibility paradox, which is found by disregarding correlations between inaccessibly large numbers of3864
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particles and by focusing on time scales short compared to the inaccessible Poincaré recurrence time. Here (after3865

having achieved the solution in section 11) we will likewise identify physically the process with an ideal measurement,3866

within negligible deviations, provided the parameters of the model satisfy some conditions.3867

The definition of the apparatus includes a macroscopic pointer, so that3868

N � 1. (9.11)

The temperature T of the bath B should lie below the transition temperature of the magnet M, which equals J for3869

quadratic interactions (q = 2) and 0.363 J for purely quartic interactions (q = 4).3870

Our solution was found by retaining only the lowest order in the coupling between B and M. Neglecting the higher3871

order terms is justified provided3872

γ �
T
J
. (9.12)

This condition ensures that the autocorrelation time of the bath, ~/T , is short compared to the registration time (9.9)3873

or (9.10). We have also assumed a large value for the Debye cutoff, a natural physical constraint expressed by3874

~Γ � J. (9.13)

The irreversibility of the truncation, if it is ensured by a dispersion δg of the couplings between tested spin and3875

apparatus spins, requires a neat separation of the time scales τred � τM
irrev � τrecur, that is3876

δ0 �
δg
g
�

1
π

√
2
N
. (9.14)

The coefficient δ0, the width of the initial paramagnetic distribution of m
√

N, is somewhat larger than 1 for q = 23877

(quadratic Ising interactions, Eq. (3.51) and equal to 1 for q = 4 (quartic interactions) or when using a strong RF field3878

to initialize the magnet, so that the condition (9.14) is readily satisfied.3879

If the irreversibility of the truncation is ensured by the bath, we should have NB(τrecur) = τrecur/τ
B
irrev � 1, that is3880

γ �
4
πN

tanh
g
T
. (9.15)

This condition provides a lower bound on the bath-magnet coupling. An upper bound is also provided by (9.7) if we3881

wish the initial truncation to be controlled by M only. Both bounds are easily satisfied for N � 1.3882

The coupling g between S and M has been assumed to be rather weak,3883

g < T. (9.16)

However, this coupling should be sufficiently strong to initiate the registration, and to ensure that the final indication3884

of the pointer after decoupling will be +mF if S lies initially in the state |↑〉, −mF if it lies initially in the state |↓〉. For3885

q = 2, this condition is not very stringent. We have seen in § 7.2.2 that it is expressed by (7.41), namely3886

g �
(J − T )δ1
√

N
, δ2

1 = δ2
0 +

T
J − T

=
T0

T0 − J
+

T
J − T

. (9.17)

For purely quartic interactions − 1
4 Jm̂4 (or for 3J4 > J2) the paramagnetic state is locally stable in the absence of3887

interaction with S. The coupling g should therefore be larger than some threshold, finite for large N,3888

g > hc '

√
4T 3

27J
, (9.18)

so as to trigger the phase transition from m = 0 to m = ±mF during the delay (9.10). Moreover, if we wish the3889

decoupling between S and A to take place before the magnet has reached ferromagnetic equilibrium, g must lie3890

sufficiently above hc (see Eq. (7.57)).3891
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If all the above conditions are satisfied, the final state reached by S + A is physically indistinguishable from3892

the surmise (9.1), which encompasses necessary properties of ideal measurements, to wit, truncation and unbiased3893

registration, that is, full correlation between the indication of the apparatus and the final state of the tested system.3894

9.5. Processes differing from ideal measurements3895

In de beperking toont zich de meester75
3896

Le mieux est l’ennemi du bien76
3897

Dutch and French sayings3898

Violations of some among the conditions of subsection 9.4 or modifications of the model allow us to get a better3899

insight on quantum measurements, by evaluating deviations from ideality and exploring processes which fail to be3900

measurements, but are still respectable evolutions of coupled quantum mechanical systems.3901

In subsection 5.2, we modify the initial state of the apparatus, assuming that it is not prepared in an equilibrium3902

paramagnetic state. This discussion leads us to understand truncation as a consequence of the disordered nature of3903

the initial state of M, whether or not this state is pure (§ 5.2.2). For “squeezed” initial states, the rapid truncation3904

mechanism can even fail (§ 5.2.3).3905

Imperfect preparation may also produce another kind of failure. In § 7.3.3 we consider a bias in the initial state3906

due to the presence during the preparation stage of a parasite magnetic field which produces a paramagnetic state with3907

non-zero average magnetization. Wrong registrations, for which M reaches for instance a negative magnetization −mF3908

in the final state although it is coupled to a tested spin in the state sz = +1, may then occur with a probability expressed3909

by (7.79).3910

Section 6 shows that recurrences are not washed out if the conditions Eq. (9.14) or (9.15) are not fulfilled. The3911

probability for the p-th recurrence to occur is exp[−(pτrecur/τ
M
irrev)2] in the first case, exp(−pτrecur/τ

B
irrev) in the second3912

case. The process is not an ideal measurement if recurrences are still present when the outcome is read.3913

The violation of the condition (9.17) for q = 2 or (9.18) for q = 4 prevents the registration from taking place3914

properly. For q = 2, if the coupling g is too weak to satisfy (9.17), the apparatus does relax towards either one of the3915

ferromagnetic states ±mF, but it may provide a false indication. The probability for getting wrongly −mF for an initial3916

state |↑〉 of S, evaluated in § 7.3.3, is given by (7.79). For q = 4, the registration is aborted if (9.18) is violated: the3917

magnet M does not leave the paramagnetic region, and its magnetization returns to 0 when the coupling is switched3918

off.3919

The large number N of elements of the pointer M is essential to ensure a faithful and long-lasting registration for3920

each individual run. It also warrants a brief truncation time, and an efficient suppression of recurrences by the bath.3921

We study in subsection 8.1 the extreme situation with N = 2, for which m̂ has only two “paramagnetic” eigenstates3922

with m = 0 and two “ferromagnetic” eigenstates with m = ±1. Although correlations can be established at the time3923

(8.20) between the initial state of S and the magnet M in agreement with Born’s rule, there is no true registration.3924

The indication of M reached at that time is lost after a delay τobs expressed by (8.15); moreover, a macroscopic extra3925

apparatus is needed to observe M itself during this delay. On the other hand, the truncation process, governed here by3926

the bath, is more akin to equilibration than to decoherence; it has an anomalously long characteristic time, longer than3927

the registration time. These non-idealities of the model with N = 2 are discussed in § 8.1.5. However, such a device3928

might be used (§ 8.1.6) to implement the idea of determining all four elements of the density matrix of S by means of3929

repeated experiments using a single apparatus [255, 256, 257].3930

In subsection 8.2 we tackle the situation in which the measured observable ŝz is not conserved during the evolution.3931

An ideal measurement is still feasible under the condition (8.71), but it fails if S and A are not decoupled after some3932

delay (§ 8.2.5).3933

The model can also be extended (subsection 8.3) by simultaneously coupling S with two apparatuses A and3934

A′ which, taken separately, would measure ŝz and ŝx, respectively. The simultaneous measurement of such non-3935

commuting observables is of course impossible. However, here again, repeated runs can provide full information on3936

the statistics of both ŝz and ŝx in the initial state r̂(0) (§ 8.3.3). More generally, all the elements of the density matrix3937

75Conciseness exposes the master
76Best is the enemy of good
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r̂(0) characterizing an ensemble of identically prepared spins S can be determined by repeated experiments involving3938

a compound apparatus A+A′+A′′, where A, A′ and A′′ are simultaneously coupled to the observables ŝx, ŝy and ŝz,3939

respectively. Indirect tests of Bell’s inequalities may rely on this idea (§ 8.3.4).3940

9.6. Pedagogical hints3941

The path is made by walking3942

Le mouvement se prouve en marchant3943

African and French proverbs3944

Models of quantum measurements give rise to many exercises of tutorial interest, which help the students to better3945

grasp quantum (statistical) mechanics. We have encountered above several questions which may inspire teachers. The3946

exercises that they suggest require the use of density operators. As quantum mechanics is often taught only in the3947

language of pure states, we present in appendix G an introduction for students on this topic.3948

For instance, the treatment of a thermal bath at lowest order in its coupling with the rest of the system (subsection3949

4.2 and Appendix A), although standard, deserves to be worked out by advanced students.3950

For a general class of models of measurement involving a pointer with many degrees of freedom, the truncation3951

mechanism exhibited in § 5.1.2 shows how dephasing can eliminate the off-diagonal blocks of the density matrix of S3952

+ A over a short time through interferences.3953

The evaluation of the recurrence time for the pointer coupled with the tested system, or more generally for an3954

arbitrary quantum system (or for a linear dynamical system) having a random spectrum (§ 6.1.2 and Appendix C) is3955

also of general interest.3956

We now give two further examples of exercises for students which highlight the central steps of the quantum3957

measurement.3958

9.6.1. End of “Schrödinger cats”3959

Focusing on the Curie-Weiss model, we present here a simpler derivation of the processes which first lead to trun-3960

cation and which prevent recurrences from occurring. We showed in section 6 and Appendix D that the interactions3961

J2 and J4 between the spins σ̂(n) of M play little role here, so that we neglect them. We further assume that M lies3962

initially in the most disordered state (3.46), that we write out, using the notation (3.1), as3963

R̂M(0) =
1

2N σ̂
(1)
0 ⊗ σ̂

(2)
0 ⊗ · · · ⊗ σ̂

(N)
0 . (9.19)

This occurs for q = 4 and in the general case of J2 > 0 provided the temperature of preparation T0 in (3.51) is much3964

higher than J2, so that δ0 = 1. Then, since the Hamiltonian ĤSA + ĤB + ĤMB is a sum of independent contributions3965

associated with each spin σ̂(n), the spins of M behave independently at all times, and the off-diagonal block R̂↑↓(t) of3966

D̂(t) has the form3967

R̂↑↓(t) = r↑↓(0) ρ̂(1)(t) ⊗ ρ̂(2)(t) ⊗ · · · ⊗ ρ̂(N)(t), (9.20)

where ρ̂(n)(t) is a 2× 2 matrix in the Hilbert space of the spin σ̂(n). This matrix will depend on σ̂(n)
z but not on σ̂(n)

x and3968

σ̂(n)
y , and it will neither be hermitean nor normalized.3969

The task starts with keeping the effect of the bath as in subsection 6.2, but leaves open the possibility for the3970

coupling gn to be random as in subsection 6.1, whence the coupling between S and A reads ĤSA = −ŝz
∑N

n=1 gnσ̂
(n)
z3971

instead of (3.5). (As simpler preliminary exercises, one may keep the gn = g as constant, and/or disregard the bath.)3972

Each factor ρ̂(n)(t), initially equal to 1
2 σ̂

(n)
0 , evolves according to the same equation as (4.8) for R̂↑↓(t), rewritten with3973

N = 1. (To convince oneself of the product structure (9.20), it is instructive to work out the cases N = 1 and N = 23974

in Eq. (4.8) or (4.18).) Admit, as was proven in subsection 6.2 and appendix D, that the effect of the bath is relevant3975

only at times t � ~/2πT , and that in this range ρ̂(n) evolves according to3976

dρ̂(n)(t)
dt

−
2ign

~
ρ̂(n)σ̂(n)

z = −
2γ
~2

[
K̃−

(
2gn

~

)
+ K̃+

(
−

2gn

~

)] [
ρ̂(n) −

1
2
σ̂(n)

0 tr ρ̂(n)
]
. (9.21)
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(Advanced students may derive this equation by noting that for N = 1, ρ̂(n) can be identified with P↑↓(m̂ = σ̂z); starting3977

then from Eq. (4.17) for N = 1, keeping in mind that P↑↓(±3) = 0 and verifying that, in the non-vanishing terms, Eq.3978

(4.13) implies that Ω±i = ∓2gnsi/~, they should show that the factors K̃t>(Ω−
↑
) + K̃t<(Ω−

↓
) and K̃t>(Ω+

↑
) + K̃t<(Ω+

↓
) of3979

(4.17) reduce for t � ~/2πT and for J2 = 0 to the symmetric part of K̃(2gn/~) according to (4.18) and (D.21).)3980

Next parameterize ρ̂(n) as3981

ρ̂(n)(t) =
1
2

exp
[
−Bn(t) + iΘn(t)σ̂(n)

z

]
, (9.22)

and derive from (9.21) the equations of motion3982

dΘn

dt
=

2gn

~
−
γ

~2

[
K̃

(
2gn

~

)
+ K̃

(
−

2gn

~

)]
sin 2Θn,

dBn

dt
=

2γ
~2

[
K̃

(
2gn

~

)
+ K̃

(
−

2gn

~

)]
sin2 Θn, (9.23)

with initial conditions Θn(0) = 0, Bn(0) = 0. Keeping only the dominant contributions for γ � 1, use the expression3983

(3.37) for K̃, find the solution3984

Θn(t) '
2gnt
~

, Bn(t) '
γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

)
, (9.24)

and compare Bn with (6.28) for B.3985

Eqs. (9.22), (9.24) provide the evolution of the density matrix of the spin n from the paramagnetic initial state3986

ρ̂(n)(0) = 1
2 diag(1, 1) to3987

ρ̂(n)(t) =
1
2

diag
(
e2ignt/~, e−2ignt/~

)
exp

[
−
γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

)]
. (9.25)

By inserting (9.25) into (9.20) and tracing out the pointer variables, one finds the transverse polarization of S as3988

1
2
〈ŝx(t) − iŝy(t)〉 ≡ trS,AD̂(t)

1
2

(ŝx − iŝy) = r↑↓(t) ≡ r↑↓(0) Evol(t), (9.26)

where the temporal evolution is coded in the function3989

Evol(t) ≡
(∏N

n=1
cos

2gnt
~

)
exp

− N∑
n=1

γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

) . (9.27)

To see what this describes, the student can first take gn = g, γ = 0 and plot the factor |Evol(t)| from t = 0 to3990

5τrecur, where τrecur = π~/2g is the time after which |r↑↓(t)| has recurred to its initial value |r↑↓(0)|. By increasing N,3991

e.g., N = 1, 2, 10, 100, he/she can convince him/herself that the decay near t = 0 becomes close to a Gaussian decay,3992

over the characteristic time τred of Eq. (9.4). The student may demonstrate this analytically by setting cos 2gnt/~ ≈3993

exp(−2g2
nt2/~2) for small t. This time characterizes decoherence, that is, disappearance of the off-diagonal blocks3994

of the density matrix; we called it “truncation time” rather than “decoherence time” to distinguish it from usual3995

decoherence, which is induced by a thermal environment and coded in the second factor of Evol(t).3996

The exercise continues with the aim to show that |Evol| � 1 at t = τrecur in order that the model describes a faithful3997

quantum measurement. To this aim, keeping γ = 0, the student can in the first factor of Evol decompose gn = g + δgn,3998

where δgn is a small Gaussian random variable with 〈δgn〉 = 0 and 〈δg2
n〉 ≡ δg

2 � g2, and average over the δgn. The3999

Gaussian decay (6.10) will thereby be recovered, which already prevents recurrences. The student may also take e.g.4000

N = 10 or 100, and plot the function to show this decay and to estimate the size of Evol at later times.4001

Next by taking γ > 0 the effect of the bath in (9.27) can be analyzed. For values γ such that γN � 1 the bath will4002

lead to a suppression. Several further tasks can be given now: Take all gn equal and plot the function Evol(t); take4003
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a small spread in them and compare the results; make the small-gn approximation gn coth gn/T ≈ T , and compare4004

again.4005

At least one of the two effects (spread in the couplings or suppression by the bath) should be strong enough to4006

prevent recurrences, that is, to make |r↑↓(t)| � |r↑↓(0)| at any time t � τred, including the recurrence times. The student4007

can recover the conditions (9.14) or (9.15) under which the two mechanisms achieve to do so. The above study will4008

show him/her that, in the dynamical process for which each spin σ̂(n) of M independently rotates and is damped by4009

the bath, the truncation, which destroys the expectation values 〈ŝa〉 and all correlations 〈ŝam̂k(t)〉 (a = x or y, k ≥ 1),4010

arises from the precession of the tested spin ŝ around the z-axis; this is caused by the conjugate effect of the many4011

spins σ̂(n) of M, while the suppression of recurrences is either due to dephasing if the gn are non-identical, or due to4012

damping by the bath.4013

A less heavy exercise is to derive (5.27) from (5.26); hereto the student first calculates 〈m〉 and then 〈m2〉. Many4014

other exercises may be inspired by sections 5 and 6, including the establishment and disappearance of the off-diagonal4015

spin-magnet correlations (§ 5.1.3); the numerical or analytical derivation of the damping function B(t) (Appendix D);4016

its short-time behavior obtained either as for (D.9) or from the first two terms of the short-time expansion of K(t);4017

the analytical study of the autocorrelation functions K(t), K>t and K<t of the bath for different time scales using the4018

complex plane technique of Appendix D.4019

9.6.2. Simplified description of the registration process4020

We have seen in § 7.1.2 that the registration process looks, for the diagonal block R↑↑(t), as a classical relaxation of4021

the magnet M towards the stable state with magnetization +mF under the effect of the coupling g which behaves in this4022

sector as a positive field. This idea can be used to describe the registration by means of the classical Fokker-Planck4023

equation (7.1) which governs the evolution of the probability distribution P(m, t) = P↑↑(m, t)/r↑↑(0).4024

By assuming explicit expressions for the drift and the diffusion coefficient which enter this equation of motion,4025

one can recover some of the results of section 7 in a form adapted to teaching.4026

In particular, if we keep aside the shape and the width of the probability distribution, which has a narrow peak for4027

large N (§ 7.2.1), the center µ(t) of this peak moves according to the mean-field equation4028

dµ(t)
dt

= v[µ(t)], (9.28)

where v(m) is the local drift velocity of the flow of m., This equation can be solved once v(m) is given, and its general4029

properties do not depend on the precise form of v(m). The first choice is phenomenological: we take v(m) proportional4030

to −dF/dm, where F is the free energy (3.54), resulting in4031

v(m) =
C(m)
~

(
Jmq−1 + g −

T
2

ln
1 + m
1 − m

)
, (9.29)

with a dimensionless, positive function C(m) which may depend smoothly on m in various ways (§ 7.1.2), or even be4032

approximated as a constant. An alternative phenomenological choice consists in deriving from detailed balance, as in4033

§ 7.1.2, the expression (7.14) for v(m), that is, within a multiplicative factor θ(m),4034

v(m) =
1

θ(m)

(
tanh

g + Jmq−1

T
− m

)
. (9.30)

possibly approximating θ as a constant. A more precise way is to derive v(m) from the autocorrelation function of the4035

bath (Eq. (7.6)) as4036

v(m) =
γ

~
(g + Jmq−1)

(
1 − m coth

g + Jmq−1

T

)
. (9.31)

An introductory exercise is to show that the C(m) (or the θ(m)) obtained from equating (9.29) (or (9.30)) to (9.31) is4037

a smooth positive function, finite at the stable or unstable fixed points of Eq. (9.28), given by the condition v(m) = 0,4038

which can in all three cases be written as m = tanh[(g + Jmq−1)/T ].4039
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If the coupling g is large enough, the resulting dynamics will correctly describe the transition of the magnetization4040

from the initial paramagnetic value m = 0 to the final ferromagnetic value m = mF. Comparison between quadratic4041

interactions (q = 2) and quartic interactions (q = 4) is instructive. The student can determine in the latter case the4042

minimum value of the coupling g below which the registration cannot take place, and convince him/herself that it4043

does not depend on the form of C(m). Approaching this threshold from above, one observes the slowing down of the4044

process around the crossing of the bottleneck. This feature is made obvious by comparing the Figs 7.3 and 7.4 which4045

illustrate the two situations q = 2 and q = 4, respectively, and which were evaluated by using the form (9.30)) of v(m).4046

The above exercise overlooks the broadening and subsequent narrowing of the profile at intermediate times, which4047

is relevant for finite values of N. More advanced students may be proposed to numerically solve the time evolution of4048

P(m, t), i. e., the whole registration process, at finite N, taking in the rate equations Eq. (4.16) e.g. N = 10, 100 and4049

1000. For the times of interest, t � ~/Γ, one is allowed to employ the simplified form of the rates from (4.33) and4050

(4.14), and to set Γ = ∞. The relevant rate coefficients are listed at the end of Appendix B.4051

10. Statistical interpretation of quantum mechanics4052

A man should first direct himself in the way he should go.4053

Only then should he instruct others4054

Buddha4055

Measurements constitute privileged tools for relating experimental reality and quantum theory. The solution of4056

models of quantum measurements is therefore expected to enlighten the foundations of quantum mechanics, in the4057

same way as the elucidation of the paradoxes of classical statistical mechanics has provided a deeper understanding of4058

the Second Law of thermodynamics, either through an interpretation of entropy as missing information at the micro-4059

scopic scale [57, 58, 74, 73, 80, 71, 270, 271], or through a microscopic interpretation of the work and heat concepts4060

[72, 272, 273, 274, 275, 276, 277, 278, 279]. In fact, the whole literature devoted to the quantum measurement prob-4061

lem has as a background the interpretation of quantum mechanics. Conversely, some specific interpretation is needed4062

to understand the meaning of calculations about models. The use of quantum statistical mechanics (sections 2 and 9)4063

provides us with a density operator of the form (9.1) at the final time; before drawing physical conclusions (section4064

11) we have to make clear what such a technical tool really means. We prefer, among the various interpretations of4065

quantum mechanics [31, 34, 36, 280], the statistical one which we estimate the most adequate. We review below the4066

main features of this statistical interpretation, as underlined by Park [28] and supported by other authors. It is akin to4067

the one advocated by Ballentine [9, 48], but it does not coincide with the latter in all aspects. For a related historic4068

perspective, see Plotnitsky [281].4069

10.1. Principles4070

In its statistical interpretation, quantum mechanics presents some conceptual analogy with statistical mechanics.4071

It has a dualistic nature, involving two types of mathematical objects, associated with a system and with its observers,4072

respectively. On the one hand, the “observables”, non-commutative random operators, describe the physical quantities4073

related to the studied system. On the other hand, a “state” of this system, represented by a density operator, should be4074

regarded as the probabilistic information available about it under given circumstances.4075

10.1.1. Physical quantities: observables4076

Hello, Dolly!4077

It’s so nice to have you back where you belong4078

Written by Jerry Herman, sung by Louis Armstrong4079

In classical physics, the physical quantities are represented by c-numbers, that is, scalar commuting variables,4080

possibly random in stochastic dynamics or in classical statistical mechanics. In quantum physics, we have to give up4081

such an idea. The physical quantities cannot be directly observed or manipulated; and we are no longer allowed to4082

imagine that they might take well-defined scalar values. The microscopic description of a system requires counterin-4083

tuitive concepts, which nevertheless have a precise mathematical representation, and which will eventually turn out to4084

perfectly fit experiments.4085
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The physical quantities that we are considering are, for instance, the position, the momentum, or the components4086

of the spin of each particle constituting the considered system, or a field at each point. The mathematical tools ac-4087

counting for such quantities in unspecified circumstances have a random nature. Termed as “observables”, they are4088

elements of some specific algebra. Along the lines of Heisenberg’s matrix theory [10, 11, 31, 34, 36, 48, 84, 280],4089

they can be represented as linear operators acting in a complex Hilbert spaceH , or as matrices once a basis is chosen4090

in this space, which exhibits the algebraic structure. The present more abstract approach is also more general, as it4091

encompasses other representations, termed as Liouville representations [75, 282, 283] in which the product is imple-4092

mented differently; an example of these, the Wigner representation, is useful in the semi-classical limit. The structure4093

of the set of observables, a C∗-algebra [134], involves addition, multiplication by complex c-numbers, hermitean con-4094

jugation, and non-commutative product. The physical observables Ô are hermitean. They play in quantum mechanics4095

the same rôle as random variables in classical statistical mechanics, except for the essential fact that they belong4096

to a non-commutative algebra, the structure of which fully characterizes the system [134]. Ordinary reasoning and4097

macroscopic experience do not help us to develop intuition about such non-commuting physical quantities, and this is4098

the main incentive for proposals of alternative interpretations of quantum mechanics [17, 19, 189, 191, 192, 284].4099

In some circumstances, when the observables of interest constitute a commutative subset, the peculiar aspects of4100

quantum mechanics that raise difficulties of interpretation do not appear [134, 114, 115]. For instance, the classical4101

probability theory is sufficient for working out the statistical mechanics of non-interacting Fermi or Bose gases at ther-4102

mal equilibrium. This simplification occurs because we deal there only with commuting observables, the occupation4103

number operators n̂k for the single particle states |k〉, which can be treated as random c-numbers taking the discrete4104

values nk = 0 or 1 for fermions, nk = 0, 1, 2, · · · for bosons. However, even in this simple case, it is the underlying4105

non-commutative algebra of the creation and annihilation operators â†k and âk which explains why the eigenvalues of4106

n̂k = â†k âk are those integers. A similar situation occurs for macroscopic systems, for which classical behaviors emerge4107

from the hidden microscopic fundamental quantum theory. The variables controlled in practice then commute, at least4108

approximately, so that classical concepts are sufficient. Macroscopic properties such as electronic conduction versus4109

insulation, magnetism, heat capacities, superfluidity, or the very existence of crystals all have a quantum origin but4110

obey equations of a “classical” type, in the sense that they involve only commutative variables. Non commutation, the4111

essence of quantum mechanics, may manifest itself only exceptionally in systems that are not microscopic, see [285]4112

and references therein.4113

What one calls “quantum” and “classical” depends, though, on one’s definition of these terms. We have identified4114

above a “truly quantum” behavior with non-commutativity, a deep but restrictive definition. Other viewpoints are4115

currently expressed, such as dependence on ~. Quantum electrodynamics have two classical limits, wave-like when4116

the non-commutation of the electric and magnetic fields is not effective, and particle-like when the number of photons4117

is well defined. Moreover, the quantal or classical nature of a given concept may depend on the specific situation. The4118

center of mass of a small metallic grain can be described by its “classical” value, while the shape of its heat capacity4119

requires a quantum description, such as the Debye model although the concept of specific heat, its measurement, its4120

thermodynamic aspects, are all “pre-quantal”. On the other hand, in atomic clocks one needs to control the quantum4121

fluctuations of the position of the center of mass, which is therefore not so classical. An extreme case of quantal center4122

of mass is a mechanical resonator in its ground state or excited by one phonon [286].4123

10.1.2. Dynamics4124

Dynamics is currently implemented in the quantum theory through the Schrödinger picture, where the observables4125

remain constant while the states (pure or mixed) evolve according to the Schrödinger or the Liouville-von Neumann4126

equation. Following the tradition, we have relied on this procedure in sections 4 to 8. The evolution then bears4127

on the wave function or the density operator, objects which characterize our information on the system. However,4128

dynamics should be regarded as a property of the system itself, regardless of its observers. It is therefore conceptually4129

enlightening to account for the evolution of an isolated system in the Heisenberg picture, as a change in time of its4130

observables which pertain to this system.4131

We should then implement the dynamics as a transformation of the set of observables, represented by a linear4132

mapping that leaves invariant the algebraic relations between the whole set of observables [10, 11, 31, 34, 36, 48, 84].4133

In the Hilbert space representation, this implies that the transformation is unitary. (In Liouville representations,4134

where observables behave as vectors, their evolution is generated by the Liouvillian superoperator.) Denoting by t04135
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the reference time at which the observables Ô are defined, we can thus write the observables Ô(t, t0) at the running4136

time t as Ô(t, t0) = Û†(t, t0)ÔÛ(t, t0), where the unitary transformation Û(t, t0) carries the set of observables from t04137

to t. (In the Schrödinger picture, it is the density operator which depends on time, according to Û(t, t0)D̂Û†(t, t0).)4138

The infinitesimal generator of this transformation being the Hamiltonian Ĥ, the time-dependent observable Ô(t, t0)4139

is characterized either by the usual Heisenberg equation i~∂Ô(t, t0)/∂t = [Ô(t, t0), Ĥ] with the boundary condition4140

Ô(t0, t0) = Ô or by the backward equation i~∂Ô(t, t0)/∂t0 = [Ĥ, Ô(t, t0)] with the boundary condition Ô(t, t) = Ô.4141

The backward equation, more general as it holds if Ĥ or Ô depend explicitly on time, is efficient for producing4142

dynamical approximations, in particular for correlation functions [287]. The interest of the backward viewpoint for4143

the registration in a measurement is exhibited in § 7.3.1, Appendix F and § 13.1.3.4144

Note that the observables and their evolution in the Heisenberg picture can be regarded as random quantities that4145

can be associated with a single system. We do not speak yet of information available about these time-dependent4146

observables in some specific circumstance. This will require the introduction of statistical ensembles of similarly4147

prepared systems (§ 10.1.3) and of “states” that encompass the information and from which probabilistic predictions4148

about measurements can be derived (§ 10.1.4).4149

The Heisenberg motion of observables describes a perfect and reversible transfer along time. The Heisenberg4150

picture thus exhibits a deterministic structure within quantum mechanics [134]. Whereas the Schrödinger picture4151

tangles the deterministic and probabilistic aspects of quantum mechanics within the time-dependent states |ψ(t)〉 or4152

D̂(t), these two aspects are well separated in the Heisenberg picture, deterministic dynamics of the observables,4153

probabilistic nature of the time-independent states. We will rely on this remark in subsection 13.1. The Heisenberg4154

picture also allows to define correlations of observables taken at different times and pertaining to the same system4155

[280, 287]. Such autocorrelations, as the Green’s functions in field theory, contain detailed information about the4156

dynamical probabilistic behavior of the systems of the considered ensemble, but cannot be directly observed through4157

ideal measurements.4158

10.1.3. Statistical ensembles of systems4159

While the observables and their evolution appear as properties of the objects under study, our knowledge about4160

them is probabilistic. The statistical interpretation highlights the fact that quantum mechanics provides us only with4161

probabilities [9, 10, 11, 29, 31, 52, 58, 28]. Although a probabilistic theory may produce some predictions with cer-4162

tainty, most quantities that we deal with at the microscopic scale are subject to statistical fluctuations: expectation4163

values, correlations at a given time, or autocorrelations at different times when we observe for instance the succes-4164

sive transitions of a trapped ion [288, 289]. Exact properties of individual systems can be found only in special4165

circumstances, such as in measurements (section 11). Thus, explicitly or implicitly, our descriptions refer to statistical4166

ensembles of systems and to repeated experiments [9, 31, 28]. Even when we describe a single object we should imag-4167

ine that it belongs to a thought ensemble E [280], all elements of which are considered to be prepared under similar4168

conditions characterized by the same set of data77. Notice the similarity with ensemble theory in classical statistical4169

physics, which also allows probabilistic predictions on single systems [55, 56]. However, there is no quantum system4170

devoid of any statistical fluctuations [9, 31]. Individual events resulting from the same preparation are in general not4171

identical but obey some probability law, even when the preparation is as complete as possible.4172

Note that we adhere to the so-called subjective interpretation of probabilities, initiated by Bayes and Laplace,4173

and later on advocated by Cox [290], de Finetti [291] and Jaynes [270]. According to this conception, probabilities4174

are defined as the mathematical measure of likelihood of events. They are not inherent to the considered object4175

alone, but are tools for making reasonable predictions about this object through consistent inference. They do not4176

pertain to a system in itself, but characterize our information on it or on the ensemble to which it belongs. In fact,4177

information has turned out to be a central concept in statistical physics [57, 58, 74, 73, 80, 71, 270, 271]. This4178

idea is exemplified by spin-echo experiments [60, 61, 62, 63, 64, 65, 182, 183]. After the initial relaxation, an4179

observer not aware of the history of the system cannot describe its spins better than by means of a completely random4180

probability distribution. However, the experimentalist, who is able to manipulate the sample so as to let the original4181

77When accounting probabilistically for the cosmic microwave spectrum, one imagines the Universe to belong to an ensemble of possible
universes. With a single Universe at hand, this leads to the unsolvable cosmic variance problem. The same ideas hold whenever probabilities are
applied to a single system or event [290], and this is the subject of standard and thorough developments in books of probabilities, including already
Laplace’s
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magnetization revive, includes in his probablistic description the hidden correlations that keep track of the ordering4182

of the initial state. Likewise, we can assign different probabilities to the content of a coded message that we have4183

intercepted, depending on our knowledge about the coding [74]. Since quantum theory is irreducibly probabilistic, it4184

has thus a partly subjective nature — or rather “inter-subjective” since under similar conditions all observers, using the4185

same knowledge, will describe a quantum system in the same way and will make the same probabilistic predictions4186

about it. The recent developments about the use of quantum systems as information processors [42] enforce this4187

information-based interpretation [87, 292] (see the end of § 12.4.2).4188

10.1.4. States4189

L’Etat c’est moi78
4190

Louis XIV4191

In the present scope, the definition of a quantum state is conceptually the same as in statistical mechanics [122, 73,4192

28]: A state of the considered system (or more precisely a state of the real or virtual statistical ensemble E of systems to4193

which it belongs) is characterized by specifying the collection of expectation values 〈Ô〉 of all possible observables Ô4194

of this system, that is, by the correspondence Ô 7→ 〈Ô〉. This correspondence has the following properties [52, 58]: it4195

is linear, it associates a real number to hermitean operators, a non-negative number to the square of an observable, and4196

the number 1 to the unit operator. Such properties have a natural interpretation, entailing in particular that variances4197

cannot be negative [52, 58]. The probabilistic nature of this correspondence is exemplified by the fact that it includes4198

statistical fluctuations 〈Ô2〉 − 〈Ô〉2. The probability of finding for Ô some eigenvalue Oi is also expressed as the4199

expectation value 〈Π̂i〉 of the projection operator Π̂i on the corresponding eigenspace of Ô.4200

For infinite systems or fields, this definition of a state as a mapping of the algebra of observables onto commuting4201

c-numbers has given rise to mathematical developments in the theory of C∗-algebras [134]. Focusing on the vector4202

space structure of the set of observables, one then considers the states as elements of the dual vector space. For finite4203

systems the above properties are implemented in an elementary way once the observables are represented as operators4204

in a Hilbert space. The mapping is represented by a density operator D̂ in this Hilbert space, which is hermitean,4205

non-negative and normalized, and which generates all the expectation values through [52, 58]4206

Ô 7→ 〈Ô〉 = trD̂Ô. (10.1)

In fact, according to Gleason’s theorem [50], the linearity of this correspondence for any pair of commuting observ-4207

ables is sufficient to ensure the existence of D̂. (We use the notation D̂ for the generic system considered here; no4208

confusion should arise with the state of S + A in the above sections.)4209

A tutorial introduction to density operators is presented in Appendix G.4210

A density operator which characterizes a state plays the rôle of a probability distribution for the non-commuting4211

physical quantities Ô since it gathers through (10.1) our whole information about an ensemble of quantum systems4212

[52, 58, 270, 28]. As in probability theory, the amount of missing information associated with the state D̂ is measured4213

by its von Neumann entropy [52, 58, 270].4214

S (D̂) = −trD̂ ln D̂. (10.2)

For time-dependent predictions on an isolated system, Eq. (10.1) holds both in the Schrödinger picture, with4215

fixed observables and the Liouville–von Neumann evolution for D̂(t), and in the Heisenberg picture, with fixed D̂4216

and observables evolving unitarily. However, two-time (and multi-time) autocorrelation functions cannot be defined4217

within the Schrödinger picture. They are obtained as tr D̂Ô1(t1, t0)Ô2(t2, t0), where the observables in the Heisenberg4218

picture refer to the physical quantities of interest and their dynamics, and where the state accounts for our knowledge4219

about the system [134]. In particular, when defining in § 3.3.2 the autocorrelation function K(t− t′) of the bath, it was4220

necessary to express the time-dependent bath operators in the Heisenberg picture (although we eventually inserted4221

K(t − t′) into the Liouville–von Neumann equations of motion of S + M in section 4 and appendix A).4222

78The State, that’s me
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In this interpretation, what we call the state “of a system”, whether it is pure or not, is not a property of the4223

considered system in itself, but it characterizes the statistical properties of the real or virtual ensemble to which this4224

system belongs [52, 58, 270, 28]. The word “state” itself is also misleading, since we mean by it the summary4225

of our knowledge about the ensemble, from which we wish to make probabilistic predictions. The conventional4226

expression “the state of the system” is therefore doubly improper in quantum physics, especially within the statistical4227

interpretation [52, 58, 28], and we should not be misled by this wording — although we cannot help to use it when4228

teaching.4229

Density operators differ from distributions of the probability theory taught in mathematical courses and from densi-4230

ties in phase space of classical statistical mechanics, because the quantum physical quantities have a non-commutative4231

nature [10, 11, 31, 34, 36, 48, 52, 58, 84, 280]. This algebraic feature, compelled by experiments in microphysics, lies4232

at the origin of the odd properties which make quantum mechanics counterintuitive. It implies quantization. It also4233

implies the superposition principle, which is embedded in the matrix nature of D̂. It entails Heisenberg’s inequality4234

∆Ô∆Ô′ ≥ 1
2 |〈[Ô, Ô

′]〉| and hence Bohr’s complementarity: since the product of the variances of two non-commuting4235

observables has a lower bound, it is only in a fuzzy way that we can think simultaneously of quantities such as the4236

position and the momentum (or the wavelength) of a particle, contrary to what would happen in classical statistical4237

mechanics. Thus the non-commutation of observables implies the existence of intrinsic fluctuations, and the quantum4238

theory is irreducibly probabilistic [10, 11, 31, 34, 36, 48, 84, 280, 28].4239

One should note, however, that the non-commutation of two observables does not necessarily imply that they4240

present quantum fluctuations. For instance, if two operators do not commute, there may exist states (their common4241

eigenstates) in which both have well-defined values. As an example, in states with orbital momentum zero, the4242

components L̂x and L̂y vanish without any statistical fluctuation. (This does not contradict the Heisenberg inequality4243

∆L̂x∆L̂y ≥
1
2~|〈L̂z〉|, because both sides vanish in this case; more general uncertainty relations for orbital momentum4244

are given in [293].) Conversely, two commuting observables may fluctuate in some states, even pure ones.4245

In the statistical interpretation, we should refrain from imagining that the observables might take well-defined4246

but undetectable values in a given state, and that the uncertainties about them might be a mere result of incomplete4247

knowledge. The very concept of physical quantities has to be dramatically changed. We should accept the idea4248

that quantum probabilities, as represented by a density operator, do not simply reflect as usual our ignorance about4249

supposedly preexisting values of physical quantities (such as the position and the momentum of a particle), but arise4250

because our very conception of physical quantites as scalar numbers, inherited from macroscopic experience, is not in4251

adequacy with microscopic reality [10, 11, 31, 34, 36, 48, 84, 280]. Macroscopic physical quantities take scalar values4252

that we can observe, in particular for a pointer, but the scalar values that we are led to attribute to microscopic (non-4253

commuting) observables are the outcome of inferences which are indirectly afforded by our measurement processes.4254

From an epistemological viewpoint, the statistical interpretation of quantum theory has a dualistic nature, both4255

objective and subjective. On the one hand, observables are associated with the physical properties of a real system.4256

On the other hand, in a given circumstance, the reality of this system is “veiled” [303], and what we call “state” refers4257

to the information available to observers.4258

10.2. Resulting properties4259

10.2.1. Contextuality4260

Non-commutativity gives rise to odd phenomena that force us to overturn some of our ways of thinking. According4261

to the above viewpoint, the violation of Bell’s inequalities [27, 29, 31, 34, 262] should be attributed to the non-4262

commutative nature of the distribution D̂ rather than to non-locality; quantum mechanics does not involve ordinary4263

probabilities nor ordinary correlations. The violation of the classical inequality, observed experimentally [294, 295],4264

arises when one puts together outcomes of measurements performed in different experimental contexts, and this may4265

itself be a probem [264, 265, 266, 267, 268]. The discussion of § 8.3.4 shows how quantum and ordinary correlations4266

may be reconciled in the context of a thought experiment where one attempts to measure simultaneously, with a unique4267

setting, all spin components.4268

Other quantum phenomena, involving properties satisfied exactly rather than statistically, may be regarded as4269

failures of ordinary logic. This is exemplified by the GHZ paradox [34, 36, 296], that we now recall.4270

The GHZ setup is as follows: Consider six observables B̂i and Ĉi (i = 1, 2, 3) such that B̂2
i = Ĉ2

i ≡ Î, Ĉ1Ĉ2Ĉ3 ≡ Î,4271

and with commutators [B̂i, B̂ j] = [Ĉi, Ĉ j] = 0, [B̂i, Ĉi] = 0 and B̂iĈ j = −Ĉ jB̂i for i , j. (A physical realization is4272
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provided with 3 spins, employing their σ̂x and σ̂z operators by taking B̂1 = σ̂(1)
x , Ĉ1 = σ̂(2)

z σ̂(3)
z , and likewise79. In the4273

pure state |ϕ〉 characterized by B̂iĈi |ϕ〉 = |ϕ〉, each one of the three statements “Bi takes the same value as Ci”, where4274

Bi = ±1 and Ci = ±1 are the values taken by the observables B̂i ând Ĉi, is separately true, and can be experimentally4275

checked. However, these three statements cannot be true together, since the identity Ĉ1Ĉ2Ĉ3 ≡ Î seems to entail that4276

B1B2B3 = +1 in the considered state, whereas the algebra implies B1B2B3= −1, which is confirmed experimentally4277

[38]. Indeed we are not even allowed to think simultaneously about the values of B1 and C2, for instance, since these4278

observables do not commute. It is not only impossible to measure them simultaneously but it is even “forbidden” (i.4279

e., devoid of any physical meaning) to imagine in a given system the simultaneous existence of numerical values for4280

them80.4281

Such paradoxical effects imply that one cannot attribute to the system alone the numerical values taken by its4282

observables. Indeed, these values are joint properties of observables and states as expressed by Eq. (10.1). Since4283

the “state” simply encompasses information gathered through instruments of observation, a value of an observable4284

characterises some ensemble tested by a given instrument. This value has no existence before measurement, it emerges4285

indirectly after interaction with the apparatus, and can be defined only with reference to the experimental setting which4286

might measure them. Different ensembles are tested by different instruments. The statements of quantum mechanics4287

are meaningful and can be logically combined only if one can imagine an unique experimental context in which the4288

quantities involved might be simultaneously measured.4289

10.2.2. Preparations of states4290

Que sera, sera81
4291

Jay Livingston and Ray Evans; sung by Doris Day in The man who knew too much4292

In order to analyze theoretically quantum phenomena, we need to associate with the considered situation the state4293

that describes adequately the system (or rather the set of systems of the considered ensemble). In particular, to study a4294

dynamical process in the Schrödinger picture, we must specify the initial state. Such an assignment can be performed4295

in various ways, depending on the type of preparation of the system [114, 115].4296

Textbooks often stress complete preparations, in which a complete set of commuting observables is controlled;4297

see Refs. [114, 115] for a recent conceptual discussion that goes beyond the average text-book level. The state D̂4298

is then the projection on the common eigenvector of these observables determined by their given eigenvalues. (This4299

unambiguous determination of D̂ should not hide its probabilistic nature.) The control of a single observable may4300

in fact be sufficient to allow a complete preparation of a pure state, in case one is able to select a non-degenerate4301

eigenvalue that characterizes this state. Atoms or molecules are currently prepared thereby in their non-degenerate4302

ground state [289].4303

As indicated in § 1.1.4, the ideal measurement of an observable ŝ (like the spin component ŝz in the Curie–Weiss4304

model considered in the bulk of the present work) of a system S, followed by the selection of the outcome Ai of the4305

pointer constitutes a preparation through measurement. If the density operator of S before the process is r̂(0), this4306

selection produces the filtered state Πir̂(0)Πi, where Πi denotes the projection operator onto the eigenspace associated4307

with the eigenvalue si of ŝ (see § 11.3.1). This theoretical scheme of preparing states via measurements was realized4308

experimentally [289, 339].4309

There are however other, macroscopic methods of preparing quantum states [55, 56]. They are much more incom-4310

plete [55, 56]. Usually they provide on the quantum system of interest a number of data much too small to characterize4311

a single density operator. As in ordinary probability theory, for descrbing a macropscopic preparation, one can rely4312

on some criterion to select among the allowed D̂’s the least biased one [270]. For instance, if the only known data4313

are the expectation values of some observables, Laplace’s “principle of insufficient reason” yields the least biased4314

density operator, among all those compatible with the available data, as the one that maximizes the entropy (10.2)4315

[297, 298, 299]. In particular, the energy of a small object can be controlled by macroscopic means, exchange of heat4316

or of work; depending on the type of control, the maximum entropy criterion leads us to assign a different distribution4317

79More precisely, B̂1 = σ̂(1)
x σ̂(2)

0 σ̂(3)
0 , Ĉ1 = σ̂(1)

0 σ̂(2)
z σ̂(3)

z , B̂2 = σ̂(1)
0 σ̂(2)

x σ̂(3)
0 , Ĉ2 = σ̂(1)

z σ̂(2)
0 σ̂(3)

z , etc., so that Î = σ̂(1)
0 σ̂(2)

0 σ̂(3)
0

80In popular accounts the attempts to do so are explained to fail, after which the situation is often called “mind boggling” [14]. But the only
mind boggling point is that one should not make these attempts

81What will be, will be
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to this object [58, 73, 71]. This distribution should be verified experimentally. For instance, if one controls only the4318

expectation value of its energy, which is free to fluctuate owing to exchanges with a large bath, the least biased state is4319

the canonical one. Alternatively, for a non-extensive system such that the logarithm of its level density is not concave,4320

another type of thermal equilibrium (locally more stable) can be established [300] through a different preparation4321

involving the confinement of the energy in a narrow range. Within this range, the maximum entropy criterion leads us4322

to attribute the same probability to all allowed levels and to adopt a microcanonical distribution.4323

The fact that macroscopic states cannot be characterized completely entails that in measurement models the ap-4324

paratus should be supposed to have initially been prepared in a mixed state. Thus, the discussion of the quantum4325

measurement problem within the statistical interpretation does need the existence of macroscopic preparations that4326

are different from preparations via quantum measurements.4327

10.2.3. Mixed states and pure states4328

Something is rotten in the state of Denmark4329

Shakespeare, Hamlet4330

Most textbooks introduce the principles of quantum mechanics by relying on pure states |ψ〉, which evolve accord-4331

ing to the Schrödinger equation and from which the expectation value of any observable Ô can be evaluated as 〈ψ|Ô|ψ〉4332

[4, 84]. Mixed states, represented by density operators, are then constructed from pure states [4, 84]. This form of4333

the principles entail the above-mentioned laws, namely, the Liouville–von Neumann (or the Heisenberg) equation of4334

motion and the properties of the mapping (10.1) (linearity, reality, positivity and normalization).4335

Within the statistical interpretation, there is at first sight little conceptual difference between pure states and mixed4336

states, since in both cases the density operator behaves as a non-Abelian probability distribution that realizes the4337

correspondence (10.1) [9, 10, 11, 31, 48, 52, 58, 73]. As a mathematical specificity, pure states are those for which all4338

eigenvalues but one of the density operator D̂ vanish, or equivalently those for which the von Neumann entropy S (D̂)4339

vanishes. They appear thus as extremal among the set of Hermitean positive normalized operators, in the form |ψ〉〈ψ|.4340

However, a major physical difference82, stressed by Park [28], exists, the ambiguity in the decomposition of a mixed4341

state into pure states. This question will play an important rôle in section 11, and we discuss it below.4342

Let us first note that a mixed state D̂ can always be decomposed into a weighted sum of projections over pure4343

states, according to4344

D̂ =
∑

k

|φk〉νk〈φk |. (10.3)

It is then tempting to interpret this decomposition as follows. Each of the pure states |φk〉 would describe systems4345

belonging to an ensemble Ek, and the ensemble E described by D̂ would be built by extracting a proportion νk4346

of systems from each ensemble Ek. Such an interpretation is consistent with the definition of quantum states as4347

mappings (10.1) of the set of observables onto their expectation values, since (10.3) implies 〈Ô〉 =
∑

k νk〈φk |Ô|φk〉 =4348

tr D̂Ô. It is inspired by classical statistical mechanics, where a mixed state, represented by a density in phase space,4349

can be regarded in a unique fashion as a weighted sum over pure states localized at given points in phase space.4350

However, in quantum mechanics, the state D̂ (unless it is itself pure) can be decomposed as (10.3) in an infinity of4351

different ways. For instance, the 2 × 2 density operator D̂ = 1
2 σ̂0 which represents an unpolarized spin 1

2 might be4352

interpreted as describing a spin polarized either along +z with probability 1
2 or along −z with probability 1

2 ; but these4353

two possible directions of polarization may also be taken as +x and −x, or as +y and −y; the same isotropic state4354

D̂ = 1
2 σ̂0 can also be interpreted by assuming that the direction of polarization is fully random [31, 48]. Within the4355

statistical interpretation of quantum mechanics, this ambiguity of the decompositions of D̂ prevents us from selecting4356

a “fundamental” decomposition and to give a sense to the pure states |φk〉 and the weights νk entering (10.3).4357

82Another essential difference between pure and mixed states is especially appealing to intuition [78, 252]. Consider a system in a state rep-
resented by a density operator D̂ whose eigenvalues are non-degenerate and differ from zero. Consider then a set of observables that have non-
degenerate spectra. Then none of such observables can produce definite results when measured in the state D̂ [252]. In other words, all such
observables have non-zero dispersion in D̂. This statement has been suitably generalized when either D̂ or the observables have degeneracies
in their spectra; see Appendix C of Ref. [252]. In contrast, for a pure density operator |ψ〉〈ψ| all observables that have |ψ〉 as eigenvector are
dispersionless. Pure and mixed states also differ as regards their preparation and as regards their determination via measurements (e.g., the number
of observables to be measured for a complete state determination) [301]
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More generally, we may decompose the given state D̂ into a weighted sum4358

D̂ =
∑

k

νkD̂k (10.4)

of density operators D̂k associated with subensembles Ek. But here again, such a decomposition can always be4359

performed in an infinity of different ways, which appear as contradictory. Due to this ambiguity, splitting the ensemble4360

E described by D̂ into subensembles Ek, described either by pure states as in (10.3) or by mixed states as in (10.4), is4361

physically meaningless (though mathematically correct) if no other information than D̂ is available.4362

The above indetermination leads us to acknowledge an important difference between pure and mixed quantum4363

states [9, 31, 48, 84, 28, 302]. If a statistical ensemble E of systems is described by a pure state, any one of its4364

subensembles is also described by the same pure state, since in this case (10.4) can include only a single term. If4365

for instance a set of spins have been prepared in the polarized state |↑〉, the statistical prediction about any subset are4366

embedded in |↑〉 as for the whole set. In contrast, the existence of many decompositions (10.3) or (10.4) of a mixed4367

state D̂ describing an ensemble E implies that there exists many ways of splitting this ensemble into subensembles Ek4368

that would be described by different states D̂k. In particular, pure states |φk〉 that would underlie as in (10.3) a mixed D̂4369

cannot a posteriori be identified unambiguously by means of experiments performed on the ensemble of systems. In4370

the statistical interpretation, such underlying pure states have no physical meaning. More generally, decompositions4371

of the type (10.4) can be given a meaning only if the knowledge of D̂ is completed with extra information, allowing4372

one to identify, within the considered ensemble E described by D̂, subensembles Ek that do have a physical meaning4373

[31, 48, 302].4374

According to this remark, since the outcome of a large set of measurements is represented by a mixed state D̂(tf),4375

this state can be decomposed in many different ways into a sum of the type (10.4). The decomposition (9.1), each term4376

of which is associated with an indication Ai of the pointer, is not the only one. This ambiguity of D̂(tf), as regards4377

the splitting of the ensemble E that it describes into subensembles, will be discussed in § 11.1.3, and we will show in4378

§§ 11.2 and 13.1 that the dynamics of the process removes this ambiguity by privileging the decomposition (9.1) and4379

yields a physical meaning to each of its separate terms, thus allowing us to make statements about individual systems.4380

10.2.4. Ensembles versus aggregates4381

We have assumed above that the density operator D̂ and the corresponding ensemble E were given a priori. In4382

practice, the occurrence of a mixed state D̂ can have various origins. An incomplete preparation (§ 10.2.2) always4383

yields a mixed state, for instance, the initial state R̂(0) of the apparatus in a measurement model. The mixed nature4384

of a state may be enhanced by dynamics, when some randomness occurs in the couplings or when approximations,4385

justified for a large system, are introduced; this is illustrated by the final state D̂(t f ) of a measurement process.4386

Density operators have also been introduced by Landau in a different context [31, 48, 84]. Consider a compound4387

system S1 + S2. Its observables are the operators that act in the Hilbert space H = H1 ⊗ H2, and its states D̂ are4388

characterized by the correspondence (10.1) in the spaceH . If we are interested only in the subsystem S1, disregarding4389

the properties of S2 and the correlations between S1 and S2, the relevant observables constitute the subalgebra of4390

operators acting in H1, and the correspondence (10.1) is implemented in the subspace H1 by means of the mixed4391

density operator D̂1 = tr2D̂. Suppose for instance that in an ensemble E of pairs S1, S2 of spins 1
2 prepared in the4392

singlet pure state 1
√

2
( | ↑〉1| ↑〉2 − |↓〉1| ↓〉2), we wish to describe only the spin S1. Its marginal state in the considered4393

ensemble E is again the unpolarized state, represented by D̂1 = 1
2 σ̂0. Isotropy is here built in, from this definition of4394

the state of the spin S1.4395

In all such cases, the state D̂ describes a statistical ensemble E, and the argument of § 10.2.3 entails the impossi-4396

bility of splitting unambiguous this ensemble into subensembles described by well defined pure states.4397

Another approach to density operators, initiated by von Neumann [4], consists in constructing them from pure4398

states, by following a path converse to that of § 10.2.3. We start from a collection of statistical ensembles Ek of4399

systems prepared in pure states |φk〉. We build a new set E by extracting randomly each individual system of E4400

from one among the ensembles Ek, the probability of this extraction being νk. If we have lost track of the original4401

ensemble Ek from which each drawing was performed, we have no means to acknowledge in which pure state |φk〉4402

a given system of E was originally lying. The expectation value, for this system, of any quantity is then given4403

by 〈Ô〉 =
∑

k νk〈φk |Ô|φk〉 = tr D̂Ô, and we are led to assign to it the mixed state defined by (10.3). Here again,4404
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the ambiguity of § 10.2.3 is present: If two different constructions have lead to the same state D̂, they cannot be4405

distinguished from each other in any measurement.4406

A further important point should be stressed. The above procedure of randomly selecting the elements extracted4407

from the ensembles Ek produces a set E of systems which is a bona fide ensemble. Indeed, a statistical ensemble4408

must have an essential property, the statistical independence of its elements, and this property is here ensured by the4409

randomness of the drawings. Thus, our full information about the ensemble, and not only about each of its individual4410

systems, is embedded in the density operator D̂. In the ensemble E obtained after mixing, the pure states |φk〉 have4411

been completely lost, although they were originally meaningful. In other words, no observation of an ensemble E4412

obtained by merging subensembles Ek can reveal the history of its elaboration.4413

Another, slightly different construction, also inspired by von Neumann’s idea, is preferred by some authors, see,4414

e.g., [303]. In this alternative procedure, a (non random) number nk of systems is extracted from each ensemble Ek so4415

as to constitute a set A having n =
∑

k nk elements, which we term as an aggregate. Losing again track of the origin4416

of each system of A, we have to assign to any individual system of A the density operator (10.3), with νk = nk/n.4417

However, in spite of this analogy with the ensemble E constructed above, we will acknowledge an important difference4418

between the two situation, due to the nature of the numbers νk, which are probabilities for E, proportions forA.4419

As an illustration, let us consider the aggregate Az built by gathering n1 = 1
2 n spins prepared in the pure state4420

|↑〉 (sz = +1) and n2 = 1
2 n spins prepared in the pure state |↓〉 (sz = −1), and by forgetting the original state of4421

each spin. Each individual spin of the aggregate Az in then described by the unpolarized density operator D̂ = 1
2 σ̂0,4422

exactly as each spin of the ensemble Ez, obtained by picking up states |↑〉 or |↓〉 randomly with equal probabilities.4423

Nevertheless, the joint statistics of two systems belonging to the aggregateAz differs from that of two spins belonging4424

to the ensemble Ez (which are statistically independent). Indeed, the systems of an aggregate are correlated, due to the4425

construction procedure. In our spin example, this is flagrant for n1 = n2 = 1. More generally, if σ̂z is simultaneously4426

measured on all n spins of the aggregate Az, the correlations will be expressed by the equality of the number of4427

outcomes ↑ and ↓. If the ideal measurement bears on n − 1 spins, we can predict for the last spin the sign of σz4428

with 100% confidence. For an ensemble Ez containing n spins, we cannot infer anything about the n’th spin from the4429

outcomes of previous measurements on the n − 1 other ones.4430

Altogether, an aggregate is not a statistical ensemble, because its elements are correlated with one another. A4431

random selection is needed in von Neumann’s procedure of defining mixed states, so as to ensure the statistical4432

independence required for ensembles.4433

The above point was purely classical (since we dealt with the z-component only), but it can have quantum im-4434

plications. Prepare another aggregate Ax with n1 spins oriented in the +x-direction and n2 spins oriented in the4435

−x-direction. Consider likewise the ensemble Ex built by randomly selecting spins in the −x- and +x-directions, with4436

equal probabilities. Any single system belonging to eitherAz or Ez orAx or Ex is described by the same unpolarized4437

density operator 1
2 σ̂0. However, differences occur when correlations between systems are accounted for. We first re-4438

member that the ensembles Ez and Ex are undistinguishable. In contrast, the two aggregatesAz andAx have different4439

properties. Measuring for Ax, as above for Az, the components σ̂z of all the n spins of Ax does not show up the4440

correlations that were exhibited for Az: Instead of finding exactly 1
2 n spins up and 1

2 n spins down, we find outcomes4441

that are statistically independent, and characterized by a same binomial law as in the case of the ensembles Ez or Ex.4442

The correlations withinAx occur between x-components.4443

Hence, failing to distinguish aggregates from ensembles leads to the inevitable conclusion that “two ensembles4444

having the same density matrix can be distinguished from each other” [303]. This statement has influenced similar4445

conclusions by other authors, see e.g. [304]. The persistent occurrence of such an idea in the literature (see [305])4446

demonstrates that the difference between ensembles and aggregates is indeed far from being trivial. In the light of4447

the above discussion, and in agreement with [306] and [307], we consider such statements as incorrect. Indeed, two4448

aggregates having for a single system the same density matrix can be distinguished from each other via two-system4449

(or many-system) measurements, but two statistical ensembles cannot.4450

11. The quantum measurement problem within the statistical interpretation4451

All’s well that ends well4452

Shakespeare4453
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In section 9 we have resumed the detailed solution of the Curie–Weiss model. As other models of measurement4454

treated in the framework of quantum statistical dynamics (section 2), it yields, for the compound system S + A at the4455

end of the process, a density operator D̂(tf) which satisfies the properties required for ideal measurements. However,4456

we have already stressed that such a result, although necessary, is not sufficient to afford a complete understanding4457

of quantum measurements. Indeed, the statistical interpretation of quantum mechanics emphasizes the idea that this4458

theory, whether it deals with pure or mixed states, does not govern individual systems but statistical ensembles of4459

systems (§ 10.1.3). Within this statistical interpretation, the density operator D̂(tf) accounts in a probabilistic way for4460

a large set E of similar runs of the experiment, whereas a measurement involves properties of individual runs. What4461

can then we say about the individual runs? This question is the core of the present section.4462

The remaining challenge is to elucidate the quantum measurement problem, that is, to explain why each individual4463

run provides a definite outcome, for both the apparatus and the tested system. As we will discuss, this property is not4464

granted by the knowledge of D̂(tf), an object associated with the full set E. Within the statistical interpretation, we may4465

deal only with ensembles; the individual systems that we wish to consider should be embedded in some subensembles4466

of E, to be eventually characterised by a specific outcome.4467

11.1. Formulating the problem4468

We discuss below how the quantum measurement problem arises in the framework of the statistical interpretation.4469

11.1.1. A physical, but simplistic and circular argument4470

Une idée simple mais fausse s’impose toujours face à une idée juste mais compliquée83
4471

Alexis de Tocqueville4472

As shown by the review of section 2 and by the Curie–Weiss example of section 3, many models of ideal quantum4473

measurements rely on the following ideas. The apparatus A is a macroscopic system which has several possible stable4474

states R̂i characterized by the value Ai of the (macroscopic) pointer variable. If A is initially set into a metastable4475

state R̂(0), it may spontaneously switch towards one or another state R̂i after a long time. In a measurement, this4476

transition is triggered by the coupling with the tested object S, it happens faster, and it creates correlations such that, if4477

the apparatus reaches the state R̂i, the tested observable ŝ takes the value si. The neat separation between the states R̂i4478

and their long lifetime, together with the lack of survival of “Schrödinger cats”, suggest that each individual process4479

has a unique outcome, characterized by the indication Ai of the pointer and by the value si for the observable ŝ of the4480

system S.4481

This intuitive argument, based on current macroscopic experimental observation and on standard classical theories4482

of phase transitions, is nevertheless delusive. Although its outcome will eventually turn out to be basically correct,4483

it postulates the very conclusion we wish to justify, namely that the apparatus reaches in each run one or another4484

among the states R̂i. This idea is based on a classical type of reasoning applied blindly to subtle properties of quantum4485

ensembles, which is known to produce severe mistakes (prescribed ensemble fallacy) [308, 309, 310, 311]. We ought4486

to analyze quantum measurements by means of rigorous quantum theoretical arguments, in order to explain why the4487

indication of the apparatus is unique in a single experiment.4488

11.1.2. Where does the difficulty lie?4489

Δεν βρέτηεκα τίτλο με του όρο
84

4490

Aesop4491

Let us remind that the most detailed results established for models of ideal measurements of ideal measurements4492

treated within quantum theory (section 2), and in particular for the Curie–Weiss model (sections 3-9), refer to a large4493

statistical ensemble E of runs involving a coupled evolution of S and A. We wish, however, to focus on individual4494

runs so as to explain in particular why, at the end of each run, the pointer gives a well-defined indication Ai. This4495

property agrees with our macroscopic experience and seems trivial, but it is not granted in the quantum framework.4496

83A simple but wrong idea always prevails over a right but complex idea
84After all is said and done, more is said than done
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The outcomes of statistical mechanical treatments are represented by the evolution of the density operator D̂(t) of4497

the compound system S + A, from the initial state4498

D̂(0) = r̂(0) ⊗ R̂(0), (11.1)

to the final state4499

D̂(tf) =
∑

i

piD̂i, D̂i = r̂i ⊗ R̂i, pi = trS r̂(0)Π̂i, pir̂i = Π̂ir̂(0)Π̂i. (11.2)

In the Curie–Weiss model its explicit form is the expression (3.20), that is,4500

D̂(tf) = p↑ |↑〉〈↑| ⊗ R̂⇑ + p↓ |↓〉〈↓| ⊗ R̂⇓. (11.3)

As we wish to interpret this result physically, we recall its nature. The state D̂(t) provides a faithful probabilistic4501

account for the dynamics of a large set E of runs of similarly prepared experiments, but nothing more. Quantum4502

mechanics is our most fundamental theory, but even a complete solution of its dynamical equations refers only to4503

the statistics of an ensemble E. The description of individual processes is excluded (§ 10.1.3): As any quantum4504

state, (11.2) is irreducibly probabilistic. In fact, probabilities occur for many other reasons (§ 12.1.2), which have not4505

necessarily a quantum origin.4506

The specific form of the expression (11.2) for the final state of S + A properly accounts for all the features of ideal4507

measurements that are related to a large set of runs. On the one hand, its off-diagonal blocks have been truncated. This4508

is a necessary property: the presence of elements in off-diagonal blocks would imply, as will be shown in § 11.2.1, that4509

some runs would not provide a well-defined outcome, rendering the solution of the measurement problem impossible.4510

In fact, von Neumann’s reduction implies that each individual run should end up in a state represented by a diagonal4511

block D̂i, so that the ensemble E obtained by putting together these runs should be represented by a weighted sum4512

of blocks D̂i. On the other hand, the values of the weights pi occurring in (11.2) agree with Born’s rule. Finally,4513

(11.2) exhibits the expected complete correlation between the final state r̂i of S and that R̂i of A characterized by the4514

indication Ai of the pointer.4515

Nevertheless, the properties of ideal measurements require the consideration of individual runs, or at least of4516

subensembles of E. The correlation existing in (11.2) means that, if Ai is observed, S will be described by r̂i. However,4517

nothing in D̂(tf) warrants that one can observe some well-defined value of the pointer in an individual run [155, 156,4518

157, 158, 159, 160, 161], so that the standard classical interpretation cannot be given to this quantum correlation.4519

Likewise, Born’s rule means that a proportion pi of individual runs end up in the state D̂i. The validity of this rule4520

requires D̂(tf) to have the form (11.2); but conversely, as will be discussed in § 11.1.3, the sole result (11.2) is not4521

sufficient to explain Born’s rule which requires the counting of the individual runs tagged by the outcome Ai. And of4522

course von Neumann’s reduction requires a selection of the runs having produced a given outcome.4523

If quantum mechanics were based on the same kind of probabilities as classical physics, it would be obvious4524

to infer statistically the properties of individual systems from the probability distribution governing the statistical4525

ensemble to which they belong. At first sight, the description of a quantum ensemble by a density operator seems4526

analogous to the description of an ensemble of classical statistical mechanics by a probability density in phase space4527

– or to the description of some ensemble of events by ordinary probabilities. We must acknowledge, however, a major4528

difference. In ordinary probability theory, one can distinguish exclusive properties, one of which unambiguously4529

occurs for each individual event. When we toss a coin, we get either heads or tails. In contrast, a quantum state is4530

plagued by the impossibility of analysing it in terms of an exclusive alternative, as demonstrated by the example of an4531

unpolarized spin 1
2 (§ 10.2.3). We are not allowed to think, in this case, that the spin may lie either in the +z (or the4532

−z) direction, since we might as well have thought that it lay either in the +x (or the −x) direction.4533

This ambiguity of a mixed quantum state may also be illustrated, in the Curie–Weiss model, by considering the4534

final state of the magnet M alone. For the ensemble E, it is described by the density operator R̂M(tf) = Pdis
M (m̂, tf)/G(m̂),4535

where the probability distribution Pdis
M (m, tf) is strongly peaked around the two values m = mF and m = −mF of the4536

pointer variable m, with the weights p↑ and p↓. In standard probability theory this would imply that for a single4537

system m takes either the value mF or the value −mF. However, in quantum mechanics, an individual system should4538

be regarded as belonging to some subensemble E′k of E. We may imagine, for instance, that this subensemble is4539
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described by a pure state |ψ〉 such that |〈m, η|ψ〉|2 presents the same two peaks as PM(m, tf), where we noted as |m, η〉4540

the eigenstates of m̂ (the other quantum number η takes a number G(m) of values for each m). This state lies astride4541

the two ferromagnetic configurations, with coherences, so that the magnetization of the considered individual system4542

cannot have a definite sign. From the sole knowledge of R̂M(tf), we cannot infer the uniqueness of the macroscopic4543

magnetization.4544

Thus, albeit both quantum mechanics and classical statistical mechanics can be formulated as theories dealing4545

with statistical ensembles, going to individual systems is automatic in the latter case, but problematic in the former4546

case since it is impossible to characterize unambiguously the ensembles of E.4547

11.1.3. The real task: determine proper subensembles4548

Horresco referens85
4549

Virgil, Aeneid4550

Remember first that, when quantum mechanics is used to describe an individual system, the density operator4551

that characterizes its state refers either to a real or to a thought ensemble (§ 10.1.3). If we consider a real set E of4552

measurement processes, each individual outcome should be embedded in a real subset of E. We are thus led to study4553

the various possible splittings of E into subensembles.4554

A superficial examination of the final state (11.2) suggests the following argument. In the same way as we may4555

obtain an unpolarized spin state by merging two populations of spins separately prepared in the states |↑〉 and |↓〉, let4556

us imagine that we have prepared many compound systems S + A in the equilibrium states D̂i. We build ensembles Ei,4557

each of which contains a proportion pi of systems in the state D̂i, merge them into a single one E and lose track of this4558

construction. The resulting state for the ensemble E is identified with (11.2) and all predictions made thereafter about4559

E will be the same as for the state D̂(tf) issued from the dynamics of the measurement process. It is tempting to admit4560

conversely that the set E of runs of the measurement may be split into subsets Ei, each of which being characterized4561

by the state D̂i. This would be true in ordinary probability theory. If the reasoning were also correct in quantum4562

mechanics, we would have proven that each run belongs to one of the subsets Ei, so that it leads S + A to one or4563

another among the states D̂i at the time tf , and that its outcome is well-defined.4564

Here as in § 11.1.1 the above argument is fallacious. Indeed, as illustrated by the example of unpolarized spins,4565

as stressed in § 10.2.3, and contrarily to a state in classical statistical mechanics, a mixed state D̂ can be split in4566

many different incompatible ways into a weighted sum of density operators which are more informative than D̂.4567

Here, knowing the sole final state D̂(tf) for the set E of runs, we can decompose it not only according to (11.2), but4568

alternatively into one out of many different forms4569

D̂(tf) =
∑

k

νkD̂
′
k(tf), (11.4)

where the set of states D̂′k(tf), possibly pure, differ from the set D̂i: The very concept of decomposition is ambiguous.4570

If we surmise, as we did above above when we regarded E as the union of (thought) subensembles Ei described by4571

D̂i, that the density operator D̂′k(tf) is associated with a (thought) subset E′k of E containing a fraction νk of runs of the4572

measurement, we stumble upon a physical contradiction: The full set E of runs could be partitioned in different ways,4573

so that a given run would belong both to a subset Ei and to a subset E′k, but then we could not decide whether its final4574

state is D̂i or D̂′k(tf), which provide different expectation values.4575

The various decompositions (11.2) and (11.4) are purely mathematical properties. Unless we succeed to identify4576

some physical process that selects one of them, the very fact that they formally exist precludes the task considered4577

here, namely to explain the uniqueness of individual measurements, the quantum measurement problem. In the present4578

context, only one decomposition may be physically meaningful, i. e., may correspond to the splitting of the real set4579

E of runs described by D̂(tf) into actually existing subsets. If we wish to remain within standard quantum mechanics4580

we can only identify this physical decomposition by extending to subensembles the dynamical analysis which has4581

85I shiver while I am telling it
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produced D̂(tf) from D̂(0) for the full ensemble. Nothing a priori warrants that the set of states D̂i will then play a4582

privileged role.4583

The above ambiguity is well known in the literature [22, 310, 308, 311]. Not paying attention to its existence, and4584

then imposing by hand the desired separation into subensembles, was called the “prescribed ensemble fallacy” [311].4585

The question does not seem to have yet been resolved in the context of proper measurement models, but we attempt4586

to answer it below.4587

To illustrate the harmfulness of this ambiguity, consider the simple case of a Curie–Weiss model with N = 24588

(subsection 8.1). Although it cannot be regarded as an ideal measurement, it will clearly exhibit the present difficulty.4589

After elimination of the bath, after reduction and under the conditions (8.7), the state of S + M at a time tf such that4590

τreg � tf � τobs has the form4591

D̂(tf) = p↑D̂↑ + p↓D̂↓, (11.5)

where D̂↑ is the projection onto the pure state |↑, ⇑〉 characterized by the quantum numbers sz = 1, m = 1, and likewise4592

D̂↓ the projection onto |↓, ⇓〉 with sz = m = −1. This form suggests that individual runs of the measurement should4593

lead as expected either to the state |↑, ⇑〉 or to the state |↓, ⇓〉 with probabilities given by the Born rule. However, this4594

conclusion is not granted since we can also decompose D̂(tf) according, for instance, to4595

D̂(tf) = ν1D̂′1 + ν2D̂′2, (11.6)

where D̂′1 is the projection onto
√

p↑/ν1 cosα |↑, ⇑〉 +
√

p↓/ν1 sinα |↓, ⇓〉 and D̂′2 the projection onto
√

p↑/ν2 sinα ×4596

|↑, ⇑〉 −
√

p↓/ν2 cosα |↓, ⇓〉, with α arbitrary and ν1 = p↑ cos2 α + p↓ sin2 α = 1 − ν2. Nothing then would prevent a4597

single real run to belong to the subensemble described by the first term of (11.6) and thus end up in the state D̂′1 where4598

neither m nor sz are well-defined. In spite of the suggestive form of (11.5), we cannot give any physical interpretation4599

to its separate terms, on account of the existence of alternative formally similar decompositions (11.6).4600

In order to interpret the results drawn from the solution of models, it is therefore essential to determine not only4601

the state D̂(t) for the full ensemble E of runs of the measurement, but also the final state of S + A for any subensemble4602

of runs. Only then may one be able to assign to an individual system, after the end of the process, a density operator4603

more informative than D̂(tf) and to derive from it the required properties of an ideal measurement.4604

To this end, one might postulate that a measuring apparatus is a macroscopic device which produces at each run4605

a well-defined value for the pointer variable, a specific property which allows registration. (This idea is somewhat4606

reminiscent of Bohr’s view that the apparatus is classical.) Thus, the apparatus would first be treated as a quantum4607

object so as to determine the solution D̂(t) of the Liouville–von Neumann equation for the full ensemble E, and would4608

then be postulated to behave classically so as to determine the states of the subensembles to which the individual runs4609

belong. No contradiction would arise, owing to the reduced form found for D̂(tf). (This viewpoint differs from that of4610

the quantum–classical models of section 2.2.)4611

Although expedient, such an approach is unsatisfactory. It is obviously unjustified in the above N = 2 case. To4612

really solve the measurement problem, we need to explain the behaviour of the apparatus in individual runs by relying4613

on the sole principles of quantum mechanics, instead of supplementing them with a doubtful postulate. We now show4614

that the task of understanding from quantum dynamics the uniqueness of measurement outcomes is feasible, at least4615

for sufficiently elaborate models of quantum measurements. In fact, we will prove in the forthcoming subsections that4616

the quantum Curie–Weiss model for a magnetic dot M + B can be modified so as to explain the classical behaviour4617

of its ferromagnetic phases, and hence the full properties of the measurement.4618

11.2. The states describing subensembles4619

De hond bijt de kat niet86
4620

Les chiens ne font pas des chats86
4621

Dutch and French sayings4622

86Dogs do not beget cats
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Several steps will be required to show that the density matrix for any subensemble has the same truncated structure4623

as the one which describes the full ensemble E. We rely for illustration on the Curie–Weiss model, and first include4624

for orientation a tentative solution, seemingly natural but unsuccessful (§ 11.2.2), and then another one, effective but4625

not yet fully satisfactory (§ 11.2.3), before we present a final, more general treatment (§ 11.2.4).4626

11.2.1. Hierarchic structure of physical subensembles4627

We first note that the question of splitting the state D̂(t) of S + A into a weighted sum of states D̂′k(t), each one4628

associated with a subensemble E′k, can be raised only after the truncation has taken place, at a time τsplit such that4629

τsplit � τtrunc and under conditions that exclude recurrences. This is not a strong constraint, since we anyhow intend4630

to wait until tf , the end of the registration. Among the various possible states D̂′k that one can imagine to associate4631

with subensembles of E, one should never find at least those which possess at the final time non-zero elements in off-4632

diagonal blocks. (These elements only have to cancel out in the sum over k of (11.4).) Such a situation is exemplified4633

by (11.6) for cos 2α , 0, in which case D̂′1 possesses off-diagonal terms |↑, ⇑〉〈↓, ⇓| and |↓, ⇓〉〈↑, ⇑|, and hence contains4634

(due to the positivity of D̂′1) both the diagonal terms |↑, ⇑〉〈↑, ⇑| and |↓, ⇓〉〈↓, ⇓|. An individual run of this type could4635

not yield a well-defined macroscopic value for the pointer.4636

A model suitable to fully explain an ideal measurement must yield for S + A, at the end of each run, one or another4637

among the states D̂i defined by (11.2). We do not have direct access to individual runs, but should regard them as4638

embedded in subensembles. Consider then an arbitrary subensemble of real runs drawn from the full ensemble E and4639

containing a proportion qi of individual runs of the type i. We expect this subensemble to be described at the end of4640

the measurement process by a density operator of the form4641

D̂sub(tf) =
∑

i

qiD̂i. (11.7)

(For the full set E, the weights have been denoted by pi
87.)4642

We will refer to the essential property (11.7) as the hierarchic structure of subensembles. The existence of this4643

common form for all subensembles is a consistency property. It is trivially satisfied in ordinary probability theory4644

where all subensembles are constructed from the same building blocks, but it is not granted in quantum mechanics due4645

to the infinity of different ways of splitting the state of E into elementary components as in (10.3), or into subensembles4646

as in (10.4). The existence of the hierarchic structure removes this ambiguity stressed in § 11.1.3. We wish therefore4647

to prove that the final state of any subensemble of E has the form (11.7).4648

Our strategy will again rely on a dynamic analysis, now not for the whole ensemble as before, but for an arbitrary4649

subensemble. Consider, at the time tsplit, some splitting (11.4) of E into subensembles E′k. We select one of these,4650

denoted as Esub and described for t > tsplit by the state D̂sub(t). Since D̂sub(tsplit) is issued from the decomposition4651

(11.4) of D̂(tsplit), it presents an arbitrariness limited by the positivity of D̂(tsplit)− νkD̂sub(tsplit) for a sizeable value of4652

νk. We will then study, at least in the Curie–Weiss model, the Liouville–von Neumann evolution of the state D̂sub(t)4653

from t = tsplit to t = tf , and will prove that it relaxes towards the form (11.7). We could not decide beforehand whether4654

Esub was real or virtual, but all real subensembles will anyhow be accounted for by this treatment, which will therefore4655

yield the desired conclusion.4656

11.2.2. Attempt of early truncation4657

In order to try to establish the hierarchical structure of subensembles, which requires at least the elimination4658

from D̂sub(t) of its off-diagonal blocks, it is natural to try to approach the problem as in section 5. We take a short4659

splitting time tsplit, satisfying τtrunc � tsplit � τreg, so that D̂(tsplit) has the form
∑

i Π̂ir̂(0)Π̂i ⊗ R̂(0) issued from D̂(0)4660

by projecting out its off-diagonal blocks; the state R̂(0) of the apparatus has not yet been significantly affected. The4661

initial condition D̂sub(tsplit) is found from some decomposition of the simple truncated state D̂(tsplit). To follow the fate4662

of the subensemble Esub, we have to solve the equations of motion of section 4. The situation is the same as in section4663

5, except for the replacement of the initial condition D̂(0) by D̂sub(tsplit). If the truncation mechanisms of sections 54664

87In case E is split into some set of disjoint subensembles, each pi of E is a weighted sum of the corresponding coefficients qi for these
subensembles
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and 6 are effective, the elements present in the off-diagonal blocks of D̂sub(t) disappear over the short time scale τtrunc,4665

as they did for D̂(t). The state D̂sub(t) is thus dynamically unstable against truncation. Later on, the diagonal blocks4666

that remain after this relaxation will evolve as in section 7, and give rise to ferromagnetic states for M, so that D̂sub(tf)4667

will eventually reach the form (11.7).4668

Unfortunately, the truncation mechanism based on the coupling between S and M is not efficient for all possible4669

initial states D̂sub(tsplit) arising from a decomposition of D̂(tsplit). We have seen in section 5 that it relies on the4670

presence of a width in the initial paramagnetic probability distribution PM(m, 0) of the pointer variable, and that it4671

may fail for “squeezed” initial states of M (§ 5.2.3). While the full state D̂(tsplit) involves a width of order 1/
√

N4672

for PM(m, 0), this property is not necessarily satisfied for its components D̂sub(tsplit), so that we cannot prove for an4673

arbitrary subensemble Esub that D̂sub(t) finally reaches the form (11.7).4674

In fact, the Curie–Weiss model as it stands was too crude for our present purpose. Indeed, only a single variable,4675

the combination m̂ = (1/N)
∑

n σ̂
(n)
z of the pointer observables, enters its dynamics. The irreversible process that4676

ensures the hierarchic structure of the subensembles is more elaborate than the truncation process of D̂(t) and requires4677

dynamics involving many variables.4678

11.2.3. Dynamical instability for the pointer alone4679

The relaxation of arbitrary states of subensembles towards (11.7) thus cannot be achieved by the interaction ĤSM,4680

so that we have to rely on the Hamiltonian of the apparatus itself. The dynamical mechanism responsible for this4681

relaxation cannot work at an early stage, when the invariance of the state of M has not yet been broken. We must4682

therefore consider the instability of subensembles at a late time tsplit such that M, after having been triggered by S,4683

has reached for the full ensemble E a mixture of the two ferromagnetic states. The time tsplit at which we imagine4684

splitting E into subensembles E′k is now taken at the end of the registration, just before the time tf , so that the initial4685

state D̂sub(tsplit) of the considered dynamical process is one element of some decomposition (11.4) of D̂(tf). As the4686

registration is achieved at that time tsplit, the interaction ĤSA is then supposed to have been switched off, so that the4687

apparatus will relax by itself without any effect on the system.4688

Such decompositions (11.4) of D̂(tf) are made simpler if we replace, in the expression (11.2), each canonical4689

ferromagnetic equilibrium state R̂i by a microcanonical state; this is justified for large N. Tracing out the bath, which4690

reduces D̂ to D̂, we will therefore consider arbitrary decompositions of the analogue for S+M of the state (11.3), that4691

is,4692

D̂(tf) = p↑ Π̂↑ ⊗ R̂µ
⇑

+ p↓ Π̂↓ ⊗ R̂µ
⇓
, (11.8)

where Π̂↑ = |↑〉〈↑| and Π̂↓ = |↓〉〈↓|. The two occurring microcanonical states of M are expressed as (with the index µ4693

for microcanonical)4694

R̂µ
⇑

=
1
G

∑
η

|mF, η〉〈mF, η|, R̂µ
⇓

=
1
G

∑
η

|−mF, η〉〈−mF, η|, (11.9)

where |m, η〉 denote the eigenstates |σ(1)
z , · · · , σ(n)

z , · · · , σ(N)
z 〉 of ĤM, with m = (1/N)

∑
n σ

(n)
z ; the index η takes a4695

number G(m) of values, and the degeneracy G(m) of the levels, expressed by (3.23), is large as an exponential of N;4696

for shorthand we have denoted G(mF) = G(−mF) as G.4697

As (11.8) is an operator in the 2G-dimensional space spanned by the basis |↑〉 ⊗ |mF, η〉, |↓〉 ⊗ |−mF, η〉, any density4698

operator D̂sub(tsplit) issued from the decomposition of D̂(tf) is a linear combination of projections over pure states4699

|Ψ(0)〉 of the form [71, 309, 312]4700

|Ψ(0)〉 =
∑
η

Uη |↑〉 ⊗ |mF, η〉 +
∑
η

Vη |↓〉 ⊗ |−mF, η〉, (11.10)

with some coefficients Uη, Vη. For shorthand we chose in (11.10) tsplit as a new origin of time. It will therefore be4701

sufficient for our purpose to take D̂sub(tsplit + t) = |Ψ(t)〉〈Ψ(t)|, and to prove that |Ψ(tf)〉〈Ψ(tf)| has for arbitrary values4702
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of Uη, Vη the same form as (11.8) within replacement of p↑ and p↓ by other coefficients. (Owing to our choice of4703

a micro-canonical model, the “cat terms” | ↑〉〈↓ | ⊗ |mF, η〉〈−mF, η
′| in |Ψ(0)〉〈Ψ(0)|, and their hermitean conjugates,4704

fully correlate S and M, in spite of splitting the ensemble E into subensembles.) Our problem amounts to show that4705

any such |Ψ(0)〉 is dynamically unstable and that |Ψ(t)〉〈Ψ(t)| decays on a time scale short compared to tf towards an4706

incoherent sum of microcanonical distributions, as4707

|Ψ(t)〉〈Ψ(t)| → q↑Π̂↑ ⊗ R̂µ
⇑

+ q↓Π̂↓ ⊗ R̂µ
⇓
, q↑ =

∑
η

|Uη|
2, q↓ =

∑
η

|Vη|
2. (11.11)

This is the microcanonic relaxation process which was discussed in literature several times and under various assump-4708

tions; see Ref. [313] for an early review and Refs. [314, 315, 316, 317, 314] for further recent results.4709

Obviously, our simple Curie–Weiss model as defined in section 3 is inappropriate for this task. Indeed, all the4710

states |↑〉 ⊗ |mF, η〉 and |↓〉 ⊗ | −mF, η〉 are eigenstates with the same eigenvalue of both the coupling ĤSM and the Ising4711

Hamiltonian ĤM, so that ĤSM + ĤM has no effect on |Ψ(t)〉〈Ψ(t)|. Whether S is still coupled to M or not at the time4712

tsplit thus makes no difference. Moreover, the coupling ĤMB with the bath was adequate to allow dumping of energy4713

from M to B during the registration, whereas we need here transitions between states |mF, η〉 and |mF, η
′〉 with equal4714

energies. We must therefore improve the model, by supplementing the original Hamiltonian of subsection 3.2 with4715

weak interactions V̂M which may induce the required transitions among the spins of M. As these transitions should not4716

affect m, the perturbation V̂M has the form V̂M = V̂⇑ + V̂⇓, where V̂⇑ and V̂⇓ act in the subspaces |mF, η〉 and |−mF, η〉,4717

respectively, so that V̂⇑| − mF, η〉 = V̂⇓|mF, η〉 = 0.4718

In order to find explicitly the time dependence of |Ψ(t)〉〈Ψ(t)|, we should specialize the model. A simple possibility4719

consists in taking V̂⇑ and V̂⇓ as random matrices [233]. We shall thus average |Ψ(t)〉〈Ψ(t)| over a Gaussian unitary4720

ensemble of statistically independent random Hermitean matrices V̂⇑ and V̂⇓ of size G, with a weight proportional to4721

exp
[
−

2G
∆2

(
tr V̂2

⇑ + tr V̂2
⇓

)]
. (11.12)

The matrix elements of V̂M have a very small typical size ∆/
√

G, where we remind that G is large as an exponential4722

of N. The G energy levels of ĤM + V̂M in the subspace |mF, η〉 are no longer degenerate, and, subtracting the fixed4723

value from ĤM, their density obeys Wigner’s semi-circle law (2/π∆2)
√

∆2 − E2 since G � 1. We do not wish the4724

perturbation V̂M to spoil the above analysis of the original Curie–Weiss model; its effect, measured for large G by the4725

parameter ∆, should therefore be sufficiently weak so as to produce a widening ∆ small compared to the fluctuation4726

of the energy in the canonical distribution. Since the fluctuation of m̂ in the latter distribution is of order 1/
√

N, we4727

should take, according to (3.7),4728

∆ �
√

N(J2 + J4). (11.13)

Returning to |Ψ(t)〉〈Ψ(t)|, we notice that the system S behaves as a spectator, so that we need only to study, in the4729

space of M, the time dependence of the operators4730

X̂ ηη′

⇑
(t) ≡ exp(−iV̂⇑t/~)|mF, η〉〈mF, η′| exp(iV̂⇑t/~), (11.14)

Ŷ ηη′ (t) ≡ exp(−iV̂⇑t/~)|mF, η〉〈−mF, η′| exp(iV̂⇓t/~), (11.15)

and of the operators X̂ ηη′

⇓
(t) and

[
Ŷ η′η(t)

]†
obtained by interchanging ⇑ and ⇓. (Recall that we have chosen tsplit as4731

a new origin of time.) Because V̂⇑ and V̂⇓ are statistically independent, the evaluation of Ŷηη′ (t) simply involves4732

the separate averages of exp(−iV̂⇑t/~) and of exp(iV̂⇓t/~), which for symmetry reasons are proportional to the unit4733

operator. We can therefore evaluate the time dependence of Ŷηη′ (t) through the trace4734

φ(t) ≡
1
G

tr exp(−iV̂t/~) =
2
π∆2

∫ ∆

−∆

dE
√

∆2 − E2 exp(−iEt/~) =
τsub

t
J1

(
2t
τsub

)
, (11.16)
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where we made use the semi-circle law for the density of eigenvalues mentioned above. This expression exhibits the4735

characteristic time τsub associated with the relaxation of the subensembles:4736

τsub =
2~
∆
. (11.17)

Notice that τsub does not depend on the huge size G of our Hilbert space. We wish τsub to be short compared to the4737

registration time τreg given by (9.9) or (9.10). As N � 1 and γ � 1, the condition (11.13) permits easily a value of ∆4738

such that τsub � τreg. From (11.15) and (11.16), we find that Ŷ ηη′ (t) behaves as Ŷ ηη′ (t) = fY (t)Ŷ ηη′ (0), where4739

fY (t) = φ2(t) =

(
τsub

t

)2
J2

1

(
2t
τsub

)
≈

1 − (
t
τsub

)2 , (t � τsub),

∼
1
π

(
τsub

t

)3
sin2

(
2t
τsub
−
π

4

)
, (t � τsub). (11.18)

Accordingly, the off-diagonal blocks of |Ψ(t)〉〈Ψ(t)|, which involve both ferromagnetic states mF and −mF, decay for4740

t � τsub as Eq. (11.18). It is thus seen that the coherent contributions Ŷ ηη′ fade out over the short time τsub.4741

The time dependence of fY (t) includes a slow decrease in t−3 and oscillations, unusual features for a physical4742

decay. These peculiarities result from the sharp behavior of the level density at E = ±∆. We will show in § 11.2.44743

how such a pathology can be cured by relying on more realistic models which give rise to a usual exponential decay.4744

To evaluate X̂ηη′

⇑
(t), we imagine that the two exponentials of (11.14) are expanded in powers of V̂⇑ and that Wick’s4745

theorem is used to express the Gaussian average over (11.12) in terms of the averages V̂ηη′ V̂η′η = ∆2/4G. We thus4746

find a diagrammatic expansion [318, 314] for the matrix elements of X̂ηη′

⇑
(t) in the basis |mF, η〉. Apart from the factor4747

(−i)nin
′

/n!n′! arising from the expansion of the exponentials, each line of a diagram carries a contraction4748

t2

~2 V̂ηη′ V̂η′η =
∆2t2

4~2G
=

1
G

(
t
τsub

)2

, (11.19)

and each summation over an internal index η brings in a factor G. The structure of the contractions (11.19) implies4749

that each index must come in a right-left pair. Hence, for η , η′, the sole non-vanishing matrix element of X̂ηη′

⇑
(t) is4750

〈mF, η|X̂
ηη′

⇑
(t)|mF, η

′〉. Among the contributions to this matrix element, the only diagrams that survive in the large-G4751

limit are those which involve as many summations over indices η as contractions. This excludes in particular all dia-4752

grams containing contractions astride the left and right exponentials of (11.14). The evaluation of 〈mF, η|X̂
ηη′

⇑
(t)|mF, η

′〉4753

thus involves the same factorization as in 〈mF, η|Ŷηη′ (t)|−mF, η
′〉, and this simply produces the factor [φ(t)]2. We there-4754

fore find, for η , η′, that X̂ηη′

⇑
(t) = φ2(t)X̂ηη′

⇑
(0) tends to 0 just as (11.18).4755

For X̂ηη
⇑

(t), the pairing of indices shows that the sole non-vanishing elements are 〈mF, η|X̂
ηη
⇑

(t)|mF, η〉, the outcome4756

of which does not depend on η, and, for η , η′, 〈mF, η
′|X̂ηη
⇑

(t)|mF, η
′〉, which depends neither on η nor on η′. Moreover,4757

according to the definitions (11.9) and (11.14), we note that tr X̂ηη
⇑

(t) = 1, so that X̂ηη
⇑

(t) must have the general form4758

X̂ηη
⇑

(t) = fX(t) X̂ηη
⇑

(0) +
[
1 − fX(t)

]
R̂µ
⇑
. (11.20)

In the large-G limit, the same analysis as for 〈mF, η|X̂
ηη′

⇑
(t)|mF, η

′〉 holds for 〈mF, η|X̂
ηη
⇑

(t)|mF, η〉, and we find like-4759

wise fX(t) = φ2(t), so that the first term of (11.20) again decays as (11.18). (A direct evaluation of 〈mF, η
′|X̂ηη
⇑

(t)|mF, η
′〉4760

for η , η′, which contributes to the second term of (11.20), would be tedious since this quantity, small as 1/G, in-4761

volves correlations between the two exponentials of (11.14).) Thus, on the time scale τsub, the operators X̂ηη′

⇑
(t) fade4762

out for η , η′ and tend to the microcanonical distribution for η = η′.4763
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Let us gather the above results. Starting from the ensemble E described by the state (11.8), we consider any (real4764

or virtual) subensemble Esub described by a state D̂sub(tsplit) issued from a decomposition of D̂(tsplit). In the present4765

model D̂sub evolves according to4766

D̂sub(tsplit + t) = φ2(t)D̂sub(tsplit) + [1 − φ2(t)]D̂split(tf), (11.21)

where4767

D̂split(tf) = q↑Π̂↑ ⊗ R̂µ
⇑

+ q↓Π̂↓ ⊗ R̂µ
⇓
, q↑,↓ = tr D̂split(tf)Π̂↑,↓, (11.22)

and where φ2(t), expressed by (11.18), (11.17), decreases over the very short time scale τsub. The state of any4768

subensemble therefore relaxes rapidly to the expected asymptotic form (11.22), fulfilling the hierarchic structure4769

at the final time tf . Decoherence and equilibration take place simultaneously.4770

Note that the above relaxation is a property of the magnet alone, if we deal with broken invariance in the quantum4771

framework. So we momentarily disregard the system S and measurements on it. Consider the perfectly symmetric4772

process of § 7.3.2 (fig 7.7) which brings a statistical ensemble E of magnets M from the paramagnetic state to the4773

quantum mixture R̂M(tf) = Pdis
M (m̂, tf)/G(m̂) of both ferromagnetic states. To simplify the discussion we replace the4774

canonical distribution Pdis
M (m, tf) by a microcanonical distribution located at mF and −mF. The mixed state R̂M(tf) can4775

be decomposed, as indicated at the end of § 11.1.2, into a weighted sum of projections |ψ〉〈ψ| onto pure states (notice4776

that Ψ in (11.10) refers not only to M but also to S, that we disregard here)4777

|ψ〉 =
∑
η

U′η|mF, η〉 +
∑
η

V ′η| − mF, η〉, (11.23)

each of which describes a subensemble of E and contains coherent contributions astride m = mF and m = −mF. Let4778

us imagine that such a pure state has been prepared at some initial time. Then, in the present model including random4779

interactions, it is dynamically unstable and decays into
∑
η |U′η|

2R̂µ
⇑

+
∑
η |V ′η|

2R̂µ
⇓

on the time scale τsub. Starting4780

from |ψ〉〈ψ| we are left after a while with an incoherent superposition of microcanonical equilibrium states of M.4781

Contrary to the initial state, this final situation can be interpreted classically as describing individual events, in each4782

of which m takes a well-defined value, either mF or −mF. Quantum dynamics thus allows us, at least in the present4783

model, to by-pass the postulate about the apparatus suggested the end of § 11.1.3. Quantum magnets (and, more4784

generally, macroscopic quantum systems having several equilibrium states) can just relax rapidly into well-defined4785

unique macroscopic states, and in that sense behave as classical magnets (systems), as one would expect.4786

Let us return to the measurement setting, where S and M are correlated. We have proved in the present model4787

that the surmise (11.7) is justified for any subensemble, and that the set of subensembles possess at the final time4788

tf the hierarchic structure which removes the quantum ambiguity associated with the splitting of the full ensemble4789

of runs. The solution of the measurement problem thus relies on specific properties of the apparatus, especially of4790

its pointer M. We had already dwelt on the large number of degrees of freedom of M, needed to let it reach several4791

possible equilibrium states. Now, we wish coherent states astride these equilibrium states to be dynamically unstable4792

so that the pointer can yield well-separated indications; the present model shows that this is achieved owing to the4793

macroscopic size of M and to a sufficient complexity of the internal interactions V̂M. Moreover these interactions4794

equalize the populations of all levels of each microcanonical equilibrium state.4795

11.2.4. Dynamical instability in more realistic models4796

As usual in the applications of the random matrix theory, the use of a random interaction V̂M may be justified by4797

the idea that, among the possible interactions, most will have similar dynamic effects, and that these effects can be4798

exhibited by averaging |Ψ(t)〉〈Ψ(t)| over V̂M. Nevertheless, although our choice of a Gaussian randomness (11.12) was4799

mathematically sensible and provided the desired result, this choice was artificial. We have noted above that it yields4800

a non-exponential decay (11.18) of fY (t) = fX(t), which is not satisfactory. In fact, by assuming that all the matrix4801

elements of V̂⇑ have comparable sizes, we have put all the states |mF, η〉 on an equal footing and disregarded their4802
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structure in terms of the spins σ(n)
z . Such a V̂⇑ is rather unphysical, as it produces transitions from |mF, η〉 to |mF, η

′〉4803

that involve flip-flops of many spin pairs with the same amplitude as transitions that involve a single flip-flop. (The4804

total spin remains unchanged in these dynamics.)4805

A more realistic model should involve, for instance, as interaction V̂⇑ a sum of terms σ̂(n)
− σ̂

(n′)
+ , which keep m fixed4806

and produce single flip-flops within the set |mF, η〉 = |σ(1)
z , · · · , σ(n)

z , · · · , σ(N)
z 〉. The number of significant elements4807

of the G × G matrix V̂⇑ is then of order G rather than G2 as for Gaussian ensembles. This idea can be implemented4808

in a workable model by taking for V̂⇑ and V̂⇓ other types of random matrices. If, for instance, the level density4809

associated with V̂⇑ is Gaussian instead of satisfying the semi-circle law, the relaxation will be exponential. One4810

possible realization of this exponential relaxation scenario is achieved via a class of random matrices, where the4811

distribution of eigenvalues is factorized from that of the eigenvectors. This case corresponds to the homogeneous4812

(Haar’s) distribution. The above Gaussian ensemble, with the distribution of the eigenvalues satisfying the semi-circle4813

law, also belongs to this class [230]. Appendix H justifies that if the distribution of the eigenvalues is taken to be4814

Gaussian (independent from the Haar distribution of the eigenvectors), the relaxation is indeed exponential.4815

One can justify the use of random matrices from a different, open-system perspective. We have assumed till now4816

that the decay (11.21) was due to interactions within the spins of M. Alternatively, a concrete physical mechanism4817

involving the bath B can efficiently produce the same decay. Instead of being governed by V̂M as above, the evolution4818

of |Ψ(t)〉 is now governed by an interaction V̂MB with the bath. In contrast to the spin-boson interaction ĤMB defined by4819

(3.10) which affects the spins of M one by one and which produces the registration, this interaction V̂MB does not affect4820

the energy of M, and thus consists of flip-flops of spin pairs. It gives rise to transitions within the subspaces |mF, η〉 or4821

|−mF, η〉, which can be described as a quantum collisional process. Successive brief processes take place within M +4822

B. Each such “collision” may be produced by one among the various elements k of the bath, which act independently.4823

Its effect on M is thus described in the subspaces |mF, η〉 and |−mF, η〉 by either one of the unitary transformations Ûk
⇑

4824

and Ûk
⇓

associated with the element k of B. It is then fully legitimate to treat the effective Hamiltonians for M entering4825

each Ûk
⇑

and Ûk
⇓

as random matrices. Their randomness arises here from tracing out the bath.4826

This collisional approach is worked out in Appendix I. It is shown to produce the required decay (11.11) of4827

|Ψ(t)〉〈Ψ(t)| through the two effects already described in § 11.2.3: the disappearance of the coherent contributions4828

of the marginal density matrix of M, and the microcanonical relaxation. The process is rapid, because the colli-4829

sions produce transitions between kets having the same energy, and the decay is exponential as expected on physical4830

grounds.4831

Altogether, simple models such as the Curie–Weiss model of section 3 can provide, for the full set E of runs4832

of a measurement issued from the initial state (11.1), the final state (11.2) issued from two relaxation processes,4833

the truncation, and the registration which fully correlates the system and the pointer. However, ideal measurements4834

require a property, less easy to satisfy, the hierarchic structure of the subensembles of E, expressed by the special form4835

(11.7) of their states, which are constructed from the same building blocks D̂i as the state (11.2) for the full ensemble.4836

We have just seen that more elaborate dynamical models involving suitable interactions within the apparatus must be4837

introduced to establish this property. Then, if a state having a form different from (11.7) occurs for some subensemble4838

at the end of the process, it is dynamically unstable and undergoes a new type of rapid relaxation towards a form4839

(11.7). This mechanism removes the ambiguity in the possible decompositions (11.4) of the state D̂(tf) describing the4840

full ensemble E: all subensembles will at the final time tf be described by states of the form (11.7), the only physical4841

ones at the end of the process.4842

11.3. Emergence of uniqueness and of classical features in measurements4843

Luctor et emergo88
4844

Fluctuat nec mergitur89
4845

Devices of the often flooded Dutch province Zeeland and of the city of Paris4846

We are now in position to tackle the quantum measurement problem within the statistical interpretation of quantum4847

mechanics. The dynamical establishment of the hierarchic structure (11.7) for any state D̂sub(tf) that may arise from4848

88I fight and emerge
89She is agitated by the stream, but does not sink
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any decomposition of D̂(tf), whether virtual as in (11.4) or real, allows us to focus upon the real subsets of runs of4849

the measurement. As regards these subsets, the large set E has exactly the same structure as an ordinary, classical4850

statistical ensemble. The quantum ambiguity of § 11.1.3 has disappeared; each term of the decomposition (11.2) has4851

become meaningful since a state D̂sub(tsplit) issued from an arbitrary decomposition (11.4) would anyhow relax to a4852

state of the form (12.7). The explanation of all properties of ideal quantum measurements will rely on this hierarchic4853

structure which results from the elimination of the quantum ambiguity and which gives an answer to the quantum4854

measurement problem.4855

11.3.1. Individual processes, reduction and preparations through measurement4856

Cogito, ergo sum90
4857

René Descartes4858

The common final form (11.7) of all density operators describing subsets Esub displays a classical feature: the4859

properties i now appear as exclusive, and the weights qi have exactly the same additivity property as ordinary prob-4860

abilities when disjoint subsets are amalgamated. (The diagonal blocks D̂i themselves retain a quantum probabilistic4861

nature.) In the same way as a probability law associated with a classical statistical ensemble can be interpreted in4862

terms of individual events (§ 11.1.2), we are now allowed to consider individual runs. Relying on the unambiguous4863

splitting of any real subset Esub into blocks D̂i at the time tf , we then identify the least mixed subset Ei to which some4864

single run belongs; its density matrix contains the sole block D̂i. We also interpret qi, for any subset Esub, as the4865

relative frequency of occurrence of the runs having the property i. Thus, the considered individual run ends up in one4866

among the states D̂i = r̂i ⊗ R̂i for S + A, and it has a well-defined outcome i.4867

We have therefore explained, at least in the present model, the phenomenon of reduction, that is, the production,4868

in each individual run, of one among the diagonal blocks of the truncated final density matrix (11.2) of S+A, which4869

describes the whole set E and arises from (11.1). The possibility of making such a statement about individual processes4870

in spite of the irreducibly probabilistic nature of quantum mechanics (in its statistical interpretation) is founded on the4871

special dynamics of the apparatus, as shown in § 11.2.3.4872

We stressed in § 10.1.3 that the concept of “state” of an individual system refers, in the statistical interpretation,4873

to a thought statistical (sub-)ensemble to which this system belongs. In a measurement, two different states may thus4874

be assigned to S + A at the end of a single run. Before acknowledging the outcome of the process, we have to regard4875

it as an element of the full set E of runs issued from the initial state D̂(0) of Eq (11.1), and we thus assign to S + A4876

the state D̂(tf) of Eq. (11.2) (which involves correlations between S and A). After having read the specific outcome4877

Ai, we have learnt that the considered single run belongs to the subset Ei which has emerged from the dynamics, so4878

that we thus assign to S + A the more informative state D̂i (which has the uncorrelated form r̂i ⊗ R̂i). Predictions4879

about experiments performed on S after the considered run should therefore be made from the weakly truncated state4880 ∑
i Π̂ir̂(0)Π̂i if the result is not read, and from the reduced state r̂i if the result Ai has been selected.4881

Whereas the transformation of the state D̂(0) into D̂(tf) is a real physical process, reduction from the state D̂(tf)4882

to the state D̂i has no dynamical meaning. It is simply an updating of our probabilistic description, allowed by the4883

acquisition of the information Ai which characterizes the new narrower ensemble Ei. The state D̂i retains through r̂i4884

some features inherited from the initial state D̂(0), but not all due to irreversibility of truncation and registration, and4885

it accounts in addition for the knowledge of Ai. Measurement can thus indeed be regarded as information processing;4886

the amounts of information acquired and lost are characterized by the entropy balance of § 1.2.4.4887

The information needed to partition E into its subsets Ei characterized by their density operator D̂i is embedded in4888

the indication Ai of the pointer. The uniqueness of this indication is explained by the dynamics of the reduction91. The4889

macroscopic size of the pointer then allows observing, storing or processing the outcome. The complete correlations4890

established between S and A by the registration, exhibited in (11.2), entail uniqueness of the outcome si for the tested4891

observable ŝ of S in each run92. A filtering of the runs of an ideal measurement that are tagged by the indication Ai4892

90I think, therefore I exist
91The physical argument of § 11.1.1 turns out to be “not even wrong”. It also turns out that we do not need the additional postulate alluded to at

of the end of § 11.1.3, owing to realistic interactions which act within the apparatus at the end of the proces, and which need not play a major role
in the truncation and registration

92But of course there are no well-defined results for observables that do not commute with ŝ
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of the pointer therefore constitutes a preparation of the system S (as was anticipated in § 1.1.4) [31]. Lying formerly4893

(for the ensemble E) in the state r̂(0), this system lies after measurement and selection of the subset Ei in the final4894

prepared state r̂i. In the Curie–Weiss model, this final filtered state is pure, r̂↑ = |↑〉〈↑| or r̂↓ = |↓〉〈↓| or, shortly, |↑〉 or4895

|↓〉.4896

In this circumstance, quantum mechanics, although irreducibly probabilistic and dealing with ensembles, can pro-4897

vide certainty about ŝ for an individual system after measurement and selection of the indication of the pointer. While4898

answering, within the statistical interpretation, Bohr’s modest query “What can we say about...?” [320], we have given4899

a partial answer to Einstein’s query “What is....?” [23]. The solution of models involving not only the interaction of4900

the microscopic object with a macroscopic apparatus but also appropriate interactions within this apparatus thus ex-4901

plains the emergence of a well-defined answer in a single measurement, a property interpreted as the emergence of4902

a “physical reality”. However, although the outcome of each individual process is unique, it could not have been4903

predicted. The current statement “the measurement is responsible for the appearance of the uniqueness of physical4904

reality” holds only for the considered single system and for the tested observable, and only after measurement with4905

selection of the result.4906

11.3.2. Repeatability of ideal measurements4907

It is a bad plowman that quarrels with his ox4908

Korean proverb4909

Another property that allows us to approach physical reality within the statistical interpretation is the repeatability4910

of ideal measurements93. Suppose two successive ideal measurements are performed on the same system S, first with4911

an apparatus A, then, independently, with a similar apparatus A′. The second process does not affect A, and generates4912

for S and A′ the same effect as the first one, as exhibited by Eq (11.2). Hence, the initial state4913

D̂(0) = r̂(0) ⊗ R̂(0) ⊗ R̂′(0) (11.24)

of S + A + A′ becomes at the time tf between the two measurements4914

D̂(tf) =
∑

i

pir̂i ⊗ R̂i ⊗ R̂
′(0), (11.25)

and4915

D̂(t′f) =
∑

i

pir̂i ⊗ R̂i ⊗ R̂
′
i (11.26)

at the final time t′f following the second process. For the whole statistical ensemble E, a complete correlation is4916

therefore exhibited between the two pointers. In an individual process, the second measurement does not affect S. We4917

can even retrodict, from the observation of the value A′i for the pointer of the apparatus A′, that S lies in the state r̂i4918

not only at the final time t′f , but already at the time tf , the end of the first measurement.4919

11.3.3. Classical probabilities4920

De oudjes doen het nog goed 94
4921

Dutch expression4922

We have inferred from the hierarchic structure that, for any subensemble Esub, the coefficients qi entering (11.7)4923

can be interpreted as the relative numbers of runs with outcome i (§ 11.3.1). Let us return to the full ensemble E of4924

runs, described at the final time by D̂(tf). The weight pi = trSr̂(0)Π̂i therefore appears as the proportion of individual4925

93It can be shown that the sole property of repeatability implies reduction in the weak sense, for the marginal state of S [52]
94The oldies are doing well still
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runs described by the reduced state D̂i. This fully justifies Born’s rule. The census of the indications of the pointer in4926

a large number of runs affords a partial determination of the initial density matrix r̂(0) of S (its diagonal elements for4927

the Curie–Weiss model).4928

The quantity pi can also be interpreted as the ordinary probability of finding the outcome Ai, si in each run. From4929

the density operator r̂(0) which has no classical interpretation, the measurement process has thus extracted classical4930

probabilities. Because of the one-by-one selection procedure of the runs, these probabilities are defined within the4931

frequency interpretation [28].4932

11.4. The ingredients of the solution of the measurement problem4933

Bring vor, was wahr ist;4934

schreib’ so, daß es klar ist4935

und verficht’s, bis es mit dir gar ist95
4936

Ludwig Boltzmann4937

Altogether, as in statistical mechanics [55, 56, 73], qualitatively new features emerge in an ideal measurement4938

process, with a near certainty. The explanation of the appearance, within the quantum theory, of properties seemingly4939

in contradiction with this very theory relies on several ingredients, exhibited by the detailed solution of the Curie–4940

Weiss model. (i) The macroscopic size of the apparatus allows the pointer to relax towards one or another among some4941

possible values, within weak statistical or quantum fluctuations; these outcomes remain unchanged for a long time4942

and can be read or processed; the choice of the a priori equivalent aternatives is triggered by the tested system. (ii)4943

Statistical considerations help us to disregard unlikely events. (iii) The special dynamics of the process must produce4944

several effects. The truncation, initiated by the interaction between the tested system and the pointer, eliminates the4945

off-diagonal blocks of D̂ which would prevent any classical interpretation. The registration, too often overlooked4946

in theoretical considerations, which requires a triggering by the system and a dumping of energy towards the bath,4947

creates the needed correlations between the system and the pointer. The registration also lets the apparatus reach, in4948

the state D̂(t), at large t, a mixture of the possible final states; this paves the way to the process of § 11.2.3, where4949

more elaborate but possibly very small interactions within the apparatus ensure that all subensembles reach at the final4950

time the hierarchic structure required for reduction. This last step explains how statements about individual systems4951

and how classical features may emerge from measurement processes in spite of the quantum oddities (§§ 10.2.1 and4952

10.2.3) associated with the irreducibly probabilistic nature of the theory [10, 11, 31, 48, 52, 58].4953

As the symmetry breaking for phase transitions, a breaking of unitarity takes place, entailing an apparent violation4954

of the superposition principle for S + A96. Here also, there cannot exist any breaking in the strict mathematical sense4955

for a finite apparatus and for finite parameters. Nevertheless, this acknowledgement has no physical relevance: the4956

approximations that underlie the effective breaking of unitarity are justified for the evaluation of physically sensible4957

quantities.4958

However, the type of emergence that we acknowledge here is more subtle than in statistical mechanics, although4959

both arise from a change of scale. In the latter case, emergence bore on phenomena that have no microscopic equiva-4960

lent, such as irreversibility, phase transitions or viscosity. In quantum measurements, it bears on concepts. Quantum4961

theory, which is fundamentally probabilistic, deals with ensembles, but measurements reveal properties of individ-4962

ual systems, a fact that we understand within this very theory. The tested physical quantity, random at the mi-4963

croscopic level, comes out with a well-defined value. Ordinary probabilities, ordinary correlations, emerge from a4964

non-commutative physics, and thus afford a classical interpretation for the outcome of the measurement. Thus, ideal4965

measurements establish a bridge between the macroscopic scale, with its every day’s life features, and the micro-4966

scopic scale, giving us access to microscopic quantities presenting unusual quantum features and impossible to grasp4967

directly97. In the measurement device we lose track of the non-commutative nature of observables, which constitutes4968

95Put forward what is true, write it such that it is clear, and fight for it till it is finished with you
96 As the tested system interacts with the apparatus, it is not an isolated system, so that the breaking of unitarity in its evolution is trivial
97A more artificial link between microscopic and macroscopic scales was established by Bohr [320] – see also [84, 321, 322] – by postulating

the classical behavior of the measuring apparatus. Though we consider that the apparatus must be treated as a quantum object, we have noticed
(§ 11.2.3) that quantum dynamics lets the pointer variable reach some classical features
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the deep originality of quantum mechanics and which gives rise to its peculiar types of correlations and of probabili-4969

ties, and we thus recover familiar macroscopic concepts. (The disappearance of non-commuting observables will be4970

seen to arise naturally from the Heisenberg dynamics in § 13.1.4.)4971

12. Lessons from measurement models4972

Cette leçon vaut bien un fromage, sans doute98
4973

Jean de La Fontaine, Le Corbeau et le Renard4974

A microscopic interpretation of the entropy concept has been provided through the elucidation of the irreversibility4975

paradox [54, 55, 56, 72]. Likewise, most authors who solve models of quantum measurements (section 2) aim at4976

elucidating the measurement problem so as to get insight on the interpretation of quantum mechanics. We gather4977

below several ideas put forward in this search, using as an illustration the detailed solution of the Curie–Weiss model4978

presented above, and we try to draw consequences on the interpretation of quantum physics. These ideas deserve to4979

be taken into account in future works on measurement models.4980

12.1. About the nature of the solutions4981

La Nature est un temple où de vivants piliers4982

Laissent parfois sortir de confuses paroles;4983

L’homme y passe à travers des forêts de symboles4984

Qui l’observent avec des regards familiers 99
4985

Charles Baudelaire, Les fleurs du mal, Correspondances4986

The most important conclusion that can be drawn from the solution of models is that one can reach a full under-4987

standing of ideal measurements through standard quantum statistical mechanics. Within a minimalist interpretation4988

of quantum mechanics, the sole use of Hamiltonian dynamics is sufficient to explain all the features of ideal measure-4989

ments. In particular, uniqueness of the outcome of each run and reduction can be derived only from the Hamiltonian4990

dynamics of the macroscopic pointer. Unconventional interpretations are not needed.4991

12.1.1. Approximations are needed4992

Fire could leave ashes behind4993

Arab proverb4994

As stressed in § 1.2.1, a measurement is an irreversible process, though governed by the reversible von Neumann4995

equation of motion for the coupled system S + A. This apparent contradiction cannot be solved with mathematical4996

rigor if the compound system S + A is finite and all its observables are under explicit control. As in the solution4997

of the irreversibility paradox (§ 1.2.2), some approximations, justified on physical grounds, should be introduced4998

[54, 55, 56, 174, 120]. We must accept the idea that theoretical analyses of quantum measurements are approximate4999

[323].5000

For instance, when solving the Curie–Weiss model, we were led to neglect some contributions, which strictly5001

speaking do not vanish for a finite apparatus A = M + B, but which are very small under the conditions of subsection5002

9.4. For the diagonal blocks R̂↑↑ and R̂↓↓, the situation is the same as for ordinary thermal relaxation processes5003

[174, 120, 121]: the invariance under time reversal is broken through the elimination of the bath B, performed by5004

keeping only the lowest order terms in γ and by treating the spectrum of B as continuous (section 4). Correlations5005

within B and between B and M+S are thus disregarded, and an irreversible nearly exact Fokker–Planck equation [230]5006

for the marginal operators R̂↑↑ and R̂↓↓ thus arises from the exact reversible dynamics. For the off-diagonal blocks R̂↑↓5007

and R̂↑↓, correlations between S and a large number, of order N, of spins of M are also discarded (section 5). Such5008

correlations are ineffective, except for recurrences; but these recurrences are damped either by a randomness in the5009

98Surely, this lesson is worth a cheese
99Nature is a temple where living pillars / Let sometimes emerge confused words;

Man passes there through forests of symbols / Which watch him with familiar glances
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coupling between S and M (subsection 6.1) or by the bath (subsection 6.2). We will return to this point in § 12.2.3.5010

We also showed that, strictly speaking, false or aborted registrations may occur but that they are very rare (§ 7.3.45011

and § 7.3.5).5012

Mathematically rigorous theorems can be proved in statistical mechanics by going to the thermodynamic limit of5013

infinite systems [134]. In the Curie–Weiss model, the disappearance of R̂↑↓ and R̂↓↑ would become exact in the limit5014

where N → ∞ first, and then t → ∞. However, in this limit, we lose track of the time scale τtrunc, which tends to 0.5015

Likewise, the weak coupling condition γ → 0, needed to justify the elimination of the bath, implies that τreg tends to5016

∞. Physically sensible time scales are obtained only without limiting process and at the price of approximations.5017

12.1.2. Probabilities are omnipresent5018

O Fortuna, imperatrix mundi100
5019

Carmina Burana5020

Although the dynamics of S + A is deterministic, randomness occurs in the solution of measurement models5021

for several reasons. On the one hand, quantum physical quantities are blurred due to the non-commutation of the5022

observables which represent them, so that quantum mechanics is irreducibly probabilistic (section 10 and [10, 11, 31,5023

48, 52, 58]). On the other hand, the large size of the apparatus, needed to ensure registration, does not allow us to5024

describe it at the microscopic scale; for instance it lies after registration in a thermal equilibrium (or quasi-equilibrium)5025

state. Thus, both conceptually and technically, we are compelled to analyse a quantum measurement by relying on5026

the formalism of quantum statistical mechanics.5027

Moreover, as shown in subsection 5.2, some randomness is needed in the initial state of the apparatus. Indeed, for5028

some specific initial pure states, the truncation process may fail, in the same way, for instance, as some exceptional5029

initial configurations of a classical Boltzmann gas with uniform density may produce after some time a configuration5030

with non uniform density. For realistic models of quantum measurements, which are of rising interest for q-bit5031

processing in quantum information theory, experimental noise and random errors should also be accounted for [319].5032

Recognizing thus that a quantum measurement is a process of quantum statistical mechanics has led us to privilege5033

the statistical interpretation of quantum mechanics, in which an assertion is “certain” if its probability is close to one.5034

For instance, the probability of a false registration does not vanish but is small for large N (§ 7.3.3). Still, the statistical5035

solution of the quantum measurement problem does not exclude the existence of a hidden variable theory that would5036

describe individual measurements, the statistics of which would be given by the probabilistic theory, that is, the5037

standard quantum mechanics; see [284] for a recent review of hidden variable theories.5038

12.1.3. Time scales5039

De tijd zal het leren101
5040

Dutch proverb5041

Understanding a quantum measurement requires mastering the dynamics of the process during its entire duration5042

[91]. This is also important for experimental purposes, especially in the control of quantum information. Even when5043

the number of parameters is small, a measurement is a complex process which takes place over several time scales, as5044

exhibited by the solution of the Curie–Weiss model (subsection 9.3). There, the truncation time turns out to be much5045

shorter than the registration time. This feature arises from the large number of degrees of freedom of the pointer M5046

(directly coupled to S) and from the weakness of the interaction between M and B. The large ratio that we find for5047

τreg/τtrunc allows us to distinguish in the process a rapid disappearance of the off-diagonal blocks of the density matrix5048

of S + A. After that, the registration takes place as if the density matrix of S were diagonal. The registration times are5049

also not the same for quartic or quadratic interactions within M. The final process of dynamical instability of M, that5050

allows reduction (§ 11.2.3), is also rapid owing to the large size of the pointer.5051

In the variant of the Curie–Weiss model with N = 2 (subsection 8.1), the orders of magnitude of the truncation5052

and registration times are reversed. A large variety of results have been found in other models for which the dynamics5053

was studied (section 2). This should encourage one to explore the dynamics of other, more and more realistic models.5054

100Oh Fortune, empress of the world
101Time will tell
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However, it is essential that such models ensure a crucial property, the dynamical establishment of the hierarchic5055

structure of subensembles (§ 11.2.1).5056

12.1.4. May one think in terms of underlying pure states?5057

Als de geest uit de fles is,5058

krijg je hem er niet makkelijk weer in102
5059

Dutch proverb5060

The solutions of the Curie–Weiss model and of many other models have relied on the use of density operators.5061

We have argued (§ 10.2.3) that, at least in the statistical interpretation, the non uniqueness of the representations5062

(10.3) of mixed states as superpositions of pure states makes the existence of such underlying pure states unlikely.5063

Here again, Ockam’s razor works against such a representation, which is not unique and more complicated than the5064

framework of quantum statistical mechanics, and which in general would not permit explicit calculations. Moreover,5065

it is experimentally completely unrealistic to assume that the apparatus has been initially prepared in a pure state.5066

Nevertheless, although pure states are probabilistic entities, it is not a priori wrong to rely on other interpretations5067

in which they are regarded as more fundamental than density operators [14], and to afford the latter a mere status of5068

technical tools, used to describe both the initial state and the evolution.5069

We can compare this situation with that of the irreversibility paradox for a gas (§ 1.2.2). In that case, although it5070

is technically simpler to tackle the problem in the formalism of statistical mechanics, one may equivalently explain5071

the emergence of irreversibility by regarding the time-dependent density in phase space as a mathematical object5072

that synthetizes the trajectories and the random initial conditions [55, 56]. The dynamics is then accounted for by5073

Hamilton’s equations instead of the Liouville equation, whereas the statistics bears on the initial conditions. (We5074

stressed, however, in § 10.2.3, that although density operators and densities in phase space have a similar status,5075

quantum pure states differ conceptually from points in phase space due to their probabilistic nature; see also [55, 56]5076

in this context.)5077

Likewise, in the Curie–Weiss measurement model, one may theoretically imagine to take as initial state of A a5078

pure state, S being also in a pure state. Then at all subsequent times S + A lies in pure states unitarily related to one5079

another. However it is impossible in any experiment to prepare A = M + B in a pure state. What can be done is to5080

prepare M and B in thermal equilibrium states, at a temperature higher than the Curie temperature for M, lower for5081

B. Even if one wishes to stick to pure states, one has to explain generic experiments. As in the classical irreversibility5082

problem, this can be done by weighing the possible initial pure states of A = M + B as in R̂(0), assuming that M is a5083

typical paramagnetic sample and B a typical sample of the phonons at temperature T . This statistical description in5084

terms of weighted pure states governed by the Schrödinger equation is technically the same as the above one based on5085

the density operator D̂(t), governed by the Liouville–von Neumann equation, so that the results obtained above or the5086

full ensemble E of runs are recovered in a statistical sense for most relevant pure states. As regards the expectation5087

values in the ensemble E of physical quantities (excluding correlations between too many particles), the typical final5088

pure states are equivalent to D̂(tf). Very unlikely events will never be observed over reasonable times for most of5089

these pure states (contrary to what happens for the squeezed initial states of M considered in § 5.2.3).5090

However, it does not seem feasible to transpose to the mere framework of pure states the explanation of reduction5091

given in section 11, based on the unambiguous splitting of the mixed state D̂(tf). This splitting is needed to identify5092

the real subsets of runs of the measurement, and it has no equivalent in the context of pure states.5093

12.2. About truncation and reduction5094

De duivel steekt in het detail103
5095

Le diable est dans les détails103
5096

Dutch and French proverb5097

102When the genie is out of the bottle, it is not easy to get it in again
103The devil is in the details
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12.2.1. The truncation must take place for the compound system S + A5098

Het klopt als een bus104
5099

Dutch expression5100

In many approaches, starting from von Neumann [4, 17, 21] the word “collapse” or “reduction” is taken in a weak5101

acception, referring to S alone. Such theoretical analyses involve only a proof that, in a basis that diagonalizes the5102

tested observable, the off-diagonal blocks of the marginal density matrix r̂(t) of S fade out, but not necessarily those5103

of the full density matrix D̂(t) of S + A. In the Curie–Weiss model, this would mean that r̂↑↓(t) and r̂↓↑(t), or the5104

expectation values of the x- and y-components of the spin S, fade out, but that R̂↑↓(t) and R̂↓↑(t), which characterize5105

the correlations between the pointer M and these components, do not necessarily disappear.5106

Let us show that the presence of non negligible elements in the off-diagonal blocks of the final state D̂(tf) of S5107

+ A is prohibited for ideal measurements. Remember first the distinction between truncation and reduction (§ 1.1.25108

and § 1.3.3). Both terms refer to the compound system S + A, but while the truncation is the disappearance of the5109

off-diagonal blocks in the matrix D̂(tf) that describes the full ensemble E of runs of the measurement, the reduction5110

is the assignment of the final state D̂i to a subset Ei of E. More precisely, once the uniqueness of the outcome of each5111

run is ensured (subsections 11.2 and 11.3), one can sort out the runs that have produced the specific indication Ai of5112

the pointer. In each such run, the system S lies in the state r̂i and the apparatus A in the state R̂i, hence S + A lies5113

in the state D̂i. Born’s rule implies that the proportion of runs in Ei is pi. Collecting back the subsets Ei into E, we5114

find that this full set must be described by the state
∑

i piD̂i, which is a truncated one. It is therefore essential, when5115

solving a model of ideal measurement, to prove the strong truncation property, for S + A, as we did in sections 5 and5116

6, a prerequisite to the proof of reduction. A much more stringent result must thereafter be proven (§ 11.2.1), the5117

“hierarchic property” (11.7), according to which the state D̂sub of S+A must have the form
∑

i qiD̂i for arbitrary, real5118

or virtual, subensembles Esub of E.5119

The weak type of truncation is the mere result of disregarding the off-diagonal correlations that exist between S and5120

A. This procedure of tracing out the apparatus has often been considered as a means of circumventing the existence5121

of “Schrödinger cats” issued from the superposition principle [32, 33, 176, 177, 178, 179]. However, this tracing5122

procedure as such does not have a direct physical meaning [14, 68]. While satisfactory for the statistical predictions5123

about the final marginal state of S, which has the required form
∑

i pir̂i, the lack of a complete truncation for S +5124

A keeps the quantum measurement problem open since the apparatus is left aside. Indeed, the proof of uniqueness5125

of § 11.2.3 takes as a starting point the state D̂(tf) for E where truncation and registration have already taken place,5126

and moreover this proof involves only the apparatus. Anyhow, tracing out the apparatus eliminates the correlations5127

between the system and the indications of the pointer, which are the very essence of a measurement (subsection 11.3).5128

Without them we could not get any information about S. This is why the elimination of the apparatus in a model is5129

generally considered as a severe weakness of such a model [17], that even led to the commandment “Thou shalt not5130

trace” [33].5131

So indeed, theory and practice are fundamentally related. The elimination of the apparatus in the theory of mea-5132

surements is no less serious than its elimination in the experiment!5133

12.2.2. The truncation is a material phenomenon; the reduction involves both dynamics and “observers”5134

Weh! Ich ertrag’ dich nicht105
5135

Johann Wolfgang von Goethe, Faust, part one5136

The truncation of the density matrix of S + A appears in measurement models as an irreversible change, occur-5137

ring with a nearly unit probability during the dynamical process. It has a material effect on this compound system,5138

modifying its properties as can be checked by subsequent measurements. In the Curie–Weiss model, this effect is the5139

disappearance of correlations between the pointer and the components ŝx and ŝy of S. Though described statistically5140

for an ensemble, the joint truncation of S + A thus appears as a purely dynamical, real phenomenon.5141

104It really fits
105Beware, I can’t stand you
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The reduction has a more subtle status. It also relies on a dynamical instability process governed by the Liouville–5142

von Neumann equation (§ 11.2.3), which takes place by the end of the measurement for any subensemble Esub of E5143

(whereas the truncation took place earlier and for the full ensemble E). Moreover, reduction requires the selection5144

of the subset Ei of runs characterized by the value Ai of the pointer variable. This selection, based on a gain of5145

information about A, allows the updating of the state D̂(tf), which plays the role of a probability distribution for5146

the compound system S + A embedded in the ensemble E, into the state D̂i which refers to the subensemble about5147

which we have collected information. Subsequent experiments performed on this subensemble will be described by5148

D̂i (whereas we should keep D̂(tf) for experiments performed on the full set E without sorting).5149

The idea of an “observer”, who selects the subset Ei of systems so as to assign to them the density operator D̂i,5150

therefore underlies the reduction, as it underlies any assignment of probability. However, “observation” is meant here5151

as “identification and sorting of runs” through discrimination of the outcomes of the pointer. Such a “reading” does5152

not require any “conscious observer”. The “observer” who selects the runs Ai will in fact, in many experiments,5153

be a macroscopic automatic device triggered by the pointer. An outstanding example is the sophisticated automatic5154

treatment of the information gathered by detectors in particle physics, achieved in order to select the extremely rare5155

events of interest.5156

12.2.3. Physical extinction versus mathematical survival of the off-diagonal sectors5157

I have not failed.5158

I’ve just found 10,000 ways that won’t work5159

Thomas A. Edison5160

Many works on quantum measurement theory stumble over the folowing paradox. The evolution of the density5161

matrix D̂(t) of the isolated system S + A is unitary. Hence, if D̂ is written in a representation where the full Hamil-5162

tonian Ĥ is diagonal, each of its matrix elements is proportional to a complex exponential exp(iωt) (where ~ω is5163

a difference of eigenvalues of Ĥ), so that its modulus remains constant in time. In the ideal case where the tested5164

observable ŝ commutes with Ĥ, we can imagine writing D̂(t) in a common eigenbasis of ŝ and Ĥ; the moduli of the5165

matrix elements of its off-diagonal block R̂↑↓(t) are therefore independent of time. Such a basis was used in sections5166

5 and 6.1 where the bath played no rôle; in section 6.2, the term ĤMB does not commute with ŝ, and likewise in most5167

other models the full Hamiltonian is not diagonalizable in practice. In such a general case, the moduli of the matrix5168

elements of R̂↑↓(t), in a basis where only ŝ is diagonal, may vary, but we can ascertain that the norm Tr R̂↑↓(t)R̂
†

↑↓
(t) re-5169

mains invariant. This mathematically rigorous property seems in glaring contradiction with the physical phenomenon5170

of truncation, but both are valid statements, the former being undetectable, the latter being important in practice for5171

measurements.5172

In which sense are we then allowed to say that the off-diagonal block R̂↑↓(t) decays? The clue was discussed in5173

§ 6.1.2: The physical quantities of interest are weighted sums of matrix elements of D̂, or here of its block R̂↑↓. For5174

instance, the off-diagonal correlations between ŝx or ŝy and the pointer variable m̂ are embedded in the characteristic5175

function (5.14), which reads5176

Ψ↑↓(λ, t) ≡ 〈ŝ−eiλm̂〉 = TrAR̂↑↓(t)eiλm̂, (12.1)

where the trace is taken over A = B + M. Likewise, the elimination of the bath B, which is sensible since we cannot5177

control B and have no access to its corelations with M and S, produces R̂↑↓ = TrBR̂↑↓, which contains our whole off-5178

diagonal information, and which is a sum of matrix elements of the full density matrix D̂. We are therefore interested5179

only in weighted sums of complex exponentials, that is, in almost periodic functions (in the sense of Harald Bohr106).5180

For a large apparatus, these sums involve a large number of terms, which will usually have incommensurable frequen-5181

cies. Depending on the model, their large number reflects the large size of the pointer or that of some environment.5182

The situation is the same as for a large set of coupled harmonic oscillators [151, 152, 153, 174, 120, 121], which5183

in practice present damping although some exceptional quantities involving a single mode or a few modes oscillate.5184

106The mathematician and olympic champion Harald Bohr, younger brother of Niels Bohr, founded the field of almost periodic functions. For a
recent discussion of his contributions, see the expository talk “The football player and the infinite series” of H. Boas [180]
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In § 6.1.2 we have studied a generic situation where the frequencies of the modes are random. The random almost5185

periodic function F(t) defined by (6.14) then exhibits a decay over a time scale proportional to 1/
√

N; Poincaré re-5186

currences are not excluded, but occur only after enormous times — not so enormous as for chaotic evolutions but still5187

large as exp(exp N).5188

The above contradiction is therefore apparent. The off-diagonal blocks cannot vanish in a mathematical sense5189

since their norm is constant. However, all quantities of physical interest in the measurement process combine many5190

complex exponentials which interfere destructively, so that everything takes place as if R̂↑↓ did vanish at the end of5191

the process. The exact final state of S + A and its reduced final state are thus equivalent with respect to all physically5192

reachable quantities in the sense of Jauch [93]. Admittedly, one may imagine some artificial quantities involving few5193

exponentials; or one may imagine processes with huge durations. But such irrealistic circumstances are not likely to5194

be encountered by experimentalists in a near future.5195

Note that the matrix elements of the marginal state r̂(t) of S, obtained by tracing out the apparatus, are again5196

obtained by summing a very large number of matrix elements of D̂(t). We can thus understand that the decay of the5197

off-diagonal elements of r̂ is easier to prove than the truncation of the full state of S + A.5198

12.2.4. The preferred basis issue5199

Lieverkoekjes worden niet gebakken107
5200

Dutch saying5201

Realistic models must explain why the truncation does not take place in an arbitrary basis but in the specific basis5202

in which the tested observable of S is diagonal. This leads to the question of determining which mechanism selects5203

this basis; intuitively, it is the very apparatus that the experimentalist has chosen and, in the Hamiltonian, the form5204

of the interaction between S and A. One has, however, to understand precisely for each specific apparatus how the5205

dynamics achieve this property. For the Curie–Weiss model and for similar ones, the tested observable is directly5206

coupled through (3.5) with the pointer observable m̂, and the preferred basis problem is readily solved because the5207

initial truncation is a mere result of the form of this coupling and of the large number of degrees of freedom of the5208

pointer M. The finite expectation values 〈ŝx〉 and 〈ŝy〉 in the initial state of S are thereby transformed into correlations5209

with many spins of the pointer, which eventually vanish (sections 5 and 6). Pointer-induced reduction thus takes place,5210

as it should, in the eigenbasis of the tested observable.5211

We have also shown (§ 6.2.4) that in this model the suppression of the recurrences by the bath, although a de-5212

coherence phenomenon, is piloted by the spin-magnet interaction which selects the decoherence basis. When it is5213

extended to a microscopic pointer, the Curie–Weiss model itself exhibits the preferred basis difficulty (§ 8.1.5). In the5214

large N model, the final dynamical instability process (subsection 11.2) ensures that the reduction takes place in the5215

same basis as the truncation. This basis should therefore have been determined by the dynamics at an earlier stage.5216

In other models, a decoherence generated by a random environment would have no reason to select this basis5217

[32, 33, 40, 176, 177, 178, 179]. It is therefore essential, in models where truncation and registration are caused by5218

some bath or some environment, to show how the interaction ĤSA determines the basis where these phenomena take5219

place.5220

12.2.5. Dephasing or bath-induced decoherence?5221

We reserve here the word “decoherence” to a process generated by a random environment, such as a thermal5222

bath. We have just recalled that, in the Curie-Weiss model with large N, the initial truncation is ensured mainly by a5223

dephasing effect, produced by the interaction between the system and the pointer; the bath only provides one of the5224

two mechanisms that prevent recurrences from occurring after reduction (subsection 6.2). We have contrasted this5225

direct mechanism with bath-induced decoherence (§ 5.1.2). In particular, our truncation time τtrunc does not depend5226

on the temperature as does usually a decoherence time, and it is so short that the bath B is not yet effective. Later on,5227

the prohibition of recurrences by the bath in this model is a subtle decoherence process, which involves resonance and5228

which implies all three objects, the tested spin, the magnet and the bath (§ 6.2.4)5229

We have shown (§ 5.1.2 and § 6.1.2) that more general models with macroscopic pointers can also give rise to5230

direct truncation by the pointer. However, in models involving a microscopic pointer (see subsections 2.1, 2.4.1, 2.55231

107“I-prefer-this” cookies are not baked, i.e., you won’t get what you want
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and 8.1), the truncation mechanism can only be a bath-induced decoherence [32, 33, 40, 176, 177, 178, 179], and the5232

occurrence of a preferred truncation basis is less easy to control.5233

As regards the dynamical instability mechanism, which ensures the hierarchical structure and thus allows reduction5234

(section 11), it may either arise from interactions within the pointer itself (§ 11.2.3), or be induced by the bath (§ 11.2.45235

and appendix I). Although this process includes a kind of decoherence or self-decoherence, it presents very specific5236

features associated with the breaking of invariance of the pointer. It involves two sets of levels associated with the5237

two possible indications of the pointer, all at the same energy. The coherences astride the two sets of levels rapidly5238

disappear, but during the same time lapse, each set also reaches microcanonical ferromagnetic equilibrium.5239

12.3. About registration5240

In order to regard a dynamical process as an ideal measurement, we need it to account for registration, a point too5241

often overlooked. Indeed, we have seen (section 11) that not only truncation but also registration are prerequisites for5242

the establishment of the uniqueness of the outcome in each individual run. The mechanism that ensures this property5243

relies on the dynamics of the sole macroscopic apparatus and on its bistability; it may therefore be effective only after5244

registration. Of course, registration is also our sole access to the microscopic tested system.5245

12.3.1. The pointer must be macroscopic5246

Iedere keer dat hij het verhaal vertelde, werd de vis groter108
5247

Dutch expression5248

5249

Like the truncation, the registration is a material process, which affects the apparatus and creates correlations5250

between it and the tested system. This change of A must be detectable: We should be able to read, print or process5251

the results registered by the pointer, so that they can be analysed by “automatic observers”. In the Curie-Weiss model,5252

the apparatus simulates a magnetic memory, and, under the conditions of subsection 9.4, it satisfies these properties5253

required for registrations (section 7). The apparatus is faithful, since the probability of a wrong registration, in which5254

the distribution P↑↑(m, τreg) would be sizeable for negative values of m, is negligible, though it does not vanish in5255

a mathematical sense. The registration is robust since both ferromagnetic states represented by density operators5256

yielding magnetizations located around +mF and −mF are stable against weak perturbations, such as the ones needed5257

to read or to process the result.5258

The registration is also permanent. This is an essential feature, not only for experimental purposes but also because5259

the solution of the quantum measurement problem (section 11) requires the state D̂(t) to have reached the form (11.2).5260

However, this permanence, or rather quasi-permanence, may again be achieved only in a physical sense (§ 11.1.1), just5261

as the broken invariance associated with phase transitions is only displayed at physical times and not at “truly infinite5262

times” for finite materials. Indeed, in the Curie-Weiss model, thermal fluctuations have some probability to induce in5263

the magnetic dot transitions from one ferromagnetic state to the other. More generally, information may spontaneously5264

be erased after some delay in any finite registration device, but this delay can be extremely long, sufficiently long for5265

our purposes. For our magnetic dot, it behaves as an exponential of N owing to invariance breaking, see Eq. (7.84).5266

The enhancement of the effect of S on A is ensured by the metastability of the initial state of A, and by the5267

irreversibility of the process, which leads to a stable final state.5268

All these properties require a macroscopic pointer (§ 1.2.1), and not only a macroscopic apparatus. In principle,5269

the models involving a large bath but a small pointer are therefore unsatisfactory for the aim of describing ideal5270

measurements. In many models of quantum measurement (section 2), including the Curie-Weiss model for N = 25271

(subsection 8.1), the number of degrees of freedom of the pointer is not large. We have discussed this situation, in5272

which an ideal measurement can be achieved, but only if the small pointer is coupled at the end of the process to a5273

further, macroscopic apparatus ensuring amplification and true registration of the signal.5274

Altogether the macroscopic pointer behaves in its final state as a classical object which may lie in either one or the5275

other of the states characterized within negligible fluctuation by the value Ai of the pointer observable Â. (In the Curie-5276

Weiss model, Ai ' ±mF is semiclassical, while si = ±1 is quantal). This crucial point has been established in section5277

11. Theoretically, nothing prevents us from imagining that the pointer M lies in a quantum state including coherences5278

108Every time he told the story, the caught fish became bigger
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across m = mF and −mF. For the full ensemble E (section 7), such a situation does not occur during the slow5279

registration process due to the spin-apparatus interaction which creates complete correlations. For any subensemble5280

Esub, coherences might exist near the end of the process, but according to section 11, they would rapidly disappear,5281

owing to the large size of M and to suitable interactions within the apparatus (§ 11.2.3 and § 11.2.4). The correlations5282

between the signs of sz and of m produced during the registration, and the uniqueness property (§ 11.3.1), then separate5283

the two sectors. The large size of the pointer is therefore essential for a complete solution of the ideal measurement5284

problem.5285

12.3.2. Does the registration involve observers?5286

Hij stond erbij en keek er naar109
5287

Dutch saying5288

We have seen that truncation does not involve observers. Likewise, conscious observers are irrelevant for the5289

registration, which is a physical process, governed by a Hamiltonian. Once the registration of the outcome has taken5290

place, the correlated values of Ai ' ±mF and si = ±1 take an objective character, since any observer will read the5291

same well-defined indication Ai at each run. “Forgetting” to read off the registered result will not modify it in any5292

way. Anyhow, nothing prevents the automatic processing of the registered data, in view of further experiments on the5293

tested system (§ 12.2.2).5294

We thus cannot agree with the idealist statement that “the state is a construct of the observer”. Although we5295

interpret the concept of probabilities as a means for making predictions from available data (§ 10.1.4), a state reflects5296

real properties of the physical system acquired through its preparation, within some undetermined effects due to the5297

non-commutative nature of the observables.5298

12.3.3. What does “measuring an eigenvalue” mean?5299

A measurement process is an experiment which creates in the apparatus an image of some property of the tested5300

system. From a merely experimental viewpoint alone, one cannot know the observable of S that is actually tested, but5301

experience as well as theoretical arguments based on the form of the interaction Hamiltonian may help to determine5302

which one. From the observed value Ai of the pointer variable, one can then infer the corresponding eigenvalue si of the5303

measured operator (that appears in the interaction Hamiltonian), provided the correlation between Ai and si is complete5304

(an example of failure is given in § 7.3.3). In the Curie-Weiss model the observed quantity is the magnetization of5305

M; we infer from it the eigenvalue of ŝz. The statement of some textbooks “only eigenvalues of an operator can be5306

measured” refers actually to the pointer values, which are in one-to-one correspondence with the eigenvalues of the5307

tested observable provided the process is an ideal measurement. The eigenvalues of an observable as well as the5308

quantum state of S are abstract mathematical objects associated with a microscopic probabilistic description, whereas5309

the physical measurement that reveals them indirectly relates to the macroscopic pointer variable.5310

12.3.4. Did the registered results preexist in the system?5311

Å gå over bekken etter vann110
5312

Norwegian expression5313

After the measurement process has taken place and after the outcome of the apparatus has been read, we can assert5314

that the apparatus lies in the state R̂i characterized by the value Ai of the pointer while the system lies in the final5315

projected state r̂i (Eq. (11.2)). We can also determine the weights pi from the statistics of the various outcomes Ai.5316

However a quantum measurement involves not only a change in A that reflects a property of S, but also a change in5317

S (§ 1.1.2). In an ideal measurement the latter change is minimal, but we have to know precisely which parts of the5318

initial state r̂(0) are conserved during the process so as to extract information about it from the registered data.5319

Consider first the whole ensemble of runs of the experiment. Together with the theoretical analysis it provides the5320

set of final states r̂i and their weights pi. The corresponding marginal density operator
∑

i pir̂i of S is obtained from5321

r̂(0) by keeping only the diagonal blocks, the off-diagonal ones being replaced by 0. We thus find a partial statistical5322

109He stood there and watched, i.e., he did not assist
110To cross the stream to get water
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information about the initial state: all probabilistic properties of the tested observable ŝ remain unaffected, as well as5323

those pertaining to observables that commute with ŝ. (The amount of information retained is minimal, see § 1.2.4.)5324

Some retrodiction is thus possible, but it is merely statistical and partial.5325

Consider now a single run of the measurement, which has provided the result Ai. The fact that S is thereafter in5326

the state r̂i with certainty does not mean that it was initially in the same state. In fact no information about the initial5327

state D̂(0) is provided by reading the result Ai, except for the fact that the expectation value in D̂(0) of the projection5328

on the corresponding eigenspace of Â does not vanish. For a spin 1
2 , if we have selected at the end of a single run5329

the value sz = 1, we can only ascertain that the system was not in the pure state |↓〉 at the initial time; otherwise5330

its polarization could have been arbitrary. In contrast, a classical measurement may leave the system invariant, in5331

which case we can retrodict from the observation of Ai that the measured quantity took initially the value si. For an5332

individual quantum measurement, retrodiction is impossible, and devoid of physical meaning, due to the probabilistic5333

nature of observables and to the irreversibility of the process. The property “ŝ takes the value si” did not preexist the5334

process. It is only in case all runs provide the outcome Ai that we can tell that S was originally in the state r̂i. One5335

should therefore beware of some realist interpretations in which the value si is supposed to preexist the individual5336

measurement111: they do not take properly into account the perturbation brought in by the measurement [31].5337

12.4. Ideal measurements and interpretation of quantum mechanics5338

An expert is a man who has made all the mistakes which can be made,5339

in a narrow field5340

Niels Bohr5341

Quantum measurements throw bridges between the microscopic reality, that we grasp through quantum theory,5342

and the macroscopic reality, easier to apprehend directly. The images of the microscopic world that we thus get5343

appear more “natural” (i.e., more customary) than the counter-intuitive quantum laws, although they emerge from5344

the underlying quantum concepts (subsection 11.3). However, the interpretation of the latter concepts is subject5345

to ongoing debate. In particular, as a measurement is a means for gaining information about a physical quantity5346

pertaining to some state of a system, the meaning of “physical quantity” and of “state” should be made clear.5347

12.4.1. The statistical interpretation is sufficient to fully explain measurements5348

112
5349 Լավ է մրջնի գլուխ լինես քան առյուծի պոչ:

Armenian proverb5350

Many authors treat quantum measurements as irreversible processes of quantum statistical mechanics involving5351

interaction between the tested system and a macroscopic apparatus or a macroscopic environment (section 2). The nat-5352

ural tool in such approaches is the density operator of the system S + A, which can be regarded as representing a state5353

in the statistical interpretation of quantum mechanics (§ 10.1.4). Implicitly or explicitly, we have relied throughout5354

the present work on this interpretation, resumed in section 10.5355

A classical measurement can be regarded as a means to exhibit, through an apparatus A, some pre-existing prop-5356

erty of an individual system S. In the statistical interpretation of a quantum measurement, we deal with the joint5357

evolution of an ensemble of systems S + A, the outcome of which indirectly reveals only some probabilistic proper-5358

ties of the initial state of S [10, 11, 31, 48, 52, 58]. The value si of the tested observable ŝ inferred from the observation5359

of the indication Ai of the pointer did not preexist the process, even though we can assert that it is taken by S after an5360

ideal measurement where Ai has been registered and selected.5361

A preliminary step in a measurement model is the assignment to the apparatus at the initial time of a density5362

operator R̂(0), namely, in the Curie–Weiss model (§ 3.3.2 and § 3.3.3), a paramagnetic state for M and a thermal5363

equilibrium state for B. The preparation of this initial state is of the macroscopic type, involving a control of only few5364

variables such as energy. The assignment of a density operator is based, according to the statistical interpretation,5365

111 In a hidden variable description that enters discussions of Bell inequalities in the BCHSH setup, one should thus describe the measured
variable not as a “predetermined” value set only by the pair of particles (Bell’s original setup) but as depending on the hidden variables of both the
pair and the detector (Bell’s extended setup). See Ref. [268] for a discussion of an assumption needed in that setup

112Better to be an ant’s head than a lion’s tail
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on probabilistic arguments (§ 10.2.2), in particular on the maximum entropy criterion which underlies the choice of5366

canonical distributions. (A preparation through measurement is excluded, not only because the apparatus is macro-5367

scopic, but also logically, since the measurement that we wish to explain by a model would depend on a preceding5368

measurement.)5369

The next stages of the solution, truncation and registration (sections 4 to 7), are mere relaxation processes of5370

quantum statistical mechanics, governed by the Liouville–von Neumann equation, which lead the state of S + A from5371

D̂(0) to D̂exact(tf) for the large ensemble E of runs. Approximations justified under the conditions of subsection 9.45372

let us replace D̂exact(tf) by D̂(tf). The breaking of unitarity entailed by this replacement can be understood, in the5373

interpretation of a state as a mapping (10.1) of the observables onto their expectation values, as a restriction of this5374

mapping to the “relevant observables” [58]. Indeed, if we disregard the “irrelevant” observables associated with cor-5375

relations between an inaccessibly large number of particles, which are completely ineffective if no recurrences occur,5376

both states D̂(tf) and D̂exact(tf) realize the same correspondence (10.1) for all other, accessible observables Ô. The5377

entropy S [D̂(tf)], larger than S [D̂exact(tf)] = S [D̂(0)], (§ 1.2.4 and [72]), enters the framework of the general concept5378

of relevant entropies associated with a reduced description from which irrelevant variables have been eliminated [58].5379

Within the informational definition (10.1) of states in the statistical interpretation, we may acknowledge a re-5380

striction of information to relevant observables when eliminating either the environment in models for which this5381

environment induces a decoherence, or the bath B in the Curie–Weiss model (subsection 4.1). In the latter case, the5382

states D̂(t) and D̂(t) ⊗ R̂B(t) (Fig. 3.2) should be regarded as equivalent if we disregard the inaccessible observables5383

that correlate B with M and S.5384

Still another equivalence of “states” in the sense of (10.1) will be encountered in § 13.1.5, where the Curie–5385

Weiss model is reconsidered in the Heisenberg picture. There the evolution of most off-diagonal observables lets5386

them vanish at the end of the process, so that they become irrelevant. The (time-independent) density matrix and the5387

resulting truncated one are therefore equivalent after the time tf , since they carry the same information about the only5388

remaining diagonal observables. Note also that, in the statistical interpretation, it is natural to attribute the quantum5389

specificities (§ 10.2.1) to the non commutation of the observables; in the Heisenberg picture, the effective commutation5390

at the time tf of those which govern the measurement sheds another light on the emergence of classicality (§ 13.1.4).5391

We have stressed that, in the statistical interpretation, a quantum state does not describe an individual system, but5392

an ensemble (§ 10.1.3). The solution D̂(t) of the Liouville von-Neumann equation for S + A describes fully, but in a5393

probabilistic way, a large set E of runs originated from the initial state D̂(0): quantum mechanics treats statistics of5394

processes, not single processes. However, the solution of the quantum measurement problem requires to distinguish,5395

at the end of the process, single runs or at least subensembles Ei of E having yielded the outcome Ai for the pointer. A5396

measurement is achieved only after reading, collecting, processing or selecting the result of each individual process,5397

so as to interpret its results in every day’s language [320]. It is essential to understand how ordinary logic, ordinary5398

probabilities, ordinary correlations, as well as exact statements about individual systems may emerge at our scale5399

from quantum mechanics in measurement processes, even within the statistical interpretation which is foreign to such5400

concepts. Although D̂(t) appears as an adequate tool to account for truncation and registration, it refers to the full set5401

E, and its mere determination is not sufficient to provide information about subsets. The difficulty lies in the quantum5402

ambiguity of the decomposition of the mixed state D̂(tf) into states describing subensembles (§ 10.2.3 and § 11.1.3).5403

We have achieved the task of understanding ideal measurements in section 11 by relying on a dynamical mechanism5404

according to which the macroscopic apparatus retains quantum features only over a brief delay. This provides the5405

unambiguous splitting of E into the required subsets Ei.5406

12.4.2. Measurement models in other interpretations5407

As shown above, standard quantum mechanics within the statistical interpretation provides a satisfactory expla-5408

nation of all the properties, including odd ones, of quantum measurement processes. Any other interpretation is of5409

course admissible insofar as it yields the same probabilistic predictions. However, the statistical interpretation, in5410

the present form or in other forms, as well as alternative equivalent interpretations, is minimalistic. Since it has been5411

sufficient to explain the crucial problem of measurement, we are led to leave aside at least those interpretations which5412

require additional postulates, while keeping the same probabilistic status.5413

In particular, we can eliminate the variants of the “orthodox” Copenhagen interpretation in which it is postulated5414

that two different types of evolution may exist, depending on the circumstances, a Hamiltonian evolution if the system5415

is isolated, and a sudden change producing von Neumann’s reduction and Born’s rule if the system S undergoes an5416
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ideal measurement [4, 172]. We can rule out the second type of evolution, since we have seen in detail (section 11) that5417

the standard Liouville–von Neumann evolution alone, when applied to arbitrary subensembles, is sufficient to explain5418

the reduction. The apparent violation of the superposition principle is understood as the result of suitable interactions5419

within the macroscopic apparatus, together with standard treatments of quantum statistical mechanics. It is therefore5420

legitimate to abandon the “postulate of reduction”, in the same way as the old “quantum jumps” have been replaced5421

by transitions governed by quantum electrodynamics. It is also useless to postulate the uniqueness of the outcome of5422

individual runs (§ 11.1.3).5423

Interpretations based on decoherence by some environment underlie many models (subsection 2.7). The detailed5424

study of section 11 shows, however, that a proper explanation of reduction requires a special type of decoherence,5425

which accounts for the bistability (or multistability) of the apparatus (§ 12.2.5). Decoherence models in which a5426

special mode of the environment is considered as “pointer mode” [33, 32] are unrealistic, since, by definition, the5427

environment cannot be manipulated or read off. See also the discussion of this issue in [69].5428

Many interpretations are motivated by a wish to describe individual systems, and to get rid of statistical ensembles.5429

The consideration of conscious observers was introduced in this prospect. However, the numerous models based on5430

the S + A dynamics show that a measurement is a real dynamical process, in which the system undergoes a physical5431

interaction with the apparatus that modifies both, as can be shown by performing subsequent experiments.5432

Reduction in an individual measurement process has often been regarded as a kind of bifurcation which may lead5433

the single initial state D̂(0) towards several possible outcomes D̂i, a property seemingly at variance with the linearity5434

of quantum mechanics. In the interpretation of Bohm and de Broglie [18, 24], such a bifurcation occurs naturally.5435

Owing to the introduction of trajectories piloted by the wave function, a one-to-one correspondence exists between5436

the initial and the final point of each possible trajectory; the initial point is governed by a classical probability law5437

determined by the initial quantum wave function, while the set of trajectories end up as separate bunches, each of5438

which is associated with an outcome i. Thus, the final subsets Ei reflect pre-existing subsets of E that already existed5439

at the initial time. In spite of this qualitative explanation of reduction, the trajectories, which refer to the coupled5440

system S + A, are so complicated that models relying on them seem out of reach.5441

At the other extreme, the reality of collapse is denied in Everett’s many-worlds interpretation [25, 26]. A mea-5442

surement is supposed to create several branches in the “relative state”, one of which only being observed, but no5443

dynamical mechanism has been proposed to explain this branching.5444

The same concern, describing individual quantum processes, has led to a search for sub-quantum mechanics5445

[20, 31, 325]. Although new viewpoints on measurements might thus emerge, such drastic changes do not seem5446

needed in this context. Justifications should probably be looked for at scales where quantum mechanics would fail,5447

hopefully at length scales larger than the Planck scale so as to allow experimental tests.5448

Of particular interest in the context of measurements are the information-based interpretations [52, 58, 74, 79, 80,5449

292], which are related to the statistical interpretation (§ 10.1.3 and § 10.1.4). Indeed, an apparatus can be regarded5450

as a device which processes information about the system S, or rather about the ensemble E to which S belongs. The5451

initial density operator r̂(0), if given, gathers our information about some preliminary preparation of S. During the5452

process, which leads E to the final truncated state r̂(tf) =
∑

i pir̂i (Eq. (1.10)), all the off-diagonal information are lost.5453

However, the correlations created between S and A then allow us to gain indirectly information on S by reading the5454

outcome of the pointer, to select the corresponding subensemble Ei, and to update our information about Ei as r̂i. The5455

amounts of information involved in each step are measured by the entropy balance of § 1.2.4.5456

12.4.3. Empiricism versus ontology5457

Einstein, stop telling God what to do5458

Niels Bohr5459

There is no general agreement about the purpose of science [303]113. Is our task only to explain and predict5460

phenomena? Does theoretical physics provide only an imperfect mathematical image of reality? Or is it possible to5461

uncover the very nature of things? This old debate, more epistemologic than purely scientific, cannot be skipped since5462

it may inflect our research. The question has become more acute with the advent of quantum physics, which deals5463

113The present authors do not regard science as having a unique purpose
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with a “veiled reality” [303]. Physicists, including the authors of the present article, balance between two extreme5464

attitudes, illustrated by Bohr’s pragmatic question [320]: “What can we say about...?” facing Einstein’s ontological5465

question [23]: “What is...?” The latter position leads one to ask questions about individual systems and not only about5466

general properties, to regard quantum mechanics as an incomplete theory and to look for hidden “elements of reality”.5467

This opposition may be illustrated by current discussions about the status of pure states. In the statistical in-5468

terpretation, there is no conceptual difference between pure and mixed states (§ 10.1.4); both behave as probability5469

distributions and involve the observer. In order to reject the latter, many authors with ontological aspirations afford5470

pure states a more fundamental status, even though they acknowledge their probabilistic character, a point also crit-5471

icized by van Kampen [14]. Following von Neumann’s construction of density operators (in analogy to densities in5472

phase space of classical statistical mechanics), they regard pure states as building blocks rather than special cases of5473

mixed states. In a decomposition (10.3) of a density operator D̂ associated with an ensemble E, they consider that5474

each individual system of E has its own ket. In this realist interpretation [31], two types of probabilities are distin-5475

guished [14]: “merely quantal” probabilities are interpreted as properties of the individual objects through |φk〉, while5476

the weights νk are interpreted as ordinary probabilities associated with our ignorance of the structure of the statistical5477

ensemble E. Such an interpretation might be sensible if the decomposition (10.3) were unique. We have stressed,5478

however, its ambiguity (§ 10.2.3 and § 11.1.3); as a consequence, the very collection of pure states |φk〉 among which5479

each individual system is supposed to lie cannot even be imagined. It seems therefore difficult to imagine the existence5480

of “underlying pure states” which would carry more “physical reality” than D̂ [302, 308]. The distinction between5481

the two types of probabilities on which decompositions (10.3) rely is artificial and meaningless [10, 11].5482

Landau’s approach to mixed states may inspire another attempt to regard a pure state as an intrinsic description of5483

an individual system [14, 84]. When two systems initially in pure states interact, correlations are in general established5484

between them and the marginal state of each one becomes mixed. To identify a pure state, one is led to embed any5485

system, that has interacted in the past with other ones, within larger and larger systems. Thus, conceptually, the only5486

individual system lying in a pure state would be the whole Universe [186, 188], a hazardous extrapolation [10, 11].5487

Not to mention the introduction in quantum mechanics of a hypothetic multiverse [25, 324].5488

Such considerations illustrate the kind of difficulties to be faced in a search for realist interpretations, a search5489

which, however, is legitimate since purely operational interpretations present only a blurred image of the microscopic5490

reality and since one may long for a description that would uncover hidden faces of Nature [303]. Among the proposed5491

realist interpretations, one should distinguish those which provide exactly the same outcomes as the conventional5492

quantum mechanics, and that can therefore neither be verified nor falsified. They have been extensively reviewed5493

[17, 19, 31, 36, 189, 191, 192, 284] (see also references in § 1.1.1), and we discussed above some of them in connection5494

with models of measurements. Many involve hidden variables of various kinds (such as Bohm and de Broglie’s5495

bunches of trajectories or such as stochastic backgrounds) or hidden structures (such as consistent histories, see5496

subsection 2.9).5497

Other approaches attempt to go “beyond the quantum”. They resort, for instance, to stochastic electrodynamics5498

[325, 326, 327, 328], to quantum Langevin equations [31], to nonlinear corrections to quantum mechanics such as in5499

the GRW approach [17, 89, 190], or to speculations about quantum gravitation [329]. The sole issue issue to close the5500

Einstein–Bohr debate in such fields is a search for testable specific predictions [23, 320].5501

For the time being, empirical approaches appear satisfactory “for all practical purposes” [330]. The statistical5502

interpretation, either in the form put forward by Blokhintsev [10, 11] and Ballentine [9, 48] or in the form presented5503

above, is empirical and minimalist: It regards quantum mechanics only as a means for deriving predictions from5504

available data. It is related to partly subjective interpretations that focus on information [292], since information is5505

akin to probability. We have seen (section 11) that, although the statistical interpretation is irreducibly probabilistic,5506

involving both the system (as regards the observables and their evolution) and the observers (as regards the state),5507

although it only deals with statistical ensembles, it suffices in conjunction with dynamics to account for individual5508

behaviours in ideal measurements. The same epistemological attitude is shared by phenomenological-minded people,5509

and is advocated, for instance, by Park [28], van Kampen [14] and de Muynck [31]. It can be viewed as a common5510

ground for all physicists, as stressed by Laloë [34], whose “correlation interpretation” emphasizes predictions as cor-5511

relations between successive experiments. A more extreme philosophical position, the rejection of any interpretation,5512

is even defended by Fuchs and Peres in [331]. According to such positions, quantum theory has the modest task of5513

accounting for the statistics of results of experiments or of predicting them. It deals with what we know about reality,5514
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and does not claim to unveil an underlying reality per se114. Bohr himself shared [320] this conception when he said5515

(see [321, 322] for a list of Bohr’s quotations): “There is no quantum world. There is only an abstract quantum5516

physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what5517

we can say about nature.”5518

13. What next?5519

115
5520 Այս ապուրը դեռ շատ ջուր կքաշի:

Il va couler encore beaucoup d’eau sous les ponts116
5521

Er zal nog heel wat water door de Rijn moeten117
5522

Armenian, French and Dutch proverbs5523

Much can still be learnt from models, even about the ideal quantum measurements on which we have focused.5524

Various features of measurements and their incidence on interpretations of quantum mechanics have been explained5525

by the many models reviewed in section 2. However, the treatments based on quantum statistical mechanics provide,5526

as final state describing the outcome of a large set of runs of the measurement, a mixed state. Such a state cannot be5527

decomposed unambiguously into components that would describe subsets of runs (§ 11.1.3), so that a further study5528

was required to explain the uniqueness of the outcome of each run. A dynamical mechanism that achieves this task5529

has been proposed (§§ 11.2.3 and 11.2.4 and appendices H and I). Adapting it to further models should demonstrate5530

the generality of such a solution of the measurement problem.5531

Alternative approaches should also be enlightening. We suggest some paths below.5532

13.1. Understanding ideal measurements in the Heisenberg picture5533

Some insight can be gained by implementing the dynamics of the measurement process in the Heisenberg picture5534

(§ 10.1.2) rather than in the more familiar Schrödinger picture. Both pictures are technically equivalent but the5535

Heisenberg picture will provide additional understanding. It is then the observables Ô(t, t0) which evolve, in terms of5536

either the running time t or of the reference time t0. By taking t0 as the initial time t0 = 0, an observable Ô(t, t0) is5537

governed for an isolated system by the Heisenberg equation5538

i~
dÔ(t, 0)

dt
= [Ô(t, 0), Ĥ] (13.1)

with the initial condition Ô(0, 0) = Ô, while the states assigned at the reference time t0 = 0 remain constant. This5539

formulation presents a conceptual advantage; it clearly dissociates two features of quantum mechanics, which in5540

the Schrödinger picture are merged within the time-dependent density operator. Here, the deterministic evolution is5541

carried by the observables, which represent random physical quantities; on the other hand, our whole probabilistic5542

information about these quantities is embedded in the time-independent density operator118.5543

We can thus account for the dynamics of a system in a general way, without having to specify its probabilistic5544

description in the particular situation we wish to describe. The use of the Heisenberg picture has therefore an incidence5545

on the interpretation of quantum mechanics. Whereas the Schrödinger picture only allows us to describe dynamics of5546

the statistical ensemble represented by the density operator, we can regard the equation of motion (13.1) as pertaining5547

to an individual system119. It is only when evaluating expectation values as tr[D̂Ô(t, 0)] that we have to embed the5548

studied system in a statistical ensemble.5549

114This point may be illustrated on the double slit experiment. While the particle-wave duality allows to imagine that electrons or photons “go
through both slits simultaneously”, some authors find it hard to accept this for large objects such as bucky balls [332] or viruses [333]

115Preparing this porridge still requires much water
116Much water will still flow under the bridges
117Quite some water will still have to flow through the Rhine river
118We use the term “observables” in the sense of “operator-valued random physical quantities” (§ 10.1.1), not of “outcomes of observations”. The

latter quantities (frequencies of occurrence, expectation values, variances) are joint properties (10.1) of “states” (i. e., density operators playing the
role of quantum probabilities) and observables

119As understood, in the statistical interpretation, to belong to an ensemble of identically prepared members
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Moreover, when a measurement is described in the Schrödinger picture, the density operator of S + A undergoes5550

two types of changes, the time dependence from D̂(0) to D̂(tf), and the restriction to D̂i if the outcome Ai is selected.5551

The temptation of attributing the latter change to some kind of dynamics will be eluded in the Heisenberg picture,5552

where only the observables vary in time.5553

Let us sketch how the Curie–Weiss model might be tackled in the Heisenberg picture.5554

13.1.1. Dynamical equations5555

The equations of motion (13.1) which couple the observables to one another have the same form as the Liouville–5556

von Neumann equation apart from a sign change and from the boundary conditions. Thus, their analysis follows the5557

same steps as in section 4. Elimination of the bath takes place by solving at order γ the equations (13.1) for the bath5558

observables B̂(n)
a (t, 0), inserting the result into the equations for the observables of S + M and averaging over the state5559

R̂B of B; this provides integro-differential equations that couple the observables ŝa(t, 0) of S and those σ̂a(t, 0) of M5560

(a = x, y or z). The conservation of ŝz implies, instead of the decoupling between the four blocks ↑↑, ↓↓, ↑↓, ↓↑ of the5561

Schrödinger density matrix, the decoupling between four sets of observables, the diagonal observables proportional5562

to Π̂↑ ≡
1
2 (1 + ŝz) and Π̂↓ ≡

1
2 (1 − ŝz), and the the off-diagonal observables proportional to ŝ− and ŝ+, respectively.5563

Finally the symmetry between the various spins of M allows us again to deal only with m̂, so that the dynamics bears5564

on the observables Π̂↑ f (m̂), Π̂↓ f (m̂), ŝ− f (m̂) and ŝ+ f (m̂), coupled within each sector.5565

13.1.2. Dynamics of the off-diagonal observables5566

The evolution (13.1) of the off-diagonal observables generated over very short times t � τrecur = π~/2g by5567

ĤSA = −Ngŝzm̂ (section 5) is expressed by5568

ŝ−(t) = ŝ− exp
2iNgm̂t

~
, m̂(t) = m̂. (13.2)

Instead of the initial truncation exhibited in the Schrödinger picture, we find here a rapid oscillation, which will entail5569

a damping after averaging over the canonical paramagnetic state of M.5570

The suppression of recurrences through the non-identical couplings of subsection 6.1 replaces Ngm̂ by
∑

n(g +5571

δgm)σ̂(n)
z in (13.2), a replacement which after averaging over most states will produce damping. The bath-induced5572

mechanism of subsection 6.2 introduces, both in m̂(t) and in the right side of (13.2), observables pertaining to the5573

bath which are regarded as unreachable. Tracing out B then produces the damping of recurrences for the off-diagonal5574

observables.5575

We have shown (§§ 11.2.3 and 11.2.4) that reduction can result from a decoherence produced by a random inter-5576

action within M or by a collisional process. In the Heisenberg picture, the result is again the decay towards 0 of the5577

off-diagonal observables |↑〉〈↓| ⊗ |mF, η〉〈−mF, η
′| and |↓〉〈↑| ⊗ |−mF, η〉〈mF, η

′|.5578

13.1.3. Establishment of system–apparatus correlations5579

The evolution of the diagonal observables in the Heisenberg picture is analogous to the registration of section5580

7, but it is represented by more general equations than in the Schrödinger picture. Indeed, denoting by δm̂,m the5581

projection operator on the eigenspace associated with the eigenvalue m of m̂, we now have in the sector ↑↑ to look5582

at the dynamics of the time-dependent observables Π̂↑δm̂,m(t, 0), instead of the dynamics of their expectation values5583

Pdis
↑↑

(m, t) in the specific state D̂(0) of S + M as in section 7. The solution of the equations of motion has the form5584

Π̂↑δm̂,m(tf , 0) =
∑
m′

K↑(m,m′)Π̂↑δm̂,m′ . (13.3)

The kernel K↑(m,m′) represents the transition probability of the random order parameter m̂ from its eigenvalue m′ at5585

the time 0 to its eigenvalue m at the time tf , under the effect of the bath and of a field +g. It is obtained by taking5586

the long-time limit of the Green’s function defined by Eq. (7.58), and we infer its properties from the outcomes of5587

section 7. As m′ is arbitary, we must deal here with a bifurcation (as in subsection 7.3). For m′ larger than some5588

negative threshold, K↑(m,m′) is concentrated near m ' +mF; this will occur in particular if m′ is small, of order5589
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1/
√

N. However, if m′ is negative with sufficiently large |m′|, it will be sent towards m = −mF. Likewise, K↓(m,m′) is5590

concentrated around m ' −mF if |m′| is sufficiently small (or if m′ is negative), but around m ' +mF if m′ is positive5591

and sufficiently large. The complete correlations required for the process to be a measurement will be created only5592

after averaging over a state of the pointer concentrated around m′ = 0.5593

At later times, around tf , the process of § 11.2.3 produces the irreversible decay of the diagonal observables5594

| ↑〉〈↑ | ⊗ |mF, η〉〈mF, η
′| and | ↓〉〈↓ | ⊗ |−mF, η〉〈−mF, η

′| towards δηη′ R̂
µ
⇑

and δηη′ R̂
µ
⇓
, respectively. Notice that while the5595

initial observables involve here the full set σ̂(n)
z , their evolution narrows this set, leading it only towards the projection5596

operators on m̂ = mF and m̂ = −mF.5597

13.1.4. Fate of observables at the final time5598

Physical data come out in the form tr D̂HeisÔ(t, 0) where D̂Heis = D̂Schr(0) = r̂ ⊗ R̂ is time-independent, namely5599

just the initial state in the Schrödinger picture. The success of an ideal measurement process now appears as the joint5600

result of the algebraic properties that result in the expressions of the time-dependent observables, and of some specific5601

properties of the initial preparation of the apparatus embedded in R̂(0). On the one hand, the width in 1/
√

N of the5602

initial paramagnetic distribution Pdis
M (m, 0) is sufficiently large so that the oscillations (13.2) of ŝ−(t) are numerous5603

and interfere destructively on the time scale τred. On the other hand, it is sufficiently narrow so as to avoid wrong5604

registrations: The final probability distribution Pdis
↑↑

(m, tf) for the pointer is the expectation value of (13.3) over D̂Heis,5605

and the concentration near the origin of m̂ = m′ in R̂(0) entails the concentration near +mF of Pdis
↑↑

(m, tf).5606

Some intuition about ideal measurements may be gained by acknowledging the decay of the off-diagonal ob-5607

servables during the process and their effective disappearance120 after the time tf . The evolution of the diagonal5608

observables also implies that, under the considered circumstances, only the eigenspaces of m̂ associated with eigen-5609

values close to mF and −mF survive at tf . The only observables remaining at the end of the process, Π↑δm̂,m(tf , 0)5610

with m close to mF expressed by (Eq b) and Π̂↓δm̂,m(tf , 0) with m close to −mF, belong to an abelian algebra. It is5611

therefore natural to regard them as ordinary random variables governed by standard probabilities, and to use daily5612

reasoning which allows statements about individual events. The singular features of quantum mechanics which arose5613

from non-commutativity (§ 10.2.1) can be disregarded. The emergence of classicality in measurement processes now5614

appears as a property of the Heisenberg dynamics of the observables.5615

13.1.5. Truncation5616

We now turn to the states describing the ensemble E of runs and its subensembles. Remember that in the statistical5617

interpretation and in the Heisenberg picture, a “state” is a time-independent mathematical object that accounts for5618

our information about the evolving observables (§ 10.1.4). Equivalently, the density operator gathers the expectation5619

values of all observables at any time. The assignment of a density matrix D̂Heis to the whole set E of runs of the5620

measurement relies on information acquired before the interaction process (i.e., the measurement) and embedded5621

in the states r̂, R̂M and R̂B of S, M and B. These information allow us to describe the statistics of the whole process5622

between the times 0 and tf through the equations of motion (13.1) and the density operator D̂Heis = r̂(0)⊗R̂M(0)⊗R̂B(0)5623

describing the set E.5624

However, the vanishing at tf of the off-diagonal observables (at least of all accessible ones) entails that their expec-5625

tation values vanish, not only for the full set E of runs of the measurement but also for any subset. The information5626

about them, that was embedded at the beginning of the process in the off-diagonal blocks ofDHeis, have been irreme-5627

diably lost at the end, so that these off-diagonal blocks become irrelevant after measurement. For the whole ensemble5628

E, and for any probabilistic prediction at times t > tf , it makes no difference to replace the state D̂Heis by the sum of5629

its diagonal blocks according to5630

D̂Heis 7→ D̂Heis
red =

∑
i

piD̂
Heis
i , D̂Heis

i = Π̂ir̂(0)Π̂i ⊗ R̂M(0) ⊗ R̂B(0), (i =↑, ↓). (13.4)

120In fact, the disappearance of the off-diagonal observables is approximate for finite N and is not complete: We disregard the inaccessible
observables, whether they belong to the bath or they are associated with correlations of a macroscopic number of particles. The suppression of all
the accessible off-diagonal observables relies on the mechanism of § 11.2.3, itself based on the concentration of m̂ around ±mF
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This reasoning sheds a new light on the interpretation of truncation, which in the Schrödinger picture appeared as the5631

result of an irreversible evolution of the state. In the present Heisenberg picture, truncation comes out as the mere5632

replacement (13.4), which is nothing but an innocuous and convenient elimination of those parts of the state D̂Heis
5633

which have become irrelevant, because the corresponding observables have disappeared during the measurement5634

process.5635

13.1.6. Reduction5636

The argument given at the end of § 13.1.2 then allows us to assign states to the subensembles of E which can5637

be distinguished at the time tf , after the observables have achieved their evolution and after decoupling of S and A.5638

Here, however, the states, which do not depend on time, can be directly constructed from D̂Heis or from the equivalent5639

expression (13.4). The vanishing of the off-diagonal observables themselves simplifies the discussion since we can5640

always eliminate the off-diagonal blocks of a state associated with any subensemble. The diagonal observables display5641

the same correlations between the system and the pointer as in (13.4), so that any subset of runs of the measurement5642

can be represented by the state5643

D̂Heis
sub =

∑
i

qiD̂
Heis
i . (13.5)

which is the basis for all predictions about the considered subensemble at times later than tf . (Note that the inclusion5644

of elements in the off-diagonal blocks of (13.5) would not change anything since there are no surviving observables5645

in these blocks.)5646

The uniqueness of the outcome of each individual run comes out from (13.5) through the same argument as in5647

§ 11.3.1. A well-defined indication i of the pointer is the additional piece of information that allows us to assign to5648

the system S + A, which then belongs to the subensemble Ei, the state D̂Heis
i . Retaining only one diagonal block of5649

D̂Heis in (13.4) amounts to upgrade our probabilistic description 121.5650

The specific features of the Heisenberg representation were already employed in literature for arguing that this5651

representation (in contrast to that by Schrödinger) has advantages in explaining the features of quantum measure-5652

ments [334, 335, 336]. In particular, Rubin argued that obstacles preventing a successful application of the Everett5653

interpretation to quantum measurements are absent (or at least weakened) in the Heisenberg representation [335, 336].5654

Certain aspects of the analysis by Rubin do not depend on the assumed Everett interpretation and overlap with the5655

presentation below (that does not assume this interpretation). Blanchard, Lugiewicz and Olkiewicz employed the5656

decoherence physics within the Heisenberg representation for showing that it accounts more naturally (as compared5657

to the Schrödinger representation) for the emergence of classical features in quantum measurements [334]. Their5658

approach is phenomenological (and shares the criticisms we discussed in section 2.2), but the idea of an emergent5659

Abelian (classical) algebra again overlaps with the preliminary results reported above. The emergent Abelian algebra5660

is also the main subject of the works by Sewell [137, 138, 139] and Requardt [69] that we already reviewed in section5661

2.4.3. In particular, Requardt explains that closely related ideas were already expressed by von Neumann and van5662

Kampen (see references in [69]).5663

As shown by this reconsideration of the Curie–Weiss model, the Heisenberg picture enlightens the truncation,5664

reduction and registration processes, by exhibiting them as a purely dynamical phenomena and by explaining their5665

generality. Although mathematically equivalent to the Schrödinger picture, it suggests more transparent interpreta-5666

tions, owing to a separate description of the dynamics of quantum systems and of our probabilistic knowledge about5667

them. A better insight on other models of measurement should therefore be afforded by their treatment in the Heisen-5668

berg picture.5669

121In the Schrödinger picture, the expectation value of any (time-independent) observable for the subensemble Ei was found from the state D̂i
of Eq. (11.21). Here, it is obtained from the evolution (13.3) and the state D̂Heis

i of Eq (13.4). The state D̂i results from D̂Heis
i by integrating the

Liouville–von Neumann equation from t = 0 to tf
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13.2. Other types of measurements5670

We have only dealt in this article with ideal quantum measurements, in which information about the initial state5671

of the tested system S is displayed by the apparatus at some later time, and in which the final state of the system5672

S is obtained by projection. Other realistic setups, e.g. of particle detectors or of avalanche processes, deserve5673

to be studied through models. Measurements of a more elaborate type, in which some quantum property of S is5674

continuously followed in time, are now being performed owing to experimental progress [288, 289, 337, 338, 339].5675

For instance, non-destructive (thus non-ideal) repeated observations of photons allow the study of quantum jumps5676

[338], and quantum-limited measurements, in which a mesoscopic detector accumulates information progressively5677

[340], are of interest to optimize the efficiency of the processing of q-bits. Quantum measurements are by now5678

employed for designing feedback control processes [339, 341], a task that in the classical domain is routinely done5679

via classical measurements.5680

Such experiments seem to reveal properties of individual systems, in apparent contradiction with the statistical5681

interpretation of quantum mechanics. However, as in ideal measurements, repeated observations of the above type on5682

identically prepared systems give different results, so that they do not give access to trajectories in the space of the5683

tested variables, but only to autocorrelation functions presenting quantum fluctuations. It seems timely, not only for5684

conceptual purposes but to help the development of realistic experiments, to work out further models, in particular5685

for such quantum measurements in which the whole history of the process is used to gather information. In this5686

context we should mention the so-called weak measurements [342] that (in a sense) minimize the back-action of the5687

measurement device on the measured system, and – although they have certain counterintuitive features – can reveal5688

the analogues of classical concepts in quantum mechanics; e.g., state determination with the minimal disturbance,5689

classical causality [343, 344, 345, 346, 347], and even mapping out of the complete wave function [348] or of the5690

average trajectories of single photons in a double-slit experiment [349].5691

Apart from such foreseeable research works, it seems desirable to make educational progress by taking into ac-5692

count the insights provided by the solution of models of quantum measurement processes. The need of quantum5693

statistical mechanics to explain these processes, stressed all along this paper, and the central role that they play in the5694

understanding of quantum phenomena, invite us to a reformation of teaching at the introductory level. The statistical5695

interpretation, as sketched in subsection 10.1, is in keeping with the analysis of measurements. Why not introduce the5696

concepts and bases of quantum mechanics within its framework. This “minimal” interpretation seems more easily as-5697

similable by students than the traditional approaches. It thus appears desirable to foster the elaboration of new courses5698

and of new textbooks, which should hopefully preserve the forthcoming generations from bewilderment when being5699

first exposed to quantum physics...and even later!5700
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Appendices5708

A. Elimination of the bath5709

De ballast van je afgooien122
5710

Dutch expression5711

122To throw the ballast from you
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Taking Ĥ0 = ĤS + ĤSA + ĤM and ĤB as the unperturbed Hamiltonians of S + M and of B, respectively, and5712

denoting by Û0 and ÛB the corresponding evolution operators, we consider the full evolution operator associated with5713

Ĥ = Ĥ0 + ĤB + ĤMB in the interaction representation. We can expand it as5714

Û†0 (t) Û†B (t) e−iĤt/~ ≈ Î − i~−1
∫ t

0
dt′ĤMB

(
t′
)

+ O (γ) , (A.1)

where the coupling in the interaction picture is5715

ĤMB (t) =
√
γ
∑
n,a

Û†0 (t) σ̂(n)
a Û0 (t) B̂(n)

a (t) , (A.2)

with B̂(n)
a (t) defined by (3.34).5716

We wish to take the trace over B of the exact equation of motion eq. (4.1) for D̂(t), so as to generate an equation5717

of motion for the density operator D̂ (t) of S + M. In the right-hand side the term trB

[
ĤB, D̂

]
vanishes and we are left5718

with5719

i~
dD̂
dt

=
[
Ĥ0, D̂

]
+ trB

[
ĤMB, D̂

]
. (A.3)

The last term involves the coupling ĤMB both directly and through the correlations between S+M and B which are5720

created inD (t) from the time 0 to the time t. In order to write (A.3) more explicitly, we first exhibit these correlations.5721

To this aim, we expandD (t) in powers of
√
γ by means of the expansion (A.1) of its evolution operator. This provides,5722

using Û0(t) = exp[−iĤ0t/~],5723

Û†0 (t) Û†B (t) D̂ (t) ÛB (t) Û0 (t) ≈ D̂ (0) − i~−1
[∫ t

0
dt′ĤMB

(
t′
)
, D̂ (0) R̂B (0)

]
+ O (γ) . (A.4)

Insertion of the expansion (A.4) into (A.3) will allow us to work out the trace over B. Through the factor R̂B (0),5724

this trace has the form of an equilibrium expectation value. As usual, the elimination of the bath variables will produce5725

memory effects as obvious from (A.4). We wish these memory effects to bear only on the bath, so as to have a short5726

characteristic time. However the initial state which enters (A.4) involves not only R̂B (0) but also D̂ (0), so that a5727

mere insertion of (A.4) into (A.3) would let D̂ (t) keep an undesirable memory of D̂ (0). We solve this difficulty by5728

re-expressing perturbatively D̂ (0) in terms of D̂ (t). To this aim we note that the trace of (A.4) over B provides5729

U†0 (t) D̂ (t) Û0 (t) = D̂ (0) + O (γ) . (A.5)

We have used the facts that the expectation value over R̂B (0) of an odd number of operators B̂(n)
a vanishes, and that5730

each B̂(n)
a is accompanied in ĤMA by a factor

√
γ. Hence the right-hand side of (A.5) as well as that of (A.3) are power5731

series in γ rather than in
√
γ.5732

We can now rewrite the right-hand side of (A.4) in terms of D̂ (t) instead of D̂ (0) by means of (A.5), then insert5733

the resulting expansion of D̂ (t) in powers of
√
γ into (A.3). Noting that the first term in (A.4) does not contribute to5734

the trace over B, we find5735

dD̂
dt
−

1
i~

[
Ĥ0, D̂

]
= −

1
~2 trB

∫ t

0
dt′

[
ĤMB, ÛBÛ0

[
ĤMB

(
t′
)
, Û†0 D̂Û0R̂B (0)

]
Û†0Û†B

]
+ O

(
γ2

)
, (A.6)

where D̂, ÛB and Û0 stand for D̂ (t), ÛB (t) and Û0 (t). Although the effect of the bath is of order γ, the derivation has5736

required only the first-order term, in
√
γ, of the expansion (A.4) ofD (t).5737

The bath operators B̂(n)
a appear through ĤMB and ĤMB (t′), and the evaluation of the trace thus involves only the5738

equilibrium autocorrelation function (3.33). Using the expressions (3.10) and (A.2) for ĤMB and ĤMB (t′), denoting5739

the memory time t − t′ as u, and introducing the operators σ̂(n)
a (u) defined by (4.4), we finally find the differential5740

equation (4.5) for D̂(t).5741
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B. Representation of the density operator of S + M by scalar functions5742

Je moet je niet beter voordoen dan je bent123
5743

Dutch proverb5744

We first prove that, if the operators R̂i j(t) in the Hilbert space of M depend only on m̂, the right hand side of (4.8)5745

has the same property.5746

The operators σ̂(n)
+ = 1

2

(
σ̂(n)

x + iσ̂(n)
y

)
and σ̂(n)

− =
(
σ̂(n)

+

)†
raise or lower the value of m by δm = 2/N, a property5747

expressed by5748

[σ̂(n)
+ , σ̂(n)

z ] = −2σ̂(n)
+ , σ̂(n)

+ m̂ = (m̂ − δm) σ̂(n)
+ . (B.1)

The last identity can be iterated to yield5749

σ̂(n)
+ m̂k = (m̂ − δm) σ̂(n)

+ m̂k−1 = · · · = (m̂ − δm)k σ̂(n)
+ , (B.2)

so that for every function that can be expanded in powers of m̂, but does not otherwise depend on the σ̂(k)
a , it holds that5750

σ̂(n)
± f (m̂) = f (m̂ ∓ δm)σ̂(n)

± . (B.3)

In order to write explicitly the time-dependent operators σ̂(n)
a (u, i) defined by (4.7) with the definition (4.6), it is5751

convenient to introduce the notations5752

m± = m ± δm = m ±
2
N
, (B.4)

∆± f (m) = f (m±) − f (m) . (B.5)

The time-dependent operators (4.7) are then given by (u = t − t′ is the memory time; i =↑, ↓)5753

σ̂(n)
z (u, i) = σ̂(n)

z , (B.6)
5754

σ̂(n)
+ (u, i) = 1

2

[
σ̂(n)

x (u, i) + iσ̂(n)
y (u, i)

]
= e−iĤiu/~σ̂(n)

+ eiĤiu/~ = σ̂(n)
+ e−iΩ̂+

i u = eiΩ̂−i u σ̂(n)
+ = [σ̂(n)

− (u, i)]†, (B.7)

where we used (B.3) and where the operators Ω̂+
↑
, Ω̂−
↑
, Ω̂+
↓
, Ω̂−
↓

are functions of m̂ defined by Ω̂±i = Ω±i (m̂) and by5755

~Ω±i (m) = ∆±Hi (m) = Hi (m ± δm) − Hi (m) . (B.8)

If in the right-hand side of (4.8) the operator R̂i j depends only on m̂ at the considered time, the terms with a = z5756

cancel out on account of (B.6). The terms with a = x and a = y, when expressed by means of (B.7), generate only5757

products of σ̂(n)
+ σ̂(n)

− or σ̂(n)
− σ̂

(n)
+ by functions of m̂. This can be seen by using (B.3) to bring σ̂(n)

+ and σ̂(n)
− next to each5758

other through commutation with R̂i j. Since σ̂(n)
+ σ̂(n)

− = 1− σ̂(n)
− σ̂

(n)
+ = 1

2

(
1 + σ̂(n)

z

)
, we can then perform the summation5759

over n, which yields products of some functions of m̂ by the factor5760 ∑
n

σ̂(n)
+ σ̂(n)

− = N −
∑

n

σ̂(n)
− σ̂

(n)
+ =

N
2

(1 + m̂) , (B.9)

itself depending only on m̂. Hence, if R̂i j is a function of the operator m̂ only, this property also holds for dR̂i j(t)/dt5761

given by (4.8). Since, except in section 5.2, it holds at the initial time, it holds at any time.5762

The equations of motion (4.8) for R̂i j(t) are therefore equivalent to the corresponding equations for Pi j(m, t) which5763

we derive below. The matrices R̂i j(t) which characterize the density operator of S + M are parametrized as R̂i j(t) =5764

123Don’t pretend to be more than you are
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Ri j(m̂) = Pdis
i j (m̂, t)/G(m̂); in the continum limit, we introduced Pi j(m, t) = (N/2)Pdis

i j (m, t). We first note that the5765

autocorrelation function K(t) enters (4.8) through integrals of the form5766

K̃t> (ω) =
∫ t

0 due−iωuK (u) = (1/2πi)
∫ +∞

−∞
dω′{[exp[ i (ω′ − ω) t] − 1]/(ω′ − ω)}K̃ (ω′) ,

K̃t< (ω) =
∫ 0
−t due−iωuK (u) =

∫ t
0 dueiωuK (−u) =

[
K̃t> (ω)

]∗
. (B.10)

As shown above, only the contributions to (4.8) with a = x or a = y survive owing to (B.6). The first term is5767

transformed, by relying successively on (B.7), (B.10), (B.3) and (B.9), into5768 ∫ t

0
du

∑
n

∑
a=x,y

K (u) σ̂(n)
a (u, i) R̂i jσ̂

(n)
a = 2

∫ t

0
du

∑
n

K (u)
[
eiΩ̂−i uσ̂(n)

+ Ri j (m̂) σ̂(n)
− + eiΩ̂+

i uσ̂(n)
− Ri j (m̂) σ̂(n)

+

]
(B.11)

= NK̃t>

(
−Ω̂−i

)
Ri j (m̂ − δm) (1 + m̂) + NK̃t>

(
−Ω̂+

i

)
Ri j (m̂ + δm) (1 − m̂) .

From the relation Ri j (m) = Pdis
i j (m) /G(m) (see Eq. (3.28)), we get5769

(1 ∓ m)Ri j (m±) = (1 ∓ m)
Pdis

i j (m±)

G(m±)
=

1 ± m±
G(m)

Pdis
i j (m±), (B.12)

so that we can readily rewrite (B.11) in terms of Pi j (m̂) = 1
2 NPdis

i j (m̂) instead of R̂i j. The same steps allow us to5770

express the other three terms of (4.8) in a similar form. Using also ∆+Ω−i = ∆+[Hi(m − δm) − Hi(m)] = −Ω+
i and5771

∆−Ω
+
i = −Ω−i , where ∆+ and ∆− were defined by (B.4) and (B.5), we find altogether, after multiplying by G(m),5772

d
dt

Pi j (m, t) −
1
i~

[
Hi (m) − H j (m)

]
Pi j (m, t) =

γN
~2 ∆+

{
(1 + m)

[
K̃t>

(
Ω−i

)
+ K̃t<

(
Ω−j

)]
Pi j (m, t)

}
+

γN
~2 ∆−

{
(1 − m)

[
K̃t>

(
Ω+

i
)

+ K̃t<

(
Ω+

j

)]
Pi j (m, t)

}
, (B.13)

For i = j this equation simplifies into Eq. (4.16), due to both the cancellation in the left-hand side and the appearance5773

of the combination (4.17) in the right-hand side.5774

Since it is an instructive exercise for students to numerically solve the full quantum dynamics of the registration5775

process at finite N, we write out here the ingredients of the dynamical equation (B.13) for P↑↑ and P↓↓. As we just5776

indicated above, this equation simplifies for i = j into (4.16). Moreover, in the registration regime, we can replace5777

K̃t>(ω) + K̃t<(ω) = K̃t(ω) by K̃(ω), defined in (3.37). The rates entering Eq. (4.16) or Eq. (B.13) for i = j have5778

therefore the form5779

γN
~2 K̃(ω) =

N~ω
8J τJ

[
coth

(
1
2
β~ω

)
− 1

]
exp

(
−
|ω|

Γ

)
, (B.14)

where the timescale τJ = ~/γJ can be taken as a unit of time. The variable ω in K̃(ω) takes the values Ω±i , with5780

i = j = ↑ or ↓, which are explicitly given by (4.14) in terms of the discrete variable m. It can be verified that, for5781

Γ � J/~, the omission of the Debye cut-off in (B.14) does not significantly affect the dynamics.5782

C. Evaluation of the recurrence time for a general pointer5783

For what cannot be cured, patience is best5784

Irish proverb5785

We consider here general models for which the tested observable ŝ is coupled to a pointer through the Hamiltonian5786

(6.12) where the pointer observable m̂ has Q eigenvalues behaving as independent random variables. The probability5787

distribution p(ωq) for the corresponding eigenfrequencies ωq ≡ Ng(si − s j)mq/~ which enter the function <F(t) =5788
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Q−1 ∑
q cosωqt is taken as (6.16). For shorthand we denote from now on in the present appendix by F(t) the real part5789

<F of the function defined in § 6.1.2 by (6.14).5790

We wish to evaluate the probability P ( f , t) for F (t) to be larger than some number f at a given time t � ∆ω. This5791

probability is deduced from the characteristic function for F (t) through5792

P ( f , t) = θ
[
F (t) − f

]
=

∫ +∞

−∞

dλ
2π(iλ+0) e

−iQλ f eiQλF(t) =
∫ +∞

−∞

dλ
2π(iλ+0)

[
e−iλ f

∫
dωp (ω) eiλ cosωt

]Q
. (C.1)

Since t � 1/∆ω, the factor p (ω) in the integrand varies slowly over the period 2π/t of the exponential factor5793

exp iλ cosωt. This exponential may therefore be replaced by its average on ω over one period, which is the Bessel5794

function J0 (λ). The integral over ω then gives unity, and we end up with5795

P ( f , t) =

∫ +∞

−∞

dλ
2π (iλ + 0)

exp{Q
[
ln J0 (λ − i0) − iλ f

]
}. (C.2)

For Q � 1, the exponent has a saddle point λs given as function of f by5796

λs ≡ −iy,
I1 (y)
I0 (y)

= f ,
d f
dy

= 1 −
f
y
− f 2, (C.3)

and we find5797

P ( f , t) =
1
y

(
2πQ

d f
dy

)−1/2

exp
{
−Q

[
y f − ln I0 (y)

]}
. (C.4)

We now evaluate the average duration δt of an excursion of F (t) above the value f . To this aim, we determine the5798

average curvature of F (t) at a peak, reached for values of the set ωq such that F (t) > f . The quantity5799

θ
[
F (t) − f

] d2F (t)
dt2 (C.5)

is obtained from (C.1) by introducing in the integrand a factor5800

−
∫

dωp (ω)ω2 cosωt e−iλ cosωt∫
dωp (ω) eiλ cosωt

=
−i∆ω2J1 (λ)

J0 (λ)
, (C.6)

where we used t∆ω � 1. The saddle-point method, using (C.3), then provides on average, under the constraint5801

F (t) > f ,5802

1
F (t)

d2F (t)
dt2 = −∆ω2. (C.7)

A similar calculation shows that, around any peak of F (t) emerging above f , the odd derivatives of F (t) vanish5803

on average while the even ones are consistent with the gaussian shape (6.17), rewritten for f −1F (t′) in terms of5804

t′ − t < 1/∆ω. This result shows that the shape of the dominant term of (6.19) is not modified by the constraint5805

F(t) > f . Hence, if F (t) reaches a maximum f + δ f at some time, the duration of its excursion above f is5806

δt =
2

∆ω

√
2δ f

f
. (C.8)

From (C.4) we find the conditional probability density for F (t) to reach f + δ f if F(t) > f , as Qye−Qyδ f , and hence5807

δt =
1

∆ω

√
2π

Qy f
. (C.9)

Since the probability P ( f , t) for a recurrence to occur at the time t does not depend on this time, and since the5808

average duration of the excursion is δt, the average delay between recurrences is here5809

τrecur =
δt

P ( f , t)
=

2π
∆ω

√
y
f

d f
dy

eQ[y f−ln I0(y)], (C.10)
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where y is given by I1(y) = f I0(y).5810

For f sufficiently small so that ln I0( f ) ' f 2 (for f = 0.2 the relative error is 1%), we find from (C.3) that y ' 2 f ,5811

and this expression of the recurrence time reduces to (6.20), that is exponentially large in Q.5812

We notice that in this derivation the shape of the eigenvalue spectrum p(ω) hardly played any role, we only used5813

that it is smooth on the scale 2π/t, where t is the observation time. So after times t � 2π/∆ω, where the individual5814

levels are no longer resolved, there will be an exponentially long timescale for the pointer to recur.5815

D. Effect of the bath on the off-diagonal sectors of the density matrix of S + M5816

Dopóty dzban wode$ nosi, dopóki mu sie$ ucho nie urwie 124
5817

Polish proverb5818

D.1. Full expression of P↑↓ for large N5819

In Eq. (6.22) we have parametrized P↑↓(m, t) in terms of the function A(m, t), which satisfies5820

∂A
∂t

=
2igm
~
−

1
NP↑↓

∂P↑↓
∂t

, (D.1)

with A(m, 0) = 0. In subsection 4.4, we have derived the equation (4.29) for P↑↓, from which A(m, t) can be obtained5821

for large N at the two relevant orders (finite and in 1/N). As we need A(m, t) only at linear order in γ, we can replace5822

in (4.29) the quantity X↑↓(m, t) by its value for γ = 0,5823

X ≡ X↑↓(m, t) =
2igt
~
−

m
δ2

0

, (D.2)

which contains no 1/N term. We then insert (4.29) in (D.1) to obtain5824

∂A(m, t)
∂t

=
γ

~2

{(
1 − e2X

)
(1 + m)K̃− +

(
1 − e−2X

)
(1 − m)K̃+ −

2
N

[
∂[(1 + m)K̃−eX]

∂m
eX −

∂[(1 − m)K̃+e−X]
∂m

e−X
]}
,(D.3)

where the combinations K̃±(m, t) = K̃t>

(
Ω±
↑

)
+ K̃t<

(
Ω±
↓

)
were introduced in (4.19). The functions K̃t>(ω) and K̃t<(ω) =5825

K̃∗t>(ω) were defined by (3.36), (3.37), (4.10) and (4.11), and the frequencies Ω±
↑

and Ω±
↓

by (4.14). The initial condition5826

is A(m, 0) = 0.5827

D.2. Expansion for small m5828

The above result holds for arbitrary values of m and t. However, since in P↑↓(m, t) the values of m remain small as5829

1/
√

N, only the first three terms in the expansion5830

A(m, t) ≈ B(t) − iΘ(t)m +
1
2

D(t)m2, (D.4)

are relevant. The time-dependence of these three functions, which vanish for t = 0, will be elementary so that we will5831

work out only their time derivatives, which are simpler and which result from (D.3).5832

We note as Ω the frequency defined by5833

Ω ≡
2g
~
≡

π

τrecur
, (D.5)

124A jug carries water only until its handle breaks off
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which is related to the period τrecur of the recurrences that arise from the leading oscillatory term exp(2iNgmt/~) in5834

(6.22) with m taking the discrete values (3.22). We can then rewrite, up to the order m2 and up to corrections in 1/N,5835

Ω±↑ ≈ ∓Ω ∓
2J2m
~

, Ω±↓ ≈ ±Ω ∓
2J2m
~

, X = iΩt −
m
δ2

0

. (D.6)

The expressions (4.10) and (4.11) for K̃t>(ω) or K̃t<(ω) then provide for their combinations (4.19) the expansion5836

K̃±(m, t) ≈ e±iΩt
∫ ∞

−∞

dω
π

K̃
(
ω ∓

2J2m
~

)
ω sinωt −Ω sin Ωt ∓ iΩ(cos Ωt − cosωt)

ω2 −Ω2 + O

(
1
N

)
. (D.7)

The required functions B(t), Θ(t) and D(t) are obtained by inserting (D.4) and (D.7) into (D.3). While the term of5837

order 1/N in B(t) provides a finite factor in P↑↓(m, t), the terms of order 1/N in Θ(t) and D(t) provide negligible5838

contributions. However that may be, it will be sufficient for our purpose to evaluate only the finite contribution to B(t)5839

and the large t approximations for Θ(t) and D(t).5840

D.3. The damping term B(t)5841

To find B(t), we simply set m = 0 in (D.3) and (D.7). Next we employ the expression (3.37) for K̃(ω) and take5842

advantage of the symmetry of the integrand with respect to ω, which allows us to keep only the symmetric part of5843

K̃(ω). This yields5844

dB
dt

=
4γΩ sin Ωt

~2

∫ ∞

−∞

dω
π

K̃(ω)
cos Ωt − cosωt

ω2 −Ω2 =
γΩ sin Ωt

2π

∫ ∞

−∞

dωω coth
~ω
2T

exp
(
−
|ω|

Γ

)
cos Ωt − cosωt

ω2 −Ω2 . (D.8)

where we discarded corrections of order 1/N. This entails the result for B(t) presented in Eq. (6.25) of the main text.5845

For t � 1/Γ, (D.8) reduces to dB/dt ∼ (γΓ2Ω2/2π)t3 and hence5846

B(t) ∼
γΓ2Ω2

8π
t4 =

γΓ2g2

2π~2 t4. (D.9)

The ω integral in Eq. (6.25) for B(t) can be easily carried out numerically and the result is plotted in Fig 6.1 for5847

typical values of the parameters. It is nevertheless instructive to carry out this integral explicitly. This calculation is5848

hindered by the non-analyticity of our Debye cutoff. However, since the result is not expected to depend significantly5849

on the shape of the cutoff (Γ is the largest frequency of the model), we may replace the exponential cutoff in (3.37) by5850

a quasi Lorentzian cutoff,5851

exp
(
−
|ω|

Γ

)
7→

4Γ̃4

4Γ̃4 + ω4
; K̃ (ω) 7→

~2ω

4(eβ~ω − 1)
4Γ̃4

4Γ̃4 + ω4
, (D.10)

where the factors 4 are introduced for later convenience. This expression ensures convergence while being analytic5852

with simple poles. The cutoff (D.10) provides for B(t) the same short time behavior as (D.9) if we make the connection5853

Γ̃ =

√
2
π

Γ. (D.11)

In order to integrate the thus modified version of (D.8) over ω, we first split cosωt into 1
2 exp iωt + 1

2 exp−iωt and5854

then slightly rotate the integation contour so that ω passes below +Ω and above −Ω, instead of passing through these5855

poles. For each of the terms we can close the contour either in the upper or lower half-plane, such that it decays for5856

|ω| → ∞, and pick up the residues at the various poles. The first set of poles, arising from the denominator of (D.8),5857
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consist of ±Ω; since they lie on the real ω-axis, they will produce a non-decaying long time behavior. The second set5858

of poles arise from the coth, as exhibited by the expansion5859

coth
~ω
2T

=

∞∑
n=−∞

2T
~(ω − iΩn)

, Ωn ≡
2πnT
~

, (D.12)

where the sum is meant as principal part for n → ±∞; the frequencies Ωn are known as Matsubara frequencies.5860

Thirdly, the cutoff (D.10) provides the four poles ±Γ̃ ± iΓ̃. We can also take advantage of the symmetry ω → −ω,5861

which associates pairwise complex conjugate residues. Altogether, we find5862

1
γΩ

dB
dt

= coth
~Ω

2T
Γ̃4

4Γ̃4 + Ω4
(1 − cos 2Ωt) +

T
~

∞∑
n=1

Ωn

Ω2
n + Ω2

4Γ̃4

4Γ̃4 + Ω4
n

[
sin 2Ωt − 2 exp(−Ωnt) sin Ωt

]
+

1
2
=

{
coth

(1 + i)~Γ̃

2T
Γ̃2

2Γ̃2 + iΩ2

[
sin 2Ωt − 2 exp[−(1 − i)Γ̃t] sin Ωt

]}
+ O

(
1
N

)
. (D.13)

Now B is easily obtained by integrating this from 0 to t,5863

B(t) =
γ

2
coth

g
T

Γ̃4

4Γ̃4 + Ω4
(2Ωt − sin 2Ωt)

+

∞∑
n=1

4γΓ̃4ΩnT
~(4Γ̃4 + Ω4

n)

[
sin2 Ωt

Ω2 + Ω2
n

+ 2Ω
(Ω cos Ωt + Ωn sin Ωt) exp(−Ωnt) −Ω

(Ω2 + Ω2
n)2

]
(D.14)

−
γΓ̃2

2
<

coth
(1 + i)~Γ̃

2T

 sin2 Ωt
Ω2 − 2iΓ̃2

+ 2Ω

(
Ω cos Ωt + (1 − i)Γ̃ sin Ωt

)
exp[−(1 − i)Γ̃t] −Ω

(Ω2 − 2iΓ̃2)2


 ,

where we made the residues at (±1 ± i)Γ̃ look as much as possible like the ones at Ωn.5864

With these exact results in hand, let us discuss the relative sizes of the various terms. The above complete formula5865

exhibits some contributions that become exponentially small for sufficiently large t. Such contributions are essential5866

to ensure the behavior (D.9) of B for t � 1/Γ̃, and also its behavior for t � ~/2πT , but can be neglected otherwise.5867

Moreover, we have ~Γ̃ � T and Γ̃ � Ω; hence, within exponentially small corrections, the third term of (D.13)5868

reduces, for t � 1/Γ̃, to −Ω2 sin(2Ωt)/8Γ̃2 and is therefore negligible compared to the first two terms. In the first5869

term of (D.13), the Debye cutoff is irrelevant, but it is needed in the second term to ensure convergence of the series.5870

Restoring our exponential cutoff, we can write this series as5871

1
2π

∞∑
n=1

n
n2 + a2 e−bn, a ≡

~Ω

2πT
� 1, b ≡

2πT
~Γ
� 1, (D.15)

which, within corrections of order a2, is equal to5872

1
2π

∞∑
n=1

1
n

e−bn = −
1

2π
ln

(
1 − e−b

)
∼

1
2π

ln
~Γ

2πT
. (D.16)

Altogether, returning to our original notations through use of (D.5), we find from the first two terms of (D.13), for5873

t � ~/2πT :5874

τrecur

γ

dB
dt

=
π

4
coth

g
T

(
1 − cos

2πt
τrecur

)
+

1
2

ln
~Γ

2πT
sin

2πt
τrecur

. (D.17)
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Likewise, the function B(t) itself behaves in this region as5875

B(t) =
γπ

4
coth

g
T

(
t

τrecur
−

1
2π

sin
2πt
τrecur

)
+
γ

4π
ln

~Γ

2πT

(
1 − cos

2πt
τrecur

)
−
γζ(3)
π3

g2

T 2 , (D.18)

where the last piece arises, in the considered approximation, from the last term of the sum in (D.15).5876

D.4. Approximations for Θ(t) and D(t)5877

We have just seen that the dominant contribution to B(t) in the region t � ~/2πT originates from the polesω = ±Ω5878

of the integrand of (D.8). Likewise, as we need only an estimate of Θ(t) and D(t), we will evaluate approximately5879

the integral in (D.7) by picking up only the contributions of these poles. As we did for B(t), we deform and close the5880

integration contour in the upper or in the lower half-plane, but we now disregard the singularities of K̃(ω ∓ 2J2m/~).5881

This approximation amounts to make the replacements5882

ω sinωt −Ω sin Ωt
ω2 −Ω2 7→

π

2
cos(Ωt)[δ(ω −Ω) + δ(ω + Ω)], (D.19)

Ω(cos Ωt − cosωt)
ω2 −Ω2 7→

π

2
sin(Ωt)[δ(ω −Ω) + δ(ω + Ω)], (D.20)

which as we have seen are justified for t � ~/2πT . As a result, we find the time-independent expressions for K̃±,5883

K̃± ≈
1
2

[K̃(Ω ∓ 2J2m) + K̃(−Ω ∓ 2J2m)]. (D.21)

We now return to our original notations by use of (D.5) for Ω and (D.6) for X, rewriting the dominant part of (D.3)5884

as5885

τrecur

γ

dA
dt

=
π

2~g

[
(1 − e2X)(1 + m)K̃− + (1 − e−2X)(1 − m)K̃+

]
. (D.22)

In order to generate Θ(t) and D(t) through the expansion (D.4) of A(m, t) in powers of m, we insert into (D.22) the5886

expansions5887

[
1 − e±2X

]
(1 ± m) ≈

[
1 − e±2iΩt

]
±

1 + e±2iΩt

 2
δ2

0

− 1
 m + 2e±2iΩt

 1
δ2

0

−
1
δ4

0

 m2, (D.23)

4
~

K̃± ≈ g coth
g
T
± J2m −

J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
m2. (D.24)

Gathering, in the resulting expansion of A(m, t), the terms in m, we find (for g � T )5888

τrecur

γ

dΘ

dt
= −

π

4

 2
δ2

0

− 1
 coth

g
T

+
J2

g

 sin
2πt
τrecur

∼ −
π

4

 2
δ2

0

− 1
 T

g
+

J2

g

 sin
2πt
τrecur

, (D.25)

which is integrated as5889

Θ(t) ∼ −
γ

8g

 2
δ2

0

− 1
 T + J2

 [1 − cos
2πt
τrecur

]
. (D.26)
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Likewise, the terms in m2 yield5890

τrecur

γ

dD
dt
∼
π

2

 J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
−

J2

g

 (1 − cos
2πt
τrecur

)
+
π

2

2 coth
g
T

 1
δ2

0

−
1
δ4

0

 − 2J2

gδ2
0

 cos
2πt
τrecur

.(D.27)

The first bracket simplifies for g � T into5891

J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
−

J2

g
∼

J2

g

( J2

3T
− 1

)
. (D.28)

We shall only need the values of D(t) at the recurrence times pτrecur. Integration of the factors cos 2πt/τrecur generates5892

sin 2πt/τrecur, which vanishes at these times. We have therefore the compact result5893

D(pτrecur) ' p × D(τrecur) = p
πγ

2
J2

g

( J2

3T
− 1

)
. (D.29)

E. Time dependence of the registration process5894

Time heals all wounds5895

Proverb5896

The location µ(t) of the peak of the distribution P(m, t) increases in time according to (7.30) where φ(m) is defined5897

by (7.25). We wish in § 7.2.3 and § 7.2.4 to obtain an algebraic approximation for µ(t) at all times. To this aim, we5898

will represent 1/v(µ) by its Mittag-Leffler expansion5899

γT
~v(m)

≡
1

φ(m)[1 − m coth φ(m)]
=

∑
i

mi

[(1 − m2
i )(dφ/dmi) − 1]φ(mi)

1
m − mi

, (E.1)

which sums over all real or complex values m = mi where v(m) = 0.5900

E.1. Registration for second-order transition of M5901

Nou zeg ik het voor de tweede keer125
5902

Dutch expression5903

For q = 2, it is sufficient for our purpose to keep in the expansion (E.1) only the real poles mi. This truncation5904

does not affect the vicinity of the (stable or unstable) fixed points where the motion of µ(t) is slowest, and provides5905

elsewhere a good interpolation provided T/J is not too small. Three values mi occur here, namely −mB, m⇑ ' mF and5906

m⇓ ' −mF, with mB � mF, so that we find over the whole range 0 < µ < mF, through explicit integration of (7.30),5907

t
τreg

= ln
mB + µ

mB
+ a ln

m2
F

m2
F − µ

2
, (E.2)

where the coefficient a, given by5908

a =
T (J − T )

J[T − J(1 − m2
F)]
, (E.3)

decreases with temperature from a = 1 at T = 0 to a = 1
2 for T = J. For short times, such that µ � mF, we recover5909

from the first term of (E.2) the evolution (7.43) of µ(t). When µ approaches mF, the second term dominates, but as5910

long as mF −m is of order mB the time needed for µ to reach m is of order τreg ln(mF/mB). We define the cross-over by5911

125Now I say it for the second time
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writing that the two logarithms of (E.2) are equal, which yields µ = mF −
1
2 mB. The time τ′reg during which µ(t) goes5912

from 0 to mF −
1
2 mB, termed the second characteristic registration time, is then given by (7.48), that is,5913

τ′reg = τreg(1 + a) ln
mF

mB
. (E.4)

When µ approaches mF in the regime mF − µ � mB, we can invert (E.2) as5914

µ(t) = mF

1 − 1
2

(
mF

mB

)1/a

exp
(
−

t
aτreg

) , (E.5)

which exhibits the final exponential relaxation. We can also invert this relation in the limiting cases T → J and T → 0.5915

If T lies close to the transition temperature, we have mF ∼
√

3(J − T )/J and a = 1
2 . Provided the coupling is weak so5916

that mB = g/(J − T ) � mF, we find5917

µ(t) =
mBmF

m2
B + m2

Fe−2t/τreg

[√
m2

B + (m2
F − m2

B)e−2t/τreg − mBmFe−2t/τreg

]
. (E.6)

This expression encompasses all three regimes of § 7.2.3, namely, µ ∼ mBt/τreg for t � τreg, µ running from mB to mF5918

for t between τreg and τ′reg, and5919

µ(t) ≈ mF

1 − m2
F

2m2
B

e−2t/τreg

 (E.7)

for t − τ′reg � τreg. In the low temperature regime (T � J, with mB ∼ g/J and a ∼ 1), we can again invert (E.2) as5920

µ (t) =
1

2mB


√

4m2
B

(
m2

F − m2
B

)
+

(
2m2

B − m2
Fe−t/τreg

)2
− m2

Fe−t/τreg

 , (E.8)

encompassing the same three regimes; for t − τ′reg � τreg, we now have5921

µ(t) ≈ mF

(
1 −

mF

2mB
e−t/τreg

)
. (E.9)

E.2. Registration for first-order transition of M5922

For J4 , 0, such as the q = 4 case with J2 = 0 and J4 = J, we need to account for the presence of the minimum of5923

v(m) at m = mc. To this aim, we still truncate the Mittag-Leffler expansion (E.1) of 1/v(m). However, we now retain5924

not only the real poles but also the two complex poles near mc which govern the minimum of v(m). These poles are5925

located at5926

mc ± iδmc, δm2
c =

mc(1 − m2
c)2

1 + 2m2
c

g − hc

T
∼ mc

(
g
T
−

2mc

3

)
. (E.10)

The real pole associated with the repulsive fixed point lies at −mB ∼ −2mc, and the ferromagnetic poles lie close to5927

±mF ∼ ±1. We have thus, at lowest order in T/J ' 3m2
c and in g/T ∼ 2mc/3, but with T/J sufficiently large so that5928

we can drop the other complex poles,5929

γT
~v(m)

=
mc −

1
2 (m − mc)

(m − mc)2 + δm2
c

+
1

3(m + 2mc)
+

2Tm
J(1 − m2)

. (E.11)

Hence the time-dependence of the peak µ(t) of P↑↑(m, t) is given through integration of (7.30) as5930

t
τreg

=
1
π

(
π

2
+ arctan

µ − mc

δmc

)
+
δmc

πmc

[
1
4

ln
m2

c

(µ − mc)2 + δm2
c

+
1
3

ln
µ + 2mc

2mc
+

T
J

ln
1

1 − µ2

]
, (E.12)

where we introduced the registration time5931
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τreg ≡
π~mc

γTδmc
=
π~
γT

√
mcT

g − hc
, (E.13)

with mc =
√

T/3J = 3hc/2T .5932

The initial evolution (7.50) is recovered from (E.12) for µ � mc and t � ~/γT . It matches the bottleneck stage in5933

which µ(t) varies slowly around the value mc on the time scale τreg. Then, the right-hand side of (E.12) is dominated5934

by its first term, so that the magnetization increases from mc − δmc to mc + δmc between the times t = τreg/4 and5935

t = 3τreg/4, according to:5936

µ(t) = mc − δmccotan
πt
τreg

. (E.14)

After µ passed the bottleneck, for µ − mc � δmc, (E.12) provides5937

t = τreg + τ1

(
−

mc

µ − mc
+

1
2

ln
mc

µ − mc
+

1
3

ln
µ + 2mc

2mc
+

T
J

ln
1

1 − µ2

)
, (E.15)

which is nearly equal to τreg within corrections of order τ1 = ~/γT , as long as µ is not very close to 1. The final5938

exponential relaxation takes place on the still shorter scale ~/γJ.5939

F. Effects of bifurcations5940

Of je door de hond of de kat gebeten wordt, het blijft om het even126
5941

Dutch proverb5942

In subsection 7.3 we consider situations in which Suzuki’s slowing down is present, namely the preparation of5943

the initial metastable state for q = 2 and the possibility of false registrations. We gather here some derivations.5944

The Green’s function G(m,m′, t − t′) associated to the equation (7.1) for PM(m, t) will be obtained from the5945

backward equation5946

∂

∂t′
G(m,m′, t − t′) + v(m′)

∂

∂m′
G(m,m′, t − t′) +

1
N

[w(m′)
∂2

∂m′2
G(m,m′, t − t′)] = −δ(m − m′)δ(t − t′), (F.1)

where t′ runs down from t + 0 to 0. Introducing the time scale τreg defined by (7.44) and using the expression (7.42)5947

for v(m′) for small m′ together with the related w(m′) ≈ γgt/~, we have to solve the equation5948 [
τreg

∂

∂t′
+ (mB + m′)

∂

∂m′
+

1
N

T
J − T

∂2

∂m′2

]
G(m,m′, t − t′) = 0, (F.2)

with the boundary condition G(m,m′, 0) = δ(m − m′). Its solution in terms of m′ has the Gaussian form5949

G(m,m′, t) = A(m, t)
√

N
2πD(m, t)

exp
{
−

N[m′ − µ′(m, t)]2

2D(m, t)

}
, (F.3)

where the coefficients µ′, D and A should be found by insertion into (F.2).5950

As in § 7.2.3, the evolution of PM(m, t) takes place in three stages: (i) widening of the initial distribution, which5951

here takes place over the bifurcation −mB; (ii) drift on both sides of −mB towards +mF and −mF; (iii) narrowing around5952

+mF and −mF of the two final peaks, which evolve separately towards equilibrium. We are interested here only in the5953

first two stages. During the first stage, the relevant values of m lie in the region where the approximation (7.59) holds.5954

The functions of m and t: µ′, D and A, satisfy according to (F.2) the equations5955

τreg
∂µ′

∂t
= −mB − µ

′,
1
2
τreg

∂D
∂t

=
T

J − T
− D, τreg

∂A
∂t

= −A, (F.4)

126Whether bitten by the dog or the cat, the result is equal
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and the boundary condition G(m,m′, 0) = δ(m − m′) for t′ = t − 0 yields5956

µ′ = −mB + (m + mB)e−t/τreg , D =
T

J − T
(1 − e−t/τreg ), A = e−t/τreg . (F.5)

As function of m, the probability5957

PM(m, t) =

∫
dm′G(m,m′, t)PM(m′, 0) (F.6)

given by (F.3), (F.5) involves fluctuations which increase exponentially as exp(t/τreg).5958

In the second stage, the time is sufficiently large so that PM(m, t) extends over regions of m where the linear5959

approximation (7.59) for v(m) fails; we must account for the decrease of |v(m)|, which vanishes at m = ±mF . We5960

therefore cannot comply directly with the boundary condition for G(m,m′, t − t′) at t′ = t since it requires m′ to be5961

large as m. However, during this second stage PM(m, t) is not peaked, so that diffusion is negligible compared to drift.5962

The corresponding Green’s function, with its two times t and t′ taken during this stage, is given according to (7.32) by5963

G(m,m′, t − t′) =
1

v(m)
δ

(
t − t′ −

∫ m

m′

dm′′

v(m′′)

)
. (F.7)

We can now match the final time of (F.3), (F.5) with the initial time of (F.7), using the convolution law for Green’s5964

functions. This yields an approximation for G(m,m′, t) valid up to the final equilibration stage. We therefore define5965

the function µ′(m, t) by the equation5966

t =

∫ m

µ′(m,t)

dm′′

v(m′′)
, (F.8)

of which (F.5) is the approximation for small m and µ′. For m > −mB, we have m > µ′ > −mB and v (m′′) > 0; for5967

m < −mB we have m < µ′ < −mB and v (m′′) < 0. We also note that the convolution replaces A = e−t/τreg by5968

A(m, t) =
v[µ′(m, t)]

v(m)
=
∂µ′(m, t)
∂m

. (F.9)

Altogether the Green’s function (F.3) reads5969

G(m,m′, t) =
v(µ′)
v(m)

√
N(J − T )

2πT (1 − e−2t/τreg )
exp

[
−

N(J − T )(m′ − µ′)2

2T (1 − e−2t/τreg )

]
, (F.10)

where µ′ = µ′(m, t) is found through (F.8). The resulting distribution function PM(m, t), obtained from (F.6), (F.10)5970

and PM(m, 0) ∝ exp[−N(m − µ0)2/2δ2
0], is expressed by (F.10) or, in the main text, by (7.61) with (7.63) for δ1(t).5971

Notice that here we allowed for a finite value µ0 of the average magnetization in the initial state.5972

We have studied in § 7.3.2 the evolution of PM(m, t) for g = 0 and for an unbiased initial state. For mB =5973

g/(J − T ) , 0 and a non-vanishing expectation value of µ0 of m in the initial state, the dynamics of PM(m, t) is5974

explicitly found from (F.10) by noting that mB � mF; the expression (E.1) for v(m) thus reduces to5975

1
τregv(m)

=
1

m + mB
+

2am
m2

F − m2
, (F.11)

with τreg = ~/γ(J − T ) and a defined by (E.3). Hence, the relation (F.8) between µ′, m and t reads5976

t
τreg

= ln
m + mB

µ′ + mB
+ a ln

m2
F − µ

′2

m2
F − m2

. (F.12)

For large N, the quantities µ′, m0 and mB are small as 1/
√

N, except at the very large times when PM(m, t) is concen-5977

trated near +mF and −mF. We can thus write (7.60) as5978
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PM(m, t) =
1
√
π

∂ξ

∂m
e−(ξ−ξ0)2

, (F.13)

where we introduced the functions5979

ξ(m, t) =
√

3a
m + mB

mF

 m2
F

m2
F − m2

a
δ1

δ1(t)
e−(t−τflat)/τreg , (F.14)

5980

ξ0(t) ≡

√
N
2

mB + µ0

δ1(t)
. (F.15)

The characteristic time τflat is the same as (7.69), it is large as 1
2 ln N. The function δ1(t) and the parameter δ1 are5981

defined in (7.63)5982

The expression (F.13) encompasses (7.64), (7.70), (7.74) and (7.79), which were established in the special case5983

where the distribution is symmetric (mB = µ0 = 0) and/or when m is small as 1/
√

N. For t � τreg we reach Suzuki’s5984

scaling regime characterized by the scaling parameter (F.14), in which δ1(t) reduces to the constant δ1 and in which5985

mB can be disregarded. The asymmetry of PM(m, t) then arises only from the constant ξ0. Even in the presence of this5986

assymetry, the time t = τflat still corresponds to a flat PM(m, t), in the sense that the curvature of PM(m, τflat) at m = 05987

vanishes.5988

G. Density operators for beginners5989

Begin at the beginning and go on till you come to the end: then stop5990

Lewis Carroll, Alice’s Adventures in Wonderland5991

In elementary courses of quantum mechanics, a state is usually represented by a vector |ψ〉 in Hilbert space (or a5992

ket, or a wave function). Such a definition is too restrictive. On the one hand, as was stressed by Landau [84, 353],5993

if the considered system is not isolated and presents quantum correlations with another system, its properties cannot5994

be described by means of a state vector. On the other hand, as was stressed by von Neumann [4], an incomplete5995

preparation does not allow us to assign a unique state vector to the system; various state vectors are possible, with some5996

probabilities, and the formalism of quantum statistical mechanics is needed. Both of these circumstances occur in a5997

measurement process: The tested system is correlated to the apparatus, and the apparatus is macroscopic. The opinion,5998

too often put forward, that the (mixed) post-measurement state cannot be derived from the Schrödinger equation,5999

originates from the will to work in the restricted context of pure states. This is why we should consider, to understand6000

quantum measurement processes, the realistic case of a mixed initial state for the apparatus, and subsequently study6001

the time-dependent mixed state for the tested system and the apparatus.6002

The more general formulation of quantum mechanics that is needed requires the use of density operators, and is6003

presented in section 10 in the context of the statistical interpretation of quantum mechanics. We introduce here, for6004

teaching purposes, an elementary introduction to § 10.1.4. In quantum (statistical) mechanics, a state is represented6005

by a density operator D̂ or, in a basis |i〉 of the Hilbert space, by a density matrix 〈i|D̂| j〉. The expectation value in this6006

state of an observable Ô (itself represented on the basis |i〉 by the matrix 〈i|Ô| j〉) is equal to6007

〈Ô〉 = tr D̂Ô =
∑

i j

〈i|D̂| j〉〈 j|Ô|i〉. (G.1)

This concept encompasses as a special case that of state vector, as the expectation value of Ô in the state |ψ〉,6008

〈Ô〉 = 〈ψ|Ô|ψ〉 =
∑

i j

〈ψ| j〉〈 j|Ô|i〉〈i|ψ〉, (G.2)
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is implemented by associating with |ψ〉 the density operator D̂ = |ψ〉〈ψ| or the density matrix 〈i|D̂| j〉 = 〈i|ψ〉〈ψ| j〉,6009

referred to as a “pure state” in this context.6010

Density operators have several characteristic properties. (i) They are Hermitean, D̂ = D̂†, (i. e., 〈 j|D̂|i〉 =6011

〈i|D̂| j〉∗), implying that the expectation value (G1) of a Hermitean observable is real. (ii) They are normalized,6012

tr D̂ = 1, meaning that the expectation value of the unit operator is 1. (iii) They are non-negative, 〈φ|D̂|φ〉 ≥ 0 ∀ |φ〉,6013

meaning that the variance 〈Ô2〉 − 〈Ô〉2 of any Hermitean observable Ô is non-negative. A density operator can be6014

diagonalized; its eigenvalues are real, non negative, and sum up to 1. For a pure state D̂ = |ψ〉〈ψ|, all eigenvalues6015

vanish but one, equal to 1.6016

In the Schrödinger picture, the evolution of the time-dependent density operator D̂(t) is governed by the Hamilto-6017

nian H of the system if it is isolated. The Liouville–von Neumann equation of motion,6018

i~
dD̂(t)

dt
= [Ĥ, D̂(t)], (G.3)

generalizes the Schrödinger equation i~d|ψ〉/dt = Ĥ|ψ〉, or, in the position basis, i~dψ(x)/dt = Ĥψ(x), which governs6019

the motion of pure states. The evolution of D̂(t) is unitary; it conserves its eigenvalues.6020

In quantum statistical mechanics, the von Neumann entropy6021

S (D̂) = −trD̂ ln D̂ (G.4)

is associated with D̂. It characterizes the amount of information about the system that is missing when it is described6022

by D̂, the origin of values of S being chosen as S = 0 for pure states. If S (D̂) , 0, D̂ can be decomposed in an6023

infinite number of ways into a sum of projections onto pure states (§ 10.2.3).6024

The concept of density operator allows us to define the state of a subsystem, which is not feasible in the context of6025

state vectors or pure states. Consider a compound system S1 + S2, described in the Hilbert spaceH1⊗H2 by a density6026

operator D̂. This state is represented, in the basis |i1, i2〉 of H1 ⊗ H2, by the density matrix 〈i1, i2|D̂| j1, j2〉. Suppose6027

we wish to describe the subsystem S1 alone, that is, to evaluate the expectation values of the observables O1 pertaining6028

only to the Hilbert space H1 and thus represented by matrices 〈i1|O1| j1〉 in H1, or 〈i1|O1| j1〉δi2, j2 in H1 ⊗ H2. These6029

expectation values are given by6030

〈Ô1〉 = tr1D̂1Ô1 =
∑
i1, j1

〈i1|D̂1| j1〉〈 j1|Ô1|i1〉, (G.5)

where the matrix 〈i1|D̂1| j1〉 in the Hilbert spaceH1 is defined by6031

〈i1|D̂1| j1〉 =
∑

i2

〈i1, i2|D̂| j1, i2〉. (G.6)

The partial trace D̂1 = tr2D̂ on the spaceH2 is therefore, according to (G1), the density operator of the subsystem S1.6032

If the subsystems S1 and S2 interact, the evolution of D̂1 should in principle be determined by solving (G3) for the the6033

density operator D̂ of the compound system, then by taking the partial trace at the final time. The elimination of the6034

bath (subsection 4.1) followed this procedure. The evolution of a subsystem is in general not unitary, because it is not6035

an isolated system.6036

The formalism of density operators is more flexible than that of pure states: It affords the possibility not only6037

of changing the basis in the Hilbert space, but also of performing linear transformations in the vector space of ob-6038

servables, which mix the left and right indices of observables 〈i|Ô| j〉 and of density matrices 〈i|D̂| j〉. The resulting6039

Liouville representations of quantum mechanics [75, 282, 283] are useful in many circumstances. They include for6040

instance the Wigner representation, suited to study the semi-classical limit, and the polarization representation for a6041

spin, currently used by experimentalists, in which any operator is represented by its coordinates on the basis (3.1) of6042

the space of operators; in the present work, the parametrization of the state D̂ of S + M by Pdis
M (m) and Cdis

a (m) enters6043

this framework (Eqs. (3.18), (3.26), (3.28), (3.29)).6044
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H. Evolution generated by random matrices from the factorized ensemble6045

For they have sown the wind, and they shall reap the whirlwind6046

Hosea 8.76047

The purpose of this Appendix is to work out Eq. (11.14) of the main text, where the average is taken over an6048

ensemble of random Hamiltonians with the eigenvector distribution factorized from the eigenvalue distribution. The6049

eigenvectors are then distributed with the uniform (Haar) measure, while we are free to choose the eigenvalue distri-6050

bution (e.g. from some plausible physical arguments). The case where the random matrix elements are Gaussian and6051

distributed identically belongs to this class [233]. For simplicity we shall deal here with the microcanonical relaxation6052

of one set of states. The extension to two sets (the case discussed in the main text) is straightforward.6053

We thus need to determine the average evolution [inside this Appendix we take ~ = 1]6054

Û⇑ρ̂Û†
⇑

= e−itV̂⇑ ρ̂ eitV̂⇑ , (H.1)

where V̂⇑ is a random matrix generated according to the above ensemble, and where ρ̂ is an initial density matrix; see6055

Eq. (11.14) of the main text in this context. To calculate (H.1) we introduce6056

Û⇑ρ̂Û†
⇑

=

G∑
α=1

〈ψα|ρ̂|ψα〉|ψα〉〈ψα| +

G∑
α,β

〈ψα|ρ̂|ψβ〉 |ψα〉〈ψβ| eit(Eβ−Eα), (H.2)

where6057

Û⇑(t) =

G∑
α=1

e−itEα |ψα〉〈ψα| (H.3)

is the eigenresolution of Û⇑(t).6058

We now average (H.2) over |ψα〉 assuming that they are distributed uniformly (respecting the constraints of ortog-6059

onality and normalization). This averaging will be denoted by an overline,6060

Û⇑ρ̂Û†
⇑

= G〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1| + 〈ψ1|ρ̂|ψ2〉 |ψ1〉〈ψ2|

G∑
α,β

eit(Eβ−Eα). (H.4)

It suffices to calculate 〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1|, since 〈ψ1|ρ̂|ψ2〉 |ψ1〉〈ψ2| will be deduced from putting t = 0 in (H.4). The6061

calculation is straightforward:6062

〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1| = (c40 − c22)ρ̂ + c221̂ (H.5)

where6063

c40 =

∫ ∞
0

∏G
α=1 (xαdxα) x4

1 δ
[∑

α x2
α − 1

]∫ ∞
0

∏G
α=1 (xαdxα) δ

[∑
α x2

α − 1
] , c22 =

∫ ∞
0

∏G
α=1 (xαdxα) x2

1 x2
2 δ

[∑
α x2

α − 1
]∫ ∞

0

∏G
α=1 (xαdxα) δ

[∑
α x2

α − 1
] . (H.6)

The integration variables in (H.6) refer to random components of a normalized vector. Expectedly, (H.5) is a linear6064

combination of ρ̂ and the unit matrix, because only this matrix is invariant with respect to all unitary operators.6065

The calculation of (H.6) brings6066

c40 = 2c22, c22 =
1

G(G + 1)
. (H.7)
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Using (H.7, H.5) in (H.2) we obtain:6067

Û⇑ρ̂Û†
⇑

=
1

(G + 1)(G − 1)
(G1̂ − ρ̂) +

1
(G + 1)(G − 1)

(
ρ̂ −

1̂
G

) ∣∣∣∣∣∣∣
G∑
α=1

eitEα

∣∣∣∣∣∣∣
2

. (H.8)

For sufficiently large times the sum
∑G
α=1 eitEα goes to zero. Neglecting factors O(ρ̂G−1) we get from (H.8) that6068

Û⇑ρ̂Û†
⇑
→

1̂
G
. (H.9)

The considered arbitrary initial state ρ̂ thus tends to the microcanonical distribution only provided that G � 1.6069

The relaxation in (H.9) will be exponential, if we assume that the eigenvalues in (H.8) are Gaussian, e.g., assuming6070

that they are independently distributed with zero average and dispersion ∆ we get in the limit G � 1:
∑G
α=1 exp(itEα) ∝6071

exp(−t2∆2). Obviously, the same relaxation scenario (under the stated assumptions) will hold for the off-diagonal6072

components; see Eq. (11.15) of the main text.6073

The reason of the non-exponential relaxation for the Gaussian ensemble is that all the non-diagonal elements of6074

the random matrix are taken to be identically distributed. This makes the distribution of the eigenvalues bounded (the6075

semi-circle law). If the elements closer to the diagonal will be weighted stronger, the distribution of the eigenvalues6076

will be closer to the Gaussian. The above factorized ensemble models this situation.6077

I. Collisional relaxation of subensembles and random matrices6078

Collisions have a relaxing effect6079

Anonymous6080

The purpose of this Appendix is to show that the evolution produced by a random Hamiltonian—which is normally6081

regarded as a description of a closed, complex quantum system—may be generated within an open-system dynamics.6082

This enlarges the scope and applicability of the random matrix approach.6083

I.1. General discussion6084

The ideas of collisional relaxation are well-known in the context of the classical Boltzmann equation. It is possible6085

to extend the main ideas of the linearized Boltzmann equation (independent collisions with equilibrated systems) to6086

the quantum domain [350, 351, 352]. We shall first describe this scenario in general terms and then apply it to the6087

specific situation described in § 11.2.4.6088

Each collision is an interaction between the target quantum system T and a bath particle B. The interaction lasts a6089

finite but short amount of time. Then another collision comes, etc. The bath particles are assumed to be independent6090

of each other and thermalized. Each collision is generated by the Hamiltonian6091

ĤT+B = ĤT + ĤB + ĤI, (I.1)

where ĤT and ĤB are the Hamiltonians of T and B, respectively, and where ĤI is the interaction Hamiltonian. Each6092

collision is spontaneous and obeys the strict energy conservation:6093

[ĤI, ĤB + ĤT] = 0. (I.2)

This condition guarantees that there are no energy costs for switching the collisional interaction ĤI on and off.6094

The initial density matrix of B is assumed to be Gibbsian (this assumption can be relaxed)6095

ρ̂B =
1

ZB
exp[−βĤB] (I.3)
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with Hamiltonian ĤB and temperature 1/β = T > 0. The target system starts in an arbitrary initial state ρT and has6096

Hamiltonian ĤT. The initial state of T + B is ρ̂T+B = ρ̂T ⊗ ρ̂R. The interaction between them is realized via a unitary6097

operator V̂, so that the final state is6098

ρ̂′T+B = V̂ ρ̂T+BV̂
†, ρ̂′T = trB ρ̂

′
T+B. (I.4)

For the second collision, the initial state of T and the second bath particle B2 is ρ̂′T ⊗ ρ̂R2 , etc.6099

Let the energy levels of T involved in the interaction with B be degenerate: ĤT ∝ 1̂. Using (I.1–I.4) and going to6100

the eigenresolution of ρB we see that the evolution of T in this case can be described as a mixture of unitary processes6101

(note that in Ûk below k is an index and not the power exponent)6102

ρ̂′T =
∑

k

λkÛk ρ̂T Ûk †, (I.5)

Ûk = exp
(
−iδ〈k|ĤI|k〉

)
, ÛkUk † = 1̂, (I.6)

where {λk} and {|k〉} are the eigenvalues and eigenvectors, respectively, of ρ̂B and δ is the interaction time. Eq. (I.5)6103

holds for all subsequent collisions; now k in (I.5) is a composite index. Within this Appendix we put ~ = 1.6104

Note that the mixture of unitary processes increases the von Neumann entropy S vN[ρ̂T] = −tr[ρ̂T ln ρ̂T] of T; this6105

is the concavity feature of S vN. Hence after sufficiently many collsiions T will relax to the microcanonic density6106

matrix ρ̂T ∝ 1̂ that has the largest entropy possible.6107

The same process (I.5) can be generated assuming the random Hamiltonian 〈k|ĤI|k〉, and then averaging over it.6108

This is closely related to section 11.2.3 of the main text, where we postulated the random Hamiltonian VM = 〈k|ĤI|k〉6109

as a consequence of complex interactions. For the purpose of section 11.2.3, T amounts to S + M (system + magnet)6110

and the complex interactions are supposed to take place in M. In contrast, the averaging in (I.5) arises due to tracing6111

the bath out. If the Ûk mutually commute, (I.5) means averaging over varying phases, i.e. it basically represents a6112

(partial) dephasing in the common eigenbasis of Ûk.6113

We shall apply the collisional relaxation to the target system T = S + M after the measurement, so without the6114

S-M coupling. We can directly apply mixtures of unitary processes for describing the relaxation; see (I.5). Following6115

to the discussion in section 11.2.3 of the main text [see the discussion before (11.12)], we assume that each unitary6116

operator Ûk in the mixture (I.5) will have the following block-diagonal form:6117

Ûk = Π̂⇑Ûk
⇑
Π̂⇑ + Π̂⇓Ûk

⇓
Π̂⇓, (I.7)

where in view of (11.10) of the main text we defined the following projectors6118

Π̂⇑ =
∑
η

|mF , η〉〈mF , η|, Π̂⇓ =
∑
η

|−mF , η〉〈−mF , η|. (I.8)

Eq. (I.7) is now to be applied to (11.9) of the main text, which yields6119

Ûk |Ψ〉〈Ψ|Ûk † =
∑
ηη′

UηU∗η′ | ↑〉〈↑ | ⊗ Ûk
⇑
|mF , η〉〈mF , η

′|Ûk †
⇑

+
∑
ηη′

VηV∗η′ | ↓〉〈↓ | ⊗ Ûk
⇓
|−mF , η〉〈−mF , η

′|Ûk †
⇓

+

∑
ηη′

UηV∗η′ | ↑〉〈↓ | ⊗ Ûk
⇑
|mF , η〉〈−mF , η

′|Ûk †
⇓

+ h.c.

 , (I.9)

where h.c. means the hermitean conjugate of the last term.6120

I.2. Gaussian random matrix ensemble: characteristic time within the collisional relaxation scenario6121

As we saw in the main text [section 11.2.3], the relaxation generated by the Gaussian ensemble of random Hamil-6122

tonians (where the elements of the random matrix Hamiltonian are identically distributed Gaussian random variables)6123

is not exponential. From the viewpoint of the collisional relaxation, the averaging over a random matrix ensemble6124
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corresponds to a single collision. We now show that taking into account many short collisions can produce exponential6125

relaxation.6126

Our technical task is to work out Eq. (11.14) of the main text for multiple collisions. We introduce a shorthand6127

ρ̂(0) = |mF , η〉〈mF , η| and recall that within this Appendix ~ = 1. Following the assumptions we made in section6128

11.2.3 of the main text [see Eq. (11.12)] we write Û⇑,⇓ = e−itV̂⇑,⇓ , where V̂⇑ and V̂⇓ are independent random matrices:6129

the elements V⇑, ηη′ of V̂⇑ in the basis |mF , η〉 (and of V̂⇓ in |−mF , η〉) are independent, identically distributed random6130

quantities with zero average and variance6131

V⇑, η1η2 V⇑, η3η4 = V⇓, η1η2 V⇓, η3η4 =
∆2

4G
δσ1σ4δσ2σ3 . (I.10)

Note that taking the distribution of non-diagonal elements different from that of the diagonal elements will not change6132

anything essential below.6133

We shall now assume that the duration δ of each collision is small and work out the post-collision state Û⇑ρ̂(t)U†
⇑

=6134

e−iδV̂⇑ ρ̂(t)eiδV̂⇑ :6135

e−iδV̂⇑ ρ̂(t)eiδV̂⇑ = ρ̂(t) − iδ[V̂⇑, ρ̂] −
δ2

2

{
V̂⇑ρ̂(t) + ρ̂(t)V̂⇑ − 2V̂⇑ρ̂(t)V̂⇑

}
+ O(δ3). (I.11)

Averaging with help of (I.10) produces6136

V̂⇑ρ̂ = 0, V̂2
⇑
ρ̂ = ρ̂V̂2

⇑
=

1
4

∆2ρ̂, V̂⇑ρ̂V̂⇑ =
∆2

4G
tr(ρ̂)1̂. (I.12)

This brings6137

ρ̂(t + δ) = ρ̂(t) −
1
4
δ2∆2

[
ρ̂(t) −

1̂
G

]
+ O[δ4∆4]. (I.13)

If the factor O[δ4∆4] in (I.13) is neglected, i.e. if6138

δ2∆2 � 1, (I.14)

(I.13) can be extended to a recurrent relation for all subsequent collisions:6139

ρ̂(nδ) = ρ̂((n − 1)δ) −
1
4
δ2∆2

[
ρ̂((n − 1)δ) −

1̂
G

]
, (I.15)

where n = 1, 2, . . . is the number of collisions. Eq. (I.15) is solved as6140

ρ̂(nδ) = (1 −
1
4
δ2∆2)nρ̂(0) +

1̂
G

[
1 − (1 −

1
4
δ2∆2)n

]
. (I.16)

It is seen from (I.16) that the relaxation time of ρ̂(nδ)→ 1̂/G is6141

−
δ

ln[1 − 1
4δ

2∆2]
. (I.17)

We now want to satisfy several conditions: (i) the magnitude
√

V̂2
⇑

= ∆/2 of the random Hamiltonian has to be6142

much smaller than N, because the random Hamiltonian has to be thermodynamically negligible. (ii) The relaxation6143

time (I.17) has to be very short for a large (but finite) N. (iii) Condition (I.14) has to hold.6144

All these conditions can be easily satisfied simultaneously by taking, e.g., ∆ ∝ Nγ and δ ∝ N−χ, where6145

2γ > χ > γ, γ < 1. (I.18)

Now the relaxation time will be ∝ Nχ−2γ � 1, while (I.14) will hold, because N2(γ−χ) � 1.6146

The same derivation applies to non-diagonal elements Û⇑|mF , η〉〈−mF , η
′|U†
⇓

= e−iδV̂⇑ |mF , η〉〈−mF , η
′|eiδV̂⇓ in (I.9).6147

Instead of (I.16) we get6148

ρ̂(nδ) = (1 −
1
4
δ2∆2)ρ̂((n − 1)δ), ρ̂(0) = |mF , η〉〈−mF , η

′|, (I.19)

with the same form of the characteristic time as for the exponential relaxation ρ̂(nδ)→ 0 for n→ ∞.6149
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[316] F.G.S.L. Brandão, Piotr Ćwiliński, Michal Horodecki et al., Convergence to equilibrium under a random Hamiltonian, arXiv:1108.2985.6487

[317] V. Znidaric and M. Znidaric, Subsystem dynamics under random Hamiltonian evolution, arXiv:1107.6035.6488

[318] G ’t Hooft, Nucl. Phys. B 72, 461 (1974).6489

[319] U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, 1997).6490

[320] N. Bohr, Discussion with Einstein on epistomological problems in atomic physics, pages 200-241 of Albert Einstein: Philosopher-Scientist,6491

edited by P. A. Schilp, The Library of Living Philosophers (Evanston, IL, 1949). Reprinted in N. Bohr, Physics Uspekhi, 66, 571 (1958). See6492

also N. Bohr, Dialectica 2, 312 (1948).6493

[321] D. Murdoch, Niels Bohr’s Philosophy of Physics (Cambridge University Press, Cambridge, 1987).6494

[322] A. Petersen, The philosophy of Niels Bohr, The Bulletin of the Atomic Scientists, September 1963.6495

[323] R. B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005).6496

[324] R. Bousso and L. Susskind, The Multiverse Interpretation of Quantum Mechanics. arXiv:1105.3796.6497

[325] L. de la Peña and A. M. Cetto, The quantum dice: an introduction to stochastic electrodynamics, (Kluwer Academic, Dordrecht, 1996).6498

[326] L. de la Peña and A. M. Cetto, Found. Phys. 31, 1703 (2001).6499

[327] Th. M. Nieuwenhuizen, Classical Phase Space Density for the Relativistic Hydrogen Atom, AIP Conf. Proc. 810, 198 (2006).6500

[328] Th. M. Nieuwenhuizen, The Pullback Mechanism in Stochastic Electrodynamics, AIP Conf. Proc. 962, 148 (2007).6501

[329] R. Penrose, The Emperor’s New Mind (Oxford University Press, UK 1999), pp 475–481.6502

[330] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1988).6503

[331] C. A. Fuchs and A. Peres, Physics Today, 53, 70 (2000).6504

[332] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw and A. Zeilinger, Nature 401, 680 (1999).6505

[333] O. Romero-Isart, M. L. Juan, R. Quidant and J. I. Cirac, New J. Phys. 12, 033015 (2010).6506

[334] Ph. Blanchard, P. Lugiewicz and R. Olkiewicz, Phys. Lett. A 314, 29 (2003).6507

[335] M. A. Rubin, Found. Phys. Lett. 17, 323 (2004).6508

[336] M. A. Rubin, Found. Phys. 33, 379 (2003).6509

[337] A. Palacios-Laloy et al., Nature Physics 6, 442 (2010).6510

[338] S. Gleyzes, S. Kuhr, C. Guerlin et al., Nature 446, 297 (2007).6511

[339] C. Sayrin, I. Dotsenko, X. Zhou et al., Nature 477, 73 (2011).6512

[340] A. A. Clerk, S. M. Girvin, and A. D. Stone, Phys. Rev. B 67, 165324 (2003).6513

[341] P. Bushev, D. Rotter, A. Wilson et al., Phys. Rev. Lett. 96, 043003 (2006).6514

[342] Y. Aharonov, D. Z. Albert and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)6515

[343] H. F. Hofmann, Phys. Rev. A 81, 012103 (2010).6516

[344] H. M. Wiseman, New Journal of Physics 9, 165 (2007).6517

[345] L. M. Johansen, Phys. Lett. A 366, 374 (2007).6518

[346] J. Tollaksen, Y. Aharonov, A. Casher, T. Kaufherr and S. Nussinov, New J. Phys. 12, 013023 (2010).6519

[347] M. Bauer and D. Bernard, Phys. Rev. A 84, 044103 (2011).6520

[348] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart and C. Bamber, Nature 474, 188 (2011).6521

[349] S. Kocsis, B. Braverman, S. Ravets et al., Science 332, 1170-1173 (2011).6522

[350] H. M. Partovi, Phys. Lett. A 137, 440 (1989).6523

[351] V. V. Mityugov, Phys. Usp. 170, 681 (2000).6524

[352] A. B. Brailovskii, V. L. Vaks, and V. V. Mityugov, Phys. Usp. 166, 795 (1996).6525

[353] L. D. Landau, Z. Phys. 45, 430 (1927).6526


