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Reading:

1. Chs. 31-33, Ashcroft & Mermin

2. Ch. 4, Kittel

3. For a more detailed discussion of the topic, see e.g. D. Mattis,

Theory of Magnetism I & II, Springer 1981

3 Quantum Magnetism

The main purpose of this section is to introduce you to ordered

magnetic states in solids and their “spin wave-like” elementary

excitations. Magnetism is an enormous field, and reviewing it

entirely is beyond the scope of this course.

3.1 Introduction

3.1.1 Atomic magnetic Hamiltonian

The simplest magnetic systems to consider are insulators where

electron-electron interactions are weak. If this is the case, the

magnetic response of the solid to an applied field is given by the

sum of the susceptibilities of the individual atoms. The mag-

netic susceptibility is defined by the the 2nd derivative of the free

energy,1

χ = −
∂2F

∂H2
. (1)

We would like to know if one can understand (on the basis of an

understanding of atomic structure) why some systems (e.g. some

1In this section I choose units such that the system volume V = 1.
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elements which are insulators) are paramagnetic (χ > 0) and

some diamagnetic (χ < 0).

The one-body Hamiltonian for the motion of the electrons in the

nuclear Coulomb potential in the presence of the field is

Hatom =
1

2m

∑

i

(

pi +
e

c
A(ri)

)2
+

∑

i
V (ri) + g0µBH · S, (2)

where
∑

i Si is the total spin operator, µB ≡ e/(2mc) is the Bohr

magneton, g0 ' 2 is the gyromagnetic ratio, and A = −1
2
r×H

is the vector potential corresponding to the applied uniform field,

assumed to point in the ẑ direction. Expanding the kinetic energy,

Hatom may now be expressed2 in terms of the orbital magnetic

moment operator L =
∑

i ri × pi as

Hatom =
∑

i

p2
i

2m
+

∑

i
V (ri) + δH, (3)

δH = µB(L + g0S) ·H +
e2

8mc2
H2 ∑

i
(x2i + y2i ). (4)

Given a set of exact eigenstates for the atomic Hamiltonian in

zero field |n〉 (ignore degeneracies for simplicity), standard per-

turbation theory in δH gives

δEn = −H · 〈n|~µ|n〉 −
∑

n6=n′
|
〈n|H · ~µ|n′〉|2

En − En′
+

e2

8mc2
H2〈n|

∑

i
(x2i + y2i )|n〉,(5)

where ~µ = −µB(L + g0S). It is easy to see that the first term

dominates and is of order the cyclotron frequency ωc ≡ eH/(mc)

unless it vanishes for symmetry reasons. The third term is of order

ωc/(e
2/a0) smaller, because typical electron orbits are confined to

atomic sizes a0, and is important in insulators only when the state

2To see this, it is useful to recall that it’s ok to commute r and p here since, in the cross product,
pz acts only on x, y, etc.
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|n〉 has zero magnetic moment (L = S = 0). Since the coefficient

of H2 is manifestly positive, the susceptibility3 in the µ = 0

ground state |0〉 is χ = −∂2δE0/∂H
2, which is clearly < 0, i.e.

diamagnetic.4

In most cases, however, the atomic shells are partially filled, and

the ground state is determined by minimizing the atomic en-

ergy together with the intraatomic Coulomb interaction needed

to break certain degeneracies, i.e. by “Hund’s rules”.5 Once this

ground state (in particlular the S, L, and J quantum numbers is

known, the atomic susceptibility can be calculated. The simplest

case is again the J = 0 case, where the first term in (5) again

vanishes. Then the second term and third term compete, and

can result in either a diamagnetic or paramagnetic susceptibility.

The 2nd term is called the Van Vleck term in the energy. It is

paramagnetic since its contribution to χ is

χV V = −
∂2E0|2nd term

∂H2
= 2µ2B

∑

n

|〈0|~µ|n〉|2

En − E0
> 0. (6)

3.1.2 Curie Law-free spins

In the more usual case of J 6= 0, the ground state is 2J + 1

degenerate, and we have to be more careful about defining the

susceptibility. The free energy as T → 0 can no longer be replaced

by E0 as we did above. We have to diagonalize the perturbation

δH in the degenerate subspace of 2J + 1 states with the same J

but different Jz. Applying a magnetic field breaks this degeneracy,

3If the ground state is nondegenerate, we can replace F = E−TS in the definition of the susceptibility
by the ground state energy E0.

4This weak diamagnetism in insulators with filled shells is called Larmor diamagnetism
5See A&M or any serious quantum mechanics book. I’m not going to lecture on this but ask you

about it on homework.
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so we have a small statistical calculation to do. The energies of

the “spin” in a field are given by

H = −~µ ·H, (7)

and since ~µ = −γJ within the subspace of definite J2,6 the 2J+1

degeneracy which existed at H = 0 is completely broken. The free

energy is7

F = −T logZ = −T log
J
∑

Jz=−J
eβγHJz

= −T log







eβγH(J+1/2) − e−βγH(J+1/2)

eβγH/2 − e−βγH/2





 , (8)

so the magnetization of the free spins is

M = −
∂F

∂H
= γJB(βγJH), (9)

where B(x) is the Brillouin function

B(x) =
2J + 1

2J
coth

2J + 1

2J
x−

1

2J
coth

1

2J
x. (10)

6This is not obvious at first sight. The magnetic moment operator ~µ ∝ L̂+ g0Ŝ is not proportional
to the total angular momentum operator Ĵ = L̂ + Ŝ. However its matrix elements within the subspace

of definite L, S, J are proportional, due to the Wigner-Eckart theorem. The theorem is quite general,
which is of course why none of us remember it. But in it’s simpler, more useful form, it says that
the matrix elements of any vector operator are proportional to those of the total angular momentum
operator J. You need to remember that this holds in a basis where atomic states are written |JLSJz〉,
and that ”proportional” just means

〈JLSJz|~V |JLSJ ′
z〉 = g(JLS)〈JLSJz| ~J |JLSJ

′
z〉,

where ~V is some vector operator. In other words, within the subspace of definite J, L, S but for arbitrary
Jz, all the matrix elements 〈Jz|~V |J ′

z〉 are = g〈Jz| ~J |J
′
z〉, with the same proportionality const. g, called

the Landé g-factor.
Obviously ~µ = L + g0S is a vector operator since L and S are angular momenta, so we can apply

the theorem. If J = 0 but L, S are not (what we called case II in class) it is not obvious at first
sight that term 1 in Eq. (5) ∝ 〈0|µz|0〉 vanishes since our basis states are not eigenstates of Lz and
Sz. But using the WE theorem, we can see that it must vanish. This means for the case with ground
state J = 0, L, S 6= 0, terms 2 and 3 in Eq. (5) indeed compete. Examine the matrix element in the
numerator of 2 (van Vleck) in Eq. (5): while the ground state 〈0| is still 〈J = 0LSJz = 0| on the left,
the sum over the excited states of the atom |n′〉 on the right includes other J ’s besides zero! Thus the
WE theorem does not apply. [for a more complete discussion, see e.g. Ashcroft and Mermin p. 654.]

7Geometric series with finite number of terms:
∑N

n=0
xn = 1−xN

1−x
.
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Figure 1: Dimensionless Brillouin fctn.

Note I defined γ = µBg. We were particularly interested in

the H → 0 case, so as to compare with ions with filled shells or

J = 0; in this case one expands for T >> γH, i.e. cothx ∼

1/x+ x/3 + . . ., B(x) ' (J + 1)x/(3J) to find the susceptibility

χ = −
∂2F

∂H2
=
γ2J(J + 1)

3T
, (11)

i.e. a Curie law for the high-temperature susceptibility. A 1/T

susceptibility at high T is generally taken as evidence for free

paramagnetic spins, and the size of the moment given by µ2 =

γ2J(J + 1).
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3.1.3 Magnetic interactions

The most important interactions between magnetic moments in

an insulator are electrostatic and inherently quantum mechanical

in nature. From a classical perspective, one might expect two

such moments to interact via the classical dipolar force, giving

a potential energy of configuration of two moments ~µ1 and ~µ2
separated by a distance r of

U =
~µ1 · ~µ2 − 3(~µ1 · r̂)(~µ2 · r̂)

r3
(12)

Putting in typical atomic moments of order µB = eh̄/mc and

distances of order a Bohr radius r ∼ a0 = h̄2/me2, we find

U ' 10−4eV , which is very small compared to typical atomic

energies of order eV . Quantum-mechanical exchange is almost

aways a much larger effect, and the dipolar interactions are there-

fore normally neglected in the discussions of magnetic interac-

tions in solids. Exchange arises because, e.g., two quantum me-

chanical spins 1/2 (in isolation) can be in either a spin triplet

(total S = 1), or singlet (total S = 0). The spatial part of

the two-particle wavefunctions is antisymmetric for triplet and

symmetric for singlet, respectively. Since the particles carrying

the spins are also charged, there will be a large energetic dif-

ference between the two spin configurations due to the different

size of the Coulomb matrix elements (the “amount of time the

two particles spend close to each other”) in the two cases.8 In

terms of hypothetical atomic wave functions ψa(r) and ψb(r)

for the two particles, the singlet and triplet combinations are

ψ0
1
(r1, r2) = ψa(r1)ψb(r2) ± ψa(r2)ψb(r1), so the singlet-triplet

8Imagine moving 2 H-atoms together starting from infinite separation. Initially the 3 S = 1 states
and 1 S = 0 states must be degenerate. As the particles start to interact via the Coulomb force at very
long range, there will be a splitting between singlet and triplet.
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splitting is approximately

−J ≡ E0 − E1 = 〈0|H|0〉 − 〈1|H|1〉

' 2
∫

d3r1d
3r2ψ

∗
a(r1)ψ

∗
b (r2)V (r1, r2)ψa(r2)ψb(r1),

(13)

where V represents the Coulomb interactions between the parti-

cles (and possible other particles in the problem).9

We’d now like to write down a simple Hamiltonian for the spins

which contains the physics of this exchange splitting. This was

done first by Heisenberg n(check history here), who suggested

H2−spin = JŜ1 · Ŝ2 (15)

You can easily calculate that the energy of the triplet state in this

Hamiltonian is J/4, and that of the singlet state −3J/4. So the

splitting is indeed J . Note that the sign of J in the H2 case is

positive, meaning the S = 0 state is favored; the interaction is

then said to be antiferromagnetic, meaning it favors antialigning

the spins with each other.10

The so-called Heitler-London model of exchange just reviewed

presented works reasonably well for well-separated molecules, but

for N atoms in a real solid, magnetic interactions are much more

9For example, in the H molecule,

V (r1, r2) =
e2

|r1 − r2|
+

e2

|R1 −R2|
−

e2

|r1 −R1|
−

e2

|r2 −R2|
, (14)

where R1 and R2 are the sites of the protons. Note the argument above would suggest naively that the
triplet state should be the ground state in the well-separated ion limit, because the Coulomb interaction
is minimized in the spatially antisymmetric case. However the true ground state of the H2 molecule
is the Heitler-London singlet state ψs(r1, r2) ' ψa(r1)ψb(r2) + ψa(r2)ψb(r1). In the real H2 molecule
the singlet energy is lowered by interactions of the electrons in the chemical bond with the protons–the
triplet state is not even a bound state!

10Historically the sign convention for J was the opposite; J > 0 was usually taken to be ferromagnetic,
i.e. the Hamiltonian was defined with another minus sign. I use the more popular convention H =
J
∑

Si · Sj . Be careful!
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complicated, and it is in general not sufficient to restrict one’s

consideration to the 4-state subspace (singlet ⊕ 3 components of

triplet) to calculate the effective exchange. In many cases, par-

ticularly when the magnetic ions are reasonably well-separated, it

nevertheless turns out to be ok to simply extend the 2-spin form

(15) to the entire lattice:

H = J
∑

iδ
Ŝi · Ŝi+δ (16)

where J is the exchange constant, i runs over sites and δ runs

over nearest neighbors.11 This is the so-called Heisenberg model.

The sign of J can be either antiferromagnetic (J > 0 in this con-

vention), or ferromagnetic (J < 0). This may lead, at sufficiently

low temperature, to a quantum ordered state with ferromagnetic

or antiferromagnetic-type order. Or, it may not. A good deal de-

pends on the type and dimensionality of the lattice, as we discuss

below.

Figure 2: a) Ferromagnetic ordering; b) antiferromagnetic ordering.

Although oversimplified, the Heisenberg model is still very difficult

11One has to be a bit careful about the counting. J is defined conventionally such that there is one
term in the Hamiltonian for each bond between two sites. Therefore if i runs over all sites, one should
have δ only run over, e.g. for the simple cubic lattice, +x̂, +ŷ, and +ẑ. If it ran over all nearest
neighbors, bonds would be double-counted and we would have to multiply by 1/2.
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to solve. Fortunately, a good deal has been learned about it, and

once one has put in the work it turns out to describe magnetic

ordering and magnetic correlations rather well for a wide class of

solids, provided one is willing to treat J as a phenomenological

parameter to be determined from a fit to experiment.

The simplest thing one can do to take interactions between spins

into account is to ask, “What is the average exchange felt by

a given spin due to all the other spins?” This is the essence of

the molecular field theory or mean field theory due to Weiss.

Split off from the Hamiltonian all terms connecting any spins to a

specific spin Ŝi. For the nearest-neighbor exchange model we are

considering, this means just look at the nearest neighbors. This

part of the Hamiltonian is

δHi = Ŝi ·



J
∑

δ
Ŝi+δ



− ~µi ·H, (17)

where we have included the coupling of the spin in question to the

external field as well. We see that the 1-spin Hamiltonian looks

like the Hamiltonian for a spin in an effective field,

δHi = −~µi ·Heff , (18)

Heff = H−
J

gµB

∑

δ
Ŝi+δ (19)

Note this “effective field” as currently defined is a complicated

operator, depending on the neighboring spin operators Ŝi+δ. The

mean field theory replaces this quantity with its thermal average

Heff = H−
J

gµB

∑

δ
〈Ŝi+δ〉 (20)

= H−
zJ

(gµB)2
M, (21)
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where the magnetizationM = 〈µ〉 and z is the number of nearest

neighbors again. But since we have an effective one-body Hamil-

tonian, thermal averages are supposed to be computed just as

in the noninteracting system, cf. (9), but in the ensemble with

effective magnetic field. Therefore the magnetization is

M = γSB(βγSHeff ) = γSB



βγS[H −
zJ

γ2
M ]



 . (22)

This is now a nonlinear equation for M , which we can solve for

any H and T . It should describe a ferromagnet with finite spon-

taneous (H → 0) magnetization below a critical temperature Tc
if J < 0. So to search for Tc, set H = 0 and expand B(x) for

small x:

M = −γSB





zJ

γTc
M



 ' −γS
S + 1

3S

zJ

γTc
M (23)

⇒ Tc =
S(S + 1)

3
z(−J), (24)

So the critical temperature in this mean field theory (unlike the

BCS mean field theory!) is of order the fundamental interaction

energy |J |. We expect this value to be an upper bound to the true

critical temperature, which will be supressed by spin fluctuations

about the mean field used in the calculation.

Below Tc, we can calculate how the magnetization varies near the

transition by expanding the Brillouin fctn. to one higher power

in x. The result is

M ∼ (T − Tc)
1/2. (25)

Note this exponent 1/2 is characteristic of the disappearance of

the order parameter near the transition of any mean field theory
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(Landau).

0.2 0.4 0.6 0.8 1 1.2 1.4 T

0.1

0.2

0.3

0.4

0.5

M

Figure 3: Plot of Mathematica solution to eqn. (22) forM vs. T using −J = g = 1; z =
4;S = 1/2. Tc=1 for this choice. Upper curve: H = 0.1; lower curve: H = 0.

3.2 Ising model

The Ising model12 consists of a set of spins si with z-components

only localized on lattice sites i interacting via nearest-neighbor

exchange J < 0:

H = J
∑

i,j∈n.n.
SiSj − 2µBH

∑

i
Si. (26)

Note it is an inherently classical model, since all spin commuta-

tors vanish [Si, Sj] = 0. Its historical importance consisted not so

much in its applicability to real ferromagnetic systems as in the

role its solutions, particularly the analytical solution of the 2D

model published by Onsager in 1944, played in elucidating the na-

ture of phase transitions. Onsager’s solution demonstrated clearly

that all approximation methods and series expansions heretofore

used to attack the ferromagnetic transition failed in the critical

12The “Ising model” was developed as a model for ferromagnetism by Wilhelm Lenz and his student
Ernst Ising in the early ‘20’s.
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regime, and thereby highlighted the fundamental nature of the

problem of critical phenomena, not solved (by Wilson and others)

until in the early 70’s.

3.2.1 Phase transition/critical point

We will be interested in properties of the model (26) at low and at

high temperatures. What we will find is that there is a tempera-

ture Tc below which the system magnetizes spontaneously, just as

in mean field theory, but that its true value is in general smaller

than that given by mean field theory due to the importance of

thermal fluctuations. Qualitatively, the phase diagram looks like

this:

>

<

Figure 4: Field-magnetization curves for three cases. M0 is spontaneous magnetization
in ferromagnetic phase T < Tc.

Below Tc, the system magnetizes spontaneously even for field

H → 0. Instead of investigating the Onsager solution in detail,

12



I will rely on the Monte Carlo simulation of the model developed

by Jim Sethna and Bob Silsbee as part of the Solid State Sim-

ulation (SSS) project. The idea is as follows. We would like to

minimize F = T log Tr exp−βH for a given temperature and ap-

plied field. Finding the configuration of Ising spins which does so

is a complicated task, but we can imagine starting the system at

high temperatures, where all configurations are equally likely, and

cooling to the desired temperature T .13 Along the way, we allow

the system to relax by “sweeping” through all spins in the finite

size lattice, and deciding in the next Monte Carlo “time” step

whether the spin will be up or down. Up and down are weighted

by a Boltzman probability factor

p(Si = ±1/2) =
e±µHeff/T

e−µHeff/T + eµHeff/T
, (27)

where Heff
i is the effective field defined in (19). The simulation

picks a spin Si in the next time step randomly, but weighted with

these up and down probabilities. A single “sweep” (time step)

consists of L× L such attempts to flip spins, where L is the size

of the square sample. Periodic boundary conditions are assumed,

and the spin configuration is displayed, with one color for up and

one for down.

Here are some remarks on Ising critical phenomena, some of

which you can check yourself with the simulation:

• At high temperatures one recovers the expected Curie law

χ ∼ 1/T

• The susceptibility diverges at a critical temperature below

13This procedure is called simulated annealing
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the mean field value.14 Near, but not too near, the transition

χ has the Curie-Weiss form χ ∼ (T − Tc)
−1.

• With very careful application of the simulation, one should

obtain Onsager’s result that very near the transition (”critical

regime”)

M ∼ (Tc − T )β, (28)

with β = 1/8. The susceptibility actually varies as

χ ∼ |T − Tc|
−γ, (29)

with γ = 7/4. Other physical quantities also diverge near the

transition, e.g. the specific heat varies as |T − Tc|
−α, with

α = 0 (log divergence).

• There is no real singularity in any physical quantity so long

as the system size remains finite.

• The critical exponents α, β, γ... get closer to their mean field

values (β = 1/2, α =, γ =,... ) as the number of nearest

neighbors in the lattice increases, or if the dimensionality of

the system increases.

• The mean square size of themal magnetization fluctuations

gets very large close to the transition (“Critical opalescence”,

so named for the increased scattering of light near the liquid-

solid critical point) .

• Magnetization relaxation gets very long near the transition

(“Critical slowing down”).

• In 1D there is no finite temperature phase transition, although

mean field theory predicts one. This is an example of the

14This is given as a homework problem. Note the value of J used in the simulation is 1/4 that defined
here, since S’s are ±1.
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Mermin-Wagner theorem, which states that for short range

interactions and an order parameter which obeys a continuous

symmetry, there is no long range order in 1D, and none in

2D if T > 0. Note the Ising model escapes this theorem

because it has only a discrete (so-called Z2) symmetry: the

magnetization can be ±S on each site.

3.2.2 1D solution by transfer matrix

3.2.3 Ferromagnetic domains

3.3 Ferromagnetic magnons

Let’s consider the simplest example of an insulating ferromagnet,

described by the ferromagnetic Heisenberg Hamiltonian

H = J
∑

iδ
Ŝi · Ŝi+δ − 2µBH0

∑

i
Ŝiz, (30)

where J < 0 is the ferromagnetic exchange constant, i runs over

sites and δ runs over nearest neighbors, and H0 is the magnetic

field pointing in the ẑ direction. It is clear that the system can

minimize its energy by having all the spins S align along the ẑ

direction at T = 0; i.e. the quantum ground state is identical to

the classical ground state. Finding the elementary excitations of

the quantum many-body system is not so easy, however, due to

the fact that the spin operators do not commute.

3.3.1 Holstein-Primakoff transformation

One can attempt to transform the spin problem to a more stan-

dard many-body interacting problem by replacing the spins with

15



boson creation and annihilation operators. This can be done ex-

actly by the Holstein-Primakoff transformation15

Ŝ+
i = Ŝix + iŜiy = (2S)1/2









1−
a†iai
2S









1/2

ai (31)

Ŝ−
i = Ŝix − iŜiy = (2S)1/2a†i









1−
a†iai
2S









1/2

. (32)

Verify for yourselves that these definitions S±
i give the correct

commutation relations [Ŝx, Ŝy] = iŜz if the bosonic commutation

relations [a, a†] = 1 are obeyed on a given lattice site. Note also

that the operators which commute with the Hamiltonian are Ŝ2

and Ŝz as usual, so we can classify all states in terms of their

eigenvalues S(S + 1) and Sz. To complete the algebra we need a

representation for Ŝz, which can be obtained by using the identity

(on a given site i)

Ŝ2
z = S(S + 1)−

1

2

(

Ŝ+Ŝ− + Ŝ−Ŝ+
)

. (33)

Using (32) and some tedious applications of the bosonic commu-

tation relations, we find

Ŝz = S − a†a. (34)

Now since the system is periodic, we are looking for excitations

which can be characterized by a well-defined momentum (crystal

momentum) k, so we define the Fourier transformed variables

ai =
1

N1/2

∑

k
e−ik·xi bk ; a†i =

1

N1/2

∑

k
eik·xi b†k, (35)

where as usual the F.T. variables also satisfy the bosonic relations

[bk, bk′] = δkk′, etc. Looking forward a bit, we will see that the

15T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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operators b†k and bk create and destroy a magnon or spin-wave

excitation of the ferromagnet. These turn out to be excitations

where the spins locally deviate only a small amount from their

ground state values (‖ ẑ) as the “spin wave” passes by. This sug-

gests a posteriori that an expansion in the spin deviations a†iai
(see (34)) may converge quickly. Holstein and Primakoff therefore

suggested expanding the nasty square roots in (32), giving

Ŝ+
i ' (2S)1/2





ai −







a†iaiai
4S





+ . . .







=

(

2S

N

)1/2




∑

k

e−ik·Ribk −
1

4SN

∑

k,k′,k′′

ei(k−k′−k′′)·Rib†kbk′bk′′ + . . .



 ,(36)

Ŝ−
i ' (2S)1/2





a†i −







a†ia
†
iai

4S





+ . . .







=

(

2S

N

)1/2




∑

k

eik·Rib†k −
1

4SN

∑

k,k′,k′′

ei(k+k′−k′′)·Rib†kb
†
k′bk′′ + . . .



 ,(37)

Ŝiz = S − a†iai = S −
1

N

∑

kk′

ei(k−k′)·Rib†kbk′. (38)

Note that the expansion is formally an expansion in 1/S, so

we might expect it to converge rapidly in the case of a large-spin

system.16 The last equation is exact, not approximate, and it is

useful to note that the total spin of the system along the magnetic

field is

Sz,tot =
∑

i
Sz = NS −

∑

k
b†kbk, (39)

consistent with our picture of magnons tipping the spin away from

its T = 0 equilibrium direction along the applied field.

16For spin-1/2, the case of greatest interest, however, it is far from obvious that this uncontrolled
approximation makes any sense, despite the words we have said about spin deviations being small. Why
should they be? Yet empirically linear spin wave theory works very well in 3D, and surprisingly well in
2D.

17



3.3.2 Linear spin wave theory

The idea now is to keep initially only the bilinear terms in the

magnon operators, leaving us with a soluble Hamiltonian, hoping

that we can then treat the 4th-order and higher terms pertur-

batively.17 Simply substitute (36)-(38) into (30), and collect the

terms first proportional to S2, S, 1, 1/S, etc. We find

H =
1

2
JNzS2 − 2µBH0S +Hmagnon

0 +O(1), (40)

where z is the number of nearest neighbors (e.g. 6 for simple cubic
lattice), and

Hmagnon
0 =

JS

N

∑

iδkk′

[

e−i(k−k′)·Rieik
′·δbkb

†
k′ + ei(k−k′)·Rie−ik

′·δb†kbk′

−ei(k−k′)·Rib†kbk′ − e−i(k−k′)·(Ri+δ)b†kbk′

]

+
2µBH0

N

∑

ikk′

ei(k−k′)·Rib†kbk′

= JzS
∑

k

[

γkbkb
†
k + γ−kb

†
kbk − 2b†kbk

]

+ 2µBH0

∑

k

b†kbk

=
∑

k

[−2JzS(1− γk) + 2µBH0] b
†
kbk, (41)

where

γk =
1

z

∑

δ
eik·δ (42)

is the magnon dispersion function, which in this approximation

depends only on the positions of the nearest neighbor spins. Note

in the last step of (41), I assumed γk = γ−k, which is true for lat-

tices with inversion symmetry. For example, for the simple cubic

lattice in 3D with lattice constant a, γk = (cos kxa + cos kya +

cos kza)/3, clearly an even function of k. Under these assump-

tions, the magnon part of the Hamiltonian is remarkably sim-

ple, and can be written like a harmonic oscillator or phonon-type

17physically these “nonlinear spin wave” terms represent the interactions of magnons, and resemble
closely terms representing interactions of phonons in anharmonic lattice theory
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Hamiltonian, Hmagnon
0 =

∑

k nkωk, where nk = b†kbk is the num-

ber of magnons in state k, and

ωk = −2JSz(1− γk) + 2µBH0 (43)

is the magnon dispersion. The most important magnons will be

those with momenta close to the center of the Brillouin zone,

k ∼ 0, so we need to examine the small-k dispersion function. For

a Bravais lattice, like simple cubic, this expansion gives 1− γk '

k2,18 i.e. the magnon dispersion vanishes as k → 0. For more

complicated lattices, there will be solutions with ωk → const.

There is always a “gapless mode” ωk → 0 as well, however, since

the existence of such a mode is guaranteed by the Goldstone the-

orem.19 The figure shows a simple 1D schematic of a spin wave

Figure 5: Real space picture of spin deviations in magnon. Top: ordered ground state

with wavelength λ = 2π/k corresponding to about 10 lattice sites.

The picture is supposed to convey the fact that the spin devia-

tions from the ordered state are small, and vary slightly from site

to site. Quantum mechanically, the wave function for the spin

wave state contains at each site a small amplitude for the spin

18Check for simple cubic!
19For every spontaneously broken continuous symmetry of the Hamiltonian there is a ωk→0 = 0 mode.
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to be in a state with definite Sx and/or Sy. This can be seen by

inverting Eq. (37) to leading order, & noting that the spin wave

creation operator b†k lowers the spin with Ŝ− = Ŝx − iŜy with

phase e−ik·Ri and amplitude ∼ 1/S at each site i.

3.3.3 Dynamical Susceptibility

Experimental interlude

The simple spin wave calculations described above (and below)

are uncontrolled for spin-1/2 systems, and it would be nice to

know to what extent one can trust them. In recent years, numeri-

cal work (exact diagonalization and quantum Monte Carlo) tech-

niques have shown, as noted, that linear spin wave calculations

compare suprisingly well with such “exact” results for the Heisen-

berg model. But we still need to know if there are any physical

systems whose effective spin Hamiltonian can really be described

by Heisenberg models. In addition, keep in mind that the utility

of spin wave theory was recognized long before such numerical

calculations were available, mainly through comparison with ex-

periments on simple magnets. The most useful probe of magnetic

structure is slow neutron scattering, a technique developed in the

40’s by Brockhouse and Schull (Nobel prize 1994). This section is

a brief discussion of how one can use neutron scattering techniques

to determine the dispersion and lifetimes of magnetic excitations

in solids.20

Neutrons scatter from solids primarily due to the nuclear strong

force, which leads to nonmagnetic neutron-ion scattering and al-

lows structural determinations very similar to x-ray diffraction

20A complete discussion is found in Lovesey, Theory of Neutron Scattering from Condensed Matter,

Oxford 1984, V. 2
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analysis. In addition, slow neutrons traversing a crystal can emit

or absorb phonons, so the inelastic neutron cross-section is also

a sensitive measure of the dispersion of the collective modes of

the ionic system.21 There is also a force on the neutron due to

the interaction of its small magnetic dipole moment with the spin

magnetic moment of the electrons in the solid. There are there-

fore additional contributions to the peaks in the elastic neutron

scattering intensity (at the Bragg angles) corresponding to mag-

netic scattering if the solid has long-range magnetic order; they

can be distinguished from the nonmagnetic scattering because the

additional spectral weight is strongly temperature dependent and

disappears above the critical temperature, or through application

of an external magnetic field. Furthermore, in analogy to the

phonon case, inelastic neutron scattering experiments on ferro-

magnets yield peaks corresponding to processes where the neu-

tron absorbs or emits a spin wave excitation. Thus the dispersion

relation for the magnons can be mapped out.22

I will not go through the derivation of the inelastic scattering cross

section, which can be found in Lovesey’s book. It is similar to the

elementary derivation given by Ashcroft & Mermin in Appendix

N for phonons. The result is






d2σ

dΩdω







inel

= a20
k′

k

{g

2
F (q)

}2
e−2W (q) (1 + b(ω))

×
−N

π(gµB)2
∑

αβ
(δαβ − q̂αq̂β) Im χαβ(q,−ω),(44)

21cf. Ashcroft & Mermin ch. 24
22Even in systems without long range magnetic order, neutron experiments provide important infor-

mation on the correlation length and lifetime of spin fluctuations. In strongly correlated systems (e.g.
magnets just above their critical temperature, or itinerant magnets close to a magnetic transition as in
Sec. xxx), these can be thought of as collective modes with finite lifetime and decay length. This means
the correlation function 〈Ŝα

i (t)Ŝ
α
j 〉 is not const. as t, |Ri −Rj | → ∞, but may fall off very slowly, as

“power laws” t−β, |Ri −Rj |
−γ .
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where a0 is the Bohr radius, k and k′ are initial and final wave

vector, q = k− k′, F (q) atomic form factor, e−2W (q) the Debye-

Waller factor, and b(ω) the Bose distribution function, N the

number of unit cells, and ω is the energy change of the neuton,

k2/(2m)−k′2/(2m). The physics we are interested in is contained

in the imaginary part of the dynamic susceptibility χ(q, ω). For

ω < 0, this measures the energy loss by neutrons as they slow

down while emitting spin waves in the solid; for ω > 0 the neu-

trons are picking up energy from thermally excited spin waves.

To see the effect of spin excitations within linear spin wave

theory, one calculates the transverse spin susceptibility

χR+−(Ri −Rj, t) ≡ −Tr
(

ρ̂[Ŝ+
i (t), Ŝ

−
j ]
)

θ(t) (45)

and then its Fourier transform wrt momentum q and frequency ω.

I won’t do this calculation explicitly, but leave it as an exercise.

You express the S operators in terms of the bk’s, whose time

dependence is exactly known since the approximate Hamiltonian

is quadratic. At the end, after Fourier transforming, one recovers

χ+−(q, ω) = (
2S

N
)







1

ω + ωq + i0+





 . (46)

Again, as for the Fermi gas, we see that the collective modes of

the system are reflected as the poles in the appropriate response

function.

The final cross section is now proportional to

Im χ+−(q,−ω) ∼ δ(ω + ωq), (47)

i.e. there is a peak when a magnon is absorbed (neutron’s en-

ergy k′2/(2m) is larger than initial energy k2/(2m) ⇒ ω ≡

k2/(2m)− k′2/(2m) < 0.). There is another similar contribution
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proportional to δ(ω−ωq) (emission) coming from χ−+. Thus the

dispersion ωq can be mapped out by careful measurement. The

Figure 6: Neutron scattering data on ferromagnet. I searched a bit but couldn’t come
up with any more modern data than this. This is Fig. 1, Ch. 4 of Kittel, Magnon
dispersions in magnetite from inelastic neutron scattering by Brockhouse (Nobel Prize
1994) and Watanabe.

one-magnon lines are of course broadened by magnon-magnon

interactions, and by finite temperatures (Debye-Waller factor).

There are also multimagnon absorption and emission processes

which contribute in higher order.

Finally, note that I proposed to calculate χ+−, the transverse

magnetic susceptibility in Eq. 45. What about the longitudi-

nal susceptibilty χzz, defined in the analogous way but for z-

components 〈[Sz, Sz]〉? Because the ordered spins point in the z

direction, the mode for this channel is gapped, not gapless, with

energy of order J !
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3.4 Quantum antiferromagnet

Antiferromagnetic systems are generally approached by analogy

with ferromagnetic systems, assuming that the system can be di-

vided up into two or more sublattices, i.e. infinite interpenetrating

subsets of the lattice whose union is the entire lattice. Classically,

it is frequently clear that if we choose all spins on a given judi-

ciously chosen sublattice to be aligned with one another, we must

achieve a minimum in the energy. For example, for the classical

AF Heisenberg model H = J
∑

iδ Si ·Si+δ with J > 0 on a square

lattice, choosing the A-B sublattices in the figure and making all

spins up on one and down on another allows each bond to achieve

its lowest energy of −JS2. This state, with alternating up and

down spins, is referred to as the classical Neél state. Similarly, it

may be clear to you that on the triangular lattice the classical low-

est energy configuration is achieved when spins are placed at 120◦

with respect to one another on the sublattices A,B,C. However,

Figure 7: Possible choice of sublattices for antiferromagnet

quantum magnetic systems are not quite so simple. Consider the
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magnetization MA on a given sublattice (say the A sites in the

figure) of the square lattice; alternatively one can define the stag-

gered magnetization asMs =
∑

i(−1)i〈Ŝi〉 (Note (−1)i means +1

on the A sites and −1 on the B sites.) Either construct can be

used as the order parameter for an antiferromagnet on a bipartite

lattice. In the classical Neél state, these is simply MA = NS/2

and Ms = NS, respectively, i.e. the sublattice or staggered mag-

netization are saturated. In the wave function for the ground

state of a quantum Heisenberg antiferromagnet, however, there is

some amplitude for spins to be flipped on a a given sublattice, due

to the fact that for a given bond the system can lower its energy

by taking advantage of the ŜxŜ
′
x + ŜyŜ

′
y terms. This effect can

be seen already by examining the two-spin 1/2 case for the ferro-

magnet and antiferromagnet. For the ferromagnet, the classical

energy is −|J |S2 = −|J |/4, but the quantum energy in the total

spin 1 state is also −|J |/4. For the antiferromagnet, the classical

energy is −JS2 = −J/4, but the energy in the total spin 0 quan-

tum mechanical state is −3J/4. So quantum fluctuations–which

inevitably depress the magnetization on a given sublattice–lower

the energy in the antiferromagnetic case. This can be illustrated

in a very simple calculation of magnons in the antiferromagnet

following our previous discussion in section 7.2.

3.4.1 Antiferromagnetic magnons

We will follow the same procedure for the ferromagnet on each

sublattice A and B, defining

ŜA+i = ŜAix + iŜAiy = (2S)1/2








1−
A†
iAi

2S









1/2

Ai (48)
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ŜA−i = ŜAix − iŜAiy = (2S)1/2A†
i









1−
A†
iAi

2S









1/2

(49)

ŜB+
i = ŜBix + iŜBiy = (2S)1/2









1−
B†
iBi

2S









1/2

Bi (50)

ŜB−
i = ŜBix − iŜBiy = (2S)1/2B†

i









1−
B†
iBi

2S









1/2

(51)

SAiz = S −A†
iAi (52)

−SBiz = S −B†
iBi, (53)

i.e. we assume that in the absence of any quantum fluctuations

spins on sublattice A are up and those on B are down. Otherwise

the formalism on each sublattice is identical to what we did for

the ferromagnet. We introduce on each sublattice creation &

annihilation operators for spin waves with momentum k:

ak =
1

N1/2

∑

i∈A
Aie

ik·Ri; a†k =
1

N1/2

∑

i∈A
A†
ie

−ik·Ri (54)

bk =
1

N1/2

∑

i∈B
Bie

ik·Ri; b†k =
1

N1/2

∑

i∈B
B†
i e

−ik·Ri. (55)

In principle k takes values only in the 1st magnetic Brillouin

zone, or half-zone, since the periodicity of the sublattices is twice

that of the underlying lattice. The spin operators on a given site

are then expanded as

ŜA+i '





2S

N





1/2 



∑

k
e−ik·Riak + . . .



 , (56)

ŜB+
i '





2S

N





1/2 



∑

k
e−ik·Ribk + . . .



 , (57)

ŜA−i '





2S

N





1/2 



∑

k
eik·Ria†k + . . .



 , (58)
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ŜB−
i '





2S

N





1/2 



∑

k
eik·Rib†k + . . .



 , (59)

ŜAiz = S −
1

N

∑

kk′
ei(k−k′)·Ria†kak′ (60)

ŜBiz = −S +
1

N

∑

kk′
ei(k−k′)·Ria†kak′. (61)

The expansion of the Heisenberg Hamiltonian in terms of these

variables is now (compare (40))

H = −NzJS2 +Hmagnon
0 +O(1), (62)

Hmagnon
0 = JzS

∑

k

[

γk(a
†
kb

†
k + akbk) + (a†kak + b†kbk)

]

(63)

Unlike the ferromagnetic case, merely expressing the Hamiltonian

to bilinear order in the magnon variables does not diagonalize it

immediately. We can however perform a canonical transforma-

tion23 to bring the Hamiltonian into diagonal form (check!):

αk = ukak − vkb
†
k ; α†

k = ukA
†
k − vkBk (64)

βk = ukbk − vka
†
k ; β†

k = ukB
†
k − vkAk, (65)

where the coefficients uk, vk must be chosen such that u
2
k−v

2
k = 1.

One such choice is uk = cosh θk and vk = sinh θk. For each k,

choose the angle θk such that the anomalous terms like α†
kβ

†
k

vanish. One then finds the solution

tanh 2θk = −γk, (66)

and

Hmagnon
0 = −NEJ +

∑

k
ωk(α

†
kαk + β†

kβk + 1), (67)

23The definition of a canonical transformation, I remind you, is one which will give canonical commu-
tation relations for the transformed fields. This is important because it ensures that we can interpret
the Hamiltonian represented in terms of the new fields as a (now diagonal) fermion Hamiltonian, read
off the energies, etc.
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Figure 8: Integrated intensity of (100) Bragg peak vs. temperature for LaCuO4, with
TN = 195K. (After Shirane et al. 1987)

where

ω2
k = E2

J(1− γ2k), (68)

and EJ = JzS. Whereas in the ferromagnetic case we had ωk ∼

(1− γk) ∼ k2, it is noteworthy that in the antiferromagnetic case

the result ωk ∼ (1− γk)
1/2 ∼ k gives a linear magnon dispersion

at long wavelengths (a center of symmetry of the crystal must be

assumed to draw this conclusion). Note further that for each k

there are two degenerate modes in Hmagnon
0 .

3.4.2 Quantum fluctuations in the ground state

You may wonder that there is a constant term in (67), since

Hmagnon was the part of the Hamiltonian which gave the exci-

tations above the ground state in the ferromagnetic case. Here at

T = 0 the expectation values (in 3D at least, see below) 〈α†α〉
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Figure 9: a) Inelastic neutron scattering intensity vs. energy transfer at 296K near zone
boundary Q = (1, k, 0.5) for oriented LaCuO4 crystals with Neél temperature 260K; b)
spin-wave dispersion ωq vs. q‖, where q‖ is in-plane wavevector. (after Hayden et al.
1991)

and 〈β†β〉 vanish – there are no AF magnons in the ground state.

But this leaves a constant correction coming from Hmagnon of

−NEJ +
∑

k ωk. The spin wave theory yields an decrease of the

ground state energy relative to the classical value −NJzS2, but

an increase over the quantum ferromagnet result of −N |J |S(S+

1) due to the zero-point (constant) term in (67).24 The ground-

state energy is then

E0 ' −NzJS2 −NzJS +
∑

k
ωk. (69)

The result is conventionally expressed in terms of a constant β

defined by

E0 ≡ −NJzS



S +
β

z



 , (70)

24Recall the classical Neél state, which does not contain such fluctuations, is not an eigenstate of the
quantum Heisenberg Hamiltonian.
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and

β/z = N−1 ∑

k

[

1−
√

1− γ2k

]

=
0.097 3D

0.158 2D
. (71)

(I am checking these–they don’t agree with literature

I have)

Quantum fluctuations have the further effect of preventing the

staggered magnetization from achieving its full saturated value of

S, as in the classical Neél state, as shown first by Anderson.25

Let us consider the average z-component of spin in equilibrium

at temperature T , averaging only over spins on sublattice A of

a D-dimensional hypercubic lattice. From (60), we have 〈ŜAz 〉 =

S−N−1 ∑
k〈A

†
kAk〉 within linear spin wave theory. Inverting the

transformation (65), we can express the A’s in terms of the α’s

and β’s, whose averages we can easily calculate. Note the 0th

order in 1/S gives the classical result, 〈ŜAz 〉, and the deviation is

the spin wave reduction of the sublattice moment

δMA

N
= 〈ŜAz 〉 − S = −

1

N

∑

k
〈a†kak〉

= −
1

N

∑

k
〈(ukα

†
k + vkβk)(ukαk + vkβ

†
k)〉

= −
1

N

∑

k
u2k〈α

†
kαk〉 + v2k〈β

†
kβk〉 + v2k, (72)

where N is the number of spins on sublattice B. We have ne-

glected cross terms like 〈α†
kβ

†
k〉 because the α and β are inde-

pendent quanta by construction. However the diagonal averages

〈α†
kαk〉 and 〈β†

kβk〉 are the expectation values for the number op-

erators of independent bosons with dispersion ωk in equiblibrium,

25P.W. Anderson, Phys. Rev. 86, 694 (1952).
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and so can be replaced (within linear spin wave theory) by

nk ≡ 〈β†
kβk〉 = 〈α†

kαk〉 = b(ωk), (73)

where b is the Bose distribution function. The tranformation

coefficients uk = cosh θk and vk = sinh θk are determined by the

condition (66) such that

u2k + v2k = cosh 2θk =
1

√

1− γ2k
(74)

v2k =
1

2









1
√

1− γ2k
− 1









, (75)

such that the sulattice magnetization (72) becomes

δMA

N
=

1

2
−

1

N

∑

k



nk +
1

2





1
√

1− γ2k
(76)

Remarks:

1. All the above “anomalies” in the AF case relative to the F case

occur because we tried to expand about the wrong ground

state, i.e. the classical Neél state, whereas we knew a pri-

ori that it was not an eigenstate of the quantum Heisenberg

model. We were lucky: rather than breaking down entirely,

the expansion signaled that including spin waves lowered the

energy of the system; thus the ground state may be thought

of as the classical Neél state and an admixture of spin waves.

2. The correction δMA is independent of S, and negative as

it must be (see next point). However relative to the leading

classical term S it becomes smaller and smaller as S increases,

as expected.
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3. The integral in (76) depends on the dimensionality of the

system. It has a T -dependent part coming from nk and a

T -independent part coming from the 1/2. At T = 0, where

there are no spin waves excited thermally, nk = 0, and we

find

δMA

N
'



























−0.078 D = 3

−0.196 D = 2

∞ D = 1

(77)

The divergence in D = 1 indicates the failure of spin-wave

theory in one dimension.

4. The low temperature behavior of δM(T ) must be calculated

carefully due to the singularities of the bose distribution func-

tion when ωk → 0. If this divergence is cut off by introducing

a scale k0 near k = 0 and k = (π/a, π/a), one finds that δMA

diverges as 1/k0 in 1D, and as log k0 in 2D, whereas it is finite

as k0 → 0 in 3D. Thus on this basis one does not expect long

range spin order at any nonzero temperature in two dimen-

sions (see discussion of Mermin-Wagner theorem below), nor

even at T = 0 in one dimension.
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3.4.3 Nonlinear spin wave theory

3.4.4 Frustrated models

3.5 1D & 2D Heisenberg magnets

3.5.1 Mermin-Wagner theorem

3.5.2 1D: Bethe solution

3.5.3 2D: Brief summary

3.6 Itinerant magnetism

“Itinerant magnetism” is a catch-all phrase which refers to mag-

netic effects in metallic systems (i.e., with conduction electrons).

Most of the above discussion assumes that the spins which interact

with each other are localized, and there are no mobile electrons.

However we may study systems in which the electrons which mag-

netize, or nearly magnetize are mobile, and situations in which

localized impurity spins interact with conduction electron spins

in a host metal. The last problem turns out to be a very difficult

many-body problem which stimulated Wilson to the develop of

renormalization group ideas.

3.7 Stoner model for magnetism in metals

The first question is, can we have ferromagnetism in metallic sys-

tems with only one relevant band of electrons. The answer is yes,

although the magnetization/electron in the ferromagnetic state

is typically reduced drastically with respect to insulating ferro-

magnets. The simplest model which apparently describes this
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kind of transition (there is no exact solution in D > 1) is the

Hubbard model we have already encountered. A great deal of at-

tention has been focussed on the Hubbard model and its variants,

particularly because it is the simplest model known to display

a metal-insulator (Mott-Hubbard) transition qualitatively similar

to what is observed in the high temperature superconductors. To

review, the Hubbard model consists of a lattice of sites labelled

by i, on which electrons of spin ↑ or ↓ may sit. The kinetic energy

term in the Hamiltonian allows for electrons to hop between sites

with matrix element t, and the potential energy simply requires

an energy cost U every time two opposing spins occupy the same

site.26 Longer range interactions are neglected:

H = −t
∑

σ
<i,j>

c†iσcjσ +
1

2
U

∑

σ
niσni−σ, (78)

where < ij > means nearest neighbors only.

In its current form the kinetic energy, when Fourier transformed,

corresponds, to a tight binding band in d dimensions of width 4dt,

εk = −2t
d
∑

α=1
cos kαa, (79)

26What happened to the long-range part of the Coulomb interaction? Now that we know it is
screened, we can hope to describe its effects by including only its matrix elements between electrons in
wave functions localized on site i and site j, with |i − j| smaller than a screening length. The largest
element is normally the i = j one, so it is frequently retained by itself. Note the Hamiltonian (78)
includes only an on-site interaction for opposite spins. Of course like spins are forbidden to occupy the
same site anyway by the Pauli principle.

34



where a is the lattice constant. The physics of the model is as

follows. Imagine first that there is one electron per site, i.e. the

band is half-filled. If U = 0 the system is clearly metallic, but if

U → ∞, double occupation of sites will be “frozen out”. Since

there are no holes, electrons cannot move, so the model must

correspond to an insulating state; at some critical U a metal-

insulator transition must take place. We are more interested in the

case away from half-filling, where the Hubbard model is thought

for large U and small doping (deviation of density from 1 parti-

cle/site) to have a ferromagnetic ground state.27 In particular, we

would like to investigate the transition from a paragmagnetic to

a ferromagnetic state as T is lowered.

This instability must show up in some quantity we can calcu-

late. In a ferromagnet the susceptibility χ diverges at the tran-

sition, i.e. the magnetization produced by the application of an

infinitesimal external field is suddenly finite. In many-body lan-

guage, the static, uniform spin susceptibility is the retarded spin

density – spin density correlation function, (for the discussion be-

low I take gµB = 1)

χ = χ(q = 0, ω = 0) = lim
hz→0

〈Sz〉

hz
=

∫

d3r
∫ ∞

0
dt〈[Sz(r, t), Sz(0, 0)]〉,

(80)

where in terms of electron number operators nσ = ψ†
σψσ, the

magnetization operators are Sz = (1/2)[n↑ − n↓], i.e. they just

measure the surplus of up over down spins at some point in space.

27At 1/2-filling, one electron per site, a great deal is known about the Hubbard model, in particular
that the system is metallic for small U (at least for non-nested lattices, otherwise a narrow-gap spin
density wave instability is present), but that as we increase U past a critical value Uc ∼ D a transition to
an antiferromagnetic insulating state occurs (Brinkman-Rice transition). With one single hole present,
as U → ∞, the system is however ferromagnetic (Nagaoka state).
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Figure 10: 1a) Hubbard interaction; 1b) Spin susceptibility vs. T for free fermions.

Diagramatically, the Hubbard interaction Hint = U
∑

i ni↑ni↓
looks like figure 10a); note only electrons of opposite spins inter-

act. The magnetic susceptibility is a correlation function similar

to the charge susceptibility we have already calculated. At time

t=0, we measure the magnetization Sz of the system, allow the

particle and hole thus created to propagate to a later time, scat-

ter in all possible ways, and remeasure Sz. The so-called “Stoner

model” of ferromagnetism approximates the perturbation series

by the RPA form we have already encountered in our discussion

of screening,28 which gives χ = χ0/(1 − Uχ0).
29 At sufficiently

28In the static, homogeneous case it is equivalent to the self-consistent field (SCF) method of Weiss.
29

Hamiltonian after mean field procedure is

H =
∑

kσ

εkc
†
kσckσ + U

∑

kσ

n−σc
†
kσckσ +H(nσ − n−σ) (81)

which is quadratic & therefore exactly soluble. Also note units: H is really µBgH/2, but never mind.
Hamiltonian is equivalent to a free fermion system with spectrum ε̃kσ = εk +Un−σ +Hσ. The number
of electrons with spin σ is therefore

nσ =
∑

k

f(ε̃kσ) =
∑

k

f(εk + Un−σ +Hσ) (82)

≡ n0
σ + δnσ, (83)
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high T (χ0 varies as 1/T in the nondegenerate regime, Fig. 10c))

we will have Uχ0(T ) < 1, but as T is lowered, Uχ0(T ) increases.

If U is large enough, such that UN0 > 1, there will be a tran-

sition at Uχ0(Tc) = 1, where χ diverges. Note for Uχ0(T ) > 1

(T < Tc), the susceptibility is negative, so the model is unphysical

in this region. This problem arises in part because the ferromag-

netic state has a spontaneously broken symmetry, 〈Sz〉 6= 0 even

for hz → 0. Nevertheless the approach to the transition from

above and the location of the transition appear qualitatively rea-

sonable.

It is also interesting to note that for Uχ(0) = UN0 < 1, there

will be no transition, but the magnetic susceptibility will be en-

hanced at low temperatures. So-called “nearly ferromagnetic”

metals like Pd are qualitatively described by this theory. Com-

where n0
σ is the equilibrium number of fermions in a free gas with no U . We can expand δnσ for small

field:

δnσ =
∑

k

f(εk + Un−σ +Hσ)−
∑

k

f(εk +Hσ)

'
∑

k

df

dεk

dε̃

dH H=0

H − (U → 0) (84)

=
∑

k

df

dεk

(

U
dn−σ

dH
+ σ

)

H=0

H − (U → 0) .

→
H→0

− χ0U
dn−σ

dH H=0

H

where in the last step we set H = 0, in which case nσ = n−σ (paramagnetic state). I used χ0 =
∑

k −df/dεk for Fermi gas. The magnetization is now

m ≡ χH = n↑ − n↓ = χ0H + δn↑ − δn↓ (85)

= χ0H + χ0UχH, (86)

since χ = dm/dH . So total susceptibility has RPA form:

χ =
χ0

1− Uχ0

. (87)
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paring the RPA form

χ =
χ0(T )

1− Uχ0(T )
(88)

to the free gas susceptibility in Figure 9b, we see that the system

will look a bit like a free gas with enhanced density of states, and

reduced degeneracy temperature T ∗
F .

30 For Pd, the Fermi temper-

ature calculated just by counting electrons works out to 1200K,

but the susceptibility is found experimentally to be ∼ 10× larger

than N0 calculated from band structure, and the susceptibility is

already Curie-like around T ∼ T ∗
F '300K.

3.7.1 Moment formation in itinerant systems

We will be interested in asking what happens when we put a lo-

calized spin in a metal, but first we should ask how does that

local moment form in the first place. If an arbitrary impurity is

inserted into a metallic host, it is far from clear that any kind of

localized moment will result: a donor electron could take its spin

and wander off to join the conduction sea, for example. Fe impu-

rities are known to give rise to a Curie term in the susceptibility

when embedded in Cu, for example, but not in Al, suggesting

that a moment simply does not form in the latter case. Ander-

son31 showed under what circumstances an impurity level in an

interacting host might give rise to a moment. He considered a

model with a band of electrons32 with energy εk, with an extra

30Compare to the Fermi liquid form

χ =
m∗

m

χ0

1 + F a
0

. (89)

31PW Anderson, Phys. Rev. 124, 41 (1961)
32The interesting situation for moment formation is when the bandwidth of the ”primary” cond.

electron band overlapping the Fermi level is much larger than the bare hybridization width of the

38



dispersionless impurity level E0. Suppose there are strong local

Coulomb interactions on the impurity site, so that we need to

add a Hubbard-type repulsion. And finally suppose the conduc-

tion (d) electrons can hop on and off the impurity with some

matrix element V . The model then looks like

H =
∑

kσ
εkc

†
kσckσ+E0

∑

σ
n0σ+V

∑

kσ
(c†kσc0+c

†
0ckσ)+

1

2
U

∑

σ
n0σn0−σ,

(90)

where n0σ = c†0σc0σ is the number of electrons of spin σ on the

impurity site 0. By the Fermi Golden rule the decay rate due

to scattering from the impurity of a band state ε away from the

Fermi level EF in the absence of the interaction U is of order

∆(ε) = πV 2∑

k
δ(ε− εk) ' πV 2N0 (91)

In the “Kondo” case shown in the figure, where E0 is well below

the Fermi level, the scattering processes take place with electrons

at the Fermi level ε = 0, so the bare width of the impurity state

is also ∆ ' πV 2N0. So far we still do not have a magnetic mo-

ment, since, in the absence of the interaction U , there would be

an occupation of 2 antiparallel electrons. If one could effectively

prohibit double occupancy, however, i.e. if U � ∆, a single

spin would remain in the localized with a net moment. Anderson

obtained the basic physics (supression of double occupancy) by

doing a Hartree-Fock decoupling of the interaction U term. Schri-

effer and Wolff in fact showed that in the limit U → −∞, the

virtual charge fluctuations on the impurity site (occasional dou-

ble occupation) are eliminated, and the only degree of freedom

left (In the so-called Kondo regime corresponding to Fig. 10a) is

impurity state. The two most commonly considered situations are a band of s electrons with d-level
impurity (transition metal series) and d-electron band with localized f -level (rare earths/actinides–
heavy fermions).
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a localized spin interacting with the conduction electrons via an

effective Hamiltonian

HKondo = JS · σ, (92)

where J is an antiferromagnetic exchange expressed in terms of

the original Anderson model parameters as

J = 2
V 2

E0
, (93)

S is the impurity spin-1/2, and

σi =
1

2

∑

kk′αβ
c†kα (τi)αβ ck′β, (94)

with τi the Pauli matrices, is just the conduction electron spin

density at the impurity site.

E E

N(E)

E

d-band

E
0

Kondo

Mixed valence

Empty moment

E
0

E
0

d-band d-band

E
F

E
F

Figure 11: Three different regimes of large U Anderson model depending on position of
bare level E0. In Kondo regime (E0 << EF ), large moments form at high T but are
screened at low T . In mixed valent regime, occupancy of impurity level is fractional and
moment formation is marginal. For E0 > EF , level is empty and no moment forms.
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3.7.2 RKKY Interaction

Kittel p. 360 et seq.

3.7.3 Kondo model

The Hartree-Fock approach to the moment formation problem

was able to account for the existence of local moments at defects

in metallic hosts, in particular for large Curie terms in the suscep-

tibility at high temperatures. What it did not predict, however,

was that the low-temperature behavior of the model was very

strange, and that in fact the moments present at high tempera-

tures disappear at low temperatures, i.e. are screened completely

by the conduction electrons, one of which effectively binds with

the impurity moment to create a local singlet state which acts (at

T = 0) like a nonmagnetic scatterer. This basic physical picture

had been guessed at earlier by J. Kondo,33 who was trying to

explain the existence of a resistance minimum in certain metallic

alloys. Normally the resistance of metals is monotonically decreas-

ing as the temperature is lowered, and adding impurities gives rise

to a constant offset (Matthiesen’s Rule) which does not change

the monotonicity. For Fe in Cu, however, the impurity contribu-

tion δρimp increased as the temperature was lowered, and even-

tually saturated. Since Anderson had shown that Fe possessed a

moment in this situation, Kondo analyzed the problem perturba-

tively in terms of a magnetic impurity coupling by exchange to a

conduction band, i.e. adopted Eq. (92) as a model. Imagine that

the system at t = −∞ consists of a Fermi sea |0〉 and one ad-

ditional electron in state |k, σ〉 at the Fermi level. The impurity

33J. Kondo, Prog. Theor. Phys. 32, 37 (64).
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spin has initial spin projection M , so we write the initial state as

|i〉 = c†kσ|0;M〉 Now turn on an interaction H1 adiabatically and

look at the scattering amplitude34

between |i〉 and |f〉 = c†k′σ′|0;M
′〉

〈f |T |i〉 = −2πi〈f |H1 +H1
1

εk −H0
H1 + . . . |i〉 (98)

If H1 were just ordinary impurity (potential) scattering, we

would have H1 =
∑

kk′σσ′ c
†
kσVkk′ck′σ′, and there would be two

distinct second-order processes k → k′ contributing to Eq. (98),

as shown schematically at the top of Figure 12, of type a),

〈0|ck′c
†
k′Vk′pcp

1

εk −H0
c†pVpkckc

†
k|0〉 = Vk′p

1− f(εp)

εk − εp
Vpk (99)

and type b),

〈0|ck′c
†
pVpkck

1
εk −H0

c†k′Vk′pcpc
†
k|0〉

= −Vpk
f(εp)

εk − (εk − εp + εk′)
Vk′p

= Vpk
f(εp)

εk′ − εp
Vk′p (100)

34Reminder: when using Fermi’s Golden Rule (see e.g., Messiah, Quantum Mechanics p.807):

dσ

dΩ
=

2π

h̄v
|T |2ρ(E) (95)

we frequently are able to get away with replacing the full T -matrix by its perhaps more familiar 1st-order
expansion

dσ

dΩ
=

2π

h̄v
|H1|

2ρ(E) (96)

(Recall the T matrix is defined by 〈φf |T |φi〉 = 〈φf |T |ψ
+

i 〉, where the φ’s are plane waves and ψ+ is
the scattering state with outgoing boundary condition.) In this case, however, we will not find the
interesting logT divergence until we go to 2nd order! So we take matrix elements of

T = H1 +H1

1

εk −H0

H1 + . . . (97)

This is equivalent and, I hope, clearer than the transition amplitude I calculated in class.
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where I have assumed k is initially occupied, and k′ empty, with

εk = εk′, whereas p can be either; the equalities then follow from

the usual application of c†c and cc† to |0〉. Careful checking of

the order of the c’s in the two matrix elements will show you that

the first process only takes place if the intermediate state p is

unoccupied, and the second only if it is unoccupied.

Nnow when one sums the two processes, the Fermi function

cancels. This means there is no significant T dependence to this

order (ρimp due to impurities is a constant at low T ), and thus

the exclusion principle does not play an important role in ordinary

potential scattering.

Vpk Vk'p

k p k' k

p k'

VpkVk'p

k p k' kσ

p k'

σ σ'' 'σ

' 'σ σ'

Sµ νS Sµ νS

potential scatt.

spin scatt.
a) b)

b)a)

Figure 12: 2nd-order scattering processes: a) direct and b) exchange scattering. Top:
potential scattering; bottom: spin scattering. Two terms corresponding to Eq. 98

Now consider the analagous processes for spin-scattering. The

perturbing Hamiltonian is Eq. 92. Let’s examine the amplitude
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for spin-flip transitions caused by H1, first of type a),

〈0Ms′|H1|0Ms〉 (101)

=
J2

4
SµSν〈0Ms′|ck′σ′c

†
k′σ′τ

ν
σ′σ′′cpσ′′

1

εk −H0
c†pσ′′τ

µ
σ′′σckσc

†
kσ|0Ms〉

=
J2

4

1− f(εp)

εk − εp
〈M ′

S|SνSµτ
ν
σ′σ′′τ

µ
σ′′σ|MS〉

and then of type b),

J2

4

f(εp)

εk − εp
〈M ′

S|SνSµτ
ν
σ′′στ

µ
σ′σ′′|MS〉. (102)

Now note that τµσ′σ′′τ
ν
σ′′σ = (τµτ ν)σ′σ, and use the identity τµτν =

δνµ + iταεαµν. The δµν pieces clearly will only give contributions

proportional to S2, so they aren’t the important ones which will

distinguish between a) and b) processes compared to the potential

scattering case. The εανµ terms give results of differing sign, since

a) gives εανµ and b) gives εαµν. Note the basic difference between

the 2nd-order potential scattering and spin scattering is that the

matrix elements in the spin scattering case, i.e. the Sµ, didn’t

commute! When we add a) and b) again the result is

J2

εk − εp











1

4
S(S + 1)− 〈M ′

Sσ
′|S · σ|MS, σ〉





+f(εp)〈M
′
Sσ

′|S · σ|MS, σ〉} (103)

so the spin-scattering amplitude does depend on T through f(εp).

Summing over the intermediate states pσ′′ gives a factor

∑

p

f(εp)

εk − εp
' N0

∫

dξp
f(ξp)

ξk − ξp

= N0

∫

dξp





−
∂f

∂ξp





 log |ξk − ξp|, (104)
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which is of order log T for states ξk at the Fermi surface! Thus

the spin part of the interaction, to a first approximation, makes

a contribution to the resistance of order J3 log T (ρ involves the

square of the scattering amplitude, and the cross terms between

the 1st and 2nd-order terms in perturbation theory give this re-

sult). Kondo pointed to this result and said, “Aha!”, here is a

contribution which gets big as T gets small. However this can’t

be the final answer. The divergence signals that perturbation the-

ory is breaking down, so this is one of those very singular problems

where we have to find a way to sum all the processes. We have

discovered that the Kondo problem, despite the fact that only a

single impurity is involved, is a complicated many-body problem.

Why? Because the spin induces correlations between the electrons

in the Fermi sea. Example: suppose two electrons, both with spin

up, try to spin flip scatter from a spin-down impurity. The first

electron can exchange its spin with the impurity and leave it spin

up. The second electron therefore cannot spin-flip scatter by spin

conservation. Thus the electrons of the conduction band can’t be

treated as independent objects.

Summing an infinite subset of the processes depicted in Figure

12 or a variety of other techniques give a picture of a singlet

bound state where the impurity spin binds one electron from the

conduction electron sea with binding energy

TK = De−1/(JN0), (105)

where D is the conduction electron bandwidth. The renormaliza-

tion group picture developed by Wilson in the 70s and the exact

Bethe ansatz solution of Wiegman/Tsvelick and Andrei/Lowenstein

in 198? give a picture of a free spin at high temperatures, which

hybridizes more and more strongly with the conduction electron
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sea as the temperature is lowered. Below the singlet formation

temperature of TK , the moment is screened and the impurity acts

like a potential scatterer with large phase shift, which approaches

π/2 at T = 0.
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