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this book (finding errors, suggesting ideas, and informing me about the
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helpful correspondence and for locating our beautiful apartment, to

J-S. Bell, S. Buss, and N. Gisin for stimulating conversations, and to
J.-C. Zambrini for making our stay in Geneva extremely enjoyable both
scientifically and personally.
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viii PREFACE

The thesis of this investigation is that perhaps quantum fluctuations
are real, and have physical causes. ‘

No physical system of finitely many degrees of freedom is truly
isolated; it is always in interaction with a background field. Consider a

SyStem w lth Lagrangian
2 mi ]p p ip ‘

The inverse m!) of the mass teasor m;; is a symmetric positive definite

contravariant tensor. So is the diffusion tensor o', given by
1) EdéidEd = oE@)dt ,

of a diffusion process &, where E, denotes the conditional expectation
given the configuration &(t) at time t. We may set ol proportional to
miJ , but dimensional considerations require the proportionality constant
to have the dimensions of action. The background field hypothesis is
that interaction with the background field causes the system to undergo a
diffusion process with ol = Kmij satisfying a variational principle
SE[Ldt =0.

The paths of a diffusion process are nondifferentiable. This can be
guessed from (1), which shows that dfi is of order y/dt. This means
that the kinematics of diffusion is very different from deterministic kine-
matics. What is meant by velocity and acceleration? How are tensors
transported along paths? What is meant by an action integral involving
the square of the velocity? How can one construct a diffusion process
from an infinitesimal description of it? These questions are discussed in
Chapter I. Next we take up stochastic quantization, basing it on a varia-
tional principle, and derive the Schridinger equation. Then familiar topics
from quantum mechanics — interference, momentum, bound states, statistics,
spin —are discussed. Following this we investigate the physical interpre-
tation of the theory, including problems of measurement and nonlocality.

The notes conclude with a brief discussion of stochastic field theory.



Chapter I
KINEMATICS OF DIFFUSION

This chapter is long, and much of the material in it is well known. But
some readers may be familiar with differential geometry but not measures
on path space, or vice versa, so I have included a lot of elementary
material for reference. '

Most of the differential geometric material is physically relevant only
to the discussion of spin, and it may be omitted by the reader who is
willing to accept the result that one obtains the correct equation of motion
even on a curved manifold.

The main exposition of this chapter begins in §5 where I attempt to
construct a stochastic calculus with a minimum of technicalities. This is
done at the cost of a loss of generality and elegance, and for a better
approach the reader is referred to the French and Japanese schools of

probability theory, e.g. [4], [32], [36], [45].

§1. Differentiable Manifolds

The first two sections of this chapter are a review of deterministic
kinematics.

The configuration space of a mechanical system is a differentiable
manifold M. If the system has n degrees of freedom, then M is an
n-dimensional manifold. An n-dimensional manifold is specified as
follows. It is a pair consisting of a set M and a collection U, called
an atlas, of charts. A chart is a pair (U,(I)U) consisting of a subset U
of M, called a coordinate neighborhood, and a bijective mapping @
from U to an open subset of R™. The components ql, -, q" of by

are called local coordinates. If U’ is also a coordinate neighborhood,

3



4 1. DIFFERENTIABLE MANIFOLDS

then we have two systems of local coordinates, ql, -+, q" and q1 Lo gt

on UNU’ (It is convenient to use different index sets 1,-..,n and
1%,--.,n” for different local coordinates.) We require that the mapping
Do @{Jl be C™. Its matrix of partial derivatives is denoted by
aqi,/&qi . We give M a topology by defining a subset G of M to be
open in case each (DU(G NU) is open. We also require that M be a
Hausdorff space; that is, for any two distinct points x, and x, in M
there are disjoint open sets G, and G, containing them. Finally, we
require that the coordinate neighborhoods cover M, and that M be
connected.

For example, R" is a manifold if we take the atlas consisting of a
single chart: R" and the identity mapping. If n = 3N, this is the con-
figuration space of N spinless particles in 3-space.

Let M and N be differentiable manifolds. We say that ®:M > N is
C™, or smooth, in case each Q)Vo ®o (I)Bl is C™ (where U isa
coordinate neighborhood in M and V is a coordinate neighborhood in N ).
If ® is bijective and ®~! is also smooth, then @ is called a diffeomor-
phismof M onto N, and M and N are diffeomorphic in case there
exists such a ®. Diffeomorphic manifolds may be regarded as being
intrinsically the same.

The configuration of a mechanical system may change with time. Let
fl and 52 be two smooth paths in M starting at the same point x, so
that §1(0) = 52(0) =x. Let ql, ... q" be local coordinates at x. We
say that fl and 52 are tangent to each other in case §1i(t)~fzi(t) =o(t).
(We use the notation fi(t) = qi(f(t)) .) This happens if and only if éli(O) =
élzi(O), where the dot denotes differentiation with respect to t. This
condition is independent of the choice of local coordinates, for if qi’ are

also local coordinétes at x, then

.,
RO 5‘76;«»,



1. DIFFERENTIABLE MANIFOLDS 5

and similarly for -{:2. (The summation convention is used: any index
occurring twice, once as an upper index and once as a lower index, is
summed.) This allows us to give an intrinsic definition of a tangent vector:
a tangent vector at x is an equivalence class of smooth paths starting at
x and tangent to each other. In local coordinates, a tangent vector is
given by an n-tuple of components v , and under a change of local

coordinates they transform according to

L it
1:@_‘,1.

v -
aqt

The velocity vector of a smooth path £ starting at x is its own
equivalence class, so that in local coordinates it has components f'i(O).
The set of all tangent vectors at x forms an n-dimensional vector
space, the tangent space T,M. The set of all tangent vectors forms the

tangent bundle TM. A point in TM is a pair (x,v) where x ¢M and
v e T,M. The mapping 7:TM »M given by (x,v) ~x is called the pro-
jectionof TM onto M. The tangent bundle is a differentiable manifold
in a natural way: the coordinate neighborhoods are the U , where U
is a coordinate neighborhood in M, with local coordinates ql, gt
vl, ---,v™. The tangent bundle is the velocity phase space of the
mechanical system with configuration space M. A state of the system is
a point in TM, and a dynamical variable is a function on TM x R, where
R is the time axis.

A vector field on a manifold M is an assignment x + X(x) of a tangent
vector X(x) at x toeach point x of M; thatis, x:M »TM and
nX(x) =x for all x in M. A scalaris a function f:M > R. The smooth

vector fields act on the smooth scalars as follows:

Xf(x) = X)) 9 f .
oq*



6 1. DIFFERENTIABLE MANIFOLDS

1 ., i’ . 179 j :
Since —a—,:gg—/—a—l, X(x)! :-aq—,X(x)l, and iq.—a—q—.,:ﬁg, this is
dq'  dg' oq " %' gqt
independent of the choice of local coordinates. (If the path & is in the

equivalence class X(x), then Xf(x) :dit f(E() -0 2 In other words,

vector fields may be identified with first order partial differential opera-
tors without zero-order part, acting on scalars.

A smooth vector field X on a manifold M gives rise to a unique local
flow. For each point x in M there is a smooth path t + &(t), defined
at least for small values of |t|, with &(0) = x, such that the velocity

vector of &(t) is X(£(t)); in local coordinates, %E fi(t) = Xi(f(t)). (In

kinematics we are usually interested in flows on velocity phase space,
but since TM is itself a manifold this case is included.) This is a
familiar elementary theorem, but it is the fundamental fact about kine-
matics and the proof that the flow is smooth is difficult unless it is
approached in the right way, so I will present it in full, to serve as a
model for the more complicated case of diffusion processes.

The problem is a local one, so we work on R". On R", we may
identify a vector field with a mapping X:R™ > R®. For simplicity of
formulation, we modify X outside the neighborhood in which we are
interested so that it has compact support (multiply it by a smooth function

of compact support that is 1 on the neighborhood of interest).

THEOREM 1.1. Let X:R"™ > R™ be C* with compact support. Then
there is a unique C™ mapping ®:RxR™ > R" such that

1.1 ngmo:x@am»,¢mx):x

forall t in R and x in R". If we let O be x > ®(t,x), then

t >0l isa one-parameter group of diffeomorphisms of R":

t,+t, ~ t t

1.2) P - dlod 2,



1. DIFFERENTIABLE MANIFOLDS 7

Proof. Let « be a Lipschitz constant for X; that is,

1X(X1)7X(X2)‘ S K\X17X2|

forall x; and x, in R", where | | is the Euclidean norm on RT.
First we prove uniqueness. Let I =[0,1/2«]. If £:15R", let

I = sup 1€(s)]

sel
The initial value problem (1.1) is equivalent to

t

(1.3) Pt,x) = x + fX(q)(s,x))ds .

0
Let ®, and (1)2 be solutions of (1.3). Then

t

(0=, %) < sup fKI‘DI(s x) -, (s,x)lds < é— 1, x)-P, (00,
0
so that H(DI( . x)~<I)2( ,x)ll = 0. This gives uniqueness for t ¢, and in
the same way one gets uniqueness for 1/2x <t <1/k, etc., and for
negative t. The group law (1.2) is an immediate consequence of uniqueness.
To prove existence, we use the method of successive approximations.
Let
cI)O(t,x) =X

t

(I)l(t,x) = X + fX((DO(s,x))ds s

0

and, inductively,
t

CI)n(t,x) =X + fX((Dn_l(s,x))ds .

0



8 1. DIFFERENTIABLE MANIFOLDS

Then one has || (-, x)-® (-, x)| < %— [@ (-, x)-@, (-, %), so the
(I)n(" x) are a Cauchy sequence. Define ®(t,x) = lim ® (tx) for tel.

n—->oo

Then (1.3) holds on I, and by (1.2) we get a solution for all t. The
mapping ®, is C™, and by induction each ®_ is C*. For each mult

index a, we get a similar estimate on |[D?® _, -D® ||, if we use the

n+1
chain rule and replace I by a smaller interval (depending on a ). There

fore ® is C*. m

The proof shows more than was stated in the theorem. K X:R" - R"

then we have existence and uniqueness merely if X satisfies a global
Lipschitz condition. Any additional smoothness that X may have is
shared by the flow. The theorem and proof are easily extended to include
time dependent vector fields.

If X is a smooth vector field on a manifold M, use the theorem to
construct a local flow in each coordinate neighborhood, and extend it as
much as possible. Let M be the one point compactification of M (that
is, M=MU foo} where o« ¢ M, and a neighborhood of o is defined to
be the complement of a compact subset of M ). If the local flow P(t,x)
has been defined for 0 <t <b and it is not the case that lim ®(t,x) = =,

too0
then there is a compact set K contained in M such that ®(t,x) ¢K for
a sequence of values of t tending to b. By compactness, there is at
least one limit point xg in K of these points, but there is a local flow
defined at Xg and so ®(t,x) can be defined beyond b. This is a sketch

of the proof of the following theorem:

THEOREM 1.2. Let X be a smooth vector field on the manifold M.
Then there exist unique G and ® such that G 1is an open subset of
RxM; for each x in M, the set of all t such that (t,x) ¢ G is an open
interval (ax’bx) containing 0; ®:G >M is smooth; ®(0,x) =x for all

x in M; 4 qi((b(t,x)) = Xi((I)(t,x)) in local coordinates at ®(t,x), for all

*odt
(t;x) in G; if ay # -0, then lim ®(t,x) = o; and if by # o, then
t-
lim ®(t,x) = . %

t-b
X
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Another popular method for constructing the local flow is the poly-
gonal approximation method. Choose dt > 0. Start from x at time O,
and let the configuration move with constant velocity X(x) for time dt.
What I have just said is meaningless, because the notion of moving with
constant velocity is undefined unless an affine connection (see §2) is
specified; however, the present construction is insensitive to this and we
may use any local coordinates at x to express the notion. The configura-
tion arrives at &(dt); then let it move with constant velocity X(&£(dt)) for
time dt, and so on. In the limit as dt - 0 we obtain a path ¢ with
velocity X(&(t)). (It is easier to let dt be infinitesimal and take & to
be the standard part of the polynomial approximation.)

A cotangent vector at x is a linear functional on TXM; the set of all

i

cotangent vectors at x is the dual space T;';M . The components a; of a

cotangent vector a transform according to

i
ayr = aq;_la

aql

i-

The cotangent bundle T:d is the set of all cotangent vectors; it is a dif-
ferentiable manifold with projection 7:T*M > M. A cotangent vector
field or 1-form a is a section of this bundle; that is, a:M > T*M and
ma(x) =x forall x in M. If f is a smooth scalar, we define the 1-form
df by giving its values on vector fields X by <df,X> = Xf. Notice that
if Xl(x) = Xz(x) then <df X, >(x) = <df,X2 >(x) —to verify this, we need
only observe that the expression <df,X> is linear in X over the scalars,
<df,gX>=g<df,X> -—so df is a well-defined 1-form. In local

il

coordinates, dfi ==f.

da;
s * * .
We let T, M be TXM®---®TXM®TXM-~TXM with r factors TXM
and s factors T;. An element a of TerM is called a tensor at x, of
contravariant rank r and covariant rank s (or of type (r,s) ). Its com-

ponents transform according to
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e LN PN Is 5
Jule eal dfdal  das g
Jl,....]s,* 1 1 _] L j , jl...J .
1 1 s
dq a " dq dq"®

The corresponding tensor bundle TrSM is a differentiable manifold with
projection w: TrSM - M, and a tensor field is a section of this bundle.
The set of smooth tensor fields of type (r,s) is denoted by TrsM

If X is a smooth vector field, we may differentiate a tensor field a
along the paths of its local flow, obtaining the Lie derivative Oxa. On
scalars f we have 0yf =Xf and on vector fields Y we have 6,Y =
[X,Y], the Lie product. On scalars f we have [X,Y]f = (XY-YX)f, and
in local coordinates

Xyl - xi & yioyid xi
an an

Once we know a derivation ¢ (such as the Lie derivative 6y ) on
scalars and vector fields, its values on arbitrary tensor fields are deter-

mined by the product rule for differentiation. For a 1-form a the equation
(1.4) ¢<a,Y> = <da,Y> +<a,pY>
serves to define ¢a, and then we have

¢d(bec) = pbec + begde

for arbitrary tensor fields b and c. A type of derivation that arises
frequently is the one induced by a linear transformation on the tangent
space. We extend it to all tensors by letting it be 0 on the scalars. Then
the left-hand side of (1.4) is 0, so on cotangent vectors it is the negative

transpose. If the matrix of the linear transformation is ng; , T will denote

the action of the induced derivation on a tensor a of type (r,s) by ¢&: a.

In local coordinates,

fu_ll lll.+1“'1r ~ 2 ¢J a%l. fr N .
Is by Iy J17 31 s

) il'"ir L3 i“ il...
1.5) (Zs‘ajl...js = 21,.¢i aj e
p=r
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§2. Affine Connections
In the previous section we discussed the velocity vector of a smooth
path & in the configuration space M. Now let us discuss its
acceleration.

There is a problem here. If we attempt to define the acceleration as

@.1) Jim X(t+dt) -X()
at-0 dt

where X(t) is the velocity vector of & at time t, the attempt makes no

sense: X(t+dt) and X(t) live in different vector spaces (Tg(udt)M

and Té:(t)M ), and we cannot subtract them. If we use local coordinates
qi and consider the second derivative fi , we find that under a change
of local coordinates

... 217 ...

G A E, T gk

&' lak
Thus rfi is not a vector; it may be 0 in one coordinate system but not
in another.
Heuristically, what we need to make sense of (2.1), or more generally

of

TR (I ER((0))

dt-0 dt

where Y is any vector field, is an identification 7 of tangent spaces at
neighboring (infinitely close) points in M. Then we could let VXY ,
where X = &, be

o TY(Etd D) - Y(E®)

2.2 li
@2 dt-0 dt

Then V should have the following properties: V is a mapping of
T™ x ™ into T™ (where ™ - ’T?M is the smooth vector fields) such
that

(2.3) Vi (Y+Z) = ViY + V(Z
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(2.4) Vixigy = Vx + 8%y
(2.5) VyEY) = VY + (XY .

A mapping V with these properties is called an affine connection. An
affine connection is an additional structure that must be imposed on a
manifold M; there is no intrinsic affine connection on a differentiable
manifold. (Later we will be concerned exclusively with Riemannian mani-
folds, for which there is a distinguished affine connection, the Riemannian
connection.)

For the remainder of this section we consider a manifold M with a
given affine connection V.

If f is a smooth scalar, we define fo to be Xf, and then we
extend Vy to be a derivation on smooth tensor fields (see §1). Notice
that, by (2.4), the action of Vy at x is determined by knowing X(x);
this is in contrast to the Lie derivative 6y for which we need to know
X ina neighborhood of x (or at least its first derivatives at x ). If
ae TrSM , we define the covariant derivative Va in TISHM by <Va,X>=
an; this is linear in X over the scalars by (2.4), so Va is well
defined. In local coordinates qi, we denote V(9 by Vi and define the

Christoffel symbols ij by o

Jd i 4
(2.6) v T i pd

This is not a tensor; under a change of local coordinates we have

-, i"57 ok . 2 a i’
@.7) NS WL . e SIS .

Then if a (i“rSM, the formula for Vja is

2.8) Va -9 a+Ta

J oq’ j
(see (1.5)).
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The acceleration vector of a smooth path ¢ is defined to be VXX ,
where X is the velocity vector. ( X is defined only on €. Extend it to
be a smooth vector field X. Then VX;(’ is independent of the extension
chosen, since X is tangent to £.) In local coordinates the acceleration

vector a is given by

(2.9) al = E1 Tigigk
jk

The torsion T of V is defined by T(X,Y) = VXY-VYX~[X,Y], and T
is called torsion-free in case T = 0. In terms of the Christoffel symbols,

V is torsion-free if and only if Il -1l as we see from (2.6) since

ik
i. s ik = 0. The torsion is clearly irrelevant to the acceleration (2.9),
aq? dq
since fjfk is symmetric in j and k.
From now on we assume that V is torsion-free.

The curvature R of V is defined by

(2.10) RX,Y) = VyVy - VyVy - Vig y1-

Thus R i, 9\ is the commutator of V; and Vp. The curvature
P k {

tensor, also denoted by R, is given by
R(a,Z,X,Y) = <a,RX,Y)Z>

where a is a l-form. To see that it is a tensor, we need only verify that
it is linear over the scalars in each of its arguments, which is trivial to
do. A simple computation starting from (2.6) shows that the components
of R are given by
(2.11) Rijkgz ikrﬂi, _igrli{_+rg}rli ‘Ffj'reia‘

gk b gl K b ka y
We extend R(X,Y) to be a derivation on the tensor algebra that is 0 on

the scalars; see (1.5). Since —CZR, % =0,
dq* odq
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(212) VkVYa - ngka = R'.kga .

This is all right as far as it goes. We have defined V| to be Vg , and
~ g
this maps TrsM into itself. But the components of Vka are the com-

ponents of the covariant derivative Va in ’TVrS“M; the k also serves
as a tensor index. Thus (2.12) is also open to a different interpretation,
with Vk acting on the tensor index ! and vice versa, and the question
arises as to whether it remains true for this different (and more useful)
interpretation. The answer is yes, but only because our affine connection

is torsion-free. Let us see why.
Recall that <Va,X> = VXa. Then <VVa,X®Y> = <VxVa,Y >,

Since VX is a derivation,

VX<Va,Y> = <VXVa,Y> + <Va,VXY> ,
and <Va,Y> = Vya and <Va,V,Y>- VVXYa’ so
<VyVa,Y> = VXVYa - VVXYa .

Therefore

(2.13) <VVa XeY>-<VVa,Y8X> = (VXVvaYVX'(VVXY‘VVYX))a .

But since V is torsion-free, VY-V X = [X,Y]; soby (2.10), (2.13) is

(2.14) <VVa,X®Y>-<VVa,¥Y®X> = R(X,Y)a .
o . iy i
A common abuse of notation is to write (VVa) ,. ' as V Vpa." .7
kEJl---]S J1)g
with this convention, (2.14) in local coordinates {for X = ik and Y = %)
' dq dq

is written as (2.12). This is Ricci’s identity.
Let & be a smooth path in M with velocity vector X and let Y, be

in Tf M. Then we may ask for a family Y(t) in Tf(t)M such that

&)
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(2.15) Vx(t)Y(t) =0, Y(s) = Y, -

In local coordinates, (2.15) is
i .. . .
(2.16) dy® | Fjlkxwk -0, vig) -vi.

This is a linear differential equation for Y, and its solution for arbitrary

i li i : - . is i -
Y, gives a linear mapping r‘f(s,t) Tf(s)M Tg(t)M This is parallel transla
tion. There is an induced linear mapping, again denoted by ré_(s,t), of

T P into T P,
Es)r Etyr

Using this, we can make precise the heuristic notion used to motivate
the definition of an affine connection: VY is (2.2) if the previously
undefined 7 in it is taken to be rg(t+dt, t).

Let £ be a smooth path. Each Y in Tf(t)M is an equivalence
class of mutually tangent smooth curves r + 7(r) with 7(0) = &(t). Let
y = n(dr); this is well defined up to o(dr). That is, we may think of a
tangent vector Y as being a neighboring point y. On an affinely con-
nected manifold, parallel translation moves an infinitesimal neighborhood
of &(t) in such a way that the points in it all have the same velocity as
&v.

§3. Measures on Path Space

You all know probability theory in depth, thanks to the labors among
you of the apostle of probability to Swiss physics. Nevertheless, let me
review the basics.

A probability space is a measure space of total measure one — that is,
a triple (S, S, @ where S is a set, S isa o-algebra of subsets of S,
and p is a positive countably additive function on & such that u(S)=1.
A random variable f is a measurable function on S. If it is numerical

valued, we define its expectation (or mean) by

Ef :ffdp
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and its variance by E(f—l:"lf)2 , provided the integrals exist. An event is
an element of O. A stochastic process is a function from some index set
I to the random variables on a probability space.

One peculiarity of probabilists is that they take o-algebras seriously,
rather than regard them as a technical nuisance. Let $ be a sub-c-algebra
of 8. Then S, %,#\\%) is also a probability space. If f ¢ Ll(S, S, W,
then A fA fdp for A in B is a finite measure on (S, R) that is
absolutely continuous with respect to p, so by the Radon-Nikodym
theorem there is a unique (up to equality a.e.) element fO of Ll(S,%,yf%)
such that [ fdu=f fudp forall A in B. Then f is called the

conditional expectation of f with respect to $, and it is denoted by
Eif|B}. We may think of B as being the events accessible to observa-
tion; then E{f!%} is the best prediction of f that we can make on the
basis of available knowledge. We denote by g the set of B-measurable
random variables. Then E{f|B} is B-linear: Efgf|B} = gEIf|B} for g in
%, provided the integrals exist.

Suppose we want to study a stochastic process indexed by a set 1
and taking values in a locally compact Hausdorff space M. ‘Form the one-

point compactification M =MU {e}. Thisisa compact Hausdorff space.

Now form the Cartesian product @ of M indexed by I:
o-J[n.
I

An element of Q is a completely arbitrary function w:I - M. By the
Tychonov theorem,  is a compact Hausdorff space in the product
topology (defined by the requirement that a net a -~ @, converges in Q
to  if and only if a)a(t) converges in M to o(t) foreach t in I).
We call Q path space.

Consider an M-valued stochastic process ¢ indexed by I and defined
over a probability space (S, 3, @) . This induces a probability measure on

path space ) in a natural way, as follows. Let C({}) be the algebra of



3. MEASURES ON PATH SPACE 17

all continuous real-valued functions f on 2. By the Riesz-Markov

theorem, there is a one-to-one correspondence between positive linear
functionals L on C(2) such that L(1) =1 and regular probability

measures Pr on (), the correspondence being such that L{f) = fQ f(w) dPr(w)
for all f in C(f)). (A measure is called regular in case the c-algebra on
which it is defined is the o-algebra B of Borel sets — the smallest

o-algebra containing all compact sets —and is such that
3.1 Pr(B) = sup{Pr(K):K CB and K is compact}

for all Borel sets B.) Let Cfin(Q) be the subalgebra of C({}) consist-
ing of those f depending on only finitely many indices (so that there is a
finite subset I, of I such that forall w; and o, in Q, if “)11\10 =
“’2\\[0 then f(w,) = f(w,) ). Then Cg; () contains 1 and separates
points, so by the Stone-Weierstrass theorem it is dense in C({)) in the
supremum norm {If|| = sup{|f(w)|: @ ¢ Q}. Hence any positive linear func-
tional L on Cﬁn(Q) such that L(1) =1 has a unique extension to C(w)

with the same properties. Now any f in Cfin(Q) is of the form
(3.2) flw) = Flo(ty, - olty))

for some finite subset IO:{tl,'--,tn} of I and F in C(M™). Define

L) = fF(f(tl),"‘,rf(tn))du

S

and let Pr be the corresponding regular probability measure on . Then

for each IO and F as above,

fF(cf(tl), e €t N dp = fF(w(tl), o, oty d Pr(w) .
S Q
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Path space (1 has the advantage of greater intuitive appeal and
greater technical simplicity in the handling of events whose definition
involves uncountably many t, by means of the following simple technical

lemma:

THEOREM 3.1. Let Pr be a regular probability measure, let § be a
family of open sets that 1s closed under finite unions, and let U be the

union of all sets in 9 . Then Pr(U) = supiPr(G):G ¢ Q}

Proof. Let &¢>0. Since Pr is regular, there is a compact set K con-
tained in U such that Pr(U)-Pr(K) <e¢. By compactness, there are a

finite number of sets Gl,-~-,G in g covering K. Let G be their

n
union, so that G ¢ @ and KCGCU. Then Pr(U)-Pr(G)<e. Since ¢
is arbitrary, the conclusion holds. ®

The point of this theorem is that the family § may be uncountable.
The openness is then essential: consider the family of finite subsets of
the unit interval — their union has Lebesgue measure 1 but each set in
the family has measure 0.

The use of regular probability measures on path space is due to

Kakutani, and is developed in [46].

§4. Martingales

Consider a real-valued stochastic process ¢ indexed by a subset I
of R, defined on a probability space (S, 5, 1), and such that each &(t)
is in L! (we will always tacitly assume that our time parameters lie in
I). Let P:t - Tt be an increasing family of sub-c-algebra of & (then
P is called a filtration) such that each &(t) is in ’5); (then ¢ is said
to be adapted to F ). For example, ?t may be the o-algebra generated
by the &) with s <t (and it must contain this c-algebra). We denote
Ef- l‘(j)t} by Et‘
case Esf(t) = &) for s <t, a supermartingale in case E_Zsf(t) < &(s)
for s <t, and a submartingale in case Esf(t) > &(s) for s <t.

We say that ¢ is a martingale (with respect to P ) in
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Suppose that I is a finite set, with first element a and last element
b. Welet I'=I\ib}, forall t in I’ we let t+dt be its successor in
I, and we define d&(t) = &(t+dt)—&(t). We define D&, d€, and ag by

4.1) D&Y dt = E(d&(t)
4.2) dEt) = DEWYAL + dE)
4.3) ofndt - Eaé? .

Thus D&(t)dt and Ug(t)dt are the conditional mean and variance of
dé(t). Notice that D¢ and ag are adapted to ?f I’, whereas df and
dg in general are not.

Notice that D€ =0 if & is a martingale, D& <0 if ¢ is a super-
martingale, and D¢ >0 if ¢ is a submartingale. (Of course, for a gen-
eral process D¢ need not have a constant sign either on I” or on the
probability space.) We will show that these conditions are sufficient as
well as necessary. We have

(4.4) £ =&+ 3, Dewdr s 3 A&, s <t.

s<r<t s<r<t

Now Etdf(t) =0, and since ¥ is increasing we have EsEt = Es for
s <'t, so that

.5) E£M) - &)+ E, 3, DEmdr, s<t.

s<r<t

Therefore ¢ is a martingale if and only i;\ D=0, etc.
We call D¢ the trend of ¢, and if d€ = 0 we say that & is a frend
process. Thus ¢ is a trend process if and only if og = 0 or equivalently

dé is adapted to P|T". We let

(4.6) &) - &a) + 3, Dédr .

r<t
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Then d&t) = Bf(t)dt € ?t , so that E is a trend process, called the

trend process associated with £. We let

@.7) & =, aEw

<t

so that rf(a) = 0. Thus rf is adapted to ¥ and its increments, as the
notation requires, are the df(t) Since Df 0, the process f is a
martingale. We call it the martingale associated with ¢. Notice that if
£ is already a martingale, then 5 differs trivially from it: g(t) = &) -£G@).
We have the decomposition £ = g+r§ of an arbitrary L! process & into
a trend process f and a martingale E

If we have uniform bounds on ||D&(t) f, and Hag(t)]l1 , then d&(t)
will be of order dt but df(t) will be much larger, of order \/dt. The
interesting local fluctuations of a process are in the associated
martingale.

Let £ and 7 be adapted to P, and define ¢ by

(4.8) CED R OLEOR
<t

then ¢ is alsoadapted to $. We have {(@) =0 and d{(t) = ()dER)
so that (if £(t) ¢eL1)

4.9 DL(t) = n(tDEW) -

Thus if & is a martingale, sois {; if >0, then if ¢ isa super- or
submartingale, so is £.

The key to proving theorems about martingale and super- or sub-
martingales & is to think of &(t) as being the price at time t of a
share of a stock on the stock market. A martingale is a steady market,
and a supermartingale is a declining market. Then 7 is an investment
strategy: at each time t, 7(t) is the number of shares an investor

holds. The requirement that 7 be adapted to ? is the requirement that
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the investment strategy be legal: no inside information about the future
behavior is allowed. The process ¢ given by (4.8) is the investor’s
“earnings.’”’

For example, suppose an investor buys one share at time a and
keeps it until the price increases by more than A, where A >0, and as

soon as this happens the investor sells the share. That is,

1,&(s)-&a) <A forall s<t,
n(t) =

0, otherwise.

Let A be the event that the investor’s strategy is successful,
A = {max (£(t) - &) > Al .

(This is a subset of the underlying probability space S, and it is the
custom to suppress the variable ranging over S.) The investor’s earnings

are > A if successful, and are &b)-&(a) otherwise. That is,

(4.10) {b) 2 Axy + E®)-E@)x )\

where ) denotes the indicator function and © denotes the complement.
Now suppose that, unfortunately for the investor, ¢ is a supermartingale.
Since 7 >0, { is alsoa supermartingale, and since {(a) = 0 we have
E{(b) < 0. By (4.10) this implies that PrA < [[§(b)-&(a)|l;/A. We have

proved the following theorem:

THEOREM 4.1. Let £ be a supermartingale indexed by a finite subset 1
of R, and let A >0. Then

Primax (60~ @)>M < L Jiéw) - &@), -

We may remove the restriction that I be finite. In the following
theorem, Pr is the regular probability measure on path space (as in the

preceding section).
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THEOREM 4.2. Let { be a supermartingale and let A >0. Then

(a.11) Pef sup (60)-E@)>A < T ) €@, -
a<t<b

Proof. The events {w(t)-w(a) >} are open, so (4.11) holds by

Theorems 4.1 and 3.1. =

Theorems 4.1 and 4.2 remain true if “supermartingale’ is replaced by

’ To see this, use the dual investment strategy: replace

‘““submartingale.’
n by 1-n. Also, if f is a convex function {e.g. f(£) = (é:—c)2 Yand £
is a martingale, then fof is a submartingale. Therefore we have the

following result:

THEOREM 4.3. Let ¢ be a martingale and let A > 0. Then

Pri sup Jo(t) -w@)] > <L J1€b)-&a)l2 .
a<t<b A2

The terminology ‘‘supermartingale’ for a process with a negative -
trend may seem petverse, but there is a good reason for it. If f is a
superharmonic function on R™ and w is the Wiener process (see §11),
then fow is a supermartingale.

Each investment strategy leads to a martingale inequality. For
example, the ‘‘buy low —sell high’’ strategy leads to Doob’s upcrossing
inequality and so to the martingale convergence theorem, but we shan’t
pursue this here; see [18] or {61] for a systematic study containing the

results of this section and many others.

§5. Diffusion
Let M be a manifold, I an interval, and & an M-valued stochastic
process indexed by I. We let the past F, the future ?t’ and the present
N, be the o-algebras generated by the &(s) with s<t, s>t, and s =t
respectively. We will abbreviate Ef- mt§ by E,.
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We use dt as a strictly positive real variable, and for any function
f of t we define the forward differential df(t) = f(t+dt)-f(t). Let ‘%t
be the set of all uniformly bounded real stochastic processes 7 indexed
by some interval [0,¢], and defined over the same probability space as
£, such that HEtr](dt)[[oo = 0(dt) and HEtn(dt)2 .. =0dt). Then %t is
an algebra. Let @t be the subset of all ¢ in g‘))t “such that [\Eté(dt)![m
= o(dt) and HEté(dt)2Hl>° = o(dt). Then ®t is an ideal in the algebra
%t , by the Schwarz inequality. We will denote congruence modulo this
ideal by =. This notion plays the same role in stochastic kinematics as
tangency plays in deterministic kinematics.

We make the convention that local coordinates qi are globally defined
and have compact support (though of course they need not be a coordinate
system outside their coordinate neighborhood).

We say that & is a smooth diffusion in case whenever the qi are
local coordinates for a coordinate neighborhood U, there exists smooth

functions Bi and aij, with ol of strictly positive type on U, such

that
(5.1) Edéi®) = YW, bt ,
(5.2) deiwaéin = olgm)dt,

and the same is true of the time-reversed process \é,é(t) = &(~t) indexed by
T=it:t el
Notice that there is no conditional expectation E; on the left-hand

side of (5.2). This is the crucial assumption that rules out processes
with jump discontinuities, such as the Poisson process. Our results can
easily be generalized to the case that ol is time dependent. There are
many interesting problems involving processes where aij is degenerate,
but I will not discuss such processes. Notice that ¢ is not assumed to

be a Markov process.

THEOREM 5.1. Let & be a smooth diffusion on M and let f be a

smooth scalar with compact support on MxI. If the qi are local
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coordinates, then

(5.3) aclagiaek - o,

(5.4) o0 = & Eonaet L L gn0tia s 2 cemoa,
dg’ dq’dg’ *

5.5)  EJiED,D E(%— o'l ﬁi@ B 5% . %) £(ED,Hdt .

If the q' are also local coordinates, then (on the intersection of the two

coordinate neighborhoods)

. it 2 17 .
(5.6) dei’ = M gei é— 99 Lijg
oq aq'dg’
. i, L. a2 i’
5.7 gl L% g L i 9
a2 Kl
Al
(5.8) P A I i
oq* dq’

Proof. We have d&'d&ideX = olldtdeX, so that Eaflaéiagk =
olat Bt = odt) and E,(@¢1d€IagR)? = Ey((o1)2dt20 K kdt) = o(ay).
Thus (5.3) holds. The other results hold by this and Taylot’s formula. ®

We call

i & gid

5.9 ! A .

dq'oq? dq’
the forward diffusion operator. By (5.7) and (5.8) it is independent of the
choice of local coordinates. Notice that dfi and Bi do not transform
like vectors, but that oij is a contravariant tensor. Since we have

assumed it to be nondegenerate, it has an inverse %; (such that

oijajk = BE( ). Then %; is a covariant symmetric tensor of strictly posi-
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tive type; in short, a Riemannian metric. It is intrinsically associated
with the diffusion and gives the scale of the local fluctuations.

The Riemannian metric 9%; gives T.M the structure of a Euclidean
space —an n-dimensional real Hilbert space. We may choose an ortho-
normal basis for T,M, and by a linear change of local coordinates at x

we obtain local coordinates qi such that aij(x) =58 In general it is

Qi
not possible to have a5 = Bij in a neighborhood of j{, but the funda-
mental theorem of local Riemannian geometry shows that we can always
choose local coordinates qi such that o = Bij +0(lg|?) (where for
simplicity of notation we assume that qi(x) =0), so that aaij/éqk =0
at x. Such local coordinates are called normal coordinates (NC), and
they are unique up to an orthogonal transformation and terms that are

0(lq}?).

THEOREM 5.2. There exist normal coordinates q* at x. If the q'

are also normal coordinates at X, then there is an orthogonal matrix A

such that qi/= Aiiqi+0(|q\3) .

Proof. Let qi be local coordinates such that qi(x) =0 and aij(x) = 8i. .

]
a
Let aija = aUIJ/aq at x, so that

(5.10) a;j = Byj + agjpa® + 0(lal?) .

k

Let @ = qk+,3§bqaqb. We want to pick ng so that the ch are normal

coordinates. We have
ot = qi- gl g%+ lgl®)
so that

i . ,
% - 52 gl g+ 0(l?) .

Observe that we may replace q by § in (5.10). Then
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_ <9qi an'
G.11) gy = =
K gk ol

@l -28 3 (5?3‘23}53) By + a8 + 0lTD
= B+ (2BL, ~2BF o) + WA

We choose Bf{a :}T A fa - Since Ayfa = ka * WE have akﬂ = 81((3 + (ﬂcﬂz) ,
and the ch are normal coordinates.
Now suppose that the qk were normal coordinates to begin with, so

that @0 = 0, and let the qk also be normal coordinates. After an
orthogonal change of variables we can assume that qk = qk+6gbqaqb +
&lq|3). Since qaqb = qbqa , we can assume that ng = Blga. We again
have (5.11), with ayp, = 0 and the coefficient of G equalto 0, so

that Bf{a :~,3€1;. Therefore
[ k k _pa _pa _ pf _ 4
Pra = P~ Pal =By =By = Boy = Pra

so that Bf{a:O. =

This theorem may be used to carry over to a Riemannian manifold con-
cepts, involving at most one derivative of tensors, that are well defined
on Euclidean space. This may be called the transfer principle of local
Riemannian geometry; we will use it on a number of occasions. On
Euclidean space, the covariant derivative of any tensor field a is given
simply by V;a = da/dqt .

On a Riemannian manifold, we define

Via = L a (NO).
P
This defines the Riemannian connection V. The Riemannian connection

is clearly torsion-free and Via. = 0. If one permutes this cyclically in

ik

i, j,k and subtracts one equation from the sum of the other two, one finds
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k_lykafd , 9 , _ 9 4
1"ij =50 (&]ial]+aqj %ai P Ul])’

but we will not need this formula.

The curvature of a Riemannian manifold is the curvature of its
Riemannian connection.

If a; isa 1-form, we define the vector field al tobe aijaj, and
vice versa. In general, we use the metric tensor o;; and its inverse ol
to lower and raise indices. For example, the Ricci tensor is defined to
be R; = Riaaj = oabRiabj and the scalar curvature is R = Ri

The volume element dyx is defined by dyx = dx!...dx™ (NC). Then
we have (XiVi)*f = —Vi(Xif) , where ™ denotes the formal adjoint with
respect to the volume element, since this clearly holds in normal
coordinates.

For a smooth scalar f, we define the Laplacian Af by
- .
Af = 84 _Gf_ (NC). Since d/dq’) is a tensor (the 1-form df. ), this
0’ da :

involves only one derivative of a tensor, and Af = VIVif since this equa-

tion holds in normal coordinates. By contrast, the Laplacian of a general

tensor field a cannot be defined to be Bij —a—zﬁ—_ (NC) because the
dq’ g’

expression depends on the choice of normal coordinates. There are

several inequivalent notions of the Laplacian of a tensor field, and we

will see in 810 that one of them arises naturally in diffusion theory.
After this brief excursion into local Riemannian geometry, let us

return to the diffusion process that gave rise to the Riemannian metric.
We observed that dfi does not transform like a vector. To remedy

this, we define the forward vector differential Efl by setting Ef‘ = dfi

(NC) and insisting that it transform like a vector. Then

~ sl
el M gpt
aqt
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To compute this, use (5.6), reversing the roles of the two coordinate

systems. Then

~ s i"/4 1 , 21
dflzaq—.—aq d§a+1———aq o? 1 dt
i \a® P e
i L pit e
= df +5 Fa’j’a dt
by (2.7), since Fjik = 0. Thus in general coordinates we have
~ei o opi 1 i gk
(5.12) dét = dét + 5 ija dt .
Obsetve that EfJEEk = ajkdt, so we may rewrite (5.12) as

(5.13) agi = Jei 5_ I‘jik'agi}?gk i

Now the probabilistic meaning of Efl is clear from (5.13) and (2.9):
if a configuration starts at &(t) with velocity Hfi/dt and moves freely
for time dt, it will arrive at &(t+dt) to within o(dt).

Similarly, we define the forward drift bi(x,t) by setting bi(x,t) =
Bi(x,t) (NC) and insisting that it transform like a vector. Then in general

coordinates we have

(5.14) bigx,t) = Blx,t) + 5_ ri,

where we have set Il - Fjikajk = Fjij. Observe that

(5.15) Edé! = bl ot .

We may rewrite the forward diffusion operator (5.9) as é— A +biVi , (5.5)

as

Edf(EM),0) = (%_ A+bV, 4 aﬁt)f(g(t),t)dt ,

and (5.4) as
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516) diEon,0 =L Em,natt + L awnae+ E Eona.
aql ot

Let p be the measure on MxI such that foI fdp = fI Ef(£(t) ) dt.
Let I° be the interior of I, and let f be in CBO(MXIO), where CB"

denotes the set of smooth functions with compact support. By (5.16),

0 :f%t Ef(&(t),t) dt = fE(% A+biV, + %t) £(E(), 1) dt
1 1

- L iy . 9
Af (2A+bV1+&t)fdp.
MxI

That is, p is a weak solution of

gt_p - é_ Ap-V,(bip) .
But this equation — the forward F okker-Planck equation— is parabolic, so
that p is a smooth solution of it on MxI° and is strictly positive. The
function p(x,t) is called the probability density. We denote p(x,t)d)x
by p(x,t).

The definition of a smooth diffusion requires that the time reversed
process f also be a smooth diffusion. For any function f(t), we define
‘f’(t) =f(-t). We retain the convention that dt > 0, and define the back-
ward differential df(t) = fQ)—f(t~dt) , so that d_f(t) = df(t-dt) = Ai\f’(~t) .

Then there are Bi and o,

« such that

Ed, 0 = BLEm bt

4,E40 4,850 = ol Em)dt .

For a real-valued stochastic process F we define the forward stochastic

derivative D and the backward stochastic derivative D, by
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T Fiddt)-F(®
DF(t) = lim Et n s

dt->0+
(5.18)

!

. -
D,F(t) - lim E FO-F(td) dIIHit ,

dt->0+

whenever the conditional expectations and limits exist. Notice that E,
is the conditional expectation with respect to the present. Let {f and g

be in CBO(M) , and let F(t) = f(&(t)) and G(t) = g(&(t)). Iclaim that

b b

(5.19) f'E(DF(t))G(t)dt = —f EF(t)D G(t)dt + EF(b)G(b) -EF(a)G(a) .

a a

To prove this, divide [a,b] into v equal parts: tj = a+jb-a)/v for
j=0,---,v. Then

v—1
EF(b) G(b)~EF(a)G(a) - lim 2 EIF(t;, ) G(t)-F(t))G(t; )]
j=1

Voo

= G(t;) +G(t:_,) F(t; ) +F(t)
:ii’i.:;E (Pt ) - Flep) ———— > (G(t) - G(t_y)
v-1
- lim 3 EIDF()6(t) + F(t)D,G(t)1 22
V00 =1

b

- f E[(DF(t))G(t) +F(t)D G(t)1dt .

a

This proves the integration by parts formula (5.19).

But there is another integration by parts formula:
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b b

b
(5.20) f E(DF®)G(t)dt = - f EF(t) DG(t)dt - f EaijVif(§(t))ng(§(t))dt

+ EF(b)G(b) - EF(a)G(a) .
This is an immediate consequence of the algebraic identity
dFO)GE) = @FE))G() + F()dG(t) + dF(t)dG(t)
and the fact that
dF (1) dG(t) = VED)dE Vg€ el = oI VEED) Vg€t .
By (5.19) and (5.20),

g—t Ef(§(1) g(£(1) = E(DHE®) g(&(1) + EF(ED) D e(&(t)

= E(DE(E()) g(£(t)) + Ef(E(1))Dg(&(t)) + EoijVif(g(t))ng(f(t)) ,
so that

(5.21) EfE®)D (W) = EFE®)De) + EaIVEEDV ) -

Now Dg(&(t»:(% A+biVi)g(§(t>> and D, g(&(1) = (~§A*+biv*i)g(§<t>),

where A, is the Laplacian for Ty V., is the Riemannian connection

*
for Tyij»
Therefore (5.21) is

f f(x)[(ﬁ% A+l g(x)] px,t) dyyx

and b:k in normal coordinates for Okij is the backward drift.

- f £(x) [(5_ A+biVi) g(x)] px,0)d, x + o V() Vg0 plx, ) dyyx .

But the last integral, on integration by parts, is
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ii Vi p(x,t)
- () Ag(x)p(x,t)de iﬁ(x) ng(x)a ] W p(x,t)de .

Therefore the backward diffusion operator is

- %— A*+b;V*i = - %— A+ (bi—Vi log p)V; .
This shows that oij = ol (so we candrop the * on A, and V_)and
bik =pi_vi log p. This argument, which is more elegant than my exposi-
tion of it, is due to Eric Carlen (unpublished), to whom I express my
thanks.

We define the osmotic velocity ut by ul = (bi~b§k)/2 , so that we
have the osmotic equation

. i .
(5.22) w = LYPViteg 7.

v

From the forward Fokker-Planck equation for ¢, which has probability
density P, we see that p also satisfies the backward Fokker-Planck

equation
a .
(5.23) EP - - é_ Ap-V,(blp) .
We define the current velocity vi by vi= (bi+bi)/2 . Averaging (5.17)
and (5.23), we obtain the current equation (also called the equation of

continuity)

(5.24) % = Vi) .

The transformation law of d*fi is

., i 2 i
(5.25) q, ¢ =% gei 190

1— — aij dt .
dqt 2 9qlgq]

We define the symmetric vector differential
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4T+ d, & gy gy
_ . .

(5.26) odé! = >

Comparing (5.6) and (5.25), we see that Odfi is a vector. We have
EtOdfi = vidt.

It may seem odd that (fi(t+dt)—§i(t—dt))/2 is a vector but §i(t+dt)~
«fi(t) is not, but it must be remembered that the time t enters into the
definition of the tangency relation =.

The stochastic calculus developed in this section may be compared
with that of K. Ito in [36]. He considers continuous quasima'rtingales in
R™, which roughly speaking are processes X with a decomposition
X; =M, +A; where M isa continuous martingale and A has continuous
paths of locally bounded variation. He introduces a multiplication of

stochastic differentials by

t+dt t+dt

dX, - dY, = d(XY), - f Xdy ~f YdX ,

t t

where the integrals are It6 stochastic integrals (whereas here d&(t)dn(t)
is simply the ordinary product). Theorem 1 of Ito’s paper asserts that if
X, Y, and Z are continuous quasimartingales, then dX-dY.dZ =0 and
dX -dY is locally of bounded variation (pathwise, as dt varies). Despite
the differences in the multiplicative structure, (5.3) and (5.2) correspond
to these results both in form and application. See also [4][32][45].

The term ‘‘normal coordinates’’ was introduced by G.D. Birkhoff in
[8, p. 123]. He selects a special class of local coordinates that is
defined in terms of the exponential map. This seems to be the standard
approach; clearly it requires the Riemannian connection to be already
given. The approach used here inverts the order of presentation. For an

invariant construction of the Riemannian connection, see [48, §7].
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§6. Markovian Diffusion

An M-valued stochastic process is a Markov process in case for each
t the past and the future are conditionally independent, given the present;
that is, if p (?t and f E:C}: , then E pf = E.pE,f whenever the integrals
exist.

The notion of a Markov process is invariant under time reversal.

We dencte Ef- ‘?ﬁ by Et‘ Since P is increasing, we~have N
Es = EsEt for s<t. Let p and f be L? functions in ‘?t :md ?t
respectively, and let £ be a Markov process. Then f—Etf € ‘Cft’ so
E(p(f-Ef)) = EE (p(f-Ef)) = EE,pE (f-E\f) = 0. That is, Epf = E(pEf),
which by definition of conditional expectation means that Ef =Ef.
Consequently, E.f =EJE/f for s <t and f efft. This is called the
Markov property. Conversely, a stochastic process with the Markov
property is a Markov process.

A smooth Markovian diffusion is a smooth diffusion that is a Markov
process.

Let & be a smooth Markovian diffusion. Let f be in C‘(’)"(M) and
let s<t. Then E_(€®) ¢ ), so there is a function F(x,s) (the
dependence on t is suppressed in the notation) such that Esf(f(t)) =
F(£(s),s). By the Markov property and (5.16),

F(E(s),8) = E{(ED) - E(E 44 f(E1) - EF(£(s+ds),s+ds)

1

F(£(s),5) *(gag FbiV, ¢ é—A) F(£(s),9)ds + o(ds) ,

so that F satisfies the forward diffusion equation (usually called the

backward diffusion equation!)

®6.1) (%inﬁ%—A)F:o.

For each t, F depends linearly on f, so there exists a unique p,

called the forward transition probability, such that

F(x,s) -—fp(x,S;dy,t)f(y) .
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Since f is arbitrary, p satisfies the forward diffusion equation in x
and s. By the same argument used in 85 for p, for each x and s
with s <t there is a C™ strictly positive function p(x,s;y,t) such
that p(x,s;dy,t) = p(x,s;y,t)dyy, and p satisfies the forward Fokker-
Planck equation in y and t.

Similarly, we have the backward transition probability p,(dx,s;y,t)
with density p,(x,s;y,t), defined for s <t, which satisfies the back-
ward diffusion equation, (gs_ + b)ik Vi—é—A)G =0, in y and t and the

backward Fokker-Planck equation in x and s. Since

Ef((s) gé) = f f £(x) p(x,8) p(x,5;y,t) g(y)d yyxd yy

=ff f(x) p(x,8;y,0) p(y, ) g(y) dpyxd pyy

we have
(62) P(XyS)P(X:S;Y;t) = p*(xys:Y7t)p(Y!t) .

For ty <<ty we define

(6.3) p(dxl,tl;---;dxn,tn) =
P*(dxl,tl; XZ’tQ) e p*(dxiﬁlrti_l; Xi’ti) P(dxlytl) p(xi:ti; dxi+11ti+1) e
PGy gty dxpty) -

By (6.2), this is independent of the choice of i. Let fl’ ~-~,fn be

bounded measurable functions on M. By the Markov property,

(6.4) Ef,(E(ty)) (&) = f f £ G ) o £ (x,) plx gty oo dxpt) -
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Some of the factors fi in (6.4) may be 1 without affecting the left-hand

side. Thereby we derive the Chapman-Kolmogorov equations

(6.5) fp(x,r;dy,s)p(y,s;z,t) = p(x,1;z,t)

and similarly for p,.

The p(dxl,tl; ---;dxn,tn) determine the regular probability measure
Pr on path space. Since (6.3) is independent of the choice of i, the
measure p(dx,r) for a fixed r together with p*(dx,s;y,t) for s <t<r
and p(x,s;dy,t) for r<s <t determine Pr. We may conditiona smooth
Markovian diffusion by replacing p(dx,r) for a fixed r by another proba-
bility measure p(dx,r) on M, keeping the same p, for s <t <r and p
for r < s <t, and therefore the same b}ik(x,t) for t<r and bi(x,t) for
t >r. The conditioned probability density p satisfies the backward
Fokker-Planck equation for s <r with p(dx,r) as final condition and the

forward Fokket-Planck equation for t >r with p(dy,r) as initial condi-

tion. The conditioned U is given by @' = %- V! log p; it is singular at

r unless p(dz,r) has a smooth density p(z,r). The conditioned bl for
s <r is determined by ﬁi = (gi~b3k)/2 and the conditioned gfk for t >r
is determined by gl = (bi~gi)/2. If p(z,r) is smooth, then & is a
smooth Markovian diffusion; otherwise E is merely a smooth Markovian
diffusion on each of {sel:s<r} and {tel:t>r}.

In applications, p is the probability density produced by the physical
interaction and p(dz,r) is the information obtained by looking at the con-
figuration at time r (for example, if I see that £(r) = Zy, then I take

p(dz;r) to be 9, ). Since p is determined by the physical interaction,
0

it makes sense to ask what dynamical equation it satisfies —but there is

no reason to expect p to satisfy the same dynamical equation.
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§7. Continuity of Paths

Here is an example of a Markov process: M is (-1,1) and ¢ is the
Wiener process except that as soon as the particle reaches *1 it is
immediately sent to 0, where it starts over. This pathological process
has discontinuous paths. It is not a smooth diffusion because our condi-
tions fail to hold for the time reversed process. The Wiener process with
reflection at +1 is a smooth diffusion, and it has continuous paths in M.
These examples will be useful to bear in mind when reading the following

proofs. The proof is easier if M is compact.

THEOREM 7.1. Let ¢ be a smooth Markovian diffusion on M, let Pr
be the corresponding regular probability measure on path space {1, and
let Z be the set of all continuous paths @ from 1 to M. Then
Pr(Z)=1.

Proof. The manifold M has a metric r (for example, the metric con-
structed from %j ). It will be convenient to define r(e,x) = o for all x

in M. For any subset B of M, let

NB = ly eM:r(y,x) <¢ for some x in B}

and let NEB be its complement. Let K be a compact subset of M, let
¢>0 be small enough so that N, K is compact, and let J be a compact
subinterval of I. For Xg in K, let f be a smooth positive function

that is 0 on NE/Z{X()} and 1 on Ng{xof. Then
(7.1) L ESE®) = (% A+bi\7i) HEOF
Let g(x,t) :(é— A+bi(x,t) Vi) f(x). Then
42 {1 iy 0
(7.2) 4 B - (7 A+bl Vi+&) (€D D) -

Both (7.1) and (7.2) are 0 for &) in Ne/Q{XO}’ so that Etf(f(t+dt) =
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o(dt?) for &¢t) in NE/Z{XOE. (In fact, it is o(dt™ for all n.) But
p(x,t; NSx ] tdt) < px,t; NS plx o, t4dt) < Eyf(£(t+dt)) = o(dt?)
for x = &(t) in NE/2§XO§. Let
0(K,],&0) = supip(x,s; Ngixi,t):x eK,se],te] t-s <8},

Then, by compactness, &K,J,e,8) =0(6). Let 6,(K,],e,8) be the
supremum of the sums X 6(K,J,e,0;) where b 3; < 3 then
0,(K,J,&0) =o(0). Let t; <--<t_ bein J with t -t < 8, and let

A= {w:r(w(tl),m(tj)) >¢ for some j=1,---,n}.

Let Pr,, be the probability measure on path space conditioned by
&) =x. Iclaim that for x in K,

(7.3) Pry ¢ () < 29(NZEK,J,%E,5) +6,(NK,J,e0) -

To see this, let

B ~foiroltpet,) > 5},

¢; ={or oty > e},

D; = fwi2e > r(alt)(ty) > € and r(wlt)wlt)) < e forall k=1,-j-11,
D - {wir(w(tjil),cu(tj))> ¢ for some j=2,--,n}.

By the triangle inequality,

n
acBul) npyuE.
=2

(If o is at some time efar from its initial value [w ¢ A, then either the



7. CONTINUITY OF PATHS 39

final value is L efar from the initial value [w ¢ Bl or there is a first j

2
such that w(tj) is efar from the initial value and %— e-far from the final
value. But either w(tj) is efar from w(tjAl) lw eE] or cu(tj) is not
2e-far from the initial value {w € Cj M Dj]')
Now Pr, . (B)< G(K,],é— 6, 5) and Pry ¢ (€) < 6,(NK,J,¢,0) for x

in K. Observe that Cjecftj and Dj e?tj. Let Prx,t;

tional probability for T(t~ with respect to Pr
J

t be the condi-
j

Xt then

1
Prx,t;tj(cj ﬂDj) = prx,t;tj(cj) prx,t;tj(Dj) < 6<NZEK,J, 56 5) prx,t;tj(Dj)
for x in K. (If this is unclear, write out the integrals using (6.4).) But

the Dj are disjoint, so 12prx,tl(CjnDj)SG(N%K’J’%E'(S for x in

K. This proves (7.3).
Abbreviate the right-hand side of (7.3) by HQ(K,J,E, 8). Let KO be

the interior of K and let
F =§a):r(w(tj),a)(tk)>2£ and (o(tj)eKO for some j and k with 1<j<k<n}
I claim that
(7.4) Pr(F) < 6,(K,J,¢0) .
To see this, let
G; = {oralty) ¢K® and olt) ¢ K® forall £=1,-,i-1},

H, = §w:r(w(ti),m(tj)) >¢ for some j =1i,+,n}.

Then FCU (GiﬂHi), the Gi are disjoint, G; f‘rj)t.' Hi e?_, and H;
i i i

is of the form A with 1,--,n replaced by 1i,-+,n, so that (7.3) applies

to it. Therefore

PrF) < 3, Pr(Gy) sup Pry ¢ (Hy) < 0,(K.J.e,0)
i X
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which proves (7.4). Now apply this result to the time reversed process.

Let F, be defined as F but with 1 <j<k<n replaced by 1 <k<j<n.
Then there is a 02*(K,J,e, 0), which is o(d), such that Pi(F,) <
0,x(K.,J,e,8). Let L=FUF,, and let 0,(K.J,e,0) = 0,(K,J ¢, 8) +
0,4(K,J,e,6). Then Pr(L) < 0,(K,J,e8). Let [a,b]CJ with b-a <§,
and let

Q = {w:ir(w(s), wt)) >2¢ and w(s) eK? for some s and t in [a,bl}.
I claim that

(7.5) Pr(Q) < 0,(K.J,e,8) .

To see this, let S = {tl, ---,tn§ with a < ty << t, < b, and denote our
previous L by LS' Then Ls is an open set, the union of any two such
is a set of the same form, and Q = U LS. By Theorem 3.1 we have (7.5).

Let k be the least integer greater than |J|/5, where |J} is the
length of ], and partition ] into k subintervals of length <&8. If s
and t are in ] with |s—t| <&, then they lie in the same or adjacent sub-
intervals. Let 94(K,J,e, o) = k63(K,_],E, 0), so that (94(K,J,s, o) = o(l),
and let

(7.6) R =low:r{e(s),w()) > 4e and o(s) eKY for some s and t in J with
ls-t| <o} .

By (7.5), Pr(R) < 64(K,],s,5). (f s and t lie in adjacent intervals, let

r be the common endpoint. Then r(w(s),w()) >2e or r{w(),w(t)) > 2 .)
Now let K be a sequence of compact sets whose interiors cover M.

Let Jp be a sequence of compact subintervals whose union is I. The

set R of (7.6) depends on K, J, ¢, and 6. Then

z-NN N UR®K,Jped)

n f e06>0

and we may restrict ¢ and & to be rational. Since each RC(Kn,Jg,e, 8)
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is a closed set, this shows that Z is a Borel set, so that Pr(Z) is
defined. To show that Pr(Z) =1, we need only show for each fixed n,
£, and ¢ that Pr(R(Kn,_]z,s, 8)) >0 as 8 - 0, but this is precisely what

we have shown. =

§8. Stochastic Integrals
Let ¢ be a smooth Markovian diffusion, and let A, be a possibly

time-dependent covector field. We want to give meaning to the expression

8.1) fAi(f(t),t)éidt :

Let A; be smooth and have support in a coordinate neighborhood U,

with local coordinates ql,---,qn. We define w' by
t

8.2) £l -£Xs) = f BUER, N dr +wl() - whs) ;
S

this determines w' up to an additive constant that may be chosen arbi-
trarily (better yet, regard wi(t)fwi(s) as a ‘‘difference process’’ indexed
by IxI; see [47, p. 83]). Notice that the integral in (8.2) is an ordinary
Riemann integral (by the continuity of paths). So also is
[ A€o0 B EDD .

By (8.2),

d&ie) = Bk, dt +dwi(e) .

Recall that Etdfi = ,Bidt , so that Etdwi =0 and dwldwl = drfidcfj = ollgt.
( M=R" with oli - 51 , then w! is the Wiener process.)
Since g—t Esfl(t) = ESBl(f(t),t), we have

t
®8.3) EEND) < £i(s) + Eg f Bl dr .
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By (8.2) and (8.3), Es[wi(t)—wi(s)] - 0, sothat w! isa martingale.
Thus (8.2) is the continuous time analogue of the decomposition (4.4) of
a discrete time process into a trend process and a martingale. Stochastic
integrals are the analogue of sums (4.8) giving investment strategies, but
I will discuss them only for the special case that the integrand is in ﬁ .
Now divide the interval [s,t] into v equal pieces: r, = s +a(t-s)/v
for ¢ =0,.--,v. Let dra =(t-s)/v and dwi(ra) = wi(ra+dra)—wi(ra). I

claim that
t

v-1 ‘
8.4 fAi(f(r),r) dwl(r) = iim E Ai(g(ra),ra) dwl(ra)
00 a0

s

exists in L2%. To see this, consider more generally

-1 .
(8.5) 1= ndwiy)
a-0

~

where each 7;(r;) is in ?r N L*. We want to compute EJQ. Notice
a

that for a < 8 we have
En;(r,) dw'(r) 5 ) dwleg) = Eny(r) dw'e) nie g) ErBdwj(rB) -0,

so only the terms a = 3 contribute. Thus

v=1 . .
E]2 = E 3 n(t)ni(r)dwirp)dwle,)
a=0

—

= E Y 0 mie) 0 € ))dr, + o) -
0

<

Q
i

Now if we compare the sums in (8.4) for two different values vy and vy,
their difference may be written in the form (8.5) for v =v,v, (@ common
refinement of the partitions) with ni(ra) that is a difference of values of

Ai(nf(r),r) for two values of r differing by at most (b-a)/min (VI’VQ)' By
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the continuity of paths and the Lebesgue dominated convergence theorem,

E]2 +0 as ViWy o o, which proves the claim.

We define
t t t
(8.6) f AEDNAENR = f AE®,) BHED Ddr + f A (), dwi()

This depends on the choice of local coordinates, because dfi is not a

vector and so Aidfi is not a scalar. The two integrals

t t t

(8.7) f MGOBEAOR f A€ AENE) + f NGOBEINGOLIS
t t t

(8.8) f AE@),0T,E) - f AE@DAEN) - f AEODF T

where E*fi(r) = d*fi(r) - %Fi(f(r)dr is the backward vector differential,
do not depend on the choice of local coordinates, but the use of either one

involves the choice of a direction of time.

Recall that Odfi = é— dfi + é— d*«fi is a vector, and define

t t t

8.9) f AEDDdE @) - £ f AN AE W + & f AEDN, L) .

s s S

This is independent of the choice of local coordinates and of the direction
of time; we use it to give meaning to the formal expression (8.1).

The integral (8.7) is an Ito integral [33] in the sense of Meyer [45],
and (8.9) is a Fisk [25)-Stratonovich [59] integral in the sense of Ikeda
and Manabe [31]. The use of the symmetric vector differential in path

integrals of covector fields is originally due to Feynman [23],
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§9, Stochastic Action
Let & be a smooth Markovian diffusion and consider the formal

expression

©.1) Efé— i€ dt .

Can we attach any meaning to this? Since d¢ idfi = oiidt =ndt, where n
is the dimension of M, this looks hopelessly singular: f;— , with no
differential! But let us examine it more closely.

Let ‘dvf be the vector in Tf(t)M such that a free particle starting at
E(t) at time t, and moving with constant velocity E'f/dt , arrives at
E(t +dt) at time t +dt. (In §5, ?ff was defined only up to o(dt), as an
element of %t/ﬁt .} Then ?i'fla‘gl is the square of the distance between
Et+dt) and &(t). We want to compute Et?i'f iﬁfi up to o(dt?).

Let 7 be the trajectory of the freely moving particle, so that

7 = £,

i(t+dt) = Eitadt)

((% Tzi) ® =Editi,

and

2! LT dnf dn¥ -0
dSZ _]k ds ds
since the acceleration 6f n is 0. Choose normal coordinates q?‘ at

&(t), and abbreviate 8/8';1E by 82. When the argument of a function is
not displayed, it is understood to be &(t). Then

Gﬁﬁmzo,

ds?

: ~ei Tek el
A3\ gy - _gpi 967 dE° dET
(ds3>(t) - aﬂrjk dt dt dt ’
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so that

dét = yitan) i -1 - 1 aerjik'agiigkifg + 0(dt?

P IETIIN é_ agFjikdfjdf kagl |+ 0t?) .
Therefore

~eig e . L g geigekge! 2
9-2) E@EITE, - Batlag; « Lol o1 a? + L oMo ae? 1 otar? .

The numerators 1 and 2 come from the fact that i may be paired with
f and i may be paired with j or k. Notice that the term with i =j =k =1¢
occurs in both terms, but Etdfidfidfidfi = 3dt? + o(dtz).

By (8.2), tdt

dfi = f Bi(f(r),r)dr +dwl .

t

The integral is bldt + o(dt), since Bi bl at &(t) in normal coordinates,
but we need a better approximation to compute dfldfi up to o(dtz) ,
because dw' is of order dt”:. Apply (8.2) to &(r) in the integrand; then

t+dt r

f ,Bi 50 +f3(§(s),5)ds +w() —wt),r |dr + dwl

t t

get

1l

bidt + gy AWK +dw! + 0(dt?)

1l

where
t+dt

wk =f fw K(r) - wX(®)]dr .

t
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By (5.14), this gives
dét — blae + vypiwk — Lsile 1l wkidw! « 0@t?)
2 ik
so that
(9.3) d€'d€; - blbdt? +2bidw,dt + 2V, biwkduw, ~5iﬂakrjizwkdwi +dwidw, +o(dt?).
The term 2bidwidt is singular, but
E2bdw,dt = 0.

The process w has orthogonal increments, soif t <s <r then

Et[wk(s)fwk(t)][wi(r)fwi(t)] = Etfdwk(sl) faia(f(sz))dwa(sz)
t

t

=E, fdwk(sl) f [Bia + %— 5jgajagoia(52—t)] dwa(sz) +o(s—1)?
t t

= Bi((s—t) + 41T 5k85jg8j(9€aia(sft)2 +o(s-t)2 .
Therefore
E2V,bWhdw, - V;bldt? « o(dt?)
iy piwkso vy o 1 sifl 5 pige2 2
Et(—5 aijKW dw,)) 5 o élljjgdt + odt“) ,
Etdwidwi = ndt + }T Bia5j28jagoiadt2 + o(dt?) .

Since Vﬂaia =0 —that is, c?goia+2rgoba =0 —we have Gjazoia =

—28-(I“b.o ), so that in normal coordinates
1Y fi "ba

1 siasily o 1 sisilarb 1 sbkyri
48 581%013- 23b5 GJF&_ 25 aﬂrik'
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By (9.2) and (9.3),

BJETE - (vl Vil -Lalkori +Lafart ) a2 cnde- o)

: : 1sikopi 1elkari 15 5 -
But in normal coordinates, ~6—5J ail“jg+65 agl“ik “g R, where R is
the scalar curvature. Therefore in general coordinates
detdg;

- ——bibi+%—Vibi+l—§+i+o(l).

1
.4 Etz’ dt dt 2 12 2dt

This result is due to Guerra (unpublished). After seeing the manu-
script draft of this section, which was wrong from beginning to end, he
kindly informed me of the calculations that he had previously made, lead-
ing to (9.4).

The singular term —=— is a constant that is the same for all paths,

2dt

and it drops out in the variation of the expected kinetic action. We will

use this fact in Chapter II,

§10. Stochastic Parallel Translation

In deterministic kinematics, the idea of parallel translation along a
path & is that a neighboring configuration 7 moves so as to have the
same velocity at all times (see the concluding remarks in §2). Let us try
to generalize this idea to stochastic kinematics.

Let & be a smooth diffusion. Does it make sense to say that at all
times dni(t) is the same as dfi(t) ? No, because they are not vectors—
but it does make sense to'say that at all times Eni(t) is the same as
deiw.

Let the neighboring configuration 7(t) be defined by ni = fi Lyl
where Yi is a tangent vector at &(t). Then

EIN

i
aqngm +o(Y) .

10.1) F}idz(n(t)) - F}ie +
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Christoffel symbols and their derivatives are understood to be evaluated
at &(t) unless an argument is displayed.

The condition for the neighboring vectors Efl and Eni to be the

same is

10.2) Tyt = qel - Fligyka'gf’« .

We have

(10.3) agi = Feio L I“EdfkdfE

(10.4) dy' = Ty - L 0Tk’
2 Kkl

(10.5) dy! = dyt - agt .

Putting these five equations together, we find

oI
i_ plyksel 1 kl i i j m_k!
(10.6) dY" = FkﬂY dé 2(8qm Fkl“g +FF )Y otrdt .
This is a linear equation in Y, and its solution for an initial value Yi(s)

is of the form ] o
Yl(t) = Tf(s,t);Y‘](S) 1

where rf(s 0T £es) T?f(t)' We call rf stochastic parallel translation.
It is due to Dohrn and Guerra, and is in general different from a parallel
translation introduced by Ito. The induced map on tensor spaces will also
be denoted by Tg(s,t).

Let a be a smooth tensor field of compact support. Now we can

define its stochastic forward derivative by

rjfudt,t) a(€(t+dt)) —a(€(t)
dt )

(10.7) Da(é(t)) = lim E,
dt->0+

To compute this, consider the case that a is a vector field Yi and



10. STOCHASTIC PARALLEL TRANSLATION 49

choose normal coordinates at &(t). Then
. . ori
i _ i 1 Pkl vm _kf
rf(t,t+dt)Y E®) = YIEQR) - 7 aqu o%tdt |

so that

. . i
rf(tm,t)yl(g(tm)) = YXE(t+dt)) +é_ %{%Ymakgdt .

Then

rgmdt,t)yi(audt»in(f(t» = [Yi(t+dt) - Y (&) +

9q dq’oq

. . i . 2% i ol
Dyl _ i 8Y;+é_ ,iP aj_‘a{‘p+%_0k8 Kl ym (Ney.
dq dq’oq

s ol .
But in normal coordinates b’ 8_Y_ = bJV)-Y1 and

an

L ipyy yi - L ooy (dY), i ym
o VijYgza V] aq+r Y

Consequently,
S . . CRI
i_ivwi,. 1l ipv. il kKl Y km)ym

But in normal coordinates, the expression in parentheses is the Riemann

kf,

curvature tensor Rikmﬂ’ by (2.11), and o Rikm? is minus the Ricci
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tensor Rin. Therefore
(10.8) DY! - % (Vivjth?{i) + bJ'VjYi .

This is a tensot equation, and is valid in general coordinates. For a

general tensor field a we have, using the notation of (1.5),
_1 g . j
Da = > (Vv Vja~R.a) +b Vja .

We denote the Dohrn-Guerra Laplacian VjVj—R: simply by A. Then for
possibly time dependent tensor fields, and with the definition of the back-
ward stochastic derivative D for tensor fields analogous to that of D,
our equations have the same appearance as for scalars:

(%— A+ijj +é) a,

Da %

il

(10.9)

]

1 j d
D*a (—2— A+b‘]*v] + gt) a .,

A very useful fact is that A commutes with grad and div. Let f be

a smooth scalar; then I claim that

10.10) ViAf = AVif .
This follows from Ricci’s identity (2.12), We have

and contracting with o3k we find
a a
VIAf = V VaV1f+Rl Vaf = AVlf .

We may write (10.10)as grad A = A grad. Since A is formally self-

ddjoint, it also commutes with the formal adjoint (~div) of grad, so that

(10.11) vAXE - AVxE,
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On scalars and 1-forms, the Dohrn-Guerra Laplacian agrees with
(minus!) the Laplace-de Rham operator —(d6+0d), but this is not true in
general for forms of higher degree.

We define Dfi = bi(f(t),t) and D*fi = b,ik(f(t),t) , and we define the

stochastic acceleration a' by
10.12) alé®.) = 5 ©,D+DDYEL.

Other reasonable definitions, such as %(DD-{—D*D*)Ei ot any average of
this with (10.12), are possible, but we will see later that (10.12) enters
the theory naturally — it no longer has to be postulated as in {47]. We

have

(1013) al = 2—D*b1+7Db; = i (—Z—A +biV]+&)bl + 7(7A+bJVJ +&) btk

- (%l+vjvjvi) ~(5—Aui+uj Vjui) .

A notion of stochastic parallel translation was introduced by Ito in
[34]; see also [19], [35], and [45]. Ito’s construction has the property
that if the time interval is subdivided into a sequence of partitions with
mesh tending to 0, then the ordinary parallel translations along the
piecewise-geodesic approximations to the path converge to it with proba-
bility one. The Ito translation is isometric. The stochastic parallel
translation described here is due to Dohrn and Guerra [14][15]. A neigh-
boring point traveling the same way as the diffusing particle feels the
Ricci curvature: on a positively curved manifold it tends to get closer.

Dohrn and Guerra call this geodesic deviation.

§11. Existence of Diffusions
The simplest example of a smooth Markovian diffusion is the Wiener
process w. Here M =R", ol =5ij, 1=100,0), p(dx,0) =35, bl -0.
The probability measure Pr is given by (6.4) with
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n Gy
L1 p(x,s;y,t) = @a(t-s)) 2e 2(75) 0<s<t<o.

This is the stochastic analogue of rest, and books have been written
about it, The wi are independent Gaussian processes, and wi(t) —wi(s)
for s <t is Gaussian with mean 0 and variance t-s. To verify that w
is a smooth diffusion, we need to show that dwidwl =85 dt. Let z be
the difference of the two sides. Then Eiz = 0 and Et22 =dt? for i £ij
and Etz2 = 2dt? for i =j (since Et(dwi)4 =3dt?). Thus z €Gt‘ 1
will not start talking about the Wiener process because if I did, I might
not stop.

The Wiener process may be used to construct a general smooth
Markovian diffusion locally. Consider the process conditioned to be at
x at time s. Choose local coordinates at x in M. We want to con-
struct, locally, a Markov process for given Bi and o, Suppose we

can solve
11.2) d£i) = BHED,OAt + AL &) dwd

where w is the Wiener process. Then Etdfi = Bidt and d&idél =

A;Ai) 52bdt | so we want A;Aé 83b _ 511, To achieve this, let Aia be
the square root of positive type of the matrix ol Bja (this is a coordinate-
dependent construction). With this choice of Ala , let us proceed to

solve (11.2). This can be done in strict analogy with the deterministic

case, Theorem 1.1. Let f(i)(t) - x! and inductively

t

t
Lo =x f BHE (0,0 dr + f AL @) dwd() .

a

The second integral is a stochastic integral. The convergence proof is
quite analogous to the proof of Theorem 1.1, Then the limiting process
has the required properties so long as it stays in the coordinate
neighborhood.
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The motions in different coordinate neighborhoods may be glued
together to construct the process until (or if ) it runs off the manifold to
o; see [26]. What one gets is an analogue of Theorem 1.2. As the
counterexample at the beginning of §7 shows, we need to know more than
Bi and o'} to tell the particle what to do if it runs off the manifold.

Another local construction is the analogue of the deterministic poly-
gonal approximation method (see §1). Choose a random vector 'c\i'wi(s) in
TX of mean 0 and covariance oij(x)ds; for example, it may be
Gaussian or uniformly distributed over the sphere of radius ds. Let
Efi(s) = bi(x,s)ds +Ewi(s). Then let the particle travel with constant
velocity Efi(s)/ds for time ds, arriving at a point fi(s+ds). In con-
trast to the deterministic case, it is essential to use the Riemannian
connection to define what is meant by traveling with constant velocity

(acceleration vector 0). Then choose a Ewi(s+ds) in T inde-
f(s-l—ds)

pendently, and repeat. This construction is harder to control than the
method of successive approximations, but it is coordinate-independent
and very appealing geometrically. The use of nonstandard analysis
produces substantial simplifications in this kind of construction. The
polygonal approximation describes the motion as long as the particle
stays in M.

These two methods are direct probabilistic constructions. Another
approach is to use methods of partial differential equations to solve for
the forward and backward transition probabilities and then construct the
measure on path space by (6.4).

Let us begin the discussion with the assumption that the Riemannian
manifold M is compact, so as not to have to worry about boundary condi-
tions. Suppose that at a fixed time, say 0, a probability measure
p(dx,0) on M is given, and a smooth vector field bi(x,t) is given for
all t>0. Thenfor x in M and 0 <s, the forward Fokker-Planck
equation (in y and t, for s <t ) with the Dirac measure at x as

initial condition at time s, has a unique smooth strictly positive solution
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p(x,s; y,t), which is probability density in y. The uniqueness ensures
that it satisfies the Chapman-Kolmogorov equation (6.5). Let I = (0, «)
and let Q be path space. For f in Cfin(Q)' of the form (3.2), let

(113) L(f) :f“'fF(Xl’"Xn)p(dXO’o)p(xO’O’ dxl;tl)p(xlytlidXZyt2) nne

p(xn_1 Aa 13 dxn’tn) .

Then (6.5) ensures that (11.3) is well-defined (the F corresponding to
f is not unique, since there may be some t; such that {f does not
depend on w(t;) ). Let Pr be the corresponding regular probability
measure on §), as in §3, and let &(t) be the random variable © + w(t).
Then ¢ is a smooth diffusion.

This is not hard to see. The o'/ and bl are given. For f a smooth

scalar, verify that

(11.4) DE(E®)) = ( é_ A +biVi) (L)
As a consequence, if g is alsoa smooth scalar,
(11.5) D(fg) - (Df)g+f(Dg) +o IV Vig -

Use (11.4) and (11.5) for f and g local coordinate functions to verify
(5.1) and (5.2). Then consider the time reversed process. Notice that the
probability density p(x,t) = [p(dx ;,0) p(x5,0; x,t) is strictly positive and
smooth, and define bi by the osmotic equation (5.22). Use (6.2) as a
definition of p, and observe that it can equally well be used to construct
the measure on path space (on (0,t) ). Use this to verify that D _f( E(t)) =
(—% A‘i"b}k V-l)f(f(t)), and argue as before.

For our purposes, rather than prescribe p at one time and bl atall
future times, it is more natural to prescribe p at all times. Let M still
be a compact Riemannian manifold, and let p be a strictly positive

smooth function on Mx R that for each t is a probability density. Is
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there a smooth diffusion on M with p as probability density? Some
people seem to think that in a diffusion process p must spread out as
time increases, but this is not so. It can spread out, bunch up again,
spread out, bunch up at five separated peaks, produce rings of alternating
density —in short, there are no restrictions. The reason we don’t obsetve
this kind of behavior when ink diffuses in water is a dynamical one — this
diffusion has dissipative dynamics. But the motion of billiard balls is
also less interesting if someone has poured molasses all over the table.
The osmotic velocity ul = é— vi log p is smooth since p > 0. We
need to find a current velocity satisfying the current equation (5.24). This
is easily done: let _ Lo P

vlie - 5 Via-l gp .

Notice that A1 % exists since
f - g_ - 0.
M

Py
ot
M
11

There are other solutions, obtained by adding p~ z° where z! s any

Q‘IQ‘

smooth divergence-free vector field. Now for any smooth v satisfying
the current equation, let bl = viyul and bi =vl-u'. Then p satisfies

the forward Fokker-Planck equation (5.17) since
Lap = (L vip) - v.wip)
AP = Vily VP) = Vilup),

and similarly it satisfies the backward Fokker-Planck equation (5.23).
Let p and p, be the fundamental solutions of these two equations; then
they are related by (6.2). Define p(dx,,t;; - dx ,t)) by (6.3), for f in
Cﬁn(Q) of the form (3.2) let

L(f) :f'"fF(Xl’""Xn)p(dxl'tl;""dxn’tn) ’
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let Pr be the corresponding probability measure on ), and let &(t) be
© - o(t). Then £ isa smooth diffusion with probability density p.
Now let us consider a general Riemannian manifold M, beginning
with the case that v! =0 , so that by the current equation p is constant
in time. I call this osmotic diffusion; see [1]and [2]. Let us make the

assumption of finite osmotic energy,

(11.6) f% ul, pdyy < oo .

(It is not really an enetgy; the dimensionality is off by a factor with the
dimensions of action, but that will be introduced later.)
Let H be the real Hilbert space LZ(M, pd Mx) , let & be the sub-

space of all smooth f that are constant outside a compact set, let

(11.7) IE): = %fvifvifdex +ff2dex :

and let ! be the completion of & in this norm. I claim that the quad-
ratic form (11.7) is closeable (so that we may identify H! with a dense
subspace of H ). Let £, be a sequence in & such that fp @ in H!
and fn >0 in H; we need to show that ¢ =0. Forall g in &, re-
calling that -12—Vip = uip we find

. 1 .
%fVIanig pdyx = —ffn ¥ Ag pdyyx —faniguldex -0

by (11.6). Hence (¢,g) = lim (fn,g) =0, sothat ¢ =0.
n

L
2
corresponding to this quadratic form. The operator

Now we define Ap to be the negative self-adjoint operator on K
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tLA
2

e p

is an integral operator whose kernel (with respect to the measure pd,x )
we denote by pt(x,y). This may be used to construct Pr on path space.
Notice that 1 is in the domain of Ap and Apl =0.

This variational approach has the advantage not only of specifying
good boundary conditions (Neumann condition —reflection at the boundary)
but of working with minimal smoothness assumptions. Heretofore we have
considered only smooth diffusions, but we will be interested in more gen-

eral cases. In particular, the construction above allows p to have nodes

! becomes infinite).

where p =0 (and u
The general diffusion is a continual mixture of osmotic diffusion and
current flow (the flow generated by the current velocity). I was convinced
that one could prove existence and uniqueness theorems for solutions of
the diffusion equation, and construct Pr on path space, under the assump-

tion that for all s <t,

t
(11.8) ff%—(uiui+vivi)dexdr<oo,
s M

without smoothness or strict positivity assumptions. Eric Carlen, as part
of his Princeton thesis, has discovered how to do this, using variational

methods from the theory of partial differential equations; see [67].



Chapter II
DYNAMICS OF CONSERVATIVE DIFFUSION

The first two sections of this chapter are a review of deterministic
dynamics. It is pointed out that the requirement that the force be a
dynamical veriable restricts the class of allowable Lagrangians.

In §14 conservative diffusion processes are characterized directly in
terms of the ordinary Lagrangian, and the Schrédinger equation is derived.
This gives a direct dynamical prescription, with no arbitrariness, for the
diffusion processes of Markovian stochastic mechanics. This section is
entitled ‘‘Stochastic quantization’, but the physics remains classical.

The final section of this chapter concerns the nodes (zeros) of the
wave function, showing that a unique Markovian diffusion process is
associated with a general solution of the Schrédinger equation (with some
smoothness assumptions but no restrictions on the nodes), and discussing
the probabilistic weighting to be assigned when the nodes divide space-

time into noncommunicating regions.

§12. Newtonian Dynamics
Let F be a force acting on a mechanical system whose configuration
is x, and let Xldt be an infinitesimal displacement of the configuration
(sothat X ¢ T,M ). Then the work done by the force is dW = F,X!dt. The
much-maligned tensor notation, with its profusion of upper and lower
indices, shows immediately that a force is a cotangent vector; for dW to
be independent of the choice of local coordinates, the components F;

must transform according to
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(In calling F a force, we are assuming that the local coordinates qi
have the dimensions of length. Sometimes it is convenient to choose
local coordinates with other dimensions, and the different components
need not all have the same dimensions. But dW should always have the
dimensions of energy. When the qi do not all have the dimensions of
length, but FiXidt has the dimensions of energy, we should properly
speak of F as being a ‘““generalized force.”’) A force field is a dynami-
cal variable whose value at each x is a cotangent vector at x, so
F:TMxR > T*M with #F(x,v,t) = x.

In Newtonian mechanics the fundamental dynamical law is F =ma.
As we have seen, we need an affine connection in order to define the
acceleration a. Which affine connection should we choose? And after
we have chosen it, how do we set a covector equal to m times a vector?
What is the mass m ?

These problems are solved by introducing the notion of the kinetic
energy of a mechanical system. The kinetic energy T, a smooth scalar
on velocity phase space TM, is given in local coordinates by

- Lo pip]
T_2m1]pp.

For this to be independent of the choice of local coordinates, my; must
be a covariant 2-tensor, and since pipJ = plp', without loss of generality
we take mj; to be symmetric. The kinetic energy is always positive,

and is strictly positive unless pi = 0. In short, m.; is a Riemannian

. ij

metric on configuration space M. If the q' have the dimensions of

length, then m; has the dimensions of mass; we call it the mass tensor.
We choose the affine connection V to be the Riemannian connection,

and use it to define the acceleration: al = fi + Fjik‘fjfk. Then Newton’s
equation is F, = mijaj . For a given force field F we obtain equations
of motion for a local flow on velocity phase space; in local coordinates,
(:ll = pl ’
pi - mip. _ i pjpk i
) ik
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§13. Lagrangian Dynamics

The Newtonian formulation of dynamics is too general— it ignores the
overriding importance of energy conservation in an isolated mechanical
system. Let us recall the more familiar Lagrangian formulation of
dynamics. I will argue that the Lagrangian formulation is also too general,
and that the proper formulation of dynamics is the common part of the two
formulations.

Let L:TMxR - R be smooth, with the dimensions of energy; it is
called a Lagrangian. (For an isolated system, L will be independent of
the time t .) Given a path & in the configuration space M, with

velocity vector £, we define

Y

I - f L, £, t)dt .

to

Hamilton’s principle is that the path ¢ is a critical point of I, under
variations with the same initial and final points. How does one vary a
path in a manifold? Let X be a time dependent vector field on M, and
recall that fi(t) + Xi(rf(t),t) gives a neighboring point ni(t) to «fi(t) ,
which is well-defined (independently of the choice of local coordinates)
up to ofX). We abbreviate XM(&(t),t) by 8£' and g—tXi(f(t), t) by SE1.
For a functional A of paths, let SA(£) be A(£+8E) - A(€), tofirst

order in X. Recall the derivation of the Euler-Lagrange equations:

1
S = f [L(E+68, £ 466, 0) — L(&, & t)ldt

f L peiy st f —L-a‘i—kafi dt ,
al T ot o'
0



13. LAGRANGIAN DYNAMICS 61

under the assumption that X(- ,to) =X(-, tl) =0, so that

(13.1) QL{‘H@E Q’si-:o.
dq dp
Now let M be a Riemannian manifold with mass tensor mij , kinetic
energy T :é— mijpipj , and define the potential energy V by
L=T-V.

Then i = -al - —@\—/ , so that in normal coordinates at a point,

dq' doq* oq

L __ N (Noy.

oq’ oq'

By the Euler-Lagrange equation (13.1),

__9v _dfIr VY _ _ 9V _d f. i IV
0- a0 dt(api api)_ o dt (’“Up api> (NC) -

But by Newton’s equation, ?i_t (mijpj) = Fi (NC), so that we have

v . d oV
F. = -2L + = =L (NC).
1 &11 dt apl

But we require F, to be a dynamical variable. If the state in TM of a
mechanical system is known, and the time is known, then the force F

must be known. By this requirement, gzl must be independent of p;

that is, V(x,p,t) must be of the form

(13.2) V(,pt) = $(x,t) ~ Ajx,p) .

This is a tensor equation, so it holds in general coordinates. We call ¢

the scalar potential and A; the covector potential. Then

F. = ﬁais_aii . iﬁvipﬁpi
i PR i ad)
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We set

(13.3) g, - % i

and call it the electric-type force, and we set

aAj OA.

it is the exterior derivative of the convector potential A, and we call
Hijpj the magnetic-type force. It is always orthogonal to the velocity:
1y _ i - _H..
Hijp p’ = 0 since Hij = Hjx'
Let x:MxR » R be smooth, and make the replacements

X

b + Y

(13.5)
non,
aql

in the Lagrangian. Then the equations of motion are the same after this
gauge transformation.
By a basic dynamical system | mean a Riemannian manifold M and a
Lagrangian L=T-V, where T = é— mijpipj and V is of the form (13.2).
A familiar example of a basic dynamical system is given by a particle

of mass m in a scalar potential V. Here M=R> and L = -12— mvZ - V(x).
This is a nonrelativistic system. The relativistic kinetic energy of a
particle is not expressed by a Riemannian metric, and we cannot write a
relativistic analogue of this system as a basic dynamical system. But
there is no relativisitic dynamics of interacting particles; relativisitic
dynamics requires fields, and relativistic fields can be represented as
basic dynamical systems in the limit as the number n of degrees of free-

dom goes to infinity.
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Now let us change our point of view towards the principle of least
action. Rather than follow the motion of a single configuration, let us
study the flow on M determined by a time dependent velocity field v.

Let &(s;x,t) be the configuration at time s if it is x at time t. Let
L be a basic Lagrangian, L = é— mijpipi - ¢o+Aivi, and define Hamilton’s
principal function S(x,t) by

Y

S(x,t) = —f L(£(s; x,t), v(E(s; %,t),8),8)ds .

t

(This function of x and t depends also on ty, and it is a functional of
v.) Let D be the substantial derivative (derivative along paths), so that

- % +viV.. Then DS =L; that is, DS(x,t) = L(x,v(x,0),t).
Now we require that v be a critical point of S, for unconstrained
variations. Let v’ be another time dependent vector field, let dv =v'~v,

and denote the quantities with v’ replacing v by “. Then

D(S™-S) = D’S’~ DS + (D-D")S’ = L'~ L - §v'V,8*

= L'~ L - 8viV,S + odv) .

. t
Now L'-L = (v;+Apdvi+ o@dv), and S-S =- [ ! D(s’-8)ds since S’

and S vanish at t,, so that

t

S-S - _f (v A, -V.S)dvids + o(dv) .

t

Since this is o(dv) for all choices of 5vi , we have the Hamilton-Jacobi

condition

(13.6) vi+A; =V.§S,
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which together with DS =L —i.e, gt_s + viViS = % vivi—¢> + Aivi

— gives the Hamilton-Jacobi equation

13.7) gt§+ é— (ViS-Al(VS-A)+¢ = 0.

Using (13.6), we may rewrite (13.7) as

oS, 1 j _
8—t-+2—vvj+q§—0.

Now apply V, and use (13.6) again. Then

dv. oA, .
(13.8) bt LV Vif= 0.

For any smooth vector field 2} we have

(13.9) é- Vl-(zjzj) - 23V, + zj(Vizj~iji) ,

as may be verified in normal coordinates. Since V is torsion-free (the
Christoffel symbols are symmetric in their lower indices), Vizj _iji is
the exterior derivative of z;. By (13.6), v has the same exterior deriva-
tive as "Aj , s0(13.8) is

(13.10) %+VjV~V« = —V-d)vaii+H--vj
' ot it 1 at -

Since the acceleration vector al is given by Dyl , (13.10) is Newton’s
al = F,, so the second form of the principle of least action

1)
leads to the same equation of motion as the first.

equation m

Notice that a different choice of final time t, in the definition of S
replaces S by S +y with Dy = 0, which produces a gauge transforma-
tion (13.5) in (13.6) and (13.7) and leaves (13.10) unchanged.

The derivation of the Hamilton-Jacobi equation given here is patterned

after [28], with a modification in the treatment of the final time.
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§14. Stochastic Quantization

Consider a basic dynamical system of finitely many degrees of freedom,
with configuration space M and mass tensor my; Let us explore the
background field hypothesis, that interaction with the background field
causes the system to undergo a diffusion process with diffusion tensor
oli = K mi satisfying a variational principle OE [Ldt = 0.

This hypothesis is advanced not as a fundamental law of nature, or in
an attempt to construct a new kind of mechanics, but as a falsifiable con-
jecture about the classical interaction of some systems with some back-
ground fields.

What kind of system and background field could possibly produce such
a diffusion process? An obvious necessary requirement is the dimensional
consideration that it be possible to construct a constant with the dimen-
sions of action from the constants of the theory. From this we see that
quantum fluctuations are not of gravitational origin: one cannot construct
a constant with the dimensions of action from the gravitational constant G
and the speed of light ¢. As is very well known, this can be done from
¢ and the fundamental charge e. I conclude that quantum fluctuations
may be of electromagnetic origin (using electromagnetism in a broad sense,
to include gauge theories unifying electromagnetic forces with weak and
strong forces —a topic that I am not competent to discuss). A major
problem is to discover how ¢ and e determine the scale K of the
guantum fluctuations.

The kind of interaction with a background that I have in mind is
nothing abstruse. Consider, for example, the classical interaction of
charged point particles with the electromagnetic field. With suitable
ultraviolet and infrared cutoffs, this is a dynamical system of finitely
many degrees of freedom, and we have global existence and uniqueness.
This is a deterministic, nonlocal system (the motion of a particle in one
place immediately affects each of the finitely many field oscillators, and

so immediately affects the cutoff field everywhere). Is it an exaggeration
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to say that nothing whatever is known about the behavior of this system
as the cutoffs are removed, that there is not one single theotem that has
been proved? The self-interaction of the charged particles is usually
ignored or assumed to be a mass renormalization; perhaps, however, as
the cutoffs are removed the self-interaction leads to random fluctuations —
perhaps the limiting theory is nondeterministic and local. In recent years
we have seen various surprising types of chaotic behavior emerge from the
dynamics of nonlinear interactions; perhaps quantum fluctuations also are
of dynamical origin.

I want to argue that the hypothesis that a system performs a diffusion
with diffusion tensor Hmij is just on the borderline of being demonstrably
false. Consider a free particle of mass m, and let &(t) be its
x-coordinate at time t. We may observe &(t) to within an error 8x, by
using light of wave length =~ §x or a diaphragm with a slit of width
~ 8%, but as Heisenberg [30] showed, any such measurement gives the
particle an uncontrolled additional momentum JSp subject to the uncertainty
relation ApAx > H/2, where Ap and Ax are the standard deviations of
Op and 8x. Let us make the usual assumptions in discussions of this

sort, that 8p and JOx are independent with mean O and that the position
of the disturbed particle at a later time t+dt is &(t+dt) +% dt + o(dt).
We may observe this later position with arbitrarily great accuracy, since
we are not concerned with any disturbance of the motion after time t+dt.
Then we have observed &(t+dt)-&(t) to within an error é—rg dt - 6%, and

2
so (qf(Hdt)Af(t))2 to within an expected error of (—A% dt? + (AX)2 . The
m

minimum value of this error, subject to the constraint ApAx > h/2, is
}% dt ~—the postulated value of Etdf(t)2. Were one to postulate a bigger
value, the only way to avoid a retfutation by experiment would be to
abandon the ‘““usual assumptions’’ made above.

Suppose that the system undergoes a diffusion with diffusion tensor

fml) and has probability density p at a given time r. We need a
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dynamical law that, for a given force field, determines the forward drift at
all future times and the backward drift at all former times.

First it is necessary to say what this dynamical law will not be. In
the review of deterministic dynamics in the two previous sections, we
discussed conservative dynamics but said nothing about dissipative
dynamics. Suppose we drop a sponge from the leaning tower of Pisa. It
will at once acquire a certain velocity, and fall with this constant velocity.
If we simultaneously drop a heavier sponge, it will fall with a larger con-
stant velocity and reach the ground first. This is dissipative, or
Aristotelian, dynamics: the velocity of a configuration in a force field F
is F/B, where 3 is the coefficient of friction (in tensor notation,

f.i = Biij ). Before Galileo, this was thought to be a fundamental law,
rather than an approximate asymptotic law for motion in a resisting fluid,
and this misconception made it difficult for many to accept the emerging
conservative dynamics. There is an extensive dynamical theory of dissi-
pative diffusion processes: Brownian motion, thermal fluctuations,
Einstein-Smoluchowski theory (in which the drift is simply 3iij ),
Ornstein-Uhlenbeck theory, etc. If you are familiar with dissipative diffu-
sion, forget what you know — it has no more connection with conservative
diffusion than has the fall of a sponge with celectial mechanics. In
particular, dissipative dynamics — unlike conservative dynamics —chooses
a direction of time. If you are strong enough to give a cannonball minus
its final velocity, it will rise right back up to where Galileo dropped it; if
sfou give a sponge minus its final velocity, it simply flops to the ground.

We will derive the drift from a variational principle SE[Ldt =0. If L
is time independent, such a variational principle implies the existence of
a conserved energy T +V, as is familiar in the deterministic case and as
we will verify later in the stochastic case (where the energy is conserved
in the sense that its expected value is a constant in time). In terms of
the background field hypothesis, we are studying those random motions of

the system for which there is on the average no transfer of energy between
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the system and the background field (but the mutual transfer of energy
that averages out to zero is responsible for the quantum fluctuations of
the system).

Let me remark that I have no evidence for the background field
hypothesis (if I did, I would gladly sacrifice an ox). This hypothesis is
in no way used in the mathematical development of stochastic mechanics,
but I believe it to be essential for a physical understanding of the theory.

Let £ be a smooth diffusion on M with diffusion tensor ol = }imij .
We will take the mass tensor mij , rather than % = }{_lmij , as the
Riemannian metric on M. This has the consequence that some of the
formulas of Chapter I acquire factors of K. We say that & has finite
energy in case (11.5) holds for all intervals [s,t].

Let us seek the stochastic analogue of the second form of the princi-

ple of least action (in which the velocity field is varied). Let
14.1) L - & plp -6+ A

where ¢ and A; are smooth with compact support. For any interval
[t,tl] and natural number v, let s, = t+a(t;-t)/v for a=0,---,v, let
ds, = (t;-t)/v, let d&(s,) = &(s +ds,) - &Gy, let sg = (54118572,
and let a'f(sa) be defined as in §9. We say that a smooth Markovian
diffusion & is critical for L in case it has finite energy and for any
interval [t,t;], whenever bl is a smooth time dependent vector field
with compact support in M x [t,tl], and & is the smooth Markovian
diffusion with forward drift bl = b1+8b! and the same diffusion tensor

and probability density at time t as £,

1% ‘a‘ i 'a" : .
14.2) lim {E 2 [é— é;s(sa) i‘s(za) dsa—qﬁ(f(sg),sg) dsa+Ai(ff(sg),sg)d§1(sa)}
a=1 a

100

s ) T8 , , p
1 B— —‘fdsfa) ils(za) ds, - HE (sg),sg) ds, +Ai(§(sg),sg)d§ l(sa):l = o(0b}.
a
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Define E+:M><R»R by
= _1.i H i, K2s i H i
L, —2—bbi+2—Vib +T2—R~¢+Aibl+§ViAl.
Then

— iy dé.(t i
EL,(¢®,0) = EB— di t(t) ilt( = ¢(§(t),t)+Ai(§(t),t)od‘fd—t(t)] ~aq, o) -

To see this, use Guerra’s formula (9.4) and recall that

EA, o d£i(t) = EAvldt + o(dy) ,

but

(14.3) EAv! =fAi(x,t)vi(x,t) p(x,t)d yx :fAibip ~fAiuip

:fAibip~ﬁi Avip :fAibip ¥ g—f(ViAi)p -E (Aibi+g—ViAi) .

We define t;

I1-E f f.+(§(s),s)ds .

t

Then (14.2) is equivalent to

T-T= ob),

where * denotes replacing & by &

2 _
}f_zR is the Pauli-DeWitt term; see [72]and [73]. There is

no consensus as to whether it is spurious. Guerra and Morato [28] do not

The term

include it. They observe that

1oy Kol  wfloi 1.0 ) pf1déldid;
E(ib b1+2—V1b) = E(Q_V Vi——z—u ui) = E(2 Tt dt
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and take this as the kinetic action term. In the applications that we will
make, it does not matter whether the Pauli-DeWitt term is included or not,
because the only curved manifold we will consider is the group SO(3)

for which R is a constant. Also, in the following discussion we may
absorb this term into the scalar potential. My expectation is that the term
will prove not to be spurious. If the background field hypothesis is

correct, then the motion is governed by a classical Lagrangian for the

. 1 et (13 i .
system plus background field, and E 7 a9 a should arise rather than

E(l dffi d*gi)
274t dat J-
Following Guerra and Morato [28], let

1 i K i i H i
(14.4) L, = 5blbi+2—Vib‘_<;S+Aib1+_2_viA ,

4

14.5) I = Ef L+(§(s),s)ds ,

t

and say that & is critical for L in the sense of Guerra and Morato

(GM-critical for L ) in case
(14.6) I"'"-1 = o(éb) .

(Thus € is GM-critical for L if and only if it is critical for L with ¢
2 -
replaced by ¢ —% R.)
Let E  , be the conditional expectation with respect to T(t for the

process conditioned by £(t) = x, and define

Y

14.7) S(x,t) = _Ex,t f L+(§(s),s)ds .

t

This is the stochastic analogue of Hamilton’s principal function. By (14.7),



(14.8)
Therefore

(14.9)

Now

(14.10)
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DS =L, .

D(S-S)

D’S’-DS + (D-D)S’= L, -L, - b V,8’

p i
= L+‘L+ - 06b ViS + o(6b) .

L -L, = (b;+A;)8b! +22‘_Vi5bi + o(db) .

Since S and S vanishat t,, and p and p’ are the same at time t,

Y

(14.11) -E f D(SZS)ds = ES/(&(t),t) - ES(Et),t) = E'S(E (), 1) — ES(EL) t)

‘ =-T"+1.

By (14.9), (14.10), and (14.11),

(14.12)

But

(14.13)

4

I'-1 = E f (bi+Ai—ViS +g_vi) Sblds + o(5b) .

t

E & vobies)) :fg_ (V;8b%)p = —fb‘biuip :
M M

Since bi_ui =V,

(14.14)

t

I'-1 =E f (v;+A,~V,5)8blds + o(8b) .

t

Therefore (14.6) is equivalent to the stochastic Hamilton-Jacobi condition
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(14.15) vi+A; = VS,

1 1

since we may take Sbl = f(x) (vi+Ai-ViS) where f is any smooth func-
tion of compact support in M.

We have proved the following theorem.

THEOREM 14.1. Let L be given by (14.1), where ¢ and A, are smooth
with compact support. Then a smooth Markovian diffusion & of finite
energy is critical for L in the sense of Guerra and Morato if and only if

the stochastic Hamilton-Jacobi condition holds.

Let us continue to assume that £ is GM-critical for L, and derive
some consequences of (14.15).

Let
(14.16) R = g log p ,

so that VIR = ul and, by (14.15), bl =vitul 2 VIS_ALLVIR. If we

write out (14.8) we obtain

(§t+bv JiA) L iy, +HVibi—¢>+Aibi+’:’ZiViAi,

2

and expressing everything in terms of R and S we find the stochastic

Hamilton-Jacobi equation

14.17) éﬁtJr_(Vls AD(VS-A)+ b -1 LVIRVR —%AR -

(If A=0, then R =0 and this reduces to the deterministic Hamilton-
Jacobi equation.) We may rewrite (14.17), using (14.15), as

9.1, _L g, ~ B iy, -
(14.18) TV + ¢ 5 wu \7uJ 0.

Now apply V,; and use (14.15) again. Then
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dv. OA. . - . .
1 ‘ 1 1
(1419) —a—t—l + 5{—1 + TVI(VJVj) + v1¢—§-V1(uJUJ) - TVIVJUJ =0,

Now u; is a gradient, uj = VjR , So its exterior derivative vanishes, and

by (13.9) we have

L vy = WV,
(14.20) 5 Vl(u u]) =u V]ui'
By (14.15), vy has the same exterior derivative as —Aj, so that
1 . . . , .
(14.21) 5 Vi(v]vj) = vJVjvi —vi( ViAj 7Vin) = VJVjvi - HijvJ
(see (13.4)). By (10.10),

1 j 1 j 1 1 1
(14.22) EViVJuj -5 ViVJVjR = 2—ViAR - Z—AViR = EAui .

Inserting (14.20), (14.21), and (14.22) into (14.19), we obtain
ov: : : oA . .
i 1 i
(1423) ‘at— +V1Vjvi— U}Vjui\z—Aui=fvi¢ 7? +H1]VJ .

But the left-hand side is the stochastic acceleration ai of (10.13) (with
the index i lowered) and the right-hand side is the force Fi (evaluated
at the current velocity vl ), so that (14.23) is the stochastic Newton

equation

(14.24) mijaJ =F;.

Just as in the deterministic case, a different choice of final time t;
amounts merely to a gauge transformation that leaves the process ¢ and
(14.23) unchanged.

Following Yasue [14], let us seek the stochastic analogue of the first
form of the principle of least action (in which the path is varied with fixed
endpoints). Let & be a smooth diffusion on M, not necessarily Markovian.

Let the Lagrangian L be as before, and define
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Y

14.25) J(¢) - E f [1 L&z « } Lo, g0.0)] ot

tg

We say that & is critical for L in the sense of Yasue (Y -critical for L)
in case it has finite energy and for all intetvals [tO’tl] and time depen-

dent smooth vector fields X with compact support in M x (tO't1) s

(14.26) JE+X) - J(€) = oX) .

By Taylor’s formula,

(14.27) JEX) - J) =

4

1 4L i 1 4L i 1L i
E f [5 Q(f,Df,t)Xl + Egi(f,D*f,t)x1 +y a—p-i(rf,Df,t)DXI

to

+ é_ %,%i (g,o*g,t)o*xi] dt+o(X).

Recall that we are using D and D, todenote stochastic derivatives
with respect to .‘)‘(t (not ?t and 3’1 ), and use the integration by parts
formula (5.19). Since X vanishes at t; and t;, (14.27) becomes

(14.28) JEX) - () =

1 JL 1 4L lp JL
E f [7 g(f;DSyt) + 5 'a?(é:’D*é:’t) ) D* Q(f’Df’t)

i

1 dL i
_ ED Q(f,D*f,t)] Xldt + o(X) .

.We may write the expression in square brackets as Bi(?f(t),t) , where B;
is a smooth time dependent vector field. Then (14.26) is equivalent to

the stochastic Euler-Langrange equation
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(14.29) B. =0,

since we may take xi - f(t) Bl where f is any smooth function of com-
pact support in (t,,t;). A straightforward computation shows that (14.29)
is the same as (14.23) or (14.24). We have proved the following theorem.

THEOREM 14.2. Let L be given by (14.1), where ¢ and A; are
smooth with compact support. Then a smooth diffusion £ of finite
energy is critical for L in the sense of Yasue if and only if the

stochastic Euler-Lagrange equation (stochastic Newton equation) holds.

Notice that the two action functionals J and I are not the same,.
The contributions from ¢ and A; are the same, so consider the case of

free motion (indicated by a subscript 0 ). Then

- L iy, + wa
14.30) Jo=E f 3 (v vi+u uj)dt ,

to
but

Y
_ L v, - wu,

(14.31) Iy = E f 3 (v vi-u uJ)dt

to

since [ g-(ijJ)p =y bJujp and %—blbj—b]uj = E(v]vj—u]uj). Thus

the osmotic energy é—ujuj is part of the kinetic energy in Yasue’s formu-
lation and is part of the potential energy in the Guerra-Morato formulation.
We have seen that this is so, but I wish I understood why it is so. |

Notice also that even if ¢ is assumed to be Markovian, £+X in
general will not be. The two formulations are quite different conceptually,
but both lead to the same equation (14.24).

Now let us consider the stochastic Hamilton-Jacobi equation (14.17)

together with the current equation (5.24) expressed in terms of Rand S:
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B 1 yig_ai _A. _Llyi _K AR -
2 +5 (Vis-Ah(Vs-A)+ ¢ - - VIRVR-L AR -0,

(14.32)

R yRVisS_alhy B Aas K yai_

5 +V]R(VS A)+2 AS 2 VJ-A =0.
Then (14.32) is a coupled system of nonlinear equations, but if we make
the substitution

%—(RHS)

(14.33) U o=e
then a simple computation shows that (14.32) is equivalent to the

Schrédinger equation

(14.34) i}{% :B_(*iivi_Ai) (kl‘. Vj—Aj)+ ]¢.

By a longer computation, one can derive the Schrédinger equation from
the stochastic Newton equation together with the integrability condition
that for some functions S, v;+A; = ViS.

The wave function  associated with a smooth diffusion ¢ contains
a wealth of information: it specifies the probability density p = |i/]?
and the drifts

(14.35) bl = RetImk V! log ¢ ¥ AJ

(it is sometimes convenient to write bJr for b and b_ for b, ). If &
is Markovian, then i determines ¢ completely (with Neumann boundary
conditions for the diffusion, if boundary conditions are relevant). If &
is not Markovian, then ¢ determines its Markovian approximation: the
Markovian diffusion with the same diffusion tensor, probability density,
and drifts as £.

Let H(t) be the Hamiltonian operator in the right-hand side of (14.34).
Then

(14.36) <y(t), HtW()> = f[%— (ujuj +vjvj) +‘¥5:| p= E[é— (ujuj +vjvj) +<75] ;

M
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the divergence terms cancel the uv terms and adjust the sign cortrectly.
If L is time independent, then the expected value of the stochastic
energy & = é—(ujuj+vjvj) + ¢ is time independent. Therefore ED& =0
and ED*g = 0. Zambrini [68] has discovered the stronger conservation
law ]2;(D+D*)g =0 (with no expectation); expressing & as a function
of x and t, this may be written as (% + v'V) &(x,t) = 0.

The connection between the Schrédinger equation and diffusion pro-
cesses was discovered by Fenyes {22]. In [47]1 gave a derivation of this
connection, but with the somewhat arbitrary booking form é—(DD)‘< +D*D)§r
of the stochastic acceleration. Then Yasue [62] and Guerra-Morato [28]
gave derivations based on variational principles with stochastic Lagran-

gians. Thanks to Guerra’s result in §9, the derivation can be based on the

usual Lagrangian, if one is willing to accept the Pauli-DeWitt term.

§15. Nodes

For simplicity of exposition (a standard euphemism for laziness on the
part of the author) I will assume in this section that M is compact. Then,
as shown in the previous section, there is a bijective correspondence
between smooth Markovian diffusions with diffusion tensor Hmij that are
critical for L and smooth nowhere zero solutions ¢ of the Schrodinger
equation, the cotrespondence being determined by p = ]1/112 and (14.35).

Now let ¢y be any smooth solution of the Schrédinger equation and let
Z be the nodes of ¢, i.e. the subset of M x R where ¢ vanishes. Then
bi are well defined and smooth on Z€, and can be used to define uniquely
a—local Markovian diffusion there (see below), but the diffusing configura-
tion is in a quandary if it enters Z because the drifts are not defined there.
But it turns out that this problem is its own solution: the singularity of
the d;ifts on Z produces a repulsion strong enough to keep the configura-
tion from ever reaching the nodes.

Let ¢>0 and let

A, = 10,0 eMxRY: (0] < el
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where R™ = [0,). For 0<s<t, let p, (x,5;y,t) be the solution of

the forward Fokker-Planck equation on Z(E: with Dirichlet boundary condi-
tions and initial value 8x attime s. Then p, satisfies the Chapman-
Kolmogorov equation (6.5) but its integral (in y ) is less than 1. To
remedy this, consider M=MU {oo} where, since M is compact, o is

an isolated point in M. Define

p.(x,8;1elit) = 1 fpg(x,S;y,t)dMy ;

M

then p, is a transition probability. Choose as initial probability measure
Poe = PO XSO, dyy, with pg (fe) =1 — [p(0,y)xS(0,y)d )y, where
p=|yl% and x(é is the indicator function of Zg, and let Pr_ be the
corresponding regular probability measure on path space {} (indexed by
R*). As usual, let &(t) be the evaluation map o — w(t); then & isa
Markov process on M. The configuration diffuses with drift bl until it

hits Z_, when it is killed (sent to «, where it rests eternally). The

e
paths of ¢ are continuous except at the moment of death.

Let p_ be the probability density of &. Then pe < p, since both
are solutions of the forward Fokker-Planck equation on Zg with the same
initial value and p_=0 on GZS .

The p. are increasing in y on M as ¢ decreases. Let p(x,s;y,t)
be their limit, with p(x,s;}c},t) the defect in its integral (we will show
that this is 0), and let Pr be the corresponding regular probability

measure on ) with initial measure p(0,y)dyy. Let

D ={w:w() =~ forsome t in R}.
Then PrE(D) decreases to Pr(D).
THEOREM 15.1. Pr(D) =0.

Proof. Let 0<T <o and let D, = {w:w(t) = « for some t in [0,T]13.
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Then we need only show that PrE(DT) decreases to 0. Throughout this
proof, time parameters are restricted to lie in [0,T].

Let us set K =1, and let R, as always, be defined by (14.16), so
that || =eR. Let

X(t) = RE(®),t) - R(£(0),0) ,

with the convention that R(e) = 0, and let X = sup |X(t)|. By the con-
tinuity of paths, D is equal Pr_ a.e. to {inf R(&(),t) = log ¢}, so we
need only establish bounds on Pr X >A} that are independent of ¢ and

tend to 0 as A - oo,

Let w! and wfk

dw! and d,&%=bldt +d,wl. By (5.16),

be defined (as difference processes) by dfi =bldt +

t t

X(t) = de(f(S),S) = fl:%g ds + ijj R ds + V)-R Twis) + é—AR ds:]
0

t t

. ~ 1
= f d R(&(s),s) = f[gsﬁ ds +b} VR ds + V;Rd, wi(s) - 5 AR ds] .
0 0

1

Recall that VJ-R = and %— bl + 5 b}.k =vl, and average these two

expressions. Then

t
- R j L Jw L g wi
X)) = f l:as ds +v ujds ) quw (s) + 5 qu*w*(s) .
0
Call the four integrals X%t) for a =1,2,3,4. Then X3(t)+X%*®) =
fot uj e dwj(s) , but we will estimate them separately because X% isa

martingale and X4 is a martingale with time reversed. (An alternate

way of estimating X, without using w;, is given in [49].)
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Let A > 0. By Theorem 4.3,

(15.1) Pr {sup X3t >A| < —ffu u;pdyx dt .
472

Let Ho(t) =H(t)-¢(t), so that by (14.36),

(15.2) <P HLOY> - é-f (ujuj+vjvj)dex

M

Since ¢ is smooth, the right-hand side of (15.1) is well defined, indepen-
dent of ¢, and tends to 0 as A - .

We have the same estimate for X*, and clearly

Pr {X2>>\ }Tf f]vju ld x dt

which is bounded in terms of (15.2) by the Schwarz inequality.
I would like to estimate X1 similarly by an energy integral, but I

don’t see how to do this. However,

T T
Isaj<lg Rl g -1 1 |9 -1
0 0 {x:|gx, 0>l
T
<1 ap

0

Now %= i HOF® () - i ¥ HEOUD, so that

f 18] dyx < IHOWOI, -
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Thus the right-hand side of (15.3) is well defined, independent of ¢, and

tends to 0 as A > o. The nodes are never reached. =

We are interested in M that are not necessarily compact and t that
are not necessarily smooth, so it is worth recording that we have an esti-

mate on PriX>A} that tendsto 0 as A > o in terms of

T

T
(15.4) f<z//(t),Ho¢(t)>dt and f IH® E®, dt .
0

0

If H is time independent with the same domain as H_, a situation of

o’
frequent occurrence in quantum mechanics, then (15.4) are finite if
(0) ¢ D(H). Therefore this method should work in this general setting.
I will not try to carry out the details since I expect that this method will
soon be superseded, but we may proceed with the assurance that Markov
processes associated with decent solutions of the Schrodinger equation
exist, are unique (see also {67]), and do not ever reach the nodes.
Suppose that the nodes of ¢y separate M x R into disconnected
regions G;, with no communication among them. One’s first inclination
is to take p = Il/riQ as the probability density of the process. But let

X;j be the indicator function of G; and let

P =fxi(x,t)p(x,t)de .

M

These are independent of t, since thete is no communication among the
G;,
density. There is nothing to prevent us from taking Eiipi as the proba-

and Zpi =1. Let p;= pi_lxip, so that each p; is a probability

bility density for the diffusion, for any positive p; summingto 1. From
the point of view of conservative diffusion theory, the wave function
is just a convenience for computation, and no physical significance is

attached to it.
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However, if the p; are not equal to the p;, the resulting diffusion
is not stable in a certain sense. Suppose the potentials are perturbed by
a perturbation of order ¢. Then the wave function & will be perturbed
to a new wave function (/IE. Now generically the zeros of a complex
function on a real manifold are of codimension two and do not disconnect
the manifold, so for a generic perturbation, the nodes of (/re will not
disconnect MxR. Then the probability density P = |l/lE]2 is forced on
us, but p_-p. In exceptional circumstances when the nodes disconnect,
we are free to alter the weighting in different regions —to choose p; not
equal to p; —but the resulting process will not be close to the process
obtained by a small perturbation of the potentials. (It might be objected
that although the nodes of ¢ will not in general disconnect, the region
where Pe is small will disconnect, and we have established bounds
showing that it is improbable to enter such a region in a given time
interval. But the bounds we established were only logarithmic — to achieve
a small probability of communicating among the Gi during a time interval
of length T we would need to know the potentials to extreme accuracy,
exponential in T.)

This discussion is qualitative, but it persuades me that the require-
ment that the diffusion have probability density \l/r}z , where ¢ satisfies
the Schrédinger equation even at the nodes, is a necessary requirement in
order to have the process stable under small perturbations of the

potentials.



Chapter III
STOCHASTIC MECHANICS

In terms of the background field hypothesis, I see no reason to suppose
that the diffusion of a system interacting with the background field is
Markovian. But Markov processes are immensely simpler and easier to
study, and according to the wise principle of first looking for a lost wallet
under the lamplight, let us first study Markovian diffusions. By Markovian
stochastic mechanics I mean the study of those Markovian diffusions that
are critical for a basic Lagrangian. There is no ambiguity or leeway for
making additional assumptions in this theory: once the configuration
space and Lagrangian are decided on, we have a definite class of
diffusions.

In quantum mechanics, when the wave function is known everything is
known — that is the most complete description possible in quantum
mechanics. But in stochastic mechanics that is just the starting point:
we ask what the diffusion looks like. Whether this is an empty exercise

or whether there is some physics involved will be discussed in Chapter IV.

§16. Gaussian Processes

It will be useful to have some examples in which the diffusion can be
computed explicitly. In quantum mechanics, when the forces are linear
and the wave function is (complex) Gaussian at one time, it remains
Gaussian at all times. Then the associated diffusion will be (real)
Gaussian, and to describe a Gaussian stochastic process completely we
need only give its mean and covariance.

We take the configuration space M tobe R™. I will usually set

K =1 but on occasion I will insert factors of 4. We use the usual

83
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Euclidean coordinates xl, -+, x®. The mass tensor m.. is constant. If

1]
n = 3N and we have a system of N particles of masses m,, then my;
will be a diagonal matrix with each m, repeated three times. It will be
useful though to retain our tensor notation. For example, the free Hamil-

i

tonian operator is -~ 7 A with the masses automatically in the right place.

If we have a time dependent Hamiltonian operator H(t), then the

solution of the Schrodinger equation gtl—/j = -1 H)Y(t) satisfies Y(t) =
U(s,t)¥(s) for a unitary propagator U. In this section we will use
Heisenberg operators: Xj(O) is multiplication by xj, Pj(O) is

~1i ?J% , Xj(t) =U(t,0) Xj(O) U(0,t), and Pj(t) = U(t,0) Pj(O) U(@,t). For

any operator A we let <A> = <¢0,A¢//0>, and we abbreviate é—(AB +BA)
by A°B.

In this section we assume that
H) = L (V- AJ®) (V- o) + (0

where for each t, &(t) is a polynomial in % of degree at most two and
Aj(t) is a polynomial in x of degree at most one. Then the forces :flre
linear, and to find the Heisenberg position and velocity operators XJ(t)
and Pj(t) explicitly in terms of their initial values Xj(()) and Pj(O) ,
we need to solve precisely the same set of linear differential equations
as in deterministic mechanics. In simple cases this can be done in
closed form or by quadratures, and in the general case there is an explicit
representation in terms of product integrals.

Assuming the Xj(t) and Pj(t) known, we can find an explicit
expression for Y(t) if ¥(0) is a given Gaussian. The explicit computa-
tion in simple looking cases is more complicated than one might think.
Perhaps this elementary topic is systematized somewhere in the litera-
ture, but here is one way of doing it.

R+iS

Write the complex Gaussian ¢ in the form e where
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Y]
|

(16.1) = Loaadophat- ey,
(16.2) S - %—rjk(xjAuj)(xk—uk) +y x

All these quantities are real, 01711 and Tik are symmetric, and 0]71} is of
strictly positive type; all are time dependent. The y is a normalization
constant chosen to make |l|l, =1. We can express the other quantities
in terms of the Heisenberg operators. Let o3% be the inverse matrix,

ojkoi% = 5%. Then

(16.3) W= <xis

(16.4) v, = <P;>,

(16.5) oIk~ <@I-phxK-ib>,

(16.6) Tk = aj‘;<(xa-ua)opk>.

It suffices to verify these formulas at t = 0. Now |/|%2 =e?R isa

Gaussian probability density, and (16.3) and (16.5) are familiar to every
probabilist: the mean is yj and the covariance is oJX. Since

<x! —;Lj > =0, the only contribution to (lﬂ(O), —i 9% 1/1(0)) is from the

linear term in S, so (16.4) holds. We have, at t =0,

16.7) <(xa_ua)opj> = <¢f(0),[(xa—ua) 1]- axiﬁ% 83?] Y(0)> .

The v, term contributes nothing, and the o ! term cancels the 1 5?.

] 2i
Therefore (16.7) is aakrk]- , s0(16.6) holds. Let me also record the fact

that
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All of this is just a recipe for solving the Schrédinger equation in the
simples possible case. Now let us look at the diffusion. By (16.1) and
(16.2),

(16.9) uj = é— o ko
(16.10) vi =t 4

Now dfj = (uj+vj)dt + dwj, where w is the Wiener process, and since

dyj/dt =v; we have the linear stochastic differential equation

k
where
k_ 1 -1k _k
(16.12) aj = 5 0 F T

This is a time dependent nxn matrix, and (16.11) has an explicit solu-
tion in terms of product integrals, which I write as time-ordered

exponentials:

- ftal.{(Y)df ¢ ftag(z)dz
(16.13) (fj‘llj)(t) =Je® 1 (rfk-,u.k)(s) + fs Je'r dwk(r) .

Then £)-p) is the Gaussian process with mean 0 and covariance

t
. . (r)dr
16.14) EEID-pI) €¥s)-uMe) =T efs T ek, s <.

Here is the simplest example, which I call the one-slit process. Take
210, v(0), and 7, (0) tobe 0, and o3%(0) = A25% | (Think of a
particle traveling through a slit —a “Gaussian slit’’ for ease of computa-
tion — of half-width A at time 0, in a frame of reference comoving with
the beam.) The patticle is free, so XJ(t) = XJ(0) + tPi(0) and Pi(t) =
PI0). Then 4 =0, vj(t) = 0, and using (16.8) we find
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<(XJ(0) + t PI(0)) (X *(0) + tPX(O)) > =

(AAi) sik _ axt i t? sik ,

(16.15) oK)

If

it

4N 4N?
_ 51 a a o _ t ]
(16.16) rjk(t) = Oja (1) <(X#(0)+tP(0))° P (0)> T 5Jk,
: 2
(16.17) N A
4\ 12
(16.18) et
axt 2
- 4
(16.19) E é_ uJuj D S
8A2 ax* 1 t2
; 2
(16.20) gELgiy, o1 _t

200 g2t

The expected kinetic energy E é— (ujuj +vjvj) is a constant, 1/8)\%,
At t =0 it is all osmotic energy, but as time goes on the energy is trans-

formed into cutrent energy. We have

2
(16.21) aK(t) = 122X sk

so &) is Gaussian of mean 0 and covariance

t s
. 2 2 .
(16.22) Efj(t)fk(s) :_Lé /4)\4+t2 /4)\4+S2e—arctan 2A° + arctan 2N 8]1(, SSt .
4X

j j E(s) (D
By (16.22), E(gjgs)-fjt(t)) ( J: Jt )9 0 as s, t > . That is,

the limit average velocity
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(16.23) 3 i 810 = f’(t);f’(O)

* tooo tso0

exists in L2 (and therefore a.e. on ) since the random variables are

Gaussian). The limit momentum L is Gaussian of mean 0 and

covariance % Sjk , So its probability density is the square modulus of
4X

the Fourier transform of . This is a very special case of a general

result of Shucker (see §18). We have &(t) = t171L +oft) a.e. on Q as

t >, so a.e. on {1, uj(rf(t),t) -0 and vj(f(t),t) - Asymptotically,

"
the particle travels in a straight line with velocity ﬂ}r, subject to the
random fluctuations of a superimposed Wiener process.
In the same way,
j
lim §—t€2

to>—o0

A -

exists, and using (16.22) we find that the correlation coefficient of 771+

and rrlf is &K times -e~" = —.04321.... This curious correlation, not
depending on A, is mentioned to point out that if anyone undertakes to
study scattering theory in stochastic mechanics, the framework will have
to be formulated carefully.

The wave function for a beam of particles of momentum Vi is

(16.24) g - eiVjXJ*il/jVJt

This has uj =0, vl = vj , but p=1; it is nonnormalizable. One can
easily make sense of a nonnormalizable diffusion: use the same formula
to construct the measure on path space but with an infinite initial measure
(one even obtains a regular measure on the locally compact space
Q\lw:w(0)=w}). For example, one has the two-sided Wiener process
with p=1, wW=0, vi=0 ('corresponding to the solution ¢ =1 of the
free Schrédinger equation). The diffusion associated with (16.24) is

simply the sum of motion with constant velocity +J and the two-sided

Wiener process.



16. GAUSSIAN PROCESSES 89

Now let us discuss the harmonic oscillator. We take n =1 and the

mass m = 1, and we denote the circular frequency by «. Then

coswt X(0) + » lsinwt P(0)

X(t)
(16.25)
P(t) = ~wsinwt X(0) + coswt P(0) .

Consider first the ground process

(16.26) G = (%’)4e

1 chz
2

This is a stationary process with u=-wx, v=0, and p = 1//2 . Then

¢ is Gaussian with mean 0 and covariance

%ult-s] )

(16.27) EL () EGs) = 7120 e

This is the only stationary Gaussian Markov process, and it is not sur-
prising that it comes up in many different contexts. It is familiar in the
theory of dissipative diffusion as the velocity process in Ornstein-
Uhlenbeck theory, and in constructive field theory as the free Euclidean
(imaginary time) field in one dimension (zero space dimensions). But
here it occurs in the real time theory of conservative diffusion. By (16.27)
there is a relaxation time o , and the quantum fluctuations destroy
correlation in positions of the particle at two widely separated times.
Because of the osmotic velocity u = -wx, there is a constant tendency
for the particle to move towards 0, and the strength of this tendency is
directly proportional to displacement from 0. As always with osmotic
effects, this is symmetric under time reversal. If one takes a motion
picture of &, it looks as if it is constantly trying to get back to 0, and
the movie looks just the same if it is run backwards.

This process satisfies the stochastic Newton eguation é—(DD,’< +D*D)§(t) =

—wzf(t) . By the linearity of this equation for the harmonic oscillator, if
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2
we add a solution of the deterministic equation d_i ut) = —mzu(t) , we
dt

get a solution again. The new process n(t) = &t) + u(t) is the deter-
ministic motion with the random fluctuations of the ground process super-

imposed. This is the coherent process with wave function

(16.28) (%’)4 e

1 ) 2. i i
7 (y—p(t))” +ixv(t)— 7 vout) — 5 wt

d
where Etﬁ = 1(t). This elegant fact was discovered by Guerra and Loffredo

{741 and has been exploited by Ruggiero and Zannetti [54][55}{561[70].

For a comprehensive review of coherent states, see [51].

§17. Interference
The Schrodinger equation is linear, so if z//l and g[;2 are solutions,
R1+isl R +iS

then l,b=l/l1+¢l2 is also. Let (//I:e , (7[,2:8 2 2’ and

¥ = RS on the complement of their nodes, and let Uy, Uy, U,V y,V,, Y be
the gradients of RI,RQ,R, SI’SZ’ S (though it must be remembered that in
the presence of covector potentials, the v’s are not current momenta).

Then, on the complement of the nodes,

1 sinh(R,-R,) (u1~u2) —sin (SlAS2) (vl—v2)
2 cosh (Rl—Rz) + cos (Sl~52) ’

17.1) u-= -12— (u1+u2) +

7.2 - 1 v « 1 sinh (Rl—R2) (VI_VZ) + sin(SI—Sz) (uruz)
' 2 V12202 cosh(R,;-R,) + cos (5,5 )

RlﬁLiS1 N R2+iS

To see this, multiply the equation e e 2 _ RS by its

R1+R2

complex conjugate and factor out e on the left-hand side, obtaining

R,+R
(17.3) 2e ' 2 [cosh(R,-R,) +cos(S;~S,)] = e
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Take logarithmic gradients to obtain (17.1). Now write 1,01 in Cartesian

form 501 =X, +iY,, sothat X, = eRlcos S1 and Y, = eRlsin S, and
similarly for ¢, and . Then S =arctan (Y/X), sothat v = e ?RIXVY -
YVX]. Perform the differentiations and use (17.3) and the addition

formulas for sin and cos to obtain (17.2).

If one sends a beam of electrons through a crystal, one observes a
diffraction pattern. For purposes of discussion, the crystal is frequently
replaced by a screen with two slits in it. Let the slits be Gaussian, of
half-width A, located at *a, where a is a 3-vector. We set m=1
and K =1, and use a frame of reference comoving with the beam. Then

the wave function is
17.4) Yt = y @ &-a,t) + (x+a,t)

where | is the wave function of the one-slit process discussed in the
previous section. Using (17.1), (17.2), and the formulas of the previous
section we may calculate the drift b. The result of the computation,

using vector notation, is

) (sinh ‘-"%%)_trz_)‘z - (Sin 2tax ) t+22%
—2X 4N7 + t
(17.5) b=1% X +

4\t 2 A 12 AN
42 2
4X7 1t cosh Nax cos _2ta-x
4x* t2 4x* 1 t2

Only the direction joining the two slits is of interest, so let us fix a to
be the unit vector on the x-axis and treat x as a coordinate rather than
a vector, so that a'x =x. Then A is a dimensionless parameter less
than unity, the ratio of the slit width to the separation of the two slits.
This process has no nodes, because cosh >1 unless x =0, in

which case cos =1. However, it comes very close to having nodes when

17.6) 22 _ 2nil)7
a4t 2
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and 4Mx/(4A*+t?) is small. The characteristic time for this process is
A (or, keeping A dimensionless and reinserting the dimensional factors,
)\maz/}i ). For times less than A, the last term in (17.5) is small. The
equation (17.6) is a hyperbola, but for times bigger than A it is practical-

ly its asymptote x = (2n+1) ZZ t. When t is an order of magnitude greater

than A, the drift is enormous near the hyperbolas, pointing away from
1

them. The situation is illustrated in Figure 1 for A =15°

Before time A, the particle, entering from one of the slits, diffuses
very much as a particle in the one-slit process, but soon after time A it
finds itself trapped in one of the channels.

We may condition the process to enter the top slit: let §+(x,0) =
(/;1(1»(—1,0)2 . We cannot compute the conditioned probability density
5+(x,t) exactly, because there is no Schrodinger equation associated to it,
and for times bigger than A it will exhibit a diffraction pattern skewed
upward. We may also condition the process to enter the bottom slit, with
p_(x,0) = (/ll(x+1 ,002. Since l/fl(X—l,O) and ¢;(x+1,0) are almost
orthogonal, p(x,0) is almost the average of p (x,0) and p x,0). In

fact,

a7 o0 =(5-8) 5,60 + (5 -5) .60+ 85x.0

2 2
where ﬁo(x,O) = (2;’7/\2)‘1/28'X /2K and & is the very small number

A\t
b 1 ()

which measures the overlap of the two Gaussian slits. Of cowrse, (17.7)
continues to hold for all times t; to within &, p(x,t) is the average of
§+(x,t) and p (x,t). It would be fun to see a computer-generated movie
of this process, with particles diffusing from the slits and accumulating
on another screen at time 10X,

The interpretation presented here flatly contradicts the customary dis-

cussion of interference (see e.g. [24, §1-1]). We find that (I) each particle
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Fig. 1. The two-slit process, A = %

must go through either the top slit or the bottom slit, and (II) the probability
of arrival at a given point is the sum of two parts, the probability P, of
arrival coming through the top slit and the probability p  of arrival coming
through the bottom slit. The denial of (I) in [24] is the consequence of

confounding the conditioned two-slit process with the one-slit process.
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The title of this section is a misnomer: nothing is interfering with
anything.

Nevertheless, one may reasonably ask: why doesn’t the particle,
entering the top slit, diffuse according to the one-slit process? The
probability density p(x,0) is prepared by a physical interaction: sending
the beam of particles to the screen. Then the only Markovian diffusion
with the particles localized with equal probability at the two slits, with
zero current velocity initially (in our frame of reference), with diffusion
constant H/m, and with zero stochastic acceleration, is the one we have
discussed. Similarly, if the particle is localized at the upper slit by a
physical interaction (e.g. closing the lower slit), it will diffuse according
to the one-slit process. Conditioning is not a physical interaction; it is a
mathematical device for constructing a measure on path space. Its inter-
pretation is that if we could look at the particles without disturbing their
motion (no way of doing this is yet known, but the consistency of the
theory does not rule out the possibility —we will return to this point in
§22), the conditioned process describes what we would see for those parti-
cles happening to start from the upper slit.

Still one may ask: how does the particle, entering the top slit, know
that the bottom slit is open? According to the background field hypothesis,
the diffusion is the result of an interaction with the background field. The
electromagnetic field is different in the presence of a crystal, and the
electrons accordingly have different random fluctuations due to interaction
with it. The particle doesn’t know whether the other slit is open, but the
background field does. One might attempt to refute this picture by observ-
ing the probability density at a time less than the time 2 a/c it takes
light to travel from one slit to the other. But to have an appreciable

difference between the one-slit and two-slit processes we would need

2
Zaz)tma or )\a<2M—'

© " ~ “ mc’

i.e. the slit would have to be so narrow as to localize the particle to
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within two Compton wavelengths. This certainly cannot be done with a
crystal, and doing it by any means would produce a disturbance in the
momentum of relativistic magnitude — but then the basis for discussing
the problem in terms of the nonrelativistic Schrédinger equation would be
destroyed.
§18. Momentum

Let ¢ be a solution of the free Schrédinger equation on R™ that
lies in the Schwartz space S(R™ (for one time, and therefore for all
times). The technique of §15 certainly applies in this case (or see [67]),
and there is a unique Markov process ¢ associated with /. Let H =1
and m =1, and let #(t) = &t)/t. Then [Y(x,t)|? is the probability
density of &(t), so l4(pt,t)|? is the probability density of m(t). A

simple calculation shows that

(18.1) lim [(pt,01%" = |3(p)|?

where $ is the Fourier transform of /. The way one usually measures

the momentum of a particle is to measure #(t) for a large t (in a coordi-
nate system for which it is known that &(0) is approximately 0). Know-
ing that the probability density of #(t) has a limit says nothing about the
behavior of the individual paths, but Shucker [57] has proved the following

theorem:

THEOREM 18.1. lim #(t) exists a.e. on €.

tox

Proof. Formulas labeled with a prefix S correspond to the formulas in

[57], though sometimes with a change in notation. To begin with,

(527) Vix,t) =2 gxt) - f 1Y o onmi gy 20 169 2y, 0y

Now b(x,t) = Re +Im)Vy{ /Yy, so
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1

(s28) beot) -~ % =06 2ol D,

(529) dé(t) = bW, dt + dw(t)

-1

= @ at + 0t 2lg&w,0) Hdt + dw(b) ,

n

—2- 2
(S31) dp(t) = %(t) _W dt =0t Zlg(ta(t),t)|"Hydt +% dw(t) .

t2
Now define
(532) Ap, = o @) >8,1,
(S33) A51’52 ={p:if |ptpl <8, then p’eA51}.

Given ¢ >0, we may choose 0, so that

(S34) f Fe2 dp>1 - £
A51

Now x‘[‘; is continuous, so Ag is open, and for 52 sufficiently small,
1

(s35) f @1 ap>1 - £
A5,.8,

By (18.1), we may choose T sothatforall t>T,

R
(S36) Wt 1t - WPl < .

For t >T and #(t) in As , we then have
1



18. MOMENTUM 97

n

7. %1
(S37) lr(pt )] t >

By (S31), when n(t) €Ay ,
1

(S38) da(t) = 0t~ 2)dt + {- dw .

Choose 6 sothat 0<d < 252. Increase T if need be so that

[ee]

($39) f 0Dt < &,

T
s

(540) Pr{sup | L dw(t)| > ol e (this is possible by Theorem 4.2),
$>T t a2
T

(s41) ]1 WETDI T dp>1 - & |
45,8,

Then if #(T) eAa 5. we have
1’72

sup |n(s)-m(T)| >2 [< £,

(S42) Pr l
s>T

where Pr.. is the conditional probability given J... Butif #(T)¢A
T T 5,.0,
and |n(s)-n(T)| <g— , then n(s) eAg . Let
1

AE5:Q\{w:ﬂ(T)eA515 and rr(s)eA51 forall s > T},
’ 2

By (S41) and (S42), Pr As 5 <e. But

{w: sup ]n(sl)—n(s2)|>5}§/\e,5,
sl,szzT
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SO

Priw: sup |a(s )-n(s,)| >8i<e,
51,522’1‘

Priw:inf sup Iﬂ(sl)—n(sz)} >81=0,
T 51’522T

and since this is true for all 8 >0, the theorem is proved. ®
Let =, = lim n(t). The probability density of =, is |(p)|?, and
t-s00 N
asymptotically &(t) moves in a straight line with velocity ™, with the

random fluctuations of the Wiener process superimposed.

§19. Bound States
Let H be a self-adjoint operator H = Ho +V on LZ(Rn) where
H, = «é—A and V is a time independent multiplication operator, and
suppose that H has an isolated eigenvalue A, = inf o(H), where o(H)
is the spectrum of H, with eigenfunction t//o >0. Let p= 1/102. Then
¥, (i.e. multiplication by ) is a unitary operator from L2(pdx) to

L%(dx), and under this map the operator ;-Ap = é— A+ ujVj of 8§11 is
t

unitarily equivalent to )\O«H on L%@dx). Let pt_e? P on LZ(pdx);

then P! is unitarily equivalent to e()\(rH)t on L%dx) (see (11). Thus
the same diffusion process may be looked at in two different but mathe-
matically equivalent ways: as a real time conservative diffusion and as

a process obtained by analytic continuation of the propagator for the
Schrodinger equation to imaginary time. It is my hunch that the first point
of view is more fundamental, and that it will lead to new methods of
applying probability theory to quantum field theory. Analytic continuation
in time may have obscured the issue of what Euclidean field theory is all

about.
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But for the present let us stay with simpler systems. Let pu be a
probability measure with a density f with respect to pdx, and suppose
f tobein Lz(pdx). Then f=1+f, where f, is orthogonalto 1. Let
A, = inf (a(H)\fl\Of). Then

‘t()\l_

t )\0)
(19.1) 1P, l, , < e [P

Let us call ()\1—)\0)“1 the relaxation time. It gives the time scale on
which the quantum fluctuations produce decay of correlations between
positions of & at different times.

Consider the hydrogen atom. Then n=3, and weset m=K=e =1,
so that the Schrédinger equation for stationary states of the hydrogen atom
is
(19.2) (—é—A-}—)s/f:M/f,
where r = |x| is the Euclidean norm of the vector x. The eigenvalue A

is the expectation of the stochastic energy. In the following discussion,

y denotes a normalization constant, possibly different in different cases.

(i) The wave function in the ground state is ¥ = ye T, )‘o = ~%—.
Then u is the unit vector u =-x/r, and v =0. A movie of this process,

run forward or backward, shows a constant tendency to head towards the
origin. Exercise: show that &(t) never reaches the origin.

by

(ii) Let ¢y =ye 2(l—é—r), Ay :~%. Here R =10gy~5—+log ll—é—r\

and u = :{i;rr ;i , v=0. The nodal set is the sphere r =2, and the
singularity of u prevents &(t) from reaching it. For r >4, u points
inward and prevents &(t) from wandering off.

In this example, the nodal surface divides the configuration space into
two disconnected regions with no communication between them. See the

discussion at the end of §15.
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r

(iii) Let 1/12 =vye 2t cos 6, A, = —%—. Here we are using spherical

coordinates (x1 =t sin fcos ¢, x2 = r sin 0 sin b, x3 =1 cos 0). Then
R<=logy-% +logr +log |cos ¢| and

2
u- = (‘2—+—r) —3 +tan0—ae.

The nodal set is the plane x5 =0 (6 = g—) The drift always points

towards the sphere r =2 and away from the nodal plane, with a tendency

3

to move toward the x~-axis.

T

(iv) Let ¢ry=vye 2rsin@eid", Ay =-—
log |sinf| and S =¢, so

u-Vv :(—1—+1—)-§—vcot6—-a—, v-V

. Here R:logy—%—+

Qo

-9
) o 30 T 9%

3

The nodal set is the x~-axis. The electron tends to move away from the

x3-axis, towards the sphere tr =2, and counterclockwise around the
x3-axis. This process is different from its time reversed process, with
wave function $3 , which moves clockwise.

The four functions l//l, lﬁz, ¢3 , $3 are a basis for the eigenspace
with eigenvalue —%— , and for any linear combination of them there is a
stationary diffusion with expected stochastic energy ~-18- .

§20. Statistics
Consider N indistinguishable particles in R® (e.g. n=3). This
notion is foreign to macroscopic particle dynamics —how can particles be
utterly indistinguishable? But if we think of particles as being a non-
relativistic approximation to peaks of a relativistic field, the notion of
indistinguishability acquires significance.
The configuration space of N indistinguishable particles in R" is

the set M of all unordered N-tuples {xl,-n,xNi where the x  are
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distinct points in R™. This is a differentiable manifold. It is not simply
connected if N >1, because it has as a covering space the manifold

M = R™N\D, where D is the set of all ordered N-tuples (x;, -, xy) in
which two or more of the x, coincide. Each permutation 7 in the sym-
metric group 'SN on N objects acts on M and is a covering transforma-
tion (the identity on M ). Let us assume that n >3; then D is of
codimension at least 3, and M is simply connected. Then M is the
universal covering space of M, and SN is the fundamental group of M.

Now consider a Markovian diffusion on M, critical for a basic
Lagrangian L. In each region where p £ 0, we define ¢ = eR+i8 | with
S unique up to a real additive constant (for a fixed gauge), and we impose
the local stability requirement of §15 that i be smooth across the nodes.
Now suppose that we start at a point x in M where p #0 and continue
along a path y in M, perhaps crossing various nodes, and coming back
to x. Since M is not simply connected, we may find that S differs by
a real additive constant; i.e. ¢ is changed by a multiplicative constant
¢ of modulus 1.

The point I want to stress is that such a change in i does not affect
the diffusion process. The w =VIR and v =Vis_Al are totally
unaffected by an additive constant in S. The diffusion process is well
defined on M even though ¢ may not be.

The factor ¢ depends only on the homotopy class of the path y, i.e.
only on the permutation # in the fundamental group SN , sothat { ={(n).
Observe that C(nznl) = é(nz) my); iee., ¢ is a character of the sym-
metric group SN' There are only two such: the identity and the sign of
the permutation.

In both cases the wave function ¢ is well defined on M. In the
first case (Bose-Einstein statistics) it is a symmetric function on M and
in the second case (Fermi-Dirac statistics) it is an antisymmetric function
on M. Notice that a superposition of a symmetric and an antisymmetric

wave function does not define a diffusion on M.
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Thus conservative diffusions of indistinguishable particles fall into
two sharply different classes according to the statistics obeyed. In one
of the appendices to his beautiful book ‘‘Subtle is the Lord ..."”’, Pais
{50, p. 517] reproduces a telegram from Einstein to the Nobel committee
nominating Pauli for his discovery of the exclusion principle, which

43

Einstein describes as a ‘‘...fundamental part of modern quantum physics

> The exclu-

being independent from the other basic axioms of that theory.’
sion principle appears to follow (once one knows the answer, thanks to
Pauli!) from the fundamental assumptions of stochastic mechanics.

I think there is a moral to be drawn here. Probabilistic techniques
have not yet been applied in a natural way to the study of Fermi fields,
either in imaginary time or real time. My hunch is that no departure from
the framework of stochastic mechanics is needed; that one needs to find

the right classical configuration space and study ordinary diffusions,

Wiener process plus a drift.

§21. Spin

Let M be a Riemannian manifold, thought of as the configuration
space of a particle. The main example is R3? with mass tensor mﬁij,
but some conceptual issues will be clearer if we discuss the general case
—for one thing, we will be spared the degradation of confusing 2-forms
with vectors and the horror of the vector product.

Let n be the dimensionality of M. The orientation of a particle at
x in M is described by a frame, by which I mean an orthonormal basis
y = (;1, e, ;n) of T.M. The orientation may change while the particle
stays at x. There is no implication of an extended structure in this
kinematical picture: a point particle can just as easily rotate 30° in a
plane as can an extended body. For some extended bodies, e.g. an asym-
metrical molecule to the approximation that it can be treated as a rigid
body, the orientation can be observed, but there is no way of doing this
for a point particle —then the effects of the orientation component of the
motion can be observed only indirectly through a coupling to the position

component. (It is important to distinguish orientation from the time rate
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of change of orientation, which is spin.) Following Dankel [9], we will
find that for consetvative diffusions there is such a coupling, in contrast
to deterministic mechanics.

The set of all frames is a differentiable manifold P, the frame
bundle. It is a fiber bundle over M with projection n:P > M, and the
fiber at x is the set P, of all frames at x. The structural group is
the orthogonal group O(n): if y is a frame at x, then any other element
of B is of the form gy for a unique g in O(n). If M is orientable,
then P has two disconnected components, and we can choose one of
them and reduce the structural group to SO(n). However, I do not want to
assume that M is orientable. Opinions differ, but in my opinion it is a
flaw in a local dynamical theory if the global formulation of the theory is
only possible with global restrictions on the topology of space. For a
basic Lagrangian L on M, let us seek to extend it taking orientation
into account, in a way that is intrinsic (i.e. functorial, uniquely deter-
mined by L, with no arbitrary choices and with no restrictions on the
topology of M),

As we have seen, Px can be identified with O(n) if we choose an
element y in B, to correspond to the identity in O(n). Thus O(n) is
a group and P, is its principal homogeneous space (a group that has
lost its sense of identity). If we can choose a smooth section y:M - P
(so that moy is the identity on M), then we may identify P with
M x O(n), but the condition that this be possible (the condition that M
be parallelizable) is an even stronger condition than orientability.

Let y be aframe at x. Then there is a natural identification of
Typx with the space Ai of 2-forms at x. For if @3 is in A)Z(, then

', is the matrix of a skew-symmetric linear transformation, the infini-

] .
tesimal generator of a rotation, and vice versa. Then a)lj is the angular
velocity vector in Tny. (Notice that F, is n{n-1)/2 dimensional. It
is only when n =3 and M is orientable that one can identify Typx

with T.M D)
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We define an inner product on Typx by setting <wi}-, nkg> = cuij nji .
This inner product is invariant under the action of SO(n) on TyPX , and
up to a constant factor it is the unique inner product on Typx with this
property. Since we have an inner product on Typx for each y, we have
a Riemannian metric on B, . It is also invariant under the action of SO(n)
on F .

If we choose lotfal f:oordinates at x in M, thenany Y in TXyP
has components (X!, a)lj). The splitting into velocity and angular velocity
depends on the choice of local coordinates, but we define an intrinsic
splitting Txyp =TM eTyPX by taking normal coordinates at x (expressed
invariantly, we use the Riemannian connection on M to define the hori-
zontal subspace in TXyP ). Then we give Txy the inner product that is
the direct sum of the inner products on TM and TyPX. This defines an
intrinsic Riemannian metric on P.

1

Observe that 5 (oija)ji has the dimensions of angular acceleration
(T™%). To express the kinetic energy of rotation, we need a coefficient I
with the dimensions of moment of inertia (MLZ?). This can only be intro-
duced ad hoc, and any natural definition in a nonrelativistic theory of the
moment of inertia of a point particle gives it the value 0. Therefore we
choose I >0 with the dimensions ML? and then study the limit as I - 0.
We will be interested in the case that M is R® with the flat metric
., but the induced metric on P is not flat; this is why we studied the

J L
effects of curvature on diffusion. Perhaps the expression (olj 7IJi looks

flat, but the colj are not the components of the angular velocity field with

m5i

respect to a coordinate system. For i<j, let 8ij be the infinitesimal
generator of rotation with unit speed in the §i§j-plane. Then the Gij are
a basis for Typx , and any angular velocity field «w on P, is expressible
uniquely and globally as wlj d;). This i.s more useful than any system of
local coordinates, but notice that the OiJ do not in general commute.

Now let L be the basic Lagrangian on M with scalar potential ¢

and covector potential A,. We want to extend it to a basic Lagrangian L
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on P. We have already extended the kinetic energy part. We extend ¢
to P by setting g(x,y) = ¢(x). To extend the covector potential, let the
generalized velocity vl on P have the components pi and a)ij , by
the splitting described above, and let ‘;i = (AifIHiJ) .w}.lere Hij is the
exterior derivative of A, so that Kin =AP' IHiJ wlj. Thus

1.1 L = é— mijpipj + é— Iwij wji -+ Aipi + IHijwiJ- .

Notice that in deterministic mechanics the factor 1 drops out of the
orientational component of Newton’s equation. The limit I > 0 certainly
exists, but it is uninteresting because the positional component is com-
pletely decoupled from the orientational component in this limit. This is
the meaning of the statement that there is no classical (deterministic)
analogue of spin.

The group SO(n) is not simply connected. To see this, take off your
belt. Hold the two ends together; this is the standard immersion of the
belt in R3. Now twist one end through 27, obtaining another immersion.
If this twist were homotopic to the identity, the new immersion would be
isotopic to the first. But try: you may twist the belt (keeping the ends
together) or slip portions of the belt between the two ends, but you will
never recover the standard immersion. Now do the same thing with a
twist of 4n and notice the difference.

The group SO(n) has a double covering group Spin(n), which for
n >3 is simply connected. For n =3 it is isomorphic to SU(2). If we
identify either component of P, with SO(n) by choosing a frame y to
correspond to the identity, the double covering we obtain is independent
of the choice of y. Thus we have a double covering P - P. We lift the
Riemannian metricto P. If M is R3, we may take P to be R3><SO(3)
and P tobe R3xSUQ2) (discarding the other connected component).

I want to stress that the configuration space is P, not P , and we
will study diffusions on P. Icannot see that diffusions on P are of

any physical significance. But since P is not simply connected, the
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wave function of a conservative diffusion on P need not be defined on

it, just as in the discussion of statistics in the previous section. If y

is in 'Ig, let -y be the other point in P with the same projection onto P,
Then the wave functions on P that correspond to diffusions on P split
into two classes: integral spin wave functions satisfying ¢(x,y) = ¥(x,~y)
and half-integral spin wave functions satisfying ¥(x,y) = (x,-y). A
superposition of wave functions of the two classes does not correspond

to a diffusion on configuration space.

The Schrodinger equation on P corresponding to the Lagrangian L

is the Bopp-Haag equation

(21.2) iKYy

where H; is the time dependent Hamiltonian operator
_1(H yiAi) (K 1 (K 5k g k) (H 4 '
(1.3) Hy- z‘(r v *A’) (5,4 ) (T 0; “-IH, )(* Py )+,

with the convention that j < k. If the potentials are suitably smooth, and
with appropriate boundary conditions on M if relevant, H; is a self-
adjoint operator on Lz(’l;) with a time independent domain, and the
initial value problem for (21.2) has a unique solution.

Now 92 = ajkajk is the Laplacian on ﬁx . Since 5x is compact,
L%( 'IB’X) is the direct sum of the eigenspaces }(/\ of Aé— 92, and each

}()\ is invariant under the action of Spin(n). There is no intrinsic way
of splitting }(A into a direct sum of irreducible subspaces; if it is possi-
ble to do so smoothly as x varies over M, then M is said to admit a
spin structure. For n =3 the eigenvalues of -é— 9% are s(s+1) for
s=0, é—, 1, ‘;i, .-+, the corresponding eigenspace is (2s+1)? dimen-
sional, and the representation of SU(2) on it is the (2s+1)-fold direct
sum of the irreducible spin s representation.

Let K)\ be the subspace of L2(§) such that for a.e. x in M,y -

Y(x,y) is in }()\' We have seen that for kinematical reasons ¢ must be
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either an integral or a half-integral spin wave function. Now let us show
that in the limit I - 0, for dynamical reasons  must be in K}\ for

some A (sothat for n =3 it has a definite spin O'é—’l’%’ -+ ). Let

21.4) H, - é—(lf- vi_Ai) (I;i Vj—Aj) chEK | g,
Then
(21.5) Hy = Hy + }-‘%nﬂ 4 5— ijHik¢, v X, .

Even though K2A/I > 0 as 1 -0, it contributes a harmless phase factor
to the solution of ( 21.2), and the last term tends to 0 in the operator

normas I-0. Let ¢° be in L2(‘15') , let ¢II be the solution of (21.2)
with x//I(x,O) = 9%x), and let l/fo be the solution of the Dankel equation

(21.6) i K % = Hy

with ¥ (x,0) =°. Also, let [i/] be the equivalence class of all
multiples eitg(//. Then if ¥° is in K)\,

(21.7) lim [y,] = ol.

But if ¢° has components in several different spaces K)\ , then [l/II]
has no limit as I - 0; in particular, the probability density W/IP has
no limit.

Now suppose that (ﬁo is in the domain of H; and in K)\ for some A.
Then, using the technique of §15 or [67], we may construct the probability
measure Pr; for the corresponding Markovian diffusion on P. These
measures have no limit as I » 0 because of the increasingly wild behavior
of the orientational component: the diffusion coefficient is 1/(2I), which
tends to . But let Pr; be the probability measure on the positional

component, induced by the projection P - M.

TRUE ASSERTION 21.1. If 1/10 is in the domain of H; and in K)\, for

some A, then lim Pr; exists.
I-0
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Convincing argument. By (21.7), the osmotic and current momenta u;
and v, converge, away from the nodes, to the osmotic and current momenta
u, and v computed from - (The angular momenta have a coefficient
I, so that they converge although the angular velocities diverge; see
below). Let E‘t be the conditional expectation with respect to the
o-algebra of events depending only on the positional component at time t.
Then we may use Etuo and f‘ftvo to construct a Markovian diffusion on
M. But for I> 0, the positional component is not Markovian. This is a
general feature of taking one component of a Markov process: if we know
the past history of it, this may give us more information about the present
value of the other component. But when 1 is very small, knowledge of

the orientational component is of no use anyway, because the relaxation
time is practically instantaneous, being proportional to I. There is one
proviso: the nodes may divide the fibers into a finite number of regions

G; with no communication among them, and knowing the past history of

the positional component may give us information about which region the
orientation is in. Let p; be the probability that the orientation is

trapped in the region Gj; this is time independent. Then the limiting
process as I -0 is the mixture, with weightings p;, of the Markovian

diffusions on M with osmotic and current momenta u. and Vis where

1

these are the conditional expectations of u, and v, given that the

orientation is in Gi‘ ]

There is clearly work to be done to make this into a theorem. When M
is R3 with the metric m3ij , the Dankel equation is just the Pauli equa-
tion of spin s but with multiplicity (2s+1), so this procedure should
give a natural probabilistic interpretation of the Pauli equation. Let us
look at this case more closely, but first I would like to make a comment
about the general case.

Let I>0. Then we know that the stochastic Newton equation holds.
The positional component of the force corresponding to the Lagrangian L

is
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L K
21.8) Fy = E;j + Hypl + 5 V(")

Now we substitute the current velocity vl for pi and the current angular
velocity “’vjk for “)Jk' The first two terms on the right-hand side of
(21.8) give the usual Lorentz-type force, but for the last term we will

have that
(21.9) lim B, L v, (1%0,3)
I-0 4

exists, in general is not zero, and is a contribution to the stochastic
Newton equation that depends on the process; another indication that
there is no deterministic analogue of spin. This contribution to the
stochastic acceleration is crucial to the motion of a particle with spin in
presence of an inhomogeneous magnetic field (the Stern-Gerlach experiment).

Now let P = R3xSO@3) and P = R3 x SU(2). It aids visualization
to recognize that SO(3) is diffeomorphic to real projective 3-space. To
see this, consider the ball of radius 7 in R3 with opposite points on
the boundary identified (this is projective 3-space), and let each point x
in it correspond to the rotation through an angle |x| about the axis x.
Consequently, SU(2) is diffeomorphic to $3: in fact, it is isomorphic as
a Lie group to the unit quaternions with the Pauli matrices corresponding
to i, j, k.

The Euler angles provide a system of local coordinates for an open
dense coordinate neighborhood in SO(3). They are ill adapted to computa-
tion, but are helpful for visualization. Let g be a rotation that does not

3

take the x“-axis into its negative. Then we write

g = By 8984

where €4 is a rotation through ¢ about the x3-axis, gy is a rotation
through 6 about the axis into which &4 takes the x'-axis, and By is

a rotation through x about the axis into which gg takes the x3-axis.
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All three angles lie in (-m,7). Then @ is the angle by which g dis-
places the north pole. Let ¢, 0, and ¥ be unit vectors on the axes
of rotation of Bgho B9 and gy -

Let us discuss free diffusions on SO(@3), for 1> 0, following Dankel.

Let H® be the eigenspace H Then H° consists of the constants,

S(s+1)°
and the corresponding diffusion(proc)ess is the Wiener process on SO(3)
with diffusion coefficient 1/(2I), so it jiggles about faster and faster as
I 0. Spin 0 diffusions are uninteresting, because the positional and
orientational motions decouple as 1 - 0.

A basis for H1/2 is given by

i i
7 @00 S @)
_e? : _ 2 Co B
l/I‘/zl/zﬁe 1cos2—, ‘:[’1/2,1/2—*9 151n2,
21.10)
7EP0 5 X0
‘/’v,/zl/z e sin 7 L[/_%_l/z —e cos 7 .

Notice that because of the occurrence of g—, these functions are defined
not on SO(3) but on SU().

Consider the diffusion corresponding to (/11/2 v and follow the practice
of identifying an angular velocity with a vector in 3 dimensions. Then
the current angular velocity EZV and the osmotic angular velocity Z)u

are given by

(2111) (T)V :TT];)S—G'%{T(¢+>_<)y Z)u:_%tan g .

NI

The corresponding angular momenta IZ)V and I(Y)u do not depend on I.
Notice that Z)V and 5u are defined on SO@3) since tan has period =
rather 2m; the diffusion is on SO(3). The tendency of the osmotic
angular velocity is to restore the north pole to its upright position, and
this tendency becomes infinitely strong as it approaches the south pole.
There is a node at @ = 7, where the coordinate system breaks down.

This is the plane at infinity when SO(3) is regarded as projective
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3-space, and the nodes do not disconnect SO(3) in this example. The
tendency of the current osmotic velocity is to produce a rotation through

3_axis and the axis into which it has been

the axis bisecting the x
carried. On all of this is superimposed the rotational Wiener process
with diffusion coefficient 1/(2I). Picture this in the limit as I -0 : that
is what a spinning electron looks like. We have EIZ)U =0, EI(ZV = —2}{— % s
and E(&, +13,)" = 3 K2

Since the nodes do not disconnect SO(3) for the spin %— Pauli

equation, this might be a good place to begin to make Assertion 21.1 into
a theorem and obtain a clear picture of the diffusion on R3 in the limit
as I-0.

The theory of spin in stochastic mechanics, and more generally of
stochastic mechanics on a Riemannian manifold, is due to Dankel [9].
The dynamics was clarified by Dohrn and Guerra’s discovery [14] [15] of
their stochastic parallel translation. Other contributions to the theory

include [10], [21], and [16].



Chapter IV
PHYSICS OR FORMALISM?

Stochastic mechanics has a natural derivation from the variational
principle, and its predictions —which agree with the predictions of
quantum mechanics —are confirmed by experiment. Had the Schrédinger
equation been derived in this way before the invention of matrix mechanics,
the history of the conceptual foundations of modern physics would have
been different. Yet stochastic mechanics is more vulnerable than
quantum mechanics, because it is more ambitious: it attempts to provide
a realistic, objective description of physical events in classical terms.
Stochastic mechanics is quantum mechanics made difficult. A number of
ptoblems that were solved by quantum mechanics, or which at least were
declared to be non-problems, are reopened. For example, the electron in
the ground state process of the hydrogen atom performs a wildly acceler-
ated random motion, so why do we not detect a resulting electromagnetic
disturbance? A cheap solution to this problem is to say that when
stochastic quantization is also applied to the electromagnetic field, then
the predictions of stochastic mechanics agree with those of quantum
mechanics, but a detailed picture of the energy balance is called for.

In this chapter some problems of the physical interpretation of the
theory are discussed, and the book concludes with some remarks about
stochastic fields.

§22. Measurements

The first thing to say about measurements is that the outcome of any
conceivable experiment may be expressed in terms of the positions of
macroscopic objects. This is a triviality. It does not concern the

physical observable being measured, but how we as human beings receive

112
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information through our senses. Furthermore, the outcome of any con-
ceivable experiment may be expressed in terms of the position of macro-
scopic objects, including recording devices, at a single time. Conse-
quently, if the laws of quantum mechanics apply both to the system being
measured and to the measuring apparatus, then the predictions of quantum
mechanics will be identical with those of Markovian stochastic mechanics,
since the positions of all constituents of the system plus apparatus are
determined by the probability density p = |#|%, where ¢ is the wave
function of the system plus apparatus.

Nevertheless, the two theories are very different conceptually. In
stochastic mechanics an observable is a random variable, whereas in
quantum mechanics it is a self-adjoint operator. For position observables,
the correspondence is very close. Consider the configuration at time t
of a system. In stochastic mechanics this is described by the random
variable &(t). Notice that this random variable, and even the probability
space on which it is defined, depends on the process, i.e. on the wave
function. In quantum mechanics the configuration at time t is described
by the Heisenberg position operator X(t), which is defined on a fixed
Hilbert space not dependir;g on the wave function. The connection
between the two descriptions is determined by the fact that, for all suitably
smooth wave functions, E&(t) = <¢r,X(t)¢¥>. I will sometimes write the
left-hand side of this equation as El/l &1t), to emphasize that the expecta-
tion depends on the process.

As soon as we leave position observables, this correspondence breaks
down. Consider a random variable f( &(t), &(s)) depending on two different
times. In general, E(//f(f(t), &(s)) does not depend in a sesquilinear way
on Y, so there is no corresponding operator on Hilbert space. In
stochastic mechanics one may discuss many observables that cannot be
formulated in quantum mechanics. For example, consider a free particle
of mass m whose wave function at time 0 is i ,. Then the first time
that the particle enters the unit ball is a well-defined random variable,

but I do not know of any way of formulating a corresponding concept within
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conventional quantum mechanics (but see [52]). Now consider the
momentum of a particle. In quantum mechanics there is no ambiguity:
this is described by the Heisenberg momentum operator Pj(t) . In
stochastic mechanics there are many different random variables that
describe different aspects of the notion of momentum: we have b)- , b
Vi and the random variables T and 5 of §§16, 18. All of these
have the property that for any wave function ¢, the expectation is equal

*j’

to <g//,Pj(t)¢>. On the other hand, for the osmotic momentum u; we

j
V.p
D B0 MU
E¢“j‘2fp p=0,

so that the corresponding self-adjoint operator is 0. Yet it would be a

have

mistake to identify the osmotic momentum with 0. Its square ujuj is an
important contribution to (twice) the kinetic energy. Furthermore, the
osmotic momentum can be measured as follows. Prepare a particle so
that its wave functions is i, measure the position, and then compute

the value of }{Vj\l//| at that position. If this is repeated many times, one
obtains a well-defined probability distribution that is by no means concen-
trated at 0, although its expectation for any ¢y will be 0. This type

of wave function-dependent measurement is not usually considered in the
quantum theory of measurement, but it is quite feasible.

From the point of view of stochastic mechanics, the identification of
observables with self-adjoint operators appears to be epistemologically
unsatisfactory.

Stochastic mechanics attempts to give a realistic picture of events in
the microphysical world, but it is not in the spirit of a deterministic hidden
variables theory. According to the background field hypothesis, quantum
fluctuations are the result of an interaction with the background field, but
in this picture there is an intrinsic randomness in the interaction. All
attempts to produce a deterministic classical theory of charged point
particles in interaction with the electromagnetic field have, in my opinion,

failed —for example, the Dirac-Réhrlich theory [S3] posits a pre-acceleration
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to avoid runaway solutions, and this violates causuality. My hunch is that
this classical interaction leads to stochastic fluctuations.

Stochastic mechanics does not attempt to produce hidden variables
that determine the outcome of every measurement. Nevertheless,
stochastic mechanics may be artificially presented as such a hidden
variables theory. We take as a fixed probability space () the probability
space of the differences wi(t) - wi(s) of the Wiener process. Then for a
solution ¢y of the Schrédinger equation with potentials, we construct the

corresponding process & by solving the stochastic differential equations

déi) = biE®,Hdt + dwit), t>0,

with initial probability density Il//(x,0)|2 , where bl is the forward drift,
and similarly for t <0, using the method of successive approximations
discussed in §11. Then all of these stochastic processes are defined on
the same probability space (). If one knows the trajectory of the Weiner
difference process, then one knows the trajectory of £. This is a purely
formal construction. It says roughly that if one knew what would have
happened in the ground state process for the free system, then this
knowledge would determine what actually happens for the interaction
process in question. As we will see later, this picture violates a neces-
sary requirement of a physically realistic theory. Nevertheless, it is a
mathematical hidden variables interpretation of stochastic mechanics and
so it gives the same predictions as does quantum mechanics.

There is a beautiful proof of the impossibility of hidden variables due
to Kochen and Specker [43] that deserves to be more widely known among
physicists. Let me say at the outset that it does not contradict stochastic
mechanics because they identify observables with self-adjoint operators,
and this remark also applies to the Jauch-Piron proof {38].

Consider a patticle of spin 1. If x,y,z is any orthonormal basis
for Rs, then the squares of the spin operators, Si, 532/’ and S;‘ , have

eigenvalues 0 and 1, have sum 2, and commute. For any non-zero
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vector x in R3, let us identify x with the proposition ‘‘if Sf{/lx‘ is
measured, the result is 0.”” If x, y, and z are orthogonal, then pre-
cisely one of them is true (if there exists a hidden variables theory in the
sense of Kochen and Specker). Kochen and Specker show that it is im-
possible to assign truth values to the directions in R3 satisfying this
requirement. Let us follow the simplified argument of Friedberg, as ex-
pounded in Jammer’s book [37, p. 324]. Now x+y, x-y, z are orthogonal,
and so are x+z, x-z, y. Hence x+y, x-y, x+z, x-z are not all false
(for if so, both v and z would be true). Each of these four vectors is
orthogonal to one of d; =y+z+x and d2 =y+z-x, so d, and d, are
not both true. That is, if a = arc cos % , then two vectors making an
angle a are not both true. Now let d3 lie in the xy-plane and make an
angle a with y. If d; is true, then z is false (since it is orthogonal
to d3 ) and y is false (since it makes an angle a with d3 ); therefore
x istrue. That is, if 8 =#7/2-a, then two vectors making an angle f3
are equivalent. But in R3 any two vectors can be connected by a chain
of five vectors with angle 3 between successive pairs, so all vectors
are equivalent, which is a contradiction.

Now let us consider how one can measure the proposition x. I will
not follow Kochen and Specker here (the ‘‘spin Hamiltonian’’ they con-
sider appears to be a phenomenological Hamiltonian for atoms in a
crystal; it is not a consequence of the spin 1 Pauli equation). Instead,
consider a Stern-Gerlach experiment: turn on an inhomogeneous magnetic
field in the direction of x -—then x is true if and only if the particle is
not deflected. Consider a spin 1 particle as discussed in the previous
section, with moment of inertia I > 0 but very small. Then if we know
the trajectory w in the absence of external fields, we know the trajectory
in the presence of external fields; in particular, we know for each x
whether x is true or false. Consequently, by the Kochen-Specker theorem,
it is not the case that the truth assignments given by this hidden variables
interpretation of stochastic mechanics have the property that for any three

orthogonal directions precisely one is true. It would be interesting to see
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computer-generated pictures of the trajectories corresponding to a fixed
free trajectory w but inhomogeneous magnetic fields in different
directions.

As remarked earlier, in stochastic mechanics one can define random
variables for which there is no corresponding self-adjoint operator in
quantum mechanics. Is it possible to measure such random variables?
There is a theory, due to Davidson [11], in which the diffusion tensor
ol s equal to zlﬁmij , where the dimensionless parameter z can take
any positive value. This theory cannot be derived from a variational
principle without artificially modifying the Lagrangian, and for z >1 it
entails abandoning the ‘‘usual assumptions’’ in the discussion near the
beginning of §14; nevertheless, this theory also has the property that all
probability distributions at a single time are given by \¢]2 But for
random variables depending on more than one time, the probability distri-
bution depends on z. This shows that the features of stochastic
mechanics involving several times, such as the autocorrelation functions
discussed in §16, cannot be measured by any known means. So of what
use are they?

Let me digress to discuss a beautiful experiment, the Kappler experi-
ment, in dissipative diffusion; see [42]. In this experiment a small mirror,

perhaps 1 mm?

and several molecular layers thick, is suspended by a
quartz fiber in a container. The density of air in the container may be
varied. As the air molecules strike the mirror, they cause it to perform a
Brownian motion — that of a harmonic oscillator, since the restoring force
due to the torque of the fiber is linear for the very small angles involved.
The angle is measured by shining light on the mirror and measuring the
reflected spot some distance away. At all densities, the probability dis-
tribution of the angle is the same —it is determined by thermodynamics.
But graphs of the motion look very different at different densities —they
are roughly sinusoidal at low densities and not at all periodic at high

densities. In other words, the random variables depending on a single
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time are determined by thermodynamics, but those depending on several
times require a detailed stochastic theory.

Now suppose that Kappler had not thought of shining light on the
mirror. Suppose that the only known way to measure the angle was to use
measuring instruments in thermal equilibrium with the system. Then there
would be problems: if we bounce a heavy particle off the mirror, this
gives the mirror a substantial additional momentum, and so produces an
uncertainty in the angle at a later time; but if we bounce a light (i.e. not
heavy) particle off the mirror, it will be subject to diffusion with a large
diffusion coefficient, and so it does not measure the angle accurately. It
does not take much imagination to conceive of physicists developing a
theory that denies the reality of the mirror’s trajectory and describes the
angle by an abstract mathematical object, with the objects for two different
times not being jointly measurable.

The moral of this digression is clear: if we want to measure features
of a system predicted by stochastic mechanics that involve several times,
we need measuring instruments that are not in ‘‘quantum equilibrium’’ with
the system,

Quantum theory attempts to establish hegemony over all of physics:
according to it, all physieal systems are subject to quantum fluctuations
because quantum fluctuations are not physically real, being merely a con-
sequence of a conceptual framework of universal applicability. But per-
haps it is not so. Perhaps quantum fluctuations are just as real as
thermal fluctuations and arise from certain interactions, and perhaps not
every interaction is subject to quantum fluctuations. Stochastic mechanics
and the background field hypothesis free us from the universal domination
of quantum theory and allow us to examine this possibility.

Just as the light in the Kappler experiment is not subject to the
thermal fluctuations of the air and the mirror, perhaps gravity is not subject
to quantum fluctuations. Present day technology does not permit us to

make a movie of the trajectory of an electron in a hydrogen atom by
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bouncing gravitational waves off it, but the point is a serious one and
deserves consideration in the study of the physics of processes in which
both gravity and quantum effects contribute significantly.

I am now speaking of matters in which I have no competence, so let
me refer you to a preprint by Lee Smolin {58] in which ““three independent
arguments are given for the conclusion that the distinction between
quantum fluctuations and real statistical fluctuations in the state of a
system will not be maintained in a theory that gives a correct description
of phenomena in which quantum and gravitational effects are both
important.”” The three arguments concern the mixing of quantum and
thermal fluctuations under coordinate transformations, the evolution from
pure to mixed states in black hole evaporation, and the impossibility of
distinguishing experimentally between pure and mixed states of the gravi-
tational field.

§23. Locality

The results of experiments in microphysics are subject to chance, and
yet there are correlations in the results of measurements on widely
separated particles that have interacted in the past. To understand this
has been the principal focus of discussions of the foundations of physics
from the time of the Einstein-Podolsky-Rosen paper [20].

Bell’s theorem (see [5] [6] [7] [44] [60]) has transformed the discus-
sion. Two spin % particles in the singlet state are emitted from a source
and travel to widely separated regions A and B. Ateachof A and B
an experimenter performs a Stern-Gerlach experiment to measure whether
the particle has spin up or down in one of three coplanar directions making
angles of 120° with each other. Then quantum mechanics, and stochastic
mechanics, predict that if the two directions are equal, the spins will
always be opposite, but if the two directions are unequal, the spins will
be opposite 411— of the time. (The actual experiments are performed with
photons and polarization measurements, which is very similar.)

According to a deterministic world view, some hidden variables h

determine the outcome of the experiment. But locality demands that the
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spinat A in any direction must not depend on the choice of direction in
which the spin at B is measured; otherwise there is an instantaneous
transmission of information between two widely separated places (and in

a relativistic theory, locality is a consequence of causality: for some
observers, the decision to measure the spin at B in a certain direction
would affect a measurement at A before the decision is taken). That is,
locality requires that the outcome (up or down) of a spin measurement at

A in the direction i be a function fA(i,h) of i and the hidden variables
h alone, and similarly for the outcome fB(j,h) of a spin measurement at

B in the direction j. We have
(23.1) £,G,h) # f53,h)

forall h. Let us divide the h into two classes: in class I are all those
for which the three values of fA(i,h) are all the same, in class II are all
the others. If h is in class I, then the spins will be opposite, by (23.1),
no matter what directions i and j are chosen. There are six choices of
unequal directions i and j. If h is in class II, then two of these six
choices lead to opposite spins. Therefore, if the directions i and j are
chosen at random, for those cases in which they are unequal there will be
opposite spins at least % of the time —which contradicts the predictions
and experiment [3]. In other words, determinism is ruled out by the
causality principle!

Are these correlations consistent with the background field hypothesis?
Let us first put cutoffs on the background field: put the system in a box
of side L and consider only field oscillators for momenta smaller than «.
Then there are only finitely many field oscillators, and the system is
deterministic. The state of the field oscillators and the two particles
gives the hidden variables h. Let us choose L and « to be enormous.
Then technically the interaction is nonlocal: as one of the particles
moves, it excites each field oscillator which in turn reacts immediately

on the other particle wherever it may be. However, this effect should be
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exponentially small, with the exponent directly proportional to « and
the distance between the two particles, so practically speaking the inter-
action is effectively local. Therefore, one might say, the argument given
above should be approximately correct: the outcome of a measurement in
region A of the spin in the direction i should be approximately a func-
tion of i and h alone. But let us examine this more closely.

This deterministic and approximately local interaction must be
extremely unstable. The Stern-Gerlach experiments force a choice of spin
up or spin down that breaks the initial symmetry of the singlet state.
Suppose the two detectors are in the same direction; then no matter how
much care the experimenter takes to replicate the same initial conditions,
a series of runs shows a random succession of up-down and down-up out-
comes. As long as L and « arefixed, the system is deterministic, and
if we know the state of the system in the past, or even at one time, then
we know the outcome. But this is just a qualitative mathematical fact,
and the precision ¢ with which we need to know the state may be enor-
mously fine. Practically speaking the interaction is effectively stochastic.

Nevertheless, the interaction is subject to exact conservation laws,
and if we observe spin up at B (with the two detectors in the same
direction) then we know that we will find spin down at A. Thus an
observation at B will give us useful information about the behavior of
the system outside the light cone of B, information that is additional to
the information we had from observing the initial state of the whole system
(unless that observation is carried out with utter precision, finer than ¢).
Practically speaking the system is effectively not locally causal in the
sense of Bell [6]. Notice that there is no question here of signals or
causal effects being transmitted from B to A.

Can one show that the variables h are such that the outcome of a
measurement in region A of the spin in direction i is approximately a
function of i and h alone? Todo so, one would need to establish

quantitative estimates on the approximate locality of the cutoff interaction
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and quantitative estimates on the precision with which one needs to know
h to determine the outcome, and show that the former effect dominates

the latter —but there is no reason to expect this to be true. For fixed L
and «, there is no reason to expect Bell’s inequality — that with different
directions i and j there will be opposite spins at least %— of the time —
and there is no reason to expect this to be true in the limit as L and «
tend to infinity.

This is the picture we may expect if the background field hypothesis
is correct: the equations of motion of the total field, background field
plus particles, come from a classical local Lagrangian; with cutoffs the
systems is deterministic but increasingly unstable as the cutoffs increase;
the limiting theory is stochastic; a knowledge of the field in the past does
not determine the future behavior of the field; and observation in a region
gives information about the behavior of the field outside the light cone of
that region, information that is additional to the information obtained from
a knowledge of the past (the field is not locally causal in the sense of
Bell [6]); but the locality principle holds — if we couple the field to a
current in a region, only the behavior of the field in the future light cone
of that region will be affected. This picture accords well with what we
know about physics.

Let me say a bit more about local causality in the sense of Bell, since
the reference [6] is not easily accessible and the point is a crucial one.
Let ¢ be a stochastic field; i.e. a stochastic process indexed by smooth
test functions f on space-time. For any openset A, let O(A) be the
o-algebra generated by all &(f) where the support of f is contained in
A. Let A and B be space-like separated, let A be the interior of the
intersections of the backward cones of A and B, and let N be con-
tained in the backward cone of A; see Figure 2. Then we may say that

¢ islocally causal in the sense of Bell in case

Pr{O@A)IOAUNUB)} = PriOA)IGAUN)} .
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Fig. 2. Local causality in the sense of Bell

In case ¢ is the only relevant field, I think this is a correct exposition
of the idea expressed in [6]. The reason Bell gives for imposing the con-
dition is that ‘“... in the particular case that A contains already a com-
plete specification... in the overlap of the two light cones, supplementary
information from region [B] could reasonably be expected to be redundant.”’
Then he proves the beautiful result that quantum mechanics cannot be
imbedded in a theory that is locally causal in his sense.

Now suppose that ¢,  is a sequence of stochastic fields each of
which is locally causal in the sense of Bell, and that ¢, > ¢ in distri-
bution as « - cc. For example, each ¢, may be a deterministic field,
with randomness entering only in the choice of initial conditions in the
remote past. May we conclude that ¢ is also locally causal in the

sense of Bell? Not without a proof, and it seems unlikely. The problem
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is very similar to showing that a limit of Markov fields is a Markov field —
for a long time I assumed this to be true, until my mistake was pointed
out to me (Lemma 1 of [65] is wrong; see {66]). The point is that in the
passage to the limit « » « some information that is present in each
OK(A UN) may be lost, but some of this information may be retained in
O(B). For each «, this information may be stored in @K(AUN) in
terms of extremely precise specification of quantities that are subject to
wild fluctuations as « increases (the hidden variables of a deterministic
theory), but it may be stored in O(B) in terms of a stable configuration
(the outcome of a spin measurement). Given O(AUN), the information in
O(B) may be non-redundant without in any way propagating a causal influ-
ence to A.

Bell’s theorem and experiment rule out determinism — there is an in-
trinsic randomness in nature that is not due to our ignorance of initial
conditions —but they in no way preclude a treatment of quantum fluctua-
tions as being physically real.

I am not sufficiently versed in philosophy to give a precise definition
of ““physically real.”” But the notion has consequences. If something is
physically real, then it cannot be affected instantaneously by a widely
separated perturbation. This is the locality principle, and it poses a
severe challenge to stochastic mechanics. This is because the diffusion
occurs on configuration space, and if we have several particles, possibly
widely separated, the component of the drift for any particular particle
will in general be a function of the positions of all the particles.

Consider a configuration space M that is a Cartesian product,

M=M, xM,,
split into scalars ¢1,¢2 and covector fields A, A2 defined on M; and

and consider an initial wave function l/ro. Let the potentials

M, separately. Let Pr be the probability measure on path space Q=1M
for the corresponding Markovian diffusion, and let Pr; be the probability
measure on {2, =IIM; induced by the projection M >M,. Then locality
requires that Pr; not depend on the choice of ¢&,,A,. df M; and M,

are R3, the configuration space of a particle, then there is no necessary
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connection between the choices of origin in M1 and Mz; the two
particles may be arbitrarily far apart.) Does Markovian stochastic
mechanics satisfy this locality requirement?

To be specific, consider two particles of unit mass in Rl. The first

particle is free, and the second particle is a harmonic oscillator of circular

1
frequency . Let x :(xz) , and let the initial wave function be
X

LN oyxex

where o(0) = (2 i) o 1(0) = ( i "I) . The particles are correlated
hey

but dynamically uncoupled, and t may be arbitrarily widely separated

1
(the origins on the xl.axis and x2-axis are unrelated). Let & :(52
3

be the corresponding Markov process; the question is whether the fl
process depends on the choice of w.

We use the notation of §16. The Heisenberg operators are

X1 = X1(0) + tP1(0) , plt) = PLO),

X(t) = cos wtX%(0) + 102t p2(g), P2(t) = o sin wtX(0) + cos wtP(0).

Let o(t) = <X()X@®)>, 8(t) = <X()oP(t)>, 7(t) = o 1 (1)6(), alt) =

—;— aﬁl(t) +7(t). The autocorrelation function is

ft a(r)dr
EEEGs) = Te's o(s), s<t.
We want to know whether the upper left entry of this depends on w.
Notice that 7(0) = 0, 8(0) = 0, and <P(0) P(0)> = }T ~1(0) - }T (_i g) .
Then

2 458 cos ws — 3 SMLOS
o(s) = 4 4 o
s sin ws 1 sin?ws
cos ws o cos® ws +5 5
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Since the a(r) do not commute, I see no way to compute the product
integral explicitly. John Lafferty and I have computed E&1(t)£1(0) to
fourth order in t, and each of us found that due to remarkable cancella-
tions it is independent of w to that order.

Let &(t) = EEW)EWQ). If o =0 and we rotate the axes so that 0_1(0)
becomes diagonal, the two new coordinates are uncorrelated and dynami-
cally uncoupled, so that the autocorrelation function is the diagonal
matrix consisting of the autocorrelation functions for the one-slit process.

Therefore in the original coordinates, for w = 0 we have
(23.2) ¢11(®) = Cydy +C 1

where for any «
t
5 5 —arctanz—K
qﬁK = V4" +tTe ,

A= ;— (3+\/§) and A1 = %— 3 _\/3) are the eigenvalues of 0"1(0) , and
C) and C/\_l are constants that may be computed from the initial condi-

tions. If locality holds, then we must have (23.2) for all w. Let us

suppose this.

Let B(t) = det o(t)a(t). Then

P11 Bii B\ [®11
det o , = ,
¢12 BIQ 322 ¢12

det U(CA¢X+C>\_1¢;F1) - 311((:/\‘75)\*%_1‘1’
¢12 = 312 ’

det 0<C/\¢5\+CA—1¢;\——1) - Bll(c}\qs)\+c/\—1¢)\—l)

(23.3) det o
Bia

B , , B
- Bm@)\‘f’)ﬁcrﬁb)\_ﬁ + B-?—i det a(chqsﬁcrlqs)\_l) 73%2 611(CA¢/\+CA41¢’,\_1)-
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Now perform the differentiations, using the facts that

. t-2
P = 2 K2¢K’
4+t
” 8«2
K

and multiply through by ,8%2 Now det ¢ and [ are entire functions of

t —computation shows that

1 2 t 1 . -2 1 .
B, =(£—~> cos“ot + ——— ] sin™* wt +——cos wt sin wt ,
11 4 2 16w2 42 4¢

1 t t 1 .
312(t) :(2__1) cos wt — (%+%) sin ot

2 2 2
B,y =1 ~%—+ I:- (1 +%>a)+(1 +%>}{| cos wt sin wt—i sinzmt+£coszmt .

The term coming from ¢% in (23.3), namely

(det U)ZCA—W— by
(A2 +t2)?
has a singularity at t = 2iA that is not cancelled by anything else in the
equation, so we must have det o(2iA) = 0, but this is simply not true for
all . Thus locality fails (although the argument does not tell us to
what order in t we must compute EEN )€ 10) to find a dependence on
w ). That is, the fl process does depend on @ —the first particle
knows what potential has been switched on at the position of the second
particle, even though it may be arbitrarily far away.
I have loved and nurtured Markovian stochastic mechanics for 17 years,

and it is painful to abandon it. But its whole point was to construct a
physically realistic picture of microprocesses, and a theory that violates

locality is untenable,



128 23. LOCALITY

As remarked earlier, there is no reason why the diffusion of a system
produced by interaction with the background field should be Markovian.
Markov processes are simple to construct mathematically, but they have
the great flaw that a component of a Markov process (such as & 1 in the
example above) need not be a Markov process. Let us see whether
locality is restored if we consider non-Markovian diffusions.

Let us say that a diffusion process on M is associated with a solu-
tion ¢ of the Schrédinger equation in case the probability density at all
times is [(//}2 and the drifts are given by (14.35). The diffusion processes
associated with ¥ form an equivalence class that contains a unique
Markovian diffusion (with Neumann boundary conditions, if relevant). This
Markovian approximation determines the equivalence class.

Again let M =M, ><M2 and let the potentials split (as above), and let
£ = (§1,§2) be a diffusion associated with a solution i of the
Schrodinger equation on M. Then the solution of the Schrodinger equation
is given by

P(t) = [U,(0,0)9U,(0,0)]4(0) ,

where U, is the unitary propagator on Hl = Lz(Ml,dMlxl) for the poten-
tials ¢,,A,, and U, is defined similarly on ¥, =L2(M2,dM2x2). Let

A, be a self-adjoint operator on 3‘(1. Then the Heisenberg operator
A0 = [U,(1,0)0Ut,0)] (4, 2110000 UL0,0] - Uy, 0)A,U; (0,081

does not depend on ¢,,A,. (Since self-adjoint operators are identified
with observables in quantum mechanics, quantum mechanics satisfies the
locality principle in this way.) In particular, if A, is multiplication by

f(xl), then

<P(0),U,(t,0)ExHUL 0,0 %(0)> = <gr(t) £ () > = E£(E 1) =

fff(xl)p(xl,xz,t)dMlxlszxz :ff(xl)pl(xl,t)dMlx1
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where pl(xl,t) = fp(xl,xz,t)dM x2 is the probability density at time t
2
of £1. Since f is arbitrary, p; does not depend on ¢,,A,.

Now uj(xl,xz,t) =é— Vi log p, so that wl = (ulj,uzj) where ulj =

5— Vlj log p and similarly for uzj. Let

ilj(Xl,t) = g—lfulj(x 1 ,xz,t)dM2x2

:ilf%_ (VIJlog p)p(xl,xz,t)szx2 = 1—1 %Vljpl = %— Vilogp, .

Then ﬁlj also does not depend on ¢~2,A2 .
Now let Alj = f(xl) (}— V1j> f(xl) where f(xl) is a real multiplica-

tion operator. Then

<y(0), U, (t,0)f(x ") (LL Vlj) £(x1)U,(0,)y(0)> = <L//(t),f(x1)(%~ Vlj) f(CxHy)>

_ R-iS s 15 f1 j 1y _R+iS 1 2
#ff\e > f(x )(i~ Vl )f(x et dMlx szx

is a real number not depending on ¢2,A2 . The only part that is not

purely imaginary is

ffeR"iS fxH Vs fxHeRMSq xldy x?
1 2

=fﬁ2(x1)v1j(x1,x2,t) o(x 1,x2,t)dM1x Iszx2

- f f2<x1>v1i<x1,t>p1<x1,t>dMlx1 - EF2(E L0)v JE .



130 23. LOCALITY

= jr1 1 jrol 2 1.2 2_1 jo ~2R 2
where vlJ(x ,t):F—)-I fvlj(x X2, p(x 7, x ,t)dM2x =p_1 fVIJSe dM2x .

Since f is arbitrary, Vlj does not depend on ¢2,A That is, the

5
probability density and the drifts of £ do not depend on ¢, A,. We

have proved the following locality theorem:

THEOREM 23.1. Let M =M, xM, and let the potentials split. Then
the class of M; components of diffusions associated with a solution of

the Schrodinger equation on M does not depend on ¢,,A,.

Now the problem is to pick the correct representative of the class of
diffusions associated with a solution of the Schrédinger equation on M.
As the example given earlier in this section shows, the Markovian approxi-
mation is not the correct representative. (Even apart from its failure to
satisfy the locality principle, it would be odd to assume that a particle
performs a Markovian diffusion unless at some time in the past it happened
to become correlated with another particle, in which case it performs a
component of a Markovian diffusion.) As these notes give ample evidence,
this course is being given at a time when my thinking about stochastic
mechanics is shifting from a Markovian to a non-Markovian framework. At
present I can only speculate about what the correct diffusion might be.
One possibility is that within the equivalence class there is a unique

diffusion that is an absolute minimum of the Yasue action

Y

L S T ol
Ef [2 (vvJ+uu}) ¢+Alv:|dt.

to

If so, the locality principle would be satisfied by it, by virtue of the
locality theorem.
§24. Fields
The first to investigate fields from the viewpoint of stochastic
mechanics were Guerra and Ruggiero [29]. They treated the cutoff free

scalar field as an assembly of independent harmonic oscillators, each of
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which performs the Markovian diffusion associated with the ground state
wave function, and then removed the cutoffs. They found that the limiting
random field is the free Euclidean Markov field. This gives a new inter-
pretation of the free Euclidean Markov field, in real time —see the remarks
in §19,

The problem has the Poincare group as symmetry group but the solution
does not; the symmetry is broken. The free Euclidean Markov field in any
other Lorentz frame is an equally valid solution. One ought to be able to
see this working in a fixed frame: although the cutoff problem has a
unique ground state wave function, this does not ensure uniqueness in
the limit. There is no symmetry breaking in the ground state for the
quantized free scalar field. From the free Euclidean Markov field one
should be able to construct the Wightman field operators (possessing
Poincaré symmetry) by analogy with the construction of the Heisenberg
position operators in the ground state process of a system of finitely many
degrees of freedom (see §19).

Other integral spin Bose fields have been studied from the viewpoint
of stochastic mechanics (see [12] [13] [27]), but the half integral spin
Fermi fields have not yet received an adequate treatment (in real or
imaginary time). The work of Dankel should provide a clue. In a rela-
tivistic theory there is a natural definition of moment of inertia: the mass
times the square of the Compton wavelength, K2/mc?, or a dimensionless
constant A times this. It is possible that one should not take the limit
A - 0 but allow for transitions to different spins at relativistic energies.

I have talked for a month about probability theory and quantum theory
without once mentioning the Feynman-Kac formula. This formula is at
the heart of the imaginary time approach, but it does not appear to be
central to the real time approach. In the imaginary time approach, one
uses the exPonential of the action to obtain a new weighting of the trajec-
tories. In constructive Euclidean quantum field theory this leads to severe

problems with divergent quantities, which have been controlled by heroic
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efforts for many superrenormalizable interactions. In the real time
approach, only the variation of the action is relevant and it is not ex-
ponentiated, but to reconstruct the Wightman fields one must consider a
sufficiently large class of excited states and not just the vacuum. This
suggests that stochastic mechanics may provide a useful mathematical
tool in constructive quantum field theory, whatever one may think of it as
physics.

I have made some preliminary calculations using this approach to non-
relativistic quantum electrodynamics (finitely many Schrédinger particles
coupled to the quantized Maxwell field). This theory is much simpler than
relativistic quantum electrodynamics because there is no particle creation
or vacuum polarization, but the action is much too singular for one to be
able to treat its exponential in any simple way. The theory has neither
Poincare nor Galilei symmetry, and I do not know of a solution even at
the level of formal renormalized perturbation theory. The preliminary
calculations are promising, but this material is not at a stage where 1
can report on it.

So far I have been discussing the application of the methods of
stochastic mechanics to fields, with random fluctuations viewed as
arising from some background interaction. But the background field
hypothesis is that these quantum fluctuations are themselves the result
of a classical field interaction. The long range goal of the theory is the
Einstein program of describing physical phenomena, including quantum
effects, in terms of a classical field theory. Whether this is possible, no
one knows. The successes of stochastic mechanics show that, contrary
to a widespread belief among physicists, it is not obviously impossible.

I simply do not know whether the things I have been talking about are
physics or formalism. But two things I cling to: a belief in external

reality, and radical skepticism about all theories of it.
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4)

5)
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7)

8)

9)

A LIST OF OPEN PROBLEMS

To find a classical Langrangian, of system + background field
oscillators + interaction, that with reasonable initial probability
measures and in the limit as the cutoffs on the background field are
removed, produces a conservative diffusion in the system. (Or to
show that this is impossible, with a similar proviso for the following

problems.) See [69].
Same as 1, with Langrangian expressing an electromagnetic interaction.

Same as 2, with an explanation of the value of K in terms of e and c.

To investigate stochastic mechanics when the diffusion tensor ol
is degenerate, and the quantization of systems with nonholonomic

contraints.

To further investigate stochastic mechanics when the forces do not
come from a potential, and the quantization of dissipative systems.

See [63], [64], [54], [55], 56}, [701.
To find the probabilistic meaning of the stochastic acceleration.

To find the probabilistic meaning, if any, of superpositions and the

relative phase factor.
To prove the continuity of paths without the Markovian assumption.

To find a probabilistic approach (in contrast to Carlen’s partial differ-
ential equations approach [67]) to the existence and uniqueness of
Markovian diffusions of finite energy, and to discover whether with

this hypothesis the nodes are ever reached.
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10)

11)

12)

13)

14)

15)

16)

A LIST OF OPEN PROBLEMS

To investigate scattering theory from the viewpoint of stochastic

mechanics.

To understand the limit I - 0 in Dankel’s theory of spin, and the

probabilistic meaning of the Pauli equations.

To find a physical conservative diffusion, perhaps in the study of

“effective Planck’s

superfluid helium or solid state physics, with an
constant’’ that is large enough so that one may observe the fluctua-

tions predicted by stochastic mechanics without disturbing the process.

To formulate stochastic mechanics within the context of general

relativity.

To investigate the existence and uniqueness, within the equivalence
class of diffusion processes associated with a solution of the
Schrodinger equation, of one with an absolute minimum of the Yasue

action. See [71].

To find a stochastic field theory of half integral spin Fermi fields

using ordinary diffusion theory.

To study nonrelativistic quantum electrodynamics by the methods of

stochastic mechanics,.
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