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Abstract

The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual
experiment, is currently tackled by solving models. After an introduction we review the many dynamical models pro-
posed over the years for elucidating quantum measurements. The approaches range from standard quantum theory,
relying for instance on quantum statistical mechanics or on decoherence, to quantum-classical methods, to consis-
tent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced,
describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by
a Curie–Weiss magnet, including N � 1 spins weakly coupled to a phonon bath. Initially prepared in a metastable
paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin,
so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting
several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all
the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of
incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus
density matrix D̂(t). Its off-diagonal blocks in a basis selected by the spin-pointer coupling, rapidly decay owing to
the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or
by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final
state D̂(tf) that involves correlations between the system and the indications of the pointer, thus ensuring registration.
Although D̂(tf) has the form expected for ideal measurements, it only describes a large set of runs. Individual runs
are approached by analyzing the final states associated with all possible subensembles of runs, within a specified ver-
sion of the statistical interpretation. There the difficulty lies in a quantum ambiguity: There exist many incompatible
decompositions of the density matrix D̂(tf) into a sum of sub-matrices, so that one cannot infer from its sole determi-
nation the states that would describe small subsets of runs. This difficulty is overcome by dynamics due to suitable
interactions within the apparatus, which produce a special combination of relaxation and decoherence associated with
the broken invariance of the pointer. Any subset of runs thus reaches over a brief delay a stable state which satisfies
the same hierarchic property as in classical probability theory; the reduction of the state for each individual run fol-
lows. Standard quantum statistical mechanics alone appears sufficient to explain the occurrence of a unique answer
in each run and the emergence of classicality in a measurement process. Finally, pedagogical exercises are proposed
and lessons for future works on models are suggested, while the statistical interpretation is promoted for teaching.

Keywords: quantum measurement problem, statistical interpretation, apparatus, pointer, dynamical models, ideal
and imperfect measurements, collapse of the wavefunction, decoherence, truncation, reduction, registration
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Chi va piano va sano; chi va sano va lontano1

Italian saying
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1. General features of quantum measurements1

For this thing is too heavy for thee,2

thou art not able to perform it thyself alone3

Exodus 18.184

In spite of a century of progress and success, quantum mechanics still gives rise to passionate discussions about its5

interpretation. Understanding quantum measurements is an important issue in this respect, since measurements are a6

priviledged means to grasp the microscopic physical quantities. Two major steps in this direction were already taken7

in the early days. In 1926, Born gave the expression of the probabilities2 of the various possible outcomes of an ideal8

quantum measurement [1]. In 1927 Heisenberg conceived the first models of quantum measuruments [2, 3] that were9

five years later extended and formalized by von Neumann [4]. The problem was thus formulated as a mathematical10

contradiction: the Schrödinger equation and the projection postulate of von Neumann are incompatible. Since then,11

many theorists have worked out models of quantum measurements, with the aim of understanding not merely the12

dynamics of such processes, but in particular solving the so-called measurement problem. This problem is raised by13

a conceptual contrast between quantum theory, which is irreducibly probabilistic, and our macroscopic experience,14

in which an individual process results in a well defined outcome. If a measurement is treated as a quantum physical15

process, in which the tested system interacts with an apparatus, the superposition principle seems to preclude the16

occurrence of a unique outcome, whereas each single run of a quantum measurement should yield a unique result. The17

challenge has remained to fully explain how this property emerges, ideally without introducing new ingredients, that18

is, from the mere laws of quantum mechanics alone. Many authors have tackled this deep problem of measurements19

with the help of models so as to get insight on the interpretation of quantum mechanics. For historical overviews of20

the respective steps in the development of the theory and its interpretation, see the books by Jammer [5, 6] and by21

Mehra and Rechenberg [7]. The tasks we undertake in this paper are first to review these works, then to solve in full22

detail a specific family of dynamical models and to finally draw conclusions from their solutions.23

2Born wrote: “Will man dieses Resultat korpuskular umdeuten, so ist nur eine Interpretation möglich: Φn,m(α, β, γ) bestimmt die
Wahrscheinlichkeit1) dafür, daß das aus der z-Richtung kommende Elektron in die durch α, β, γ bestimmte Richtung [· · ·] geworfen wird”, with
the footnote: “1) Anmerkung bei der Korrektur: Genauere Überlegung zeigt, daß die Wahrscheinlichkeit dem Quadrat der Größe Φnm proportional
ist”. In translation from Wheeler and Zurek [8]: “Only one interpretation is possible: Φn,m gives the probability1) for the electron . . . ”, and the
footnote: “ 1) Addition in proof: More careful consideration shows that the probability is proportional to the square of the quantity Φn,m.”
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1.1. Measurements and interpretation of quantum mechanics24

Quis custodiet ipsos custodes? 3
25

Few textbooks of quantum mechanics dwell upon questions of interpretation or upon quantum measurements, in26

spite of their importance in the comprehension of the theory. Generations of students have therefore stumbled over27

the problem of measurement, before leaving it aside when they pursued research work. Most physicists have never28

returned to it, considering that it is not worth spending time on a problem which “probably cannot be solved” and29

which has in practice little implication on physical predictions. Such a fatalistic attitude has emerged after the efforts of30

the brightest physicists, including Einstein, Bohr, de Broglie, von Neumann and Wigner, failed to lead to a universally31

accepted solution or even viewpoint; see for reviews [4, 8, 9, 10, 11, 12, 13, 14]. However, the measurement problem32

has never been forgotten, owing to its intimate connection with the foundations of quantum mechanics, which it may33

help to formulate more sharply, and owing to its philosophical implications.34

In this review we shall focus on the simplest measurements, ideal projective measurements [1], and shall consider35

non-idealities and unsuccessful processes only occasionally and in section 8. While standard courses deal mainly with36

this type of measurement, it is interesting to mention that the first experiment based on a nearly ideal measurement37

was carried out only recently [15]. An optical analog of a von Neumann measurement has been proposed too [16].38

Experimentalists meet the theoretical discussions about quantum measurements with a feeling of speaking differ-39

ent languages. While theorists ponder about the initial pure state of the apparatus, the collapse of its wave packet40

and the question “when and in which basis does this collapse occur” and “how does this collapse agree with the41

Schrödinger equation”, experimentalists deal with different issues, such as choosing an appropriate apparatus for the42

desired experiment or stabilizing it before the measurement starts. If an experimentalist were asked to describe one43

cubic nanometer of his apparatus in theoretical terms, he would surely start with a quantum mechanical approach.44

But this raises the question whether it is possible to describe the whole apparatus, and also its dynamics, i. e., the45

dynamics and outcome of the measurement, by quantum mechanics itself. It is this question that we shall answer46

positively in the present work, thus closing the gap between what experimentalists intuitively feel and the formulation47

of the theory of ideal quantum measurements. To do so, we shall consider models that encompass the points relevant48

to experimentalists.49

As said above, for theorists there has remained another unsolved paradox, even deeper than previous ones, the50

so-called quantum measurement problem: How can quantum mechanics, with its superposition principle, be compati-51

ble with the fact that each individual run of a quantum measurement yields a well-defined outcome? This uniqueness52

is at variance with the description of the measurement process by means of a pure state, the evolution of which is53

governed by the Schrödinger equation. Many workers believe that the quantum measurement problem cannot be an-54

swered within quantum mechanics. Some of them then hope that a hypothetical “sub-quantum theory”, more basic55

than standard quantum mechanics, might predict what happens in individual systems [17, 18, 19, 20]. Our purpose56

is, however, to prove that the probabilistic framework of quantum mechanics is sufficient, in spite of conceptual diffi-57

culties, to explain that the outcome of a single measurement is unique although unpredictable within this probabilistic58

framework (section 11). We thus wish to show that quantum theory not only predicts the probabilities for the var-59

ious possible outcomes of a set of measurements – as a minimalist attitude would state – but also accounts for the60

uniqueness of the result of each run.61

A measurement is the only means through which information may be gained about a physical system S [4, 8, 9, 10,62

11, 12, 13, 14, 21, 22]. Both in classical and in quantum physics, it is a dynamical process which couples this system63

S to another system, the apparatus A. Some correlations are thereby generated between the initial (and possibly final)64

state of S and the final state of A. Observation of A, in particular the value indicated by its pointer, then allows us to65

gain by inference some quantitative information about S. A measurement thus involves, in one way or another, the66

observers4. It also has statistical features, through unavoidable uncertainties and, more deeply, through the irreducibly67

probabilistic nature of our description of quantum systems.68

Throughout decades many thoughts were therefore devoted to quantum measurements in relation to the interpre-69

tation of quantum theory. Both Einstein [23] and de Broglie [24] spent much time on such questions after their first70

3Who will watch the watchers themselves?
4We shall make the case that observation itself does not influence the outcome of the quantum measurement
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discovery; the issue of quantum measurements was formulated by Heisenberg [2, 3] and put in a mathematically pre-71

cise form by von Neumann [4]; the foundations of quantum mechanics were reconsidered in this light by people like72

Bohm [18, 19] or Everett [25, 26] in the fifties; hidden variables were discussed by Bell in the sixties [27]; the use of a73

statistical interpretation to analyze quantum measurements was then advocated by Park [28], Blokhintsev [10, 11] and74

Ballentine [9] (subtleties of the statistical interpretation are underlined by Home and Whitaker [29]); the most relevant75

papers were collected by Wheeler and Zurek in 1983 [8]. Earlier reviews on this problem were given by London and76

Bauer [30] and Wigner [13]. We can presently witness a renewed interest for measurement theory; among many recent77

contributions we may mention the book of de Muynck [31] and the review articles by Schlosshauer [32] and Zurek78

[33]. Extensive references are given in the pedagogical article [34] and book [35] by Laloë which review paradoxes79

and interpretations of quantum mechanics. Indeed, these questions have escaped the realm of speculation owing to80

progresses in experimental physics which allow to tackle the foundations of quantum mechanics from different an-81

gles. Not only Bell’s inequalities [27, 34, 36] but also the Greenberger–Horne–Zeilinger (GHZ) logical paradox [37]82

have been tested experimentally [38]. Moreover, rather than considering cases where quantum interference terms (the83

infamous “Schrödinger cat problem” [8, 13, 39]) vanish owing to decoherence processes [40], experimentalists have84

become able to control these very interferences [41], which are essential to describe the physics of quantum superpo-85

sitions of macroscopic states and to explore the new possibilities offered by quantum information [22, 42]. Examples86

include left and right going currents in superconducting circuits [15, 43, 44, 45], macroscopic atomic ensembles [41]87

and entangled mechanical oscillators [46].88

1.1.1. Classical versus quantum measurements: von Neumann-Wigner theory89

When the cat and the mouse agree,90

the grocer is ruined91

Iranian proverb92

The difficulties arise from two major differences between quantum and classical measurements, stressed in most93

textbooks [4, 3, 47, 48].94

(i) In classical physics it was legitimate to imagine that quantities such as the position and the momentum of a95

structureless particle like an electron might in principle be measured with increasingly large precision; this allowed96

us to regard both of them as well-defined physical quantities. (We return in section 10 to the meaning of physical97

quantities and of states within the statistical interpretation of quantum mechanics.) This is no longer true in quan-98

tum mechanics, where we cannot forget about the random nature of physical quantities. Statistical fluctuations are99

unavoidable, as exemplified by Heisenberg’s inequality [2, 3]: we cannot even think of values that would be taken100

simultaneously by non-commuting quantities whether or not we measure them. In general both the theory and the101

measurements provide us only with probabilities.102

Consider a measurement of an observable ŝ of the system S of interest5, having eigenvectors |si〉 and eigenvalues si.103

It is an experiment in which S interacts with an apparatus A that has the following property [4, 13, 30, 47]. A physical104

quantity Â pertaining to the apparatus A may take at the end of the process one value among a set Ai which are in105

one-to-one correspondence with si. If initially S lies in the state |si〉, the final value Ai will be produced with certainty,106

and a repeated experiment will always yield the observed result Ai, informing us that S was in |si〉 However, within107

this scope, S should generally lie initially in a state represented by a wave function which is a linear combination,108

|ψ〉 =
∑

i

ψi |si〉 , (1.1)

of the eigenvectors |si〉. Born’s rule then states that the probability of observing in a given experiment the result109

Ai equals |ψi|
2 [1]. A prerequisite to the explanation of this rule is the solution of the measurement problem, as it110

implicitly involves the uniqueness of the outcome of the apparatus in each single experiment. An axiomatic derivation111

of Born’s rule is given in [50]; see [32, 33] for a modern perspective on the rule. Quantum mechanics does not allow112

us to predict which will be the outcome Ai of an individual measurement, but provides us with the full statistics of113

repeated measurements of ŝ performed on elements of an ensemble described by the state |ψ〉. The frequency of114

5The eigenvalues of ŝ are assumed here to be non-degenerate. The general case will be considered in § 1.2.3



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 9

occurrence of each Ai in repeated experiments informs us about the moduli |ψi|
2, but not about the phases of these115

coefficients. In contrast to a classical state, a quantum state |ψ〉, even pure, always refers to an ensemble, and cannot be116

determined by means of a unique measurement performed on a single system [49]. It cannot even be fully determined117

by repeated measurements of the single observable ŝ, since only the values of the amplitudes |ψi| can thus be estimated.118

(ii) A second qualitative difference between classical and quantum physics lies in the perturbation of the system S119

brought in by a measurement. Classically one may imagine that this perturbation could be made weaker and weaker,120

so that S is practically left in its initial state while A registers one of its properties. However, a quantum measurement121

is carried on with an apparatus A much larger than the tested object S; an extreme example is provided by the huge122

detectors used in particle physics. Such a process may go so far as to destroy S, as for a photon detected in a123

photomultiplier. It is natural to wonder whether the perturbation of S has a lower bound. Much work has therefore124

been devoted to the ideal measurements, those which preserve at least the statistics of the observable ŝ in the final125

state of S, also referred to as non-demolition experiments or as measurements of the first kind [31]. Such ideal126

measurements are often described by assuming that the apparatus A starts in a pure state6. Then by writing that, if S127

lies initially in the state |si〉 and A in the state |0〉, the measurement leaves S unchanged: the compound system S + A128

evolves from |si〉 |0〉 to |si〉 |Ai〉, where |Ai〉 is an eigenvector of Â associated with Ai. If however, as was first discussed129

by von Neumann, the initial state of S has the general form (1.1), S + A may reach any possible final state |si〉 |Ai〉130

depending on the result Ai observed. In this occurrence the system S is left in |si〉 and A in |Ai〉, and according to131

Born’s rule, this occurs with the probability |ψi|
2. As explained in § 1.1.4, for this it is necessary (but not sufficient) to132

require that the final density operator describing S + A for the whole set of runs of the measurement has the diagonal133

form6
134 ∑

i

|si〉 |Ai〉 |ψi|
2 〈Ai| 〈si| , (1.2)

rather than the full form (1.3) below. Thus, not only is the state of the apparatus modified in a way controlled by the ob-135

ject, as it should in any classical or quantal measurement that provides us with information on S, but the marginal state136

of the quantum system is also necessarily modified (it becomes
∑

i |si〉 |ψi|
2 〈si|), even by such an ideal measurement137

(except in the trivial case where (1.1) contains a single term, as it happens when one repeats the measurement).138

1.1.2. Truncation versus reduction139

Ashes to ashes,140

dust to dust141

Genesis 3:19142

The rules of quantum measurements that we have recalled display a well known contradiction between the prin-143

ciples of quantum mechanics. On the one hand, if the measurement process leads the initial pure state |si〉|0〉 into144

|si〉|Ai〉, the linearity of the wave functions of the compound system S + A and the unitarity of the evolution of the145

wave functions of S + A governed by the Schrödinger equation imply that the final density operator of S + A issued146

from (1.1) should be6
147 ∑

i j

|si〉 |Ai〉ψiψ
∗
j〈A j|〈s j|. (1.3)

On the other hand, according to Born’s rule [1] and von Neumann’s analysis [4], each run of an ideal measurement148

should lead from the initial pure state |ψ〉 |0〉 to one or another of the pure states |si〉 |Ai〉 with the probability |ψi|
2; the149

final density operator accounting for a large statistical ensemble E of runs should be the mixture (1.2) rather than the150

superposition (1.3). In the orthodox Copenhagen interpretation, two separate postulates of evolution are introduced,151

one for the hamiltonian motion governed by the Schrödinger equation, the other for measurements which lead the152

system from |ψ〉 to one or the other of the states |si〉, depending on the value Ai observed. This lack of consistency is153

unsatisfactory and other explanations have been searched for (§ 1.3.1 and section 2).154

6 Here we follow a current line of thinking in the literature called von Neumann-Wigner theory of ideal measurements. In subsection 1.2 we
argue that it is not realistic to assume that A may start in a pure state and end up in a pure state
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It should be noted that the loss of the off-diagonal elements takes place in a well-defined basis, the one in which155

both the tested observable ŝ of S and the pointer variable Â of A are diagonal (such a basis always exists since the156

joint Hilbert space of S + A is the tensor product of the spaces of S and A). In usual decoherence processes, it is157

the interaction between the system and some external bath which selects the basis in which off-diagonal elements are158

truncated [32, 33]. We have therefore to elucidate this preferred basis paradox, and to explain why the truncation159

which replaces (1.3) by (1.2) occurs in the specific basis selected by the measuring apparatus.160

The occurrence in (1.3) of the off-diagonal i , j terms is by itself an essential feature of an interaction process161

between two systems in quantum mechanics. There exist numerous experiments in which a pair of systems is left162

after interaction in a state of the form (1.3), not only at the microscopic scale, but even for macroscopic objects,163

involving for instance quantum superpositions of superconducting currents. Such experiments allow us to observe164

purely quantum coherences represented by off-diagonal terms i , j.165

However, such off-diagonal “Schrödinger cat” terms, which contradict both Born’s rule [1] and von Neumann’s166

reduction [4], must disappear at the end of a measurement process. Their absence is usually termed as the “reduction”167

or the “collapse” of the wave packet, or of the state. Unfortunately, depending on the authors, these words may have168

different meanings; we need to define precisely our vocabulary. Consider first a large set E of runs of a measurement169

performed on identical systems S initially prepared in the state |ψ〉, and interacting with A initially in the state |0〉.170

The density operator of S + A should evolve from |ψ〉|0〉〈0|〈ψ| to (1.2). We will term as “truncation” the elimination171

during the process of the off-diagonal blocks i , j of the density operator describing the joint system S + A for the172

whole set E of runs. If instead of the full set E we focus on a single run, the process should end up in one among173

the states |si〉 |Ai〉. We will designate as “reduction” the transformation of the initial state of S + A into such a final174

“reduced state”, for a single run of the measurement.175

One of the paradoxes of the measurement theory lies in the existence of several possible final states issued from176

the same initial state. Reduction thus seems to imply a bifurcation in the dynamics, whereas the Schrödinger equation177

entails a one-to-one correspondence between the initial and final states of the isolated system S + A.178

We stress that both above definitions refer to S + A. Some authors apply the words reduction or collapse to the sole179

tested system S. To avoid confusion, we will call “weak reduction” the transformation of the initial state |ψ〉〈ψ| of S into180

the pure state |ψi〉〈ψi| for a single run, and “weak truncation” its transformation into the mixed state
∑

i |ψi〉 |ψi|
2 〈ψi|181

for a large ensemble E of runs. In fact, the latter marginal density operator of S can be obtained by tracing out A,182

not only from the joint truncated state (1.2) of S+A, but also merely from the non-truncated state (1.3), so that the183

question seems to have been eluded. However, such a viewpoint, in which the apparatus is disregarded, cannot provide184

an answer to the measurement problem. The very aim of a measurement is to create correlations between S and A185

and to read the indications of A so as to derive indirectly information about S; but the elimination of the apparatus186

suppresses both the correlations between S and A and the information gained by reading A.187

Physically, a set of repeated experiments involving interaction of S and A can be regarded as a measurement only188

if we observe on A in each run some well defined result Ai, with probability |ψi|
2. For an ideal measurement we189

should be able to predict that S is then left in the corresponding state |si〉. Explaining these features requires that190

the considered dynamical model produces in each run one of the reduced states |si〉 |Ai〉. The quantum measurement191

problem thus amounts to the proof, not only of truncation, but also of reduction. This will be achieved in section 11 for192

a model of quantum statistical mechanics. As stressed by Bohr and Wigner, the reduction, interpreted as expressing193

the “uniqueness of physical reality”, is at variance with the superposition principle which produces the final state194

(1.3). The challenge is to solve this contradiction, answering Wigner’s wish: “The simplest way that one may try to195

reduce the two kinds of changes of the state vector to a single kind is to describe the whole process of measurement196

as an event in time, governed by the quantum mechanical equations of motion”. Our purpose is to show that this is197

feasible, contrary to Wigner’s own negative conclusion [13].198
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1.1.3. Registration and selection of outcomes199

Non-discrimination is a cross-cutting principle200

United Nations human rights, 1996201

When after a run of an ideal measurement, S is left in |si〉, a second measurement performed on the same system202

leaves this state unchanged and yields the same indication Ai of the pointer. Reduction, even weak, thus implies203

repeatability. Conversely, repeatability implies weak truncation, that is, the loss in the marginal density of S of the204

elements i , j during the first one of the successive measurement processes [52].205

Apart from having been truncated, the final density operator (1.2) of S + A for the whole set E of runs displays an206

essential feature, the complete correlation between the indication Ai of the pointer and the state |si〉 of S. We will term207

as “registration” the establishment of these correlations. If they are produced, we can ascertain that, if the pointer208

takes a well defined value Ai in some run, its observation will imply that ŝ takes with certainty the corresponding209

eigenvalue si at the end of this run. Sorting the runs according to the outcome Ai allows us to split the ensemble210

E into subensembles Ei, each one labelled by i and described by the state |si〉|Ai〉
6. Selection of the subensemble211

Ei by filtering the values Ai therefore allows us to set S into this subensemble Ei described by the density operator212

|si〉|Ai〉〈Ai|〈si|. It is then possible to sort the runs according to the indication Ai of the pointer. Selecting thus the213

subensemble Ei by filtering Ai allows us to set S into the given state |si〉 with a view to future experiments on S. An214

ideal measurement followed by filtering can therefore be used as a preparation of the state of S [53]. We will make215

the argument more precise in § 10.2.2 and § 11.3.3.216

Note that some authors call “measurement” a single run of the experiment, or a repeated experiment in which the217

occurrence of some given eigenvalue of ŝ is detected, and in which only the corresponding events are selected for the218

outcoming system S. Here we use the term “measurement” to designate a repeated experiment performed on a large219

ensemble of identically prepared systems which informs us about all possible values si of the observable ŝ of S, and220

the term “ideal measurement” if the process perturbs S as little as allowed by quantum mechanics, in the sense that221

it does not affect the statistics of the observables that commute with ŝ. We do not regard the sorting as part of the222

measurement, but as a subsequent operation, and prefer to reserve the word “preparation through measurement” to223

such processes including a selection.224

1.2. The need for quantum statistical mechanics225

Om een paardendief te vangen heb je een paardendief nodig7
226

Un coupable en cache un autre8
227

Dutch and French proverbs228

We wish for consistency to use quantum mechanics for treating the dynamics of the interaction process between229

the apparatus and the tested system. However, the apparatus must be a macroscopic object in order to allow the230

outcome to be read off from the final position of its pointer. The natural framework to reconcile these requirements is231

non-equilibrium quantum statistical mechanics, and not quantum mechanics of pure states as presented above. It will232

appear that not only the registration process can be addressed in this way, but also the truncation and the reduction.233

1.2.1. Irreversibility of measurement processes234

The first time ever I saw your face235

I thought the sun rose in your eyes236

Written by Ewan MacColl, sung by Roberta Flack237

Among the features that we wish to explain, the truncation compels us to describe states by means of density238

operators. The sole use of pure states (quantum states describable by a wave function or a ket), is prohibited by239

the form of (1.2), which is in general a statistical mixture. Even if we start from a pure state |ψ〉 |0〉, we must end240

up with the truncated mixed state (1.2) through an irreversible process. This irreversibility is also exhibited by the241

fact the same final state (1.2) is reached if one starts from different initial states of the form (1.1) deduced from one242

7To catch a horse thief, you need a horse thief
8One culprit hides another
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another through changes of the phases of the coefficients ψi. Such a feature is associated with the disappearance of243

the specifically quantum correlations between S and A described by the off-diagonal terms of (1.3).244

Actually, there is a second cause of irreversibility in any effective measurement process. The apparatus A should245

register the result Ai in a robust and permanent way, so that it can be read off by any observer. Such a registration,246

which is often overlooked in the literature on measurements, is needed for practical reasons especially since we247

wish to explore microscopic objects. Moreover, its very existence allows us to disregard the observers in quantum248

measurements. Once the measurement has been registered, the result becomes objective and can be read off at any time249

by any observer. It can also be processed automatically, without being read off. Registration requires an amplification250

within the apparatus of a signal produced by interaction with the microscopic system S. For instance, in a bubble251

chamber, the apparatus in its initial state involves a liquid, overheated in a metastable phase. In spite of the weakness252

of the interaction between the particle to be detected and this liquid, amplification and registration of its track can253

be achieved owing to local transition towards the stable gaseous phase. This stage of the measurement process thus254

requires an irreversible phenomenon. It is governed by the kinetics of bubble formation under the influence of the255

particle and implies a dumping of free energy. Similar remarks hold for photographic plates, photomultipliers and256

other types of detectors.257

Since the amplification and the registration of the measurement results require the apparatus A to be a large object258

so as to behave irreversibly, we must use quantum statistical mechanics to describe A. In particular, the above as-259

sumption that A lay initially in a pure state |0〉 was unrealistic – nevertheless this assumption is frequent in theoretical260

works on measurements, see e.g. [25, 32, 33]. Indeed, preparing an object in a pure state requires controlling a261

complete set of commuting observables, performing their measurement and selecting the outcome (§ 1.1.3). While262

such operations are feasible for a few variables, they cannot be carried out for a macroscopic apparatus nor even for263

a mesoscopic apparatus involving, say, 1000 particles. What the experimentalist does in a quantum measurement is264

quite the opposite [10, 11, 3, 31]: rather than purifying the initial state of A, he lets it stabilize macroscopically by265

controlling a few collective parameters such as the temperature of the apparatus. The adequate theoretical represen-266

tation of the initial state of A, which is a mixed state, is therefore a density operator denoted as R̂(0). Using pure267

states in thought experiments or models would require averaging so as to reproduce the actual situation (§ 10.2.3 and268

§ 12.1.4). Moreover the initial state of A should be metastable, which requires a sudden change of, e.g., temperature.269

Likewise the final possible stable marginal states of A are not pure. As we know from quantum statistical physics,270

each of them, characterized by the value of the pointer variable Ai that will be observed, should again be described271

by means of a density operator R̂i, and not by means of pure states |Ai〉 as in (1.3). Indeed, the number of state272

vectors associated with a sharp value of the macroscopic pointer variable Ai is huge for any actual measurement: As273

always for large systems, we must allow for small fluctuations, negligible in relative value, around the mean value274

Ai = trAÂR̂i. The fact that the possible final states R̂i are exclusive is expressed by trAR̂iR̂ j ' 0 for j , i, which275

implies276

R̂iR̂ j→ 0 for N → ∞ when i , j. (1.4)

In words, these macroscopic pointer states are practically orthogonal.277

1.2.2. The paradox of irreversibility278

La vida es sueño9
279

Calderón de la Barca280

If we disregard the system S, the irreversible process leading A from the initial state R̂ (0) to one among the final281

states R̂i is reminiscent of relaxation processes in statistical physics, and the measurement problem raises the same282

type of puzzle as the paradox of irreversibility. In all problems of statistical mechanics, the evolution is governed at283

the microscopic level by equations that are invariant under time-reversal: Hamilton or Liouville equations in classical284

physics, Schrödinger, or Liouville–von Neumann equations in quantum physics. Such equations are reversible and285

conserve the von Neumann entropy, which measures our missing information. Nevertheless we observe at our scale286

an irreversibility, measured by an increase of macroscopic entropy. The explanation of this paradox, see, e.g., [54,287

9Life is a dream



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 13

55, 56, 57, 58, 59], relies on the large number of microscopic degrees of freedom of thermodynamic systems, on288

statistical considerations and on plausible assumptions about the dynamics and about the initial state of the system.289

Let us illustrate these ideas by recalling the historic example of a classical gas, for which the elucidation of the290

paradox was initiated by Boltzmann [54, 55, 56]. The microscopic state of a set of N structureless particles enclosed291

in a vessel is represented at each time by a point ξ(t) in the 6N-dimensional phase space, the trajectory of which is292

generated by Hamilton’s equations, the energy E being conserved. We have to understand why, starting at the time293

t = 0 from a more or less arbitrary initial state with energy E, we always observe that the gas reaches at the final time294

tf a state which macroscopically has the equilibrium properties associated with N and E, to wit, homogeneity and295

Maxwellian distribution of momenta – whereas a converse transformation is never seen in spite of the reversibility296

of the dynamics. As we are not interested in a single individual process but in generic features, we can resort to297

statistical considerations. We therefore consider an initial macroscopic state Sinit characterized by given values of the298

(non uniform) densities of particles, of energy, and of momentum in ordinary space. Microscopically, Sinit can be299

realized by any point ξinit lying in some volume Ωinit of phase space. On the other hand, consider the volume ΩE in300

phase space characterized by the total energy E. A crucial fact is that the immense majority of points ξ with energy301

E have macroscopically the equilibrium properties (homogeneity and Maxwellian distribution): the volume Ωeq of302

phase space associated with equilibrium occupies nearly the whole volume Ωeq/ΩE ' 1. Moreover, the volume ΩE303

is enormously larger than Ωinit. We understand these properties by noting that the phase space volumes characterized304

by some macroscopic property are proportional to the exponential of the thermodynamic entropy. In particular, the305

ratio Ωeq/Ωinit is the exponential of the increase of entropy from Sinit to Seq, which is large as N. We note then that306

Hamiltonian dynamics implies Liouville’s theorem. The bunch of trajectories issued from the points ξ(0) in Ωinit307

therefore reach at the time tf a final volume Ωf = Ωinit that occupies only a tiny part of ΩE , but which otherwise is308

expected to have nothing special owing to the complexity of the dynamics of collisions. Thus most end points ξ(tf)309

of these trajectories are expected to be typical points of ΩE , that is, to lie in the equilibrium region Ωeq. Conversely,310

starting from an arbitrary point of ΩE or of Ωeq, the probability of reaching a point that differs macroscopically311

from equilibrium is extremely small, since such points occupy a negligible volume in phase space compared to the312

equilibrium points. The inconceivably large value of Poincaré’s recurrence time is also related to this geometry of313

phase space asociated with the macroscopic size of the system.314

The above argument has been made rigorous [54, 55, 56] by merging the dynamics and the statistics, that is,315

by studying the evolution of the density in phase space, the probability distribution which encompasses the bunch of316

trajectories evoked above. Indeed, it is easier to control theoretically the Liouville equation than to study the individual317

Hamiltonian trajectories and their statistics for random initial conditions. The initial state of the gas is now described318

by a non-equilibrium density in the 6N-dimensional phase space. Our full information about this initial state, or the319

full order contained in it, is conserved by the microscopic evolution owing to the Liouville theorem. However, the320

successive collisions produce correlations between larger and larger numbers of particles. Thus, while after some321

time the gas reaches at the macroscopic scale the features of thermodynamic equilibrium, the initial order gets hidden322

into microscopic variables, namely many-particle correlations, that are inaccessible. Because the number of degrees of323

freedom is large – and it is actually gigantic for any macroscopic object – this order cannot be retrieved (except in some324

exceptional controlled dynamical phenomena such as spin echoes [60, 61, 62, 63, 64, 65]). In any real situation, it is325

therefore impossible to recover, for instance, a non-uniform density from the very complicated correlations created326

during the relaxation process. For all practical purposes, we can safely keep track, even theoretically, only of the327

correlations between a number of particles small compared to the total number of particles of the system: the exact328

final density in phase space cannot then be distinguished from a thermodynamic equilibrium distribution. It is this329

dropping of information about undetectable and ineffective degrees of freedom, impossible to describe even with the330

largest computers, which raises the macroscopic entropy [54, 55, 56, 57, 58]. Such approximations can be justified331

mathematically through limiting processes where N → ∞.332

Altogether, irreversibility can be derived rigorously for the Boltzmann gas under assumptions of smoothness and333

approximate factorization of the single particle density. The change of scale modifies qualitatively the properties of334

the dynamics, for all accessible times and for all accessible physical variables. The emergence of an irreversible335

relaxation from the reversible microscopic dynamics is a statistical phenomenon which becomes nearly deterministic336

owing to the large number of particles. We shall encounter similar features in quantum measurement processes.337
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1.2.3. Quantum measurements in the language of statistical physics338

Now the whole earth was of one language and of one speech10
339

Genesis 11:1340

The theoretical description of a measurement process should be inspired by the above ideas. Actually, a measure-341

ment process looks like a relaxation process, but with several complications. On the one hand, the final stable state of342

A is not unique, and the dynamical process can have several possible outcomes for A. In photodetection (the eye, a343

photomultiplier), one just detects whether an avalanche has or not been created by the arrival of a photon. In a mag-344

netic dot, one detects the direction of the magnetization. The apparatus is therefore comparable to a material which,345

in statistical physics, has a broken invariance and can relax towards one equilibrium phase or another, starting from346

a single metastable phase. On the other hand, the evolution of A towards one among the final states R̂i characterized347

by the variable Ai should be triggered by interaction with S, in a way depending on the initial microscopic state of S348

and, for an ideal measurement, the final microscopic state of S should be correlated to the outcome Ai. Thus, contrary349

to theories of standard relaxation processes in statistical physics, the theory of a measurement process will require a350

simultaneous control of microscopic and macroscopic variables. In the coupled evolution of A and S which involves351

truncation and registration, coarse graining will be adequate for A, becoming exact in the limit of a large A, but not352

for S. Moreover the final state of S + A keeps memory of the initial state of S, at least partly. The very essence of a353

measurement lies in this feature, whereas memory effects are rarely considered in standard relaxation processes.354

Denoting by r̂ (0) and R̂(0) the density operators of the system S and the apparatus A, respectively, before the355

measurement, the initial state of S+A is characterized in the language of quantum statistical mechanics by the density356

operator357

D̂ (0) = r̂ (0) ⊗ R̂ (0) . (1.5)

In the Schrödinger picture, where the wave functions evolve according to the Schrödinger equation while observables358

are time-independent, the density operator D̂(t) = exp(−iĤt/~)D̂(0) exp(iĤt/~) of the compound system S + A359

evolves according to the Liouville-von Neumann equation of motion360

i~
dD̂
dt

= [Ĥ, D̂] ≡ ĤD̂ − D̂Ĥ, (1.6)

where Ĥ is the Hamiltonian of S + A including the interaction between S and A. By solving (1.6) with the initial361

condition (1.5), we find the expectation value 〈Â(t)〉 of any observable Â of S + A at the time t as tr[D̂(t)Â] (see362

subsection 10.1 and Appendix G).363

We first wish to show that, for an ideal measurement, the final density operator of S + A which represents the364

outcome af a large set E of runs at the time tf has the form365

D̂ (tf) =
∑

i

(
Π̂ir̂ (0) Π̂i

)
⊗ R̂i =

∑
i

pir̂i ⊗ R̂i, (1.7)

where Π̂i denotes the projection operator (satisfying Π̂iΠ̂ j = δi jΠ̂i) on the eigenspace si of ŝ in the Hilbert space of S,366

with ŝ =
∑

i siΠ̂i and
∑

i Π̂i = Î. (If the eigenvalue si is non-degenerate, Π̂i is simply equal to |si〉〈si|.) We have denoted367

by368

r̂i =
1
pi

Π̂ir̂(0)Π̂i (1.8)

10Metaphorically, the discovery of quantum theory and the lack of agreement about its interpretation may be phrased in Genesis 11 [66]:
1. Now the whole earth was of one language and of one speech. 2. And it came to pass, as they journeyed from the east, that they found a plane
in the land of Shinar; and they dwelt there. 3. And they said one to another, Go to, let us make brick, and burn them throughly. And they had
brick for stone, and slime had they for mortar. 4. And they said, Go to, let us build a city, and a tower whose top may reach unto heaven; and let
us make us a name, lest we be scattered abroad upon the face of the whole earth. 5. And the Lord came down to see the city and the tower, which
the children of men builded. 6. And the Lord said, Behold, the people is one, and they have all one language; and this they begin to do: and now
nothing will be restrained from them, which they have imagined to do. 7. Go to, let us go down, and there confound their language, that they may
not understand one another’s speech. 8. So the Lord scattered them abroad from thence upon the face of all the earth: and they left off to build the
city. 9. Therefore is the name of it called Babel; because the Lord did there confound the language of all the earth: and from thence did the Lord
scatter them abroad upon the face of all the earth
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the corresponding normalized projected state (which reduces to |si〉〈si| if si is non-degenerate), and by369

pi ≡ trSr̂(0)Π̂i (1.9)

the normalizing factor (which reduces to rii(0) if si is non-degenerate). The expression (1.7) generalizes (1.2) to370

arbitrary density operators; we will use the same vocabulary as in § 1.1.2 to designate its various features. This371

generalization was first conceived by Lüders [67]. The lack in (1.7) of off-diagonal blocks i , j in a basis where ŝ372

is diagonal expresses truncation. The correlations between the states r̂i for S and the states R̂i for A, displayed in its373

diagonal blocks, express registration; they are encoded in 〈Π̂i(Â − Ai)2〉 = 0 for each i, a consequence of (1.7), which374

means that in an ideal measurement ŝ takes the value si when Â takes the value Ai.375

We further wish to show that reduction takes place, i.e., that the pointer takes for each run a well-defined value376

Ai and that the set E of runs can unambiguously be split into subsets Ei including a proportion pi of runs, in such a377

way that for each subset Ei, characterized by the outcome Ai, the final state of S + A is D̂i = r̂i ⊗ R̂i. This property378

obviously requires that (1.7) is satisfied, since by putting back together the subensembles Ei we recover for E the379

state
∑

i piD̂i of S + A. Nevertheless, due to a quantum queerness (§ 10.2.3), we cannot conversely infer from the380

latter state the existence of physical subensembles Ei described by the reduced states D̂i. In fact, the very selection381

of some specific outcome labelled by the index i requires the reading of the indication Ai of the pointer (§ 1.1.3), but382

it is not granted from (1.7) that each run provides such a well-defined indication. This problem will be exemplified383

by the Curie–Weiss model and solved in section 11. We will rely on a property of arbitrary subsets of runs of the384

measurement, their hierarchic structure. Namely, any subset must be described at the final time by a density operator385

of the form
∑

i qiD̂i with arbitrary weights qi. This property, which is implied by reduction, cannot be deduced from386

the sole knowledge of the density operator (1.7) that describes the final state of S + A for the full set E of runs.387

Tracing out the apparatus from (1.7) provides the marginal state for the tested system S after measurement, which388

is represented for the whole set of runs by the density operator389

r̂ (tf) ≡ trAD̂(tf) =
∑

i

pir̂i =
∑

i

Π̂ir̂(0)Π̂i =
∑

i

pi|si〉〈si| =
∑

i

rii(0)|si〉〈si|. (1.10)

The last two expressions in (1.10) hold when the eigenvalues si of ŝ are non-degenerate. Symmetrically, the final390

marginal state of the apparatus391

R̂ (tf) = trS D̂(tf) =
∑

i

piR̂i (1.11)

is consistent with the occurrence with a probability pi of its indication Ai. The expression (1.10) is the result of weak392

truncation, while the selection of the runs characterized by the outcome Ai produces for S the weak reduction into the393

state r̂i. The latter process constitutes a preparation of S. As already noted in § 1.1.2, the fact that simply tracing out394

A may lead to a (weakly) truncated or a reduced state for S solves in no way the physics of the measurement process,395

a well known weakness of some models [10, 11, 31, 68, 69].396

1.2.4. Entropy changes in a measurement397

Discussions about entropy have produced quite some heat398

Anonymous399

When von Neumann set up in 1932 the formalism of quantum statistical mechanics [4], he introduced density400

operators D̂ as quantum analogues of probability distributions, and he associated with any of them a number, its401

entropy S [D̂] = −tr D̂ ln D̂. In case D̂ describes a system in thermodynamic equilibrium, S [D̂] is identified with402

the entropy of thermodynamics11. Inspired by these ideas, Shannon founded in 1948 the theory of communication,403

11With this definition, S is dimensionless. In thermodynamic units, S is obtained by multiplying its present expression by Boltzmann’s constant
1.38 · 10−23 JK−1. Likewise, if we wish to express Shannon’s entropy in bits, its expression should be divided by ln 2
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which relies on a quantitative estimate of the amount of information carried by a message [70]. Among the various404

possible messages that are expected to be emitted, each one i has some probability pi to occur; by receiving the specific405

message i we gain an amount − ln pi of information. Shannon’s entropy S [p] = −
∑

i pi ln pi characterizes the average406

amount of information which is missing when the message has not yet been acknowledged. Returning to quantum407

mechanics, a new interpretation of von Neumann’s entropy is thus obtained [71, 72, 73]. When a system (or rather408

a statistical ensemble of systems prepared under similar conditions, in which the considered system is embedded) is409

described by some density operator D̂, the associated von Neumann entropy can be regarded as an extension of the410

Shannon entropy: it characterizes a lack of information due to the probabilistic description of the system. It has thus a411

partly subjective nature, since it measures our uncertainty. One can also identify it with disorder [58, 72, 73, 74, 75].412

As measurement processes are means for gathering information, quantitative estimates of the amounts of information413

involved are provided by the changes of the von Neumann entropies of the systems S, A and S + A. We gather below414

the various results found in the literature and their interpretation.415

The equation of motion of S + A is deterministic and reversible, and some manipulations justified by the large416

size of A are necessary, as in any relaxation problem, to understand how the state of S + A may end as (1.7). Strictly417

speaking, the Liouville-von Neumann evolution (1.6) conserves the von Neumann entropy −tr D̂ ln D̂ associated with418

the whole set of degrees of freedom of S + A; in principle no information is lost. However, in statistical physics,419

irreversibility means that information (identified with order) is transferred towards inaccessible degrees of freedom,420

in the form of many-particle correlations, without possibility of return in a reasonable delay. A measure of this loss421

of information is provided by the “relevant entropy” [58, 72, 73, 74, 75], which is the von Neumann entropy of the422

state that results from the elimination of the information about such inaccessible correlations. Here the truncated state423

D̂(tf) should have the latter status: As regards all accessible degrees of freedom, D̂(tf) should be equivalent to the state424

issued from D̂(0) through the equation of motion (1.6), but we got rid in D̂(tf) of the irrelevant correlations involving425

a very large number of elements of the macroscopic apparatus A; such correlations are irremediably lost.426

We can therefore measure the irreversibility of the measurement process leading from D̂(0) to D̂(tf) by the fol-427

lowing entropy balance. The von Neumann entropy of the initial state (1.5) is split into contributions from S and A,428

respectively, as429

S
[
D̂ (0)

]
= −tr D̂ (0) ln D̂ (0) = S S [r̂ (0)] + S A

[
R̂ (0)

]
, (1.12)

whereas that of the final state (1.7) is430

S
[
D̂ (tf)

]
= S S [r̂ (tf)] +

∑
i

piS A

[
R̂i

]
, (1.13)

where r̂ (tf) is the marginal state (1.10) of S at the final time12. This equality entails separate contributions from S and431

A. The increase of entropy from (1.12) to (1.13) clearly arises from the two above-mentioned reasons, truncation and432

registration. On the one hand, when the density operator r̂ (0) involves off-diagonal blocks Π̂ir̂ (0) Π̂ j (i , j), their433

truncation raises the entropy. On the other hand, a robust registration requires that the possible final states R̂i of A are434

more stable than the initial state R̂ (0), so that their entropy is larger. The latter effect dominates because the apparatus435

is large, typically S A will be macroscopic and S S microscopic.436

We can see that the state D̂(tf) expected to be reached at the end of the process is the one which maximizes von437

Neumann’s entropy under the constraints imposed by the conservation laws (§ 10.2.2). The conserved quantities are438

the energy 〈Ĥ〉 (where Ĥ = ĤS + ĤA− ŝ Â includes the coupling of the tested quantity ŝ with the pointer observable Â)439

and the expectation values of all the observables Ôk of S that commute with ŝ (we assume not only [ĤS, ŝ] = 0 but also440

[ĤS, Ôk] = 0, see [13, 76]. This maximization of entropy yields a density matrix proportional to exp(−βĤ−
∑

k λkÔk),441

which has the form of a sum of diagonal blocks i, each of which factorizes as pir̂i ⊗ R̂i. The first factor pir̂i associated442

with S, obtained by adjusting the Lagrangian multipliers λk, is identified with (1.8), due to the conservation of the443

diagonal blocks of the marginal density matrix of S. The second factor R̂i associated with A is then proportional to444

12The latter expression is found by using the orthogonality R̂iR̂ j = 0 for i , j, so that −D̂(tf ) ln D̂(tf ) is equal to the sum of its separate blocks,∑
i pi r̂i ⊗ R̂i(− ln pi − ln r̂i − ln R̂i), and hence the entropy of D̂(tf ) is a sum of contributions arising from each i. The trace over A of the first two

terms leads to
∑

i pi r̂i(− ln pi − ln r̂i), the trace over S of which may be identified with the entropy S S[r̂(tf )] of (1.10); the trace of the last term leads
to the last sum in (1.13)



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 17

exp[−β(ĤA − siÂ)], a density operator which for a macroscopic apparatus A describes one of its equilibrium states445

characterized by the value Ai of the pointer. Thus, the study of the evolution of S + A for a large statistical ensemble of446

runs (sections 4 to 7 for the Curie–Weiss model) should amount to justify dynamically the maximum entropy criterion447

of equilibrium statistical mechanics. A further dynamical study is, however, required in quantum mechanics to justify448

the assignment of one among the terms r̂i ⊗ R̂i of (1.7) to the outcome of an individual run (section 11 for the Curie–449

Weiss model).450

An apparatus is a device which allows us to gain some information on the state of S by reading the outcomes Ai.451

The price we have to pay for being thus able to determine the probabilities (1.9) is a complete loss of information452

about the off-diagonal elements Π̂ir̂ (0) Π̂ j (i , j) of the initial state of S13, and a rise in the thermodynamic entropy453

of the apparatus. More generally, in other types of quantum measurements, some information about a system may be454

gained only at the expense of erasing other information about this system [77] (see subsection 2.5).455

The quantitative estimation of the gains and losses of information in the measurement process is provided by an456

entropic analysis, reviewed in [22, 72, 78]. Applications of entropy for quantifying the uncertainties in quantum457

measurements are also discussed in [79]. We recall here the properties of the entropy of the marginal state of S and458

their interpretation in terms of information. We have just noted that S S [r̂ (tf)] − S S [r̂ (0)], which is non-negative,459

measures the increase of entropy of S due to weak truncation. This means that, in case we know r̂(0), the interaction460

with A (without reading the pointer) lets us loose the amount of information S S [r̂ (tf)]−S S [r̂ (0)] about all observables461

that do not commute with ŝ [72, 78]. In fact, this loss is the largest possible among the set of states that preserve462

the whole information about the observables commuting with ŝ. Any state of S that provides, for all observables463

commuting with ŝ, the same expectation values as r̂(tf) is less disordered than r̂(tf), and has an entropy lower than464

S S[r̂(tf)]. In other words, among all the processes that leave the statistics of the observables commuting with ŝ465

unchanged, the ideal measurement of ŝ is the one which destroys the largest amount of information (about the other466

observables of S).467

Reading the pointer value Ai, which occurs with probability pi, allows us to ascertain (for the considered ideal468

measurement) that S is in the state r̂i after the measurement. By acknowledging the outcomes of a large sequence469

of runs of the measurement, we gain therefore on average some amount of information given on the one hand by the470

Shannon entropy −
∑

i pi ln pi, and equal on the other hand to the difference between the entropies of the final state471

and of its separate components,472

S S [r̂(tf)] −
∑

i

piS S [r̂i] = −
∑

i

pi ln pi ≥ 0. (1.14)

The equality expresses additivity of information, or of uncertainty, at the end of the process, when we have not yet read473

the outcomes Ai: Our uncertainty S S[r̂(tf)], when we know directly that r̂(tf), the density operator of the final state,474

encompasses all possible marginal final states r̂i, each with its probability pi, is given by the left-hand side of (1.14).475

It is the same as if we proceed in two steps. As we have not yet read Ai, we have a total uncertainty S S [r̂(tf)] because476

we miss the corresponding amount of Shannon information −
∑

i pi ln pi about the outcomes; and we miss also, with477

the probability pi for each possible occurrence of Ai, some information on S equal to S [r̂i], the entropy of the state478

r̂i. As it stands, the equality (1.14) also expresses the equivalence between negentropy and information [74, 80, 81]:479

sorting the ensemble of systems S according to the outcome i lowers the entropy by a quantity equal on average to480

the left-hand side of (1.14), while reading the indication Ai of the pointer provides, in Shannon’s sense, an additional481

amount of information − ln pi, on average equal to the right-hand side.482

Two inequalities are satisfied in the whole process, including the sorting of results:483

−
∑

i

pi ln pi ≥ S S [r̂(0)] −
∑

i

piS S [r̂i] ≥ 0. (1.15)

The first inequality expresses that the additivity of the information gained on the final state r̂(tf) of S by acknowledging484

the probabilities pi, as expressed by (1.14), is spoiled in quantum mechanics when one considers the whole process,485

13In the language of section 1.1: Loss of information about the phases of the ψi
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due to the quantum perturbation of the initial state of S which eliminates its off diagonal sectors. The second inequality,486

derived in [82], expresses that measurements yield a positive balance of information about S in spite of the losses487

resulting from the perturbation of S. Indeed, this inequality means that, on average over many runs of the measurement488

process, and after sorting of the outcomes, the entropy of S has decreased, i. e., more information on S is available at489

the time tf than at the initial time. The equality holds only if all possible final states r̂i of S have the same entropy.490

Note finally that, if we wish to perform repeated quantum measurements in a closed cycle, we must reset the491

apparatus in its original metastable state. As for a thermal machine, this requires lowering the entropy and costs some492

supply of energy.493

1.3. Towards a solution of the measurement problem?494

                                 . 14
495

Russian proverb496

The quantum measurement problem arises from the acknowledgement that individual measurements provide well-497

defined outcomes. Standard quantum mechanics yields only probabilistic results and thus seems unable to explain such498

a behavior. We have advocated above the use of quantum statistical physics, which seems even less adapted to draw499

conclusions about individual systems. Most of the present work will be devoted to show how a statistical approach500

may nevertheless solve the measurement problem as will be discussed in section 11. We begin with a brief survey of501

the more current approaches.502

1.3.1. Various approaches503

15
504 Нам нужен плюрализм, тут двух мений 

быть не может. 

Mikhail Gorbachev505

In the early days of quantum mechanics, the apparatus was supposed to behave classically, escaping the realm506

of quantum theory [83, 84, 85]. A similar idea survives in theoretical or experimental works exploring the possible507

existence of a border between small or large, or between simple and complex objects, which would separate the508

domains of validity of quantum and classical physics (Heisenberg’s cut [3]).509

Another current viewpoint has attributed the reduction16 in a measurement to the “act of observing the result”.510

Again, the observer himself, who is exterior to the system, is not described in the framework of quantum mechanics. In511

Rovelli’s relational interpretation [86] a quantum mechanical description of some object is regarded as a codification of512

its properties which is “observer-dependent”, that is, relative to a particular apparatus. Then, while a first “observer” A513

who gathers information about S regards reduction as real, a second observer testing S + A can consider that reduction514

has not taken place. In the many-worlds interpretation, reduction is even denied, and regarded as a delusion due to the515

limitations of the human mind [25, 26]. From another angle, people who wish to apply quantum theory to the whole516

universe, even have a non-trivial task in defining what is observation. A more rational attitude is taken within the517

consistent histories approach, in which one is careful with defining when and where the events happen, but in which518

one holds that the measurements simply reveal the pre-existing values of events (this approach is discussed below in519

section 2.9). For interpretations of quantum mechanics, see Bohm’s textbook [87] and for interpretations based on520

entanglement and information, see Peres [22] and Jaeger [88].521

The reduction may be regarded as a bifurcation in the evolution of the considered system, which may end up522

in different possible states |si〉 although it has been prepared in the single initial state |ψ〉. In the de Broglie–Bohm523

interpretation involving both waves and classical-like trajectories, the wave function |ψ(t)〉 appears both as arising524

from the density of trajectories and as guiding their dynamics. The randomness of quantum mechanics then arises525

merely from a randomness in the initial points of the set of trajectories. During a measurement process, the single526

14Visiting is good, but home is better
15We need pluralism, there cannot be two opinions on that
16In order to distinguish two concepts often used in the literature, we use the word “reduction” as meaning the transformation of the initial state

of S + A into the final reduced state associated with one or another single run of the measurement, as specified in § 1.1.2, although the same word
is often used in the literature to designate what we call “truncation” (decay of off-diagonal elements of the density matriix)
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initial bundle of trajectories, associated with |ψ〉, is split into separate bundles, each of which is associated with a wave527

function |si〉. While this interpretation accounts for the bifurcation and for the uniqueness of the outcome of each run528

of a measurement process, it is not widely accepted [18, 19, 24, 35, 89].529

A more recent line of thought, going “beyond the quantum” [20] relies on modification of the Schrödinger530

mechanics by additional non-linear and stochastic terms; see Refs. [17, 90, 91] for review. Such generalizations are531

based in the belief, emphasized in the standard Copenhagen interpretation of quantum mechanics, that the Schrödinger532

equation is unable to describe the joint evolution of a system S and an apparatus A, so that a special separate postulate533

is needed to account for the rules of quantum measurements, in particular reduction. Indeed, a hamiltonian evolution534

seems to preclude the emergence of a single result in each single realization of a measurement [4, 13, 30].535

We will focus below on the most conservative approach where S + A is treated as an isolated quantum object536

governed by a Hamiltonian, and yet where reduction can be understood. The measurement is not considered on formal537

and general grounds as in many conceptual works aimed mainly at the interpretation of quantum mechanics, but it538

is fully analyzed as a dynamical process. Unfortunately the theory of specific experimental measurement processes539

based on hamiltonian dynamics is made difficult by the complexity of a real measuring apparatus. One can gain full540

insight only by solving models that mimic actual measurements. The formal issue is first to show how S + A, which541

starts from the state (1.5) and evolves along (1.6), may reach a final state of the truncated and correlated form (1.7),542

then to explain how dynamics may provide for each run of the experiment one among the reduced states D̂i.543

The realization of such a program should meet the major challenge raised long ago by Bell [92]: “So long as544

the wave packet reduction is an essential component, and so long as we do not know exactly when and how it takes545

over from the Schrödinger equation, we do not have an exact and unambiguous formulation of our most fundamental546

physical theory”. Indeed, a full understanding of quantum mechanics requires knowledge of the time scales involved547

in measurements.548

Knowing how the truncation, then the reduction proceed in time, how long they take, is a prerequisite for clearing549

up the meaning of this phenomenon. On the other hand, the registration is part of the measurement; it is important550

to exhibit the time scale on which it takes place, to determine whether it interferes with the reduction or not, and to551

know when and how the correlations between S and A are established. These are the tasks we undertake in the body552

of this work on a specific but flexible model. We resume in sections 9 and 11 how the solution of this model answers553

such questions.554

1.3.2. Glossary: Definition of the basic terms used throughout555

Every word has three definitions556

and three interpretations557

Costa Rican proverb558

Authors do not always assign the same meaning to some current words. In order to avoid misunderstandings, we559

gather here the definitions that we are using throughout.560

• Observable: an operator that represents a physical quantity of a system (§ 10.1.1).561

• Statistical ensemble: a real or virtual set of systems prepared under identical conditions (§ 10.1.3).562

• Subsensemble: part of an ensemble, itself regarded as a statistical ensemble.563

• Quantum state: a mathematical object from which all the probabilistic properties of a statistical ensemble –564

or subensemble – of systems can be obtained. (Strictly speaking, the state of an individual system refers to565

a thought ensemble in which it is embedded, since this state has a probabilistic nature.) States are generally566

represented by a density operator (or, in a given basis, a density matrix) which encompasses the expectation567

values of all the observables. Pure states are characterized by an absence of statistical fluctuations for some568

complete set of commuting observables (§ 10.1.4).569

• Measurement: a dynamical process which involves an apparatus A coupled to a tested system S and which570

provides information about one observable ŝ of S. The time-dependent state of the compound system S + A571

describes a statistical ensemble of runs, not individual runs. With this definition, the reading of the outcomes572
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and the selection of the results are not encompassed in the “measurement”, nor in the “truncation” and the573

“registration”.574

• Individual run of a measurement: a single interaction process between tested system and apparatus (prepared575

in a metastable state), followed by the reading of the outcome.576

• Ideal measurement: a measurement which does not perturb the observables of S that commute with ŝ.577

• Pointer; pointer variable: a part of the apparatus which undergoes a change that can be read off or registered.578

In general the pointer should be macroscopic and the pointer variable should be collective.579

• Truncation; disappearance of Schrödinger cat states: the disappearance, at the end of the measurement process,580

of the off-diagonal blocks of the density matrix of S + A describing the whole set of runs, in a basis where ŝ is581

diagonal17,18 (sections 5 and 6).582

• Dephasing: the decay of a sum of many oscillatory terms with different frequencies, arising from their mutual583

progressive interference in absence of a relevant coupling to an environment19.584

• Decoherence: in general, a decay of the off-diagonal blocks of a density matrix under the effect of a random585

environment, such as a thermal bath.586

• Registration: the creation during a measurement of correlations between S and the macroscopic pointer of A.587

Information is thus transferred to the apparatus, but becomes available only if uniqueness of the indication of588

the pointer is ensured for individual runs (section 7).589

• Reduction: for an individual run of the measurement, assignment of a state to S+A at the end of the process17,18.590

Reduction is the objectification step, which reveals properties of a tested individual object. It requires truncation,591

registration, uniqueness of the indication of the pointer and selection of this outcome (§§ 11.3.1 and 11.3.2).592

• Selection: the sorting of the runs of an ideal measurement according to the indication of the pointer. The original593

ensemble that underwent the process is thus split into subensembles characterized by a well-defined value of ŝ.594

Measurement followed by selection may constitute a preparation (§ 10.2.2 and § 11.3.2).595

• Hierarchic structure of subensembles: a property required to solve the quantum measurement problem. Namely,596

the final state associated with any subset of runs of the measurement should have the same form as for the whole597

set but with different weights (§ 11.2.1).598

• Subensemble relaxation: a dynamical process within the apparatus which leads the state of S + A to equilibrium,599

for an arbitrary subensemble of runs (§§ 11.2.4 and 11.2.5).600

1.3.3. Outline601

Doorknob: Read the directions and directly602

you will be directed in the right direction603

“Alice in Wonderland”, Walt Disney film604

We review in section 2 the works that tackled the program sketched above, and discuss to which extent they605

satisfy the various features that we stressed in the introduction. For instance, do they explain reduction by relying606

on a full dynamical solution of the Liouville–von Neumann equation for the considered model, or do they only607

invoke environment-induced decoherence? Do they solve the preferred basis paradox? Do they account for a robust608

registration? Do they produce the time scales involved in the process?609

17 We will refrain from using popular terms such as “collapse of the wave function” or “reduction of the wave packet”
18 We use the terms “weak truncation” and “weak reduction” for the same operations as truncation and reduction, but perfomed on the marginal

density matrix of the tested system S, and not on the density matrix of the compound system S+A
19An example is the relaxation due to an inhomogeneous magnetic field in NMR
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In section 3 we present the Curie–Weiss model, which encompasses many properties of the previous models and610

on which we will focus afterwards. It is sufficiently simple to be completely solvable, sufficiently elaborate to account611

for all characteristics of ideal quantum measurements, and sufficiently realistic to resemble actual experiments: The612

apparatus simulates a magnetic dot, a standard registering device.613

The detailed solution of the equations of motion that describe a large set E of runs for this model is worked out614

in sections 4 to 7, some calculations being given in appendices. After analyzing the equations of motion of S + A615

(section 4), we exhibit several time scales. The truncation rapidly takes place (section 5). It is then made irremediable616

owing to two alternative mechanisms (section 6). Amplification and registration require much longer delays since617

they involve a macroscopic change of the apparatus and energy exchange with the bath (section 7).618

Solving several variants of the Curie–Weiss model allows us to explore various dynamical processes which can be619

interpreted either as imperfect measurements or as failures (section 8). In particular, we study what happens when the620

pointer has few degrees of freedom or when one tries to simultaneously measure non-commuting observables. The621

calculations are less simple than for the original model, but are included in the text for completeness.622

The results of sections 4 to 8 are resumed and analyzed in section 9, which also presents some simplified deriva-623

tions suited for tutorial purposes. However, truncation and registration, explained in sections 5 to 7 for the Curie–624

Weiss model, are only prerequisites for elucidating the quantum measurement problem, which itself is needed to625

explain reduction.626

Before we tackle this remaining task, we need to make more precise the conceptual framework on which we rely,627

since reduction is tightly related with the interpretation of quantum mechanics. The statistical interpretation, in a form628

presented in section 10, appears as the most natural and consistent one in this respect.629

We are then in position to work out the occurrence of reduction within the framework of the statistical interpreta-630

tion by analyzing arbitrary subsets of runs. This is achieved in section 11 for a modified Curie–Weiss model, in which631

very weak but still sufficiently elaborate interactions within the apparatus are implemented. The uniqueness of the632

result of a single measurement, as well as the occurrence of classical probabilities, are thus seen to emerge only from633

the dynamics of the measurement process.634

Lessons for future work are drawn in section 12, and some open problems are suggested in section 13.635

The reader interested only in the results may skip the technical sections 4 to 8, and focus upon the first pages of636

section 9, which can be regarded as a self-contained reading guide for them, and upon section 11. The conceptual637

outcomes are gathered in sections 10 and 12.638
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2. The approach based on models639

Point n’est besoin d’espérer pour entreprendre,640

ni de réussir pour persévérer20
641

Charles le Téméraire and William of Orange642

We have briefly surveyed in § 1.3.1 many theoretical ideas intended to elucidate the problem of quantum mea-643

surements. In § 12.4.2 and § 12.4.3 we mention a few other ideas about this problem. However, we feel that it is644

more appropriate to think along the lines of an experimentalist who performs measurements in his laboratory. For this645

reason, it is instructive to formulate and solve models with this scope. We review in this section various models in646

which S + A is treated as a compound system which evolves during the measurement process according to the stan-647

dard rules of quantum mechanics. The existing models are roughly divided into related classes. Several models serve648

to elucidate open problems. Besides specific models, we shall discuss several more general approaches to quantum649

measurements (e.g., the decoherence and consistent histories approaches).650

2.1. Heisenberg–von Neumann setup651

Quod licet Iovi, non licet bovi 21
652

Roman proverb653

A general set-up of quantum measurement was proposed and analysed by Heisenberg [2, 3]. His ideas were654

formalized by von Neumann who proposed the very first mathematically rigorous model of quantum measurement655

[4]. An early review on this subject is by London and Bauer [30], in the sixties it was carefully reviewed by Wigner656

[13]; see [93] for a modern review.657

Von Neumann formulated the measurement process as a coupling between two quantum systems with a specific658

interaction Hamiltonian that involves the (tensor) product between the measured observable of the tested system and659

the pointer variable, an observable of the apparatus. This interaction conserves the measured observable and ensures a660

correlation between the tested quantity and the pointer obervable. In one way or another the von Neumann interaction661

Hamiltonian is applied in all subsequent models of ideal quantum measurements. However, von Neumannn’s model662

does not account for the differences between the microscopic [system] and macroscopic [apparatus] scales. As a main663

consequence, it does not have a mechanism to ensure the specific classical correlations (in the final state of the system664

+ apparatus) necessary for the proper interpretation of a quantum measurement. Another drawback of this approach665

is its requirement for the initial state of the measuring system (the apparatus) to be a pure state (so it is described666

by a single wave function). Moreover, this should be a specific pure state, where fluctuations of the pointer variable667

are small. Both of these features are unrealistic. In addition, and most importantly, the von Neumann model does668

not account for the features of truncation and reduction; it only shows weak reduction (see terminology in § 1.1.2669

and § 1.3.2). This fact led von Neumann (and later on Wigner [13]) to postulate – on top of the usual Schrödinger670

evolution – a specific dynamic process that is supposed to achieve the reduction [4].671

With all these specific features it is not surprising that the von Neumann model has only one characteristic time672

driven by the interaction Hamiltonian. Over this time the apparatus variable gets correlated with the initial state of the673

measured system.674

Jauch considers the main problem of the original von Neumann model, i.e. that in the final state it does not ensure675

specific classical correlations between the apparatus and the system [94]. A solution of this problem is attempted676

within the lines suggested (using his words) during “the heroic period of quantum mechanics” that is looking for677

classical features of the apparatus. To this end, Jauch introduces the concept of equivalence between two states (as678

represented by density matrices): two states are equivalent with respect to a set of observables, if these observables679

cannot distinguish one of these states from another [94]. Next, he shows that for the von Neumann model there is a680

natural set of commuting (hence classical) observables, so that with respect to this set the final state of the model is681

not distinguishable from the one having the needed classical correlations. At the same time Jauch accepts that some682

other observable of the system and the apparatus can distinguish these states. Next, he makes an attempt to define683

20It is not necessary to hope for undertaking, neither to succeed for persevering
21What is allowed for Iupiter, is now allowed for the rind
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the measurement event via his concept of classical equivalence. In our opinion this attempt is interesting, but not684

successful.685

2.2. Quantum–classical models: an open issue?686

Gooi geen oude schoenen weg687

voor je nieuwe hebt22
688

Dutch proverb689

Following suggestions of Bohr that the proper quantum measurement should imply a classical apparatus [83,690

84, 85], there were several attempts to work out interaction between a quantum and an explicitly classical system691

[95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109]. (Neither Bohr [83, 84], nor Landau and692

Lifshitz [85] who present Bohr’s opinion in quite detail, consider the proper interaction processes.) This subject693

is referred to as hybrid (quantum–classical) dynamics. Besides the measurement theory it is supposed to apply in694

quantum chemistry [95, 96] (where the full modeling of quantum degrees of freedom is difficult) and in quantum695

gravity [110], where the proper quantum dynamics of the gravitational field is not known. There are several versions696

of the hybrid dynamics. The situation, where the classical degree of freedom is of a mean-field type is especially697

well-known [95, 96]. In that case the hybrid dynamics can be derived variationally from a simple combination of698

quantum and classical Lagrangian. More refined versions of the hybrid dynamics attempt to describe interactions699

between the classical degree(s) of freedom and quantum fluctuations. Such theories are supposed to be closed and700

self-consistent, and (if they really exist) they would somehow get the same fundamental status as their limiting cases,701

i.e., as quantum and classical mechanics. The numerous attempts to formulate such fundamental quantum–classical702

theories have encountered severe difficulties [98, 99, 100, 101, 102, 103, 104, 105, 106]. There are no–go theorems703

showing in which specific sense such theories cannot exist [107, 108].704

As far as the quantum measurement issues are concerned, the hybrid dynamical models have not received the705

attention they deserve. This is surprising, because Bohr’s insistence on the classicality of the apparatus is widely706

known and frequently repeated. The existing works are summarized as follows. Diosi and co-authors stated that their707

scheme for the hybrid dynamics is useful for quantum measurements [98, 99], albeit that they did not come with708

a more or less explicit analysis. Later on Terno has shown that the problem of a quantum measurement cannot be709

solved via a certain class of hybrid dynamic systems [111]. His arguments rely on the fact that the majority of hybrid710

system have pathological features in one way or another. Terno also reviews some earlier attempts, in particular by711

him in collaboration with Peres [106], to describe quantum measurements via hybrid dynamics; see the book of Peres712

[22] for preliminary ideas within this approach. However, recently Hall and Reginato [109, 112] suggest a scheme713

for the hybrid dynamics that seems to be free of pathological features. This scheme is based on coupled quantum714

and classical ensembles. A related set-up of hybrid dynamics is proposed by Elze and coworkers based on a path-715

integral formulation [113], see also [114]. If Hall and Reginato’s claim is true that such schemes can circumvent716

no-go theorems [109, 112], it should be interesting to look again at the features of quantum measurements from717

the perspective of an explicitly classical apparatus: Bohr’s program can still be opened! A modern view on the718

Copenhagen interpretation developed by (among others) Bohr is presented in Refs. [115, 116].719

Everitt, Munro and Spiller discuss a measurement model which, while fully quantum mechanical, makes use of720

analogy with classical features of the apparatus [117]. The model consists of a two-level system (the measured721

system), the apparatus, which is a one-dimensional quartic oscillator under external driving, and an environment722

whose influence on the system + apparatus is described within the Lindblad master-equation approach and its quantum723

state diffusion unravelling [118]. The main point of this work is that the apparatus can display the chaotic features724

of a damped forced non-linear oscillator (and is thus not related to Hamiltonian chaos). Everitt, Munro and Spiller725

make use of this point for the following reason: The feature of chaos allows one to distinguish quantum from classical726

regimes for the apparatus (this is not fundamental - simply a convenience for demonstrating a quantum to classical727

transition). The model reproduces certain features expected from individual measurement outcomes, but this happens728

at the cost of unravelling the master equation, a relatively arbitrary procedure of going from density matrices to729

random wavefunctions. The authors of Ref. [117] are aware of this arbitrariness and attempt to minimize it. It should730

22Don’t throw away old shoes before you have new ones
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be noted that, as one would expect, in the classical limit the choice of how to unravel seems to have no effect ons731

the emergence of a classical dynamic (see, for example, [119]). This implies that the results of [117] may well be732

independent of the unravelling – but this has yet to be demonstrated.733

In Ref. [120] Blanchard and Jadczyk discuss a quantum-classical model for measurements. They present it as a734

minimal phenomenological model for describing quantum measurements within the concept of an explicitly classical735

apparatus. In contrast to other quantum-classical models, Blanchard and Jadczyk consider a dissipative interaction736

between the quantum and classical subsystems. This interaction is modeled by a completely positive map. These737

maps are frequently applied for describing an open-system quantum dynamics, where the target system couples with738

an external environment; see e.g. Refs. [121, 122, 123]. (However, this is certainly not the only possibility for an739

open-system quantum dynamics; see in this context Ref. [124].) Blanchard and Jadczyk found a simple form of740

the completely map that suffices for accounting (phenomenologically) for certain features of quantum measurements,741

such the response of the pointer classical states to the initial state of the quantum system, as well as the proper final742

state of the quantum system.743

This approach is generalized in [125], where Blanchard and Jadczyk account for the emergence of events during744

the quantum measurements. This is done by introducing an additional phenomenological step thereby the quantum-745

classical dynamics for the quantum density matrix and classical probability distribution is regarded as the result of746

averaging over the states of some underlying stochastic process (a procedure akin to unraveling the open-system747

quantum master equation). The stochastic process – which gives rise to what Blanchard and Jadczyk call event-748

enhanced quantum theory – is formulated in the tensor product of the classical subsystem’s event space and the749

quantum subsystem’s Hilbert space.750

In our opinion this approach to quantum measurements has an extensively phenomenological character, a fact751

well-admitted by Blanchard and Jadczyk. On the other hand, its central idea that the emergence of measurement752

events should be related to specific features of the measuring apparatus is certainly valuable and will be developed in753

the present work.754

In closing this subsection we note that the relation between quantum and classical has yet another, geometrical755

twist, because the pure-state quantum dynamics (described by the Schrödinger equation) can be exactly mapped756

to a classical Hamiltonian dynamics evolving in a suitable classical symplectic space [126, 127, 128]. Quantum757

aspects (such as uncertainties and the Planck’s constant) are then reflected via a Riemannian metrics in this space758

[127, 128]; see also [129] for a recent review. This is a geometrical counterpart to the usual algebraic description of759

quantum mechanics, and is considered to be a potentially rich source for various generalizations of quantum mechanics760

[129, 130]. A formulation of the quantum measurement problem in this language was attempted in [130]. We note761

that so far this approach is basically restricted to pure states (see, however, [128] in this context).762

Further references on crucial aspects of the quantum-to-classical transition are [131, 132, 133].763

2.2.1. Measurements in underlying classical theory764

Non quia difficilia sunt non audemus,765

sed quia non audemus, difficilia sunt23
766

Seneca767

The major part of this section is devoted to measurement models, where the measuring apparatus is modeled as768

a classical system. There is another line of research, where quantum mechanics as such is viewed as as an approxi-769

mation of a stochastic classical theory; see, e.g. [134, 135, 136, 137], and [138, 139, 140, 141, 142] . The ultimate770

promise of such approaches is to go beyond the predictions of quantum mechanics; see, e.g. [140]. Their basic771

problem is to reconcile essential differences between the probability structures in quantum mechanics and classical772

mechanics. There are numerous attempts of such effective classical descriptions, but many of them do not pay much773

attention to those differences, focusing instead on deriving classically certain aspects of quantum theory (stochastic774

electrodynamics is a vivid example of such an attitude).775

Recent works by Khrennikov and coauthors attempt to explain how an underlying classical theory can reproduce776

the probability rules of quantum mechanics without conflicting with Bell theorems, contextuality etc. [139, 141,777

23It is not because things are difficult that we do not dare, but because we do not dare, things are difficult



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 25

142]24. This is done by postulating specific scenarios for uncertainties produced during a measurement, by means of778

imprecise apparatuses, of the underlying classical objects (random fields). In this sense the works by Khrennikov and779

coauthors [141, 142] belong to the realm of quantum measurements and will be reviewed below.780

The starting point of the approach is based on the following observation [139, 140, 141, 142]. Let a classical781

random vector (x1, · · · , xn) be given with zero average x̄k = 0 for k = 1, · · · , n. Let (x1, · · · , xn) be observed through782

the mean value of a scalar function f (x1, · · · , xn). We assume that f (0, · · · , 0) = 0 and that fluctuations of xk around its783

average are small. Hence, f (x1, · · · , xn) =
∑n

i, j=1
1
2 xix j∂xi∂x j f (0, · · · , 0). If the symmetric and positive matrix ρ with784

elements ρi j = 1
2 xix j is regarded as a density matrix, and the symmetric matrix A with elements Ai j = ∂xi∂x j f (0, · · · , 0)785

as an observable, one can write f (x1, · · · , xn) = tr ρA, which has the form of Born’s formula for calculating the average786

of A in the state ρ. By this principle all the quantum observables can be represented as averages over classical random787

fields. Taking complex valued classical random fields one can make both ρ and A hermitean instead of just symmetric.788

As it presently stands, this approach is purely phenomenological and is simply aimed at replacing quantum observables789

by classical averages in a mathematically exact manner. No interpretation of the physical meaning of (x1, · · · , xn) is790

given25. In a way this representation of quantum averages via classical random fields goes back to the wave-modus of791

accounting for quantum effects. This is why it is important to see how experiments that demonstrate the existence of792

photon as a corpuscle (particle) fit into this picture. Khrennikov and coauthors show that also experiments detecting793

the corpuscular nature of light can be accomodated in this classical picture provided that one accounts for the threshold794

of the detectors [141, 142]. Here the existence of photon is a consequence of specific modifications introduced by795

threshold detectors when measuring classical random fields. Khrennikov and co-authors stress that this picture is796

hypothetical as long as one has not verified experimentally whether the threshold dependence of real experiments does797

indeed have this specific form [141]. In their opinion this question is non-trivial and still awaits for its experimental798

resolution.799

This resolution should also point out whether the idea of accounting for specific features of quantum probability800

(such as Bell’s inequality) via classical models is tenable [138, 139, 141, 142]. It is currently realized that the vi-801

olation of Bell’s inequalities [27, 29, 31, 34] should be attributed to the non-commutative nature of the distribution802

D̂ rather than to non-locality; quantum mechanics does not involve ordinary probabilities nor ordinary correlations.803

The violation of the classical inequality, observed experimentally [144, 145, 146, 147, 148, 149] arises when one804

puts together outcomes of measurements performed in different experimental contexts, and this may itself be a prob-805

lem [150, 151, 152, 153, 154]. The discussion of § 8.3.4 shows how quantum and ordinary correlations may be806

reconciled in the context of a thought experiment where one attempts to measure simultaneously, with a unique set-807

ting, all spin components.808

2.3. Explicitly infinite apparatus: Coleman–Hepp and related models809

Before you milk a cow,810

tie it up811

South African proverb812

Several authors argued that once the quantum measurement apparatus is supposed to be a macroscopic system, the813

most natural framework for describing measurements is to assume that it is explicitly infinite; see the review by Bub814

[155]. C∗-algebras is the standard tool for dealing with this situation [156]. Its main pecularity is that there are (many)815

inequivalent unitary representations of the algebra of observables, i.e., certain superpositions between wavefunctions816

cannot be physical states (in contrast to finite-dimensional Hilbert spaces) [155]. This is supposed to be helpful in817

constructing measurement models. Hepp proposed first such models [12]. He starts his investigation by stating some818

among the goals of quantum measurement models. In particular, he stresses that an important feature of the problem819

is in getting classical correlations between the measured observable and the pointer variable of the apparatus, and820

that quantum mechanics is a theory that describes probabilities of certain events. Hepp then argues that the quantum821

measurement problem can be solved, i.e., the required classical correlations can be established dynamically, if one822

restricts oneself to macroscopic observables. He then moves to concrete models, which are solved in the C∗-algebraic823

24For an (over)simplified discussion of the Bell theorem and related matters, see [143]
25They may show up, though, as the resonant modes in a dynamical path integral description of Stochastic Electrodynamics
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framework. The infinite system approach is also employed in the quantum measurement model proposed by Whitten-824

Wolfe and Emch [157].825

However, working with an infinite measuring apparatus hides the physical meaning of the approach, because826

some important dynamic scales of the quantum measurement do depend on the number of degrees of freedom of the827

apparatus [68]. In particular, the truncation time may tend to zero in the limit of an infinite apparatus and cannot then828

be evaluated. Thus, making the apparatus explicitly infinite (instead of taking it large, but finite) misses an important829

piece of physics, and does not allow to understand which features of the quantum measurement will survive for a830

apparatus having a mesoscopic scale.831

Hepp also studies several exactly solvable models, which demonstrate various aspects of his proposal. One of832

them—proposed to Hepp by Coleman and nowadays called the Coleman–Hepp model— describes an ultra-relativistic833

particle interacting with a linear chain of spins. Hepp analyzes this model in the infinite apparatus situation; this834

has several drawbacks, e.g., the overall measurement time is obviously infinite. The physical representation of the835

Coleman–Hepp Hamiltonian is improved by Nakazato and Pascazio [158]. They show that the basic conclusions on836

the Coleman–Hepp Hamiltonian approach can survive in a more realistic model, where the self-energy of the spin837

chain is taken into account. Nakazato and Pascazio also discuss subtleties involved in taking the thermodynamic838

limit for the model [158]. The Coleman–Hepp model with a large but finite number of the apparatus particles is839

studied by Sewell [159, 160, 161]. He improves on previous treatments by carefully calculating the dependence of840

the characteristic times of the model on this number, and discusses possible imperfections of the measurement model841

arising from a finite number of particles.842

Using the example of the Coleman–Hepp model, Bell demonstrates explicitly [92] that the specific features of843

the quantum measurement hold only for a certain class of observables, including macroscopic observables [69, 159,844

160, 161]. It is then possible to construct an observable for which those features do not hold [92]. We recall that the845

same holds in the irreversibility problem: it is always possible to construct an observable of a macroscopic system846

(having a large, but finite number of particles) that will not show the signs of irreversible dynamics, i.e., it will not847

be subject to relaxation. Bell takes this aspect as an essential drawback and states that the quantum measurement was848

not and cannot be solved within a statistical mechanics approach [92]. Our attitude in the present paper is different.849

We believe that although concrete models of quantum measurements may have various drawbacks, the resolution of850

the measurement problem is definitely to be sought along the routes of quantum statistical mechanics. The fact that851

certain restrictions on the set of observables are needed, simply indicates that, similar to irreversibility, a quantum852

measurement is an emergent phenomenon of a large system – the tested system combined with the apparatus – over853

some characteristic time.854

2.4. Quantum statistical models855

If I have a thousand ideas and only one turns out to be good,856

I am satisfied857

Alfred Bernhard Nobel858

Here we describe several models based on quantum statistical mechanics. In contrast to the previous chapter, these859

models do not invoke anything beyond the standard quantum mechanics of finite though large systems.860

Green proposed a realistic model of quantum measurement [162]. He emphasizes the necessity of describing the861

apparatus via a mixed, quasi-equilibrium state and stresses that the initial state of the apparatus should be macroscopic862

and metastable. The model studied in [162] includes a spin- 1
2 particle interacting with two thermal baths at different863

temperatures. The two-temperature situation serves to simulate metastability. The tested particle switches interaction864

between the baths. By registering the amount of heat flow through the baths (a macroscopic pointer variable), one865

can draw certain conclusions about the initial state of the spin. Off-diagonal terms of the spin density matrix are866

suppressed via a mechanism akin to inhomogeneous broadening. However, an explicit analysis of the dynamic regime867

and its characteristic times is absent.868

Cini studies a simple model for the quantum measurement process which illustrates some of the aspects related to869

the macroscopic character of the apparatus [163]. The model is exactly solvable and can be boiled down to a spin- 1
2870

particle (tested spin) interacting with a spin-L particle (apparatus). The interaction Hamiltonian is ∝ σzLz, where σz871

and Lz are, respectively, the third components of the spin- 1
2 and spin L. Cini shows that in the limit L � 1 and for a872

sufficiently long interaction time, the off-diagonal terms introduced by an (arbitrary) initial state of the tested spin give873
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negligible contributions to the observed quantities, i.e., to the variables of the tested spin and the collective variables874

of the apparatus. The characteristic times of this process are analyzed, as well as the situation with a large but finite875

value of L.876

In Refs. [10, 11] Blokhintsev studies, within the statistical interpretation of quantum mechanics, several inter-877

esting measurement models with a metastable initial state of the apparatus: an incoming test particle interacting878

with an apparatus-particle in a metastable potential well, a test neutron triggering a nuclear chain reaction, et cetera.879

Though the considered models are physically appealing, the involved measurement apparatuses are frequently not880

really macroscopic. Neither does Blokhintsev pay proper attention to the correlations between the system and the881

apparatus in the final state.882

Requardt studies a quantum measurement model, in which due to collisional interaction with the tested system,883

the pointer variable of a macroscopic measuring apparatus undergoes a coherent motion, in which the momentum884

correlates with the values of the measured observable (coordinate) [164]. It is stressed that for the approach to have885

a proper physical meaning, the apparatus should have a large but finite number of degrees of freedom. However,886

no detailed account of characteristic measurement times is given. Requardt also assumes that the initial state of the887

measurement apparatus is described by a wave function, which is merely consistent with the macroscopic information888

initially available on this apparatus. He focuses on those aspects of the model which will likely survive in a more889

general theory of quantum measurements; see in this context his later work [69] that is reviewed below.890

An interesting statistical mechanical model of quantum measurement was proposed and studied in Ref. [165] by891

Gaveau and Schulman. The role of apparatus is played by a one-dimensional Ising spin model. Two basic energy892

parameters of the model are an external field and the spin-spin coupling (exchange coupling). An external field is893

tuned in such a way that a spontaneous flipping of one spin is energetically not beneficial, while the characteristic894

time of flipping two spins simultaneously is very large. This requirement of metastability puts an upper limit on the895

number of spins in the apparatus. The tested spin 1
2 interacts only with one spin of the apparatus; this is definitely an896

advantage of this model. The spin-apparatus interaction creates a domino effect bringing the apparatus to a unique897

ferrromagnetic state. This happens for the tested spin pointing up. For the tested spin pointing down nothing happens,898

since in this state the tested spin does not interact with the apparatus. Characteristic times of the measurement are899

not studied in detail, though Gaveau and Schulman calculate the overall relaxation time and the decay time of the900

metastable state. It is unclear whether this model is supposed to work for an arbitrary initial state of the tested spin.901

Ref. [166] by Merlin studies a quantum mechanical model for distinguishing two different types of bosonic par-902

ticles. The model is inspired by Glaser’s chamber device, and has the realistic feature that the bosonic particle to be903

tested interacts only with one particle of the apparatus (which by itself is made out of bosons). The initial state of904

the apparatus is described by a pure state and it is formally metastable (formally, because this is not a thermodynamic905

metastability). The relaxation process is not accounted for explicitly; its consequences are simply postulated. No906

analysis of characteristic relaxation times is presented. Merlin analyses the relation of measurement processes with907

the phenomenon of spontaneous symmetry breaking.908

2.4.1. Spontaneous symmetry breaking909

Les miroirs feraient bien de réfléchir un peu plus910

avant de renvoyer les images26
911

Jean Cocteau, Le sang d’un poète912

The role of spontaneous symmetry breaking as an essential ingredient of the quantum measurement process is913

underlined in papers by Grady [167], Fioroni and Immirzi [168] and Pankovic and Predojevic [169]. They stress that914

superpositions of vacuum states are not allowed in quantum field theory, since these superpositions do not satisfy the915

cluster property. All three approaches stay mainly at a qualitative level, though Fioroni and Immirzi go somewhat916

further in relating ideas on quantum measurement process to specific first-order phase transition scenarios. An earlier917

discussion on symmetry breaking, quantum measurements and geometrical concepts of quantum field theory is given918

by Ne’eman [170].919

Ref. [171] by Zimanyi and Vladar also emphasizes the relevance of phase transitions and symmetry breaking for920

quantum measurements. They explicitly adopt the statistical interpretation of quantum mechanics. General statements921

26Mirrors should reflect some more before sending back the images
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are illustrated via the Caldeira-Leggett model [172, 173, 174, 175]: a two-level system coupled to a bath of harmonic922

oscillators. This model undergoes a second-order phase transition with relatively weak decay of off-diganonal terms923

in the thermodynamic limit, provided that the coupling of the two-level system to the bath is sufficiently strong. The924

authors speculate about extending their results to first-order phase transitions. A dynamical consideration is basically925

absent and the physical meaning of the pointer variable is not clear.926

Thus the concept of spontaneous symmetry breaking is frequently discussed in the context of quantum measure-927

ment models (although it is not anymore strictly spontaneous, but driven by the interaction with the system of which928

the observable is to be measured). It is also an essential feature of the approach discussed in the present paper. It929

should however be noted that so far only one scenario of symmetry breaking has been considered in the context of930

quantum measurements (the one that can be called the classical scenario), where the higher temperature extremum931

of the free energy becomes unstable (or at least metastable) and the system moves to another, more stable state (with932

lower free energy). Another scenario is known for certain quantum systems (e.g., quantum antiferromagnets) with a933

low-temperature spontaneously symmetry broken state; see, e.g., [176]. Here the non-symmetric state is not an eigen-934

state of the Hamiltonian, and (in general) does not have less energy than the unstable ground state. The consequences935

of this (quantum) scenario for quantum measurements are so far not explored. However, recently van Wezel, van den936

Brink and Zaanen studied specific decoherence mechanisms that are induced by this scenario of symmetry breaking.937

[176].938

2.4.2. System-pointer-bath models939

Je moet met de juiste wapens ten strijde trekken27
940

Dutch proverb941

Refs. [177] by Haake and Walls and [178] by Haake and Zukowski study a measurement of a discrete-spectrum942

variable coupled to a single-particle apparatus (the meter). The latter is a harmonic oscillator, and it interacts with943

a thermal bath, which is modeled via harmonic oscillators. The interaction between the tested system and the meter944

is impulsive (it lasts a short time) and involves the tensor product of the measured observable and the momentum945

of the meter. There are two characteristic times here: on the shorter time, the impulsive interaction correlates the946

states of the object and of the meter, while on the longer time scale the state of the meter becomes classical under947

the influence of the thermal bath, and the probability distribution of the meter coordinate is prepared via mixing well-948

localized probability distributions centered at the eigenvalues of the measured quantity, with the weights satisfying949

the Born rule [1]. (This sequence of processes roughly corresponds to the ideas of decoherence theory; see below for950

more detail.) At an even longer time scale the meter will completely thermalize and forget about its interaction with951

the tested system. The authors of [177, 178] also consider a situation where the meter becomes unstable under the952

influence of the thermal bath, since it now feels an inverted parabolic potential. Then the selection of the concrete953

branch of instability can be driven by the interaction with the object. Since the initial state of such an unstable954

oscillator is not properly metastable, one has to select a special regime where the spontaneous instability decay can955

be neglected.956

The quantum measurement model studied in [179] by Venugopalan is in many aspects similar to models investi-957

gated in [177, 178]. The author stresses relations of the studied model to ideas from the decoherence theory.958

Ref. [180] by the present authors investigates a model of quantum measurement where the macroscopic measure-959

ment apparatus is modeled as an ideal Bose gas, in which the amplitude of the condensate is taken as the pointer960

variable. The model is essentially based on the properties of irreversibility and of ergodicity breaking, which are961

inherent in the model apparatus. The measurement process takes place in two steps: First, the truncation of the state962

of the tested system takes place, this process is governed by the apparatus-system interaction. During the second step963

classical correlations are established between the apparatus and the tested system over the much longer time scale of964

equilibration of the apparatus. While the model allows to understand some basic features of the quantum measurement965

as a driven phase-transition, its dynamical treatment contains definite drawbacks. First, the Markov approximation966

for the apparatus-bath interaction, though correct for large times, is incorrectly employed for very short times, which967

greatly overestimates the truncation time. Another drawback is that the model is based on the phase transition in an968

27You must go into battle with the right weapons
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ideal Bose gas. This transition is known to have certain pathological features (as compared to a more realistic phase-969

transition in a weakly interacting Bose gas). Though the authors believe that this fact did not influence the qualitative970

outcomes of the model, it is certainly desirable to have better models, where the phase transition scenario would be971

generic and robust. Such models will be considered in later chapters of this work.972

In Ref. [181, 182] Spehner and Haake present a measurement model that in several aspects improves upon previous973

models. The model includes the tested system, an oscillator (generally anharmonic), which plays the role of apparatus,974

and a thermal bath coupled to the oscillator. The time scales of the model are set in such a way that the correlations975

between the measured observable of the system and the pointer variable of the apparatus (here the momentum of the976

anharmonic oscillator) and the decay of the off-diagonal terms of the tested system density matrix are established977

simultaneously. This implies realistically that no macroscopic superpositions are generated. In addition, the initial978

state of the apparatus and its bath is not assumed to be factorized, which makes it possible to study strong (and also979

anharmonic) apparatus-bath couplings.980

Ref. [183] by Mozyrsky and Privman studies a quantum measurement model, which consists of three parts: the981

tested system, the apparatus and a thermal bath that directly couples to the system (and not to the apparatus). The982

initial state of the apparatus is not metastable, it is chosen to be an equilibrium state. The dynamics of the mea-983

sured observable of the system is neglected in the course of measurement. The authors of [183] show that after984

some decoherence time their model is able to reproduce specific correlations that are expected for a proper quantum985

measurement.986

Omnès recently studied a model for a quantum measurement [184]. The pointer variable of the apparatus is sup-987

posed to be its (collective) coordinate. The introduction of the measurement process is accompanied by a discussion988

on self-organization. For solving this Omnès partially involves the mean-field method, because the many-body appa-989

ratus density matrix is substituted by the tensor product of the partial density matrices. The dynamics of the model990

involves both decoherence and reduction. These two different processes are analysed together and sometimes in rather991

common terms, which can obscure important physical differences between them. In the second part Omnès studies992

fluctuations of the observation probabilities for various measurement results. These fluctuations are said to arise due993

to a coupling with an external environment modeled as a phonon bath.994

Van Kampen stresses the importance of considering a macroscopic and metastable measuring apparatus and pro-995

poses a model that is supposed to illustrate the main aspects of the measurement process [14]. The model consists of996

a single atom interacting with a multi-mode electromagnetic field, which is playing the role of apparatus. The emitted997

photon that is generated correlates with the value of the measured observable. The apparatus can be macroscopic998

(since the vacuum has many modes), but its (thermodynamically) metastable character is questionable. The model999

is not solved in detail, and its main dynamical consequences are not analyzed. Nevertheless, van Kampen offers a1000

qualitative analysis of this model, which appears to support the common intuition on quantum measurements. The1001

resulting insights are summarized in his “ten theorems” on quantum measurements.1002

2.4.3. Towards model-independent approaches1003

Qui se soucie de chaque petite plume1004

ne devrait pas faire le lit28
1005

Swiss proverb1006

Sewell [159, 160, 161] and independently Requardt [69] attempt to put the results obtained from several models1007

into a single model-independent approach, which presumably may pave a way towards a general theory of quantum1008

measurements. The basic starting point of the approach is that the measuring apparatus, being a many-body quantum1009

system, does have a set of macroscopic, mutually commuting observables {A1, . . . , AM}withM a macroscopic integer.1010

The commutation is approximate for a large, but finite number of reservoir particles, but it becomes exact in the1011

thermodynamic limit for the apparatus. Each Ak is typically a normalized sum over a large number of apparatus1012

particles. The set {A1, . . . , AM} is now partioned into macroscopic cells; each such cell refers to some subspace in the1013

Hilbert space formed by a common eigenvector. The cells are distinguished from each other by certain combinations of1014

the eigenvalues of {A1, . . . , AM}. The purpose of partioning into cells is to correlate each eigenvalue of the microscopic1015

28Who cares about every little feather should not make the bed
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observable to be measured with the corresponding cell. In the simplest situation the latter set reduces to just one1016

observable A, while two cells refer to the subspace formed by the eigenvectors of A associated with positive or negative1017

eigenvalues. Further derivations, which so far were carried out on the levels of models only [69, 159, 160, 161],1018

amount to showing that a specific coupling between the system and the apparatus can produce their joint final state,1019

which from the viewpoint of observables Ak ⊗ S – where S is any observable of the microscopic measured system –1020

does have several features required for a good (or even ideal) quantum measurement.1021

2.4.4. Ergodic theory approach1022

Wenn i wieder, wieder komm 29
1023

From the German folk song “Muß i denn”1024

Daneri, Loinger and Prosperi approach quantum measurements via the quantum ergodic theory [21]. Such an1025

approach was anticipated in the late forties by the works of Jordan [185] and Ludwig [186]. Daneri, Loinger and1026

Prosperi model the measuring apparatus as a macroscopic system, which in addition to energy has another conserved1027

quantity, which serves the role of the pointer variable. Under the influence of the system to be measured this conser-1028

vation is broken, and there is a possibility to correlate different values of the measured observable with the pointer1029

values. Daneri, Loinger and Prosperi invoke the basic assumption of ergodic theory and treat the overall density1030

matrix via time-averaging [21]. The time-averaged density matrix satisfies the necessary requirements for an ideal1031

measurement. However, the use of the time-averaging does not allow to understand the dynamics of the quantum1032

measurement process, because no information about the actual dynamical time scales is retained in the time-averaged1033

density matrix. Also, although the initial state of the measuring apparatus does have some properties of metastability,1034

it is not really metastable in the thermodynamic sense.1035

The publication of the paper by Daneri, Loinger and Prosperi in early sixties induced a hot debate on the measure-1036

ment problem; see [187] for a historical outline. We shall not attempt to review this debate here, but only mention1037

one aspect of it: Tausk (see [187] for a description of his unpublished work) and later on Jauch, Wigner and Yanase1038

[188] criticize the approach by Daneri, Loinger and Prosperi via the argument of an interaction free measurement.1039

This type of measurements is first discussed by Renninger [189]. The argument goes as follows: sometimes one1040

can gather information about the measured system even without any macroscopic process generated in the measuring1041

apparatus. This can happen, for instance, in the double-slit experiment when the apparatus measuring the coordinate1042

of the particle is placed only at one slit. Then the non-detection by this apparatus will – ideally – indicate that the1043

particle passed through the other slit. The argument thus intends to demonstrate that quantum measurements need not1044

be related to macroscopic (or irreversible) processes. This argument however does not present any special difficulty1045

within the statistical interpretation of quantum mechanics, where both the wavefunction and the density matrix refer1046

to an ensemble of identically prepared system. Although it is true that not every single realization of the apparatus-1047

particle interaction has to be related to a macroscopic process, the probabilities of getting various measurement results1048

do rely on macroscopic processes in the measuring apparatus.1049

2.5. No-go theorems and small measuring apparatuses1050

Non ho l’età, per amarti30
1051

Lyrics by Mario Penzeri, sung by Gigliola Cinquetti1052

The quantum measurement process is regarded as a fundamental problem, also because over the years several1053

no–go theorems were established showing that the proper conditions for quantum measurement cannot be satisfied1054

if they are demanded as exact features of the final state of the apparatus [13, 190, 191, 192]. The first such theorem1055

was established by Wigner [13]. Then several extensions of this theorem were elaborated by Fine [193] and Shimony1056

with co-authors [190, 191, 192]. The presentation by Fine is especially clear, as it starts from the minimal conditions1057

required from a quantum measurement [193]. After stating the no-go theorem, Fine proceeds to discuss in which1058

sense one should look for approximate schemes that satisfy the measurement conditions, a general program motivating1059

also the present study. The results of Refs. [190, 191, 192] show that even when allowing certain imperfections in1060

29When I come, come again
30I do not have the age to love you
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the apparatus functioning, the quantum measurement problem remains unsolvable in the sense that the existence of1061

specific classical correlations in the final state of the system + apparatus cannnot be ensured; see also in this context1062

the recent review by Bassi and Ghirardi [17]. In our viewpoint, the no-go theorems do not preclude approximate1063

satisfaction of the quantum measurement requirements – owing to a macroscopic size of the apparatus.1064

Turning this point over, one may ask which features of proper quantum measurements (as displayed by successful1065

models of this phenomenon) would survive for an apparatus that is not macroscopically large. There are several1066

different ways to pose this question, e.g., below we shall study the measuring apparatus (that already performs well1067

in the macroscopic limit) for a large but finite number of particles. Another approach was recently worked out by1068

Allahverdyan and Hovhannisyan [77]. They assume that the measuring apparatus is a finite system, and study system-1069

apparatus interaction setups that lead to transferring certain matrix elements of the unknown density matrix λ of the1070

system into those of the final state r̃ of the apparatus. Such a transfer process represents one essential aspect of the1071

quantum measurement with a macroscopic apparatus. No further limitations on the interaction are introduced, because1072

the purpose is to understand the implications of the transfer on the final state of the system. It is shown that the transfer1073

process eliminates from the final state of the system the memory about the transferred matrix elements (or certain other1074

ones) [77]. In particular, if one diagonal matrix element is transferred, r̃aa = λaa, the memory on all non-diagonal1075

elements λa,b or λb,a related to this diagonal element is completely eliminated from the final density operator of the1076

system (the memory on other non-diagonal elements λcd, where c , a and d , a may be preserved). Thus, the general1077

aspect of state disturbance in quantum measurements is the loss of memory about off-diagonal elements, rather than1078

diagonalization (which means the vanishing of the off-diagonal elements).1079

2.6. An open problem: A model for a non-statistical interpretation of the measurement process.1080

We can’t go on forever, with suspicious minds1081

Written by Mark James, sung by Elvis Presley1082

The statistical interpretation together with supporting models does provide a consistent view on measurements1083

within the standard quantum mechanics. However, it should be important to understand whether there are other1084

consistent approaches from within the standard quantum formalism that can provide an alternative view on quantum1085

measurements. Indeed, it cannot be excluded that the real quantum measurement is a wide notion, which combines1086

instances of different interpretations. In the present review we will not cover approaches that introduce additional1087

ingredients to the standard quantum theory, and will only mention them in subsection 2.8.1088

We focus only on one alternative to the statistical interpretation, which is essentially close to the Copenhagen1089

interpretation [83, 84, 85, 194] and is based on effectively non-linear Schrödinger equation. We should however stress1090

that so far the approach did not yet provide a fully consistent and unifying picture of quantum measurements even for1091

one model.1092

Recently Brox, Olaussen and Nguyen approached quantum measurements via a non-linear Schrödinger equation1093

[195]. The authors explicitly adhere to a version of the Copenhagen interpretation, where the wave function (the1094

pure quantum state) refers to a single system. They present a model which is able to account for single measurement1095

events. The model consists of a spin- 1
2 (the system to be measured), a ferromagnet (the measuring apparatus), and1096

the apparatus environment. The overall system is described by a pure wavefunction. The ferromagnetic apparatus1097

is prepared in an (unbiased) initial state with zero magnetization. The two ground states of the ferromagnet have1098

a lower energy and, respectively, positive and negative magnetization. Moving towards one of these states under1099

influence of the tested system is supposed to amplify the weak signal coming from this tested system. (The latter1100

features will also play an important role in the models to be considered in detail later on.) The environment is1101

modeled as a spin-glass: environmental spins interact with random (positive or negative) coupling constants. So far1102

all these factors are more or less standard, and – as stressed by the authors – these factors alone cannot account for a1103

solution of the measurement problem within an interpretation that ascribes the wavefunction to a single system. The1104

new point introduced by Brox, Olaussen and Nguyen is that the effective interaction between the apparatus and the1105

measured system is non-linear in the wavefunction: it contains an analogue of a self-induced magnetic field [195].1106

In contrast to the existing approaches, where non-linearity in the Schrödinger equation are introduced axiomatically,1107

Brox, Olaussen and Nguyen state that their non-linearity can in fact emerge from the Hartree-Fock approach: it is1108

known that in certain situations (the Vlasov limit) the many-body Schrödinger equation can be reduced to a non-linear1109

equation for the single-particle wave function [196]. Examples of this are the Gross-Pitaevskii equation for Bose1110
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condensates [196] or the non-linear equation arising during quantum feedback control [197]. However, the statement1111

by Brox, Olaussen and Nguyen on the emergent non-linearity is not really proven, which is an essential drawback.1112

Leaving this problem aside, these authors show numerically that the specific nonlinearity in the system-apparatus1113

interaction may lead to a definite, albeit random, measurement result. The statistics of this randomness approximately1114

satisfies the Born rule [1], which emerges due to the macroscopic size of the apparatus. The cause of this randomness1115

is the classical randomness related to the choice of the spin-glass interaction constants in the environment [195], i.e.,1116

for different such choices (each one still ensuring the proper relaxation of the apparatus) one gets different single-1117

measurement results. Thus in this approach the cause of the randomness in measurement results is not the irreducible1118

quantum randomness, but rather the usual classical randomness, which is practically unavoidable in the preparation1119

of a macroscopic environment. Brox, Olaussen and Nguyen argue that the nonlinearity in the system-bath interaction1120

– which is crucial for obtaining all the above effects – need not be large, since the amplification may be ensured by a1121

large size of the ferromagnet [195]. Their actual numerical calculations are however carried out only for moderate-size1122

spin systems.1123

2.7. Decoherence theory1124

Pure coherence is delirium,1125

it is abstract delirium1126

Baruch Spinoza1127

Presently it is often believed that decoherence theory solves the quantum measurement problem. So let us intro-1128

duce this concept. Decoherence refers to a process, where due to coupling with an external environment, off-diagonal1129

elements of the system density matrix decay in time; see [32, 33, 40, 198, 199, 200, 201] for reviews. The basis where1130

this decay happens is selected by the structure of the system-environment coupling. In this way the system acquires1131

some classical features.1132

Decoherence is well known since the late 40’s [202]. One celebrated example is spin relaxation in NMR ex-1133

periments. The decay of the transverse polarization, perpendicular to the permanently applied field, is in general1134

characterized by the relaxation time T2; it can be viewed as a decoherence of the spin system, since it exhibits the1135

decay of the off-diagonal contributions to the spin density matrix in the representation where the applied Hamiltonian1136

is diagonal [203, 204]. Another standard example is related to the Pauli equation for an open quantum system weakly1137

coupled to an external thermal bath [205]. This equation can be visualized as a classical stochastic process during1138

which the system transits from one energy level to another.1139

More recently decoherence has attracted attention as a mechanism of quantum-to-classical transition, and was1140

applied to the quantum measurement problem [32, 33, 40, 198, 199, 200, 201]. The standard pattern of such an appli-1141

cation relies on an initial impulsive interaction of the von Neumann type which correlates (entangles) the measuring1142

apparatus with the system to be measured. Generally, this step is rather unrealistic, since it realizes macroscopic1143

superpositions, which were never seen in any realistic measurement or any measurement model. Next, one assumes1144

a specific environment for the apparatus, with the environment-apparatus interaction Hamiltonian directly related to1145

the variable to be measured. Moreover, within the decoherence approach it is stressed – e.g., by Zurek in [33] and1146

by Milburn and Walls in [200] – that the observable to-be-measured is determined during the process generated by1147

the apparatus-environment interaction. The latter is supposed to diagonalize the density matrix of the system plus the1148

apparatus in a suitable basis. This second step is again unrealistic, since it assumes that the variable to be measured,1149

which is normally under control of the experimentalist, must somehow correlate with the structure of the system’s en-1150

vironment, which – by its very definition – is out of direct control. To put it in metaphoric terms, decoherence theory1151

asserts that the surrounding air measures a person’s size. But without explicit pointer variable that can be read off, this1152

is not what one normally understands under measuring a person’s size; we consider measurement without a readable1153

pointer variable merely as a linguistic redefinition of the concept, that obscures the real issue. These criticisms of the1154

decoherence theory approach agree with the recent analysis by Requardt [69].1155

One even notes that, as far as the problem of quantum-to-classical transition is concerned, the decoherence cannot1156

be regarded as the only – or even as the basic – mechanism of this transition. As convincingly argued by Wiebe1157

and Ballentine [133] and Ballentine [206], realistic macroscopic Hamiltonian systems can – and sometimes even1158

should – achieve the classical limit without invoking any decoherence effect. This concerns both chaotic and regular1159

Hamiltonian systems, although the concrete scenarios of approaching the classical limit differ for the two cases.1160
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In spite of these caveats that prevent decoherence theory from providing the solution, it has been valuable in1161

shaping the ideas on quantum measurement models, In particular, this concerns a recent attempt by Omnès to develop1162

a general theory of decoherence via ideas and methods of non-equilibrium statistical mechanics [89] (see also [184]1163

that we reviewed above). Among the issues addressed in [89] is the generality of the system-environment structure1164

that leads to decoherence, the physical meaning of separating the system from the environment, and the relation of the1165

decoherence theory to the hydrodynamic description.1166

2.7.1. “Envariance” and Born’s rule1167

Try to see it my way,1168

Only time will tell if I am right or I am wrong1169

The Beatles, We can’t work it out1170

In recent papers [207, 208] Zurek attempts to derive Born’s rule without a direct appeal to measurement theory, but1171

solely from features of transformations termed environment-assisted invariance (or envariance) plus a set of additional1172

assumptions. These assumptions are partially spelled out in [207, 208] and/or pointed out by other authors [209]. If1173

successful, such a derivation will be of clear importance, since it will bypass the need for a theory of quantum1174

measurements. We would like now to review the premises of this derivation.1175

Following the basic tenet of the decoherence theory, Zurek considers an entangled pure state of the system S and1176

its environment E [207, 208]:1177

|ψSE〉 =

n∑
k=1

αk |sk〉 ⊗ |εk〉,

n∑
k=1

|αk |
2 = 1. (2.1)

This state is written is the so called Schmidt form with two orthonormal set of vectors {|sk〉}k=1,n and {|εk〉}k=1,n living1178

in the Hilbert spaces of the system and environment, respectively.1179

It is assumed that the pure state (2.1) was attained under the effect of an interaction between S and E which was1180

switched off before our consideration. Any pure state living in the joint Hilbert of S + E can be represented as in (2.1).1181

Zurek now asks “what can one know about the state of S given the joint state (2.1) of S+E”? He states at the1182

very beginning that he refuses to trace out the environment, because this will make his attempted derivation of Born’s1183

rule circular [207, 208]. This means that the wave function (2.1) stands for Zurek as something that should describe1184

relations between observables and their probabilities. This description (Born’s rule) is to be discovered, this is why1185

one does not want to assume beforehand its linearity over |ψSE〉〈ψSE|.1186

The core of Zurek’s arguments is the following particular case of (2.1) for n = 2 [207, 208]1187

|ψSE〉 =
1
√

2

2∑
k=1

|sk〉 ⊗ |εk〉. (2.2)

Using certain invariance features of |ψSE〉 in (2.2)—environment assisted invariance, or envariance—Zurek now at-1188

tempts to derive that S is either in the state |s1〉 or in the state |s2〉 with probabilities 1
2 [207, 208]. We stress here that1189

α1 = α2 = 1
√

2
is really essential for the derivation. A straightforward generalization of (2.2) is employed by Zurek in1190

his attempted derivation of Born’s rule for rational probabilities (on analogy to the classical definition of probability1191

as a ratio of two integers), which is then extended to arbitrary probabilities via a continuity argument.1192

However, we do not need to go into details of this derivation to understand why it fails.1193

First one notes that due to α1 = α2 the representation (2.1), (2.2) is not unique: any pair of orthonormal vectors1194

{|sk〉}k=1,2 can appear there. (This question about the derivation by Zurek was raised in [209].) Hence it is not1195

meaningful to say that S is with some probability in a definite state.1196

The actual freedom in choosing the basis for S is even larger, because (2.2) can be respresented as1197

|ψSE〉 =

2∑
k=1

κk |̃sk〉 ⊗ |εk〉, (2.3)
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where |̃s1〉 and |̃s2〉 are normalized, but not orthogonal to each other. It is impossible to rule out such non-orthogonal1198

decompositions by relying on various invariance features of (2.2) (some arguments of Zurek seem to attempt this),1199

because these features are necessarily representation-independent.1200

Admittedly, such non-orthogonal decompositions could be ruled out by postulating beforehand that S should be1201

in a definite state—thus only orthogonal {|sk〉}k=1,2 are accepted—and looking for the probability of these states. But1202

even under this orthogonality condition the choice of {|sk〉}k=1,2 in (2.2) is not unique due to degeneracy α1 = α2.1203

One may attempt to reformulate this statement by demanding that E is not an environment, but rather a measuring1204

apparatus with a fixed basis {|εk〉}k=1,2. This then makes possible to fix {|sk〉}k=1,2. Such a reformulation, natural in the1205

context of measurement theory, does not seem to be acceptable for the following reason.1206

If one now asserts that S is in the state |s1〉 (or |s2〉) with probability 1
2 ( 1

2 ), then due to the symmetry between S and1207

E, it is possible to assert that E is in the state |ε1〉 (or |ε2〉) with probability 1
2 ( 1

2 ). This will then amount to stating that1208

both S and E are in definite states with definite probabilities, which is not acceptable for a pure state |ψSE〉, because1209

there is no way to prepare the state (2.2) of S + E by mixing (definite states with definite probabilities). For this it1210

would be necessary that the state of S + E be mixed, e.g. 1
2
∑2

k=1 |sk〉 ⊗ |εk〉〈sk | ⊗ 〈εk |. However, such mixed states do1211

not appear in the present theory that is based on pure states with the prohibition of taking partial traces.1212

We conclude that the proposed derivation for Born’s rule cannot work, because one cannot even state the probabil-1213

ity of what is going to be described by Born’s rule. Even if one grants in the form of postulates various assumptions1214

needed for the derivation – i.e., one postulates that S is indeed in a definite but unknown state according to a fixed1215

basis {|sk〉}k=1,2 that is chosen somehow – even then the proposed derivation of Born’s rule need not work, since it is1216

not clear that the specific form (2.1) of the wave function S+E (without measuring apparatus?) is ever satisfied within1217

realistic models of quantum measurements.1218

2.8. Seeking the solution outside quantum mechanics1219

No, no, you’re not thinking;1220

you’re just being logical1221

Niels Bohr1222

Though this review will restrict itself to approaches to quantum measurements within the standard quantum me-1223

chanics, we briefly list for completeness a number of attempts to seek the solution for the quantum measurement1224

problem beyond it. The de Broglie–Bohm approach [18, 19, 24] is currently one of the most popular alternatives to1225

the standard quantum mechanics. It introduces an additional set of variables (coordinates of the physical particles)1226

and represents the Schrödinger equation as an equation of motion for those particles, in addition to the motion of the1227

wavefunction, which keeps the physical meaning of a separate entity (guiding field). Hence in this picture there are1228

two fundamental and separate entities: particles and fields. Recently Smolin attempted to construct a version of the1229

de Broglie–Bohm approach, where the wavefunction is substituted by certain phase-variables, which, together with1230

coordinates, are supposed to be features of particles [210]. In this context see also a related contribution by Schmelzer,1231

where the fundamental character of the wavefunction is likewise negated [211]. The approach by Smolin is coined1232

in terms of a real ensemble, which – in contrast to ensembles of non-interacting objects invoked for validation of any1233

probabilistic theory – does contain highly-nonlocal (distance independent) interactions between its constituents. It is1234

presently unclear to which extent this substitution of the wavefunction by phase-variables will increase the eligibility1235

of the de Broglie–Bohm approach, while Smolin does not discuss the issues of measurement that are known to be1236

non-trivial within the approach [18, 19, 213].1237

Another popular alternative is the spontaneous localization approach by Ghirardi, Rimini and Weber [214]. This1238

approach is based on a non-linear and stochastic generalization of the Schrödinger equation such that the collapse1239

of the wavefunction happens spontaneously (i.e., without any measurement) with a certain rate governed by classical1240

white noise. Bassi and Ghirardi recently reviewed this and related approaches in full detail [17]; other useful sources1241

are the book by Adler [215] and the review paper by Pearle [216]. Spontaneous localization models in the energy basis1242

are especially interesting, since they conserve the average energy of the quantum system; this subject is reviewed by1243

Brody and Hughston [217]. Non-linear modifications of the Schrödinger equation have by now a long history [90,1244

91, 218, 219, 220, 221, 222]. All of them in one way or another combine non-linearities with classical randomness.1245

The first such model was introduced by Bohm and Bub [218] starting from certain hidden-variables assumption. The1246

approaches that followed were either oriented towards resolving the quantum measurement problem [90, 220, 221] or1247
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trying to obtain fundamentally nonlinear generalizations of the Schrödinger equation and quantum mechanics [222].1248

Several approaches of the former type were unified within a formalism proposed by Grigorenko [91]. Recently1249

Svetlichny presented a resource letter on fundamental (i.e., not emerging from the usual, linear theory) non-linearities1250

in quantum mechanics, where he also discusses their possible origin [223]. Some of those approaches based on1251

nonlinear generalizations of the Schrödinger equation were confronted to experiments, see e.g. Refs. [224, 225], but1252

so far with negative result.1253

A very different approach was taken by De Raedt and Michielsen, who simulate the measurement process by1254

specifying a set of simple rules that mimic the various components of the measurement setup, such as beam splitters,1255

polarizers and detectors. They perform numerical simulations using algorithms that the mimic the underlying events,1256

and are able to reproduce the statistical distributions given by quantum mechanics [226, 227].1257

2.9. A short review on consistent histories1258

I shall make sure that EU action develops consistently over time1259

Herman Van Rompuy1260

The consistent histories approach negates the fundamental need of measurements for understanding quantum1261

measurements (quantum mechanics without measurements). It was proposed by Griffiths [228] based on earlier ideas1262

of Aharonov, Bergmann and Lebowitz [229]. The approach is reviewed, e.g., by Griffiths [230], Gell-Mann [231],1263

Hohenberg [232], and Omnès [233]. It aims to develop an interpretation of quantum mechanics valid for a closed1264

system of any size and any number of particles, the evolution of which is governed by the Liouville–von Neumann1265

(or Heisenberg) equation. Within this approach the notion of an event – together with its probability – is defined1266

from the outset and “measurements”, which do not involve any interaction between the system and some apparatus,1267

simply reveal the pre-existing values of physical quantities. In particular, it is not necessary to invoke either the micro-1268

macro separation or statistical assumptions on the initial states needed to derive the irreversibility aspect of quantum1269

measurements. All of these may still be needed to describe concrete measurements, but the fundamental need for1270

understanding quantum measurements from the viewpoint of statistical mechanics would be gone, if the consistent1271

histories approach is viable or, at least, will turn out to be really viable in the end.1272

However, as it stands presently the approach produces results at variance with predictions of the measurement-1273

based quantum mechanics [234] (then it is not important which specific interpretation one prescribes). Hence, within1274

its present status, the consistent histories approach cannot be a substitute for the statistical mechanics-based theory of1275

quantum measurements. Some authors bypass problems of the consistent histories approach and state that it is useful1276

as a paradox-free reformulation of the standard mecanics; see e.g. the recent review by Hohenberg [232] and the book1277

by Griffiths [230]. In fact the opposite is true: as we explain below, the consistent histories approach adds paradoxes1278

that do not exist within the statistical interpretation of quantum mechanics.1279

2.9.1. Deeper into consistent histories1280

31
1281 Գայլի բնում մանր ոսկոր չի մնա: 

Armenian proverb1282

The easiest method of introducing the consistent histories approach is to highlight as soon as possible its differ-1283

ences with respect to the standard measurement-based approach. Let us start with the quantum mechanics formula for1284

the probability of two consecutive measurementsM(t1) andM(t2) carried at times t1 and t2 (t2 > t1):1285

pt1,t2
[
i, j|M(t1),M(t2)

]
= tr

[
Π j(t2)Πi(t1)ρΠi(t1)Π j(t2)

]
, (2.4)

where ρ is the initial state of the system, Πi(t1) with
∑

i Πi(t1) = 1 and Π j(t2) with sum
∑

i Πi(t2) = 1 are the projectors1286

for the physical quantities (represented by Hermitean operators) A(t1) and B(t2) measured at the times t1 and t2,1287

respectively. For simplicity we assume the Heisenberg representation, and do not write in (2.4) explicit indices for1288

A and B. What is however necessary to do is to indicate that the joint probability in (2.4) is explicitly conditional1289

31Don’t look for small bones in the wolf’s den
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on the two measurements M(t1) and M(t2). As expected, the meaning of (2.4) is that the measurement at time t11290

(with probabilities given by Born’s rule) is accompanied by selection of the subensemble referring to the result i. The1291

members of this subensemble are then measured at the time t2. Generalization to n-time measurements is obvious.1292

What now the consistent histories approach does is to skip the context-dependence in (2.4) and regard the resulting1293

probabilities p[i, j] as a description of events taking place spontaneously, i.e. without any measurement and without1294

any selection of outcome. The cost to pay is that the initial state ρ and the projectors Πi(t1) and Π j(t2) have to satisfy1295

a special consistency condition (without this condition the events are not defined):1296

tr
[
Π j(t2)Πi(t1)ρΠi′ (t1)Π j′ (t2)

]
= δii′δ j j′ pt1,t2 [i, j], (2.5)

where δii′ is the Kronecker delta. As a consequence of (2.5), one can sum out the first (i. e., the earlier) random1297

variable and and using the completeness relation
∑

i Πi(t1) = 1 get the probability for the second event alone:1298

pt2 [ j] =
∑

i

pt1,t2 [i, j] = tr
[
Π j(t2)ρΠ j(t2)

]
. (2.6)

Note that without condition (2.5), i.e. just staying within the standard approach (2.4), Eq. (2.6) would not hold,1299

e.g. generally
∑

i pt1,t2 [i, j|M(t1),M(t2)] still depends on M(t1) and is not equal to pt2 [ j|M(t2)] (probability of the1300

outcome j in the second measurement provided that no first measurement was done). This is natural, since quantum1301

measurements generally do perturb the state of the measured system. Hence (2.5) selects only those situations, where1302

this perturbation is seemingly absent.1303

Any time-ordered sequence of events defines a history. A set of histories satisfying (2.5) is called a consistent1304

histories set. Due to (2.5), the overall probability of the consistent histories sums to one.1305

In effect (2.5) forbids superpositions; hence, it is called decoherence condition [230, 231, 232]. One notes that1306

(2.5) is sufficient, but not necessary for deriving (2.6). Hence, certain weaker conditions instead of (2.5) were also1307

studied [228], but generally they do not satisfy the straightforward statistical independence conditions (independently1308

evolving systems have independent probabilities) [235].1309

It was however noted that the consistent histories approach can produce predictions at variance with the measure-1310

ment based quantum mechanics [234]. The simplest example of such a situation is given in [236]. Consider a quantum1311

system with zero Hamiltonian in the pure initial state1312

ρ = |φ〉〈φ|, |φ〉 =
1
√

3
[|a1〉 + |a2〉 + |a3〉], (2.7)

where the vectors {|ak〉}
3
k=1 are orthonormal: 〈ak |ak′〉 = δkk′ . Define a two-event history with projectors1313

{Π1(t1) = |a1〉〈a1|,Π2(t1) = 1 − |a1〉〈a1|} and {Π1(t2) = |ψ〉〈ψ|,Π2(t2) = 1 − |ψ〉〈ψ|}, t2 > t1, (2.8)

where1314

|ψ〉 =
1
√

3
[|a1〉 + |a2〉 − |a3〉]. (2.9)

This history is consistent, since conditions (2.5) hold due to 〈φ|ψ〉 = 〈φ|a1〉〈a1|ψ〉. One now calculates1315

pt1,t2 [a1, ψ] = tr
[
Π1(t2)Π1(t1)ρΠ1(t1)Π1(t2)

]
= 〈ψ|a1〉〈a1|φ〉〈φ|a1〉〈a1|ψ〉 =

1
9
, (2.10)

1316

pt2 [ψ] = tr
[
Π1(t2)ρΠ1(t2)

]
= |〈ψ|φ〉|2 =

1
9
. (2.11)

Given two probabilities (2.10) and (2.11) one can calculate the following conditional probability:1317

pt1 |t2 [a1|ψ] =
pt1,t2 [a1, ψ]

pt2 [ψ]
= 1. (2.12)
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Yet another two-event consistent history is defined with projectors1318

{Π̃1(t1) = |a2〉〈a2|, Π̃2(t1) = 1 − |a2〉〈a2|} and {Π1(t2) = |ψ〉〈ψ|,Π2(t2) = 1 − |ψ〉〈ψ|}, t2 > t1. (2.13)

Comparing (2.13) with (2.8) we note that the first measurement at t1 is different, i.e. it refers to measuring a different1319

physical observable. Analogously to (2.12) we calculate for the second consistent history1320

pt1 |t2 [a2|ψ] = 1. (2.14)

The consistent histories (2.8) and (2.13) share one event, ψ, at the later time. On the basis of this event (2.12) retrodicts1321

with probability one (i.e., with certainty) that a1 happened. Likewise, (2.14) retrodicts with certainty that a2 happened.1322

But the events a1 and a2 are mutually incompatible, since their projectors are orthogonal, 〈a1|a2〉 = 0: if one happened,1323

the other one could not happen.1324

Note that such an inconsistency is excluded within the measurement-based approach. There the analogues of (2.12)1325

and (2.14) refer to different contexts [different measurements]: they read, respectively, p[a1|ψ,M(t1),M(t2)] = 1 and1326

p[a2|ψ, M̃(t1),M(t2)] = 1. It is not surprising that different contexts,M(t1) , M̃(t1), force conditional probabilities1327

to retrodict incompatible events. Naturally, if within the standard approach one makes the same measurements the1328

incompatible events cannot happen, e.g. p[a1|ψ,M(t1),M(t2)] × p[a2|ψ,M(t1),M(t2)] = 0, because the second1329

probability is zero.1330

Following Kent [234] we interpret this effect as a disagreement between the predictions (or more precisely: the1331

retrodictions) of the consistent history approach versus those of the measurement-based quantum mechanics. In1332

response to Kent, Griffiths and Hartle suggested that for avoiding above paradoxes, predictions and retrodictions of1333

the approach are to be restricted to a single consistent history [236, 237]. Conceptually, this seems to betray the1334

very point of the approach, because in effect it brings back the necessity of fixing the context within which a given1335

consistent history takes place. And what fixes this context, once measurements are absent?1336

Another possible opinion is that condition (2.5) is not strong enough to prevent a disagreement with the measure-1337

ment based approach, and one should look for a better condition for defining events [238, 239]. To our knowledge,1338

such a condition is so far not found. Bassi and Ghirardi [240] pointed out another logical problem with the consistent1339

histories approach. This produced another debate on the logical consistency of the approach [241, 242], which we1340

will not discuss here.1341

We hold the opinion that in spite of being certainly thought-provoking and interesting, the consistent histories1342

approach, as it presently stands, cannot be a substitute for the theory of quantum measurements: Both conceptually1343

and practically we still need to understand what is going on in realistic measurements, with their imperfections, and1344

what are the perturbations induced on the system by its interaction with a measuring apparatus.1345

2.10. What we learned from these models1346

32
1347

Երկու երնեկ մի տեղ չեն լինում: 
Armenian proverb1348

Each one of the above models enlightens one or another among the many aspects of quantum measurements.1349

However, none of them reproduces the whole set of desired features: truncation and reduction of S + A, Born’s rule,1350

uniqueness of the outcome of a single process, complete scenario of the joint evolution of S + A, with an evaluation of1351

its characteristic times, metastability of the initial state of A, amplification within A of the signal, unbiased and robust1352

registration by A in the final state, accurate establishment between S and the pointer variable of A of the correlations1353

that characterize an ideal measurement, influence of the parameters of the model on possible imperfections of the1354

measurement. In particular, permanent registration requires the pointer to be macroscopic. In the following we1355

study in detail a model, introduced in Refs. [68, 243, 244, 245, 246, 247, 248], which encompasses these various1356

requirements.1357

32Fisherman: “What’s the news from the sea?” Fish: “I have a lot to say, but my mouth is full of water”
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3. A Curie–Weiss model for quantum measurements1358

La vie humble aux travaux ennuyeux et faciles1359

Est une oeuvre de choix qui veut beaucoup d’amour33
1360

Paul Verlaine, Sagesse1361

In this section we describe the model for a quantum measurement that was introduced by us in Ref. [68].1362

3.1. General features1363

Perseverance can reduce an iron rod to a sewing needle1364

Chinese proverb1365

We take for S, the system to be measured, the simplest quantum system, namely a spin 1
2 (or any two-level system).1366

The observable ŝ to be measured is its third Pauli matrix ŝz = diag(1,−1), with eigenvalues si equal to ±1. The statistics1367

of this observable should not change significantly during the measurement process [4, 13, 76]. Hence ŝz should be1368

conservative, i.e., should commute with the Hamiltonian of S + A, at least nearly.1369

We have stressed at the end of § 1.2.1 that the apparatus A should lie initially in a metastable state [249, 250], and1370

finally in either one of several possible stable states (see section 2 for other models of this type). This suggests to take1371

for A, as in several models described in section 2, a quantum system that may undergo a phase transition with broken1372

invariance. The initial state R̂ (0) of A is the metastable phase with unbroken invariance. The states R̂i represent the1373

stable phases with broken invariance, in each of which registration can be permanent. The symmetry between the1374

outcomes prevents any bias.1375

Here we need two such stable states, in one–to–one correspondence with the two eigenvalues si of ŝz. The simplest1376

system which satisfies these properties is an Ising model [250]. Conciliating mathematical tractability and realistic1377

features, we thus take as apparatus A = M + B, a model that simulates a magnetic dot: The magnetic degrees of1378

freedom M consist of N � 1 spins with Pauli operators σ̂(n)
a (n = 1, 2, · · · ,N; a = x, y, z), which read for each n1379

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, σ̂0 =

(
1 0
0 1

)
, (3.1)

where σ̂0 is the corresponding identity matrix; σ̂ = (σ̂x, σ̂y, σ̂z) denotes the vector spin operator. The non-magnetic1380

degrees of freedom such as phonons behave as a thermal bath B (Fig. 3.1). Anisotropic interactions between these1381

spins can generate Ising ferromagnetism below the Curie temperature Tc. As pointer variable Â we take the order1382

parameter, which is the magnetization in the z-direction (within normalization), as represented by the quantum ob-1383

servable34
1384

m̂ =
1
N

N∑
n=1

σ̂(n)
z . (3.2)

We let N remain finite, which will allow us to keep control of the equations of motion. It should however be sufficiently1385

large so as to ensure the required properties of phase transitions: The relaxation from R̂(0) to either one of the two1386

states R̂i, at the temperature T (below Tc) imposed by the bath B, should be irreversible, the fluctuations of the order1387

parameter m̂ in each equilibrium state R̂i should be weak (as 1/
√

N), and the transition between these two states R̂i1388

should be nearly forbidden.1389

The initial state R̂ (0) of A is the metastable paramagnetic state. We expect the final state (1.7) of S + A to involve1390

for A the two stable ferromagnetic states R̂i, i = ↑ or ↓, that we denote as R̂⇑ or R̂⇓, respectively35. The equilibrium1391

temperature T will be imposed to M by the phonon bath [196, 121] through weak coupling between the magnetic and1392

non-magnetic degrees of freedom. Within small fluctuations, the order parameter (3.2) vanishes in R̂ (0) and takes two1393

33Humble life devoted to boring and easy tasks / Is a select achievement which demands much love
34More explicitly, the definition should involve the σ(n′)

0 for n′ , n. E.g., for N = 3 one has m̂ = 1
3 (σ̂(1)

z σ̂(2)
0 σ̂(3)

0 + σ̂(1)
0 σ̂(2)

z σ̂(3)
0 + σ̂(1)

0 σ̂(2)
0 σ̂(3)

z )
35Here and in the following, single arrows ↑, ↓ will denote the spin S, while double arrows ⇑, ⇓ denote the magnet M
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opposite values in the states R̂⇑ and R̂⇓, Ai ≡ 〈m̂〉i equal to +mF for i =↑ and to −mF for i =↓36. As in real magnetic1394

registration devices [251], information will be stored by A in the form of the sign of the magnetization.1395

3.2. The Hamiltonian1396

I ask not for a lighter burden,1397

but for broader shoulders1398

Jewish proverb1399

The full Hamiltonian can be decomposed into terms associated with the system, with the apparatus and with their1400

coupling:1401

Ĥ = ĤS + ĤSA + ĤA. (3.3)

3.2.1. The system1402

A system that works is worth gold1403

Icelandic Proverb1404

Textbooks treat measurements as instantaneous, which is an idealization. If they are at least very fast, the tested1405

system will hardly undergo dynamics by its own, so the tested quantity ŝ is practically constant. As indicated above,1406

for an ideal measurement the observable ŝ should commute with Ĥ [13, 180, 76]. The simplest self-Hamiltonian that1407

ensures this property (no evolution of S without coupling to A), is a constant one, which is equivalent to the trivial1408

one (since one may always add a constant to the energy)37,1409

ĤS = 0. (3.4)

This commutation is required for ideal measurements, during the process of which the statistics of the tested ob-1410

servable should not be affected. More generally, in order to describe an imperfect measurement where ŝ may move1411

noticeably during the measurement (subsection 8.2), we shall introduce there a magnetic field acting on the tested1412

spin.1413

The coupling between the tested system and the apparatus,1414

ĤSA = −gŝz

N∑
n=1

σ̂(n)
z = −Ngŝzm̂, (3.5)

has the usual form of a spin-spin coupling in the z-direction [250], and the constant g > 0 characterizes its strength.1415

As wished, it commutes with ŝz. We have assumed that the range of the interaction between the spin S and the N spins1416

of M is large compared to the size of the magnetic dot, so that we can disregard the space-dependence of the coupling.1417

The occurrence of the factor N in (3.5) should not worry us, since we will not take the thermodynamic limit N → ∞.1418

Although sufficiently large to ensure the existence of a clear phase transition, N is finite. We shall resume in § 9.4 the1419

conditions that N should satisfy. In a realistic setting, the interaction between S and M would first be turned on, then1420

turned off continuously, while the tested spin approaches the dot then moves away. For simplicity we assume ĤSA to1421

be turned on suddenly at the initial time t = 0, and it will be turned off at a final time tf , as we discuss below38.1422

3.2.2. The magnet1423

The apparatus A consists, as indicated above, of a magnet M and a phonon bath B (Fig. 3.1), and its Hamiltonian1424

can be decomposed into1425

36Note that the values Ai = ±mF, which we wish to come out associated with the eigenvalues si = ±1, are determined from equilibrium statistical
mechanics; they are not the eigenvalues of Â ≡ m̂, which range from −1 to +1 with spacing 2/N, but thermodynamic expectation values around
which small fluctuations of order 1/

√
N occur

37As S is a spin 1
2 , the only ĤS that commutes with the full Hamiltonian has the form −bz ŝz, and the introduction of the magnetic field bz brings

in only trivial changes (in sec 5)
38Contrary to the switching on, this switching off need not be performed suddenly since mF is close to m⇑
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A

S M B
g γ

N, J T, Γ

Figure 3.1: The Curie-Weiss measurement model and its parameters. The system S is a spin ŝ. The apparatus A includes a magnet M and a bath B.
The magnet, which acts as a pointer, consists of N spins coupled to one another through an Ising interaction J. The phonon bath B is characterized
by its temperature T and a Debye cutoff Γ. It interacts with M through a spin-boson coupling γ. The process is triggered by the interaction g
between the measured observable ŝz and the magnetization per spin, m̂, of the pointer.

ĤA = ĤM + ĤB + ĤMB. (3.6)

The magnetic part is chosen as [251]1426

ĤM = −N
∑
q=2,4

Jq
m̂q

q
= −NJ2

m̂2

2
− NJ4

m̂4

4
, (3.7)

where the magnetization operator m̂ was defined by (3.2). It couples all q-plets of spins σ̂(n) symmetrically, with1427

the same coupling constant JqN1−q for each q-plet. (The factor N1−q is introduced only for convenience.) The1428

space-independence of this coupling is fairly realistic for a small magnetic dot, as in (3.5). The interaction is fully1429

anisotropic, involving only the z-components. The exponents q are even in order to ensure the up-down symmetry of1430

the apparatus. The term q = 4 describes so-called super-exchange interactions as realized for metamagnets [251]. We1431

shall only consider ferromagnetic interactions (J2 > 0 or J4 > 0 or both).1432

We will see in § 3.3.4 that the Hamiltonian (3.6) produces a paramagnetic equilibrium state at high temperature1433

and two ferromagnetic states at low temperature, with a transition of second order for J2 > 3J4, of first order for1434

3J4 > J2. The former case is exemplified by the Curie–Weiss Ising model for an anisotropic magnetic dot [250], with1435

pairwise interactions in σ̂(n)
z σ̂

(p)
z , recovered here for J4 = 0,1436

ĤM = −
J2N

2
m̂2 = −

J2

2N

N∑
i, j=1

σ̂(i)
z σ̂

( j)
z , (q = 2). (3.8)

Likewise, the first-order case is exemplified by letting J2 = 0, keeping in (3.6) only the quartic “super-exchange”1437

term:1438

ĤM = −
J4N

4
m̂4 = −

J4

4N3

N∑
i, j,k,l=1

σ̂(i)
z σ̂

( j)
z σ̂(k)

z σ̂(l)
z , (q = 4). (3.9)

The more physical case (3.6) of mixtures of q = 2 and q = 4 terms will not differ qualitatively from either one1439

of the two pure cases q = 2 or q = 4. It will therefore be sufficient for our purpose, in section 7, to illustrate the two1440

situations J2 > 3J4 and J2 < 3J4 by working out the Hamiltonians (3.8) and (3.9), respectively. We may summarize1441

these two cases by HM = −(NJ/q)m̂q with q = 2 and 4, respectively.1442

Using A as a measurement apparatus requires the lifetime of the initial state to be larger than the overall mea-1443

surement time. An advantage of a first-order transition is the local stability of the paramagnetic state, even below the1444

transition temperature, which ensures a much larger lifetime as in the case of a second order transition. We shall see,1445

however (§ 7.3.2), that the required condition can be satisfied even for q = 2 alone (i.e., for J4 = 0).1446
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3.2.3. The phonon bath1447

It is not only one person who bathes in the witch’s water1448

Ghanaian Proverb1449

The interaction between the magnet and the bath, which drives the apparatus to equilibrium, is taken as a standard1450

spin-boson Hamiltonian [196, 121, 122]1451

ĤMB =
√
γ

N∑
n=1

(
σ̂(n)

x B̂(n)
x + σ̂(n)

y B̂(n)
y + σ̂(n)

z B̂(n)
z

)
≡
√
γ

N∑
n=1

∑
a=x,y,z

σ̂(n)
a B̂(n)

a , (3.10)

which couples each component a = x, y, z of each spin σ̂(n) with some hermitean linear combination B̂(n)
a of phonon1452

operators. The dimensionless constant γ � 1 characterizes the strength of the thermal coupling between M and B,1453

which is weak.1454

For simplicity, we require that the bath acts independently for each spin degree of freedom n, a. (The so-called1455

independent baths approximation.) This can be achieved (i) by introducing Debye phonon modes labelled by the pair1456

of indices k, l, with eigenfrequencies ωk depending only on k, so that the bath Hamiltonian is1457

ĤB =
∑
k,l

~ωkb̂†k,lb̂k,l, (3.11)

and (ii) by assuming that the coefficients C in1458

B̂(n)
a =

∑
k,l

[
C (n, a; k, l) b̂k,l + C∗ (n, a; k, l) b̂†k,l

]
(3.12)

are such that1459 ∑
l

C (n, a; k, l) C∗ (m, b; k, l) = δn,mδa,b c (ωk) . (3.13)

This requires the number of values of the index l to be at least equal to 3N. For instance, we may associate with each1460

component a of each spin σ̂(n) a different set of phonon modes, labelled by k, n, a, identifying l as (n, a), and thus1461

define ĤB and B̂(n)
a as1462

ĤB =

N∑
n=1

∑
a=x,y,z

∑
k

~ωkb̂†(n)
k,a b̂(n)

k,a, (3.14)

B̂(n)
a =

∑
k

√
c (ωk)

(
b̂(n)

k,a + b̂†(n)
k,a

)
. (3.15)

We shall see in § 3.3.2 that the various choices of the phonon set, of the spectrum (3.11) and of the operators (3.12)1463

coupled to the spins are equivalent, in the sense that the joint dynamics of S + M will depend only on the spectrum ωk1464

and on the coefficients c (ωk).1465

The spin-boson coupling (3.10) between M and B will be sufficient for our purpose up to section 9. This inter-1466

action, of the Glauber type, does not commute with ĤM, a property needed for registration, since M has to release1467

energy when relaxing from its initial metastable paramagnetic state to one of its final stable ferromagnetic states at1468

the temperature T . However, the complete solution of the measurement problem presented in section 11 will require1469

more complicated interactions. We will therefore introduce in § 11.2.4 a small but random coupling between the spins1470

of M, and in § 11.2.5 a more realistic small coupling between M and B, of the Suzuki type, which produces flip-flops1471

of the spins of M without changing the value of the energy that M would have with only the terms (3.8) and/or (3.9).1472
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D̂





D̂

{
S
M
B

r̂

R̂M

R̂B

}
R̂

A

S M B
g γ

N, J T, Γ

Figure 3.2: Notations for the density operators of the system S + A and the subsystems M and B of A. The full density matrix D̂ is parametrized
by its submatrices R̂i j (with i, j = ±1 or ↑, ↓), the density matrix D̂ of S + M by its submatrices R̂i j. The marginal density operator of S is denoted
as r̂ and the one of A as R̂. The marginal density operator of M itself is denoted as R̂M and the one of B as R̂B.

3.3. Structure of the states1473

If you do not enter the tiger’s cave,1474

you will not catch its cub1475

Japanese proverb1476

3.3.1. Notations1477

The full state D̂ of the system evolves according to the Liouville–von Neumann equation (1.6), which we have to1478

solve. It will be convenient to define through partial traces, at any instant t, the following marginal density operators:1479

r̂ for the tested system S, R̂ for the apparatus A, R̂M for the magnet M, R̂B for the bath, and D̂ for S + M after1480

elimination of the bath (as depicted schematically in Fig. 3.2), according to1481

r̂ = trAD̂, R̂ = trSD̂, R̂M = trBR̂ = trS,BD̂, R̂B = trS,MD̂, D̂ = trBD̂. (3.16)

The expectation value of any observable Â pertaining, for instance, to the subsystem S + M of S + A (including1482

products of spin operators ŝa and σ̂(n)
a ) can equivalently be evaluated as 〈Â〉 = trS +AD̂Â or as 〈Â〉 = trS +MD̂Â.1483

As indicated in subsection 1.2, the apparatus A is a large system, treated by methods of statistical mechanics,1484

while we need to follow in detail the microscopic degrees of freedom of the system S and their correlations with A.1485

To this aim, we shall analyze the full state D̂ of the system into several sectors, characterized by the eigenvalues of ŝz.1486

Namely, in the two-dimensional eigenbasis of ŝz for S, |↑〉, |↓〉, with eigenvalues si = +1 for i =↑ and si = −1 for i =↓,1487

D̂ can be decomposed into the four blocks1488

D̂ =

(
R̂↑↑ R̂↑↓

R̂↓↑ R̂↓↓

)
, (3.17)

where each R̂i j is an operator in the space of the apparatus. We shall also use the partial traces (see again Fig. 3.2)1489

R̂i j = trBR̂i j, D̂ = trBD̂ =

(
R̂↑↑ R̂↑↓
R̂↓↑ R̂↓↓

)
(3.18)

over the bath; each R̂i j is an operator in the 2N-dimensional space of the magnet. Indeed, we are not interested in the1490

evolution of the bath variables, and we shall eliminate B by relying on the weakness of its coupling (3.10) with M.1491

The operators R̂i j code our full statistical information about S and M. We shall use the notation R̂i j whenever we refer1492

to S + M and R̂M when referring to M alone. Tracing also over M, we are, according to (3.16), left with1493

r̂ =

(
r↑↑ r↑↓
r↓↑ r↓↓

)
= r↑↑ |↑〉〈↑| + r↑↓ |↑〉〈↓| + r↓↑ |↓〉〈↑| + r↓↓ |↓〉〈↓|. (3.19)

The magnet M is thus described by R̂M = R̂↑↑ + R̂↓↓, the system S alone by the matrix elements ri j = trMR̂i j of r̂. The1494

correlations of ŝz, ŝx or ŝy with and any function of the observables σ̂(n)
a (a = x, y, z , n = 1 , . . . N) are represented by1495

R̂↑↑ − R̂↓↓, R̂↑↓ + R̂↓↑, iR̂↑↓ − iR̂↓↑, respectively. The operators R̂↑↑ and R̂↓↓ are hermitean positive, but not normalized,1496

whereas R̂↓↑ = R̂†
↑↓

. Notice that we now have from (3.16) – (3.18)1497
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ri j = trAR̂i j = trMR̂i j, R̂ = R̂↑↑ + R̂↓↓, R̂M = R̂↑↑ + R̂↓↓, R̂B = trM(R̂↑↑ + R̂↓↓). (3.20)

All these elements are functions of the time t which elapses from the beginning of the measurement at t = 0 when1498

ĤSA is switched on to the final value tf that we will evaluate in section 7. To introduce further notation, we mention1499

that the combined system S + A = S + M + B should end up in1500

D̂(tf) =

(
p↑R̂⇑ 0

0 p↓R̂⇓

)
= p↑ |↑〉〈↑| ⊗ R̂⇑ + p↓ |↓〉〈↓| ⊗ R̂⇓ =

∑
i

pi D̂i, (3.21)

where R̂⇑ (R̂⇓) is density matrix of the thermodynamically stable state of the magnet and bath, after the measurement,1501

in which the magnetization is up, taking the value m⇑(g) (down, taking the value m⇓(g)); these events should occur1502

with probabilities p↑ and p↓, respectively39. The Born rule then predicts that p↑ = trSr̂(0)Π↑ = r↑↑(0) and p↓ = r↓↓(0).1503

Since no off-diagonal terms occur in (3.21), a point that we wish to explain, and since we expect B to remain1504

nearly in its intial equilibrium state, we may trace out the bath, as is standard in classical and quantum thermal1505

physics, without losing significant information. It will therefore be sufficient for our purpose to show that the final1506

state is1507

D̂(tf) =

(
p↑R̂M⇑ 0

0 p↓R̂M⇓

)
= p↑ |↑〉〈↑| ⊗ R̂M⇑ + p↓ |↓〉〈↓| ⊗ R̂M⇓, (3.22)

now referring to the magnet M and tested spin S alone.1508

Returning to Eq. (3.20), we note that from any density operator R̂ of the magnet we can derive the probabilities1509

Pdis
M (m) for m̂ to take the eigenvalues m, where “dis” denotes their discreteness. These N + 1 eigenvalues,1510

m = −1, − 1 +
2
N
, . . . , 1 −

2
N
, 1, (3.23)

have equal spacings δm = 2/N and multiplicities1511

G (m) =
N![

1
2 N (1 + m)

]
!
[

1
2 N (1 − m)

]
!

=

√
2

πN
(
1 − m2) exp

[
N

(
−

1 + m
2

ln
1 + m

2
−

1 − m
2

ln
1 − m

2

)
+ O

(
1
N

)]
.(3.24)

Denoting by δm̂,m the projection operator on the subspace m of m̂, the dimension of which is G (m), we have1512

Pdis
M (m, t) = trMR̂M(t)δm̂,m. (3.25)

In the limit N � 1, where m becomes basically a continuous variable, we shall later work with the functions PM(m, t)1513

PM(m, t) =
N
2

Pdis
M (m, t),

∫ 1

−1
dm PM(m, t) =

∑
m

Pdis
M (m, t) = 1, (3.26)

that have a finite and smooth limit for N → ∞, and use similar relations between the functions Pi j and Pdis
i j , and Ca1514

and Cdis
a , introduced next.1515

In what follows, the density operators R̂M will most often depend only on the observables σ̂(n)
z and be symmetric1516

functions of these observables. Hence, R̂M will reduce to a mere function of the operator m̂ defined by (3.2). In such a1517

circumstance, eq. (3.25) can be inverted: the knowledge of PM (m) is then sufficient to determine the density operator1518

R̂M, through a simple replacement of the scalar m by the operator m̂ in1519

R̂M(t) =
1

G (m̂)
Pdis

M (m̂, t) . (3.27)

39Notice that in the final state we denote properties of the tested system by ↑, ↓ and of the apparatus by ⇑, ⇓. In sums like (1.7) we will also use
i =↑, ↓, or sometimes i = ±1
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The expectation value of any product of operators σ̂(n)
a of the magnet can then be expressed in terms of Pdis

M (m). For1520

instance, the two-spin correlations (n , p) are related to the second moment of Pdis
M (m) by1521

trS,AD̂σ̂
(n)
a σ̂

(p)
b = trMR̂Mσ̂

(n)
a σ̂

(p)
b =

δa,zδb,z

N − 1

N ∑
m

Pdis
M (m) m2 − 1

 . (3.28)

Likewise, when the operators R̂i j in (3.18) depend only on m̂, we can parameterize them at each time, according1522

to1523

R̂i j(t) =
1

G (m̂)
Pdis

i j (m̂, t) , (3.29)

by functions Pdis
i j (m) defined on the set (3.23) of values of m, with [Pdis

i j (m)]∗ = Pdis
ji (m). (For the moment we refrain1524

from denoting the explicit t dependence.) All statistical properties of S + M at the considered time can then be1525

expressed in terms of these functions Pdis
i j (m). Indeed the combinations1526

Cdis
x (m) = Pdis

↑↓
(m) + Pdis

↓↑
(m), Cdis

y = iPdis
↑↓
− iPdis

↓↑
, Cdis

z = Pdis
↑↑
− Pdis

↓↓
(3.30)

encompass all the correlations between ŝx, ŝy or ŝz and any number of spins of the apparatus. In particular, the1527

expectation values of the components of ŝ are given by1528

trD̂ŝa =
∑

m

Cdis
a (m) =

∫ 1

−1
dm Ca (m) , (3.31)

with the continuous functions Ca(m) = 1
2 NCdis

a (m) as in (3.26), while the correlations between ŝ and one spin of M are1529

trD̂ŝaσ̂
(n)
b = δb,z

∑
m

Cdis
a (m) m = δb,z

∫ 1

−1
dm Ca (m) m. (3.32)

Correlations of ŝ with many spins of M involve higher moments of Cdis
a (m) as in eq. (3.28). We can interpret Pdis

↑↑
(m)1530

as the joint probability to find S in |↑〉 and m̂ equal to m, so that Pdis
↑↑

(m) + Pdis
↓↓

(m) = Pdis
M (m) reduces to the probability1531

Pdis
M (m) which characterizes through (3.27) the marginal state of M.1532

3.3.2. Equilibrium state of the bath1533

Motion is an illusion1534

Zeno of Elea1535

At the initial time, the bath is set into equilibrium at the temperature40 T = 1/β. The density operator of the bath,1536

R̂B (0) =
1

ZB
e−βĤB , (3.33)

when ĤB is given by (3.11), describes the set of phonons at equilibrium in independent modes.1537

As shown in section 4.2 the bath will be involved in our problem only through its autocorrelation function in the1538

equilibrium state (3.33), defined in the Heisenberg picture (see § 10.1.2) by1539

trB

[
R̂B (0) B̂(n)

a (t) B̂(p)
b (t′)

]
= δn,pδa,b K (t − t′) , (3.34)

B̂(n)
a (t) ≡ Û†B (t) B̂(n)

a ÛB (t) , (3.35)

ÛB (t) = e−iĤBt/~, (3.36)

40We use units where Boltzmann’s constant is equal to one [249]; otherwise, T and β = 1/T should be replaced throughout by kBT and 1/kBT ,
respectively
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in terms of the evolution operator ÛB(t) of B alone. The bath operators (3.12) have been defined in such a way that1540

the equilibrium expectation value of B(n)
a (t) vanishes [196, 121, 122]. Moreover, the condition (3.13) ensures that the1541

equilibrium correlations between different operators B̂(n)
a (t) and B̂(p)

b (t′) vanish, unless a = b and n = p, and that the1542

autocorrelations for n = p, a = b are all the same, thus defining a unique function K (t) in (3.34). We introduce the1543

Fourier transform and its inverse,1544

K̃ (ω) =

∫ +∞

−∞

dt e−iωtK (t) , K(t) =
1

2π

∫ +∞

−∞

dω eiωtK̃ (ω) (3.37)

and choose for K̃(ω) the simplest expression having the required properties, namely the quasi-Ohmic form [173, 174,1545

196, 121, 122]1546

K̃ (ω) =
~2

4
ωe−|ω|/Γ

eβ~ω − 1
. (3.38)

The temperature dependence accounts for the quantum bosonic nature of the phonons [196, 121, 122]. The Debye1547

cutoff Γ characterizes the largest frequencies of the bath, and is assumed to be larger than all other frequencies entering1548

our problem. The normalization is fixed so as to let the constant γ entering (3.10) be dimensionless.1549

The form (3.38) of K̃ (ω) describes the spectral function of the Nyquist-noise correlator, which is the quantum1550

generalization of the classical white noise. It can be obtained directly through general reasonings based on the detailed1551

balance and the approach to equilibrium [196, 121]. We can also derive it from the expressions (3.11) for ĤB, (3.12)1552

and (3.35) for B̂(n)
a (t), and (3.33) for R̂B (0), which under general conditions provide a universal model for the bath1553

[196, 121, 122]. Indeed, by inserting these expressions into the left-hand side of (3.34), we recover the diagonal1554

form of the right-hand side owing to (3.13), which relates c(ω) to the bath Hamiltonian ĤB, with the autocorrelation1555

function K (t) given by1556

K (t) =
∑

k

c (ωk)
(

eiωk t

eβ~ωk − 1
+

e−iωk t

1 − e−β~ωk

)
=

∫ ∞

0
dωρ (ω) c (ω)

(
eiωt

eβ~ω − 1
+

e−iωt

1 − e−β~ω

)
. (3.39)

We have expressed above K (t) in terms of the density of modes1557

ρ (ω) =
∑

k

δ (ω − ωk) , (3.40)

and this provides1558

K̃ (ω) = 2πρ (|ω|) c (|ω|)
sgnω

eβ~ω − 1
. (3.41)

In agreement with Kubo’s relation, we also find for the dissipative response1559 ∫ +∞

−∞

dte−iωt trB

{
R̂B (0)

[
B̂(n)

a (t) , B̂(p)
b (0)

]}
= −2πρ (|ω|) c (|ω|) sgnω. (3.42)

In the limit of a spectrum ωk of the phonon modes sufficiently dense so that the relevant values of t/~ and β are small1560

compared to the inverse level spacing of the phonon modes, we can regard ρ (ω) c (ω) as a continuous function. In the1561

quasi-Ohmic regime [173, 174, 175, 196, 121, 122], the dissipative response at low frequencies is proportional to ω,1562

as obvious for a friction-dominated harmonic oscillator. We thus take (for ω > 0)1563

ρ (ω) c (ω) =
~2

8π
ωe−ω/Γ, (3.43)

where ω is called the Ohmic factor, and where we include a Debye cutoff Γ on the phonon spectrum and a proper1564

normalization. Then (3.41) reduces to the assumed expression (3.38).1565
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3.3.3. Initial state1566

In the beginning was the Word1567

Genesis 1.11568

In the initial state D̂ (0) = r̂ (0) ⊗ R̂ (0) where S and A are statistically independent, the 2 × 2 density matrix r̂ (0)1569

of S is arbitrary; it has the form (3.19) with elements r↑↑ (0), r↑↓ (0), r↓↑ (0) and r↓↓ (0) satisfying1570

r̂(0) =

(
r↑↑(0) r↑↓(0)
r↓↑(0) r↓↓(0)

)
, r↑↑ (0) + r↓↓ (0) = 1, r↑↓ (0) = r∗↓↑ (0) , r↑↑ (0) r↓↓ (0) ≥ r↑↓ (0) r↓↑ (0) . (3.44)

According to the discussion of the section 3.1, the initial density operator R̂ (0) of the apparatus describes the1571

magnetic dot in a metastable paramagnetic state. As justified below, we take for it the factorized form1572

R̂ (0) = R̂M (0) ⊗ R̂B (0) , (3.45)

where the bath is in the equilibrium state (3.33), at the temperature T = 1/β lower than the transition temperature of1573

M, while the magnet with Hamiltonian (3.6) is in a paramagnetic equilibrium state at a temperature T0 = 1/β0 higher1574

than its transition temperature:1575

R̂M (0) =
1

ZM
e−β0ĤM . (3.46)

How can the apparatus be actually initialized in the non-equilibrium state (3.45) at the time t = 0? This ini-1576

tialization takes place during the time interval −τinit < t < 0. The apparatus is first set at earlier times into equi-1577

librium at the temperature T0. Due to the smallness of γ, its density operator is then factorized and proportional to1578

exp[−β0(ĤM + ĤB)]. At the time −τinit the phonon bath is suddenly cooled down to T . We shall evaluate in § 7.3.21579

the relaxation time of M towards its equilibrium ferromagnetic states under the effect of B at the temperature T . Due1580

to the weakness of the coupling γ, this time turns out to be much longer than the duration of the experiment. We can1581

safely assume τinit to be much shorter than this relaxation time so that M remains unaffected by the cooling. On the1582

other hand, the quasi continuous nature of the spectrum of B can allow the phonon-phonon interactions (which we1583

have disregarded when writing (3.11)) to establish the equilibrium of B at the temperature T within a time shorter1584

than τinit. It is thus realistic to imagine an initial state of the form (3.45).1585

An alternative method of initialization consists in applying to the magnetic dot a strong radiofrequency field,1586

which acts on M but not on B. The bath can thus be thermalized at the required temperature, lower than the transition1587

temperature of M, while the populations of spins of M oriented in either direction are equalized. The magnet is then1588

in a paramagnetic state, as if it were thermalized at an infinite temperature T0 in spite of the presence of a cold bath.1589

In that case we have the initial state (see Eq. (3.1))1590

R̂M(0) =
1

2N

N∏
n=1

σ̂(n)
0 . (3.47)

The initial density operator (3.46) of M being simply a function of the operator m̂, we can characterize it as in1591

(3.25) by the probabilities Pdis
M (m, 0) for m̂ to take the values (3.23). Those probabilities are the normalized product1592

of the degeneracy (3.24) and the Boltzmann factor,1593

Pdis
M (m, 0) =

1
Z0

G(m) exp
[

N
T0

( J2

2
m2 +

J4

4
m4

)]
, Z0 =

∑
m

G(m) exp
[

N
T0

( J2

2
m2 +

J4

4
m4

)]
. (3.48)

For sufficiently large N, the distribution PM (m, 0) = 1
2 NPdis

M (m, 0) is peaked around m = 0, with the Gaussian shape1594

PM (m, 0) '
1

√
2π∆m

e−m2/2∆m2
=

√
N

2πδ2
0

e−Nm2/2δ2
0 . (3.49)
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This peak, which has a narrow width of the form1595

∆m =

√〈
m2〉 =

δ0
√

N
, (3.50)

involves a large number, of order
√

N, of eigenvalues (3.23), so that the spectrum can be treated as a continuum1596

(except in sections 5.3 and 6). For the Hamiltonian (3.9) with q = 4, only the multiplicity (3.24) contributes to ∆m,1597

so that the paramagnetic initial state (3.46) is characterized at any initial temperature T0 by the distribution PM (m, 0)1598

equal to1599

PM (m, 0) = PM0 (m) =
1

2N G(m) ≡

√
N
2π

e−Nm2/2. (3.51)

For the general Hamiltonian (3.7), the width is larger, due to correlations between spins, and given by1600

δ0 =

√
T0

T0 − J2
, ∆m =

√
T0

N(T0 − J2)
. (3.52)

In the pure q = 2 case with Hamiltonian (3.8), and in general in case J2 > 0, the temperature T0 of initialization1601

should be sufficiently higher than the Curie temperature so that δ2
0 � N, which ensures the narrowness of the peak.1602

For an initialization caused by a radiofrequency, the initial distribution is again (3.51).1603

3.3.4. Ferromagnetic equilibrium states of the magnet1604

Je suis seul ce soir avec mes rêves1605

Je suis seul ce soir sans ton amour41
1606

Lyrics by Rose Noël and Jean Casanova, music by Paul Durand, sung by André Claveau1607

We expect the final state (1.7) of S + A after measurement to involve the two ferromagnetic equilibrium states R̂i,1608

i = ⇑ or ⇓. As above these states R̂i of the apparatus factorize, in the weak coupling limit (γ � 1), into the product1609

of (3.33) for the bath and a ferromagnetic equilibrium state R̂Mi for the magnet M. It is tempting to tackle broken1610

invariance by means of the mean-field approximation, which becomes exact at equilibrium for infinite N owing to1611

the long range of the interactions [250, 251]. However, we are interested in a finite, though large, value of N, and1612

the probability distribution PMi (m) associated with R̂Mi has a significant width around the mean-field value for m.1613

Moreover, we shall see in subsection 7.3 that, in spite of the constancy of the interaction between all spins, the1614

time-dependent mean-field approximation may fail even for large N. We will study there the dynamics of the whole1615

distribution PM (m, t) including the final regime where it is expected to tend to PM⇑ (m) or PM⇓ (m), and will determine1616

in particular the lifetime of the metastable state (3.45). We focus here on equilibrium only. For later convenience we1617

include an external field h acting on the spins of the apparatus, so as to arrive from (3.7) at42
1618

ĤM = −Nhm̂ − NJ2
m̂2

2
− NJ4

m̂4

4
. (3.53)

As in (3.27) we characterize the canonical equilibrium density operator of the magnet R̂M = (1/ZM) exp[−βĤM],1619

which depends only on the operator m̂, by the probability distribution1620

PM (m) =

√
N

ZM
√

8π
e−βF(m), (3.54)

where m takes the discrete values mi given by (3.23); the exponent of (3.54) introduces the free energy function1621

F (m) = −NJ2
m2

2
− NJ4

m4

4
− Nhm + NT

(
1 + m

2
ln

1 + m
2

+
1 − m

2
ln

1 − m
2

)
+

T
2

ln
1 − m2

4
+ O

(
1
N

)
, (3.55)

41I am alone tonight with my dreams / I am alone tonight without your love
42In section 7 we shall identify h with +g in the sector R̂↑↑ of D̂, or with −g in its sector R̂↓↓, where g is the coupling between S and A, while a

true field in the y-direction will be introduced in section 8.2 and denoted by b, see Eq. (8.46)
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which arises from the Hamiltonian (3.53) and from the multiplicity G(m) given by (3.24). The distribution (3.54)1622

displays narrow peaks at the minima of F (m), and the equilibrium free energy −T ln ZM is equal for large N to the1623

absolute minimum of (3.55). The function F (m) reaches its extrema at values of m given by the self-consistent1624

equation1625

m
(
1 −

1
N

)
= tanh

[
β
(
h + J2m + J4m3

)]
, (3.56)

which as expected reduces to the mean-field result for large N. In the vicinity of a minimum of F (m) at m = mi, the1626

probability PM (m) presents around each mi a nearly Gaussian peak, given within normalization by1627

PMi (m) ∝ exp
−N

2

 1
1 − m2

i

− βJ2 − 3βJ4m2
i

 (m − mi)2 −
N
3

 mi

(1 − m2
i )2
− 3βJ4mi

 (m − mi)3
 . (3.57)

This peak is located at a distance of order 1/N from the mean-field value, it has a width of order 1/
√

N and a weak1628

asymmetry. The possible values of m are dense within the peak, with equal spacing δm = 2/N. With each such peak1629

PMi (m) is associated through (3.26), (3.27) a density operator R̂i of the magnet M which may describe a locally stable1630

equilibrium. Depending on the values of J2 and J4 and on the temperature, there may exist one, two or three such1631

locally stable states. We note the corresponding average magnetizations mi, for arbitrary h, as mP for a paramagnetic1632

state and as m⇑ and m⇓ for the ferromagnetic states, with m⇑ > 0, m⇓ < 0. We also note as ±mF the ferromagnetic1633

magnetizations for h = 0. When h tends to 0 (as happens at the end of the measurement where we set g → 0), mP1634

tends to 0, m⇑ to +mF and m⇓ to −mF, namely1635

m⇑(h > 0) > 0, m⇓(h > 0) < 0, m⇑(−h) = −m⇓(h), mF = m⇑(h→+0) = −m⇓(h→+0). (3.58)

For h = 0, the system M is invariant under change of sign of m [250]. This invariance is spontaneously broken1636

below some temperature [250]. In the case q = 2 of the Ising interaction (3.8), there is above the Curie temperature1637

Tc = J2 a single paramagnetic peak PM0 (m) at mP = 0, given by (3.49), (3.52), and for T < J2 two symmetric1638

ferromagnetic peaks (3.57), i = ⇑ or ⇓, at the points m⇑ = mF and m⇓ = −mF, given by mF = tanh βJ2mF. These peaks1639

are well separated provided1640

N
2

 1
1 − m2

F

− βJ2

 m2
F � 1, (3.59)

in which case they characterize two different equilibrium ferromagnetic states. This condition is satisfied for large N1641

and βJ2 − 1 finite; near βJ2 = 1, where m2
F ∼ 3 (βJ2 − 1), the two states R̂⇑ and R̂⇓ still have no overlap as soon as the1642

temperature differs significantly from the critical temperature, as1643

J2 − T
T

�
1
√

3N
. (3.60)

This property is needed to ensure a faithful registration by M of the measurement. Little is changed for the Hamiltonian1644

(3.7) with J4 > 0 but still J2 > 3J4.1645

Still for h = 0, but in the case 3J4 > J2 of a first-order transition, F (m) has a minimum at m = 0 if T > J21646

and hence (3.54) has there a peak as (3.51) at m = 0 whatever the temperature, see Fig. 3.3. For the pure quartic1647

interaction of Eq. (3.9), the two additional ferromagnetic peaks PM⇑ (m) and PM⇓ (m) appear around m⇑ = mF = 0.8891648

and m⇓ = −mF when the temperature T is lower than 0.496J4. As T decreases, mF given by mF = tanh βJ4m3
F increases1649

and the value of the minimum F (mF) decreases; the weight (3.54) is transferred from PM0 (m) to PM⇑ (m) and PM⇓ (m).1650

A first-order transition occurs when F (mF) = F (0), for Tc = 0.363J4 and mF = 0.9906, from the paramagnetic to the1651

two ferromagnetic states, although the paramagnetic state remains locally stable. The spontaneous magnetization mF1652

is always very close to 1, behaving as 1 − mF ∼ 2 exp(−2J4/T ).1653

For the general Hamiltonian (3.7), it is a simple exercise to study the cross-over between first and second-order1654

transitions, which takes place for mi � 1. To this aim, the free energy (3.55) is expanded as1655
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Figure 3.3: The free energy F in units of NT for a pure quartic interaction (eq. (3.9), evaluated from Eq. (3.55) with h = 0, as function of the
magnetization m at various temperatures. There is always a local paramagnetic minimum at m = 0. A first-order transition occurs at Tc = 0.363J4,
below which the ferromagnetic states associated with the minima at ±mF near ± 1 become the most stable.

F(m) − F(0)
N

≈ (T − J2)
m2

2
+ (T − 3J4)

m4

12
+ T

m6

30
, (3.61)

and its shape and minima are studied as function of J2, J4 and T . This approximation holds for |T − J2| � J2,1656

|3J4 − J2| � J2. For J2 > 3J4, the second-order transition takes place at Tc = J2 whatever J4. For 3J4 > J2, the1657

first-order transition temperature Tc is given by Tc− J2 ∼ 5(3J4− J2)2/48J2, and the equilibrium magnetization jumps1658

from 0 to ±mF, with m2
F ∼ 5(3J4− J2)/4J2. The paramagnetic state is locally stable down to T > J2, the ferromagnetic1659

states up to T − J2 < (4/3)(Tc − J2). When 3J4 > J2, a metastability with a long lifetime of the paramagnetic state is1660

thus ensured if the bath temperature satisfies Tc > T > J2.1661

Strictly speaking, the canonical equilibrium state of M below the transition temperature, characterized by (3.54),1662

has for h = 0 and finite N the form1663

R̂Meq =
1
2

(R̂M⇑ + R̂M⇓ ). (3.62)

However this state is not necessarily the one reached at the end of a relaxation process governed by the bath B, when1664

a field h, even weak, is present: this field acts as a source which breaks the invariance. The determination of the1665

state R̂M (tf) reached at the end of a relaxation process involving the thermal bath B and a weak field h requires a1666

dynamical study which will be worked out in subsection 7.3. This is related to the ergodicity breaking: if a weak field1667

is applied, then switched off, the full canonical state (3.62) is still recovered, but only after an unrealistically long time1668

(for N � 1). For finite times the equilibrium state of the magnet is to be found by restricting the full canonical state1669

(3.62) to its component having a magnetization with the definite sign determined by the weak external field. This1670

is the essence of the spontaneous symmetry breaking. However, for our situation this well-known recipe should be1671

supported by dynamical considerations; see in this respect section 11.1672

In our model of measurement, the situation is similar, though slightly more complicated. The system-apparatus1673

coupling (3.5) plays the rôle of an operator-valued source, with eigenvalues behaving as a field h = g or h = −g. We1674

shall determine in section 7 towards which state M is driven under the conjugate action of the bath B and of the system1675

S, depending on the parameters of the model.1676

As a preliminary step, let us examine here the effect on the free energy (3.55) of a small positive field h. Consider1677

first the minima of F (m) [249, 250]. The two ferromagnetic minima m⇑ and m⇓ given by (3.56) are slightly shifted1678

away from mF and −mF, and F
(
m⇑

)
− F (mF) behaves as −NhmF. Hence, as soon as exp{−β

[
F

(
m⇑

)
− F

(
m⇓

)]
} ∼1679

exp(2βNhmF) � 1, only the single peak PM⇑ (m) around m⇑ ' mF contributes to (3.54), so that the canonical equi-1680

librium state of M has the form R̂Meq = R̂M⇑. The shape of F (m) will also be relevant for the dynamics. For1681
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Figure 3.4: The effect of a positive field h on F(m) for q = 4 at temperature T = 0.2J4. As h increases the paramagnetic minimum mP shifts
towards positive m. At the critical field hc = 0.0357J4 this local minimum disappears, and the curve has an inflexion point with vanishing slope at
m = mc = 0.268. For larger fields, like in the displayed case g = 0.04J4, the locally stable paramagnetic state disappears, and there remain only the
two ferromagnetic states, the most stable one with positive magnetization m⇑ ' 1 and the metastable one with negative magnetization m⇓ ' −1.

a second order transition, although F (m) has when h = 0 a maximum at m = 0, its stationarity allows the state1682

R̂M (m, 0) ∝ PM(m̂, 0) given by (3.49) to have a long lifetime for N � 1. The introduction of h produces a negative1683

slope −Nh at m = 0, which suggests that the dynamics will let 〈m〉 increase. For a first order transition, the situation is1684

different (Fig. 3.4). If h is sufficiently small, F (m) retains its paramagnetic minimum, the position of which is shifted1685

as mP ∼ h/T ; the paramagnetic state R̂M (0) remains locally stable. It may decay towards a stable ferromagnetic state1686

only through mechanisms of thermal activation or quantum tunnelling, processes with very large characteristic times,1687

of exponential order in N. However, there is a threshold hc above which this paramagnetic minimum of F (m), which1688

then lies at m = mc, disappears. The value of hc is found by eliminating m = mc between the equations d2F/dm2 = 01689

and dF/dm = 0. In the pure q = 4 case (J2 = 0) on which we focus as an illustration for first order transitions, we find1690

2m2
c = 1 −

√
1 − 4T/3J4, hc = 1

2 T ln[1 + mc)/(1 − mc)] − J4m3
c . At the transition temperature Tc = 0.363J4, we have1691

mc = 0.375 and hc = 0.0904J4; for T = 0.2J4, we obtain mc = 0.268 and hc = 0.036J4; for T � J4, mc behaves as1692
√

T/3J4 and hc as
√

4T 3/27J4. Provided h > hc, F (m) has now a negative slope in the whole interval 0 < m < mF.1693

We can thus expect, in our measurement problem, that the registration will take place in a reasonable delay, either1694

for a first order transition if the coupling g is larger than hc, or for a second order transition. In the latter case, it will1695

be necessary to check, however, that the lifetime of the initial state is larger than the duration of the measurement.1696

This will be done in § 7.3.2.1697

4. Equations of motion1698

Τὰ πάντα ῥεı̈43
1699

Quoted from Heraklitos by Plato and Simplicius1700

In this technical section, we rewrite the dynamical equations for our model in a form which will help us, in the1701

continuation, to discuss the physical features of the solution. We will make no other approximation than the weak1702

spin-phonon coupling, γ � 1, and will derive the equations up to first order in γ. In subsection 4.5, we take advantage1703

of the large size of the apparatus, N � 1, to reduce the equations of motion into a pair of partial differential equations.1704

43Everything flows
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4.1. A conserved quantity, the measured component of the spin, and the Born rule1705

All the world’s Great Journeys begin with the first step1706

A 1000 miles journey starts with a single step1707

Tibetan and Aboriginal Australian proverbs1708

Since ĤS = 0 and since ŝx and ŝy do not occur in the coupling (3.5) between S and A, we can already conclude1709

that ŝz is conserved during the ideal measurement, viz. i~dŝz/dt = [ŝz, Ĥ] = 0. This implies that the diagonal elements1710

of the density matrix of the spin are conserved, viz. r↑↑(tf) = r↑↑(t) = r↑↑(0) and r↓↓(tf) = r↓↓(0). The result is1711

consistent with Born’s rule: we expect the probabilities for the possible outcomes of an ideal measurement to be given1712

by the diagonal elements of the initial density matrix of S. But r↑↓ and r↓↑, on the other hand, are not conserved (viz.1713

[ŝa, Ĥ] , 0 for a = x, y), and they will evolve and ultimately vanish44.1714

4.2. Eliminating the bath variables1715

Não chame o jacaré de boca-grande se você1716

ainda não chegon na outra margem 45
1717

Brazilian proverb1718

A complete description of the measurement process requires at least the solution, in the Hilbert space of S + A, of1719

the Liouville–von Neumann equation of motion [249]1720

i~
dD̂
dt

=
[
Ĥ, D̂

]
, (4.1)

with the initial condition1721

D̂ (0) = r̂ (0) ⊗ R̂M (0) ⊗ R̂B (0) = D̂ (0) ⊗ R̂B (0) . (4.2)

We are not interested, however, in the bath variables, and the knowledge of D̂ (t) = trBD̂ (t) is sufficient for our1722

purpose. As usual in non-equilibrium statistical mechanics [196, 121, 122, 252], we rely on the weakness of the1723

coupling ĤMB between the magnet and the bath, so as to treat perturbatively the dissipative effect of the bath.1724

Let us therefore split the Hamiltonian (3.3) into Ĥ = Ĥ0 + ĤMB + ĤB with Ĥ0 = ĤS + ĤSA + ĤM. Regarding the1725

coupling ĤMB as a perturbation, we introduce the unperturbed evolution operators, namely (3.36) for the bath, and1726

Û0 (t) = e−iĤ0t/~, Ĥ0 = −gNŝzm̂ − N
∑
q=2,4

Jq

q
m̂q, (4.3)

for S + M. We can then expand the full evolution operator in powers of the coupling
√
γ, in the interaction picture,1727

and take the trace over B of eq. (4.1) so as to generate finally an equation of motion for the density operator D̂(t) of S1728

+ M. This calculation is worked out in Appendix A.1729

The result involves the autocorrelation function K(t) of the bath, defined by (3.33) – (3.36) and expressed in our1730

model by (3.37), (3.38). It also involves the operators σ̂(n)
a (u) in the space of S + M, defined in terms of the memory1731

time u = t − t′ by1732

σ̂(n)
a (u) ≡ Û0 (t) Û†0

(
t′
)
σ̂(n)

a Û0
(
t′
)

Û†0 (t) = Û0 (u) σ̂(n)
a Û†0 (u) . (4.4)

It holds that σ̂(n)
a (0) = σ̂(n)

a . Altogether we obtain a differential equation for D̂ (t), the kernel of which involves times1733

earlier than t through K (u) and σ̂(n)
a (u) [196, 121, 122]:1734

dD̂
dt
−

1
i~

[
Ĥ0, D̂

]
=

γ

~2

∫ t

0
du

∑
n,a

{
K (u)

[
σ̂(n)

a (u) D̂, σ̂(n)
a

]
+ K (−u)

[
σ̂(n)

a , D̂σ̂(n)
a (u)

]}
+ O

(
γ2

)
. (4.5)

As anticipated in § 3.3.2, the phonon bath occurs in this equation, which governs the dynamics of S + M, only through1735

the function K (t), the memory time being the time-range ~/2πT of K (t) [196, 121, 122].1736

44This has the popular name “decay of Schrödinger cat terms”, or “death of Schrödinger cats”
45Don’t call the alligator a big-mouth till you have crossed the river
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4.3. Decoupled equations of motion1737

Married couples tell each other a thousand things,1738

without speech1739

Chinese proverb1740

In our model, the Hamiltonian commutes with the measured observable ŝz, hence with the projection operators1741

Π̂i onto the states |↑〉 and |↓〉 of S. The equations for the operators Π̂iD̂Π̂ j are therefore decoupled. We can replace1742

the equation (4.5) for D̂ in the Hilbert space of S + M by a set of four equations for the operators R̂i j defined by1743

(3.18) in the Hilbert space of M. We shall later see (section 8.2) that this simplification underlies the ideality of the1744

measurement process.1745

The Hamiltonian Ĥ0 in the space S+M gives rise to two Hamiltonians Ĥ↑ and Ĥ↓ in the space M, which according1746

to (3.5) and (3.7) are simply two functions of the observable m̂, given by1747

Ĥi = Hi (m̂) = −gNsim̂ − N
∑
q=2,4

Jq

q
m̂q, (i =↑, ↓) (4.6)

with si = +1 (or −1) for i =↑ (or ↓). These Hamiltonians Ĥi, which describe interacting spins σ̂(n) in an external field1748

gsi, occur in (4.5) both directly and through the operators1749

σ̂(n)
a (u, i) = e−iĤiu/~σ̂(n)

a eiĤiu/~, (4.7)

obtained by projection of (4.4), using (4.3), with Π̂i and reduction to the Hilbert space of M.1750

The equation (4.5) for D̂(t) which governs the joint dynamics of S+M thus reduces to the four differential equations1751

in the Hilbert space of M (we recall that i, j =↑, ↓ or ±1):1752

dR̂i j(t)
dt

−
ĤiR̂i j(t) − R̂i j(t)Ĥ j

i~
=

γ

~2

∫ t

0
du

∑
n,a

{
K (u)

[
σ̂(n)

a (u, i) R̂i j(t), σ̂(n)
a

]
+ K (−u)

[
σ̂(n)

a , R̂i j(t)σ̂(n)
a (u, j)

]}
. (4.8)

4.4. Reduction to scalar equations1753

4.4.1. Representing the pointer by a scalar variable1754

Even a small star shines in the darkness1755

Finnish proverb1756

For each operator R̂i j, the initial conditions are given according to (3.44) and (3.45) by1757

R̂i j (0) = ri j (0) R̂M (0) , (4.9)

and R̂M (0) expressed by the Gibbs state (3.46) is simply a function of the operator m̂. We show in Appendix B that1758

this property is preserved for R̂i j (t) by the evolution (4.8), owing to the form (4.6) of Ĥi and in spite of the occurrence1759

of the separate operators σ̂(n)
a in the right-hand side.1760

We can therefore parametrize, as anticipated at the end of § 3.3.1, at each t, the operators R̂i j in the form R̂i j =1761

Pdis
i j (m̂)/G(m̂). Their equations of motion (4.8) are then diagonal in the eigenspace of m̂, and are therefore equivalent1762

to scalar equations which govern the functions Pi j(m) = (N/2)Pdis
i j (m) of the variable m taking the discrete values1763

(3.23).1764

4.4.2. Equations of motion for Pi j (m, t)1765

The equations resulting from this parametrization are derived in Appendix B. The integrals over u entering (4.8)1766

yield the functions1767

K̃t> (ω) =

∫ t

0
due−iωuK (u) =

1
2πi

∫ +∞

−∞

dω′K̃
(
ω′

) ei(ω′−ω)t − 1
ω′ − ω

, (4.10)
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and1768

K̃t< (ω) =

∫ t

0
dueiωuK (−u) =

∫ 0

−t
due−iωuK (u) =

[
K̃t> (ω)

]∗
=

1
2πi

∫ +∞

−∞

dω′K̃
(
ω′

) 1 − ei(ω−ω′)t

ω′ − ω
, (4.11)

where ω takes, depending on the considered term, the values Ω+
↑
, Ω−
↑
, Ω+
↓
, Ω−
↓
, given by1769

~Ω±i (m) = Hi(m ± δm) − Hi(m), (i =↑, ↓), (4.12)

in terms of the Hamiltonians (4.6) and of the level spacing δm = 2/N. They satisfy the relations1770

Ω±i (m ∓ δm) = −Ω∓i (m). (4.13)

The quantities (4.12) are interpreted as excitation energies of the magnet M arising from the flip of one of its spins in1771

the presence of the tested spin S (with value si); the sign + (−) refers to a down-up (up-down) spin flip. Their explicit1772

values are:1773

~Ω±i (m) = ∓2gsi + 2J2(∓m −
1
N

) + 2J4(∓m3 −
3m2

N
∓

4m
N2 −

2
N3 ), (4.14)

with s↑ = 1, s↓ = −1.1774

The operators σ̂(n)
x and σ̂(n)

y which enter (4.8) are shown in Appendix B to produce a flip of the spin σ̂(n), that is, a1775

shift of the operator m̂ into m̂ ± δm. We introduce the notations1776

∆± f (m) = f (m±) − f (m) , m± = m ± δm, δm =
2
N
. (4.15)

The resulting dynamical equations for Pi j(m, t) take different forms for the diagonal and for the off-diagonal1777

components. On the one hand, the first diagonal block of D̂ is parameterized by the joint probabilities P↑↑ (m, t) to1778

find S in |↑〉 and m̂ equal to m at the time t. These probabilities evolve according to1779

dP↑↑ (m, t)
dt

=
γN
~2

{
∆+

[
(1 + m) K̃t

(
Ω−↑ (m)

)
P↑↑ (m, t)

]
+ ∆−

[
(1 − m) K̃t

(
Ω+
↑ (m)

)
P↑↑ (m, t)

]}
, (4.16)

with initial condition P↑↑ (m, 0) = r↑↑ (0) PM (m, 0) given by (3.49); likewise for P↓↓ (m), which involves the frequen-1780

cies Ω∓
↓
(m). The factor K̃t (ω) is expressed by the combination of two terms,1781

K̃t (ω) ≡ K̃t> (ω) + K̃t< (ω) =

∫ +t

−t
due−iωuK (u) =

∫ ∞

−∞

dω′

π

sin (ω′ − ω) t
ω′ − ω

K̃
(
ω′

)
. (4.17)

It is real and tends to K̃ (ω), given in Eq. (3.38), at times t larger than the range ~/2πT of K (t) [196, 121, 122]. This1782

may be anticipated from the relation sin[(ω′ − ω)t]/π(ω′ − ω) → δ(ω′ − ω) for t → ∞ and it may be demonstrated1783

with help of the contour integration techniques of Appendix D, which we leave as a student exercise, see § 9.6.1.1784

On the other hand, the sets P↑↓ (m, t) and P↓↑ = P?
↑↓

which parameterize the off-diagonal blocks of D̂, and which1785

are related through (3.30) to the correlations between ŝx or ŝy and any number of spins of M, evolve according to1786

d
dt

P↑↓ (m, t) −
2iNgm

~
P↑↓ (m, t) =

γN
~2

{
∆+

[
(1 + m) K̃−(m, t)P↑↓ (m, t)

]
+ ∆−

[
(1 − m) K̃+(m, t)P↑↓ (m, t)

]}
, (4.18)

with initial condition P↑↓ (m, 0) = r↑↓ (0) PM (m, 0). Here K̃t> and K̃t< enter the combination1787

K̃±(m, t) ≡ K̃t>

[
Ω±↑ (m)

]
+ K̃t<

[
Ω±↓ (m)

]
. (4.19)
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4.4.3. Interpretation as quantum balance equations1788

Je moet je evenwicht bewaren46
1789

Dutch expression1790

Our basic equations (4.16) and (4.18) fully describe the dynamics of the measurement. The diagonal equation1791

(4.16) can be interpreted as a balance equation [196, 121, 122]. Its first term represents elementary processes in which1792

one among the spins, say σ(n), flips from σ(n)
z = +1 to σ(n)

z = −1. For the value m of the magnetization, a value1793

taken with probability P↑↑ (m, t) at the time t, there are 1
2 N (1 + m) spins pointing upwards, and the probability for1794

one of these spins to flip down between the times t and t + dt under the effect of the phonon bath can be read off1795

from (4.18) to be equal to 2γ~−2K̃t

(
Ω−
↑

)
dt. This process produces a decrease of P↑↑ (m) and it is accounted for by the1796

negative contribution (which arises from the second part of ∆+ and is proportional to −P↑↑(m, t)) to the first term in the1797

right-hand side of (4.16). The coefficient K̃t (ω) depends on the temperature T of the bath B, on the duration t of its1798

interaction with M, and on the energy ~ω that it has transferred to M; this energy is evaluated for P↑↑ (or P↓↓) as if the1799

spins of M were submitted to an external field +g (or −g). The first term in (4.16) also contains a positive contribution1800

arising from the same process, for which the magnetization decreases from m+δm to m, thus raising P↑↑ (m) by a term1801

proportional to P↑↑ (m + δm). Likewise, the second term in the right-hand side of (4.16) describes the negative and1802

positive changes of P↑↑ (m) arising from the flip of a single spin from σ(n)
z = −1 to σ(n)

z = +1. Quantum mechanics1803

occurs in (4.16) through the expression (3.38) of K̃ (ω); the flipping probabilities do not depend on the factor ~, owing1804

to the factor ~2 that enters K̃(ω) and the fact that we have chosen the dimensionless coupling constant γ, but their1805

quantum nature is still expressed by the Bose-Einstein occupation number.1806

The equation (4.18) for P↑↓ has additional quantum features. Dealing with an off-diagonal block, it involves1807

simultaneously the two Hamiltonians Ĥ↑ and Ĥ↓ of Eq. (4.6) in the Hilbert space of M, through the expression (4.12)1808

of Ω±
↑,↓. The quantities P↑↓ and P↓↑ are complex and cannot be interpreted as probabilities, although we recognize in1809

the right-hand side the same type of balance as in Eq. (4.16). In fact, while
∑

m Pdis
↑↑

(m) = 1 −
∑

m Pdis
↓↓

(m), or in the1810

N � 1 limit
∫

dm P↑↑ (m) = 1−
∫

dm P↓↓ (m), remains constant in time because the sum over m of the right-hand side1811

of (4.16) vanishes, the term in the left-hand side of (4.18), which arises from Hi−H j, prevents
∑

m Pdis
↑↓

(m) from being1812

constant; It will, actually, lead to the disappearance of these “Schrödinger cat” terms.1813

Comparison of the right-hand sides of (4.16) and (4.18) shows moreover that the bath acts in different ways on the1814

diagonal and off-diagonal blocks of the density operator D̂ of S + M.1815

4.5. Large N expansion1816

Except in subsection 8.1 we shall deal with a magnetic dot sufficiently large so that N � 1. The set of values1817

(3.23) on which the distributions Pi j (m, t) are defined then become dense on the interval −1 ≤ m ≤ +1. At the initial1818

time, Pi j (m, 0), proportional to (3.49), extends over a range of order 1/
√

N while the spacing of the discrete values1819

of m is δm = 2/N. The initial distributions Pi j are thus smooth on the scale δm, and P↑↑ and P↓↓ will remain smooth1820

at later times. It is therefore legitimate to interpolate the set of values of the diagonal quantities Pii (m, t) defined at1821

the discrete points (3.23) into a continuous function of m. If we assume the two resulting functions Pii to be several1822

times differentiable with respect to m, the discrete equation (4.16) satisfied by the original distributions will give rise1823

to continuous equations, which we shall derive below, involving an asymptotic expansion in powers of 1/N. Within1824

exponentially small corrections, the characteristic functions associated with Pii(m, t) then reduce to integrals:1825

Ψii (λ, t) ≡
∑

m

Pdis
ii (m, t) eiλm =

∫
dmPii (m, t) eiλm, (4.20)

provided λ � N. The moments of Pii (m) of order less than N can also be evaluated as integrals.1826

However, the left-hand side of Eq. (4.18) generates for finite times rapid variations of P↑↓(m, t) and P↓↑(m, t) as1827

functions of m, and it will be necessary in sections 5 and 6 to account for the discrete nature of m. When writing1828

below the equations of motion for these quantities in the large N limit, we will take care of this difficulty.1829

The differences ∆± defined by (4.15) satisfy1830

46You have to keep your balance
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∆±[ f (m)g(m)] =
[
∆± f (m)

]
g(m) + f (m)

[
∆±g(m)

]
+

[
∆± f (m)

] [
∆±g(m)

]
, (4.21)

and give rise to derivatives with respect to m according to1831

∆± f (m) ≈ ±
2
N
∂ f (m)
∂m

+
2

N2

∂2 f (m)
∂m2 ±

4
3N3

∂3 f (m)
∂m3 . (4.22)

We can also expand the excitation energies ~Ω±i , defined by (4.12) and (4.6), for large N as1832

Ω±i (m) ≈ ∓2ωi −
2
N

dωi

dm
=

(
1 ±

1
N

d
dm

)
(∓2ωi), (4.23)

where we introduced the quantity1833

~ωi = −
1
N

dHi

dm
= gsi + J2m + J4m3, (si = ±1), (4.24)

interpreted as the effective energy of a single spin of M coupled to the other spins of M and to the tested spin S.1834

The above expansions will allow us to transform, for large N, the equations of motion for Pi j into partial differential1835

equations. In case ∂Pi j/∂m is finite for large N, we can simply replace in (4.16) and (4.18) N∆± by ±2∂/∂m and Ω±i1836

by ∓2ωi. However, such a situation is exceptional; we shall encounter it only in § 7.3.2. In general Pi j will behave1837

for large N as A exp NB. This property, exhibited at t = 0 in §§ 3.3.3 and 3.3.4, is preserved by the dynamics. As1838

∂Pi j/∂t involves leading contributions of orders N and 1, we need to include in the right-hand sides of (4.16) and1839

(4.18) contributions of the same two orders. Let us therefore introduce the functions1840

Xi j(m, t) ≡
1
N
∂ ln Pi j

∂m
=

1
NPi j

∂Pi j

∂m
, (4.25)

which contain parts of order 1 and 1/N, and their derivatives1841

X′i j ≡
1
N
∂2 ln Pi j

∂m2 =
∂Xi j

∂m
, (4.26)

which can be truncated at finite order in N. The discrete increments of Pi j are thus expanded as1842

∆±Pi j = Pi j

[
exp(∆± ln Pi j) − 1

]
≈ Pi j

[
exp

(
±2Xi j +

2
N

X′i j

)
− 1 + O

(
1

N2

)]
≈ Pi j

exp
(
±2Xi j

)
− 1 +

2X′i j

N
exp

(
±2Xi j

)
+ O

(
1

N2

) . (4.27)

We express (4.16) by using the full relation (4.21), with f = P↑↑ and g = (1 ± m)K̃t(Ω∓↑ ), by evaluating ∆± f from1843

(4.27), and by inserting (4.13) into ∆±g. This yields1844

∂P↑↑
∂t
≈

2γ
~2 P↑↑

{
N sinh X↑↑

[
(1 + m)K̃t(Ω−↑ )eX↑↑ − (1 − m)K̃t(Ω+

↑ )e−X↑↑
]

+eX↑↑ ∂

∂m

[
(1 + m)K̃t(2ω↑)eX↑↑

]
− e−X↑↑ ∂

∂m

[
(1 − m)K̃t(−2ω↑)e−X↑↑

]
+ O

(
1
N

)}
. (4.28)

The first term on the right-hand side determines the evolution of the exponent of P↑↑, which contains parts of order1845

N, but contains also contributions of order 1 arising from the terms of order 1/N of (4.23) and of X↑↑. The remaining1846
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terms determine the evolution of the amplitude of P↑↑. The bath term of the equation (4.18) for P↑↓(m, t) (and for1847

P↓↑ = P∗
↑↓

) has a similar form, again obtained from all the terms in (4.21) and (4.27), namely, using the notation1848

(4.19):1849

∂P↑↓
∂t
−

2iNgm
~

P↑↓ ≈
2γ
~2 P↑↓

{
N sinh X↑↓

[
(1 + m)K̃−(m, t)eX↑↓ − (1 − m)K̃+(m, t)e−X↑↓

]
+eX↑↓ ∂

∂m

[
(1 + m)K̃−(m, t)eX↑↓

]
− e−X↑↓ ∂

∂m

[
(1 − m)K̃+(m, t)e−X↑↓

]
+ O

(
1
N

)}
. (4.29)

A further simplification occurs for large N in the diagonal sector. Then P↑↑, which is real, takes significant values1850

only in the vicinity of the maximum of ln P↑↑. This maximum is reached at a point m = µ(t), and P↑↑ is concentrated1851

in a range for |m − µ(t)| of order 1/
√

N 47. In this range, X↑↑ is proportional to µ(t) − m, and it is therefore of order1852

1/
√

N48. We can therefore expand (4.28) in powers of X↑↑, noting also that X′
↑↑

is finite, and collect the X↑↑, X2
↑↑

, X′
↑↑

1853

and X↑↑X′↑↑ terms. Thus, if we disregard the exponentially small tails of the distribution P↑↑, which do not contribute1854

to physical quantities, we find at the considered order, using (4.25) and (4.26),1855

∂P↑↑
∂t
≈

∂

∂m
[
−v (m, t) P↑↑

]
+

1
N

∂2

∂m2

[
w (m, t) P↑↑

]
, (4.30)

where1856

v (m, t) =
2γ
~2

[
(1 − m) K̃t

(
−2ω↑

)
− (1 + m) K̃t

(
2ω↑

)]
+ O

(
1
N

)
, (4.31)

w (m, t) =
2γ
~2

[
(1 − m) K̃t

(
−2ω↑

)
+ (1 + m) K̃t

(
2ω↑

)]
+ O

(
1
N

)
. (4.32)

The next contribution to the right hand side of (4.30) would be −2vX↑↑X′↑↑P↑↑, of order 1/
√

N. We have replaced in v1857

and w the frequencies Ω±
↑

by ∓2ω↑, which has the sole effect of shifting the position and width of the distribution P↑↑1858

by a quantity of order 1/N. As shown by the original equation (4.28), the two terms of (4.30) have the same order of1859

magnitude (in spite of the presence of the factor 1/N in the second one) when P↑↑ has an exponential form in N. Only1860

the first one contributes if P↑↑ becomes smooth (§ 7.3.2). The equation for P↓↓ is obtained from (4.30) by changing g1861

into −g.1862

In the regime where the registration will take place (§ 7.1.1), we shall be allowed to replace K̃t(±2ωi) by K̃(±2ωi),1863

which according to (3.38) is equal to1864

K̃(±2ωi) =
~2ωi

4
[
coth(β~ωi) ∓ 1

]
exp

(
−

2|ωi|

Γ

)
, (i =↑, ↓). (4.33)

Eqs. (4.31) and (4.32) will thereby be simplified.1865

The final equations (4.29) and (4.30), with the initial conditions Pi j(m, 0) = ri jPM(m, 0) expressed by (3.49),1866

describe the evolution of S + M during the measurement process. We will work them out in sections 5 to 7. The1867

various quantities entering them were defined by (4.25) and (4.26) for Xi j and X′i j, by (4.31) and (4.32) for v and w,1868

by (3.38), (4.10), (4.11), (4.17) and (4.19) for K̃t>, K̃t<, K̃t and K̃±, respectively, and by (4.24) for ωi.1869

The dynamics of P↑↓ has a purely quantum nature. The left-hand side of (4.29) governs the evolution of the1870

normalization
∫

dmP↑↓(m, t), equal to the off-diagonal element r↑↓(t) of the marginal state r̂(t) of S. The bath gives1871

rise on the right-hand side to a non-linear partial differential structure, which arises from the discrete nature of the1872

spectrum of m̂.1873

47Numerically we find for N = 1000 extended distributions, see Figs. 7.5 and 7.6, since the typical peak width 1/
√

N is still sizable
48This property does not hold for P↑↓, since X↑↓ contains a term 2igt/~ arising from the left hand side of (4.29)
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The final equation of motion (4.30) for P↑↑ has the form of a Fokker–Planck equation [252, 253], which describes1874

a stochastic motion of the variable m. Its coefficient v, which depends on m and t, can be interpreted as a drift velocity,1875

while its coefficient w characterizes a diffusion process. This analogy with a classical diffusion process, should not,1876

however, hide the quantum origin of the diffusion term, which is as sizeable for large N as the drift term. While the1877

drift term comes out by bluntly taking the continuous limit of (4.16), the diffusion term originates, as shown by the1878

above derivation, from the conjugate effect of two features: (i) the smallness of the fluctuations of m, and (ii) the1879

discreteness of the spectrum of the pointer observable m̂. Although the pointer is macroscopic, its quantum nature is1880

essential, not only in the off-diagonal sector, but also in the diagonal sector which accounts for the registration of the1881

result.1882

5. Very short times: truncation1883

Alea iacta est49
1884

Julius Caesar1885

1886

Since the coupling γ of the magnet M with the bath B is weak, some time is required before B acts significantly1887

on M. In the present section, we therefore study the behavior of S + M at times sufficiently short so that we can1888

neglect the right-hand sides of (4.16) and (4.18). We shall see that the state D̂(t) of S + A is then truncated, that is, its1889

off-diagonal blocks R̂↑↓ and R̂↓↑ rapidly decay, while the diagonal blocks are still unaffected.1890

5.1. The truncation mechanism1891

5.1.1. The truncation time1892

An elephant does not get tired carrying his trunk1893

Burundian proverb1894

When their right-hand sides are dropped, the equations (4.16) and (4.18) with the appropriate boundary conditions1895

are readily solved as1896

P↑↑ (m, t) = r↑↑ (0) PM (m, 0) , P↓↓ (m, t) = r↓↓ (0) PM (m, 0) , (5.1)
P↑↓ (m, t) =

[
P↓↑ (m, t)

]∗
= r↑↓ (0) PM (m, 0) e2iNgmt/~. (5.2)

From the viewpoint of the tested spin S, these equations describe a Larmor precession around the z-axis [60], under1897

the action of an effective magnetic field Ngm which depends on the state of M. From the viewpoint of the magnet1898

M, we shall see in § 5.1.3 that the phase occurring in (5.2) generates time-dependent correlations between M and the1899

transverse components of s.1900

The expectation values 〈ŝa (t)〉 of the components of s are found from (3.30) by summing (5.1) and (5.2) over1901

m. These equations are valid for arbitrary N and arbitrary time t as long as the bath is inactive. If N is sufficiently1902

large and t sufficiently small so that the summand is a smooth function on the scale δm = 2/N, that is, if N � 1 and1903

t � ~/g, we can use (4.20) to replace the summation over m by an integration. These conditions will be fulfilled in1904

subsections 5.1 and 5.2; we shall relax the second one in subsection 5.3 where we study the effects of the discreteness1905

of m. Using the expression (3.49), (3.50) of PM (m, 0), we find by integrating (5.2) over m:1906

r↑↓ (t) = r↑↓ (0) e−(t/τtrunc)2
, (5.3)

or equivalently1907

〈ŝa (t)〉 = 〈ŝa (0)〉 e−(t/τtrunc)2
, (a = x,y), (5.4)

〈ŝz (t)〉 = 〈ŝz (0)〉 , (5.5)

where we introduced the truncation time1908

49The die is cast
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τtrunc ≡
~

√
2 Ng∆m

=
~

√
2N δ0g

. (5.6)

Although P↑↓(m, t) is merely an oscillating function of t for each value of m, the summation over m has given rise to1909

a damping. This property arises from the dephasing that exists between the oscillations for different values of m.1910

In the case T0 = ∞ of a fully disordered initial state, we may solve directly (4.8) (without right-hand side) from the1911

initial condition (4.9). We obtain, for arbitrary N, R̂↑↓(t) = r↑↓(0)2−N exp(2iNgm̂t/~), whence by using the definition1912

(3.2) of m̂ and taking the trace over M, we find the exact result50
1913

r↑↓(t) = r↑↓(0)
(
cos

2gt
~

)N

, (5.7)

which reduces to (5.3) for times of order τtrunc.1914

Thus, over a time scale of order τtrunc, the transverse components of the spin S decay and vanish while the z-1915

component is unaltered: the off-diagonal elements r↑↓ = r∗
↓↑

of the marginal density matrix of S disappear during the1916

very first stage of the measurement process. It was to be expected that the apparatus, which is a large object, has a1917

rapid and strong effect on the much smaller system S. In the present model, this rapidity arises from the large number1918

N of spins of the magnet, which shows up through the factor 1/
√

N in the expression (5.6) of τtrunc.1919

As we shall see in § 5.1.3, the off-diagonal block R̂↑↓ = R̂
†

↓↑
of the full density matrix D̂ of S + A is proportional1920

to r̂↑↓ (t) and its elements also decrease as exp[−(t/τtrunc)2], at least those elements which determine correlations1921

involving a number of spins of M small compared to N. In the vocabulary of § 1.3.2, truncation therefore takes place1922

for the overall system S + A over the brief initial time lapse τtrunc, while Eq. (5.3) describes weak truncation for S.1923

The quantum nature of the truncation process manifests itself through the occurrence of two different Hamiltonians1924

Ĥ↑ and Ĥ↓ in the Hilbert space of M. Both of them occur in the dynamical equation (4.18) for P↑↓, whereas only Ĥ↑1925

occurs in (4.16) for P↑↑ through Ω±
↑
, and likewise only Ĥ↓ for P↓↓, through Ω±

↓
.1926

The truncation time τtrunc is inversely proportional to the coupling g between ŝz and each spin σ̂(n)
z of the magnet. It1927

does not depend directly on the couplings Jq (q = 2, 4) between the spins σ̂(n)
z . Indeed, the dynamical equations (4.16),1928

(4.18) without bath-magnet coupling involve only H↑ (m) − H↓ (m), so that the interactions ĤM which are responsible1929

for ferromagnetism cancel out therein. These interactions occur only through the right-hand side which describes the1930

effect of the bath. They also appear indirectly in τtrunc through the factor δ0 of ∆m given by (3.52), in the case q = 21931

of an Ising magnet M. When J2 , 0, the occurrence of δ0 > 1 thus contributes to accelerate the truncation process.1932

5.1.2. Truncation versus decoherence: a general phenomenon1933

It is often said [32, 33, 40, 198, 199, 200, 201] that “von Neumann’s reduction is a decoherence effect”. (The tra-1934

ditional word “reduction” covers in the literature both concepts of “truncation” and “reduction” as defined in § 1.3.2.)1935

As is well known, decoherence is the rapid destruction of coherent superpositions of distinct pure states induced by1936

a random environment, such as a thermal bath. In the latter seminal case, the characteristic decoherence time has1937

the form of ~/T divided by some power of the number of degrees of freedom of the system and by a dimensionless1938

coupling constant between the system and the bath (see also our discussion of the decoherence approach in section 2).1939

Here, things are different. As we have just seen and as will be studied below in detail, the initial truncation process1940

involves only the magnet. Although the bath is part of the apparatus, it has no effect here and the characteristic trun-1941

cation time τtrunc does not depend on the bath temperature. Indeed the dimensional factor of (5.6) is ~/g, and not ~/T .1942

The thermal fluctuations are replaced by the fluctuation ∆m of the pointer variable, which does not depend on T0 for1943

q = 4 and which decreases with T0 as (3.52) for q = 2.1944

The fact that the truncation is controlled only by the coupling of the pointer variable m̂ with S is exhibited by1945

the occurrence, in (5.6), of its number N of degrees of freedom of M. Registration of sz requires this variable to be1946

50An equivalent way to derive this result is to employ (3.29) for making the identification Pdis
↑↓

(m, t) = G(m) × r↑↓(0)2−N exp(2iNgmt/~), and to
sum over the values (3.23) of m
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collective, so that N � 1. However, long before registration begins to take place in A through the influence on D̂ of1947

r↑↑ (0) and r↓↓ (0), the large size of the detector entails the loss of r↑↓ (0) and r↓↑ (0).1948

Moreover, the basis in which the truncation takes place is selected by the very design of the apparatus. It depends1949

on the observable which is being measured. Had we proceeded to measure ŝx instead of ŝz, we would have changed1950

the orientation of the magnetic dot; the part of the initial state r̂ (0) of S that gets lost would have been different.1951

Contrary to standard decoherence, truncation is here a controlled effect.1952

Altogether, it is only the pointer degrees of freedom directly coupled to S that are responsible for the rapid trunca-1953

tion. As such, it is a dephasing. The effects of the bath are important (sections 6.2 and 7), but do not infer on the initial1954

truncation process, on the time scale τtrunc. We consider it therefore confusing to use the term “decoherence” for the1955

decay of the off-diagonal blocks in a quantum measurement, since its mechanism can be fundamentally different from1956

a standard environment-induced decoherence. Here the truncation is a consequence of dephasing between oscillatory1957

terms which should be summed to generate the physical quantities51.1958

The above considerations hold for the class of models of quantum measurements for which the pointer has many1959

degrees of freedom directly coupled to S [68, 181, 182] (see also [201] in this context). We have already found for1960

the truncation time a behavior analogous to (5.6) in a model where the detector is a Bose gas [180], with a scaling1961

in N−1/4 instead of N−1/2. More generally, suppose we wish to measure an arbitrary observable ŝ of a microscopic1962

system S, with discrete eigenvalues si and corresponding projections Π̂i. The result should be registered by some1963

pointer variable m̂ of an apparatus A coupled to ŝ. The full Hamiltonian has still the form (3.3), and it is natural to1964

assume that the system–apparatus coupling has the same form1965

ĤSA = −Ngŝm̂, (general operators ŝ, m̂) (5.8)

as (3.5). The coupling constant g refers to each one of the N elements of the collective pointer, so that a factor N1966

appears in (5.8) as in (3.5), if m̂ is dimensionless and normalized in such a way that the range of its relevant eigenvalues1967

is finite when N becomes large. The truncated density matrix r̂ (t) is made of blocks 〈iα| r̂ | jβ〉 where α takes as many1968

values as the dimension of Π̂i. It can be obtained as1969

〈iα| r̂ (t) | jβ〉 =
∑

m

〈iα| P (m, t) | jβ〉 , (5.9)

where 〈iα| P (m, t) | jβ〉, which generalizes P↑↓ (m, t), is defined by1970

〈iα| P (m, t) | jβ〉 = 〈iα| trA

(
δm̂,mD̂

)
| jβ〉 . (5.10)

We have denoted by m the eigenvalues of m̂, and by δm̂,m the projection operator on m in the Hilbert space of A. The1971

quantity (5.10) satisfies an equation of motion dominated by (5.8):1972 [
i~

d
dt

+ Ng(si − s j)m
]
〈iα| P (m, t) | jβ〉 ' 0. (5.11)

In fact, the terms arising from ĤS (which need no longer vanish but only commute with ŝ) and from ĤA (which1973

commutes with the initial density operator R̂ (0)) are small during the initial instants compared to the term arising1974

from the coupling ĤSA. We therefore find for short times1975

〈iα| r̂ (t) | jβ〉 = 〈iα| r̂ (0) | jβ〉 trAR̂ (0) eiNg(si−s j)m̂t/~. (5.12)

The rapidly oscillating terms in the right-hand side interfere destructively as in (5.3) on a short time, if m̂ has a1976

dense spectrum and an initial distribution involving many eigenvalues. Each contribution is merely oscillating, but the1977

summation over eigenvalues produces a relaxation. (We come back to this point in subsection 5.2 and in § 12.2.3.)1978

This decrease takes place on a time scale of order ~/Ngδs∆m, where δs is the level spacing of the measured observable1979

ŝ and ∆m is the width of the distribution of eigenvalues of m̂ in the initial state of the apparatus. Leaving aside the1980

later stages of the measurement process, we thus acknowledge the generality of the present truncation mechanism,1981

and that of the expression (5.6) for the truncation time in the spin 1
2 situation where δs = 2.1982

51In section 6.2 we shall discuss the effects of decoherence by the bath, which does take place, but long after the truncation time scale
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5.1.3. Establishment and disappearance of correlations1983

The most rigid structures, the most impervious to change,1984

will collapse first1985

Eckhart Tolle1986

Let us now examine how the apparatus evolves during this first stage of the measurement process, described by1987

Eqs. (5.1) and (5.2). The first equation implies that the marginal density operator R̂M (t) = R̂↑↑ (t) + R̂↓↓ (t) of M1988

remains unchanged. This property agrees with the idea that M, a large object, has a strong influence on S, a small1989

object, but that conversely a long time is required before M is affected by its interaction with S. Eqs. (5.1) also imply1990

that no correlation is created between ŝz and M.1991

However, although R̂M (t) = R̂ (0), correlations are created between M and the transverse component ŝx (or ŝy)1992

of S. These correlations are described by the quantities Cx = P↑↓ + P↓↑ and Cy = i
(
P↑↓ − P↓↑

)
introduced in (3.30).1993

Since R̂↑↓ is a function of m̂ only, the components σ̂(n)
x and σ̂(n)

y of the spins of M remain statistically independent,1994

with 〈σ̂(n)
x 〉 = 〈σ̂(n)

y 〉 = 0 and with the quantum fluctuations 〈σ̂(n)2
x 〉 = 〈σ̂(n)2

y 〉 = 1. The correlations between M and S1995

involve only the z-component of the spins σ̂(n) of the magnet and the x- or y-component of the tested spin s. We can1996

derive them as functions of time from the generating function1997

Ψ↑↓(λ, t) ≡
∞∑

k=0

ikλk

k!
〈ŝ−m̂k(t)〉 =

∑
m

Pdis
↑↓

(m, t)eiλm = r↑↓(0)
∑

m

Pdis
M (m, 0)e2iNgmt/~+iλm, (5.13)

where ŝ− = 1
2 (ŝx − iŝy). In fact, whereas Ψ↑↓ (λ, t) generates the expectation values 〈ŝ−m̂k〉, the correlations 〈ŝ−m̂k〉c1998

are defined by the cumulant expansion1999

Ψ↑↓(λ, t) =

∞∑
k=0

ikλk

k!
〈ŝ−m̂k〉c

 ∞∑
k′=0

ik
′

λk′

k′!
〈m̂k′〉

 =

∞∑
k=0

ikλk

k!
〈ŝ−m̂k〉c exp

 ∞∑
k′=1

ik
′

λk′

k′!
〈m̂k′〉c

 , (5.14)

which factors out the correlations 〈m̂k′〉c within M. The latter correlations are the same as at the initial time, so that2000

we shall derive the correlations between S and M from2001

∞∑
k=0

ikλk

k!
〈ŝ−m̂k(t)〉c = r↑↓(0)

Ψ↑↓(λ, t)
Ψ↑↓(λ, 0)

. (5.15)

For correlations involving not too many spins (we will discuss this point in § 5.3.2), we can again replace the2002

summation over m in (5.13) by an integral. Since PM(m, 0) is a Gaussian, the sole non-trivial cumulant 〈m̂k〉c is2003

〈m̂2〉 = ∆m2, given by (3.49), (3.50), and we get from (5.13) and (5.15)2004

∞∑
k=0

ikλk

k!
〈ŝ−m̂k(t)〉c = r↑↓(0) exp

(
−

t2

τ2
trunc
−
√

2
t

τtrunc
λ∆m

)
= r↑↓(t) exp

(
−
√

2
t

τtrunc
λ∆m

)
. (5.16)

At first order in λ, the correlations between S and any single spin of M are thus expressed by2005

〈ŝxσ̂
(n)
z (t)〉 = 〈ŝxm̂ (t)〉c =

∑
m

Cdis
x (m, t) m =

√
2

t
τtrunc

〈ŝy (t)〉∆m =
√

2
t

τtrunc
〈ŝy (0)〉e−(t/τtrunc)2

∆m,

〈ŝyσ̂
(n)
z (t)〉 = 〈ŝym̂ (t)〉c =

∑
m

Cdis
y (m, t) m = −

√
2

t
τtrunc

〈ŝx (t)〉∆m, (5.17)

where we used (5.4). These correlations first increase, reach a maximum for t = τtrunc/
√

2, then decrease along with2006

〈ŝx (t)〉 and 〈ŝy (t)〉 (Fig. 5.1). At this maximum, their values satisfy2007

〈ŝxm̂ (t)〉
∆m

= 〈ŝy (t)〉 =
〈ŝy (0)〉
√

e
,

〈ŝym̂ (t)〉
∆m

= −
〈ŝx (0)〉
√

e
. (5.18)

They do not lie far below the bound yielded by Heisenberg’s inequality2008

|〈ŝxm̂〉|2 =

∣∣∣∣∣ 1
2i
〈[ŝy − 〈ŝy〉, ŝzm̂]〉

∣∣∣∣∣2 ≤ (
1 − 〈ŝy〉

2
)
∆m2, (5.19)
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Figure 5.1: The relative correlations corr = 〈(ŝx − iŝy)m̂k(t)〉c/〈(ŝx − iŝy)(0)〉(i
√

2∆m)k from Eq. (5.23), as function of t/τtrunc. For k = 0 〈ŝx(t)〉
decreases as a Gaussian. The curves for k = 1, 2 and 3 show that the correlations develop, reach a maximum, then disappear later and later.

which implies at all times2009 (
2t2

τ2
trunc

+ 1
)
〈ŝy(t)〉2 ≤ 1, (5.20)

since the left-hand side of (5.20) is 2/e at the maximum of (5.17).2010

The next order correlations are obtained from (5.16) as (a = x, y)2011

〈ŝam̂2 (t)〉c ≡ 〈ŝam̂2 (t)〉 − 〈ŝa (t)〉〈m̂2〉 = −
2t2

τ2
trunc
〈ŝa (t)〉∆m2. (5.21)

These correlations again increase, but more slowly than (5.17), reach (in absolute value) a maximum later, at t = τtrunc,2012

equal to (−2/e)〈ŝa (0)〉∆m2, then decrease together with 〈ŝa (t)〉. Accordingly, the correlations between ŝx and two2013

spins of M, evaluated as in (3.28), are given by2014

〈ŝxσ̂
(n)
a σ̂

(p)
b (t)〉c = 〈ŝx (t)〉

δa,zδb,z

N − 1

(
−

2t2

τ2
trunc

N∆m2 − 1
)
, (5.22)

which for large N behaves as (5.21).2015

Likewise, (5.16) together with (5.3) provides the hierarchy of correlations through the real and imaginary parts of2016

〈(ŝx − iŝy)m̂k (t)〉c = 〈(ŝx − iŝy) (0)〉
(
i
√

2
t

τtrunc
∆m

)k

e−(t/τtrunc)2
, (5.23)

with ∆m from (3.52). This expression also holds for more detailed correlations such as 〈ŝaσ̂
(1)
z σ̂(2)

z · · · σ̂
(k)
z (t)〉c within2017

corrections of order 1/N as in eq. (5.22), provided k/N is small.2018

Altogether (Fig. 5.1) the correlations (5.23) scale as ∆mk =
(
δ0/
√

N
)k

. If the rank k is odd, 〈ŝxm̂k (t)〉c is propor-2019

tional to 〈ŝy (0)〉, if k is even, it is proportional to 〈ŝx (0)〉, with alternating signs. The correlations of rank k depend2020

on time as (t/τtrunc)k exp[− (t/τtrunc)2]. Hence, correlations of higher and higher rank begin to grow later and later, in2021

agreement with the factor tk, and they reach a maximum later and later, at the time t = τtrunc
√

k/2. For even k, the2022

maximum of
∣∣∣〈ŝxm̂k (t)〉c

∣∣∣ is given by2023

max

∣∣∣∣∣∣ 〈ŝxm̂k (t)〉c
〈ŝx (0)〉∆mk

∣∣∣∣∣∣ =
1
k!

(
2k
e

)k/2 (
k
2

)
! '

1
√

2
, (5.24)

which is nearly independent of k.2024
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5.1.4. The truncation, a cascade process2025

Het viel in gruzelementen52
2026

Dutch saying2027

The mechanism of truncation in the present model is therefore comparable to a current mechanism of irreversibility2028

in statistical mechanics (§ 1.2.2). In a classical Boltzmann gas, initially off-equilibrium with a non-uniform density,2029

the relaxation toward uniform density takes place through the establishment of correlations between a larger and2030

larger number of particles, under the effect of successive collisions [54, 55, 56]. Here, similar features occur although2031

quantum dynamics is essential. The relaxation (5.4) of the off-diagonal elements r↑↓ = r∗
↓↑

of the marginal state r̂ of S2032

is accompanied by the generation, owing to the coupling ĤSA, of correlations between S and M.2033

Such correlations, absent at the initial time, are built up and fade out in a cascade, as shown by eq. (5.23) and2034

Fig. 5.1. Let us characterize the state R̂ of S + M by the expectation values and correlations of the operators ŝa2035

and σ̂(n)
a . The order of S, initially embedded in the expectation values of the transverse components r↑↓ (0) of the2036

spin ŝ, is progressively transferred to correlations (5.17) between these components and one spin of M, then in turn2037

to correlations (5.22) with two spins, with three spins, and so on. The larger the rank k of the correlations, the2038

smaller they are, as ∆mk ∼ 1/Nk/2 (Eq. (5.23)); but the larger their number is, as N!/k! (N − k)! ≈ Nk/k!. Their2039

time-dependence, in tk exp [− (t/τtrunc)2], shows how they blow up and blow out successively.2040

As a specific feature of our model of quantum measurement, the interaction process does not affect the marginal2041

statistical state of M. All the multiple correlations produced by the coupling ĤSA lie astride S and M.2042

Truncation, defined as the disappearance of the off-diagonal blocks R̂↑↓ = R̂↓↑ of the full density matrix D̂ of S+A,2043

or equivalently of the expectation values of all operators involving ŝx or ŝy, results from the proportionality of R̂↑↓ (t) to2044

r↑↓ (t), within a polynomial coefficient in t associated with the factor tk in the k-th rank correlations. Initially, only few2045

among the 2N×2N elements of the matrix R̂↑↓ (0) do not vanish, those which correspond to 2r↑↓ (0) = 〈ŝx (0)〉−i〈ŝy (0)〉2046

and to PM (m, 0) given by (3.49). The very many elements of R̂↑↓ (0) which describe correlations between ŝx or2047

ŝy and the spins of M, absent at the initial time, grow, while an overall factor exp[−(t/τtrunc)2] damps R̂↑↓ (t). At2048

times τtrunc � t � ~/g, all elements of R̂↑↓ (t) and hence of R̂↑↓ (t) have become negligibly small53. In principle,2049

no information is lost since the equations of motion are reversible; in particular, the commutation of Ĥ with the2050

projections Π̂↑ and Π̂↓, together with the equation of motion (4.1), implies that i~d(R̂↑↓R̂↓↑)/dt = [Ĥ, R̂↑↓R̂↓↑], and2051

hence that trAR̂↑↓R̂
†

↑↓
is constant in time and remains equal to |r↑↓(0)|2trA[R̂(0)]2. However, the initial datum r↑↓ (0)2052

gets spread among very many matrix elements of R̂↑↓ which nearly vanish, exactly as in the irreversibility paradox2053

(§ 1.2.2).2054

If N could be made infinite, the progressive creation of correlations would provide a rigorous mathematical charac-2055

terization of the irreversibility of the truncation process, as for relaxation processes in statistical mechanics. Consider,2056

for some fixed value of K, the set of correlations (5.23) of ranks k such that 0 ≤ k ≤ K, including 〈ŝx〉 and 〈ŝy〉 for2057

k = 0. All correlations of this set vanish in the limit N → ∞ for fixed t, since τtrunc then tends to 0. (The coupling2058

constant g may depend on N, in which case it should satisfy Ng2 → ∞.) This property holds even for infinite K,2059

provided K → ∞ after N → ∞, a limit which characterizes the irreversibility. However, such a limit is not uni-2060

form: the reversibility of the underlying dynamics manifests itself through the finiteness of high-order correlations for2061

sufficiently large t (§ 5.3.2).2062

Anyhow N is not allowed in physics to go to infinity, since the time τtrunc would unrealistically vanish. For large2063

but finite N, there is no rigorous qualitative characterization of irreversibility, neither in this model of measurement2064

nor in statistical mechanics, but the above discussion remains relevant. In fact, physically, it is legitimate to regard2065

as equal to zero a quantity which is less than some small bound, and to regard as unobservable and irrelevant all2066

correlations which involve a number k of spins exceeding some bound K much smaller than N. We shall return to this2067

issue in § 12.2.3.2068

52It fell and broke into tiny pieces
53The latter implication follows because the bath contributions cannot raise the S + A correlations
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5.2. Randomness of the initial state of the magnet2069

Success isn’t how far you got,2070

but the distance you traveled from where you started2071

Greek proverb2072

Initial states R̂ (0) that can actually be prepared at least in a thought experiment, such as the paramagnetic canonical2073

equilibrium distribution of § 3.3.3, involve large randomness. In particular, if the initialization temperature T0 is2074

sufficiently large, the state (3.47), i. e., R̂M (0) = 2−N ∏
n σ̂

(n)
0 , is the most disordered statistical state of M; in such a2075

case, PM (m, 0) is given by (3.51). We explore in this subsection how the truncation process is modified for other, less2076

random, initial states of M.2077

5.2.1. Arbitrary initial states2078

The derivations of the equations of motion in subsections 4.1 and 4.2 were general, irrespective of the initial state.2079

However, in subsections 4.3 and 5.1 we have relied on the fact that R̂M (0) depends only on m̂. In order to deal with an2080

arbitrary initial state R̂M (0), we return to eq. (4.8), where we can as above neglect for very short times the coupling2081

with the bath. The operators R̂i j (t) and Ĥi in the Hilbert space of M no longer commute because R̂i j now involves2082

spin operators other than m̂. However, the probabilities and correlations Pi j (m, t) defined by (3.25) still satisfy Eqs.2083

(B.13) of Appendix B without right-hand side. Hence the expressions (5.1) and (5.2) for Pi j (m) at short times hold2084

for any initial state R̂M (0), with PM (m, 0) given by trMR̂M (0) δm̂,m.2085

The various expressions (5.4), (5.5), (5.6), (5.17), (5.21), (5.23) relied only on the Gaussian shape of the probabil-2086

ity distribution PM (0,m) associated with the initial state. They will therefore remain valid for any initial state R̂M (0)2087

that provides a narrow distribution PM (m, 0), centered at m = 0 and having a width ∆m small (∆m � 1) though large2088

compared to the level spacing, viz. ∆m � 2/N. Indeed, within corrections of relative order 1/N, such distributions2089

are equivalent to a Gaussian. The second condition (∆m � 2/N) ensures that τtrunc is much shorter than ~/g, another2090

characteristic time that we shall introduce in § 5.3.1.2091

In fact, the behavior in 1/
√

N for ∆m is generic, so that the truncation time has in general the same expression2092

(5.6) as for a paramagnetic canonical equilibrium state, with δ0 defined by δ2
0 = NtrMR̂M (0) m̂2. The dynamics of2093

the truncation process described above holds for most possible initial states of the apparatus: decay of 〈ŝx (t)〉 and2094

〈ŝy(t)〉; generation of a cascade of correlations 〈ŝam̂k (t)〉 of order ∆mk between the transverse components of the spin2095

S and the pointer variable m̂; increase, then decay of the very many matrix elements of R̂↑↓ (t), which are small as2096 (√
2 ∆m t/τtrunc

)k
exp[− (t/τtrunc)2] for t � ~/g.2097

In case the initial density operator R̂M (0) is a symmetric function of the N spins, the correlations between ŝx or ŝy2098

and the z-components of the individual spins of M are still given by expressions such as (5.22). However, in general,2099

R̂M (0) no longer depends on the operator m̂ only; it involves transverse components σ̂(n)
x or σ̂(n)

y , and so does R̂↑↓ (t),2100

which now includes correlations of ŝx or ŝy with x- or y-components of the spins σ̂(n). The knowledge of P↑↓ (m, t) is2101

in this case not sufficient to fully determine R̂↑↓ (t), since (3.25) holds but not (3.27).2102

The proportionality of the truncation time τtrunc = ~/
√

2 Ng∆m to the inverse of the fluctuation ∆m shows that the2103

truncation is a disorder effect, since ∆m measures the randomness of the pointer variable in the initial state. This is2104

easy to understand: S sees an effective magnetic field Ngm which is random through m, and it is this very randomness2105

which causes the relaxation. The existence of such a randomness in the initial state, even though it is small as 1/
√

N,2106

is necessary to ensure the transfer of the initial order embodied in r↑↓ (0) into the cascade of correlations between S2107

and M and to entail a brief truncation time τtrunc. Boltzmann’s elucidation of the irreversibility paradox also relied on2108

statistical considerations about the initial state of a classical gas which will relax to equilibrium.2109

5.2.2. Pure versus mixed initial state2110

It is therefore natural to wonder whether the truncation of the state would still take place for pure initial states of2111

M, which are the least random ones in quantum physics, in contrast to the paramagnetic state (3.47) or (3.51) which2112

is the most random one. To answer this question, we first consider the pure state with density operator2113

R̂M (0) =

N∏
n=1

1
2

(
1 + σ̂(n)

x

)
, (5.25)
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in which all spins σ̂(n) point in the x-direction. This initialization may be achieved by submitting M to a strong field in2114

the x-direction and letting it thermalize with a cold bath B for a long duration before the beginning of the measurement.2115

The fluctuation of m̂ in the state (5.25) is 1/
√

N. Hence, for this pure initial state of M, the truncation takes place2116

exactly as for the fully disordered initial paramagnetic state, since both yield the same probability distribution (3.51)2117

for m.2118

A similar conclusion holds for the most general factorized pure state, with density operator2119

R̂M (0) =

N∏
n=1

1
2

(
1 + u(n)

· σ̂(n)
)
, (5.26)

where the u(n) are arbitrary unit vectors pointing in different directions54. The fluctuation ∆m, then given by2120

δ2
0 = N∆m2 =

1
N

N∑
n=1

[
1 −

(
u(n)

z

)2
]
, (5.27)

is in general sufficiently large to ensure again the properties of subsection 5.1, which depend on R̂M (0) only through2121

∆m.2122

Incoherent or coherent superpositions of such pure states will yield the same effects. We will return to this point2123

in § 12.1.4, noting conversely that an irreversibility which occurs for a mixed state is also statistically present in most2124

of the pure states that underlie it.2125

Quantum mechanics brings in another feature: a given mixed state can be regarded as a superposition of pure states2126

in many different ways. For instance, the completely disordered paramagnetic state (3.47), R̂M (0) = 2−N ∏
n σ̂

(n)
0 , can2127

be described by saying that each spin points at random in the +z or in the −z-direction; it can also be described as2128

an incoherent superposition of the pure states (5.26) with randomly oriented vectors u(n). This ambiguity makes the2129

analysis into pure components of a quantum mixed state unphysical (§ 10.2.3).2130

Let us stress that the statistical or quantum nature of the fluctuations ∆m of the pointer variable in the initial state2131

is irrelevant as regards the truncation process. In the most random state (3.47) this fluctuation 1/
√

N appears as purely2132

statistical; it would be just the same for “classical spins” having only a z-component with random values ±1. In the2133

pure state (5.25), it is merely quantal; indeed, its value 1/
√

N is the lower bound provided by Heisenberg’s inequality2134

∆m2
y∆m2

z ≥
1
4

∣∣∣∣〈[m̂y, m̂z

]〉∣∣∣∣2 =
1

N2 〈m̂x〉
2 (5.28)

for the operators m̂a = N−1 ∑
n σ̂

(n)
a (a = x, y, z), with here ∆my = ∆mz = 1/

√
N, 〈m̂x〉 = 1. Differences between these2135

two situations arise only at later times, through the coupling ĤMB with the bath.2136

5.2.3. Squeezed initial states2137

He who is desperate will squeeze oil2138

out of a grain of sand2139

Japanese proverb2140

There exist states R̂M (0), which we will term as “squeezed”, for which the fluctuation ∆m is of smaller order than2141

1/
√

N. An extreme case in which ∆m = 0 is, for even N, a pure state in which N/2 spins point in the +z-direction,2142

N/2 in the −z-direction; then PM (m, 0) = δm,0. Coherent or incoherent superpositions of such states yield the same2143

distribution PM (m, 0) = δm,0, in particular the microcanonical paramagnetic state R̂M (0) = δm̂,0[(N/2)!]2/N!. In all2144

such cases, m and ∆m exactly vanish so that the Hamiltonian and the initial state of S + M satisfy (ĤSA +ĤM)D̂(0) = 0,2145

D̂(0)(ĤSA + ĤM) = 0. According to Eq. (4.8), nothing will happen, both in the diagonal and off-diagonal sectors, until2146

the bath begins to act through the weak terms of the right-hand side. The above mechanism of truncation based on2147

the coupling between S and M thus fails for the states D̂(0) such that PM(m, 0) = δm,0, whether these states are pure2148

or not.2149

54The consideration of such a state is academic since it would be impossible, even in a thought experiment, to set M in it
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The situation is similar for slightly less squeezed states in which the fluctuation ∆m is of the order of the level2150

spacing δm = 2/N, with about half of the spins nearly oriented in the +z-direction and half in the −z-direction. When2151

the bath B is disregarded, the off-diagonal block R̂↑↓ (t) then evolves, as shown by (5.2), on a time scale of order ~/2g2152

instead of the much smaller truncation time (5.6), of order 1/
√

N.2153

In such cases the truncation will appear (contrary to our discussion of § 5.1.2) as a phenomenon of the decoherence2154

type, governed indirectly by B through ĤSA and ĤMB, and taking place on a time scale much longer than τtrunc. This2155

circumstance occurs in many models of measurement, see section 2, in particular those for which S is not coupled2156

with many degrees of freedom of the pointer. It is clearly the large size of M which is responsible here for the fast2157

truncation. We return to this point in § 8.1.4.2158

Here again, we recover ideas that were introduced to elucidate the irreversibility paradox. In a Boltzmann gas, one2159

can theoretically imagine initial states with a uniform density which would give rise after some time to a macroscopic2160

inhomogeneity [55, 56]. But such states are extremely scarce and involve subtle specific correlations. Producing one2161

of them would involve the impossible task of handling the particles one by one. However, for the present truncation2162

mechanism, the initial states of M such that the off-diagonal blocks of the density matrix fail to decay irreversibily2163

are much less exceptional. While the simplest types of preparation of the apparatus, such as setting M in a canonical2164

paramagnetic state through interaction with a warm bath (§ 3.3.3), yield a fluctuation ∆m of order 1/
√

N, we can2165

imagine producing squeezed states even through macroscopic means. For instance, a microcanonical paramagnetic2166

type of initial state of M could be obtained by separating the sample of N spins into two equal pieces, by setting2167

them (using a cold bath and opposite magnetic fields) into ferromagnetic states with opposite magnetizations, and by2168

mixing them again. Some spin-conserving interaction can then randomize the orientations before the initial time of2169

the measurement process. We can also imagine, as in modern experiments on optical lattices, switching on and off a2170

strong antiferromagnetic interaction to equalize the numbers of spins pointing up and down.2171

5.3. Consequences of discreteness2172

Hij keek of hij water zag branden55
2173

Dutch proverb2174

Somewhat surprisingly since N is large, it appears that the discreteness of the pointer variable m has specific2175

implications in the off-diagonal blocks of the density matrix. We shall later see that such effects do not occur in the2176

diagonal sectors related to registration.2177

5.3.1. The recurrence time2178

It’s no use going back to yesterday,2179

because I was a different person then2180

Lewis Carroll, Alice in Wonderland2181

Although we have displayed the truncation of the state as an irreversible process on the time scale τtrunc, the2182

dynamics of our model without the bath is so simple that we expect the reversibility of the equations of motion to2183

manifest itself for finite N. As a matter of fact, the irreversibility arises as usual (§ 1.2.2) from an approximate2184

treatment, justified only under the conditions considered above: large N, short time, correlations of finite order. This2185

approximation, which underlined the results (5.4) and (5.16) of subsections 5.1 and 5.2, consisted in treating m as a2186

continuous variable. We now go beyond it by returning to the expression (5.13), which is exact if the bath is inactive2187

(γ = 0), and by taking into account the discreteness of the spectrum of m̂.2188

For N � 1, we can still use for PM (m, 0) the Gaussian form (3.49) based on (3.24). The generating function2189

(5.13) then reads2190

Ψ↑↓ (λ, t) = r↑↓ (0)

√
2
π

1
N∆m

∑
m

exp
[
−

m2

2∆m2 + iπNm
t

τrecur
+ iλm

]
, (5.29)

55He looked as if he saw water burn, i.e., he was very surprised
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where we have introduced the recurrence time2191

τrecur ≡
π~
2g

= π
√

2
∆m
δm

τtrunc. (5.30)

The values (3.23) of m that contribute to the sum (5.28) are equally spaced, at distances δm = 2/N. The replacement2192

of this sum by an integral, which was performed in § 5.1.3, is legitimate only if t � τrecur and |λ| � N. When the time2193

t increases and begins to approach τrecur within a delay of order τtrunc, the correlations undergo an inverse cascade:2194

Simpler and simpler correlations are gradually generated from correlations involving a huge number of spins of M.2195

This process is the time-reversed of the one described in § 5.1.3. When t reaches τrecur, or a multiple of it, the various2196

terms of (5.29) add up, instead of interfering destructively as when t is of order of τtrunc. In fact, the generating2197

function (5.29) satisfies2198

Ψ↑↓ (λ, t + τrecur) = (−1)N Ψ↑↓ (λ, t) , (5.31)

so that without the bath the state D̂ (t) of S + M evolves periodically, returning to its initial expression r̂ (0) ⊗ R̂ (0) at2199

equally spaced times: the Schrödinger cat terms revive.2200

This recurrence is a quantum phenomenon [55, 56]. It arises from the discreteness and regularity of the spectrum2201

of the pointer variable operator m̂, and from the oversimplified nature of the model solved in the present section, which2202

includes only the part (3.5) of the Hamiltonian. We will exhibit in section 6 two mechanisms which, in less crude2203

models, modify the dynamics on time scales larger than τtrunc and prevent recurrences from occurring.2204

The recurrence time (5.30) is much longer than the truncation time, since ∆m/δm = 1
2δ0
√

N. Thus, long after2205

the initial order carried by the transverse components 〈ŝx〉 and 〈ŝy〉 of the spin S has dissolved into numerous and2206

weak correlations, this order revives through an inverse cascade. At the time τrecur, S gets decorrelated from M, with2207

r↑↓ (τrecur) = (−1)N r↑↓ (0). The memory of the off-diagonal elements, which was hidden in correlations, was only2208

dephased, it was not lost for good, and it emerges back. Such a behavior of the transverse components of the spin S2209

is reminiscent of the behavior of the transverse magnetization in spin echo experiments [60, 61, 62, 63, 64, 65]. By2210

itself it is a dephasing which can cohere again, and will do so unless other mechanisms (see section 6) prevent this.2211

5.3.2. High-order correlations2212

Vingt fois sur le métier remettez votre ouvrage56
2213

Nicolas Boileau, L’Art poétique2214

We can write Ψ↑↓ (λ, t) given by (5.29) more explicitly, for large N, by formally extending the summation over m2215

beyond −1 and +1, which is innocuous, and by using Poisson’s summation formula, which reads2216 ∑
m

f (m) =
N
2

+∞∑
p=−∞

(−1)pN
∫

dm e−iπNmp f (m) . (5.32)

As a result, we get2217

Ψ↑↓ (λ, t) = r↑↓ (0)
+∞∑

p=−∞

(−1)pN exp
(

iλ∆m
√

2
+ i

t − pτrecur

τtrunc

)2

, (5.33)

which is nothing but a sum of contributions deduced from (5.15), (5.16) and (5.3) by repeated shifts of t (with alter-2218

nating signs for odd N). This obviously periodic expression exhibits the recurrences and the corrections to the results2219

of subsections 5.1 and 5.2 due to the discreteness of m.2220

In fact, Ψ↑↓ (λ, t) is related to the elliptic function θ3 [254] through2221

Ψ↑↓ (λ, t)
r↑↓ (0)

= exp
(

iλ∆m
√

2
+

it
τtrunc

)2

θ3

[
1
2

(
iλδ2

0 + η + iπN2∆m2 t
τrecur

)
,

N2∆m2

2

]
=

√
2
π

1
N∆m

exp
−η  iπt

τrecur
+

iλ
N

+
1

2Nδ2
0

 θ3

 t
τrecur

−
i

Nπ

iλ +
η

δ2
0

 , 2
π2N2∆m2

 , (5.34)

56Twenty times on the loom reset your handiwork
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with η = 0 for even N, η = 1 for odd N. It satisfies two periodicity properties, (5.31) and2222

Ψ↑↓

λ − 2i
δ2

0

, t
 = exp

 2πit
τrecur

+
2iλ
N

+
2

Nδ2
0

 Ψ↑↓ (λ, t) . (5.35)

According to (5.15) and (5.33) the dominant corrections to the results of § 5.1.3 are given for t � τrecur by the2223

terms p = ±1 in Ψ↑↓ (λ, t) and Ψ↑↓ (λ, 0), that is,2224

〈ŝ−m̂k〉c = r↑↓ (0) exp
(
−

t2

τ2
trunc

) (
i
√

2∆m
)k

( t
τtrunc

)k

+ (−1)N Ak(t) exp
(
−
τ2

recur

τ2
trunc

) ,
Ak(t) ≡

(
t − τrecur

τtrunc

)k

exp
(

2tτrecur

τ2
trunc

)
+

(
t + τrecur

τtrunc

)k

exp
(
−2tτrecur

τ2
trunc

)
+

[
(−1)k+1 − 1

] (τrecur

τtrunc

)k

. (5.36)

For t → 0, the correction behaves as t2 or t depending on whether k is even or odd, whereas the main contribution2225

behaves as tk. However the coefficient is so small that this correction is negligible as soon as t > τtrunc exp(−π2Nδ2
0/2k),2226

an extremely short time for k � N.2227

We expected the expression (5.23) for the correlations to become invalid for large k. In fact, the values of interest2228

for t are of order τtrunc, or of τtrunc
√

k for large k, since the correlations reach their maximum at t = τtrunc
√

k/2. In this2229

range, the correction in (5.36) is dominated by the first term of Ak(t), which is negligibly small provided2230 (
t

τtrunc

)k

�

(
τrecur

τtrunc

)k

exp
[
−
τrecur(τrecur − 2t)

τ2
trunc

]
. (5.37)

Hence, in the relevant range t ∼ τtrunc
√

k, the expression (5.23) for the correlations of rank k is valid provided2231

k �
π2Nδ2

0

2 ln (τrecur/t)
, (5.38)

but the simple shape (5.23) does not hold for correlations between a number k of particles violating (5.38).2232

In fact, when t becomes sizeable compared to τrecur, the generating function (5.33) is dominated by the terms p = 02233

and p = 1. The correlations take, for arbitrary k, the form2234

〈ŝ−m̂k〉c = r↑↓(0)
(
iπδ2

0

)k

(

t
τrecur

)k

exp
(
−

t2

τ2
trunc

)
+

(
τrecur − t
τrecur

)k

exp
[
−

(τrecur − t)2

τ2
trunc

] . (5.39)

They are all exponentially small for N � 1 since τ2
recur/τ

2
trunc is large as N. The large rank correlations dominate. If for2235

instance t is half the recurrence time, both terms of (5.39) have the same size, and apart from the overall exponential2236

exp(−Nπ2δ2
0/8) the correlations increase with k by the factor (πδ2

0/2)k, where δ0 ≥ 1.2237

6. Irreversibility of the truncation2238

Quare fremuerunt gentes,2239

et populi meditati sunt inania?57
2240

Psalm 22241

The sole consideration of the interaction between the tested spin S and the pointer M has been sufficient to explain2242

and analyze the truncation of the state, which takes place on the time scale τtrunc, at the very early stage of the2243

measurement process. However this Hamiltonian (Eq. (3.5)) is so simple that if it were alone it would give rise to2244

recurrences around the times τrecur, 2τrecur, ... . In fact the evolution is modified by other processes, which as we shall2245

see hinder the possibility of recurrence and render the truncation irreversible on any reachable time scale.2246

57Why do the heathen rage, and the people imagine a vain thing?
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6.1. Destructive interferences2247

Bis repetita (non) placent58
2248

diverted from Horace2249

We still neglect in this subsection the effects of the phonon bath (keeping γ = 0), but will show that the recurrent2250

behavior exhibited in § 5.3.1 is suppressed by a small change in the model, which makes it a little less idealized.2251

6.1.1. Spread of the coupling constants2252

When we introduced the interaction (3.5) between S and A, we assumed that the coupling constants between the2253

tested spin ŝ and each of the spins σ̂(n) of the apparatus were all the same. However, even though the range of the2254

forces is long compared to the size of the magnetic dot, these forces can be different, at least slightly. This is similar2255

to the inhomogeneous broadening effect well known in NMR physics [60, 61, 62, 63, 64, 65]. We thus replace here2256

ĤSA by the more general interaction2257

Ĥ′SA = −ŝz

N∑
n=1

(g + δgn) σ̂(n)
z , (6.1)

where the couplings g + δgn are constant in time and have the small dispersion2258

δg2 =
1
N

N∑
n=1

δg2
n,

N∑
n=1

δgn = 0. (6.2)

The equations of motion (4.8) for D̂, the right-hand side of which we disregard, remain valid, with the effective2259

Hamiltonian2260

Ĥi = −si

∑
n

(g + δgn) σ̂(n)
z −

∑
q

NJq

q
m̂q (6.3)

instead of (4.6). This Hamiltonian, as well as the initial conditions R̂i j (0) = ri j (0) R̂M (0), depends only on the com-2261

muting observables σ̂(n)
z . Hence the latter property is also satisfied by the operators R̂i j (t) at all times. Accordingly,2262

R̂↑↑ (t) and R̂↓↓ (t) remain constant, and the part ĤM of Ĥi does not contribute to the equation for R̂↑↓ (t), which is2263

readily solved as2264

R̂↑↓ (t) = r↑↓ (0) R̂M (0) exp
2i
~

Ngm̂t +

N∑
n=1

δgnσ̂
(n)
z t

 , (6.4)

with R̂M (0) given in terms of m̂ by (3.46). Notice that here the operator R̂↑↓ does not depend only on m̂.2265

If R̂M (0) is the most random paramagnetic state (3.47), produced for q = 2 by initializing the apparatus with2266

T0 � J or with a strong RF field, or for q = 4 with any temperature higher than the transition, (6.4) takes the form2267

R̂↑↓ (t) = r↑↓ (0)
N∏

n=1

1
2

[
σ̂(n)

0 cos
2 (g + δgn) t

~
+ iσ̂(n)

z sin
2 (g + δgn) t

~

]
. (6.5)

The off-diagonal elements of the state of S thus evolve according to2268

r↑↓ (t) = r↑↓ (0)
N∏

n=1

cos
2 (g + δgn) t

~
. (6.6)

The right-hand side behaves as (5.4) for δg � g as long as t is of order τtrunc. However, it is expected to remain2269

extremely small at later times since the factors of (6.6) interfere destructively unless t is close to a multiple of2270

π~/2 (g + δgn) for most n. In particular, the successive recurrences which occurred in § 4.4.1 at the times τrecur,2271

2τrecur, ... for δg = 0 and γ = 0 are now absent provided the deviations δgn are sufficiently large. We thus obtain a2272

permanent truncation if we have at the time t = τrecur2273

58Repetitions are (not) appreciated
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1 �
N∏

n=1

cos
πδgn

g
≈

N∏
n=1

e−π
2δg2

n/2g2
= e−π

2 ∑
n δg2

n/2g2
= e−Nπ2δg2/2g2

, (6.7)

that is,2274

δg
g
�

1
π

√
2
N
. (6.8)

Provided this condition is satisfied, all results of subsections 5.1 and 5.2 hold, even for large times. The whole set of2275

correlations 〈ŝ−m̂k〉c, first created by the coupling (6.1), disappear for not too large k after a time of order τtrunc
√

k, and2276

do not revive as t becomes larger. As in usual irreversible processes of statistical mechanics, it is mathematically not2277

excluded that (6.6) takes significant values around some values of t, if N is not too large and if many deviations δgn2278

are arithmetically related to one another; but this can occur only for extremely large times, physically out of reach, as2279

shown in § 6.1.2.2280

These conclusions hold for an arbitrary initial state (3.46). The expression (6.4) is the product of R̂↑↓ (t), as2281

evaluated in section 5 for δg = 0, by the phase factor2282

N∏
n=1

exp
2iδgnσ

(n)
z t

~

 . (6.9)

A generic set of coupling constants satisfying (6.2) provides the same results as if they were chosen at random, with2283

a narrow gaussian distribution of width δg. Replacing then (6.9) by its expectation value, we find that the whole2284

statistics of S + M (without the bath) is governed by the product of the generating function (5.33) by [60]2285

N∏
n=1

exp
(
2iδgnσ

(n)
z t/~

)
= e−(t/τM

irrev)
2

, (6.10)

which introduces a characteristic decay time2286

τM
irrev =

~
√

2Nδg
. (6.11)

This damping factor suppresses all the recurrent terms with p , 0 in (5.33) if δg satisfies the condition (6.8). Since the2287

exponent of (6.10) is (δg/gδ0)2 (t/τtrunc)2, the first correlations 〈ŝ−m̂k (t)〉c are left unchanged if δg � g, while those2288

of higher order are overdamped as exp(−kδg/2gδ0) for large k since (t/τtrunc)2 = k/2 at their maximum.2289

Thus, the truncation of the state produced on the time scale τtrunc by the coupling Ĥ′SA of eq. (6.1), characterized2290

by the decay (5.4) of 〈ŝx (t)〉 and 〈ŝy (t)〉 and by the time dependence (5.23) of 〈ŝ−m̂k (t)〉c, is fully irreversible. The2291

time τM
irrev characterizes this irreversibility induced by the magnet M alone, caused by the dispersion of the constants2292

g + δgn which couple ŝ with the elements σ̂(n)
z of the pointer variable. If τM

irrev is such that τtrunc � τM
irrev � τrecur, that2293

is, when (6.8) is satisfied, the off-diagonal blocks R̂↑↓(t) of D̂(t) remain negligible on time scales of order τrecur. We2294

will show in § 6.1.2 that recurrences might still occur, but at inaccessibly large times.2295

6.1.2. Generality of the direct damping mechanism2296

59
2297 Անձրևոտ օրը շատերը կասեն. "Ջուր տար, քո հավերին լողացրու":

Armenian proverb2298

We have just seen that a modification of the direct coupling between the tested spin S and the magnet M, without2299

any intervention of the bath, is sufficient to prevent the existence of recurrences after the initial damping of the off-2300

diagonal blocks of D̂. In fact, recurrences took place in § 5.3.1 only because our original model was peculiar, involving2301

a complete symmetry between the N spins which constitute the pointer. We will now show that the mechanism2302

59On a rainy day, many people will say: Ask for my water to bathe your chickens
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of irreversibility of § 6.1.1, based merely on the direct coupling between the tested system and the pointer of the2303

apparatus, is quite general: it occurs as soon as the pointer presents no regularity.2304

Let us therefore return to the wide class of models introduced in § 5.1.2, characterized by a coupling2305

ĤSA = −Ngŝm̂, (general operators ŝ, m̂) (6.12)

between the measured observable ŝ of the system S and the pointer observable m̂ of the apparatus A. We assume that2306

the pointer, which has N degrees of freedom, has no symmetry feature, so that the spectrum of m̂ displays neither2307

systematic degeneracies nor arithmetic properties. We disregard the other degrees of freedom of A, in particular the2308

indirect coupling with the bath. The model considered above in § 6.1.1 enters this general frame, since its Hamiltonian2309

(6.1) takes the form (6.12) if we identify our ŝz with the general ŝ and if we redefine m̂ as2310

m̂ =
1
N

N∑
n=1

(
1 +

δgn

g

)
σ̂(n)

z . (6.13)

Indeed, provided the condition (6.8) is satisfied, the 2N eigenvalues of (6.13) are randomly distributed over the interval2311

(−1, 1) instead of occurring at the values (3.23) with the huge multiplicities (3.24).2312

In all such models governed by the Hamiltonian (6.12), the off-diagonal elements of r̂ behave as (5.12) so that2313

their time-dependence, and more generally that of the off-diagonal blocks of R̂, has the form2314

F (t) =
1
Q

Q∑
q=1

eiωqt. (6.14)

Indeed, the matrix element (5.11) is a sum of exponentials involving the eigenfrequencies2315

ωq ≡
Ng(si − s j)mq

~
, (6.15)

where mq are the eigenvalues of m̂. The number Q of these eigenfrequencies is large as an exponential of the number2316

N of microscopic degrees of freedom of the pointer, for instance Q = 2N for (6.13). To study a generic situation,2317

we can regard the eigenvalues mq or the set ωq as independent random variables. Their distribution is governed by2318

the density of eigenvalues of m̂ and by the initial density operator R̂ (0) of the apparatus which enters (5.12) and2319

which describes a metastable equilibrium. For sufficiently large N, we can take for each dimensionless mq a narrow2320

symmetric gaussian distribution, with width of relative order 1/
√

N. The statistics of F (t) that we will study then2321

follows from the probability distribution for the frequencies ωq,2322

p
(
ωq

)
=

1
√

2π∆ω
exp

− ω2
q

2∆ω2

 , (6.16)

where ∆ω is of order
√

N due to the factor N entering the definition (6.15) of ωq. This problem has been tackled long2323

ago by Kac [255].2324

We first note that the expectation value of F (t) for this random distribution of frequencies,2325

F (t) = e−∆ω2t2/2, (6.17)

decays exactly, for all times, as the Gaussian (5.3) with a truncation time τtrunc =
√

2/∆ω, encompassing the expres-2326

sion (5.6) that we found for short times in our original model. This result holds for most sets ωq, since the statistical2327

fluctuations and correlations of F (t), given by2328

F (t) F (t′) − F (t) F (t′) = 1
Q

(
e−∆ω2(t+t′)2/2 − e−∆ω2(t2+t′2)/2

)
, (6.18)

F (t) F∗ (t′) − F (t) F∗ (t′) = 1
Q

(
e−∆ω2(t−t′)2/2 − e−∆ω2(t2+t′2)/2

)
, (6.19)
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are small for large Q.2329

Nevertheless, for any specific choice of the set ωq, nothing prevents the real part of F (t) from reaching significant2330

values at some times t large as t � ∆ω, due to the tail of its probability distribution. Given some positive number f2331

(less than 1), say f = 0.2, we define the recurrence time τrecur as the typical delay we have to wait on average before2332

<F (t) rises back up to f . We evaluate this time in Appendix C. For f sufficiently small so that ln[I0 (2 f )] ' f 2, a2333

property which holds for f = 0.2, we find2334

τrecur =
2π
∆ω

exp
(
Q f 2

)
= π
√

2τtrunc exp
(
Q f 2

)
. (6.20)

As Q behaves as an exponential of N, this generic recurrence time is inaccessibly large. Even for a pointer2335

involving only N = 10 spins, in which case Q = 2N = 210, and for f = 0.2, we have τrecur/τtrunc = 2.7 · 1018. The2336

destructive interferences taking place between the various terms of (5.12) explain not only the truncation of the state2337

(§ 5.1.2) but also, owing to the randomness of the coupling, the irretrievable nature of this decay process over any2338

reasonable time lapse, in spite of the unitarity of the evolution.2339

Although we expect the eigenfrequencies ωq associated with a large pointer to be distributed irregularly, the2340

distribution (6.16) chosen above, for which they are completely random and uncorrelated, is not generic. Indeed,2341

according to (6.15), these eigenfrequencies are quantum objects, directly related to the eigenvalues mq of the operator2342

m̂. A more realistic model should therefore rely on the idea that m̂ is a complicated operator, which is reasonably2343

represented by a random matrix. As well known, the eigenvalues of a random matrix are correlated: they repell2344

according to Wigner’s law. The above study should therefore be extended to random matrices m̂ instead of random2345

uncorrelated frequencies ωq, using the techniques of the random matrix theory [256]. We expect the recurrence time2346

thus obtained to be shorter than above, due to the correlations among the set ωq, but still to remain considerably longer2347

than with the regular specrum of § 5.3.1.2348

6.2. Effect of the bath on the initial truncation2349

You can’t fight City Hall2350

American saying2351

Returning to our original model of subsection 3.2 with a uniform coupling g between S and the spins of M, we2352

now take into account the effect, on the off-diagonal blocks of D, of the coupling γ between M and B. We thus start2353

from eq. (4.29), to be solved for times of the order of the recurrence time. We will show that the damping due to the2354

bath can prevent P↑↓ and hence R̂↑↓ from becoming significant at all times t larger than τtrunc, in spite of the regularity2355

of the spectrum of m̂ which leads to the anomalously short recurrence time π~/2g of (5.30)60.2356

Readers interested mainly in the physics of the truncation may jump to § 9.6.1, where the mathematics is simplified2357

using insights gained about the behavior of the equation of motion for t � ~/T through the rigorous approach of2358

§ 6.2.1 and of appendix D.2359

6.2.1. Determination of P↑↓(t)2360

We have found recurrences in P↑↓(m, t) by solving (4.18) without right-hand side and by taking into account the2361

discreteness of m (§ 5.3.1). The terms arising from the bath will modify for each m the modulus and the phase of2362

Pdis
↑↓

(m, t) = (2/N)P↑↓(m, t).2363

In order to study these changes, we rely on the equation of motion (4.18), the right-hand side of which has been2364

obtained in the large N limit while keeping however the values of m discrete as in § 5.3.1. Note first that the functions2365

K̃t>(ω) and K̃t<(ω) defined by Eqs. (4.10) and (4.11), respectively, are complex conjugate for the same value of ω. It2366

then results from Eq. (4.18) together with its initial condition that 61
2367

P↑↓(−m, t) = P∗↑↓(m, t) = P↓↑(m, t). (6.21)

60For the related, effective decay of R↑↓ (t) and R↓↑ (t), see § 12.2.3
61Changing g into −g would also change P↑↓ (m, t) into P∗

↑↓
(m, t), but we shall stick to the ferromagnetic interaction g > 0
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Figure 6.1: The damping function B(t) issued from the interaction of the magnet with the bath. This function is measured in units of the dimen-
sionless magnet-bath coupling constant γ, and the time is measured in units of the recurrence time τrecur = π~/2g. The parameters are T = 0.2J
and g = 0.045J and ~Γ = 50

√
π/2 J. After an initial t4 growth, the curve is quasi linear with periodic oscillations. “Anti-damping” with dB/dt < 0

occurs during the delay ατrecur before each recurrence (Eq.(6.33)). The condition NB(τrecur) � 1 entails the irreversible suppression of all the
recurrences. Bullets denote the local maxima (see (6.36)) and the local minima at integer values of t/τrecur.

For γ = 0, the solution of (4.18) with the initial condition (3.47) is given by (5.2). Starting from this expression,2368

we parametrize P↑↓(m, t) as2369

P↑↓(m, t) = r↑↓(0)

√
N

2πδ2
0

exp
−Nm2

2δ2
0

+
2iNgmt

~
− NA(m, t)

 , (6.22)

in terms of the function A(m, t), to be determined at first order in γ from Eq. (4.29) with the initial condition A(m, 0) =2370

0. For large N, A(m, t) contains contributions of orders 1 and 1/N. Its complete expression is exhibited in Appendix2371

D in terms of the autocorrelation function K(t) of the bath (Eq. (D.3)).2372

The distribution P↑↓(m, t) takes significant values only within a sharp peak centered at m = 0 with a width of order2373

1/
√

N. We can therefore consistently expand A(m, t) in powers of m up to second order, according to2374

A(m, t) ≈ B(t) − iΘ(t)m +
1
2

D(t)m2, (6.23)

so that we can write from (6.22) and (6.23) the expression for Pdis
↑↓

= (2/N)P↑↓ in the form2375

Pdis
↑↓

(m, t) = r↑↓(0)

√
2

πNδ2
0

exp

−NB(t) + iN
[
2gt
~

+ Θ(t)
]

m − N
 1
δ2

0

+ D(t)
 m2

2

 . (6.24)

The functions B(t), Θ(t) and D(t), proportional to γ, describe the effect of the bath on the off-diagonal blocks of the2376

density matrix of S + M. They are real on account of (6.21). The overall factor exp[−NB(t)] governs the amplitude of2377

Pdis
↑↓

. The term Θ(t) modifies the oscillations which arose from the coupling between S and M. The term D(t) modifies2378

the width of the peak of Pdis
↑↓

. The explicit expressions of these functions, given by (D.15) for B(t), (D.26) for Θ(t) and2379

(D.29) for D(t), are derived in appendix D from the equation of motion (D.3) for A(m, t), which itself results directly2380

from Eq. (4.29) for Pdis
↑↓

. We analyze them below.2381

6.2.2. The damping function2382

The main effect of the bath is the introduction in (6.23) of the overall factor exp[−NB(t)], which produces a2383

damping of the off-diagonal blocks R̂↑↓ and R̂↓↑ of the density matrix D̂ of S + M. The expression for B(t) derives2384

from Eq. (D.8) and is given explicitly by2385
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B(t) = γ

∫ ∞

0

dωω
π

coth
~ω
2T

exp
(
−
ω

Γ

) { sin2 Ωt
2(ω2 −Ω2)

+
Ω2(1 − cosωt cos Ωt) − ωΩ sinωt sin Ωt

(ω2 −Ω2)2

}
, (6.25)

with Ω = 2g/~. The ω-integral can be carried out analytically if one replaces in the spectrum of phonon modes (3.38)2386

the Debye cutoff by a quasi Lorentzian one, see Eq. (D.10) and the connection (D.11) between the cutoff parameters;2387

the result for B is given in (D.15). The function B(t) of Eq. (D.15), or, nearly equivalently, Eq. (6.25), is illustrated2388

by fig. 6.1. We discuss here its main features in the limiting cases of interest.2389

Consider first the short times t � 1/Γ. This range covers the delay τtrunc during which the truncation takes place,2390

but it is much shorter than the recurrence time. We have shown in Appendix D that B(t) behaves for t � 1/Γ as2391

B(t) ∼
γΓ2g2

2π~2 t4, (6.26)

increasing slowly as shown by fig. 6.1. If NB(t) remains sufficiently small during the whole truncation process so that2392

exp[−NB(t)] remains close to 1, the bath is ineffective over the delay τtrunc. This takes place under the condition2393

NB(τtrunc) = N
γΓ2g2

2π~2 τ
4
trunc =

γ~2Γ2

8πNδ4
0g2
� 1, (6.27)

which is easily satisfied in spite of the large value of ~Γ/g, since γ � 1 and N � 1. Then the coupling with the2394

bath does not interfere with the truncation by the magnet studied in section 5. Otherwise, if NB(τtrunc) is finite, the2395

damping by B, which behaves as an exponential of −t4, enhances the truncation effect in exp[−(t/τtrunc)2] of M, and2396

reduces the tails of the curves of fig. 5.1.2397

Consider now the times t larger than ~/2πT , which is the memory time of the kernel K(t). We are then in2398

the Markovian regime. This range of times encompasses the recurrences which in the absence of the bath occur2399

periodically at the times t = pτrecur, with τrecur = π~/2g. Under the condition t � ~/2πT , we show in Appendix D2400

Eq. (D.18)), that B(t) has the form2401

B(t) =
γπ

4
coth

g
T

(
t

τrecur
−

1
2π

sin
2πt
τrecur

)
+
γ

4π
ln

~Γ

2πT

(
1 − cos

2πt
τrecur

)
. (6.28)

On average, B(t) thus increases linearly along with the first term of (6.28), as exhibited by fig. 6.1. Hence, the bath2402

generates in this region t � ~/2πT the exponential damping2403

exp[−NB(t)] ∼ exp
− t
τB

irrev

 , (6.29)

where the decay is characterized by the bath-induced irreversibility time2404

τB
irrev =

2~ tanh g/T
Nγg

. (6.30)

The recurrences, at t = pτrecur, are therefore attenuated by the factor2405

exp
− pτrecur

τB
irrev

 = exp
(
−

pπNγ
4 tanh g/T

)
. (6.31)

Thus, all recurrences are irreversibly suppressed, so that the initial truncation becomes definitive, provided the cou-2406

pling between M and B is sufficiently strong so as to satisfy NB(τrecur) � 1, or equivalently τB
irrev � τrecur, that2407

is:2408
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γ �
4 tanh g/T

πN
. (6.32)

In case T � g, the irreversibility time2409

τB
irrev ∼

2~
NγT

(6.33)

depends only on the temperature of the bath, on the number of spins of the magnet, and on the magnet-bath coupling,2410

irrespective of the system-magnet coupling.2411

In spite of the smallness of γ, the large value of N makes the condition (6.32) easy to satisfy. In fact, if the hardly2412

more stringent condition NB(~/2πT ) � 1, that is, Nγ � 4π, is satisfied, we have NB(t) � 1 in the region t � ~/2πT2413

where the approximation (6.28) holds. Thus, although B(t) is quasi linear in this region, the exponential shape of the2414

decay (6.29), with its characteristic time τB
irrev, loses physical relevance since exp[−NB(t)] is there practically zero.2415

In this same region t � ~/2πT , the expression (6.28) of B(t) involves oscillatory contributions superimposed to2416

the linear increase considered above (fig. 6.1). In fact, the time derivative2417

τrecur

γ

dB
dt

=

(
π

2
coth

g
T

sin
πt
τrecur

+ ln
~Γ

2πT
cos

πt
τrecur

)
sin

πt
τrecur

. (6.34)

of B(t) is periodic, with period τrecur, and it vanishes at the times t such that2418

sin
πt
τrecur

= 0 or tan
πt
τrecur

= −
2
π

ln
~Γ

2πT
tanh

g
T
. (6.35)

The first set of zeros occur at the recurrence times pτrecur, which are local minima of B(t). The second set provide2419

local maxima, which occur somewhat earlier than the recurences (fig. 6.1), at the times2420

t = (p − α)τrecur, α =
1
π

arctan
(

2
π

ln
~Γ

2πT
tanh

g
T

)
. (6.36)

An unexpected quantum effect thus takes place in the off-diagonal blocks of the density matrix of S + M. Usually, a2421

bath produces a monotonous relaxation. Here, the damping factor exp[−NB(t)], which results from the coupling of M2422

with the bath, increases between the times (p−α)τrecur and pτrecur. During these periods, the system S + M undergoes2423

an “anti-damping”. This has no incidence on our measurement process, since the recurrences are anyhow killed under2424

the condition (6.29) and since their duration, τtrunc, is short compared to the delay ατrecur. One may imagine, however,2425

other processes that would exhibit a similar effect.2426

6.2.3. Time-dependence of physical quantities2427

All the off-diagonal physical quantities, to wit, the expectation values 〈ŝx(t)〉, 〈ŝy(t)〉, and the correlations between2428

ŝx or ŝy and any number of spins of the apparatus are embedded in the generating function Ψ↑↓(λ, t) defined as in2429

(5.13). As we recalled in § 6.2.1, we must sum over the discrete values (3.23) of m, rather than integrate over m; the2430

distinction between summation and integration becomes crucial when the time t reaches τrecur , since then the period2431

in m of the oscillations of Pdis
↑↓

(m, t) becomes as small as the level spacing. From (6.23), we see that the characteristic2432

function, modified by the bath terms, has the same form as in § 5.3.2 within multiplication by exp[−NB(t)] and within2433

modification of the phase and of the width of Pdis
↑↓

(m, t).2434

Let us first consider the effect of Θ(t). Its introduction changes the phase of P↑↓ according to2435

2iNgmt
~

7→
2iNgmt

~
+ iNΘ(t)m. (6.37)
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Hence, the occurrence of the term Θ(t) might shift the recurrences, which take place when2436

2gt
~

+ Θ(t) = pπ. (6.38)

However, the expression of Θ(t) derived in the appendix D, Eq. (D.26),2437

Θ(t) ∼ −
γ

8g

 2
δ2

0

− 1
 T + J2

 [1 − cos
2πt
τrecur

]
. (6.39)

vanishes for t = pτrecur = pπ~/2g, so that the replacement (6.34) does not affect the values of the recurrence times.2438

Between these recurrence times, the truncation makes all correlations of finite rank negligible even in the absence of2439

the bath, as if Pdis
↑↓

did vanish; then, the phase of Pdis
↑↓

is irrelevant. Altogether, Θ(t) is completely ineffective.2440

Likewise, the term D(t) is relevant only at the recurrence times. We evaluate it in Eq. (D.29) as2441

D(pτrecur) ' pη, η =
πγ

2
J2

g

( J2

3T
− 1

)
. (6.40)

This term changes the width of the distribution Pdis
↑↓

(m, t) by a small relative amount of order γ � 1, according to2442

∆m =
δ0
√

N
7→ ∆mp =

δ0√
N(1 + pηδ2

0)
= ∆m(1 −

1
2

pηδ2
0). (6.41)

The width therefore increases if J2 < 3T , or decreases if J2 > 3T , but this effect is signficant only if the recurrences2443

are still visible, that is, if the condition (6.32) is not satisfied.2444

The expression (5.33) of the generating function is thus modified into2445

Ψ↑↓(λ, t) = r↑↓(0)e−NB(t)
∞∑

p=−∞

(−1)pN exp
(

iλ∆mp
√

2
+ i

t − pτrecur

τtrunc

)2

. (6.42)

The crucial change is the presence of the damping factor exp[−NB(t)], which invalidates the periodicity (5.30) of2446

Ψ↑↓(λ, t) and which inhibits the recurrences. Moreover, for any t > 0, the terms p < 0 in (6.42) are negligible, since2447

they involve (for t = 0) the factor exp[−(pτrecur/τtrunc)2]. Thus, under the conditions (6.27) and (6.32), the sum (6.42)2448

reduces at all times to its term p = 0. Accordingly, it is legitimate to express for arbitrary times P↑↓ as2449

P↑↓(m, t) = P↑↓(m, 0) exp
[
2iNgmt

~
− NB(t)

]
, (6.43)

and to treat m as a continuous variable. As a consequence, the full density matrix of S + M, which results from (3.27),2450

has off-diagonal blocks given by2451

R̂↑↓(t) = r↑↓(0)R̂M(0) exp
[
2iNgmt

~
− NB(t)

]
, (6.44)

where we recall the expressions (D.15), (6.26) and (6.28) for B(t).2452

Altogether, as regards the evolution of the physical quantities 〈ŝam̂k(t)〉 (a = x or y), nothing is changed in the2453

results of § 5.1.3 on the scale t � τrecur ; these results are summarized by Eq. (5.22) and illustrated by fig. 5.1. For2454

t � τB
irrev, the factor exp[−NB(t)] makes all these off-diagonal quantities vanish irremediably, including the high-rank2455

correlations of § 5.3.2.2456
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In spite of the simplicity of this result, our derivation was heavy because we wanted to produce a rigorous proof.2457

It turned out that the interaction between the spins of M, which occurs both through δ0 in the initial state of M and2458

through J2 in the dynamics generated by the bath, has a negligible effect. Taking this property for granted, treating2459

M as a set of independent spins and admitting that for t � ~/2πT the autocorrelation function of the bath enters the2460

dynamical equation through (D.21), we present in § 9.6.1 a simpler derivation, which may be used for tutorial purposes2461

and which has an intuitive interpretation: Both the precession of ŝ and the damping of R̂↑↓(t) by the bath arise from a2462

dynamical process in which each spin of M is independently driven by its interaction with S and independently relaxes2463

under the effect of the bath B.2464

6.2.4. The off-diagonal bath effect, an ongoing decoherence process regulated by the tested observable2465

Ça s’en va et ça revient62
2466

Song written by Claude François2467

The damping described above has two unusual features: on the one hand (fig. 6.1), its coefficient does not2468

monotonically decrease; on the other hand, it is governed by a resonance effect. However, it has also clearly the2469

features of a standard decoherence [32, 33, 40, 198, 199, 200, 201]. It takes place in the compound system S + M2470

under the influence of B which plays the role of an environment. The decay (6.29) is quasi-exponential, apart from2471

non-essential oscillations. The expression (6.33) of the irreversibility time τB
irrev = 2~/NγT (for T � g) is typical of a2472

bath-induced decoherence: It is inversely proportional to the temperature T of B, to the number N which characterizes2473

the size of the system S + M, and to the coupling γ of this system with its environment, which is here the bath.2474

Nevertheless, we have stressed (§ 5.1.2) that the fundamental mechanism of the initial truncation of the state D̂(t)2475

of S + M has not such a status of decoherence. It takes place in the brief delay τtrunc = ~/
√

Nδ0g, during which the2476

bath does not yet have any effect. Contrary to decoherence, this dephasing process is internal to the system S + M,2477

and does not involve its environment B. It is governed by the direct coupling g between S and the pointer M, as shown2478

by the expression of the truncation time. It is during delays of order τtrunc that the phenomena described in section 52479

occur – decay of the average transverse components of the spin S, creation then disappearance of correlations with2480

higher and higher rank (§ 5.1.3 and fig. 5.1). The bath has no effect on this truncation proper.2481

When the bath begins to act, that is, when NB(t) becomes significant, the truncation can be considered as prac-2482

tically achieved since Eq (6.27) is easily satisfied. The only tracks that remain from the original blocks R̂↑↓(0) and2483

R̂↓↑(0) of D̂(0) are correlations of very high rank (§ 5.3.2), so that the state D̂(t) cannot be distinguished at such2484

times from a state without off-diagonal blocks. However, if the Hamiltonian did reduce solely to ĤSA (Eq. (3.5)), the2485

simplicity of the dynamics would produce, from these hidden correlations, a revival of the initial state D̂(0), taking2486

place just before τrecur , during a delay of order τtrunc. The weak interaction γ with the bath wipes out the high rank2487

correlations, at times t such that τtrunc � t � τrecur for which they are the only remainder of r↑↓(0). Their destruction2488

prevents the inverse cascade from taking place and thus suppresses all recurrences.2489

The interaction between S and M does not only produce the initial truncation of D̂ described in section 5. It is also2490

an essential ingredient in the very mechanism of decoherence by the bath B. Indeed, the interaction (3.10) between M2491

and B is isotropic, so that it is the coupling between S and M which should govern the selection of the basis in which2492

the suppression of recurrences will occur after the initial truncation. To understand how this ongoing preferred basis2493

problem is solved, let us return to the derivation of the expression (6.25) for the damping term B(t), valid in the time2494

range of the bath-induced irreversibility. This expression arose from the integral (D.8), to wit,2495

dB
dt

=
4γ sin Ωt
π~2

∫ ∞

−∞

dω K̃(ω)
Ω(cos Ωt − cosωt)

ω2 −Ω2 (6.45)

which analyzes the influence, on the damping, of the various frequencies ω of the autocorrelation function K̃(ω) of2496

the phonon bath. The effect of the system-magnet interaction g is embedded in the frequency Ω = 2g/~ = π/τrecur,2497

directly related to the period of the recurrences. In appendix D, we have shown that the quasi-linear behaviour of2498

B(t) results from the approximation (D.20) for the last factor of (6.45): This factor is peaked around ω = ±Ω for2499

t � ~/2πT . The integral (6.45) then reduces to2500

62It goes away and back
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dB(t)
dt

=
γ

~2

[
K̃(Ω) + K̃(−Ω)

]
(1 − cos 2Ωt), (6.46)

the constant part of which produces the dominant, linear term B ∝ t of (6.28). In the autocorrelation function K̃(ω)2501

which controls the damping by B in the equation of motion of S + M, ~ω is the energy of the phonon that is created2502

or annihilated by interaction with a spin of the magnet (§ 3.2.2). Thus, through a resonance effect arising from the2503

peak of the integrand in (6.44), the frequency ω of the phonons that contribute to the damping adjusts itself onto the2504

frequency Ω = 2g/~ associated with the precession of the spins of the magnet under the influence of the tested spin.2505

Owing to this resonance effect, the bath acts mainly through the frequency of the recurrences. Accordingly, phonons2506

with energy ~ω close to the energy ~Ω = 2g of a spin flip in M (see Eq. (3.5)) are continuously absorbed and emitted,2507

and this produces the shrinking of the off-diagonal blocks R̂↑↓ and R̂↓↑. The effect is cumulative, since B ∝ t. The2508

decoherence by the bath is thus continuously piloted by the coupling of the magnet with S.2509

In conclusion, the initial truncation and its further consolidation are in the present model the results of an interplay2510

between the three interacting objects, S, M and B. The main effect, on the time scale τtrunc, arises from the coupling2511

between S and the many degrees of freedom of M, and it should not be regarded as decoherence. Rather, it is2512

a dephasing effect as known in nuclear magnetic resonance. Viewing the magnet M as “some kind of bath or of2513

environment”, as is often done, disregards the essential role of M: to act as the pointer that indicates the outcome2514

of the quantum measurement. Such an idea also confers too much extension to the concept of bath or environment.2515

Decoherence usually requires some randomness of the environment, and we have seen (§ 5.2.2) that truncation may2516

occur even if the initial state of M is pure.2517

The mechanisms that warrant, on a longer time scale τM
irrev or τB

irrev, the permanence of the truncation can be2518

regarded as adjuvants of the main initial truncation process, since they become active after all accessible off-diagonal2519

expectation values and correlations have (provisionally) disappeared. We saw in subsection 6.1 that the intervention2520

of B is not necessary to entail this irreversibility, which can result from a dispersion of the coupling constants gn.2521

For the more efficient mechanism of suppression of recurrences of subsection 6.2, we have just stressed that it is a2522

decoherence process arising from the phonon thermal bath but steered by the spin-magnet coupling.2523

In section 7, we turn to the most essential role of the bath B in the measurement, to allow the registration of the2524

outcome by the pointer.2525

7. Registration: creation of system-pointer correlations2526

Wie schrijft, die blijft63
2527

Les paroles s’envolent, les écrits restent64
2528

Dutch and French proverbs2529

The main issue in a measurement process is the establishment of correlations between S and A, which will allow2530

us to gain information on S through observation of A [10, 11, 31, 48, 85]. As shown in § 5.1.3, the process creates2531

correlations in the off-diagonal blocks R̂↑↓(t) and R̂↓↑(t) of the density matrix D̂(t) of S + A, but those which survive2532

after the brief truncation time τtrunc involve a large number of spins σ̂(n) of M and are inobservable. The considered2533

quantum measurement thus cannot provide information on the off-diagonal elements r↑↓(0) of the density matrix r̂(0)2534

of S. We now show, by studying the dynamics of the diagonal blocks of D̂(t), how M can register the statistical2535

information embedded in r↑↑(0) and r↓↓(0) through creation of system-apparatus correlations. This “registration”2536

concerns a large set of runs of the measurement and has a statistical nature. In order to retrieve the information2537

thus transferred from S to the pointer so as to read, print or process it, we need the indication of the pointer to be2538

well-defined for each run (in spite of the quantum nature of A). We discuss this question in section 11.2539

If we can select the outcome, a question discussed in section 11, the process can be used as a preparation of S in2540

the pure state |↑〉 or |↓〉.2541

63Who writes, stays
64Words fly away, writings stay
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The registration process presents two qualitatively different behaviours, depending on the nature of the phase2542

transition of the magnet, of second order if the parameters of its Hamiltonian (3.7) satisfy J2 > 3J4, of first order if2543

they satisfy 3J4 > J2. Recalling our discussion in § 3.3.2, we will exemplify these two situations with the two pure2544

cases q = 2 and q = 4. In the former case, for J2 ≡ J and J4 = 0, the Hamiltonian is expressed by (3.8); in the latter2545

case, for J4 ≡ J and J2 = 0, it is expressed by (3.9). We summarize these two cases by HM = −(NJ/q)m̂q with q = 22546

and 4, respectively.2547

7.1. Properties of the dynamical equations2548

The dynamics of the diagonal blocks R̂↑↑(t) of D̂(t) results for large N from the equation (4.30) for the scalar2549

function P↑↑(t), with initial condition P↑↑(0) = r↑↑(0)PM(m, 0). The initial distribution PM(m, 0) for the magnetization2550

of M, given by (3.49), is a Gaussian, peaked around m = 0 with the small width δ0/
√

N. We have noted (subsection2551

4.4) the analogy of the equation of motion (4.30) with a Fokker-Planck equation [253] for the random variable m2552

submitted to the effects of the thermal bath B. In this equation, which reads2553

∂P↑↑
∂t

=
∂

∂m
(
−vP↑↑

)
+

1
N

∂2

∂m2

(
wP↑↑

)
, (7.1)

the first term describes a drift, the second one a diffusion [253]. The drift velocity v(m, t) is a function of m and t2554

defined by (4.31), whereas the diffusion coefficient w↑↑(m, t) is defined by (4.32). The normalization of P↑↑ remains2555

unchanged in time:2556 ∫
dmP↑↑(m, t) =

∫
dmP↑↑(m, 0) = r↑↑(0), (7.2)

so that the ratio P(m, t) = P↑↑(m, t)/r↑↑(0) can be interpreted as a conditional probability of m if sz = 1.2557

7.1.1. Initial and Markovian regimes2558

For very short times such that t � 1/Γ, we have2559

K̃t(ω) ∼ 2tK(0) =
~2

4π
Γ2t, (7.3)

and hence2560

v ∼ −
γ

π
Γ2mt, w ∼

γ

π
Γ2t . (7.4)

The solution of (7.1) then provides a Gaussian which remains centered at m = 0. Its width
√

D/N decays for q = 2,2561

δ0 > 1 as2562

D(t) = δ2
0 − (δ2

0 − 1)
[
1 − exp

(
−
γ

π
Γ2t2

)]
, (7.5)

and is constant (D = δ2
0 = 1) for q = 4. Anyhow, on the considered time scale, the change in P↑↑(m, t) is not perceptible2563

since γ � 1. The registration may begin to take place only for larger times.2564

The weakness of the magnet-bath coupling γ implies that the time scale of the registration is larger than the2565

memory time ~/2πT of K(t). Then K̃t(ω) defined by (4.17) reduces to K̃(ω), that is, to (3.38). The equation of2566

motion (7.1) for P↑↑ becomes Markovian [121, 122, 196], with v and w depending only on m and not on t. As soon as2567

t � ~/2πT , P↑↑ thus evolves in a short-memory regime. Its equation of motion is invariant under time translation.2568

The explicit expressions (4.31) and (4.32) of v↑↑ and w become in this regime2569

v(m) = γω↑(1 − m coth β~ω↑), (7.6)
w(m) = γω↑(coth β~ω↑ − m), (7.7)
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Figure 7.1: The drift velocity field V(m) = ~v(m)/γT = β(Jm+g)[1−m coth β(Jm+g)] for second-order transitions (q = 2, i. e., J2 = J, J4 = 0), at
the temperature T = 0.65J. The fixed points, the zeroes of V(m), are the extrema of the free energy F(m). For g=0, the attractive fixed points lie at
±mF = ±0.87. For g=0.05J, the two attractive fixed points lie at m⇑ = 0.90 and m⇓ = 0.84, and the repulsive bifurcation lies at m = −mB = −0.14.
For g = 0 the attractive fixed points lie at ±mF = ±0.91.

where ~ω↑ = g + J2m + J4m3 (including both q = 2 and q = 4) from the definition (4.24). These functions contain in2570

fact an extra factor exp(−2|ω↑|/Γ), which we disregard since the Debye cutoff is large:2571

~Γ � g, ~Γ � J. (7.8)

While the diffusion coefficient w(m) is everywhere positive, the drift velocity v(m) changes sign at the values m = mi2572

that are solutions of (3.56). We illustrate the behavior of v(m) in Figs. 7.1 for q = 2 and 7.2 for q = 4.2573

7.1.2. Classical features2574

We have stressed (subsection 4.4) that the drift term in (7.1) is “classical”, in the sense that it comes out for large2575

N by taking the continuous limit of the spectrum of m̂, and that the diffusion term, although relevant in this large N2576

limit, results from the discreteness of the spectrum of m̂ and has therefore a quantum origin. We can, however, forget2577

this origin and regard this diffusion term as a “classical” stochastic effect. As a preliminary exercise, we show below2578

that an empirical classical approach of the registration provides us at least with a drift, similar to the one occurring in2579

eq. (7.1).2580

For times t � τtrunc it is legitimate to disregard the off-diagonal blocks R̂↑↓ and R̂↓↑ of D̂, and the process that takes2581

place later on involves only P↑↑ and P↓↓. (In our present model the blocks evolve independently anyhow). This process2582

looks like the measurement of a “classical discrete spin” which would take only two values +1 and −1 with respective2583

probabilities r↑↑(0) and r↓↓(0); the x- and y-components play no role. The magnet M also behaves, in the present2584

diagonal sectors, as a collection of N classical spins σ(n)
z , the x- and y-components of which can be disregarded. The2585

dynamics of M is governed by its coupling with the thermal bath B. If this coupling is treated classically, we recover2586

a standard problem in classical statistical mechanics [60, 257, 258, 259, 260]. Indeed, the dynamics of2587

P(m, t) =
P↑↑(m, t)

r↑↑(0)
(7.9)

is the same as the relaxation of the random order parameter m of an Ising magnet, submitted to a magnetic field h = g2588

and weakly coupled to the bath B at a temperature lower than the transition temperature. Likewise, P↓↓(m, t)/r↓↓(0)2589

behaves as the time-dependent probability distribution for m in a magnetic field h = −g.2590

Such dynamics have been considered long since, see e.g. [60, 61, 62, 63, 64, 65, 257, 258, 259, 260]. The variables2591

σ(n)
z are regarded as c-numbers, which can take the two values ±1. Due to the presence of transverse spin components2592

at the quantum level they may flip with a transition rate imposed by the bath. Since N is large, it seems natural to2593

assume that the variance of m remains weak at all times, as D(t)/N. (In fact, this property fails in circumstances that2594

we shall discuss in subsection 7.3.) The probability distribution P is then equivalent to a Gaussian,2595
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Figure 7.2: The drift velocity field V(m) = ~v(m)/γT = β(Jm3 + g)[1 − m coth β(Jm3 + g)] for first-order transitions (q = 4, i. e., J2 = 0, J4 = J)
at T = 0.2J and for various couplings g. The zeroes of V(m) are the extrema of the free energy F(m) (see Figs. 3.3 and 3.4). For g = 0 there
are three attractive fixed points, mP = 0 and ±mF with mF = 1 − 9.1 · 10−5 and two repulsive fixed points, at ±0.465, close to ±

√
T/J = ±0.447.

For increasing g, mP increases up to mc = 0.268 until g reaches hc = 0.0357 J. For larger g, the paramagnetic fixed point mP disappears together
with the positive repulsive point, and, since V is positive for all m > 0, the distribution of m can easily move from values near 0 to values near mF,
“rolling down the hill” of F(m). If g is too small, V(m) vanishes with a negative slope at the attractive paramagnetic fixed point mP near the origin;
the distrbution of m then ends up around mP and the apparatus returns to its paramagnetic state when g is switched off so that the registration fails.

P(m, t) =

√
N

2πD(t)
exp

{
−

N[m − µ(t)]2

2D(t)

}
, (7.10)

In the present classical approximation we neglect D, assuming that m is nearly equal to the expectation value µ(t).2596

This quantity is expected to evolve according to an equation of the form2597

dµ(t)
dt

= v(µ(t)). (7.11)

In our case v is given by Eq. (7.6). This type of evolution has been considered many times in the literature. In order2598

to establish this law and to determine the form of the function v, most authors start from a balance equation governing2599

the probability that each spin σ(n)
z takes the values σi = ±1 (with i =↑ or ↓). The bath induces a transition probability2600

Wi(m) per unit time, which governs the possible flip of each spin from σi to −σi, in a configuration where the total2601

spin is
∑

i σi = Nm. A detailed balance property must be satisfied, relating two inverse processes, that is, relating Wi2602

and W−i; it ensures that the Boltzmann-Gibbs distribution for the magnet at the temperature of the bath is stationary,2603

to wit,2604

W−i[m − (2/N)σi]
Wi(m)

= exp[−β∆Ei(m)], (7.12)

where ∆Ei (m) is the energy brought in by one spin flip from σi to −σi. For large N, we have ∆Ei = 2σi(h + Jmq−1)2605

(which reads for general couplings ∆Ei = 2σi(h + J2m + J4m3)), so that Wi(m) depends on σi as2606

Wi(m) =
1

2θ(m)
[1 + tanh βσi(h + Jmq−1)], (7.13)

including a transition time θ(m) which may depend on m and on the temperature T = β−1 of B. (Indeed, W−i(m),2607

obtained from Wi by changing σi into σ−i = −σi, satisfies (7.12).) As explained in § 4.4.3, a balance provides the2608

variation during the time dt of the probabilities Pdis(m, t) as function of the flipping probability Wi(m)dt of each spin.2609

The continuous limit then generates, as in the derivation of Eq. (4.30), the drift coefficient2610

v(m) =
1

θ(m)
[tanh β(h + Jmq−1) − m]. (7.14)
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Various forms for θ(m) can be found in the works devoted to this subject; they are based either on phenomenology2611

or on an approximate solution of models [257, 258, 259, 260]. In all cases the stable fixed points of the motion2612

(7.11), at which v(m) vanishes, are the values mi given for large N by (3.56), where the free energy (3.55) is minimal.2613

However, the time-dependence of µ(t) = 〈m〉 as well as the behavior of higher order cumulants of m depend on the2614

coefficient θ(m). For instance, while θ is a constant in [257], it is proportional to tanh β(h + Jmq−1) in [259] and [260];2615

it still has another form if v(m) is taken to be proportional to −dF/dm.2616

In the present, fully quantum approach, which relies on the Hamiltonian introduced in subsection 3.2, the drift2617

velocity v(m) has been found to take the specific form (7.6) in the Markovian regime t � ~/2πT . We can then identify2618

the coefficient θ(m) of (7.14) with2619

θ(m) =
~ tanh β(h + Jmq−1)

γ(h + Jmq−1)
. (7.15)

With this form of θ(m), which arises from a quantum microscopic theory, the dynamical equation (7.11) keeps a2620

satisfactory behavior when h or m becomes negative, contrary to the ad hoc choice θ(m) ∝ tanh β(h + Jmq−1). It2621

provides, for q = 2, as shown in § 7.3.2, a long lifetime for the paramagnetic state, and better low temperature features2622

than for θ(m) =constant.2623

Altogether, our final equations for the evolution of the diagonal blocks of D̂ are, at least in the Markovian regime,2624

similar to equations readily found from a classical phenomenology. However, the quantum starting point and the2625

rather realistic features of our model provide us unambiguously with the form (7.6) for the drift velocity, which meets2626

several natural requirements in limiting cases. The occurrence of Planck’s constant in (7.15) reveals the quantum2627

origin of our classical-like equation. Moreover, quantum mechanics is also at the origin of the diffusion term and it2628

provides the explicit form (7.7) for w. Finally, by varying the parameters of the model, we can discuss the validity of2629

this equation and explore other regimes.2630

7.1.3. H-theorem and dissipation2631

In order to exhibit the dissipative nature of our quantum equations of motion for P↑↑ and P↓↓ in the Markovian2632

regime, we establish here an associated H-theorem [253]. This theorem holds for any Markovian dynamics, with2633

or without detailed balance. We start from the general, discrete equation (4.16), valid even for small N, where2634

K̃t(ω) is replaced by K̃(ω). We consider the probability Pdis(m, t) = (2/N)P(m, t), normalized under summation,2635

which encompasses Pdis
↑↑

(m, t)/r↑↑(0) for h = g > 0 and Pdis
↓↓

(m, t)/r↓↓(0) for h = −g < 0, and denote as E(m) =2636

−hNm − JNq−1mq the Hamiltonian (4.6) with h = ±g. We associate with Pdis(m, t) the time-dependent entropy2637

S (t) = −
∑

m

Pdis(m, t) ln
Pdis(m, t)

G(m)
, (7.16)

where the denominator G(m) accounts for the multiplicity (3.24) of m, and the average energy2638

U(t) =
∑

m

Pdis(m, t)E(m). (7.17)

The time-dependence of the dynamical free energy Fdyn(t) = U(t) − TS (t) is found by inserting the equations of2639

motion (4.16) for the set P(m, t) into2640

dFdyn

dt
=

∑
m

dPdis(m, t)
dt

[
E(m) + T ln

Pdis(m, t)
G(m)

]
. (7.18)

The resulting expression is simplified through summation by parts, using2641 ∑
m

[
∆+ f1(m)

]
f2(m) =

∑
m

f1(m)[∆− f2(m)] = −
∑

m

f1(m+)[∆+ f2(m)], (7.19)

with the notations (4.15). (No boundary term arises here.) This yields2642

dFdyn(t)
dt

= −
Nγ
β~2

∑
m

[
(1 + m+)eβ∆+E(m)Pdis(m+, t) − (1 − m)Pdis(m, t)

]
K̃[~−1∆+E(m)] ∆+

[
ln

Pdis(m, t)eβE(m)

G(m)

]
, (7.20)
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where we used K̃(−ω) = K̃(ω) exp β~ω. Noting that (1 − m)G(m) = (1 + m+)G(m+), we find2643

dFdyn(t)
dt

= −
γN
4β~

∑
m

(1 − m)G(m)
∆+E(m)

∆+ exp βE(m)
e−|∆+E(m)|/~Γ∆+

[
Pdis(m, t)eβE(m)

G(m)

]
∆+

[
ln

Pdis(m, t)eβE(m)

G(m)

]
. (7.21)

The last two factors in (7.21) have the same sign, while the previous ones are positive, so that each term in the2644

sum is negative. Thus the dynamical free energy is a decreasing function of time. The quantity −βdFdyn/dt can be2645

interpreted as the dissipation rate (or the entropy production) of the compound system M+B, that is, the increase per2646

unit time of the entropy (7.16) of the magnet plus the increase −βdU/dt of the entropy of the bath. In fact the entropy2647

of M is lower in the final state than in the initial state, but the increase of entropy of B associated with the energy2648

dumping dominates the balance. The negativity of (7.21) characterizes the irreversibility of the registration.2649

The right-hand side of (7.21) vanishes only if all its terms vanish, that is, if Pdis(m, t) exp[βE(m)]/G(m) does2650

not depend on m. This takes place for large times, when the dynamical free energy F(t) has decreased down to the2651

minimum allowed by the definitions (7.16), (7.17). We then reach the limit Pdis(m) ∝ G(m) exp[−βE(m)], which2652

is the distribution associated with the canonical equilibrium of M for the Hamiltonian E(m̂), that is, with the static2653

free energy65. We have thus proven for our model the following property, often encountered in statistical physics2654

[196, 253]. The same probability distribution for m arises in two different circumstances. (i) In equilibrium statistical2655

mechanics, (§ 3.3.4), Pdis (m) follows from the Boltzmann-Gibbs distribution R̂M ∝ exp[−βĤM] for the magnet alone.2656

(ii) In non-equilibrium statistical mechanics, it comes out as the asymptotic distribution reached in the long time limit2657

when M is weakly coupled to the bath.2658

It is only in the Markovian regime that the dynamical free energy is ensured to decrease. Consider in particular,2659

for the quadratic coupling q = 2, the evolution of Pdis(m, t) on very short times, which involves the narrowing (7.5)2660

of the initial peak. The free energy associated with a Gaussian distribution centered at m = 0, with a time-dependent2661

variance D(t)/N, is2662

Fdyn(t) =
∑

m

Pdis(m, t)
[
−gNm −

1
2

JNm2 + T ln
Pdis(m, t)

G(m)

]
= −

1
2

(JD + T − T D + T ln D). (7.22)

The time-dependence of D is expressed for short times t � Γ−1 by (7.5). The initial value δ2
0 of D(t) being given by2663

(3.52), we find2664

dFdyn

dt
=
γΓ2t
π

J2(T0 − T )
T0(T0 − J)

. (7.23)

Thus at the very beginning of the evolution, Fdyn slightly increases, whereas for t � ~/2πT it steadily decreases2665

according to (7.21). In fact, the negative sign of v in the initial non-Markovian regime (7.4) indicates that, for very2666

short times, the fixed point near m = 0 is stable although the bath temperature is lower than J.2667

7.1.4. Approach to quasi-equilibrium2668

The above proof that the system eventually reaches the canonical equilibrium state R̂M ∝ exp(−βĤM) is mathe-2669

matically correct for finite N and t → ∞. However, this result is not completely relevant physically in the large N2670

limit. Indeed, the times that we consider should be attainable in practice, and “large times” does not mean “infinite2671

times” in the mathematical sense [55, 56].2672

In order to analyze this situation, we note that the summand of (7.21) contains a factor Pdis(m, t); thus the ranges2673

of m over which Pdis(m, t) is not sizeable should be disregarded. When the time has become sufficiently large so that2674

the rate of decrease of F(t) has slowed down, a regime is reached where Pdis(m, t) exp[βE(m)]/G(m) is nearly time-2675

independent and nearly constant (as function of m) in any interval where Pdis(m, t) is not small. Within a multiplicative2676

factor, Pdis(m, t) is then locally close to exp[−βF(m)] where F(m) = U(m) − T ln G(m) is given by (3.55). It is thus2677

65The notions of dynamical (moderate time) and static (infinite time) free energy are well known in the theory of glasses and spin glasses, see e.g.
[261, 262, 263]. In corresponding mean field models, they differ strongly; here, however, the dynamical free energy simply refers to processes close
to equilibrium and decreases down to the static equilibrium free energy in agreement with the macroscopic Clausius–Duhem inequality [56, 73]
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concentrated in peaks, narrow as 1/
√

N and located in the vicinity of points mi where F(m) has a local minimum.2678

Above the transition temperature, or when the field h = ±g is sufficiently large, there is only one such peak, and the2679

asymptotic form of Pdis(m, t) is unique. However, below the critical temperature, two separate peaks may occur for2680

q = 2, and two or three peaks for q = 4, depending on the size of h.2681

In such a case, Pdis(m, t) can be split into a sum of non-overlapping contributions Pdis
Mi(m, t), located respectively2682

near mi and expected to evolve towards the equilibrium distributions Pdis
Mi(m) expressed by (3.57). Since for sufficiently2683

long times Pdis(m, t) is concentrated around its maxima mi with a shape approaching the Gaussian (3.57), its equation2684

of motion (7.1) does not allow for transfers from one peak to another over any reasonable delay. (Delays exponentially2685

large with N are physically inaccessible.) Once such a regime has been attained, each term Pdis
Mi(m, t) evolves inde-2686

pendently according to (7.1). Its normalization remains constant, and its shape tends asymptotically to (3.57). Hence,2687

below the transition temperature, ergodicity is broken in the physical sense. (A breaking of ergodicity may occur in2688

a mathematically rigorous sense only for infinite N or zero noise.) If the system starts from a configuration close to2689

some mi, it explores, during a physically large time, only the configurations for which m lies around mi. Configura-2690

tions with the same energy but with values of m around other minima of F(m) remain out of reach. This phenomenon2691

is essential if we want to use M as the pointer of a measurement apparatus. If the spin S lies upwards, its interaction2692

with A should lead to values of m that fluctuate weakly around +mF, not around −mF. Ergodicity would imply that2693

A spends the same average time in all configurations having the same energy, whatever the sign of m [55, 56], once2694

the interaction ĤSA is turned off. The breaking of invariance is thus implemented through the dynamics: unphysical2695

times, exponentially large with N, would be needed to reach the symmetric state exp(−βĤM).2696

In analogy with what happens in glasses and spin glasses [261, 262, 263], for physical large times t, the asymptotic2697

value of Fdyn(t) is not necessarily the absolute minimum of F(m). It is a weighted average of the free energies of the2698

stable and metastable states, with magnetizations mi. The weights, that is, the normalizations of the contributions2699

Pdis
Mi(m, t) to Pdis(m, t) are determined by the initial distribution Pdis(m, 0), and they depend on N and on the couplings2700

g and J which enter the equations of motion. For an ideal measurement, we require the process to end up at a single2701

peak, +mF for Pdis
↑↑

, −mF for Pdis
↓↓

(subsection 7.2). Otherwise, if M may reach either one of the two ferromagnetic2702

states ±mF, the measurement is not faithful; we will determine in § 7.3.3 its probability of failure.2703

In the present regime where the variations with m of PeβE/G are slow, we can safely write the continuous limit of2704

the H-theorem (7.21) by expressing the discrete variations ∆+ over the interval δm = 2/N as derivatives. We then find2705

the dissipation rate as (we switch to the function P(m) = (N/2)Pdis(m) and to an integral over m)2706

−
1
T

dFdyn

dt
=

γNT
~

∫
dm P(m, t)φ(m)[coth φ(m) − m]

×

[
1

NP
∂P
∂m
−

tanh φ(m) − m
1 − m tanh φ(m)

] [
1

NP
∂P
∂m
− φ(m) +

1
2

ln
1 + m
1 − m

]
, (7.24)

where we use the notation2707

φ(m) = β(h + Jmq−1), h = ±g. (7.25)

For large N, the term (1/NP)dP/dm is not negligible in case ln P is proportional to N, that is, in the vicinity of a narrow2708

peak with width 1/
√

N. The expression (7.24) is not obviously positive. However, once P(m, t) =
∑

i=±1 PMi(m, t)2709

has evolved into a sum of separate terms represented by peaks around the values mi, we can write the dissipation as2710

a sum of contributions, each of which we expand around mi. The last two brackets of (7.24) then differ only at order2711

(m − mi)3, and we get the obviously positive integrand2712

−
1
T

dFdyn

dt
=
γNT
~

∑
i=±1

∫
dm PMi(m, t)φ(m)[coth φ(m) − m] (7.26)

×

 1
NPMi

∂PMi

∂m
+

 1
1 − m2

i

− (q − 1)βJmq−2
i

 (m − mi) +

 mi

(1 − m2
i )2
−

(q − 1)(q − 2)
2

βJmq−3
i

 (m − mi)2
2

.
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We thus check that Fdyn(t) decreases, down to the weighted sum of free energies associated with the stable or2713

metastable equilibrium distributions (3.57). In fact, among the stationary solutions of (7.1), those which satisfy2714

vP −
1
N

d(wP)
dm

= 0, (7.27)

with v and w given by (7.6) and (7.7), coincide with (3.57) around the values of mi given by (3.56), not only in the2715

mean-field approximation but also including the corrections that we retained in those formulae.2716

7.2. Registration times2717

Quid est ergo tempus? Si nemo ex me quaerat, scio;2718

si quaerenti explicare velim, nescio 66
2719

Saint Augustine2720

In the present subsection, we study the evolution of the distribution P↑↑(m, t), which is such that (1/N) ln P↑↑ is2721

finite for large N. This property holds at t = 0 and hence at all times. As a consequence, P↑↑ presents a narrow2722

peak with width of order 1/
√

N, and it is equivalent to a Gaussian. We first note that the evolution (7.1) conserves its2723

normalization r↑↑(0). The ratio (7.9) can then be parametrized as in (7.10) by the position µ(t) of the peak and by its2724

width parameter D(t), which are both finite for large N.2725

7.2.1. Motion of a single narrow peak2726

The equations of motion for µ(t) and D(t) are derived by taking the first moments of the equation (7.1) for P↑↑(m, t).2727

Integration over m of (7.1) first entails the conservation in time of the normalization r↑↑(0) of
∫

dmP↑↑(m, t). We then2728

integrate (7.1) over m after multiplication, first by m−µ(t), second by N[m−µ(t)]2−D(t), using on the right-hand side2729

an integration by parts and the steepest descents method. To wit, expanding v(m, t) and w(m, t) in powers of m − µ(t),2730

we rely on the vanishing of the integrals of m − µ(t) and of N[m − µ(t)]2 − D(t) when weighted by P↑↓(m, t), and we2731

neglect for k > 1 the integrals of [m − µ(t)]2k, which are small as N−k. This yields for sufficiently large N2732

dµ(t)
dt

= v[µ(t), t], (7.28)

1
2

dD(t)
dt

=
∂v[µ(t), t]

∂µ
D(t) + w[µ(t), t]. (7.29)

At the very beginning of the evolution, when t is not yet large compared to ~/2πT , Eqs. (7.28) and (7.29) should2733

be solved self-consistently, using the expressions (4.31) for v and (4.32) for w. However, if the coupling γ is weak,2734

the Markovian regime is reached before the shape of P↑↑ is significantly changed. We can thus solve (7.28) and (7.29)2735

with the time-independent forms (7.6) and (7.7) for v and w, the initial conditions being µ(0) = 0 , D(0) = δ2
0.2736

The solution of (7.28) is then, for t � ~/2πT ,2737

t =

∫ µ

0

dµ′

v(µ′)
=

~
γT

∫ µ

0

dµ′

φ(µ′)[1 − µ′ coth φ(µ′)]
, (7.30)

where the function φ is defined by (7.25) with h = +g. Inversion of (7.30) provides the motion µ(t) of the peak of2738

P↑↑(m, t). For P↓↓, we have to change g into −g in (7.25), and µ (t) expressed by (7.30) is then negative.2739

If N is very large, the probabilistic nature of the registration process fades out and the magnetization is located2740

at µ(t) with near certainty. The evaluation of the time dependence of µ(t) may be proposed to students as an exercise2741

(§ 9.6.2). Results for quadratic coupling (q = 2) and for quartic coupling (q = 4), which exemplify second and2742

first-order transitions, respectively, are illustrated by Fig. 7.3 and by Fig. 7.4, respectively. The evolution from the2743

initial paramagnetic state to the final ferromagnetic state exhibits several stages, which will be studied in § 7.2.3 for2744

q = 2 and in § 7.2.4 for q = 4.2745

66What then is time? If no one asks me, I know what it is; if I wish to explain it to him who asks, I do not know
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q=2

0 2 4 6 8 10 12 14
t�Τ J

0.2

0.4

0.6

0.8

1.0
Μ

Figure 7.3: The average magnetization µ(t) for a quadratic interaction (q = 2) goes from zero to m⇑. The time dependence, given by (7.30), results
from the local velocity of Fig. 7.1. The parameters are T = 0.65J and g = 0.05J, while the time scale is τJ = ~/γJ. One can distinguish the three
stages of §7.2.3, characterized by the first registration time τreg = [J/(J−T )] τJ = 2.86 τJ (eq. (7.44)) and the second registration time τ′reg = 8.4τJ
(eq. (7.48)): (i) Increase, first linearly as (g/J)(t/τJ) = 0.05t/τJ , then exponentially according to (7.42), with a coefficient mB = g/(J − T ) = 0.143
and a time scale τreg. After a delay of a few τreg, the coupling may be switched off without spoiling the registration. (ii) Rise, according to (7.47),
up to mF −

1
2 mB = 0.80 reached at the second registration time τ′reg. (iii) Exponential relaxation towards m⇑ = 0.90 (or mF = 0.87 if g is switched

off) according to (7.49) with the time scale 1.6τJ .

q=4
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Figure 7.4: The average magnetization µ(t) for a quartic interaction (q = 4) goes from zero to m⇑ ' 1. The time dependence, given by (7.30), results
from the local velocity of Fig. 7.2. The parameters are T = 0.2J and g = 0.045J while the time scale is τJ = ~/γJ. The characteristic registration
time τreg = 38τJ is now given by (7.52). (Note that it is much larger than for a quadratic interaction.) The initial increase of µ(t) takes place, first
linearly as (g/J) t/τJ = 0.045t/τJ , then slows down according to (7.51), with a coefficient g/J = 0.045 and a time scale τ1 = (g/J) τJ . The region
of mc = 0.268, where the drift velocity is small, is a bottleneck: around this point, reached at the time t = 1

2 τreg, the average magnetization µ(t)
lingers according to (7.53) where δmc = 0.11. It then increases rapidly so as to reach at the time τreg a value close to mF ' 1, and finally reaches
mF exponentially on the time scale τJ .
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The width of the peak is obtained by regarding D as a function of µ(t) and by solving the equation for dD/dµ that2746

results from (7.28) and (7.29). This yields2747

D(µ) = v2(µ)
 δ2

0

v2(0)
+

∫ µ

0

dµ′ 2w(µ′)
v3(µ′)

 = φ2(µ)[1 − µ coth φ(µ)]2

 δ2
0

β2g2 +

∫ µ

0

dµ′ 2[coth φ(µ′) − µ′]
φ2(µ′)[1 − µ′ coth φ(µ′)]3

 . (7.31)

To analyze this evolution of D(t), we first drop the term in w from the equation of motion (7.1) of PM(m, t). This2748

simplified equation describes a deterministic flow in the space of m, with a local drift velocity v(m). For any initial2749

condition, its solution is the mapping2750

PM(m, t) =
1

v(m)

∫
dm′PM(m′, 0) δ

(
t −

∫ m

m′

dm′′

v(m′′)

)
, (7.32)

where m′ is the initial point of the trajectory that reaches m at the time t. For a distribution (7.10) peaked at all times,2751

we recover from (7.32) the motion (7.30) of the maximum of P↑↑(m, t) and the first term of the variance (7.31). If only2752

the drift term were present, the width of the peak would vary as v(µ): Indeed, in a range of m where the drift velocity2753

increases with m, the front of the peak progresses more rapidly than its tail so that the width increases, and conversely.2754

The second term of (7.31) arises from the term in w. Since w(m) is positive, it describes a diffusion which widens2755

the distribution. This effect of w is enhanced when v is small. In particular, by the end of the evolution when µ(t)2756

tends to a zero mi of v(m) with ∂v/∂m < 0, the competition between the narrowing through v and the widening2757

through w leads to the equilibrium variance D = −(dv/dµ)−1w, irrespective of the initial width. This value is given by2758

D−1 = (1 − m2
i )−1 − (q − 1)βJmq−2

i , in agreement with (3.57) and with (7.27).2759

We have noted that the drift velocity v(m) has at each point the same sign as −dF/dm, where F is the free energy2760

(3.55), and that the zeroes mi of v(m), which are the fixed points of the drift motion, coincide with the extrema of F.2761

At such an extremum, given by (3.56), we have2762

−
dv
dm

=
γ

N~
2φ(mi)

sinh 2φ(mi)
d2F
dm2 . (7.33)

The minima of F correspond to attractive fixed points, with negative slope of v(m), its maxima to repulsive points,2763

that is, bifurcations. In the present case of a narrow distribution, µ(t) thus increases from µ(0) = 0 to the smallest2764

positive minimum mi of F(m), which is reached asymptotically for large times. However, the present hypothesis of a2765

single narrow peak is valid only if P(m, t) lies entirely and at all times in a region of m free of bifurcations. We will2766

discuss in subsection 7.3 the situation where P lies astride a bifurcation, either at the initial time or a little later on, if2767

a tail due to diffusion crosses the bifurcation.2768

7.2.2. Threshold for the system-apparatus coupling; possibilities of failure2769

If you are not big enough to lose,2770

you are not big enough to win2771

Walter Reuther2772

The measurement is successful only if P (m, t) ≡ P↑↑(m, t)/r↑↑(0), which is interpreted as the conditional probabil-2773

ity distribution for m if sz = +1, approaches for large times the narrow normalized peak (3.57) located at the positive2774

ferromagnetic solution m⇑ of (3.56) with h = +g, close to mF for g � T 67. This goal can be achieved only if (i) the2775

center µ(t) of the peak approaches m⇑; (ii) its width remains small at all times so that the above derivation is valid.2776

(i) The first condition is relevant only for a first-order transition (q = 4), since m⇑ is anyhow the only attractive2777

fixed point in the region m > 0 for a second-order transition (q = 2). For quartic interactions, the first minimum of2778

F(m) that occurs for increasing m is not necessarily m⇑ (Fig. 7.2). Indeed, we have seen (end of § 3.3.4 and Fig. 3.4)2779

that for a field lower than2780

67We recall Eq. (3.58) where m⇑ ' +1 and m⇓ ' −1 are defined as the fixed points at finite g, and mF and −mF as their g→ 0 limits, respectively
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hc = Tarctanh mc − Jm3
c ≈

2
3

Tmc, m2
c =

1
2
−

1
2

√
1 −

4T
3J
≈

T
3J

+
T 2

9J2 , (7.34)

the free energy F(m) has not only a ferromagnetic minimum at m⇑, but also a local paramagnetic minimum mP at a2781

smaller value of m. Hence, if the spin-apparatus coupling g is smaller than hc, µ(t) reaches for large times the locally2782

stable point mP in the sector ↑↑. It reaches −mP in the sector ↓↓, so that the apparatus seems to distinguish the values2783

sz = ±1 of S. However, if the coupling is switched off at the end of the process, the magnetization m of M returns to 02784

in both cases. The result of the measurement thus cannot be registered robustly for g < hc.2785

The center µ(t) of the peak may escape the region of the origin only if g > hc (Fig. 7.2). Relying on the smallness2786

of T/3J (equal to 0.121 at the transition temperature), we can simplify the expression of hc as in (7.34), so that this2787

threshold for g is (q = 4):2788

g > hc '
2T
3

√
T
3J
. (7.35)

Under this condition, the peak µ(t) of P↑↑(m, t) reaches for large times m⇑, close to the magnetization mF of the2789

ferromagnetic state. If the coupling g is removed sufficiently after µ(t) has passed the maximum of F(m), the peak is2790

expected to end up at mF. Likewise, the peak of P↓↓(m, t) reaches −mF at the end of the same process. The apparatus2791

is non-ergodic and the memory of its triggering by S may be kept forever under the necessary (but not sufficient)2792

condition (7.35).2793

(ii) The second requirement involves the width of the distribution P↑↑(m, t) and the location −mB < 0 of the2794

repulsive fixed point, at which F(m) is maximum. Consider first the pure drift flow (7.32) without diffusion, for which2795

−mB is a bifurcation. The part m > −mB of P↑↑(m, 0) is properly shifted upwards so as to reach eventually the vicinity2796

of the positive ferromagnetic value +mF; however its tail m < −mB is pushed towards the negative magnetization2797

−mF. If the relative weight of this tail is not negligible, false measurements, for which the value −mF is registered2798

by A although sz equals +1, can occur with a sizeable probability. Such a failure is excluded for q = 4, because mB2799

is then much larger than the width 1/
√

N of P↑↑(m, 0); for instance, in the case q = 4 we have mB = 0.544 for the2800

parameters T = 0.2J and g = 0.045J (which satisfy (7.35)). However, in the case q = 2 and g � J − T , the point2801

−mB with2802

mB '
g

J − T
, (7.36)

lies close to the origin (Fig. 7.1), and a risk exists that the initial Gaussian distribution in exp(−Nm2/2δ2
0) extends2803

below −mB if g is too small. The probability of getting a wrong result is significant if the condition δ0 � mB
√

N is2804

not fulfilled. We return to this point in § 7.3.3.2805

Moreover, in this case q = 2, the lower bound thus guessed for the coupling,2806

g = (J − T )mB �
(J − T )δ0
√

N
, (7.37)

is not sufficient to ensure a faithful registration. The diffusive process, which tends to increase D(t) and thus to thicken2807

the dangerous tail m < −mB of the probability distribution P↑↑(m, t), raises the probability of a false registration2808

towards −mF instead of +mF. In order to trust the Ansatz (7.10) and the ensuing solution (7.30), (7.31) for P↑↑(m, t),2809

we need D(t) to remain at all times sufficiently small so that P↑↑(m, t) is negligible for m < −mB. This is expressed,2810

when taking µ(t) as a variable instead of t, as2811

D(µ)
N(mB + µ)2 � 1 (7.38)

for any µ between 0 and mF: The width
√

D/N of the peak of P↑↑(m, t) should not increase much faster than its2812

position µ. For sufficiently small g, we have mB � mF, and we only need to impose (7.38) for times such that µ (t)2813

lies in an interval 0 < µ (t) < µmax such that mB � µmax � T/J. In this range we can evaluate D(µ) from (7.31) by2814

simplifying tanh φ(µ) into φ(µ), which yields2815

D(µ)
(mB + µ)2 =

δ2
0

m2
B

+
T

J − T

 1
m2

B

−
1

(mB + µ)2

 . (7.39)
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This ratio increases in time from δ2
0/m

2
B to δ2

1/m
2
B, where2816

δ2
1 = δ2

0 +
T

J − T
=

T0

T0 − J
+

T
J − T

, (7.40)

so that the left-hand side of (7.38) remains at all times smaller than δ2
1/Nm2

B. The lower bound on g required to exclude2817

false registrations is therefore (q = 2)2818

g �
(J − T )δ1
√

N
, (7.41)

a condition more stringent than (7.37) if J − T � J. Altogether, for q = 2 the system-apparatus coupling may for2819

large N be small, for instance as N1/3, provided it satisfies (7.41).2820

For q = 4, and more generally for a first-order transition (3J4 > J2), the lower bound found as (7.35) remains2821

finite for large N: A free energy barrier of order N has to be overpassed. Moreover, the diffusion hinders the trend2822

of m to increase and may push part of the distribution P↑↑(m, t) leftwards, especially its left tail, while its peak moves2823

rightwards. The widening of P↑↑(m, t) when the barrier is being reached should not be too large, and this effect raises2824

further the threshold for g. We shall show in § 7.2.4 that the condition (7.35) should thus be strengthened into (7.57).2825

Another difference between first- and second order transitions lies in the possible values of the temperature. For2826

q = 2, if T lies near the critical temperature J, the minima mi of F(m) are very sensitive to g and the ferromagnetic2827

value mF in the absence of a field is small as
√

3(J − T )/J. Using M as the pointer of a measurement apparatus2828

requires the temperature to lie sufficiently below J. For q = 4, registration is still possible if T lies near the transition2829

temperature, and even above, although in this case the ferromagnetic states are not the most stable ones for h = 0.2830

However, the coupling g should then be sufficiently strong.2831

7.2.3. The registration process for a second-order transition2832

Assuming g to satisfy (7.41) and mF to be significantly large, we resume the dynamics of P↑↑(m, t) for q = 2 so as2833

to exhibit its characteristic times. After a short delay of order ~/T , most of the process takes place in the Markovian2834

regime, and the Gaussian Ansatz (7.10) is justified. We can distinguish three stages in the evolution of P↑↑(m, t),2835

which are exhibited on the example of Figs. 7.3 and 7.5.2836

(i) During the first stage, as long as µ(t) � mF, we can replace φ(m) coth φ(m) by 1 in v and w, so that the drift2837

velocity v behaves (Fig. 7.1) as2838

v(m) ≈
γT
~

[g + Jm
T

− m
]

=
γ(J − T )(mB + m)

~
, (7.42)

and the diffusion coefficient as w ≈ γT/~. Integration of (7.30) then yields the motion2839

µ(t) ∼ mB(et/τreg − 1) =
g

J − T
(et/τreg − 1) (7.43)

for the center of the peak, with the characteristic time2840

τreg =
~

γ(J − T )
. (7.44)

After beginning to move as µ ∼ γgt/~, the distribution shifts away from the origin faster and faster. Once µ has2841

reached values of the order of several times mB, (J − T ) µ becomes larger than g, so that v(µ) does not depend much2842

on g. It little matters for the subsequent evolution whether the coupling g is present or not. Thus, after t/τreg reaches2843

2 or 3, the spin-apparatus coupling may be switched off and the increase of µ goes on nearly unchanged. In fact, the2844

distribution moves towards mF rather than m⇑, but mF−m⇑ is small, less than g/J. We shall call τreg the first registration2845

time. After it, M will necessarily reach the ferromagnetic state +mF, independent of S, although the evolution is not2846

achieved yet.2847

We have seen that during this first stage the width (7.39) is governed both by the drift which yields the factor2848

(mB + µ)2, increasing as e2t/τreg , and by the diffusion which raises δ0 up to δ1.2849
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(ii) During the second stage µ(t) rises rapidly from mB to mF, since the drift velocity v(µ) is no longer small. The2850

distribution has become wide, and its width is now governed mainly by the drift term. Matching D(µ) with (7.39) for2851

µ larger than mB yields the width2852 √
D(µ)

N
∼

τregδ1

mB
√

N
v(µ) =

~δ1

γg
√

N
v(µ), (7.45)

which varies proportionally to v (µ).The drift velocity v(m) first increases and then decreases as function of m (Fig.2853

7.1), down to 0 for m = m⇑ ' mF. Accordingly, the width D(t) increases as function of time, then decreases (Fig. 7.5).2854

The time dependence (7.30) of µ(t) and hence of D(t) is evaluated explicitly in the Appendix E.1, where µ is related2855

to t through Eq. (E.2), that is,2856

t
τreg

= ln
mB + µ

mB
+ a ln

m2
F

m2
F − µ

2
, (7.46)

where the coefficient a, given by2857

a =
T (J − T )

J[T − J(1 − m2
F)]
, (7.47)

lies between 1
2 and 1.2858

We define the second registration time τ′reg as the delay taken by the average magnetization µ(t) to go from the2859

paramagnetic value µ = 0 to the value mF −
1
2 mB close to mF. From the equation (7.46) that relates µ to t, we find this2860

second registration time, the duration of the second stage, much longer than the first, as2861

τ′reg = τreg(1 + a) ln
mF

mB
, (7.48)

(iii) The third stage of the registration, the establishment of thermal equilibrium, has been studied in § 7.1.32862

and § 7.1.4. While µ(t) tends exponentially to m⇑ (or to mF if the coupling g has been switched off), we saw that2863

the equilibrium width of P↑↑(m, t) is reached as a result of competition between the drift, which according to (7.45)2864

narrows the distribution, and the diffusion which becomes again relevant and tends to widen it. It is shown in the2865

Appendix E.1 that the final relaxation takes place, for times t − τ′reg ∼ τreg, according to2866

µ(t) = mF

1 − 1
2

(
mF

mB

)1/a

exp
(
−

t
aτreg

) . (7.49)

At low temperatures, T � J, we have mF ∼ 1, mB ∼ g/J, a ∼ 1. If T lies close to the transition temperature,2867

J − T � J, we have m2
F ∼ 3(J − T )/J, mB = g/(J − T ) and a ∼ 1

2 .2868

The above scenario for the registration process is illustrated by Fig. 7.5 which represents a numerical solution of2869

the equation for P (m, t) = P↑↑(m, t)/r↑↑ (0). The curves exhibit the motion from 0 to mF of the center µ(t) of the peak2870

(also shown by Fig. 7.3), its large initial widening, the intermediate regime where the width
√

D(t)/N is proportional2871

to µ(t), and the final adjustment of µ and D to their equilibrium values in the ferromagnetic state. Except near the2872

initial and final state, the width is not small although we have taken a fairly large value N = 1000, but one can see that2873

the Gaussian approximation used for P↑↑(m, t) is sufficient and that the resulting formulae given above for µ(t) and2874

D(t) fit the curves. While a mean-field theory neglecting the fluctuations is satisfactory at equilibrium, the dynamics2875

entails large fluctuations of m at intermediate times.2876

7.2.4. The registration process for a first-order transition2877

The process is different when the interaction is quartic (q = 4), a case that we chose to exemplify the first-order2878

transitions which occur when 3J4 > J2. The spin-apparatus coupling g must then at least be larger than the threshold2879

(7.35) to ensure that v(m) remains positive up to m⇑, which now lies near mF ' 1 (Figs. 3.3 and 7.2). At the beginning2880

of the evolution, we find from v(m) ≈ (γ/~)(g − Tm), using g � T , the motion2881
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Figure 7.5: The registration process for a quadratic interaction (q = 2). The probability density P(m, t) = P↑↑(m, t)/r↑↑(0) for the magnetization m
of M is represented at different times. The parameters were chosen as N = 1000, T = 0.65J and g = 0.05J as in Figs. 7.1 and 7.3. The time scale is
here the registration time τreg = ~/γ(J − T ) = 2.86 τJ . After a few times τreg the evolution is no longer sensitive to the system-apparatus coupling
g. In the initial fully disordered paramagnetic state (T0 = ∞), P(m, 0) is a Gaussian centered at m = 0 with width 1/

√
N. In the course of time,

the peak of P considerably widens, then narrows and reaches eventually the equilibrium ferromagnetic distribution with positive magnetization
m⇑ = 0.90, which is given by (3.57). The repulsive fixed point lies at −mB with mB = 0.14 and no weight is found below this. The second
registration time, at which µ(t) reaches 0.80, is τ′reg = 3τreg. It is seen that beyond this, the peak at m⇑ quickly builds up.

µ(t) ≈
g
T

(1 − e−t/τ1 ), τ1 =
~
γT

. (7.50)

Like for q = 2, the peak shifts first as µ ∼ γgt/~, but here its motion slows down as t increases, instead of escaping2882

more and more rapidly off the paramagnetic region, as exhibited on the example of Figs. 7.4 and 7.6. Extrapolation2883

of (7.50) towards times larger than τ1 is not possible, since µ would then not go beyond g/T , and could not reach mF.2884

In fact, v(m) does not vanish at m = g/T as implied by the above approximation but only decreases down to a positive2885

minimum near mc ' 3hc/2T according to (7.34). The vicinity of mc is thus a bottleneck for the motion from µ = 0 to2886

µ = 1 of the peak of P↑↑(m, t): This motion is the slowest around mc. The determination of the evolution of P↑↑(m, t),2887

embedded in µ(t) and D(t), and the evaluation of the registration time thus require a control of the shape of v(m), not2888

only near its zeroes, but also near its minimum (Fig. 7.2).2889

Let us recall the parameters which characterize v(m). For g = 0, it has 5 zeroes. Three of them correspond to2890

the attractive fixed points ±mF ' ±1 and 0 associated with the ferromagnetic and paramagnetic states. The other two2891

are repulsive, producing a bifurcation in the flow of P(m, t); they are located at m ' ±
√

T/J, that is, at m ' ±mc
√

32892

according to (7.34). When g increases and becomes larger than hc, there remain the two ferromagnetic points, while2893

the repulsive point −mc
√

3 is shifted towards −mB ' −2mc. The paramagnetic point and the repulsive point mc
√

32894

converge towards each other, giving rise to the minimum of v(m) near m = mc. The value of v(m) at this minimum is2895

expressed by2896

~
γT

v(mc) '
δm2

c

mc
, δmc '

√
(g − hc)mc

T
, hc '

2
3

Tmc, mc =

√
T
3J
. (7.51)

We construct in Appendix E.2, for δmc � mc and mc small, a parametrization of v(m) which reproduces all these2897

features, so as to derive an algebraic approximation (E.12) which expresses the time dependence of µ(t) over all times.2898

After the initial evolution (7.50) of µ(t) for t � τ1 = ~/γT , the motion of the peak P↑↑(m, t) is characterized by a2899

much larger time scale. We define the registration time as2900

τreg =
π~
γT

√
mcT

g − hc
. (7.52)
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The bottleneck stage takes place around 1
2τreg. Between the times t = 1

4τreg and t = 3
4τreg, the average magnetization2901

µ(t) lingers in the narrow range mc ± δmc, according to (Fig. 7.4)2902

µ(t) = mc − δmccotan
πt
τreg

. (7.53)

It is shown in Appendix E.2 that, under the considered conditions on the parameters, µ(t) rises thereafter rapidly2903

according to (E.15), and that the full time taken by the peak µ(t) of P↑↑(m, t) to go from 0 to the close vicinity of 1 is2904

τreg (Eq. (7.52)). It is also shown in Appendix E.2 that the final relaxation takes place on the short time scale ~/γJ.2905

We have focused on the location of the peak of P↑↑(m, t). The consideration of its width D(t) is essential to2906

determine when S and A may be decoupled. During the bottleneck stage, the sole drift effect would produce a2907

narrowing of D(t) around t = 1
2τreg expressed by the first term of (7.31), but the smallness of v(m) enhances the2908

second term, so that the diffusion acts during a long time and produces a large widening of D(t). By using the2909

parabolic approximation for v(m), which is represented by the first term of (E.11), and by replacing w(m) by γT/~,2910

we obtain, with µ(t) expressed by (7.53),2911

D(µ) ∼ 2mc

[
(µ − mc)2 + δm2

c

] ∫ µ

0

dµ′

[(µ′ − mc)2 + δm2
c]3

. (7.54)

After the bottleneck has been passed, the diffusion may again be neglected. From (7.31) and (7.54), we find for all2912

values of µ(t) such that µ − mc � δmc2913

D(µ) ∼
3π~2m3

c

4γ2T 2δm5
c

v2(µ) =
3π
√

Tmc

4(g − hc)5/2 (Jµ3 + g)2[1 − µ coth β(Jµ3 + g)]2, (7.55)

where we used (7.6), (7.51) and (4.24). Without any diffusion, the coefficient of v2(µ) would have been 1/v2(0) =2914

9~2/4γ2T 2m2
c ; both factors v(µ) are multiplied by the large factor

√
π/3(mc/δmc)5/2 due to diffusion.2915

The distribution P↑↑(m, t) thus extends, at times larger than 3
4τreg, over the region µ(t) ±

√
D(t)/N. The first2916

registration time has been defined in § 7.2.3 as the time after which S and A can be decoupled without affecting the2917

process. When g is switched off (g → 0), a repulsive fixed point appears at the zero m = mc
√

3 of v(m). In order to2918

ensure a proper registration we need this decoupling to take place after the whole distribution P↑↑(m, t) has passed this2919

bifurcation, that is, at a time toff such that2920

µ(toff) −
√

D(toff)/N > mc
√

3. (7.56)

The time dependence (E.15) of µ shows that the lower bound of toff is equal to τreg within a correction of order2921

τ1 � τreg. Moreover, we need the distribution to be sufficiently narrow so that (7.56) is satisfied after g is switched2922

off. Taking for instance µ(toff) = 2mc, which according to (E.15) is reached at the time toff = τreg(1 − 0.25 δmc/mc),2923

we thus find, by inserting (7.55) with µ = 2mc and g ' hc into (7.56), by using (7.51) and evaluating the last bracket2924

of (7.55) for mc = 0.268, a further lower bound for the coupling g in our first order case q = 4:2925

g − hc

hc
� 8

( J
NT

)2/5

. (7.57)

The first registration time, which governs the possibility of decoupling, and the second one, which is the delay2926

after which the pointer variable approaches the equilibrium value, are therefore nearly the same, namely τreg, contrary2927

to the case q = 2 of a second order transition (§ 7.2.3).2928

The registration process for q = 4 is illustrated by Figs. 7.4 and 7.6, obtained through numerical integration. The2929

time dependence of µ(t) as well as the widening of the distribution are influenced by the existence of the minimum2930

for the drift velocity. Although in this example g lies above the threshold hc, N is not sufficiently large to fulfil the2931

condition (7.57). The widening is so large that a significant part of the weight P(m, t) remains for a long time below2932

the bifurcation mc
√

3 which appears when g is switched off. The bound (7.57) was evaluated by requiring that such a2933

switching off takes place after the average magnetization µ passes 2mc = 0.54. Here however, for N = 1000, T = 0.2J2934
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and g = 0.045J, the bound is very stringent, since we cannot switch off g before µ has reached (at the time 1.09τreg2935

found from (E.15)) the value 1 − 13 · 10−5, close to the equilibrium value mF = 1 − 9 · 10−5.2936

Altogether, for q = 2 as well as for q = 4, we can check that the approximate algebraic treatment of §§ 7.2.3 and2937

7.2.4 fits the numerical solution of Eq. (7.1) exemplified by the figures 7.3 to 7.6. In both cases, the registration times2938

(7.44) and (7.48) for q = 2 or (7.52) for q = 4, which characterize the evolution of the diagonal blocks of the density2939

matrix of the total system D̂, are much longer than the truncation time (5.6) over which the off-diagonal blocks decay.2940

Two reasons conspire to ensure this large ratio: the weakness of the coupling γ between magnet and bath, which2941

makes τreg large; and the large value of N, which makes τtrunc small.2942
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Figure 7.6: The registration process for quartic interactions (q = 4). The probability density P(m, t) = P↑↑(m, t)/r↑↑(0) as function of m is
represented at different times up to t = 1.5 τreg. The parameters are chosen as N = 1000, T = 0.2J and g = 0.045J as in Fig 7.4. The time scale is
here the registration time τreg = 38τJ = 38~/γJ, which is large due to the existence of a bottleneck around mc = 0.268. The coupling g exceeds
the critical value hc = 0.0357J needed for proper registration, but since (g − hc)/hc is small, the drift velocity has a low positive minimum at 0.270
near mc (Fig. 7.2). Around this minimum, reached at the time 1

2 τreg, the peak shifts slowly and widens much. Then, the motion fastens and the
peak narrows rapidly, coming close to ferromagnetism around the time τreg, after which equilibrium is exponentially reached.

7.3. Giant fluctuations of the magnetization2943

We have studied in subsection 7.2 the evolution of the probability distribution P(m, t) = P↑↑(m, t)/r↑↑(0) of the2944

magnetization of M in case this distribution presents a single peak (7.10) at all times. This occurs when P(m, t) always2945

remains entirely located, except for negligible tails, on a single side of the bifurcation −mB of the drift flow v(m). We2946

will now consider the case of an active bifurcation [264, 265, 266, 267, 268]: The initial distribution is split during2947

the evolution into two parts evolving towards +mF and −mF. This situation is relevant to our measurement process for2948

q = 2 in regard to two questions: (i) How fast should one perform the cooling of the bath before the initial time, and2949

the switching on of the system-apparatus interaction around the initial time? (ii) What is the percentage of errors of2950

registration if the coupling g is so small that it violates the condition (7.41)?2951
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7.3.1. Dynamics of the invariance breaking2952

Be the change2953

that you want to see in the world2954

Mohandas Gandhi2955

In order to answer the above two questions, we first determine the Green’s function for the equation of motion2956

(7.1) which governs P(m, t) for q = 2 in the Markovian regime. This will allow us to deal with an arbitrary initial2957

condition. The Green’s function G(m,m′, t − t′) is characterized by the equation2958

∂

∂t
G(m,m′, t − t′) +

∂

∂m
[v(m)G(m,m′, t − t′)] −

1
N

∂2

∂m2 [w(m)G(m,m′, t − t′)] = δ(m − m′)δ(t − t′), (7.58)

with G(m,m′, t− t′) = 0 for t < t′. We have replaced the initial time 0 by a running time t′ in order to take advantage of2959

the convolution property of G. The functions v(m) and w(m) defined by (7.6) and (7.7) involve a field h which stands2960

either for an applied external field if A = M+B evolves alone (a case that could appear but which we do not consider),2961

or for ±g if we consider P↑↑ or P↓↓ if A is coupled to S during the measurement. We wish to face the situation in which2962

P(m, t) lies, at least after some time, astride the bifurcation point −mB = −h/(J − T ). Such a situation has extensively2963

been studied [264, 265, 266, 267, 268], and we adapt the existing methods to the present problem which is similar to2964

Suzuki’s model.2965

We first note that the initial distribution P(m, t′ = 0) is concentrated near the origin, a property thus satisfied by2966

the variable m′ in G(m,m′, t). In this region, it is legitimate to simplify v(m′) and w(m′) into2967

v(m′) ≈
γ

~
[h + (J − T )m′], w(m′) ≈

γT
~
, (7.59)

where we also used h � T . In order to implement this simplification which holds only for m′ � 1, we replace the2968

forward equation (7.58) in terms of t which characterizes G(m,m′, t − t′) by the equivalent backward equation, for2969

∂G(m,m′, t − t′)/∂t′, in terms of the initial time t′ which runs down from t to 0. This equation is written and solved in2970

Appendix F. The distribution P(m, t) is then given by2971

P(m, t) =

∫
dm′G(m,m′, t)P(m′, 0). (7.60)

We derive below several approximations for P(m, t), which are valid in limiting cases. These various results are2972

encompassed by the general expression (F.13)–(F.15) for P(m, t), obtained through the less elementary approach of2973

Appendix F.2974

As in § 7.2.3, the evolution takes place in three stages [264, 265, 266, 267, 268]: (i) widening of the initial2975

distribution, which here takes place over the bifurcation −mB; (ii) drift on both sides of −mB towards +mF and −mF;2976

(iii) narrowing around +mF and −mF of the two final peaks, which evolve separately towards equilibrium. We shall2977

not need to consider here the last stage, the approach to quasi-equilibrium, that we studied in § 7.1.4. or (i) (ii) (iii)??2978

The probability distribution P(m, t) is thus expressed in terms of the initial distribution P(m, 0) by (7.60), at all2979

times, except during the final equilibration. If P(m, 0) is a narrow Gaussian peak centered at m = µ0 with a width2980

δ0/
√

N, we can use the expression (F.10) of G, which yields2981

P(m, t) =
v(µ′)
v(m)

√
N
2π

1
δ1(t)

exp
−N

2
(µ′ − µ0)2

δ2
1 (t)

 . (7.61)

The function µ′(m, t) is defined for arbitrary values of m by2982

t =

∫ m

µ′(m,t)

dm′′

v(m′′)
, (7.62)

while the variance that enters (7.61) is determined by2983

δ2
1(t) ≡ δ2

0 +
T

J − T
(1 − e−2t/τreg ) ≡ δ2

1 −
T

J − T
e−2t/τreg , δ2

1 ≡
T0

T0 − J
+

T
J − T

. (7.63)

With time, it increases from δ2
0/N to δ2

1/N.2984
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Figure 7.7: Relaxation of an unstable paramagnetic state (q = 2) in the absence of a field (g = 0). The probability distribution PM(m, t) is
represented at several times. As in Figs. 7.3 and 7.5 the parameters are N = 1000 and T = 0.65J. First the Gaussian paramagnetic peak around
m = 0 with width 1/

√
N widens considerably. Around t = τflat = 2.2τreg, the distribution extends over most of the interval −mF,+mF (mF = 0.872)

and is nearly flat. Then, two peaks progressively build up, moving towards −mF and +mF. Finally each peak tends to the Gaussian ferromagnetic
equilibrium shape, the curves at t = 10τreg and 25τreg basically coincide.

7.3.2. Spontaneous relaxation of the initial paramagnetic state2985

The registration process that we studied in § 7.2.3 is the same as the relaxation, for q = 2 and T < J, of the2986

initial paramagnetic state (3.49) towards the positive ferromagnetic state +mF in the presence of a sufficiently large2987

positive external field h. We now consider the situation in which A evolves in the absence of a field. The process will2988

describe the dynamics of the spontaneous symmetry breaking, which leads from the unstable symmetric paramagnetic2989

distribution PM(m, 0) to the ferromagnetic distribution (3.57) for +mF and −mF, occurring with equal probabilities.2990

We present below an approximate analytic solution, and illustrate it by Fig. 7.7 which relies on a numerical solution.2991

Apart from the final stage, the result is given by (7.61) with µ0 = 0, δ2
0 = T0/(T0 − J), and v(m) = (γ/~)Jm[1 −2992

m coth(Jm/T )]. During the first stage, we have v(m) ∼ m/τreg and hence µ′ ∼ me−t/τreg , so that (7.61) reduces to2993

PM(m, t) =

√
N
2π

e−t/τreg

δ1 (t)
exp

−Nm2e−2t/τreg

2δ2
1(t)

 . (7.64)

On the time scale τreg = ~/γ(J − T ), this distribution widens exponentially, with the variance2994

1
N

[
δ2

1e2t/τreg −
T

J − T

]
, δ2

1 ≡
T0

T0 − J
+

T
J − T

. (7.65)

As in § 7.2.3, the widening is first induced by the diffusion term, which is then relayed by the gradient of the drift2995

velocity v(m). However, the effect is much stronger here because the distribution remains centered around m = 0.2996

In fact, at times of order τreg ln
√

N, the width of the peak of PM(m, t) is no longer of order 1/
√

N, but it is finite2997

for large N. If we define the lifetime τpara of the paramagnetic state as the delay during which this width is less that2998

α, say α = 1/10, it equals (for α
√

N � 1)2999

τpara = τreg lnα
√

N =
~

γ(J − T )
lnα
√

N. (7.66)

The second stage of the evolution is then reached (Fig. 7.7). An analytic expression of PM(m, t) can then be found3000

by using the Mittag-Leffler approximation (E.1) for v(m) (with h = 0). The relation between µ′, m and t becomes3001

t
τreg

= ln
m
µ′

+ a ln
m2

F − µ
′2

m2
F − m2

, (7.67)
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where the coefficient a, defined by (7.47), lies between 1
2 for J −T � J and 1 for T � J. In this stage, when t � τreg,3002

the distribution3003

PM(m, t) =
µ′(m2

F − µ
′2)

m(m2
F − m2)

m2
F + (2a − 1)m2

m2
F + (2a − 1)µ′2

√
N

2πδ2
1

exp
−Nµ′2

2δ2
1

 , (7.68)

depends on time only through µ′. It flattens while widening. In particular, around the time3004

τflat = τreg ln

mF

δ1

√
N
6a

 , (7.69)

it behaves for small m as3005

PM(m, t) ≈
1

mF

√
3
π

e−(t−τflat)/τreg

1 +
3am2

m2
F

[
1 − e−2(t−τflat)/τreg

]
+ O

m4

m4
F

 . (7.70)

When t reaches τflat, the distribution PM(m, τflat) has widened so much that it has become nearly flat: The probabilities3006

of the possible values (3.23) of m are nearly the same on a range which extends over most of the interval −mF, +mF.3007

This property agrees with the value of 1
2 NPM(0, τflat) = 0.98/mF; the coefficient of the term in (m/mF)4, equal to3008

−a(8a − 5
2 ), yields a correction −(0.93 m/mF)4 for small mF, −(1.53 m/mF)4 for large mF.3009

When t increases beyond τflat, the distribution begins to deplete near m = 0 and two originally not pronounced3010

maxima appear there (Fig. 7.7), which move apart as3011

m = ±mF

√
6(t − τflat)

(16a − 5)τreg
. (7.71)

They then become sharper and sharper as they move towards ±mF. When they get well separated, PM(m, t) is concen-3012

trated in two symmetric regions, below mF and above −mF, and it reaches a scaling regime [264, 265, 266, 267, 268]3013

in which (for m > 0)3014

µ′(m, t) ∼ mFe−t/τreg

[
mF

2(mF − m)

]2

(7.72)

is small, of order 1/
√

N. If we define, with a ( 1
2 < a < 1) given by Eq. (7.47),3015

ξ(m, t) ≡

√
N
2
µ′(m, t)
δ1

=
√

3a
[

mF

2(mF − m)

]a

e−(t−τflat)/τreg , (7.73)

PM(m, t) takes in the region m > 0, ξ > 0, the form3016

PM(m, t) ≈
1
√
π

∂ξ

∂m
e−ξ

2
. (7.74)

Its maximum lies at the point mmax given by3017

ξ(m, t) =

√
a + 1

2a
,

mF − mmax

mF
=

1
2

(
6a2

a + 1

)1/(2a)

e−(t−τflat)/aτreg , (7.75)

which approaches mF exponentially, and its shape is strongly asymmetric. In particular, its tail above mmax is short,3018

whereas its tail below mmax extends far as 1/(mmax − m)a+1; only moments 〈(mF − m)k〉 with k < a exist.3019

After a delay of order aτreg ln
√

N, the width of the peaks of PM(m, t) and their distance to ±mF reach an order of3020

magnitude 1/
√

N. The diffusion term becomes active, and each peak tends to the Gaussian shape (3.57) as in § 7.1.4.3021

This crossover could be expressed explicitly by writing the Green’s function for m and m′ near mF (as we did near 0 in3022

§ 7.3.1) and by taking (7.74) as initial condition. All the above features fit the numerical solution shown by Fig. 7.7.3023

In our measurement problem, q = 2, the above evolution begins to take place at the time −τinit at which the3024

apparatus is initialized (§ 3.3.3). Before t = −τinit, paramagnetic equilibrium has been reached at the temperature3025
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T0 > J, and the initial distribution of m is given by (3.49), (3.50) (3.52). The sudden cooling of the bath down to the3026

temperature T < J lets the evolution (7.64) start at the time −τinit. We wish that, at the time t = 0 when the coupling3027

g is switched on and the measurement begins, the distribution PM(m, 0) is still narrow, close to (3.49). We thus need3028

δ1(τinit) to be of the order of δ0, that is,3029

2τinit

τreg
< δ2

0
J − T

T
=

T0

T0 − J
J − T

T
. (7.76)

The bath should be cooled down and the system-apparatus interaction ĤSA should be switched on over a delay τinit3030

not larger than the registration time τreg = ~/γ(J − T ).3031

The situation is more favourable in case the initial depolarized state of the spins of M is generated by a radiofre-3032

quency field rather than through equilibration with the phonon bath at a high but finite temperature T0. In this case,3033

a sudden cooling of the bath at the time −τinit is not needed. The bath can beforehand be cooled at the required3034

temperature T lower than Tc = J. At the time −τinit, the spins are suddenly set by the field into their most disordered3035

state, a process which hardly affects the bath since γ � 1. The above discussion then holds as if T0 were infinite.3036

If a weak field h0 is accidentally present during the preparation by thermalization of the initial paramagnetic state,3037

it should not produce a bias in the measurement. This field shifts the initial expectation value 〈m〉 of m from 0 to3038

µ0 = h0/(T0 − J), which enters (7.61). At the time 0, 〈m〉 has become µ0 exp(τinit/τreg), so that the residual field h0 is3039

ineffective provided µ0 < δ0, that is for3040

h0 <

√
T0(T0 − J)

N
. (7.77)

The success of the measurement process thus requires the conditions (7.76) and (7.77) on the parameters τinit, T0, h03041

that characterize the preparation of the initial state of the apparatus.3042

For a quartic interaction (q = 4), the initial paramagnetic state is metastable rather than unstable. Its spontaneous3043

decay in the absence of a field requires m to cross the potential barrier of the free energy which ensures metastability,3044

as shown by Fig. 3.3. At temperatures T below the transition point but not too low, the dynamics is governed by an3045

activation process, with a characteristic duration of order (~/γJ) exp(∆F/T ), where ∆F is the height of the barrier, for3046

instance ∆F = 0.054NT for T = 0.2J. The lifetime of the paramagnetic state is thus exponentially larger than the3047

registration time for large N, so that there is no hurry in performing the measurement after preparation of the initial3048

state.3049

The above derivation holds for a large statistical ensemble E of systems in both classical and quantum statistical3050

mechanics. In the former case, the doubly peaked probability P(m) reached at the final time can be interpreted in3051

terms of the individual systems of E: the magnetization of half of these systems is expected to reach mF, the other3052

half −mF. However, this seemingly natural assertion requires a proof in quantum physics, due to the ambiguity of the3053

decomposition of the ensemble E into subensembles (§ 10.2.3). Such a proof is displayed in the last part of § 11.2.4;3054

it relies on a relaxation process generated by specific interactions within the magnetic dot.3055

7.3.3. Probability of wrong registrations for second order phase transitions of the magnet3056

Je suis malade,3057

complètement malade68
3058

Written by Serge Lama, sung by Dalida3059

We have seen (§ 7.2.3) how the magnet M, under the conjugate effect of B and S, reaches quasi certainly the3060

final magnetization +mF in the sector ↑↑ where sz = +1, provided g is not too small. We expect that if the condition3061

(7.41) on g is violated, the apparatus will indicate, with some probability P−, the wrong magnetization −mF, although3062

sz = +1. The evolution of P↑↑(m, t) in such a situation is illustrated by Fig. 7.8. A similar failure may occur if the3063

average magnetization µ0 in the initial state is not 0 but takes a negative value due to a biased preparation.3064

68I am sick, completely sick
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Figure 7.8: Wrong registration for quadratic interactions (q = 2). The probability distribution P(m, t) is represented at different times for the
same parameters N = 1000 and T = 0.65 as in Fig. 7.5, but the coupling g = 0.03J is now sufficiently weak so that the apparatus registers the
magnetization −mF with a significant probability P−, although the system has a spin sz = +1. Like in Fig. 7.7, the probability distribution flattens
before the two ferromagnetic peaks emerge (with weights P+ and P−).

The probability P− of a wrong registration −mF for sz = +1 arises from values m < mB < 0 and reads3065

P− =

∫ mB

−1
dm

P↑↑(m, t)
r↑↑ (0)

≡

∫ mB

−1
dm P (m, t) , (7.78)

where the time t is in principle such that P↑↑(m, t) has reached its equilibrium shape, with two peaks around +mF3066

and −mF. In fact, we do not need the final equilibrium to have been reached since (7.78) remains constant after P↑↑3067

has split into two separate parts. And even the latter condition is not necessary: After the time τreg the diffusion term3068

becomes inactive and the evolution of P↑↑(m, t) is governed by the pure drift Green’s function (F.7); then there is no3069

longer any transfer of weight across the bifurcation −mB = −g/(J − T ). We can therefore evaluate (7.78) at the rather3070

early stage when the distribution has not yet spread out beyond the small m region where (7.59) holds, provided we3071

take t � τreg.3072

We thus use the expression (7.61) of P↑↑(m, t) valid during the first stage of the process, which reads3073

P(m, t) = e−t/τreg

√
N
2π

1
δ1(t)

exp
− N

2δ2
1(t)

[
(m + mB)e−t/τreg − mB − µ0

]2
 . (7.79)

By taking (m + mB)e−t/τreg as variable we check that the integral (7.78) depends on time only through the exponential3074

in (7.63), so that it remains constant as soon as t � τreg, when the second stage of the evolution is reached. We3075

eventually find:3076

P− =
1
2

erfc λ, λ ≡

√
N
2

1
δ1

(mB + µ0), (7.80)

where the error function, defined by3077

erfc λ =
2
√
π

∫ ∞

λ

dξe−ξ
2
, (7.81)

behaves for λ � 1 as3078

erfc λ ∼
1
√
πλ

e−λ
2
. (7.82)

The diffusion which takes place during the first stage of the evolution has changed in (7.80) the initial width δ0 into3079

δ1, given by (7.40).3080

For µ0 = 0, the probability of error becomes sizeable when
√

Ng/J is not sufficiently large. For example, for T =3081

0.65J and g = 0.03J, we find numerically P− = 21%, 13%, 5.4%, 1.15% and 0.065% for N = 250, 500, 1000, 20003082

and 4000, respectively. These data are reasonably fitted by the approximation P−(N) = 1.2 N−1/4 exp(−0.0014N) for3083
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(7.80). The result for N = 1000 is illustrated by the weight of the peak near −mF in Fig. 7.8. False registrations were3084

also present with the data of Fig. 7.5 (N = 1000, T = 0.65J, g = 0.05J), with a probability P− = 0.36%, but the effect3085

is too small to be visible on the scale of the figure.3086

The occurrence of a negative µ0 increases P−, an effect which, with the above data, becomes sizeable for |µ0| ∼3087

0.05. For P↓↓ the percentage of errors is given by (7.80) with µ0 changed into −µ0 in λ.3088

We write for completeness in Appendix F the evolution of the shape of P(m, t). This is not crucial for the mea-3089

surement problem (for which P↑↑ (m, t) = r↑↑ (0) P (m, t)), but it is relevant for the dynamics of the phase tran-3090

sition, depending on the initial conditions and on the presence of a parasite field. Here again, Suzuki’s regime3091

[264, 265, 266, 267, 268], where the distribution is no longer peaked, is reached for t � τreg. Now P(m, t) is3092

asymmetric, but it still has a quasi linear behavior in a wide range around m = 0 when τ ' τflat (see Eqs. (7.69),3093

(7.70)).3094

7.3.4. Possible failure of registration for first order transitions3095

Quem não tem cão,3096

caça como gato 69
3097

Portuguese proverb3098

The situation is quite different for first-order transitions (q = 4) as regards the possibility of wrong registrations.3099

Note first that F(m) has a high maximum for negative m between 0 and m⇓ < 0 (Figs. 3.3 and 3.4), which constitutes a3100

practically impassable barrier that diffusion is not sufficient to overcome. Accordingly, the zero of v(m) at m = −mB '3101

−2mc is a repulsive fixed point (Fig.7.2 and § 7.2.4), which prevents the distribution from developing a tail below it.3102

We shall therefore never find any registration with negative ferromagnetic magnetization in the sector sz = +1.3103
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Figure 7.9: Failure of measurement for quartic interactions (q = 4). The probability distribution P(m, t) is represented at times up to 10 τJ , where
τJ = ~/γJ. The parameters are N = 1000 and T = 0.2 as in Figs. 7.4 and 7.6, but here g = 0.01J lies below the threshold hc. The peak evolves
towards metastable paramagnetic equilibrium in the presence of the field g, but g is too small to allow crossing the barrier and reaching the more
stable ferromagnetic equilibrium around mF ' 1. Switching off the coupling g brings back the distribution to its original place around 0, so that no
proper registration is achieved.

Nevertheless, we have seen (§ 7.2.2) that registration is possible only if the coupling g exceeds hc. For g < hc,3104

the peak of P(m) initially at m = 0 moves upwards in the sector ↑↑ associated with sz = +1 (Fig. 7.9), and ends3105

up by stabilizing at the first attractive point encountered, at m = mP (Fig. 7.2). Symmetrically, the distribution of3106

P↓↓(m) ends up at −mP. However this difference between the two values of sz cannot be regarded as a registration3107

since switching off the coupling g between S and A brings back both distributions P↑↑ and P↓↓ to the initial Gaussian3108

shape around m = 0. The apparatus A then always relaxes back to the locally stable paramagnetic state.3109

Finally, if the coupling g, although larger than the threshold hc, is close to it, the registration takes place correctly3110

provided this coupling remains active until the distribution P↑↑(m) has completely passed the bifurcation mc
√

3 oc-3111

69Who has no dog, hunts as a cat



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 99

curring for g = 0 (Eq. (7.56)). The lower bound toff of the time when g can thus be safely switched off is close to τreg3112

(which is also close to the time needed to reach ferromagnetic equilibrium).3113

In case S and A are decoupled too early, so that the condition (7.56) is violated, the tail of P↑↑(m, t) lying below3114

the bifurcation m = mc
√

3 is pushed back towards the paramagnetic region m ≈ 0. If the decoupling g → 0 is made3115

suddenly at the time toff , the probability P0 of such events can be evaluated as in § 7.3.3 in terms of the error function3116

by integration of P↑↑(m, toff) from m = −1 up to mc. It represents the probability of aborted measurement processes,3117

for which the apparatus returns to its neutral paramagnetic state without giving any indication, while S is left in the3118

state | ↑〉. In a set of repeated measurements, a proportion P0 of runs are not registered at all, the other ones being3119

registered correctly.3120

7.3.5. Erasure of the pointer indication3121

De dag van morgen deelt met zijn eigen zorgen70
3122

Dutch proverb3123

As shown in §§ 7.2.3 and 7.2.4, the registration is achieved at a time tf sufficiently larger than the delay τreg after3124

which S and M have been decoupled. The state D̂(tf) of S + A is then given by the expected expression (1.7). Within3125

the considered approximations, the distributions P↑↑(m, t) and P↓↓(m, t) no longer evolve for t > tf , and remain fully3126

concentrated near mF and −mF, respectively, so that the results can be read out or processed at any observation time3127

tobs > tf . However, the breaking of invariance, on which we rely to assert that the two ferromagnetic states of the3128

pointer are stationary, is rigorous only in the large N limit. Strictly speaking, for finite N, the states R̂M⇑ and R̂M⇓3129

reached by M at this stage in each sector are not in equilibrium (though they may have a long lifetime). Indeed,3130

in the Markovian regime, we have shown in § 7.1.3 that the evolution of M under the influence of the thermal bath3131

cannot stop until PM(m, t) becomes proportional to G(m) exp[−βE(m)], with E(m) = −JNq−1mq. Otherwise, the time-3132

derivative (7.21) of the free energy F(m) of the state R̂M(t) cannot vanish. The limit reached by R̂↑↑(t)/r↑↑(0) (and of3133

R̂↓↓(t)/r↓↓(0)) is then 1
2 (R̂M⇑+ R̂M⇓). Hence, when the latter true equilibrium state for finite N is attained, the indication3134

of the pointer is completely random. We have lost all information about the initial state of S, and the spin S has been3135

completely depolarized whatever its initial state: the result of the measurement has been washed out. We denote as3136

τeras the characteristic time which governs this erasure of the indication of the pointer.3137

It is therefore essential to read or process the registered data before such a loss of memory begins to occur71. The3138

observation must take place at a time tobs much shorter than the erasure time:3139

τreg < tf < tobs � τeras. (7.83)

The dynamics of the erasure, a process leading M from R̂M⇑ or R̂M⇓ to the state 1
2 (R̂M⇑ + R̂M⇓) of complete3140

equilibrium, is governed by the Eq. (4.16) for PM(m, t) (with K̃t(ω) replaced by K̃(ω) and g = 0), which retains the3141

quantum character of the apparatus. We will rely on this equation in subsection 8.1 where studying the Curie–Weiss3142

model in the extreme case of N = 2. For the larger values of N and the temperatures considered here, we can use its3143

continuous semi-classical limit (7.1), to be solved for an initial condition expressed by (3.55) with mi = mF or −mF.3144

Here we have to deal with the progressive, very slow leakage of the distribution PM(m, t) from one of the ferromagnetic3145

states to the other through the free energy barrier that separates them. This mechanism, disregarded in §§ 7.2.3, 7.2.4,3146

7.3.3 and 7.3.4, is controlled by the weak tail of the distribution PM(m, t) which extends into the regions of m where3147

F(m) is largest. The drift term of (7.1) alone would repel the distribution P↑↑(m, t) and keep it concentrated near mF.3148

An essential role is now played by the diffusion term, which tends to flatten this distribution over the whole range of3149

m, and thus allows the leak towards −mF. Rather than solving this equation, it will be sufficient for our purpose to3150

rely on a semi-phenomenological argument: Under the considered conditions, the full equilibration is an activation3151

process governed by the height of the free energy barrier. Denoting as ∆F the difference between the maximum of3152

F(m) and its minimum, Fferro, we thus estimate the time scale of erasure as:3153

70The day of tomorrow addresses its own worries
71Photographs on film or paper fade out after some time
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τeras ∼
~
γJ

exp
∆F
T
, (7.84)

which is large as an exponential of N. In order to use the process as a measurement, we need this time to be much3154

larger than the registration time so that we are able to satisfy (7.83), which yields3155

J
J − T

� exp
∆F
T
, (q = 2);

J
T

√
mcT

g − hc
� exp

∆F
T
, (q = 4). (7.85)

From (3.55) (taken for h = 0), we find the numerical value of ∆F/T for the examples of figs. 7.5 and 7.6, namely3156

0.130N for q = 2, T = 0.065J, and 0.607N for q = 4, T = 0.2J (see fig. 3.3). The condition (7.85) sets again a lower3157

bound on N to allow successful measurements, N � 25 for the example with quadratic interactions, N � 7 for the3158

example with quartic interactions. Such a condition is violated for a non-macroscopic apparatus, in particular in the3159

model with N = 2 treated below in subsection 8.1 which will require special care to ensure registration.3160

7.3.6. “Buridan’s ass”effect: hesitation3161

Do not hesitate,3162

or you will be left in between doing something,3163

having something and being nothing3164

Ethiopian proverb3165

In the case of a second-order transition (q = 2), the subsections 7.2 and 7.3, illustrated by Figs. 7.5, 7.7 and 7.8,3166

show off the occurrence, for the evolution of the probability distribution P(m, t), of two contrasted regimes, depending3167

whether the bifurcation −mB is active or not. The mathematical problem is the same as for many problems of statistical3168

mechanics involving dynamics of instabilities, such as directed Brownian motion near an unstable fixed point, and it3169

has been extensively studied [264, 265, 266, 267, 268]. The most remarkable feature is the behavior exemplified by3170

Fig. 7.7: For a long duration, the random magnetization m hesitates so much between the two stable values +mF and3171

−mF that a wide range of values of m in the interval −mF, +mF have nearly equal probabilities. We have proposed to3172

term this anomalous situation Buridan’s ass effect [246], referring to the celebrated argument attributed to Buridan,3173

a dialectician of the first half of the XIVth century: An ass placed just half way between two identical bales of hay3174

would theoretically stay there indefinitely and starve to death, because the absence of causal reason to choose one bale3175

or the other would let it hesitate for ever, at least according to Buridan72.3176

In fact, major qualitative differences distinguish the situation in which the final state +mF is reached with probabil-3177

ity P+ = 1 (subsection 7.2) from the situation in which significant probabilities P+ and P− to reach either +mF or −mF3178

exist (subsection 7.3). In the first case, the peak of P(m, t) moves simply from 0 to +mF; the fluctuation of m remains3179

of order 1/
√

N at all times, even when it is largest, at the time when the average drift velocity v(µ) is maximum (Eq.3180

(7.45)). In the second case, the exponential rise of the fluctuations of m leads, during a long period, to a broad and flat3181

distribution P(m, t), with a shape independent of N.3182

In both cases, we encountered (for q = 2) the same time scale τreg = ~/γ(J − T ), which characterizes the first3183

stage of the motion described by either (7.43), (7.39) or (7.79). However, in the first case, P+ ' 1, the duration3184

(7.48) of the whole process is just the product of τreg by a factor independent of N, of order 2 ln[mF(J − T )/g], as also3185

shown by (E.6), whereas in the second case, P+ < 1, the dynamics becomes infinitely slow in the large N limit. The3186

characteristic time τflat at which the distribution is flat, given by (7.69), is of order τreg ln[
√

NmF(J − T )/J]. Suzuki’s3187

scaling regime [264, 265, 266, 267, 268] is attained over times of order τflat. Then P(m, t) does not depend on N for3188

N → ∞, but the duration of the relaxation process is large as ln
√

N. It is this long delay which allows the initial3189

distribution, narrow as 1/
√

N, to broaden enormously instead of being shifted towards one side.3190

Buridan’s argument has been regarded as a forerunner of the idea of probability. The infinite time during which3191

the ass remains at m = 0 is recovered here for N → ∞. An infinite duration of the process is also found in the absence3192

72The effect was never observed, though, at the farm where the last author of the present work grew up
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of diffusion in the limit of a narrow initial distribution (δ0 → 0). The flatness of P(m, t) at times of order τflat means3193

that at such times we cannot predict at all where the ass will be on the interval −mF, +mF, an idea that Buridan could3194

not emit before the elaboration of the concept of probability. The counterpart of the field h, for Buridan’s ass, would3195

be a strong wind which pushes it; the counterpart of µ0 would be a different distance from the two bales of hay; in3196

both of these cases, the behavior of the ass becomes predictable within small fluctuations.3197

Since the slowing factor which distinguishes the time scales in the two regimes is logarithmic, very large values3198

of N are required to exhibit a large ratio for the relaxation times. In Figs. 7.5, 7.7 and 7.8 we have taken N = 1000 so3199

as to make the fluctuations in 1/
√

N visible. As a consequence, the duration of the registration is hardly larger in Fig.3200

7.7 than in Fig. 7.5.3201

Except during the final equilibration, the magnet keeps during its evolution some memory of its initial state3202

through δ1 (Eq. (7.40)). If the bifurcation is inactive (§ 7.2.3), this quantity occurs through the variance (7.45) of3203

the distribution. If it is active (§ 7.3.2), it occurs through the time scale τflat, but not through the shape of P(m, t).3204

Our model of the ferromagnet is well-known for being exactly solvable at equilibrium in the large N limit by3205

means of a static mean-field approach. In the single peak regime, the dynamics expressed by (7.30) is also the same as3206

the outcome of a time-dependent mean-field approach. However, in the regime leading to two peaks at +mF and −mF,3207

no mean-field approximation can describe the dynamics even for large N, due to the giant fluctuations. The intuitive3208

idea that the variable m, because it is macroscopic, should display fluctuations small as 1/
√

N is then wrong, except3209

near the initial time or for each peak of P(m, t) near the final equilibrium.3210

The giant fluctuations of m which occur in Buridan’s ass regime may be regarded as a dynamic counterpart of3211

the fluctuations that occur at equilibrium at the critical point T = J [249, 250]. In both cases, the order parameter,3212

although macroscopic, presents large fluctuations in the large N limit, so that its treatment requires statistical mechan-3213

ics. Although no temperature can be associated with M during the relaxation process, the transition from T0 > J to3214

T < J involves intermediate states which behave as in the critical region. The well-known critical fluctuations and3215

critical slowing down manifest themselves here by the large uncertainty on m displayed during a long delay by P(m, t).3216

Suzuki’s slowing down and flattening [264, 265, 266, 267, 268] take place not only in the symmetric case (§ 7.3.2),3217

but also in the asymmetric case (§ 7.3.3), provided P− is sizeable. Thus the occurrence of Buridan’s ass effect3218

is governed by the non vanishing of the probabilities P+ and P− of +mF and −mF in the final state. Everything3219

takes place as if the behavior were governed by final causes: The process is deterministic if the target is unique; it3220

displays large uncertainties and is slow if hesitation may lead to one target or to the other. These features reflect in a3221

probabilistic language, first, the slowness of the pure drift motion near the bifurcation which implies a long random3222

delay to set m into motion, and, second, the importance of the diffusion term there.3223

8. Imperfect measurements, failures and multiple measurements3224

Niet al wat blinkt is goud 73
3225

Tout ce qui brille n’est pas or 73
3226

Dutch and french proverbs3227

In sections 5 to 7, we have solved our model under conditions on the various parameters which ensure that the3228

measurement is ideal. We will resume these conditions in section 9.4. We explore beforehand some situations in3229

which they may be violated, so as to set forth how each violation prevents the dynamical process from being usable as3230

a quantum measurement. We have already seen that, in case the spin-apparatus interaction presents no randomness,3231

the magnet-bath interaction should not be too small; otherwise, recurrence would occur in the off-diagonal blocks3232

of the density operator, and would thus prevent their truncation (§ 5.1). We have also shown how a spin-apparatus3233

coupling that is too weak may prevent the registration to take place for q = 4 (§ 7.2.2 and § 7.2.4), or may lead to3234

wrong results for q = 2 (§ 7.3.3). We study below what happens if the number of degrees of freedom of the pointer3235

is small, by letting N = 2 (subsection 8.1); see [163, 165] for model studies along this line. We then examine the3236

importance of the commutation [4, 13, 76, 269, 270, 271] of the measured observable with the Hamiltonian of the3237

system (subsection 8.2). Finally we exhibit a process which might allow imperfect simultaneous measurements of3238

non-commuting observables (subsection 8.3) [272, 273, 274, 275, 276, 277].3239

73All that glitters is not gold
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The solution of these extensions of the Curie–Weiss model involves many technicalities that we could not skip.3240

The reader interested only in the results will find them in subsection 9.5.3241

8.1. Microscopic pointer3242

Ce que je sais le mieux,3243

c’est mon commencement74
3244

Jean Racine, Les Plaideurs3245

In the above sections, we have relied on the large number N of degrees of freedom of the magnet M. As the statis-3246

tical fluctuations of the magnetization m are then weak, the magnet can behave as a macroscopic pointer with classical3247

features. Moreover the truncation time τtrunc is the shortest among all the characteristic times (section 5) because it3248

behaves as 1/
√

N. The large value of N was also used (section 7) to describe the registration process by means of a3249

partial differential equation. It is natural to wonder whether a small value of N can preserve the characteristic proper-3250

ties of a quantum measurement. Actually the irreversibility of any measurement process (subsection 6.2) requires the3251

apparatus to be large. In subsection 6.1, we showed that the irreversibility of the truncation can be ensured by a large3252

value of N and a randomness in the couplings gn, n = 1, · · · ,N (subsection 6.2); but this irreversibility, as well as that3253

of the registration (section 7), can also be caused by the large size of the bath. For small N, the irreversibility of both3254

the truncation and the registration should be ensured by the bath. We now study the extreme situation in which N = 2.3255

8.1.1. Need for a low temperature3256

For N = 2 the magnetization m̂ has the eigenvalue m = 0 with multiplicity 2, regarded as “paramagnetic”, and two3257

non-degenerate eigenvalues m = +1 and m = −1 regarded as “ferromagnetic”. Since m̂4 = m̂2, we may set J4 = 0 and3258

denote J2 = J. The corresponding eigenenergies of ĤM are 0 and −J, and those of the Hamiltonian Ĥi of Eq. (4.6)3259

are −2gsim − Jm2.3260

The equations of motion of § 4.4.2 involve only the two frequencies ω±, defined by3261

~ω± ≡ J ± 2g, (8.1)

and they have the detailed form (notice that Pi j ≡
1
2 NPdis

i j = Pdis
i j for N = 2)3262

dP↑↑(0, t)
dt

=
2γ
~2

{
2P↑↑(1, t)K̃t(ω+) + 2P↑↑(−1, t)K̃t(ω−) − P↑↑(0, t)

[
K̃t(−ω+) + K̃t(−ω−)

]}
, (8.2)

dP↑↑(±1, t)
dt

=
2γ
~2

[
P↑↑(0, t)K̃t(−ω±) − 2P↑↑(±1, t)K̃t(ω±)

]
, (8.3)

dP↑↓(0, t)
dt

=
2γ
~2

{
2P↑↓(1, t)

[
K̃t>(ω+) + K̃t<(ω−)

]
+ 2P↑↓(−1, t)

[
K̃t>(ω−) + K̃t<(ω+)

]
−P↑↓(0, t)

[
K̃t(−ω+) + K̃t(−ω−)

]}
, (8.4)

dP↑↓(±1, t)
dt

∓
4ig
~

P↑↓(±1, t) =
2γ
~2

{
P↑↓(0, t)

[
K̃t>(−ω±) + K̃t<(−ω∓)

]
− 2P↑↓(±1, t)

[
K̃t>(ω±) + K̃t<(ω∓)

]}
.(8.5)

As initial state for M we take the “paramagnetic” one, PM(0) = 1, PM(±1) = 0, prepared by letting T0 � J or with a3263

radiofrequency field as in § 3.3.3. (We recall that PM = P↑↑+P↓↓.) The initial conditions are thus Pi j(m, 0) = ri j(0)δm,0.3264

In order to identify the process with an ideal measurement, we need at least to find at sufficiently large times3265

(i) the truncation, expressed by P↑↓(m, t) → 0, and (ii) the system-pointer correlations expressed by P↑↑(m, t) →3266

r↑↑(0)δm,1 and P↓↓(m, t) → r↓↓(0)δm,−1. This requires, for the magnet in contact with the bath, a long lifetime for3267

the “ferromagnetic” states m = +1 and m = −1. However, the breaking of invariance, which for large N allows3268

the ferromagnetic state where m is concentrated near +mF to be stable, cannot occur here: Nothing hinders here the3269

coupling with the bath to induce transitions from m = +1 to m = −1 through m = 0, so that for large times P(+1, t)3270

and P(−1, t), where P(m, t) ≡ P↑↑(m, t)/r↑↑(0), tend to a common value close to 1
2 for T � J.3271

74What I know the best I shall begin with
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This is made obvious by the expression of (7.21) of the H-theorem. The dissipation in the Markovian regime3272

[196, 121, 122] reads here3273

dF(t)
dt

= −
γ

2β
ω+e−|ω+ |/Γ

eβ~ω+ − 1

[
P(0, t)eβ~ω+ − 2P(1, t)

]
ln

P(0, t)eβ~ω+

2P(1, t)
+ [ω+ 7→ ω−, P(1, t) 7→ P(−1, t)] , (8.6)

and the free energy decreases until the equilibrium 2PM(±1) = PM(0) exp β~ω± is reached. The only possibility3274

to preserve a long lifetime for the state m = +1 is to have a low transition rate from m = +1 to m = 0, that is,3275

according to (8.2), a small K̃t(ω+). This quantity is dominated in the Markovian regime by a factor exp(−β~ω+).3276

Hence, unless T � J, the apparatus cannot keep the result of the measurement registered during a significant time,3277

after the interaction with S has been switched off. If this condition is satisfied, we may expect to reach for some lapse3278

of time a state where P(1, t) = P↑↑(1, t)/r↑↑(0) remains close to 1 while P(0, t) is small as P(−1, t).3279

Moreover, a faithful registration requires that the coupling g with S is sufficiently large so that the final state, in3280

the evolution of P↑↑(m, t), has a very small probability to yield m = −1. Since in the Markovian regime the transition3281

probabilities in (8.2) and (8.3) depend on g through ω± = J ± 2g in K̃(ω±) and K̃(−ω±) [196, 121, 122], and since this3282

dependence arises mainly from exp β~ω±, we must have exp 4βg � 1. The coupling g should moreover not modify3283

much the spectrum, so that we are led to impose the conditions3284

T � 4g � J. (8.7)

8.1.2. Relaxation of the apparatus alone3285

Laat hem maar met rust75
3286

Dutch expression3287

As we did in § 7.3.2 for large N, we focus here on the evolution of the probabilities P(m, t) ≡ P↑↑(m, t)/r↑↑(0) for3288

the apparatus alone. It is governed by equations (8.2) and (8.3) in which ω+ = ω− = J/~. For a weak coupling γ we3289

expect that the Markovian regime, where K̃t(ω) = K̃(ω) will be reached before the probabilities have deviated much3290

from their initial value. The equations of motion then reduce to3291

τ
dP(0, t)

dt
= e−J/T [P(1, t) + P(−1, t)] − P(0, t), τ

dP(±1, t)
dt

=
1
2

P(0, t) − e−J/T P(±1, t), (8.8)

where we made use of3292

K̃
( J
~

)
= e−J/T K̃

(
−

J
~

)
=

~J
4

e−J/~Γ

eJ/T − 1
, (8.9)

as well as J/T � 1 and J/~Γ � 1, and where we defined a characteristic time related to the spin-spin coupling as3293

τ ≡ τJ =
~
γJ
. (8.10)

The Markovian approximation is justified provided this characteristic time scale τ is longer than the time t after which3294

K̃t(ω) = K̃(ω), that is, for3295

γ �
T
J
. (8.11)

The general solution of (8.8), obtained by diagonalization, is expressed by3296

P(0, t) + P(1, t) + P(−1, t) = 1,

P(0, t) − e−J/T [P(1, t) + P(−1, t)] ∝ exp
[
−

t
τ

(1 + e−J/T )
]
≈ exp

(
−

t
τ

)
, (8.12)

P(1, t) − P(−1, t) ∝ exp
(
−

t
τ

e−J/T
)
.

75Better leave him alone
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Let us first consider the relaxation of the initial paramagnetic state, for which P(0, 0) = 1 and P(±1, 0) = 0. We3297

find from the above equations3298

P(0, t) =
e−t/τ + e−J/T

1 + e−J/T , P(1, t) = P(−1, t) =
1 − e−t/τ

2(1 + e−J/T )
. (8.13)

The lifetime of this initial unstable state is therefore τ = ~/γJ. In a measurement, the interaction g between S and3299

A must thus be switched on rapidly after the preparation (§ 3.3.3), in a delay τinit � τ so that P(0) is still close to 13300

when the measurement process begins.3301

We now evaluate the delay τobs during which the pointer keeps its value and can be observed, after the measure-3302

ment is achieved and after the coupling with S is switched off. If in the sector ↑↑ the value m = 1 is reached at some3303

time t1 with a near certainty, the probabilities evolve later on, according to the above equations, as3304

P(0, t1 + t) =
(1 − e−t/τ)e−J/T

1 + e−J/T , P(±1, t1 + t) =
1
2

[
1 + e−t/τe−J/T

1 + e−J/T ± exp
(
−

t
τ

e−J/T
)]
. (8.14)

As expected, the information is lost for t → ∞, or, more precisely, for t � τ exp(J/T ), since P(1, t) and P(−1, t) then3305

tend to 1
2 . However, during the time lapse τ � t � τ exp(J/T ), P(1, t) retains a value 1 − 1

2 exp(−J/T ) close to 1,3306

so that the probability of a false registration is then weak. Although microscopic, the pointer is a rather robust and3307

reliable device provided T � J, on the time scale t � τobs where the observation time is3308

τobs = τeJ/T =
~
γJ

eJ/T . (8.15)

8.1.3. Registration3309

We now study the time-dependence of the registration process, and determine the probability to reach a false3310

result, that is, to find m = −1 in the sector ↑↑. In the Markovian regime and under the conditions (8.7), the equations3311

of motion (8.2), (8.3) for the probabilities P(m, t) = P↑↑(m, t)/r↑↑(0) read3312

τ
dP(0, t)

dt
= e−(J+2g)/T P(1, t) + e−(J−2g)/T P(−1, t) − P(0, t), (8.16)

τ
dP(±1, t)

dt
=

1
2

P(0, t) − e−(J±2g)/T P(±1, t). (8.17)

We have disregarded in each term contributions of relative order exp(−J/T ) and 2g/J. The general solution of Eqs.3313

(8.16), (8.17) is obtained by diagonalizing their 3 × 3 matrix. Its three eigenvalues −z are the solutions of3314

z3 − z2
(
1 + 2e−J/T cosh

2g
T

)
+ ze−J/T

(
cosh

2g
T

+ e−J/T
)

= 0, (8.18)

that is, apart from z = 0,3315

z =
1
2

+ e−J/T cosh
2g
T
±

1
2

√
1 + 4e−2J/T sinh2 2g

T
, (8.19)

which under the conditions (8.7) reduce to z ' 1 and z ' exp(−J/T ) cosh 2g/T ' 1
2 exp[−(J − 2g)/T ]. The corre-3316

sponding characteristic times τ/z are therefore τ = ~/γJ and3317

τreg = 2τe(J−2g)/T =
2~
γJ

e(J−2g)/T . (8.20)

The solutions of (8.16) and (8.17) are then given by3318

P(0, t) + P(1, t) + P(−1, t) = 1, (8.21)
P(0, t) − e−(J+2g)/T P(1, t) − e−(J−2g)/T P(−1, t) ∝ e−t/τ, (8.22)

P(1, t) − P(−1, t) − tanh
2g
T
∝ e−t/τreg . (8.23)
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The decay time τ associated with the combination (8.22) is much shorter than the time τreg which occurs in (8.23).3319

With the initial condition P(0, 0) = 1 we obtain, dropping contributions small as exp(−J/T ),3320

P(0, t) = e−t/τ, (8.24)

P(1, t) =
1
2

[(
1 − e−t/τ

)
+ tanh

2g
T

(
1 − e−t/τreg

)]
, (8.25)

P(−1, t) =
1
2

[(
1 − e−t/τ

)
− tanh

2g
T

(
1 − e−t/τreg

)]
. (8.26)

The evolution takes place in two stages, first on the time scale τ = ~/γJ, then on the much larger time scale τreg =3321

2τ exp[(J − 2g)/T ].3322

During the first stage, M relaxes from the paramagnetic initial state m = 0 to both “ferromagnetic” states m = +13323

and m = −1, with equal probabilities, as in the spontaneous process where g = 0. At the end of this stage, at times3324

τ � t � τreg we reach a nearly stationary situation in which P(0, t) is small as 2 exp(−J/T ), while P(1, t) and P(−1, t)3325

are close to 1
2 . Unexpectedly, in spite of the presence of the coupling g which is large compared to T , the magnet3326

M remains for a long time in a state close to the equilibrium state which would be associated to g = 0, without any3327

invariance breaking. This behavior arises from the large value of the transition probabilities from m = 0 to m = ±1,3328

which are proportional to K̃(−ω±). For J ± 2g � T , the latter quantity reduces to ~(J ± 2g)/4, which is not sensitive3329

to g for 2g � J.3330

In contrast to the situation for large N, the magnet thus begins to lose memory of its initial state. For N � 1, it3331

was the coupling g which triggered the evolution of M, inducing the motion of the peak of P↑↑(m, t), initially at m = 0,3332

towards larger and larger values of m. Only an initial state involving values m < −mB led to false results at the end of3333

the process. Here, rather surprisingly, the two possible results m = +1 and m = −1 come out nearly symmetrically3334

after the first stage of the process, for τ � t � τreg. In fact we do not even need the initial state to be “paramagnetic”.3335

On this time scale, any initial state for which P(1, 0) = P(−1, 0) leads to P(1, t) = P(−1, t) ' 1
2 . (An arbitrary initial3336

condition would lead to P(±1, t) = P(±1, 0) + 1
2 P(0, 0).)3337

Fortunately, when t approaches τreg the effect of g is felt. For t � τreg the probabilities P(m, t) reach the values3338

P(1, t) =
1

1 + e−4g/T , P(−1, t) =
e−4g/T

1 + e−4g/T , P(0, t) = 2e−J/T , (8.27)

which correspond to the thermal equilibrium of M in the field g. Thus, the probability of a false measurement is here3339

P− = e−4g/T , (8.28)

and it is small if the conditions (8.7) are satisfied. On the other hand, the registration time is τreg, and the registration3340

can be achieved only if the interaction ĤSA remains switched on during a delay larger than τreg. After this delay, if we3341

switch off the coupling g, the result remains registered for a time which allows observation, since τobs, determined in3342

§ 8.1.2, is much larger than τtrunc.3343

Thus, not only the first stage of the registration process is odd, but also the second one. The mechanism at play3344

in section 7 was a dynamical breaking of invariance whereas here we have to rely on the establishment of thermal3345

equilibrium in the presence of g. The coupling should be kept active for a long time until the values (8.27) are reached,3346

whereas for N � 1, only the beginning of the evolution of P↑↑(m, t) required the presence of the coupling g; afterwards3347

P↑↑ reached the ferromagnetic peak at m = mF, and remained there stably.3348

For N = 2 the possibility of registration on the time scale τreg relies on the form of the transition probabilities3349

from m = ±1 to m = 0, which are proportional to K̃(ω±). Although small as exp(−β~ω±)K̃(−ω±), these transition3350

probabilities contain a factor exp(−β~ω±) ∝ exp(∓2g/T ) which, since 2g � T , strongly distinguishes +1 from −1,3351

whereas K̃(−ω+) ' K̃(−ω−). Hence the transition rate from m = −1 to m = 0, behaving as exp[−(J − 2g)/T ], allows3352

P(0) to slowly increase at the expense of P(−1), then to rapidly decay symmetrically. Since the transition rate from3353

m = +1 to m = 0, behaving as exp[−(J + 2g)/T ], is much weaker, the resulting increase of P(1) remains gained.3354

Altogether P(1, t) rises in two steps, from 0 to 1
2 on the time scale τ, then from 1

2 to nearly 1 on the time scale τreg, as3355

shown by (8.25). Meanwhile, P(−1, t) rises from 0 to 1
2 , then decreases back to 0, ensuring a correct registration only3356

at the end of the process, while P(0, t) remains nearly 0 between τ and τreg.3357
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8.1.4. Truncation3358

Les optimistes écrivent mal76
3359

Paul Valéry, Mauvaises pensées et autres3360

It remains to study the evolution of the off-diagonal blocks of the density operator D̂, which are characterized3361

by the three functions of time P↑↓(m, t). Their equations of motion (8.4), (8.5) involve oscillations in P↑↓(±1, t) with3362

frequency 2g/π~ generated by the coupling g with S and by a relaxation process generated by the bath. Since the3363

oscillations are not necessarily rapid, and since γ is small, the damping effect of the bath is expected to occur over3364

times large compared to ~/T , so that we can again work in the Markovian regime. Moreover, since g � J, we are led3365

to replace ω+ and ω− in K̃t> and K̃t< by J~. Hence, we can replace, for instance, K̃t>(ω+) + K̃t<(ω−) by K̃(J/~).3366

The equations of motion for the set P↑↓(m, t) are thus simplified into3367

τ
dP↑↓(0, t)

dt
= ε

[
P↑↓(1, t) + P↑↓(−1, t)

]
− P↑↓(0, t), (8.29)

τ
dP↑↓(±1, t)

dt
= ±iλP↑↓(±1, t) +

1
2

P↑↓(0, t) − εP↑↓(±1, t), (8.30)

where ε and λ are defined by3368

ε = e−J/T , λ =
4g
γJ
, (8.31)

with γ � 1, g � T � J. The truncation process is governed by the interplay between the oscillations in P(±1, t),3369

generated by the coupling g between M and S, and the damping due to the bath. The two dimensionless parameters λ3370

and ε characterize these effects.3371

The eigenvalues of the matrix relating −τdP↑↓(m, t)/dt to P↑↓(m, t) are the solutions of the equation3372

(z − 1)[(z − ε)2 + λ2] − ε(z − ε) = 0. (8.32)

The largest eigenvalue behaves for T � J as3373

z0 ≈ 1 +
ε

1 + λ2 +
ε2λ2(1 − λ2)

(1 + λ2)3 , (8.33)

whereas the other two eigenvalues z1 and z2, obtained from3374

z2 − zε
(

1 + 2λ2

1 + λ2 +
ε2λ2(λ2 − 1)

(1 + λ2)3

)
+ λ2

(
1 −

ε

1 + λ2 +
ε2(1 + λ4)
(1 + λ2)3

)
= 0, (8.34)

have a real part small as ε. The solution of (8.29), (8.30), with the initial condition P↑↓(m, 0) = r↑↓(0)δm,0 is given by3375

P↑↓(0, t) = r↑↓(0)
[
e−z0t/τ −

(z1 − ε)2 + λ2

(z0 − z1)(z1 − z2)
(e−z1t/τ − e−z0t/τ) −

(z2 − ε)2 + λ2

(z0 − z2)(z2 − z1)
(e−z2t/τ − e−z0t/τ)

]
, (8.35)

P↑↓(±1, t) = r↑↓(0)
[

z1 − ε ∓ iλ
2(z0 − z1)(z1 − z2)

(
e−z1t/τ − e−z0t/τ

)
+

z2 − ε ∓ iλ
2(z0 − z2)(z2 − z1)

(
e−z2t/τ − e−z0t/τ

)]
. (8.36)

According to (8.35), the first term of P↑↓(0, t) is damped for ε � 1 over the time scale τ = ~/γJ, just as P↑↑(0, t)3376

in the registration process. However, here again, the other two quantities |P↑↓(±1, t)| increase in the meanwhile and3377

the truncation of the state is far from being achieved after the time τ. In fact, all three components P↑↓(m, t) survive3378

over a much longer delay, which depends on the ratio 2λ/ε.3379

In the overdamped situation 2λ < ε or 8g < γJ exp(−J/T ), the eigenvalues3380

z1,2 =
1
2
ε ±

1
2

√
ε2 − 4λ2 (8.37)

76Optimists do not write well
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are real, so that we get, in addition to the relaxation time τ, two much longer off-diagonal relaxation times, τ1,2 =3381

τ/z1,2. The long-time behavior of P↑↓(m, t), governed by z2, is3382

P↑↓(0, t) ∼ r↑↓(0)
ε(ε +

√
ε2 − 4λ2)

2
√
ε2 − 4λ2

e−t/τtrunc , P↑↓(±1, t) ∼ r↑↓(0)
ε ± 2iλ +

√
ε2 − 4λ2

4
√
ε2 − 4λ2

e−t/τtrunc . (8.38)

The truncation time3383

τtrunc =
τ

2λ2

(
ε +
√
ε2 − 4λ2

)
=

~γJ
32g2

e−J/T +

√
e−2J/T −

64g2

γ2J2

 , (8.39)

which characterizes the decay of 〈ŝx〉, 〈ŝx〉, and of their correlations with m̂, is here much longer than the registration3384

time (10), since τtrunc/τreg is of order (ε/2λ)2 exp(2g/T ), and even larger than τobs. The quantities P↑↓(m, t) remain for3385

a long time proportional to r↑↓(0), with a coefficient of order 1 for P↑↓(±1, t), of order ε for P↑↓(0, t). Truncation is3386

thus here a much slower process than registration: equilibrium is reached much faster for the diagonal elements (8.27)3387

than for the off-diagonal ones which are long to disappear. Let us stress that for the present case of a small apparatus,3388

they disappear due to the bath (“environment-induced decoherence” [32, 33, 40, 198, 199, 200, 201]) rather than, as3389

in our previous discussion of a large apparatus, due to fast dephasing caused by the large size of M.3390

For 2λ > ε, we are in an oscillatory situation, where the eigenvalues3391

z1,2 =
ε

2
1 + 2λ2

1 + λ2 ± i

√
λ2 −

ε2

4
−

ελ2

1 + λ2 (8.40)

are complex conjugate. (Nothing prevents λ = 4g/γJ from being large.) The long-time behavior is given by3392

P↑↓(0, t) ∼
εr↑↓(0)

(1 + λ2)2 e−t/τtrunc

(1 − λ2) cos
2πt
θ

+
2λ2√

λ2 − ε2/4
sin

2πt
θ

 ,
P↑↓(±1, t) ∼

r↑↓(0)
2(1 ± iλ)

e−t/τtrunc

cos
2πt
θ
±

iλ√
λ2 − ε2/4

sin
2πt
θ

 , (8.41)

with a truncation time3393

τtrunc =
2(1 + λ2)
ε(1 + 2λ2)

τ =
2~eJ/T (1 + λ2)
γJ(1 + 2λ2)

=
1 + λ2

1 + 2λ2 τrege2g/T , (8.42)

again much larger than the registration time. While being damped, these functions oscillate with a period3394

θ =
2πτ√

λ2 − ε2/4
(8.43)

shorter than τtrunc if 2λ > ε
√

4π2 + 1. The truncation time (8.42) practically does not depend on g (within a factor3395

2 when 2λ varies from ε to ∞), in contrast to both the truncation time of section 5 and the irreversibility time of3396

section 6. The present truncation time is comparable to the lifetime τobs of an initial pure state m = +1 when it3397

spontaneously decays towards m = ±1 with equal probabilities (§ 8.1.2). Hence in both cases the truncation takes3398

place over the delay during which the result of the measurement can be observed.3399

For λ � ε and t � τ, the off-diagonal contributions (8.41) to D̂ are governed by3400

P↑↓(±1, t) ∼
r↑↓(0)

2(1 ± iλ)
e−t/τred±iλt/τ. (8.44)

The effects on M of S and B are well separated: the oscillations are the same as for γ = 0, while the decay, with3401

characteristic time τ/ε = (~/γJ) exp(J/T ), is a pure effect of the bath. The amplitude becomes small for λ � 1, that3402

is, g � γJ.3403
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8.1.5. Is this process with bath-induced decoherence a measurement?3404

77
3405 Каждая ворона своего вороненка хвалит. 

Russian proverb3406

When the number N of degrees of freedom of the pointer is small as here, the present model appears as a specific3407

example among the general class of models considered by Spehner and Haake [181, 182]. As shown by these3408

authors, the truncation is then governed by the large number of degrees of freedom of the bath, not of the pointer;3409

the truncation is then not faster than the registration. Our detailed study allows us to compare the mechanisms of two3410

types of processes, for large N and for small N.3411

We have seen (§ 8.1.3) that for N = 2 as for N � 1 both couplings g and γ between S , M and B establish3412

the diagonal correlations between ŝz and m̂ needed to establish Born’s rule. This result is embedded in the values3413

reached by P↑↑ and P↓↓ after the time τreg = (2~/γJ) exp[(J − 2g)/T ], much longer than the lifetime τ = ~/γJ of3414

the initial state in the absence of a field or a coupling. Although this property is one important feature of a quantum3415

measurement, its mechanism is here only a relaxation towards thermal equilibrium. The registration is fragile and3416

does not survive beyond a delay τobs = (~/γJ) exp(J/T ) once the coupling with S is switched off. For larger N, the3417

existence of a spontaneously broken invariance ensured the long lifetime of the ferromagnetic states, and hence the3418

robust registration of the measurement.3419

Another feature of a quantum measurement, the truncation of the state that represents a large set of runs, has also3420

been recovered for N = 2, but with an unsatisfactorily long time scale. For large N, the truncation process took3421

place rapidly and was achieved before the registration in the apparatus really began, but here, whatever the parameters3422

ε and λ, the expectation values 〈ŝx〉, 〈ŝy〉 and the off-diagonal correlations embedded in P↑↓ and P↓↑ fade out over a3423

truncation time τtrunc given by (8.39) or (8.42), which is longer than the registration time and even than the observation3424

time if 2λ � ε. It is difficult to regard such a slow decay as the “collapse” of the state.3425

By studying the case N = 2, we wished to test whether an environment-induced decoherence [32, 33, 40, 198,3426

199, 200, 201] might cause truncation. Here the “environment” is the bath B, which is the source of irreversibility. It3427

imposes thermal equilibrium to S + M, hence suppressing gradually the off-diagonal elements of D̂ which vanish at3428

equilibrium, a suppression that we defined as “truncation”. However, usually, decoherence time scales are the shortest3429

of all; here, for N = 2, contrary to what happened for N � 1, the truncation time is not shorter than the registration3430

time.3431

The effect of the bath is therefore quite different for large and for small N. For N � 1, we have seen in §§ 5.1.2 and3432

6.2.4 that the rapid initial truncation was ensured by the large size of the pointer M, whereas bath-induced decoherence3433

played only a minor role, being only one among the two possible mechanisms of suppression of recurrences. For N =3434

2, the truncation itself is caused by the bath, but we cannot really distinguish decoherence from thermal equilibration:3435

Although the dynamics of the diagonal and off-diagonal blocks of D̂ are decoupled, there is no neat separation of time3436

scales for the truncation and the registration.3437

A last feature of measurements, the uniqueness of the outcome of individual runs, is essential as it conditions both3438

Born’s rule and von Neumann’s reduction. We have stressed (§§ 1.1.2 and 1.3.2) that truncation, which concerns the3439

large set of runs of the measurement, does not imply reduction, which concerns individual runs. The latter property3440

will be proven in section 11 for the Curie–Weiss model; its explanation will rely on a coupling between the large3441

number of eigenstates of M involved for N � 1 in each ferromagnetic equilibrium state. Here, for N = 2, the3442

“ferromagnetic” state is non degenerate, and that mechanism cannot be invoked.3443

Anyhow, the process that we described cannot be regarded for N = 2 as a full measurement. Being microscopic,3444

the pair of spins M is not a “pointer” that can be observed directly. In order to get a stable signal, which provides3445

us with information and which we may use at a macroscopic level, we need to couple M to a genuine macroscopic3446

apparatus. This should be done after the time τreg = (2~/γJ) exp[(J − 2g)/T ] when the correlations P↑↑(m, t) =3447

r↑↑(0)δm,1 and P↓↓(m, t) = r↓↓(0)δm,−1 have been created between S and M. Then, S and M should be decoupled, and3448

the measurement of m should be performed in the delay τobs = (~/γJ) exp(J/T ). In this hypothetical process, the3449

decoupling of S and M will entail truncation, the correlations which survive for the duration τtrunc = 2τobs in P↑↓ and3450

P↓↑ being destroyed.3451

77Every crow promotes her baby bird
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Altogether, it is not legitimate for small N to regard M + B as a “measurement apparatus”, since nothing can be3452

said about individual runs. Anyhow, registering robustly the outcomes of the process so as to read them during a long3453

delay requires a further apparatus involving a macroscopic pointer. The system M, even accompanied with its bath, is3454

not more than a quantum device coupled to S. However, its marginal state is represented by a diagonal density matrix,3455

in the basis which diagonalizes m̂, so that the respective probabilities of m = 0, m = +1 and m = −1, from which we3456

may infer r↑↑(0) and r↓↓(0), can be determined by means of an apparatus with classical features.3457

8.1.6. Can one simultaneously “measure” non-commuting variables?3458

78
3459 Երկու երնեկ մի տեղ չեն լինում: 

Armenian proverb3460

Although the process described above cannot be regarded as an ideal measurement, we have seen that it allows3461

us to determine the diagonal elements r↑↑(0) and r↓↓(0) of the density matrix of S at the initial time. Surprisingly,3462

the same device may also give us access to the off-diagonal elements, owing to the pathologically slow truncation.3463

Imagine S and M are decoupled at some time τdec of order τtrunc. For 2λ � ε, this time can be shorter than the3464

observation time, so that a rapid measurement of m will inform us statistically on r↑↑(0) and r↓↓(0). However, the3465

transverse components of the spin S have not disappeared on average, and r↑↓(τdec) is given at the decoupling time3466

and later on by3467

r↑↓(τdec) =
∑

m

P↑↓(m, τdec) = r↑↓(0)
ε +
√
ε2 − 4λ2

2
√
ε2 − 4λ2

e−τdec/τtrunc . (8.45)

A subsequent measurement on S in the x-direction at a time t > τdec will then provide r↑↓(t) + r↓↑(t) = 2<r↓↑(τdec).3468

If the various parameters entering (8.45) are well controlled, we can thus, through repeated measurements, determine3469

indirectly r↑↓(0) + r↓↑(0), as well as r↑↑(0) and r↓↓(0).3470

Note, however, that such a procedure gives us access only to the statistical properties of the initial state of S, and3471

that von Neumann’s reduction is precluded.3472

Thus a unique experimental setting may be used to determine the statistics of the non-commuting observables ŝx3473

and ŝz. This possibility is reminiscent of a general result [278]; see also [279, 280]. Suppose we wish to determine all3474

the matrix elements ri j of the unknown n × n density matrix of a system S at the initial time. Coupling during some3475

delay S with a similar auxiliary system S′, the initial state of which is known, leads to some density matrix for the3476

compound system. The set ri j is thus mapped onto the n2 diagonal elements of the latter. These diagonal elements3477

may be measured simultaneously by means of a single apparatus, and inversion of the mapping yields the whole set3478

ri j. Here the magnet M plays the role of the auxiliary system S′; we can thus understand the paradoxical possibility3479

of determining the statistics of both ŝx and ŝz with a single device.3480

In this context we note that the simultaneous measurement of non-commuting observables is an important chap-3481

ter of modern quantum mechanics. Its recent developments are given in [272, 273, 274, 275, 276] (among other3482

references) and reviewed in [277].3483

With this setup we can also repeat measurements in the z-direction and see how much lapse should be in between3484

to avoid non-idealities.3485

8.2. Measuring a non-conserved quantity3486

L’homme est plein d’imperfections, mais ce n’est pas3487

étonnant si l’on songe à l’époque où il a été créé 79
3488

Alphonse Allais3489

It has been stressed by Wigner [281] that an observable that does not commute with some conserved quantity of3490

the total system (tested system S plus apparatus A) cannot be measured exactly, and the probability of unsuccessful3491

78Two hopeful dreams cannot coexist
79Man is full of imperfections, but this is not surprising if one considers when he was created
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experiments has been estimated by Araki and Yanase [76, 282]. (Modern developments of this Wigner-Araki-Yanase3492

limitation are given in [269, 270, 271].) However, neither the irreversibility nor the dynamics of the measurement3493

process were considered. We focus here on the extreme case in which Wigner’s conserved quantity is the energy3494

itself. We have assumed till now that the measured observable ŝz commuted with the full Hamiltonian of S + A. This3495

has allowed us to split the dynamical analysis into two separate parts: The diagonal blocks R↑↑, R↓↓ of the full density3496

matrix of S + A are not coupled to the off-diagonal blocks R↑↓, R↓↑. This gives rise, for N � 1, to a large ratio between3497

the time scales that characterize the truncation and the registration.3498

We will discuss, by solving a slightly modified version of our model, under which conditions one can still measure3499

a quantity which is not conserved. We allow therefore transitions between different eigenvalues of ŝz, by introducing3500

a magnetic field that acts on S. The part ĤS of the Hamiltonian, instead of vanishing as in (3.4), is taken as3501

ĤS = −bŝy. (8.46)

We take as measuring device a large, Ising magnet, with q = 2 and N � 1.3502

We wish to study how the additional field affects the dynamics of the measurement. We shall therefore work out3503

the equations at lowest order in b, which however need not be finite as N → ∞. In fact, a crucial parameter turns out3504

to be the combination b/g
√

N.3505

8.2.1. The changes in the dynamics3506

Plus ça change, plus c’est la même chose80
3507

French saying3508

3509

The formalism of subsection 4.2 remains unchanged, the unperturbed Hamiltonian being now3510

Ĥ0 = ĤS + ĤSA + ĤM = −bŝy − Ngm̂ŝz −
1
2

JNm̂2. (8.47)

The additional contribution (8.46) enters the basic equation (4.5) in two different ways.3511

(i) On the left-hand side, the term −
[
ĤS, D̂

]
/i~ yields a contribution3512

b
~

(
R̂↑↓ + R̂↓↑ R̂↓↓ − R̂↑↑
R̂↓↓ − R̂↑↑ −R̂↑↓ − R̂↓↑

)
(8.48)

to dD̂/dt which couples the diagonal and off-diagonal sectors of (3.18). Accordingly, we must add to the right-hand3513

side of the equation of motion (4.16) for dP↑↑/dt the term ~−1b(P↑↓ + P↓↑), and subtract it from the equation for3514

dP↓↓/dt; we should add to the equations (4.18) for dP↑↓/dt and dP↓↑/dt the term ~−1b(P↓↓ − P↑↑).3515

(ii) The presence of ĤS in Ĥ0 has another, indirect effect. The operators σ̂(n)
a (u) defined by (4.4), which enter the3516

right-hand side of eq. (4.5), no longer commute with ŝz. In fact, while σ̂(n)
z (u) still equals σ̂(n)

z , the operators3517

σ̂(n)
+ (u) =

[
σ̂(n)
− (u)

]†
= σ̂(n)

+ e−iĤ0(m̂+δm)u/~eiĤ0(m̂)u/~ = e−iĤ0(m̂)u/~eiĤ0(m̂−δm)u/~σ̂(n)
+ (8.49)

now contain contributions in ŝx and ŝy, which can be found by using the expression (8.47) of Ĥ0 and the identity3518

exp(i a · ŝ) = cos(a) + i sin(a) a · ŝ/a. For N � 1 and arbitrary b, we should therefore modify the bath terms in dPi j/dt3519

by using the expression3520

σ̂(n)
+ (u) = σ̂(n) exp

[
2im̂u
~

(
J + Ng2 Ngm̂ŝz + bŝy

N2g2m̂2 + b2

)]
, (8.50)

instead of (B.7); we have dropped in the square bracket contributions that oscillate rapidly as exp
(
2iu

√
N2g2m̂2 + b2/~

)
3521

with factors ŝx and coefficients of order 1/N.3522

80The more it changes, the more it remains the same
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Except in § 8.2.5 we assume that S and A remain coupled at all times. Their joint distribution D̂(t) is then expected3523

to be driven by the bath B to an equilibrium D̂(tf) ∝ exp(−Ĥ0/T ) at large times. The temperature T is imposed by the3524

factor K(u) that enters the equation of motion (4.5), while Ĥ0 is imposed by the form of σ̂(n)
a (u). The additional terms3525

in (8.50) are needed to ensure that S + M reaches the required equilibrium state. As discussed in § 7.1.4, invariance3526

is broken in the final state. Its density operator involves two incoherent contributions, for which the magnetization of3527

M lies either close to +mF or close to −mF. In the first one, the marginal state of S is r̂(tf) ∝ exp
[(

bŝy + NgmF ŝz

)
/T

]
.3528

If b � Ng, a condition that we will impose from now on, this state cannot be distinguished from the projection3529

on sz = +1. As when b = 0, the sign of the observed magnetization ±mF of M is fully correlated with that of the3530

z-component of the spin S in the final state, while 〈ŝx(tf)〉 = 〈ŝy(tf)〉 = 0. If dynamical stability of subensembles is3531

ensured as in § 11.2.4, the process is consistent with von Neumann’s reduction, and it can be used as a preparation.3532

Nevertheless, nothing warrants the weights of the two possible outcomes, +mF, sz = +1 and −mF, sz = −1, to3533

be equal to the diagonal elements r↑↑(0) and r↓↓(0) of the initial density matrix: Born’s rule may be violated. A full3534

study of the dynamics is required to evaluate these weights, so as to determine whether the process is still a faithful3535

measurement.3536

This study will be simplified by noting that the expression (8.50) depends on b only through the ratio b/Ngm̂. Once3537

the registration has been established, at times of order τreg, the relevant eigenvalues of m̂, of order mB, are finite for3538

large N and the field b does not contribute to σ̂(n)
a (u) since b � Ng. For short times, during the measurement process,3539

the distribution of m is Gaussian, with a width of order 1/
√

N, so that b may contribute significantly to σ̂(n)
a (u) if b3540

is of order g
√

N. However, we have shown (section 6) that for the off-diagonal blocks the bath terms in (4.29) have3541

the sole effect of inhibiting the recurrences in P↑↓(m, t). Anyhow, such recurrences are not seen when m is treated as3542

a continuous variable. We shall therefore rely on the simplified equations of motion3543

∂P↑↓
∂t
−

2iNgm
~

P↑↓ =
∂P↓↑
∂t

+
2iNgm

~
P↓↑ =

b
~

(
P↓↓ − P↑↑

)
. (8.51)

As regards the diagonal blocks we shall disregard b not only at times of order τreg, but even earlier. This is3544

legitimate if b � g
√

N; if b is of order g
√

N, such an approximation retains the main effects of the bath, driving the3545

distributions P↑↑(m, t) and P↓↓(m, t) apart from −mB and +mB, respectively, and widening them. We write therefore:3546

∂P↑↑
∂t

+
∂

∂m
(
v↑↑P↑↑

)
−

1
N

∂2

∂m2

(
wP↑↑

)
=

b
~

(
P↑↓ + P↓↑

)
, (8.52)

∂P↓↓
∂t

+
∂

∂m
(
v↓↓P↓↓

)
−

1
N

∂2

∂m2

(
wP↓↓

)
= −

b
~

(
P↑↓ + P↓↑

)
. (8.53)

(Here we should distinguish the drift velocities v↑↑ and v↓↓, but the diffusion coefficients are equal.) Since the outcome3547

of the registration is governed by the first stage studied in § 7.2.3(i), and since the Markovian regime (§ 7.1.1) is3548

reached nearly from the outset, we shall use the simplified forms3549

v↑↑ =
γ

~
[g + (J − T )m] =

1
τreg

(mB + m), w =
γT
~
, (8.54)

for the drift velocity and the diffusion coefficient; v↓↓ follows from v↑↑ by changing g into −g.3550

We have to solve (8.51), (8.52) and (8.53) with initial conditions Pi j(m, 0)/ri j(0) = PM(m, 0) expressed by (3.49).3551

The drift and diffusion induced by the bath terms are slow since γ � 1, and the distribution PM(m, t) = P↑↑(m, t) +3552

P↓↓(m, t) of the magnetization of M can be regarded as constant on the time scales τtrunc and τLarmor = π~/b, which is3553

the period of the precession of the spin S when it does not interact with A. Over a short lapse around any time t, the3554

coupled equations for Cx = P↑↓ + P↓↑, Cy = iP↑↓ − iP↓↑ and Cz = P↑↑ − P↓↓ simply describe, for each m, a Larmor3555

precession of S [60, 61, 62, 63, 64, 65] submitted to the field b along ŷ and to the field Ngm along ẑ, where m is a3556

classical random variable governed by the probability distribution PM(m, t). The slow evolution of PM(m, t) is coupled3557

to this rapid precession through (8.52) and (8.53).3558
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8.2.2. Ongoing truncation3559

Het kind met het badwater weggooien81
3560

Jeter l’enfant avec l’eau du bain81
3561

Dutch and French expressions3562

We first eliminate the off-diagonal contributions by formally solving (8.51) as3563

P↑↓(m, t) = P∗↓↑ = r↑↓(0)e2iNgmt/~PM(m, 0) −
b
~

∫ t

0
dt′ e2iNgm(t−t′)/~ [

P↑↑(m, t′) − P↓↓(m, t′)
]
. (8.55)

The physical quantities (except for correlations involving a large number of spins of M, see § 5.1.3) are obtained by3564

summing over m with a weight smooth on the scale 1/
√

N. The first term of (8.55), the same as in section 5 then3565

yields a factor decaying as exp[−(t/τtrunc)2], with τtrunc = ~/gδ0
√

2N, due to destructive interferences.3566

However, the second term survives much later because the precession induced by the field b along ŷ couples3567

2P↑↓ = Cx − iCy to Cz = P↑↑ − P↓↓ at all times t. truncation takes place through the oscillatory factor in the integral,3568

which hinders the effect of precession except at times t′ just before t. Truncation is an ongoing process, which may3569

take place (if b is sufficiently large) for t � τtrunc: The non-conservation of the measured quantity sz tends to feed3570

up the off-diagonal components R̂↑↓ and R̂↓↑ of the density matrix D̂ of S + M. In compensation, R̂↑↑ and R̂↓↓ may be3571

progressively eroded through the right-hand side of (8.52) and (8.53).3572

At lowest order in b, we can rewrite explicitly the second term of (8.55) by replacing P↑↑ by3573

P(0)
↑↑

(m, t) = r↑↑(0)
√

N
2πD(t)

exp
[
−

N
2D(t)

(
m + mB − mBet/τreg

)2
]
, (8.56)

D(t) = δ2
0e2t/τreg +

T
J − T

(
e2t/τreg − 1

)
, τreg =

~
γ(J − T )

,

that we evaluated for b = 0 in section 7. We have simplified the general expression (7.61) by noting that the final3574

outcome will depend only on the first stage of the registration, when t is of order τreg. For P(0)
↓↓

we have to change3575

r↑↑(0) into r↓↓(0) and mB = g/(J − T ) into −mB.3576

8.2.3. Leakage3577

Tout ce qui est excessif est insignifiant82
3578

Talleyrand3579

The expectation values of ŝx or ŝy and their correlations with the pointer variable m̂ are now found as in § 5.1.33580

through summation over m of P↑↓(m, t)eiλm. At times t long compared to τtrunc and short compared to τreg, we find the3581

characteristic function3582

Ψ↑↓(λ, t) ≡ 〈ŝ−eiλm̂(t)〉 =

∫
dm P↑↓(m, t)eiλm ' −

b
~

∫
dm

∫ t

0
dt′e2iNgm(t−t′)/~+iλm

[
P(0)
↑↑

(m, t′) − P(0)
↓↓

(m, t′)
]
(8.57)

= −
b
~

∫ t

0
dt′r↑↑(0) exp

− (
t − t′

τtrunc
+

λδ0
√

2N

)2

+
2it′

τleak

(
t − t′

τtrunc
+

λδ0
√

2N

) − {
r↑↑ 7→ r↓↓, τleak 7→ −τleak

}
.

We have recombined the parameters so as to express the exponent in terms of two characteristic times, the truncation3583

time τtrunc = ~/gδ0
√

2N introduced in (5.6) and the leakage time3584

τleak =

√
2
N
~δ0

γg
=

√
2
N
τtruncδ0

mB
=

2τtruncδ
2
0

γ
. (8.58)

81To throw the baby out of the bath water
82Everything that is excessive is insignificant
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Integration over t′ can be performed in the limit τleak � τtrunc, by noting that the dominant contribution arises from3585

the region t − t′ � t, which yields in terms of the error function (7.81)3586

Ψ↑↓(λ, t) = −
b

2gδ0

√
π

2N
e−(t/τleak)2

[
r↑↑(0)erfc

(
−

it
τleak

+
λδ0
√

2N

)
− r↓↓(0)erfc

(
it
τleak

+
λδ0
√

2N

)]
. (8.59)

The leakage time characterizes the dynamics of the transfer of polarization from the z-direction towards the x- and3587

y-directions. It is much shorter than the registration time, since N � 1 and γ � 1. It also characterizes the delay over3588

which the distribution P(0)
↑↑

(m, t) keeps a significant value at the origin: The peak of P(0)
↑↑

with width δ0/
√

N, moves as3589

mB(et/τreg − 1) ∼ mBt/τreg, and at the time t = τleak we have P(0)
↑↑

(0, τleak)/P(0)
↑↑

(0, 0) = 1/e.3590

Using the properties of the error function we can derive from Eq. (8.59), which is valid at times t � τtrunc such3591

that the memory of 2r↑↓(0) = 〈ŝx(0)〉 − i〈ŝy(0)〉 is lost, by expanding the first equality of (8.57) in powers of λ, the3592

results3593

〈ŝx(t)〉 = −
b

gδ0

√
π

2N
〈ŝz(0)〉 exp

− (
t

τleak

)2 , (8.60)

〈ŝy(t)〉 ≈
b

gδ0

√
2
N

t
τleak

1 − 2
3

(
t

τleak

)2 , t � τleak, (8.61)

〈ŝy(t)〉 ∼
b

gδ0

1
√

2N

τleak

t
, t � τleak. (8.62)

where we also used that r↑↑(0) − r↓↓(0) = 〈ŝz(0)〉 and r↑↑(0) + r↓↓(0) = 1. For t of order τleak these results are of order3594

b∆m/gδ2
0, with ∆m = δ0/

√
N (see Eq. (3.50)). Because 1− erfc(z) = erf(z) is imaginary for imaginary values of z, the3595

correlations 〈ŝxm̂k(t)〉, k ≥ 1, vanish in this approximation, while 〈ŝym̂k(t)〉 involves an extra factor ∆mk, for instance:3596

〈ŝym̂(t)〉 =
b

gN
〈ŝz(0)〉 =

b ∆m2

gδ2
0

〈ŝz(0)〉, 〈ŝym̂2(t)〉 =
bδ0
√

2
gN3/2

t
τleak

=
b
√

2 ∆m3

gδ2
0

t
τleak

. (8.63)

To understand these behaviors, we remember that the spin S is submitted to the field b in the y-direction and to the3597

random field Ngm in the z-direction, where m has a fluctuation δ0/
√

N and an expectation value which varies as3598

±mBt/τreg = ±
√

2/Nδ0t/τleak if the spin S is polarized in the ±z-direction. The stationary value of 〈ŝym̂(t)〉 agrees3599

with the value of the random field applied to S. The precession around ŷ explains the factor −b〈ŝz(0)〉 in 〈ŝx(t)〉. The3600

rotation around z hinders 〈ŝx(t)〉 through randomness of m, its effects are characterized by the parameter Ngm, of order3601

gδ0
√

N. This explains the occurrence of this parameter in the denominator. Moreover, this same rotation around ẑ3602

feeds up 〈ŝy(t)〉 from 〈ŝx(t)〉, and it takes place in a direction depending on the sign of m; as soon as registration begins,3603

this sign of m is on average positive for sz = +1, negative for sz = −1.Thus the two rotations around ŷ and ẑ yield3604

a polarization along x̂ with a sign opposite to that along ẑ, whereas the polarization along ŷ is positive whatever that3605

along ẑ. When t � τleak, the random values of m are all positive (for P↑↑) or all negative (for P↓↓), with a modulus3606

larger than 1/
√

N. Hence S precesses around an axis close to +ẑ or −ẑ, even if b is of order g
√

N, so that the leakage3607

from Cz towards Cx and Cy is inhibited for such times. Altogether, the duration of the effect is τleak, and its size is3608

characterized by the dimensionless parameter b/g
√

N.3609

8.2.4. Possibility of an ideal measurement3610

The loftier and more distant the ideal,3611

the greater its power to lift up the soul3612

Hebrew proverb3613

We wish to find an upper bound on the field b such that the process can be used as a measurement. Obviously, if3614

the Larmor period τLarmor = π~/b is longer than the registration time τreg = ~/γ(J − T ), we can completely disregard3615
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the field. However, we shall see that this condition, b � πγ(J − T ), is too stringent and that even large violations of3616

the conservation law of the measured quantity ŝz do not prevent an ideal measurement.3617

We therefore turn to the registration, still assuming that S and A remain coupled till the end of the process. At3618

lowest order in b, the right-hand side of (8.52) and (8.53) is expressed by (8.55) with (8.56). The Green’s functions3619

G↑ and G↓ of the left-hand sides are given by (F.10) with h = +g and h = −g, respectively. We thus find P↑↑(m, t)3620

through convolution of G↑(m,m′, t − t′) with the initial condition δ(t′)P(0)
↑↑

(m, t′), with3621

b
~

C(0)
x (m′, t′) =

b
~

[
P(0)
↑↓

(m′, t′) + P(0)
↓↑

(m′, t′)
]
, (8.64)

and with3622

b
~

C(1)
x (m′, t′) = −

2b2

~2

∫ t′

0
dt′′ cos

[
2Ngm′(t′ − t′′)/~

] [
P(0)
↑↑

(m′, t′) − P(0)
↓↓

(m′, t′)
]
. (8.65)

For P↓↓ we change G↑ into G↓ and Cx into −Cx. The zeroth-order contribution, evaluated in section 7, corresponds to3623

an ideal measurement. The first-order correction in b, P(1)
↑↑

issued from C(0)
x , depends on the transverse initial conditions3624

r↑↓(0), while the second-order correction, P(2)
↑↑

issued from C(1)
x , depends, as the main term, on r↑↑(0) = 1 − r↓↓(0).3625

Performing the Gaussian integrals on m′, we find:3626

P(1)
↑↑

(m, t) =
2b
~
<

∫
dm′dt′G↑(m,m′, t − t′)P(0)

↑↓
(m′, t′)

=
2b
~
<

∫ t

0
dt′r↑↓(0)

√
N
2π

e−(t−t′)/τreg

δ1(t − t′)
exp

− N
2δ2

1(t − t′)

[
µ′2 + 4g2δ2

0δ
2
2

t′2

~2 − 4igδ2
0µ
′ t
′

~

] , (8.66)

P(2)
↑↑

(m, t) = −
2b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′r↑↑(0)

√
N
2π

e−(t−t′+t′′)/τreg

δ1(t − t′ + t′′)

× exp
− Ne−2t′′/τreg

2δ2
1(t − t′ + t′′)

[
(µ′ − µ′′)2 + 4g2e2t′′/τregδ2

1(t′′)δ2
2

(t − t′′)2

~2 − 4ig
(
e2t′′/τregδ2

1(t′′)µ′ + δ2
2µ
′′
) t′ − t′′

~

] ,
−

{
r↑↑ 7→ r↓↓; µ′′ 7→ −µ′′

}
, (8.67)

where δ1(t) was defined by (7.63), where δ2
2 ≡ δ

2
1(t − t′) − δ2

0 = T [1 − e−2(t−t′)/τreg ]/(J − T ), where µ′ ≡ −mB + (m +3627

mB) exp[−(t − t′)/τreg] and where µ′′ ≡ mB[exp(t′′/τreg)−1]. These expressions hold for times t of order τreg. For later3628

times, the part of P↑↑(m, t) for which m is above (below) the bifurcation −mB (with mB = g/(J − T )) develops a peak3629

around +mF (−mF). For P↓↓, we have to change the sign in P(1)
↑↑

and P(2)
↑↑

and to replace mB by −mB in µ′; the bifurcation3630

in +mB. The probability of finding sz = +1 and m ' mF at the end of the measurement is thus
∫ 1
−mB

dm P↑↑(m, t), while3631 ∫ −mB

−1 dmP↑↑(m, t) corresponds to sz = 1 and m ' −mF. Since
∫ 1
−mB

dm P(0)
↑↑

(m, t) = r↑↑(0) and
∫ −mB

−1 dm P(0)
↑↑

(m, t) = 0,3632

the contributions P(0)
↑↑

to P↑↑ and P(0)
↓↓

to P↓↓ correspond to an ideal measurement. The corrections of order b and b2 to3633

P↑↑ and P↓↓ give thus rise to violations of Born’s rule, governed at first order in b by the off-diagonal elements r↑↓(0),3634

r↓↑(0) of the initial density matrix of S, and at second order by the diagonal elements r↑↑(0), r↓↓(0). For instance,3635 ∫ 1
−mB

dm P(2)
↑↑

(m, t) and
∫ −mB

−1 dm P(2)
↑↑

(m, t) are the contributions of these initial diagonal elements to the wrong counts3636

+mF and −mF, respectively, associated with sz = +1 in the final state of S.3637

In order to estimate these deviations due to non-conservation of ŝz, we evaluate, as we did for the transverse3638

quantities (8.60-8.62), the expectation values 〈ŝz(t)〉, 〈m̂(t)〉, 〈ŝzm̂(t)〉 issued from (8.66) and (8.67). For times t � τtrunc3639

and t not much longer than τreg, we find3640

〈ŝz(t)〉 =

∫
dm

[
P↑↑(m, t) − P↓↓(m, t)

]
= r↑↑(0) − r↓↓(0) +

4b
~
<

∫ t

0
dt′r↑↓(0) exp

− (
t′

τtrunc

)2
−

4b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′[r↑↑(0) − r↓↓(0)] exp

− (
t′ − t′′

τtrunc

)2

+ 2i
t′′

τleak

(
t′ − t′′

τtrunc

)
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= 〈ŝz(0)〉 +
b

gδ0

√
π

2N
〈ŝx(0)〉 −

b2

2Nγg2 〈ŝz(0)〉
[
1 − erfc

(
t

τtrunc

)]
; (8.68)

we noted that only short times t′, t′′ and t′ − t′′ contribute. A similar calculation provides3641

〈m̂(t)〉 =

∫
dm m

[
P↑↑(m, t) + P↓↓(m, t)

]
= 〈ŝz(t)〉mB

(
et/τreg − 1

)
. (8.69)

For t � τleak, 〈ŝz(t)〉 tends to a constant which differs from the value 〈ŝz(0)〉 expected for an ideal measurement. The3642

ratio 〈m̂(t)〉/〈ŝz(t)〉 is, however, the same as in section 7 where b = 0. Finally the correlation is obtained as3643

〈ŝzm̂(t)〉 =

∫
dm m

[
P↑↑(m, t) − P↓↓(m, t)

]
= mB

(
et/τreg − 1

)
+

4b
~
<

∫ t

0
dt′r↑↓(0)2igδ2

0
t′

~
et/τreg exp

− (
t′

τtrunc

)2
−

4b2

~2 <

∫ t

0
dt′

∫ t′

0
dt′′

(
µ′′ + 2igδ2

0
t′ − t′′

~
et/τreg

)
exp

− (
t′ − t′′

τtrunc

)2

+ 2i
t′′

τleak

(
t′ − t′′

τtrunc

)
= mB

(
et/τreg − 1

)
+

b
Ng
〈ŝy(0)〉et/τtrunc ; (8.70)

the terms in b2 cancel out. As in (8.61), (8.62) the correlation 〈ŝzm̂(t)〉 is weaker by a factor
√

N than the expectation3644

value 〈ŝz(t)〉.3645

Altogether, the field b enters all the results (8.50), (8.60-8.62) and (8.68-8.70) through the combination b/g
√

N.3646

However, the dominant deviation from Born’s rule, arising from the last term of (8.68), also involves the coupling γ3647

of M with B. The process can therefore be regarded as an ideal measurement provided3648

b � g
√

Nγ. (8.71)

Contrary to the probability of an unsuccessful measurement found in [76], which depended solely on the size of3649

the apparatus, the present condition involves b, which characterizes the magnitude of the violation, as well as the3650

couplings, g between S and M, and γ between M and B, which characterize the dynamics of the process. A large3651

number N of degrees of freedom of the pointer and/or a large coupling g inhibit the transitions between sz = +1 and3652

sz = −1 induced by ĤS, making the leakage time short and rendering the field b ineffective. If g is small, approaching3653

the lower bound (7.41), the constraint (8.71) becomes stringent, since γ � 1. Too weak a coupling γ with the bath3654

makes the registration so slow that b has time to spoil the measurement during the leakage delay.3655

8.2.5. Switching on and off the system-apparatus interaction3656

Haastige spoed is zelden goed83
3657

Dutch proverb3658

The condition (8.71), which ensures that the process behaves as an ideal measurement although ŝz is not conserved,3659

has been established by assuming that S and A interact from the time t = 0 to the time t = tf at which the pointer has3660

reached ±mF. However, in a realistic ideal measurement, S and A should be decoupled both before t = 0 and after3661

some time larger than τreg. At such times, the observable ŝz to be tested suffers oscillations with period τLarmor = πb/~,3662

which may be rapid. Two problems then arise.3663

(i) The repeated process informs us through reading of M about the diagonal elements of the density matrix r̂ of3664

S, not at any time, but at the time when the coupling g is switched on, that we took as the origin of time t = 0. Before3665

this time, the diagonal elements r↑↑(t) and r↓↓(t) oscillate freely with the period τLarmor. If we wish the outcomes of3666

M to be meaningful, we need to control, within a latitude small compared to τLarmor, the time at which the interaction3667

is turned on. Moreover, this coupling must occur suddenly: The time during which g rises from 0 to its actual value3668

should be short, much shorter than the leakage time.3669

83Being quick is hardly ever good
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(ii) Suppose that the coupling g is switched off at some time τdec larger than τreg, the condition (8.71) being3670

satisfied. At this decoupling time P↑↑(m, τdec) presents a peak for m > 0, with weight
∫

dm m P↑↑(m, τdec) = r↑↑(0),3671

P↓↓(m, τdec) a peak for m < 0 with weight r↓↓(0), while P↑↓(m, τdec) vanishes. Afterwards the system and the apparatus3672

evolve independently. The Larmor precession of S [60, 61, 62, 63, 64, 65] manifests itself through oscillations of3673 ∫
dm

[
P↑↑(m, t) − P↓↓(m, t)

]
and of

∫
dm

[
P↑↓(m, t) + P↓↑(m, t)

]
, while M relaxes under the influence of the bath B.3674

The two peaks of the probability distribution PM(m, t) = P↑↑(m, t) + P↓↓(m, t) move apart, towards +mF and −mF,3675

respectively. At the final time tf , once the apparatus has reached equilibrium with broken invariance, we can observe3676

on the pointer the outcomes +mF with probability r↑↑(0), or −mF with probability r↓↓(0). Thus the counting rate agrees3677

with Born’s rule. However the process is not an ideal measurement in von Neumann’s sense: Even if the outcome of3678

A is well-defined at each run (section 11), it is correlated not with the state of S at the final reading time, but only3679

with its state r̂(τdec) at the decoupling time, a state which has been kept unchanged since the truncation owing to the3680

interaction of S with M. Selecting the events with +mF at the time tf cannot be used as a preparation of S in the state3681

|↑〉, since r̂(t) has evolved after the decoupling.3682

8.3. Attempt to simultaneously measure non-commutative variables3683

Je moet niet teveel hooi op je vork nemen84
3684

Qui trop embrasse mal étreint 85
3685

Dutch and French proverbs3686

Books of quantum mechanics tell that a precise simultaneous measurement of non-commuting variables is impos-3687

sible [10, 11, 31, 48, 85]. It is, however, physically sensible to imagine a setting with which we would try to perform3688

such a measurement approximately [272, 273, 274, 275, 276, 277, 283]. It is interesting to analyze the corresponding3689

dynamical process so as to understand how it differs from a standard measurement.3690

Consider first successive measurements. In a first stage the component ŝz of the spin S is tested by coupling S to3691

A between the time t = 0 and some time τdec at which ĤSA is switched off. If τdec is larger than the registration time3692

τreg, the apparatus A produces m = mF with probability r↑↑(0) and m = −mF with probability r↓↓(0). An interaction3693

ĤSA′ is then switched on between S and a second apparatus A′, analogous to A but coupled to the component ŝv of3694

ŝ in some v-direction. It is the new diagonal marginal state r̂(τdec), equal to the diagonal part of r̂(0), which is then3695

tested by A′. In this measurement of ŝv the probability of reading m′ = +mF on A′ and finding ŝ in the v-direction3696

is r↑↑(0) cos2 1
2θ + r↓↓(0) sin2 1

2θ, where θ and φ are the Euler angles of v. The measurement of ŝv alone would have3697

provided the additional contribution <r↑↓(0) sin θeiφ. We therefore recover dynamically all the standard predictions3698

of quantum mechanics.3699

Things will be different if the second apparatus is switched on too soon after the first one or at the same time.3700

8.3.1. A model with two apparatuses3701

Life is transparent,3702

but we insist on making it opaque3703

Confucius3704

Let us imagine we attempt to measure simultaneously the non-commuting components ŝz and ŝx of the spin ŝ. To3705

this aim we extend our model by assuming that, starting from the time t = 0, S is coupled with two apparatuses A3706

and A′ of the same type as above, A′ being suited to the measurement of ŝx. We denote by γ′, g′, N′, J′, T ′, . . . ,3707

the parameters of the second apparatus. The overall Hamiltonian Ĥ = ĤSA + ĤSA′ + ĤA + ĤA′ thus involves, in3708

addition to the contributions defined in subsection 3.2, the Hamiltonian ĤA′ of the second apparatus A′, analogous to3709

ĤA = ĤM + ĤB + ĤMB, with magnetization m′ = (1/N′)
∑N′

n=1 σ̂
′
x

(n), and the coupling term3710

ĤSA′ = −N′g′ ŝxm̂′ (8.72)

84You should not put too much hay on your fork
85He who embraces too much fails to catch
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of A′ and S. The solution of the Liouville–von Neumann equation for S + A+A′ should determine how the indications3711

of A and A′ can inform us about the initial state r̂(0) of S, and how the final state of S is correlated with these3712

indications.3713

We readily note that such a dynamical process can not behave as an ideal measurement, since we expect that,3714

whatever the initial state r̂(0) of S, its final state will be perturbed.3715

The equations of motion are worked out as in section 4. After elimination of the baths B and B′ at lowest order3716

in γ and γ′, the density operator D̂ of S + M + M′ can be parametrized as in § 3.3.1 and § 4.4.1 by four functions3717

Pi j(m,m′, t), where i, j =↑, ↓ refer to S, and where the magnetizations m and m′ behave as random variables. However,3718

since the functions Pi j are now coupled, it is more suitable to express the dynamics in terms of PMM′ (m,m′, t) =3719

P↑↑+ P↓↓, which describes the joint probability distribution of m and m′, and of the set Ca(m,m′, t) defined for a = x, y3720

and z by (3.30), which describe the correlations between ŝa and the two magnets M and M′. The density operator D̂(t)3721

of S + M + M′ generalizing (3.18), with (3.26), (3.29) and (3.30), is3722

D̂(t) =
2

NN′G(m̂)G(m̂′)
[
PMM′ (m̂, m̂′, t) + C(m̂, m̂′, t) · ŝ

]
. (8.73)

(There is no ambiguity in this definition, since m̂ and m̂′ commute.) The full dynamics are thus governed by coupled3723

equations for the functions PMM′ (m,m′, t) and C(m,m′, t) which parametrize D̂(t). The initial state D̂(0) is factorized3724

as r̂(0) ⊗ R̂M(0) ⊗ R̂M′ (0), where R̂M(0) and R̂M′ (0) describe the metastable paramagnetic states (3.46) of M and M′,3725

so that the initial conditions are3726

PMM′ (m,m′, 0) = PM(m, 0)PM′ (m′, 0), C(m,m′, 0) = PMM′ (m,m′, 0)〈ŝ(0)〉, (8.74)

where PM(m, 0) and PM′ (m′, 0) have the Gaussian form (3.49) and where 〈ŝ(0)〉 is the initial polarization of S.3727

Two types of contributions enter ∂PMM′/∂t and ∂C/∂t, the first one active on the time scale τtrunc, and the second3728

one on the time scale τreg, but these time scales need not be very different here. On the one hand, for given m and m′,3729

the coupling ĤSA + ĤSA′ of S with the magnets M and M′ behaves as a magnetic field b applied to S. This effective3730

field is equal to3731

b(m,m′) =
2Ngm
~

ẑ +
2N′g′m′

~
x̂ = bû, b(m,m′) ≡ |b(m,m′)| =

2
~

√
N2g2m2 + N′2g′2m′2, (8.75)

where ẑ and x̂ are the unit vectors in the z- and x-direction, respectively. This yields to ∂C/∂t the contribution3732 [
∂C(m,m′, t)

∂t

]
MM′

= −b(m,m′) × C(m,m′, t). (8.76)

Both the Larmor frequency b and the precession axis, characterized by the unit vector û = b/b in the x−z plane, depend3733

on m and m′ (whereas the precession axis was fixed along ẑ for a single apparatus). The distribution PMM′ (m,m′, t) is3734

insensitive to the part ĤSA + ĤSA′ of the Hamiltonian, and therefore evolves slowly, only under the effect of the baths.3735

On the other hand, ∂PMM′/∂t and ∂C/∂t involve contributions from the baths B and B′, which can be derived from3736

the right-hand sides of (4.30) and (4.29). They couple all four functions PMM′ and C, they are characterized by the time3737

scale τreg, and they depend on all parameters of the model. In contrast with what happened for a single apparatus, the3738

effects of the precession (8.76) and of the baths can no longer be separated. Indeed, the precession tends to eliminate3739

the components of C(m,m′, t) that are perpendicular to b, but the baths tend to continuously activate the creation3740

of such components. The truncation, which for a single apparatus involved only the off-diagonal sectors and was3741

achieved after a brief delay, is now replaced by an overall damping process taking place along with the registration,3742

under the simultaneous contradictory effects of the couplings of M and M′ with S and with the baths.3743

Such an interplay, together with the coupling of four functions PMM′ , C of three variables m, m′, t, make the3744

equations of motion difficult to solve, whether analytically or numerically. A qualitative analysis will, however,3745

suffice to provide us with some interesting conclusions.3746

8.3.2. Structure of the outcome3747

Note first that the positivity of the density operator (8.73), maintained by the dynamics, is expressed by the3748

condition3749
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PMM′ (m,m′, t) ≥ |C(m,m′, t)|, (8.77)

which holds at any time.3750

The outcome of the process is characterized by the limit, for t larger than the registration time τreg, of the distribu-3751

tions PMM′ and C. In this last stage of the evolution, the interaction of M with the bath B is expected to drive it towards3752

either one of the two equilibrium states at temperature T , for which the normalized distribution PM⇑(m) (or PM⇓(m))3753

expressed by (3.57) is concentrated near m = +mF (or m = −mF). In order to avoid the possibility of a final relaxation3754

of M towards its metastable paramagnetic state, which may produce failures as in § 7.3.4, we consider here only a3755

quadratic coupling J2. Likewise, M′ is stabilized into either one of the ferromagnetic states P′M′⇑(m
′) (or PM′⇓(m′))3756

with m′ ' +m′F (or m′ = −m′F). Hence, PMM′ (m,m′, t), which describes the statistics of the indications of the pointers,3757

ends up as a sum of four narrow peaks which settle at m = εmF, m′ = ε′m′F, with ε = ±1, ε′ = ±1, to wit,3758

PMM′ (m,m′, t) 7→
∑
ε=±1

∑
ε′=±1

Pεε′PMε(m)PM′ε′ (m′). (8.78)

The weights Pεε′ of these peaks characterize the proportions of counts detected on M and M′ in repeated experiments;3759

they are the only observed quantities.3760

The precession (8.76) together with smoothing over m and m′ eliminates the component Cy of C, so that the3761

subsequent evolution keeps no memory of Cy(m,m′, 0). Thus, among the initial data (8.74) pertaining to S, only3762

〈ŝx(0)〉 and 〈ŝz(0)〉 are relevant to the determination of the final state: the frequencies Pεε′ of the outcomes depend3763

only on 〈ŝx(0)〉 and 〈ŝz(0)〉 (and on the parameters of the apparatuses).3764

If 〈ŝx(0)〉 = 〈ŝz(0)〉 = 0 we have Pεε′ = 1
4 due to the symmetry m↔ −m, m′ ↔ −m′. Likewise, if 〈ŝx(0)〉 = 0, the3765

symmetry m′ ↔ −m′ implies that P++ = P+− and P−+ = P−−. Since the equations of motion are linear, P++ − P−+ is3766

in this situation proportional to 〈ŝz(0)〉; we define the proportionality coefficient λ by Pε+ = 1
4 (1 + ελ〈ŝz(0)〉). In the3767

situation 〈ŝz(0)〉 = 0 we have similarly P+ε′ = P−ε′ = 1
4 (1 + ε′λ′〈ŝx(0)〉). Relying on the linearity of the equations of3768

motion, we find altogether for an arbitrary initial state of S the general form for the probabilities Pεε′ :3769

Pεε′ =
1
4

(
1 + ελ〈ŝz(0)〉 + ε′λ′〈ŝx(0)〉

)
, (8.79)

where 〈ŝz(0)〉 = r↑↑(0) − r↓↓(0), 〈ŝx(0)〉 = r↑↓(0) + r↓↑(0). We term λ and λ′ the efficiency factors.3770

In the long time limit, the functions C(m.m′, t) also tend to sums of four peaks located at m = ±mF, m′ = ±m′F, as3771

implied by (8.77). With each peak is associated a direction uεε′ , given by (8.75) where m = εmF, m′ = ε′m′F, around3772

which the precession (8.76) takes place. The truncation process eliminates the component of C perpendicular to uεε′ ,3773

for each peak. Thus, if in their final state the apparatuses M and M′ indicate εmF, ε′m′F, the spin S is lead into a state3774

partly polarized in the direction uεε′ of the effective field b generated by the two ferromagnets.3775

8.3.3. A fully informative statistical process3776

You may look up for inspiration or look down in desperation,3777

but do not look sideways for information3778

Indian proverb3779

A well-defined indication for both pointers M and M′ can be obtained here in each individual run, because the3780

argument of § 11.2.4 holds separately for the apparatuses A and A′ at the end of the process. A mere counting of the3781

pair of outcomes ε, ε′ then provides experimentally the probability (8.79).3782

However, the present process cannot be regarded as an ideal measurement. On the one hand, the above-mentioned3783

correlations between the final state of S and the indications of the apparatus are not complete; they are limited by3784

the inequality (8.77). In an ideal measurement the correlation must be complete: if the apparatuses are such that3785

they provide well-defined outcomes at each run (section 11), and if for a given run we read +mF on the apparatus M3786

measuring ŝz, the spin S must have been led by the ideal process into the pure state |↑〉. Here we cannot make such3787

assertions about an individual system, and we cannot use the process as a preparation.3788

On the other hand, in an ideal measurement, the outcome of the process is unique for both S and M in case S is3789

initially in an eigenstate of the tested quantity. Suppose the spin S is initially oriented up in the z-direction, that is,3790

r̂(0) = |↑〉〈↑|. The response of the apparatuses M and M′ is given by (8.79) as3791
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P++ = P+− =
1
4

(1 + λ), P−+ = P−− =
1
4

(1 − λ), (8.80)

so that there exists a probability 1
2 (1 − λ) to read the wrong result −mF on M. Indeed, without even solving the3792

equations of motion to express the efficiency factors λ and λ′ in terms of the various parameters of the model, we can3793

assert that λ is smaller than 1: Because all Pεε′ must be non-negative for any initial state of S, and because (8.79) has3794

the form 1
4 (1 + a · 〈ŝ(0)〉), we must have |a| < 1, so that λ and λ′ should satisfy3795

λ2 + λ′2 ≤ 1, (8.81)

and because not only ŝz but also ŝx are tested, λ′ should be non zero so that the probability of failure 1
2 (1− λ) is finite.3796

It is therefore clear why the attempt to perform a simultaneous ideal measurement of ŝx and ŝz fails. Both Born’s rule3797

and von Neumann’s truncation are violated.3798

Nevertheless, consider a set of repeated experiments in which we read simultaneously the indications of the two3799

apparatuses M and M′. If the runs are sufficiently numerous, we can determine the probabilities Pεε′ from the fre-3800

quencies of occurrence of the four possible outcomes ±mF, ±mF′ . Let us assume that the coefficients λ, λ′, which3801

depend on the parameters of the model, take significant values. This requires an adequate choice of these parameters.3802

In particular, the couplings g and g′, needed to trigger the beginning of the registration, should however be small3803

and should soon be switched off so as to reduce the blurring effect of the precession around b. This smallness is3804

consistent with the choice of a second order transition for M, already noted. Finally, the couplings γ, γ′ should ensure3805

registration before disorder is settled. Under such conditions, inversion of eq. (8.79) yields3806

〈ŝz(0)〉 = r↑↑(0) − r↓↓(0) =
1
λ

(P++ + P+− − P−+ − P−−),

〈ŝx(0)〉 = r↑↓(0) + r↓↑(0) =
1
λ′

(P++ − P+− + P−+ − P−−). (8.82)

Thus, a sequence of repeated experiments reveals the initial expectation values of both ŝz and ŝx, although these3807

observables do not commute.3808

Paradoxically, as regards the determination of an unknown initial density matrix, the present process is more3809

informative than an ideal measurement with a single apparatus [277]. Repeated measurements of ŝz yield r↑↑(0) (and3810

r↓↓(0)) through counting of the outcomes ±mF of M. Here we moreover find through repeated experiments the real3811

part of r↑↓(0). However, more numerous runs are needed to reach a given precision if λ and λ′ are small. (If the3812

parameters of the model are such that λ and λ′ nearly vanish, the relaxation of M and M′ is not controlled by S, all3813

Pεε′ lie close to 1
4 , and the observation of the outcomes is not informative since they are fully random.)3814

More generally, for a repeated process using three apparatuses M, M′ and M′′ coupled to ŝz, ŝx and ŝy, respectively,3815

the statistics of readings allows us to determine simultaneously all matrix elements of the initial density operator r̂(0).3816

The considered single compound apparatus thus provides full statistical information about the state r̂(0) of S. Our3817

knowledge is gained indirectly, through an expression of the type (8.82) which involves both statistics and calibration3818

so as to determine the parameters λ, λ′ and λ′′. A process of the present type, although it violates the standard rules of3819

the ideal measurement, can be regarded as a complete statistical measurement of the initial state of S. The knowledge3820

of the efficiency factors allows us to determine simultaneously the statistics of the observables currently regarded as3821

incompatible. The price to pay is the loss of precision due to the fact that the efficiency factors are less than 1, which3822

requires a large number of runs.3823

The dynamics thus establish a one-to-one correspondence between the initial density matrix of S, which embeds3824

the whole quantum probablistic information on S, and the classical probabilities of the various indications that may3825

be registered by the apparatuses at the final time. The possibility of such a mapping was considered in [68]. The3826

size of the domain in which the counting rates may lie is limited; for instance, if S is initially polarized along z in3827

(8.79), no Pεε′ can lie beyond the interval [ 1
4 (1 − λ), 1

4 (1 + λ)]. The limited size of the domain for the probabilities3828

of the apparatus indications is needed to reconcile the classical nature of these probabilities with the peculiarities3829

of the quantum probabilities of S that arise from non commutation. It also sets limitations on the precision of the3830

measurement.3831
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Motivated by the physics of spin-orbit interaction in solids, Sokolovski and Sherman recently studied a model3832

related to (8.72) [284]. Two components of the spin 1
2 couple not with collective magnetizations as in (8.72), but with3833

the components of the momentum (the proper kinetic energy is neglected so that these are the only two terms in the3834

Hamiltonian). The motivation for studing this model is the same as above: to understand the physics of simultaneous3835

measurement for two non-commuting observables [284]. The authors show that, as a result of interaction, the average3836

components of the momentum get correlated with the time-averaged values of the spin [instead of the initial values of3837

the spin as in (8.78), (8.79)]. This difference relates to the fact that the model by Sokolovski and Sherman does not3838

have macroscopic measuring apparatuses that would enforce relaxation in time.3839

8.3.4. Testing Bell’s inequality3840

Love levels all inequalities3841

Italian proverb3842

Bell’s inequality for an EPR [51] pair of spins is expressed in the CHSH form as [285]3843

|〈ŝ(1)
a ŝ(2)

a′ 〉 + 〈ŝ
(1)
b ŝ(2)

a′ 〉 + 〈ŝ
(1)
a ŝ(2)

b′ 〉 − 〈ŝ
(1)
b ŝ(2)

b′ 〉| ≤ 2, (8.83)

which holds for classical random variables s = ±1. If ŝ(1)
a and ŝ(1)

b are the components of a quantum spin ŝ(1) in the3844

two fixed directions a and b, ŝ(2)
a′ and ŝ(2)

b′ the components the other spin ŝ(2) in directions a′ and b′, the left-hand side3845

of (8.83) can rise up to 2
√

2 86.3846

Standard measurement devices allow us to test simultaneously a pair of commuting observables, for instance ŝ(1)
a3847

and ŝ(2)
a′ . At least theoretically, the counting rates in repeated runs directly provide their correlation, namely 〈ŝ(1)

a ŝ(2)
a′ 〉.3848

However, since ŝ(1)
a and ŝ(1)

b , as well as ŝ(2)
a′ and ŝ(2)

b′ do not commute, we need four different settings to determine3849

the four terms of (8.83). Checking the violation of Bells inequalities thus requires combining the outcomes of four3850

incompatible experimental contexts [150, 151, 152], in each of which the spin pair is being tested through repeated3851

runs. This necessity may be regarded as a “contextuality loophole” [153, 154]. Either hidden variables exist, and3852

they cannot be governed by ordinary probabilities and ordinary logic, since there is no global distribution function3853

that would yield as marginals the partial results tested in the four different contexts. Or we must admit that quantum3854

mechanics forbids us to put together the results of these different measurements. The latter alternative is favoured3855

by the solution of models, in which the values of physical quantities do not pre-exist but are produced during a3856

measurement process owing to the interaction between the system and the apparatus. Since these values reflect the3857

reality of the system only within its context, it appears inconsistent to put them together [150, 151, 152, 153, 154].3858

In the present situation it is tempting to imagine using a combination of apparatuses of the previous type so as to3859

simultaneously test all four non-commuting observables ŝ(1)
a , ŝ(1)

b , ŝ(2)
a′ , and ŝ(2)

b′ through repeated runs. Such a unique3860

experimental setting would bypass the contextuality loophole. However, as shown in § 8.3.3, the counting rates of the3861

two apparatuses associated with the components ŝ(1)
a and ŝ(1)

b of the first spin are not directly related to the statistics of3862

these components, but only reflect them through an efficiency factor λ at most equal to 1/
√

2. For the pair of spins,3863

one can deduce a correlation such as 〈ŝ(1)
a ŝ(2)

a′ 〉 from the statistical indications of the corresponding apparatuses, but3864

this quantum correlation is at least equal to twice the associated observed correlation (since 1/λ2 > 2).3865

Thus, with this experimental setting which circumvents the contextuallity loophole, the correlations directly ex-3866

hibited by the counting rates satisfy Bell’s inequality; this is natural since the outcomes of the macroscopic apparatus3867

are measured simultaneously and therefore have a classical nature [287]. However, from these very observations,3868

we can use standard quantum mechanics to analyse the results. We thus infer indirectly from the observations, by3869

using a mapping of the type (8.82), the tested quantum correlations (8.83) between spins components. Within a single3870

set of repeated experiments where the various data are simultaneously registered, we thus acknowledge the viola-3871

tion of Bell’s inequality. Here this violation no longer appears as a consequence of merging incompatible sets of3872

measurements, but as a consequence of a theoretical analysis of the ordinary correlations produced in the apparatus.3873

86For the establishment of Bell-type equalities for SQUIDs, see Jaeger et al. [286]
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9. Analysis of the results3874

And the rain from heaven was restrained3875

Genesis 8.23876

In section 3 we have introduced the Curie–Weiss model for the quantum measurement of a spin 1
2 and in sections3877

4–8 we have discussed the dynamics of the density operator characterizing a large set of runs. For the readers who3878

have not desired to go through all the details, and for those who did, we resume here the main points as a separate3879

reading guide, and add pedagogical hints for making students familiar with the matter and techniques. We will discuss3880

the solution of the quantum measurement problem for this model in section 11 by considering properties of individual3881

runs.3882

9.1. Requirements for models of quantum measurements3883

J’ai perdu mon Eurydice87
3884

Che farò senza Euridice?88
3885

Christoph Willibald Gluck, Orphée et Eurydice; Orfeo ed Euridice3886

A model for the apparatus A and its coupling with the tested system S that accounts for the various properties of3887

ideal quantum measurements should in principle satisfy the following requirements (“R”):3888

R1: simulate as much as possible nearly ideal real experiments, and be sufficiently flexible to allow discussing imper-3889

fect processes;3890

R2: ensure unbiased, robust and permanent registration by the pointer of A, which should therefore be macroscopic;3891

R3: involve an apparatus initially in a metastable state and evolving towards one or another stable state under the3892

influence of S, so as to amplify this signal; the transition of A, instead of occurring spontaneously, is triggered by S;3893

R4: include a bath where the free energy released because of the irreversibility of the process may be dumped;3894

R5: be solvable so as to provide a complete scenario of the joint evolution of S + A and to exhibit the characteristic3895

times;3896

R6: conserve the tested observable;3897

R7: lead to a final state devoid of “Schrödinger cats”; for the whole set of runs (truncation, § 1.3.2), and to a von3898

Neumann reduced state for each individual run;3899

R8: satisfy Born’s rule for the registered results;3900

R9: produce, for ideal measurements or preparations, the required diagonal correlations between the tested system S3901

and the indication of the pointer, as coded in the expression (9.1) for the final state of S + A;3902

R10: ensure that the pointer gives at each run a well-defined indication; this requires sufficiently complex interactions3903

within the apparatus (dynamical stability and hierarchic structure of subensembles, see subsection 11.2).3904

These features need not be fulfilled with mathematical rigor. A physical scope is sufficient, where violations may3905

occur over unreachable time scales or with a negligible probability.3906

87I lost my Euridice
88What shall I do without Euridice?
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9.2. Features of the Curie–Weiss model3907

When you can measure what you are speaking about,3908

and express it in numbers, you know something about it3909

Lord Kelvin3910

The above Curie–Weiss model is satisfactory in this respect (except for the requirement R10 which will be dis-3911

cussed in § 11.2.1). Its choice (section 3) has relied on a compromise between two conflicting requirements. On the3912

one hand, the apparatus A simulates a real object, a magnetic dot which behaves as a magnetic memory. On the other3913

hand, the Hamiltonian of S + A is sufficiently simple so as to afford an explicit and detailed dynamical solution. The3914

registration device is schematized as a set M of N Ising spins (the magnet). The size of the dot is supposed to be much3915

smaller than the range of the interactions, both among the N spins and between them and the tested spin S. We further3916

simplify by taking into account only interactions between the z-components of the spins of M and S. Finally, as in a3917

real magnetic dot, phonons (with a quasi-ohmic behavior [121, 122, 173, 174, 196]) behave as a thermal bath B which3918

ensures equilibrium in the final state (Fig. 3.1). In spite of the schematic nature of the model, its solution turns out to3919

exhibit a rich structure and to display the various features listed in subsection 9.1.3920

In particular, the choice for A = M + B of a system which can undergo a phase transition implies many properties3921

desirable for a measuring apparatus. The weakness of the interaction γ between each spin of the magnet M and3922

the phonon bath B, maintained at a temperature T lower than Tc, ensures a long lifetime for the initial metastable3923

paramagnetic state. By itself, the system M+B would ultimately relax spontaneously towards a stable state, but here3924

its transition is triggered by S. The symmetry breaking in the dynamics of the measurement produces either one of3925

the two possible final stable ferromagnetic states, in one-to-one correspondence with the eigenvalues of the tested3926

observable ŝz of the system S, so that the sign of the final magnetization can behave as a pointer. It is this breaking3927

of symmetry which underlies registration, entailing the irreversibility of the transition from the paramagnetic to either3928

one of the ferromagnetic macroscopic states. Moreover, the built-in symmetry between the two possible outcomes of3929

A prevents the appearance of bias.3930

An essential property of a measurement, often overlooked, is the ability of the apparatus A to register the indication3931

of the pointer. Here this is ensured by the large value of the number N of spins of M, which entails a neat separation3932

between the two ferromagnetic states of M and their extremely long lifetime. This stability warrants a permanent3933

and robust registration. The large value of N is also an essential ingredient in the proof of the uniqueness of the3934

indication fo the pointer in each run (§ 11.2.4). In both the paramagnetic state and the ferromagnetic states, the3935

pointer variable m presents statistical fluctuations negligible as 1/
√

N. Moreover, breaking of invariance makes3936

quantum coherences ineffective (§ 11.2.4). The nature of the order parameter, a macroscopic magnetization, also3937

makes the result accessible to reading, processing or printing. These properties cannot be implemented in models for3938

which the pointer is a microscopic object.3939

The coupling between the tested spin S and the apparatus A has been chosen in such a way that the observable ŝz3940

is conserved, [ŝz, Ĥ] = 0, so as to remain unperturbed during its measurement. This coupling triggers the beginning3941

of the registration process, which thereby ends up in a situation which informs us about the the physical state of S at3942

a certain moment, so that the process might be used as a measurement. This requires a sufficiently large value of the3943

coupling constant g which characterizes the interaction of S and M.3944

Once the probability distribution of the magnetization m has left the vicinity of m = 0 to move towards either3945

+mF or −mF, the motion of this pointer is driven by the bath through the coupling γ between M and B. Somewhat3946

later the interaction g between S and A becomes ineffective and can be switched off. It is the interplay between the3947

metastability of the initial state of A, the initial triggering of M by S, and the ensuing action of B on M which ensures3948

an amplification of the initial perturbation. This amplification is necessary since the indication of the pointer M, which3949

is macroscopic, should reflect an effect caused by the tested system S, which is microscopic — the very essence of a3950

measurement.3951

Such a number of adequate properties makes this model attractive, but technical developments were needed to3952

elaborate in sections 4 to 7 a rigorous proof that the final state of S + A has the form (1.7), viz.3953

D̂ (tf) =
∑

i

(
Π̂ir̂ (0) Π̂i

)
⊗ R̂i =

∑
i

pir̂i ⊗ R̂i, (9.1)
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where r̂ describes S and R̂ describes A. This form encompasses most among the required specific features of ideal3954

quantum measurements, in particular the absence of off-diagonal terms. These developments have allowed us to3955

discuss the conditions under which the process might be used as a measurement, and also to explore what happens if3956

one or another condition is violated.3957

Note, however, that the final form (9.1) of the density operator of S + A concerns the statistics of a large set of runs3958

of the measurement. This form is necessary, but not sufficient, to ensure that the interaction process can be regarded3959

as an ideal measurement. It remains to elaborate the physical interpretation of this result by turning to individual3960

measurements. We postpone his task to section 11.3961

9.3. Scenario of the Curie–Weiss ideal measurement: the characteristic time scales3962

The above study (sections 4–7) of the dynamical process undergone by S + A has revealed several successive steps3963

involving different time scales. These steps will be resumed in section 11 (table 1).3964

9.3.1. Preparation3965

Co se doma uvar̆ı́, to se doma snı́ 89
3966

Czech proverb3967

Before S and A are coupled, A should be prepared in a metastable state. Indeed, in the old days of photography3968

the unexposed film was metastable and could not be prevented from evolving in the dark on a time scale of months. In3969

our magnetic case, for quartic interactions within M, the lifetime of the paramagnetic initial state is extremely large,3970

exponentially large in N. For quadratic interactions with coupling constant J, it was evaluated in section § 7.3.2 (eq.3971

(7.66)) as3972

τpara =
~

γ(J − T )
lnα
√

N, (9.2)

where α is typically of order 1/10, and it is larger than all other characteristic times for α
√

N � 1. We can thus engage3973

the measurement process by switching on the interaction between S and M during the delay τpara after preparation of3974

A, before the paramagnetic state is spontaneously spoiled.3975

9.3.2. Truncation3976

Let us recall (§ 3.3.2 and Fig. 3.2) our decomposition of the density matrix D̂ of the total system S + A into blocks3977

with definite value sz =↑, ↓ of the tested spin component ŝz:3978

D̂ =

(
R̂↑↑ R̂↑↓

R̂↓↑ R̂↓↓

)
. (9.3)

The first stage of the measurement process is the truncation, defined as the disappearance of the off-diagonal blocks3979

R̂↑↓ and R̂↓↑ of the full density matrix (section 5). It takes place during the truncation time3980

τtrunc =
~

√
2Nδ0g

, (9.4)

which is governed by the coupling constant g between S and M and the size N of the pointer (the fluctuation of M3981

in the paramagnetic state is δ0/
√

N). This characteristic time is the shortest of all; its briefness reflects an effect3982

produced by a macroscopic object, the pointer M, on a microscopic one, the tested system S. During the delay τtrunc,3983

the off-diagonal components a = x, y of the spin S decay on average as 〈ŝa(t)〉 = 〈ŝa(0)〉 exp[−(t/τtrunc)2].3984

Over the time scale τtrunc, only the off-diagonal blocks R̂↑↓ = R̂
†

↓↑
of the overall density matrix D̂ of S + A3985

are affected by the evolution. Correlations between S and M, involving larger and larger numbers k = 1, 2, · · · of3986

spins of M, such as 〈ŝam̂k(t)〉c ∝ tk exp[−(t/τtrunc)2] (a = x, y) are successively created in a cascade: They develop3987

later and later, each one reaches a small maximum for t = τtrunc
√

k/2 and then tends to zero (§ 5.1.3 and Fig. 5.1).3988

89What is cooked home is eaten home
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The information originally carried by the off-diagonal elements of the initial density matrix of S are thus transferred3989

towards correlations which couple the system S with more and more spins of M and eventually decline (§ 5.1.4).3990

When t increases far beyond τtrunc, all the matrix elements of R̂↑↓ that contribute to correlations of rank k � N tend to3991

zero. Correlations of higher rank k, for large but finite N, are the residue of reversibility of the microscopic evolution3992

generated by ĤSA (§ 5.3.2).3993

If the total Hamiltonian of S + A did reduce to the coupling ĤSA = −Ngŝzm̂ which produces the above behavior,3994

the truncation would be provisional, since S + A would periodically return to its initial state with the recurrence time3995

τrecur =
π~
2g
, (9.5)

much larger than τtrunc (§ 5.3.1). As in spin-echo experiments, the extremely small but extremely numerous correla-3996

tions created by the interaction between S and the many spins of M would conspire to progressively reconstruct the3997

off-diagonal blocks of the initial uncorrelated state of S + A: The reversibility and simplicity of the dynamics would3998

ruin the initial truncation.3999

Two possible mechanisms can prevent such recurrences to occur. In subsection 6.1 we slightly modify the model,4000

taking into account the (realistic) possibility of a spread δg in the coupling constants gn between S and each spin4001

of the magnet M. The Hamiltonian (6.1) with the conditions (6.2) then produces the same initial truncation as with4002

constant g, over the same characteristic time τtrunc, but recurrences are now ruled out owing to the dispersion of the4003

gn, which produces an extra damping as exp[−(t/τM
irrev)2]. The irreversibility time induced by the spreading δg in the4004

spin-magnet couplings,4005

τM
irrev =

~
√

2Nδg
, (9.6)

is intermediate between τtrunc and τrecur provided δg is sufficiently large, viz. g/
√

N � δg � g. As usual for a4006

reversible linear evolution, a recurrence phenomenon still occurs here, but the recurrence time is inaccessibly large as4007

shown in § 6.1.2 (see eq. (6.20)). The numerous but weak correlations between S and M, issued from the off-diagonal4008

blocks of the initial density matrix of S, are therefore completely ineffective over any reasonable time lapse.4009

An alternative mechanism can also rule out any recurrence, even if the couplings between S and the spins are all4010

equal (subsection 6.2). In this case, the required irreversibility is induced by the bath, which produces an extra decay,4011

as exp[−NB(t)], of the off-diagonal blocks (the shape of B(t) is shown in Fig 6.1). The initial truncation of section 5,4012

for t � 1/Γ, is not affected by the interaction with the bath if NB(τtrunc) � 1, that is, if4013

γ~2Γ2

8πNδ4
0g2
� 1, (9.7)

where Γ is the Debye cutoff on the phonon frequencies. At times t such that t � ~/2πT , B(t) is quasi linear and the4014

bath produces an exponential decay, as exp(−t/τB
irrev), where the bath-induced irreversibility time is defined as4015

τB
irrev =

2~ tanh g/T
Nγg

'
2~

NγT
. (9.8)

This expression is a typical decoherence time, inversely proportional to the temperature T of B, to the bath-magnet4016

coupling γ and to the number N of degrees of freedom of the system S + M. The p-th recurrence is then damped by a4017

factor exp(−pτrecur/τ
B
irrev), so that the phonon bath eliminates all recurrences if τB

irrev � τrecur.4018

At this stage, the truncation is achieved in the sense that the off-diagonal blocks R̂↑↓(t) and R̂↓↑(t) of the density4019

operator (9.3) of S + A have practically disappeared in a definitive way. The off-diagonal correlations created during4020

the truncation process have been irremediably destroyed at the end of this process, whereas the diagonal correlations4021

needed to register in A the tested properties of S are not yet created. See also § 11.2.4 below.4022
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9.3.3. Registration by the pointer4023

Our fates are as registered in the scripts of heaven4024

Japanese proverb4025

Just after the above processes are achieved, the diagonal blocks R̂↑↑(t) and R̂↓↓(t) as well as the marginal density4026

operator R̂(t) = trSD̂(t) = R̂↑↑(t) + R̂↓↓(t) of A remain nearly unaffected. The process cannot yet be regarded as a4027

measurement: The pointer gives no indication, m is still small, and no correlation exists between A and the initial4028

state of S. The registration then starts and proceeds on time scales much larger than the above ones. It is a slower4029

process because it leads to a change of a macroscopic object, the apparatus, triggered by the microscopic S. We term4030

as “registration” a process which modifies the density operator of S + A associated with a large set of measurements.4031

To take advantage of the information stored thereby in the pointer of A, we need that for each individual measurement4032

the indication of this pointer be well-defined (see section 11).4033

After a brief transient regime, the process becomes Markovian (§ 7.1.1). The evolution of each of the two diagonal4034

blocks R̂↑↑(t) or R̂↓↓(t) can be expressed in terms of that of the corresponding probability distribution P↑↑(m, t) or4035

P↓↓(m, t) for the magnetization of M, which obeys an equation of the Fokker-Planck type [253]. This equation,4036

presenting classical features (§ 7.1.2), is governed for P↑↑(m, t) by a drift velocity v(m) given by (7.6) and illustrated4037

by Figs. 7.1 and 7.2, and by a diffusion coefficient given by (7.7). The irreversibility of the process is exhibited4038

by an H-theorem (§ 7.1.3) which implies the decrease of the free energy of M. Thus, the total entropy of M + B4039

increases, and some energy is dumped from M to B, while the transition leads from the paramagnetic to either one of4040

the ferromagnetic states. The existence of two possible final states is associated with breaking of ergodicity, discussed4041

for finite but large N in § 7.1.4 and subsection 7.3.4042

For purely quadratic interactions within M (the coupling (3.7) having the form Jm̂2), the registration proceeds4043

in three stages (§ 7.2.3), illustrated by Figs. 7.3 and 7.5. Firstly the distribution P↑↑(m, t), initially a paramagnetic4044

symmetric peak around m = 0, is shifted faster and faster towards the positive direction of m and it widens, under the4045

conjugate effects of both S and B. For suitably chosen parameters, after a delay given by Eq. (7.44),4046

τreg =
~

γ(J − T )
, (9.9)

that we term the first registration time, P↑↑(m, t) is entirely located in the positive region of m, its tail in the region4047

m < 0 has then become negligible. Symmetrically, P↓↓(m, t) lies entirely in the m < 0 region for t > τreg. Thereafter4048

the coupling between M and S becomes ineffective and may be switched off, so that the registration is virtually, but4049

not yet fully, achieved at this time τreg.4050

The last two stages describe a standard relaxation process for which the tested system S is no longer relevant.4051

The stochastic motion of m is first governed mainly by the contribution of B to the drift of the magnetization m. The4052

distribution P↑↑(m, t) moves rapidly towards +mF, first widening, then narrowing. We term as second registration time4053

τ′reg the delay needed for the average magnetization to go from 0 to the vicinity of mF. It is expressed by Eq. (7.48),4054

together with (7.47) and (7.36). During the third stage of the registration, both the drift and the diffusion generated4055

by B establish thermal equilibrium of the pointer in an exponential process, and stabilize the distribution P↑↑(m, t)4056

around +mF. Thus, R̂↑↑(t) ends up as r↑↑(0)R̂⇑, where R̂⇑ denotes the ferromagnetic equilibrium state with positive4057

magnetization, and, likewise, R̂↓↓(t) ends up as r↓↓(0)R̂⇓.4058

For purely quartic interactions within M (coupling as Jm̂4), or for 3J4 > J2, the transition is of first order. We can4059

again distinguish in the registration the above three stages (§ 7.2.4), illustrated by Figs 7.4 and 7.6. Here the first stage4060

is slowed down by the need to pass through the bottleneck m ' mc given by (7.34). The widening of the distribution4061

P↑↑(m, t) is much larger than for quadratic interactions, because diffusion is effective during the large duration of the4062

bottleneck stage. Both the first and the second registration times defined above are nearly equal here, and given by4063

(7.51), that is,4064

τreg =
π~
γT

√
mcT

g − hc
, mc '

√
T
3J
, hc '

2
3

Tmc. (9.10)

The last stage is again an exponential relaxation towards the ferromagnetic state +mF for P↑↑(m, t).4065
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The ratio τreg/τtrunc between the registration and truncation times, proportional to
√

N/γ, is large for two reasons,4066

the weakness of γ and the large value of N. As usual in statistical mechanics, the coexistence of very different time4067

scales is associated here with exact and approximate conservation laws, expressed by [ŝz, Ĥ] = 0 and [m̂, Ĥ] =4068

[m̂, ĤMB] ∝
√
γ, which is small because γ � 1.4069

If N is finite, the registration is not permanent. However, the characteristic time of erasure τeras is much larger4070

than the registration time τreg by a factor behaving as an exponential of N (§ 7.3.5).4071

The time scales involved in this Curie–Weiss measurement process present some analogy with the relaxation4072

times in nuclear magnetic resonance [203, 204]. The truncation, i. e., the disappearance of the transverse components4073

〈ŝx〉 and 〈ŝy〉 and of their correlations with A, can be compared to the transverse relaxation in nuclear magnetic4074

resonance (NMR). The truncation time τtrunc, as well as is the relaxation time T ∗2 associated in NMR with a dispersion4075

in the precession frequencies of the spins of a sample due to a non-uniformity of the field along z, are durations of4076

dephasing processes in which complex exponentials interfere destructively. By themselves, these phenomena give rise4077

to recurrences (in our model of measurement) or to spin echoes (in NMR). The bath-induced irreversibility time τB
irrev4078

is comparable to the relaxation time T2: both characterize decoherence effects, namely the damping of recurrences4079

in the measurement, and the complete transverse relaxation which damps the echoes in NMR. Finally the registration4080

time characterizes the equilibration of the diagonal blocks of the density matrix D̂, in the same way as the relaxation4081

time T1 characterizes the equilibration of the longitudinal polarization of the spins submitted to the field along z.4082

9.3.4. Reduction4083

The stages of the measurement process described in §§ 9.3.1–9.3.3 are related to the evolution of the density4084

operator D̂(t) describing the statistics of the observables of S + A for the full ensemble E of runs. Consideration of4085

individual runs requires a study of the dynamics for arbitrary subensembles Esub of E. This study will be achieved in4086

section 11, where we will show that a last stage is required, near the end of the scenario (table 1). The model will then4087

be supplemented with a weak interaction within the apparatus, which produce transitions conserving m between the4088

states of the pointer M. These interactions have a size ∆, and the duration of the relaxation of the subensembles towards4089

equilibrium is characterized by the very short time scale τsub = ~/∆ (Eq 11.17), much shorter than the registration4090

time.4091

The above summary exhibits the different roles played by the various coupling constants. On the one hand,4092

truncation is ensured entirely by the coupling g between S and M. Moreover, the beginning of the registration is also4093

governed by g, which selects one of the alternative ferromagnetic states and which should therefore be sufficiently4094

large. On the other hand, the coupling γ between M and B governs the registration, since the relaxation of M towards4095

ferromagnetic equilibrium requires a dumping of energy in the bath. Finally, the weak interaction ∆ within A governs4096

the subensemble relaxation, which ensures the uniqueness of the outcome of each run and allows reduction.4097

9.4. Conditions for ideality of the measurement4098

What you do not wish for yourself,4099

do not do to others4100

Confucius4101

Strictly speaking, for finite values of the parameters of the model, the process that we have studied cannot be an4102

ideal measurement in a mathematical sense. However, in a physical sense, the situation is comparable to the solution4103

of the irreversibility paradox, which is found by disregarding correlations between inaccessibly large numbers of4104

particles and by focusing on time scales short compared to the inaccessible Poincaré recurrence time. Here (after4105

having achieved the solution in section 11) we will likewise identify physically the process with an ideal measurement,4106

within negligible deviations, provided the parameters of the model satisfy some conditions.4107

The definition of the apparatus includes a macroscopic pointer, so that4108

N � 1. (9.11)

The temperature T of the bath B should lie below the transition temperature of the magnet M, which equals J for4109

quadratic interactions (q = 2) and 0.363 J for purely quartic interactions (q = 4).4110
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Our solution was found by retaining only the lowest order in the coupling between B and M. Neglecting the higher4111

order terms is justified provided4112

γ �
T
J
. (9.12)

This condition ensures that the autocorrelation time of the bath, ~/T , is short compared to the registration time (9.9)4113

or (9.10). We have also assumed a large value for the Debye cutoff, a natural physical constraint expressed by4114

~Γ � J. (9.13)

The irreversibility of the truncation, if it is ensured by a dispersion δg of the couplings between tested spin and4115

apparatus spins, requires a neat separation of the time scales τtrunc � τM
irrev � τrecur, that is4116

δ0 �
δg
g
�

1
π

√
2
N
. (9.14)

The coefficient δ0, the width of the initial paramagnetic distribution of m
√

N, is somewhat larger than 1 for q = 24117

(quadratic Ising interactions, Eq. (3.52) and equal to 1 for q = 4 (quartic interactions) or when using a strong RF field4118

to initialize the magnet, so that the condition (9.14) is readily satisfied.4119

If the irreversibility of the truncation is ensured by the bath, we should have NB(τrecur) = τrecur/τ
B
irrev � 1, that is4120

γ �
4
πN

tanh
g
T
. (9.15)

This condition provides a lower bound on the bath-magnet coupling. An upper bound is also provided by (9.7) if we4121

wish the initial truncation to be controlled by M only. Both bounds are easily satisfied for N � 1.4122

The coupling g between S and M has been assumed to be rather weak,4123

g < T. (9.16)

However, this coupling should be sufficiently strong to initiate the registration, and to ensure that the final indication4124

of the pointer after decoupling will be +mF if S lies initially in the state |↑〉, −mF if it lies initially in the state |↓〉. For4125

q = 2, this condition is not very stringent. We have seen in § 7.2.2 that it is expressed by (7.41), namely4126

g �
(J − T )δ1
√

N
, δ2

1 = δ2
0 +

T
J − T

=
T0

T0 − J
+

T
J − T

. (9.17)

For purely quartic interactions − 1
4 Jm̂4 (or for 3J4 > J2) the paramagnetic state is locally stable in the absence of4127

interaction with S. The coupling g should therefore be larger than some threshold, finite for large N,4128

g > hc '

√
4T 3

27J
, (9.18)

so as to trigger the phase transition from m = 0 to m = ±mF during the delay (9.10). Moreover, if we wish the4129

decoupling between S and A to take place before the magnet has reached ferromagnetic equilibrium, g must lie4130

sufficiently above hc (see Eq. (7.57)).4131

If all the above conditions are satisfied, the final state reached by S + A for the full set of runs of the measurement is4132

physically indistinguishable from the surmise (9.1), which encompasses necessary properties of ideal measurements,4133

to wit, truncation and unbiased registration, that is, full correlation between the indication of the apparatus and t he4134

final state of the tested system. However, these properties are not sufficient to ensure the uniqueness of the outcome4135

of individual runs (section 11).4136
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9.5. Processes differing from ideal measurements4137

In de beperking toont zich de meester90
4138

Le mieux est l’ennemi du bien91
4139

Dutch and French sayings4140

Violations of some among the conditions of subsection 9.4 or modifications of the model allow us to get a better4141

insight on quantum measurements, by evaluating deviations from ideality and exploring processes which fail to be4142

measurements, but are still respectable evolutions of coupled quantum mechanical systems.4143

In subsection 5.2, we modify the initial state of the apparatus, assuming that it is not prepared in an equilibrium4144

paramagnetic state. This discussion leads us to understand truncation as a consequence of the disordered nature of4145

the initial state of M, whether or not this state is pure (§ 5.2.2). For “squeezed” initial states, the rapid truncation4146

mechanism can even fail (§ 5.2.3).4147

Imperfect preparation may also produce another kind of failure. In § 7.3.3 we consider a bias in the initial state4148

due to the presence during the preparation stage of a parasite magnetic field which produces a paramagnetic state with4149

non-zero average magnetization. Wrong registrations, for which M reaches for instance a negative magnetization −mF4150

in the final state although it is coupled to a tested spin in the state sz = +1, may then occur with a probability expressed4151

by (7.79).4152

Section 6 shows that recurrences are not washed out if the conditions Eq. (9.14) or (9.15) are not fulfilled. The4153

probability for the p-th recurrence to occur is exp[−(pτrecur/τ
M
irrev)2] in the first case, exp(−pτrecur/τ

B
irrev) in the second4154

case. The process is not an ideal measurement if recurrences are still present when the outcome is read.4155

The violation of the condition (9.17) for q = 2 or (9.18) for q = 4 prevents the registration from taking place4156

properly. For q = 2, if the coupling g is too weak to satisfy (9.17), the apparatus does relax towards either one of the4157

ferromagnetic states ±mF, but it may provide a false indication. The probability for getting wrongly −mF for an initial4158

state |↑〉 of S, evaluated in § 7.3.3, is given by (7.79). For q = 4, the registration is aborted if (9.18) is violated: the4159

magnet M does not leave the paramagnetic region, and its magnetization returns to 0 when the coupling is switched4160

off.4161

The large number N of elements of the pointer M is essential to ensure a faithful and long-lasting registration for4162

each individual run. It also warrants a brief truncation time, and an efficient suppression of recurrences by the bath.4163

We study in subsection 8.1 the extreme situation with N = 2, for which m̂ has only two “paramagnetic” eigenstates4164

with m = 0 and two “ferromagnetic” eigenstates with m = ±1. Although correlations can be established at the time4165

(8.20) between the initial state of S and the magnet M in agreement with Born’s rule, there is no true registration.4166

The indication of M reached at that time is lost after a delay τobs expressed by (8.15); moreover, a macroscopic extra4167

apparatus is needed to observe M itself during this delay. On the other hand, the truncation process, governed here by4168

the bath, is more akin to equilibration than to decoherence; it has an anomalously long characteristic time, longer than4169

the registration time. These non-idealities of the model with N = 2 are discussed in § 8.1.5. However, such a device4170

might be used (§ 8.1.6) to implement the idea of determining all four elements of the density matrix of S by means of4171

repeated experiments using a single apparatus [278, 279, 280].4172

In subsection 8.2 we tackle the situation in which the measured observable ŝz is not conserved during the evolution.4173

An ideal measurement is still feasible under the condition (8.71), but it fails if S and A are not decoupled after some4174

delay (§ 8.2.5).4175

The model can also be extended (subsection 8.3) by simultaneously coupling S with two apparatuses A and4176

A′ which, taken separately, would measure ŝz and ŝx, respectively. The simultaneous measurement of such non-4177

commuting observables is of course impossible. However, here again, repeated runs can provide full information on4178

the statistics of both ŝz and ŝx in the initial state r̂(0) (§ 8.3.3). More generally, all the elements of the density matrix4179

r̂(0) characterizing an ensemble of identically prepared spins S can be determined by repeated experiments involving4180

a compound apparatus A+A′+A′′, where A, A′ and A′′ are simultaneously coupled to the observables ŝx, ŝy and ŝz,4181

respectively. Indirect tests of Bell’s inequalities may rely on this idea (§ 8.3.4).4182

90Conciseness exposes the master
91Best is the enemy of good
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9.6. Pedagogical hints4183

The path is made by walking4184

Le mouvement se prouve en marchant4185

African and French proverbs4186

Models of quantum measurements give rise to many exercises of tutorial interest, which help the students to better4187

grasp quantum (statistical) mechanics. We have encountered above several questions which may inspire teachers. The4188

exercises that they suggest require the use of density operators. As quantum mechanics is often taught only in the4189

language of pure states, we present in appendix G an introduction for students on this topic.4190

For instance, the treatment of a thermal bath at lowest order in its coupling with the rest of the system (subsection4191

4.2 and Appendix A), although standard, deserves to be worked out by advanced students.4192

For a general class of models of measurement involving a pointer with many degrees of freedom, the truncation4193

mechanism exhibited in § 5.1.2 shows how dephasing can eliminate the off-diagonal blocks of the density matrix of S4194

+ A over a short time through interferences.4195

The evaluation of the recurrence time for the pointer coupled with the tested system, or more generally for an4196

arbitrary quantum system (or for a linear dynamical system) having a random spectrum (§ 6.1.2 and Appendix C) is4197

also of general interest.4198

We now give two further examples of exercises for students which highlight the central steps of the quantum4199

measurement.4200

9.6.1. End of “Schrödinger cats”4201

Focusing on the Curie-Weiss model, we present here a simpler derivation of the processes which first lead to trun-4202

cation and which prevent recurrences from occurring. We showed in section 6 and Appendix D that the interactions4203

J2 and J4 between the spins σ̂(n) of M play little role here, so that we neglect them. We further assume that M lies4204

initially in the most disordered state (3.47), that we write out, using the notation (3.1), as4205

R̂M(0) =
1

2N σ̂
(1)
0 ⊗ σ̂

(2)
0 ⊗ · · · ⊗ σ̂

(N)
0 . (9.19)

This occurs for q = 4 and in the general case of J2 > 0 provided the temperature of preparation T0 in (3.52) is much4206

higher than J2, so that δ0 = 1. Then, since the Hamiltonian ĤSA + ĤB + ĤMB is a sum of independent contributions4207

associated with each spin σ̂(n), the spins of M behave independently at all times, and the off-diagonal block R̂↑↓(t) of4208

D̂(t) has the form4209

R̂↑↓(t) = r↑↓(0) ρ̂(1)(t) ⊗ ρ̂(2)(t) ⊗ · · · ⊗ ρ̂(N)(t), (9.20)

where ρ̂(n)(t) is a 2× 2 matrix in the Hilbert space of the spin σ̂(n). This matrix will depend on σ̂(n)
z but not on σ̂(n)

x and4210

σ̂(n)
y , and it will neither be hermitean nor normalized.4211

The task starts with keeping the effect of the bath as in subsection 6.2, but leaves open the possibility for the4212

coupling gn to be random as in subsection 6.1, whence the coupling between S and A reads ĤSA = −ŝz
∑N

n=1 gnσ̂
(n)
z4213

instead of (3.5). (As simpler preliminary exercises, one may keep the gn = g as constant, and/or disregard the bath.)4214

Each factor ρ̂(n)(t), initially equal to 1
2 σ̂

(n)
0 , evolves according to the same equation as (4.8) for R̂↑↓(t), rewritten with4215

N = 1. (To convince oneself of the product structure (9.20), it is instructive to work out the cases N = 1 and N = 24216

in Eq. (4.8) or (4.18).) Admit, as was proven in subsection 6.2 and appendix D, that the effect of the bath is relevant4217

only at times t � ~/2πT , and that in this range ρ̂(n) evolves according to4218

dρ̂(n)(t)
dt

−
2ign

~
ρ̂(n)σ̂(n)

z = −
2γ
~2

[
K̃−

(
2gn

~

)
+ K̃+

(
−

2gn

~

)] [
ρ̂(n) −

1
2
σ̂(n)

0 tr ρ̂(n)
]
. (9.21)

(Advanced students may derive this equation by noting that for N = 1, ρ̂(n) can be identified with P↑↓(m̂ = σ̂z); starting4219

then from Eq. (4.17) for N = 1, keeping in mind that P↑↓(±3) = 0 and verifying that, in the non-vanishing terms, Eq.4220

(4.13) implies that Ω±i = ∓2gnsi/~, they should show that the factors K̃t>(Ω−
↑
) + K̃t<(Ω−

↓
) and K̃t>(Ω+

↑
) + K̃t<(Ω+

↓
) of4221

(4.17) reduce for t � ~/2πT and for J2 = 0 to the symmetric part of K̃(2gn/~) according to (4.18) and (D.21).)4222
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Next parameterize ρ̂(n) as4223

ρ̂(n)(t) =
1
2

exp
[
−Bn(t) + iΘn(t)σ̂(n)

z

]
, (9.22)

and derive from (9.21) the equations of motion4224

dΘn

dt
=

2gn

~
−
γ

~2

[
K̃

(
2gn

~

)
+ K̃

(
−

2gn

~

)]
sin 2Θn,

dBn

dt
=

2γ
~2

[
K̃

(
2gn

~

)
+ K̃

(
−

2gn

~

)]
sin2 Θn, (9.23)

with initial conditions Θn(0) = 0, Bn(0) = 0. Keeping only the dominant contributions for γ � 1, use the expression4225

(3.38) for K̃, find the solution4226

Θn(t) '
2gnt
~

, Bn(t) '
γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

)
, (9.24)

and compare Bn with (6.28) for B.4227

Eqs. (9.22), (9.24) provide the evolution of the density matrix of the spin n from the paramagnetic initial state4228

ρ̂(n)(0) = 1
2 diag(1, 1) to4229

ρ̂(n)(t) =
1
2

diag
(
e2ignt/~, e−2ignt/~

)
exp

[
−
γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

)]
. (9.25)

By inserting (9.25) into (9.20) and tracing out the pointer variables, one finds the transverse polarization of S as4230

1
2
〈ŝx(t) − iŝy(t)〉 ≡ trS,AD̂(t)

1
2

(ŝx − iŝy) = r↑↓(t) ≡ r↑↓(0) Evol(t), (9.26)

where the temporal evolution is coded in the function4231

Evol(t) ≡
(∏N

n=1
cos

2gnt
~

)
exp

− N∑
n=1

γgn

2~
coth

gn

T

(
t −

~
4gn

sin
4gnt
~

) . (9.27)

To see what this describes, the student can first take gn = g, γ = 0 and plot the factor |Evol(t)| from t = 0 to4232

5τrecur, where τrecur = π~/2g is the time after which |r↑↓(t)| has recurred to its initial value |r↑↓(0)|. By increasing4233

N, e.g., N = 1, 2, 10, 100, he/she can convince him/herself that the decay near t = 0 becomes close to a Gaussian4234

decay, over the characteristic time τtrunc of Eq. (9.4). The student may demonstrate this analytically by setting4235

cos 2gnt/~ ≈ exp(−2g2
nt2/~2) for small t. This time characterizes decoherence, that is, disappearance of the off-4236

diagonal blocks of the density matrix; we called it “truncation time” rather than “decoherence time” to distinguish it4237

from usual decoherence, which is induced by a thermal environment and coded in the second factor of Evol(t).4238

The exercise continues with the aim to show that |Evol| � 1 at t = τrecur in order that the model describes a faithful4239

quantum measurement. To this aim, keeping γ = 0, the student can in the first factor of Evol decompose gn = g + δgn,4240

where δgn is a small Gaussian random variable with 〈δgn〉 = 0 and 〈δg2
n〉 ≡ δg

2 � g2, and average over the δgn. The4241

Gaussian decay (6.10) will thereby be recovered, which already prevents recurrences. The student may also take e.g.4242

N = 10 or 100, and plot the function to show this decay and to estimate the size of Evol at later times.4243

Next by taking γ > 0 the effect of the bath in (9.27) can be analyzed. For values γ such that γN � 1 the bath will4244

lead to a suppression. Several further tasks can be given now: Take all gn equal and plot the function Evol(t); take4245

a small spread in them and compare the results; make the small-gn approximation gn coth gn/T ≈ T , and compare4246

again.4247

At least one of the two effects (spread in the couplings or suppression by the bath) should be strong enough to4248

prevent recurrences, that is, to make |r↑↓(t)| � |r↑↓(0)| at any time t � τtrunc, including the recurrence times. The4249
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student can recover the conditions (9.14) or (9.15) under which the two mechanisms achieve to do so. The above4250

study will show him/her that, in the dynamical process for which each spin σ̂(n) of M independently rotates and is4251

damped by the bath, the truncation, which destroys the expectation values 〈ŝa〉 and all correlations 〈ŝam̂k(t)〉 (a = x or4252

y, k ≥ 1), arises from the precession of the tested spin ŝ around the z-axis; this is caused by the conjugate effect of the4253

many spins σ̂(n) of M, while the suppression of recurrences is either due to dephasing if the gn are non-identical, or4254

due to damping by the bath.4255

A less heavy exercise is to derive (5.27) from (5.26); hereto the student first calculates 〈m〉 and then 〈m2〉. Many4256

other exercises may be inspired by sections 5 and 6, including the establishment and disappearance of the off-diagonal4257

spin-magnet correlations (§ 5.1.3); the numerical or analytical derivation of the damping function B(t) (Appendix D);4258

its short-time behavior obtained either as for (D.9) or from the first two terms of the short-time expansion of K(t);4259

the analytical study of the autocorrelation functions K(t), K>t and K<t of the bath for different time scales using the4260

complex plane technique of Appendix D.4261

9.6.2. Simplified description of the registration process4262

We have seen in § 7.1.2 that the registration process looks, for the diagonal block R↑↑(t), as a classical relaxation of4263

the magnet M towards the stable state with magnetization +mF under the effect of the coupling g which behaves in this4264

sector as a positive field. This idea can be used to describe the registration by means of the classical Fokker-Planck4265

equation (7.1) which governs the evolution of the probability distribution P(m, t) = P↑↑(m, t)/r↑↑(0).4266

By assuming explicit expressions for the drift and the diffusion coefficient which enter this equation of motion,4267

one can recover some of the results of section 7 in a form adapted to teaching.4268

In particular, if we keep aside the shape and the width of the probability distribution, which has a narrow peak for4269

large N (§ 7.2.1), the center µ(t) of this peak moves according to the mean-field equation4270

dµ(t)
dt

= v[µ(t)], (9.28)

where v(m) is the local drift velocity of the flow of m., This equation can be solved once v(m) is given, and its general4271

properties do not depend on the precise form of v(m). The first choice is phenomenological: we take v(m) proportional4272

to −dF/dm, where F is the free energy (3.55), resulting in4273

v(m) =
C(m)
~

(
Jmq−1 + g −

T
2

ln
1 + m
1 − m

)
, (9.29)

with a dimensionless, positive function C(m) which may depend smoothly on m in various ways (§ 7.1.2), or even be4274

approximated as a constant. An alternative phenomenological choice consists in deriving from detailed balance, as in4275

§ 7.1.2, the expression (7.14) for v(m), that is, within a multiplicative factor θ(m),4276

v(m) =
1

θ(m)

(
tanh

g + Jmq−1

T
− m

)
. (9.30)

possibly approximating θ as a constant. A more precise way is to derive v(m) from the autocorrelation function of the4277

bath (Eq. (7.6)) as4278

v(m) =
γ

~
(g + Jmq−1)

(
1 − m coth

g + Jmq−1

T

)
. (9.31)

An introductory exercise is to show that the C(m) (or the θ(m)) obtained from equating (9.29) (or (9.30)) to (9.31) is4279

a smooth positive function, finite at the stable or unstable fixed points of Eq. (9.28), given by the condition v(m) = 0,4280

which can in all three cases be written as m = tanh[(g + Jmq−1)/T ].4281

If the coupling g is large enough, the resulting dynamics will correctly describe the transition of the magnetization4282

from the initial paramagnetic value m = 0 to the final ferromagnetic value m = mF. Comparison between quadratic4283

interactions (q = 2) and quartic interactions (q = 4) is instructive. The student can determine in the latter case the4284
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minimum value of the coupling g below which the registration cannot take place, and convince him/herself that it4285

does not depend on the form of C(m). Approaching this threshold from above, one observes the slowing down of the4286

process around the crossing of the bottleneck. This feature is made obvious by comparing the Figs 7.3 and 7.4 which4287

illustrate the two situations q = 2 and q = 4, respectively, and which were evaluated by using the form (9.30)) of v(m).4288

The above exercise overlooks the broadening and subsequent narrowing of the profile at intermediate times, which4289

is relevant for finite values of N. More advanced students may be proposed to numerically solve the time evolution of4290

P(m, t), i. e., the whole registration process, at finite N, taking in the rate equations Eq. (4.16) e.g. N = 10, 100 and4291

1000. For the times of interest, t � ~/Γ, one is allowed to employ the simplified form of the rates from (4.33) and4292

(4.14), and to set Γ = ∞. The relevant rate coefficients are listed at the end of Appendix B.4293

10. Statistical interpretation of quantum mechanics4294

A man should first direct himself in the way he should go.4295

Only then should he instruct others4296

Buddha4297

Measurements constitute privileged tools for relating experimental reality and quantum theory. The solution of4298

models of quantum measurements is therefore expected to enlighten the foundations of quantum mechanics, in the4299

same way as the elucidation of the paradoxes of classical statistical mechanics has provided a deeper understand-4300

ing of the Second Law of thermodynamics, either through an interpretation of entropy as missing information at the4301

microscopic scale [57, 58, 74, 73, 81, 71, 288, 289], or through a microscopic interpretation of the work and heat4302

concepts [72, 290, 291, 292, 293, 294, 295, 296, 297]. In fact, the whole literature devoted to the quantum measure-4303

ment problem has as a background the interpretation of quantum mechanics. Conversely, some specific formulation4304

of the principles and some interpretation are needed to understand the meaning of calculations about models. The use4305

of quantum statistical mechanics (sections 2 and 9) provides us with a density operator of the form (9.1) at the final4306

time; before drawing physical conclusions (section 11) we have to make clear what such a technical tool really means.4307

We prefer, among the various interpretations of quantum mechanics [31, 34, 36, 298], the statistical one which we4308

estimate the most adequate. We review below the main features of this statistical interpretation, as underlined by Park4309

[28] and supported by other authors. It is akin to the one advocated by Ballentine [9, 48], but it does not coincide with4310

the latter in all aspects. For a related historic perspective, see Plotnitsky [299].4311

10.1. Principles4312

In its statistical interpretation, quantum mechanics presents some conceptual analogy with statistical mechanics.4313

It has a dualistic nature, involving two types of mathematical objects, associated with a system and with possible4314

predictions about it, respectively. On the one hand, the “observables”, non-commutative random operators, describe4315

the physical quantities related to the studied system. On the other hand, a “state” of this system, represented by a4316

density operator, gathers the whole probabilistic information available about it under given circumstances.4317

10.1.1. Physical quantities: observables4318

Hello, Dolly!4319

It’s so nice to have you back where you belong4320

Written by Jerry Herman, sung by Louis Armstrong4321

In classical physics, the physical quantities are represented by c-numbers, that is, scalar commuting variables,4322

possibly random in stochastic dynamics or in classical statistical mechanics. In quantum physics, the situation is4323

different. The physical quantities cannot be directly observed or manipulated; hence we refrain from the idea that they4324

might take well-defined scalar values. The microscopic description of a system requires counterintuitive concepts,4325

which nevertheless have a precise mathematical representation, and which will eventually turn out to fit experiments.4326

The physical quantities that we are considering are, for instance, the position, the momentum, or the components of4327

the spin of each particle constituting the considered system, or a field at each point. The mathematical tools accounting4328

for such quantities in unspecified circumstances have a random nature. Termed as “observables”, they are elements of4329

some algebra which depends on the specific system. One should not be misled by the possibly subjective connotation4330
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of the term “observable”: the “observables” of quantum mechanics pertain only to the system, and do not refer to any4331

external observer or measuring device. Along the lines of Heisenberg’s matrix theory [10, 11, 31, 34, 36, 48, 85, 298],4332

they can be represented as linear operators acting in a complex Hilbert spaceH , or as matrices once a basis is chosen4333

in this space, which exhibits the algebraic structure.4334

The present more abstract approach is also more general, as it encompasses other representations, termed as4335

Liouville representations [75, 300, 301] in which the product is implemented differently; an example of these, the4336

Wigner representation, is useful in the semi-classical limit. The structure of the set of observables, a C∗-algebra [156],4337

involves addition, multiplication by complex c-numbers, hermitean conjugation, and non-commutative product92.4338

The physical observables Ô are hermitean. They play in quantum mechanics the same rôle as random variables4339

in classical statistical mechanics, except for the essential fact that they belong to a non-commutative algebra, the4340

structure of which fully characterizes the system [156]. Ordinary reasoning and macroscopic experience do not help4341

us to develop intuition about such non-commuting physical quantities, and this is the main incentive for proposals of4342

alternative interpretations of quantum mechanics [17, 19, 213, 215, 216, 302].4343

In some circumstances, when the observables of interest constitute a commutative subset, the peculiar aspects of4344

quantum mechanics that raise difficulties of interpretation do not appear [156, 115, 116]. For instance, the classical4345

probability theory is sufficient for working out the statistical mechanics of non-interacting Fermi or Bose gases at ther-4346

mal equilibrium. This simplification occurs because we deal there only with commuting observables, the occupation4347

number operators n̂k for the single particle states |k〉, which can be treated as random c-numbers taking the discrete4348

values nk = 0 or 1 for fermions, nk = 0, 1, 2, · · · for bosons. However, even in this simple case, it is the underlying4349

non-commutative algebra of the creation and annihilation operators â†k and âk which explains why the eigenvalues of4350

n̂k = â†k âk are those integers. A similar situation occurs for macroscopic systems, for which classical behaviors emerge4351

from the hidden microscopic fundamental quantum theory. The variables controlled in practice then commute, at least4352

approximately, so that classical concepts are sufficient. Macroscopic properties such as electronic conduction versus4353

insulation, magnetism, heat capacities, superfluidity, or the very existence of crystals all have a quantum origin but4354

obey equations of a “classical” type, in the sense that they involve only commutative variables. Non commutation, the4355

essence of quantum mechanics, may manifest itself only exceptionally in systems that are not microscopic, see [303]4356

and references therein.4357

What one calls “quantum” and “classical” depends, though, on which quantities are observed and how the dif-4358

ference with respect to their classical limit is quantified (if such a limit exists at all). We have identified above a4359

“truly quantum” behavior with non-commutativity, a deep but restrictive definition. Other viewpoints are currently4360

expressed, such as dependence on ~. Quantum electrodynamics have two classical limits, wave-like when the non-4361

commutation of the electric and magnetic fields is not effective, and particle-like when the number of photons is well4362

defined. Moreover, the quantal or classical nature of a given concept may depend on the specific situation. The cen-4363

ter of mass of a small metallic grain can be described by its “classical” value, while the shape of its heat capacity4364

requires a quantum description, such as the Debye model although the concept of specific heat, its measurement, its4365

thermodynamic aspects, are all “pre-quantal”. On the other hand, in atomic clocks one needs to control the quantum4366

fluctuations of the position of the center of mass, which is therefore not so classical. An extreme case of quantal center4367

of mass is a mechanical resonator in its ground state or excited by one phonon [304].4368

10.1.2. Dynamics4369

Dynamics is currently implemented in the quantum theory through the Schrödinger picture, where the observables4370

remain constant while the states (pure or mixed) evolve according to the Schrödinger or the Liouville-von Neumann4371

equation. Following the tradition, we have relied on this procedure in sections 4 to 8, and will still use it in section 11.4372

The evolution then bears on the wave function or the density operator, objects which characterize our information on4373

the system. However, dynamics should be regarded as a property of the system itself, regardless of its observers. It is4374

therefore conceptually enlightening to account for the evolution of an isolated system in the Heisenberg picture, as a4375

change in time of its observables which pertain to this system.4376

92In mathematical terms, a C∗-algebra is defined as a closed associative algebra, including an involution x↔ x∗ (with (xy)∗ = y∗x∗) and a norm
(with ||x + y|| < ||x|| + ||y|| and ||xy|| < ||x|| ||y||) which satisfies the identity ||x∗x|| = ||x||2 = ||x∗ ||2. In quantum mechanics or quantum field theory, we
deal with a C∗-algebra over complex numbers including unity; an observable is a self-adjoint element of C∗ and a state is a positive linear functional
on C∗
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We should then implement the dynamics as a transformation of the set of observables, represented by a linear4377

mapping that leaves invariant the algebraic relations between the whole set of observables [10, 11, 31, 34, 36, 48, 85].4378

In the Hilbert space representation, this implies that the transformation is unitary. (In Liouville representations,4379

where observables behave as vectors, their evolution is generated by the Liouvillian superoperator.) Denoting by t04380

the reference time at which the observables Ô are defined, we can thus write the observables Ô(t, t0) at the running4381

time t as Ô(t, t0) = Û†(t, t0)ÔÛ(t, t0), where the unitary transformation Û(t, t0) carries the set of observables from t04382

to t. (In the Schrödinger picture, it is the density operator which depends on time, according to Û(t, t0)D̂Û†(t, t0).)4383

The infinitesimal generator of this transformation being the Hamiltonian Ĥ, the time-dependent observable Ô(t, t0)4384

is characterized either by the usual Heisenberg equation i~∂Ô(t, t0)/∂t = [Ô(t, t0), Ĥ] with the boundary condition4385

Ô(t0, t0) = Ô or by the backward equation i~∂Ô(t, t0)/∂t0 = [Ĥ, Ô(t, t0)] with the boundary condition Ô(t, t) = Ô.4386

The backward equation, more general as it also holds if Ĥ or Ô depend explicitly on time, is efficient for producing4387

dynamical approximations, in particular for correlation functions [305]. The interest of the backward viewpoint for4388

the registration in a measurement is exhibited in § 7.3.1, Appendix F and § 13.1.3.4389

Note that the observables and their evolution in the Heisenberg picture can be regarded as non commutative, one-4390

time random objects that may be ascribed to a single system. We do not speak yet of information available about these4391

time-dependent observables in some specific circumstance. This will require the introduction of statistical ensembles4392

of similarly prepared systems (§ 10.1.3) and of “states” that encompass the information and from which probabilistic4393

predictions about measurements can be derived (§ 10.1.4).4394

The Heisenberg picture thus defines time-dependent algebraic structures that are dynamically invariant [156]. For4395

instance, the x − p commutation relation acquires a definite kinematical status, irrespective of the statistics of these4396

physical quantities. Whereas the Schrödinger picture tangles the deterministic and probabilistic aspects of quantum4397

mechanics within the time-dependent states |ψ(t)〉 or D̂(t), these two aspects are well separated in the Heisenberg4398

picture, deterministic dynamics of the observables, probabilistic nature of the time-independent states. We will rely4399

on this remark in subsection 13.1. The Heisenberg picture also allows to define correlations of observables taken4400

at different times and pertaining to the same system [298, 305]. Such autocorrelations, as the Green’s functions in4401

field theory, contain detailed information about the dynamical probabilistic behavior of the systems of the considered4402

ensemble, but cannot be directly observed through ideal measurements.4403

10.1.3. Interpretation of probabilities and statistical ensembles of systems4404

What is true is no more sure than the probable4405

Greek proverb4406

While the observables and their evolution appear as properties of the objects under study, our knowledge about4407

them is probabilistic. The statistical interpretation highlights the fact that quantum mechanics provides us only with4408

probabilities [9, 10, 11, 28, 29, 31, 52, 58]. Although a probabilistic theory may produce some predictions with cer-4409

tainty, most quantities that we deal with at the microscopic scale are subject to statistical fluctuations: expectation4410

values, correlations at a given time, or autocorrelations at different times when we observe for instance the succes-4411

sive transitions of a trapped ion [306, 307]. Exact properties of individual systems can be found only in special4412

circumstances, such as the ideal measurement of some observable (section 11). Thus, explicitly or implicitly, our4413

descriptions refer to statistical ensembles of systems and to repeated experiments [9, 28, 31]. Even when we describe4414

a single object we should imagine that it belongs to a thought ensemble E [298], all elements of which are considered4415

to be prepared under similar conditions characterized by the same set of data93. Notice the similarity with ensemble4416

theory in classical statistical physics, which also allows probabilistic predictions on single systems [55, 56]. However,4417

there is no quantum system devoid of any statistical fluctuations [9, 31]. Individual events resulting from the same4418

preparation are in general not identical but obey some probability law, even when the preparation is as complete as4419

possible.4420

93When accounting probabilistically for the cosmic microwave spectrum, one imagines the Universe to belong to an ensemble of possible
universes. With a single Universe at hand, this leads to the unsolvable cosmic variance problem. The same ideas hold whenever probabilities are
applied to a single system or event [310], and this is the subject of standard and thorough developments in books of probabilities, including already
Laplace’s
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The concept of probability, inherent to quantum mechanics, is subject to several interpretations, two of which are4421

currently used in physics94. On the one hand, in the “frequentist” interpretation, a probability is identified with the4422

relative frequency of occurrence of a given event. This conception of probabilites, the current one in the XVIIth and4423

XVIIIth centuries, has been given a mathematical foundation, on which we will return in § 11.2.2, by Venn [308] and4424

von Mises [309]. On the other hand, in the “logical Bayesian” approach, initiated by Bayes and Laplace, and later4425

on formalized by Cox [310] and advocated by Jaynes [288], probabilities are defined as a mathematical measure4426

of likelihood of events; they are not inherent to the considered object alone, but are tools for making reasonable4427

predictions about this object through consistent inference95. Both interpretations are relevant to quantum theory, and4428

their equivalence has been established [312], in the context of assigning a quantum probability distribution to a system4429

(§ 10.2.2). In fact, understanding the conceptual quantum issues (including measurement) does not demand that one4430

adheres to one rather than to the other. Possible mistakes committed in discussing these issues should not be assigned4431

to a specific (Bayesian or frequency) interpretation of probability [313, 314].4432

Depending on the circumstances, one of these interpretations may look more natural than the other. In measure-4433

ment theory, Born’s probabilities pi can be regarded as relative frequencies, since pi is identified, for a large set E of4434

runs, with the relative number of runs having produced the outcome Ai of the pointer. We will rely on the same idea4435

in section 11, where we consider arbitrary subensembles of E: For a given subensemble, the weight qi associated with4436

each outcome Ai will then be interpreted as a probability in the sense of a proportion of runs of each type. On the other4437

hand, according to its definition in § 10.1.4, the concept of quantum state has a Bayesian aspect. In this approach, the4438

prior needed for assigning a state to a system in given circumstances is provided by unitary invariance (§ 10.2.2). A4439

state does not pertain to a system in itself, but characterizes our information on it or on the ensemble to which it be-4440

longs. In fact, information has turned out to be a central concept in statistical physics [57, 58, 74, 73, 81, 71, 288, 289].4441

This idea is exemplified by spin-echo experiments [60, 61, 62, 63, 64, 65, 203, 204]. After the initial relaxation, an4442

observer not aware of the history of the system cannot describe its spins better than by means of a completely random4443

probability distribution. However, the experimentalist, who is able to manipulate the sample so as to let the original4444

magnetization revive, includes in his probablistic description the hidden correlations that keep track of the ordering4445

of the initial state. Likewise, we can assign different probabilities to the content of a coded message that we have4446

intercepted, depending on our knowledge about the coding [74]. Since quantum theory is irreducibly probabilistic, it4447

has thus a partly subjective nature — or rather “inter-subjective” since under similar conditions all observers, using4448

the same knowledge, will describe a quantum system in the same way and will make the same probabilistic predic-4449

tions about it. The recent developments about the use of quantum systems as information processors [42] enforce this4450

information-based interpretation [88, 315] (see the end of § 12.4.2).4451

It is important to note that, depending on the available information, a given system may be embedded in different4452

statistical ensembles, and hence may be described by different probability distributions. This occurs both in classical4453

probability theory and in quantum physics. Such a distinction between an ensemble and one of its subensembles, both4454

containing the considered system, will turn out to be essential in measurements (§ 11.1.2). There, a single run may4455

be regarded as an event chosen among all possible runs issued from the initial state D̂(0) of S + A, but may also be4456

regarded as belonging to some subset of runs – in particular the subset that will be tagged after achievement of the4457

process by some specific indication of the pointer (§ 11.3.2). The study of the dynamics of subensembles (subsection4458

11.2) will therefore be a crucial issue in the understanding of reduction in measurements.4459

10.1.4. States4460

L’Etat c’est moi96
4461

Louis XIV4462

In the present scope, the definition of a quantum state is conceptually the same as in statistical mechanics [123,4463

94Kolmogorov’s axioms, the starting point of many mathematical treatises, do not prejudge how probabilities may be interpreted in applications
95We keep aside the “subjective Bayesian” interpretation, developed by de Finetti [311], and suited more to ordinary life or economy than to

science. There, probabilities are associated with the state of mind of an agent, and help him to take rational decisions. Prior probabilities reflect
their subjectivity, whereas priors are provided by a physical invariance in quantum mechanics (unitary invariance in Hilbert space) or in statistical
mechanics (invariance under canonical transformations in phase space), so that the entropy is then defined uniquely

96The State, that’s me
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73, 28]: A state of the considered system (or more precisely a state of the real or virtual statistical ensemble E (or4464

subensemble) of systems to which it belongs) is characterized by specifying the correspondence Ô 7→ 〈Ô〉 between4465

the elements Ô of the C∗-algebra of observables and c-numbers 〈Ô〉. This correspondence has the following properties4466

[52, 58]: it is linear, it associates a real number to hermitean operators, a non-negative number to the square of an4467

observable, and the number 1 to the unit operator. Such properties entail in particular that 〈Ô2〉 − 〈Ô〉2 cannot be4468

negative.4469

The c-number 〈Ô〉 associated through the above mathematical definition with the observable Ô will eventually4470

be interpreted as the expectation value of the physical quantity represented by Ô, and this interpretation will emerge4471

from the ideal measurement process of Ô (§ 11.3.1). Accordingly, 〈Ô2〉 − 〈Ô〉2 appears as the variance of Ô; likewise,4472

the probability of finding for Ô some eigenvalue Oi is the expectation value 〈Π̂i〉 of the projection operator Π̂i over4473

the corresponding eigenspace of Oi. A quantum state has thus a probabilistic nature, as it is identified with the4474

collection of expectation values of all the observables. However, if two observables Ô1 and Ô2 do not commute and4475

thus cannot be measured simultaneously, 〈Ô1〉 and 〈Ô2〉, taken together, should not be regarded as expectation values4476

in the ordinary sense of probability theory (§ 10.2.1).4477

For infinite systems or fields, this definition of a state as a mapping of the algebra of observables onto commuting4478

c-numbers has given rise to mathematical developments in the theory of C∗-algebras [156]. Focusing on the vector4479

space structure of the set of observables, one then considers the states as elements of the dual vector space. For finite4480

systems the above properties are implemented in an elementary way once the observables are represented as operators4481

in a Hilbert space. The mapping is represented by a density operator D̂ in this Hilbert space, which is hermitean,4482

non-negative and normalized, and which generates all the expectation values through [52, 58]4483

Ô 7→ 〈Ô〉 = trD̂Ô. (10.1)

In fact, according to Gleason’s theorem [50], the linearity of this correspondence for any pair of commuting observ-4484

ables is sufficient to ensure the existence of D̂. (We use the notation D̂ for the generic system considered here; no4485

confusion should arise with the state of S + A in the above sections.)4486

A tutorial introduction to density operators is presented in Appendix G.4487

A density operator which characterizes a state plays the rôle of a probability distribution for the non-commuting4488

physical quantities Ô since it gathers through (10.1) our whole information about an ensemble of quantum systems4489

[28, 52, 58, 288]. As in probability theory, the amount of missing information associated with the state D̂ is measured4490

by its von Neumann entropy [52, 58, 288].4491

S (D̂) = −trD̂ ln D̂. (10.2)

For time-dependent predictions on an isolated system, Eq. (10.1) holds both in the Schrödinger picture, with4492

fixed observables and the Liouville–von Neumann evolution for D̂(t), and in the Heisenberg picture, with fixed D̂4493

and observables evolving unitarily. However, two-time (and multi-time) autocorrelation functions cannot be defined4494

within the Schrödinger picture. They are obtained as tr D̂Ô1(t1, t0)Ô2(t2, t0), where the observables in the Heisenberg4495

picture refer to the physical quantities of interest and their dynamics, and where the state accounts for our knowledge4496

about the system [156]. In particular, when defining in § 3.3.2 the autocorrelation function K(t− t′) of the bath, it was4497

necessary to express the time-dependent bath operators in the Heisenberg picture (although we eventually inserted4498

K(t − t′) into the Liouville–von Neumann equations of motion of S + M in section 4 and appendix A).4499

In this interpretation, what we call the state “of a system”, whether it is pure or not, is not a property of the4500

considered system in itself, but it characterizes the statistical properties of the real or virtual ensemble (or subensemble)4501

to which this system belongs [28, 52, 58, 288]. The word “state” itself is also misleading, since we mean by it4502

the summary of our knowledge about the ensemble, from which we wish to make probabilistic predictions. The4503

conventional expression “the state of the system” is therefore doubly improper in quantum physics, especially within4504

the statistical interpretation [28, 52, 58], and we should not be misled by this wording — although we cannot help to4505

use it when teaching.4506

Density operators differ from distributions of the probability theory taught in mathematical courses and from densi-4507

ties in phase space of classical statistical mechanics, because the quantum physical quantities have a non-commutative4508

nature [10, 11, 31, 34, 36, 48, 52, 58, 85, 298]. This algebraic feature, compelled by experiments in microphysics, lies4509
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at the origin of the odd properties which make quantum mechanics counterintuitive. It implies quantization. It also4510

implies the superposition principle, which is embedded in the matrix nature of D̂. It entails Heisenberg’s inequality4511

∆Ô∆Ô′ ≥ 1
2 |〈[Ô, Ô

′]〉| and hence Bohr’s complementarity: since the product of the variances of two non-commuting4512

observables has a lower bound, it is only in a fuzzy way that we can think simultaneously of quantities such as the4513

position and the momentum (or the wavelength) of a particle, contrary to what would happen in classical statistical4514

mechanics. Thus the non-commutation of observables implies the existence of intrinsic fluctuations, and the quantum4515

theory is irreducibly probabilistic [10, 11, 28, 31, 34, 36, 48, 85, 298].4516

One should note, however, that the non-commutation of two observables does not necessarily imply that they4517

present quantum fluctuations. For instance, if two operators do not commute, there may exist states (their common4518

eigenstates) in which both have well-defined values. As an example, in states with orbital momentum zero, the4519

components L̂x and L̂y vanish without any statistical fluctuation. (This does not contradict the Heisenberg inequality4520

∆L̂x∆L̂y ≥
1
2~|〈L̂z〉|, because both sides vanish in this case; more general uncertainty relations for orbital momentum4521

are given in [316].) Conversely, two commuting observables may fluctuate in some states, even pure ones.4522

In the statistical interpretation, we should refrain from imagining that the observables might take well-defined4523

but undetectable values in a given state, and that the uncertainties about them might be a mere result of incomplete4524

knowledge. The very concept of physical quantities has to be dramatically changed. We should accept the idea4525

that quantum probabilities, as represented by a density operator, do not simply reflect as usual our ignorance about4526

supposedly preexisting values of physical quantities (such as the position and the momentum of a particle), but arise4527

because our very conception of physical quantites as scalar numbers, inherited from macroscopic experience, is not in4528

adequacy with microscopic reality [10, 11, 31, 34, 36, 48, 85, 298]. Macroscopic physical quantities take scalar values4529

that we can observe, in particular for a pointer, but the scalar values that we are led to attribute to microscopic (non-4530

commuting) observables are the outcome of inferences which are indirectly afforded by our measurement processes.4531

From an epistemological viewpoint, the statistical interpretation of quantum theory has a dualistic nature, both4532

objective and subjective. On the one hand, observables are associated with the physical properties of a real system.4533

On the other hand, in a given circumstance, the reality of this system is “veiled” [317], in the sense that our knowledge4534

about these physical properties cannot be better than probabilistic, and what we call “state” refers to the information4535

available to observers.4536

10.2. Resulting properties4537

10.2.1. Contextuality4538

Information about quantum systems can be gained only through complex measurement processes, involving inter-4539

action with instruments and selection of the outcomes. What we observe when testing the “state of the system” is in4540

fact a joint property of the system S and the apparatus A. Moreover, due to the non-commutation of the observables4541

which implies their irreducibly probabilistic nature, we cannot assign well defined numerical values to them before4542

achievement of the process. These values do not belong to S alone, but also to its experimental context. They have no4543

existence before measurement, but emerge indirectly from interaction with a given instrument A and are defined only4544

with reference to the setting which may determine them.4545

In a theoretical analysis of a measurement process, we have to study the density operator that describes a statistical4546

ensemble E of joint systems S+A. If we use another apparatus A′, the ensemble described is changed into E′. Putting4547

together results pertaining to E and E′ may produce paradoxical consequences although the tested system S is prepared4548

in the same state. The statements of quantum mechanics are meaningful and can be logically combined only if one4549

can imagine a unique experimental context in which the quantities involved might be simultaneously measured.4550

These considerations are illustrated by various odd phenomena that force us to overturn some of our ways of4551

thinking. A celebrated example is the violation of Bell’s inequalities, recalled in § 2.2.1. Other quantum phenomena,4552

involving properties satisfied exactly rather than statistically, may be regarded as failures of ordinary logic. They are4553

exemplified by the GHZ paradox [34, 36, 298], recalled below97.4554

97The GHZ setup is as follows: Consider six observables B̂i and Ĉi (i = 1, 2, 3) such that B̂2
i = Ĉ2

i ≡ Î, Ĉ1Ĉ2Ĉ3 ≡ Î, and with commutators
[B̂i, B̂ j] = [Ĉi, Ĉ j] = 0, [B̂i, Ĉi] = 0 and B̂iĈ j = −Ĉ j B̂i for i , j. A physical realization with 3 spins is provided by taking B̂1 = σ̂(1)

x , Ĉ1 = σ̂(2)
z σ̂(3)

z

(or, more precisely, B̂1 = σ̂(1)
x σ̂(2)

0 σ̂(3)
0 , Ĉ1 = σ̂(1)

0 σ̂(2)
z σ̂(3)

z ), and likewise, in a cyclic manner. In the pure state |ϕ〉 characterized by B̂iĈi |ϕ〉 = |ϕ〉,
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10.2.2. Preparations and assignment of states4555

Que sera, sera98
4556

Jay Livingston and Ray Evans; sung by Doris Day in The man who knew too much4557

In order to analyze theoretically quantum phenomena, we need to associate with the considered situation the state4558

that describes adequately the system (or rather the set of systems of the considered ensemble). In particular, to study a4559

dynamical process in the Schrödinger picture, we must specify the initial state. Such an assignment can be performed4560

in various ways, depending on the type of preparation of the system [115, 116].4561

Textbooks often stress complete preparations, in which a complete set of commuting observables is controlled;4562

see Refs. [115, 116] for a recent conceptual discussion that goes beyond the average text-book level. The state D̂4563

is then the projection on the common eigenvector of these observables determined by their given eigenvalues. (This4564

unambiguous determination of D̂ should not hide its probabilistic nature.) The control of a single observable may4565

in fact be sufficient to allow a complete preparation of a pure state, in case one is able to select a non-degenerate4566

eigenvalue that characterizes this state. Atoms or molecules are currently prepared thereby in their non-degenerate4567

ground state [307].4568

As indicated in § 1.1.4, the ideal measurement of an observable ŝ (like the spin component ŝz in the Curie–Weiss4569

model considered in the bulk of the present work) of a system S, followed by the selection of the outcome Ai of the4570

pointer constitutes a preparation through measurement. If the density operator of S before the process is r̂(0), this4571

selection produces the filtered state Πir̂(0)Πi, where Πi denotes the projection operator onto the eigenspace associated4572

with the eigenvalue si of ŝ (see § 11.3.2). This theoretical scheme of preparing states via measurements was realized4573

experimentally [307, 318].4574

There are however other, macroscopic methods of preparing quantum states that are much more incomplete4575

[55, 56]. Usually they provide on the quantum system of interest a number of data much too small to character-4576

ize a single density operator. As in ordinary probability theory, for describing a macroscopic preparation, one can4577

rely on some criterion to select among the allowed D̂’s the least biased one [288]. A current criterion is Laplace’s4578

“principle of insufficient reason”: when nothing else is known than the set of possible events, we should assign to4579

them equal probabilities. In fact, this assignment relies implicitly on the existence of some invariance group. For4580

a discrete set of ordinary events, this is the group of their permutations, as they should be treated a priori on the4581

same footing. In quantum theory, the required prior invariance group is afforded by physics, it is the unitary group in4582

Hilbert space. When some data are known, namely the expectation values of some observables, Laplace’s principle4583

cannot be directly applied since these data constrain the density operator, but one can show that it yields, as least4584

biased density operator among all those compatible with the available data, the one that maximizes the entropy (10.2)4585

[312, 319, 320]. In particular, the energy of a small object can be controlled by macroscopic means, exchange of heat4586

or of work; depending on the type of control, the maximum entropy criterion leads us to assign a different distribution4587

to this object [58, 73, 71]. This distribution should be verified experimentally. For instance, if one controls only the4588

expectation value of its energy, which is free to fluctuate owing to exchanges with a large bath, the least biased state is4589

the canonical one. Alternatively, for a non-extensive system such that the logarithm of its level density is not concave,4590

another type of thermal equilibrium (locally more stable) can be established [321] through a different preparation4591

involving the confinement of the energy in a narrow range. Within this range, the maximum entropy criterion leads us4592

to attribute the same probability to all allowed levels and to adopt a microcanonical distribution.4593

The fact that states of macroscopic systems cannot be characterized completely entails that in measurement models4594

the apparatus should be supposed to have initially been prepared in a mixed state. Thus, the discussion of the quantum4595

measurement problem within the statistical interpretation does need the existence of macroscopic preparations that4596

are different from preparations via quantum measurements.4597

each one of the three statements “Bi takes the same value as Ci”, where Bi = ±1 and Ci = ±1 are the values taken by the observables B̂i ând Ĉi,
is separately true, and can be experimentally checked. However, these three statements cannot be true together, since the identity Ĉ1Ĉ2Ĉ3 ≡ Î
seems to entail that B1B2B3 = +1 in the considered state, whereas the algebra implies B1B2B3= −1, which is confirmed experimentally [38].
Indeed we are not even allowed to think simultaneously about the values of B1 and C2, for instance, since these observables do not commute. It
is not only impossible to measure them simultaneously but it is even “forbidden” (i. e., devoid of any physical meaning) to imagine in a given
system the simultaneous existence of numerical values for them, since these numerical values should be produced through interaction with different
apparatuses

98What will be, will be
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10.2.3. Mixed states and pure states4598

Something is rotten in the state of Denmark4599

Shakespeare, Hamlet4600

Most textbooks introduce the principles of quantum mechanics by relying on pure states |ψ〉, which evolve accord-4601

ing to the Schrödinger equation and from which the expectation value of any observable Ô can be evaluated as 〈ψ|Ô|ψ〉4602

[4, 85]. Mixed states, represented by density operators, are then constructed from pure states [4, 85]. This form of4603

the principles entail the above-mentioned laws, namely, the Liouville–von Neumann (or the Heisenberg) equation of4604

motion and the properties of the mapping (10.1) (linearity, reality, positivity and normalization).4605

Within the statistical interpretation, there is at first sight little conceptual difference between pure states and mixed4606

states, since in both cases the density operator behaves as a non-Abelian probability distribution that realizes the4607

correspondence (10.1) [9, 10, 11, 31, 48, 52, 58, 73]. As a mathematical specificity, pure states are those for which all4608

eigenvalues but one of the density operator D̂ vanish, or equivalently those for which the von Neumann entropy S (D̂)4609

vanishes. They appear thus as extremal among the set of Hermitean positive normalized operators, in the form |ψ〉〈ψ|.4610

However, a major physical difference99, stressed by Park [28], exists, the ambiguity in the decomposition of a mixed4611

state into pure states. This question will play an important rôle in section 11, and we discuss it below.4612

Let us first note that a mixed state D̂ can always be decomposed into a weighted sum of projections over pure4613

states, according to4614

D̂ =
∑

k

|φk〉νk〈φk |. (10.3)

It is then tempting to interpret this decomposition as follows. Each of the pure states |φk〉 would describe systems4615

belonging to an ensemble Ek, and the ensemble E described by D̂ would be built by extracting a proportion νk4616

of systems from each ensemble Ek. Such an interpretation is consistent with the definition of quantum states as4617

mappings (10.1) of the set of observables onto their expectation values, since (10.3) implies 〈Ô〉 =
∑

k νk〈φk |Ô|φk〉 =4618

tr D̂Ô. It is inspired by classical statistical mechanics, where a mixed state, represented by a density in phase space,4619

can be regarded in a unique fashion as a weighted sum over pure states localized at given points in phase space.4620

However, in quantum mechanics, the state D̂ (unless it is itself pure) can be decomposed as (10.3) in an infinity of4621

different ways. For instance, the 2 × 2 density operator D̂ = 1
2 σ̂0 which represents an unpolarized spin 1

2 might be4622

interpreted as describing a spin polarized either along +z with probability 1
2 or along −z with probability 1

2 ; but these4623

two possible directions of polarization may also be taken as +x and −x, or as +y and −y; the same isotropic state4624

D̂ = 1
2 σ̂0 can also be interpreted by assuming that the direction of polarization is fully random [31, 48]. Within the4625

statistical interpretation of quantum mechanics, this ambiguity of the decompositions of D̂ prevents us from selecting4626

a “fundamental” decomposition and to give a sense to the pure states |φk〉 and the weights νk entering (10.3).4627

More generally, we may decompose the given state D̂ into a weighted sum4628

D̂ =
∑

k

νkD̂k (10.4)

of density operators D̂k associated with subensembles Ek. But here again, such a decomposition can always be4629

performed in an infinity of different ways, which appear as contradictory. Due to this ambiguity, splitting the ensemble4630

E described by D̂ into subensembles Ek, described either by pure states as in (10.3) or by mixed states as in (10.4), is4631

physically meaningless (though mathematically correct) if no other information than D̂ is available.4632

The above indetermination leads us to acknowledge an important difference between pure and mixed quantum4633

states [9, 28, 31, 48, 85, 28, 323]. If a statistical ensemble E of systems is described by a pure state, any one of its4634

99Another essential difference between pure and mixed states is especially appealing to intuition [79, 275]. Consider a system in a state rep-
resented by a density operator D̂ whose eigenvalues are non-degenerate and differ from zero. Consider then a set of observables that have non-
degenerate spectra. Then none of such observables can produce definite results when measured in the state D̂ [275]. In other words, all such
observables have non-zero dispersion in D̂. This statement has been suitably generalized when either D̂ or the observables have degeneracies
in their spectra; see Appendix C of Ref. [275]. In contrast, for a pure density operator |ψ〉〈ψ| all observables that have |ψ〉 as eigenvector are
dispersionless. Pure and mixed states also differ as regards their preparation and as regards their determination via measurements (e.g., the number
of observables to be measured for a complete state determination) [322]
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subensembles is also described by the same pure state, since in this case (10.4) can include only a single term. If4635

for instance a set of spins have been prepared in the polarized state |↑〉, the statistical prediction about any subset are4636

embedded in |↑〉 as for the whole set. In contrast, the existence of many decompositions (10.3) or (10.4) of a mixed4637

state D̂ describing an ensemble E implies that there exists many ways of splitting this ensemble into subensembles Ek4638

that would be described by different states D̂k. In particular, pure states |φk〉 that would underlie as in (10.3) a mixed D̂4639

cannot a posteriori be identified unambiguously by means of experiments performed on the ensemble of systems. In4640

the statistical interpretation, such underlying pure states have no physical meaning. More generally, decompositions4641

of the type (10.4) can be given a meaning only if the knowledge of D̂ is completed with extra information, allowing4642

one to identify, within the considered ensemble E described by D̂, subensembles Ek that do have a physical meaning4643

[31, 48, 323].4644

According to this remark, since the outcome of a large set of measurements is represented by a mixed state4645

D̂(tf), this state can be decomposed in many different ways into a sum of the type (10.4). The decomposition (9.1),4646

each term of which is associated with an indication Ai of the pointer, is not the only one. This ambiguity of D̂(tf),4647

as regards the splitting of the ensemble E that it describes into subensembles, will be discussed in § 11.1.3, and4648

we will show subsections 11.2 and 13.1 how the dynamics of the process removes this ambiguity by privileging the4649

decomposition (9.1) and yielding a physical meaning to each of its separate terms, thus allowing us to make statements4650

about individual systems.4651

10.2.4. Ensembles versus aggregates4652

We have assumed above that the density operator D̂ and the corresponding ensemble E were given a priori. In4653

practice, the occurrence of a mixed state D̂ can have various origins. An incomplete preparation (§ 10.2.2) always4654

yields a mixed state, for instance, the initial state R̂(0) of the apparatus in a measurement model. The mixed nature4655

of a state may be enhanced by dynamics, when some randomness occurs in the couplings or when approximations,4656

justified for a large system, are introduced; this is illustrated by the final state D̂(t f ) of a measurement process.4657

Density operators have also been introduced by Landau in a different context [31, 48, 85]. Consider a compound4658

system S1 + S2. Its observables are the operators that act in the Hilbert space H = H1 ⊗ H2, and its states D̂ are4659

characterized by the correspondence (10.1) in the spaceH . If we are interested only in the subsystem S1, disregarding4660

the properties of S2 and the correlations between S1 and S2, the relevant observables constitute the subalgebra of4661

operators acting in H1, and the correspondence (10.1) is implemented in the subspace H1 by means of the mixed4662

density operator D̂1 = tr2D̂. Suppose for instance that in an ensemble E of pairs S1, S2 of spins 1
2 prepared in the4663

singlet pure state 2−1/2( |↑〉1|↑〉2 − |↓〉1|↓〉2), we wish to describe only the spin S1. Its marginal state in the considered4664

ensemble E is again the unpolarized state, represented by D̂1 = 1
2 σ̂

(1)
0 . Isotropy is here built in, from this definition of4665

the state of the spin S1.4666

In all such cases, the state D̂ describes a statistical ensemble E, and the argument of § 10.2.3 entails the impossi-4667

bility of splitting unambiguous this ensemble into subensembles described by well defined pure states.4668

Another approach to density operators, initiated by von Neumann [4], consists in constructing them from pure4669

states, by following a path converse to that of § 10.2.3. We start from a collection of statistical ensembles Ek of4670

systems prepared in pure states |φk〉. We build a new set E by extracting randomly each individual system of E4671

from one among the ensembles Ek, the probability of this extraction being νk. If we have lost track of the original4672

ensemble Ek from which each drawing was performed, we have no means to acknowledge in which pure state |φk〉4673

a given system of E was originally lying. The expectation value, for this system, of any quantity is then given4674

by 〈Ô〉 =
∑

k νk〈φk |Ô|φk〉 = tr D̂Ô, and we are led to assign to it the mixed state defined by (10.3). Here again,4675

the ambiguity of § 10.2.3 is present: If two different constructions have lead to the same state D̂, they cannot be4676

distinguished from each other in any measurement.4677

A further important point should be stressed. The above procedure of randomly selecting the elements extracted4678

from the ensembles Ek produces a set E of systems which is a bona fide ensemble. Indeed, a statistical ensemble4679

must have an essential property, the statistical independence of its elements, and this property is here ensured by the4680

randomness of the drawings. Thus, our full information about the ensemble, and not only about each of its individual4681

systems, is embedded in the density operator D̂. In the ensemble E obtained after mixing, the pure states |φk〉 have4682

been completely lost, although they were originally meaningful. In other words, no observation of an ensemble E4683

obtained by merging subensembles Ek can reveal the history of its elaboration.4684
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Another, slightly different construction, also inspired by von Neumann’s idea, is preferred by some authors, see,4685

e.g., [317]. In this alternative procedure, a (non random) number nk of systems is extracted from each ensemble Ek so4686

as to constitute a set A having n =
∑

k nk elements, which we term as an aggregate. Losing again track of the origin4687

of each system of A, we have to assign to any individual system of A the density operator (10.3), with νk = nk/n.4688

However, in spite of this analogy with the ensemble E constructed above, we will acknowledge an important difference4689

between the two situation, due to the nature of the numbers νk, which are probabilities for E, proportions forA.4690

As an illustration, let us consider the aggregate Az built by gathering n1 = 1
2 n spins prepared in the pure state4691

|↑〉 (sz = +1) and n2 = 1
2 n spins prepared in the pure state |↓〉 (sz = −1), and by forgetting the original state of4692

each spin. Each individual spin of the aggregate Az in then described by the unpolarized density operator D̂ = 1
2 σ̂0,4693

exactly as each spin of the ensemble Ez, obtained by picking up states |↑〉 or |↓〉 randomly with equal probabilities.4694

Nevertheless, the joint statistics of two systems belonging to the aggregateAz differs from that of two spins belonging4695

to the ensemble Ez (which are statistically independent). Indeed, the systems of an aggregate are correlated, due to4696

the construction procedure. In our spin example, this is flagrant for n1 = n2 = 1: if we measure the first spin down, we4697

know for sure that the second is up. More generally, if σ̂z is simultaneously measured on all n spins of the aggregate4698

Az, the correlations will be expressed by the equality of the number of outcomes ↑ and ↓. If the ideal measurement4699

bears on n − 1 spins, we can predict for the last spin the sign of σz with 100% confidence. For an ensemble Ez4700

containing n spins, we cannot infer anything about the n’th spin from the outcomes of previous measurements on the4701

n − 1 other ones.4702

Altogether, an aggregate is not a statistical ensemble, because its elements are correlated with one another. A4703

random selection is needed in von Neumann’s procedure of defining mixed states, so as to ensure the statistical4704

independence required for ensembles.4705

The above point was purely classical (since we dealt with the z-component only), but it can have quantum im-4706

plications. Prepare another aggregate Ax with n1 spins oriented in the +x-direction and n2 spins oriented in the4707

−x-direction. Consider likewise the ensemble Ex built by randomly selecting spins in the −x- and +x-directions, with4708

equal probabilities. Any single system belonging to eitherAz or Ez orAx or Ex is described by the same unpolarized4709

density operator 1
2 σ̂0. However, differences occur when correlations between systems are accounted for. We first re-4710

member that the ensembles Ez and Ex are undistinguishable. In contrast, the two aggregatesAz andAx have different4711

properties. Measuring for Ax, as above for Az, the components σ̂z of all the n spins of Ax does not show up the4712

correlations that were exhibited for Az: Instead of finding exactly 1
2 n spins up and 1

2 n spins down, we find outcomes4713

that are statistically independent, and characterized by a same binomial law as in the case of the ensembles Ez or Ex.4714

WithinAx the correlations occur between x-components.4715

Hence, failing to distinguish aggregates from ensembles leads to the inevitable conclusion that “two ensembles4716

having the same density matrix can be distinguished from each other” [317]. This statement has influenced similar4717

conclusions by other authors, see e.g. [324]. The persistent occurrence of such an idea in the literature (see [325])4718

demonstrates that the difference between ensembles and aggregates is indeed far from being trivial. In the light of4719

the above discussion, and in agreement with [326] and [327], we consider such statements as incorrect. Indeed, two4720

aggregates having for a single system the same density matrix can be distinguished from each other via two-system4721

(or many-system) measurements, but two statistical ensembles cannot.4722

11. Solving the quantum measurement problem within the statistical interpretation4723

All’s well that ends well4724

Shakespeare4725

In section 9 we have resumed the detailed solution of the dynamical equation for the Curie–Weiss model. As4726

other models of measurement treated in the framework of quantum statistical dynamics (section 2), it yields, for the4727

compound system S + A at the end of the process, a density operator D̂(tf) which satisfies the properties required for4728

ideal measurements. However, we have already stressed that such a result, although necessary, is not sufficient to af-4729

ford a complete understanding of quantum measurements. Indeed, the statistical interpretation of quantum mechanics4730

emphasizes the idea that this theory, whether it deals with pure or mixed states, does not govern individual systems but4731

statistical ensembles of systems (§ 10.1.3). Within this statistical interpretation, the density operator D̂(tf) accounts4732
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in a probabilistic way for a large set E of similar runs of the experiment, whereas a measurement involves properties4733

of individual runs. Can we then make assertions about the individual runs? This question is the core of the present4734

section.4735

The remaining challenge is to elucidate the quantum measurement problem, that is, to explain why each individual4736

run provides a definite outcome, for both the apparatus and the tested system. As we will discuss, this property is not4737

granted by the knowledge of D̂(tf), an object associated with the full set E. Since we deal only with ensembles,4738

the individual systems that we wish to consider within the statistical interpretation should be embedded in some4739

subensembles of E, which should eventually be characterised by a specific outcome. Our strategy will rely on a study4740

of the dynamics of such subensembles under the effect of interactions within the apparatus. It will be essential in4741

this respect to note that, within its statistical interpretation, standard quantum mechanics applies not only to the full4742

ensemble E of runs, but also to any one of its subensembles – even though we are unable to identify a priori which4743

state corresponds to a given subset of physical runs.4744

11.1. Formulating the problem: Seeking a physical way out of a mathematical embarrassment4745

“There must be some way out of here”, said the joker to the thief4746

from Bob Dylan’s song All Along the Watchtower, re-recorded by Jimi Hendrix4747

The present subsection aims at introducing in a tutorial scope the specific difficulties encountered when facing the4748

quantum measurement problem in the framework of the statistical interpretation. It also presents some ideas that look4749

natural but lead to failures. It mainly addresses students; the readers aware of such questions may jump to subsection4750

11.2.4751

11.1.1. A physical, but simplistic and circular argument4752

Une idée simple mais fausse s’impose toujours face à une idée juste mais compliquée100
4753

Alexis de Tocqueville4754

As shown by the review of section 2 and by the Curie–Weiss example of section 3, many models of ideal quantum4755

measurements rely on the following ideas. The apparatus A is a macroscopic system which has several possible stable4756

states R̂i characterized by the value Ai of the (macroscopic) pointer variable. If A is initially set into a metastable4757

state R̂(0), it may spontaneously switch towards one or another state R̂i after a long time. In a measurement, this4758

transition is triggered by the coupling with the tested object S, it happens faster, and it creates correlations such that, if4759

the apparatus reaches the state R̂i, the tested observable ŝ takes the value si. The neat separation between the states R̂i4760

and their long lifetime, together with the lack of survival of “Schrödinger cats”, suggest that each individual process4761

has a unique outcome, characterized by the indication Ai of the pointer and by the value si for the observable ŝ of the4762

system S.4763

This intuitive argument, based on current macroscopic experimental observation and on standard classical theories4764

of phase transitions, is nevertheless delusive. Although its outcome will eventually turn out to be basically correct,4765

it postulates the very conclusion we wish to justify, namely that the apparatus reaches in each run one or another4766

among the states R̂i. This idea is based on a classical type of reasoning applied blindly to subtle properties of quan-4767

tum ensembles, which is known to produce severe mistakes (prescribed ensemble fallacy) [328, 329, 330, 331]. In4768

order to explain why the indication of the apparatus is unique in a single experiment, we ought to analyze quantum4769

measurements by means of rigorous quantum theoretical arguments.4770

11.1.2. Where does the difficulty lie?4771

Δεν βρέτηεκα τίτλο με του όρο
101

4772

Aesop4773

The most detailed statistical mechanical treatments of ideal measurement models provide the evolution of the4774

density operator D̂(t) of the compound system S + A, from the initial state4775

100A simple but wrong idea always prevails over a right but complex idea
101After all is said and done, more is said than done
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D̂(0) = r̂(0) ⊗ R̂(0), (11.1)

to the final state4776

D̂(tf) =
∑

i

piD̂i, D̂i = r̂i ⊗ R̂i, pi = trS r̂(0)Π̂i, pir̂i = Π̂ir̂(0)Π̂i. (11.2)

In the Curie–Weiss model its explicit form is the expression (3.21), that is,4777

D̂(tf) = p↑ |↑〉〈↑| ⊗ R̂⇑ + p↓ |↓〉〈↓| ⊗ R̂⇓. (11.3)

As we wish to interpret this result physically, we recall its nature. The state D̂(t) provides a faithful probabilistic4778

account for the dynamics of the expectation values of all observables of S + A, for a large set E of runs of similarly4779

prepared experiments, but nothing more. We need, however, to focus on individual runs so as to explain in particular4780

why, at the end of each run, the pointer yields a well-defined indication Ai. This property agrees with our macro-4781

scopic experience and seems trivial, but it is not granted in the quantum framework. Quantum mechanics is our most4782

fundamental theory, but even a complete solution of its dynamical equations refers only to the statistics of an ensem-4783

ble E. The description of individual processes is excluded (§ 10.1.3): As any quantum state, (11.2) is irreducibly4784

probabilistic. In fact, probabilities occur for many other reasons (§ 12.1.2), which have not necessarily a quantum4785

origin.4786

The specific form of the expression (11.2) for the final state of S + A properly accounts for all the features of4787

ideal measurements that are related the large set E of runs. Von Neumann’s reduction implies that each individual run4788

should end up one of the states D̂i, which exhibits in a factorized form the expected complete correlation between4789

the final state r̂i of S and that R̂i of A characterized by the indication Ai of the pointer. The ensemble E obtained by4790

putting together these runs should thus be represented by a sum of these blocks D̂i, weighted by Born’s probabilities,4791

in agreement with (11.2). The truncation of the off-diagonal blocks was also needed; as shown in § 11.2.1, the4792

presence of sizeable elements in them would forbid the pointer to give well-defined indications.4793

Nevertheless, in spite of its suggestive form, the expression (11.2) does not imply all properties of ideal measure-4794

ments, which require the consideration of individual runs, or at least of subensembles of E. The correlation existing4795

in (11.2) means that, if Ai is observed, S will be described by r̂i. However, nothing in D̂(tf) warrants that one can4796

observe some well-defined value of the pointer in an individual run [177, 178, 179, 180, 181, 182, 183], so that4797

the standard classical interpretation cannot be given to this quantum correlation. Likewise, Born’s rule means that4798

a proportion pi of individual runs end up in the state D̂i. The validity of this rule requires D̂(tf) to have the form4799

(11.2); but conversely, as will be discussed in § 11.1.3, the sole result (11.2) is not sufficient to explain Born’s rule4800

which requires the counting of the individual runs tagged by the outcome Ai. And of course von Neumann’s reduction4801

requires a selection of the runs having produced a given outcome.4802

If quantum mechanics were based on the same kind of probabilities as classical physics, it would be obvious4803

to infer statistically the properties of individual systems from the probability distribution governing the statistical4804

ensemble to which they belong. At first sight, the description of a quantum ensemble by a density operator seems4805

analogous to the description of an ensemble of classical statistical mechanics by a probability density in phase space4806

– or to the description of some ensemble of events by ordinary probabilities. We must acknowledge, however, a major4807

difference. In ordinary probability theory, one can distinguish exclusive properties, one of which unambiguously4808

occurs for each individual event. When we toss a coin, we get either heads or tails. In contrast, a quantum state is4809

plagued by the impossibility of analysing it in terms of an exclusive alternative, as demonstrated by the example of an4810

unpolarized spin 1
2 (§ 10.2.3). We are not allowed to think, in this case, that the spin may lie either in the +z (or the4811

−z) direction, since we might as well have thought that it lay either in the +x (or the −x) direction.4812

This ambiguity of a mixed quantum state may also be illustrated, in the Curie–Weiss model, by considering the4813

final state of the magnet M alone. For the ensemble E, it is described by the density operator R̂M(tf) = Pdis
M (m̂, tf)/G(m̂),4814

where the probability distribution Pdis
M (m, tf) is strongly peaked around the two values m = mF and m = −mF of the4815

pointer variable m, with the weights p↑ and p↓. In standard probability theory this would imply that for a single4816

system m takes either the value mF or the value −mF. However, in quantum mechanics, an individual system should4817

be regarded as belonging to some subensemble E′k of E. We may imagine, for instance, that this subensemble is4818
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described by a pure state |ψ〉 such that |〈m, η|ψ〉|2 presents the same two peaks as PM(m, tf), where we noted as |m, η〉4819

the eigenstates of m̂ (the other quantum number η takes a number G(m) of values for each m). This state lies astride4820

the two ferromagnetic configurations, with coherences, so that the magnetization of the considered individual system4821

cannot have a definite sign. From the sole knowledge of R̂M(tf), we cannot infer the uniqueness of the macroscopic4822

magnetization.4823

Thus, albeit both quantum mechanics and classical statistical mechanics can be formulated as theories dealing4824

with statistical ensembles, going to individual systems is automatic in the latter case, but problematic in the former4825

case since it is impossible to characterize unambiguously the subensembles of E.4826

11.1.3. A crucial task: theoretical identification of the subensembles of real runs4827

Horresco referens102
4828

Virgil, Aeneid4829

Remember first that, when quantum mechanics is used to describe an individual system, the density operator4830

that characterizes its state refers either to a real or to a thought ensemble (§ 10.1.3). If we consider a real set E of4831

measurement processes, each individual outcome should be embedded in a real subset of E. We are thus led to study4832

the various possible splittings of E into subensembles.4833

A superficial examination of the final state (11.2) suggests the following argument. In the same way as we may4834

obtain an unpolarized spin state by merging two populations of spins separately prepared in the states |↑〉 and |↓〉, let us4835

imagine that we have prepared many compound systems S + A in the equilibrium states D̂i. We build ensembles Ei,4836

each of which contains a proportion pi of systems in the state D̂i, merge them into a single one E and lose track of this4837

construction. The resulting state for the ensemble E is identified with (11.2) and all predictions made thereafter about4838

E will be the same as for the state D̂(tf) issued from the dynamics of the measurement process. It is tempting to admit4839

conversely that the set E of runs of the measurement may be split into subsets Ei, each of which being characterized4840

by the state D̂i. This would be true in ordinary probability theory. If the reasoning were also correct in quantum4841

mechanics, we would have proven that each run belongs to one of the subsets Ei, so that it leads S + A to one or4842

another among the states D̂i at the time tf , and that its outcome is well-defined.4843

Here as in § 11.1.1 the above argument is fallacious. Indeed, as stressed in § 10.2.3, and contrarily to a state in4844

classical statistical mechanics, a mixed state D̂ can be split in many different incompatible ways into a weighted sum4845

of density operators which are more informative than D̂. Here, knowing the sole final state D̂(tf) for the set E of runs,4846

we can decompose it not only according to (11.2), but alternatively into one out of many different forms4847

D̂(tf) =
∑

k

νkD̂
′
k(tf), (νk ≥ 0;

∑
k

νk = 1), (11.4)

where the set of states D̂′k(tf), possibly pure, differ from the set D̂i: The very concept of decomposition is ambiguous.4848

If we surmise, as we did above above when we regarded E as the union of (thought) subensembles Ei described by4849

D̂i, that the density operator D̂′k(tf) is associated with a (thought) subset E′k of E containing a fraction νk of runs of the4850

measurement, we stumble upon a physical contradiction: The full set E of runs could be partitioned in different ways,4851

so that a given run would belong both to a subset Ei and to a subset E′k, but then we could not decide whether its final4852

state is D̂i or D̂′k(tf), which provide different expectation values.4853

While D̂(tf) is physically meaningful, its various decompositions (11.2) and (11.4) are purely mathematical prop-4854

erties without physical relevance. Unless we succeed to identify some physical process that selects one of them, the4855

very fact that they formally exist precludes the task considered here, namely to explain the uniqueness of individual4856

measurements, the quantum measurement problem. In the present context, only the decompositions involving the4857

particular density operators D̂i may be physically meaningful, i. e., may correspond to the splitting of the real set E4858

of runs described by D̂(tf) into actually existing subsets. If we wish to remain within standard quantum mechanics we4859

can only identify such a physical decomposition by studying dynamics of subensembles. Nothing a priori warrants4860

102I shiver while I am telling it
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that the set of states D̂i will then play a privileged role, and this specific ambiguity is the form taken here by the4861

quantum measurement problem.4862

The above ambiguity is well known in the literature [22, 330, 328, 331]. Not paying attention to its existence, and4863

then imposing by hand the desired separation into subensembles, was called the “prescribed ensemble fallacy” [331].4864

The question does not seem to have yet been resolved in the context of proper measurement models, but we attempt4865

to answer it below.4866

To illustrate the harmfulness of this ambiguity, consider the simple case of a Curie–Weiss model with N = 24867

(subsection 8.1). Although it cannot be regarded as an ideal measurement, it will clearly exhibit the present difficulty.4868

After elimination of the bath, after reduction and under the conditions (8.7), the state of S + M at a time tf such that4869

τreg � tf � τobs has the form4870

D̂(tf) = p↑D̂↑ + p↓D̂↓, (11.5)

where D̂↑ is the projection onto the pure state |↑, ⇑〉 characterized by the quantum numbers sz = 1, m = 1, and likewise4871

D̂↓ the projection onto |↓, ⇓〉 with sz = m = −1. This form suggests that individual runs of the measurement should4872

lead as expected either to the state | ↑, ⇑〉 or to the state | ↓, ⇓〉 with probabilities p↑ and p↓ given by the Born rule.4873

However, this conclusion is not granted since we can also decompose D̂(tf) according, for instance, to4874

D̂(tf) = ν1D̂′1 + ν2D̂′2, (11.6)

where D̂′1 is the projection onto
√

p↑/ν1 cosα |↑, ⇑〉 +
√

p↓/ν1 sinα |↓, ⇓〉 and D̂′2 the projection onto
√

p↑/ν2 sinα ×4875

|↑, ⇑〉 −
√

p↓/ν2 cosα |↓, ⇓〉, with α arbitrary and ν1 = p↑ cos2 α + p↓ sin2 α = 1 − ν2. Nothing would then prevent the4876

real runs of the measurement to constitute two subensembles described at the final time by D̂′1 and D̂′2, respectively; in4877

such a case, neither m nor sz could take a well-defined value in each run. In spite of the suggestive form of (11.5), we4878

cannot give any physical interpretation to its separate terms, on account of the existence of an infinity of alternative4879

formally similar decompositions (11.6) with arbitrary angle α.4880

In order to interpret the results drawn from the solution of models, it is therefore essential to determine not only the4881

state D̂(t) for the full ensemble E of runs of the measurement, but also the final state of S + A for any real subensemble4882

of runs. Only then may one be able to assign to an individual system, after the end of the process, a density operator4883

more informative than D̂(tf) and to derive from it the required properties of an ideal measurement.4884

To this end, one might postulate that a measuring apparatus is a macroscopic device which produces at each run4885

a well-defined value for the pointer variable, a specific property which allows registration. (This idea is somewhat4886

reminiscent of Bohr’s view that the apparatus is classical.) Thus, the apparatus would first be treated as a quantum4887

object so as to determine the solution D̂(t) of the Liouville–von Neumann equation for the full ensemble E, and would4888

then be postulated to behave classically so as to determine the states of the subensembles to which the individual runs4889

belong. No contradiction would arise, owing to the reduced form found for D̂(tf). (This viewpoint differs from that of4890

the quantum–classical models of section 2.2.)4891

Although expedient, such a way of eliminating the ambiguity of the decomposition of D̂(tf) is unsatisfactory. It4892

is obviously unjustified in the above N = 2 case. To really solve the measurement problem, we need to explain the4893

behaviour of the apparatus in individual runs by relying on the sole principles of quantum mechanics, instead of sup-4894

plementing them with a doubtful postulate. We now show that the task of understanding from quantum dynamics the4895

uniqueness of measurement outcomes is feasible, at least for sufficiently elaborate models of quantum measurements.4896

In fact, we will prove in the forthcoming subsections that the quantum Curie–Weiss model for a magnetic dot M + B4897

can be modified so as to explain the classical behaviour of its ferromagnetic phases, and hence the full properties of4898

the measurement.4899
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11.2. The states describing subensembles at the final time4900

De hond bijt de kat niet103
4901

Les chiens ne font pas des chats103
4902

Dutch and French sayings4903

Quantum mechanics in its statistical interpretation does not allow us to deal directly with individual runs of the4904

measurement. However, at least it accounts not only for the full ensemble, but also for arbitrary subensembles of4905

runs. We first exhibit necessary properties that such subensembles should fulfill at the final time (§ 11.2.1), then relate4906

these properties to the “collectives” introduced in the frequency interpretation of probabilities (§ 11.2.2). We plan to4907

establish that they are ensured by a quantum relaxation process, relying for illustration on the Curie–Weiss model. We4908

first present a seemingly natural but unsuccessful attempt (§ 11.2.3), in order to show that the required process cannot4909

be implemented before registration is achieved. We then present two alternative solutions. The first one (§ 11.2.4) is4910

efficient but requires somewhat artificial interactions within the pointer. The second one (§ 11.2.5) is more general4911

and more realistic but less elementary.4912

11.2.1. Hierarchic structure of physical subensembles4913

Un poème n’est jamais fini, seulement abandonné104
4914

Paul Valéry4915

A model suitable to fully explain an ideal measurement must yield for S + A, at the end of each run, one or another4916

among the states D̂i defined by (11.2). We do not have direct access to individual runs, but should regard them as4917

embedded in subensembles. Consider then an arbitrary subensemble of real runs drawn from the full ensemble E and4918

containing a proportion qi of individual runs of the type i. We expect this subensemble Esub to be described at the end4919

of the measurement process by a density operator of the form4920

D̂sub(tf) =
∑

i

qiD̂i. (11.7)

The coefficients qi are non-negative and sum up to 1, but are otherwise arbitrary, depending on the subensemble105.4921

They satisfy the following additivity property. If two disjoint subensembles E(1)
sub and E(2)

sub containing N1 and N24922

elements, respectively, merge so as to produce the subensemble Esub containing N = N1 + N2 elements, the additivity4923

of the corresponding coefficients is expressed by Nqi = N1q(1)
i + N2q(2)

i , with weights proportional to the sizes of the4924

subensembles.4925

We will refer to the essential property (11.7) as the hierarchic structure of subensembles. It involves two essential4926

features, the occurrence of the same building blocks D̂i for all subensembles, and the additivity of the coefficients qi.4927

The existence of this common form for all subensembles is a consistency property. It is trivially satisfied in ordinary4928

probability theory within the frequency interpretation (§ 11.2.2), since there all subensembles are constructed from the4929

same building blocks, but it is not granted in quantum mechanics due to the infinity of different ways of splitting the4930

state of E into elementary components as in (10.3), or into subensembles as in (10.4). The existence of the hierarchic4931

structure removes this ambiguity stressed in § 11.1.3. In fact, for an arbitrary decomposition (11.4) of D̂(tf), the state4932

D̂′k(tf) that describes at the final time some subset E′k of runs has no reason to take the form (11.7). We must therefore4933

prove that the final state of any subensemble of E has the form (11.7).4934

Since we will rely on the analysis of E into subensembles in order to extrapolate quantum mechanics towards4935

some properties of individual systems, we stress here that these subensembles must be completely arbitrary. Had we4936

extracted from E only large subensembles with elements selected randomly, their coefficients qi would most often have4937

taken values close to the Born coefficients pi. We want, however, to consider also more exceptional subensembles that4938

103Dogs do not beget cats
104A poem is never finished, just abandoned
105In particular, the state D̂(tf ) describing the full ensemble E has the form (11.7) where the coefficients qi are replaced by the probabilities pi of

Born’s rule. If this ensemble is split into some set of disjoint subensembles, each pi of E is a weighted sum of the corresponding coefficients qi for
these subensembles
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involve arbitrary coefficients qi, so as to encompass the limiting cases for which one qi reaches the value 1, a substitute4939

to single systems which are not dealt with directly in the statistical interpretation. To take an image, consider a game4940

in which we would be allowed only to toss many coins at a time. Most draws would provide nearly as many heads as4941

tails; if however we wish to infer from these experiments that tossing a single coin would yield either heads or tails,4942

we have to acknowledge the occurrence of exceptional draws where all coins fall on the same side. Admittedly, this4943

example is improper as it disregards the quantum ambiguity of subensembles, but it may give an idea of the reasoning4944

that we have in mind.4945

Truncation is the disappearance of off-diagonal blocks (§ 1.3.2). Note that the allowed states (11.7) of subensem-4946

bles are all truncated. Although the state D̂(tf) of the full ensemble has a truncated form, nothing prevents its decom-4947

positions (11.4) to involve non-zero elements in off-diagonal blocks. (These elements only have to cancel out in the4948

sum over k of (11.4).) Such a situation is exemplified by (11.6) for sin 2α , 0, in which case D̂′1 possesses pairs of4949

off-diagonal terms of the form | ↑, ⇑〉〈↓, ⇓| and | ↓, ⇓〉〈↑, ⇑|. Due to the positivity of D̂′1, the presence of these terms4950

implies the simultaneous occurrence of the two corresponding diagonal terms |↑, ⇑〉〈↑, ⇑| and |↓, ⇓〉〈↓, ⇓|, and hence of4951

both indications of the pointer. A well-defined indication of the pointer would therefore be unexplainable in such a4952

situation.4953

Our strategy will again rely on a dynamic analysis, now not for the whole ensemble as before, but for an arbitrary4954

subensemble. Consider, at the time tsplit, some splitting of E into subensembles E′k. We select one of these, denoted as4955

Esub and described for t > tsplit by the state D̂sub(t). Since D̂sub(tsplit) is issued from a decomposition of D̂(tsplit) of the4956

type (11.4), it presents some arbitrariness, but is constrained by the positivity of D̂(tsplit) − νkD̂sub(tsplit) for a sizable4957

value of νk. We will then study, at least in the Curie–Weiss model, the Liouville–von Neumann evolution of the state4958

D̂sub(t), starting from the time t = tsplit at which it was selected, and will prove that it relaxes towards the form (11.7)4959

at the final time tf .4960

Actually, we need the hierarchic structure (11.7) to hold for the subensembles of real runs. We have no means4961

of identifying the decompositions of E into subsets of real runs. However, by considering all possible mathematical4962

splittings of D̂(tsplit), we can ascertain that the entire set of states that we are considering contains the states which4963

describe real processes. Thus we do not have to care whether the subensemble Esub described by D̂sub(t) is virtual4964

or real. We could not decide beforehand whether Esub was real or virtual, but all real subensembles will anyhow be4965

accounted for by this treatment, which will therefore yield the desired conclusion.4966

11.2.2. Hierarchic structure from the viewpoint of the frequency interpretation of the probability4967

C’est dans les vieux pots qu’on fait la meilleure soupe106
4968

French proverb4969

The notion of hierarchic structure for subsensembles can be enlightened by comparison with the basic concepts4970

of the frequency interpretation of probability, as developed by Venn and von Mises [308, 309]. This interpretation4971

appeals to the physicist’s intuition [332], but its direct usage in physics problems is not frequent (in 1929 when the4972

review paper [332] was written it was hoped to find wide applications in physics). Only recently scholars started to4973

use this interpretation for elucidating difficult questions of quantum mechanics [313, 314].4974

The major point of the frequency interpretation is that the usual notion of an ensemble E is supplemented by two4975

additional requirements, and then the ensemble becomes a collective as defined in [309].4976

(i) The ensemble (of events characterized by some set of numerical values) allows choosing specific subensembles,4977

all elements of which have the same numerical value. Provided that for each such value x one chooses the maximally4978

large subensemble E, the probability of x is defined via limN→∞Nx/N, where Nx and N are, respectively, the number4979

of elements in Ex and E. The limit is demanded to be unique.4980

(ii) Assuming that the elements σk of E are indexed, k = 1, 2...N, consider a set of integers φ(k), where the function4981

φ(k) is strictly increasing,i.e., φ(k1) < φ(k2) for k1 < k2. We stress that φ does not depend on the value of σ, but it4982

only depends on its index k. Select the elements Eφ(k) so as to build a subensemble E[φ] of E. If for or instance,4983

φ(k) = 2k − 1, we select the elements with odd indices. For N → ∞, one now demands that for all such φ(...), E[φ]4984

produces the same probabilities as E.4985

106The best soup is made in the old pots
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The first condition is needed to define probabilities, the second one excludes any internal order in the ensemble4986

so as to make it statistical (or random). This condition led to an extended criticism of the frequency approach [332],4987

but it does capture the basic points of defining the randomness in practice, e.g. judging on the quality of a random4988

number generator [333]. It is clear that some condition like (ii) is needed for any ensemble (not only a collective)4989

to have a physical meaning. For instance, keeping this condition in mind, we see again why the aggregates are not4990

proper statistical ensembles; as instead of (ii) their construction introduces correlations between their elements (see4991

§ 10.2.4).4992

The fact that within the frequency interpetation, the probability is always defined with respect to a definite col-4993

lective allows to avoid many sophisms of the classical probability theory [309]. Likewise, it was recently argued4994

that the message of the violation of the Bell inequalities in quantum mechanics is related to inapplicability of the4995

Kolmogorov’s model of probability, but can be peacefully accomodated into the frequency interpretation [314].4996

Returning to our immediate purposes, we note that the hierarchic structure of the subensembles that we wish to4997

establish is a direct consequence of the first condition on collectives recalled above. Indeed, the additivity of the4998

coefficients qi, in the sense defined after (11.7), is the same as the additivity of frequencies limN→∞Nx/N. If the4999

frequencies would be non-additive, one can separate E into two subensembles such that the unique limit limN→∞Nx/N5000

on E does not exist.5001

Thus the hierarchical structure of ensembles reconciles the Bayesian approach to probabilities with the frequency5002

interpretation. The former, which underlies the definition of a state as a collection of expectation values, allows us to5003

speak of probabilities before constructing the full theory of quantum measurement, while the frequency interpretation5004

will support the solution of the measurement problem (see section 11.3.1). A similar bridge between the two interpre-5005

tations is found in the purely classical set-up of selecting the non-informative prior probability distribution, the most5006

controversial aspect of the Bayesian statistics [334, 335, 336] 107.5007

11.2.3. Attempt of early truncation5008

No diguis blat fins que no estigui al sac i ben lligat108
5009

Catalan proverb5010

If we take the splitting time after achievement of the truncation (tsplit � τtrunc), under conditions that exclude5011

recurrences, we are at least ensured that all elements in off-diagonal blocks are eliminated from the density matrix5012

D̂(tsplit) for the full ensemble E. In order to extend this property to the subensembles of E, it is natural to try to5013

approach the problem as in section 5. We thus take a splitting time tsplit, satisfying τtrunc � tsplit � τreg, sufficiently5014

short so that D̂(tsplit) has the form
∑

i Π̂ir̂(0)Π̂i ⊗ R̂(0) issued from D̂(0) by projecting out its off-diagonal blocks; the5015

state R̂(0) of the apparatus has not yet been significantly affected. The initial condition D̂sub(tsplit) for D̂sub(t) is found5016

from some decomposition of the simple truncated state D̂(tsplit). To follow the fate of the subensemble Esub, we have5017

to solve the equations of motion of section 4. The situation is the same as in section 5, except for the replacement5018

of the initial condition D̂(0) by D̂sub(tsplit). In case the truncation mechanisms of sections 5 and 6 are effective, the5019

elements present in the off-diagonal blocks of D̂sub(t) disappear over the short time scale τtrunc, as they did for D̂(t).5020

The state D̂sub(t) is thus dynamically unstable against truncation. Later on, the diagonal blocks that remain after this5021

relaxation will evolve as in section 7, and give rise to ferromagnetic states for M, so that D̂sub(tf) will eventually reach5022

the form (11.7).5023

Unfortunately, the truncation mechanism based on the coupling between S and M is not efficient for all possible5024

initial states D̂sub(tsplit). We have seen in section 5 that truncation requires a sufficient width in the initial paramagnetic5025

probability distribution PM(m, 0) of the pointer variable, and that it may fail for “squeezed” initial states of M (§ 5.2.3).5026

While the full state D̂(tsplit) involves a width of order 1/
√

N for PM(m, 0), this property is not necessarily satisfied by5027

D̂sub(tsplit), which is constrained only by the positivity of D̂(tsplit) − νkD̂sub(tsplit) for a sizeable νk (§11.2.1). We thus5028

fail to prove in the present approach that D̂(t) finally reaches the form (11.7) for an arbitrary subensemble Esub.5029

One reason for this failure lies in the weakness on the constraint set upon D̂sub(tsplit) by D̂(tsplit) at the time tsplit.5030

Taking below a later value for tsplit will entail more severe constraints on D̂sub(tsplit) so that the required relaxation will5031

107The choice of the non-informative prior is straightforward for a finite event space, where it amounts to the homogeneous probability (all events
have equal probability). Otherwise, its choice is not unique and can be controversial if approached formally [334, 335, 336].

108Do not say it is wheat until it is in the bag and securely tied
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always take place. Moreover, the Curie–Weiss model as it stands was too crude for our present purpose since only a5032

single variable, the combination m̂ = (1/N)
∑

n σ̂
(n)
z of the pointer observables, enters its dynamics. The irreversible5033

process that ensures the hierarchic structure of the subensembles is more elaborate than the truncation process of D̂(t)5034

and requires dynamics involving many variables.5035

11.2.4. Subensemble relaxation of the pointer alone5036

Laat me alleen, alleen met al mijn verdriet109
5037

Lyrics by Gerrit den Braber, music by Giovanni Ullu, sung by Rita Hovink5038

As we just saw, the relaxation towards (11.7) of the states describing arbitrary subensembles cannot be achieved5039

by the interaction ĤSA, so that we have to rely on the Hamiltonian of the apparatus itself. We also noted that the5040

dynamical mechanism responsible for this relaxation cannot work at an early stage. The form of (11.7) suggests to5041

distinguish the subensembles at a late time tsplit such that M, after having been triggered by S, has reached for the full5042

ensemble E a mixture of the two ferromagnetic states. The time tsplit at which we imagine splitting E into subensembles5043

E′k is thus taken at the end of the registration, just before the time tf , so that the new initial state D̂sub(tsplit) of the5044

considered dynamical process for an arbitrary subensemble Esub is one element of some decomposition (11.4) of5045

D̂(tsplit) ' D̂(tf). Note that the irreversibility of the evolution that has led to D̂(tsplit) prevents us from identifying the5046

state D̂sub(t) at earlier stages of the process, when m has not yet reached mF or −mF. For t > tsplit, D̂sub(t) will be found5047

by solving the Liouville–von Neumann equation with the initial condition at t = tsplit. As the registration is achieved5048

at the time tsplit, the interaction ĤSA is then supposed to have been switched off, so that the apparatus will relax by5049

itself, though its correlations already established with S will be preserved.5050

The decompositions (11.4) of D̂(tf) are made simpler if we replace, in the expression (11.2), each canonical5051

ferromagnetic equilibrium state R̂i by a microcanonical state110; this is justified for large N. Tracing out the bath,5052

which reduces D̂ to D̂, we will therefore consider arbitrary decompositions of the analogue for S+M of the state5053

(11.3), that is, of5054

D̂(tf) = p↑ r̂↑ ⊗ R̂µ
⇑

+ p↓ r̂↓ ⊗ R̂µ
⇓
, (11.8)

where r̂↑ = |↑〉〈↑| and r̂↓ = |↓〉〈↓|. The two occurring microcanonical states of M are expressed as (with the index µ5055

for microcanonical)5056

R̂µ
⇑

=
1
G

∑
η

|mF, η〉〈mF, η|, R̂µ
⇓

=
1
G

∑
η

|−mF, η〉〈−mF, η|, (11.9)

where |m, η〉 denote the eigenstates |σ(1)
z , · · · , σ(n)

z , · · · , σ(N)
z 〉 of ĤM, with m = (1/N)

∑
n σ

(n)
z ; the index η takes a5057

number G(m) of values, and the degeneracy G(m) of the levels, expressed by (3.24), is large as an exponential of N;5058

for shorthand we have denoted G(mF) = G(−mF) as G.5059

The density matrix D̂(tsplit) ' D̂(tf) associated with E has no element outside the large eigenspace m , mF,5060

m , −mF associated with its vanishing eigenvalue. The same property holds for the density operator D̂sub(tsplit)5061

associated with any subensemble Esub. More precisely, as (11.8) is an operator in the 2G-dimensional space spanned5062

by the basis |↑〉⊗|mF, η〉, |↓〉⊗|−mF, η〉, any density operator D̂sub(tsplit) issued from the decomposition of D̂(tsplit) = D̂(tf)5063

is a linear combination of projections over pure states |Ψ(tsplit)〉 of the form [71, 329, 337]5064

|Ψ(tsplit)〉 =
∑
η

U↑η |↑〉 ⊗ |mF, η〉 +
∑
η

U↓η |↓〉 ⊗ |−mF, η〉, (11.10)

109Leave me alone, alone with all my sorrows
110The proof below is readily extended to our original situation, where (11.8) and (11.9) involve canonical equilibrium states R̂⇑ and R̂⇓ of the

pointer instead of microcanonical ones. We merely have to imagine that the eigenstates |mF, η〉 of M which occur in (11.10) denote the eigenvectors
of m̂ associated with the eigenvalues of m̂ lying in a small interval of width 1/

√
N around mF. The index η then denotes these various eigenstates.

Eq. (11.8) is replaced by a weighted sum over them, and G again denotes their number, now larger than G(mF). However, as G(m) behaves as an
exponential of N, the two weights have the same order of magnitude for large N. The subsequent developments remain valid
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with arbitrary coefficients U↑η, U↓η normalized as
∑
η( |U↑η|2 + |U↓η|2) = 1. Having split the ensemble E into subensem-5065

bles after achievement of the registration has introduced a strong constraint on the states D̂sub, since only the com-5066

ponents for which m = mF or m = −mF occur. The “cat terms” | ↑〉〈↓ | ⊗ |mF, η〉〈−mF, η
′| in |Ψ(0)〉〈Ψ(0)|, and their5067

hermitean conjugates, describe coherences of S + M, while the diagonal terms include correlations.5068

Since any D̂sub is a linear combination of terms |Ψ(t)〉〈Ψ(t)|, our problem amounts to show that |Ψ(t)〉〈Ψ(t)| decays5069

on a time scale τsub short compared to tf towards an incoherent sum of microcanonical distributions, according to5070

|Ψ(t)〉〈Ψ(t)| → q↑r̂↑ ⊗ R̂µ
⇑

+ q↓r̂↓ ⊗ R̂µ
⇓
, q↑ =

∑
η

|U↑η|2, q↓ =
∑
η

|U↓η|2. (11.11)

We will term this decay the subensemble relaxation. It is a generalization to a pair of macroscopic equilibrium5071

states of the microcanonical relaxation process, which was discussed in literature several times and under various5072

assumptions; see Ref. [339] for an early review and Refs. [340, 341, 342, 343] for further results. Note that, in each5073

subensemble Esub, the expectation values of the observables of S + M may evolve according to (11.11) on the time5074

lapse τsub; however, they remain constant for the full ensemble since D̂(t) has already reached its stationary value:5075

When the subensembles Ek of some decomposition (11.4) of E are put back together, the time dependences issued5076

from (11.11) compensate one another.5077

Obviously, our simple Curie–Weiss model as defined in section 3 is inappropriate to produce this desired relax-5078

ation. Indeed, all the states |↑〉⊗|mF, η〉 and |↓〉⊗|−mF, η〉 are eigenstates with the same eigenvalue of both the coupling5079

ĤSM and the Ising Hamiltonian ĤM, so that ĤSA + ĤM has no effect on |Ψ(t)〉〈Ψ(t)|. Whether S is still coupled to M5080

or not at the time tsplit thus makes no difference. Moreover, the coupling ĤMB with the bath was adequate to allow5081

dumping of energy from M to B during the registration, whereas we need here transitions between states |mF, η〉 and5082

|mF, η
′〉 with equal energies (or nearly equal energies, within a margin of order 1/

√
N, for canonical equilibrium 110).5083

We must therefore extend the model, by supplementing the original Hamiltonian of subsection 3.2 with weak interac-5084

tions V̂M which may induce the required transitions among the spins of M without affecting the previous results. As5085

these transitions should not modify m, the perturbation V̂M has the form V̂M = V̂⇑ + V̂⇓, where V̂⇑ and V̂⇓ act in the5086

subspaces |mF, η〉 and |−mF, η〉, respectively, so that V̂⇑| − mF, η〉 = V̂⇓|mF, η〉 = 0.5087

In order to find explicitly the time dependence of |Ψ(t)〉〈Ψ(t)|, we have to specify V̂M. A simple possibility5088

consists in taking V̂⇑ and V̂⇓ as random matrices [256]. This procedure does not describe a stochasticity that would5089

be generated by some environment, but is simply founded as usual on Wigner’s idea that complicated interactions5090

will generate similar properties; averaging thus appears as a means for deriving such generic results through feasible5091

calculations. We shall regard V̂M as the sum of two independent random Hermitean matrices V̂⇑ and V̂⇓ of size G,5092

with a weight proportional to111
5093

exp
[
−

2G
∆2

(
tr V̂2

⇑ + tr V̂2
⇓

)]
, (11.12)

and average |Ψ(t)〉〈Ψ(t)| with the weight (11.12) over the evolutions generated by the various realizations of V̂M. The5094

matrix elements of V̂M have a very small typical size ∆/
√

G, where we remind that G is large as an exponential of N.5095

The G energy levels of ĤM + V̂M in the subspace |mF, η〉 are now no longer degenerate, and, taking as origin for the5096

energy E the unperturbed value issued from ĤM, their density obeys Wigner’s semi-circle law (2/π∆2)
√

∆2 − E2 since5097

G � 1. We do not wish the perturbation V̂M to spoil the above analysis of the original Curie–Weiss model which led5098

to D̂(tf); its effect, measured for large G by the parameter ∆, should therefore be sufficiently weak so as to produce a5099

widening ∆ small compared to the fluctuation of the energy in the canonical distribution. Since the fluctuation of m̂ in5100

the latter distribution is of order 1/
√

N, we should take, according to (3.7),5101

111The only constraint on V̂M being hermiticity, the maximum entropy criterion yields, as least biased choice of probability distribution [344], the
Gaussian unitary ensemble (11.12), invariant under unitary transformations. Had we constrained V̂M to be invariant under time reversal, that is, to
be represented by real symmetric matrices, we would have dealt with the Gaussian orthogonal ensemble, with a probability distribution invariant
under orthogonal transformations; the results would have been the same. We will rely in §11.2.5 and in appendix H on another type of random
matrices, which yields a more standard time dependence for the subensemble relaxation
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∆ �
√

N(J2 + J4). (11.13)

Returning to |Ψ(t)〉〈Ψ(t)|, where we set t = tsplit + t′ so as to take tsplit as an origin of the time t′, we notice that the5102

system S behaves as a spectator, so that we need only to study, in the space of M, the time dependence of the operators5103

X̂ ηη′

⇑
(t′) ≡ exp(−iV̂⇑t′/~)|mF, η〉〈mF, η′| exp(iV̂⇑t′/~), (11.14)

Ŷ ηη′ (t′) ≡ exp(−iV̂⇑t′/~)|mF, η〉〈−mF, η′| exp(iV̂⇓t′/~), (11.15)

and of the operators X̂ ηη′

⇓
(t′) and Ŷ η′η(t′)† obtained by interchanging ⇑ and ⇓. Because V̂⇑ and V̂⇓ are statistically5104

independent, the evaluation of Ŷηη′ (t′) simply involves the separate averages of exp(−iV̂⇑t′/~) and of exp(iV̂⇓t′/~),5105

which for symmetry reasons are proportional to the unit operator. We can therefore evaluate the time dependence of5106

Ŷηη′ (t′) through the trace5107

φ(t′) ≡
1
G

tr exp(−iV̂⇑t′/~) =
2
π∆2

∫ ∆

−∆

dE
√

∆2 − E2 exp(−iEt′/~) =
2τsub

t′
J1

(
t′

τsub

)
, (11.16)

where we made use of the semi-circle law for the density of eigenvalues recalled above.5108

This expression exhibits the characteristic time τsub associated with the relaxation of the subensembles:5109

τsub =
~
∆
. (11.17)

Notice that τsub does not depend on the huge size G of our Hilbert space. We wish τsub to be short compared to5110

the registration time τreg given by (9.9) or (9.10). As N � 1 and γ � 1, the condition (11.13) permits easily a5111

value of ∆ such that τsub � τreg, i.e.,
√

N � ∆/J � γ. From (11.15) and (11.16), we find that Ŷ ηη′ (t′) behaves as5112

Ŷ ηη′ (t′) = fY (t′)Ŷ ηη′ (0), where5113

fY (t′) = φ2(t′) =

(
2τsub

t′

)2

J2
1

(
t′

τsub

)
≈

1 − (
t′

2τsub

)2 , (t′ � τsub),

∼
8
π

(
τsub

t′

)3
sin2

(
t′

τsub
−
π

4

)
, (t′ � τsub). (11.18)

Accordingly, the off-diagonal blocks of |Ψ(tsplit + t′)〉〈Ψ(tsplit + t′)|, which involve both ferromagnetic states mF and5114

−mF, decay for t′ � τsub as Eq. (11.18). It is thus seen that the coherent contributions Ŷ ηη′ fade out over the short5115

time τsub.5116

The time dependence of fY (t′) includes a slow decrease as 1/t′3 and oscillations, unusual features for a physical5117

decay. These peculiarities result from the sharp behavior of the level density at E = ±∆. We will show in § 11.2.55118

how how a more familiar exponential decay comes out from more realistic models.5119

To evaluate X̂ηη′

⇑
(t′), we imagine that the two exponentials of (11.14) are expanded in powers of V̂⇑ and that Wick’s5120

theorem is used to express the Gaussian average over (11.12) in terms of the averages V̂ηη′ V̂η′η = ∆2/4G. We thus find5121

a diagrammatic expansion [338, 340] for the matrix elements of X̂ηη′

⇑
(t′) in the basis |mF, η〉. Apart from the factor5122

(−i)nin
′

/n!n′! arising from the expansion of the exponentials, each line of a diagram carries a contraction5123

t′2

~2 V̂ηη′ V̂η′η =
∆2t′2

4~2G
=

1
4G

(
t′

τsub

)2

, (11.19)
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and each summation over an internal index η brings in a factor G. The structure of the contractions (11.19) im-5124

plies that each index must come in a right-left pair. Hence, for η , η′, the sole non-vanishing matrix element of5125

X̂ηη′

⇑
(t′) is 〈mF, η|X̂

ηη′

⇑
(t′)|mF, η

′〉. Among the contributions to this matrix element, the only diagrams that survive5126

in the large-G limit are those which involve as many summations over indices η as contractions. This excludes in5127

particular all diagrams containing contractions astride the left and right exponentials of (11.14). The evaluation of5128

〈mF, η|X̂
ηη′

⇑
(t′)|mF, η

′〉 thus involves the same factorization as in 〈mF, η|Ŷηη′ (t′)| − mF, η
′〉, and this simply produces the5129

factor [φ(t′)]2. We therefore find, for η , η′, that X̂ηη′

⇑
(t′) = φ2(t′)X̂ηη′

⇑
(0) tends to 0 just as (11.18).5130

For X̂ηη
⇑

(t′), the pairing of indices shows that the sole non-vanishing elements are 〈mF, η|X̂
ηη
⇑

(t′)|mF, η〉, the outcome5131

of which does not depend on η, and, for η , η′, 〈mF, η
′|X̂ηη
⇑

(t′)|mF, η
′〉, which depends neither on η nor on η′. Moreover,5132

according to the definitions (11.9) and (11.14), we note that tr X̂ηη
⇑

(t′) = 1, so that X̂ηη
⇑

(t′) must have the general form5133

X̂ηη
⇑

(t′) = fX(t′) X̂ηη
⇑

(0) +
[
1 − fX(t′)

]
R̂µ
⇑
. (11.20)

In the large-G limit, the same analysis as for 〈mF, η|X̂
ηη′

⇑
(t′)|mF, η

′〉 holds for 〈mF, η|X̂
ηη
⇑

(t′)|mF, η〉, and we find likewise5134

fX(t′) = φ2(t′), so that the first term of (11.20) again decays as (11.18). (A direct evaluation of 〈mF, η
′|X̂ηη
⇑

(t′)|mF, η
′〉5135

for η , η′, which contributes to the second term of (11.20), would be tedious since this quantity, small as 1/G, involves5136

correlations between the two exponentials of (11.14).) Thus, on the time scale τsub, the operators X̂ηη′

⇑
(t′) fade out for5137

η , η′ and tend to the microcanonical distribution for η = η′.5138

Let us resume the above results. Starting from the ensemble E described by the state (11.8), we consider at a time5139

tsplit slightly earlier than tf and such that tf − tsplit � τsub, any (real or virtual) subensemble Esub described by a state5140

D̂sub(tsplit) issued from a decomposition of D̂(tsplit) ' D̂(tf). In the present model D̂sub evolves according to5141

D̂sub(tsplit + t′) = φ2(t′)D̂sub(tsplit) + [1 − φ2(t′)]D̂split(tf), (11.21)

where5142

D̂split(tf) = q↑r̂↑ ⊗ R̂µ
⇑

+ q↓r̂↓ ⊗ R̂µ
⇓
, q↑,↓ = tr D̂split(tsplit)r̂↑,↓, (11.22)

and where φ2(t′), expressed by (11.18), (11.17), decreases over the very short time scale τsub � tf − tsplit. The state of5143

any subensemble therefore relaxes rapidly to the expected asymptotic form (11.22), fulfilling the hierarchic structure5144

at the final time tf . Truncation and equilibration take place simultaneously.5145

The final result (11.22) shows that S and A remain fully correlated while A evolves. We have thus proven in the5146

present model that the surmise (11.7) is justified for any subensemble, and that the set of subensembles possess at5147

the final time tf the hierarchic structure which removes the quantum ambiguity associated with the splitting of the5148

full ensemble of runs. The solution of the measurement problem thus relies on specific properties of the apparatus,5149

especially of its pointer M. We had already dwelt on the large number of degrees of freedom of M, needed to let5150

it reach several possible equilibrium states. Now, we wish coherent states astride these equilibrium states to decay5151

rapidly, so that the pointer can yield well-separated indications; the present model shows that this is achieved owing to5152

the macroscopic size of M and to a sufficient complexity of the internal interactions V̂M. Moreover these interactions5153

equalize the populations of all levels within each microcanonical equilibrium state.5154

Note that the above relaxation is a property of the magnet alone, if we deal with broken invariance in the quantum5155

framework. So we momentarily disregard the system S and measurements on it. Consider the perfectly symmetric5156

process of § 7.3.2 (fig 7.7) which brings a statistical ensemble E of magnets M from the paramagnetic state to the5157

quantum mixture R̂M(tf) = Pdis
M (m̂, tf)/G(m̂) of both ferromagnetic states. To simplify the discussion we replace the5158

canonical distribution Pdis
M (m, tf) by a microcanonical distribution located at mF and −mF. The mixed state R̂M(tf) can5159

be decomposed, as indicated at the end of § 11.1.2, into a weighted sum of projections |ψ〉〈ψ| onto pure states (notice5160

that Ψ in (11.10) refers not only to M but also to S, that is absent here)5161
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|ψ〉 =
∑
η

U′↑η|mF, η〉 +
∑
η

U′↓η| − mF, η〉, (11.23)

each of which describes a subensemble of E and contains coherent contributions astride m = mF and m = −mF. Let5162

us imagine that such a pure state has been prepared at some initial time. Then, in the present model including random5163

interactions, it is dynamically unstable and decays into
∑
η |U′↑η|

2R̂µ
⇑

+
∑
η |U′↓η|

2R̂µ
⇓

on the time scale τsub. Starting5164

from |ψ〉〈ψ| we are left after a while with an incoherent superposition of microcanonical equilibrium states of M.5165

Contrary to the initial state, this final situation can be interpreted classically as describing individual events, in each5166

of which m takes a well-defined value, either mF or −mF. Quantum dynamics thus allows us, at least in the present5167

model, to by-pass the postulate about the apparatus suggested the end of § 11.1.3. Quantum magnets (and, more5168

generally, macroscopic quantum systems having several equilibrium states) can just relax rapidly into well-defined5169

unique macroscopic states, and in that sense behave as classical magnets (systems), as one would expect.5170

11.2.5. Subensemble relaxation in more realistic models5171

People who understand physics do not write many formulas5172

Nikolay Timofeev-Ressovsky quoting Niels Bohr5173

As usual in the applications of the random matrix theory, the use of a random interaction V̂M was justified by5174

the expected similitude of the dynamical effects of most interactions, which allows us to average |Ψ(t)〉〈Ψ(t)| over5175

V̂M. Nevertheless, although our choice of a Gaussian randomness (11.12) was mathematically sensible and provided5176

the desired result, this choice was artificial. We have noted above that it yields a non-exponential decay (11.18) of5177

fY (t′) = fX(t′), which is not satisfactory. In fact, by assuming that all the matrix elements of V̂⇑ have comparable5178

sizes, we have put all the states |mF, η〉 on an equal footing and disregarded their structure in terms of the spins σ(n)
z .5179

Such a V̂⇑ is rather unphysical, as it produces transitions from |mF, η〉 to |mF, η
′〉 that involve flip-flops of many spin5180

pairs, with the same amplitude as transitions that involve a single flip-flop. (The total spin remains unchanged in these5181

dynamics.)5182

A more realistic model should involve, for instance, as interaction V̂⇑ a sum of terms σ̂(n)
− σ̂

(n′)
+ , which keep m fixed5183

and produce single flip-flops within the set |mF, η〉 = |σ(1)
z , · · · , σ(n)

z , · · · , σ(N)
z 〉. The number of significant elements5184

of the G × G matrix V̂⇑ is then of order G rather than G2 as for Gaussian ensembles. This idea can be implemented5185

in a workable model by taking for V̂⇑ and V̂⇓ other types of random matrices. If, for instance, the level density5186

associated with V̂⇑ is Gaussian instead of satisfying the semi-circle law, the relaxation will be exponential. One5187

possible realization of this exponential relaxation scenario is achieved via a class of random matrices, where the5188

distribution of eigenvalues is factorized from that of the eigenvectors. This case corresponds to the homogeneous5189

(Haar’s) distribution. The above Gaussian ensemble, with the distribution of the eigenvalues satisfying the semi-circle5190

law, belongs to this class [253]. Appendix H justifies that if the distribution of the eigenvalues is taken to be Gaussian5191

(independent from the Haar distribution of the eigenvectors), the relaxation is indeed exponential.5192

One can justify the use of random matrices from a different, open-system perspective. We have assumed till now5193

that the decay (11.21) was due to interactions within the spins of M. Alternatively, a concrete physical mechanism5194

involving the bath B can efficiently produce the same decay. Instead of being governed by V̂M as above, the evolution5195

of |Ψ(t)〉 is now governed by an interaction V̂MB with the bath. In contrast to the spin-boson interaction ĤMB defined by5196

(3.10) which flips the spins of M one by one and which produces the registration, this interaction V̂MB does not affect5197

the energy of M, and thus consists of flip-flops of spin pairs. It gives rise to transitions within the subspaces |mF, η〉 or5198

|−mF, η〉, which can be described as a quantum collisional process. Successive brief processes take place within M +5199

B. Each such “collision” may be produced by one among the various elements k of the bath, which act independently.5200

Its effect on M is thus described in the subspaces |mF, η〉 and |−mF, η〉 by either one of the unitary transformations Ûk
⇑

5201

and Ûk
⇓

associated with the element k of B. It is then fully legitimate to treat the effective Hamiltonians for M entering5202

each Ûk
⇑

and Ûk
⇓

as random matrices. Their randomness arises here from tracing out the bath.5203

This collisional approach is worked out in Appendix I. It is shown to produce the required decay (11.11) of5204

|Ψ(t)〉〈Ψ(t)| through the two effects already described in § 11.2.4: the disappearance of the coherent contributions5205
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of the marginal density matrix of M, and the microcanonical relaxation. The process is rapid, because the colli-5206

sions produce transitions between kets having the same energy, and the decay is exponential as expected on physical5207

grounds.5208

Altogether (table 1), simple models such as the Curie–Weiss model of section 3 can provide, for the full set E of5209

runs of a measurement issued from the initial state (11.1), the final state (11.2) issued from two relaxation processes,5210

the truncation, and the registration which fully correlates the system and the pointer. However, ideal measurements5211

require a property, less easy to ensure, the hierarchic structure of the subensembles of E, expressed by the special form5212

(11.7) of their states, which are constructed from the same building blocks D̂i as the state (11.2) for the full ensemble.5213

We have just seen that more elaborate dynamical models involving suitable interactions within the apparatus must5214

be introduced to establish this property for any subensemble, real or not, issued from a mathematically allowed5215

decomposition of E, and hence for any subensemble of real runs.5216

We have no means to identify, among all possible mathematical decompositions, which subensembles are the5217

physical ones and which are their states at the time tsplit, but their hierarchic structure is warranted by the above dy-5218

namical process. Then, if a physical state having a form different from (11.7) happens to occur for some subensemble5219

at the time tsplit just before the end of the process, it is dynamically unstable and undergoes a new type of rapid relax-5220

ation towards a form (11.7). This mechanism removes the quantum ambiguity in the possible decompositions (11.4)5221

of the state D̂(tf) describing the full ensemble E: all subensembles of real runs will at the final time tf be described by5222

states of the form (11.7), the only physical ones at the end of the process.5223

Step Result Time scale Parameter Mechanism(s)

Preparation Metastable apparatus τpara γ, T
Cooling of bath
or RF on magnet

Initial truncation
Decay of

off-diagonal blocks τtrunc g Dephasing

Irreversibility of truncation No recurrence
τM

irrev

τB
irrev

δg

γ · T

Random S−M coupling

Decoherence

Registration
S−M correlation
in diagonal blocks τreg γ, T , J

Energy dumping
into bath

Subensemble relaxation Hierarchic structure τsub ∆
Truncation

Equilibration

Reduction Gain of information < τergodic Selection of outcome

Table 1: The steps of an ideal measurement in the Curie–Weiss model. The preparation (§3.3.3 and §7.3.2) brings the magnetic dot into its
metastable paramagnetic state. The truncation eliminates the off-diagonal blocks of the density matrix of S + A describing the full set of mea-
surements. It is governed initially (section 5) by the coupling g between S and M, and it becomes permanent later on owing to two alternative
mechanisms, either randomness of the S–M coupling (subsection 6.1) or bath-induced decoherence (subsection 6.2). The registration (section 7),
defined as the establishment of correlations in the diagonal blocks between the system and the pointer for the full set of runs, accompanies the
transition of the dot into one of its stable ferromagnetic states, depending on the diagonal sector of the density matrix. The time scales (subsection
9.3) satisfy τM;B

trunc � τirrev � τreg. In contrast with the previous steps which refer to statistical properties of the full ensemble of runs of the
measurement, the establishment of the hierarchic structure refers to the dynamics of states associated with arbitrary subensembles of runs (§ 11.2.4
and § 11.2.5). It is governed by a specific type of relaxation, and its time scale is very short, τsub � τreg. The resulting hierarchic structure entails
the production of a well defined outcome for each individual run. The last step, the reduction of the state of S+A (§ 11.3.1 and § 11.3.2), does not
involve dynamics but consists in the selection of the indication of the pointer. It allows reading, printing or processing the result. (This should be
done not too late, before the stable indication of the pointer is finally erased due to thermal fluctuations, see § 7.3.5.)
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11.3. Emergence of uniqueness and of classical features in measurements5224

Luctor et emergo112
5225

Fluctuat nec mergitur113
5226

Devices of the often flooded Dutch province Zeeland and of the city of Paris5227

We are now in position to tackle the quantum measurement problem within the statistical interpretation of quantum5228

mechanics. Through a dynamical analysis based on the Liouville–von Neumann equation, we have proved that, for5229

suitable interactions ensuring the subensemble relaxation, the states D̂sub, which describe S + A for all the real sets of5230

runs, reach the hierarchical structure (11.7) at the time tf . We will rely on this essential feature to explain the various5231

properties of ideal measurement, including the uniqueness of outcomes.5232

11.3.1. Individual processes, ordinary probabilities and Born rule5233

Cogito, ergo sum114
5234

René Descartes5235

The principles of quantum mechanics, as recalled in section 10, apply not only to a large ensemble E of systems,5236

but also to any subensemble Esub. This remark has allowed us, through standard dynamical analyses, not only to find5237

the final state D̂(tf) =
∑

i piD̂i of S + A issued from D̂(0), for the large set E of runs of the measurement, but also to5238

establish the general form D̂sub(tf) =
∑

i qiD̂i of the final states associated with arbitrary subsets Esub, with coefficients5239

qi depending on Esub. Although the complete description of an individual run lies beyond the scope of the statistical5240

interpretation, we have gathered the largest possible information about the outcome of this individual run, through the5241

states D̂sub(tf) that describe the statistics of all the possible subensembles Esub in which it may be embedded. Owing5242

to the macroscopic size of the pointer, the rapid subensemble relaxation has thus eliminated the quantum ambiguity5243

of the decompositions (11.4) of D̂(tf)115.5244

We then note that all the states D̂sub(tf) contain the same building blocks D̂i, and that when two disjoint subensem-5245

bles merge, their coefficients qi are additive in the sense given after Eq. (11.7). This additivity property is the same5246

as for probabilities in their frequency interpretation (§ 11.2.1 and § 11.2.2). In order to infer from this analogy5247

conclusions about individual systems, as can be done in ordinary probability theory, we supplement the statistical5248

interpretation of quantum mechanics (section 10) with the following natural additional principle: If we can ascertain5249

that all possible splittings of a large ensemble E into subensembles give rise to a hierarchic structure, we may regard5250

E as a “collective” in the sense of von Mises (§ 11.2.2). In other words, we assume that, if E is large and is endowed5251

with a hierarchical structure, it possesses physical subensembles that involve arbitrary values116 for the coefficients qi,5252

with qi ≥ 0 and
∑

i qi = 1. In particular, in agreement with the condition (i) of § 11.2.2, there exist subensembles of E5253

such that qi = 1 for a given i (and qi′ = 0 for i′ , i), and among them a maximal subensemble Ei.5254

This identification of E with a von Mises collective entitles us to interpret the subensemble Ei as the set of individ-5255

ual runs described by the state D̂i, and the coefficient pi in D̂(tf) =
∑

i piD̂i as the relative frequency of occurrence of5256

such runs in the large ensemble E. Likewise, the coefficient qi appears as the proportion of runs with outcome D̂i in5257

the subset Esub, as in an ordinary probabilistic process (§ 11.1.2 and § 11.2.2). The concept of quantum state, defined5258

as a correspondence between the observables and their expectation values (§ 10.1.4), presents a similitude with the5259

concept of probability distribution, but this similitude is only formal since quantum expectation values cannot be given5260

the same interpretation as in classical probability theory. However, the full description, within the purely quantum5261

framework, of ideal measurement processes does produce ordinary probabilities in the frequency interpretation.5262

112I fight and emerge
113She is agitated by the stream, but does not sink
114I think, therefore I exist
115Because the states D̂i are generally not pure, the quantum ambiguity of their decompositions is not removed by the dynamics, especially if this

ambiguity occurs at a microscopic level, for instance in case r̂i is a mixed state. This remaining ambiguity has no incidence on the solution of the
measurement problem, since we only need to find for each i a well-defined value for the indication of the pointer

116Such an arbitrariness of the coefficients qi is obvious for the set of mathematically allowed decompositions of a mixed state D̂. It is exhibited,
for instance, by Eq. (11.11), since any state of the form (11.10) can enter (for p up , 0, p↓ , 0) a decomposition of the state (11.8) which describes
the full ensemble E. However, nothing warrants that a state such as (11.10) describes a physically meaningful subensemble of E
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A natural argument has thus allowed us to infer, from the hierarchical structure of the final states for arbitrary5263

subensembles of E, that each individual run has a well-defined outcome. We have therefore explained, at least in the5264

present model and using the above principle, the phenomenon of reduction, that is, the production, in each individual5265

run, of one among the diagonal blocks D̂i of the truncated final density matrix D̂(tf) =
∑

i piD̂i of S+A, which5266

describes the whole set E and arises from D̂(0). The possibility of making such a statement about individual processes5267

in spite of the irreducibly probabilistic nature of quantum mechanics (in its statistical interpretation) is founded on the5268

special dynamics of the apparatus, as shown in § 11.2.4.5269

Solving models provides the values of the probabilities pi as pi = trSr̂(0)Π̂i. For a large number of runs, the census5270

of the proportion of runs for which the apparatus has provided the outcome Ai thus provides partial information about5271

the initial state r̂(0) of S. (In the Curie–Weiss model it yields its diagonal elements.) This fully justifies Born’s rule.5272

11.3.2. Reduction and preparations through measurement5273

The solution of the Curie–Weiss model has not only justified the hierarchic structure of the subensembles, but it5274

has also provided the expression of each building block D̂i: The density operator D̂i that describes the outcome of the5275

runs belonging to the set Ei is an equilibrium state of S + A, which has the factorized form D̂i = r̂i ⊗ R̂i. The state5276

r̂i of S is associated with the eigenvalue si of the tested observable ŝ, while the state R̂i of A is characterized by the5277

value Ai of the order parameter, taken as a pointer variable.5278

The information needed to partition E into its subsets Ei is embedded in the indication Ai of the pointer. The5279

uniqueness of this indication has been explained by the subensemble relaxation117. The macroscopic size of the5280

pointer then allows observing, storing or processing its outcome. The complete correlations established between5281

S and A by the registration, exhibited in D̂(tf) =
∑

pir̂i ⊗ D̂i, entail uniqueness of the outcome si for the tested5282

observable ŝ of S in each run118. A filtering of the runs of an ideal measurement, which are tagged by the indication5283

Ai of the pointer, therefore constitutes a preparation of the system S, performed through the reduction of S + A (as was5284

anticipated in § 1.1.4) [31]. Lying initially (for the ensemble E) in the state r̂(0), this system lies, after measurement5285

and selection of the subset Ei, in the final prepared state r̂i. In the Curie–Weiss model, this final filtered state is pure,5286

r̂↑ = |↑〉〈↑| or r̂↓ = |↓〉〈↓| or, shortly, |↑〉 or |↓〉.5287

In this circumstance, quantum mechanics, although irreducibly probabilistic and dealing with ensembles, can5288

provide certainty about ŝ for an individual system S after measurement and selection of the indication of the pointer.5289

While answering, within the statistical interpretation, Bohr’s modest query “What can we say about...?” [345], an ideal5290

measurement gives a partial answer to Einstein’s query “What is....?” [23]. The solution of models involving not only5291

the interaction of the microscopic object with a macroscopic apparatus but also appropriate interactions within this5292

apparatus thus explains the emergence of a well-defined answer for the system S in a single measurement, a property5293

interpreted as the emergence of a “physical reality”. However, although the outcome of each individual process is5294

unique, it could not have been predicted. The current statement “the measurement is responsible for the appearance5295

of the uniqueness of physical reality” holds only for the considered single system and for the tested observable, and5296

only after measurement with selection of the result.5297

Let us stress that, in agreement with the statistical interpretation of quantum “states” (§10.1.4), the state assigned5298

to S + A or to S at the end of a single run depends on the ensemble in which this run is embedded, and which is itself5299

conditioned by our information. Before acknowledging the outcome of the process, we have to regard it as an element5300

of the full set E of runs issued from the initial state D̂(0) of Eq (11.1), and we thus assign to S + A the state D̂(tf) of5301

Eq. (11.2) (which involves correlations between S and A). After having read the specific outcome Ai, we have learnt5302

that the considered single run belongs to the subset Ei which has emerged from the dynamics, so that we assign to S +5303

A the more informative state D̂i (which has the uncorrelated form r̂i ⊗ R̂i). Predictions about experiments performed5304

on S after the considered run should therefore be made from the weakly truncated state
∑

j Π̂ jr̂(0)Π̂ j if the result is5305

not read, and from the reduced state r̂i = Π̂ir̂(0)Π̂i/pi if the result Ai has been read off and selected.5306

117The physical argument of § 11.1.1 turns out to be “not even wrong”. It also turns out that we do not need the additional postulate alluded to at
of the end of § 11.1.3, owing to realistic interactions which act within the apparatus at the end of the proces, and which need not play a major role
in the truncation and registration

118But of course there are no well-defined results for observables that do not commute with ŝ



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 157

Whereas the transformation of the state D̂(0) into D̂(tf) is a real physical process, reduction from the state D̂(tf)5307

to the state D̂i has no dynamical meaning. It is simply an updating of our probabilistic description, allowed by the5308

acquisition of the information Ai which characterizes the new narrower ensemble Ei. The state D̂i retains through r̂i5309

some features inherited from the initial state D̂(0), but not all due to irreversibility of truncation and registration, and5310

it accounts in addition for the knowledge of Ai. Measurement can thus indeed be regarded as information processing;5311

the amounts of information acquired and lost are characterized by the entropy balance of § 1.2.4.5312

11.3.3. Repeatability of ideal measurements5313

It is a bad plowman that quarrels with his ox5314

Korean proverb5315

A property that allows us to approach physical reality within the statistical interpretation is the repeatability of5316

ideal measurements119. Suppose two successive ideal measurements are performed on the same system S, first with5317

an apparatus A, then, independently, with a similar apparatus A′. The second process does not affect A, and generates5318

for S and A′ the same effect as the first one, as exhibited by Eq (11.2). Hence, the initial state5319

D̂(0) = r̂(0) ⊗ R̂(0) ⊗ R̂′(0) (11.24)

of S + A + A′ becomes at the time tf between the two measurements5320

D̂(tf) =
∑

i

pir̂i ⊗ R̂i ⊗ R̂
′(0), (11.25)

and5321

D̂(t′f) =
∑

i

pir̂i ⊗ R̂i ⊗ R̂
′
i (11.26)

at the final time t′f following the second process. For the whole statistical ensemble E, a complete correlation is5322

therefore exhibited between the two pointers. In an individual process, the second measurement does not affect S. We5323

can even retrodict, from the observation of the value A′i for the pointer of the apparatus A′, that S lies in the state r̂i5324

not only at the final time t′f , but already at the time tf , the end of the first measurement.5325

11.4. The ingredients of the solution of the measurement problem5326

Bring vor, was wahr ist;5327

schreib’ so, daß es klar ist5328

und verficht’s, bis es mit dir gar ist120
5329

Ludwig Boltzmann5330

Altogether, as in statistical mechanics [55, 56, 73], qualitatively new features emerge in an ideal measurement5331

process, with a near certainty. The explanation of the appearance, within the quantum theory, of properties seemingly5332

in contradiction with this very theory relies on several ingredients, exhibited by the detailed solution of the Curie–5333

Weiss model. (i) The macroscopic size of the apparatus allows the pointer to relax towards one or another among5334

some possible values, within weak statistical or quantum fluctuations; these outcomes remain unchanged for a long5335

time and can be read or processed; the choice of the a priori equivalent alternatives is triggered by the tested system.5336

(ii) Statistical considerations help us to disregard unlikely events. (iii) The special dynamics of the process must5337

produce several effects (Table 1). The truncation, initiated by the interaction between the tested system and the5338

119It can be shown that the sole property of repeatability implies reduction in the weak sense, that is, reduction of the marginal state of S [52]
120Put forward what is true, write it such that it is clear, and fight for it till it is finished with you



Allahverdyan, Balian and Nieuwenhuizen / 00 (2014) 1–201 158

pointer, eliminates the off-diagonal blocks of D̂ which would prevent any classical interpretation. The registration,5339

too often overlooked in theoretical considerations, which requires a triggering by the system and a dumping of energy5340

towards the bath, creates the needed correlations between the system and the pointer. The registration also lets the5341

apparatus reach, in the state D̂(t), at large t, a mixture of the possible final states; this paves the way to the process of5342

§ 11.2.4, where more elaborate but possibly very small interactions within the apparatus ensure that all subensembles5343

reach at the final time the hierarchic structure required for reduction. This last step, together with the principle of5344

§ 11.3.1, explains how statements about individual systems and how classical features may emerge from measurement5345

processes in spite of the quantum oddities (§§ 10.2.1 and 10.2.3) associated with the irreducibly probabilistic nature5346

of the theory [10, 11, 31, 48, 52, 58].5347

As the symmetry breaking for phase transitions, a breaking of unitarity takes place, entailing an apparent violation5348

of the superposition principle for S + A121. Here also, there cannot exist any breaking in the strict mathematical sense5349

for a finite apparatus and for finite parameters. Nevertheless, this acknowledgement has no physical relevance: the5350

approximations that underlie the effective breaking of unitarity are justified for the evaluation of physically sensible5351

quantities.5352

However, the type of emergence that we acknowledge here is more subtle than in statistical mechanics, although5353

both arise from a change of scale. In the latter case, emergence bore on phenomena that have no microscopic equiva-5354

lent, such as irreversibility, phase transitions or viscosity. In quantum measurements, it bears on concepts. Quantum5355

theory, which is fundamentally probabilistic, deals with ensembles, but measurements reveal properties of individ-5356

ual systems, a fact that we understand within this very theory. The tested physical quantity, random at the mi-5357

croscopic level, comes out with a well-defined value. Ordinary probabilities, ordinary correlations, emerge from a5358

non-commutative physics, and thus afford a classical interpretation for the outcome of the measurement. Thus, ideal5359

measurements establish a bridge between the macroscopic scale, with its every day’s life features, and the micro-5360

scopic scale, giving us access to microscopic quantities presenting unusual quantum features and impossible to grasp5361

directly122. In the measurement device we lose track of the non-commutative nature of observables, which constitutes5362

the deep originality of quantum mechanics and which gives rise to its peculiar types of correlations and of probabili-5363

ties, and we thus recover familiar macroscopic concepts. (The disappearance of non-commuting observables will be5364

seen to arise directly from the Heisenberg dynamics in § 13.1.4.)5365

12. Lessons from measurement models5366

Cette leçon vaut bien un fromage, sans doute123
5367

Jean de La Fontaine, Le Corbeau et le Renard5368

A microscopic interpretation of the entropy concept has been provided through the elucidation of the irreversibility5369

paradox [54, 55, 56, 72]. Likewise, most authors who solve models of quantum measurements (section 2) aim at5370

elucidating the measurement problem so as to get insight on the interpretation of quantum mechanics. We gather5371

below several ideas put forward in this search, using as an illustration the detailed solution of the Curie–Weiss model5372

presented above, and we try to draw consequences on the interpretation of quantum physics. These ideas deserve to5373

be taken into account in future works on measurement models.5374

121 As the tested system interacts with the apparatus, it is not an isolated system, so that the breaking of unitarity in its evolution is trivial
122A more artificial link between microscopic and macroscopic scales was established by Bohr [345] – see also [85, 346, 347] – by postulating

the classical behavior of the measuring apparatus. Though we consider that the apparatus must be treated as a quantum object, we have noticed
(§ 11.2.4) that quantum dynamics lets the pointer variable reach some classical features

123Surely, this lesson is worth a cheese
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12.1. About the nature of the solutions5375

La Nature est un temple où de vivants piliers5376

Laissent parfois sortir de confuses paroles;5377

L’homme y passe à travers des forêts de symboles5378

Qui l’observent avec des regards familiers 124
5379

Charles Baudelaire, Les fleurs du mal, Correspondances5380

The most important conclusion that can be drawn from the solution of models is that one can reach a full under-5381

standing of ideal measurements through standard quantum statistical mechanics. Within a minimalist interpretation5382

of quantum mechanics, the sole use of Hamiltonian dynamics is sufficient to explain all the features of ideal measure-5383

ments. In particular, uniqueness of the outcome of each run and reduction can be derived only from the Hamiltonian5384

dynamics of the macroscopic pointer. Unconventional interpretations are not needed.5385

12.1.1. Approximations are needed5386

Fire could leave ashes behind5387

Arab proverb5388

As stressed in § 1.2.1, a measurement is an irreversible process, though governed by the reversible von Neumann5389

equation of motion for the coupled system S + A. This apparent contradiction cannot be solved with mathematical5390

rigor if the compound system S + A is finite and all its observables are under explicit control. As in the solution5391

of the irreversibility paradox (§ 1.2.2), some approximations, justified on physical grounds, should be introduced5392

[54, 55, 56, 121, 196]. We must accept the approximate nature of theoretical analyses of quantum measurements5393

[348].5394

For instance, when solving the Curie–Weiss model, we were led to neglect some contributions, which strictly5395

speaking do not vanish for a finite apparatus A = M + B, but which are very small under the conditions of subsection5396

9.4. For the diagonal blocks R̂↑↑ and R̂↓↓, the situation is the same as for ordinary thermal relaxation processes5397

[121, 122, 196]: the invariance under time reversal is broken through the elimination of the bath B, performed by5398

keeping only the lowest order terms in γ and by treating the spectrum of B as continuous (section 4). Correlations5399

within B and between B and M+S are thus disregarded, and an irreversible nearly exact Fokker–Planck equation [253]5400

for the marginal operators R̂↑↑ and R̂↓↓ thus arises from the exact reversible dynamics. For the off-diagonal blocks R̂↑↓5401

and R̂↑↓, correlations between S and a large number, of order N, of spins of M are also discarded (section 5). Such5402

correlations are ineffective, except for recurrences; but these recurrences are damped either by a randomness in the5403

coupling between S and M (subsection 6.1) or by the bath (subsection 6.2), at least on accessible time scales. We will5404

return to this point in § 12.2.3. We also showed that, strictly speaking, false or aborted registrations may occur but5405

that they are very rare (§ 7.3.4 and § 7.3.5).5406

Mathematically rigorous theorems can be proved in statistical mechanics by going to the thermodynamic limit of5407

infinite systems [156]. In the Curie–Weiss model, the disappearance of R̂↑↓ and R̂↓↑ would become exact in the limit5408

where N → ∞ first, and then t → ∞. However, in this limit, we lose track of the time scale τtrunc, which tends to 0.5409

Likewise, the weak coupling condition γ → 0, needed to justify the elimination of the bath, implies that τreg tends to5410

∞. Physically sensible time scales are obtained only without limiting process and at the price of approximations.5411

12.1.2. Probabilities are omnipresent5412

O Fortuna, imperatrix mundi125
5413

Carmina Burana5414

Although the dynamics of S + A is deterministic, randomness occurs in the solution of measurement models5415

for several reasons. On the one hand, quantum physical quantities are blurred due to the non-commutation of the5416

observables which represent them, so that quantum mechanics is irreducibly probabilistic (section 10 and [10, 11, 31,5417

124Nature is a temple where living pillars / Let sometimes emerge confused words;
Man passes there through forests of symbols / Which watch him with familiar glances

125Oh Fortune, empress of the world
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48, 52, 58]). On the other hand, the large size of the apparatus, needed to ensure registration, does not allow us to5418

describe it at the microscopic scale; for instance it lies after registration in a thermal equilibrium (or quasi-equilibrium)5419

state. Thus, both conceptually and technically, we are compelled to analyse a quantum measurement by relying on5420

the formalism of quantum statistical mechanics.5421

Moreover, as shown in subsection 5.2, some randomness is needed in the initial state of the apparatus. Indeed, for5422

some specific initial pure states, the truncation process may fail, in the same way, for instance, as some exceptional5423

initial configurations of a classical Boltzmann gas with uniform density may produce after some time a configuration5424

with non uniform density. For realistic models of quantum measurements, which are of rising interest for q-bit5425

processing in quantum information theory, experimental noise and random errors should also be accounted for [349].5426

Recognizing thus that a quantum measurement is a process of quantum statistical mechanics has led us to privilege5427

the statistical interpretation of quantum mechanics, in which an assertion is “certain” if its probability is close to one.5428

For instance, the probability of a false registration does not vanish but is small for large N (§ 7.3.3). Still, the statistical5429

solution of the quantum measurement problem does not exclude the existence of a hidden variable theory that would5430

describe individual measurements, the statistics of which would be given by the probabilistic theory, that is, the5431

standard quantum mechanics; see [302] for a recent review of hidden variable theories.5432

12.1.3. Time scales5433

De tijd zal het leren126
5434

Dutch proverb5435

Understanding a quantum measurement requires mastering the dynamics of the process during its entire duration5436

[92]. This is also important for experimental purposes, especially in the control of quantum information. Even when5437

the number of parameters is small, a measurement is a complex process which takes place over several time scales, as5438

exhibited by the solution of the Curie–Weiss model (subsection 9.3). There, the truncation time turns out to be much5439

shorter than the registration time. This feature arises from the large number of degrees of freedom of the pointer M5440

(directly coupled to S) and from the weakness of the interaction between M and B. The large ratio that we find for5441

τreg/τtrunc allows us to distinguish in the process a rapid disappearance of the off-diagonal blocks of the density matrix5442

of S + A. After that, the registration takes place as if the density matrix of S were diagonal. The registration times are5443

also not the same for quartic or quadratic interactions within M. The final subsensemble relaxation of M, that allows5444

reduction (§ 11.2.4), is also rapid owing to the large size of the pointer.5445

In the variant of the Curie–Weiss model with N = 2 (subsection 8.1), the orders of magnitude of the truncation5446

and registration times are reversed. A large variety of results have been found in other models for which the dynamics5447

was studied (section 2). This should encourage one to explore the dynamics of other, more and more realistic models.5448

However, it is essential that such models ensure a crucial property, the dynamical establishment of the hierarchic5449

structure of subensembles (§ 11.2.1).5450

12.1.4. May one think in terms of underlying pure states?5451

Als de geest uit de fles is,5452

krijg je hem er niet makkelijk weer in127
5453

Dutch proverb5454

The solutions of the Curie–Weiss model and of many other models have relied on the use of density operators. We5455

have argued (§ 10.2.3) that, at least in the statistical interpretation, the non uniqueness of the representations (10.3)5456

of mixed states as superpositions of pure states makes the existence of such underlying pure states unlikely. Here5457

again, Ockam’s razor works against such representations, which are not unique and are more complicated than the5458

framework of quantum statistical mechanics, and which in general would not permit explicit calculations. Moreover,5459

it is experimentally completely unrealistic to assume that the apparatus has been initially prepared in a pure state.5460

Nevertheless, although pure states are probabilistic entities, it is not a priori wrong to rely on other interpretations5461

126Time will tell
127When the genie is out of the bottle, it is not easy to get it in again
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in which they are regarded as more fundamental than density operators [14], and to afford the latter a mere status of5462

technical tools, used to describe both the initial state and the evolution.5463

We can compare this situation with that of the irreversibility paradox for a gas (§ 1.2.2). In that case, although it5464

is technically simpler to tackle the problem in the formalism of statistical mechanics, one may equivalently explain5465

the emergence of irreversibility by regarding the time-dependent density in phase space as a mathematical object5466

that synthetizes the trajectories and the random initial conditions [55, 56]. The dynamics is then accounted for by5467

Hamilton’s equations instead of the Liouville equation, whereas the statistics bears on the initial conditions. (We5468

stressed, however, in § 10.2.3, that although density operators and densities in phase space have a similar status,5469

quantum pure states differ conceptually from points in phase space due to their probabilistic nature; see also [55, 56]5470

in this context.)5471

Likewise, in the Curie–Weiss measurement model, one may theoretically imagine to take as initial state of A a5472

pure state, S being also in a pure state. Then at all subsequent times S + A lies in pure states unitarily related to one5473

another. However it is impossible in any experiment to prepare A = M + B in a pure state. What can be done is to5474

prepare M and B in thermal equilibrium states, at a temperature higher than the Curie temperature for M, lower for5475

B. Even if one wishes to stick to pure states, one has to explain generic experiments. As in the classical irreversibility5476

problem, this can be done by weighing the possible initial pure states of A = M + B as in R̂(0), assuming that M is a5477

typical paramagnetic sample and B a typical sample of the phonons at temperature T . This statistical description in5478

terms of weighted pure states governed by the Schrödinger equation is technically the same as the above one based on5479

the density operator D̂(t), governed by the Liouville–von Neumann equation, so that the results obtained above or the5480

full ensemble E of runs are recovered in a statistical sense for most relevant pure states. As regards the expectation5481

values in the ensemble E of physical quantities (excluding correlations between too many particles), the typical final5482

pure states are equivalent to D̂(tf). Very unlikely events will never be observed over reasonable times for most of5483

these pure states (contrary to what happens for the squeezed initial states of M considered in § 5.2.3).5484

However, it does not seem feasible to transpose to the mere framework of pure states the explanation of reduction5485

given in section 11, based on the unambiguous splitting of the mixed state D̂(tf). This splitting is needed to identify5486

the real subsets of runs of the measurement, and it has no equivalent in the context of pure states.5487

12.2. About truncation and reduction5488

Le diable est dans les détails128
5489

De duivel steekt in het detail128
5490

French and Dutch proverb5491

We have encountered two types of disappearance of off-diagonal blocks of the density matrix of S + A, which5492

should carefully be distinguished. On the one hand, the truncation (sections 5 and 6) is the decay of the off-diagonal5493

blocks of the density matrix D̂(t), which is issued from the initial state D̂(0), and which characterizes the statistics of5494

the full set E of runs of the measurement. On the other hand, the reduction (section 11) requires the establishment of5495

the hierarchic structure for all the subsets of runs. There we deal with a decay of the off-diagonal blocks of the density5496

matrix D̂sub(t) associated with every possible subensemble Esub of runs; this second type of decay may be effective5497

only at the end of the measurement process.5498

12.2.1. The truncation must take place for the compound system S + A5499

Het klopt als een bus129
5500

Dutch expression5501

In many approaches, starting from von Neumann [4, 17, 21] the word “collapse” or “reduction” is taken in a weak5502

acception, referring to S alone. Such theoretical analyses involve only a proof that, in a basis that diagonalizes the5503

tested observable, the off-diagonal blocks of the marginal density matrix r̂(t) of S fade out, but not necessarily those5504

of the full density matrix D̂(t) of S + A. In the Curie–Weiss model, this would mean that r̂↑↓(t) and r̂↓↑(t), or the5505

128The devil is in the details
129It really fits
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expectation values of the x- and y-components of the spin S, fade out, but that R̂↑↓(t) and R̂↓↑(t), which characterize5506

the correlations between the pointer M and these components, do not necessarily disappear.5507

Let us show that the presence of non negligible elements in the off-diagonal blocks of the final state D̂(tf) of S5508

+ A is prohibited for ideal measurements. Remember first the distinction between truncation and reduction (§ 1.1.25509

and § 1.3.2). Both terms refer to the compound system S + A, but while the truncation is the disappearance of the5510

off-diagonal blocks in the matrix D̂(tf) that describes the full ensemble E of runs of the measurement, the reduction5511

is the assignment of the final state D̂i to a subset Ei of E. More precisely, once the uniqueness of the outcome of each5512

run is ensured (subsections 11.2 and 11.3), one can sort out the runs that have produced the specific indication Ai of5513

the pointer. In each such run, the system S lies in the state r̂i and the apparatus A in the state R̂i, hence S + A lies5514

in the state D̂i. Born’s rule implies that the proportion of runs in Ei is pi. Collecting back the subsets Ei into E, we5515

find that this full set must be described by the state
∑

i piD̂i, which is a truncated one. It is therefore essential, when5516

solving a model of ideal measurement, to prove the strong truncation property, for S + A, as we did in sections 5 and5517

6, a prerequisite to the proof of reduction. A much more stringent result must thereafter be proven (§ 11.2.1), the5518

“hierarchic property” (11.7), according to which the state D̂sub of S+A must have the form
∑

i qiD̂i for arbitrary, real5519

or virtual, subensembles Esub of E.5520

The weak type of truncation is the mere result of disregarding the off-diagonal correlations that exist between S and5521

A. This procedure of tracing out the apparatus has often been considered as a means of circumventing the existence5522

of “Schrödinger cats” issued from the superposition principle [32, 33, 198, 199, 200, 201]. However, this tracing5523

procedure as such does not have a direct physical meaning [14, 68]. While satisfactory for the statistical predictions5524

about the final marginal state of S, which has the required form
∑

i pir̂i, the lack of a complete truncation for S +5525

A keeps the quantum measurement problem open since the apparatus is left aside. Indeed, the proof of uniqueness5526

of § 11.2.4 takes as a starting point the state D̂(tf) for E where truncation and registration have already taken place,5527

and moreover this proof involves only the apparatus. Anyhow, tracing out the apparatus eliminates the correlations5528

between the system and the indications of the pointer, which are the very essence of a measurement (subsection 11.3).5529

Without them we could not get any information about S. This is why the elimination of the apparatus in a model is5530

generally considered as a severe weakness of such a model [17], that even led to the commandment “Thou shalt not5531

trace” [33].5532

So indeed, theory and practice are fundamentally related. The elimination of the apparatus in the theory of mea-5533

surements is no less serious than its elimination in the experiment!5534

12.2.2. The truncation is a material phenomenon; the reduction involves both dynamics and “observers”5535

Weh! Ich ertrag’ dich nicht130
5536

Johann Wolfgang von Goethe, Faust, part one5537

The truncation of the density matrix of S + A appears in measurement models as an irreversible change, occur-5538

ring with a nearly unit probability during the dynamical process. It has a material effect on this compound system,5539

modifying its properties as can be checked by subsequent measurements. In the Curie–Weiss model, this effect is the5540

disappearance of correlations between the pointer and the components ŝx and ŝy of S. Though described statistically5541

for an ensemble, the joint truncation of S + A thus appears as a purely dynamical, real phenomenon.5542

The reduction has a more subtle status. It also relies on a dynamical process governed by the Liouville–von5543

Neumann equation (§ 11.2.4), the subensemble relaxation, which takes place by the end of the measurement for any5544

subensemble Esub of E (whereas the truncation took place earlier and for the full ensemble E). Moreover, reduction5545

requires the selection of the subset Ei of runs characterized by the value Ai of the pointer variable (§ 11.3.2). This5546

selection, based on a gain of information about A, allows the updating of the state D̂(tf), which plays the role of a5547

probability distribution for the compound system S + A embedded in the ensemble E, into the state D̂i which refers to5548

the subensemble about which we have collected information. Subsequent experiments performed on this subensemble5549

will be described by D̂i (whereas we should keep D̂(tf) for experiments performed on the full set E without sorting).5550

The idea of an “observer”, who selects the subset Ei of systems so as to assign to them the density operator D̂i,5551

therefore underlies the reduction, as it underlies any assignment of probability. However, “observation” is meant here5552

130Beware, I can’t stand you
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as “identification and sorting of runs” through discrimination of the outcomes of the pointer. Such a “reading” does5553

not require any “conscious observer”. The “observer” who selects the runs Ai will in fact, in many experiments,5554

be a macroscopic automatic device triggered by the pointer. An outstanding example is the sophisticated automatic5555

treatment of the information gathered by detectors in particle physics, achieved in order to select the extremely rare5556

events of interest.5557

12.2.3. Physical extinction versus mathematical survival of the off-diagonal sectors5558

I have not failed.5559

I’ve just found 10,000 ways that won’t work5560

Thomas A. Edison5561

Many works on quantum measurement theory stumble over the folowing paradox. The evolution of the density5562

matrix D̂(t) of the isolated system S + A is unitary. Hence, if D̂ is written in a representation where the full Hamil-5563

tonian Ĥ is diagonal, each of its matrix elements is proportional to a complex exponential exp(iωt) (where ~ω is5564

a difference of eigenvalues of Ĥ), so that its modulus remains constant in time. In the ideal case where the tested5565

observable ŝ commutes with Ĥ, we can imagine writing D̂(t) in a common eigenbasis of ŝ and Ĥ; the moduli of the5566

matrix elements of its off-diagonal block R̂↑↓(t) are therefore independent of time. Such a basis was used in sections5567

5 and 6.1 where the bath played no rôle; in section 6.2, the term ĤMB does not commute with ŝ, and likewise in most5568

other models the full Hamiltonian is not diagonalizable in practice. In such a general case, the moduli of the matrix5569

elements of R̂↑↓(t), in a basis where only ŝ is diagonal, may vary, but we can ascertain that the norm Tr R̂↑↓(t)R̂
†

↑↓
(t) re-5570

mains invariant. This mathematically rigorous property seems in glaring contradiction with the physical phenomenon5571

of truncation, but both are valid statements, the former being undetectable, the latter being important in practice for5572

measurements.5573

In which sense are we then allowed to say that the off-diagonal block R̂↑↓(t) decays? The clue was discussed in5574

§ 6.1.2: The physical quantities of interest are weighted sums of matrix elements of D̂, or here of its block R̂↑↓. For5575

instance, the off-diagonal correlations between ŝx or ŝy and the pointer variable m̂ are embedded in the characteristic5576

function (5.14), which reads5577

Ψ↑↓(λ, t) ≡ 〈ŝ−eiλm̂〉 = TrAR̂↑↓(t)eiλm̂, (12.1)

where the trace is taken over A = B + M. Likewise, the elimination of the bath B, which is sensible since we cannot5578

control B and have no access to its corelations with M and S, produces R̂↑↓ = TrBR̂↑↓, which contains our whole off-5579

diagonal information, and which is a sum of matrix elements of the full density matrix D̂. We are therefore interested5580

only in weighted sums of complex exponentials, that is, in almost periodic functions (in the sense of Harald Bohr131).5581

For a large apparatus, these sums involve a large number of terms, which will usually have incommensurable frequen-5582

cies. Depending on the model, their large number reflects the large size of the pointer or that of some environment.5583

The situation is the same as for a large set of coupled harmonic oscillators [173, 174, 175, 196, 121, 122], which5584

in practice present damping although some exceptional quantities involving a single mode or a few modes oscillate.5585

In § 6.1.2 we have studied a generic situation where the frequencies of the modes are random. The random almost5586

periodic function F(t) defined by (6.14) then exhibits a decay over a time scale proportional to 1/
√

N; Poincaré re-5587

currences are not excluded, but occur only after enormous times — not so enormous as for chaotic evolutions but still5588

large as exp(exp N).5589

The above contradiction is therefore apparent. The off-diagonal blocks cannot vanish in a mathematical sense5590

since their norm is constant. However, all quantities of physical interest in the measurement process combine many5591

complex exponentials which interfere destructively, so that everything takes place as if R̂↑↓ did vanish at the end of5592

the process. The exact final state of S + A and its reduced final state are thus equivalent with respect to all physically5593

reachable quantities in the sense of Jauch [94]. Admittedly, one may imagine some artificial quantities involving few5594

exponentials; or one may imagine processes with huge durations. But such irrealistic circumstances are not likely to5595

be encountered by experimentalists in a near future, and even to be recognized if they would occur.5596

131The mathematician and olympic champion Harald Bohr, younger brother of Niels Bohr, founded the field of almost periodic functions. For a
recent discussion of his contributions, see the expository talk “The football player and the infinite series” of H. Boas [350]
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Note that the matrix elements of the marginal state r̂(t) of S, obtained by tracing out the apparatus, are again5597

obtained by summing a very large number of matrix elements of D̂(t). We can thus understand that the decay of the5598

off-diagonal elements of r̂ is easier to prove than the truncation of the full state of S + A.5599

12.2.4. The preferred basis issue5600

Lieverkoekjes worden niet gebakken132
5601

Dutch saying5602

Realistic models must explain why the truncation does not take place in an arbitrary basis but in the specific basis5603

in which the tested observable of S is diagonal. This leads to the question of determining which mechanism selects5604

this basis; intuitively, it is the very apparatus that the experimentalist has chosen and, in the Hamiltonian, the form5605

of the interaction between S and A. One has, however, to understand precisely for each specific apparatus how the5606

dynamics achieve this property. For the Curie–Weiss model and for similar ones, the tested observable is directly5607

coupled through (3.5) with the pointer observable m̂, and the preferred basis problem is readily solved because the5608

initial truncation is a mere result of the form of this coupling and of the large number of degrees of freedom of the5609

pointer M. The finite expectation values 〈ŝx〉 and 〈ŝy〉 in the initial state of S are thereby transformed into correlations5610

with many spins of the pointer, which eventually vanish (sections 5 and 6). Pointer-induced reduction thus takes place,5611

as it should, in the eigenbasis of the tested observable.5612

We have also shown (§ 6.2.4) that in this model the suppression of the recurrences by the bath, although a decoher-5613

ence phenomenon, is piloted by the spin-magnet interaction which selects the decoherence basis. When it is extended5614

to a microscopic pointer, the Curie–Weiss model itself exhibits the preferred basis difficulty (§ 8.1.5). In the large N5615

model, the final subensemble relaxation process (subsection 11.2) ensures that the reduction takes place in the same5616

basis as the truncation. This basis should therefore have been determined by the dynamics at an earlier stage.5617

In other models, a decoherence generated by a random environment would have no reason to select this basis5618

[32, 33, 40, 198, 199, 200, 201]. It is therefore essential, in models where truncation and registration are caused by5619

some bath or some environment, to show how the interaction ĤSA determines the basis where these phenomena take5620

place.5621

12.2.5. Dephasing or bath-induced decoherence?5622

We reserve here the word “decoherence” to a truncation process generated by a random environment, such as a5623

thermal bath. We have just recalled that, in the Curie-Weiss model with large N, the initial truncation is ensured mainly5624

by a dephasing effect, produced by the interaction between the system and the pointer; the bath only provides one of5625

the two mechanisms that prevent recurrences from occurring after reduction (subsection 6.2). We have contrasted this5626

direct mechanism with bath-induced decoherence (§ 5.1.2). In particular, our truncation time τtrunc does not depend5627

on the temperature as does usually a decoherence time, and it is so short that the bath B is not yet effective. Later on,5628

the prohibition of recurrences by the bath in this model is a subtle decoherence process, which involves resonance and5629

which implies all three objects, the tested spin, the magnet and the bath (§ 6.2.4)5630

We have shown (§ 5.1.2 and § 6.1.2) that more general models with macroscopic pointers can also give rise to5631

direct truncation by the pointer. However, in models involving a microscopic pointer (see subsections 2.1, 2.4.1, 2.55632

and 8.1), the truncation mechanism can only be a bath-induced decoherence [32, 33, 40, 198, 199, 200, 201], and the5633

occurrence of a preferred truncation basis is less easy to control.5634

As regards the subensemble relaxation mechanism, which ensures the hierarchical structure and thus allows re-5635

duction (section 11), it may either arise from interactions within the pointer itself (§ 11.2.4), or be induced by the bath5636

(§ 11.2.5 and appendix I). Although the latter process includes a kind of decoherence or self-decoherence, it presents5637

very specific features associated with the breaking of invariance of the pointer. It involves two sets of levels associ-5638

ated with the two possible indications of the pointer, all at nearly the same energy. The coherences astride the two5639

sets of levels rapidly disappear, but during the same time lapse, each set also reaches microcanonical ferromagnetic5640

equilibrium.5641

132“I-prefer-this” cookies are not baked, i.e., you won’t get what you want
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12.3. About registration5642

J’évite d’être long, et je deviens obscur133
5643

Nicolas Boileau, L’Art poétique5644

In order to regard a dynamical process as an ideal measurement, we need it to account for registration, a point too5645

often overlooked. Indeed, we have seen (section 11) that not only truncation but also registration are prerequisites for5646

the establishment of the uniqueness of the outcome in each individual run. The mechanism that ensures this property5647

relies on the dynamics of the sole macroscopic apparatus and on its bistability; it may therefore be effective only after5648

registration. Of course, registration is also our sole access to the microscopic tested system.5649

12.3.1. The pointer must be macroscopic5650

Iedere keer dat hij het verhaal vertelde, werd de vis groter134
5651

Dutch expression5652

5653

Like the truncation, the registration is a material process, which affects the apparatus and creates correlations5654

between it and the tested system. This change of A must be detectable: We should be able to read, print or process5655

the results registered by the pointer, so that they can be analysed by “automatic observers”. In the Curie-Weiss model,5656

the apparatus simulates a magnetic memory, and, under the conditions of subsection 9.4, it satisfies these properties5657

required for registrations (section 7). The apparatus is faithful, since the probability of a wrong registration, in which5658

the distribution P↑↑(m, τreg) would be sizeable for negative values of m, is negligible, though it does not vanish in5659

a mathematical sense. The registration is robust since both ferromagnetic states represented by density operators5660

yielding magnetizations located around +mF and −mF are stable against weak perturbations, such as the ones needed5661

to read or to process the result.5662

The registration is also permanent. This is an essential feature, not only for experimental purposes but also5663

because the solution of the quantum measurement problem (section 11) requires the state D̂(tf) to have reached the5664

form (11.2) and all the states D̂sub(tf) the form (11.7) for any subensemble. However, this permanence, or rather5665

quasi-permanence, may again be achieved only in a physical sense (§ 11.1.1), just as the broken invariance associated5666

with phase transitions is only displayed at physical times and not at “truly infinite times” for finite materials. Indeed,5667

in the Curie-Weiss model, thermal fluctuations have some probability to induce in the magnetic dot transitions from5668

one ferromagnetic state to the other. More generally, information may spontaneously be erased after some delay in5669

any finite registration device, but this delay can be extremely long, sufficiently long for our purposes. For our magnetic5670

dot, it behaves as an exponential of N owing to invariance breaking, see Eq. (7.84).5671

The enhancement of the effect of S on A is ensured by the metastability of the initial state of A, and by the5672

irreversibility of the process, which leads to a stable final state.5673

All these properties require a macroscopic pointer (§ 1.2.1), and not only a macroscopic apparatus. In principle,5674

the models involving a large bath but a small pointer are therefore unsatisfactory for the aim of describing ideal5675

measurements. In many models of quantum measurement (section 2), including the Curie-Weiss model for N = 25676

(subsection 8.1), the number of degrees of freedom of the pointer is not large. We have discussed this situation, in5677

which an ideal measurement can be achieved, but only if the small pointer is coupled at the end of the process to a5678

further, macroscopic apparatus ensuring amplification and true registration of the signal.5679

Altogether the macroscopic pointer behaves in its final state as a classical object which may lie in either one or the5680

other of the states characterized within negligible fluctuation by the value Ai of the pointer observable Â. (In the Curie-5681

Weiss model, Ai ' ±mF is semiclassical, while si = ±1 is quantal). This crucial point has been established in section5682

11. Theoretically, nothing prevents us from imagining that the pointer M lies in a quantum state including coherences5683

across m = mF and −mF. For the full ensemble E (section 7), such a situation does not occur during the slow5684

registration process due to the spin-apparatus interaction which creates complete correlations. For any subensemble5685

Esub, coherences might exist near the end of the process, but according to section 11, they would rapidly disappear,5686

owing to the large size of M and to suitable weak interactions within the apparatus (§ 11.2.4 and § 11.2.5). The5687

133Avoiding lengths, I become obscure
134Every time he told the story, the caught fish became bigger
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correlations between the signs of sz and of m produced during the registration, and the uniqueness property (§§ 11.3.15688

and 11.3.2), then separate the two sectors. The large size of the pointer is therefore essential for a complete solution5689

of the ideal measurement problem.5690

12.3.2. Does the registration involve observers?5691

Hij stond erbij en keek er naar135
5692

Dutch saying5693

We have seen that truncation does not involve observers. Likewise, conscious observers are irrelevant for the5694

registration, which is a physical process, governed by a Hamiltonian. Once the registration of the outcome has taken5695

place, the correlated values of Ai ' ±mF and si = ±1 take an objective character, since any observer will read the5696

same well-defined indication Ai at each run. “Forgetting” to read off the registered result will not modify it in any5697

way. Anyhow, nothing prevents the automatic processing of the registered data, in view of further experiments on the5698

tested system (§ 12.2.2).5699

We thus cannot agree with the idealist statement that “the state is a construct of the observer”. Although we5700

interpret the concept of probabilities as a means for making predictions from available data (§ 10.1.4), a state reflects5701

real properties of the physical system acquired through its preparation, within some undetermined effects due to the5702

non-commutative nature of the observables.5703

12.3.3. What does “measuring an eigenvalue” mean?5704

A measurement process is an experiment which creates in the apparatus an image of some property of the tested5705

system. From a merely experimental viewpoint alone, one cannot know the observable of S that is actually tested, but5706

experience as well as theoretical arguments based on the form of the interaction Hamiltonian may help to determine5707

which one. From the observed value Ai of the pointer variable, one can then infer the corresponding eigenvalue si of the5708

measured operator (that appears in the interaction Hamiltonian), provided the correlation between Ai and si is complete5709

(an example of failure is given in § 7.3.3). In the Curie-Weiss model the observed quantity is the magnetization of5710

M; we infer from it the eigenvalue of ŝz. The statement of some textbooks “only eigenvalues of an operator can be5711

measured” refers actually to the pointer values, which are in one-to-one correspondence with the eigenvalues of the5712

tested observable provided the process is an ideal measurement. The eigenvalues of an observable as well as the5713

quantum state of S are abstract mathematical objects associated with a microscopic probabilistic description, whereas5714

the physical measurement that reveals them indirectly relates to the macroscopic pointer variable.5715

12.3.4. Did the registered results preexist in the system?5716

After the measurement process has taken place and after the outcome of the apparatus has been read, we can assert5717

that the apparatus lies in the state R̂i characterized by the value Ai of the pointer while the system lies in the final5718

projected state r̂i (Eq. (11.2)). We can also determine the weights pi from the statistics of the various outcomes Ai.5719

However a quantum measurement involves not only a change in A that reflects a property of S, but also a change in5720

S (§ 1.1.2). In an ideal measurement the latter change is minimal, but we have to know precisely which parts of the5721

initial state r̂(0) are conserved during the process so as to extract information about it from the registered data.5722

Consider first the whole ensemble of runs of the experiment. Together with the theoretical analysis it provides the5723

set of final states r̂i and their weights pi. The corresponding marginal density operator
∑

i pir̂i of S is obtained from5724

r̂(0) by keeping only the diagonal blocks, the off-diagonal ones being replaced by 0. We thus find a partial statistical5725

information about the initial state: all probabilistic properties of the tested observable ŝ remain unaffected, as well as5726

those pertaining to observables that commute with ŝ. (The amount of information retained is minimal, see § 1.2.4.)5727

Some retrodiction is thus possible, but it is merely statistical and partial.5728

Consider now a single run of the measurement, which has provided the result Ai. The fact that S is thereafter in5729

the state r̂i with certainty does not mean that it was initially in the same state. In fact no information about the initial5730

state D̂(0) is provided by reading the result Ai, except for the fact that the expectation value in D̂(0) of the projection5731

on the corresponding eigenspace of Â does not vanish. For a spin 1
2 , if we have selected at the end of a single run5732

135He stood there and watched, i.e., he did not attempt to assist
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the value sz = 1, we can only ascertain that the system was not in the pure state |↓〉 at the initial time; otherwise5733

its polarization could have been arbitrary. In contrast, a classical measurement may leave the system invariant, in5734

which case we can retrodict from the observation of Ai that the measured quantity took initially the value si. For an5735

individual quantum measurement, retrodiction is impossible, and devoid of physical meaning, due to the probabilistic5736

nature of observables and to the irreversibility of the process. The property “ŝ takes the value si” did not preexist the5737

process. It is only in case all runs provide the outcome Ai that we can tell that S was originally in the state r̂i. One5738

should therefore beware of some realist interpretations in which the value si is supposed to preexist the individual5739

measurement136: they do not take properly into account the perturbation brought in by the measurement [31].5740

12.4. Ideal measurements and interpretation of quantum mechanics5741

An expert is a man who has made all the mistakes which can be made,5742

in a narrow field5743

Niels Bohr5744

Quantum measurements throw bridges between the microscopic reality, that we grasp through quantum theory,5745

and the macroscopic reality, easier to apprehend directly. The images of the microscopic world that we thus get5746

appear more “natural” (i.e., more customary) than the counter-intuitive quantum laws, although they emerge from5747

the underlying quantum concepts (subsection 11.3). However, the interpretation of the latter concepts is subject5748

to ongoing debate. In particular, as a measurement is a means for gaining information about a physical quantity5749

pertaining to some state of a system, the meaning of “physical quantity” and of “state” should be made clear.5750

12.4.1. The statistical interpretation is sufficient to fully explain measurements5751

137
5752 Լավ է մրջնի գլուխ լինես քան առյուծի պոչ:

Armenian proverb5753

Many authors treat quantum measurements as irreversible processes of quantum statistical mechanics involving5754

interaction between the tested system and a macroscopic apparatus or a macroscopic environment (section 2). The nat-5755

ural tool in such approaches is the density operator of the system S + A, which can be regarded as representing a state5756

in the statistical interpretation of quantum mechanics (§ 10.1.4). Implicitly or explicitly, we have relied throughout5757

the present work on this interpretation, resumed in section 10.5758

A classical measurement can be regarded as a means to exhibit, through an apparatus A, some pre-existing prop-5759

erty of an individual system S. In the statistical interpretation of a quantum measurement, we deal with the joint5760

evolution of an ensemble of systems S + A, the outcome of which indirectly reveals only some probabilistic proper-5761

ties of the initial state of S [10, 11, 31, 48, 52, 58]. The ensemble E considered in sections 4–9 encompasses the set of5762

all possible processes issued from the original preparation; in section 11, we considered arbitrary subensembles Esub5763

of E, just before the final time.Neither these subensembles nor the value si of the tested observable ŝ inferred from the5764

observation of the indication Ai of the pointer did preexist the process, even though we can assert that it is taken by S5765

after an ideal measurement where Ai has been registered and selected.5766

A preliminary step in a measurement model is the assignment to the apparatus at the initial time of a density5767

operator R̂(0), namely, in the Curie–Weiss model (§ 3.3.2 and § 3.3.3), a paramagnetic state for M and a thermal5768

equilibrium state for B. The preparation of this initial state is of the macroscopic type, involving a control of only few5769

variables such as energy. The assignment of a density operator is based, according to the statistical interpretation,5770

on probabilistic arguments (§ 10.2.2), in particular on the maximum entropy criterion which underlies the choice of5771

canonical distributions. (A preparation of the apparatus through a measurement is excluded, not only because it is5772

macroscopic, but also logically, since the measurement that we wish to explain by a model should not depend on a5773

preceding measurement.)5774

136 In a hidden variable description that enters discussions of Bell inequalities in the BCHSH setup, one should thus describe the measured
variable not as a “predetermined” value set only by the pair of particles (Bell’s original setup) but as depending on the hidden variables of both the
pair and the detector (Bell’s extended setup). See Ref. [154] for a discussion of an assumption needed in that setup

137Better to be an ant’s head than a lion’s tail
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The next stages of the solution, truncation and registration (sections 4 to 7), are mere relaxation processes of5775

quantum statistical mechanics, governed by the Liouville–von Neumann equation, which lead the state of S + A from5776

D̂(0) to D̂exact(tf) for the large ensemble E of runs. Approximations justified under the conditions of subsection 9.45777

let us replace D̂exact(tf) by D̂(tf). The breaking of unitarity entailed by this replacement can be understood, in the5778

interpretation of a state as a mapping (10.1) of the observables onto their expectation values, as a restriction of this5779

mapping to the “relevant observables” [58]. Indeed, if we disregard the “irrelevant” observables associated with cor-5780

relations between an inaccessibly large number of particles, which are completely ineffective if no recurrences occur,5781

both states D̂(tf) and D̂exact(tf) realize the same correspondence (10.1) for all other, accessible observables Ô. The5782

entropy S [D̂(tf)], larger than S [D̂exact(tf)] = S [D̂(0)], (§ 1.2.4 and [72]), enters the framework of the general concept5783

of relevant entropies associated with a reduced description from which irrelevant variables have been eliminated [58].5784

Within the informational definition (10.1) of states in the statistical interpretation, we may acknowledge a re-5785

striction of information to relevant observables when eliminating either the environment in models for which this5786

environment induces a decoherence, or the bath B in the Curie–Weiss model (subsection 4.1). In the latter case, the5787

states D̂(t) and D̂(t) ⊗ R̂B(t) (Fig. 3.2) should be regarded as equivalent if we disregard the inaccessible observables5788

that correlate B with M and S.5789

Still another equivalence of “states” in the sense of (10.1) will be encountered in § 13.1.5, where the Curie–5790

Weiss model is reconsidered in the Heisenberg picture. There the evolution of most off-diagonal observables lets5791

them vanish at the end of the process, so that they become irrelevant. The (time-independent) density matrix and the5792

resulting truncated one are therefore equivalent after the time tf , since they carry the same information about the only5793

remaining diagonal observables. Note also that, in the statistical interpretation, it is natural to attribute the quantum5794

specificities (§ 10.2.1) to the non commutation of the observables; in the Heisenberg picture, the effective commutation5795

at the time tf of those which govern the measurement sheds another light on the emergence of classicality (§ 13.1.4).5796

We have stressed that, in the statistical interpretation, a quantum state does not describe an individual system, but5797

an ensemble (§ 10.1.3). The solution D̂(t) of the Liouville von-Neumann equation for S + A describes fully, but in a5798

probabilistic way, a large set E of runs originated from the initial state D̂(0): quantum mechanics treats statistics of5799

processes, not single processes. However, the solution of the quantum measurement problem requires to distinguish,5800

at the end of the process, single runs or at least subensembles Ei of E having yielded the outcome Ai for the pointer. A5801

measurement is achieved only after reading, collecting, processing or selecting the result of each individual process,5802

so as to interpret its results in every day’s language [345]. It is essential to understand how ordinary logic, ordinary5803

probabilities, ordinary correlations, as well as exact statements about individual systems may emerge at our scale5804

from quantum mechanics in measurement processes, even within the statistical interpretation which is foreign to such5805

concepts. Although D̂(t) appears as an adequate tool to account for truncation and registration, it refers to the full set5806

E, and its mere determination is not sufficient to provide information about subsets. The difficulty lies in the quantum5807

ambiguity of the decomposition of the mixed state D̂(tf) into states describing subensembles (§ 10.2.3 and § 11.1.3).5808

We have achieved the task of understanding ideal measurements in section 11 by relying on a dynamical relaxation5809

mechanism of subensembles, according to which the macroscopic apparatus retains quantum features only over a brief5810

delay. This provides the unambiguous splitting of E into the required subsets Ei.5811

12.4.2. Measurement models in other interpretations5812

Het kan natuurlijk ook anders138
5813

Dutch expression5814

As shown above, standard quantum mechanics within the statistical interpretation provides a satisfactory expla-5815

nation of all the properties, including odd ones, of quantum measurement processes. Any other interpretation is of5816

course admissible insofar as it yields the same probabilistic predictions. However, the statistical interpretation, in5817

the present form or in other forms, as well as alternative equivalent interpretations, is minimalistic. Since it has been5818

sufficient to explain the crucial problem of measurement, we are led to leave aside at least those interpretations which5819

require additional postulates, while keeping the same probabilistic status.5820

In particular, we can eliminate the variants of the “orthodox” Copenhagen interpretation in which it is postulated5821

that two different types of evolution may exist, depending on the circumstances, a Hamiltonian evolution if the system5822

138It can of couse also be done differently
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is isolated, and a sudden change producing von Neumann’s reduction and Born’s rule if the system S undergoes an5823

ideal measurement [4, 194]. We can rule out the second type of evolution, since we have seen in detail (section 11)5824

that the standard Liouville–von Neumann evolution alone, when applied to arbitrary subensembles, is sufficient to5825

explain the reduction. The apparent violation of the superposition principle is understood as the result of suitable5826

interactions within the macroscopic apparatus, together with standard treatments of quantum statistical mechanics. It5827

is therefore legitimate to abandon the “postulate of reduction”, in the same way as the old “quantum jumps” have been5828

replaced by transitions governed by quantum electrodynamics. It is also superfluous to postulate the uniqueness of5829

the outcome of individual runs (§ 11.1.3).5830

Interpretations based on decoherence by some environment underlie many models (subsection 2.7). The detailed5831

study of section 11 shows, however, that a proper explanation of reduction requires a special type of decoherence,5832

which accounts for the bistability (or multistability) of the apparatus (§ 11.2.4). Decoherence models in which a5833

special mode of the environment is considered as “pointer mode” [33, 32] are unrealistic, since, by definition, the5834

environment cannot be manipulated or read off. See also the discussion of this issue in [69].5835

Many interpretations are motivated by a wish to describe individual systems, and to get rid of statistical ensembles.5836

The consideration of conscious observers was introduced in this prospect. However, the numerous models based on5837

the S + A dynamics show that a measurement is a real dynamical process, in which the system undergoes a physical5838

interaction with the apparatus, which modifies both the system and the apparatus, as can be shown by performing5839

subsequent experiments. The sole role of the observer (who may be replaced by an automatic device) is to select the5840

outcome of the pointer after this process is achieved.5841

Reduction in an individual measurement process has often been regarded as a kind of bifurcation which may lead5842

the single initial state D̂(0) towards several possible outcomes D̂i, a property seemingly at variance with the linearity5843

of quantum mechanics. In the interpretation of Bohm and de Broglie [18, 24], such a bifurcation occurs naturally.5844

Owing to the introduction of trajectories piloted by the wave function, a one-to-one correspondence exists between5845

the initial and the final point of each possible trajectory; the initial point is governed by a classical probability law5846

determined by the initial quantum wave function, while the set of trajectories end up as separate bunches, each of5847

which is associated with an outcome i. Thus, the final subsets Ei reflect pre-existing subsets of E that already existed5848

at the initial time. In spite of this qualitative explanation of reduction, the trajectories, which refer to the coupled5849

system S + A, are so complicated that models relying on them seem out of reach.5850

At the other extreme, the reality of collapse is denied in Everett’s many-worlds interpretation [25, 26]. A mea-5851

surement is supposed to create several branches in the “relative state”, one of which only being observed, but no5852

dynamical mechanism has been proposed to explain this branching.5853

In our approach the density operator (or the wave function) does not represent a real systems, but our knowledge5854

thereof. Branching does occur, but only at the classical level, by separating a statistical ensemble into subensembles5855

labelled by the outcome of the pointer, as happens when repeatedly throwing a dice. We may call a “branch”, among5856

the 6 possible ones, the selection of the rolls in which the number 5, for instance, has come up .5857

The same concern, describing individual quantum processes, has led to a search for sub-quantum mechanics5858

[20, 31, 134]. Although new viewpoints on measurements might thus emerge, such drastic changes do not seem5859

needed in this context. Justifications should probably be looked for at scales where quantum mechanics would fail,5860

hopefully at length scales larger than the Planck scale so as to allow experimental tests.5861

Of particular interest in the context of measurements are the information-based interpretations [52, 58, 74, 80, 81,5862

315], which are related to the statistical interpretation (§ 10.1.3 and § 10.1.4). Indeed, an apparatus can be regarded5863

as a device which processes information about the system S, or rather about the ensemble E to which S belongs. The5864

initial density operator r̂(0), if given, gathers our information about some preliminary preparation of S. During the5865

process, which leads E to the final truncated state r̂(tf) =
∑

i pir̂i (Eq. (1.10)), all the off-diagonal information are lost.5866

However, the correlations created between S and A then allow us to gain indirectly information on S by reading the5867

outcome of the pointer, to select the corresponding subensemble Ei, and to update our information about Ei as r̂i. The5868

amounts of information involved in each step are measured by the entropy balance of § 1.2.4.5869
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12.4.3. Empiricism versus ontology: within quantum mechanics or beyond?5870

Einstein, stop telling God what to do5871

Niels Bohr5872

There is no general agreement about the purpose of science [317]139. Is our task only to explain and predict5873

phenomena? Does theoretical physics provide only an imperfect mathematical image of reality? Or is it possible to5874

uncover the very nature of things? This old debate, more epistemologic than purely scientific, cannot be skipped since5875

it may inflect our research. The question has become more acute with the advent of quantum physics, which deals5876

with a “veiled reality” [317]. Physicists, including the authors of the present article, balance between two extreme5877

attitudes, illustrated by Bohr’s pragmatic question [345]: “What can we say about...?” facing Einstein’s ontological5878

question [23]: “What is...?” The latter position leads one to ask questions about individual systems and not only about5879

general properties, to regard quantum mechanics as an incomplete theory and to look for hidden “elements of reality”.5880

This opposition may be illustrated by current discussions about the status of pure states. In the statistical in-5881

terpretation, there is no conceptual difference between pure and mixed states (§ 10.1.4); both behave as probability5882

distributions and involve the observer. In order to reject the latter, many authors with ontological aspirations afford5883

pure states a more fundamental status, even though they acknowledge their probabilistic character, a point also crit-5884

icized by van Kampen [14]. Following von Neumann’s construction of density operators (in analogy to densities in5885

phase space of classical statistical mechanics), they regard pure states as building blocks rather than special cases of5886

mixed states. In a decomposition (10.3) of a density operator D̂ associated with an ensemble E, they consider that5887

each individual system of E has its own ket. In this realist interpretation [31], two types of probabilities are distin-5888

guished [14]: “merely quantal” probabilities are interpreted as properties of the individual objects through |φk〉, while5889

the weights νk are interpreted as ordinary probabilities associated with our ignorance of the structure of the statistical5890

ensemble E. Such an interpretation might be sensible if the decomposition (10.3) were unique. We have stressed,5891

however, its ambiguity (§ 10.2.3 and § 11.1.3); as a consequence, the very collection of pure states |φk〉 among which5892

each individual system is supposed to lie cannot even be imagined. It seems therefore difficult to imagine the existence5893

of “underlying pure states” which would carry more “physical reality” than D̂ [323, 328]. The distinction between5894

the two types of probabilities on which decompositions (10.3) rely is artificial and meaningless [10, 11].5895

Landau’s approach to mixed states may inspire another attempt to regard a pure state as an intrinsic description of5896

an individual system [14, 85]. When two systems initially in pure states interact, correlations are in general established5897

between them and the marginal state of each one becomes mixed. To identify a pure state, one is led to embed any5898

system, that has interacted in the past with other ones, within larger and larger systems. Thus, conceptually, the only5899

individual system lying in a pure state would be the whole Universe [210, 212], a hazardous extrapolation [10, 11].5900

Not to mention the introduction in quantum mechanics of a hypothetic multiverse [25, 351].5901

Such considerations illustrate the kind of difficulties to be faced in a search for realist interpretations, a search5902

which, however, is legitimate since purely operational interpretations present only a blurred image of the microscopic5903

reality and since one may long for a description that would uncover hidden faces of Nature [317]. Among the proposed5904

realist interpretations, one should distinguish those which provide exactly the same outcomes as the conventional5905

quantum mechanics, and that can therefore neither be verified nor falsified. They have been extensively reviewed5906

[17, 19, 31, 36, 213, 215, 216, 302] (see also references in § 1.1.1), and we discussed above some of them in connection5907

with models of measurements. Many involve hidden variables of various kinds (such as Bohm and de Broglie’s5908

bunches of trajectories or such as stochastic backgrounds) or hidden structures (such as consistent histories, see5909

subsection 2.9).5910

Other approaches attempt to go “beyond the quantum”. They resort, for instance, to stochastic electrodynamics5911

[134, 135, 136, 137], to quantum Langevin equations [31], to nonlinear corrections to quantum mechanics such as in5912

the GRW approach [17, 90, 214], or to speculations about quantum gravitation [352]. The sole issue issue to close the5913

Einstein–Bohr debate in such fields is a search for testable specific predictions [23, 345].5914

For the time being, empirical approaches appear satisfactory “for all practical purposes” [353]. The statistical5915

interpretation, either in the form put forward by Blokhintsev [10, 11] and Ballentine [9, 48] or in the form presented5916

above, is empirical and minimalist: It regards quantum mechanics only as a means for deriving predictions from5917

139The present authors do not regard science as having a unique purpose
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available data. It is related to partly subjective interpretations that focus on information [315], since information is5918

akin to probability. We have seen (section 11) that, although the statistical interpretation is irreducibly probabilistic,5919

involving both the system (as regards the observables and their evolution) and the observers (as regards the state),5920

although it only deals with statistical ensembles, it suffices in conjunction with dynamics to account for individual5921

behaviours in ideal measurements. The same epistemological attitude is shared by phenomenological-minded people,5922

and is advocated, for instance, by Park [28], van Kampen [14] and de Muynck [31]. It can be viewed as a common5923

ground for all physicists, as stressed by Laloë [34], whose “correlation interpretation” emphasizes predictions as cor-5924

relations between successive experiments. A more extreme philosophical position, the rejection of any interpretation,5925

is even defended by Fuchs and Peres in [354]. According to such positions, quantum theory has the modest task of5926

accounting for the statistics of results of experiments or of predicting them. It deals with what we know about reality,5927

and does not claim to unveil an underlying reality per se140. Quantum theory does not make any statement about going5928

through both slits or not; As such it can be considered as incomplete. Bohr himself shared [345] this conception when5929

he said (see [346, 347] for a list of Bohr’s quotations): “There is no quantum world. There is only an abstract quantum5930

physical description. It is wrong to think that the task of physics is to find out how nature is. Physics concerns what5931

we can say about nature.”5932

13. What next?5933

141
5934 Այս ապուրը դեռ շատ ջուր կքաշի:

Il va couler encore beaucoup d’eau sous les ponts142
5935

Er zal nog heel wat water door de Rijn moeten143
5936

Armenian, French and Dutch proverbs5937

Much can still be learnt from models, even about the ideal quantum measurements on which we have focused.5938

Various features of measurements and their incidence on interpretations of quantum mechanics have been explained5939

by the many models reviewed in section 2. However, the treatments based on quantum statistical mechanics provide,5940

as final state describing the outcome of a large set of runs of the measurement, a mixed state. Such a state cannot be5941

decomposed unambiguously into components that would describe subsets of runs (§ 11.1.3), so that a further study5942

was required to explain the uniqueness of the outcome of each run. A dynamical mechanism that achieves this task5943

has been proposed (§§ 11.2.4 and 11.2.5 and appendices H and I). Adapting it to further models should demonstrate5944

the generality of such a solution of the measurement problem.5945

Alternative approaches should also be enlightening. We suggest some paths below.5946

13.1. Understanding ideal measurements in the Heisenberg picture5947

Nou begrijp ik er helemaal niets meer van144
5948

Dutch expression5949

Some insight can be gained by implementing the dynamics of the measurement process in the Heisenberg picture5950

(§ 10.1.2) rather than in the more familiar Schrödinger picture. Both pictures are technically equivalent but the5951

Heisenberg picture will provide additional understanding. It is then the observables Ô(t, t0) which evolve, in terms of5952

either the running time t or of the reference time t0. By taking t0 as the initial time t0 = 0, an observable Ô(t, t0) is5953

governed for an isolated system by the Heisenberg equation5954

i~
dÔ(t, 0)

dt
= [Ô(t, 0), Ĥ] (13.1)

140This point may be illustrated on the double slit experiment. While the particle-wave duality allows to imagine that electrons or photons “go
through both slits simultaneously”, some authors find it hard to accept this for large objects such as bucky balls [355] or viruses [356]

141Preparing this porridge still requires much water
142Much water will still flow under the bridges
143Quite some water will still have to flow through the Rhine river
144Now I don’t understand anything of it anymore
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with the initial condition Ô(0, 0) = Ô, while the states assigned at the reference time t0 = 0 remain constant. This5955

formulation presents a conceptual advantage; it clearly dissociates two features of quantum mechanics, which in5956

the Schrödinger picture are merged within the time-dependent density operator. Here, the deterministic evolution is5957

carried by the observables, which represent random physical quantities; on the other hand, our whole probabilistic5958

information about these quantities is embedded in the time-independent density operator145.5959

We can thus account for the dynamics of a system in a general way, without having to specify its probabilistic5960

description in the particular situation we wish to describe. The use of the Heisenberg picture has therefore an incidence5961

on the interpretation of quantum mechanics. Whereas the Schrödinger picture only allows us to describe dynamics of5962

the statistical ensemble represented by the density operator, we can regard the equation of motion (13.1) as pertaining5963

to an individual system146. It is only when evaluating expectation values as tr[D̂Ô(t, 0)] that we have to embed the5964

studied system in a statistical ensemble.5965

Moreover, when a measurement is described in the Schrödinger picture, the density operator of S + A undergoes5966

two types of changes, the time dependence from D̂(0) to D̂(tf), and the restriction to D̂i if the outcome Ai is selected.5967

The temptation of attributing the latter change to some kind of dynamics will be eluded in the Heisenberg picture,5968

where only the observables vary in time.5969

Let us sketch how the Curie–Weiss model might be tackled in the Heisenberg picture.5970

13.1.1. Dynamical equations5971

Rock around the clock tonight5972

Written by Max C. Freedman and James E. Myers, performed by Bill Haley and His Comets5973

The equations of motion (13.1) which couple the observables to one another have the same form as the Liouville–5974

von Neumann equation apart from a sign change and from the boundary conditions. Thus, their analysis follows the5975

same steps as in section 4. Elimination of the bath takes place by solving at order γ the equations (13.1) for the bath5976

observables B̂(n)
a (t, 0), inserting the result into the equations for the observables of S + M and averaging over the state5977

R̂B of B; this provides integro-differential equations that couple the observables ŝa(t, 0) of S and those σ̂a(t, 0) of M5978

(a = x, y or z). The conservation of ŝz implies, instead of the decoupling between the four blocks ↑↑, ↓↓, ↑↓, ↓↑ of the5979

Schrödinger density matrix, the decoupling between four sets of observables, the diagonal observables proportional5980

to Π̂↑ ≡
1
2 (1 + ŝz) and Π̂↓ ≡

1
2 (1 − ŝz), and the the off-diagonal observables proportional to ŝ− and ŝ+, respectively.5981

Finally the symmetry between the various spins of M allows us again to deal only with m̂, so that the dynamics bears5982

on the observables Π̂↑ f (m̂), Π̂↓ f (m̂), ŝ− f (m̂) and ŝ+ f (m̂), coupled within each sector.5983

13.1.2. Dynamics of the off-diagonal observables5984

En spreid en sluit147
5985

Dutch instruction in swimming lessons5986

The evolution (13.1) of the off-diagonal observables generated over very short times t � τrecur = π~/2g by5987

ĤSA = −Ngŝzm̂ (section 5) is expressed by5988

ŝ−(t) = ŝ− exp
2iNgm̂t

~
, m̂(t) = m̂. (13.2)

Instead of the initial truncation exhibited in the Schrödinger picture, we find here a rapid oscillation, which will entail5989

a damping after averaging over the canonical paramagnetic state of M.5990

The suppression of recurrences through the non-identical couplings of subsection 6.1 replaces Ngm̂ by
∑

n(g +5991

δgm)σ̂(n)
z in (13.2), a replacement which after averaging over most states will produce damping. The bath-induced5992

145We use the term “observables” in the sense of “operator-valued random physical quantities” (§ 10.1.1), not of “outcomes of observations”. The
latter quantities (frequencies of occurrence, expectation values, variances) are joint properties (10.1) of “states” (i. e., density operators playing the
role of quantum probabilities) and observables

146As understood, in the statistical interpretation, to belong to an ensemble of identically prepared members
147And open and close (the legs)
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mechanism of subsection 6.2 introduces, both in m̂(t) and in the right side of (13.2), observables pertaining to the5993

bath which are regarded as unreachable. Tracing out B then produces the damping of recurrences for the off-diagonal5994

observables.5995

We have shown (§§ 11.2.4 and 11.2.5) that reduction can result from a decoherence produced by a random inter-5996

action within M or by a collisional process. In the Heisenberg picture, the result is again the decay towards 0 of the5997

off-diagonal observables |↑〉〈↓| ⊗ |mF, η〉〈−mF, η
′| and |↓〉〈↑| ⊗ |−mF, η〉〈mF, η

′|.5998

13.1.3. Establishment of system–apparatus correlations5999

148
6000 Ջորին յոթը գետում լողալ գիտի, բայց ջուր տեսնելիս բոլորը մոռանում է:

Armenian proverb6001

The evolution of the diagonal observables in the Heisenberg picture is analogous to the registration of section6002

7, but it is represented by more general equations than in the Schrödinger picture. Indeed, denoting by δm̂,m the6003

projection operator on the eigenspace associated with the eigenvalue m of m̂, we now have in the sector ↑↑ to look6004

at the dynamics of the time-dependent observables Π̂↑δm̂,m(t, 0), instead of the dynamics of their expectation values6005

Pdis
↑↑

(m, t) in the specific state D̂(0) of S + M as in section 7. The solution of the equations of motion has the form6006

Π̂↑δm̂,m(tf , 0) =
∑
m′

K↑(m,m′)Π̂↑δm̂,m′ . (13.3)

The kernel K↑(m,m′) represents the transition probability of the random order parameter m̂ from its eigenvalue m′ at6007

the time 0 to its eigenvalue m at the time tf , under the effect of the bath and of a field +g. It is obtained by taking6008

the long-time limit of the Green’s function defined by Eq. (7.58), and we infer its properties from the outcomes of6009

section 7. As m′ is arbitary, we must deal here with a bifurcation (as in subsection 7.3). For m′ larger than some6010

negative threshold, K↑(m,m′) is concentrated near m ' +mF; this will occur in particular if m′ is small, of order6011

1/
√

N. However, if m′ is negative with sufficiently large |m′|, it will be sent towards m = −mF. Likewise, K↓(m,m′) is6012

concentrated around m ' −mF if |m′| is sufficiently small (or if m′ is negative), but around m ' +mF if m′ is positive6013

and sufficiently large. The complete correlations required for the process to be a measurement will be created only6014

after averaging over a state of the pointer concentrated around m′ = 0.6015

At later times, around tf , the process of § 11.2.4 produces the irreversible decay of the diagonal observables6016

| ↑〉〈↑ | ⊗ |mF, η〉〈mF, η
′| and | ↓〉〈↓ | ⊗ |−mF, η〉〈−mF, η

′| towards δηη′ R̂
µ
⇑

and δηη′ R̂
µ
⇓
, respectively. Notice that while the6017

initial observables involve here the full set σ̂(n)
z , their evolution narrows this set, leading it only towards the projection6018

operators on m̂ = mF and m̂ = −mF.6019

13.1.4. Fate of observables at the final time6020

Carpe diem149
6021

Roman proverb6022

Physical data come out in the form tr D̂HeisÔ(t, 0) where D̂Heis = D̂Schr(0) = r̂ ⊗ R̂ is time-independent, namely6023

just the initial state in the Schrödinger picture. The success of an ideal measurement process now appears as the joint6024

result of the algebraic properties that result in the expressions of the time-dependent observables, and of some specific6025

properties of the initial preparation of the apparatus embedded in R̂(0). On the one hand, the width in 1/
√

N of the6026

initial paramagnetic distribution Pdis
M (m, 0) is sufficiently large so that the oscillations (13.2) of ŝ−(t) are numerous6027

and interfere destructively on the time scale τtrunc. On the other hand, it is sufficiently narrow so as to avoid wrong6028

registrations: The final probability distribution Pdis
↑↑

(m, tf) for the pointer is the expectation value of (13.3) over D̂Heis,6029

and the concentration near the origin of m̂ = m′ in R̂(0) entails the concentration near +mF of Pdis
↑↑

(m, tf).6030

148The mule can swim over seven rivers, but as soon as it sees the water it forgets everything
149Seize the day
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Some intuition about ideal measurements may be gained by acknowledging the decay of the off-diagonal ob-6031

servables during the process and their effective disappearance150 after the time tf . The evolution of the diagonal6032

observables also implies that, under the considered circumstances, only the eigenspaces of m̂ associated with eigen-6033

values close to mF and −mF survive at tf . The only observables remaining at the end of the process, Π↑δm̂,m(tf , 0)6034

with m close to mF expressed by (Eq b) and Π̂↓δm̂,m(tf , 0) with m close to −mF, belong to an abelian algebra. It is6035

therefore natural to regard them as ordinary random variables governed by standard probabilities, and to use daily6036

reasoning which allows statements about individual events. The singular features of quantum mechanics which arose6037

from non-commutativity (§ 10.2.1) can be disregarded. The emergence of classicality in measurement processes now6038

appears as a property of the Heisenberg dynamics of the observables.6039

13.1.5. Truncation6040

En toen kwam een olifant met een hele grote snuit6041

En die blies het verhaaltje uit151
6042

The ending of Hen Straver’s fairy tales6043

We now turn to the states describing the ensemble E of runs and its subensembles. Remember that in the statistical6044

interpretation and in the Heisenberg picture, a “state” is a time-independent mathematical object that accounts for6045

our information about the evolving observables (§ 10.1.4). Equivalently, the density operator gathers the expectation6046

values of all observables at any time. The assignment of a density matrix D̂Heis to the whole set E of runs of the6047

measurement relies on information acquired before the interaction process (i.e., the measurement) and embedded6048

in the states r̂, R̂M and R̂B of S, M and B. These information allow us to describe the statistics of the whole process6049

between the times 0 and tf through the equations of motion (13.1) and the density operator D̂Heis = r̂(0)⊗R̂M(0)⊗R̂B(0)6050

describing the set E.6051

However, the vanishing at tf of the off-diagonal observables (at least of all accessible ones) entails that their expec-6052

tation values vanish, not only for the full set E of runs of the measurement but also for any subset. The information6053

about them, that was embedded at the beginning of the process in the off-diagonal blocks of D̂Heis, have been irreme-6054

diably lost at the end, so that these off-diagonal blocks become irrelevant after measurement. For the whole ensemble6055

E, and for any probabilistic prediction at times t > tf , it makes no difference to replace the state D̂Heis by the sum of6056

its diagonal blocks according to6057

D̂Heis 7→ D̂Heis
trunc =

∑
i

piD̂
Heis
i , D̂Heis

i = Π̂ir̂(0)Π̂i ⊗ R̂M(0) ⊗ R̂B(0), (i =↑, ↓). (13.4)

This reasoning sheds a new light on the interpretation of truncation, which in the Schrödinger picture appeared as the6058

result of an irreversible evolution of the state. In the present Heisenberg picture, truncation comes out as the mere6059

replacement (13.4), which is nothing but an innocuous and convenient elimination of those parts of the state D̂Heis
6060

which have become irrelevant, because the corresponding observables have disappeared during the measurement6061

process.6062

13.1.6. Reduction6063

Joue de veau braisée, couronnée de foie gras poêlé, réduction de Pedro Ximénez152
6064

Recipe by the chef Alonso Ortiz6065

The argument given at the end of § 13.1.2 then allows us to assign states to the subensembles of E which can6066

be distinguished at the time tf , after the observables have achieved their evolution and after decoupling of S and A.6067

Here, however, the states, which do not depend on time, can be directly constructed from D̂Heis or from the equivalent6068

150In fact, the disappearance of the off-diagonal observables is approximate for finite N and is not complete: We disregard the inaccessible
observables, whether they belong to the bath or they are associated with correlations of a macroscopic number of particles. The suppression of all
the accessible off-diagonal observables relies on the mechanism of § 11.2.4, itself based on the concentration of m̂ around ±mF

151And then came an elephant with a very big trunk, and it blew the story to an end
152Braised veal cheek, topping of foie gras, reduction of sweet sherry
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expression (13.4). The vanishing of the off-diagonal observables themselves simplifies the discussion since we can6069

always eliminate the off-diagonal blocks of a state associated with any subensemble. The diagonal observables display6070

the same correlations between the system and the pointer as in (13.4), so that any subset of runs of the measurement6071

can be represented by the state6072

D̂Heis
sub =

∑
i

qiD̂
Heis
i . (13.5)

which is the basis for all predictions about the considered subensemble at times later than tf . (Note that the inclusion6073

of elements in the off-diagonal blocks of (13.5) would not change anything since there are no surviving observables6074

in these blocks.)6075

The uniqueness of the outcome of each individual run comes out from (13.5) through the same argument as in6076

§ 11.3.1. A well-defined indication i of the pointer is the additional piece of information that allows us to assign to6077

the system S + A, which then belongs to the subensemble Ei, the state D̂Heis
i . Retaining only one diagonal block of6078

D̂Heis in (13.4) amounts to upgrade our probabilistic description 153.6079

The specific features of the Heisenberg representation were already employed in literature for arguing that this6080

representation (in contrast to that by Schrödinger) has advantages in explaining the features of quantum measure-6081

ments [357, 358, 359]. In particular, Rubin argued that obstacles preventing a successful application of the Everett6082

interpretation to quantum measurements are absent (or at least weakened) in the Heisenberg representation [358, 359].6083

Certain aspects of the analysis by Rubin do not depend on the assumed Everett interpretation and overlap with the6084

presentation below (that does not assume this interpretation). Blanchard, Lugiewicz and Olkiewicz employed the6085

decoherence physics within the Heisenberg representation for showing that it accounts more naturally (as compared6086

to the Schrödinger representation) for the emergence of classical features in quantum measurements [357]. Their6087

approach is phenomenological (and shares the criticisms we discussed in section 2.2), but the idea of an emergent6088

Abelian (classical) algebra again overlaps with the preliminary results reported above. The emergent Abelian algebra6089

is also the main subject of the works by Sewell [159, 160, 161] and Requardt [69] that we already reviewed in section6090

2.4.3. In particular, Requardt explains that closely related ideas were already expressed by von Neumann and van6091

Kampen (see references in [69]).6092

As shown by this reconsideration of the Curie–Weiss model, the Heisenberg picture enlightens the truncation,6093

reduction and registration processes, by exhibiting them as a purely dynamical phenomena and by explaining their6094

generality. Although mathematically equivalent to the Schrödinger picture, it suggests more transparent interpreta-6095

tions, owing to a separate description of the dynamics of quantum systems and of our probabilistic knowledge about6096

them. A better insight on other models of measurement should therefore be afforded by their treatment in the Heisen-6097

berg picture.6098

13.2. Other types of measurements6099

Corruptissima republica plurimae leges154
6100

Tacitus6101

We have only dealt in this article with ideal quantum measurements, in which information about the initial state6102

of the tested system S is displayed by the apparatus at some later time, and in which the final state of the system6103

S is obtained by projection. Other realistic setups, e.g. of particle detectors or of avalanche processes, deserve6104

to be studied through models. Measurements of a more elaborate type, in which some quantum property of S is6105

continuously followed in time, are now being performed owing to experimental progress [306, 307, 360, 361, 318].6106

153In the Schrödinger picture, the expectation value of any (time-independent) observable for the subensemble Ei was found from the state D̂i
of Eq. (11.21). Here, it is obtained from the evolution (13.3) and the state D̂Heis

i of Eq (13.4). The state D̂i results from D̂Heis
i by integrating the

Liouville–von Neumann equation from t = 0 to tf
154The greater the degeneration of the republic, the more of its laws
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For instance, non-destructive (thus non-ideal) repeated observations of photons allow the study of quantum jumps6107

[361], and quantum-limited measurements, in which a mesoscopic detector accumulates information progressively6108

[362], are of interest to optimize the efficiency of the processing of q-bits. Quantum measurements are by now6109

employed for designing feedback control processes [318, 363], a task that in the classical domain is routinely done6110

via classical measurements.6111

Such experiments seem to reveal properties of individual systems, in apparent contradiction with the statistical6112

interpretation of quantum mechanics. However, as in ideal measurements, repeated observations of the above type on6113

identically prepared systems give different results, so that they do not give access to trajectories in the space of the6114

tested variables, but only to autocorrelation functions presenting quantum fluctuations. It seems timely, not only for6115

conceptual purposes but to help the development of realistic experiments, to work out further models, in particular6116

for such quantum measurements in which the whole history of the process is used to gather information. In this6117

context we should mention the so-called weak measurements [364] that (in a sense) minimize the back-action of the6118

measurement device on the measured system, and – although they have certain counterintuitive features – can reveal6119

the analogues of classical concepts in quantum mechanics; e.g., state determination with the minimal disturbance,6120

classical causality [365, 366, 367, 368, 369], and even mapping out of the complete wave function [370] or of the6121

average trajectories of single photons in a double-slit experiment [371].6122

Apart from such foreseeable research works, it seems desirable to make educational progress by taking into ac-6123

count the insights provided by the solution of models of quantum measurement processes. The need of quantum6124

statistical mechanics to explain these processes, stressed all along this paper, and the central role that they play in the6125

understanding of quantum phenomena, invite us to a reformation of teaching at the introductory level. The statistical6126

interpretation, as sketched in subsection 10.1, is in keeping with the analysis of measurements. Why not introduce the6127

concepts and bases of quantum mechanics within its framework. This “minimal” interpretation seems more easily as-6128

similable by students than the traditional approaches. It thus appears desirable to foster the elaboration of new courses6129

and of new textbooks, which should hopefully preserve the forthcoming generations from bewilderment when being6130

first exposed to quantum physics...and even later!6131
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explanation of uniqueness, and especially F. Laloë for many thorough and enlightening discussions and suggestions.6134

Frédéric Joucken and Marti Perarnau have kindly checked the calculations and Claudia Pombo has discussed various6135

aspects. We thank Loic Bervas and Isabela Pombo Geertsma for taking part in the typesetting and we are grateful for6136

hospitality at CEA Saclay and the University of Amsterdam during the various stages of this work. The research of6137

AEA was supported by the Région des Pays de la Loire under the Grant 2010-11967.6138

Appendices6139

Non scholae, sed vitae discimus155
6140

Seneca6141

A. Elimination of the bath6142

Do not bathe if there is no water6143

Shan proverb6144

Taking Ĥ0 = ĤS + ĤSA + ĤM and ĤB as the unperturbed Hamiltonians of S + M and of B, respectively, and6145

denoting by Û0 and ÛB the corresponding evolution operators, we consider the full evolution operator associated with6146

Ĥ = Ĥ0 + ĤB + ĤMB in the interaction representation. We can expand it as6147

155We learn not for school, but for life
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Û†0 (t) Û†B (t) e−iĤt/~ ≈ Î − i~−1
∫ t

0
dt′ĤMB

(
t′
)

+ O (γ) , (A.1)

where the coupling in the interaction picture is6148

ĤMB (t) =
√
γ
∑
n,a

Û†0 (t) σ̂(n)
a Û0 (t) B̂(n)

a (t) , (A.2)

with B̂(n)
a (t) defined by (3.35).6149

We wish to take the trace over B of the exact equation of motion eq. (4.1) for D̂(t), so as to generate an equation6150

of motion for the density operator D̂ (t) of S + M. In the right-hand side the term trB

[
ĤB, D̂

]
vanishes and we are left6151

with6152

i~
dD̂
dt

=
[
Ĥ0, D̂

]
+ trB

[
ĤMB, D̂

]
. (A.3)

The last term involves the coupling ĤMB both directly and through the correlations between S+M and B which are6153

created inD (t) from the time 0 to the time t. In order to write (A.3) more explicitly, we first exhibit these correlations.6154

To this aim, we expandD (t) in powers of
√
γ by means of the expansion (A.1) of its evolution operator. This provides,6155

using Û0(t) = exp[−iĤ0t/~],6156

Û†0 (t) Û†B (t) D̂ (t) ÛB (t) Û0 (t) ≈ D̂ (0) − i~−1
[∫ t

0
dt′ĤMB

(
t′
)
, D̂ (0) R̂B (0)

]
+ O (γ) . (A.4)

Insertion of the expansion (A.4) into (A.3) will allow us to work out the trace over B. Through the factor R̂B (0),6157

this trace has the form of an equilibrium expectation value. As usual, the elimination of the bath variables will produce6158

memory effects as obvious from (A.4). We wish these memory effects to bear only on the bath, so as to have a short6159

characteristic time. However the initial state which enters (A.4) involves not only R̂B (0) but also D̂ (0), so that a6160

mere insertion of (A.4) into (A.3) would let D̂ (t) keep an undesirable memory of D̂ (0). We solve this difficulty by6161

re-expressing perturbatively D̂ (0) in terms of D̂ (t). To this aim we note that the trace of (A.4) over B provides6162

U†0 (t) D̂ (t) Û0 (t) = D̂ (0) + O (γ) . (A.5)

We have used the facts that the expectation value over R̂B (0) of an odd number of operators B̂(n)
a vanishes, and that6163

each B̂(n)
a is accompanied in ĤMA by a factor

√
γ. Hence the right-hand side of (A.5) as well as that of (A.3) are power6164

series in γ rather than in
√
γ.6165

We can now rewrite the right-hand side of (A.4) in terms of D̂ (t) instead of D̂ (0) by means of (A.5), then insert6166

the resulting expansion of D̂ (t) in powers of
√
γ into (A.3). Noting that the first term in (A.4) does not contribute to6167

the trace over B, we find6168

dD̂
dt
−

1
i~

[
Ĥ0, D̂

]
= −

1
~2 trB

∫ t

0
dt′

[
ĤMB, ÛBÛ0

[
ĤMB

(
t′
)
, Û†0 D̂Û0R̂B (0)

]
Û†0Û†B

]
+ O

(
γ2

)
, (A.6)

where D̂, ÛB and Û0 stand for D̂ (t), ÛB (t) and Û0 (t). Although the effect of the bath is of order γ, the derivation has6169

required only the first-order term, in
√
γ, of the expansion (A.4) ofD (t).6170

The bath operators B̂(n)
a appear through ĤMB and ĤMB (t′), and the evaluation of the trace thus involves only the6171

equilibrium autocorrelation function (3.34). Using the expressions (3.10) and (A.2) for ĤMB and ĤMB (t′), denoting6172

the memory time t − t′ as u, and introducing the operators σ̂(n)
a (u) defined by (4.4), we finally find the differential6173

equation (4.5) for D̂(t).6174
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B. Representation of the density operator of S + M by scalar functions6175

Je moet je niet beter voordoen dan je bent156
6176

Dutch proverb6177

We first prove that, if the operators R̂i j(t) in the Hilbert space of M depend only on m̂, the right hand side of (4.8)6178

has the same property.6179

The operators σ̂(n)
+ = 1

2

(
σ̂(n)

x + iσ̂(n)
y

)
and σ̂(n)

− =
(
σ̂(n)

+

)†
raise or lower the value of m by δm = 2/N, a property6180

expressed by6181

[σ̂(n)
+ , σ̂(n)

z ] = −2σ̂(n)
+ , σ̂(n)

+ m̂ = (m̂ − δm) σ̂(n)
+ . (B.1)

The last identity can be iterated to yield6182

σ̂(n)
+ m̂k = (m̂ − δm) σ̂(n)

+ m̂k−1 = · · · = (m̂ − δm)k σ̂(n)
+ , (B.2)

so that for every function that can be expanded in powers of m̂, but does not otherwise depend on the σ̂(k)
a , it holds that6183

σ̂(n)
± f (m̂) = f (m̂ ∓ δm)σ̂(n)

± . (B.3)

In order to write explicitly the time-dependent operators σ̂(n)
a (u, i) defined by (4.7) with the definition (4.6), it is6184

convenient to introduce the notations6185

m± = m ± δm = m ±
2
N
, (B.4)

∆± f (m) = f (m±) − f (m) . (B.5)

The time-dependent operators (4.7) are then given by (u = t − t′ is the memory time; i =↑, ↓)6186

σ̂(n)
z (u, i) = σ̂(n)

z , (B.6)
6187

σ̂(n)
+ (u, i) = 1

2

[
σ̂(n)

x (u, i) + iσ̂(n)
y (u, i)

]
= e−iĤiu/~σ̂(n)

+ eiĤiu/~ = σ̂(n)
+ e−iΩ̂+

i u = eiΩ̂−i u σ̂(n)
+ = [σ̂(n)

− (u, i)]†, (B.7)

where we used (B.3) and where the operators Ω̂+
↑
, Ω̂−
↑
, Ω̂+
↓
, Ω̂−
↓

are functions of m̂ defined by Ω̂±i = Ω±i (m̂) and by6188

~Ω±i (m) = ∆±Hi (m) = Hi (m ± δm) − Hi (m) . (B.8)

If in the right-hand side of (4.8) the operator R̂i j depends only on m̂ at the considered time, the terms with a = z6189

cancel out on account of (B.6). The terms with a = x and a = y, when expressed by means of (B.7), generate only6190

products of σ̂(n)
+ σ̂(n)

− or σ̂(n)
− σ̂

(n)
+ by functions of m̂. This can be seen by using (B.3) to bring σ̂(n)

+ and σ̂(n)
− next to each6191

other through commutation with R̂i j. Since σ̂(n)
+ σ̂(n)

− = 1− σ̂(n)
− σ̂

(n)
+ = 1

2

(
1 + σ̂(n)

z

)
, we can then perform the summation6192

over n, which yields products of some functions of m̂ by the factor6193 ∑
n

σ̂(n)
+ σ̂(n)

− = N −
∑

n

σ̂(n)
− σ̂

(n)
+ =

N
2

(1 + m̂) , (B.9)

itself depending only on m̂. Hence, if R̂i j is a function of the operator m̂ only, this property also holds for dR̂i j(t)/dt6194

given by (4.8). Since, except in section 5.2, it holds at the initial time, it holds at any time.6195

The equations of motion (4.8) for R̂i j(t) are therefore equivalent to the corresponding equations for Pi j(m, t) which6196

we derive below. The matrices R̂i j(t) which characterize the density operator of S + M are parametrized as R̂i j(t) =6197

156Don’t pretend to be more than you are
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Ri j(m̂) = Pdis
i j (m̂, t)/G(m̂); in the continum limit, we introduced Pi j(m, t) = (N/2)Pdis

i j (m, t). We first note that the6198

autocorrelation function K(t) enters (4.8) through integrals of the form6199

K̃t> (ω) =

∫ t

0
due−iωuK (u) =

1
2πi

∫ +∞

−∞

dω′
ei(ω′−ω)t − 1
ω′ − ω

K̃
(
ω′

)
,

K̃t< (ω) =

∫ 0

−t
due−iωuK (u) =

∫ t

0
dueiωuK (−u) =

[
K̃t> (ω)

]∗
. (B.10)

As shown above, only the contributions to (4.8) with a = x or a = y survive owing to (B.6). The first term is6200

transformed, by relying successively on (B.7), (B.10), (B.3) and (B.9), into6201 ∫ t

0
du

∑
n

∑
a=x,y

K (u) σ̂(n)
a (u, i) R̂i jσ̂

(n)
a = 2

∫ t

0
du

∑
n

K (u)
[
eiΩ̂−i uσ̂(n)

+ Ri j (m̂) σ̂(n)
− + eiΩ̂+

i uσ̂(n)
− Ri j (m̂) σ̂(n)

+

]
(B.11)

= NK̃t>

(
−Ω̂−i

)
Ri j (m̂ − δm) (1 + m̂) + NK̃t>

(
−Ω̂+

i

)
Ri j (m̂ + δm) (1 − m̂) .

From the relation Ri j (m) = Pdis
i j (m) /G(m) (see Eq. (3.29)), we get6202

(1 ∓ m)Ri j (m±) = (1 ∓ m)
Pdis

i j (m±)

G(m±)
=

1 ± m±
G(m)

Pdis
i j (m±), (B.12)

so that we can readily rewrite (B.11) in terms of Pi j (m̂) = 1
2 NPdis

i j (m̂) instead of R̂i j. The same steps allow us to6203

express the other three terms of (4.8) in a similar form. Using also ∆+Ω−i = ∆+[Hi(m − δm) − Hi(m)] = −Ω+
i and6204

∆−Ω
+
i = −Ω−i , where ∆+ and ∆− were defined by (B.4) and (B.5), we find altogether, after multiplying by G(m),6205

d
dt

Pi j (m, t) −
1
i~

[
Hi (m) − H j (m)

]
Pi j (m, t) =

γN
~2 ∆+

{
(1 + m)

[
K̃t>

(
Ω−i

)
+ K̃t<

(
Ω−j

)]
Pi j (m, t)

}
+

γN
~2 ∆−

{
(1 − m)

[
K̃t>

(
Ω+

i
)

+ K̃t<

(
Ω+

j

)]
Pi j (m, t)

}
, (B.13)

For i = j this equation simplifies into Eq. (4.16), due to both the cancellation in the left-hand side and the appearance6206

of the combination (4.17) in the right-hand side.6207

Since it is an instructive exercise for students to numerically solve the full quantum dynamics of the registration6208

process at finite N, we write out here the ingredients of the dynamical equation (B.13) for P↑↑ and P↓↓. As we just6209

indicated above, this equation simplifies for i = j into (4.16). Moreover, in the registration regime, we can replace6210

K̃t>(ω) + K̃t<(ω) = K̃t(ω) by K̃(ω), defined in (3.38). The rates entering Eq. (4.16) or Eq. (B.13) for i = j have6211

therefore the form6212

γN
~2 K̃(ω) =

N~ω
8J τJ

[
coth

(
1
2
β~ω

)
− 1

]
exp

(
−
|ω|

Γ

)
, (B.14)

where the timescale τJ = ~/γJ can be taken as a unit of time. The variable ω in K̃(ω) takes the values Ω±i , with6213

i = j = ↑ or ↓, which are explicitly given by (4.14) in terms of the discrete variable m. It can be verified that, for6214

Γ � J/~, the omission of the Debye cut-off in (B.14) does not significantly affect the dynamics.6215

C. Evaluation of the recurrence time for a general pointer6216

For what cannot be cured, patience is best6217

Irish proverb6218

We consider here general models for which the tested observable ŝ is coupled to a pointer through the Hamiltonian6219

(6.12) where the pointer observable m̂ has Q eigenvalues behaving as independent random variables. The probability6220
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distribution p(ωq) for the corresponding eigenfrequencies ωq ≡ Ng(si − s j)mq/~ which enter the function <F(t) =6221

Q−1 ∑
q cosωqt is taken as (6.16). For shorthand we denote from now on in the present appendix by F(t) the real part6222

<F of the function defined in § 6.1.2 by (6.14).6223

We wish to evaluate the probability P ( f , t) for F (t) to be larger than some number f at a given time t � ∆ω. This6224

probability is deduced from the characteristic function for F (t) through6225

P ( f , t) = θ
[
F (t) − f

]
=

∫ +∞

−∞

dλ
2π (iλ + 0)

e−iQλ f eiQλF(t) =

∫ +∞

−∞

dλ
2π (iλ + 0)

[
e−iλ f

∫
dωp (ω) eiλ cosωt

]Q

. (C.1)

Since t � 1/∆ω, the factor p (ω) in the integrand varies slowly over the period 2π/t of the exponential factor6226

exp iλ cosωt. This exponential may therefore be replaced by its average on ω over one period, which is the Bessel6227

function J0 (λ). The integral over ω then gives unity, and we end up with6228

P ( f , t) =

∫ +∞

−∞

dλ
2π (iλ + 0)

exp{Q
[
ln J0 (λ − i0) − iλ f

]
}. (C.2)

For Q � 1, the exponent has a saddle point λs given as function of f by6229

λs ≡ −iy,
I1 (y)
I0 (y)

= f ,
d f
dy

= 1 −
f
y
− f 2, (C.3)

and we find6230

P ( f , t) =
1
y

(
2πQ

d f
dy

)−1/2

exp
{
−Q

[
y f − ln I0 (y)

]}
. (C.4)

We now evaluate the average duration δt of an excursion of F (t) above the value f . To this aim, we determine the6231

average curvature of F (t) at a peak, reached for values of the set ωq such that F (t) > f . The quantity6232

θ
[
F (t) − f

] d2F (t)
dt2 (C.5)

is obtained from (C.1) by introducing in the integrand a factor6233

−
∫

dωp (ω)ω2 cosωt e−iλ cosωt∫
dωp (ω) eiλ cosωt

=
−i∆ω2J1 (λ)

J0 (λ)
, (C.6)

where we used t∆ω � 1. The saddle-point method, using (C.3), then provides on average, under the constraint6234

F (t) > f ,6235

1
F (t)

d2F (t)
dt2 = −∆ω2. (C.7)

A similar calculation shows that, around any peak of F (t) emerging above f , the odd derivatives of F (t) vanish6236

on average while the even ones are consistent with the gaussian shape (6.17), rewritten for f −1F (t′) in terms of6237

t′ − t < 1/∆ω. This result shows that the shape of the dominant term of (6.19) is not modified by the constraint6238

F(t) > f . Hence, if F (t) reaches a maximum f + δ f at some time, the duration of its excursion above f is6239

δt =
2

∆ω

√
2δ f

f
. (C.8)

From (C.4) we find the conditional probability density for F (t) to reach f + δ f if F(t) > f , as Qye−Qyδ f , and hence6240

δt =
1

∆ω

√
2π

Qy f
. (C.9)
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Since the probability P ( f , t) for a recurrence to occur at the time t does not depend on this time, and since the6241

average duration of the excursion is δt, the average delay between recurrences is here6242

τrecur =
δt

P ( f , t)
=

2π
∆ω

√
y
f

d f
dy

eQ[y f−ln I0(y)], (C.10)

where y is given by I1(y) = f I0(y).6243

For f sufficiently small so that ln I0( f ) ' f 2 (for f = 0.2 the relative error is 1%), we find from (C.3) that y ' 2 f ,6244

and this expression of the recurrence time reduces to (6.20), that is exponentially large in Q.6245

We notice that in this derivation the shape of the eigenvalue spectrum p(ω) hardly played any role, we only used6246

that it is smooth on the scale 2π/t, where t is the observation time. So after times t � 2π/∆ω, where the individual6247

levels are no longer resolved, there will be an exponentially long timescale for the pointer to recur.6248

D. Effect of the bath on the off-diagonal sectors of the density matrix of S + M6249

Dopóty dzban wode$ nosi, dopóki mu sie$ ucho nie urwie 157
6250

Polish proverb6251

D.1. Full expression of P↑↓ for large N6252

In Eq. (6.22) we have parametrized P↑↓(m, t) in terms of the function A(m, t), which satisfies6253

∂A
∂t

=
2igm
~
−

1
NP↑↓

∂P↑↓
∂t

, (D.1)

with A(m, 0) = 0. In subsection 4.4, we have derived the equation (4.29) for P↑↓, from which A(m, t) can be obtained6254

for large N at the two relevant orders (finite and in 1/N). As we need A(m, t) only at linear order in γ, we can replace6255

in (4.29) the quantity X↑↓(m, t) by its value for γ = 0,6256

X ≡ X↑↓(m, t) =
2igt
~
−

m
δ2

0

, (D.2)

which contains no 1/N term. We then insert (4.29) in (D.1) to obtain6257

∂A(m, t)
∂t

=
γ

~2

{(
1 − e2X

)
(1 + m)K̃− +

(
1 − e−2X

)
(1 − m)K̃+ −

2
N

[
∂[(1 + m)K̃−eX]

∂m
eX −

∂[(1 − m)K̃+e−X]
∂m

e−X
]}
,(D.3)

where the combinations K̃±(m, t) = K̃t>

(
Ω±
↑

)
+ K̃t<

(
Ω±
↓

)
were introduced in (4.19). The functions K̃t>(ω) and K̃t<(ω) =6258

K̃∗t>(ω) were defined by (3.37), (3.38), (4.10) and (4.11), and the frequencies Ω±
↑

and Ω±
↓

by (4.14). The initial condition6259

is A(m, 0) = 0.6260

D.2. Expansion for small m6261

The above result holds for arbitrary values of m and t. However, since in P↑↓(m, t) the values of m remain small as6262

1/
√

N, only the first three terms in the expansion6263

A(m, t) ≈ B(t) − iΘ(t)m +
1
2

D(t)m2, (D.4)

157A jug carries water only until its handle breaks off
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are relevant. The time-dependence of these three functions, which vanish for t = 0, will be elementary so that we will6264

work out only their time derivatives, which are simpler and which result from (D.3).6265

We note as Ω the frequency defined by6266

Ω ≡
2g
~
≡

π

τrecur
, (D.5)

which is related to the period τrecur of the recurrences that arise from the leading oscillatory term exp(2iNgmt/~) in6267

(6.22) with m taking the discrete values (3.23). We can then rewrite, up to the order m2 and up to corrections in 1/N,6268

Ω±↑ ≈ ∓Ω ∓
2J2m
~

, Ω±↓ ≈ ±Ω ∓
2J2m
~

, X = iΩt −
m
δ2

0

. (D.6)

The expressions (4.10) and (4.11) for K̃t>(ω) or K̃t<(ω) then provide for their combinations (4.19) the expansion6269

K̃±(m, t) ≈ e±iΩt
∫ ∞

−∞

dω
π

K̃
(
ω ∓

2J2m
~

)
ω sinωt −Ω sin Ωt ∓ iΩ(cos Ωt − cosωt)

ω2 −Ω2 + O

(
1
N

)
. (D.7)

The required functions B(t), Θ(t) and D(t) are obtained by inserting (D.4) and (D.7) into (D.3). While the term of6270

order 1/N in B(t) provides a finite factor in P↑↓(m, t), the terms of order 1/N in Θ(t) and D(t) provide negligible6271

contributions. However that may be, it will be sufficient for our purpose to evaluate only the finite contribution to B(t)6272

and the large t approximations for Θ(t) and D(t).6273

D.3. The damping term B(t)6274

To find B(t), we simply set m = 0 in (D.3) and (D.7). Next we employ the expression (3.38) for K̃(ω) and take6275

advantage of the symmetry of the integrand with respect to ω, which allows us to keep only the symmetric part of6276

K̃(ω). This yields6277

dB
dt

=
4γΩ sin Ωt

~2

∫ ∞

−∞

dω
π

K̃(ω)
cos Ωt − cosωt

ω2 −Ω2 =
γΩ sin Ωt

2π

∫ ∞

−∞

dωω coth
~ω
2T

exp
(
−
|ω|

Γ

)
cos Ωt − cosωt

ω2 −Ω2 . (D.8)

where we discarded corrections of order 1/N. This entails the result for B(t) presented in Eq. (6.25) of the main text.6278

For t � 1/Γ, (D.8) reduces to dB/dt ∼ (γΓ2Ω2/2π)t3 and hence6279

B(t) ∼
γΓ2Ω2

8π
t4 =

γΓ2g2

2π~2 t4. (D.9)

The ω integral in Eq. (6.25) for B(t) can be easily carried out numerically and the result is plotted in Fig 6.1 for6280

typical values of the parameters. It is nevertheless instructive to carry out this integral explicitly. This calculation is6281

hindered by the non-analyticity of our Debye cutoff. However, since the result is not expected to depend significantly6282

on the shape of the cutoff (Γ is the largest frequency of the model), we may replace the exponential cutoff in (3.38) by6283

a quasi Lorentzian cutoff,6284

exp
(
−
|ω|

Γ

)
7→

4Γ̃4

4Γ̃4 + ω4
; K̃ (ω) 7→

~2ω

4(eβ~ω − 1)
4Γ̃4

4Γ̃4 + ω4
, (D.10)

where the factors 4 are introduced for later convenience. This expression ensures convergence while being analytic6285

with simple poles. The cutoff (D.10) provides for B(t) the same short time behavior as (D.9) if we make the connection6286

Γ̃ =

√
2
π

Γ. (D.11)
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In order to integrate the thus modified version of (D.8) over ω, we first split cosωt into 1
2 exp iωt + 1

2 exp−iωt and6287

then slightly rotate the integation contour so that ω passes below +Ω and above −Ω, instead of passing through these6288

poles. For each of the terms we can close the contour either in the upper or lower half-plane, such that it decays for6289

|ω| → ∞, and pick up the residues at the various poles. The first set of poles, arising from the denominator of (D.8),6290

consist of ±Ω; since they lie on the real ω-axis, they will produce a non-decaying long time behavior. The second set6291

of poles arise from the coth, as exhibited by the expansion6292

coth
~ω
2T

=

∞∑
n=−∞

2T
~(ω − iΩn)

, Ωn ≡
2πnT
~

, (D.12)

where the sum is meant as principal part for n → ±∞; the frequencies Ωn are known as Matsubara frequencies.6293

Thirdly, the cutoff (D.10) provides the four poles ±Γ̃ ± iΓ̃. We can also take advantage of the symmetry ω → −ω,6294

which associates pairwise complex conjugate residues. Altogether, we find6295

1
γΩ

dB
dt

= coth
~Ω

2T
Γ̃4

4Γ̃4 + Ω4
(1 − cos 2Ωt) +

T
~

∞∑
n=1

Ωn

Ω2
n + Ω2

4Γ̃4

4Γ̃4 + Ω4
n

[
sin 2Ωt − 2 exp(−Ωnt) sin Ωt

]
+

1
2
=

{
coth

(1 + i)~Γ̃

2T
Γ̃2

2Γ̃2 + iΩ2

[
sin 2Ωt − 2 exp[−(1 − i)Γ̃t] sin Ωt

]}
+ O

(
1
N

)
. (D.13)

Now B is easily obtained by integrating this from 0 to t,6296

B(t) =
γ

2
coth

g
T

Γ̃4

4Γ̃4 + Ω4
(2Ωt − sin 2Ωt)

+

∞∑
n=1

4γΓ̃4ΩnT
~(4Γ̃4 + Ω4

n)

[
sin2 Ωt

Ω2 + Ω2
n

+ 2Ω
(Ω cos Ωt + Ωn sin Ωt) exp(−Ωnt) −Ω

(Ω2 + Ω2
n)2

]
(D.14)

−
γΓ̃2

2
<

coth
(1 + i)~Γ̃

2T

 sin2 Ωt
Ω2 − 2iΓ̃2

+ 2Ω

(
Ω cos Ωt + (1 − i)Γ̃ sin Ωt

)
exp[−(1 − i)Γ̃t] −Ω

(Ω2 − 2iΓ̃2)2


 ,

where we made the residues at (±1 ± i)Γ̃ look as much as possible like the ones at Ωn.6297

With these exact results in hand, let us discuss the relative sizes of the various terms. The above complete formula6298

exhibits some contributions that become exponentially small for sufficiently large t. Such contributions are essential6299

to ensure the behavior (D.9) of B for t � 1/Γ̃, and also its behavior for t � ~/2πT , but can be neglected otherwise.6300

Moreover, we have ~Γ̃ � T and Γ̃ � Ω; hence, within exponentially small corrections, the third term of (D.13)6301

reduces, for t � 1/Γ̃, to −Ω2 sin(2Ωt)/8Γ̃2 and is therefore negligible compared to the first two terms. In the first6302

term of (D.13), the Debye cutoff is irrelevant, but it is needed in the second term to ensure convergence of the series.6303

Restoring our exponential cutoff, we can write this series as6304

1
2π

∞∑
n=1

n
n2 + a2 e−bn, a ≡

~Ω

2πT
� 1, b ≡

2πT
~Γ
� 1, (D.15)

which, within corrections of order a2, is equal to6305

1
2π

∞∑
n=1

1
n

e−bn = −
1

2π
ln

(
1 − e−b

)
∼

1
2π

ln
~Γ

2πT
. (D.16)

Altogether, returning to our original notations through use of (D.5), we find from the first two terms of (D.13), for6306

t � ~/2πT :6307
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τrecur

γ

dB
dt

=
π

4
coth

g
T

(
1 − cos

2πt
τrecur

)
+

1
2

ln
~Γ

2πT
sin

2πt
τrecur

. (D.17)

Likewise, the function B(t) itself behaves in this region as6308

B(t) =
γπ

4
coth

g
T

(
t

τrecur
−

1
2π

sin
2πt
τrecur

)
+
γ

4π
ln

~Γ

2πT

(
1 − cos

2πt
τrecur

)
−
γζ(3)
π3

g2

T 2 , (D.18)

where the last piece arises, in the considered approximation, from the last term of the sum in (D.15).6309

D.4. Approximations for Θ(t) and D(t)6310

We have just seen that the dominant contribution to B(t) in the region t � ~/2πT originates from the polesω = ±Ω6311

of the integrand of (D.8). Likewise, as we need only an estimate of Θ(t) and D(t), we will evaluate approximately6312

the integral in (D.7) by picking up only the contributions of these poles. As we did for B(t), we deform and close the6313

integration contour in the upper or in the lower half-plane, but we now disregard the singularities of K̃(ω ∓ 2J2m/~).6314

This approximation amounts to make the replacements6315

ω sinωt −Ω sin Ωt
ω2 −Ω2 7→

π

2
cos(Ωt)[δ(ω −Ω) + δ(ω + Ω)], (D.19)

Ω(cos Ωt − cosωt)
ω2 −Ω2 7→

π

2
sin(Ωt)[δ(ω −Ω) + δ(ω + Ω)], (D.20)

which as we have seen are justified for t � ~/2πT . As a result, we find the time-independent expressions for K̃±,6316

K̃± ≈
1
2

[K̃(Ω ∓ 2J2m) + K̃(−Ω ∓ 2J2m)]. (D.21)

We now return to our original notations by use of (D.5) for Ω and (D.6) for X, rewriting the dominant part of (D.3)6317

as6318

τrecur

γ

dA
dt

=
π

2~g

[
(1 − e2X)(1 + m)K̃− + (1 − e−2X)(1 − m)K̃+

]
. (D.22)

In order to generate Θ(t) and D(t) through the expansion (D.4) of A(m, t) in powers of m, we insert into (D.22) the6319

expansions6320

[
1 − e±2X

]
(1 ± m) ≈

[
1 − e±2iΩt

]
±

1 + e±2iΩt

 2
δ2

0

− 1
 m + 2e±2iΩt

 1
δ2

0

−
1
δ4

0

 m2, (D.23)

4
~

K̃± ≈ g coth
g
T
± J2m −

J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
m2. (D.24)

Gathering, in the resulting expansion of A(m, t), the terms in m, we find (for g � T )6321

τrecur

γ

dΘ

dt
= −

π

4

 2
δ2

0

− 1
 coth

g
T

+
J2

g

 sin
2πt
τrecur

∼ −
π

4

 2
δ2

0

− 1
 T

g
+

J2

g

 sin
2πt
τrecur

, (D.25)

which is integrated as6322
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Θ(t) ∼ −
γ

8g

 2
δ2

0

− 1
 T + J2

 [1 − cos
2πt
τrecur

]
. (D.26)

Likewise, the terms in m2 yield6323

τrecur

γ

dD
dt
∼
π

2

 J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
−

J2

g

 (1 − cos
2πt
τrecur

)
+
π

2

2 coth
g
T

 1
δ2

0

−
1
δ4

0

 − 2J2

gδ2
0

 cos
2πt
τrecur

.(D.27)

The first bracket simplifies for g � T into6324

J2
2

T 2 sinh2 g/T

(
coth

g
T
−

T
g

)
−

J2

g
∼

J2

g

( J2

3T
− 1

)
. (D.28)

We shall only need the values of D(t) at the recurrence times pτrecur. Integration of the factors cos 2πt/τrecur generates6325

sin 2πt/τrecur, which vanishes at these times. We have therefore the compact result6326

D(pτrecur) ' p × D(τrecur) = p
πγ

2
J2

g

( J2

3T
− 1

)
. (D.29)

E. Time dependence of the registration process6327

Time heals all wounds6328

Proverb6329

The location µ(t) of the peak of the distribution P(m, t) increases in time according to (7.30) where φ(m) is defined6330

by (7.25). We wish in § 7.2.3 and § 7.2.4 to obtain an algebraic approximation for µ(t) at all times. To this aim, we6331

will represent 1/v(µ) by its Mittag-Leffler expansion6332

γT
~v(m)

≡
1

φ(m)[1 − m coth φ(m)]
=

∑
i

mi

[(1 − m2
i )(dφ/dmi) − 1]φ(mi)

1
m − mi

, (E.1)

which sums over all real or complex values m = mi where v(m) = 0.6333

E.1. Registration for second-order transition of M6334

For q = 2, it is sufficient for our purpose to keep in the expansion (E.1) only the real poles mi. This truncation6335

does not affect the vicinity of the (stable or unstable) fixed points where the motion of µ(t) is slowest, and provides6336

elsewhere a good interpolation provided T/J is not too small. Three values mi occur here, namely −mB, m⇑ ' mF and6337

m⇓ ' −mF, with mB � mF, so that we find over the whole range 0 < µ < mF, through explicit integration of (7.30),6338

t
τreg

= ln
mB + µ

mB
+ a ln

m2
F

m2
F − µ

2
, (E.2)

where the coefficient a, given by6339

a =
T (J − T )

J[T − J(1 − m2
F)]
, (E.3)

decreases with temperature from a = 1 at T = 0 to a = 1
2 for T = J. For short times, such that µ � mF, we recover6340

from the first term of (E.2) the evolution (7.43) of µ(t). When µ approaches mF, the second term dominates, but as6341

long as mF −m is of order mB the time needed for µ to reach m is of order τreg ln(mF/mB). We define the cross-over by6342
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writing that the two logarithms of (E.2) are equal, which yields µ = mF −
1
2 mB. The time τ′reg during which µ(t) goes6343

from 0 to mF −
1
2 mB, termed the second characteristic registration time, is then given by (7.48), that is,6344

τ′reg = τreg(1 + a) ln
mF

mB
. (E.4)

When µ approaches mF in the regime mF − µ � mB, we can invert (E.2) as6345

µ(t) = mF

1 − 1
2

(
mF

mB

)1/a

exp
(
−

t
aτreg

) , (E.5)

which exhibits the final exponential relaxation. We can also invert this relation in the limiting cases T → J and T → 0.6346

If T lies close to the transition temperature, we have mF ∼
√

3(J − T )/J and a = 1
2 . Provided the coupling is weak so6347

that mB = g/(J − T ) � mF, we find6348

µ(t) =
mBmF

m2
B + m2

Fe−2t/τreg

[√
m2

B + (m2
F − m2

B)e−2t/τreg − mBmFe−2t/τreg

]
. (E.6)

This expression encompasses all three regimes of § 7.2.3, namely, µ ∼ mBt/τreg for t � τreg, µ running from mB to mF6349

for t between τreg and τ′reg, and6350

µ(t) ≈ mF

1 − m2
F

2m2
B

e−2t/τreg

 (E.7)

for t − τ′reg � τreg. In the low temperature regime (T � J, with mB ∼ g/J and a ∼ 1), we can again invert (E.2) as6351

µ (t) =
1

2mB


√

4m2
B

(
m2

F − m2
B

)
+

(
2m2

B − m2
Fe−t/τreg

)2
− m2

Fe−t/τreg

 , (E.8)

encompassing the same three regimes; for t − τ′reg � τreg, we now have6352

µ(t) ≈ mF

(
1 −

mF

2mB
e−t/τreg

)
. (E.9)

E.2. Registration for first-order transition of M6353

For J4 , 0, such as the q = 4 case with J2 = 0 and J4 = J, we need to account for the presence of the minimum of6354

v(m) at m = mc. To this aim, we still truncate the Mittag-Leffler expansion (E.1) of 1/v(m). However, we now retain6355

not only the real poles but also the two complex poles near mc which govern the minimum of v(m). These poles are6356

located at6357

mc ± iδmc, δm2
c =

mc(1 − m2
c)2

1 + 2m2
c

g − hc

T
∼ mc

(
g
T
−

2mc

3

)
. (E.10)

The real pole associated with the repulsive fixed point lies at −mB ∼ −2mc, and the ferromagnetic poles lie close to6358

±mF ∼ ±1. We have thus, at lowest order in T/J ' 3m2
c and in g/T ∼ 2mc/3, but with T/J sufficiently large so that6359

we can drop the other complex poles,6360

γT
~v(m)

=
mc −

1
2 (m − mc)

(m − mc)2 + δm2
c

+
1

3(m + 2mc)
+

2Tm
J(1 − m2)

. (E.11)

Hence the time-dependence of the peak µ(t) of P↑↑(m, t) is given through integration of (7.30) as6361

t
τreg

=
1
π

(
π

2
+ arctan

µ − mc

δmc

)
+
δmc

πmc

[
1
4

ln
m2

c

(µ − mc)2 + δm2
c

+
1
3

ln
µ + 2mc

2mc
+

T
J

ln
1

1 − µ2

]
, (E.12)

where we introduced the registration time6362
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τreg ≡
π~mc

γTδmc
=
π~
γT

√
mcT

g − hc
, (E.13)

with mc =
√

T/3J = 3hc/2T .6363

The initial evolution (7.50) is recovered from (E.12) for µ � mc and t � ~/γT . It matches the bottleneck stage in6364

which µ(t) varies slowly around the value mc on the time scale τreg. Then, the right-hand side of (E.12) is dominated6365

by its first term, so that the magnetization increases from mc − δmc to mc + δmc between the times t = τreg/4 and6366

t = 3τreg/4, according to:6367

µ(t) = mc − δmccotan
πt
τreg

. (E.14)

After µ passed the bottleneck, for µ − mc � δmc, (E.12) provides6368

t = τreg + τ1

(
−

mc

µ − mc
+

1
2

ln
mc

µ − mc
+

1
3

ln
µ + 2mc

2mc
+

T
J

ln
1

1 − µ2

)
, (E.15)

which is nearly equal to τreg within corrections of order τ1 = ~/γT , as long as µ is not very close to 1. The final6369

exponential relaxation takes place on the still shorter scale ~/γJ.6370

F. Effects of bifurcations6371

Of je door de hond of de kat gebeten wordt, het blijft om het even158
6372

Dutch proverb6373

In subsection 7.3 we consider situations in which Suzuki’s slowing down is present, namely the preparation of6374

the initial metastable state for q = 2 and the possibility of false registrations. We gather here some derivations.6375

The Green’s function G(m,m′, t − t′) associated to the equation (7.1) for PM(m, t) will be obtained from the6376

backward equation6377

∂

∂t′
G(m,m′, t − t′) + v(m′)

∂

∂m′
G(m,m′, t − t′) +

1
N

[w(m′)
∂2

∂m′2
G(m,m′, t − t′)] = −δ(m − m′)δ(t − t′), (F.1)

where t′ runs down from t + 0 to 0. Introducing the time scale τreg defined by (7.44) and using the expression (7.42)6378

for v(m′) for small m′ together with the related w(m′) ≈ γgt/~, we have to solve the equation6379 [
τreg

∂

∂t′
+ (mB + m′)

∂

∂m′
+

1
N

T
J − T

∂2

∂m′2

]
G(m,m′, t − t′) = 0, (F.2)

with the boundary condition G(m,m′, 0) = δ(m − m′). Its solution in terms of m′ has the Gaussian form6380

G(m,m′, t) = A(m, t)
√

N
2πD(m, t)

exp
{
−

N[m′ − µ′(m, t)]2

2D(m, t)

}
, (F.3)

where the coefficients µ′, D and A should be found by insertion into (F.2).6381

As in § 7.2.3, the evolution of PM(m, t) takes place in three stages: (i) widening of the initial distribution, which6382

here takes place over the bifurcation −mB; (ii) drift on both sides of −mB towards +mF and −mF; (iii) narrowing around6383

+mF and −mF of the two final peaks, which evolve separately towards equilibrium. We are interested here only in the6384

first two stages. During the first stage, the relevant values of m lie in the region where the approximation (7.59) holds.6385

The functions of m and t: µ′, D and A, satisfy according to (F.2) the equations6386

τreg
∂µ′

∂t
= −mB − µ

′,
1
2
τreg

∂D
∂t

=
T

J − T
− D, τreg

∂A
∂t

= −A, (F.4)

158Whether bitten by the dog or the cat, the result is equal
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and the boundary condition G(m,m′, 0) = δ(m − m′) for t′ = t − 0 yields6387

µ′ = −mB + (m + mB)e−t/τreg , D =
T

J − T
(1 − e−t/τreg ), A = e−t/τreg . (F.5)

As function of m, the probability6388

PM(m, t) =

∫
dm′G(m,m′, t)PM(m′, 0) (F.6)

given by (F.3), (F.5) involves fluctuations which increase exponentially as exp(t/τreg).6389

In the second stage, the time is sufficiently large so that PM(m, t) extends over regions of m where the linear6390

approximation (7.59) for v(m) fails; we must account for the decrease of |v(m)|, which vanishes at m = ±mF . We6391

therefore cannot comply directly with the boundary condition for G(m,m′, t − t′) at t′ = t since it requires m′ to be6392

large as m. However, during this second stage PM(m, t) is not peaked, so that diffusion is negligible compared to drift.6393

The corresponding Green’s function, with its two times t and t′ taken during this stage, is given according to (7.32) by6394

G(m,m′, t − t′) =
1

v(m)
δ

(
t − t′ −

∫ m

m′

dm′′

v(m′′)

)
. (F.7)

We can now match the final time of (F.3), (F.5) with the initial time of (F.7), using the convolution law for Green’s6395

functions. This yields an approximation for G(m,m′, t) valid up to the final equilibration stage. We therefore define6396

the function µ′(m, t) by the equation6397

t =

∫ m

µ′(m,t)

dm′′

v(m′′)
, (F.8)

of which (F.5) is the approximation for small m and µ′. For m > −mB, we have m > µ′ > −mB and v (m′′) > 0; for6398

m < −mB we have m < µ′ < −mB and v (m′′) < 0. We also note that the convolution replaces A = e−t/τreg by6399

A(m, t) =
v[µ′(m, t)]

v(m)
=
∂µ′(m, t)
∂m

. (F.9)

Altogether the Green’s function (F.3) reads6400

G(m,m′, t) =
v(µ′)
v(m)

√
N(J − T )

2πT (1 − e−2t/τreg )
exp

[
−

N(J − T )(m′ − µ′)2

2T (1 − e−2t/τreg )

]
, (F.10)

where µ′ = µ′(m, t) is found through (F.8). The resulting distribution function PM(m, t), obtained from (F.6), (F.10)6401

and PM(m, 0) ∝ exp[−N(m − µ0)2/2δ2
0], is expressed by (F.10) or, in the main text, by (7.61) with (7.63) for δ1(t).6402

Notice that here we allowed for a finite value µ0 of the average magnetization in the initial state.6403

We have studied in § 7.3.2 the evolution of PM(m, t) for g = 0 and for an unbiased initial state. For mB =6404

g/(J − T ) , 0 and a non-vanishing expectation value of µ0 of m in the initial state, the dynamics of PM(m, t) is6405

explicitly found from (F.10) by noting that mB � mF; the expression (E.1) for v(m) thus reduces to6406

1
τregv(m)

=
1

m + mB
+

2am
m2

F − m2
, (F.11)

with τreg = ~/γ(J − T ) and a defined by (E.3). Hence, the relation (F.8) between µ′, m and t reads6407

t
τreg

= ln
m + mB

µ′ + mB
+ a ln

m2
F − µ

′2

m2
F − m2

. (F.12)

For large N, the quantities µ′, m0 and mB are small as 1/
√

N, except at the very large times when PM(m, t) is concen-6408

trated near +mF and −mF. We can thus write (7.60) as6409
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PM(m, t) =
1
√
π

∂ξ

∂m
e−(ξ−ξ0)2

, (F.13)

where we introduced the functions6410

ξ(m, t) =
√

3a
m + mB

mF

 m2
F

m2
F − m2

a
δ1

δ1(t)
e−(t−τflat)/τreg , (F.14)

6411

ξ0(t) ≡

√
N
2

mB + µ0

δ1(t)
. (F.15)

The characteristic time τflat is the same as (7.69), it is large as 1
2 ln N. The function δ1(t) and the parameter δ1 are6412

defined in (7.63)6413

The expression (F.13) encompasses (7.64), (7.70), (7.74) and (7.79), which were established in the special case6414

where the distribution is symmetric (mB = µ0 = 0) and/or when m is small as 1/
√

N. For t � τreg we reach Suzuki’s6415

scaling regime characterized by the scaling parameter (F.14), in which δ1(t) reduces to the constant δ1 and in which6416

mB can be disregarded. The asymmetry of PM(m, t) then arises only from the constant ξ0. Even in the presence of this6417

assymetry, the time t = τflat still corresponds to a flat PM(m, t), in the sense that the curvature of PM(m, τflat) at m = 06418

vanishes.6419

G. Density operators for beginners6420

Begin at the beginning6421

and go on till you come to the end:6422

then stop6423

Lewis Carroll, Alice’s Adventures in Wonderland6424

In elementary courses of quantum mechanics, a state is usually represented by a vector |ψ〉 in Hilbert space (or a6425

ket, or a wave function). Such a definition is too restrictive. On the one hand, as was stressed by Landau [85, 372],6426

if the considered system is not isolated and presents quantum correlations with another system, its properties cannot6427

be described by means of a state vector. On the other hand, as was stressed by von Neumann [4], an incomplete6428

preparation does not allow us to assign a unique state vector to the system; various state vectors are possible, with some6429

probabilities, and the formalism of quantum statistical mechanics is needed. Both of these circumstances occur in a6430

measurement process: The tested system is correlated to the apparatus, and the apparatus is macroscopic. The opinion,6431

too often put forward, that the (mixed) post-measurement state cannot be derived from the Schrödinger equation,6432

originates from the will to work in the restricted context of pure states. This is why we should consider, to understand6433

quantum measurement processes, the realistic case of a mixed initial state for the apparatus, and subsequently study6434

the time-dependent mixed state for the tested system and the apparatus.6435

The more general formulation of quantum mechanics that is needed requires the use of density operators, and is6436

presented in section 10 in the context of the statistical interpretation of quantum mechanics. We introduce here, for6437

teaching purposes, an elementary introduction to § 10.1.4. In quantum (statistical) mechanics, a state is represented by6438

a density operator D̂ or, in a basis |i〉 of the Hilbert space, by a density matrix with elements 〈i|D̂| j〉. The expectation6439

value in this state of an observable Ô (itself represented on the basis |i〉 by the matrix 〈i|Ô| j〉) is equal to6440

〈Ô〉 = tr D̂Ô =
∑

i j

〈i|D̂| j〉〈 j|Ô|i〉. (G.1)

This concept encompasses as a special case that of state vector, as the expectation value of Ô in the state |ψ〉,6441
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〈Ô〉 = 〈ψ|Ô|ψ〉 =
∑

i j

〈ψ| j〉〈 j|Ô|i〉〈i|ψ〉, (G.2)

is implemented by associating with |ψ〉 the density operator D̂ = |ψ〉〈ψ| or the density matrix 〈i|D̂| j〉 = 〈i|ψ〉〈ψ| j〉,6442

referred to as a “pure state” in this context.6443

Density operators have several characteristic properties. (i) They are Hermitean, D̂ = D̂†, (i. e., 〈 j|D̂|i〉 =6444

〈i|D̂| j〉∗), implying that the expectation value (G1) of a Hermitean observable is real. (ii) They are normalized,6445

tr D̂ = 1, meaning that the expectation value of the unit operator is 1. (iii) They are non-negative, 〈φ|D̂|φ〉 ≥ 0 ∀ |φ〉,6446

meaning that the variance 〈Ô2〉 − 〈Ô〉2 of any Hermitean observable Ô is non-negative. A density operator can be6447

diagonalized; its eigenvalues are real, non negative, and sum up to 1. For a pure state D̂ = |ψ〉〈ψ|, all eigenvalues6448

vanish but one, equal to 1.6449

In the Schrödinger picture, the evolution of the time-dependent density operator D̂(t) is governed by the Hamilto-6450

nian H of the system if it is isolated. The Liouville–von Neumann equation of motion,6451

i~
dD̂(t)

dt
= [Ĥ, D̂(t)], (G.3)

generalizes the Schrödinger equation i~d|ψ〉/dt = Ĥ|ψ〉, or, in the position basis, i~dψ(x)/dt = Ĥψ(x), which governs6452

the motion of pure states. The evolution of D̂(t) is unitary; it conserves its eigenvalues.6453

In quantum statistical mechanics, the von Neumann entropy6454

S (D̂) = −trD̂ ln D̂ (G.4)

is associated with D̂. It characterizes the amount of information about the system that is missing when it is described6455

by D̂, the origin of values of S being chosen as S = 0 for pure states. If S (D̂) , 0, D̂ can be decomposed in an6456

infinite number of ways into a sum of projections onto pure states (§ 10.2.3).6457

The concept of density operator allows us to define the state of a subsystem, which is not feasible in the context of6458

state vectors or pure states. Consider a compound system S1 + S2, described in the Hilbert spaceH1⊗H2 by a density6459

operator D̂. This state is represented, in the basis |i1, i2〉 of H1 ⊗ H2, by the density matrix 〈i1, i2|D̂| j1, j2〉. Suppose6460

we wish to describe the subsystem S1 alone, that is, to evaluate the expectation values of the observables O1 pertaining6461

only to the Hilbert space H1 and thus represented by matrices 〈i1|O1| j1〉 in H1, or 〈i1|O1| j1〉δi2, j2 in H1 ⊗ H2. These6462

expectation values are given by6463

〈Ô1〉 = tr1D̂1Ô1 =
∑
i1, j1

〈i1|D̂1| j1〉〈 j1|Ô1|i1〉, (G.5)

where the matrix 〈i1|D̂1| j1〉 in the Hilbert spaceH1 is defined by6464

〈i1|D̂1| j1〉 =
∑

i2

〈i1, i2|D̂| j1, i2〉. (G.6)

The partial trace D̂1 = tr2D̂ on the spaceH2 is therefore, according to (G1), the density operator of the subsystem S1.6465

If the subsystems S1 and S2 interact, the evolution of D̂1 should in principle be determined by solving (G3) for the the6466

density operator D̂ of the compound system, then by taking the partial trace at the final time. The elimination of the6467

bath (subsection 4.1) followed this procedure. The evolution of a subsystem is in general not unitary, because it is not6468

an isolated system.6469

The formalism of density operators is more flexible than that of pure states: It affords the possibility not only6470

of changing the basis in the Hilbert space, but also of performing linear transformations in the vector space of ob-6471

servables, which mix the left and right indices of observables 〈i|Ô| j〉 and of density matrices 〈i|D̂| j〉. The resulting6472
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Liouville representations of quantum mechanics [75, 300, 301] are useful in many circumstances. They include for6473

instance the Wigner representation, suited to study the semi-classical limit, and the polarization representation for a6474

spin, currently used by experimentalists, in which any operator is represented by its coordinates on the basis (3.1) of6475

the space of operators; in the present work, the parametrization of the state D̂ of S + M by Pdis
M (m) and Cdis

a (m) enters6476

this framework (Eqs. (3.18), (3.27), (3.29), (3.30)).6477

H. Evolution generated by random matrices from the factorized ensemble6478

For they have sown the wind, and they shall reap the whirlwind6479

Hosea 8.76480

The purpose of this Appendix is to work out Eq. (11.14) of the main text, where the average is taken over an6481

ensemble of random Hamiltonians with the eigenvector distribution factorized from the eigenvalue distribution. The6482

eigenvectors are then distributed with the uniform (Haar) measure, while we are free to choose the eigenvalue distri-6483

bution (e.g. from some plausible physical arguments). The case where the random matrix elements are Gaussian and6484

distributed identically belongs to this class [256]. For simplicity we shall deal here with the microcanonical relaxation6485

of one set of states. The extension to two sets (the case discussed in the main text) is straightforward.6486

We thus need to determine the average evolution [inside this Appendix we take ~ = 1]6487

Û⇑ρ̂Û†
⇑

= e−itV̂⇑ ρ̂ eitV̂⇑ , (H.1)

where V̂⇑ is a random matrix generated according to the above ensemble, and where ρ̂ is an initial density matrix; see6488

Eq. (11.14) of the main text in this context. To calculate (H.1) we introduce6489

Û⇑ρ̂Û†
⇑

=

G∑
α=1

〈ψα|ρ̂|ψα〉|ψα〉〈ψα| +

G∑
α,β

〈ψα|ρ̂|ψβ〉 |ψα〉〈ψβ| eit(Eβ−Eα), (H.2)

where6490

Û⇑(t) =

G∑
α=1

e−itEα |ψα〉〈ψα| (H.3)

is the eigenresolution of Û⇑(t).6491

We now average (H.2) over the states |ψα〉 assuming that they are distributed uniformly (respecting the constraints6492

of ortogonality and normalization). This averaging will be denoted by an overline,6493

Û⇑ρ̂Û†
⇑

= G〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1| + 〈ψ1|ρ̂|ψ2〉 |ψ1〉〈ψ2|

G∑
α,β

eit(Eβ−Eα). (H.4)

It suffices to calculate 〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1|, since 〈ψ1|ρ̂|ψ2〉 |ψ1〉〈ψ2| will be deduced from putting t = 0 in (H.4). The6494

calculation is straightforward:6495

〈ψ1|ρ̂|ψ1〉 |ψ1〉〈ψ1| = (c40 − c22)ρ̂ + c221̂ (H.5)

where6496

c40 =

∫ ∞
0

∏G
α=1 (xαdxα) x4

1 δ
[∑

α x2
α − 1

]∫ ∞
0

∏G
α=1 (xαdxα) δ

[∑
α x2

α − 1
] , c22 =

∫ ∞
0

∏G
α=1 (xαdxα) x2

1 x2
2 δ

[∑
α x2

α − 1
]∫ ∞

0

∏G
α=1 (xαdxα) δ

[∑
α x2

α − 1
] . (H.6)

The integration variables in (H.6) refer to random components of a normalized vector. Expectedly, (H.5) is a linear6497

combination of ρ̂ and the unit matrix, because only this matrix is invariant with respect to all unitary operators.6498
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The calculation of (H.6) brings6499

c40 = 2c22, c22 =
1

G(G + 1)
. (H.7)

Using (H.7, H.5) in (H.2) we obtain:6500

Û⇑ρ̂Û†
⇑

=
1

(G + 1)(G − 1)
(G1̂ − ρ̂) +

1
(G + 1)(G − 1)

(
ρ̂ −

1̂
G

) ∣∣∣∣∣∣∣
G∑
α=1

eitEα

∣∣∣∣∣∣∣
2

. (H.8)

For sufficiently large times the sum goes to zero. Neglecting terms of O(ρ̂G−2) we obtain from (H.8) that6501

Û⇑ρ̂Û†
⇑
→

1̂
G
. (H.9)

The considered arbitrary initial state ρ̂ thus tends to the microcanonical distribution under the sole condition G � 1.6502

The relaxation in (H.9) will be exponential, if we assume that the eigenvalues in (H.8) are Gaussian. Indeed,6503

assuming that they are independently distributed with zero average and dispersion ∆ we get in the limit G � 1:6504 ∑G
α=1 exp(itEα) ∝ exp(−t2∆2). Obviously, the same relaxation scenario (under the stated assumptions) will hold for6505

the off-diagonal components; see Eq. (11.15) of the main text.6506

The reason of the non-exponential relaxation for the Gaussian ensemble is that all the non-diagonal elements of6507

the random matrix are taken to be identically distributed. This makes the distribution of the eigenvalues bounded (the6508

semi-circle law). If the elements closer to the diagonal are weighted stronger, the distribution of the eigenvalues will6509

be closer to the Gaussian. The above factorized ensemble models this situation.6510

I. Collisional relaxation of subensembles and random matrices6511

Collisions have a relaxing effect6512

Anonymous6513

The purpose of this Appendix is to show that the evolution produced by a random Hamiltonian—which is normally6514

regarded as a description of a closed, complex quantum system—may be generated within an open-system dynamics.6515

This enlarges the scope and applicability of the random matrix approach.6516

I.1. General discussion6517

The ideas of collisional relaxation are well-known in the context of the classical Boltzmann equation. It is possible6518

to extend the main ideas of the linearized Boltzmann equation (independent collisions with a system in equilibrium)6519

to the quantum domain [373, 374, 375]. We shall first describe this scenario in general terms and then apply it to the6520

specific situation described in § 11.2.5.6521

Each collision is an interaction between the target quantum system T and a particle of the bath B. The interaction6522

lasts a finite but short amount of time. Then another collision comes, etc. The bath particles are assumed to be6523

independent of one another and thermalized. Each collision is generated by the Hamiltonian6524

ĤT+B = ĤT + ĤB + ĤI, (I.1)

where ĤT and ĤB are the Hamiltonians of T and B, respectively, and where ĤI is the interaction Hamiltonian. Each6525

collision is spontaneous and obeys the strict energy conservation:6526

[ĤI, ĤB + ĤT] = 0. (I.2)

This condition guarantees that there are no energy costs for switching the collisional interaction ĤI on and off.6527
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The initial density matrix of B is assumed to be Gibbsian (this assumption can be relaxed)6528

ρ̂B =
1

ZB
exp[−βĤB] (I.3)

with Hamiltonian ĤB and temperature 1/β = T > 0. The target system starts in an arbitrary initial state ρT and has6529

Hamiltonian ĤT. The initial state of T + B is ρ̂T+B = ρ̂T ⊗ ρ̂B. The interaction between them is realized via a unitary6530

operator V̂, so that the final state after the first collision is6531

ρ̂′T+B = V̂ ρ̂T+BV̂
†, ρ̂′T = trB ρ̂

′
T+B. (I.4)

For the second collision, the bath has lost memory of the first collision so that the new initial state of T + B is ρ̂′T ⊗ ρ̂B,6532

and so on.6533

Let the energy levels of T involved in the interaction with B be degenerate: ĤT ∝ 1̂. Using (I.1–I.4) and going to6534

the eigenresolution of ρB we see that the evolution of T in this case can be described as a mixture of unitary processes6535

(note that in Ûk below, k is an index and not the power exponent)6536

ρ̂′T =
∑

k

λkÛk ρ̂T Ûk †, (I.5)

Ûk = exp
(
−iδ〈k|ĤI|k〉

)
, ÛkÛk † = 1̂, (I.6)

where {λk} and {|k〉} are the eigenvalues and eigenvectors, respectively, of ρ̂B and δ is the interaction time. Eq. (I.5)6537

holds for all subsequent collisions; now k in (I.5) is a composite index. Within this Appendix we put ~ = 1.6538

Note that the mixture of unitary processes increases the von Neumann entropy S vN[ρ̂T] = −tr[ρ̂T ln ρ̂T] of T; this6539

is the concavity feature of S vN. Hence after sufficiently many collsiions T will relax to the microcanonic density6540

matrix ρ̂T ∝ 1̂ that has the largest entropy possible.6541

The same process (I.5) can be generated assuming the Hamiltonian 〈k|ĤI|k〉 to be random, and then averaging over6542

it. This is closely related to § 11.2.4 of the main text, where we postulated the random Hamiltonian VM = 〈k|ĤI|k〉 as6543

a consequence of complex interactions. For the purpose of § 11.2.4, T amounts to S + M (system + magnet) and the6544

complex interactions are supposed to take place in M. In contrast, the averaging in (I.5) arises due to tracing the bath6545

out. If the Ûk mutually commute, (I.5) means averaging over varying phases, i.e. it basically represents a (partial)6546

dephasing in the common eigenbasis of Ûk.6547

We shall apply the collisional relaxation to the target system T = S + M after the measurement, so without the6548

S-M coupling (g = 0). We can directly apply mixtures of unitary processes for describing the relaxation; see (I.5).6549

Following to the discussion in § 11.2.4 of the main text [see the discussion before (11.12)], we assume that each6550

unitary operator Ûk in the mixture (I.5) will have the following block-diagonal form:6551

Ûk = Π̂⇑Ûk
⇑
Π̂⇑ + Π̂⇓Ûk

⇓
Π̂⇓, (I.7)

where in view of (11.10) of the main text we defined the following projectors6552

Π̂⇑ =
∑
η

|mF , η〉〈mF , η|, Π̂⇓ =
∑
η

|−mF , η〉〈−mF , η|. (I.8)

Eq. (I.7) is now to be applied to (11.9) of the main text, which yields6553

Ûk |Ψ〉〈Ψ|Ûk † =
∑
ηη′

U↑ηU∗↑η′ | ↑〉〈↑ | ⊗ Ûk
⇑
|mF , η〉〈mF , η

′|Ûk †
⇑

+
∑
ηη′

U↓ηU∗↓η′ | ↓〉〈↓ | ⊗ Ûk
⇓
|−mF , η〉〈−mF , η

′|Ûk †
⇓

+

∑
ηη′

U↑ηU∗↓η′ | ↑〉〈↓ | ⊗ Ûk
⇑
|mF , η〉〈−mF , η

′|Ûk †
⇓

+ h.c.

 , (I.9)

where h.c. means the hermitean conjugate of the last term.6554
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I.2. Gaussian random matrix ensemble: characteristic time scale within the collisional relaxation scenario6555

As we saw in the main text (§ 11.2.4), the relaxation generated by the Gaussian ensemble of random Hamiltonians6556

(where the elements of the random matrix Hamiltonian are identically distributed Gaussian random variables) is6557

not exponential. From the viewpoint of the collisional relaxation, the averaging over a random matrix ensemble6558

corresponds to a single collision. We now show that taking into account many short collisions can produce exponential6559

relaxation.6560

Our technical task is to work out Eq. (11.14) of the main text for multiple collisions. We introduce a shorthand6561

ρ̂(0) = |mF , η〉〈mF , η| and recall that within this Appendix ~ = 1. Following the assumptions we made in § 11.2.46562

of the main text [see Eq. (11.12)] we write Û⇑,⇓ = e−itV̂⇑,⇓ , where V̂⇑ and V̂⇓ are independent random matrices: the6563

elements V⇑, ηη′ of V̂⇑ in the basis |mF , η〉 (and of V̂⇓ in |−mF , η〉) are statistically independent, identically distributed6564

random quantities with zero average and variance6565

V⇑, η1η2 V⇑, η3η4 = V⇓, η1η2 V⇓, η3η4 =
∆2

4G
δη1η4δη2η3 . (I.10)

Note that, for the Gaussian unitary ensemble characterized by the weight (11.12) for Hermitean matrices, the real and6566

imaginary parts of the off-diagonal elements of V̂⇑ (V̂⇓) are statistically independent, and that (I.10) holds for both6567

diagonal and off-diagonal elements.6568

We shall now assume that the duration δ of each collision is small and work out the post-collision state Û⇑ρ̂(t)U†
⇑

=6569

e−iδV̂⇑ ρ̂(t)eiδV̂⇑ :6570

e−iδV̂⇑ ρ̂(t)eiδV̂⇑ = ρ̂(t) − iδ[V̂⇑, ρ̂] −
δ2

2

{
V̂⇑ρ̂(t) + ρ̂(t)V̂⇑ − 2V̂⇑ρ̂(t)V̂⇑

}
+ O(δ3). (I.11)

Averaging with help of (I.10) produces6571

V̂⇑ρ̂ = 0, V̂2
⇑
ρ̂ = ρ̂V̂2

⇑
=

1
4

∆2ρ̂, V̂⇑ρ̂V̂⇑ =
∆2

4G
tr(ρ̂)1̂. (I.12)

This brings6572

ρ̂(t + δ) = ρ̂(t) −
1
4
δ2∆2

[
ρ̂(t) −

1̂
G

]
+ O[δ4∆4]. (I.13)

If the factor O[δ4∆4] in (I.13) is neglected, i.e. if6573

δ2∆2 � 1, (I.14)

(I.13) can be extended to a recurrent relation for all subsequent collisions:6574

ρ̂(nδ) = ρ̂((n − 1)δ) −
1
4
δ2∆2

[
ρ̂((n − 1)δ) −

1̂
G

]
, (I.15)

where n = 1, 2, . . . is the number of collisions. Eq. (I.15) is solved as6575

ρ̂(nδ) = (1 −
1
4
δ2∆2)nρ̂(0) +

1̂
G

[
1 − (1 −

1
4
δ2∆2)n

]
. (I.16)

It is seen from (I.16) that the relaxation time of ρ̂(nδ)→ 1̂/G is6576

−
δ

ln
(
1 − 1

4δ
2∆2

) . (I.17)

We now want to satisfy several conditions: (i) the magnitude
√

V̂2
⇑

= ∆/2 of the random Hamiltonian has to be6577

much smaller than N, because the random Hamiltonian has to be thermodynamically negligible. (ii) The relaxation6578

time (I.17) has to be very short for a large (but finite) N. (iii) Condition (I.14) has to hold.6579
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All these conditions can be easily satisfied simultaneously by taking, e.g., ∆ ∝ Nγ and δ ∝ N−χ, where6580

2γ > χ > γ, γ < 1. (I.18)

Now the relaxation time will be ∝ Nχ−2γ � 1, while (I.14) will hold, because N2(γ−χ) � 1.6581

The same derivation applies to non-diagonal elements Û⇑|mF , η〉〈−mF , η
′|Û†
⇓

= e−iδV̂⇑ |mF , η〉〈−mF , η
′|eiδV̂⇓ in (I.9).6582

Instead of (I.16) we get6583

ρ̂(nδ) = (1 −
1
4
δ2∆2)ρ̂((n − 1)δ), ρ̂(0) = |mF , η〉〈−mF , η

′|, (I.19)

with the same form of the characteristic time as for the exponential relaxation ρ̂(nδ)→ 0 for n→ ∞.6584
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[34] F. Laloë, Am. J. Phys. 69, 655-701 (2001).6625
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