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The topic of quantum noise has become extremely timely due to the rise of quantum information
physics and the resulting interchange of ideas between the condensed matter and AMO/quantum
optics communities. This review gives a pedagogical introduction to the physics of quantum noise
and its connections to quantum measurement and quantum amplification. After introducing
quantum noise spectra and methods for their detection, we describe the basics of weak continuous
measurements. Particular attention is given to treating the standard quantum limit on linear
amplifiers and position detectors using a general linear-response framework. We show how this
approach relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quan-
tum optics, and illustrate its application for the case of electrical circuits, including mesoscopic

detectors and resonant cavity detectors.
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I. INTRODUCTION

The physics of classical noise is a topic which is ex-
tremely familiar to both physicists and engineers. In the
case of electrical circuits, we usually think of noise as an
unavoidable nuisance, learning early on that any dissipa-
tive circuit element (i.e. a resistor) at finite temperature
will inevitably generate Johnson noise. We also know
that there are spectrum analyzers that can measure this
noise: roughly speaking, these spectrum analyzers con-
sist of a resonant circuit to select a particular frequency
of interest, followed by an amplifier and square law detec-
tor (e.g. a diode rectifier) which measures the intensity
(mean square amplitude) of the signal at that frequency.

Recently, several advances have led to a renewed inter-
est in the quantum mechanical aspects of noise in meso-
scopic electrical circuits, detectors and amplifiers. One
motivation is that such systems can operate simultane-
ously at high frequencies and at low temperatures, en-
tering the regime where hw > kgT. As such, quantum
zero-point fluctuations will play a more dominant role
in determining their behaviour than the more familiar
thermal fluctuations. Recall that in a classical picture,
the intensity of Johnson noise from a resistor vanishes
linearly with temperature because thermal fluctuations
of the charge carriers cease at zero temperature. One
knows from quantum mechanics, however, that there are
quantum fluctuations even at zero temperature, due to
zero-point motion. How do we describe such zero-point
fluctuations and their consequences in mesoscopic sys-
tems? This question will form a central theme of this
review.

Note that zero-point motion is a notion from quan-
tum mechanics that is frequently misunderstood, with
even the most basic of questions leading to confusion.
One might wonder, for example, whether it is physically
possible to use a spectrum analyzer to detect the zero-
point motion. As we will discuss extensively, the answer
is quite definitely yes, if we use a quantum system as
our spectrum analyzer. Consider for example a hydro-
gen atom in the 2p excited state lying 3/4 of a Rydberg
above the 1s ground state. We know that this state is
unstable and has a lifetime of only about 1 ns before it
decays to the ground state and emits an ultraviolet pho-
ton. This spontaneous decay is a natural consequence of
the zero-point motion of the electromagnetic fields in the
vacuum surrounding the atom. In fact, the rate of spon-
taneous decay gives a simple way in which to measure
this zero point motion of the vacuum: if one modifies the
zero-point noise of the vacuum by, e.g., placing the atom
in a resonant cavity, there is a direct change in the atom’s
decay rate (Haroche and Raimond, 2006; Raimond et al.,
2001). We will discuss this more in what follows, as well
as provide a thorough discussion of how various differ-
ent mesoscopic systems can act as spectrum analyzers of



quantum noise.

A second motivation for interest in the quantum noise
of mesoscopic systems comes from the relation between
quantum noise and quantum measurement. There ex-
ists an ever-increasing number of experiments in meso-
scopic electronics where one is forced to think about the
quantum mechanics of the detection process, and about
fundamental quantum limits which constrain the perfor-
mance of the detector or amplifier used. Noise plays a
fundamental role in quantum measurement: quantum
noise from the detector acts back on the system being
measured to ensure that information about the variable
conjugate to the measured variable is destroyed, thus en-
forcing the Heisenberg uncertainty principle. A direct
consequence of this quantum back-action is that a “phase
preserving” linear amplifier (i.e. an amplifier which am-
plifies both quadratures of the input signal by the same
amount ') necessarily adds a certain minimum amount
of noise to the input signal, even if it is otherwise per-
fect (Caves, 1982; Haus and Mullen, 1962). There are
several motivations for understanding in principle, and
realizing in practice, amplifiers whose noise reaches this
minimum quantum limit. Reaching the quantum limit
on continuous position detection has been one of the
goals of many recent experiments on quantum electro-
mechanical (Cleland et al., 2002; Etaki et al., 2008;
Flowers-Jacobs et al., 2007; Knobel and Cleland, 2003;
LaHaye et al., 2004; Naik et al., 2006; Poggio et al.,
2008; Regal et al., 2008) and opto-mechanical systems
(Arcizet et al., 2006; Schliesser et al., 2008) As we will
show, having a near-quantum limited detector would al-
low one to continuously monitor the quantum zero-point
fluctuations of a mechanical resonator. Having a quan-
tum limited detector is also necessary for such tasks as
single-spin NMR detection (Rugar et al., 2004), as well
as gravitational wave detection (Abramovici et al., 1992).
The topic of quantum-limited detection is also directly
relevant to recent activity exploring feedback control of
quantum systems (Doherty et al., 2000; Geremia et al.,
2004; Korotkov, 2001b; Ruskov and Korotkov, 2002);
such schemes necessarily need a close-to-quantum-limited
detector.

In this introductory article, we will discuss both the
aforementioned aspects of quantum noise: the descrip-
tion and detection of noise in the quantum regime hAw >
kT, and the relation between quantum noise, quantum
measurement and quantum amplification. While some
aspects of these topics have been studied in the quan-
tum optics and quantum dissipative systems communi-
ties and are the subject of several reviews (Braginsky
and Khalili, 1992; Gardiner and Zoller, 2000; Haus, 2000;
Weiss, 1999), they are somewhat newer to the mesoscopic

1 In the literature this is often referred to by the unfortunate name
of ‘phase insensitive’ amplifier. We prefer the term ‘phase pre-
serving’ to avoid any ambiguity.

physics community; moreover, some of the technical ma-
chinery developed in these fields is not directly applica-
ble to the study of quantum noise in mesoscopic systems.
Note also that there are many other interesting aspects
of quantum noise besides those we discuss in this article;
we outline some of these in the last, concluding section
of this article.

The remainder of this article is organized as follows.
We start in Sec. II by providing a short review of the
basic statistical properties of classical noise; we also dis-
cuss the key modifications that arise when one includes
quantum mechanics. Next, in Sec. ITI, we discuss the de-
tection of quantum noise using either a two-level system
or harmonic oscillator as a quantum spectrum analyzer;
we also discuss the physics of other commonly-used noise
detection schemes. In Sec. IV we turn to quantum mea-
surements, and give a basic introduction to weak, con-
tinuous measurements. To make things concrete, we dis-
cuss heuristically measurements of both a qubit and an
oscillator using a simple resonant cavity detector, giving
an idea of the origin of the quantum limit in each case.
Sec. V is devoted to a more rigorous treatment of quan-
tum constraints on noise arising from general quantum
linear response theory. In Sec. VI, we give a thorough
discussion of quantum limits on amplification and con-
tinuous position detection; we also briefly discuss various
methods for beating the usual quantum limits on added
noise using back-action evasion techniques. We are care-
ful to distinguish two very distinct modes of amplifier
operation (the “scattering” versus “op amp” modes); we
expand on this in Sec. VII, where we discuss both modes
of operation in a simple two-port bosonic amplifier. Im-
portantly, we show that an amplifier can be quantum
limited in one mode of operation, but fail to be quan-
tum limited in the other mode of operation. Finally, in
Sec. VIII, we highlight a number of practical considera-
tions that one must keep in mind when trying to perform
a quantum limited measurement.

In addition to the above, we have supplemented the
main text with several pedagogical appendices which
cover some basic background topics (e.g. the Wiener-
Khinchin theorem; the Caldeira-Leggett formalism for
modeling a dissipative circuit element; input-output the-
ory; etc.), as well as more detailed discussions of specific
systems (e.g. degenerate and non-degenerate paramet-
ric amplifiers, the Mach-Zehnder interferometer as detec-
tor, etc.). The appendices devote particular attention to
the quantum mechanics of transmission lines and driven
electromagnetic cavities, topics which are especially rel-
evant given recent experiments making use of microwave
stripline resonators. The discussion of transmission lines
also gives a very instructive example of many of the more
general principles discussed in the main text. Finally,
note that while this article is a review, there is consider-
able new material presented, especially in our discussion
of quantum amplification.



TABLE I: Table of symbols and main results.

Symbol Definition / Result
General Definitions _
flw] Fourier transform of the function or operator f(t), defined via flw] = [ _dtf(t)e™"
~ A ] ~ ~ t
(Note that for operators, we use the convention f[w] = ff° dtfT(t)e™*, implying f'[w] = (f[—w]) )
Srr|w] Classical noise spectral density or power spectrum: Spplw] = [T dt e (F(t)F(0))
Srr|w] Quantum noise spectral density: Srrw] = f+°° dt e”%F(t)F(O))
Srrlw] Symmetrized quantum noise spectral density Spr(w] = 3 (Srrlw] + Srr[-w]) = % f_Jr;o dt et ({F(t), F(0)})
xaB(t) General linear response susceptibility describing the response of A to a perturbation which couples to B;
in the quantum case, given by the Kubo formula xaz(t) = —+0(t)([A(t), B(0)]) [Eq. (3.30)]
A Coupling constant (dlmensmnless) between measured system and detector/ amplifier,
e.g. V= AF(t )O‘Z,V AmF or V = Aé.at
M,Q Mass and angular frequency of a mechanical harmonic oscillator.
TzZPF Zero point uncertainty of a mechanical oscillator, xzpr = w/%-
Yo Intrinsic damping rate of a mechanical oscillator due to coupling to a bath via V = AZF :
2
Y0 = sirma (Srr(Q) — Srr[—9Q)) [Eq. (3.25)]
We Resonant frequency of a cavity
Ky Qe Damping, quality factor of a cavity
Sec. Il Quantum spectrum analyzers
Tor[w] Effective temperature at a frequency w for a given quantum noise spectrum, defined via
S [w] _ h
55 = oxp (i) [Ba (3:21)
Fluctuation-dissipation theorem relating the symmetrized noise spectrum to the dissipative part
for an equilibrium bath: Srrlw] = 3 coth( QZ;)T)(SFF[LU] — Srr[—w]) [Eq. (3.34)]
Sec. 1V Quantum Measurements
Number-phase uncertainty relation for a coherent state:
ANAG > 1 [Eq. (4.8), (G12)]
N Photon number flux of a coherent beam
00 Imprecision noise in the measurement of the phase of a coherent beam
Fundamental noise constraint for an ideal coherent beam:
) Sy Soo = 1 [Eq. (1.16), (G21)
521 (w) symmetrized spectral density of zero-point position fluctuations of a damped harmonic oscillator
Szatot(w)  total output noise spectral density (symmetrized) of a linear position detector, referred back to the oscillator
Sza,add(w) added noise spectral density (symmetrized) of a linear position detector, referred back to the oscillator
Sec. V: General linear response theory
z Input signal
F Fluctuating force from the detector, coupling to z via V = AZF
1 Detector output signal
General quantum constraint on the detector output noise, backaction noise and gain:
_ _ _ iy 2
Srilw)Serlw] - |Srrlw]]® > ]”%M] (1+a [,f;g;]‘gl) [Eq. (5.11)]
where Yrr[w] = x1r(w] — [xFrlw]]” and Alz] = (|14 2% = (1 + |2%))/2.
[Note: 14 Afz] > 0 and A =0 in most cases of relevance, see discussion around Eq. (5.16)]
«@ Complex proportionality constant characterizing a quantum—ideal detector:
la|? = S;1/Spr and sin (arg aw]) = =22 [Bgs. (5.17,J15)]
Srrlw]Srrlv]
I eas Measurement rate (for a QND qubit measurement) [Eq. 5.23]
r, Dephasing rate (due to measurement back-action) [Egs. (4.44),(5.18)]
Constraint on weak, continuous QND qubit state detection :
1= Tpes <1 [Eq. (5.24)]
Sec. VI: Quantum Limit on Linear Amplifiers and Position Detectors
G Photon number (power) gain, e.g. in Eq. (6.7b)
Input-output relation for a bosonic scattering amplifier: b" = v/Ga' + F1 [Eq.(6.7b)]
(Aa)? Symmetrized field operator uncertainty for the scattering description of a bosonic amplifier:

=5 ({a,a'}) — [{a))?



TABLE I: Table of symbols and main results.

Symbol Definition / Result
Standard quantum limit for the noise added by a phase-preserving bosonic scattering amplifier
in the high-gain limit, G > 1, where ((Aa)?)zpr = 1:
2
@Y7 > (Aa)® + L [Eq. (6.10)]
Gplw] Dimensionless power gain of a linear position detector or voltage amplifier

(maximum ratio of the power delivered by the detector output to a load, vs. the power fed into signal source):
2
Gplw] = berelel [Eq. (6.25)]

4Im x pplw]-Im xp7[@]] 5
For a quantum-ideal detector, in the high-gain limit: Gp ~ [M M] [Eq. (6.29)]

|| hw

Siz.eqlw, T] Intrinsic equilibrium noise Sz eqw, T] = hcoth (2:§T) [~Im Xze[w]] [Eq. (6.31)]
Aopt Optimal coupling strength of a linear position detector which minimizes the added noise at frequency w:
Al o] = 2kl [Eq. (6.36)]

| = Rlelxaee WIP5rr ] o N . .
Detector-induced damping of a quantum-limited linear position detector at optimal coupling, fulfills

Y[Aopt] _ |Ima 1 _ __hQ
W:opt] - |T| Gpl[Q] T 4k Tesr <1 [Eq' (6'41)]

Standard quantum limit for the added noise spectral density of a linear position detector (valid at each frequency w):
Sxac,add [Lu'] Z lin’1T~>0 Szz,cq[w,T] [Eq (634)]

Effective increase in oscillator temperature due to coupling to the detector back action,
for an ideal detector, with hQ/kg < Thath < Tes:

Tose = YHeitta0Toath —, A2 4 T, [Eq. (6.42)]

'Y[Aopt]

Zin, Zout Input and output impedances of a linear voltage amplifier
Zs Impedance of signal source attached to input of a voltage amplifier
Ay Voltage gain of a linear voltage amplifier
f/(t) Voltage noise of a linear voltage amplifier

(Proportional to the intrinsic output noise of the generic linear-response detector [Eq. (6.53)] )
I(t) Current noise of a linear voltage amplifier

(Related to the back-action force noise of the generic linear-response detector [Egs. (6.52)] )
T~ Noise temperature of an amplifier [defined in Eq. (6.46)]
Zn Noise impedance of a linear voltage amplifier [Eq. 6.49)]

Standard quantum limit on the noise temperature of a linear voltage amplifier:
ksTn[w] > % [Eq.(6.61)]

Sec. VII: Bosonic Scattering Description of a Two-Port Amplifier

Voltage at the input (output) of the amplifier

Relation to bosonic mode operators: Eq. (7.2a)
Current drawn at the input (leaving the output) of the amplifier

Relation to bosonic mode operators: Eq. (7.2b)
T Reverse current gain of the amplifier
sw] Input-output 2 x 2 scattering matrix of the amplifier [Eq. (7.3)]

Relation to op-amp parameters A\v, A7, Zin, Zous: Eqs. (7.7)

(1) Voltage (current) noise operators of the amplifier
o[w], Fy[w] Input (output) port noise operators in the scattering description [Eq. (7.3)]

Relation to op-amp noise operators V, I: Eq. (7.9)

the noise process is stationary (i.e., the statistical proper-
ties are time translation invariant) so that Gyy depends
only on the time difference. If V(¢) is Gaussian dis-
tributed, then the mean and autocorrelation completely
specify the statistical properties and the probability dis-

1l. BASICS OF CLASSICAL AND QUANTUM NOISE

A. Classical noise correlators

Consider a classical random voltage signal V(t). The
signal is characterized by zero mean (V(t)) = 0,
autocorrelation function

Gyy(t—t) = (V()V(t)) (2.1)

whose sign and magnitude tells us whether the voltage
fluctuations at time ¢ and time ¢ are correlated, anti-
correlated or statistically independent. We assume that

and tribution. We will assume here that the noise is due to

the sum of a very large number of fluctuating charges
so that by the central limit theorem, it is Gaussian dis-
tributed. We also assume that Gy decays (sufficiently
rapidly) to zero on some characteristic correlation time
scale 7, which is finite.



The spectral density of the noise as measured by a
spectrum analyzer is a measure of the intensity of the
signal at different frequencies. In order to understand
the spectral density of a random signal, it is useful to
define its ‘windowed’ Fourier transform as follows:

1 +T/2 )
Vrl) = = / g V)

where T is the sampling time. In the limit T > 7. the
integral is a sum of a large number N =~ TZ of random
uncorrelated terms. We can think of the value of the
integral as the end point of a random walk in the complex
plane which starts at the origin. Because the distance
traveled will scale with v/T, our choice of normalization
makes the statistical properties of V]w] independent of
the sampling time T (for sufficiently large T). Notice
that Vip[w] has the peculiar units of volts\/secs which is
usually denoted volts/v/Hz.

The spectral density (or ‘power spectrum’) of the noise
is defined to be the ensemble averaged quantity

(2.2)

Syvlw] = lim ([Vrlw]®) = lim (Vplw]Vr[-w]) (23)

The second equality follows from the fact that the v(t)
is real valued. The Wiener-Khinchin theorem (derived in
Appendix A) tells us that the spectral density is equal to
the Fourier transform of the autocorrelation function

+o00
va[w] = / dt eithvv(t). (24)

— 00

The inverse transform relates the autocorrelation func-
tion to the power spectrum

“+oo
Gvy(t) = / o e Syylw]. (2.5)

oo 2m

We thus see that a short auto-correlation time implies
a spectral density which is non-zero over a wide range of
frequencies. In the limit of ‘white noise’

Gyv(t) = a%6(t) (2.6)
the spectrum is flat (independent of frequency)
Syvlw] =o” (2.7)

In the opposite limit of a long autocorrelation time, the
signal is changing slowly so it can only be made up out
of a narrow range of frequencies (not necessarily centered
on zero).

Because V() is a real-valued classical variable, it natu-
rally follows that Gy (t) is always real. Since V' (¢) is not
a quantum operator, it commutes with its value at other
times and thus, (V(6)V(¢')) = (V(¢)V(¢)). From this it
follows that Gy v (t) is always symmetric in time and the
power spectrum is always symmetric in frequency

va[w] = va[—w]. (28)

As a prototypical example of these ideas, let us con-
sider a simple harmonic oscillator of mass M and fre-
quency €. The oscillator is maintained in equilibrium
with a large heat bath at temperature T via some in-
finitesimal coupling which we will ignore in considering
the dynamics. The solution of Hamilton’s equations of
motion are

z(0) cos(Qt) + p(O)ﬁ sin(£2¢)

p(t) = p(0)cos(Q) — x(0)MQ? sin(Q),

8
—~

~
~—

(2.9)

where x(0) and p(0) are the (random) values of the po-
sition and momentum at time ¢t = 0. It follows that the
position autocorrelation function is

Gaa(t) = (x(t)z(0))
= (2(0)z(0)) cos(€2t) + (p(0)x(0))

(2.10)

1
sin(Q2t).
276 S
Classically in equilibrium there are no correlations be-
tween position and momentum. Hence the second term
. . . eps 1
vanishes. Using the equipartition theorem 5M 0% (2% =
%kBT , we arrive at

kT
Goo(t) = % cos(0t) (2.11)
which leads to the spectral density
kT
Sealw] = w1705 (0w — Q) + 6w + Q)] (2.12)

which is indeed symmetric in frequency.

B. Square law detectors and classical spectrum analyzers

Now that we understand the basics of classical noise,
we can consider how one experimentally measures a clas-
sical noise spectral density. With modern high speed
digital sampling techniques it is perfectly feasible to di-
rectly measure the random noise signal as a function of
time and then directly compute the autocorrelation func-
tion in Eq. (2.1). This is typically done by first per-
forming an analog-to-digital conversion of the noise sig-
nal, and then numerically computing the autocorrelation
function. Ome can then use Eq. (2.4) to calculate the
noise spectral density via a numerical Fourier transform.
Note that while Eq. (2.4) seems to require an ensemble
average, in practice this is not explicitly done. Instead,
one uses a sufficiently long averaging time 7' (i.e. much
longer than the correlation time of the noise) such that
a single time-average is equivalent to an ensemble aver-
age. This approach of measuring a noise spectral density
directly from its autocorrelation function is most appro-
priate for signals at RF frequencies well below 1 MHz.

For microwave signals with frequencies well above 1
GHz, a very different approach is usually taken. Here, the
standard route to obtain a noise spectral density involves



first shifting the signal to a lower intermediate frequency
via a technique known as heterodyning (we discuss this
more in Sec. IT11.C.3). This intermediate-frequency signal
is then sent to a filter which selects a narrow frequency
range of interest, the so-called ‘resolution bandwidth’.
Finally, this filtered signal is sent to a square-law detector
(e.g. a diode), and the resulting output is averaged over
a certain time-interval (the inverse of the so-called ‘video
bandwidth’). Tt is this final output which is then taken
to be a measure of the noise spectral density.

It helps to put the above into equations. Ignoring for
simplicity the initial heterodyning step, let

(2.13)

be the voltage at the output of the filter and the input
of the square law detector. Here, f[w] is the (ampli-
tude) transmission coefficient of the filter and V[w] is the
Fourier transform of the noisy signal we are measuring.
From Eq. (2.5) it follows that the output of the square
law detector is proportional to

“+oo W
(1) = / W fPSuvll. (2.14)

oo 2T

Approximating the narrow band filter centered on fre-
quency Fwq as?

[flw]? = 8(w — wo) + 8(w + wo) (2.15)

we obtain

<I> = va(—wo) + va(wo) (2.16)
showing as expected that the classical square law detector
measures the symmetrized noise power.

We thus have two very different basic approaches for
the measurement of classical noise spectral densities: for
low RF frequencies, one can directly measure the noise
autocorrelation, whereas for high microwave frequencies,
one uses a filter and a square law detector. For noise
signals in intermediate frequency ranges, a combination
of different methods is generally used. The whole story
becomes even more complicated, as at very high frequen-
cies (e.g. in the far infrared), devices such as the so-
called ‘Fourier Transform spectrometer’ are in fact based
on a direct measurement of the equivalent of an auto-
correlation function of the signal. In the infrared, visible
and ultraviolet, noise spectrometers use gratings followed
by a slit acting as a filter.

2 A linear passive filter performs a convolution Vout(t) =
fj;f dt' F(t — t')Vin(t') where F is a real-valued (and causal)
function. Hence it follows that f[w], which is the Fourier trans-
form of F, obeys f[—w] = f*[w] and hence |f[w]|? is symmetric
in frequency.

C. Introduction to quantum noise

Based on our review of classical noise, one expects that
the study of quantum noise involves spectral densities of
the form

+oo
Spelw] = / dt €t (3(1)2(0))

— 00

(2.17)

where Z is a quantum operator (in the Heisenberg repre-
sentation) and the angular brackets indicate the quantum
statistical average evaluated using the quantum density
matrix. Note that we will use S[w] throughout this re-
view to denote the spectral density of a classical noise,
while S[w] will denote a quantum noise spectral density.
As a simple example of the important differences from
the classical limit, consider the same harmonic oscillator
problem as above. The solutions of the Heisenberg equa-
tions of motion are the same as for the classical case but
with the initial position and momentum replaced by the
corresponding quantum operators:

2(t) = #(0)cos(2t) + ]5(0)% sin ()

p(t) = p(0)cos(Qt) — Z(0)MQsin(Qt).  (2.18)

Just as before, it follows that the position autocorrelation
function is

Gaa(t) = (£(1)2(0))
= (2(0)2(0)) cos(22t) + (p(0)2(0))

(2.19)

]Wl O sin(Q2t).
Classically the second term on the RHS vanishes because
in thermal equilibrium the position and momentum are
uncorrelated random variables. As we will see shortly be-
low for the quantum case, the symmetrized (sometimes
called the ‘classical’) correlator vanishes in thermal equi-
librium

(Zp + pz) =0, (2.20)
just as it does classically. Notice however that
[2(0),5(0)] = ih (2.21)

which implies that there must inevitably be some corre-
lations between position and momentum in the quantum
case since (Z(0)p(0)) — (p(0)Z(0)) = iA.

We can evaluate these correlations using the represen-
tation of the operators in terms of the harmonic oscillator
ladder operators

T = prF(dT + &)
ih
A At ~
= a'—a 2.22
=g, (@) (2:22)

where xzpp is the RMS zero-point uncertainty of x in the
quantum ground state

h

x%PF = <0|ﬁ2|0> = oM

(2.23)
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FIG. 1 Quantum noise spectral density of voltage fluctuations
across a resistor (resistance R) as a function of frequency at
zero temperature (dashed line) and finite temperature (solid
line).

For the case of thermal equilibrium, we obtain

BO)i0) = iy

EHO)p(0)) = +il

5 (2.24)

Not only are the position and momentum correlated, but
their correlator is imaginary!® This means that, despite
the fact that the position is an hermitian observable with
real eigenvalues, its autocorrelation function is complex
and given from Eq. (2.20) by:

Gz (t) = 22pp {np(7Q)e ™™ + [np(hQ) + e}
(2.25)

where np is the Bose-Einstein occupation factor. The
complex nature of the autocorrelation function follows
from the fact that the operator & does not commute with
itself at different times.

Because the correlator is complex it follows that the
spectral density is no longer symmetric in frequency

Spaw] = 2mxpp (2.26)
x {np(hQ)s(w + Q) + [np(AQ) + 1]6(w — Q)}

The Bose-Einstein factors suggest that the positive fre-
quency part of the spectral density has to do with stimu-
lated emission of energy into the oscillator and the nega-
tive frequency part of the spectral density has to do with
emission of energy by the oscillator. That is, the posi-
tive frequency part of the spectral density is a measure
of the ability of the oscillator to absorb energy, while the
negative frequency part is a measure of the ability of the

3 Notice that this occurs because the product of two non-
commuting hermitian operators is not itself an hermitian op-
erator.

oscillator to emit energy. Fig. 1 illustrates this for the
case of the voltage noise spectral density of a resistor
(see Appendix C.3 for more details).

The qualitative picture described above will be con-
firmed when we consider in detail how it is that quantum
spectrum analyzers work. Given that #(¢) and #(0) do
not commute, it is not possible to experimentally mea-
sure the complex autocorrelation function G, (t) as the
expectation value of some Hermitian observable. Nev-
ertheless we will see below that it is possible to deter-
mine its Fourier transform Sy, [w] for both positive and
negative frequencies by means of certain non-equilibrium
measurements (Aguado and Kouwenhoven, 2000; Gavish
et al., 2000; Lesovik and Loosen, 1997; Schoelkopf et al.,
2003).

In closing we note that in the high temperature limit
kT > h{) we have

o (2.27)

Substitution of this approximation into Eq. (2.27) repro-
duces the classical expression in Eq. (2.12).

The results presented above can be extended to the
case of a bath of many harmonic oscillators. As described
in Appendix C a resistor can be modeled as an infinite
set of harmonic oscillators and from this model the John-
son/Nyquist noise of a resistor can be derived.

11l. QUANTUM SPECTRUM ANALYZERS
A. Two-level system as a spectrum analyzer

Consider a quantum system (atom or electrical circuit)
which has its two lowest energy levels ¢y and €; separated
by energy Fp1 = hwpi. We suppose for simplicity that
all the other levels are far away in energy and can be
ignored. The resulting quantum two-level can be used as
a spectrometer of quantum noise (Aguado and Kouwen-
hoven, 2000; Schoelkopf et al., 2003); we discuss this in
detail in what follows.

The states of any two-level system (here after abbrevi-
ated TLS) can be mapped onto the states of a fictitious
spin-1/2 particle since such a spin also has only two states
in its Hilbert space. With spin down representing the
ground state (]g)) and spin up representing the excited
state (]e)) [Made sign in front of o, consistent with later
sections], the Hamiltonian is (taking the zero of energy
to be the center of gravity of the two levels)

Hy = h‘;f”&z. (3.1)

In keeping with our discussion in the introduction, our
goal is to now see how the rate of ‘spin-flip’ transitions
induced by an external noise source can be used to an-
alyze the spectrum of that noise. Suppose for example
that there is a noise source with amplitude f(¢) which



can cause transitions via the perturbation?

V = AF(t)6,, (3.2)

where A is a coupling constant. The variable F(¢) rep-
resents the noise source. We can temporarily pretend
that I is a classical variable, although its quantum op-
erator properties will be forced upon us very soon. For
now, only our two-level spectrum analyzer will be treated
quantum mechanically.

We assume that the coupling A is under our control
and can be made small enough that the noise can be
treated in lowest order perturbation theory. We take the
state of the two-level system to be

a(t)
t)) = g .
wen = (20
In the interaction representation,
dependent perturbation theory gives

(3.3)

first-order time-

I
7 ~

lhi(t)) = [4(0)) — ﬁ/o dr V(7)[4(0)). (3.4)

If we initially prepare the two-level system in its ground

state, the amplitude to find it in its excited state at time
t is from Eq. (3.4)

At

Qe = ),

i A + )

N T E(T).

hJo

dr (e|o(7)|g)F(7),

(3.5)

Since the integrand in Eq. (3.5) is random, a, is a sum
of a large number of random terms; i.e. its value is the
endpoint of a random walk in the complex plane (as dis-
cussed above in defining the spectral density of classical
noise). As a result, for times exceeding the autocorre-
lation time 7. of the noise, the integral will not grow
linearly with time but rather only as the square root of
time, as expected for a random walk. We can now com-
pute the probability

A2 t t .
pet)=locl = 35 [ [ dndne T B Am)

(3.6)
which we expect to grow quadratically for short times
t < 7., but linearly for long times ¢ > 7.. Ensemble
averaging the probability over the random noise yields

A2 t t )
mwzﬁ//JmWwwwwwmmm»
0 0
(3.7)

4 The most general perturbation would also couple to 6y but we
assume that (as is often, though not always, the case) a spin
coordinate system can be chosen so that the perturbation only
couples to 6. Noise coupled to 6, commutes with the Hamil-
tonian but is nevertheless important in dephasing coherent su-
perpositions of the two states. We will discuss such processes
later.

Introducing the noise spectral density

+oo
Srr(w) :/ dr e™“T(F(1)F(0)), (3.8)

—0o0

and utilizing the Fourier transform defined in Eq. (2.2)
and the Wiener-Khinchin theorem from Appendix A, we
find that the probability to be in the excited state indeed

increases linearly with time at long times,’
A2
Pe(t) = tﬁsFF(—wm) (3.9)

The time derivative of the probability gives the transition
rate from ground to excited states

AQ
I't = = Srr(—wo1)

= (3.10)

Note that we are taking in this last expression the spec-
tral density on the negative frequency side. If F' were a
strictly classical noise source, (F(7)F(0)) would be real,
and Spp(—wo1) = Spr(4wo1). However, because as we
discuss below F' is actually an operator acting on the en-

vironmental degrees of freedom, []3' (), F (O)] # 0 and

Srr(—wo1) # Srr(+wor).

Another possible experiment is to prepare the two-level
system in its excited state and look at the rate of decay
into the ground state. The algebra is identical to that
above except that the sign of the frequency is reversed:

2

A
r = — Spr(4+wor).

- (3.11)

We now see that our two-level system does indeed act as a
quantum spectrum analyzer for the noise. Operationally,
we prepare the system either in its ground state or in its
excited state, weakly couple it to the noise source, and
after an appropriate interval of time (satisfying the above
inequalities) simply measure whether the system is now
in its excited state or ground state. Repeating this pro-
tocol over and over again, we can find the probability of
making a transition, and thereby infer the rate and hence
the noise spectral density at positive and negative fre-
quencies. Note that in contrast with a classical spectrum
analyzer, we can separate the noise spectral density at
positive and negative frequencies from each other since
we can separately measure the downward and upward
transition rates. Negative frequency noise transfers en-
ergy from the noise source to the spectrometer. That is,

5 Note that for very long times, where there is a significant de-
pletion of the probability of being in the initial state, first-order
perturbation theory becomes invalid. However, for sufficiently
small A, there is a wide range of times 7. < t < 1/T" for which
Eq. 3.9 is valid. Egs. 3.10 and 3.11 then yield well-defined rates
which can be used in a master equation to describe the full dy-
namics including long times.



it represents energy emitted by the noise source. Positive
frequency noise transfers energy from the spectrometer to
the noise source. Naively one imagines that a spectrom-
eters measures the noise spectrum by extracting a small
amount of the signal energy from the noise source and
analyzes it. This is not the case however. There must
be energy flowing in both directions if the noise is to be
fully characterized. .

We now rigorously treat the quantity F'(7) as a quan-
tum Heisenberg operator which acts in the Hilbert space
of the noise source. The previous derivation is unchanged
(the ordering of F(71)F(m2) having been chosen cor-
rectly in anticipation of the quantum treatment), and
Egs. (3.10,3.11) are still valid provided that we interpret
the angular brackets in Eq. (3.7,3.8) as representing a
quantum expectation value (evaluated in the absence of
the coupling to the spectrometer):

—+oo
Srr(w) = / dr Ty " paa (@l F(T) 1) (71 F(0)]).
oo o

(3.12)
Here, we have assumed a stationary situation, where
the density matrix p of the noise source is diagonal in
the energy eigenbasis (in the absence of the coupling to
the spectrometer). However, we do not necessarily as-
sume that it is given by the equilibrium expression. This
yields the standard quantum mechanical expression for
the spectral density:

+oo . i A~
| e gt )P

—o° o,y

SFF(w)

271> paa (| F17)?0(ey — €o — hw)(3.13)

o,y

Substituting this expression into Egs. (3.10,3.11), we de-
rive the familiar Fermi Golden Rule expressions for the
two transition rates.

In standard courses, one is not normally taught that
the transition rate of a discrete state into a continuum
as described by Fermi’s Golden Rule can (and indeed
should!) be viewed as resulting from the continuum act-
ing as a quantum noise source which causes the am-
plitudes of the different components of the wave func-
tion to undergo random walks. The derivation presented

6 Unfortunately, there are several conventions in existence for
describing the noise spectral density. It is common in engi-
neering contexts to use the phrase ‘spectral density’ to mean
Srr(+w) + Spr[—w]. This is convenient in classical problems
where the two are equal. In quantum contexts, one sometimes
sees the asymmetric part of the noise Spr(4+w) — Sprp(—w) re-
ferred to as the ‘quantum noise.” We feel it is simpler and clearer
to discuss the spectral density for positive and negative frequen-
cies separately, since they each have simple physical interpreta-
tions and directly relate to measurable quantities. This conven-
tion is especially useful in non-equilibrium situations where there
is no simple relation between the spectral densities at positive
and negative frequencies.
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here hopefully provides a motivation for this interpreta-
tion. In particular, thinking of the perturbation (i.e. the
coupling to the continuum) as quantum noise with a
small but finite autocorrelation time (inversely related
to the bandwidth of the continuum) neatly explains why
the transition probability increases quadratically for very
short times, but linearly for very long times. We find this
picture to be considerably superior to the tortured argu-
ments about time scales and order of limits invoked in
the usual derivation of Fermi’s Golden Rule.

It it is important to keep in mind that our expressions
for the transition rates are only valid if the autocorrela-
tion time of our noise is much shorter that the typical
time we are interested in; this typical time is simply the
inverse of the transition rate. The requirement of a short
autocorrelation time in turn implies that our noise source
must have a large bandwidth (i.e. there must be large
number of available photon frequencies in the vacuum)
and must not be coupled too strongly to our system. This
is true despite the fact that our final expressions for the
transition rates only depend on the spectral density at
the transition frequency (a consequence of energy con-
servation).

One standard model for the continuum is an infinite
collection of harmonic oscillators. The electromagnetic
continuum in the hydrogen atom case mentioned above is
a prototypical example. The vacuum electric field noise
coupling to the hydrogen atom has an extremely short
autocorrelation time because the range of mode frequen-
cies w, (over which the dipole matrix element coupling
the atom to the mode electric field E, is significant) is
extremely large, ranging from many times smaller than
the transition frequency to many times larger. Thus, the
autocorrelation time of the vacuum electric field noise is
considerably less than 10~1%s, whereas the decay time of
the hydrogen 2p state is about 10~%s. Hence the inequal-
ities needed for the validity of our expressions are very
easily satisfied.

To close our discussion of the TLS quantum spectrom-
eter, let us consider the special case where our noise
source is in thermodynamic equilibrium. In this case, the
transition rates of the TLS must obey detailed balance
[ /Ty = ePMor in order to give the correct equilibrium
occupancies of the two states of the spectrometer. This
in turn implies that the spectral densities obey *

SFF(+(.L)01) = eﬁﬁmeFF(inl)' (314)
Without the crucial distinction between positive and neg-
ative frequencies, and the resulting difference in rates,
one would always find that our two level system is com-
pletely unpolarized (i.e. there is an equal probability

7 One can of course prove this detailed balance relation rigorously
by calculating the quantum noise for a noise source in a thermal
state. Consider for example Eq. (2.25) and use the identity (1 +
ng)/np = exp fhw.



to be in either of the two states). Equivalently, a clas-
sical noise source (where Spr(wo1) = Spr(—wo1)) cor-
responds to a noise source whose temperature is much
larger than fwg; /ks.

The more general case is where our noise source is not
in equilibrium; in this case, no general detailed balance
relation holds. However, if we are concerned only with
a single particular frequency (given say by the transition
frequency of our two-level system detector), then it is al-
ways possible to define an ‘effective temperature’ for the
noise using Eq. (3.14). In NMR language, this effective
temperature for the noise will simply be the ‘spin tem-
perature’ of our TLS spectrometer once it reaches steady
state after being coupled to the noise source. We will
have more to say about this effective temperature in the
sections that follow.

As an aside, we note that a system designed to de-
tect the arrival (or emission) of a photon (say) with very
good time resolution must necessarily have very poor
phase coherence. This can be achieved with a TLS whose
state is continuously and strongly measured (Schuster
et al., 2005). Because of the strong measurement, we will
know immediately when the state of the two-level system
changes due to absorption or emission of a photon. On
the other hand, the back-action disturbance of the TLS
by the measurement (to be discussed in the next sec-
tion) will cause the two level system to have a very short
phase coherence time. As a result, the TLS will have a
very broad line width and hence the poor frequency res-
olution that must necessarily accompany good temporal
resolution.

Finally, we also note that a particular realization of
a TLS quantum noise spectrometer involving a double
quantum dot was discussed by Aguado and Kouwenhoven
(2000); here, absorption (but not emission) of energy
by the double dot from a noise can lead to a measur-
able inelastic current. This system was recently real-
ized in experiment (Gustavsson et al., 2007; Onac et al.,
2006a). We also note that a more detailed discussion
of TLS quantum noise spectrometers can be found in
Schoelkopf et al. (2003); this work includes a discussion
of various different quantum noise sources which can be
important in mesoscopic electronic systems, including the
back-action quantum noise generated by a single-electron
transistor electrometer.

B. Harmonic oscillator as a spectrum analyzer

Let us now consider what happens when we weakly
couple a quantum harmonic oscillator to our quantum
noise source. Unlike the TLS of the previous subsection,
the oscillator has an infinite number of states. However,
similar to the TLS, the oscillator still has a well-defined
frequency; as a result, we will see that it too may be
used as a spectrum analyzer of quantum noise. Moreover,
this example will provide us with a new way to view
quantum noise, and will demonstrate how the concept of
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an “effective temperature” of an out-of-equilibrium noise
source (introduced above) can be extremely useful.

Our harmonic oscillator is described by the usual
Hamiltonian:

2 MO 1
Hy = P MO <é+é+ 2) (3.15)

2M 2
where @ is the lowering operator for the oscillator. Our
noise source acts as a weak, fluctuating force on the os-
cillator:

V = A2F = Alagpr(c+ &N F (3.16)
where F' is the operator describing the fluctuating noise,
and A is again a coupling constant. In complete analogy
to the previous subsection, noise in F' at the oscillator
frequency €) can cause transitions between its eigenstates.
We again assume both that A is small, and that our
noise source has a short autocorrelation time, so we may
again use perturbation theory to derive rates for these
transitions. There is a rate for increasing the number
of quanta in the oscillator by one, taking a state |n) to
|n+ 1):
A? 9
Lnonir =25 [(n+ Dazpr| Spr[—Q = (n 4+ 1)y
(3.17)
As expected, this rate involves the noise at —(2, as energy
is being absorbed from the noise source. The factor in
brackets is just the matrix element for the transition,
i.e. [(n+1|2|n)|?. Similarly, there is a rate for decreasing
the number of quanta in the oscillator by one:

2

Tpono1 = % (nagpy) Srr(Q) = nl|
This rate involves the noise at +{2, as energy is being
emitted to the noise source.

Given these rates, we may immediately write down a
simple master equation which governs the rate of change
of the probability p,(t) that there are n quanta in the
oscillator:

d
—7Pn = [nFTpn—l + (n + 1)Flpn+1]

dt
— [nDy+ (n 4+ DI pn

(3.18)

(3.19)

The first two terms describe transitions into the state |n)
from the states |n 4+ 1) and |n — 1), and hence increase
Pn. In contrast, the last two terms describe transitions
out of the state |n) to the states [n+ 1) and |n — 1), and
hence decrease p,.

It is natural to now ask what the stationary state of
the oscillator is. By solving Eq. (3.19) for %pn =0, we
find that:

pn — efnhﬂ/(k‘BTEff) (1 _ efﬁﬂ/(kBTEff)> (320)
where
kBTeff[Q] = L = he (321)
1 Iy 1 Srr[Q]
o8 [Ty 98 | Srr[-]



Eq. (3.20) describes a thermal equilibrium distribution
of the oscillator, with an effective oscillator temperature
T[] determined by the quantum noise spectrum of

F. This is the same effective temperature that emerged
in our discussion of the TLS spectrum analyzer. If our
noise source is in equilibrium, we have seen in the pre-
vious subsection that Sgplw] must obey a condition of
detailed balance (Eq. (3.14)); in this case, Teg coincides
with the physical temperature of our noise source. In
the more general case where the noise source is out-of-
equilibrium, Teg only serves to characterize the asymme-
try of the quantum noise, and will vary with frequency
8. Nonetheless, as far as the oscillator is concerned, Tyg
acts as a real temperature, and determines the form of
its distribution.

We can learn more about the quantum noise spectrum
of F' by also looking at the dynamics of the oscillator, as
opposed to just its stationary state. In particular, as the
average energy (E) of the oscillator is just given by:

(3.22)

(E0) = 31 (5 ) )

we can use the master equation Eq. (3.19) to derive an
equation for its time dependence. One finds straightfor-
wardly:

d
By =P —1(E) (3.23)
where
P = ? T +Ty) = % [Srr[Q] + Spr[—Q]B.24)
2,2
v =T =T = A e [Srr[Q] — SFr[—0]](3.25)

The two terms in Eq. (3.23) describe, respectively,
heating and damping of the oscillator by the noise source.
The heating effect of the noise is completely analogous
to what happens classically: a random force causes the
oscillator’s momentum to undergo a random walk (i.e. it
diffuses), which in turn causes (E) to grow linearly in
time at rate P. By demanding d(FE)/dt = 0, we find that
the combination of damping and heating effects causes
the energy to reach a steady state mean value of

(3.26)

In the quantum case, we see from Eq. (3.24) that it
is the symmetric-in-frequency part of the noise spectrum
which is responsible for this effect, and which thus plays
the role of a classical noise source. This is another reason

8 Note that the effective temperature can become negative if the
noise source prefers emitting energy versus absorbing it; in the
present case, that would lead to an instability.
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why the symmetrized quantum noise is often referred to
as the “classical” part of the noise.

Note that in the present description the finite ground
state energy (E) = h/2 of the harmonic oscillator is
determined via the balance between the "heating’ by the
zero-point fluctuations of the environment (described by
the symmetrized correlator at T = 0) and the dissipation.
It is possible to take an alternative but equally correct
viewpoint, where only the deviation (JF) = (E) — hf2/2
from the ground state energy is considered. Its evolution
equation

%<5E> = (0E)(I'y —T'}) +T'1hQ (3.27)
only contains a decay term at T' = 0, leading to (§E) — 0.
We turn now to the damping term in Eq. (3.23). At
first glance, it would appear to be completely quantum
in origin, as it involves the asymmetric-in-frequency part
of the noise. This latter fact is not surprising: damping
involves a net absorption of energy by the noise source,
and the asymmetric part of the noise directly charac-
terizes the source’s tendency to more frequently absorb
rather than emit energy via transitions. In contrast, the
classical picture of damping is that it results from the
random force having a non-zero mean value, i.e.:
(A-F(t)) = —M~i(t) (3.28)
Both these pictures of damping are of course rigorously
equivalent. In both the classical and quantum cases, we
can think of damping as originating from the fact that
the noise source changes in response to the oscillator’s
motion, and hence, so does the average value of F. Quan-
tum mechanically, we can capture this effect by simply
doing perturbation theory to calculate the change in (F)
brought on by the coupling V = AzZF. Working in the
interaction picture, we obtain the standard equations of
quantum linear response:

SA-E(t)) = A / Ayt — )G (3.29)

where
(3.30)

Keeping only the part of §(F(t)) responsible for dissipa-
tion (i.e. the part which is in phase with the oscillator
velocity and thus out-of-phase with its position), and us-
ing the fact that the oscillator motion only involves the
frequency 2, we may write Eq. (3.29) in the familiar form
of Eq. (3.28), with:

_ 2A2x%PF
h

2A2 2 oo )
= % [Im/ dtemtxpp(t)] (3.31)

— 00

[~Imx rr[Q]]



Remarkably, a straightforward manipulation of
Eq. (3.30) for xpp shows that this expression for
v is ezxactly equivalent to our previous expression, i.e.:

2.2
B 2A%x5pp

N = A2aipp
R

[Flmxrr(Q]] = —

(3.32)
Thus, there are two ways of viewing damping that are
both formally and physically equivalent: damping results
from the response of the noise source to the oscillator’s
motion, or equivalently, results from the transfer of en-
ergy from the oscillator to the noise source via noise-
induced transitions.

Returning to Egs. (3.24) and (3.25), we see that we
now have a new way of looking at quantum noise. The
symmetric-in-frequency part of the quantum noise spec-
trum is analogous to classical noise, and is responsible for
heating effects. In contrast, the asymmetric-in-frequency
part of the quantum noise spectrum describes the dissipa-
tive response of the noise source to whatever system cou-
ples to it. We also see that a harmonic oscillator can serve
as a spectrum analyzer of quantum noise-if one can mea-
sure both the heating rate P (or equivalently, the mean
energy (F)) and the damping rate 7, one can completely
characterize the force noise spectrum at both positive and
negative frequencies ££). This idea was recently imple-
mented experimentally by Naik et al. (2006), who used a
high-@ mechanical resonator to probe both the positive
and negative frequency back-action noise produced by a
superconducting single-electron transistor.

Before concluding this section, we mention an impor-
tant consequence of the preceding discussion: it imme-
diately yields the quantum version of the fluctuation-
dissipation theorem (Callen and Welton, 1951). As we
have seen in the previous section, if our noise source is in
equilibrium, the positive and negative frequency parts of
the noise spectrum are strictly related to one another by
the condition of detailed balance (cf. Eq. (3.14)). This
in turn lets us link the classical, symmetric-in-frequency
part of the noise to the damping, (i.e. the asymmetric-
in-frequency part of the noise). Letting 8 = 1/(kgT), we
have:

[Q] + Srr[-9)]
2

(1+ e ") Spp[Q)]

(14 e=PM)

coth(8hQ/2) (Skr[Q] — Spr[—))

hOM
Az !

93]
R
B

Srr(Q] = (3.33)

(1 — e_ﬁhQ)SFF[Q]

N N~ N

= coth(Bh/2) (9] (3.34)

Thus, in equilibrium, the condition that noise-induced
transitions obey detailed balance immediately implies
that noise and damping are related to one another via the
temperature. For T' > RS}, we recover the more familiar

[Srr[Q] — SFr(—Q)]
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classical version of the fluctuation dissipation theorem:

A?Spp(Q] = 2kgT My (3.35)
The derivation here of the fluctuation dissipation theo-
rem is somewhat different than the one usually presented
for classical systems; there, it is the requirement that
equipartition be obeyed at long times which relates noise
and damping at low frequencies Here, the requirement
that quantum transition rates obey detailed balance gives
us a relation between noise and damping which holds at
all frequencies. Further insight into the fluctuation dis-
sipation theorem is provided in Appendix B.3, where we
discuss it in the simple but instructive context of a trans-
mission line terminated by an impedance Z[w].

C. Practical quantum spectrum analyzers

As we have seen, a ‘quantum spectrum analyzer’ can
in principle be constructed from a two level system (or
a harmonic oscillator) in which we can separately mea-
sure the up and down transition rates between states
differing by some precise energy hiw > 0 given by the
frequency of interest. The down transition rate tells us
the noise spectral density at frequency +w and the up
transition rate tells us the noise spectral density at —w.
While we have already discussed experimental implemen-
tation of these ideas using two-level systems and oscilla-
tors, similar schemes have been implemented in other sys-
tems. A number of recent experiments have made use of
superconductor-insulator-superconductor junctions (Bil-
langeon et al., 2006; Deblock et al., 2003; Onac et al.,
2006b) to measure quantum noise, as the current-voltage
characteristics of such junctions are very sensitive to
the absorption or emission of energy (so-called photon-
assisted transport processes).

In this subsection, we discuss additional methods for
the detection of quantum noise. Recall from Sec. II.B
that one of the most basic classical noise spectrum ana-
lyzers consists of a linear narrow band filter and a square
law detector such as a diode. In what follows, we will
consider a quantum treatment of such a device where
we evade the tricky question of how to model a quantum
diode by simply looking at the energy of the filter circuit.
We then turn to various noise detection schemes making
use of a photomultiplier. We will show that depending
on the detection scheme used, one can measure either the
symmetrized quantum noise spectral density S[w], or the
non-symmetrized spectral density S[w].

1. Filter plus diode

Using the simple treatment we gave of a harmonic os-
cillator as a quantum spectrum analyzer in Sec. III.B,
one can attempt to provide a quantum treatment of the
classical ‘filter plus diode’ spectrum analyzer discussed
in Sec. II.B. This approach is due to Lesovik and Loosen



(1997) and Gavish et al. (2000). The analysis starts by
modeling the spectrum analyzer’s resonant filter circuit
as a harmonic oscillator of frequency 2 weakly coupled
to some equilibrium dissipative bath. The oscillator thus
has an intrinsic damping rate v9 < €2, and is initially at
a finite temperature T,q. One then drives this damped
oscillator (i.e. the filter circuit) with the noisy quantum
force ﬁ‘(t) whose spectrum at frequency €2 is to be mea-
sured.

In the classical ‘filter plus diode’ spectrum analyzer,
the output of the filter circuit was sent to a square law
detector, whose time-averaged output was then taken as
the measured spectral density. To simplify the analy-
sis, we can instead consider how the noise changes the
average energy of the resonant filter circuit, taking this
quantity as a proxy for the output of the diode. Sure
enough, if we subject the filter circuit to purely classical
noise, it would cause the average energy of the circuit
(E) to increase an amount directly proportional to the
classical spectrum Spp[€2]. We now consider (E) in the
case of a quantum noise source, and ask how it relates to
the quantum noise spectral density Spr[€2].

The quantum case is straightforward to analyze using
the approach of Sec. ITI.B. Unlike the classical case, the
noise will both lead to additional fluctuations of the filter
circuit and increase its damping rate by an amount vy
(c.f. Eq. (3.25)). To make things quantitative, we let neq
denote the average number of quanta in the filter circuit
prior to coupling to F'(t), i.e.

1
exp (k[?%q) -1

and let neg represent the Bose-Einstein factor associated
with the effective temperature Tog[Q] of the noise source

E(t),

(3.36)

ncq =

1
0 '
€xp (kBTeff[sz]) -1

One then finds (Gavish et al., 2000; Lesovik and Loosen,
1997):

Neff = (3.37)

A(E) = hQ-

(et — Meq) (3.38)

Yo + ¥

This equation has an extremely simple interpretation:
the first term results from the expected heating effect
of the noise, while the second term results from the
noise source having increased the circuit’s damping by
an amount 7. Re-expressing this result in terms of the
symmetric and anti-symmetric in frequency parts of the
quantum noise spectral density Spr[()], we have:

SFF(Q) - (neq + %) (SFF[Q] B SFF[_QD

Al = 2m (o +7)

(3.39)
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We see that A(FE) is in general not simply proportional
to the symmetrized noise Spr[(2]. Thus, the ‘filter plus
diode’ spectrum analyzer does not simply measure the
the symmetrized quantum noise spectral density. We
stress that there is nothing particularly quantum about
this result. The extra term on the RHS of Eq. (3.39)
simply reflects the fact that coupling the noise source to
the filter circuit could change the damping of this circuit;
this could easily happen in a completely classical setting.
As long as this additional damping effect is minimal, the
second term in Eq. (3.39) will be minimal, and our spec-
trum analyzer will (to a good approximation) measure
the symmetrized noise. Quantitatively, this requires:

Neff > Meq- (3.40)

We now see where quantum mechanics enters: if the noise
to be measured is close to being zero point noise (i.e.
neg — 0), the above condition can never be satisfied, and
thus it is impossible to ignore the damping effect of the
noise source on the filter circuit. In the zero point limit,
this damping effect (i.e. second term in Eq. (3.39)) will
always be greater than or equal to the expected heating
effect of the noise (i.e. first term in Eq. (3.39)).

2. Filter plus photomultiplier

We now turn to quantum spectrum analyzers involving
a square law detector we can accurately model—- a photo-
multiplier. As a first example of such a system, consider a
photomultiplier with a narrow band filter placed in front
of it. The mean photocurrent is then given by

+oo
(1) = / du | fw] Prlw] Syv ], (3.41)

— 00

where f is the filter (amplitude) transmission function
defined previously and r[w] is the response of the pho-
todetector at frequency w, and Syvy represents the elec-
tric field spectral density incident upon the photodetec-
tor. Naively one thinks of the photomultiplier as a square
law detector with the square of the electric field repre-
senting the optical power. However, according to the
Glauber theory of (ideal) photo-detection (Gardiner and
Zoller, 2000; Glauber, 2006; Walls and Milburn, 1994),
photocurrent is produced if, and only if, a photon is
absorbed by the detector, liberating the initial photo-
electron. Glauber describes this in terms of normal or-
dering of the photon operators in the electric field auto-
correlation function. In our language of noise power at
positive and negative frequencies, this requirement be-
comes simply that r[w] vanishes for w > 0. Approximat-
ing the narrow band filter centered on frequency +wy as
in Eq. (2.15), we obtain

<I> = T[_WO]SVV[_WO]

which shows that this particular realization of a quantum
spectrometer only measures electric field spectral density

(3.42)



at negative frequencies since the photomultiplier never
emits energy into the noise source. Also one does not
see in the output any ‘vacuum noise’ and so the output
(ideally) vanishes as it should at zero temperature. Of
course real photomultipliers suffer from imperfect quan-
tum efficiencies and have non-zero dark current. Note
that we have assumed here that there are no additional
fluctuations associated with the filter circuit. Our re-
sult thus coincides with what we found in the previous
subsection for the ‘filter plus diode’ spectrum analyzer
(c.f. Eq. (3.39), in the limit where the filter circuit is
initially at zero temperature (i.e. neq = 0).

3. Double sideband heterodyne power spectrum

At RF and microwave frequencies, practical spectrome-
ters often contain heterodyne stages which mix the initial
frequency down to a lower IF frequency (possibly in the
classical regime). Consider a system with a mixer and lo-
cal oscillator at frequency wr,o that mixes both the upper
sideband input at w, = wro+wrr and the lower sideband
input at w; = wro — wir down to frequency wip. This
can be achieved by having a Hamiltonian with a 3-wave
mixing term which (in the rotating wave approximation)
is given by
V = Maraid] o + alpal aro] + Najpawal o + aralaro]

(3.43)
The interpretation of this term is that of a Raman pro-
cess. Notice that there are two energy conserving pro-
cesses that can create an IF photon which could then
activate the photodetector. First, one can absorb an LO
photon and emit two photons, one at the IF and one at
the lower sideband. The second possibility is to absorb
an upper sideband photon and create IF and LO photons.
Thus we expect from this that the power in the IF chan-
nel detected by a photomultiplier would be proportional
to the noise power in the following way

I o< S[+wi] + S[—wy] (3.44)

since creation of an IF photon involves the signal source
either absorbing a lower sideband photon from the mixer
or the signal source emitting an upper sideband photon
into the mixer. In the limit of small IF frequency this
expression would reduce to the symmetrized noise power

I x S[+WLO] + S[—wLo] = QS[wLo] (3.45)

which is the same as for the ‘classical’ spectrum analyzer
with a square law detector described in Sec. II.B. For
equilibrium noise spectral density from a resistance Ry
derived in Appendix C we would then have

Svv [w] + va[—w] = 2R0h|w|[2n}3(h|w\) + 1], (3.46)

Assuming our spectrum analyzer has high input
impedance so that it does not load the noise source, this
voltage spectrum will determine the output signal of the
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analyzer. This symmetrized quantity does not vanish at
zero temperature and the output contains the vacuum
noise from the input. This vacuum noise has been seen
in experiment. (Schoelkopf et al., 1997)

4. Single sideband heterodyne power spectrum

With proper filtering (and large enough IF frequency)
one can eliminate one of the two sidebands from the input
and hence have only one of the two terms in Eq.(3.44).
Thus one can detect either the noise at negative frequen-
cies, or positive frequencies, or both. For example in
the driven cavity with moveable mirror discussed in Ap-
pendix D, the laser beam can be detuned to the red of
the cavity by precisely the cantilever frequency. In the
good cavity (resolved sideband) limit, then any photons
coming out at the cavity frequency must have come from
destroying a cantilever phonon and up converting a laser
drive photon to the anti-Stokes sideband which resonates
with the cavity. Cantilever position noise at positive fre-
quencies generates Stokes photons but these are so far
off resonance from the cavity that they are severely sup-
pressed. Hence the total output power (excluding the
laser frequency) measures only the negative frequency
cantilever noise. (Note the output electric field at the
cavity frequency also contains incoming vacuum noise
reflected by the cavity but this does not contribute to
the photon number detected by a photomultiplier.) Con-
versely for blue detuning, any photons must have come
from creating a cantilever phonon. This measures the
positive frequency cantilever position noise.

IV. QUANTUM MEASUREMENTS

Having introduced both quantum noise and quantum
spectrum analyzers, we are now in a position to intro-
duce the general topic of quantum measurements. All
practical measurements are affected by noise. Certain
quantum measurements remain limited by quantum noise
even though they use completely ideal apparatus. As we
will see, the limiting noise here is associated with the fact
that canonically conjugate variables are incompatible ob-
servables in quantum mechanics.

The simplest, idealized description of a quantum mea-
surement, introduced by von Neumann (Bohm, 1989;
Haroche and Raimond, 2006; von Neumann, 1932;
Wheeler and Zurek, 1984), postulates that the mea-
surement process instantaneously collapses the system’s
quantum state onto one of the eigenstates of the observ-
able to be measured. As a consequence, any initial super-
position of these eigenstates is destroyed and the values
of observables conjugate to the measured observable are
perturbed. This perturbation is an intrinsic feature of
quantum mechanics and cannot be avoided in any mea-
surement scheme, be it of the “projection-type” described
by von Neumann or rather a weak, continuous measure-



ment to be analyzed further below.

To form a more concrete picture of quantum measure-
ment, we begin by noting that every quantum measure-
ment apparatus consists of a macroscopic ‘pointer’ cou-
pled to the microscopic system to be measured. (A spe-
cific model is discussed in Allahverdyan et al. (2001).)
This pointer is sufficiently macroscopic that its position
can be read out ‘classically’. The interaction between the
microscopic system and the pointer is arranged so that
the two become strongly correlated. One of the simplest
possible examples of a quantum measurement is that of
the Stern-Gerlach apparatus which measures the projec-
tion of the spin of an S = 1/2 atom along some chosen
direction. What is really measured in the experiment is
the final position of the atom on the detector plate. How-
ever, the magnetic field gradient in the magnet causes
this position to be perfectly correlated (‘entangled’) with
the spin projection so that the latter can be inferred from
the former. Suppose for example that the initial state of
the atom is a product of a spatial wave function &y(7)
centered on the entrance to the magnet, and a spin state
which is the superposition of up and down spins corre-
sponding to the eigenstate of 7,:

1

[Wo) \@{I T +1 1} )
After passing through a magnet with field gradient in the
z direction, an atom with spin up is deflected upwards
and an atom with spin down is deflected downwards. By
the linearity of quantum mechanics, an atom in a spin
superposition state thus ends up in a superposition of
the form

(4.1)

_ L

V1) \/§{| DIEw) +1 DIE)} (4.2)

where (F]€1) = 91 (F £ dZ) are spatial orbitals peaked in
the plane of the detector. The deflection d is determined
by the device geometry and the magnetic field gradient.
The z-direction position distribution of the particle for
each spin component is shown in Fig. 2. If d is suffi-
ciently large compared to the wave packet spread then,
given the position of the particle, one can unambiguously
determine the distribution from which it came and hence
the value of the spin projection of the atom. This is the

limit of a strong ‘projective’ measurement.
In the initial state one has

(Volo,|Wo) = +1, (4.3)
but in the final state one has
1
(O1]0s|W1) = 5 {(€-1€+) + (€41€-)} (4.4)

For sufficiently large d the states {1 are orthogonal and
thus the act of 6, measurement destroys the spin coher-
ence

(U]6,] 1) — 0. (4.5)
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FIG. 2 (Color online) Schematic illustration of position dis-
tributions of an atom in the detector plane of a Stern-Gerlach
apparatus whose field gradient is in the z direction. For small
values of the displacement d (described in the text), there is
significant overlap of the distributions and the spin cannot be
unambiguously inferred from the position. For large values of
d the spin is perfectly entangled with position and can be in-
ferred from the position. This is the limit of strong projective
measurement.

This is what we mean by projection or wave function ‘col-
lapse’. The result of measurement of the atom position
will yield a random and unpredictable value of i% for the
z projection of the spin. This destruction of the coher-
ence in the transverse spin components by a strong mea-
surement of the longitudinal spin component is the first
of many examples we will see of the Heisenberg uncer-
tainty principle in action. Measurement of one variable
destroys information about its conjugate variable. We
will study several examples in which we understand mi-
croscopically how it is that the coupling to the measure-
ment apparatus causes the ‘back action’ quantum noise
which destroys our knowledge of the conjugate variable.

In the special case where the eigenstates of the observ-
able we are measuring are also stationary states (i.e. en-
ergy eigenstates), measuring the observable a second time
would reproduce ezactly the same measurement result,
thus providing a way to confirm the accuracy of the mea-
surement scheme. These optimal kinds of repeatable mea-
surements are called “Quantum Non-Demolition” (QND)
measurements (Braginsky and Khalili, 1992, 1996; Bra-
ginsky et al., 1980; Peres, 1993). A simple example would
be a sequential pair of Stern-Gerlach devices oriented in
the same direction. In the absence of stray magnetic
perturbations, the second apparatus would always yield
the same answer as the first. The fact that QND mea-
surements are repeatable is of fundamental practical im-
portance in overcoming detector inefficiencies (Gambetta
et al., 2007). This point is elaborated in the discussion
of reaching the quantum limit in practice in Sec. VIII.

A common confusion is to think that a QND measure-
ment has no effect on the state of the system being mea-
sured. While this is true if the initial state is an eigen-
state of the observable, it is not true in general. Consider
again our example of a spin oriented in the = direction.
The result of the first 6, measurement will be that the
state randomly and completely unpredictably collapses
onto one of the two z projection eigenstates. However
all subsequent measurements using the same orientation
for the detectors will always agree with the result of the
first measurement. Thus QND measurements may affect
the state of the system, but never the value of the ob-
servable (once it is determined). Other examples of QND



measurements include: (i) measuring the electromagnetic
field energy stored inside a cavity by determining the ra-
diation pressure exerted on a moving piston (Braginsky
and Khalili, 1992), (ii) detecting the presence of a photon
in a cavity by its effect on the phase of an atom’s superpo-
sition state (Haroche and Raimond, 2006; Nogues et al.,
1999), and (iii) the “dispersive” measurement of a qubit
state by its effect on the phase shift of a microwave beam
(Blais et al., 2004; Wallraff et al., 2004), which is the first
canonical example we will describe below.

In contrast to the above, in non-QND measurements,
the back-action of the measurement will affect the ob-
servable being studied. The canonical example we will
consider below is the position measurement of a harmonic
oscillator. Since the position operator does not commute
with the Hamiltonian, the QND criterion is not fulfilled.
Other examples of non-QND measurements include: (i)
photon counting via photo-detectors that absorb the pho-
tons, (ii) continuous measurements where the observable
does not commute with the Hamiltonian, thus inducing
a time-dependence of the measurement result, (iii) mea-
surements that can be repeated only after a time longer
than the relaxation (mixing) time of the system.

A. Weak continuous measurements

In discussion “real” quantum measurements, another
key notion to introduce is that of weak, continuous mea-
surements (Braginsky and Khalili, 1992). Many mea-
surements in practice take an extended time-interval to
complete, which is much longer than the “microscopic”
time scales (oscillation periods etc.) of the system. The
reason may be quite simply that the coupling strength
between the detector and the system cannot be made
arbitrarily large, and one has to wait for the effect of
the system on the detector to accumulate. For example,
in our Stern-Gerlach measurement suppose that we are
only able to achieve small magnetic field gradients and
that consequently, the displacement d cannot be made
large compared to the wave packet spread (see Fig. 2).
In this case the states £+ would have non-zero overlap
and it would not be possible to reliably distinguish them:
we thus would only have a “weak” measurement. How-
ever, by cascading together a series of such measurements
and taking advantage of the fact that they are QND, we
can eventually achieve an unambiguous strong projec-
tive measurement. During this process, the overlap of £+
would gradually fall to zero corresponding to a smooth
continuous loss of phase coherence in the transverse spin
components. Only in this case of weak continuous mea-
surements does it make sense to define a measurement
rate in terms of a rate of gain of information about the
variable being measured, and the corresponding dephas-
ing rate, the rate at which information about the conju-
gate variable is being lost. We will see that these rates are
intimately related via the Heisenberg uncertainty princi-
ple.
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While strong projective measurements are often the
ideal, in some cases one may intentionally desire to have
a weak continuous measurement which does not drasti-
cally perturb the system. For example in doing continu-
ous quantum feedback to control the state of a system, it
may be advantageous to continuously monitor both posi-
tion and momentum of a particle, accepting the fact that
since these are incompatible (i.e. non-commuting) vari-
ables, we cannot determine them both precisely. There
are many practical examples of weak, continuous mea-
surement schemes. These include: (i) charge measure-
ments, where the current through a device (e.g. quantum
point contact or single-electron transistor) is modulated
by the presence/absence of a nearby charge, and where
it is necessary to wait for a sufficiently long time to over-
come the shot noise and distinguish between the two cur-
rent values, (ii) the weak dispersive qubit measurement
discussed below, (iii) displacement detection of a nano-
mechanical beam (e.g. optically or by capacitive coupling
to a charge sensor), where one looks at the two quadra-
ture amplitudes of the signal produced at the beam’s
resonance frequency.

Not surprisingly, quantum noise plays a crucial role in
determining the properties of a weak, continuous quan-
tum measurement. For such measurements, noise both
determines the back-action effect of the measurement on
the measured system, as well as how quickly information
is acquired in the measurement process. Previously we
saw that a crucial feature of quantum noise is the asym-
metry between positive and negative frequencies; we fur-
ther saw that this corresponds to the difference between
absorption and emission events. For measurements, an-
other key aspect of quantum noise will be important:
as we will discuss extensively, quantum mechanics places
constraints on the noise of any system capable of acting
as a detector or amplifier. These constraints in turn place
restrictions any weak, continuous measurement, and lead
directly to quantum limits on how well one can make such
a measurement.

In the rest of this section, we give an introduction to
how one describes a weak, continuous quantum measure-
ment, considering the specific examples of using para-
metric coupling to a resonant cavity for QND detection
of the state of a qubit and the (necessarily non-QND)
detection of the position of a harmonic oscillator. In
the following section (Sec. V), we derive a very general
quantum mechanical constraint on the noise of any sys-
tem capable of acting as a detector, and show how this
constraint directly leads to the quantum limit on qubit
detection. Finally, in Sec. VI, we will turn to the impor-
tant but slightly more involved case of a quantum linear
amplifier or position detector. We will show that the ba-
sic quantum noise constraint derived Sec. V again leads
to a quantum limit; here, this limit is on how small one
can make the added noise of a linear amplifier.

Before leaving this introductory section, it worth
pointing out that the theory of weak continuous mea-
surements is sometimes described in terms of some set



of auxiliary systems which are sequentially momentarily
weakly coupled to the system being measured. (See Ap-
pendix D.) One then envisions a sequence of projective
von Neumann measurements on the auxiliary variables.
The weak entanglement between the system of interest
and one of the auxiliary variables leads to a kind of par-
tial collapse of the system wave function (more precisely
the density matrix) which is described in mathematical
terms not by projection operators, but rather by POVMs
(positive operator valued measures). We will not use this
and the related ‘quantum trajectory’ language here, but
direct the reader to the literature for more information
on this important approach. (Brun, 2002; Haroche and
Raimond, 2006; Jordan and Korotkov, 2006; Peres, 1993)

B. Measurement with a parametrically coupled resonant
cavity

A very simple yet experimentally practical example of
a quantum detector consists of a resonant optical or RF
cavity parametrically coupled to the system being mea-
sured. Changes in the variable being measured (e.g. the
state of a qubit or the position of an oscillator) shift the
cavity frequency and produce a varying phase shift in the
carrier signal reflected from the cavity. This changing
phase shift can be converted (via homodyne interferome-
try) into a changing intensity; this can then be detected
using diodes or photomultipliers.

In this subsection, we will analyze weak, continuous
measurements made using a parametric cavity detector;
this will serve as a good introduction to the more general
approaches presented in the rest of this review. The cav-
ity system is an excellent first case to treat both because
of its simplicity, and because it is capable of reaching the
quantum-limit: it can be used to make a weak, continu-
ous measurement as well as is allowed by quantum me-
chanics. This is true for both the (QND) measurement
of the state of a qubit, and the (non-QND) measure-
ment of the position of a harmonic oscillator. Comple-
mentary analyses of weak, continuous qubit measurement
are given in Makhlin et al. (2000, 2001) (using a single-
electron transistor) and in Clerk et al. (2003); Gurvitz
(1997); Korotkov (2001b); Korotkov and Averin (2001);
Pilgram and Biittiker (2002) (using a quantum point con-
tact).

In addition to its pedagogical value, the paramet-
ric cavity detector is worth examining because of its
widespread usage in experiment. One important current
realization is a high-Q) microwave cavity used to read out
the state of a superconducting qubit (Blais et al., 2004;
Lupascu et al., 2004; Duty et al., 2005; II'ichev et al.,
2003; Izmalkov et al., 2004; Lupascu et al., 2005; Schus-
ter et al., 2005; Sillanpéa et al., 2005; Wallraff et al.,
2004). Another class of examples are optical cavities
with a mechanical degree of freedom; here, the cavity
can be used for highly sensitive position measurements.
Examples of such systems include those where one of the
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cavity mirrors is mounted on a cantilever (Arcizet et al.,
2006; Gigan et al., 2006; Kleckner and Bouwmeester,
2006). Related systems involve a freely suspended mass
(Abramovici et al., 1992; Corbitt et al., 2007), an op-
tical cavity with a thin transparent membrane in the
middle (Thompson et al., 2008) and, more generally, an
elastically deformable whispering gallery mode resonator
(Schliesser et al., 2006). Yet another realization of the
parametric cavity detector involves a microwave cavity
terminated with a DC SQUID, with part of the SQUID
loop is a doubly-clamped beam (Blencowe and Buks,
2007); here, the system acts as a position detector.

The cavity uses interference and the wave nature of
light to convert the input signal to a phase shifted wave.
For small phase shifts we have a weak continuous mea-
surement. Interestingly, it is the complementary particle
nature of light which turns out to be thing which lim-
its the measurement. As we will see, it both limits rate
at which we can make a measurement (via photon shot
noise in the output beam) and also controls the back ac-
tion disturbance of the system being measured (due to
photon shot noise inside the cavity acting on the sys-
tem being measured). These two dual aspects are an im-
portant part of any weak, continuous quantum measure-
ment; hence, understanding the output noise and back-
action noise of detectors will be crucial. The question
of reaching the quantum limit in practical measurements
will be discussed in Sec. VIII. For now we simply note
that, if the secondary amplifiers and detectors are not
quiet enough for the output noise to be dominated by
photon shot noise and the coupling to the system is not
strong enough to see the back action noise, then the mea-
surement cannot be quantum limited.

All of our discussion of measurement imprecision and
back action noise in the cavity system will be framed in
terms of the number phase uncertainty relation for coher-
ent states, derived in detail in Appendix G. A coherent
photon state contains a Poisson distribution of the num-
ber of photons. Thus if the mean number of photons is
N, the fluctuations in the number obey

(AN)?2 =N. (4.6)
Coherent states are over complete and states of different
phase are not orthogonal to each other. As shown in
Appendix G this means that there is an uncertainty in
any measurement of the phase given by

2:L
4N’

(Equivalently, any homodyne measurement of the phase
of the beam is subject to photon shot noise which leads to
the same phase uncertainty.) Thus coherent states obey
the number-phase uncertainty relation
1
ANAO = =
2
analogous to the position momentum uncertainty rela-
tion.

(A0) (4.7)

(4.8)



We now consider the equivalent of this statement in
terms of noise spectral densities associated with the mea-
surement. Consider a continuous photon beam carrying

an average photon flux N. As explained in Appendix
A, the variance in the number of photons detected grows
linearly in time and can be represented in terms of the
photon shot noise spectral density
(AN)? = Sy xt. (4.9)
Here, Sy represents the spectral density of photon-flux
fluctuations. It is white, and on a physical level, describes
photon shot noise:
Suy = N. (4.10)
In the parametric cavity detector, one needs to read-
out the phase of the beam reflected from the cavity; it is
this phase which contains information on the system be-
ing measured. As described in Appendix G, homodyne
measurement of this phase is subject to the same pho-
ton shot noise fluctuations discussed above. Thus, if the
phase of the beam has some nominal small value 6y, the
output signal from the homodyne detector integrated up
to time t will be of the form
t
I =0yt +/ dr 60(T) (4.11)
0
where §6 is a noise representing the imprecision in our
measurement of #y due to the photon shot noise in the
output of the homodyne detector. An unbiased estimate
of the phase is

0= A (4.12)
t
which obeys
(0) = 6 (4.13)
and from the results of Appendix A
(A)? = @, (4.14)

where Syg is the spectral density of the §0 white noise as-
sociated with the measurement imprecision. Comparison
with Eq. (4.7) yields
1
Seo = —.
4N

The larger the photon flux in the beam, the larger is the
photon shot noise, but the smaller is the phase noise.
We will make repeated use of the fact that the measure-
ment imprecision can be represented in terms of a noise
spectral density in this manner.

The results above lead us to the fundamental
wave/particle relation for ideal coherent beams

1
SnxSeo =

(4.15)

(4.16)
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or in analogy with Eq. (4.8)
1

Sy =

Before we study the role that these uncertainty rela-
tions play in measurements with high @ cavities, let us
consider the simplest case of reflecting light from a mirror
without a cavity. The phase shift of the beam (having
wave vector k) when the mirror moves a distance z is
2kx. Thus, the uncertainty in the phase measurement
corresponds to a position imprecision which can again be
represented in terms of a noise spectral density

St = 2

4k2
Here the superscript I refers to the fact that this is noise
representing imprecision in the measurement, not actual
fluctuations in the position. We also need to worry about
back action: each photon hitting the mirror transfers a
momentum 2hk to the mirror, so photon shot noise cor-
responds to a random back action force noise spectral
density

(4.17)

Spo. (4.18)

Spr = 4Rk Sy 5 (4.19)
Multiplying these together we have the central result for
the product of the back action force noise and the impre-
cision

2
SprSt, = h?Sx xSes = % (4.20)
or in analogy with Eq. (4.8)
h
\/SFrSL, = 3 (4.21)

Not surprisingly, the situation considered here is as ideal
as possible. Thus, the RHS above is actually a lower
bound on the product of imprecision and back-action
noise for any detector; we will prove this rigorously in
Sec. V.A. Eq. (4.21) thus represents the quantum-limit
on the noise of our detector. As we will see shortly, having
a detector with quantum-limited noise is a prerequisite
for reaching the quantum limit on various different mea-
surement tasks (e.g. continuous position detection of an
oscillator and QND qubit state detection). Note that in
general, a given detector will not have quantum limited
noise: we will devote considerable effort in later sections
to determining the necessary conditions to achieve the
lower bound of Eq. (4.21) in a general detector.

We now turn to the story of measurement using a high
Q@ cavity which will be very similar to the above, except
that we have to take into account the filtering of the
noise by the cavity response. As discussed in detail in
Appendix D, the cavity is simply described as a single
bosonic mode coupled weakly to electromagnetic modes
outside the cavity. The Hamiltonian of the system is
given by:

H = Hy+ hwe (14 A2) aTa + Hopge. (4.22)



Here, Hj is the unperturbed Hamiltonian of the system
whose variable 2 (which is not necessarily a position) is
being measured, @ is the annihilation operator for the
cavity mode, and w, is the cavity resonance frequency
in the absence of the coupling A. We will take both A
and Z to be dimensionless. The term Hg,y¢ describes the
electromagnetic modes outside the cavity, and their cou-
pling to the cavity; it is responsible for both driving and
damping the cavity mode. The damping is parameterized
by rate x, which tells us how quickly energy leaks out of
the cavity; we consider the case of a high quality-factor
cavity, where Q. = w./k > 1.

Turning to the interaction term in Eq. (4.22), we see
that the parametric coupling strength A determines the
change in frequency of the cavity as the system variable
Z changes. We are going to consider two cases, one in
which Z represents the continuously varying position of a
harmonic oscillator and one in which it represents the dis-
crete state of a spin-1/2 qubit. In both cases we assume
that the dynamics of Z is slow compared to x so that the
cavity follows the system adiabatically. In this limit the
reflected phase shift simply varies slowly in time adia-
batically following the instantaneous value of 2. We will
also assume that the coupling A is small enough that the
phase shifts are always very small and hence the measure-
ment is weak. Many photons will have to pass through
the cavity before much information is gained about the
value of the phase shift and hence the value of 2.

We first consider the case of a ‘one-sided’ cavity where
only one of the mirrors is semi-transparent, the other
being perfectly reflecting (see Fig. 3). In this case, a
wave incident on the cavity (say, in a one-dimensional
waveguide) will be perfectly reflected, but with a phase
shift @ determined by the cavity and the value of Z. As
shown in Appendix D, the reflection coefficient at the
bare cavity frequency w. is simply given by (Walls and
Milburn, 1994)

14+ 2iAQ.2
= 4.23
T T 2i40.2 (4.23)
Note that r has unit magnitude because all photons
which are incident are reflected if the cavity is lossless.
For weak coupling we can write the reflection phase shift
as

r=—e (4.24)
with
0 ~ 4Q.A% = (Awe)twp 2. (4.25)

We see that the scattering phase shift is simply the fre-
quency shift caused by the parametric coupling multi-
plied by the Wigner delay time (Wigner, 1955)

Olnr 4
tWD:Im = —.
Oow K

(4.26)

Thus the measurement imprecision noise power for a
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bout(f )

bin(t)

FIG. 3 Schematic of a single-sided resonant cavity with inter-
nal mode a, driven by input mode b, resulting in the output
field bout.

a(t)

given photon flux N incident on the cavity is given by

1

I _
Szz o (AthWD)z

Sge. (4.27)

The random part of the generalized back action force

conjugate to 2 is from Eq. (4.22)

- O

Fz - ~
0z

= —Ahw. 0n

(4.28)

where, since Z is dimensionless, Fz has units of energy.
Here 6 = h — i = ala — <aTa> represents the photon
number fluctuations around the mean 7 inside the cavity.
The back action force noise spectral density is thus

Sk r, = (Ahwe)*Spn (4.29)
As shown in Appendix D, the cavity filters the photon
shot noise so that at low frequencies w < k the number
fluctuation spectral density is simply
The mean photon number in the cavity (also derived in
the Appendix) is

7 = Ntwp (4.31)

where again N the mean photon flux incident on the
cavity. From this it follows that

and

Sk

r. = (Ahwetwp)2 Sy 5 (4.33)
Combining this with Eq. (4.27) again yields the same
result as Eq. (4.21) obtained without the cavity. The
parametric cavity detector (used in this way) is thus a
quantum-limited detector: it reaches the quantum-limit
on its noise spectral densities.

We will now examine how the quantum limit on the
noise of our detector directly leads to quantum limits
on different measurement tasks. In particular, we will
consider the cases of continuous position detection and

QND qubit state measurement. For the case of position



FIG. 4 (Color online) Distribution of the integrated output

for the cavity detector, I(t), for the two different qubit states.

The separation of the means of the distributions grows linearly

i\n/time, while the width of the distributions only grow as the
t.

measurements of a mirror, the back action force from the
cavity detector is simply the radiation pressure acting on
the mirror (enhanced by the multiple reflections inside
the cavity when twp is large). The position measurement
case is complicated by the fact that this force will cause
changes in the momentum of the mirror. The momen-
tum kicks will in turn increase the position fluctuations
over and above the naive measurement imprecision, re-
flecting the fact that the measurement is non-QND. We
will therefore start with the simpler case of QND mea-
surement of the state of a qubit.

1. QND measurement of the state of a qubit using a resonant
cavity

Here we specialize to the case where the system oper-
ator £ = &, represents the state of a spin-1/2 quantum
bit. Eq. (4.22) becomes

N 1 .
H = Shwi6 + +hwe (14 Ad:) a'a+ Honyy  (4.34)

We see that 6, commutes with all terms in the Hamilto-
nian and is thus a constant of the motion (assuming that

Hepyt contains no qubit decay terms so that T3 = oo) and
hence the measurement will be QND. From Eq. (4.25) we
see that the two states of the qubit produce phase shifts
+6y where

90 = AthWD. (435)

As 0y < 1, it will take many reflected photons before
we are able to determine the state of the qubit. This
is a direct consequence of the unavoidable photon shot
noise in the output of the detector, and is a basic feature
of weak measurements— information on the input is only
acquired gradually in time.

Let I(t) be the homodyne signal for the wave reflected
from the cavity integrated up to time t. Depending on
the state of the qubit the mean value of I will be

(I) = £, (4.36)
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and the RMS gaussian fluctuations about the mean will
be

Al = +/Spgt.

As illustrated in Fig. 4 and discussed extensively in
Makhlin et al. (2001), the integrated signal is drawn from
one of two gaussian distributions which are better and
better resolved with increasing time (as long as the mea-
surement is QND). The state of the qubit thus becomes
ever more reliably determined. The signal energy to noise
energy ratio becomes

(4.37)

(2 _ 6
(AI)?2 ~ Spg

SNR = (4.38)

which can be used to define the measurement rate via

SNR 65 1
2 2S5 251 °

1_‘meas -

(4.39)

There is a certain arbitrariness in the scale factor of 2 in
the definition of the measurement rate, but this particu-
lar definition is justified on precise information theoretic
grounds in Appendix E.

While Eq. (4.34) makes it clear that the state of the
qubit modulates the cavity frequency, we can easily re-
write this equation to show that this same interaction
term is also responsible for the back-action of the mea-
surement (i.e. the disturbance of the qubit state by the
measurement process):

N h R i .

H = 3 (wm + 2AwCaTa) 6, + hweata + Hoput (4.40)
We now see that the interaction can also be viewed as
providing a ‘light shift’ (i.e. ac Stark shift) of the qubit
splitting frequency (Blais et al., 2004; Schuster et al.,
2005) which contains a constant part 2AnAw,. plus a ran-
domly fluctuating part

Awgy = 2F. /R (4.41)

which depends on 7 = a'a, the number of photons in the
cavity. During a measurement, 1 will fluctuate around its
mean and act as a fluctuating back-action ‘force’ on the
qubit. In the present QND case, noise in 7 = a'é cannot
cause transitions between the two qubit eigenstates. This
is the opposite of the situation considered in Sec. III.A,
where we wanted to use the qubit as a spectrometer.
Despite the lack of any noise-induced transitions, there
still is a back-action here, as noise in 7 causes the effec-
tive splitting frequency of the qubit to fluctuate in time.
For weak coupling, the resulting phase diffusion leads to
measurement-induced dephasing of superpositions in the
qubit (Blais et al., 2004; Schuster et al., 2005) according
to

(e) =

For weak coupling the dephasing rate is slow and thus we
are interested in long times ¢. In this limit the integral

<e” Jidr Aw01(7)> _ (4.42)



is a sum of a large number of statistically independent
terms and thus we can take the accumulated phase to be
gaussian distributed. Using the cumulant expansion we

then obtain
) 1 t 2
(e77%) exp (—2 < [/0 dr Awm(T)} >>
2
= exp <—h25Fzet> .

Notice that these integrals are precisely of the form that
we encountered in the Wiener-Khinchin theorem (see Ap-
pendix A). Note also that the noise correlator above is
naturally symmetrized— the quantum asymmetry of the
noise plays no role for this type of coupling. Thus we
identify the dephasing rate

2
Ly =135r.p. = 2055 5 x-

(4.43)

(4.44)

We may now introduce the fundamental quantum limit
for an ideal QND measurement: at best, one can measure
as quickly as one dephases. Using Eqgs. (4.39) and (4.44),
we see that the cavity reaches this quantum limit:

Iy, 4

=SS =455 xS0 = 1.
Fmeas B2 =% F.F, NN

(4.45)

As described earlier, this represents the enforcement of
the Heisenberg uncertainty principle. The faster you gain
information about one variable, the faster you lose in-
formation about the conjugate variable. Note that in
general, the ratio I',/T'meas Will be larger than one, as
an arbitrary detector will not reach the quantum limit
on its noise spectral densities. Such a non-ideal detec-
tor produces excess back-action beyond what is required
quantum mechanically; as we shall repeatedly emphasize,
this excess back-action is always associated with wasted
information.

Before continuing our discussion of the quantum limit,
it useful to make an additional remark about dephasing.
In addition to the quantum noise point of view presented
above, there is a second complementary way in which to
understand the origin of measurement induced dephasing
(Stern et al., 1990) which is analogous to our description
of loss of transverse spin coherence in the Stern-Gerlach
experiment in Eq. (4.4). The measurement takes the in-
cident wave, described by a coherent state |a), to a re-
flected wave described by a (phase shifted) coherent state
|71 -a) or |r|-a), where ry /| is the qubit-dependent reflec-
tion amplitude given in Eq. (4.23). Considering now the
full state of the qubit plus detector, measurement results
in:

1

S(n+1n)el - (=2 -o

+ e 2] ) @ Ir) - a) (4.46)

As |ry - a) # |r| - @), the qubit has become entangled
with the detector: the state above cannot be written as a
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product of a qubit state times a detector state. To assess
the coherence of the final qubit state (i.e. the relative
phase between 7 and |), one looks at the off-diagonal
matrix element of the qubit’s reduced density matrix:

pLT = Tr .detector<l |1/)><w| T> (447)

_ 6+l;101t <’I"T . 04|Tl . a> (448)
e+iwo1t

= 5 eXP [—|a\2 (1 — r?rl)] (4.49)

In Eq. (4.48) we have used the usual expression for the
overlap of two coherent states. We see that the measure-
ment reduces the magnitude of p; : this is dephasing.
The amount of dephasing is directly related to the over-
lap between the different detector states that result when
the qubit is up or down; this overlap can be straightfor-
wardly found using Eq. (4.49) and |a|?> = N = Nt, where
N is the mean number of photons that have reflected from
the cavity after time t. We have

|exp [—|al* (1 - riry)] | = exp [-2N63] = exp [Tt
(4.50)
with the dephasing rate I', being given by:
I, =20;N (4.51)
in complete agreement with the previous result in
Eq.(4.44).

In closing, we note that for strong coupling (outside
the regime of weak measurements), the light shift per
photon can actually exceed the line width of the qubit
and the qubit transition spectrum splits into a series of
resolved lines which have been observed both via ‘quan-
tum revivals’ in the time domain (Haroche and Raimond,
2006; Raimond et al., 2001) using Rydberg atom cavity
QED, and in the frequency domain (Schuster et al., 2007)
using superconducting circuit QED.

2. Quantum limit relation for QND qubit state detection

We now return to the quantum limit relation of
Eq. (4.45). We have described the weak, continuous QND
measurement of a qubit by a cavity with two rates: I'eas,
which tells us how quickly information is acquired, and
Iy, which tells us how quickly the back-action of the mea-
surement decoheres a superposition. As we saw above,
these rates are not completely independent: quantum
mechanics enforces the constraint that the best you can
possibly do is measure as quickly as you dephase (Averin,
2003; Clerk et al., 2003; Devoret and Schoelkopf, 2000;
Korotkov and Averin, 2001; Makhlin et al., 2001):

Tpneas < Ty (4.52)

A quantum limited detector (such as the ideal cavity
measurement described above) is one which has an equal-
ity above; in general, most detectors are very far from



this ideal limit, and dephase the qubit much faster than
they acquire information about its state. We will give a
rigorous proof of Eq. (4.52) in Sec. V.B; for now, we note
that its heuristic origin rests on the fact that both mea-
surement and dephasing rely on the qubit becoming en-
tangled with the detector. Consider again Eq. (4.46), de-
scribing the evolution of the qubit-detector system when
the qubit is initially in a superposition of T and |. To
say that we have truly measured the qubit, the two de-
tector states |rya) and |rja) need to correspond to dif-
ferent values of the detector output (i.e. phase shift 6 in
our example); this necessarily implies they are orthog-
onal. This in turn implies that the qubit is completely
dephased: p;; = 0, just as we saw in Eq. (4.5) in the
Stern-Gerlach example. Thus, measurement implies de-
phasing. The opposite is not true. The two states |ra)
and |r;«) could in principle be orthogonal without their
corresponding to different values of the detector output
(i.e. 8). For example, the qubit may have become en-
tangled with extraneous microscopic degrees of freedom
in the detector. Thus, on a heuristic level, the origin of
Eq. (4.52) is clear.

Returning to our one-sided cavity system, we see from
Eq. (4.45) that the one-sided cavity detector reaches
the quantum limit. It is natural to now ask why this
is the case: is there a general principle in action here
which allows the one-sided cavity to reach the quantum
limit? The answer is yes: reaching the quantum limit
requires that there is no ‘wasted’ information in the de-
tector (Clerk et al., 2003). There should not exist any un-
measured quantity in the detector which could have been
probed to learn more about the state of the qubit. In the
single-sided cavity detector, information on the state of
the qubit is only available in (that is, is entirely encoded
in) the phase shift of the reflected beam; thus, there is no
‘wasted’ information, and the detector does indeed reach
the quantum limit. This principle of ‘no wasted informa-
tion’ is discussed extensively in Clerk et al. (2003), and
we will expand on it in what follows.

We now consider a simple variant of the single-sided
cavity detector which fails to reach the quantum limit
precisely due to ‘wasted’ information. Consider a one-
dimensional cavity system where both mirrors are slightly
transparent. Now, a wave incident at frequency wg on
one end of the cavity will be partially reflected and par-
tially transmitted; if the initial incident wave is described
by a coherent state |a), the scattered state can be de-
scribed by a tensor product of the reflected wave’s state
and the transmitted wave’s state:

) = [ro - )|ty - )

(4.53)

where the qubit-dependent reflection and transmission
amplitudes r, and t, are given by (Walls and Milburn,
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1994):
o= — (4.54)
LT T4 2iAQ. '
20 A
(4.56)

with ¢4 = (¢))* and r = (r})*. Note that the in-
cident beam is almost perfectly transmitted: [t,|? =
1—-0(AQ.)>.

Similar to the one-sided case, the two-sided cavity
could be used to make a measurement by monitoring the
phase of the transmitted wave. Using the expression for
t, above, we find that the qubit-dependent transmission
phase shift is given by:

01/, = £0p = £24Q. (4.57)

where again the two signs correspond to the two different
qubit eigenstates. The phase shift for transmission is
only half as large as in reflection so the Wigner delay
time associated with transmission is

~ 2
twp = —. 4.58
wn = 2 (4.5%)
Upon making the substitution of twp for twp, the one-
sided cavity Eqgs. (4.24-4.29) and Eq. (4.24) remain valid.
However the internal cavity photon number shot noise
remains fixed so that Eq. (4.30) becomes

Spn = 20twp. (4.59)
which means that
Spn = 2N = 255 5B (4.60)
and
Sr.p. =20 A2WZEyn Sy - (4.61)

As a result the back action dephasing doubles relative to
the measurement rate and we have

Fmeas 1
= 2S5 Se0 = 3 (4.62)

©
Thus the two-sided cavity fails to reach the quantum
limit by a factor of 2.

Using the entanglement picture, we may again alterna-
tively calculate the amount of dephasing from the overlap

between the detector states corresponding to the qubit
states T and | (cf. Eq. (4.48)). We find:

—T,t

[(tralt a)ryalra) (4.63)

= exp [—|al* (1= (t4)"t; — (r1)*r))] (4.64)

Note that both the change in the transmission and reflec-
tion amplitudes contribute to the dephasing of the qubit.
Using the expressions above, we find:

e

Tt = 4(00)%|0)? = 4(00)°N = 4(09)2Nt = 2T east.
(4.65)



We thus find that measurement-induced dephasing rate
is twice as large as the measurement rate: the two sided
cavity misses the quantum limit by a factor of two in
agreement with our quantum noise result that the back
action noise is doubled.

Why does the two-sided cavity fail to reach the quan-
tum limit? The answer is clear from Eq. (4.64): even
though we are not monitoring it, there is information on
the state of the qubit available in the phase of the re-
flected wave. Note from Eq. (4.55) that the magnitude
of the reflected wave is weak (oc A2%), but (unlike the
transmitted wave) the difference in the reflection phase
associated with the two qubit states is large (+7/2). The
‘missing information’ in the reflected beam makes a direct
contribution to the dephasing rate (i.e. the second term in
Eq. (4.64)), making it larger than the measurement rate
associated with measurement of the transmission phase
shift. In fact, there is an equal amount of information
in the reflected beam as in the transmitted beam, so the
dephasing rate is doubled.

We note in closing that it is often technically easier
to work in transmission rather than reflection. One can
show however that one may still reach the quantum limit
in transmission by using an asymmetric cavity in which
the input mirror has much less transmission than the
output mirror. Most photons are reflected at the input,
but those that enter the cavity will almost certainly be
transmitted. The price to be made is that the input
carrier power must be increased.

In summary, we see the departure from the quantum
limit here can be directly traced to “wasted” informa-
tion in the detector. This idea holds up for a number
of very different systems: in Clerk et al. (2003), it was
discussed in the context of mesoscopic scattering detec-
tors (i.e. a generalized quantum point-contact detector),
while in Appendix H, we consider the role of information
in the important case of a Mach-Zehnder-interferometer
detector.

3. Measurement of oscillator position using a resonant cavity

In the previous subsections, we studied how a resonant
cavity could be used to make a QND measurement of the
state of a qubit. We found that the photon shot noise
in the output beam limited the precision with which the
cavity phase shift could be determined; it thus set the
measurement rate. We also found that fluctuations in
the cavity photon number produced a random light shift
of the qubit’s energy splitting, causing dephasing. This
example of measurement back action causing dephasing
is the simplest possible one because the measurement is
QND: the back-action does not affect the observable be-
ing measured. The measurement is repeatable precisely
because the back action noise only affects the relative
phase of the superposition of the two qubit states, but
causes no transitions between them.

In this subsection we consider the simplest example of
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a non-QND measurement, namely the weak continuous
measurement of the position of a harmonic oscillator. As
a detector, we again use a parametrically-coupled reso-
nant cavity, where the position of the oscillator x changes
the frequency of the cavity as per Eq. (4.22) (see, e.g.,
Tittonen et al. (1999)). Similar to the qubit case, for a
sufficiently weak coupling the phase shift of the reflected
beam from the cavity will depend linearly on the posi-
tion x of the oscillator (c.f. Eq. (4.25)); by reading out
this phase, we may thus measure x. The back action
noise is the same as before, namely photon shot noise in
the cavity. Now however this represents a random force
which changes the momentum of the oscillator. During
the subsequent time evolution these random force pertur-
bations will reappear as random fluctuations in the posi-
tion. Thus the measurement is not QND. This will mean
that the minimum uncertainty of even an ideal measure-
ment is larger (by exactly a factor of 2) than the ‘true’
quantum uncertainty of the position (i.e. the ground state
uncertainty). We will see later that this is an example of
a general principle that a linear ‘phase-preserving’” ampli-
fier necessarily adds noise, and that the minimum added
noise exactly doubles the output noise for the case where
the input is vacuum (i.e. zero-point) noise.

In this subsection we will present a highly simplified
and heuristic discussion of the standard quantum limit
for position measurement which will convey the essential
ideas. A more general and complete discussion of the
quantum limit on amplifiers and position detectors will
be presented in Sec. VI.

Before proceeding, it is worthwhile to make some pre-
liminary points. First, note that we are speaking here
of a weak continuous measurement of the oscillator po-
sition. The measurement is sufficiently weak that the
position undergoes many cycles of oscillation before sig-
nificant information is acquired. Thus we are not talking
about the instantaneous position but rather the overall
amplitude and phase, or more precisely the two quadra-
ture amplitudes describing the smooth envelope of the
motion,

&(t) = X cos() + Y sin(Qt). (4.66)

Comparison with Eq. (2.18) shows that the two quadra-

ture amplitudes X and Y are canonically conjugate and
hence do not commute with each other

PN ih
[(X,Y]= a - 2ix7pp.
Because the measurement is weak, we are effectively try-
ing to measure two incompatible observables simultane-
ously. This is also intimately related to the necessity of
overall measurement uncertainty mentioned above.

It is also worth emphasizing that the quantum limit
on continuous position detection is a very different kind
of constraint than that on QND qubit state detection.
In the latter case, the quantum limit did not limit the
accuracy with which we could measure the state of the
qubit. The quantum limit simply set a minimum on the

(4.67)



magnitude of the back-action dephasing; as the measure-
ment is QND, the size of this back-action had no effect on
the measurement accuracy. We also found that the pre-
cise value of the coupling strength to the detector was
not important: if the coupling is made weaker, it takes
longer to make the measurement, but since it is QND,
this does not matter (assuming the qubit has no intrinsic
decay mechanisms). In contrast, for position measure-
ments, back-action does affect the quantity being mea-
sured, and thus the quantum limit does indeed place a
limit on the accuracy of the measurement. We will also
see that in order to achieve the minimum uncertainty (to
be defined below), one must adjust the coupling strength
to an optimal value. If the coupling is too weak, the
phase shift of the cavity is so small that the imprecision
of the measurement is dominated by photon shot noise in
the output. If the coupling is too strong, the back action
noise perturbs the oscillator so strongly that the position
uncertainty increases beyond the minimum.

We are now ready to start our heuristic analysis of po-
sition detection using a cavity detector; further details
and more rigorous formal analysis are presented in Ap-
pendix D.3. Consider first the mechanical oscillator we
wish to measure. We take it to be a simple harmonic os-
cillator of natural frequency 2 and mechanical damping
rate 9. For weak damping, and at zero coupling to the
detector, the spectral density of the oscillator’s position
fluctuations is given by Eq. (2.27) with the delta function
replaced by a Lorentzian?

Sealw] = x%pF{”B(hQ) (w+ Q)Ji (70/2)?
7o
+ [nB(h§2) + 1] (w—Q)2 + (70/2)? } o

When we now weakly couple the oscillator to the cavity
(as per Eq. (4.22), with £ = &/xzpr) and drive the cavity
on resonance, the phase shift 6 of the reflected beam will
be proportional to  (i.e. 0(t) = [df/dz]-x(t)). As such,
the oscillator’s position fluctuations will cause additional
fluctuations of the phase #, over and above the intrinsic
shot-noise induced phase fluctuations Spg. We consider
the usual case where the noise spectrometer being used
to measure the noise in @ (i.e. the noise in the homo-
dyne current) measures the symmetric-in-frequency noise
spectral density; as such, it is the symmetric-in-frequency
position noise that we will detect. In the classical limit

9 This form is valid only for weak damping because we are as-
suming that the oscillator frequency is still sharply defined. We
have evaluated the Bose-Einstein factor exactly at frequency 2
and we have assumed that the Lorentzian centered at positive
(negative) frequency has negligible weight at negative (positive)
frequencies.
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kT > hQ, this is just given by:

gzz[w] = 1 (S:I:x[w] + Szx[_wD

2
ksT Yo
2M Q2 (Jw| = Q)2 + (70/2)?

(4.69)

where as always, we have chosen to define the sym-
metrized spectral density as the average of the spectral
densities at positive and negative frequencies. This is in
contrast to the convention used in engineering contexts,
where one simply takes the sum of the two spectral den-
sities. If we ignore back-action effects, we expect to see
this Lorentzian profile riding on top of the background
imprecision noise floor; this is illustrated in Fig. 5.

Note that additional stages of amplification would also
add noise, and would thus further augment this back-
ground noise floor. If we subtract off this noise floor, the
FWHM of the curve will give the damping parameter -y,
and the area under the experimental curve

e dw k’BT
/,m 2wl = 3rep

(4.70)

measures the temperature. What the experimentalist
actually plots in making such a curve is the output of
the entire detector-plus-following-amplifier chain. Impor-
tantly, if the temperature is known, then the area of the
measured curve can be used to calibrate the coupling
of the detector and the gain of the total overall ampli-
fier chain (see, e.g., Flowers-Jacobs et al., 2007; LaHaye
et al., 2004). One can thus make a calibrated plot where
the measured output noise is referred back to the oscilla-
tor position. Such a plot also calibrates the background
noise floor in terms of an effective oscillator temperature:
this is related to the detector’s “noise temperature” (a
quantity to be discussed further in Sec. VI.D).

At zero temperature, Eq. (4.68) yields for the sym-
metrized noise spectral density

Y0/2
(Jw| = 2)2 + (v0/2)*

One might expect that one could see this Lorentzian di-
rectly in the output noise of the detector (i.e. the 6 noise),
sitting above the measurement-imprecision noise floor.
However, this neglects the effects of measurement back
action. From the classical equation of motion

Spelw] = 27pp (4.71)

F
i =—0% -yt + —

= (4.72)

(where F = F,), we expect the response of the oscillator
to the back action force F' at frequency w produces an
additional displacement

0z|w] = Xaz|w] Flw] (4.73)
where X, [w] is the mechanical susceptibility
1 1
Xzz|w] = (4.74)

M2 —w? —iyw’
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FIG. 5 (Color online) Spectral density of the (symmetrized)
output noise S’gg[w] of a linear position detector. The oscilla-
tor’s noise appears as a Lorentzian sitting above a noise floor
(i.e. the measurement imprecision). As discussed in the text,
the width of the peak is proportional to the oscillator damp-
ing rate 7o, while the area under the peak is proportional to
temperature. This latter fact can be used to calibrate the
response of the detector.

These extra oscillator fluctuations will show up as addi-
tional fluctuations in the output of the detector (i.e. the
phase shift #). For simplicity, let us focus on this noise at
the oscillator’s resonance frequency 2. As a result of the
detector’s back-action, the total measured position noise
(i.e. inferred spectral density) at the frequency € is given
by:

Sovianl) = 50100+ X g, o) 4 510

1
+ 5 [Saal+9 + Sp, 9]
= ng Q] + gxm,add [€2]

The first term here is just the intrinsic zero-point noise
of the oscillator:

_ 212
50,10) = ZEZPE — by, (9.

- (4.77)

The second term S'M_radd is the total noise added by the
measurement, and includes both the measurement impre-
cision ST, = S! 22,5 and the extra fluctuations caused
by the back action. We stress that S’xmot corresponds to
a position noise spectral density inferred from the output
of the detector: one simply scales the spectral density of
total output fluctuations Sgg ot [] by (df/dz)?.
Implicit in Eq. (4.77) is the assumption that the back
action noise and the imprecision noise are uncorrelated
and thus add in quadrature. It is not obvious that this is
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correct, since in the case of position measurement using
parametric coupling to a cavity, the back action noise
and output shot noise are both caused by the vacuum
noise in the beam incident on the cavity. It turns out
there are indeed correlations, however the symmetrized
(i.e. ‘classical’) correlator Sgr does vanish under the right
conditions; we will show this in detail for this partic-
ular system in Appendix D and discuss it more gener-
ally in Sec. V. Further, Eq. (4.75) assumes that the
measurement does not change the damping rate of the
oscillator. One can show that this is indeed the case
when the cavity is illuminated at its optical resonance,
as in this case the back-action force’s quantum noise spec-
tral density is symmetric in frequency (see Appendix D).
The back-action force thus does not result in any ad-
ditional measurement-induced damping of the oscillator
(c.f. Eq. (3.32)). Note that this is a special situation:
for a generic detector, detector back-action will change
the total damping of the oscillator (and in fact can heat
or cool the oscillator, depending on the setup); we will
discuss this further in Sec. VI.D.

Assuming we have a quantum limited detector that
obeys Eq. (4.20) (i.e. SL,Srpr = h2/4) and that the
shot noise is symmetric in frequency, the added position
noise spectral density at resonance (i.e. second term in

Eq. (4.76)) becomes:

R? 1

Sewadd[Q = |IX[U[*Srr+ —<—| - (4.78)
4 Spp

Recall from Eq. (4.33) that the back action noise is pro-
portional to the coupling of the oscillator to the detector
and to the intensity of the drive on the cavity. The added
position uncertainty noise is plotted in Fig. 6 as a func-
tion of Spr. We see that for high drive intensity, the back
action noise dominates the position uncertainty, while for
low drive intensity, the output shot noise (the last term
in the equation above) dominates.

The added noise (and hence the total noise Sy 101[€2])
is minimized when Sgp is tuned to be equal to SrF opt,
with:

h h
—— = —MQ.
2|Xaca:[Q” 2 o

We see that the more heavily damped is the oscillator,
the less susceptible it is to back action noise and hence
the higher is the optimal coupling. At the optimal point

SFF,Opt - (479)

- h
Sza:,add [Q} - MQ'YO

= 52,19 (4.80)
Thus, the spectral density of the added position noise is
ezactly equal to the noise power associated with the os-
cillator’s zero-point fluctuations. This represents a mini-
mum value for the added noise of any linear position de-
tector, and is referred to as the standard quantum limit
on position detection [CITE]. Note that this limit only
involves the added noise of the detector, and thus has
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FIG. 6 (Color online) Noise power of the added position noise
of a linear position detector, evaluated at the oscillator’s reso-
nance frequency (Smﬁdd [Q]), as a function of the magnitude
of the back-action noise spectral density Spp. Spp is pro-
portional to the oscillator-detector coupling, and in the case
of the cavity detector, is also proportional to the power in-
cident on the cavity. The optimal value of Spr is given by
SFFopt = AMQy0/2 (c.f. Eq. (4.79)). We have assumed that
there are no correlations between measurement imprecision
noise and back-action noise, as is appropriate for the cavity
detector.

nothing to do with the initial temperature of the oscil-
lator. We again emphasize that in order to reach this
quantum limit, the detector must be quantum limited:
one needs the product SprSL, to be as small as is al-
lowed by quantum mechanics (i.e. h%/4). In addition,
the measured output noise must be dominated by the
output noise of the cavity, not by the added noise of fol-
lowing amplifier stages. Finally, one must also be able to
achieve sufficiently strong coupling to reach the optimum
given in Eq. (4.79). Note that at this optimal coupling,
the measurement imprecision noise and back-action noise
each make equal contributions to the total measured po-
sition uncertainty §$I7t0t. A related, stronger quantum
limit refers to the total inferred position noise from the
measurement, Sy, tot[w]. It follows from Eq. (4.80) that
at resonance, the smallest this can be is twice the oscil-
lator’s zero point noise:

Sz 1ot[Q] = 252, [9). (4.81)
Half the noise here is from the oscillator itself, half is from
the added noise of the detector. Reaching this quantum
limit is even more challenging: one needs both to reach
the quantum limit on the added noise and cool the oscil-
lator to its ground state. Note that recent experiments in
quantum nanomechanics have come very close to reach-
ing the quantum limit on the added noise, but have been
less close in reaching the limit on the total measured
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position noise. See Appendix VIII for further discus-
sion of practical issues relevant to reaching the quan-
tum limit. the minimum (symmetrized) noise power (at
the resonance frequency) is twice the vacuum value— the
added noise from the measurement is precisely equal is
the so called ‘standard quantum limit’ for position mea-
surement uncertainty.

Finally, we emphasize that the optimal value of the
coupling derived above was specific to the choice of min-
imizing the total position noise power at the resonance
frequency. If a different frequency had been chosen, the
optimal coupling would have been different; one again
finds that the minimum possible added noise corresponds
to the ground state noise at that frequency. It is useful to
ask what the total position noise would be as a function
of frequency, assuming that the coupling has been opti-
mized to minimize the noise at the resonance frequency,
and that the oscillator is initially in the ground state.
From our results above we have

Szm,tot[w]
— 22 Y0/2 E Xz [W][?
= TG0 (0/2)? 2[xm[sz]|+"‘”[ﬂ”
e (10/2)?
~ {”3<|w|—n>2+<%/2>2} (4.82)

which is plotted in Fig. 7. Assuming that the detector is
quantum limited, one sees that the Lorentzian peak rises
above the constant background by a factor of three when
the coupling is optimized to minimize the total noise
power at resonance. This factor of three has a simple
interpretation. Recall that if we optimize the coupling
to reach the quantum limit at resonance, the total added
noise due to the detector (back-action and imprecision)
is equal to the oscillator’s zero-point noise. For an opti-
mized coupling, back-action and imprecision make equal
contributions to the total added noise; this implies that
back-action noise heats the oscillator from zero tempera-
ture so as to increase its position variance by precisely a
factor 3/2. It also implies that the background measure-
ment imprecision has (at resonance) a value equal to 1/2
the oscillator’s zero-point noise. This then yields a peak-
to-floor ratio of 3. Note the same maximum ratio is ob-
tained when one tries to detect coherent qubit rotations
from the noise of a linear detector which is transversely
coupled to the qubit (Korotkov and Averin, 2001); this
is also a non-QND situation.

In Table II, we give a summary of recent experiments
which approach the quantum limit on weak, continuous
position detector of a mechanical resonator. Note that in
many of these experiments, the effects of detector back-
action were not seen. This could either be the result of
too low of a detector-oscillator coupling, or due to the
presence of excessive thermal noise. As we have shown,
the back-action force noise serves to slightly heat the os-
cillator. If it is already at an elevated temperature due to
thermal noise, this additional heating can be very hard
to resolve.
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FIG. 7 (Color online) Spectral density of measured position
fluctuations of a harmonic oscillator, S'M,mt [w], as a function
of frequency w, for a detector which reaches the quantum
limit at the oscillator frequency 2. We have assumed that
without the coupling to the detector, the oscillator would be
in its ground state. The y-axis has been normalized by the
zero-point position-noise spectral density S2, [w], evaluated at
w = . One clearly sees that the total noise at €2 is twice the
zero-point value, and that the peak of the Lorentzian rises
a factor of three above the background. This background
represents the measurement-imprecision, and is equal to 1/2

of 52,().

In closing, we stress that this subsection has given only
a very rudimentary introduction to the quantum limit on
position detection. A complete discussion which treats
the important topics of back-action damping, effective
temperature, noise cross-correlation and power gain is
given in Sec. VI.D.

V. GENERAL LINEAR RESPONSE THEORY
A. Quantum constraints on noise

In the previous section, we introduced the basic lan-
guage and concepts used to describe weak, continuous
quantum measurements. We also gave a heuristic discus-
sion of how quantum constraints on the noise properties
of a detector lead to quantum limits on various measure-
ment tasks, focusing on the particular case of a resonant-
cavity detector. In this section, we will develop this con-
nection between quantum limits and noise further and in
a more general manner. As before, we will emphasize the
idea that reaching the quantum limit requires a detector
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having “quantum-ideal” noise properties. The approach
here is different from typical treatments in the quantum
optics literature (Gardiner and Zoller, 2000; Haus, 2000),
and uses nothing more than features of quantum linear
response. Our discussion here will expand upon Clerk
(2004); Clerk et al. (2003); somewhat similar approaches
to quantum measurement are also discussed in Braginsky
and Khalili (1992) and Averin (2003).

In this subsection, we will start by heuristically sketch-
ing how constraints on noise (similar to Eq. (4.20) for the
cavity detector) can emerge directly from the Heisenberg
uncertainty principle. We then present a rigorous and
general quantum constraint on noise. We introduce both
the notion of a generic linear response detector, and the
basic quantum constraint on detector noise. In the next
subsection (C), we will discuss how this noise constraint
leads to the quantum limit on QND state detection of a
qubit. The quantum limit on a linear amplifier (or a po-
sition detector) is discussed in detail in the next section.

1. Heuristic weak-measurement noise constraints

As we already stressed at the start of Sec. IV.A, there
is no fundamental quantum limit on the accuracy with
which a given observable can be measured, at least not
within the framework of non-relativistic quantum me-
chanics. For example, one can, in principle, measure the
position of a particle to arbitrary accuracy in the course
of a projection measurement '°. However, the situation
is different when we specialize to continuous, non-QND
measurements. Such a measurement can be envisaged
as a series of instantaneous measurements, in the limit
where the spacing between the measurements 6t is taken
to zero. Each measurement in the series has a limited
resolution and perturbs the conjugate variables, thereby
affecting the subsequent dynamics and measurement re-
sults. Let us discuss this briefly for the example of a
series of position measurements of a free particle.

After initially measuring the position with an accuracy
Ax, the momentum suffers a random perturbation of size
Ap > h/(2Az). Consequently, a second position mea-
surement taking place a time 0t later will have an addi-
tional uncertainty of size 6t(Ap/m) ~ hot/(mAx). Thus,
when trying to obtain a good estimate of the position by
averaging several such measurements, it is not optimal
to make Az too small, because otherwise this additional
perturbation, called the “back-action” of the measure-
ment device, will become large. The back-action can be
described as a random force AF = Ap/dt. A meaningful
limit 6¢ — 0 is obtained by keeping both Az2§t = S,

10 In relativistic theory, the possibility of pair production would
not allow to have a resolution finer than the Compton wave-
length (Berestetskii et al., 1982), but this will be irrelevant for
our discussion of detectors in the solid state and quantum optics
contexts
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TABLE II Synopsis of recent experiments approaching the quantum limit on continuous position detection of a mechanical
resonator. The second column corresponds to the best measurement imprecision noise spectral density SI, achieved in the
experiment. All spectral densities are at the oscillator’s resonance frequency 2. As discussed in the text, there is no quantum
limit on how small one can make Sf,. The third column presents the product of the measured imprecision noise (unless
otherwise noted) and measured back-action noises, divided by //2; this quantity must be one to achieve the quantum limit on

the added noise.

Experiment Mechanical Imprecision noise Detector Noise Product
frequency [Hz]| vs. zero-point noise V5L, Spr/(h/2)
Q/(2r) 5L, /50,1
Cleland et al. (2002) (quantum point contact) 1.5 x 10° 4.2 x 10* back-action not detected
Knobel and Cleland (2003) (single-eletron transistor) 1.2 x 108 1.8 x 10? back-action not detected
LaHaye et al. (2004) (single-electron transistor) 2.0 x 107 5.4 back-action not detected
Naik et al. (2006) (single-electron transistor) 2.2 x 107 0.33 8.1 x 102
(if SZ, had been limited by SET shot noise) 1.5 x 101
Arcizet et al. (2006) (optical cavity) 8.1 x 10° 19 back-action not detected
Flowers-Jacobs et al. (2007) (atomic point-contact) 4.3 x 107 29 1.7 x 10®
Regal et al. (2008) (microwave cavity) 2.4 x 10° 30 back-action not detected
Schliesser et al. (2008) (optical cavity) 4.1 x 107 9.9 back-action not detected
Poggio et al. (2008) (quantum point contact) 5.2 x 10® 63 back-action not detected
Etaki et al. (2008) (d.c. SQUID) 2.0 x 10° 47 back-action not detected
2 _ G s L
and Ap?/6t = Spr fixed. In this limit, the deviations AXIF Bxrr

0x(t) describing the finite measurement accuracy and
the fluctuations of the back-action force F' can be de-
scribed as white noise processes, (§z(t)dz(0)) = S;.0(t)
and (F(t)F(0)) = Sprd(t). The Heisenberg uncertainty
relation ApAz > h/2 then implies S,,Srr > h?/4 (Bra-
ginsky and Khalili, 1992). Note this is completely analo-
gous to the relation Eq. (4.20) we derived for the resonant
cavity detector using the fundamental number-phase un-
certainty relation. In this section, we will derive rigor-
ously more general quantum limit relations on noise spec-
tral densities of this form.

2. Generic linear-response detector

To rigorously discuss the quantum limit, we would like
to start with a description of a detector which is as gen-
eral as possible. To that end, we will think of a detector
as some physical system (described by some unspecified
Hamiltonian ﬁdet and some unspecified density matrix
po) which is time-independent in the absence of coupling
to the signal source. The detector has both an input
port, characterized by an operator F, and an output
port, characterized by an operator I (see Fig. 8). The
output operator Iis simply the quantity which is read-
out at the output of the detector (e.g., the current in a
single-electron transistor, or the phase shift in the cavity
detector of the previous section). The input operator F' is
the detector quantity which directly couples to the input
signal (e.g., the qubit), and which causes a back-action
disturbance of the signal source; in the cavity example
of the previous section, we had F' = n, the cavity pho-
ton number. As we are interested in weak couplings, we

input output
operator

signal
source

detector

FIG. 8 (Color online) Schematic of a generic linear response
detector.

will assume a simple bilinear form for the detector-signal
interaction Hamiltonian:
Hiny = AZF (5.1)

Here, the operator & (which is not necessarily a position
operator) carries the input signal. Note that because &
belongs to the signal source, it necessarily commutes with
the detector variables I, F.

We will always assume the coupling strength A to be
small enough that we can accurately describe the output
of the detector using linear response. We thus have:

(1) = <f>o+A/dt’XIF(t—t’)@(t')% (5:2)

where (1) is the input-independent value of the detector
output at zero-coupling, and xp(t) is the linear-response



susceptibility or gain of our detector. Note that in Clerk
et al. (2003) and Clerk (2004), this gain coefficient is
denoted A. Using standard time-dependent perturba-
tion theory in the coupling H;,;, one can easily derive
Eq. (5.2), with x;p(t) given by a Kubo-like formula:

xar(t) =00 ([I0. FO))  (63)

0

Here (and in what follows), the operators I and F are
Heisenberg operators with respect to the detector Hamil-
tonian, and the subscript 0 indicates an expectation value
with respect to the density matrix of the uncoupled de-
tector.

As we have already discussed, there will be unavoid-
able noise in both the input and output ports of our
detector. This noise is subject to quantum mechanical
constraints, and its presence is what limits our ability to
make a measurement or amplify a signal. We thus need to
quantitatively characterize the noise in both these ports.
Recall from the discussion in Sec. III.B that it is the
symmetric-in-frequency part of a quantum noise spectral
density which plays a role akin to classical noise. We
will thus want to characterize the symmetrized noise cor-
relators of our detector (denoted as always with a bar).
Redefining these operators so that their average value is
zero at zero coupling (i.e. F'— F — (F)o, I — I — (1)),
we have:

Sprlw] = 1 / h dte™  ({F(t), F(0)})o (5.4a)

2 )
Sirlw] = % /_ h dte™t({I(t),1(0)})o  (5.4b)

Syilw] = % /_ Tt (1), B0y (5.4¢)

where {, } indicates the anti-commutator, Sy; represents
the intrinsic noise in the output of the detector, and Spp
describes the back-action noise seen by the source of the
input signal. In general, there will be some correlation
between these two kinds of noise; this is described by the
cross-correlator Syp.

Finally, it will also be useful to introduce the reverse
gain x gy of our detector. This is the response coefficient
describing an experiment where we couple our input sig-
nal to the output port of the detector (i.e. H;pr = AZI),
and attempt to observe something at the input port
(i.e. in (F'(t))). In complete analogy to Eq. (5.2), one
would then have:

(F(t)) = (F)o + A / dt'xpr(t— 1) E(E)  (5.5)

with:
xer(t) = 1 00([F@. IO (56)

Note that in Clerk et al. (2003) and Clerk (2004), the
reverse gain coefficient x; is denoted X.
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The reverse gain is indeed something we need to worry
about (and appears in many standard classical electrical
amplifiers such as op amps (Boylestad and Nashelsky,
2006)). To make a measurement of the output operator

I, we must necessarily couple to it in some manner. If
xr1 # 0, the noise associated with this coupling could in
turn lead to additional back-action noise in the operator
F. Even if the reverse gain did nothing but amplify vac-
uum noise entering the output port, this would heat up
the system being measured at the input port and hence
produce excess back action. Thus, the ideal situation is
to have xpr = 0, implying a high asymmetry between the
input and output of the detector. We note that almost
all mesoscopic detectors that have been studied in detail
(e.g. single electron transistors and generalized quantum
point contacts) have been found to have a vanishing re-
verse gain: xrr = 0 (Clerk et al., 2003) ''. For this
reason, we will often assume the ideal situation where
xrr = 0 in what follows.

Before proceeding, it is worth emphasizing that there
is a relation between the detector gains x;r and xrr
and the unsymmetrized I-F quantum noise correlator,
Srr[w]. This spectral density, which need not be sym-
metric in frequency, is defined as:

Srrlw] = [ T ate (1) E(0))o (5.7)

Using the definitions, one can easily show that:

Srele] = 5 [Srele] + Stel-w]"] (5.80)

. [S1plw] = Sip[-w]"5.8b)

xrrlw] = xrrlw]® =
Thus, while S;p represents the classical part of the I-F
quantum noise spectral density, the gains x;r, xFr are
determined by the quantum part of this spectral density.
This also demonstrates that though the gains have an
explicit factor of 1/h in their definitions, they have a
well defined & — 0 limit, as the asymmetric-in-frequency
part of S;p|w] vanishes in this limit.

3. Quantum constraint on noise

Despite having said nothing about the detec-
tor’s Hamiltonian or state (except that it is time-
independent), we can nonetheless derive a very general
quantum constraint on its noise properties. Note first
that for purely classical noise spectral densities, one al-
ways has the inequality:

2

S’[][W]SFF[W]*|SIF[W]| >0 (5.9)

11 Note that the fact xr; vanishes for a mesoscopic scattering de-
tector is used directly to define the full counting statistics of
current; see Levitov (2003) for a discussion



This simply expresses the fact that the correlation be-
tween two different noisy quantities cannot be arbitrarily
large; it follows immediately from the Schwartz inequal-
ity. In the quantum case, this simple constraint becomes
modified. Defining for convenience:

xXrrlw] = xrrlw] = xrrlw]]” (5.10a)
Al = |1+ 2 |—2(1—|—|z| )’

(5.10D)

we will show below that the following quantum noise in-
equality (involving symmetrized noise correlators) is al-
ways valid (see also Eq. (6.36) in (Braginsky and Khalili,
1996)):

Sr1[w]Srrlw] — |Sirlw
2<1+A[ Srrlw] })
hxirlw]/2

To interpret this inequality, note that if our detector has
no positive feedback, then Re x;r - xpr < 0, implying
Ixir| # 0. Also note that 1 + A[z] > 0. Eq. (5.11)
thus tells us that in general, if our detector has gain and
no positive feedback, it must have a minimum amount of
back-action and output noise; moreover, these two noises
cannot be perfectly anti-correlated. Note that in many
cases the last term in Eq. (5.11) (involving A[z]) is identi-
cally zero; we will comment more on this in what follows.

Though Eq. (5.11) may appear reminiscent to the stan-
dard fluctuation dissipation theorem, its origin is quite
different: in particular, the quantum noise constraint ap-
plies irrespective of whether the detector is in equilib-
rium. Eq. (5.11) instead follows directly from Heisen-
berg’s uncertainty relation applied to the frequency rep-
resentation of the operators I and F'. In its most general
form, the Heisenberg uncertainty relation gives a lower

bound for the uncertainties of two observables in terms of
their commutator and their noise correlator (Gottfried,

1966):
Ly ()l e

Here we have assumed (A) = (B) = 0. Let us now choose

the Hermitian operators A ‘and B to be given by the
cosine-transforms of I and F', respectively, over a finite

time-interval T':
T/2
\/>/ dt cos(wt 4 0) I(t)
T/2
. T/2 .
B = \/7/ dt cos(wt) F'(t)
T/2

Note that we have phase shifted the transform of I rela-
tive to that of F' by a phase 4. In the limit T' — oo we

! >

’hXIF[w] (511)

2

(A4)*(AB)?

A

(5.13a)

(5.13b)
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find, at any finite frequency w # 0:

S SFF[W]

=
=
I

Snlw], (AB)?
2Re e Srp(w]

[:Tﬁcm@ﬁ+5)<P@LFmﬂ>
(XFI[W])*>](5'14C)

In the last line, we have simply made use of the
Kubo formula definitions of the gain and reverse gain
(cf. Egs. (5.3) and (5.6)). As a consequence of
Egs. (5.14a)-(5.14c), the Heisenberg uncertainty relation
(5.12) directly yields:

(5.14a)
(5.14b)

PSS
—~ =
—
Y Pk’
> m’
~—
Il I

= ihRe [ei‘S (xrplw] —

g[[[w]SFF[w] > [Re (ei(sgIF[w])]Q"i'

vy [Re e” (xrplw] —

(5.15)
(XFI[W])*)]Q

Maximizing the RHS of this inequality over § then yields
the general quantum noise constraint of Eq. (5.11).

With this derivation, we can now interpret the quan-
tum noise constraint Eq. (5.11) as stating that the noise
at a giwen frequency in two observables, I and F,
bounded by the value of their commutator at that fre—
quency. The fact that I and F' do not commute is neces-
sary for the existence of linear response (gain) from the
detector, but also means that the noise in both I and
F' cannot be arbitrarily small. A more detailed deriva-
tion, yielding additional important insights, is described
in Appendix J.1.

Given the quantum noise constraint of Eq. (5.11), we
can now very naturally define a “quantum-ideal” detector
(at a given frequency w) as one which minimizes the LHS
of Eq. (5.11)- a quantum-ideal detector has a minimal
amount of noise at frequency w. We will often be inter-
ested in the ideal case where there is no reverse gain (i.e.
measuring I does not result in additional back-action
noise in F'); the condition to have a quantum limited
detector thus becomes:

Srrlw ]SFF

hxrelw] |”
2

~|Srple]] =

SIF[W] })

(1 A [hXIF[w]/Z

where Alz] is given in Eq. (5.10b). Again, as we will
discuss below, in most cases of interest (e.g. zero fre-
quency and/or large amplifier power gain), the last term
on the RHS will vanish. In the following sections, we
will demonstrate that the “ideal noise” requirement of
Eq. (5.16) is necessary in order to achieve the quantum
limit on QND detection of a qubit, or on the added noise
of a linear amplifier.

Before leaving our general discussion of the quantum
noise constraint, it is worth emphasizing that achieving
Eq. (5.16) places a very strong constraint on the prop-
erties of the detector. In particular, there must exist a

(5.16)




tight connection between the input and output ports of
the detector— in a certain restricted sense, the operators I
and F must be proportional to one another (see Eq. (J13)
in Appendix J.1). As is discussed in Appendix J.1, this
proportionality immediately tells us that a quantum-ideal
detector cannot be in equilibrium. The proportionality
exhibited by a quantum-ideal detector is parameterized
by a single complex valued number afw], whose magni-
tude is given by:

lafw]|* = Sirw]/Srr(w] (5.17)
While this proportionality requirement may seem purely
formal, it does have a simple heuristic interpretation; as
is discussed in Clerk et al. (2003), it may be viewed as
a formal expression of the condition of no ‘wasted infor-
mation’ discussed in the previous subsection.

4. Role of noise cross-correlations

We now return to the unwieldy second term in the
RHS of the quantum noise constraint of Eq. (5.11). Note
that this term is sensitive to the phase of the quantity
Srr[w]/Xrr: if this quantity is purely real, then the sec-
ond term vanishes, as A[z] = 0if z is real (cf. Eq (5.10b)).
The result is a simpler looking noise constraint, as found
elsewhere in the literature (Averin, 2003; Clerk, 2004;
Clerk et al., 2003). This simpler noise constraint is ai-
ways valid in the low-frequency limit w — 0, as in this
limit x77, xrr and Srr must all be real.

The situation is somewhat more delicate at finite fre-
quencies: for finite w, the quantity S;r[w]/Xrr|w] need
not be purely real. In fact, as the astute reader may
have already realized, if this quantity becomes large and
purely imaginary, then the RHS of Eq. (5.11) will vanish—
in this limit, there is no additional quantum constraint
on the noise beyond what already exists classically!

Despite this odd behaviour, there is no need to worry.
For simplicity, we again focus on the case of a vanishing
reverse gain gy = 0. We show in Appendix J.2 that if
one wishes to have a quantum limited detector (i.e. equal-
ity in Eq. (5.11)) and have true amplification, then the
ratio S;r(w]/xrr|w] must also be real. By “true ampli-
fication”, we mean that the dimensionless power gain of
the detector must be much larger than one. The power
gain is a measure of how much power is provided by the
detector at its output compared to how much power is
drawn at its input; it will be defined more precisely in
Sec. VI.D.3. Thus, even at finite frequency, the last term
on the RHS of Eq. (5.11) plays no role if we are interested
in a detector which truly amplifies (i.e. has a large power
gain). The limit discussed above, where the noise con-
straint vanishes because S;r/xrr is imaginary, is of no
real interest, as in this limit, our detector has no power
gain. Simply put, if our detector performs no amplifica-
tion, then there need not by any quantum constraint on
its noise; see Sec. VI for a more complete discussion of
this point.
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Finally, an important corollary to the above point is
that at the quantum limit, the quantity S;z /X1F must
be real. Thus, at the quantum limit, correlations between
the back-action force and the intrinsic output noise fluc-
tuations must have the same phase as the gain xrp. As
we discuss further in Sec. VL.LE | this requirement can
also be interpreted in terms of wasted information.

B. Quantum limit on QND detection of a qubit

In Sec. IV.B, we discussed the quantum limit on QND
qubit detection in the specific context of a resonant cavity
detector. We will now show how the full quantum noise
constraint of Eq. (5.11) directly leads to this quantum
limit for an arbitrary weakly-coupled detector. Similar
to Sec. IV.B, we couple the input operator of our generic
linear-response detector to the 6, operator of the qubit
we wish to measure (i.e. we take & = 6, in Eq. (5.1));
we also consider the QND regime, where 6, commutes
with the qubit Hamiltonian. As we saw in Sec. IV.B,
the quantum limit in this case involves the inequality
Pheas < Ty, where I'yeqs is the measurement rate, and
I, is the back-action dephasing rate. For the latter quan-
tity, we can directly use the results of our calculation for
the cavity system, where we found the dephasing rate
was set by the zero-frequency noise in the cavity pho-
ton number (cf. Eq. 4.44). In complete analogy, the
back-action dephasing rate here will be determined by
the zero-frequency noise in the input operator F' of our
detector:

(5.18)

The measurement rate (the rate at which information
on the state of qubit is acquired) is also defined in com-
plete analogy to what was done for the cavity detector.
We imagine we turn the measurement on at ¢ = 0 and
start to integrate up the output I(t) of our detector:

t
f(t) = / i) (5.19)
0

The probability distribution of the integrated output
m(t) will depend on the state of the qubit; for long times,
we may approximate the distribution corresponding to
each qubit state as being gaussian. Noting that we have
chosen I so that its expectation vanishes at zero coupling,
the average value of (1m(t)) corresponding to each qubit
state is (in the long time limit of interest):

= AX]F[O}t
—AX]F[O]t

(5.20a)
(5.20b)

m
m

{m(t)),

The variance of both distributions is, to leading order,
independent of the qubit state:

(2 (t)1/y — ()3, = ((m*(1))1/, = Sul0]t (5.21)



For the last equality above, we have taken the long-time
limit, which results in the variance of m being determined
completely by the zero-frequency output noise Syrjw = 0]
of the detector. The assumption here is that due to
the weakness of the measurement, the measurement time
(i.e. 1/Tmeas) will be much longer than the autocorrela-
tion time of the detector’s noise.

We can now define the measurement rate, in complete
analogy to the cavity detector of the previous section
(cf. Eq. (4.39)), by how quickly the resolving power of
the measurement grows 12

L [h(t)y = () ]*
Am2(0))), + (2N, Pineast (5.22)
This yields:
_ A% (arl0))’
Pmens =05 101 (5.23)

Putting this all together, we find that the “efficiency”
ratio 7 = I'neas/T'y is given by:

R Gurlo])?
Iy 4S77[0]SFF[0]

Pieas _

n (5.24)

The quantum-limit bound 1 < 1 thus follows immedi-
ately from the quantum noise constraint of Eq. (5.11).
Further, achieving the quantum limit for QND detection
requires a detector with quantum-ideal noise properties,
as defined by Eq. (5.16), as well as a detector with a van-
ishing noise cross-correlator: S;r[0] = 0. As discussed in
Appendix J.1, achieving this ideal noise condition implies
a tight connection between the input and output ports of
the detector. This condition also corresponds directly to
the idea that reaching the quantum limit requires there
to be no unused, “wasted information” in the detector
on the state of the qubit (Clerk et al., 2003).

VI. QUANTUM LIMIT ON LINEAR AMPLIFIERS AND
POSITION DETECTORS

In the previous section, we established the fundamen-
tal quantum constraint on the noise of any system ca-
pable of acting as a linear detector; we further showed
that this quantum noise constraint directly leads to the
“quantum limit” on non-demolition qubit detection us-
ing a weakly-coupled detector. In this section, we turn
to the more general situation where our detector is a
phase-preserving quantum linear amplifier: the input to

12 The strange looking factor of 1/4 here is purely chosen for con-
venience; we are defining the measurement rate based on the
information theoretic definition given in Appendix E. This fac-
tor of four is consistent with the definition used in the cavity
system.
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the detector is described some time-dependent operator
Z(t) which we wish to have amplified at the output of our
detector. As we will see, the quantum limit in this case
is a limit on how small one can make the noise added by
the amplifier to the signal. The discussion in this section
both furthers and generalizes the heuristic discussion of
position detection using a cavity detector presented in
Sec. IV.B.

In this section, we will start by presenting a heuris-
tic discussion of quantum constraints on amplification.
We will then demonstrate explicitly how the previously-
discussed quantum noise constraint leads directly to the
quantum limit on the added noise of a phase-preserving
linear amplifier; we will examine both the cases of a
generic linear position detector and a generic voltage am-
plifier, following the approach outlined in Clerk (2004).
We will also spend time explicitly connecting the linear
response approach we use here to the bosonic scattering
formulation of the quantum limit favoured by the quan-
tum optics community (Caves, 1982; Courty et al., 1999;
Grassia, 1998; Haus and Mullen, 1962), paying particular
attention to the case of two-port scattering amplifier. We
will see that there are some important subtleties involved
in converting between the two approaches. In particular,
there exists a crucial difference between the case where
the input signal is tightly coupled to the input of the
amplifier (the case usually considered in the quantum
optics community), versus the case where, similar to an
ideal op-amp, the input signal is only weakly coupled to
the input of the amplifier (the case usually considered in
the solid state community).

A. Preliminaries on amplification

What exactly does one mean by ‘amplification’? As
we will see (cf. Sec. VI.D.3), a precise definition requires
that the energy provided at the output of the amplifier
be much larger than the energy drawn at the input of
the amplifier— the “power gain” of the amplifier must
be larger than one. For the moment, however, let us
work with the cruder definition that amplification in-
volves making some time-dependent signal ‘larger’. To
set the stage, we will first consider an extremely sim-
ple classical analogue of a linear amplifier. Imagine the
“signal” we wish to amplify is the coordinate x(t) of a
harmonic oscillator; we can write this signal as:

x(t) = z(0) cos(wst) + JZ(SL

sin(wgt) (6.1)

Our signal has two quadrature amplitudes, i.e. the am-
plitude of the cosine and sine components of z(t). To
“amplify” this signal, we start at ¢ = 0 to parametrically
drive the oscillator by changing its frequency wg periodi-
cally in time: wg(t) = wg+dw sin(wpt), where we assume
dw < wp. The well-known physical example is a swing
whose motion is being excited by effectively changing the
length of the pendulum at the right frequency and phase.



For a “pump frequency” wp equalling twice the “signal
frequency”, wp = 2wg, the resulting dynamics will lead
to an amplification of the initial oscillator position, with
the energy provided by the external driving:

0
]\Z(w)s e M sin(wgt)

x(t) = 2(0)eM cos(wgt) + (6.2)

Thus, one of the quadratures is amplified exponen-
tially, at a rate A = dw/2, while the other one decays.
In a quantum-mechanical description, this produces a
squeezed state out of an initial coherent state. Such a sys-
tem is called a “degenerate parametric amplifier”, and we
discuss its quantum dynamics in more detail in Sec. VI.G
and in Appendix F. We will see that such an amplifier,
which only amplifies a single quadrature, is not required
quantum mechanically to add any noise (Braginsky and
Khalili, 1992; Caves, 1982; Caves et al., 1980).

Can we now change this parametric amplification
scheme slightly in order to make both signal quadratures
grow with time? It turns out this is impossible, as long
as we restrict ourselves to a driven system with a single
degree of freedom. The reason in classical mechanics is
that Liouville’s theorem requires phase space volume to
be conserved during motion. In a more formal way, this
is related to the conservation of Poisson brackets, or, in
quantum mechanics, to the conservation of commutation
relations. Nevertheless, it is certainly desirable to have
an amplifier that acts equally on both quadratures (a
so-called “phase-preserving” or “phase-insensitive” am-
plifier), since the signal’s phase is often not known be-
forehand. The way around the restriction created by
Liouville’s theorem is to add more degrees of freedom,
such that the phase space volume can expand in both
quadratures (i.e. position and momentum) of the inter-
esting signal degree of freedom, while being compressed
in other directions. This is achieved most easily by cou-
pling the signal oscillator to another oscillator, the “idler
mode”. The external driving now modulates the cou-
pling between these oscillators, at a frequency that has to
equal the sum of the oscillators’ frequencies. The result-
ing scheme is called a phase-preserving non-degenerate
parametric amplifier (see Appendix F).

Crucially, there is a price to pay for the introduction of
an extra degree of freedom: there will be noise associated
with the “idler” oscillator, and this noise will contribute
to the noise in the output of the amplifier. Classically,
one could make the noise associate with the “idler” oscil-
lator arbitrarily small by simply cooling it to zero temper-
ature. This is not possible quantum-mechanically; there
are always zero-point fluctuations of the idler oscillator
to contend with. It is this noise which sets a funda-
mental quantum limit for the operation of the amplifier.
We thus have a heuristic accounting for why there is a
quantum-limit on the added noise of a phase-preserving
linear amplifier: one needs extra degrees of freedom to
amplify both signal quadratures, and such extra degrees
of freedom invariably have noise associated with them.
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B. Standard Haus-Caves derivation of the quantum limit
on a bosonic amplifier

We now make the ideas of the previous subsection
more precise by quickly sketching the standard deriva-
tion of the quantum limit on the noise added by a phase-
preserving amplifier. This derivation is originally due to
Haus and Mullen (1962), and was both clarified and ex-
tended by Caves (1982); the amplifier quantum limit was
also motivated in a slightly different manner by Heffner
(1962)'3.  While extremely compact, the Haus-Caves
derivation can lead to confusion when improperly ap-
plied; we will discuss this in the next subsection, as well
as in Sec. VII, where we apply this argument carefully to
the important case of a two-port quantum voltage am-
plifier.

The starting assumption of this derivation is that both
the input and output ports of the amplifier can be de-
scribed by sets of bosonic modes. If we focus on a nar-
row bandwidth centered on frequency w, we can describe
a classical signal E(t) in terms of a complex number a
defining the amplitude and phase of the signal (or equiva-
lently the two quadrature amplitudes) (Haus, 2000; Haus
and Mullen, 1962)

E(t) o ilae™™" — a* et (6.3)
In the quantum case, the two signal quadratures of E()
(i.e. the real and imaginary parts of a(t)) cannot be mea-
sured simultaneously because they are canonically conju-
gate; this is in complete analogy to a harmonic oscillator
(cf. Eq. (4.66)). As a result a,a™ must be elevated to the
status of photon ladder operators: a — &,a* — a' .

Consider the simplest case, where there is only a single
mode at both the input and output, with corresponding
annhiliation operators @ and b 4. It follows that the
input signal into the amplifier is described by the ex-
pectation value (), while the output signal is described

by (b). Correspondingly, the symmetrized noise in both
these quantities is described by:

(A = 3 ({a.a}) - (@)

(o) -[of

(6.4a)

(Ab)? (6.4b)

To derive a quantum limit on the added noise of the
amplifier, one uses two simple facts. First, both the input

13 Note that Caves (1982) provides a thorough discussion of why
the derivation of the amplifier quantum limit given in Heffner
(1962) is not rigorously correct

14 To relate this to the linear response detector of Sec. V.A, one
could naively write &, the operator carrying the input signal, as,
eg, T =a+ a', and the output operator I as, e.g., I = b+ bf
(we will discuss how to make this correspondence in more detail
in Sec. VII)



and the output operators must satisfy the usual commu-
tation relations:

[a,a"] = 1
o.]
Second, the linearity of the amplifier and the fact that it

is phase preserving (i.e. both signal quadratures are am-
plified the same way) implies a simple relation between

the output operator b and the input operator a:

b = VGa
bt = VGat

where G is the dimensionless “photon number gain” of

the amplifier. It is immediately clear however this ex-
pression cannot possibly be correct as written because it
violates the fundamental bosonic commutation relation
[b,b1] = 1. We are therefore forced to write

(6.5a)
(6.5b)

|
—

(6.6a)
(6.6b)

b = VGa+ F (6.7a)
b = VGal + Ff (6.7b)

where F is an operator representing additional noise
added by the amplifier. Based on the discussion of the
previous subsection, we can anticipate what F repre-
sents: it is noise associated with the additional degrees
of freedom which must invariably be present in a phase-
preserving amplifier.

As F represents noise, it has a vanishing expectation
value; in addition, one also assumes that this noise is
uncorrelated with the input signal, implying [F,a] =
[F,4'] = 0 and (Fa) = (Fal) = o.
[b,b1] = 1 thus yields:

Insisting that
[ﬁ, ﬁq —1-G (6.8)

The question now becomes how small can we make the
noise described by F? Using Egs. (6.7a) and (6.7b), the
noise at the amplifier output Ab is given by:

(Ab)? = G(Aa)® + % ({(# F1)

v

G(Aa)2+%\<[ﬁ,ﬁf]>\

G-1
G- 1

> G (Aa) 5

(6.9)
We have used here a standard inequality to bound the
expectation of {F,FT}. The first term here is simply
the amplified noise of the input, while the second term
represents the noise added by the amplifier. Note that
if there is no amplification (i.e. G = 1), there need not
be any added noise. However, in the more relevant case
of large amplification (G > 1), the added noise cannot
vanish. It is useful to express the noise at the output as
an equivalent noise at (“referred to”) the input by simply
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dividing out the photon gain G. Taking the large-G limit,
we have:
(Ab)*
G

> (Aa)® + % (6.10)
Thus, we have a very simple demonstration that an am-
plifier with a large photon gain must add at least half a
quantum of noise to the input signal. Equivalently, the
minimum value of the added noise is simply equal to the
zero-point noise associated with the input mode; the total
output noise (referred to the input) is at least twice the
zero point input noise. Note that both these conclusions
are identical to what we found (by very different means)
in our analysis of the resonant cavity position detector in
Sec. IV.B.3.

As we have already discussed, the added noise oper-
ator F is associated with additional degrees of freedom
(beyond input and output modes) necessary for phase-
preserving amplification. To see this more concretely,
note that every linear amplifier is inevitably a non-linear
system consisting of an energy source and a ‘spigot’ con-
trolled by the input signal which redirects the energy
source partly to the output channel and partly to some
other channel(s). Hence there are inevitably other de-
grees of freedom involved in the amplification process
beyond the input and output channels. An explicit ex-
ample is the quantum parametric amplifier described in
more detail in Appendix F. Further insights into ampli-
fier added noise and its connection to the fluctuation-
dissipation theorem can be obtained by considering a
simple model where a transmission line is terminated by
an effective negative impedance; we discuss this model in
Appendix B.4.

To see explicitly the role of the additional degrees of
freedom, note first that for G > 1 the RHS of Eq. (6.8) is
negative. Hence the simplest possible form for the added
noise is

G — 1dt
G—1d

ﬁ:

Fi =

(6.11)
(6.12)

where d and df represent a single additional mode of
the system. This is the minimum number of additional
degrees of freedom that must inevitably be involved in
the amplification process. Note that for this case, the
inequality in Eq. (6.9) is satisfied as an equality, and
the added noise takes on its minimum possible value.
If instead we had, say, two additional modes (coupled
inequivalently):

F =G — 1(cosh 8d} + sinh 6ds) (6.13)
it is straightforward to show that the added noise is in-
evitably larger than the minimum. This again can be
interpreted in terms of wasted information, as the extra
degrees of freedom are not being monitored as part of the
measurement process and so information is being lost.
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FIG. 9 (Color online) Schematic of a two-port bosonic ampli-
fier. Both the input and outputs of the amplifier are attached
to transmission lines. The incoming and outgoing wave am-
plitudes in the input (output) transmission line are labelled
@in, Gout (bin, bout) respectively. The voltages at the end of
the two lines (V,, V3) are linear combinations of incoming and
outgoing wave amplitudes.

TABLE III Two different amplifier modes of operation.

Mode Input Signal Output Signal
5(t) o(t)
Scattering s(t) = ain(t) o(t) = bous(t))
(ain indep. of aout) (bout indep. of biy)
Op-amp s(t) = Va(t) o(t) = Vi (¢)
(ain depends on aout)| (bout depends on bin)

C. Scattering versus op-amp modes of operation

While extremely elegant and direct, the standard
Haus-Caves derivation of the amplifier quantum limit has
some puzzling features. Recall that in our heuristic dis-
cussion of position detection (Sec. IV.B.3), we saw that
a crucial aspect of the quantum limit was the trade-off
between back-action noise and measurement imprecision
noise. We saw that reaching the quantum limit required
both a detector with “ideal” noise, as well as an optimiza-
tion of the detector-oscillator coupling strength. Some-
what disturbingly, none of these ideas appeared explicitly
in the Haus-Caves derivation; this can give the mislead-
ing impression that the quantum limit never has anything
to do with back-action. A further confusion comes from
the fact that many detectors have input and outputs that
cannot be described by a set of bosonic modes. How does
one apply the above arguments to such systems?

The first step in resolving these seeming inconsisten-
cies is to realize that there are really two different ways
in which one can use a given amplifier or detector. In de-
ciding how to couple the input signal (i.e. the signal to be
amplified) to the amplifier, and in choosing what quan-
tity to measure, the experimentalist essentially enforces
boundary conditions; as we will now show, there are in
general two distinct ways in which to do this. For con-
creteness, consider the situation depicted in Fig. 9: a two-
port voltage amplifier where the input and output ports
of the amplifier are attached to one-dimensional trans-
mission lines (see App. B for a quick review of quantum
transmission lines). Similar to the previous subsection,
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FIG. 10 Tlustration of a bosonic two-port amplifier used in
the scattering mode of operation. The “signal” is an incoming
wave in the input port of the amplifier, and does not depend
on what is coming out of the amplifier. This is achieved by
connecting the input line to a circulator and a “cold load”
(i.e. a zero temperature resistor): all that goes back towards
the source of the input signal is vacuum noise.

we focus on a narrow bandwidth signal centered about a
frequency w. At this frequency, there exists both a right-
moving and a left-moving wave in each transmission line.
We label the corresponding amplitudes in the input (out-
put) line with @iy, aout (bin, bout ), as per Fig. 9. Quantum
mechanically, these amplitudes become operators, much
in the same way that we treated the mode amplitude a
as an operator in the previous subsection. We will ana-
lyze this two-port bosonic amplifier in detail in Sec. VII;
here, we will only sketch its operation to introduce the
two different amplifier operation modes. This will then
allow us to understand the subtleties of the Haus-Caves
quantum limit derivation.

In the first kind of setup, the experimentalist arranges
things so that a;,, the amplitude of the wave incident on
the amplifier’s input port, is precisely equal to the signal
to be amplified (i.e. the input signal), irrespective of the
amplitude of the wave leaving the input port (i.e. aout)-
Further, the output signal is taken to be the amplitude
of the outgoing wave exiting the output of the ampli-
fier (i.e. l;out), again, irrespective of whatever might be
entering the output port (see Table III). In this situa-
tion, the Haus-Caves description of the quantum limit
in the previous subsection is almost directly applicable;
we will make this precise in Sec. VII. Back-action is
indeed irrelevant, as the prescribed experimental condi-
tions mean that it plays no role. We will call this mode
of operation the “scattering mode”, as it is most relevant
to time-dependent experiments where the experimental-
ist launches a signal pulse at the amplifier and looks at
what exits the output port. One is usually only inter-
ested in the scattering mode of operation in cases where
the source producing the input signal is matched to the
input of the amplifier: only in this case is the input wave
ain perfectly transmitted into the amplifier. As we will
see in Sec. VII, such a perfect matching requires a rela-
tively strong coupling between the signal source and the
input of the amplifier; as such, the amplifier will strongly
enhance the damping of the signal source.



The second mode of linear amplifier operation is what
we call the “op-amp” mode; this is the mode one usu-
ally has in mind when thinking of an amplifier which
is weakly coupled to the signal source. The key differ-
ence from the “scattering” mode is that here, the input
signal is not simply the amplitude of a wave incident
on the input port of the amplifier; similarly, the out-
put signal is not the amplitude of a wave exiting the
output port. As such, the Haus-Caves derivation of the
quantum limit does not directly apply. For the bosonic
amplifier discussed here, the op-amp mode would corre-
spond to using the amplifier as a voltage op-amp. The
input signal would thus be the voltage at the end of the
input transmission line. Recall from Appendix B that
even classically, the voltage at the end of a transmission
line involves the amplitude of both left and right mov-
ing waves, i.e. V,(t) o Re [ain(t) + aout(t)]. At first,
this might seem quite confusing: if the signal source de-
termines V, (), does this mean it sets the value of both
ain(t) and aout(t)? Doesn’t this violate causality? These
fears are of course unfounded. The signal source enforces
the value of V,(t) by simply changing ai,(¢) in response
to the value of aout(t). While there is no violation of
causality, the fact that the signal source is dynamically
responding to what comes out of the amplifier’s input
port implies that back-action is indeed relevant.

The op-amp mode of operation is relevant to the typi-
cal situation of weak coupling between the signal source
and amplifier input. By weak coupling, we mean that
the amplifier does not appreciably change the dissipation
of the signal source. This is analogous to the situation
in an ideal voltage op-amp, where the amplifier input
impedance is much larger than the impedance of the sig-
nal source. We stress the op-amp mode and this limit of
weak coupling is the relevant situation in most electrical
measurements.

Thus, we see that the Haus-Caves formulation of the
quantum limit is not directly relevant to amplifiers or de-
tectors operated in the usual op-amp mode of operation.
We clearly need some other way to describe quantum
amplifiers used in this regime. In the remainder of this
section, we will show that the linear-response, quantum
noise approach we have been developing provides a con-
venient and general way to discuss the quantum limit
here. The linear response approach will allow us to see
(similar to Sec. IV.B.3) that reaching the quantum limit
does indeed require a trade-off between back-action and
measurement imprecision, and requires use of an ampli-
fier with ideal quantum noise properties (cf. Eq. 5.11).
This approach also has the added benefit of being directly
applicable to systems where the input and output of the
amplifier are not described by bosonic modes 1°. In the

15 Note that the Haus-Caves derivation for the quantum limit of a
scattering amplifier has recently been generalized to the case of
fermionic operators (Gavish et al., 2004).
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next section (Sec. VII), we will return to the scattering
description of a two-port voltage amplifier, and show ex-
plicitly how an amplifier can be quantum-limited when
used in the scattering mode of operation, but miss the
quantum limit when used in the op-amp mode of opera-
tion.

D. Linear response description of a position detector

In this subsection, we will examine the amplifier quan-
tum limit for a two-port linear amplifier in the usual weak
coupling, “op-amp” regime of operation. Our discussion
here will make use of the results we have obtained for
the noise properties of a generic linear response detector
in Sec. V, including the fundamental quantum noise con-
straint of Eq. (5.11). The approach we use here has the
benefits of not being restricted to bosonic systems, and
of directly involving noise spectral densities, quantities
which can be directly measured in experiment. It pro-
vides a rough ‘recipe’ of what one needs to do in general
to reach the quantum limit.

For simplicity, we will start with the concrete problem
of continuous position detection of a harmonic oscillator;
this will generalize the discussion of Sec. IV.B.3, where
we gave a heuristic discussion of weak, continuous po-
sition detection using a resonant cavity detector. We
now imagine a situation where the generic linear detec-
tor introduced in Sec. V.A is weakly coupled at its input
to the position Z of a harmonic oscillator (cf. Eq. (5.1))
16 We would like to understand the total output noise
of our amplifier in the presence of the oscillator, and,
more importantly, how small we can make the ampli-
fier’s contribution to this noise. We will discuss the anal-
ogous but important quantum limit on the noise temper-
ature of a voltage amplifier in Sec. VI.LE. Note that the
discussion of a generic position detector presented here
is directly applicable to recent experiments with nano-
electromechanical which attempt to reach the quantum
limit (Flowers-Jacobs et al., 2007; Knobel and Cleland,
2003; LaHaye et al., 2004; Naik et al., 2006).

1. Detector back-action

We first consider the consequence of noise in the detec-
tor input port. As we have already seen in Sec. IIL.B, the
fluctuating back-action force F' acting on our oscillator
will lead to both damping and heating of the oscillator.
To model the intrinsic (i.e. detector-independent) heating
and damping of the oscillator, we will also assume that
our oscillator is coupled to an equilibrium heat bath. In

16 For consistency with previous sections, our coupling Hamiltonian
does not have a minus sign. This is different from the conven-
tion of Clerk (2004), where the coupling Hamiltonian is written
Hipy = —Az - F.



the weak-coupling limit that we are interested in, one can
use lowest-order perturbation theory in the coupling A
to describe the effects of the back-action force F' on the
oscillator. While the full quantum theory is somewhat
involved (see Appendix J.3), it leads to an extremely
simple picture that we can understand even classically.
One finds that the oscillator is described by an effective

Langevin equation'”:

Mi(t) = —MQ?x(t) — Moi(t) + Fo(t)

—MAQ/dt’v(t—t’)j:(t’)—A-F(t) (6.14)

The position x(t) in the above equation is not an op-
erator, but is simply a classical variable whose fluctua-
tions are driven by the fluctuating forces F'(t) and Fy(t).
Nonetheless, the noise in = calculated from Eq. (6.14)
corresponds precisely to Sy, [w], the symmetrized quan-
tum mechanical noise in the operator & (see Appendix J.3
for the justification of this statement). The fluctuating
force exerted by the detector (which represents the heat-
ing part of the back-action) is described by A - F(t) in
Eq. (6.14); it has zero mean, and a spectral density given
by A2Spplw] in Eq. (5.4a). The kernel v(t) describes
the damping effect of the detector. It is given by the
asymmetric part of the detector’s quantum noise, as was
derived in Sec. IIL.B (cf. Eq. ((3.32)). Recall that the
damping effect of the back-action has a simple origin:
the average force exerted on the oscillator by the ampli-
fier responds to the motion of the oscillator.

Eq. (6.14) also describes the effects of an equilibrium
heat bath at temperature T, which models the intrinsic
(i.e. detector-independent) damping and heating of the
oscillator. 7y is the damping arising from this bath, and
Iy is the corresponding fluctuating force. The spectral
density of the Fj noise is determined by g and Tj via the
fluctuation-dissipation theorem (cf. Eq. (3.34)). Tp and
o have a simple physical significance: they are the tem-
perature and damping of the oscillator when the coupling
to the detector A is set to zero.

To make further progress, we recall from Sec. III.B that
even though our detector will in general not be in equilib-
rium, we may nonetheless assign it an effective tempera-
ture Teg[w] at each frequency (cf. Eq. (3.21)). In general,
this effective temperature is not reflective of some phys-
ical temperature in the detector; it also does not corre-
spond to the “noise temperature” of the detector that will
be discussed in what follows. The effective temperature
of an out-of-equilibrium detector is simply a measure of
the asymmetry of the detector’s quantum noise. We are

17 Note that we have omitted a back-action term in this equation
which leads to small renormalizations of the oscillator frequency
and mass. These terms are not important for the following dis-
cussion, so we have omitted them for clarity; one can consider
M and € in this equation to be renormalized quantities. See
Appendix J.3 for more details.
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often interested in the limit where the internal detector
timescales are much faster than the timescales relevant
to the oscillator (i.e. Q71,771 75 "). We may then take
the w — 0 limit in the expression for Tog, yielding:

Srr(0)

ZkBTeff = M'y(())

(6.15)

In this limit, the oscillator position noise calculated from
Eq. (6.14) is given by:
- 1 2 k
er[w} — (70 + 7) B
M (w2 — 92)2 + w2(y + 70 )2

Yo' + YT os
Yo + 7y
(6.16)

This is exactly what would be expected if the oscillator
were only attached to an equilibrium Ohmic bath with a
damping coefficient v, = vy + v and temperature T =
(YT +Tet) /s

2. Total output noise

The next step in our analysis is to link fluctuations
in the position of the oscillator (as determined from
Eq. (6.14)) to noise in the output of the detector. As
discussed in Sec. IV.B.3, the output noise consists of the
intrinsic output noise of the detector (i.e. “measurement
imprecision noise”) plus the amplified position fluctua-
tions in the position of the oscillator. The latter contains
both an intrinsic part and a term due to the response of
the oscillator to the back action.

To start, imagine that we can treat both the oscillator
position z(t) and the detector output I(t) as classically
fluctuating quantities. Using the linearity of the detec-
tor’s response, we can then write §liota1, the fluctuating
part of the detector’s output, as:

0liota[w] = 0lp[w] + Axsp[w] - dzw]  (6.17)

The first term (0Iy) describes the intrinsic (oscillator-
independent) fluctuations in the detector output, and
has a spectral density Srr[w]. If we scale this by |xrr|?,
we have the measurement imprecision noise discussed in
Sec. IV.B.3. The second term corresponds to the ampli-
fied fluctuations of the oscillator, which are in turn given
by solving Eq. (6.14):

1/M
(@2 — 02) + iwQ/ Q]
= —Xaolw](Folw] — A - Flw])

drfw] = — (Folw] — A- Flw])

(6.18)

where Q[w] = /(7o + 7y[w]) is the oscillator quality fac-
tor. It follows that the spectral density of the total noise
in the detector output is given classically by:
Sitot|w] = Sirlw]
+ ‘sz [W}XIF [WHQ (A4SFF[W] + A2SF0F0 [w])
+ 24%Re [Xoo|w]X1r[W]SIF[W]] (6.19)



FIG. 11 (Color online) Schematic of a generic linear-response
position detector, where a auxiliary oscillator y is driven by
the detector output.

Here, Sr1,Srpr and Syp are the (classical) detector noise
correlators calculated in the absence of any coupling to
the oscillator. Note importantly that we have included
the fact that the two kinds of detector noise (in I and in

F') may be correlated with one another.

To apply the classically-derived Eq. (6.19) to our
quantum detector-plus-oscillator system, we recall from
Sec. II1.B that symmetrized quantum noise spectral den-
sities play the role of classical noise. The LHS of
Eq. (6.19) thus becomes Sty tot, the total symmetrized
quantum-mechanical output noise of the detector, while
the RHS will now contain the symmetrized quantum-
mechanical detector noise correlators Spp, Sir and Sip,
defined as in Eq. (5.4a). Though this may seem rather
ad-hoc, one can easily demonstrate that Eq. (6.19) thus
interpreted would be quantum-mechanically rigorous if
the detector correlation functions obeyed Wick’s theo-
rem. Thus, quantum corrections to Eq. (6.19) will arise
solely from the non-Gaussian nature of the detector noise
correlators. We expect from the central limit theorem
that such corrections will be small in the relevant limit
where w is much smaller that the typical detector fre-
quency ~ kpTes/h, and neglect these corrections in what
follows. Note that the validity of Eq. (6.19) for a specific
model of a tunnel junction position detector has been
explicitly verified in Clerk and Girvin (2004).

3. Detector power gain

Before proceeding, we need to consider our detector
once again in isolation, and return to the fundamental
question of what we mean by amplification. To be able
to say that our detector truly amplifies the motion of the
oscillator, it is not sufficient to simply say the response
function x 7z must be large (note that x;p is not dimen-
sionless!). Instead, true amplification requires that the
power delivered by the detector to a following amplifier be
much larger than the power drawn by the detector at its
input—i.e., the detector must have a dimensionless power
gain G p[w] much larger than one. If the power gain was
not large, we would need to worry about the next stage
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in the amplification of our signal, and how much noise is
added in that process. Having a large power gain means
that by the time our signal reaches the following ampli-
fier, it is so large that the added noise of this following
amplifier is unimportant. The power gain is analogous to
the dimensionless photon number gain G that appears in
the standard Haus-Caves description of a bosonic linear
amplifier.

To make the above more precise, we start by assum-
ing the simple (and usual) case where there is no reverse
gain: yp; = 0. We will define the power gain Gp[w] of
our generic position detector in a way that is completely
analogous to the power gain of a voltage amplifier [CITE][;
alternate and important measures of power gain are dis-
cussed in Sec. VIII.B. Imagine we drive the oscillator we
are trying to measure with a force 2Fp coswt; this will
cause the output of our detector (I(t)) to also oscillate at
frequency w. To optimally detect this signal in the detec-
tor output, we further couple the detector output I to a
second oscillator with natural frequency w, mass M, and
position y: there is a new coupling term in our Hamilto-
nian, H/,, = BI -, where B is a coupling strength. The
oscillations in (I(t)) will now act as a driving force on the
auxiliary oscillator y (see Fig 11). We can consider the
auxiliary oscillator y as a “load” we are trying to drive
with the output of our detector.

To find the power gain, we need to consider both Py,
the power supplied to the output oscillator y from the de-
tector, and P, the power fed into the input of the ampli-
fier. Consider first P,,. This is simply the time-averaged
power dissipation of the input oscillator x caused by the
back-action damping y[w]. Using a bar to denote a time
average, we have:

Pn = Mylw] - @2

= Mryfw]w?|Xes[w]|*F5 (6.20)
The oscillator response function xu.[w] is defined in
Eq. (6.18); note that it depends on both the back-action
damping y[w] as well as the intrinsic oscillator damping
7o0-

Next, we need to consider the power supplied to the
“load” oscillator y at the detector output. This oscilla-
tor will have some intrinsic, detector-independent damp-
ing vq, as well as a back-action damping ~out. In the
same way that the back-action damping « of the input
oscillator = is determined by the quantum noise in F
(cf. Eq. (3.30)-(3.32)), the back-action damping of the
load oscillator y is determined by the quantum noise in
the output operator I:

Toule] = 2 [Tm x11[e]
_ B [Sulw] = Sul-w]
= T 5 (6.21)

where ;7 is the linear-response susceptibility which de-
termines how (I} responds to a perturbation coupling to



xi1lw] = —% /O - dt<[f(t),f(o)}>ewt (6.22)

As the oscillator y is being driven on resonance, the rela-
tion between y and I is given by ylw] = xyy[w]I[w] with
Xyylw] = —i[wM~out[w]] 7. From conservation of energy,
we have that the net power flow into the output oscillator
from the detector is equal to the power dissipated out of
the oscillator through the intrinsic damping v14. We thus
have:

Pout = M’yld : ?
= MVIdW2|ny[W]|2 : |BAXIFX9£96[W]FD|2
1 MNd 2
= —————————— - |BAX1F Xz W] FD|
M (’YId + Yout [w])2
(6.23)

Using the above definitions, we find that the ratio be-
tween Pyt and P, is independent of g, but depends on

Mad:
Pout 1

P, = M?2u?

A’B? Ix1F[w] |2
Yout [W}V[w]

Yd /Vout [w]

(1 + ’yld/’yout [WDQ
(6.24)

We now define the detector power gain G p[w] as the value
of this ratio maximized over the choice of yq . The max-
imum occurs for g = Yout[w] (i.e. the load oscillator is
“matched” to the output of the detector), resulting in:

Pout
7]
1 AQB2|X1F|2
AMPw?  Youry
b(IF[W”2
~ AIm xpp[w] - Im xr7]w]

Gplw] = max{

(6.25)

In the last line, we have used the relation between the
damping rates vy[w] and ~out[w] and the linear-response
susceptibilities xprlw] and xsrjw] (c.f. Egs. (3.31) and
(6.21)). We thus find that the power gain is a simple di-
mensionless ratio formed by the three different response
coefficients characterizing the detector, and is indepen-
dent of the coupling constants A and B. As we will see in
subsection VL.E, it is completely analogous to the power
gain of a voltage amplifier, which is also determined by
three parameters: the voltage gain, the input impedance
and the output impedance. Note that there are other
important measures of power gain commonly in use in
the engineering community: we will comment on these
in Sec. VIIL.B.

4. Simplifications for a quantum-ideal detector

We now consider the important case where our detec-
tor has “ideal” quantum noise (i.e. it satisfies the ideal
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noise condition of Eq. (5.16)). Fulfilling this condition
immediately places some powerful constraints on our de-
tector.

First, note that we have defined in Eq. (6.15) the effec-
tive temperature of our detector based on what happens
at the input port; this is the effective temperature seen
by the oscillator we are trying to measure. We could also
consider the effective temperature of the detector as seen
at the output (i.e. by the oscillator y used in defining
the power gain). This “output” effective temperature is
determined by the quantum noise in the output operator
I:

hw
log (Srr[+w]/Srr[—w])

For a general out-of-equilibrium amplifier, Teg oue does
not have to be equal to the input effective temperature
Tor defined by Eq. (3.21). However, for a quantum-ideal
detector, the effective proportionality between input and
output operators (cf. Eq. (J13)) immediately yields:

kBTeff,out [w] = (626)

Teff,out [w] = TeH [W] (627)
Thus, a detector with quantum-ideal noise necessarily
has the same effective temperature at its input and its
output. This is all the more remarkable given that a
quantum-ideal detector cannot be in equilibrium, and
thus T, cannot represent a real physical temperature.

Another important simplification for a quantum-ideal
detector is the expression for the power gain. Using
the proportionality between input and output operators
(cf. Eq. (J13)), one finds:

(Im a)® coth? ( 52— ) + (Re a)?
Gp [w] _ ( 2kpTesr )

(6.28)

where afw] is the parameter characterizing a quantum
limited detector in Eq. (5.17); recall that |a[w]|? deter-
mines the ratio of S;; and Spp. It follows immediately
that for a detector with ‘ideal noise’ to also have a large
power gain (Gp > 1), one absolutely needs

kbTeg > hw: a large power gain implies a large effective
detector temperature. In the large G p limit, we have

Im o kpTag 12
. [ma E ] (6.29)

| hw/2

Thus, the effective temperature of a quantum-ideal detec-
tor does more than just characterize the detector back-
action— it also determines the power gain.

Finally, an additional consequence of the large Gp|w],
large Tog limit is that the gain x;p and noise cross-
correlator Sy are in phase: S;r/xr is purely real, up to
corrections which are small as w/Teg. This is shown ex-
plicitly in Appendix J.2. Thus, we find that a large power
gain detector with ideal quantum moise cannot have sig-
nificant out-of-phase correlations between its output and
input noises. This last point may be understood in terms



of the idea of wasted information: if there were signifi-
cant out-of-phase correlations between I and F', it would
be possible to improve the performance of the amplifier
by using feedback. We will discuss this point more fully
in Sec. VII. Note that as 51F/X1F is real, the last term
in the quantum noise constraint of Eq. (5.11) vanishes.

5. Quantum limit on added noise and noise temperature

We now turn to calculating the noise added to our
signal (i.e. (&(t))) by our generic position detector. To
characterize this added noise, it is useful to take the total
(symmetrized) noise in the output of the detector, and
refer it back to the input by dividing out the gain of the
detector:

~ . g[[,tot [w}
Searorle] = o2 o

S_’M,wt [w] is simply the frequency-dependent spectral
density of position fluctuations inferred from the output
of the detector. It is this quantity which will directly
determine the sensitivity of the detector— given a certain
detection bandwidth, what is the smallest variation of z
that can be resolved? The quantity Sy tot[w] will have
contributions both from the intrinsic fluctuations of the
input signal, as well as a contribution due to the detector.
We first define S,; eq[w, T] to be the symmetrized equi-
librium position noise of our damped oscillator (whose
damping is vy + ) at temperature 7T

(6.30)

_ hw

Swm;eCI[w7T] = hcoth <2kBT
where the oscillator susceptibility Xu.[w] is defined in
Eq. (6.18). The total inferred position noise may then
be written:

S porli] = (%”jv) B ealis To] 8 arali] (6:32)
In the usual case where the detector noise can be ap-
proximated as being white, this spectral density will con-
sist of a Lorentzian sitting atop a constant noise floor
(c.f. Fig. 7) The first term in Eq. (6.32) represents posi-
tion noise arising from the fluctuating force 6 Fy(¢) associ-
ated with the intrinsic (detector-independent) dissipation
of the oscillator (c.f. Eq. (6.14)). The prefactor of this
term arises because the strength of the intrinsic Langevin
force acting on the oscillator is proportional to 7g, not to
Yo +7-

The second term in Eq. (6.32) represents the added
position noise due to the detector. It has contributions
from both from the detector’s intrinsic output noise Syj
as well as from the detector’s back-action noise Spp, and
may be written:

G Sr1
Sewaad ] IX1r[?A?

2Re [X?F (sz[w])* S’IF]
Ix1r|?

)kme (6.31)

+ A2 ‘er[w”2 SFF +

(6.33)
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For clarity, we have omitted writing the explicit fre-
quency dependence of the gain xrr and noise correlators;
they should all be evaluated at the frequency w. Note
that the first term on the RHS corresponds to the “mea-
surement imprecision” noise of our detector, SI_(w).

We can now finally address the issue of the quantum
limit in our system. As discussed in Sec. VI.C, the Haus-
Caves derivation of the quantum limit (c.f. Sec. VIL.B)
is not directly applicable to the position detector we are
describing here; nonetheless, we may use its result to
guess what form the quantum limit will take here. The
Haus-Caves argument told us that the added noise of a
phase-preserving linear amplifier must be at least as large
as the zero point noise. We thus anticipate that if our
detector has a large power gain, the spectral density of
the noise added by the detector (i.e. Syz ada[w]) must be
at least as big as the zero point noise of our damped
oscillator:

Sez add[w] > %1310 Sezeqw, T] = |FIm xgzpw]|  (6.34)
We will now show that the bound above is rigorously
correct at each frequency w. Moreover, the approach we
take will give us a rough idea of what one needs to do to
achieve this quantum limit.

The first step is to examine the dependence of the
added noise Sp; add[w] (as given by Eq. (6.33)) on the
coupling strength A. If we ignore for a moment the
detector-dependent damping of the oscillator, the sit-
uation is the same as the cavity position detector of
Sec. IV.B.3: there is an optimal value of the coupling
strength A. For very strong coupling, we will minimize
the effects of the intrinsic output noise of the detector
(first term in Eq. (6.33)), but the back-action noise will
make a large contribution (second term in Eq. (6.33)).
Conversely, for very weak couplings we minimize the
back-action effect, but make the relative importance of
the intrinsic output noise of the detector quite strong.
We would thus expect Smyadd[w] to attain a minimum
value at an optimal choice of coupling A = Aypy where
both these terms make equal contributions (see Fig. 6).
Defining ¢[w] = arg xu»|w], we thus have the bound:

] S1Spr | Re [xjpe S
Sxa:,add[w] > 2‘XCE$[W]| [m—’— [ I&IFP :I

(6.35)
where the minimum value at frequency w is achieved
when:

2ot = Srrlw]
Agpt = \/|XIF[w]XII[w]|25FF[w} (6.36)

Using the inequality X2 + Y2 > 2|XY| we see that this
value serves as a lower bound on Sm’add even in the pres-
ence of detector-dependent damping. In the case where
the detector-dependent damping is negligible, the RHS of
Eq. (6.35) is independent of A, and thus Eq. (6.36) can
be satisfied by simply tuning the coupling strength A; in



the more general case where there is detector-dependent
damping, the RHS is also a function of A (through the re-
sponse function x,.[w]), and it may no longer be possible
to achieve Eq. (6.36) by simply tuning A'S.

While Eq. (6.35) is certainly a bound on the added
displacement noise Sy aaa[w], it does not in itself rep-
resent the quantum limit. Reaching the quantum limit
requires more than simply balancing the detector back-
action and intrinsic output noises (i.e. the first two terms
in Eq. (6.33)); one also needs a detector with “quantum-
ideal” moise properties, that is a detector which satis-
fies Eq. (5.16) and thus the proportionality condition
of Eq. (J13). Using the quantum noise constraint of
Eq. (5.11) to further bound Sy, add[w], we obtain:

XIF

S’;ca:,add[w] > 2 ‘ Xzz [W} ‘ X

(Y (e [22])

Re [X?F67i¢[w] S[F}
|XIF\

where the function A[z] is defined in Eq. (5.10b). The
minimum value of S, aad[w] in Eq. (6.37) is now achieved
when one has both an optimal coupling (i.e. Eq. (6.36))
and a quantum limited detector, that is one which satis-
fies Eq. (5.11) as an equality. Note again that an arbi-
trary detector will not satisfy this ideal noise condition.

Next, we consider the relevant case where our detector
is a good amplifier and has a power gain Gplw] > 1
over the width of the oscillator resonance. As we have
discussed, this implies that the ratio S;x /x1F is purely
real, up to small fiw/(kpTeg) corrections (see Sec. (V.A.4)
and Appendix J.2 for more details). This in turn implies
that A[2S77/hx1r] = 0; we thus have:

Swac,add [w] >

2| Xaz (]| \/<Z>2 - (i;ﬁ:f + W (6.38)

Finally, as there is no further constraint on S;r/x7r (be-
yond the fact that it is real), we can minimize the expres-
sion over its value. The minimum S, aq4[w] is achieved
for a detector whose cross-correlator satisfies:

(6.37)

S[F[w] h
—_— = —— cot ¢|w], 6.39
XIF loptimal 2 ¢[ } ( )
with the minimum value being given by:
Szz,add[w]’ = h|Im Xz [WH = :II}IHO Smr,cq[wa T]
(6.40)

18 Note that in the heuristic discussion of position detection using
a resonant cavity detector in Sec. IV.B.3, these concerns did not
arise as there was no back-action damping.
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where Sy oqlw,T] is the equilibrium contribution to
Syxtot[w] defined in Eq. (6.31). Thus, in the limit of
a large power gain, we have that at each frequency, the
minimum displacement noise added by the detector is pre-
cisely equal to the noise arising from a zero temperature
bath. This conclusion is irrespective of the strength of
the intrinsic (detector-independent) oscillator damping.

We have thus derived the amplifier quantum limit (in
the context of position detection) for a two-port ampli-
fier used in the “op-amp” mode of operation. Though we
reached a conclusion similar to that given by the Haus-
Caves approach, the linear-response, quantum noise ap-
proach used is quite different. This approach makes ex-
plicitly clear what is needed to reach the quantum limit.
We find that to reach the quantum-limit on the added
displacement noise Sy aqa[w] with a large power gain,
one needs:

1. A quantum limited detector, that is a detec-
tor which satisfies the “ideal noise” condition of
Eq. (5.16), and hence the proportionality condition
of Eq. (J13).

2. A coupling A which satisfies Eq. (6.36).

3. A detector cross-correlator S;p which satisfies
Eq. (6.39).

Note that condition (1) is identical to what is required
for quantum-limited detection of a qubit; it is rather de-
manding, and requires that there is no “wasted” informa-
tion about the input signal in the detector which is not
revealed in the output (Clerk et al., 2003). Also note that
cot ¢ changes quickly as a function of frequency across
the oscillator resonance, whereas S;p will be roughly
constant; condition (2) thus implies that it will not be
possible to achieve a minimal S’M@dd [w] across the en-
tire oscillator resonance. A more reasonable goal is to
optimize Sy; ada[w] at resonance, w = Q. As .. [Q)] is
imaginary, Eq. (6.39) tells us that S;z should be zero.
Assuming we have a quantum-limited detector with a
large power gain (kgTeg > hS2), the remaining condition
on the coupling A (Eq. (6.36)) may be written as:

1w
2\/Gp[Q]  4kpTen

MAop] ‘Im “ (6.41)

Yo + v [Aopt]

«

As v[A4] o« A? is the detector-dependent damping of
the oscillator, we thus have that to achieve the quantum-
limited value of Sizadd[Q] with a large power gain,
one needs the intrinsic damping of the oscillator to be
much larger than the detector-dependent damping. The
detector-dependent damping must be small enough to
compensate the large effective temperature of the detec-
tor; if the bath temperature satisfies iQ/kp < Thatn <
T, Eq. (6.41) implies that at the quantum limit, the
temperature of the oscillator will be given by:

“Tot + 70 - Tha 1Y)
T deff T 0 bath M2

TOSC =
v+ Y 4kp

(6.42)
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FIG. 12 Schematic of a linear voltage amplifier, including a
reverse gain A\;. V and [ represent the standard voltage and
current noises of the amplifier, as discussed further in the text.
The case with reverse gain is discussed in detail in Sec. VII.

Thus, at the quantum limit and for large Teg, the de-
tector raises the oscillator’s temperature by hQ)/4kp 19.
As expected, this additional heating is only half the zero-
point energy; in contrast, the quantum-limited value of
S’M@dd[w] corresponds to the full zero-point result, as
it also includes the contribution of the intrinsic output
noise of the detector.

Finally, we return to Eq. (6.37); this is the constraint
on the added noise Sy; ada[w] before we assumed our
detector to have a large power gain, and consequently
a large Teg. Note crucially that if we did not require
a large power gain, then there need not be any added
noise. Without the assumption of a large power gain,
the ratio Sip /x1r can be made imaginary with a large
magnitude. In this limit, 1 + A[2S7r/xrr] — 0: the
quantum constraint on the amplifier noises (e.g. the
RHS of Eq. (5.11)) vanishes. One can then easily use
Eq. (6.37) to show that the added noise S'm@dd[w] can
be zero. Thus, similar to the results of Heffner (1962),
Haus and Mullen (1962) and Caves (1982), in the limit
of unit power gain (i.e. small detector effective temper-
ature), there is no quantum limit on Smm,add, as perfect
anti-correlations between the two kinds of detector noise
(i.e. in I and F) are possible. Phrased differently, if our
detector does not amplify, then it need not add any noise.

E. Quantum limit on the noise temperature of a voltage
amplifier

In this section, we turn our attention to the quantum
limit on the added noise of a generic linear voltage ampli-
fier (Devoret and Schoelkopf, 2000). For such amplifiers,
the added noise is usually expressed in terms of the “noise
temperature” of the amplifier; we will define this concept,
and demonstrate that, when appropriately defined, this
noise temperature must be bigger than fAiw/(2kg), where
w is the signal frequency. Though the voltage amplifier is
closely analogous to the position detector treated in the

19 1f in contrast our oscillator was initially at zero temperature (i.e.
Thatrh = 0), one finds that the effect of the back-action (at the
quantum limit and for Gp > 1) is to heat the oscillator to a
temperature AQ/(kp In5).
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previous section, it is important enough that we will con-
sider it again in some detail. In Sec. VII, we will again
discuss a two-port voltage amplifier using a bosonic scat-
tering description similar to that used in formulating the
Haus-Caves proof of the amplifier quantum limit; this
will allow further insights into what is needed to reach
the quantum limit, and how different modes of amplifier
operation are not equivalent. We stress that the general
treatment presented here can also be applied directly to
the system discussed in Sec. VII.

1. Classical description of a voltage amplifier

Let us begin by recalling the standard schematic de-
scription of a voltage amplifier, see Figs. 12. The in-
put voltage to be amplified v;,(t) is produced by a cir-
cuit which has a Thevenin-equivalent impedance Zg, the
source impedance. We stress that we are considering the
“op-amp” mode of amplifier operation, and thus the in-
put signal does not correspond to the amplitude of a
wave incident upon the amplifier (see Sec. VI.C). The
amplifier itself has an input impedance Z;, and an out-
put impedance Z,,, as well a voltage gain coefficient
Ay: assuming no current is drawn at the output (i.e.
Z1oad — 00 in Fig. 12), the output voltage Vot (¢) is sim-
ply Ay times the voltage across the input terminals of
the amplifier.

The added noise of the amplifier is standardly repre-
sented by two noise sources placed at the amplifier input.
There is both a voltage noise source V'(¢) in series with
the input voltage source, and a current noise source I (t)
in parallel with input voltage source (Fig. 12). The volt-
age noise produces a fluctuating voltage V(t) (spectral
density Sy [w]) which simply adds to the signal voltage
at the amplifier input, and is amplified at the output; as
such, it is completely analogous to the intrinsic detector
output noise Syy of our linear response detector. In con-
trast, the current noise source of the voltage amplifier
represents back-action: this fluctuating current (spectral
density Sjj[w]) flows back across the parallel combination
of the source impedance and amplifier input impedance,
producing an additional fluctuating voltage at its input.
The current noise is thus analogous to the back-action
noise Spp of our generic linear response detector.

Putting the above together, the total voltage at the
input terminals of the amplifier is:

Uin,tot(t) - ﬁ [Uin(t) + V(t):l - %j(t)
=~ Uin(t) + V(t) - Zsj(t) (643)

In the second line, we have taken the usual limit of
an ideal voltage amplifier which has an infinite input
impedance (i.e. the amplifier draws zero current). The
spectral density of the total input voltage fluctuations is
thus:

(6.44)

Svvitot W] = Supvin (W] + Svvaddalw].



Here S, v, is the spectral density of the voltage fluc-
tuations of the input signal viy(t), and Syy adq is the
amplifier’s contribution to the total noise at the input:

Svvaadlw] = Sy + | Zs|* S — 2Re [ 2 Sy ]
(6.45)

For clarity, we have dropped the frequency index for the
spectral densities appearing on the RHS of this equation.

It is useful to now consider a narrow bandwidth input
signal at a frequency w, and ask the following question: if
the signal source was simply an equilibrium resistor at a
temperature Ty, how much hotter would it have to be to
produce a voltage noise equal to Sy v tot|w]? The result-
ing increase in the source temperature is defined as the
noise temperature Ty |[w] of the amplifier and is a conve-
nient measure of the amplifier’s added noise. It is stan-
dard among engineers to define the noise temperature as-
suming the initial temperature of the resistor Ty > hw.
One may then use the classical expression for the thermal
noise of a resistor, which yields the definition:

2Re Zs . kBTN [w] = SVV,tot [w]
Writing Zs = | Zs|e'?, we have:

(6.46)

1 [Sgy »
2kpTn = o5 |§S‘|/ +1Z:|8;; — 2Re (e ¢3\71“)
(6.47)

It is clear from this expression that Ty will have a mini-
mum as a function of |Zs|. For |Zs| too large, the back-
action current noise of the amplifier will dominate Ty,
while for |Zg| too small, the voltage noise of the ampli-
fier (i.e. its intrinsic output noise will dominate). The
situation is completely analogous to the position detec-
tor of the last section; there, we needed to optimize the
coupling strength A to balance back-action and intrinsic
output noise contributions, and thus minimize the to-
tal added noise. Optimizing the source impedance thus
yields a completely classical minimum bound on Ty:

kTN > \/S(/‘;Sff — [Im 8‘"/7]2 —Re SVf (6.48)

where the minimum is achieved for an optimal source
impedance which satisfies:

 [Spgll _
|Zs[w]lopt = S‘;Y[w] =N (6.49)
sin o|w = _L‘HM .
Pelln SpylwlSilw] (650

The above equations define the so-called noise impedance
Zn. We stress again that the discussion so far in this
subsection has been completely classical.

2. Linear response description

It is easy to connect the classical description of a volt-
age amplifier to the quantum mechanical description of a
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generic linear response detector; in fact, all that is needed
is a “relabeling” of the concepts and quantities we in-
troduced in Sec. VI.D when discussing a linear position
detector. Thus, the quantum voltage amplifier will be
characterized by both an input operator @ and an out-
put operator Viu¢; these play the role, respectively, of
F and I in the position detector. Vout represents the
output voltage of the amplifier, while @) is the operator
which couples to the input signal v;,(t) via a coupling
Hamiltonian:

Hint = Uin(t) : Q
In more familiar terms, Iy, fdQA /dt represents the current
flowing into the amplifier 2°. The voltage gain of our
amplifier Ay will again be given by the Kubo formula of
Eq. (5.3), with the substitutions F — Q,1 — Vou (we
will assume these substitutions throughout this section).
We can now easily relate the fluctuations of the in-
put and output operators to the noise sources used to
describe the classical voltage amplifier. As usual, sym-
metrized quantum noise spectral densities S[w] will play
the role of the classical spectral densities S[w| appearing
in the classical description. First, as the operator Q rep-
resents a back-action force, its fluctuations correspond to
the amplifier’s current noise I(¢):

(6.51)

SI*I*[OJ} — LUQSQQ[LU]. (6.52)
Similarly, the fluctuations in the operator VOut, when re-
ferred back to the amplifier input, will correspond to the
voltage noise V (t) discussed above:

SV Vot (@]

YW (6.53)

Spylwl =

A similar correspondence holds for the cross-correlator of
these noise sources:

Svout Q [w]

" (6.54)

Spilw] & +iw

To proceed, we need to identify the input and output

impedances of the amplifier, and then define its power

gain. The first step in this direction is to assume that the

output of the amplifier (V5,) is connected to an external
circuit via a term:

ﬁi’nt = Gout (t) : Vout

where ion = dgout /dt is the current in the external
circuit. We may now identify the input and output

(6.55)

20 Note that one could have instead written the coupling Hamil-

tonian in the more traditional form I:Iim(t) = ¢(t) - Iin, where
¢ = [dt'vin(t') is the flux associated with the input voltage.
The linear response results we obtain are exactly the same. We
prefer to work with the charge Q in order to be consistent with
the rest of the text.



impedances of the amplifier in terms of the damping at
the input and output. Using the Kubo formulae for
conductance and resistance yields (cf. Eq. (3.32) and

Eq. (6.21), with the substitutions F — Q and I — V):

1/Zin|w] = iwxqelw] (6.56)
Zow|w] = XV_VZ,L“’] (6.57)
ie. <I~Z Yo = mvin[w] and (V), = out[w]zout[w]a

where the subscript w indicates the Fourier transform of
a time-dependent expectation value.

We will consider throughout this section the case of no
reverse gain, xqv,., = 0. We can define the power gain
Gp exactly as we did in Sec. VI.D.3 for a linear position
detector. G p is defined as the ratio of the power delivered
to a load attached to the amplifier output divided by
the power drawn by the amplifier, maximized over the
impedance of the load. One finds:

Av|?

Gr = IRe (Zowt)Re (1/Z:m)

(6.58)

Expressing this in terms of the linear response coefficients
xvv and xgg, we obtain an expression which is com-
pletely analogous to Eq. (6.25) for the power gain for a
position detector:

[Av|?

G =
P 41111 XQQ . IHl Xvv

(6.59)

Finally, we may again define the effective temperature
Togg[w] of the amplifier via Eq. (3.21), and define a
quantum-limited voltage amplifier as one which satisfies
the ideal noise condition of Eq. (5.16). For such an am-
plifier, the power gain will again be determined by the
effective temperature via Eq. (6.28).

Turning to the noise, we can again calculate the to-
tal symmetrized noise at the output port of the amplifier
following the same argument used to the get the out-
put noise of the position detector (cf. Eq. (6.19)). As
we did in the classical approach, we will again assume
that the input impedance of the amplifier is much larger
that source impedance: Zi, > Zs; we will test this as-
sumption for consistency at the end of the calculation.
Focusing only on the amplifier contribution to this noise
(as opposed to the intrinsic noise of the input signal), and
referring this noise back to the amplifier input, we find
that the symmetrized quantum noise spectral density de-
scribing the added noise of the amplifier, Sy v aq4[w], sat-
isfies the same equation we found for a classical voltage
amplifier, Eq.. (6.45), with each classical spectral density
S|w] being replaced by the corresponding symmetrized
quantum spectral density S[w] as per Eqgs. (6.52) - (6.54).

It follows that the amplifier noise temperature will
again be given by Eq. (6.47), and that the optimal
noise temperature (after optimizing over the source
impedance) will be given by Eq. (6.48). Whereas classi-
cally nothing more could be said, quantum mechanically,
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we now get a further bound from the quantum noise con-
straint of Eq. (5.11) and the requirement of a large power
gain. The latter requirement tells us that the voltage gain
Av[w] and the cross-correlator Sy,,,o must be in phase
(cf. Sec. (V.A.4) and Appendix J.2). This in turn means
that 5‘7 7 must be purely imaginary. In this case, the
quantum noise constraint may be re-written as:

S )85l — [Im 5p7)% > (m’) (6.60)

Using these results in Eq. (6.48), we find the ultimate
quantum limit on the noise temperature 2':

kpIn(w] > % (6.61)
Similar to the case of the position detector, reaching the
quantum limit here is not simply a matter of tuning the
coupling (i.e. tuning the source impedance Zs to match
the noise impedance, cf. Eq. (6.49) - (6.50)); one also
needs to have a detector with “ideal” quantum noise, that
is a detector satisfying Eq. (5.16). As we have repeatedly
stressed in this review, this is a condition which is not
met by most detectors. It corresponds to the heuristic
requirement that there should not be any “wasted” in-
formation in the detector.

Finally, we need to test our initial assumption that
|Zs| < |Zin|, taking | Zs| to be equal to its optimal value
Zn. Using the proportionality condition of Eq. (J13)
and the fact that we are in the large power gain limit
(Gplw] > 1), we find:

1
= <1 (6.62)

2\/Gp[w]

It follows that |Zn| < | Zin| in the large power gain, large
effective temperature regime of interest, thus justifying
the form of Eq. (6.45). Eq. (6.62) is analogous to the
case of the displacement detector, where we found that
reaching the quantum limit on resonance required the
detector-dependent damping to be much weaker than the
intrinsic damping of the oscillator (cf. Eq. (6.41)).
Thus, similar to the situation of the displacement de-
tector, the linear response approach allows us both to
derive rigorously the quantum limit on the noise tempera-
ture T of an amplifier, and to state conditions that must

’ Zn|w]
Re Zim o]

- |l
T Im ol 4k Teg

21 Note that our definition of the noise temperature Ty conforms
with that of Devoret and Schoelkopf (2000) and most electrical
engineering texts, but is slightly different than that of Caves
(1982). Caves assumes the source is initially at zero temperature
(i.e. To = 0), and consequently uses the full quantum expression
for its equilibrium noise. In contrast, we have assumed that
kgTo > hw. The different definition of the noise temperature
used by Caves leads to the result kgTn > hw/(In3) as opposed
to our Eq. (6.61). We stress that the difference between these
results has nothing to do with physics, but only with how one
defines the noise temperature.



be met to reach this limit. To reach the quantum-limited
value of Ty with a large power gain, one needs both a
tuned source impedance Zg, and an amplifier which pos-
sesses ideal noise properties (cf. Eq. (5.16) and Eq. (J13)).

3. Role of noise cross-correlations

Before leaving the topic of a linear voltage amplifier,
we pause to note the role of cross-correlations in current
and voltage noise in reaching the quantum limit. First,
note from Eq. (6.50) that in both the classical and quan-
tum treatments, the noise impedance Zy of the amplifier
will have a reactive part (i.e. Im Zx # 0) if there are
out-of-phase correlations between the amplifier’s current
and voltage noises (i.e. if Im Sy; # 0). Thus, if such
correlations exist, it will not be possible to minimize the
noise temperature (and hence, reach the quantum limit),
if one uses a purely real source impedance Z;.

More significantly, note that the final classical expres-
sion for the noise temperature Ty explicitly involves the
real part of the Sy correlator (cf. Eq. (6.48)). In con-
trast, we have shown that in the quantum case, Re Sy |
must be zero if one wishes to reach the quantum limit
while having a large power gain (cf. Appendix J.2); as
such, this quantity does not appear in the final expres-
sion for the minimal Ty. It also follows that to reach the
quantum limit while having a large power gain, an ampli-
fier cannot have significant in-phase correlations between
its current and voltage noise.

This last statement can be given a heuristic explana-
tion. If there are out-of-phase correlations between cur-
rent and voltage noise, we can easily make use of these by
appropriately choosing our source impedance. However,
if there are in-phase correlations between current and
voltage noise, we cannot use these simply by tuning the
source impedance. We could however have used them by
implementing feedback in our amplifier. The fact that we
have not done this means that these correlations repre-
sent a kind of missing information; as a result, we must
necessarily miss the quantum limit. In Sec. VII.B, we
explicitly give an example of a voltage amplifier which
misses the quantum limit due to the presence of in-phase
current and voltage fluctuations; we show how this am-
plifier can be made to reach the quantum limit by adding
feedback in Sec. 1.

F. Near quantum-limited mesoscopic detectors

Having discussed the origin and precise definition of
the quantum limit on the added noise of a linear, phase-
preserving amplifier, we now provide a brief review of
work examining whether particular detectors are able (in
principle) to achieve this ideal limit. We will focus on
the “op-amp” mode of operation discussed in Sec. VI.C,
where the detector is only weakly coupled to the system
producing the signal to be amplified. As we have repeat-
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edly stressed, reaching the quantum limit in this case
requires the detector to have “quantum ideal noise”, as
defined by Eq. (5.16). Heuristically, this corresponds to
the general requirement of no wasted information: there
should be no other quantity besides the detector output
that could be monitored to provide information on the in-
put signal (Clerk et al., 2003). We have already given one
simple but relevant example of a detector which reaches
the amplifier quantum limit: the parametric cavity de-
tector, discussed extensively in Sec. IV.B. Here, we turn
to other more complex detectors.

1. dc SQUID amplifiers

The de SQUID (superconducting quantum interference
device) is a detector based on a superconducting ring hav-
ing two Josephson junctions. It can in principle be used
as a near quantum-limited voltage amplifier or flux-to-
voltage amplifier. Theoretically, this was investigated us-
ing a quantum Langevin approach (Danilov et al., 1983;
Koch et al., 1980), as well as more rigorously by using
perturbative techniques (Averin, 2000b) and mappings
to quantum impurity problems (Clerk, 2006). Experi-
ments on SQUIDS have also confirmed its potential for
near quantum-limited operation. Miick et al. (2001) were
able to achieve a noise temperature Ty approximately
1.9 times the quantum limited value at an operating fre-
quency of w = 27 x 519 MHz. Working at lower frequen-
cies appropriate to gravitational wave detection applica-
tions, Vinante et al. (2001) were able to achieve a Ty ap-
proximately 200 times the quantum limited value at a fre-
quency w = 27 x 1.6 kHz. In practice, it can be difficult to
achieve the theoretically-predicted quantum-limited per-
formance due to spurious heating caused by the dissipa-
tion in the shunt resistances used in the SQUID.

2. Quantum point contact detectors

A quantum point contact (QPC) is a narrow conduct-
ing channel formed in a two-dimensional gas. The cur-
rent through the constriction is very sensitive to nearby
charges, and thus the QPC acts as a charge-to-current
amplifier. It has been shown theoretically that the QPC
can achieve the amplifier quantum limit , both in the
regime where transport is due to tunneling (Gurvitz,
1997), as well as in regimes where the transmission is not
small (Aleiner et al., 1997; Clerk et al., 2003; Korotkov
and Averin, 2001; Levinson, 1997; Pilgram and Biittiker,
2002). Experimentally, QPCs are in widespread use as
detectors of quantum dot qubits. The back-action de-
phasing of QPC detectors was studied in (Buks et al.,
1998; Sprinzak et al., 2000); a good agreement was found
with the theoretical prediction, confirming that the QPC
has quantum-limited back-action noise.



3. Single-electron transistors and resonant-level detectors

A metallic single-electron transistor (SET) consists of
a small metallic island attached via tunnel junctions to
larger source and drain electrodes. Because of Coulomb
blockade effects, the conductance of a SET is very sen-
sitive to nearby charges, and hence it acts as a sensitive
charge-to-current amplifier. Considerable work has inves-
tigated whether metallic SETs can approach the quan-
tum limit in various different operating regimes. The-
oretically, the performance of a normal-metal SET in
the sequential tunneling regime was studied by Devoret
and Schoelkopf (2000); Makhlin et al. (2000); Shnirman
and Schén (1998). In this regime, where transport is
via a sequence of energy-conserving tunnel events, one
is far from optimizing the quantum noise constraint of
Eq. (5.16), and hence one cannot reach the quantum
limit (Korotkov, 2001b; Shnirman and Schoén, 1998). If
one instead chooses to work with a normal-metal SET
in the regime where transport is due to cotunneling (a
higher-order tunneling process involving a virtual transi-
tion), then one can indeed approach the quantum limit
(Averin, 2000a; van den Brink, 2002). However, by virtue
of being a higher-order process, the related currents and
gain factors are small, impinging on the practical util-
ity of this regime of operation. It is worth noting that
while most theory on SETs assume a dc voltage bias, to
enhance bandwidth, experiments are usually conducted
using the rf-SET configuration (Schoelkopf et al., 1998),
where the SET changes the damping of a resonant LC
circuit. Korotkov and Paalanen (1999) have shown that
this mode of operation for a sequential tunneling SET
increases the measurement imprecision noise by approx-
imately a factor of 2. The measurement properties of
a normal-metal, sequential-tunneling rf-SET (including
back-action) were studied experimentally in Turek et al.
(2005).

Measurement using superconducting SET’s has also
been studied. Clerk et al. (2002) have shown that so-
called incoherent Cooper-pair tunneling processes in a su-
perconducting SET can have a noise temperature which
is approximately a factor of two larger than the quantum
limited value. The measurement properties of supercon-
ducting SETs bias at a point of incoherent Cooper-pair
tunneling have been probed recently in experiment (Naik
et al., 2006; Thalakulam et al., 2004).

The quantum measurement properties of mnon-
interacting resonant level detectors have also been stud-
ied theoretically (Averin, 2000b; Clerk and Stone, 2004;
Gavish et al., 2006; Mozyrsky et al., 2004). These sys-
tems are similar to metallic SET, except that the central
island only has a single level (as opposed to a continuous
density of states), and Coulomb-blockade effects are typ-
ically neglected. These detectors can reach the quantum
limit in the regime where the voltage and temperature
are smaller than the intrinsic energy broadening of the
level due to tunneling. They can also reach the quan-
tum limit in a large-voltage regime that is analogous to
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the cotunneling regime in a metallic SET (Averin, 2000b;
Clerk and Stone, 2004).

G. Back-action evasion and noise-free amplification

Having discussed in detail quantum limits on phase-
preserving linear amplifiers (i.e. amplifiers which measure
both quadratures of a signal equally well), we now return
to the situation discussed at the very start of Sec. VI.A:
imagine we wish only to amplify a single quadrature of
some time-dependent signal. For this case, there need
not be any added noise from the measurement. Unlike
the case of amplifying both quadratures, Liouville’s the-
orem does not require the existence of any additional
degrees of freedom when amplifying a single quadrature:
phase space volume can be conserved during amplifica-
tion simply by contracting the unmeasured quadrature
(cf. Eq. 6.2). As no extra degrees of freedom are needed,
there need not be any extra noise associated with the
amplification process.

Alternatively, single-quadrature detection can take a
form similar to a QND measurement, where the back-
action does not affect the dynamics of the quantity be-
ing measured (Bocko and Onofrio, 1996; Braginsky and
Khalili, 1992; Braginsky et al., 1980; Caves, 1982; Caves
et al., 1980; Thorne et al., 1978). For concreteness, con-
sider a high-Q harmonic oscillator with position z(¢) and
resonant frequency 2. Its motion may be written in
terms of quadrature operators defined as in Eq. (4.66):

@(t) = Xs(t)cos (Qt + 8) + Ys(t) sin (Qt + 0)
(6.63)
Here, Z(t) is the Heisenberg-picture position operator of
the oscillator. The quadrature operators can be written

in terms of the (Schrédinger-picture) oscillator creation
and destruction operators as:

X5(t) = azpr (éei<9t+5>+éTe—i(m+5>) (6.642)

=

=

=
|

R — (ée“m”) e e’i(9t+5))(6.64b)

As previously discussed ((c.f. Eq.(4.67)), the two quadra-

ture amplitude operators X5 and Vs are canonically
conjugate (c.f. Eq.(4.67)). Making a measurement of
one quadrature amplitude, say Xy, will thus invariably
lead to back-action disturbance of the other, conjugate
quadrature Ys. However, due to the dynamics of a har-
monic oscillator, this disturbance will not affect the mea-
sured quadrature at later times. One can already see this
from the classical equations of motion. Suppose our os-
cillator is driven by a time-dependent force F(t) which
only has appreciable bandwidth near 2. We may write
this as:

F(t) = Fx(t) cos(Qt + 6) + Fy (t) sin(Qt + 6) (6.65)



where Fx(t), Fy (t) are slowly varying compared to €.
Using the fact that the oscillator has a high-quality factor
Q = /v, one can easily find the equations of motion:

9 xs=-2x,00 - U (60
%Y}(t) = f%YZs(t) + 1;;1(8 (6.66b)

Thus, as long as Fy (t) and Fx(t) are uncorrelated and
sufficiently slow, the dynamics of the two quadratures are
completely independent; in particular, if Yy is subject to
a narrow-bandwidth, noisy force, it is of no consequence
to the evolution of X5. An ideal measurement of Xy will
result in a back-action force having the form in Eq. (6.65)
with Fy (t) = 0, implying that Xs(¢) will be completely
unaffected by the measurement.

Not surprisingly, if one can measure and amplify X5
without any back-action, there need not be any added
noise due to the amplification. In such a setup, the
only added noise is the measurement-imprecision noise
associated with intrinsic fluctuations of the amplifier out-
put. These may be reduced (in principle) to an arbitrar-
ily small value by simply increasing the amplifier gain
(e.g. by increasing the detector-system coupling): in an
ideal setup, there is no back-action penalty on the mea-
sured quadrature associated with this increase.

The above conclusion can lead to what seems like a
contradiction. Imagine we use a back-action evading am-
plifier to make a “perfect” measurement of X; (i.e. negli-
gible added noise). We would then have no uncertainty as
to the value of this quadrature. Consequently, would ex-
pect the quantum state of our oscillator to be a squeezed
state, where the uncertainty in Xy is much smaller than
xzpr. However, if there is no back-action acting on Xj,
how is the amplifier able to reduce its uncertainty? This
seeming paradox can be fully resolved by considering the
conditional aspects of an ideal single quadrature mea-
surement, where one considers the state of the oscilla-
tor given a particular measurement history (Clerk et al.,
2008; Ruskov et al., 2005).

It is worth stressing that the possibility of amplifying a
single quadrature without back-action (and hence, with-
out added noise) relies crucially on our oscillator resem-
bling a perfect harmonic oscillator: the oscillator () must
be large, and non-linearities (which could couple the two
quadratures) must be small. In addition, the envelope of
the non-vanishing back-action force Fx(t) must have a
narrow bandwidth. One should further note that a very
high precision measurement of X5 will produce a very
large back action force F'x. If the system is not nearly
perfectly harmonic, then the large amplitude imparted
to the conjugate quadrature Yy will inevitably leak back
into Xs.

Amplifiers or detectors which treat the two signal
quadratures differently are known in the quantum op-
tics literature as ‘phase sensitive’; we prefer the desig-
nation ‘phase-non-preserving’ since they do not preserve
the phase of the original signal. Such amplifiers invari-
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ably rely on some internal clock (i.e. an oscillator with a
well defined phase) which breaks time-translation invari-
ance and picks out the phase of the quadrature that will
be amplified (i.e. the choice of ¢ used to define the two
quadratures in Eq. (6.63)); we will see this explicitly in
what follows. This leads to an important caveat: even
in a situation where the interesting information is in a
single signal quadrature, to benefit from using a phase
non-preserving amplifier, we must know in advance the
precise phase of this quadrature. If we do not know this
phase, we will have either to revert to a phase-preserving
amplification scheme (and thus be susceptible to added
noise) or we would have to develop a sophisticated and
high speed quantum feedback scheme to dynamically
adapt the measurement to the correct quadrature in real
time (Armen et al., 2002). In what follows, we will make
the above ideas concrete by considering a few examples
of quantum, phase non-preserving amplifiers.

1. Degenerate parametric amplifier

Perhaps the simplest example of a phase non-
preserving amplifier is the degenerate parametric ampli-
fier; the classical version of this system was described
at the start of Sec. VLA (cf. Eq. 6.2). The quantum
version is also extremely simple to treat, and has many
similarities to the single-mode, phase-preserving ampli-
fier discussed in Sec. VI.B. Similar to that system, in the
degenerate parametric amplifier both the amplifier input
and output are described by single bosonic modes, having
annihilation operators a and b respectively. This ampli-
fier is operated in the “scattering” mode of operation de-
scribed in Sec. VI.C: a describes the input signal, which
is the amplitude of a wave incident on the amplifier, while
b describes the output signal, the amplitude of a wave
leaving the amplifier. The dimensionless quadrature op-
erators corresponding to the input and output (taking,
without loss of generality, the phase § in Eq. (6.63) to be
zero) are given by:

B = % (a' +a)
i = <5 (@~ )
Fous = % (BTHB)
Jous = % (?)T—B) (6.67)

These operators are canonically conjugate, satisfying:
(6.68)

[‘finagin] = [i'out7:gout] = 1.

With these definitions, the action of the amplifier is
described by the input-output relations (compare against



Eq. (6.6)):
Fout = VG i (6.69a)
X 1
Yout = ﬁyin (669b)

These input-output relations are derived in Appendix F.
We see that our amplifier clearly treats the two quadra-
tures differently, and hence is a phase-sensitive amplifier:
one quadrature is amplified and the other is deamplified
in such a way that the commutation relation can be pre-
served without the necessity of any added noise. Note
that the degenerate parametric amplifier relies on hav-
ing a “pump” mode which has a large amplitude and an
almost-definite phase. This pump mode plays the role of
a clock; in particular, its phase picks out the quadrature
of the signal which is amplified (see Appendix F for more
details).

It is important to stress that while the degenerate
parametric amplifier is phase-sensitive and has no added
noise, it is not an example of back-action evasion (see
Caves et al. (1980), footnote on p. 342). This amplifier is
operated in the scattering mode of amplifier operation, a
mode where (as discussed extensively in Sec. VI.C) back-
action is not at all relevant. Recall that in this mode
of operation, the amplifier input is perfectly impedance
matched to the signal source, and the input signal is sim-
ply the amplitude of an incident wave on the amplifier in-
put. This mode of operation necessarily requires a strong
coupling between the input signal and the amplifier in-
put. If one instead tried to weakly couple the degenerate
parametric amplifier to a signal source, and operate it
in the “op-amp” mode of operation (c.f. Sec. VI.C), one
finds that there is indeed a back-action disturbance of
the measured quadrature. We have yet another exam-
ple which demonstrates that one must be very careful
to distinguish the “op-amp” and “scattering” mode of
amplifier operation.

2. Double-sideband cavity detector

We now turn to a simple but experimentally-relevant
detector that is truly back-action evading. We will take
as our input signal the position & of a mechanical oscilla-
tor. The amplifier setup we consider is almost identical
to the cavity position detector discussed in Sec. IV.B.3:
we again have a single-sided resonant cavity whose fre-
quency depends linearly on the oscillator’s position, with
the Hamiltonian being given by Eq. (4.22) (with Z =
Z/xzpr). We showed in Sec. IV.B.3 and Appendix D.3
that by driving the cavity on resonance, it could be used
to make a quantum limited position measurement: one
can operate it as a phase-preserving amplifier of the me-
chanical’s oscillators position, and achieve the minimum
possible amount of added noise. To use the same system
to make a back-action free measurement of one oscillator
quadrature only, one simply uses a different cavity drive.
Instead of driving at the cavity resonance frequency we,
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one drives at the two sidebands associated with the me-
chanical motion (i.e. at frequencies w. + 2, where Q is
as always the frequency of the mechanical resonator). As
we will see, such a drive results in an effective interaction
which only couples the cavity to one quadrature of the
oscillator’s motion. This setup was first proposed as a
means of back-action evasion in Braginsky et al. (1980);
further discussion can be found in Braginsky and Khalili
(1992); Caves et al. (1980), as well as in Clerk et al.
(2008), which gives a fully quantum treatment and con-
siders conditional aspects of the measurement. In what
follows, we sketch the operation of this system following
Clerk et al. (2008); details are provided in Appendix D.4.

We will start by requiring that our system be in the
“good-cavity” limit, where w. > Q > k (k is the damp-
ing of the cavity mode); we will also require the mechan-
ical oscillator to have a high Q-factor. In this regime, the
two sidebands associated with the mechanical motion at
we £ are well-separated from the main cavity resonance
at w.. Making a single-quadrature measurement requires
that one drives the cavity at equally at the two sideband
frequencies. The amplitude of driving field by, entering
the cavity will be chosen to have the form:

bin(t) = —i\iﬁ (eiéefi(wcfgz)t - eii‘;e*i(“’cﬂl)t)

= \/QN sin(Qt + 6)e™ !, (6.70)

Here, N is the photon number flux associated with the
cavity drive (see Appendix D for more details on how
to properly include a drive using input-output theory).
Such a drive could be produced by taking a signal at the
cavity resonance frequency, and amplitude modulating it
at the mechanical frequency.

To understand the effect of this drive, note that it sends
the cavity both photons with frequency (w. — Q) and
photons with frequency (w. + £2). The first kind of drive
photon can be converted to a cavity photon if a quanta is
absorbed from the mechanical oscillator; the second kind
of drive photon can be converted to a cavity photon if a
quanta is emitted to the mechanical oscillator. The result
is that we can create a cavity photon by either absorb-
ing or emitting a mechanical oscillator quanta. Keeping
track that there is a well-defined relative phase of e
between the two kinds of drive photons, we would expect
the double-sideband drive to yield an effective cavity-
oscillator interaction of the form:

Vet \/N [&T (ei‘sé—l— e_i‘séT) +h.c. ] (6.71a)
o VN(a+ahXs (6.71b)

This is exactly what is found in a full calculation (see Ap-
pendix D.4). Note that we have written the interaction
in an interaction picture in which the fast oscillations of
the cavity and oscillator operators have been removed.
In the second line, we have made use of Eqgs. (6.64) to



show that the effective interaction only involves the Xs
oscillator quadrature.

We thus see from Eq. (6.71b) that the cavity is only
coupled to the oscillator X5 quadrature. As shown rig-
orously in Appendix subapp:CavityPositionDetector, the
result is that the system only measures and amplifies this
quadrature: the light leaving the cavity has a signature
of X5, but not of Ys. Further, Eq. (6.71b) implies that

the cavity operator \/N (& + dT) will act as a noisy force
on the Y5 quadrature. While this will cause a back-action
heating of Yy, it will not affect the measured quadrature
Xs. We thus have a true back-action evading amplifier:
the cavity output light lets one measure X free from any
back-action effect. Note that in deriving Eq. (6.71a), we
have used the fact that the cavity operators have fluctu-
ations in a narrow bandwidth ~ k < €): the back-action
force noise is slow compared to the oscillator frequency. If
this were not the case, we could still have a back-action
heating of the measured X; quadrature. Such effects,
arising from a non-zero ratio /), are treated in Clerk
et al. (2008).

Finally, as there is no back-action on the measured
X5 quadrature, the only added noise of the amplification
scheme is measurement-imprecision noise (e.g. shot noise
in the light leaving the cavity). This added noise can
be made arbitrarily small by increasing the gain of the
detector by, for example, increasing the strength of the
cavity drive N. In a real system where x/wy; is non-zero,
the finite-bandwidth of the cavity number fluctuations
leads to a small back-action on the Xs5. As a result, one
cannot make the added noise arbitrarily small, as too
large a cavity drive will heat the measured quadrature.
Nonetheless, for a sufficiently small ratio x/wys, one can
still beat the standard quantum limit on the added noise
(Clerk et al., 2008).

3. Stroboscopic measurements

With sufficiently high bandwidth it should be able to
do stroboscopic measurements in sync with the oscillator
motion which could allow one to go below the standard
quantum limit in one of the quadratures of motion (Bra-
ginsky and Khalili, 1992; Caves et al., 1980). To under-
stand this idea, imagine an extreme form of phase sen-
sitive detection in which a Heisenberg microscope makes
a strong high-resolution measurement which projects the
oscillator onto a state of well defined position X at time
t=0:

\IIXo (t) — Z anefi(n+1/2)ﬂt |7”L> ’

n=0

(6.72)

where the coefficients obey a,, = (n|Xy). Because the
position is well-defined the momentum is extremely un-
certain. (Equivalently the momentum kick delivered by
the back action of the microscope makes the oscillator
momentum uncertain.) Thus the wave packet quickly

a0

spreads out and the position uncertainty becomes large.
However because of the special feature that the har-
monic oscillator levels are evenly spaced, we can see from
Eq. (6.72) that the wave packet reassembles itself pre-
cisely once each period of oscillation because e™?* = 1
for every integer n. (At half periods, the packet re-
assembles at position —Xy.) Hence stroboscopic mea-
surements made once (or twice) per period will be back
action evading and can go below the standard quantum
limit. The only limitations will be the finite anharmonic-
ity and damping of the oscillator. Note that the possi-
bility of using mesoscopic electron detectors to perform
stroboscopic measurements has recently received atten-
tion (Jordan and Biittiker, 2005; Ruskov et al., 2005).

VIil. BOSONIC SCATTERING DESCRIPTION OF A
TWO-PORT AMPLIFIER

In this section, we return again to the topic of
Sec. VLLE, quantum limits on a quantum voltage ampli-
fier. We now discuss the physics in terms of the bosonic
voltage amplifier first introduced in Sec. VI.C. Recall
that in that subsection, we demonstrated that the stan-
dard Haus-Caves derivation of the quantum limit was not
directly relevant to the usual weak-coupling “op-amp”
mode of amplifier operation, a mode where the input
signal is not simply the amplitude of a wave incident
on the amplifier. In this section, we will expand upon
that discussion, giving an explicit discussion of the dif-
ferences between the op-amp description of an amplifier
presented in Sec. VI.D, and the scattering description of-
ten used in the quantum optics literature (Courty et al.,
1999; Grassia, 1998). We will see that what one means
by “back-action” and “added noise” are not the same in
the two descriptions! Further, even though an amplifier
may reach the quantum limit when used in the scattering
mode (i.e. its added noise is as small as allowed by com-
mutation relations), it can nonetheless fail to achieve the
quantum limit when used in the op-amp mode. Finally,
the discussion here will also allow us to highlight impor-
tant aspects of the quantum limit not easily discussed in
the more general context of Sec. V.

A. Scattering versus op-amp representations

In the bosonic scattering approach, a generic linear
amplifier is modeled as a set of coupled bosonic modes.
To make matters concrete, we will consider the specific
case of a voltage amplifier with distinct input and out-
put ports, where each port is a semi-infinite transmission
line (see Fig. 9). We gave a heuristic description of this
system in Sec. VI.C; here, we will investigate its features
in more detail and with more rigour.

As discussed in Appendix C and Yurke and Denker
(1984), a transmission line can be described as a set
of non-interacting bosonic modes. Denoting the input
transmission line with an a and the output transmission



line with a b, the current and voltage operators in these
lines may be written:

(7.1a

N

V,(t) = /000 Z—: (Vq[w]e_i‘”t + h.c.)

I,(t) = o, /0 OO‘QL: fq[w}e*iwwh.c.) (7.1b)

with
Vil = /2, (ol + douale))  (7.20)
I[w] = \/E (Gin[] = dowelw])  (72b)

Here, ¢ can be equal to a or b, and we have g, = 1,0, =
—1. The operators a;,[w], dout|w] are canonical bosonic
annihilation operators; d;,[w] describes an incoming wave
in the input transmission line (i.e. incident on the ampli-
fier) having frequency w, while doyt|w] describes an out-
going wave with frequency w. The operators by, [w] and

bout [w] describe analogous waves in the output transmis-
sion line. We can think of V, as the input voltage to
our amplifier, and V,, as the output voltage. Similarly,
I, is the current drawn by the amplifier at the input,
and I, the current drawn at the output of the ampli-
fier. Finally, Z, (Z;) is the characteristic impedance of
the input (output) transmission line. Note that we use
a slightly different sign convention than in Yurke and
Denker (1984).

Amplification of a signal at a particular frequency w
will in general involve 2N bosonic modes in the amplifier.
Four of these modes are simply the frequency-w modes
in the input and output lines (i.e. ain|w],dout[w],bin|w]
and boyt[w]). The remaining 2(N — 2) modes describe
auxiliary degrees of freedom involved in the amplifica-
tion process; these additional modes could correspond to
frequencies different from the signal frequency w. The
auxiliary modes can also be divided into incoming and
outgoing modes. It is thus convenient to represent them
as additional transmission lines attached to the amplifier;
these additional lines could be semi-infinite, or could be
terminated by active elements.

1. Scattering representation

In general, our generic two-port bosonic amplifier will
be described by a N x N scattering matrix which deter-
mines the relation between the outgoing mode operators
and incoming mode operators. The form of this matrix
is constrained by the requirement that the output modes
obey the usual canonical bosonic commutation relations.
It is convenient to express the scattering matrix in a form

ol

which only involves the input and output lines explicitly:

Here F,[w] and Fy[w] are each an unspecified linear com-
bination of the auxiliary-line incident mode operators.
They thus describe noise in the outgoing modes of the
input and output transmission lines which arises from
the auxiliary modes involved in the amplification pro-
cess. Note the similarity between Eq. (7.3) and Eq. (6.7a)
for the simple one-port bosonic amplifier considered in
Sec. VI.B.

In the quantum optics literature, one typically views
Eq. (7.3) as the defining equation of the amplifier; we
will call this the scattering representation of our ampli-
fier. The representation is best suited to the scattering
mode of amplifier operation described in Sec. VI.C. In
this mode of operation, the experimentalist ensures that
(@in|w]) is precisely equal to the signal to be amplified,
irrespective of what is coming out of the amplifier. Sim-
ilarly, the output signal from the amplifier is the ampli-

tude of the outgoing wave in the output line, (bout|w]).

If we focus on Bout, we have precisely the same situation
as described in Sec. 6.10, where we presented the Haus-
Caves derivation of the quantum limit (c.f. Eq. (6.7a)). It
thus follows that in the scattering mode of operation, the
matrix element so1[w] represents the gain of our amplifier
at frequency w, |s91[w]|? the corresponding “photon num-
ber gain”, and Fy the added noise operator of the ampli-
fier. The operator F, represents the back-action noise in
the scattering mode of operation; this back-action has no
effect on the added noise of the amplifier in the scattering
mode.

Similar to Sec. VI.B, one can now apply the standard
argument of Haus and Mullen (1962) and Caves (1982)
to our amplifier. This argument tells us that since the
“out” operators must have the same commutation rela-
tions as the “in” operators, the added noise F; cannot be
arbitrarily small in the large gain limit (i.e. |s21] > 1).
Note that this version of the quantum limit on the added
noise has nothing to do with back-action. As already
discussed, this is perfectly appropriate for the scatter-
ing mode of operation, as in this mode, the experimen-
talist ensures that the signal going into the amplifier is
completely independent of whatever is coming out of the
amplifier. This mode of operation could be realized in
time-dependent experiments, where a pulse is launched
at the amplifier. This mode is not realized in most weak-
coupling amplification experiments, where the signal to
be amplified is not identical to an incident wave ampli-
tude.



2. Op-amp representation

In the usual op-amp amplifier mode of operation (de-
scribed extensively in Sec. V), the input and output sig-
nals are not simply incoming/outgoing wave amplitudes;
thus, the scattering representation is not an optimal de-
scription of our amplifier. The system we are describing
here is a voltage amplifier: thus, in the op-amp mode,
the experimentalist would ensure that the voltage at the
end of the input line (V,) is equal to the signal to be
amplified, and would read out the voltage at the end of
the output transmission line (V}) as the output of the
amplifier. From Eq. (7.1a), we see that this implies that
the amplitude of the wave going into the amplifier, a;y,,
will depend on the amplitude of the wave exiting the am-
plifier, aout.

Thus, if we want to use our amplifier as a voltage am-
plifier, we would like to find a description which is more
tailored to our needs than the scattering representation
of Eq. (7.3). This can be found by simply re-expressing
the scattering matrix relation of Eq. (7.3) in terms of
voltages and currents. The result will be what we term
the “op amp” representation of our amplifier, a repre-
sentation which is standard in the discussion of classical
amplifiers (see, e.g., Boylestad and Nashelsky (2006)).

In this representation, one views V, and I, as inputs
to the amplifier: V, is set by whatever we connect to
the amplifier input, while I, is set by whatever we con-
nect to the amplifier output. In contrast, the outputs
of our amplifier are the voltage in the output line, V;,
and the current drawn by the amplifier at the input, I,.
Note that this interpretation of voltages and currents is
identical to how we viewed the voltage amplifier in the
linear-response/quantum noise treatment of Sec. VI.E.

Using Eqs. (7.1a) and (7.1b), and suppressing fre-
quency labels for clarity, Eq. (7.3) may be written in
the form:

Vo) = Alv _qut O I O ')
Ia Zin )‘I Ib I

The coefficients in the above matrix are familiar from the
discussion of voltage amplifier in Sec. VL.E. Ay [w] is the
voltage gain of the amplifier, \7[w] is the reverse current
gain of the amplifier, Z,,; is the output impedance, and
Zin is the input impedance. The last term on the RHS
of Eq. (7.4) describes the two familiar kinds of amplifier

noise. V is the usual voltage noise of the amplifier (re-

ferred back to the amplifier input), while I is the usual
current noise of the amplifier. Recall that in this stan-
dard description of a voltage amplifier (cf. Sec. VLE),
T represents the back-action of the amplifier: the sys-
tem producing the input signal responds to these current
fluctuations, resulting in an additional fluctuation in the
input signal going into the amplifier. Similarly, Ay - V'
represents the intrinsic output noise of the amplifier: this
contribution to the total output noise does not depend on
properties of the input signal. Note that we are using a
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sign convention where a positive (I,) indicates a current
flowing into the amplifier at its input, while a positive
(Ip) indicates a current flowing out of the amplifier at its
output. Also note that the operators V, and I, on the
RHS of Eq. (7.4) will have noise; this noise is entirely due
to the systems attached to the input and output of the
amplifier, and as such, should not be included in what
we call the added noise of the amplifier.

Additional important properties of our amplifier fol-
low immediately from quantities in the op-amp repre-
sentation. As discussed in Sec. VI.D, the most impor-
tant measure of gain in our amplifier is the dimensionless
power gain. This is the ratio between power dissipated
at the output to that dissipated at the input, taking the
output current Ip to be Vg /Zou:

2 7 / g -1
0F e (a2

Gp =
P 4 Zout 2 Zout

Note that for zero reverse gain, this coincides with
Eq. (6.58) of Sec. VI.E.

Another important quantity is the loaded input
impedance: what is the input impedance of the ampli-
fier in the presence of a load attached to the output? In
the presence of reverse current gain A} # 0, the input
impedance will depend on the output load. Taking the
load impedance to be Zj,.q, some simple algebra yields:

1 1 N Ay

= + — 7.6
Zin Zload + Zout ( )

Zin,loaded

It is of course undesirable to have an input impedance
which depends on the load. Thus, we see yet again that
it is undesirable to have appreciable reverse gain in our
amplifier (cf. Sec. V.A.2).

3. Converting between representations

Some straightforward algebra now lets us express the
op-amp parameters appearing in Eq. (7.4) in terms of the
scattering matrix appearing in Eq. (7.3):

)\V = 2 Za D (7.78,)
Zy 812
N o= 24/ == .7b
1 1 —
Zout - Zb( ks 811)( +D822) lact (77C)
I 1 (1—s11)(1 — 822) — 812821
7 = 7 D (7.7d)

where all quantities are evaluated at the same frequency
w, and D is defined as:
D = (1+s11)(1 — s22) + 512521 (7.8)

Further, the voltage and current noises in the op-amp
representation are simple linear combinations of the



noises F, and .7:'b appearing in the scattering representa-
tion:

Again, all quantities above are evaluated at frequency w.

Eq. (7.9) immediately leads to an important conclusion
and caveat: what one calls the “back-action” and “added
noise” in the scattering representation (i.e. Fo and Fyp )
are not the same as the “back-action” and “added noise”
defined in the usual op-amp representation. For example,

the op-amp back-action I does not in general coincide
with the F,, the back-action in the scattering picture. If
we are indeed interested in using our amplifier as a volt-
age amplifier, we are interested in the total added noise
of our amplifier as defined in the op-amp representation.
As we saw in Sec. VLLE (cf. Eq. (6.43)), this quantity

involves both the noises I and V. We thus see explic-
itly something already discussed in Sec. VI.C: it is very
dangerous to make conclusions about how an amplifier
behaves in the op-amp mode of operation based on its
properties in the scattering mode of operation. As we
will see, even though an amplifier is “ideal” in the scat-
tering mode (i.e. F, as small as possible), it can nonethe-
less fail to reach the quantum limit in the op-amp mode
of operation.

In what follows, we will calculate the op-amp noises V'

and I in a minimal bosonic voltage amplifier, and show
explicitly how this description is connected to the more
general linear-response treatment of Sec. VI.E. However,
before proceeding, it is worth noting that Egs. (7.7a)-
(7.7d) are themselves completely consistent with linear-
response theory. Using linear-response, one would calcu-
late the op-amp parameters Ay, A}, Zin and Zo,, using
Kubo formulas (cf. Egs. (6.56), (6.57) and the discussion
following Eq. (6. 51)) These in turn would involve corre-
lation functions of I, and V; evaluated at zero coupling
to the amplifier input and output. Zero coupling means
that there is no input voltage to the amplifier (i.e. a short
circuit at the amplifier input, V, = 0) and there is noth-
ing at the amplifier output drawing current (i.e. an open
circuit at the amphﬁer output, I, = 0). Eq. (7.4) tells
us that in this case, Vb and I reduce to (respectlvely)

the noise operators AV and I . Using the fact that the
commutators of F, and F, are completely determined
by the scattering matrix (cf. Eq. (7.3)), we verify explic-
itly in Appendix J.4 that the Kubo formulas yield the
same results for the op-amp gains and impedances as
Egs. (7.7a)-(7.7d) above.
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B. Minimal two-port scattering amplifier
1. Scattering versus op-amp quantum limit

In this subsection we demonstrate that an amplifier
which is “ideal” and minimally complex when used in the
scattering operation mode fails, when used as a voltage
op-amp, to have a quantum limited noise temperature.
The system we look at is very similar to the amplifier
considered by Grassia (1998), though our conclusions are
somewhat different than those found there.

In the scattering representation, one might guess that
an “ideal” amplifier would be one where there are no
reflections of signals at the input and output, and no
way for incident signals at the output port to reach the
input. In this case, Eq. (7.3) takes the form:

dout | 0 0 Ain F,
() (o)) (7)o

where we have defined VG = so;. All quantities above
should be evaluated at the same frequency w; for clarity,
we will omit writing the explicit w dependence of quan-
tities throughout this section.

Turning to the op-amp representation, the above equa-
tion implies that our amplifier has no reverse gain, and
that the input and output impedances are simply given
by the impedances of the input and output transmission
lines. From Egs. (7.7), we have:

Zy
v = 24/ =—G 7.11
v Z. (7.11a)
=0 (7.11Db)
Zouwt = Zp (7.11c)
1 1
= 7.11d
Zin Za ( )

We immediately see that our amplifier looks less ideal
as an op-amp. The input and output impedances are
the same as those of the input and output transmission
line. However, for an ideal op-amp, we would have liked
Zin — 00 and Zgyuy — 0.

Also of interest are the expressions for the amplifier
noises in the op-amp representation:

2 1 1 ~
Vi) = —Vewz (2 "2vE | [ 2
Zo- I 1 0 Fy

As s15 = 0, the back-action noise is the same in both the
op-amp and scattering representations: it is determined
completely by the noise operator F,. However, the volt-
age noise (i.e. the intrinsic output noise) involves both F,
and F,. We thus have the unavoidablAe consequence that

there will be correlations in I and V. Note that from
basic linear response theory, we know that there must

be some correlations between I and V if there is to be



gain (i.e. Ay is given by a Kubo formula involving these
operators, cf. Eq. (5.3)).

To make further progress, we note again that commu-
tators of the noise operators F, and F;, are completely
determined by Eq. (7.10) and the requirement that the
output operators obey canonical commutation relations.
We thus have:

Fo, FIl =1 (7.13a)
£, F] = 1-q (7.13b)
[ﬁa,ﬁb_ -0 (7.13¢)
£ F] =0 (7.13d)

We will be interested in the limit of a large power
gain, which requires |G| > 1. A minimal solution to the
above equations would be to have the noise operators de-
termined by two independent (i.e. mutually commuting)

auxiliary input mode operators u;, and vgn:
Fu = iy, (7.14)
Fy = /|G| - 10f, (7.15)

Further, to minimize the noise of the amplifier, we take
the operating state of the amplifier to be the vacuum for
both these modes. With these choices, our amplifier is in
exactly the minimal form described by Grassia (1998):
an input and output line coupled to a negative resis-
tance box and an auxiliary “cold load” via a four-port
circulator (see Fig. 13). The negative resistance box is
nothing but the single-mode bosonic amplifier discussed
in Sec. VI.B; an explicit realization of this element would
be the parametric amplifier discussed in Appendix F.
The “cold load” is a semi-infinite transmission line which
models dissipation due to a resistor at zero-temperature
(i.e. its noise is vacuum noise, cf. Appendix C).

Note that within the scattering picture, one would con-
clude that our amplifier is ideal: in the large gain limit,
the noise added by the amplifier to bout corresponds to a
single quantum at the input:

- in’ Yin

G| G|

<{ﬁb’ﬁg}>_|G|—1<{@f b }>_>1 (7.16)

This however is not the quantity which interests us: as
we want to use this system as a voltage op-amp, we would
like to know if the noise temperature defined in the op-
amp picture is as small as possible. We are also usually
interested in the case of a signal which is weakly cou-
pled to our amplifier; here, weak-coupling means that
the input impedance of the amplifier is much larger than
the impedance of the signal source (i.e. Zi, > Z;). In
this limit, the amplifier only slightly increases the total
damping of the signal source.

To address whether we can reach the op-amp quantum
limit in the weak-coupling regime, we can make use of the
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FIG. 13 Schematic of a “minimal” two-port amplifier which
reaches the quantum limit in the scattering mode of operation,
but misses the quantum limit when used as a weakly-coupled
op-amp. See text for further description

Tvin vacuum noise

results of the general theory presented in Sec. VL.E. In
particular, we need to check whether the quantum noise
constraint of Eq. (6.60) is satisfied, as this is a prereq-
uisite for reaching the (weak-coupling) quantum limit.
Thus, we need to calculate the symmetrized spectral den-
sities of the current and voltage noises, and their cross-
correlation. It is easy to confirm from the definitions of
Eq. (7.1a) and (7.1b) that these quantities take the form:

Syvlw] = =) (7.172)
ol P

Silw] = <{;7E5](WIA_(M))}> (7.17b)

Syrlw] = <{V[w]’ﬂ(w/)}> (7.17¢)

drd(w — w')

The expectation values here are over the operating state
of the amplifier; we have chosen this state to be the vac-
uum for the auxiliary mode operators 4, and 9, to min-
imize the noise.

Taking |s21]| > 1, and using Egs. (7.14) and (7.15), we
have

qQ h’“‘)Za h{UZa
Svvlw] = —= (Guu+00) = —— (7.183)
5 hw hw
Srlel = Z-ow =7 (7.18b)
= hw hw
SVI[W} = 7Ouu = 7 (7.180)
where we have defined:
Tap = <a13* + b a> (7.19)



and have used the fact that there cannot be any correla-
tions between the operators u and v in the vacuum state
(ie. (aot) =0).

It follows immediately from the above equations that
our minimal amplifier does not optimize the quantum
noise constraint of Eq. (6.60):

SVV[W]SII[W] - [Im SVI]z =2x (h;) . (7.20)

The noise product SyySrr is precisely twice the
quantum-limited value. As a result, the general the-
ory of Sec. VLE tells us if one couples an input signal
weakly to this amplifier (i.e. Zs < Zi,), it is impossible
to reach the quantum limit on the added noise. Thus,
while our amplifier is ideal in the scattering mode of op-
eration (cf. Eq. (7.16)), it fails to reach the quantum
limit when used in the weak-coupling, op-amp mode of
operation. Our amplifier’s failure to have “ideal” quan-
tum noise also means that if we tried to use it to do
QND qubit detection, the resulting back-action dephas-
ing would be twice as large as the minimum required by
quantum mechanics (cf. Sec. V.B).

One might object to the above conclusions based on
the classical expression for the minimal noise tempera-
ture, Eq. (6.48). Unlike the quantum noise constraint
of Eq. (6.60), this equation also involves the real part
of Sy, and is optimized by our “minimal” amplifier.
However, this does not mean that one can achieve a
noise temperature of fuww/2 at weak coupling! Recall
from Sec. VLLE that in the usual process of optimiz-
ing the noise temperature, one starts by assuming the
weak coupling condition that the source impedance Zg
is much smaller than the amplifier input impedance Zj,.
One then finds that to minimize the noise temperature,
|Zs| should be tuned to match the noise impedance of
the amplifier Zx = /Syv/Srr. However, in our min-
imal bosonic amplifier, it follows from Eqs. (7.18) that
N = Zin/\/ﬁ ~ Zin: the noise impedance is on the
order of the input impedance. Thus, it is impossible to
match the source impedance to the noise impedance while
at the same time satisfying the weak coupling condition
Zs K Lin.

Despite its failings, our amplifier can indeed yield a
quantum-limited noise temperature in the op-amp mode
of operation if we no longer insist on a weak coupling
to the input signal. To see this explicitly, imagine we
connected our amplifier to a signal source with source
impedance Z,. The total output noise of the amplifier,
referred back to the signal source, will now have the form:

2 L, 2 2
View = — (2222 VT4V
o = - ()

(7.21)
Note that this classical-looking equation can be rigor-
ously justified within the full quantum theory if one starts
with a full description of the amplifier and the signal
source (e.g. a parallel LC oscillator attached in parallel
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to the amplifier input). Plugging in the expressions for I

and V, we find:
ZsZq 2
Uin | —
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Thus, if one tunes Z; to Z, = Z;,, the mode w;, does not
contribute to the total added noise, and one reaches the
quantum limit. Physically speaking, by matching the
signal source to the input line, the “back-action” noise
described by F, = 1;, does not feed back into the input
of the amplifier. Note that achieving this matching ex-
plicitly requires one to be far from weak coupling! Having
Zs = Z, means that when we attach the amplifier to the
signal source, we will dramatically increase the damping
of the signal source.

2. Why is the op-amp quantum limit not achieved?

Returning to the more interesting case of a weak
amplifier-signal coupling, one might still be puzzled as
to why our seemingly ideal amplifier misses the quantum
limit. While the mathematics behind Eq. (7.20) is fairly
transparent, it is also possible to understand this result
heuristically. To that end, note again that the amplifier
noise cross-correlation Sy, does not vanish in the large-
gain limit (cf. Eq. (7.18c)). Correlations between the two
amplifier noises represent a kind of information, as by
making use of them, we can improve the performance of
the amplifier. It is easy to take advantage of out-of-phase
correlations between I and V (i.e. Im Sy;) by simply
tuning the phase of the source impedance (cf. Eq. (6.47)).
However, one cannot take advantage of in-phase noise
correlations (i.e. Re Syr) as easily. To take advantage
of the information here, one needs to modify the ampli-
fier itself. By feeding back some of the output voltage
to the input, one could effectively cancel out some of the
back-action current noise I and thus reduce the over-
all magnitude of S;;. Hence, the unused information in
the cross-correlator Re Sy represents a kind of wasted
information: had we made use of these correlations via
a feedback loop, we could have reduced the noise tem-
perature and increased the information provided by our
amplifier. The presence of a non-zero Re Sy thus corre-
sponds to wasted information, implying that we cannot
reach the quantum limit. Recall that within the linear-
response approach, we were able to prove rigorously that
a large-gain amplifier with ideal quantum noise must have
Re Sy = 0 (cf. the discussion following Eq. (6.29)); thus,
a non-vanishing Re Sy rigorously implies that one can-
not be at the quantum limit. In Appendix I, we give



an explicit demonstration of how feedback may be used
to utilize these cross-correlations to reach the quantum
limit.

Finally, yet another way of seeing that our amplifier
does not reach the quantum limit (in the weak coupling
regime) is to realize that this system does not have a
well defined effective temperature. Recall from Sec.VI.E
that a system with “ideal” quantum noise (i.e. one that
satisfies Eq. (6.60) as an equality) necessarily has the
same effective temperature at its input and output ports
(cf. Eq. (6.27)). Here, that implies the requirement:

Av]? - Syv

= ZwuSi1 = 2kpTs
Zout II Bleff

(7.23)

In contrast, our minimal bosonic amplifier has very dif-
ferent input and output effective temperatures:

- hw
2kBTeH,iH = ZinSII = 7 (724)
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Zout

This huge difference in effective temperatures means that
it is impossible for the system to possess “ideal” quan-
tum noise, and thus it cannot reach the weak-coupling
quantum limit.

While it implies that one is not at the quantum limit,
the fact that Teg in < Tegr,out can nonetheless be viewed
as an asset. From a practical point of view, a large Tog in
can be dangerous. Even though the direct effect of the
large Tug in is offset by an appropriately weak coupling
to the amplifier (see Eq. (6.42) and following discussion),
this large Toq in can also heat up other degrees of freedom
if they couple strongly to the back-action noise of the am-
plifier. This can in turn lead to unwanted heating of the
input system. As T i, is usually constant over a broad
range of frequencies, this unwanted heating effect can be
quite bad. In the minimal amplifier discussed here, this
problem is circumvented by having a small Teg i,. The
only price that is payed is that the added noise will be v/2
the quantum limit value. We discuss this issue further in
Sec. VIII.

VIIl. REACHING THE QUANTUM LIMIT IN PRACTICE
A. Importance of QND measurements

The fact that QND measurements are repeatable is of
fundamental practical importance in overcoming detec-
tor inefficiencies (Gambetta et al., 2007). A prototypical
example is the electron shelving technique (Nagourney
et al., 1986; Sauter et al., 1986) used to measure trapped
ions. A related technique is used in present implementa-
tions of ion-trap based quantum computation. Here the
(extremely long-lived) hyperfine state of an ion is read
out via state-dependent optical fluorescence. With prop-
erly chosen circular polarization of the exciting laser, only
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one hyperfine state fluoresces and the transition is cy-
cling; that is, after fluorescence the ion almost always re-
turns to the same state it was in prior to absorbing the ex-
citing photon. Hence the measurement is QND. Typical
experimental parameters (Wineland et al., 1998) allow
the cycling transition to produce N ~ 10° fluorescence
photons. Given the photomultiplier quantum efficiency
and typically small solid angle coverage, only a very small
number 1y will be detected on average. The probability
of getting zero detections (ignoring dark counts for sim-
plicity) and hence misidentifying the hyperfine state is
P(0) = e~™. Even for a very poor overall detection ef-
ficiency of only 1072, we still have iy = 10 and nearly
perfect fidelity F' = 1— P(0) = 0.999955. It is important
to note that the total time available for measurement
is not limited by the phase coherence time (75) of the
qubit or by the measurement-induced dephasing (Gam-
betta et al., 2006; Korotkov, 2001a; Makhlin et al., 2001;
Schuster et al., 2005), but rather only by the rate at
which the qubit makes real transitions between measure-
ment (5,) eigenstates. In a perfect QND measurement
there is no measurement-induced state mixing (Makhlin
et al., 2001) and the relaxation rate 1/T is unaffected
by the measurement process.

B. Power matching versus noise matching

In Sec. VI, we saw that an important part of reach-
ing the quantum limit on the added noise of an amplifier
(when used in the op-amp mode of operation) is to op-
timize the coupling strength to the amplifier. For a po-
sition detector, this condition corresponds to tuning the
strength of the back-action damping v to be much smaller
than the intrinsic oscillator damping (c.f. Eq. (6.41)).
For a voltage amplifier, this condition corresponds to tun-
ing the impedance of the signal source to be equal to the
noise impedance (c.f. Eq. (6.49)), an impedance which is
much smaller than the amplifier’s input impedance (c.f.
Eq. (6.62)).

In this subsection, we make the simple point that opti-
mizing the coupling (i.e. source impedance) to reach the
quantum limit is not the same as what one would do to
optimize the power gain. To understand this, we need to
introduce another measure of power gain commonly used
in the engineering community, the available power gain
G p,avail- For simplicity, we will discuss this quantity in
the context of a linear voltage amplifier, using the nota-
tions of Sec. VI.E; it can be analogously defined for the
position detector of Sec.VI.D. G p avai1 tells us how much
power we are providing to an optimally matched output
load relative to the maximum power we could in principle
have extracted from the source. This is in marked con-
trast to the power gain G p, which was calculated using
the actual power drawn at the amplifier input.

For the available power gain, we first consider Pin avail-
This is the maximum possible power that could be deliv-
ered to the input of the amplifier, assuming we optimized



both the value of the input impedance Z;, and the load
impedance Z)y,q while keeping Z; fixed. For simplicity,
we will take all impedances to be real in our discussion.
In general, the power drawn at the input of the amplifier
is given by:
—Pi _ ’Uign ZsZin
Zin (Zs + Zin)*

(8.1)

Maximizing this over Zj,, we obtain the available input
power -Pin,avail:

2
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-Pin,avail =

The maximum occurs for Z;, = Zs.
The output power supplied to the load is calculated as
before, keeping Z;, and Z; distinct. One has:
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The available power gain is now defined as:
_ Pout,max
GP,avall = m (87)
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We see that G'pavail is strictly less than or equal to the
power gain Gp; equality is only achieved when Z5 = Z;,
(i.e. when the source impedance is “power matched” to
the input of the amplifier). The general situation where
G pavail < Gp indicates that we are not drawing as much
power from the source as we could, and hence the actual
power supplied to the load is not as large as it could be.

Consider now a situation where we have achieved the
quantum limit on the added noise. This necessarily
means that we have “noise matched”, i.e. taken Z5 to be
equal to the noise impedance Zy. The available power
gain in this case is:

Z
GP,avail ~ )\2Z7N = 2\/@ < GP (810)

out

We have used Eq. (6.62), which tells us that the noise
impedance is smaller than the input impedance by a large
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factor 1/(2¢/Gp). Thus, as reaching the quantum limit
requires the use of a source impedance much smaller than
Zin, it results in a dramatic drop in the available power
gain compared to the case where we “power match” (i.e.
take Zs = Zin). In practice, one must decide whether it
is more important to minimize the added noise, or max-
imize the power provided at the output of the amplifier:
one cannot do both at the same time.

IX. CONCLUSIONS

In this review, we have given an introduction to the
physics of quantum noise. We have discussed how one
can measure quantum noise using quantum spectrum an-
alyzers, as well as how fundamental constraints on quan-
tum noise are directly tied to various quantum limits on
measurement and amplification. As already mentioned
in the introduction, there are many interesting topics re-
lated to quantum noise and quantum circuits that we
were not able to cover in this review. In what follows,
we give a brief listing of some of these topics, along with
relevant review literature.

Quantum noise has long been of interest in mesoscopic
physics, even before the recent resurgence inspired by
connections to measurement and amplification. In par-
ticular, the study of non-equilibrium current fluctuations
(i.e. shot noise) of a mesoscopic conductor, and the re-
lated full statistics of current fluctuations (“full counting
statistics”), have been intensely studied, as they can re-
veal important insights into quantum transport. Both
topics have been covered in a number of recent reviews
(Blanter and Bittiker, 2000; Levitov, 2003; Nazarov,
2003). Connections between full counting statistics and
quantum measurement have also been explored (Averin
and Sukhorukov, 2005; Nazarov and Kindermann, 2003).

There are also several important aspects of weak quan-
tum measurement that we have not been able to discuss
in this review. A relatively recent development has been
the study of conditional quantum evolution and quantum
trajectories. Such studies attempt to understand the evo-
lution of a quantum system in a particular run of an ex-
periment: given a particular measurement record, what
is the state of the measured system? Further, can the
measurement record contain evidence of quantum jumps
of the measured system between different states (e.g. a
mechanical resonator jumping from one Fock state to an-
other). Such topics have received substantial attention in
the quantum optics and atomic physics community. The
topic of quantum jumps and stochastic wavefunction evo-
lution is given a tutorial review in Brun, 2002, while an
introduction to conditional quantum evolution and quan-
tum feedback is given in Jacobs and Steck, 2006. These
topics have also recently been discussed in the context
of condensed matter systems. Studies have examined
continuous measurement of a qubit by a quantum point
contact (Goan and Milburn, 2001; Goan et al., 2001; Ko-
rotkov, 1999, 2001b), as well as the possibility of detect-



ing quantum jumps in the state of a mechanical resonator
via QND measurement of its energy (Santamore et al.,
2004a,b).

While we have discussed many measurement and am-
plification schemes, there are several which we did not
address. So-called “latching” measurements of the state
of a qubit have recently been used to make measurements
of the state of a superconducting qubit (Siddiqi et al.,
2004). For a sufficiently slow input signal, such latch-
ing measurements can also be used as an efficient means
of linear amplification, possibly reaching the amplifier
quantum limit.
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APPENDIX A: The Wiener-Khinchin Theorem

From the definition of the spectral density in Eqgs.(2.2-
2.3) we have

1 /7 T ' )
Syviw] = = / dt / dt’ e ) (p(t)u(t'))
T Jo 0
1 /T 12B(t) 4
= —/ dt/ dre™™ (v(t+7/2)v(t — 7/2)) (A1)
T Jo —2B(t)
where

B(t) = tift<T/2
= T—tift>T)/2.

If T greatly exceeds the noise autocorrelation time 7
then it is a good approximation to extend the bound B(t)
in the second integral to infinity, since the dominant con-
tribution is from small 7. Using time translation invari-
ance gives

T “+oco
Syvw] = %/0 dt/_ dr e™7 (v(1)v(0))
+oo

= [ dr e™7 (v(1)v(0)). (A2)
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This proves the Wiener-Khinchin theorem stated in
Eq. (2.4).

A useful application of these ideas is the following.
Suppose that we have a noisy signal V(t) = V + n(t)
which we begin monitoring at time ¢ = 0. The integrated
signal up to time t given by

1(T) = /O Lavn (A3)

has mean

(I(T)) = VT. (A4)

Provided that the integration time greatly exceeds the
autocorrelation time of the noise, I(T') is a sum of a large
number of uncorrelated random variables. The central
limit theorem tells us in this case that I(t) is gaussian
distributed even if the signal itself is not. Hence the
probability distribution for I is fully specified by its mean
and its variance
T

(@rp) = [ aar woney. (49
From the definition of spectral density above we have the
simple result that the variance of the integrated signal

grows linearly in time with proportionality constant given
by the noise spectral density at zero frequency

((AD)?) = Syv[0]T. (A6)

As a simple application, consider the photon shot noise
of a coherent laser beam. The total number of photons
detected in time T is

T .
N(T) = / dt N (0). (A7)
0

The photo-detection signal N (t) is not gaussian, but
rather is a point process, that is, a sequence of delta func-
tions with random Poisson _distributed arrival times and
mean photon arrival rate V. Nevertheless at long times
the mean number of detected photons

(N(T)) = NT (A8)

will be large and the photon number distribution will be
gaussian with variance

(AN)?) = Spy T. (A9)

Since we know that for a Poisson process the variance is
equal to the mean

((AN)?) = (N(T)), (A10)

it follows that the shot noise power spectral density is

Sy (0) :ﬁ. (A11)
Since the noise is white this result happens to be valid at
all frequencies, but the noise is gaussian distributed only

at low frequencies.



APPENDIX B: Modes, Transmission Lines and Classical
Input/Output Theory

In this appendix we introduce a number of important
classical concepts about electromagnetic signals which
are essential to understand before moving on to the study
of their quantum analogs. A signal at carrier frequency
w can be described in terms of its amplitude and phase
or equivalently in terms of its two quadrature amplitudes

s(t) = X cos(wt) + Y sin(wt). (B1)
We will see in the following that the physical oscillations
of this signal in a transmission line are precisely the sinu-
soidal oscillations of a simple harmonic oscillator. Com-
parison of Eq. (B1) with Eq. (2.18) shows that we can
identify the quadrature amplitude X with the coordinate
of this oscillator and thus the quadrature amplitude Y is
proportional to the momentum conjugate to X. Quan-
tum mechanically, X and Y become operators X and Y
which do not commute. Thus their quantum fluctuations
obey the Heisenberg uncertainty relation.

Ordinarily (e.g., in the absence of squeezing), the phase
choice defining the two quadratures is arbitrary and so
their vacuum (i.e. zero-point) fluctuations are equal

Xypr = Yzpr. (B2)
Thus the canonical commutation relation becomes
[Xv Y] = iX%PF' (B3)

We will see that the fact that X and Y are canoni-
cally conjugate has profound implications both classically
and quantum mechanically. In particular, the action of
any circuit element (beam splitter, attenuator, amplifier,
etc.) must preserve the Poisson bracket (or in the quan-
tum case, the commutator) between the signal quadra-
tures. This places strong constraints on the properties
of these circuit elements and in particular, forces every
amplifier to add noise to the signal.

1. Transmission lines and classical input-output theory

We begin by considering a coaxial transmission line
modeled as a perfectly conducting wire with inductance
per unit length of £ and capacitance to ground per unit
length ¢ as shown in Fig. 14. If the voltage at position x
at time ¢ is V(x,t), then the charge density is ¢(z,t) =
cV(x,t). By charge conservation the current I and the
charge density are related by the continuity equation
The constitutive relation (essentially Newton’s law) gives
the acceleration of the charges

00,1 = —08,V. (B5)
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We can decouple Egs. (B4) and (B5) by introducing left
and right propagating modes

Viat) = V= +V] (B6)
I(2,t) = Z%[v* . (BT)

where Z. = 4//f/c is called the characteristic impedance
of the line. In terms of the left and right propagating
modes, Egs. (B4) and B5 become

00V OV = 0
0p0 VT = VT = 0

where v, = 1/ Ve is the wave phase velocity. These
equations have solutions which propagate by uniform
translation without changing shape since the line is dis-
persionless

T

V*)(xvt) = Vout(t_ ) (BIO)

P
Vo(@,t) = Valt+ ), (B11)
P

where Vi, and Vit are arbitrary functions of their argu-
ments. For an infinite transmission line, V,; and Vi, are
completely independent. However for the case of a semi-
infinite line terminated at = 0 (say) by some system S,
these two solutions are not independent, but rather re-
lated by the boundary condition imposed by the system.
We have

V(z=0,t) = [Vour(t) + Via(t)] (B12)
Ia=0.0) = S Vou(®) = Valt)l, (B3

from which we may derive
Vout (1) = Vin(t) + ZcI(x = 0,1). (B14)

If the system under study is just an open circuit so
that I(z = 0,t) = 0, then Voyy = Vi, meaning that the
outgoing wave is simply the result of the incoming wave
reflecting from the open circuit termination. In general
however, there is an additional outgoing wave radiated
by the current I that is injected by the system dynamics
into the line. In the absence of an incoming wave we have

V(z=0,t) = ZJI(x = 0,t), (B15)
indicating that the transmission line acts as a simple re-
sistor which, instead of dissipating energy by Joule heat-
ing, carries the energy away from the system as propa-
gating waves. The fact that the line can dissipate energy
despite containing only purely reactive elements is a con-
sequence of its infinite extent. One must be careful with
the order of limits, taking the length to infinity before
allowing time to go to infinity. In this way the outgoing
waves never reach the far end of the transmission line and
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FIG. 14 a) Coaxial transmission line, indicating voltages and
currents as defined in the main text. b) Lumped element
representation of a transmission line with capacitance per unit
length ¢ and inductance per unit length ¢. c) Discrete LC
resonator terminating a transmission line.

reflect back. Since this is a conservative Hamiltonian sys-
tem, we will be able to quantize these waves and make a
quantum theory of resistors (Caldeira and Leggett, 1983)
in Appendix C. The net power flow carried to the right
by the line is

1

P = Z[Vfut(t) — V). (B16)

The fact that the transmission line presents a dissipa-
tive impedance to the system means that it causes damp-
ing of the system. It also however opens up the possibility
of controlling the system via the input field which par-
tially determines the voltage driving the system. From
this point of view it is convenient to eliminate the output
field by writing the voltage as

V(z =0,t) = 2Vin(t) + ZeI(z = 0,1). (B17)

As we will discuss in more detail below, the first term
drives the system and the second damps it. From
Eq. (B14) we see that measurement of the outgoing field
can be used to determine the current I(x = 0,t) injected
by the system into the line and hence to infer the system
dynamics that results from the input drive field.

As a simple example, consider the system consisting of
an LC resonator shown in Fig. (14 ¢). This can be viewed
as a simple harmonic oscillator whose coordinate @ is the
charge on the capacitor plate (on the side connected to
Lo). The current I(z = 0,t) = Q plays the role of the
velocity of the oscillator. The equation of motion for the
oscillator is readily obtained from

Q=Col-V(x=0"t)— Lol(x=0%,t)].  (B18)
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Using Eq. (B17) we obtain a harmonic oscillator damped
by the transmission line and driven by the incoming
waves

G=-0Q-1Q- L Vald,  (B19)
where the resonant frequency is Q3 = 1//LoCy. Note
that the term Z.I(z = 0,t) in Eq. (B17) results in the
linear viscous damping rate v = Z./Ly.

If we solve the equation of motion of the oscillator, we
can predict the outgoing field. In the present instance of
a simple oscillator we have a particular example of the
general case where the system responds linearly to the
input field. We can characterize any such system by a

complex, frequency dependent impedance Z[w]| defined
by

V(z =0,w)

48 :_I(m:O,w)'

(B20)

Note the peculiar minus sign which results from our def-
inition of positive current flowing to the right (out of the
system and into the transmission line). Using Eqs. (B12,
B13) and Eq. (B20) we have

Vout [W] = T[W]Vvin [W], (B21)
where the reflection coefficient r is determined by the
impedance mismatch between the system and the line
and is given by the well known result

Zw] — Z,

2T 2 (B22)

rlw] =

If the system is constructed from purely reactive (i.e.
lossless) components, then Z[w] is purely imaginary and
the reflection coefficient obeys |r| = 1 which is consistent
with Eq. (B16) and the energy conservation requirement
of no net power flow into the lossless system. For exam-
ple, for the series LC' oscillator we have been considering,
we have

1
Zw] = 7wCo + jwLy, (B23)
where, to make contact with the usual electrical engi-
neering sign conventions, we have used j = —i. If the
damping v of the oscillator induced by coupling it to the
transmission line is small, the quality factor of the reso-
nance will be high and we need only consider frequencies
near the resonance frequency Qo = 1/v/LoCy where the
impedance has a zero. In this case we may approximate

2
Zw| ~ ——[Q —w] =2jL(w— B24
which yields for the reflection coefficient
- Q iv/2
rlw] = L= 0TIV v/ (B25)

w—Q —jv/2



showing that indeed |r| = 1 and that the phase of the
reflected signal winds by 27 upon passing through the
resonance. 22

Turning to the more general case where the system
also contains lossy elements, one finds that Z[w] is no
longer purely imaginary, but has a real part satisfying
Re Z[w] > 0. This in turn implies via Eq. (B22) that
|r] < 1. In the special case of impedance matching
Zlw] = Z., all the incident power is dissipated in the
system and none is reflected. The other two limits of
interest are open circuit termination with Z = oo for
which » = 4+1 and and short circuit termination Z = 0
for which r = —1.

Finally, if the system also contains an active device
which has energy being pumped into it from a separate
external source, it may under the right conditions be de-
scribed by an effective negative resistance Re Z[w] < 0
over a certain frequency range. Eq. (B22) then gives
|r| > 1, implying |Vout| > |[Vin|. Our system will thus act
like the one-port amplifier discussed in Sec. VI.C: it am-
plifies signals incident upon it. We will discuss this idea
of negative resistance further in Sec. B.4; a physical real-
ization is provided by the two-port reflection parametric
amplifier discussed in Appendix F.

2. Lagrangian, Hamiltonian, and wave modes for a
transmission line

Prior to moving on to the case of quantum noise it
is useful to review the classical statistical mechanics of
transmission lines. To do this we need to write down
the Lagrangian and then determine the canonical mo-
menta and the Hamiltonian. Very conveniently, the sys-
tem is simply a large collection of harmonic oscillators
(the normal modes) and hence can be readily quantized.
This representation of a physical resistor is essentially the
one used by Caldeira and Leggett (Caldeira and Leggett,
1983) in their seminal studies of the effects of dissipation
on tunneling. The only difference between this model
and the vacuum fluctuations in free space is that the rel-
ativistic bosons travel in one dimension and do not carry
a polarization label. This changes the density of states as
a function of frequency, but has no other essential effect.

It is convenient to define a flux variable (Devoret, 1997)

p(z,t) = [ drV(z,7), (B26)

where V(z,t) = O:p(x, t) is the local voltage on the trans-
mission line at position z and time ¢. Each segment of
the line of length dx has inductance ¢ dx and the voltage
drop along it is —dxz 9,0rp(x,t). The flux through this

22 For the case of resonant transmission through a symmetric cav-
ity, the phase shift only winds by .
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inductance is thus —dx d,¢(x,t) and the local value of
the current is given by the constitutive equation

1
The Lagrangian for the system is
— T ar S0 — L (0,002
L= [ o - g o2 @)

The Euler-Lagrange equation for this Lagrangian is sim-
ply the wave equation

vﬁ@ig@ — 920 =0.
The momentum conjugate to ¢(x) is simply the charge
density

(B29)

oL
q(z,t) = 50,0 = cOyp = cV (z,1) (B30)
and so the Hamiltonian is given by
_ Lo, 1 2
H= /d:c {2Cq + 57(020) } (B31)

We know from our previous results that the charge
density consists of left and right moving solutions of ar-
bitrary fixed shape. For example we might have for the
right moving case

q(t—z/vy) = ay cos[k(x—vpt)|+ 0Ok sin[k(z—vpt)]. (B32)

A confusing point is that since ¢ is real valued, we see
that it necessarily contains both e*** and e~** terms
even if it is only right moving. Note however that for
k > 0 and a right mover, the e*** is associated with the
positive frequency term e~ *** while the e~ *** term is
associated with the negative frequency term et®+* where
wy, = vp|k|. For left movers the opposite holds. We can
appreciate this better if we define

2

1 e 1 k
Akzﬁ/dxe k {\/%q(a:,t)—z %Lp(x,t)}

(B33)
where for simplicity we have taken the fields to obey pe-
riodic boundary conditions on a length L. Thus we have
(in a form which anticipates the full quantum theory)

1 * *
H= > (ApAx + ARAL).

k

(B34)

The classical equation of motion (B29) yields the simple
result

6tAk = —ikak. (B35)

Thus

q(z,t)
_ \/g 3 et [Ap(0)e T 1 AT ()] (B36)
k

= \/gz [Ak(o)eﬂ(mfw,ct) +Az(0)67i(kmfwkt)}.
k

(B37)



We see that for &k > 0 (k < 0) the wave is right (left)
moving, and that for right movers the e*** term is asso-
ciated with positive frequency and the e~ *** term is as-
sociated with negative frequency. We will return to this

J

- i +i(kx—wit) * —i(kx—wgt)
Vo o= MQLCZ[A;@(O)e + AL (0)e ]

k>0

— L +i(kr—wit) * —i(kz—wyt)
Ve = ,/2LCZ[A,€(0)€ + AL (0)e ]

k<0
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in the quantum case where positive (negative) frequency
will refer to the destruction (creation) of a photon. Note
that the right and left moving voltages are given by

(B38)

(B39)

The voltage spectral density for the right moving waves is thus

STvlel = oo S {ARADS(w — i) + (ALAR(w + i)}

k>0

(B40)

The left moving spectral density has the same expression but k& < 0.
Using Eq. (B16), the above results lead to a net power flow (averaged over one cycle) within a frequency band

defined by a pass filter Gw] of

P =P~ — P~ = 223 sgu(k) [Gluowl(ArAf) + Gl-wn] (4141
k

3. Classical statistical mechanics of a transmission line

Now that we have the Hamiltonian, we can consider
the classical statistical mechanics of a transmission line in
thermal equilibrium at temperature 7. Since each mode
k is a simple harmonic oscillator we have from Eq. (B34)
and the equipartition theorem

(AL Ar) = kpT. (B42)
Using this, we see from Eq. (B40) we see that the right
moving voltage signal has a simple white noise power
spectrum. Using Eq. (B41) we have for the right moving
power in a bandwidth B (in Hz rather than radians/sec)
the very simple result

v
P = OB ) (GlulAj Ak + Gl-wi] Ap A7)
k>0
ksT
2

= ksTB.

+ood7w[]
oo 2m Y

(B43)

where we have used the fact mentioned in connection
with Eq. (2.15) and the discussion of square law detec-
tors that all passive filter functions are symmetric in fre-
quency.

One of the basic laws of statistical mechanics is Kirch-
hoff’s law stating that the ability of a hot object to emit
radiation is proportional to its ability to absorb. This
follows from very general thermodynamic arguments con-

(B41)

cerning the thermal equilibrium of an object with its ra-
diation environment and it means that the best possible
emitter is the black body. In electrical circuits this princi-
ple is simply a form of the fluctuation dissipation theorem
which states that the electrical thermal noise produced
by a circuit element is proportional to the dissipation it
introduces into the circuit. Consider the example of a ter-
minating resistor at the end of a transmission line. If the
resistance R is matched to the characteristic impedance
Z. of a transmission line, the terminating resistor acts
as a black body because it absorbs 100% of the power
incident upon it. If the resistor is held at temperature T’
it will bring the transmission line modes into equilibrium
at the same temperature (at least for the case where the
transmission line has finite length). The rate at which the
equilibrium is established will depend on the impedance
mismatch between the resistor and the line, but the final
temperature will not.

A good way to understand the fluctuation-dissipation
theorem is to represent the resistor R which is terminat-
ing the Z. line in terms of a second semi-infinite trans-
mission line of impedance R as shown in Fig. (15). First
consider the case when the R line is not yet connected to
the Z. line. Then according to Eq. (B22), the open termi-
nation at the end of the Z. line has reflectivity |r|> = 1
so that it does not dissipate any energy. Additionally
of course, this termination does not transmit any sig-
nals from the R line into the Z.,. However when the
two lines are connected the reflectivity becomes less than
unity meaning that incoming signals on the Z. line see



a source of dissipation R which partially absorbs them.
The absorbed signals are not turned into heat as in a
true resistor but are partially transmitted into the R line
which is entirely equivalent. Having opened up this port
for energy to escape from the Z. system, we have also
allowed noise energy (thermal or quantum) from the R
line to be transmitted into the Z. line. This is completely
equivalent to the effective circuit shown in Fig. (16 a) in
which a real resistor has in parallel a random current
generator representing thermal noise fluctuations of the
electrons in the resistor. This is the essence of the fluc-
tuation dissipation theorem.

In order to make a quantitative analysis in terms of
the power flowing in the two lines, voltage is not the best
variable to use since we are dealing with more than one
value of line impedance. Rather we define incoming and
outgoing fields via

1

Ap = —V B44
VZ. (B4

1
Agut = —=V~ B45
t \/Z ( )

1
By, = ——=V§&~ B46
\/E R ( )

1
Boww = —=Vi (B47)

VR

Normalizing by the square root of the impedance allows
us to write the power flowing to the right in each line in
the simple form

P. = (Aou)® — (Ain)? (B48)
Pr = (Bin)?® — (Bou)? (B49)
The out fields are related to the in fields by the s matrix

Aout Ain
=S
Bout Bin

Requiring continuity of the voltage and current at the
interface between the two transmission lines, we can solve
for the scattering matrix s:

(B50)

5= (” t ) (B51)
t —r
where
R-Z,
"7 RiZe (B52)
2WRZ.
t R+ Zc (B53)

Note that |r|? + [t|? = 1 as required by energy conserva-
tion and that s is unitary with det (s) = —1. By moving
the point at which the phase of the Bj, and By fields
are determined one-quarter wavelength to the left, we
can put s into different standard form

§ — +r it
it +r

(B54)
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which has det (s') = +1.

— I/’r . Z

@ - -

=
7,

R Ve —

FIG. 15 (Color online) Semi-infinite transmission line of
impedance Z. terminated by a resistor R which is represented
as a second semi-infinite transmission line.

As mentioned above, the energy absorbed from the Z,
line by the resistor R is not turned into heat as in a
true resistor but is is simply transmitted into the R line,
which is entirely equivalent. Kirchhoff’s law is now easy
to understand. The energy absorbed from the Z. line and
the energy transmitted into it by thermal fluctuations
in the R line are both proportional to the absorption
coefficient

4RZ.
(R+ Z.)?

A=1—-|r? =t} = (B55)

Iy

a)

FIG. 16 Equivalent circuits for noisy resistors.

The requirement that the transmission line Z. come to
equilibrium with the resistor allows us to readily compute
the spectral density of current fluctuations of the random
current source shown in Fig. (16 a). The power dissipated
in Z; by the current source attached to R is

o0 dw R?Z,
P [m o SII[W](R—FZC)Z
(B56)

For the special case R = Z. we can equate this to the
right moving power P~ in Eq. (B43) because left moving
waves in the Z, line are not reflected and hence cannot
contribute to the right moving power. Requiring P =
P~ yields the classical Nyquist result for the current
noise of a resistor

2
S[[[w} = kaT

= (B57)



or in the electrical engineering convention

4
SII[UJ] —|—S[][—u.)] = —kgT.

7 (B58)

We can derive the equivalent expression for the volt-
age noise of a resistor (see Fig. 16 b) by considering the
voltage noise at the open termination of a semi-infinite
transmission line with Z. = R. For an open termination
V= =V so that the voltage at the end is given by

V=2V =2V (B59)
and thus using Egs. (B40) and (B42) we find
Syv = 487, = 2RkpT (B60)

which is equivalent to Eq. (B57).

4. Amplification with a transmission line and a negative
resistance

We close our discussion of transmission lines by fur-
ther expanding upon the idea mentioned at the end of
App. B.1 that one can view a one-port amplifier as a
transmission line terminated by an effective negative re-
sistance. The discussion here will be very general: we will
explore what can be learned about amplification by sim-
ply extending the results we have obtained on transmis-
sion lines to the case of an effective negative resistance.
Our general discussion will not address the important is-
sues of how one achieves an effective negative resistance
over some appreciable frequency range: for such ques-
tions, one must focus on a specific physical realization,
such as the parametric amplifier discussed in Appendix F.

We start by noting that for the case —Z. < R < 0 the
power gain G is given by

G=lr*>1, (B61)

and the s’ matrix introduced in Eq. (B54) becomes

s':—< VG ile) (B62)

+/G-1 VG

where the sign choice depends on the branch cut chosen
in the analytic continuation of the off-diagonal elements.
This transformation is clearly no longer unitary (because
there is no energy conservation since we are ignoring the
work done by the amplifier power supply). Note however
that we still have det (s’) = +1. It turns out that this
naive analytic continuation of the results from positive to
negative resistance is not strictly correct. As we will show
in the following, we must be more careful than we have
been so far in order to insure that the transformation
from the in fields to the out fields must be canonical.

In order to understand the canonical nature of the
transformation between input and output modes, it is
necessary to delve more deeply into the fact that the
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two quadrature amplitudes of a mode are canonically
conjugate. Following the complex amplitudes defined
in Eqgs. (B44-B47), let us define a vector of real-valued
quadrature amplitudes for the incoming and outgoing
fields

Xip xqu
L Xin . Xout
qm — Yﬁ , qout — YOBut . (B63)
B B
YX‘ Y;‘)ut

The Poisson brackets amongst the different quadrature
amplitudes is given by

{Q;na Q;n} X ‘]ij7 (B64)
or equivalently the quantum commutators are
[q;nvq}n} = iX%PFJijv (B65)
where
0 0 0 +1
J= 0 0 +1 0 (B66)
0 -1 0 0
-1 0 0 0

In order for the transformation to be canonical, the same
Poisson bracket or commutator relations must hold for
the outgoing field amplitudes

(47", 45™] = iXZpp Jij- (B67)
In the case of a non-linear device these relations would
apply to the small fluctuations in the input and output
fields around the steady state solution. Assuming a linear
device (or linearization around the steady state solution)
we can define a 4 x 4 real-valued scattering matrix § in
analogy to the 2 x 2 complex-valued scattering matrix s
in Eq. (B51) which relates the output fields to the input
fields

" = 5iq" (B68)
Eq. (B67) puts a powerful constraint on on the § matrix,
namely that it must be symplectic. That is, § and its
transpose must obey

5J5T =J. (B69)
From this it follows that
det 5 = +1. (B70)

This in turn immediately implies Liouville’s theorem
that Hamiltonian evolution preserves phase space volume
(since det § is the Jacobian of the transformation which
propagates the amplitudes forward in time).

Let us further assume that the device is phase preserv-
ing, that is that the gain or attenuation is the same for



both quadratures. One form for the § matrix consistent
with all of the above requirements is

+cosf sinf 0 0
5 sinf —cos@ 0 .0 (BT1)
0 0 —cosf sinf
0 0 sinf +cosf

This simply corresponds to a beam splitter and is the
equivalent of Eq. (B51) with » = cosf. As mentioned in
connection with Eq. (B51), the precise form of the scat-
tering matrix depends on the choice of planes at which
the phases of the various input and output waves are
measured.

Another allowed form of the scattering matrix is:

+ cosh@ +sinhf 0 0
§—_ +sinh# +coshd 0 0
0 0 +coshf —sinh6

0 0 —sinh# + coshd

(B72)
If one takes coshf = \/@, this scattering matrix is
essentially the canonically correct formulation of the
negative-resistance scattering matrix we tried to write in
Eq. (B62). Note that the off-diagonal terms have changed
sign for the Y quadrature relative to the naive expression
in Eq. (B62) (corresponding to the other possible an-
alytic continuation choice). This is necessary to satisfy
the symplecticity condition and hence make the transfor-
mation canonical. The scattering matrix §' can describe
amplification. Unlike the beam splitter scattering ma-
trix § above, § is not unitary (even though det§ = 1).
Unitarity would correspond to power conservation. Here,
power is not conserved, as we are not explicitly tracking
the power source supplying our active system.

The form of the negative-resistance amplifier scattering
matrix § confirms many of the general statements we
made about phase-preserving amplification in Sec. VI.B.
First, note that the requirement of finite gain G > 1 and
phase preservation makes all the diagonal elements of 5’
(i.e. coshf ) equal. We see that to amplify the A mode,
it is impossible to avoid coupling to the B mode (via the
sinh € term) because of the requirement of symplecticity.
We thus see that it is impossible classically or quantum
mechanically to build a linear phase-preserving amplifier
whose only effect is to amplify the desired signal. The
presence of the sinh # term above means that the output
signal is always contaminated by amplified noise from
at least one other degree of freedom (in this case the B
mode). If the thermal or quantum noise in A and B
are equal in magnitude (and uncorrelated), then in the
limit of large gain where cosh 6 = sinh 6, the output noise
(referred to the input) will be doubled. This is true for
both classical thermal noise and quantum vacuum noise.

The negative resistance model of an amplifier here
gives us another way to think about the noise added by
an amplifier: crudely speaking, we can view it as being
directly analogous to the fluctuation-dissipation theorem
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simply continued to the case of negative dissipation. Just
as dissipation can occur only when we open up a new
channel and thus we bring in new fluctuations, so ampli-
fication can occur only when there is coupling to an ad-
ditional channel. Without this it is impossible to satisfy
the requirement that the amplifier perform a canonical
transformation.

APPENDIX C: Quantum Modes and Noise of a
Transmission Line

1. Quantization of a transmission line

Recall from Eq. (B30) and the discussion in Appendix
B that the momentum conjugate to the transmission line
flux variable (z,t) is the local charge density ¢(z,t).
Hence in order to quantize the transmission line modes
we simply promote these two physical quantities to quan-
tum operators obeying the commutation relation

[4(x), ¢(a")] = —ihd(x — 2') (C1)

from which it follows that the mode amplitudes defined
in Eq. (B33) become quantum operators obeying

[Awr, AL] = hwrdpr (C2)

and we may identify the usual raising and lowering oper-
ators by

Ay = /hwy, by, (C3)

where by, destroys a photon in mode k. The quantum
form of the Hamiltonian in Eq. (B34) is thus

H=Y hu [z;;z;k n ;] | N
k

For the quantum case the thermal equilibrium expression
then becomes

(AL Ar) = hwpng (hwy), (C5)

which reduces to Eq. (B42) in the classical limit hwy <
kpT.

We have seen previously in Egs. (B6) that the volt-
age fluctuations on a transmission line can be resolved
into right and left moving waves which are functions of a
combined space-time argument

V) =V7(t— )+ Vo (t+—).  (C6)

Up Up

Thus in an infinite transmission line, specifying V'~ ev-
erywhere in space at t = 0 determines its value for all
times. Conversely specifying V™ at x = 0 for all times
fully specifies the field at all spatial points. In prepa-
ration for our study of the quantum version of input-
output theory in Appendix D, it is convenient to extend



Egs. (B38-B39) to the quantum case:

Vo) = g S Vi byt e

Il
c\g
N |
¥ &
o

In the second line, we have defined:

b~ lw] = 27‘(\/?28]65(0) — wg)

k>0

In a similar fashion, we have:

V() = /0 oo;%,/h‘*;ZC [l + hc.] (C9)

~ QW\/%ZZA)]C&(WW]@)

k<0

=

1

£
I

(C10)

One can easily verify that among the b~ [w], b~ [w] opera-
tors and their conjugates, the only non-zero commutators
are given by:

[é* W], (Bﬂ[w']ﬂ — [ir W], (ir[w’]” — 2(w — )

(C11)
We have taken the continuum limit L — oo here, allowing
us to change sums on k to integrals. We have thus ob-
tained the description of a quantum transmission line in
terms of left and right-moving frequency resolved modes,
as used in our discussion of amplifiers in Sec. VII (see
Egs. 7.2). Note that if the right-moving modes are fur-
ther taken to be in thermal equilibrium, one finds (again,

in the continuum limit):
O wh~ W) = 2m0(w — W' )np (hw) (C12a)
w

(Wb W) = 218w — ') [1 + np(hw)](C12b)

o

We are typically interested in a relatively narrow band
of frequencies centered on some characteristic drive or
resonance frequency (2. In this case, it is useful to work
in the time-domain, in a frame rotating at {)g. Fourier
transforming 2? Eqs. (C8) and (C10), one finds:

b (t) = ﬁ D e ierm R0l (0),  (C13a)

k>0

b (t) = ﬁ D e iermR0)ip(0).  (C13b)

k<0

23 Here and throughout we use a convention which differs from the
one commonly used in quantum optics: d[w] = fj:oo dt et™ta(t)

and at[w] = [a[-w]]t = [T2° dtetivtat(r).
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These represent temporal right and left moving modes.
Note that the normalization factors in Egs. (C13) has
been chosen so that the right moving photon flux at z = 0
and time ¢ is given by

(N) = (I ()b~ (1) (C14)

In the same rotating frame, and within the approxima-

tion that all relevant frequencies are near g, Eq. (C7)
becomes simply:

. hQ 2.
V7o@t) ~ ;

b+ ()
We have already seen that using classical statistical
mechanics, the voltage noise in equilibrium is white.
The corresponding analysis of the temporal modes using
Egs. (C13) shows that the quantum commutator obeys

b=, 51= ()] = o(t—1). (C16)
In deriving this result, we have converted summations
over mode index to integrals over frequency. Further,
because (for finite time resolution at least) the integral is
dominated by frequencies near +{2y we can, within the
Markov (Wigner Weisskopf) approximation, extend the
lower limit of frequency integration to minus infinity and
thus arrive at a delta function in time. If we further take
the right moving modes to be in thermal equilibrium,
then we may similarly approximate:

= np(hQ)d(t —t') (C17a)
[1+ ng ()] 6(t —t'). (C17b)
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Equations (C15) to (C17b) indicate that V'~ (t) can be
treated as the quantum operator equivalent of white
noise; a similar line of reasoning applies mutatis mutan-
dis to the left moving modes. We stress that these re-
sults rely crucially on our assumption that we are dealing
with a relatively narrow band of frequencies in the vicin-
ity of Qg; the resulting approximations we have made
are known as the Markov approximation. As one can al-
ready see from the form of Egs. (C7,C9), and as will be
discussed further, the actual spectral density of vacuum
noise on a transmission line is not white, but is linear in
frequency. The approximation made in Eq. (C16) treats
it as a constant within the narrow band of frequencies
of interest. If the range of frequencies of importance is
large then the Markov approximation is not applicable.

2. Modes and the windowed Fourier transform

While the delta function correlations can make the
quantum noise relatively easy to deal with in both the
time and frequency domain, it is sometimes the case that
it is easier to deal with a ‘smoothed’ noise variable. The
introduction of an ultraviolet cutoff regulates the math-
ematical singularities in the noise operators evaluated at



equal times and is physically sensible because every real
measurement apparatus has finite time resolution. A sec-
ond motivation is that real spectrum analyzers output a
time varying signal which represents the noise power in
a certain frequency interval (the ‘resolution bandwidth’)
averaged over a certain time interval (the inverse ‘video
bandwidth’). The mathematical tool of choice for dealing
with such situations in which time and frequency both
appear is the ‘windowed Fourier transform’. The win-
dowed transform uses a kernel which is centered on some
frequency window and some time interval. By summa-
tion over all frequency and time windows it is possible
to invert the transformation. The reader is directed to
(Mallat, 1999) for the mathematical details.

For our present purposes where we are interested in
just a single narrow frequency range centered on g, a
convenient windowed transform kernel for smoothing the
quantum noise is simply a box of width At representing
the finite integration time of our detector. In the frame
rotating at Qg we can define

. 1 tj+1 -
B; NI dr b7 (7)

where ¢; = j(At) denotes the time of arrival of the jth

(C18)

temporal mode at the point z = 0. Recall that b~ has
a photon flux normalization and so B~ is dimensionless.
From Eq. (C16) we see that these smoothed operators
obey the usual bosonic commutation relations

B, BL™) = 0. (C19)

The state BJT|O> has a single photon occupying basis
mode j, which is centered in frequency space at 2o and
in time space on the interval jAt <t < (j+1)At. (That
is, this temporal mode passes the point x = 0 during the
jth time interval.) This basis mode is much like a note
in a musical score: it has a certain specified pitch and oc-
curs at a specified time for a specified duration. Just as
we can play notes of different frequencies simultaneously,
we can define other temporal modes on the same time in-
terval and they will be mutually orthogonal provided the
angular frequency spacing is a multiple of 2r/At. The
result is a set of modes B,, ;, labeled by both a frequency
index m and a time index p. p labels the time interval as
before, while m labels the angular frequency:

wWm = Qo + m%
The result is, as illustrated in Fig. (17), a complete lat-
tice of possible modes tiling the frequency-time phase
space, each occupying area 27 corresponding to the time-
frequency uncertainty principle.

We can form other modes of arbitrary shapes centered
on frequency €}y by means of linear superposition of our
basis modes (as long as they are smooth on the time scale
At). Let us define

(C20)

V=Y 4B} (C21)
J
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FIG. 17 (Color online) Schematic figure indicating how the
various modes defined by the windowed Fourier transform tile
the time-frequency plane. Each individual cell corresponds to
a different mode, and has an area 2.

This is also a canonical bosonic mode operator obeying

(v, vf] =1 (C22)

provided that the coefficients obey the normalization con-
dition
Z ;* = 1.
J

We might for example want to describe a mode which is
centered at a slightly higher frequency Qg + 62 (obeying
(609)(At) << 1) and spread out over a large time interval
T centered at time Ty. This could be given for example
by

(C23)

- 2

) = Ne 35 o~ (80 (C24)

where N is the appropriate normalization constant.
The state having n photons in the mode is simply

1 N
7 (2110}
The concept of ‘wave function of the photon’ is fraught
with dangers. In the very special case where we re-
strict attention solely to the subspace of single photon
Fock states, we can usefully think of the amplitudes {¢;}
as the ‘wave function of the photon’ (Cohen-Tannoudji
et al., 1989) since it tells us about the spatial mode which
is excited. In the general case however it is essential to
keep in mind that the transmission line is a collection of
coupled LC oscillators with an infinite number of degrees
of freedom. Let us simplify the argument by considering
a single LC oscillator. We can perfectly well write a wave
function for the system as a function of the coordinate
(say the charge ¢ on the capacitor). The ground state
wave function xo(g) is a gaussian function of the coor-
dinate. The one photon state created by ¥ has a wave

(C25)



function x1(q) ~ ¢xo(q) proportional to the coordinate
times the same gaussian. In the general case y is a wave
functional of the charge distribution ¢(z) over the entire
transmission line.
Using Eq. (C17a) we have

(BI7By) = n(hS0) 3 (C26)
independent of our choice of the coarse-graining time win-
dow At. This result allows us to give meaning to the
phrase one often hears bandied about in descriptions of
amplifiers that ‘the noise temperature corresponds to a
mode occupancy of X photons’. This simply means that

the photon flux per wunit bandwidth is X. Equivalently
the flux in bandwidth B is

N =X (BAt) = XB.

= (C27)

The interpretation of this is that X photons in a tempo-
ral mode of duration At pass the origin in time At. Each
mode has bandwidth ~ ﬁ and so there are BAt inde-
pendent temporal modes in bandwidth B all occupying
the same time interval At. The longer is At the longer it
takes a given mode to pass the origin, but the more such
modes fit into the frequency window.

As an illustration of these ideas, consider the following
elementary question: What is the mode occupancy of a
laser beam of power P and hence photon flux N = h—go?
We cannot answer this without knowing the coherence
time or equivalently the bandwidth. The output of a
good laser is like that of a radio frequency oscillator—it
has essentially no amplitude fluctuations. The frequency
is nominally set by the physical properties of the oscilla-
tor, but there is nothing to pin the phase which conse-
quently undergoes slow diffusion due to unavoidable noise
perturbations. This leads to a finite phase coherence time
7 and corresponding frequency spread 1/7 of the laser
spectrum. (A laser beam differs from a thermal source
that has been filtered to have the same spectrum in that
it has smaller amplitude fluctuations.) Thus we expect

that the mode occupancy is X = N7. A convenient ap-
proximate description in terms of temporal modes is to
take the window interval to be At = 7. Within the jth
interval we take the phase to be a (random) constant ¢,
so that (up to an unimportant normalization constant)
we have the coherent state

[TV % 10 (C28)
J
which obeys
(By') = VXl (C29)
and
(BI7By) = X. (C30)
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3. Quantum noise from a resistor

Let us consider the quantum equivalent to Eq. (B60),
Syv = 2RkgT, for the case of a semi-infinite transmis-
sion line with open termination, representing a resistor.
From Eq. (B27) we see that the proper boundary con-
dition for the ¢ field is 0;¢(0,t) = Ozp(L,t) = 0. (We
have temporarily made the transmission line have a large
but finite length L.) The normal mode expansion that
satisfies these boundary conditions is

oz, t) = \/zz ©n(t) cos(knx), (C31)

— TN

where ¢, is the normal coordinate and k, = %*. Sub-
stitution of this form into the Lagrangian and carrying
out the spatial integration yields a set of independent
harmonic oscillators representing the normal modes.

E:Zf'zf K22

From this we can find the momentum operator p,, canon-
ically conjugate to the coordinate operator ¢,, and quan-
tize the system to obtain an expression for the operator
representing the voltage at the end of the transmission
line in terms of the mode creation and destruction oper-

ators
. < rQ, . R
V= 2i(bt —by,).
3y it~ b

The spectral density of voltage fluctuations is then found
to be

(C32)

(C33)

27 o= Q)
va[w] = — n
L — c

+np(A,) + 1]6(w — Q) },

{ne(hQ,)d(w + Q)

(C34)

where np(hw) is the Bose occupancy factor for a photon
with energy Aw. Taking the limit L — oo and converting
the summation to an integral yields

Svv(w) = 2Zh|w|{ng (hlw|)O(~w)+[ns (hlw])+1]6(w) },
(C35)
where © is the step function. We see immediately that
at zero temperature there is no noise at negative frequen-
cies because energy can not be extracted from zero-point
motion. However there remains noise at positive frequen-
cies indicating that the vacuum is capable of absorbing
energy from another quantum system. The voltage spec-
tral density at both zero and non-zero temperature is
plotted in Fig. (1).
Eq. (C35) for this ‘two-sided’ spectral density of a re-
sistor can be rewritten in a more compact form

27 hw

Syvw] = T o fw/koT’ (C36)



which reduces to the more familiar expressions in various
limits. For example, in the classical limit kg7 > hw the
spectral density is equal to the Johnson noise result?*
Syvw] = 2Z.ksT, (€C37)

in agreement with Eq. (B60). In the quantum limit it
reduces to

Syv[w] = 2Z:iwO(w). (C38)
Again, the step function tells us that the resistor can only
absorb energy, not emit it, at zero temperature.

If we use the engineering convention and add the noise
at positive and negative frequencies we obtain

hw
Syv|w] + Syv|[—w] = 2Z.hw coth m

(C39)
for the symmetric part of the noise, which appears in the
quantum fluctuation-dissipation theorem (cf. Eq. (3.33)).
The antisymmetric part of the noise is simply

va[w] — va[—o.)} = ZZChw, (040)
yielding
Svv[w] = Svv[-w]
= tanh . C41
Svv [w] + va[—w} an 2kgT ( )

This quantum treatment can also be applied to any
arbitrary dissipative network (Burkhard et al., 2004; De-
voret, 1997). If we have a more complex circuit con-
taining capacitors and inductors, then in all of the above
expressions, Z. should be replaced by Re Z[w] where Z[w]
is the complex impedance presented by the circuit.

In the above we have explicitly quantized the stand-
ing wave modes of a finite length transmission line. We
could instead have used the running waves of an infinite
line and recognized that, as the in classical treatment in
Eq. (B59), the left and right movers are not independent.
The open boundary condition at the termination requires
V= =V~ and hence b~ = b~. We then obtain

Syvw] =4Sy W] (C42)

and from the quantum analog of Eq. (B40) we have

Suvlu] = o {0()(nn + 1)+ O(-w)nn)

= 2Z.h|w|[{O(w)(ns + 1) + O(—w)np(C43)

in agreement with Eq. (C35).

24 Note again that in the engineering convention this would be
Svviw] =4Z:ksT.
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APPENDIX D: Back Action and Input-Output Theory for
Driven Damped Cavities

A high @ cavity whose resonance frequency can be
parametrically controlled by an external source can act
as a very simple quantum amplifier, encoding informa-
tion about the external source in the phase and ampli-
tude of the output of the driven cavity. For example,
in an optical cavity, one of the mirrors could be move-
able and the external source could be a force acting on
that mirror. This defines the very active field of optome-
chanics, which also deals with microwave cavities cou-
pled to nanomechanical systems and other related setups
(Arcizet et al., 2006; Brown et al., 2007; Gigan et al.,
2006; Harris et al., 2007; Hohberger-Metzger and Kar-
rai, 2004; Marquardt et al., 2007, 2006; Meystre et al.,
1985; Schliesser et al., 2006; Teufel et al., 2008; Thomp-
son et al., 2008; Wilson-Rae et al., 2007). In the case of a
microwave cavity containing a qubit, the state-dependent
polarizability of the qubit acts as a source which shifts
the frequency of the cavity (Blais et al., 2004; Schuster
et al., 2005; Wallraff et al., 2004).

The dephasing of a qubit in a microwave cavity and
the fluctuations in the radiation pressure in an optical
cavity both depend on the quantum noise in the number
of photons inside the cavity. We here use a simple equa-
tion of motion method to exactly solve for this quantum
noise in the perturbative limit where the dynamics of the
qubit or mirror degree of freedom has only a weak back
action effect on the cavity.

In the following, we first give a basic discussion of
the cavity field noise spectrum, deferring the detailed
microscopic derivation to subsequent subsections. We
then provide a review of the input-output theory for
driven cavities, and employ this theory to analyze the
important example of a dispersive position measurement,
where we demonstrate how the standard quantum limit
can be reached. Finally, we analyze an example where
a modified dispersive scheme is used to detect only one
quadrature of a harmonic oscillator’s motion, such that
this quadrature does not feel any back-action.

1. Photon shot noise inside a cavity and back action

Consider a degree of freedom Z coupled parametrically
with strength A to the cavity oscillator

Hie = hwe(1 + A2) [aTa — (ata)] (D1)

where following Eq. (4.22), we have taken A to be dimen-
sionless, and use Z to denote the dimensionless system
variable that we wish to probe. For example, Z could
represent the dimensionless position of a mechanical os-
cillator

Z

z

. D2
TZPF ( )

We have subtracted the (a'a) term so that the mean
force on the degree of freedom is zero. To obtain the full



Hamiltonian, we would have to add the cavity damping
and driving terms, as well as the Hamiltonian governing
the intrinsic dynamics of the system 2. From Eq. (4.29)
we know that the back action noise force acting on % is
proportional to the quantum fluctuations in the number
of photons 7 = afa in the cavity,

Sun(t) = (@' Ba(t)a (0)a(0) — (@' (Ma()?.  (D3)
For the case of continuous wave driving at frequency
wr, = we + A detuned by A from the resonance, the
cavity is in a coherent state |1) obeying

a(t) = e a + d(1) (D4)
where the first term is the ‘classical part’ of the mode am-
plitude 9(t) = ae~*1t determined by the strength of the
drive field, the damping of the cavity and the detuning
A, and d is the quantum part. By definition,

aly) = vly) (D5)
so the coherent state is annihilated by d:
) = 0. (D6)

That is, in terms of the operator CZ, the coherent state

looks like the undriven quantum ground state . The dis-

placement transformation in Eq. (D4) is canonical since

[a,a1) =1 = [d,dT] =1. (D7)

Substituting the displacement transformation into
Eq. (D3) and using Eq. (D6) yields

Snn (t) = ﬁ<dA(t)dT (0) > )

where 71 = |a|? is the mean cavity photon number. If we
set the cavity energy damping rate to be k, such that the
amplitude damping rate is x/2, then the undriven state
obeys

(D8)

(d(t)dT(0)) = et iBtem 51, (D9)
This expression will be justified formally in the subse-
quent subsection, after introducing input-output theory.
We thus arrive at the very simple result
Sy (t) = RN 21, (D10)

The power spectrum of the noise is, via the Wiener-
Khinchin theorem (Appendix A), simply the Fourier
transform of the autocorrelation function given in

Eq. (D10)

+oo ot s K
s,m[w]:/_oo e 15,0(0) = o

(D11)
As can be seen in Fig. 18a, for positive detuning A =
wr, — we > 0, i.e. for a drive that is blue-detuned with
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FIG. 18 (Color online) (a) Noise spectrum of the photon num-
ber in a driven cavity as a function of frequency when the
cavity drive frequency is detuned from the cavity resonance
by A = 43k (left peak) and A = —3k (right peak). (b) Ef-
fective temperature Teg of the low frequency noise, w — 0,
as a function of the detuning A of the drive from the cavity
resonance. (c) Frequency-dependence of the effective noise
temperature, for different values of the detuning.

respect to the cavity, the noise peaks at negative w. This
means that the noise tends to pump energy into the de-
gree of freedom Z (i.e. contribute negative damping). For
negative detuning the noise peaks at positive w corre-
sponding to the cavity absorbing energy from 2. Basi-
cally, the interaction with Z (three wave mixing) tries to
Raman scatter the drive photons into the high density of
states at the cavity frequency. If this is uphill in energy,
then 2 is cooled.

As discussed in Sec. IIL.B (c.f. Eq. (3.21)), at each fre-
quency w, we can use detailed balance to assign the noise
an effective temperature Teog[w]:

Swlel _ poatiatel o
Sn [_w]
kpTeglw] = e (D12)

log [ S242L



or equivalently

Snnlw] = Snn[—w]
Spn|w] + Spn[—w]

= tanh(Bhw/2). (D13)

If 2 is the coordinate of a harmonic oscillator of frequency
w (or some non-conserved observable of a qubit with level
splitting w), then that system will acquire a temperature
Tof[w] in the absence of coupling to any other environ-
ment. In particular, if the characteristic oscillation fre-

quency of the system 2 is much smaller than x, then we
have the simple result

o lim 2 Spn[w] = Spn[-w]
ksTeg  w—0+ hw Spnlw] + Spn|[—w]
B 2dln Snn|w]
o dhw
1 —4A
- o__a 14
h A2+ (k/2)? (D14)

As can be seen in Fig. 18, the asymmetry in the noise
changes sign with detuning, which causes the effective
temperature to change sign.

First we discuss the case of a positive Teg, where this
mechanism can be used to laser cool an oscillating me-
chanical cantilever, provided T,g is lower than the in-
trinsic equilibrium temperature of the cantilever. (Ar-
cizet et al., 2006; Brown et al., 2007; Gigan et al., 2006;
Harris et al., 2007; Hohberger-Metzger and Karrai, 2004;
Marquardt et al., 2007; Schliesser et al., 2006; Thompson
et al., 2008; Wilson-Rae et al., 2007). A simple classical
argument helps us understand this cooling effect. Sup-
pose that the moveable mirror is at the right hand end
of a cavity being driven below the resonance frequency.
If the mirror moves to the right, the resonance frequency
will fall and the number of photons in the cavity will rise.
There will be a time delay however to fill the cavity and
so the extra radiation pressure will not be fully effective
in doing work on the mirror. During the return part of
the oscillation as the mirror moves back to the left, the
time delay in emptying the cavity will cause the mirror to
have to do extra work against the radiation pressure. At
the end of the cycle it ends up having done net positive
work on the light field and hence is cooled. The effect can
therefore be understood as being due to the introduction
of some extra optomechanical damping.

The signs reverse (and T, becomes negative) if the
cavity is driven above resonance, and consequently the
cantilever motion is heated up. In the absence of in-
trinsic mechanical losses, negative values of the effective
temperature indicate a dynamical instability of the can-
tilever (or population inversion in the case of a qubit),
where the amplitude of motion grows until it is finally
stabilized by nonlinear effects. This can be interpreted
as negative damping introduced by the optomechanical
coupling and can be used to create parametric amplifica-
tion of mechanical forces acting on the oscillator.

Finally, we mention that cooling towards the quantum
ground state of a mechanical oscillator (where phonon

71

numbers become much less than one), is only possible
(Marquardt et al., 2007; Wilson-Rae et al., 2007) in the
“far-detuned regime”, where —A = w > k (in contrast
to the w < k regime discussed above).

2. Input-output theory for a driven cavity

The results from the previous section can be more for-
mally and rigorously derived in a full quantum theory
of a cavity driven by an external coherent source. The
theory relating the drive, the cavity and the outgoing
waves radiated by the cavity is known as input-output
theory and the classical description was presented in Ap-
pendix B. The present quantum discussion closely follows
standard references on the subject (Walls and Milburn,
1994; Yurke, 1984; Yurke and Denker, 1984). The crucial
feature that distinguishes such an approach from many
other treatments of quantum-dissipative systems is the
goal of keeping the bath modes instead of tracing them
out. This is obviously necessary for the situations we
have in mind, where the output field emanating from the
cavity contains the information acquired during a mea-
surement of the system coupled to the cavity. As we
learned from the classical treatment, we can eliminate
the outgoing waves in favor of a damping term for the
system. However we can recover the solution for the out-
going modes completely from the solution of the equation
of motion of the damped system being driven by the in-
coming waves.

In order to drive the cavity we must partially open one
of its ports which exposes the cavity both to the external
drive and to the vacuum noise outside which permits en-
ergy in the cavity to leak out into the surrounding bath.
We will formally separate the degrees of freedom into in-
ternal cavity modes and external bath modes. Strictly
speaking, once the port is open, these modes are not dis-
tinct and we only have ‘the modes of the universe’ (Gea-
Banacloche et al., 1990a,b; Lang et al., 1973). However
for high @ cavities, the distinction is well-defined and we
can model the decay of the cavity in terms of a spon-
taneous emission process in which an internal boson is
destroyed and an external bath boson is created. We
assume a single-sided cavity as shown in Fig. 3. For a
high @ cavity, this physics is accurately captured in the
following Hamiltonian

f{ = ]:Isys + I:Ibath + Hint~ (D15)

The bath Hamiltonian is

Hyan = »_ hwgblb, (D16)
q

where ¢ labels the quantum numbers of the independent
harmonic oscillator bath modes obeying

(b, bl = 64.0- (D17)



Note that since the bath terminates at the system, there
is no translation invariance, the normal modes are stand-
ing not running waves, and the quantum numbers ¢ are
not necessarily wave vectors.

The coupling Hamiltonian is (within the rotating wave
approximation)

i = =iny [ fylh, — f;0a] . (D18)
q

For the moment we will leave the system (cavity) Hamil-
tonian to be completely general, specifying only that it
consists of a single degree of freedom (i.e. we concentrate
on only a single resonance of the cavity with frequency
w.) obeying the usual bosonic commutation relation
[a,a'] = 1. (D19)

(N.B. this does not imply that it is a harmonic oscilla-
tor. We will consider both linear and non-linear cavities.)
Note that the most general linear coupling to the bath
modes would include terms of the form IA)j]dT and bya but
these are neglected within the rotating wave approxima-
tion because in the interaction representation they os-
cillate at high frequencies and have little effect on the
dynamics.

The Heisenberg equation of motion (EOM) for the
bath variables is

1

by h[ﬁ, by] = —iwgbg + fia (D20)
We see that this is simply the EOM of a harmonic oscil-
lator driven by a forcing term due to the motion of the
cavity degree of freedom. Since this is a linear system,
the EOM can be solved exactly. Let ty < ¢ be a time in
the distant past before any wave packet launched at the

cavity has reached it. The solution of Eq. (D20) is

t
Eq (t) = 67“"1(’57“’)3(1 (to) + / dr 67"‘*"1(t77)f;k a(r).

t

’ (D21)
The first term is simply the free evolution of the bath
while the second represents the waves radiated by the
cavity into the bath.

The EOM for the cavity mode is

b= %[ﬁsys, a] — Zq: Faba- (D22)

Substituting Eq. (D21) into the last term above yields

Z fabg = Z e a1, (1)
q q

FSIAPE [ dre et et 04 ()], (D23
q

t
to

where the last term in square brackets is a slowly varying

function of 7. To simplify our result, we note that if
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the cavity system were a simple harmonic oscillator of
frequency w. then the decay rate from the n = 1 single
photon excited state to the n = 0 ground state would be
given by the following Fermi Golden Rule expression

K(we) = 2772 | £l ?0(we — wy)- (D24)

From this it follows that

+o00 dl —iv(t—7) _ 2 —i(wq—we)(t—7)
K(we +v)e _Z|f‘1| e .
q

oo 2T

(D25)
We now make the Markov approximation which assumes
that k(v) = k is a constant over the range of frequencies
relevant to the cavity so that Eq. (D25) may be repre-
sented as

Z |26 @amwedt=7) = y5(t — 7). (D26)
q
Using
xo 1
/ dx §(x — xg) = 3 (D27)

we obtain for the cavity EOM

. 1 A R K. . RS
a = %[Hsyma] — §a — ;fqe iwql(t t”)bq(to). (D28)

The second term came from the part of the bath motion
representing the wave radiated by the cavity and, within
the Markov approximation, has become a simple linear
damping term for the cavity mode. Note the important
factor of 2. The amplitude decays at half the rate of the
intensity (the energy decay rate k).

Within the spirit of the Markov approximation it is
further convenient to treat f = \/|f4|? as a constant and
define the density of states (also taken to be a constant)
by

p=3 b(we — wy) (D29)
q
so that the Golden Rule rate becomes
k= 2mf?p. (D30)
We can now define the so-called ‘input mode’
bin(t) = o= S e Wby r). (D3)

For the case of a transmission line treated in Appendix
C, this coincides with the field b~ moving towards the
cavity [see Eq. (C13a)]. We finally have for the cavity
EOM

7~

2 A K N
a= ﬁ[HSys,a] - 50— VEbin(t).

(D32)



Note that when a wave packet is launched from the bath
towards the cavity, causality prevents it from knowing
about the cavity’s presence until it reaches the cavity.
Hence the input mode evolves freely as if the cavity were
not present until the time of the collision at which point it
begins to drive the cavity. Since biy(t) evolves under the
free bath Hamiltonian and acts as the driving term in the
cavity EOM, we interpret it physically as the input mode.
Eq. (D32) is the quantum analog of the classical equa-
tion (B19), for our previous example of an LC-oscillator
driven by a transmission line. The latter would also have
been first order in time if as in Eq. (B35) we had worked
with the complex amplitude A instead of the coordinate
Q.

Eq. (D31) for the input mode contains a time label
just as in the interaction representation. However it is
best interpreted as simply labeling the particular linear
combination of the bath modes which is coupled to the
system at time t. Some authors even like to think of
the bath modes as non-propagating while the cavity flies
along the bath (taken to be 1D) at a velocity v. The
system then only interacts briefly with the local mode
positioned at z = vt before moving an interacting with
the next local bath mode. We will elaborate on this view
further at the end of this subsection.

The expression for the power P, (energy per time)
impinging on the cavity depends on the normalization
chosen in our definition of I;in. It can be obtained, for
example, by imagining the bath modes l;q to live on a one-
dimensional waveguide with propagation velocity v and
length L (using periodic boundary conditions). In that
case we have to sum over all photons to get the average
power flowing through a cross-section of the waveguide,
Py =32, hwy(vp/L) <l;,‘;l;q>. Inserting the definition for

bin, Eq. (D31), the expression for the input power carried
by a monochromatic beam at frequency w is

Pa(t) = e (B, (6)bin(1)) (D33)
Note that this has the correct dimensions due to our
choice of normalization for by, (with dimensions /w). In
the general case, an integration over frequencies is needed
(as will be discussed further below). An analogous for-
mula holds for the power radiated by the cavity, to be
discussed now. X

The output mode byt (t) is radiated into the bath and
evolves freely after the system interacts with I;in(t). If
the cavity did not respond at all, then the output mode
would simply be the input mode reflected off the cav-
ity mirror. If the mirror is partially transparent then
the output mode will also contain waves radiated by the
cavity (which is itself being driven by the input mode
partially transmitted into the cavity through the mirror)
and hence contains information about the internal dy-
namics of the cavity. To analyze this output field, let
t; > t be a time in the distant future after the input
field has interacted with the cavity. Then we can write
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an alternative solution to Eq. (D20) in terms of the final
rather than the initial condition of the bath

t1 )
by () = e~ @elt=t) (1)) — /t dr e~ (=T) f ().

(D34)
Note the important minus sign in the second term as-
sociated with the fact that the time ¢ is now the lower
limit of integration rather than the upper as it was in

Eq. (D21).
Defining
. 1 , .
bout(t) = 5 Zeilwq(titl)bq(tl), (D35)

E

q

we see that this is simply the free evolution of the bath
modes from the distant future (after they have interacted
with the cavity) back to the present, indicating that it is
indeed appropriate to interpret this as the outgoing field.
Proceeding as before we obtain

o= 7 [Huy, ] + S = v/ibour(1). (D36)
Subtracting Eq. (D36) from Eq. (D32) yields
bout (1) = bin(t) + VK a(t) (D37)

which is consistent with our interpretation of the out-
going field as the reflected incoming field plus the field
radiated by the cavity out through the partially reflecting
mirror.

The above results are valid for any general cavity
Hamiltonian. The general procedure is to solve Eq. (D32)
for a(t) for a given input field, and then solve Eq. (D37)
to obtain the output field. For the case of an empty cav-
ity we can make further progress because the cavity mode
is a harmonic oscillator

Hays = hweala. (D38)
In this simple case, the cavity EOM becomes
b = —iwed — ga — VEbin(2). (D39)

Eq. (D39) can be solved by Fourier transformation, yield-
ing

Vi bin [w]

= —VEXc|w — webin|w] (D41)
and
bous 0] = W we —iK/2 [w] (D42)

W—we+ik/2

which is the result for the reflection coefficient quoted in
Eq. (4.23). For brevity, here and in the following, we will
sometimes use the susceptibility of the cavity, defined as
1
—i(w—we) + K/2

Yelw — we] = (D13)



For the case of steady driving on resonance where w = we,
the above equations yield

. N

bout [w] =

5 alw]. (D44)
In steady state, the incoming power equals the outgoing
power, and both are related to the photon number inside
the single-sided cavity by
P=ho <bom( )Bm(t)> = hw™ (af(tar))  (D45)
Note that this does not coincide with the naive expecta-
tion, which would be P = hwk <de>. The reason for this
discrepancy is the the interference between the part of the
incoming wave which is promptly reflected from the cav-
ity and the field radiated by the cavity. The naive expres-
sion becomes correct after the drive has been switched off
(where ignoring the effect of the incoming vacuum noise,
we would have boy; = v/KaG). We note in passing that for
a driven two-sided cavity with coupling constants xr, and
kg (where Kk = Kk + KkRr), the incoming power sent into
the left port is related to the photon number by
P = hwr?/(4k1) (a'a) . (D46)
Here for k1, = ki the interference effect completely elim-
inates the reflected beam and we have in contrast to
Eq. (D45)
P =hot (ala). (D47)
2
Eq. (D39) can also be solved in the time domain to
obtain

a(t) = e —(iwe+r/2)(t—t0) 4 alto)

t
— \/E/ dr e~ wetr/2=T)p (7). (D48)
to

If we take the input field to be a coherent drive at fre-
quency wi, = w. + A so that its amplitude has a classical
and a quantum part

bin(t) = €~ [bin + £(2)] (D49)
and if we take the limit ¢ty — oo so that the initial tran-
sient in the cavity amplitude has damped out, then the
solution of Eq. (D48) has the form postulated in Eq. (D4)
with

___ Ve
—iA+ k2"

Is]

(D50)
and (in the frame rotating at the drive frequency)

f/ dr HEA=R2ED(r) (D51
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Even in the absence of any classical drive, the input
field delivers vacuum fluctuation noise to the cavity. No-
tice that from Egs. (D31, D49)

[£(), £ ()]
— %pze—zwq wL)(t—t)

= 8t —t),

[bin(t), b1, ()]

(D52)

which is similar to Eq. (C16) for a quantum transmission
line. This is the operator equivalent of white noise. Using
Eq. (D48) in the limit t) — —oc in Egs. (D4,D51) yields

[a(t),a’(8)] = [d(¢),d" (1))

K/ dT/ dr! e~ (—iBtR/2)(t-7)

7(+2A+n/2 (t— )6( 7_/)

—1 (D53)

as is required for the cavity bosonic quantum degree of
freedom. We can interpret this as saying that the cavity
zero-point fluctuations arise from the vacuum noise that
enters through the open port. We also now have a simple
physical interpretation of the quantum noise in the num-
ber of photons in the driven cavity in Egs. (D3,D8,D11).
It is due to the vacuum noise which enters the cavity
through the same ports that bring in the classical drive.
The interference between the vacuum noise and the clas-
sical drive leads to the photon number fluctuations in the
cavity.

In thermal equilibrium, f also contains thermal radi-
ation. If the bath is being probed only over a narrow
range of frequencies centered on w. (which we have have
assumed in making the Markov approximation) then we
have to a good approximation (consistent with the above
commutation relation)

GIORTIE
Emee) =

where N = np(hw.) is the thermal equilibrium occupa-
tion number of the mode at the frequency of interest. We
can gain a better understanding of Eq. (D54) by Fourier
transforming it to obtain the spectral density

Slw] = /_ :O dt

As mentioned previously, this dimensionless quantity is
the spectral density that would be measured by a photo-
multiplier: it represents the number of thermal photons
passing a given point per unit time per unit bandwidth.
Equivalently the thermally radiated power in a narrow
bandwidth B is

N6t —t)
(N+1)6(t—1t")

(D54)
(D55)

(EmE))e= =" =N, (D56)

P = hwNB. (D57)



One often hears the confusing statement that the noise
added by an amplifier is a certain number N of photons
(N = 20, say for a good cryogenic HEMT amplifier op-
erating at 5 GHz). This means that the excess output
noise (referred back to the input by dividing by the power
gain) produces a flux of N photons per second in a 1 Hz
bandwidth, or 10N photons per second in 1 MHz of
bandwidth.

We can gain further insight into input-output theory
by using the following picture. The operator bin (t) repre-
sents the classical drive plus vacuum fluctuations which
are just about to arrive at the cavity. We will be able
to show that the output field is simply the input field
a short while later after it has interacted with the cav-
ity. Let us consider the time evolution over a short time
period At which is very long compared to the inverse
bandwidth of the vacuum noise (i.e., the frequency scale
beyond which the vacuum noise cannot be treated as con-
stant due to some property of the environment) but very
short compared to the cavity system’s slow dynamics. In
this circumstance it is useful to introduce the quantum
Wiener increment related to Eq. (C18)

t+At
AW = /t " dr &(7) (D58)

which obeys

[dW,dW1] = At. (D59)

In the interaction picture (in a displaced frame in
which the classical drive has been removed) the Hamilto-
nian term that couples the cavity to the quantum noise
of the environment is from Eq. (D18)

V = —ihv/k(até —agh).

Thus the time evolution operator (in the interaction pic-
ture) on the jth short time interval [t;,¢; + At] is

(D60)

U, = eVR(@dwi—at dw) (D61)
Using this we can readily evolve the incoming temporal
mode forward in time by a small step At
AW = UTdWU ~ dW + VEAta. (D62)
Recall that in input-output theory we formally defined
the outgoing field as the bath field far in the future prop-
agated back (using the free field time evolution) to the
present, which yielded
bout = bin + /. (D63)
Eq. (D62) is completely equivalent to this. Thus we con-
firm our understanding that the incoming field is the bath
temporal mode just before it interacts with the cavity and
the outgoing field is the bath temporal mode just after it
interacts with the cavity.

()

This leads to the following picture which is especially
useful in the quantum trajectory approach to conditional
quantum evolution of a system subject to weak continu-
ous measurement (Gardiner et al., 1992; Walls and Mil-
burn, 1994). On top of the classical drive b, (), the bath
supplies to the system a continuous stream of “fresh” har-
monic oscillators, each in their ground state (if T = 0).

Each oscillator with its quantum fluctuation dW inter-
acts briefly for a period At with the system and then
is disconnected to propagate freely thereafter, never in-
teracting with the system again. Within this picture it
is useful to think of the oscillators arrayed in an infinite
stationary line and the cavity flying over them at speed
vp and touching each one for a time At.

3. Quantum limited position measurement using a cavity
detector

We will now apply the input-output formalism intro-
duced in the previous section to the important example of
a dispersive position measurement, which employs a cav-
ity whose resonance frequency shifts in response to the
motion of a harmonic oscillator. This physical system
was considered heuristically in Sec. (IV.B.3). Here we
will present a rigorous derivation using the (linearized)
equations of motion for the coupled cavity and oscillator
system.

Let the dimensionless position operator

PR R [+ ¢
TZPF

(D64)

be the coordinate of a harmonic oscillator whose energy
is

Hy = hwyéte (D65)

and whose position uncertainty in the quantum ground
state is xzpr = 1/(0|22|0).

This Hamiltonian could be realized for example by
mounting one of the cavity mirrors on a flexible cantilever
(see the discussion above).

When the mirror moves, the cavity resonance fre-
quency shifts,

Oe = we[l + A2(t)] (D66)
where for a cavity of length L, A = —xypr/L.

Assuming that the mirror moves slowly enough for the
cavity to adiabatically follow its motion (i.e. < k), the
outgoing light field suffers a phase shift which follows the
changes in the mirror position. This phase shift can be
detected in the appropriate homodyne set up as discussed
in Sec. IV.B, and from this phase shift we can determine
the position of the mechanical oscillator. In addition to
the actual zero-point fluctuations of the oscillator, our
measurement will suffer from shot noise in the homodyne
signal and from additional uncertainty due to the back
action noise of the measurement acting on the oscillator.



All of these effects will appear naturally in the derivation
below.

We begin by considering the optical cavity equation
of motion based on Eq. (D32) and the optomechanical
coupling Hamiltonian in Eq. (D1). These yield

b= —iwe(1+ A%)a — ga — /sy (D67)
Let the cavity be driven by a laser at a frequency wy, =
we + A detuned from the cavity by A. Moving to a frame
rotating at wy, we have

b= +i(A — Awed)a — ga — /by, (D68)
and we can write the incoming field as a constant plus
white noise vacuum fluctuations (again, in the rotating
frame)

bin = bin + € (D69)

and similarly for the cavity field following Eq. (D4)

i=a+d. (D70)

Substituting these expressions into the equation of mo-
tion, we find that the constant classical fields obey

VE <

a=——5—bn
“ k)2 —iA

(D71)

and the new quantum equation of motion is, after ne-
glecting a small term d2:

d = +iAd — i Aweas — gd — JRE. (D72)

The quantum limit for position measurement will be
reached only at zero detuning, so we specialize to the
case A = (0. We also choose the incoming field amplitude
and phase to obey

(D73)

so that
(D74)

where N is the incoming photon number flux. The quan-
tum equation of motion for the cavity then becomes

d=-+95 — Zd - Vi, (D75)

where the opto-mechanical coupling constant is propor-
tional to the laser drive amplitude

g = 2Aw, N = Aw./7.
V ®

(D76)
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and

n=la*=4—

. (D77)

is the mean cavity photon number.
solved by Fourier transformation

{92l] - Vrélu]}

Eq. (D75) is easily

- 1

dlw] = il (D78)

Let us assume that we are in the limit of low mechan-
ical frequency relative to the cavity damping, Q2 < x,
so that the cavity state adiabatically follows the motion
of the mechanical oscillator. Then we obtain to a good
approximation

] = 2 {galel - VRl (D79)
el = 2 gl - VREW}  (D0)

The mechanical oscillator equation of motion which is
identical in form to that of the optical cavity

0 = —[ 2+ 906 — yi(t) + 1 [P, (1)),

. (D81)

where Hi, is the Hamiltonian in Eq. (D1) and 4 is
the mechanical vacuum noise from the (zero tempera-
ture) bath which is causing the mechanical damping at
rate 9. Using Eq. (D70) and expanding to first order
in small fluctuations yields the equation of motion lin-
earized about the steady state solution

Oré = —| 3 +ie— yAoi(t) + 2= (1) €' (1)]. (Ds2)
VE
It is useful to consider an equivalent formulation in
which we expand the Hamiltonian in Eq. (D1) to second
order in the quantum fluctuations about the classical so-
lution

Hine ~ hwedtd + 2F, (D83)

where the force (including the coupling A) is (up to a
sign)

F=—il9 g,

D84
TZPF ( )

Note that the radiation pressure fluctuations (photon
shot noise) inside the cavity provide a forcing term. The
state of the field inside the cavity in general depends on
the past history of the cantilever position. However for
this special case of driving the cavity on resonance, the
dependence of the cavity field on the cantilever history is
such that the latter drops out of the radiation pressure.
To see this explicitly, consider the equation of motion for
the force obtained from Eq. (D75)

R . Ryl

D85
TZPF ( )
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FIG. 19 (Color online) Phasor diagram for the cavity ampli-
tude showing that (for our choice of parameters) the imag-
inary quadrature of the vacuum noise ¢ interferes with the
classical drive to produce photon number fluctuations while
the real quadrature produces phase fluctuations which lead to
measurement imprecision. The quantum fluctuations are il-
lustrated in the usual fashion, depicting the Gaussian Wigner
density of the coherent state in terms of color intensity.

Within our linearization approximation, the position of
the mechanical oscillator has no effect on the radiation
pressure (photon number in the cavity), but of course it
does affect the phase of the cavity field (and hence the
outgoing field) which is what we measure in the homo-
dyne detection.

Thus for this special case Z does not appear on the
RHS of either Eq. (D85) or Eq. (D82), which means that
there is no optical renormalization of the cantilever fre-
quency (‘optical spring’) or optical damping of the can-
tilever. The lack of back-action damping in turn implies
that the effective temperature Tog of the cavity detector
is infinite (cf. Eq. (3.21)). For this special case of zero
detuning the back action force noise is controlled by a
single quadrature of the incoming vacuum noise (which
interferes with the classical drive to produce photon num-
ber fluctuations). This is illustrated in the cavity ampli-
tude phasor diagram of Fig. (19). We see that the vac-
uum noise quadrature é + fT conjugate to F' controls the
phase noise which determines the measurement impreci-
sion (shot noise in the homodyne signal). This will be
discussed further below.

The solution for the cantilever position can again be
obtained by Fourier transformation. For frequencies
small on the scale of x the solution of Eq. (D85) is
2 L] - €111}

F[w] - xZPF\/E

(D86)
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and hence the back action force noise spectral density is
at low frequencies

471292

2
Lzprh

SFF[W] = (D87)

in agreement with Eq. (4.29).

Introducing a quantity proportional to the cantilever
(mechanical) susceptibility (within the rotating wave ap-
proximation we are using)

Mmlw — Q] = P T (D88)
we find from Eq. (D82)
£lu] = 2ole] — Fazpr Dxatlo — €] — xuio + ) Flul,
(D89)

where the equilibrium fluctuations in position are given
by

ol = —v/A0 Dol — il + il + 21w}
(D90)
We can now obtain the power spectrum S, describing
the total position fluctuations of the cantilever driven by
the mechanical vacuum noise plus the radiation pressure
shot noise. From Egs. (D89, D90) we find

Sz |w]

2
LzpR

= S,.[w]

= Yolxlw - (D91)
2
x
+% atlw — Q] = xulw + QI Srr.

Note that (assuming high mechanical @, i.e. y9 < Q) the
equilibrium part has support only at positive frequencies
while the back action induced position noise is symmetric
in frequency reflecting the effective infinite temperature
of the back action noise. Symmetrizing this result with
respect to frequency (and using o < 2) we have

= (D92)

_ _ S9.19 4
Sm[w] ~~ ng[w] <1 + ME[]SFF> s
where SO [w] is the symmetrized spectral density for posi-
tion fluctuations in the ground state given by Eq. (4.71).
Now that we have obtained the effect of the back action
noise on the position fluctuations, we must turn our at-
tention to the imprecision of the measurement due to shot
noise in the output. The appropriate homodyne quadra-
ture variable to monitor to be sensitive to the output
phase shift caused by position fluctuations is
T = bous + bl s, (D93)
which, using the input-output results above, can be writ-

ten

I=—-(E+&)+az (D94)



We see that the cavity homodyne detector system acts
as a position transducer with gain

4g
zzprVE

The first term in Eq. (D94) represents the vacuum noise
that mixes with the homodyne local oscillator to produce
the shot noise in the output. The resulting measurement
imprecision (symmetrized) spectral density referred back
to the position of the oscillator is

A= (D95)

[

Comparing this to Eq. (D87) we see that we reach the
quantum limit relating the imprecision noise to the back
action noise

o B2
St Spp = T (D97)
in agreement with Eq. (4.20).

Notice also from Eq. (D94) that the quadrature of the
vacuum noise which leads to the measurement impreci-
sion is conjugate to the one which produces the back ac-
tion force noise as illustrated previously in Fig. (19). We
saw in Eq. (2.20) that the two quadratures of motion of
a harmonic oscillator in its ground state have no classical
(i.e., symmetrized) correlation. Hence the symmetrized
cross correlator

Srelw] =0 (D98)
vanishes. Because there is no correlation between the
output imprecision noise and the forces controlling the
position fluctuations, the total output noise referred back
to the position of the oscillator is simply

Sww,tot[w] = SML[W] +§£.L

~ SO [Q] = hz
0 T

(D99)
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wrelt) = =500 (|~ =00+ €1 00). 22 é0) - 10| ) .

where 0t is a small (positive) time representing the delay
between the time when the vacuum noise impinges on
the cavity and when the resulting outgoing wave reaches
the homodyne detector. (More precisely it also compen-
sates for certain small retardation effects neglected in the
limit w < k used in several places in the above deriva-
tions.) Using the fact that the commutator between the
two quadratures of the vacuum noise is a delta function,
Fourier transformation of the above yields (in the limit

8

This expression again clearly illustrates the competition
between the back action noise proportional to the drive
laser intensity and the measurement imprecision noise
which is inversely proportional. We again emphasize that
all of the above relations are particular to the case of zero
detuning of the cavity drive field from the cavity.

The total output noise at some particular frequency
will be a minimum at some optimal drive intensity. The
precise optimal value depends on the frequency chosen.
Typically this is taken to be the mechanical resonance
frequency where we find that the optimal coupling leads
to an optimal back action noise

h? _ "0
Qng (2] 4‘T%PF .

SEFopt = (D100)

This makes sense because the higher the damping the less
susceptible the oscillator is to back action forces. At this
optimal coupling the total output noise spectral density
at frequency  referred to the position is simply twice
the vacuum value

Sea ot [ = 252, (0], (D101)
in agreement with Eq. (4.81). Evaluation of Eq. (D100)
at the optimal coupling yields the graph shown in
Fig. (7). The background noise floor is due to the
frequency independent imprecision noise with value
159,[Q]. The peak value at w = Q rises a factor of three
above this background.

We derived the gain A in Eq. (D95) by direct solution
of the equations of motion. With the results we have de-
rived above, it is straightforward to show that the Kubo
formula in Eq. (5.3) yields equivalent results. We have
already seen that the classical (i.e. symmetrized) correla-
tions between the output signal I and the force F which
couples to the position vanishes. However the Kubo for-
mula evaluates the quantum (i.e. antisymmetric) corre-
lations for the uncoupled system (A = g = 0). Hence we
have

2ihg_ ¢ ¢ (D102)

(

w0t < 1 the desired result

Xirlw] = . (D103)

Similarly we readily find that the small retardation
causes the reverse gain to vanish. Hence all our results
are consistent with the requirements needed to reach the
standard quantum limit.

Thus with this study of the specific case of an oscillator
parametrically coupled to a cavity, we have reproduced



all of the key results in Sec. (VI.D) derived from com-
pletely general considerations of linear response theory.

4. Back-action free single-quadrature detection

We now provide details on the cavity single-quadrature
detection scheme discussed in Sec. VI.G.2. We again con-
sider a high-Q cavity whose resonance frequency is mod-
ulated by a high-Q mechanical oscillator with co-ordinate
Z (cf. Egs. (D1) and (D64)). To use this system for am-
plification of a single quadrature, we will consider the
typical case of a fast cavity (w. > ), and take the “good
cavity” limit, where Q > k. As explained in the main
text, the crucial ingredient for single-quadrature detec-
tion is to take an amplitude-modulated cavity drive de-
scribed by the classical input field by, given in Eq. (6.70).
As before (cf. Eq. (D4)), we may write the cavity anni-
hilation operator a as the sum of a classical piece a(t)
and a quantum piece cz; only d is influenced by the me-
chanical oscillator. a(t) is easily found from the classical
(noise-free) equations of motion for the isolated cavity;
making use of the conditions w. > ) > k, we have

a(t) ~ 2];;% cos (Qt + §) e et

To proceed with our analysis, we work in an interac-
tion picture with respect to the uncoupled cavity and
oscillator Hamiltonians. Making standard rotating-wave
approximations, the Hamiltonian in the interaction pic-
ture takes the simple form corresponding to Eq. (6.71b):

(D104)

Hy = hA (Ci+ JT) (e“;éJre “SéT)

N Xy
= hA(d+df , D105
( ) T7ZPF ( )
where
A=A w2l N (D106)
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and in the second line, we have made use of the definition
of the quadrature operators Xg, Y5 given in Eqs. (6.64).
The form of Hj,; was discussed heuristically in the main
text in terms of Raman processes where photons are re-
moved from the classical drive by, and either up or down
converted to the cavity frequency via absorption or emis-
sion of a mechanical phonon. Alternatively, we can think
of the drive yielding a time-dependent cavity-oscillator
coupling which “follows” the X5 quadrature. Note that
we made crucial of use of the good cavity limit (x < )
to drop terms in f[im which oscillate at frequencies 2.
These terms represent Raman sidebands which are away
from the cavity resonance by a distance £2€2. In the good
cavity limit, the density of photon states is negligible so
far off resonance and these processes are suppressed.
Similar to Egs. (D39) and (D81), the Heisenberg equa-
tions of motion (in the rotating frame) follow directly
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from Hi,; and the dissipative terms in the total Hamil-
tonian:

od = —Zd = VR
O = —gé—ante® -

—iA (e¢+ e ¢t) (D107a)

—i0 [A (cZ+ d*) - f(t)}
(D107Db)

As before, f(t) represents the unavoidable noise in the
cavity drive, and 7)(t), o are the noisy force and damp-
ing resulting from an equilibrium bath coupled to the
mechanical oscillator. Note from Eq. (D107a) that as an-
ticipated, the cavity is only driven by one quadrature of
the oscillator’s motion. We have also included a driving
force F'(t) on the mechanical oscillator which has some
narrow bandwidth centered on the oscillator frequencys;
this force is parameterized as:

2h
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F(t) = Re [f(t)e e "] (D108)

where f(t) is a complex function which is slowly varying
on the scale of an oscillator period.

The equations of motion are easily solved upon Fourier
transformation, resulting in:

Xslw] = —wzpr - xmlw] i (f*[-w] = flw])  (D109a)

+v70 (9w + Q) + e i (w — Q)

(=) (flwl + f*[-w

fHw + Q) — e_i‘sﬁT(w — Q))

Yslw] = izzpr - XM (W] 1) (D109b)

_'_\/% (eié
—QiAxc[w]\/E (é(w + we) + éT(w - wc)) ]

where the cavity and mechanical susceptibilities xc, xm
are defined in Egs. (D43) and (D88).

As anticipated, the detected quadrature Xs is com-
pletely unaffected by the measurement: Eq. (D109a) is
identical to what we would have if there were no coupling
between the oscillator and the cavity. In contrast, the
conjugate quadrature Ys experiences an extra stochastic
force due to the cavity: this is the measurement back-
action. A

Turning now to the output field from the cavity by,
we use the input-output relation Eq. (D37) to find in the
lab (i.e. non-rotating) frame:

i - —i(w —we) — K/2

out W] = bout[] + —i(w —we) + K/2

Xelw — we] - Xg(w — we)

€fw]

AyE
—1

LZPF

(D110)



The first term on the RHS simply represents the output
field from the cavity in the absence of the mechanical
oscillator and any fluctuations. It will yield sharp peaks
at the two sidebands associated with the drive, w = w. &
Q. The second term on the RHS of Eq. (D110) represents
the reflected noise of the incident cavity drive. This noise
will play the role of the “intrinsic ouput noise” of this
amplifier.

Finally, the last term on the RHS of Eq. (D110) is the
amplified signal: it is simply the amplified quadrature
X5 of the oscillator. This term will result in a peak in
the output spectrum at the resonance frequency of the
cavity, we. As there is no back-action on the measured
Xs quadrature, the added noise can be made arbitrarily
small by simply increasing the drive strength N (and
hence A).

APPENDIX E: Information Theory and Measurement Rate

Suppose that we are measuring the state of a qubit
via the phase shift +6y from a one-sided cavity. Let
I(t) be the homodyne signal integrated up to time ¢ as
in Egs. (4.36-4.37). We would like to understand the
relationship between the signal-to-noise ratio defined in
Eq. (4.38), and the rate at which information about the
state of the qubit is being gained. The probability distri-
bution for I conditioned on the state of the qubit o = £1
is

p(Ilo) =

—(I—U@oﬁ)2:| (El)

1
ex
V2w Sget P [ 259t

Based on knowledge of this conditional distribution, we
now present two distinct but equivalent approaches to
giving an information theoretic basis for the definition of
the measurement rate.

1. Method |

Suppose we start with an initial qubit density matrix

Po=< 0>. (E2)

After measuring for a time ¢, the new density matrix
conditioned on the results of the measurement is

_[(p+ O
P1 <0p_>

where it will be convenient to parameterize the two prob-
abilities by the polarization m = Tr(o,p1) by

O =
N

(E3)

1+m

Pt = 9 (E4)
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The information gained by the measurement is the en-
tropy loss?® of the qubit

T =Tr(p1Inp; — polnpg). (E5)

We are interested in the initial rate of gain of information

at short times 62t < Sgg where m will be small. In this
limit we have

m2

I~ —

5 (E6)

We must now calculate m conditioned on the measure-
ment result I

my =Y op(oll). (ET)

From Bayes theorem we can express this in terms of
p(I|o), which is the quantity we know,

p(I|o)p(o)

p(o)l) = =——+"——. E8
) = S ool (%)
Using Eq. (E1) the polarization is easily evaluated
16
my = tanh (O> . (E9)
Soo
The information gain is thus
1. o, (16\ I? [ 6, \°
Ir=-tanh®’ | — | = — [ =— E10
r= gt <599> 2 \ Sps (E10)

where the second equality is only valid for small |m].
Ensemble averaging this over all possible measurement
results yields the mean information gain at short times

1 62
~ -0y

T~
2 See

(E11)

which justifies the definition of the measurement rate
given in Eq. (4.39).

2. Method Il

An alternative information theoretic derivation is to
consider the qubit plus measurement device to be a sig-
naling channel. The two possible inputs to the channel
are the two states of the qubit. The output of the chan-
nel is the result of the measurement of I. By toggling
the qubit state back and forth, one can send information
through the signal channel to another party. The chan-
nel is noisy because even for a fixed state of the qubit,

25 It is important to note that we use throughout here the physi-
cist’s entropy with the natural logarithm rather than the log base
2 which gives the information in units of bits.



the measured values of the signal I have intrinsic fluctu-
ations. Shannon’s noisy channel coding theorem (Cover
and Thomas, 1991) tells us the maximum rate at which
information can be reliably sent down the channel by tog-
gling the state of the qubit and making measurements of
I. Tt is natural to take this rate as defining the measure-
ment rate for our detector.

The reliable information gain by the receiver on a noisy
channel is a quantity known as the ‘mutual information’
of the communication channel (Clerk et al., 2003; Cover
and Thomas, 1991)

— 00

+oo
R = f/ dl {p(I) p(I) =) p(o) [p(I]o) lnp(flff)]}

(E12)
The first term is the Shannon entropy in the signal I
when we do not know the input signal (the value of the
qubit). The second term represents the entropy given
that we do know the value of the qubit (averaged over
the two possible input values). Thus the first term is
signal plus noise, the second is just the noise. Subtracting
the two gives the net information gain. Expanding this
expression for short times yields

_L{I®)+ — (I®))-)?
R = 8 +S.99t
92
B 25(;9t
= Theast (E13)

exactly the same result as Eq. (E11). (Here (I(t)), is the
mean value of I given that the qubit is in state o.)

APPENDIX F: Quantum Parametric Amplifiers
1. Non-degenerate case
a. Gain and added noise

The so-called non-degenerate parametric amplifier is a
linear, phase preserving amplifier which can in principle
reach the quantum limit (Gordon et al., 1963; Louisell
et al., 1961; Mollow and Glauber, 1967a,b). One possi-
ble realization (Yurke et al., 1989) is a cavity with three
internal resonances that are coupled together by a non-
linear element (such as a Josephson junction) whose sym-
metry permits three-wave mixing. The three modes are
called the pump, idler and signal and their energy level
structure illustrated in Fig. 20 obeys

Wp = W + ws. (Fl)

It is important that the system be such that these are
the only three modes to which the cavity couples. The
system Hamiltonian is then

Hyys = B (wpiabap +wiafan +wsalas )

+ it (afafap — asaia}) . (F2)
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We have made the rotating wave approximation in the
three-wave mixing term, and without loss of generality,
we take the non-linear susceptibility n to be real and
positive. The system is driven at the pump frequency and
the three wave mixing term permits a single pump photon
to split into an idler photon and a signal photon. This
process is stimulated by signal photons already present
and leads to gain. A typical mode of operation would
be the negative resistance reflection mode (Yurke et al.,
1989) in which the input signal is reflected from a non-
linear cavity and the reflected beam extracted using a
circulator. Since input and output travel on the same
line, the input and output impedances of the amplifier
are equal.

The non-linear EOMs become tractable if we assume
the pump has large amplitude and can be treated classi-
cally by making the substitution

ap = Ype WPt = ypeilwites)t (F3)

where without loss of generality we take 1p to be real
and positive. We note here the important point that if
this approximation is not valid, then our amplifier would
in any case not be the linear amplifier which we seek.
With this approximation we can hereafter forget about
the dynamics of the pump degree of freedom and deal
with the reduced system Hamiltonian

gsys =h (WI&;[dI + WSAgfls) + ih\
(Agd}'e—i(wl-ﬂus)t _ ds&le-l—i(wl-‘rws)t) (F4)
where A = mp. Transforming to the interaction repre-

sentation we are left with the following time-independent
quadratic Hamiltonian for the system

Viys = i\ (agai - asal) (F5)

To get some intuitive understanding of the physics, let
us temporarily ignore the damping of the cavity modes
due to their coupling to the external baths. We now have
a pair of coupled EOMs for the two modes

as

i = 1 as (F6)

Yl

for which the solutions are

as(t) = cosh(At)as(0) + sinh(At)al (0)
al(t) = sinh(At)ag(0) + cosh(At)al(0)  (F7)

We see that the amplitude in the signal channel grows
exponentially in time and that the effect of the time
evolution is to perform a simple unitary transformation
which mixes ag with d}L in such a way as to preserve the
commutation relations. We now see the close connec-
tion with the form found from very general arguments in
Eqgs. (6.7a-6.12).



With this initial result in hand, we are ready to con-
sider the presence of finite damping, necessary to feed
the input signal into the amplifier, which will cut off the
exponential growth and give a fixed amplitude gain. Fol-
lowing our standard Markovian approximation for both
the idler and signal baths, we obtain in analogy with the
previous results the following EOMs in the interaction
representation

X RS . ~ 2

as = 775 as + /\CL;r — VvV KS bS,in

2 RT . A 2

aI = _EI aI + Aas — /K1 b;in (F8)

where kg and k; are the respective damping rates of the
cavity signal mode and the idler mode.

Let us fix our attention on signals inside a frequency
window dw centered on wg (hence zero frequency in the
interaction representation). For simplicity, we will first
consider the case where the signal bandwidth dw is al-
most infinitely narrow (i.e. much much smaller than the
damping rate of the cavity modes). It then suffices to
find the steady state solution of these EOMs

ds = —a —71)371,“ F9

K I \/@ ( )
2A 2 .

al = Zag — i (F10)

from which the output signal is readily computed using
Eq. (D37)

. Q> +1; 2Q
bSput = Qr 1 bS,in + Q21 b;in (Fll)
where Q = \/EI)\TS is proportional to the pump amplitude

and inversely proportional to the cavity decay rates. We
have to require @2 < 1 to make sure that the parametric
amplifier does not settle into self-sustained oscillations,
i.e. it works below threshold. Under that condition, we
can define the voltage gain v/Gy to be

—V/Go = (Q*+1)/(Q* - 1), (F12)
such that
I;Sput = —V GO I;S,in Y/ GO -1 I;}L?in (F13)

This is precisely of the Haus-Caves form Eq. (6.12)
and shows that the non-degenerate parametric amplifier
reaches the quantum limit for minimum added noise. In
the limit of large gain the output noise (referred to the
input) for a vacuum input signal is precisely doubled.

b. Bandwidth-gain tradeoff

The above results neglected the finite bandwidth dw
of the input signal to the amplifier. The gain Gy given
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FIG. 20 (Color online) Energy level scheme of the non-
degenerate (phase preserving) parametric oscillator.

in Eq. (F12) is only the gain at precisely the mean sig-
nal frequency ws; for a finite bandwidth, we also need to
understand how the power gain varies as a function of
frequency over the entire signal bandwidth. As we will
see, a parametric amplifier suffers from the fact that as
one increases the overall magnitude of the gain at the
center frequency wg (e.g. by increasing the pump ampli-
tude), one simultaneously narrows the frequency range
over which the gain is appreciable. Heuristically, this is
because parametric amplification involves increasing the
quality factor of the signal mode resonance. This in-
crease in quality factor leads to amplification, but it also
reduces the bandwidth over which ag can respond to the
input signal lA)S,in.

To deal with a finite signal bandwidth, one simply
Fourier transforms Eqgs. (F8). The resulting equations
are easily solved and substituted into Eq. (D37), result-
ing in a frequency-dependent generalization of the input-
output relation given in Eq. (F13):

BS,out[w] = _Q[W]ES,in[w]_gl[w]i’;in[‘”]
(F14)

Here, g[w] is the frequency-dependent voltage gain of the
amplifier, and ¢'[w] satisfies |¢'[w]|?> = |g[w]|? — 1. In the
relevant limit where G = |g[0]|> > 1 (i.e. large gain at
the signal frequency), one has to an excellent approxima-
tion:

Vo —i (58 (/D)
1—i(w/D) ’

glw] = (F15)

with

- 1 KRSK1
- /Gy ks + k1

As always, we work in an interaction picture where the
signal frequency has been shifted to zero. D represents
the effective operating bandwidth of the amplifier. Com-
ponents of the signal with frequencies (in the rotating
frame) |w| < D are strongly amplified, while components
with frequencies |w| > D are not amplified at all, but

D (F16)



can in fact be slightly attenuated. As we already antici-
pated, the amplification bandwidth D becomes progres-
sively smaller as the pump power and G are increased,
with the product v/GoD remaining constant. In a para-
metric amplifier increasing the gain via increasing the
pump strength comes with a price: the effective operat-
ing bandwidth is reduced.

c. Effective temperature

Returning to the behaviour of the paramp at the signal
frequency, we note that Eq. (F13) implies that even for
vacuum input to both the signal and idler ports of the
paramp, the output will contain a real photon flux. To
quantify this in a simple way, we make use of the tempo-
ral modes introduced in our discussion of the windowed
Fourier transform (c.f. Eq. (C18)). We thus define the
input signal temporal modes as:

R 1 (G+nar
Bsin,j = 7/ dtbg in(7);
N )

the temporal modes BS,out,j and Bl,in’j are defined anal-
ogously.

With these definitions, we find that the output mode
will have a real occupancy even if the input mode is
empty:

(F17)

T_LS70Ut = <O‘Bg,out,jés7ou‘l,j|0>

= G0<0|Bg,in,jBS’in’j|O> -
(Go = {01 Brsn; B, 10)
o (F18)

The dimensionless mode occupancy ng out, is best thought
of as a photon flux per unit bandwidth (c.f. Eq.(C26)).
This photon flux is equivalent to the photon flux that
would appear in equilibrium at the very high effective
temperature (assuming large gain Gp)

Teﬁ‘ =~ hu}sGo. (Flg)
Thus, as discussed in Sec. VI.D.4, a high gain amplifier
must have associated with it a large effective temperature
scale. Referring this total output noise back to the input,
we have (in the limit Go > 1):

Teg  hws  hws  hws
=5 TS S
Go 2 2 5 TN

(F20)

This corresponds to the half photon of vacuum noise as-
sociated with the signal source, plus the added noise of
a half photon of our phase preserving amplifier (i.e. the
noise temperature Ty is equal to its quantum limited
value). Here, the added noise is simply the vacuum noise
associated with the idler port.

The above argument is merely suggestive that the out-
put noise looks like an effective temperature. In fact
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it is possible to show that the photon number distribu-
tion is in the output is precisely that of a Bose-Einstein
distribution at temperature Te. From Eq. (F2) we see
that the action of the paramp is to destroy a pump pho-
ton and create a pair of new photons, one in the signal
channel and one in the idler channel. Using the SU(1,1)
symmetry of the quadratic hamiltonian in Eq. (F5) it
is possible to show that, for vacuum input, the output
of the paramp is a so-called ‘two-mode squeezed state’
of the form (Caves and Schumaker, 1985; Gerry, 1985;
Knight and Buzek, 2004)

[Woue) = Z~1/2ebE01 |0) (F21)
where « is a constant related to the gain and, to simplify
the notation, we have dropped the ‘out’ labels on the
operators. The normalization constant Z can be worked
out by expanding the exponential and using

(b5)"10,0) = V/nl|n, 0) (F22)
to obtain
o0
[Wout) = 272> a™n,n) (F23)
n=0
and hence
1
J=—— F24
e (F24)

so the state is normalizable only for |a|? < 1.

Because this output is obtained by unitary evolution
from the vacuum input state, the output state is a pure
state with zero entropy. In light of this, it is interesting
to consider the reduced density matrix obtain by tracing
over the idler mode. The pure state density matrix is:

P = |\Ilout> <\Ilout|

& n o m

Z |n’n> (0% 2*

m,n=0

(m, m)| (F25)

If we now trace over the idler mode we are left with the
reduced matrix for the signal channel

ps = Triqer {0}
o0
B |a|2ns
= > |ns) 7 (ns]
ns =0
_ lefﬁhwsa;as (F26)
Z
which is a pure thermal equilibrium distribution with ef-
fective Boltzmann factor

e Phos = al? < 1. (F27)

The effective temperature can be obtained from the re-
quirement that the signal mode occupancy is Gg — 1

1

ohhos =1~ Go— 1

(F28)



which in the limit of large gain reduces to Eq. (F19).

This appearance of finite entropy in a subsystem even
when the full system is in a pure state is a purely quan-
tum effect. Classically the entropy of a composite system
is at least as large as the entropy of any of its compo-
nents. Entanglement among the components allows this
lower bound on the entropy to be violated in a quantum
system.?8 In this case the two-mode squeezed state has
strong entanglement between the signal and idler chan-
nels (since their photon numbers are fluctuating identi-
cally).

2. Degenerate case

In the degenerate parametric amplifier the idler mode
is eliminated, and the non-linearity converts a single
pump photon into two signal photons at frequency wg =
wp /2. This amplifier is not phase preserving (referred to
in the literature by the unfortunate name ‘phase sensi-
tive’). Rather it amplifies one quadrature of the signal
and attenuates the other. As a result, it is not necessary
to add extra noise to preserve the commutation relations.

The system Hamiltonian is

I:[sys = h (WP&ID&P + wsd;ds)
+ it (afafap - asasal).  (F29)

Treating the pump classically as before, the analog of
Eq. (F5) is

A AN L

Viys = zﬁ§ (aga; - asas> , (F30)
where A\/2 = np, and the analog of Eq. (F8) is:
Gs = —% s + Aal, — /s bs.in (F31)
It is useful to define two quadrature modes
1
. At s
Ts = —— +a ) F32
S \/§ ( S S ( )
Us = - (dé - fls) (F'33)
V2

which obey [Zg, Js] = i. We can define quadrature oper-
ators X S,in/out stin Jout corresponding to the input and
output fields in a completely analogous manner.
The steady state solution of Eq. (F31) for the output
fields becomes
XS,out = \/EXS in

)

(F34)

YS,out = (F35)

26 This paradox has prompted Charles Bennett to remark that a
classical house is at least as dirty as its dirtiest room, but a
quantum house can be dirty in every room and still perfectly
clean over all.
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where the number gain G is given by

G:[“Wr.

s (F36)

Thus we see that one quadrature is amplified and the
other is correspondingly attenuated. The commutation
relation

[Xs.0ut(t), Y ,out(t)] = i6(t — t')

is independent of G without the necessity of adding fur-
ther quantum noise.

(F37)

APPENDIX G: Number Phase Uncertainty

In this appendix, we briefly review the number-phase
uncertainty relation, and from it we derive the relation-
ship between the spectral densities describing the photon
number fluctuations and the phase fluctuations. Con-
sider a coherent state labeled by its classical amplitude
@

2
|y = exp {—'O;} exp{aa'}|0). (G1)

This is an eigenstate of the destruction operator
ala) = aja). (G2)

It is convenient to make the unitary displacement trans-
formation which maps the coherent state onto a new vac-
uum state and the destruction operator onto

i=a+d (G3)

where d annihilates the new vacuum. Then we have

N = (8) = (0l(" + d")(a+ DI0) = o, (G1)
and
(AN = (K — N)?) = o2 (0ldd'0) = . (G5)
Now define the two quadrature amplitudes
X - %(am*) (G6)
= - (G7)

Each of these amplitudes can be measured in a homodyne
experiment, for example using the Mach-Zehnder inter-
ferometer described in Appendix (H). For convenience,
let us take « to be real and positive. Then

(G8)
and

(G9)



If the phase of this wave undergoes a small modulation
due for example to weak parametric coupling to a qubit
then one can estimate the phase by

(V)
0) = —. G10
(0) ) (G10)
The uncertainty will be
v2y  Lolddtoy 1
B =rxp= e~ (W

Thus using Eq. (G5) we arrive at the fundamental quan-
tum uncertainty relation

AGAN = . (G12)

N —

Using the input-output theory described in Ap-
pendix D we can restate the results above in terms of

J

(NONO) =N = (0 + € (0) (B + (1)) (B + E1(0))Bin + £0))10) — |bin|* = Na(t).

From this it follows that the shot noise spectral density
is
Suy = N. (G17)

Similarly the phase can be estimated from the quadra-
ture operator

A PN (9
0= m =(0)+1¢ o (G18)
which has noise correlator
(60(4)36(0)) = —=6() (G19)

AN
corresponding to the phase imprecision spectral density

1
Spp = —=.
4N

(G20)

We thus arrive at the fundamental quantum limit relation

1

\/ng

(G21)

APPENDIX H: Mach Zehnder Interferometer as a
Quantum Limited Detector

In this appendix, we examine the properties of a pro-
totypical interferometric detector, the Mach Zehnder in-
terferometer (MZI), see Fig. 21, and ask whether this
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noise spectral densities. Let the amplitude of the field
coming in to the homodyne detector be

bm = Eln + é(t) (Gl?’)
where & (t) is the vacuum noise obeying
(), £ (1] = (¢ = 1), (G14)

We are using a flux normalization for the field operators
SO

N = (b, bin) = [bin? (G15)
and
: (G16)
[
b1
P
{} > 0o

)
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2
[
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FIG. 21 (Color online) Mach-Zehnder interferometer use as
a qubit state detector.

system can reach the quantum limit. For simplicity, we
consider using such an interferometer to do QND mea-
surement of a qubit by having the qubit influence one arm
of the interferometer. As follows from the discussion of
Sec. IV.B , the conclusions we reach will also apply to
the case where the interferometer is used to do position
detection of a mechanical oscillator. We show that if one
uses a Fock state input, one reaches the quantum limit
as long as the second beam splitter is symmetric. In con-
trast, a coherent state input reaches the quantum limit
only in the extreme case of an unbalanced interferometer,



where there is a vanishing amplitude in the arm contain-
ing the qubit; in the perfectly symmetric case, it misses
the quantum limit by a factor of two. We demonstrate
that in both the Fock state and coherent state cases, any
departure from the quantum limit can be directly tied
to unused information available in the phases of the out-
put of the interferometer. The differences between the
Fock state and coherent state case can be ascribed to
the different types of phase information available at the
output in each case. Finally, we note that if one were
to couple the qubit (or oscillator) to both arms of the
interferometer, then as long as the second beam-splitter
is symmetric, one will reach the quantum limit with a
coherent state input; for such a coupling, there is never
any wasted phase information.

Note that the standard treatment of measurement with
an interferometer (Caves, 1980, 1981) does not explicitly
distinguish the Fock state and coherent state cases We
show that there are important differences between the
two cases. In the case of a Fock state input, one can di-
rectly tie the interferometer back-action to the partition
noise at the first beam splitter. In contrast, in the coher-
ent state case, there is no partition noise per se; instead,
the intrinsic noise in the input state (i.e. an uncertainty
in number) serves to constrain the measurement.

1. Basic description of the interferometer

The MZI detector consists of two beam splitters, each
of which is described by a 2 x 2 unitary scattering matrix.
The output of the first beam splitter is attached to the
input of the second via two “arms”; the phase shift in
one of the arms is determined by the state of the qubit
we wish to measure. Information on this phase shift can
then be determined by looking at the difference between
the intensities at MZI’s two output ports.

The scattering matrix S of the MZI determines the re-
lation between the annihilation operators describing the
MZI input and output ports:

(2)-5(2)

where @ and as are annihilation operators for the two
input ports, and b; and by are annihilation operators for
the two output ports. S is given by:

(H1)

(H2)

where s4,sp are the scattering matrices of the beam
splitters, and s.rms is the scattering matrix of the arms.
We have:

S = SB * Sarms " SA

SA — (HS)

VI=Ty
iVTa

o <\/1—TB

(3 TA
V1=Ty

ST (H4)

ie?? 0
0 1

(3 TB
v1-Tp

(H5)

Sarms —
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Here, T'4 and T'g are real numbers between 0 and 1 which
describe the transmission probabilities of the two beam
splitters. We have assumed for simplicity that each beam
splitter has time-reversal symmetry and parity symme-
try (i.e. the symmetry operation which exchanges “1”
and “2” ports). 6 = £6q is the phase shift provided by
the qubit; the factor of ¢ in s,.ms is chosen to yield a
maximum sensitivity to the phase #y in a measurement
of the output intensities.

Letting R4 = 1-T4, Rg = 1-Tp, it will be convenient
to parameterize S as:

G5 o

ivVTe'

S:ein < \/1—T€iﬁ

where

2in — Z'eia

(HT7)
TiRg +TR4s — 2/T4RATBREB SinQ(H8)

~:
I

T determines the intensity at the two output ports, while
1,3 and ¢ describe the phases of the MZI output. Note
that all of these phases depend on 6, although we do not
list the explicit dependence here.

In what follows, we will use the scattering matrix to
determine the output of the interferometer for different
possible input states. For simplicity (and as is standard
in the quantum optics literature), we will not describe
the input to the interferometer using wavepackets, but
rather as extended waves. A more appropriate analysis
using wavepackets reaches identical conclusions as the
ones we present below.

2. Fock state input

We first consider the case where the input of the MZI
is prepared in a state having exactly N photons in input
port 1, and zero photons in the input port 2:

Y1) = V) 0)a = —= (af)” 1)

where |(2) is the vacuum. Using Eq. (H1) to convert input
operators to output operators, and using the binomial
theorem, we have:
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1 * oo * oo N
W) = = ([SE'15,81+ [S2']3,8) 1)

VNI

N
= NMx+ox) Z etm(BL—¢x) (

m=0

Here, + denotes the two qubit eigenstates, and the two
corresponding phase shifts § = +£6;. We see that the
states |i)E ) yield classical, binomial photon number
statistics at the output port; this is the direct result of
the partitioning of photons at the two beam splitters, and
the resulting noise (i.e. uncertainty in the photon num-
ber at one of the output ports) is properly termed “shot
noise”.

Note that the phase appearing in the sum over m in
Eq. (H10), A+ = B+ — ¢4, is the relative phase differ-
ence between the output in port 1 versus port 2. Unlike
the global phase of the wavefunction [toyt), this phase
difference is in principle measurable, as the number dif-
ference between the two output ports is not fixed. To
lowest order in |6], Ay is given by:

(Tomvems)
— arctan +
(1 —2T4)VTsRp
< (1—2Tp)TaRa ) ;
(TaRp + TpRa) (1 = TaRg + TpRa))

Ay = (H11)

Note that only in the case of a symmetric second beam
splitter (i.e. T = Rp = 1/2) is the phase Ay indepen-
dent of the state of the qubit.

a. Measurement rate

The quantity most easily measured at the output of
the MZI is Ngig, the difference between the photon num-
bers at the twoioutputs: Naig = b;[bl — b;bQ. Using the
definition of |¢7;,) above and taking |0| = 6y < 1 (i.e. a
weak measurement), we have:

(Ngig)s = TN — (1 —T3)N
. dT
~ (Naigr) ‘Q:O + 2N =

= (N ’H F AN \/TARAT5 Rp04H12)

The uncertainty (or noise) in the measured quantity
Naig in the state [1)Z,, ) is just given by the usual binomial
expression; to lowest order in 6 it is independent of the

qubit state, and is given by:

(Vi) = (Ni) — (Nain)®

— 4x (To(l - TO)) N (H13)

> X \/(1 — T )™ (T )N=™|m)p1 | N — m)pa (H10)

(

where Ty = T‘ .
6=0

We can now calculate the measurement rate (see Ap-
pendix E) for this setup by asking how long it will take
to resolve the difference between the two possible qubit
states, i.e. to reach the condition:

[(Nasst) 4+ — (Nais) | > 2V2 - 1/ {(N3g))

The numerical prefactor on the rhs has been chosen to
make this definition coincide with our previous definition.
In our system, this condition translates into a minimum
number of photons that are needed in the input state.
We find simply:

(H14)

(H15)

Note that if one multiplies by eV/h, this expression is
identical to the measurement rate of a quantum point-
contact detector (Aleiner et al., 1997; Gurvitz, 1997).
Also note that for the Fock state input considered here,
an equivalent expression for Npeas is obtained if one only
measures the intensity at one of the output ports. This
follows from the fact that the total number of photons
is fixed and hence the fluctuations of the two ports are
perfectly anticorrelated. Measuring one determines the
other.

b. Dephasing rate

Similar to our analysis in Sec. IV.B, we may calculate
the measurement induced dephasing of the qubit from the
overlap of the two scattering states [¢F,) (cf. Eq. (4.48));
it is this overlap which directly determines how the off-
diagonal elements of the qubit’s reduced density matrix
decay. One generally expects an exponential decay:

(W [4+)] o< exp (—N/N,) (H16)
where N, is the number of input photons needed to de-
phase the qubit (i.e. it is analogous to a dephasing time
To)-

In our case, we may directly calculate this overlap us-
ing Eq. (H10). Letting R=1—T, we find:



N
Iyt = (e““”-)ﬁ_ﬁ + \/R_R+>

Expanding A\, 7 and R in 6, one has:

<1+2f

(¥ [

{(5) - (

~\ 2 )
dTl . dA
exp | =N <60d0> ﬁ + 215 Ry (90) + 0(93)
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We thus obtain an exponential decay of the overlap as expected, with a dephasing “rate” 1/N,, given by:

~\ 2
1 o | (aT
N, (6o) <d9>

= 2T R, 6}

Eq. (H19) for the dephasing rate has the form we would
expect from a simple heuristic argument. Each photon
traveling down the arm containing the qubit advances
the qubit’s phase by a deterministic amount 26,. How-
ever, due to the partition noise at the first beam splitter,
there is an uncertainty in the number of photons Ny,
which pass by the qubit, which directly translates into
an uncertainty in the qubit’s phase ¢g:

((o2)) = (260)*((NZ))
= (200)* (TARAN)

(H20)
(H21)

Treating this noise as Gaussian, this implies that the ex-
ponential of the qubit’s phase decays as:

()] = exp <1<< §b>>> = exp (~266TaRAN) ,

2

(H22)

a result which is in exact agreement with Eq. (H19).
Turning to the question of the quantum limit (i.e. does
N, coincide with Npyeas?), it is more convenient to use
the first expression for the dephasing rate, Eq. (H19). As
the first term in this equation corresponds exactly to the
measurement rate (cf. Eq. (H15)), and the second term is
positive definite, we find that N, < Npeas: it takes longer
to measure than to dephase the qubit, meaning that the
MZI detector with a Fock state input generically fails to
reach the quantum limit. As is clear from the calculation,
the origin of this failure is the unused or “wasted” infor-
mation on the qubit’s state available in the relative phase
A; this information could be extracted from the output of
the MZI via a suitable interference experiment. In fact,
the second term in Eq. (H19) is precisely the measure-
ment rate associated with trying to determine the qubit

(H17)
A\ 2 a\’ 1 o
w _ i 4
H1
20 (H18)
1 - - fd\\?
2T ky | C °(d9>
(H19)

state from the relative phase A. From the number-phase
uncertainty relation, we can find the effective uncertainty
in the phase A without specifying a particular measure-
ment scheme; we have to zeroth order in 6:

1 1

2 = = = =
O = ey ~ RN

(H23)

The measurement rate criterion of Eq. (H14) takes the
form:

(H24)

20, (2) > 2v2,/((22))

Combining equations and solving for the minimal N, we

find:
- dA\\?\
N > Nmeas)\ = <2T0R003 <d€> >

Thus, the second term in Eq. (H19) in indeed 1/Npeasa,
the measurement rate that would result if we attempted
to measure .

While the Fock state input fails to reach the quan-
tum limit for a generic choice of parameters, there is an
important set of cases where it does achieve ideality. It
is clear from above that reaching the quantum limit re-
quires there to be no information in the phase A. Turning
to Eq. (H11) for this phase, we see that this necessar-
ily requires that the second beam splitter be completely
symmetric: T, = 1/2. Thus, for a symmetric second
beam splitter and a Fock-state input, one reaches the
quantum limit irrespective of the asymmetry in the first
beam splitter.

(H25)



As a final comment, note that the structure of
Eq. (H19) is identical to that for the measurement in-
duced dephasing rate of a qubit by a quantum point
contact detector if one simply multiplies by the inverse
timescale eV/h (Gurvitz, 1997).

3. Coherent state input

We now repeat the analysis of the previous section,
treating the case where the input of the MZI consists of

J

|wc:>tut>
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a coherent state in the input port ”1”:

i) = |@)a1|0)az = ™1/ exp (aa{) Q) (H26)

The magnitude |a|? corresponds to the average photon
number in the input: |a|?> = N.

The output state of the MZI is again given by simply
using the scattering matrix S and the transformation rule
of Eq. (H1) on Eq. (H26). We find:

e 1o /2 exp (a ([S;I]L bt + [S;l]; ISE)) |€2)

= e 1ol 2 exp (\/Eei(”*ma . 81) exp (\/%ei(”“&)a . 6;) 19))

There are some immediate differences worth noting
from the Fock state case:

e In the coherent state case, the two output ports
are not entangled; equivalently, there is no par-
tition noise (i.e. shot noise) in the coherent state
case. This follows from the fact that a coherent
state incident onto a beam splitter yields two inde-
pendent coherent states (of diminished amplitude)
whose number fluctuations are completely uncorre-
lated.

e As the total number of photons in the output of
the interferometer is not fixed, the absolute phase
of the the output in each port can in principle be
detected

a. Measurement rate

We again take the measured quantity at the output of
the MZI to be Ngig, the difference in intensities between
the two output ports. Unlike the Fock state case, it is
important the we use both ports; the measurement rate
will be smaller if we only choose to use one.

The average values of the Ngig in the two qubit states,
(Ngifr)+ is again given by Eq. (H12), with N = |a|?. The
noise in Ny is however different, as the coherent states
have Poissonian statistics as opposed to binomial. One
finds to zeroth order in 6y that the noise in Ng;g is iden-
tical to that in the input state |¢);,), and is completely

J

(W™ ™) =

‘ \/]T%ei(w“g) a>b1 ’ \/%ei('”‘b) oz>

exp <_N [1 R R, e g8 —po) /Tf+ei(n+—n)ei(¢+—¢)} ) ‘

. (H27)

(

independent of the properties of the beam splitter:

((Ndig)) = lal* = N (H28)
Thus, unlike the case of the Fock state, the noise in the
output does not result from scattering in the MZI (i.e.,
partitioning of the photons between the two arms by the
first beam splitter); rather, it simply reflects the intrinsic
noise already present at the input. Note that ((N2q)) in
the Fock state case is always less than or equal to that
found above.

Using the same criteria as in the previous section
(cf. Eq. (H14)), we find that the smallest value of N
needed for a measurement is given by:

1
(g0

We see that for the same dT/ df, the measurement rate
for the coherent state input is less than or equal to that
in the Fock state case— there is more noise in the coherent
state case, hence the measurement proceeds more slowly.

N > Npeas = (H29)

b. Measurement induced dephasing

We again wish to calculate the wavefunction overlap
in Eq. (H16). Using |a|?> = N, we have simply:

(H30)
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Expanding terms inside the exponential to order 62, we find for the dephasing “rate” 1 /Ny:

~\ 2
1 ar\" 1
- - 0 2 i T+2
N, (6) <d0> 2TR

where the phases Ag and Ar are (respectively) the total
phases of the output in port 1 and port 2:

(H32)
(H33)

AR = n+0
Ar =N+

We can evaluate this expression to find the simple result:

1
—— = 2R.6?
N, 470

(H34)
Note that the dephasing rate here is not equal to that
in the Fock state case (cf. Eq. (H19)), and thus can-
not be interpreted in terms of partition noise at the first
beam splitter. This is not surprising— as already dis-
cussed, there is no partition noise in the case of a coher-
ent state input. Eq. (H34) can instead be simply inter-
preted in terms of the number fluctuations of the input
state. Heuristically, each photon passing the qubit ad-
vances its phase by a deterministic amount 26y. Similar
to the Fock state case, the uncertainty in the number of
photons passing the qubit, Ny, directly translates into a
phase uncertainty in the qubit (i.e. dephasing). Unlike
the Fock state case, the fluctuations of Ny, are not given
by partition noise, but simply by Poisson statistics:

((Nap)) = (Ngp) = RaN (H35)
This leads to an expression for |(e*?e)| which is in exact
agreement with Eq. (H34).

Turning now to the question of the quantum limit, it
is useful to work with Eq. (H31) for the dephasing rate.
Note the close analogy to the corresponding expression
for N, for the Fock state case, Eq. (H19). The first term

describes information available in the modulation of T by
the qubit, and corresponds precisely to the measurement
rate for the Fock state input (cf. Eq. (H15)). In con-
trast, the second and third terms are precisely the mea-
surement rates associated with detecting the phase at,
respectively, the “1” and “2” output ports. One notes
directly from Eq. (H31) that in general, Nyeas > No:
the MZI with a coherent state input does not generically
reach the quantum limit. As usual, this is due to wasted
information in the detector. Interestingly, even if there is
no wasted phase information (i.e A = Ag = 0), one still
does not necessarily reach the quantum limit. This is due
to the number uncertainty of the input state: the MZI
output corresponds to having effectively averaged over
input states with different numbers of photons, a proce-
dure which in general results in a loss of information (see
Clerk et al. (2003) for a discussion of this point).

- (A \? = [d\g\®

(H31)

For simplicity, consider now the case that was ideal
for a Fock state input: an MZI with a symmetric second
beam splitter, i.e. Tg = 1/2. In this case, Tp = 1/2, and
the measurement rate is given by its maximal value:

1

= 2T 4R A(6p)?
chas A A( 0)

(H36)

This is identical to the expression in the Fock state case,
even though the origin is different (i.e. partition noise
versus intrinsic noise in the input state).

For a symmetric second beam splitter, the three terms
in the expression for the dephasing rate reduce to:

~\ 2
ar\" 1 1
00)* | = — H
0o <d9> 9TR  Nuneas (37
- (dar\’
2037, (=X ) = R%6? (H38)
o
2
202 Ry (@;) = R%6? (H39)

Combining these to evaluate Eq. (H31), we find again:

1 1
— = 2R% (00)* = 2R 405
Ny " N Tl =28a%

(H40)

This yields an alternate interpretation for Eq. (H34) as
a sum of measurement rates. It also demonstrates that
even with a symmetric second beam splitter, the MZI
detector with a coherent state input fails to reach the
quantum limit: in general, Npyeas > N,. In the com-
pletely symmetric case, where Ty = 1/2 also, the quan-
tum limit is missed by a factor of two. As is clear from
the calculation, the reason for this failure is unused infor-
mation on the state of the qubit available in the phases of
the two output ports. To approach the quantum limit,
one needs to suppress the wasted information in these
phases. From Eq. (H39), we see that this requires one to
take the limit R4 — 0. In this limit, the amplitude of
the wave in the arm containing the qubit is vanishingly
small; as a result, the overall measurement rate is also
suppressed. Note the sharp difference between the cases
of a Fock state input and coherent state input: in the for-
mer case, one could reach the quantum limit by simply
having T4 = 1/2, while in the latter case, one needs to
additionally take the limit of a vanishing measurement
rate.



4. Symmetric coupling

Our conclusions for the MZI and a coherent state in-
put may seem quite depressing: in order to reach the
quantum limit, one must have a highly asymmetric first
beam splitter, with the result that the measurement rate
is greatly reduced compared to its optimal value. As a
final concluding postscript on our discussion of the MZI,
we point out that there is another, more practical way to
have the MZI with coherent state input reach the quan-
tum limit. Instead of using a highly asymmetric first
beam splitter, one can couple the qubit to both arms of
the interferometer, such that the scattering matrix for
the arms is now:

e 0
Sarms — 0 6_1-9 3

where again, 6 = 16, depending on the state of the qubit.
An analysis identical to that presented above now shows
that one reaches the quantum limit for perfectly symmet-
ric beam splitters, meaning that one also has an optimal
measurement rate. For this coupling, there is no longer
any wasted phase information in the output of the in-
terferometer. While this coupling might be difficult to
imagine in the qubit case, it can be realized in the case
of position detection (see Fig. 21).

(H41)

APPENDIX I: Using feedback to reach the quantum limit

In Sec. (VII.B), we demonstrated that any two port
amplifier whose scattering matrix has s1; = S99 = s12 =
0 will fail to reach quantum limit when used as a weakly
coupled op-amp; at best, it will miss optimizing the quan-
tum noise constraint of Eq. (6.60) by a factor of two.
Reaching the quantum limit thus requires at least one
of s11,8922 and sij2 to be non-zero. In this subsection,
we demonstrate how this may be done. We show that
by introducing a form of negative feedback to the “min-
imal” amplifier of the previous subsection, one can take
advantage of noise correlations to reduce the back-action
current noise S;; by a factor of two. As a result, one is
able to reach the weak-coupling (i.e. op-amp) quantum
limit. Note that quantum amplifiers with feedback are
also treated in Courty et al. (1999); Grassia (1998).

On a heuristic level, we can understand the need for
either reflections or reverse gain to reach the quantum
limit. A problem with the “minimal” amplifier of the
last subsection was that its input impedance was too low
in comparison to its noise impedance Zn ~ Z,. From
general expression for the input impedance, Eq. (7.7d),
we see that having non-zero reverse gain (i.e. s12 # 0)
and/or non-zero reflections (i.e. s;; # 0 and/or sa3 # 0)
could lead to Z;, > Z,. This is exactly what occurs
when feedback is used to reach the quantum limit. Keep
in mind that having non-vanishing reverse gain is danger-
ous: as we discussed earlier, an appreciable non-zero \;
can lead to the highly undesirable consequence that the
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FIG. 22 Schematic of a modified minimal two-port amplifier,
where partially reflecting mirrors have been inserted in the
input and output transmission lines, as well as in the line
leading to the cold load. By tuning the reflection coefficient
of the mirror in the cold load arm (mirror Y), we can in-
duce negative feedback which takes advantage of correlations
between current and voltage noise. This then allows this sys-
tem to reach the quantum limit as a weakly coupled voltage
op amp. See text for further description

amplifier’s input impedance depends on the impedance
of the load connected to its output (cf. Eq. (7.6)).

1. Feedback using mirrors

To introduce reverse gain and reflections into the “min-
imal” two-port bosonic amplifier of the previous subsec-
tion, we will insert mirrors in three of the four arms lead-
ing from the circulator: the arm going to the input line,
the arm going to the output line, and the arm going to
the auxiliary “cold load” (Fig. 22). Equivalently, one
could imagine that each of these lines is not perfectly
impedance matched to the circulator. Each mirror will
be described by a 2 x 2 unitary scattering matrix:

(}j,out _ Uj . ljj,in (Il)
bj,out Qjin

U, = <cos0j —81n9j> (12)

sinf; cosd;

Here, the index j can take on three values: j = z for the
mirror in the input line, j = y for the mirror in the arm



going to the cold load, and j = x for the mirror in the
output line. The mode a; describes the “internal” mode
which exists between the mirror and circulator, while the
mode b; describes the “external” mode on the other side
of the mirror. We have taken the U; to be real for con-
venience. Note that 6; = 0 corresponds to the case of no
mirror (i.e. perfect transmission).

It is now a straightforward though tedious exercise to
construct the scattering matrix for the entire system.
From this, one can identify the reduced scattering matrix
s appearing in Eq. (7.3), as well as the noise operators
F;. These may then in turn be used to obtain the op-amp
description of the amplifier, as well as the commutators
of the added noise operators. These latter commutators
determine the usual noise spectral densities of the ampli-
fier. Details and intermediate steps of these calculations
may be found in Appendix J.5.

As usual, to see if our amplifier can reach the quantum
limit when used as a (weakly-coupled) op-amp , we need
to see if it optimizes the quantum noise constraint of
Eq. (6.60). We consider the optimal situation where both
the auxiliary modes of the amplifier (i, and f):rn) are in
the vacuum state. The surprising upshot of our analysis
(see Appendix J.5) is the following: if we include a small
amount of reflection in the cold load line with the correct
phase, then we can reach the quantum limit, irrespective
of the mirrors in the input and output lines. In particular,
if sinf, = —1/ VG, our amplifier optimizes the quantum
noise constraint of Eq. (6.60) in the large gain (i.e. large
G) limit, independently of the values of 6, and 6,. Note
that tuning ¢, to reach the quantum limit does not have
a catastrophic impact on other features of our amplifier.
One can verify that this tuning only causes the voltage
gain Ay and power gain Gp to decrease by a factor of
two compared to their 6, = 0 values (cf. Egs. (J55) and
(J59)). This choice for 6, also leads to Zi, > Z, ~ Zn
(cf. (J5T)), in keeping with our general expectations.

Physically, what does this precise tuning of ¢, corre-
spond to? A strong hint is given by the behaviour of the
amplifier’s cross-correlation noise Sy 7[w] (cf. Eq. (J60c)).
In general, we find that Sy[w] is real and non-zero.
However, the tuning sinf, = —1/ VG is exactly what is
needed to have Sy vanish. Also note from Eq. (J60a)
that this special tuning of 6, decreases the back-action
current noise precisely by a factor of two compared to
its value at 6, = 0. A clear physical explanation now
emerges. Our original, reflection-free amplifier had cor-
relations between its back-action current noise and out-
put voltage noise (cf. Eq. (7.18¢c)). By introducing nega-
tive feedback of the output voltage to the input current
(i.e. via a mirror in the cold-load arm), we are able to
use these correlations to decrease the overall magnitude
of the current noise (i.e. the voltage fluctuations V' par-
tially cancel the original current fluctuations I ). For an
optimal feedback (i.e. optimal choice of ), the current
noise is reduced by a half, and the new current noise is
not correlated with the output voltage noise. Note that
this is indeed negative (as opposed to positive) feedback—
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it results in a reduction of both the gain and the power
gain. To make this explicit, in the next section we will
map the amplifier described here onto a standard op-amp
with negative voltage feedback.

2. Explicit examples

To obtain a more complete insight, it is useful to go
back and consider what the reduced scattering matrix of
our system looks like when 6, has been tuned to reach
the quantum limit. From Eq. (J53), it is easy to see that
at the quantum limit, the matrix s satisfies:

S11 = —S22

1
S12 = 5821

(13a)
(I3b)

The second equation also carries over to the op-amp pic-
ture; at the quantum limit, one has:

1
N = a)\v (14)
One particularly simple limit is the case where there
are no mirrors in the input and output line (6, = 6, = 0),
only a mirror in the cold-load arm. When this mirror is
tuned to reach the quantum limit (i.e. sinf, = —1/VG),
the scattering matrix takes the simple form:

5—01/@
- VG o

In this case, the principal effect of the weak mirror in
the cold-load line is to introduce a small amount of re-
verse gain. The amount of this reverse gain is exactly
what is needed to have the input impedance diverge
(cf. Eq. (7.7d)). It is also what is needed to achieve an
optimal, noise-canceling feedback in the amplifier. To
see this last point explicitly, we can re-write the ampli-
fier’s back-action current noise (I) in terms of its original
noises Iy and 7 (i.e. what the noise operators would have
been in the absence of the mirror). Taking the relevant
limit of small reflection (i.e. 7 = sinf, goes to zero as
|G| — o0), we find that the modification of the current
noise operator is given by:

(I5)

P~ jo+ﬂﬁ
1 —VGF Za

As claimed, the presence of a small amount of reflection
7 = sin 6, in the cold load arm “feeds-back” the original
voltage noise of the amplifier Vp into the current. The
choice 7 = —1/ VG corresponds to a negative feedback,
and optimally makes use of the fact that I and Vp are
correlated to reduce the overall fluctuations in 1.

While it is interesting to note that one can reach the
quantum limit with no reflections in the input and output
arms, this case is not really of practical interest. The

(I6)



FIG. 23 Schematic of a voltage op-amp with negative feed-
back.

reverse current gain in this case may be small (i.e. A} x
1/V/G), but it is not small enough: one finds that because
of the non-zero A}, the amplifier’s input impedance is
strongly reduced in the presence of a load (cf. Eq. (7.6)).

There is a second simple limit we can consider which is
more practical. This is the limit where reflections in the
input-line mirror and output-line mirror are both strong.
Imagine we take 0, = —6, = 7/2 — §/GY/3. If again
we set sinf, = 71/\FG to reach the quantum limit, the
scattering matrix now takes the form (neglecting terms
which are order 1/v/G):

1 0
s = <52_g1/4 ) (17)
5 -1

In this case, we see that at the quantum limit, the reflec-
tion coefficients s1; and sgp are exactly what is needed
to have the input impedance diverge, while the reverse
gain coefficient s15 plays no role. For this case of strong
reflections in input and output arms, the voltage gain is
reduced compared to its zero-reflection value:

Zy (67
A\ — Zl’(2> G4 (18)

The power gain however is independent of 6,,6,, and is
still given by G/2 when 6, is tuned to be at the quantum
limit.

3. Op-amp with negative voltage feedback

We now show that a conventional op-amp with feed-
back can be mapped onto the amplifier described in
the previous subsection. We will show that tuning the
strength of the feedback in the op-amp corresponds to
tuning the strength of the mirrors, and that an optimally
tuned feedback circuit lets one reach the quantum limit.
This is in complete correspondence to the previous sub-
section, where an optimal tuning of the mirrors also lets
one reach the quantum limit.

More precisely, we consider a scattering description of
a non-inverting op-amp amplifier having negative voltage
feedback. The circuit for this system is shown in Fig. 23.
A fraction B of the output voltage of the amplifier is fed
back to the negative input terminal of the op-amp. In
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practice, B is determined by the two resistors R; and Ro
used to form a voltage divider at the op-amp output. The
op-amp with zero feedback is described by the “ideal”
amplifier of Sec. VIL.B: at zero feedback, it is described
by Egs. (7.11a)- (7.11d). For simplicity, we consider the
relevant case where:

Zy < R, Ry K Z, (19)
In this limit, R; and Ry only play a role through the
feedback fraction B, which is given by:
R
B=—"—
R+ Ry

Letting G ¢ denote the voltage gain at zero feedback
(B = 0), an analysis of the circuit equations for our op-
amp system yields:

(110)

Gy

Ay = m (I11a)
N = H—BBGf (I11b)
Zout = &c (I11c)
Znm = (1+B-G})Z, (111d)
Gp = G§/2 (I11e)

B-Gy+2Zy/Z,

Again, Gy represents the gain of the amplifier in the ab-
sence of any feedback, Z, is the input impedance at zero
feedback, and Z; is the output impedance at zero feed-
back.

Transforming this into the scattering picture yields a
scattering matrix s satisfying:

7BGf (Za — (2 + BGf)Zb)

S11 = —S822 = BGfZa + (2 +BGf)2Zb (1123)
S = — 2V 2, ZyGf (1—|—BGf) (T12b)
BGfZa +(2+ BGf)QZb
B
S12 = foé’m (I12¢c)

Note the connection between these equations and the nec-
essary form of a quantum limited s-matrix found in the
previous subsection.

Now, given a scattering matrix, one can always find a
minimal representation of the noise operators F, and F
which have the necessary commutation relations. These
are given in general by:

Fo = V1 —|s11]2 = |s12]2 + 1] - @tin + 1 - 0], (113)

Fo = Vo +[s2a? =10, (114)
511531 + 512599

VlIsa1[? + [s22]? — 1

Applying this to the s matrix for our op-amp, and then

taking the auxiliary modes u;, and f);rn to be in the vac-

uum state, we can calculate the minimum allowed Sy

(115)




and Sy for our non-inverting op-amp amplifier. One can
then calculate the product Sy S;; and compare against
the quantum-limited value (Sry is again real). In the
case of zero feedback (i.e. B = 0), one of course finds
that this product is twice as big as the quantum limited
value. However, if one takes the large Gy limit while
keeping B non-zero but finite, one obtains:

Thus, for a fixed, non-zero feedback ratio B, it is possible
to reach the quantum limit. Note that if B does not tend
to zero as Gy tends to infinity, the voltage gain of this
amplifier will be finite. The power gain however will be
proportional to Gy and will be large. If one wants a
large voltage gain, one could set B to go to zero with
Gy ie. B laf In this case, one will still reach

the quantum limit in the large Gy limit, and the voltage
gain will also be large (i.e. « 1/Gy). Note that in all

J

Srrlw] = Wﬁz ilpoli)

Srrlw] = whz (il poi)
i’f

Here, pg is the stationary density matrix describing the
state of the detector, and |i) (|f)) is a detector energy
eigenstate with energy E; (Ef). Eq. (J1) expresses the
noise at frequency w as a sum over transitions. Each
transition starts with an an initial detector eigenstate
i), occupied with a probability (i|pg|i), and ends with a
final detector eigenstate |f), where the energy difference
between the two states is either +Aw or —hw . Further,
each transition is weighted by an appropriate matrix el-
ement.

To proceed, we fix the frequency w > 0, and let the
index v label each transition |i) — |f) contributing to the
noise. More specifically, v indexes each ordered pair of
detector energy eigenstates states {|¢), |f)} which satisfy
E; — E; € £hjw,w + dw] and (i |p0\ i) # 0. We can now
consider the matrix elements of I and F' which contribute
to Srr[w] and Sgr[w] to be complex vectors ¥ and 1.
Letting § be any real number, let us define:

(@, = (fW)IFli(v)) J3)
[0, = { e f W) i Epw) = Bi) = +hw,
’ SN i By — Eiw) = —hiw.
(74)
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these limits, the reflection coefficients s;1 and sos tend
to —1 and 1 respectively, while the reverse gain tends
to 0. This is in complete analogy to the amplifier with
mirrors considered in the previous subsection, in the case
where we took the reflections to be strong at the input
and at the output (cf. Eq. (I7)). We thus see yet again
how the use of feedback allows the system to reach the
quantum limit.

APPENDIX J: Additional Technical Details

This appendix provides further details of calculations
presented in the main text.
1. Proof of Quantum Noise Constraint

Note first that we may write the symmetrized Iand F

noise correlators defined in Egs. (5.4a) and (5.4b) as sums
over transitions between detector energy eigenstates:

[(FIEN0)? (6(Ef — B + hw) + 6(Ef — E; — hw)] (J1)

(PN [8(Bf — Ei + hw) + 6(Ey — Ei — hw)] (J2)

Introducing an inner product (-, -),, via:
(@,b), == Z v)|poli(

we see that the noise correlators S;; and Spp may be
written as:

)+ (@) b, (J5)

Srrlwldw = (7,
Spp[w]dw = <u7,16>w (J7)

We may now employ the Cauchy-Schwartz inequality:

(¥, ) (@, @)y > (T, )| (J8)
A straightforward manipulation shows that the real
part of (¥, ), is determined by the symmetrized cross-
correlator Syp[w] defined in Eq. (5.4c):

Re (U, %), = Re [eiéng[CU]] dw (J9)
In contrast, the imaginary part of (7, @), is independent
of Srp; instead, it is directly related to the gain A and
reverse gain X’ of the detector:

Im (7, 0), = gRe [e (Aw] = N[w]])] dw  (J10)



Substituting Eqgs. (J10) and (J9) into Eq. (J8), one im-
mediately finds the quantum noise constraint given in
Eq. (5.15). Maximizing the RHS of this inequality with
respect to the phase d, one finds that the maximum is
achieved for 6 = 69 = — arg(\) 4+ dp with (we assume the
ideal case where ' = 0):

_ |Srr|sin 2¢
|hA/2] 4 |S1F| cos 2¢

tan 20 = (J11)

where ¢ = arg(S;p)\*). At 6 = &y, Eq. (5.15) becomes
the final noise constraint of Eq. (5.11).

The proof given here also allows one to see what must
be done in order to achieve the “ideal” noise condition
of Eq. (5.16): one must achieve equality in the Cauchy-
Schwartz inequality of Eq. (J8). This requires that the
vectors ¥ and @ be proportional to one another; there
must exist a complex factor « (having dimensions [I]/[F])
such that:

T=a-u (J12)
Equivalently, we have that
. eOalf|F|i if By — B; = +hw
(st = CaUIED B B (113)
e Ya(f|F|i) if By —E; =—lw.

for each pair of initial and final states |i), |f) contribut-
ing to Spp(w] and Syr[w] (cf. Eq. (J1)). Note that this
not the same as requiring Eq. (J13) to hold for all pos-
sible states |¢) and |f). This proportionality condition
tells us that a detector with ideal noise properties has a
tight connection between its input and output ports; in
Clerk et al. (2003), this condition was directly tied to the
idea that there is no “wasted” information in a quantum-
limited detector, an idea that we have discussed in Sec.
IV.B and Appendix H.

Finally, for a detector with quantum-ideal noise prop-
erties, the magnitude of the constant o can be found from
Eq. (5.17). The phase of o can also be determined from:

—Im o

hIA|/2
|al V/S11Srr

For zero frequency or for a large detector effective tem-
perature, this simplifies to:

cos &g (J14)

—Im « _ hA/2 (J15)

|af /' S11SFF

Note importantly that to have a non-vanishing gain
and power gain, one needs Im « # 0. This in turn places
a very powerful constraint on a quantum-ideal detectors:
all transitions contributing to the noise must be to final
states |f) which are completely unoccupied. To see this,
imagine a transition taking an initial state |i) = |a) to
a final state |f) = |b) makes a contribution to the noise.
For a quantum-ideal detector, Eq. (J13) will be satisfied:

(blla) = e (b F|a) (J16)
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where the plus sign corresponds to F, > E,, the mi-
nus to E, > Ep. If now the final state |b) was also oc-
cupied (i.e. (b|po|b) # 0), then the reverse transition
|i = b) — |f = a)) would also contribute to the noise.
The proportionality condition of Eq. (J13) would now
require:

(a|T|b) = eT?a(a| F|b) (J17)
As I and F' are both Hermitian operators, and as o must
have an imaginary part in order for there to be gain, we
have a contradiction: Eq. (J16) and (J17) cannot both
be true. It thus follows that the final state of a tran-
sition contributing to the noise must be unoccupied in
order for Eq. (J13) to be satisfied and for the detector
to have ideal noise properties. Note that this necessary
asymmetry in the occupation of detector energy eigen-
states immediately tells us that a detector or amplifier
cannot reach the quantum limit if it is in equilibrium.

2. Simplifications for a Quantum-Limited Detector

In this appendix, we derive the additional constraints
on the property of a detector that arise when it satisfies
the quantum noise constraint of Eq. (5.16).

We begin by noting that a necessary condition for sat-
isfying Eq. (5.16) is that the inequality of Eq. (5.15) be-
comes an equality for a particular choice of §. Thus, as-
sume Eq. (5.15) holds as an equality for our detector for
some specific value of d; further, assume the ideal case
of a detector with zero reverse gain, ' = 0. Using the
proportionality condition between the matrix elements of
I and F (cf. Eq (J13)), the unsymmetrized I-F quantum
noise correlator Syp[w] (cf. Eq. (5.7)) may be written:

e Pa*Sppw]
S =9 .
] {61601*SFF [w]

if w> 0,

J18
ifw<0 (J18)

In the above equation, Spplw] is the unsymmetrized
spectral density of the force noise of the detector
(cf. Eq. (3.8)); note that Spr[w] is necessarily real and
positive.

We may now substitute Eq. (J18) into Eqs. (5.8b)-
(5.8a); writing Sprp(w] in terms of the detector effective
temperature Teg (cf. Eq. (3.21)):

hAlw] _ —e " h[~Im X Fr(w]]

2 (1 ) ot (52 ) i (e o)

Srrlw] = e h[~Im xpp[w]]

e ageo (522 - ]

To proceed, let us write:

(J19)

(J20)

—is A s

(& = —¢€
A

(J21)



The condition that || is real yields the condition:

Re « tanh hw
—— tan
Ima 2kgTen

We now consider the relevant limit of a large detector
power gain Gp. Gp is determined by Eq. (6.28); the only
way this can become large is if kgTeq/(hiw) — oo while
Im « does not tend to zero. We will thus take the large
Teg limit in the above equations while keeping both o and
the phase of A fixed. Note that this means the parameter
0 must evolve; it tends to zero in the large Ty limit. In
this limit, we thus find for X and S;p:

tang =

(J22)

%M = —2¢ “kpTegy[w] (Im a) |14 0 (kf’ﬁs) 1
(723)
Sirlw] = 2¢ P kpTogy[w] (Re o) {1 +0 <k$dﬁ>:|
(J24)

Thus, in the large power-gain limit (i.e. large Teg
limit), the gain A and the noise cross-correlator Sy have
the same phase: Syr /A is purely real.

3. Derivation of non-equilibrium Langevin equation

In this appendix, we prove that an oscillator weakly
coupled to an arbitrary out-of-equilibrium detector is de-
scribed by the Langevin equation given in Eq. (6.14), an
equation which associates an effective temperature and
damping kernel to the detector.

We start by defining the oscillator matrix Keldysh
green function:

G(t) = <

where GE(t —t') = —if(t — ') ([&(t), 2(t)]), GA(t —t') =
0t — 1) ([3(2), 3()]), and GR (t— ') = —i{{a(2), 3()}).
At zero coupling to the detector (A = 0), the oscillator
is only coupled to the equilibrium bath, and thus Gy has
the standard equilibrium form:

%M=h<

m

GE(t) GR(t) ) (J25)

GA(t) 0

—2Im go[w] coth (%Bhﬁam) golw] )

go[w]* 0
(326)

1
w? — Q2 +iwvyy/m

golw] = (J27)

and where g is the intrinsic damping coefficient, and
Thatn is the bath temperature.
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We next treat the effects of the coupling to the detector
in perturbation theory. Letting 3 denote the correspond-
ing self-energy, the Dyson equation for G has the form:

- —1 0 XAw
[GO [w]] - <2R[a}] EK[QJ] > (JZS)

To lowest order in A, ¥[w] is given by:

[Glel] " =

Yw] =

A?D[w]

A2 1wt

?/dt e

( 0 wemmmﬂwq
—i(E®, FO))  ~i({F@), FO)})

Using this lowest-order self energy, Eq. (J28) yields:

h
R _

G w] = m(w? — O2) — A2Re DE[w] + iw(vo + v[w])

(J31)
GAlw] = [GF]] (J32)
GHlw] = —2iIm GRlw] x

~o coth (2k13hﬁam) + v[w] coth (QkZUIJ’efJ
Yo + Y[w]
(J33)

where «y[w] is given by Eq. (3.25), and Teg[w] is defined
by Eq. (3.21). The main effect of the real part of the re-
tarded F Green function D®[w] in Eq. (J31) is to renor-
malize the oscillator frequency 2 and mass m; we simply
incorporate these shifts into the definition of 2 and m in
what follows.

If Toglw] is frequency independent, then Egs. (J31)
- (J33) for G corresponds exactly to an oscillator cou-
pled to two equilibrium baths with damping kernels ~q
and v[w]. The correspondence to the Langevin equa-
tion Eq. (6.14) is then immediate. In the more general
case where Tog|w] has a frequency dependence, the cor-
relators GFw] and G¥|[w] are in exact correspondence
to what is found from the Langevin equation Eq. (6.14):
G [w] corresponds to symmetrized noise calculated from
Eq. (6.14), while G[w] corresponds to the response co-
efficient of the oscillator calculated from Eq. (6.14). This
again proves the validity of using the Langevin equation
Eq. (6.14) to calculate the oscillator noise in the presence
of the detector to lowest order in A.

4. Linear-Response Formulas for a Two-Port Bosonic
Amplifier

In this appendix, we use the standard linear-response
Kubo formulas of Sec. VI.LE to derive expressions for
the voltage gain Ay, reverse current gain A}, input
impedance Z;, and output impedance Z,,; of a two-port



bosonic voltage amplifier (cf. Sec. VII). We recover the
same expressions for these quantities obtained in Sec. VII
from the scattering approach. We stress throughout this
appendix the important role played by the causal struc-
ture of the scattering matrix describing the amplifier.

In applying the general linear response formulas, we
must bear in mind that these expressions should be ap-
plied to the uncoupled detector, i.e. nothing attached to
the detector input or output. In our two-port bosonic
voltage amplifier, this means that we should have a
short circuit at the amplifier input (i.e. no input voltage,
Va = 0), and we should have open circuit at the out-
put (i.e. I, =0, no load at the output drawing current).
These two conditions define the uncoupled amplifier. Us-
ing the definitions of the voltage and current operators
(cf. Egs. (7.2a) and (7.2b)), they take the form:

(J34a)
(J34b)

—Qout [w]

l;in [W] = ZA)out [W]

din [W} =

The scattering matrix equation Eq. (7.3) then allows us
to solve for a;, and Gyt in terms of the added noise
operators F, and Fy.

le] = LB E ] - SRR (5
blel = "2 A ]+ AL (335h)

where D is given in Eq. (7.8), and we have omitted writ-
ing the frequency dependence of the scattering matrix.
Further, as we have already remarked, the commutators
of the added noise operators is completely determined by
the scattering matrix and the constraint that output op-
erators have canonical commutation relations. The non-
vanishing commutators are thus given by:

[Fulol Fi@)] = 2mé(w = o) (1= |sul? = [s12]%)
(J36a)

£l L @)] = 2mo(w =) (1= s = |saf?)
(J36D)

[#alul, 7 ()]

=276 (w — ') (511851 + S12559)

(J36¢)

The above equations, used in conjunction with
Egs. (7.2a) and (7.2b), provide us with all all the infor-
mation needed to calculate commutators between current
and voltage operators. It is these commutators which en-
ter into the linear-response Kubo formulas. As we will
see, our calculation will crucially rely on the fact that
the scattering description obeys causality: disturbances
at the input of our system must take some time before
they propagate to the output. Causality manifests itself
in the energy dependence of the scattering matrix: as a
function of energy, it is an analytic function in the upper
half complex plane.
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a. Input and output impedances

Eq. (6.56) is the linear response Kubo formula for
the input impedance of a voltage amplifier. ~Recall
that the input operator @ for a voltage amplifier is re-
lated to the input current operator I, via —dQ/dt =
I, (cf. Bq. (6.55)). The Kubo formula for the input
impedance may thus be re-written in the more familiar
form:

Vsl = & (= [ a0, o) (037

w h 0
where Yi,|w] = 1/Zin[w],

Using the defining equation for I, (Eq. (7.1b)) and
Eq. (J34a) (which describes an uncoupled amplifier), we
obtain:

m Kubo = (JSS)
> dw w —jw’ iw’
7/ dte uut/ ﬁ wAaa(W/) (6 t —e t)
0

where we have defined the real function Ay, [w] for w > 0
via:

(139)

’m

[ lw], ()] = 276(w = &) Agali]

It will be convenient to also define Agq[w] for w < 0 via
Aga[w] = Aga[—w]. Eq. (J38) may then be written as:

e d
)/in,Kubo[w} = 7/ dt/ d W

A 'A "7
_ aa[ ] _|_773 d W haa(W')/Za
e, w—w

/)ei(wfw')t

—00

(J40)

Next, by making use of Eq. (J35a) and Eqs. (J36) for
the commutators of the added noise operators, we can
explicitly evaluate the commutator in Eq. (J39) to cal-
culate Agqlw]. Comparing the result against the result
Eq. (7.7d) of the scattering calculation, we find:

Aaa[ ]

5 (J41)

Re in,scatt [W]

where Yi, scatt[w] is the input admittance of the ampli-
fier obtained from the scattering approach. Returning to
Eq. (J40), we may now use the fact that Y, scant[w] is
an analytic function in the upper half plane to simplify
the second term on the RHS, as this term is simply a
Kramers-Kronig integral:

R dw,w'Aaa(u)’/Z@
W oo w—w
— L,P o dw’ w/Re Yrin,scatt(wl)

— !
W  J_o w—w

=Im Yvin,scatt [w] (J42)



It thus follows from Eq. (J40) that input impedance cal-
culated from the Kubo formula is equal to what we found
previously using the scattering approach.

The calculation for the output impedance proceeds in
the same fashion, starting from the Kubo formula given
in Eq. (6.57). As the steps are completely analogous to
the above calculation, we do not present it here. One
again recovers Eq. (7.7¢c), as found previously within the
scattering approach.

b. Voltage gain and reverse current gain

Within linear response theory, the voltage gain of the
amplifier (Ay ) is determined by the commutator between
the “input operator” Q and Vj (cf. Eq. (5.3); recall that
Q is defined by dQ/dt = —1I,. Similarly, the reverse
current gain ()\’ ) is determined by the commutator be-
tween I, and ®, where & is defined via d@/dt = -V
(cf. Eq. (5.6)). Similar to the calculation of the input
impedance, to properly evaluate the Kubo formulas for
the gains, we must make use of the causal structure of
the scattering matrix describing our amplifier.

Using the defining equations of the current and volt-
age operators (cf. Egs. (7.1a) and (7.1b)), as well as
Egs. (J34a) and (J34b) which describe the uncoupled
amplifier, the Kubo formulas for the voltage gain and
reverse current gain become:

7
AV.Kubo[w] = 4\/7:
0o ) [ 1% dw' o,
x/ dt e"'Re / iAba(w')e*“" t}
0 lJo 2m

Zy
/\II,Kubo[w] = —4 7 (J44)

. dw'’ '
x / dt e Re / 2 Apa(w')e™ t}
0 L/ O 27

where we define the complex function Ap,[w] for w > 0
via:

(J43)

[binle] @] = @r0(w =) Apale]  (45)
We can explicitly evaluate Ay,[w] by using Egs. (J35a)-
(J36) to evaluate the commutator above. Comparing the
result against the scattering approach expressions for the
gain and reverse gain (cf. Egs. (7.7a) and (7.7b)), one
finds:

Aba[w] = >\V,scatt [W} -

Note crucially that the two terms above have different
analytic properties: the first is analytic in the upper half
plane, while the second is analytic in the lower half plane.
This follows directly from the fact that the scattering
matrix is causal.

At this stage, we can proceed much as we did in the
calculation of the input impedance. Defining Ap,[w] for

(J46)

[ lI,scatt [WH i
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w < 0 via Apg[—w] = Af,[w], we can re-write Egs. (J43)
and (J44) in terms of principle part integrals.

— 1 A a w’
AV, Kubo[w] = Zb (Alm[m] + —P de 'b(/)>
w| = b Aba( )
/I,Kubo[ ] Z (Aba[ + P / dw /

(J47)

Using the analytic properties of the two terms in
Eq. (J46) for Ap.[w], we can evaluate the principal part
integrals above as Kramers-Kronig relations. One then
finds that the Kubo formula expressions for the voltage
and current gain coincide precisely with those obtained
from the scattering approach.

While the above is completely general, it is useful to
go through a simpler, more specific case where the role of
causality is more transparent. Imagine that all the energy
dependence in the scattering in our amplifier arises from
the fact that there are small transmission line “stubs” of
length a attached to both the input and output of the
amplifier (these stubs are matched to the input and out-
put lines). Because of these stubs, a wavepacket incident
on the amplifier will take a time 7 = 2a/v to be either
reflected or transmitted, where v is the characteristic ve-
locity of the transmission line. This situation is described
by a scattering matrix which has the form:

slw] = e?walv . 5 (J48)

where 5 is frequency-independent and real. To further
simplify things, let us assume that §1; = S22 = 512 = 0.
Egs. (J46) then simplifies to

Apalw] = = sni[w] = 591€™7 (J49)

where the propagation time 7 = 2a/v We then have:

Zy & .
\/7821 / dt elwgté(t _ 7_)
)\ — Zb < wwot
rlwo] = —2 7821 dt eyt 4+ 1) (Jb1)

If we now do the time integrals and then take the limit
7 — 0T, we recover the results of the scattering approach
(cf. Egs. (7.7a) and (7.7b)); in particular, Ay = 0. Note
that if we had set 7 = 0 from the outset of the calculation,
we would have found that both Ay and A; are non-zero!

Av [wo (J50)

5. Details for Two-port Bosonic Voltage Amplifier with
Feedback

In this appendix, we provide more details on the calcu-
lations for the bosonic-amplifier-plus-mirrors system dis-
cussed in Sec. I. Given that the scattering matrix for
each of the three mirrors is given by Eq. (I2), and that
we know the reduced scattering matrix for the mirror-free



system (cf. Eq. (7.10)), we can find the reduced scattering
matrix and noise operators for the system with mirrors.
One finds that the reduced scattering matrix s is now
given by:
! X
M

sinf, + v/G'sin 6, sin 6,

VG cos 8, cos b,

S =

—cos 0, cos 0, sin 6,
sinf, + VG sin 0y sin 6,
J

cos 0, cosf,

Fol _ 1
(}‘b> M (—@cos@zcoseysinﬁz

The next step is to convert the above into the op-amp
representation, and find the gains and impedances of the
amplifier, along with the voltage and current noises. The
voltage gain is given by:

v, _ [Z8_ VG
v ZAl—@siney

while the reverse gain is related to the voltage gain by
the simple relation:

1+sinf,; 1 —sin 0@55)

cos 0, cosf,

sin 6,
VG

The input impedance is determined by the amount of
reflection in the input line and in the line going to the
cold load:

N, = Av (J56)

Z. = 7 1—\/§Sin9y.1+sin92

a - J57
1—&—\/§Sin6‘y 1—sinf, (J57)

Similarly, the output impedance only depends on the
amount of reflection in the output line and the in the
cold-load line:

1+ \@Sinﬁy 1+ siné,

Zou = Z .
‘ bl—\@sinﬁy 1 —sinf,

(J58)

Note that as sinf, tends to —1/ VG , both the input
admittance and output impedance tend to zero.

Given that we now know the op-amp parameters of our
amplifier, we can use Eq. (7.5) to calculate the amplifier’s
power gain G p. Amazingly, we find that the power gain
is completely independent of the mirrors in the input and
output lines:

G
Gp = ——— J59
r 14 Gsin? 6, (J59)
Note that at the special value sinf, = —1vG (which

allows one to reach the quantum limit), the power gain

(J52)
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where the denominator M describes multiple reflection
processes:

M = 1+VGsinf,sinb,sing, (J53)
) Further, the noise operators are given by:
VG —1cosf,sinf, sin 6, Win,
t (J54)
VG — 1cosb, Uy

(

is reduced by a factor of two compared to the reflection
free case (i.e. 8, = 0).

Turning to the noise spectral densities, we assume the
optimal situation where both the auxiliary modes ;, anc}

f)jn are in the vacuum state. We then find that both T
and V are independent of the amount of reflection in the
output line (e.g. 0,):

_ 2hw
Sir = [

Zg | 14+sin6,

1 —sin 02]
G sin? 6, + cos(26,)
2
(VGsing, —1)

S = huZ, 1 +S?n0z
1 —sin6,

(3+Cos(20y) 1 )

(J60a)

0 - 36 (J60D)

VG(1—1/G)sinb, + cos? 6,
1 —VGsing,

SV] = (JGOC)

As could be expected, introducing reflections in the input
line (i.e. #, # 0) has the opposite effect on S;; versus
Syy: if one is enhanced, the other is suppressed.

It thus follows that the product of noise spectral
densities appearing in the quantum noise constraint of
Eq. (6.60) is given by (taking the large-G limit):

1+ Gsin?0,
2
(1 —V/Gsin Gy)

S11Syy
(hw)®

= (2—sin®0,) (J61)

Note that somewhat amazingly, this product (and hence
the amplifier noise temperature) is completely indepen-
dent of the mirrors in the input and output arms (i.e. 6,
and 6,). This is a result of both Sy and S;; having
no dependence on the output mirror (6, ), and their hav-
ing opposite dependencies on the input mirror (). Also
note that Eq. (J61) does indeed reduce to the result of



the last subsection: if #, = 0 (i.e. no reflections in the
line going to the cold load), the product S;;Syv is equal
to precisely twice the quantum limit value of (hw)?. For
sin(6,) = —1/+/G, the RHS above reduces to one, imply-
ing that we reach the quantum limit for this tuning of
the mirror in the cold-load arm.
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