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Outline of topics

1. The Schrödinger equation
� Non-relativistic quantum mechanics

2. The Klein Gordon Equation
� A relativistic wave equation for bosons

3. The Dirac Equation
� A relativistic wave equation for fermions

4. Quantum Electrodynamics
� The Dirac equation in an electromagnetic potential

5. Scattering and Perturbation Theory
� Feynman rules, cross-sections and widths

6. Quantum Chromodynamics
� Quarks, gluons and color, renormalisation, running couplings
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1. The Schrödinger Equation

Consider a plane wave with energy                and momentum   : 

It should not be surprising that these operators do not commute with time and position 
respectively, and indeed obey the usual commutation relations:

These values can be extracted using the energy and momentum operators :

[see later for what I really mean by “=“]
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Indeed, we could have started with the commutation relation as a postulate and 
worked the other way.

This demonstrates that               and                are strictly speaking only position 
space representations of the momentum operator. Can you work out (or guess) 
the momentum space representations of position and momentum?

Recall that the wavefunction is just the coefficient when we write the state vector in 
terms of the position eigenbasis ,

,              i.e.

Hint: First consider                     and use

Exercise : working in one space dimension only and assuming the commutation 
relation                      show that
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Classically we know                               , and writing this in terms of 

operators gives us the Schrödinger equation :

(1)

(2)

But how do we interpret the Schrödinger equation and the associated wavefunction?

The best way is to see what it conserves. What are its conserved currents and density?

Erwin Schrödinger
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We have shown that the quantity                       satisfies a continuity equation

with

conserved current

conserved density

Now subtract (1) – (2)
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Now, integrating over a volume V:

Volume V enclosed 
by Area A

J

and using Gauss’ Theorem

Any change in the total ρ in the volume must come about 
through a current J through the surface of the volume.

is a conserved density and we interpret it as the probability density
for finding a particle at a particular position.

Notice that ρ is positive definite, as required for a probability.
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2. Klein-Gordon Equation

The Schrödinger Equation only describes particles in the non-relativistic limit. To 
describe the particles at particle colliders we need to incorporate special relativity.

A quick review of special relativity

We construct a position four-vector as

An observer in a frame S′ will instead observe a four-vector                              where       
denotes a Lorentz transformation.

e.g. under a Lorentz boost by v in the positive x direction:
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The quantity xµxµ is invariant under a Lorentz transformation

Here                                                        is the metric tensor of Minkowski space-time.

note the definition of 
a covector

(Notice that I could have started with orthogonality and proven the invariance.)

This invariance implies that the Lorentz transformation is orthogonal:
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A particle’s four-momentum is defined by                          

is proper time , the time in the particle’s own rest frame. 

It is related to an observer’s time via

Its four-momentum’s time component is the particle’s energy, while the space 
components are its three-momentum

and its length is an invariant, its mass 2 (times c2):
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Finally, I define the derivative

This is a covector (index down).

You will sometimes use the vector expression 

Watch the minus sign!

transforms as

so
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For simplicity, from now on I will use natural units . 

Instead of writing quantities in terms of kg, m and s, we could write them in terms of c, �
and eV:

So any quantity with dimensions kga mb sc can be written in units of cα �β eVγ, with

Then we omit � and c in our quantities (you can work them out from the dimensions) –
we don’t just “set them to be one”.
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The Klein-Gordon Equation

The invariance of the four-momentum’s length provides us with a relation 
between energy, momentum and mass: 

(I have set V=0 for simplicity.)

Oskar Klein

Replacing energy and momentum with                  ,           gives 
the Klein-Gordon equation:
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( ∂2 ≡ ∂µ ∂µ is sometimes written as � or �2 )

Alternatively, in covariant notation: with                          gives

This is the relativistic wave equation for a spin zero particle, which conventionally 
is denoted    .

This has plane-wave solutions 

normalization
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Is the Klein-Gordon equation the same in all reference frames?

Under a Lorentz transformation the Klein-Gordon operator is invariant, so:

Under continuous Lorentz transformations, S must be the same as for the identity, ie. S = 1

But for a parity inversion                               it can take either sign

with 
(Lorentz trans. preserve the norm)

real         (since      is real)

To give the same physics in the new frame, we need:
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If S =  1, then φ is a scalar

If S = -1, then φ is a pseudoscalar

Unfortunately, the probability should change with reference frame!

Remember that         is a probability density:  

Length contraction changes volumes

The probability P = ρV   , so for P to be invariant we need

Since φ is invariant, then |φ|2 does not change with a Lorentz transformation. 

This sounds good – the probability doesn’t change with your reference frame!
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One possible choice is:

(this is the same current as before, just 
with a different normalisation)

As a four-vector,

We need new definitions for the density ρ and current J which satisfy the continuity 
equation

or, convariantly, with

Exercise : Derive the continuity equation above, in a non-covariant notation 
(just as we did for the Schrödinger equation). Now derive it using a covariant 
notation.
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Consider our plane-wave solution: 

This is why Schrödinger abandoned this equation and developed the non-
relativistic Schrödinger equation instead – he (implicitly) took the positive sign 
of the square root so that he could ignore the negative energy solutions.

We have solutions with negative energy , and even worse,

so these negative energy states have negative probability distributions !

We can’t just ignore these solutions since they will crop up in any Fourier decomposition.
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Feynman-Stuckelberg Interpretation

Quantum Field Theory tells us that positive energy states must propagate forwards in 
time in order to preserve causality. 

Feynman and Stuckelberg suggested that negative energy states propagate 
backwards in time .

Our negative energy (E<0) plane wave solutions are 

moved the minus sign 
over to the time

remember

Particles flowing backwards in time are then reinterpreted as anti-particles flowing 
forwards in time.
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If the field is charged, we may reinterpret        as a charge density, instead of a probability 
density:

Now ρ = j0, so for a particle of energy E:

while for an anti-particle of energy E:

which is the same as the charge density for an electron of energy -E 
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In reality, we only ever see the final state particles, so we must include these anti-particles 
anyway.

Quantum mechanics does not adequately handle the creation of particle—anti-particle 
pairs out of the vacuum. For that you will need Quantum Field Theory .

positive energy state 
flowing forwards in time

time

sp
ac

e

negative energy state flowing 
backwards in time 

≡
positive energy anti-particle state 

flowing forwards in time



22

The particle (or charge) density allows us to normalize the KG solutions in a box.

Normalization of KG solutions

So if we normalize to 2E particles per unit volume , then N = 1 

Notice that this is a covariant choice. Since the number of particles in a box should be 
independent of reference frame, but the volume of the box changes with a Lorentz boost, 
the density must also change with a boost. In fact, the density is the time component of a 
four-vector j0.

so in a box of volume V  the number of particles is:
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The Klein-Gordon Equation from a Lagrangian

In classical mechanics we can use Lagrangians to describe dynamical systems, via the 
principle of least action .

The evolution of a system progresses along the path of least action, where the action is 
defined in terms of a Lagrangian

We want to know the field configuration such that an infinitesimally small variation of the 
field leaves the action unchanged.

i.e.                                                        with 

Technically    is a Lagrange density.
The Lagrangian is

Is it clear why this must also depend on        ?  

Actually, more correctly
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But

So

total derivative is zero 
since vanishes at ∞

True for all      so,

This is the Euler-Lagrange Equation .
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Consider the Lagrangian for a free scalar field:

So                                        which is the Klein-Gordon equation!

We have two Euler-Lagrange Equations. One for     and one for      :

Let’s use the one for     :
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3. The Dirac Equation

The problems with the Klein-Gordon equation all came about because 
of the square root required to get the energy:

Dirac tried to get round this by finding a field equation which was linear in the operators.

All we need to do is work out     and 

Paul Dirac
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So, comparing with we must have:

Now, we have                                                where i and j are summed over   ,,

and      are anti-commuting objects – not just numbe rs!

relabel , i.e.
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These commutation relations define α and β. Anything which obeys these relations 
will do. One possibility, called the Dirac representation , is the 4×4 matrices:

2×2 matrices

where σi are the usual Pauli matrices:

Since these act on the field ψ, ψ itself must now be a 4 component vector, known 
as a spinor .

[Strictly speaking 
this is also just a 
representation.]
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We can write this equation in a four-vector form by defining a new quantity γµ:

The anti-commutation relations become:

And the Dirac Equation is:    (with                     )

Often            is written as 
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Exercise : Show that the above anticommutation relation reproduces the 
required anticommutation relations for α and β. 

Exercise : Show that the matrices α and β in the Dirac equation are 
Hermitian, traceless, have even dimension and have eigenvalues ±1. 
(Hint: showing they are Hermitian is a bit of a cheat!)

Exercise : Prove that                    and                               and

therefore
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Does the Dirac Equation have the right properties?

Is the probability density positive definite?

A appropriate conserved quantity is now                        with

In four-vector notation, 

( Note                                )with

Clearly                               always! �
Exercise : Starting from the Dirac equation derive the continuity equation for 
the above density and current (you can stick to convariant notation this time if 
you like).
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Does the Dirac Equation only have positive energy s olutions?

Look for plane wave solutions:

4 component spinor 2 component spinors

Since we want the energy, it is easier to work without four-vector notation:
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For a particle at rest ,               

Solutions:

with

positive energy 
solutions

with

OR

negative energy 
solutions
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Dirac got round this by using the Pauli Exclusion principle. 

He reasoned that his equation described particles with spin (e.g. electrons) so only two 
particles can occupy any particular energy level (one spin-up, the other spin-down).

E=0

D
ira

c 
S

ea

…

E
ne

rg
y

If all the energy states with E<0 are 
already filled, the electron can’t fall 

into a negative energy state.

…

Moving an electron from a negative 
energy state to a positive one leaves a 

hole which we interpret as an anti-particle.

Note that we couldn’t have used this argument for bosons (no exclusion principle) 
so the Feynman-Stuckleberg interpretation is more useful.

Oops! We still have negative energy solutions! �
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A General Solution

Check these are compatible:

since 

property of Pauli matrices, e.g. 
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We need to choose a basis for our solutions. Choose,

[Normalization choice - see later]

Positive Energy Solutions, E > 0, are
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Typically, we write this in terms of the antiparticle’s energy and momentum:

Negative Energy Solutions, E < 0, are 

Conventions differ 
here: sometimes the 

order is inverted
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Orthogonality and completeness

With the normalization of 2E particles per unit volume, it is rather obvious that:

This is a statement of orthogonality.

Less obvious, but easy to show, are the completeness relations: 

Exercise : Prove the above completeness relations

[positive energy]

Note that this is a matrix 
equation:
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The Dirac Equation from a Lagrangian

Consider the Lagrangian for a free Dirac field:
spinor indices

So                                             which is the Dirac equation!

We have two sets of Euler-Lagrange Equations. One for     and one for      :

Let’s use the one for     :
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I could have used the other set of Euler-Lagrange Equations to give an equation for the 
antiparticle:

sometimes written

arrow denotes 
acting to the left

The Dirac Lagrangian looks rather asymmetric in its treatment of      and     . 

In principle,    is just as fundamental as      and we can rewrite the Lagrangian: 

total derivative

or even
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Angular Momentum and Spin

The angular momentum of a particle is given by                  .

So the quantity                               is conserved!

But, if we define

then

If this commutes with the Hamiltonian then angular momentum is conserved.

This is not zero, so                        is not conserved! 

Exercise : Demonstrate the above commutation relations. 

(Hint: show that first)
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is the orbital angular momentum, whereas         is an intrinsic angular momentum

Notice that our basis spinors are eigenvectors of 

with eigenvalues

So now we know why the spinor contains four degrees of freedom:

• positive energy solution, with spin up
• positive energy solution, with spin down
• negative energy solution, with spin up
• negative energy solution, with spin down
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Helicity of massless fermions

If the mass is zero, our wave equation becomes 

These two component spinors, called Weyl spinors , are completely independent, and 
can even be considered as separate particles!

Notice that each is an eigenstate of the operator               with eigenvalues

for massless state

Writing then we find the equations decouple

and
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For the full Dirac spinor, we define the Helicity operator as

This is the component of spin in 
the direction of motion.

A particle with a helicity eigenvalue is right handed

A particle with a helicity eigenvalue is left handed

Since an antiparticle has opposite momentum it will have opposite helicity. 

left handed particle right handed antiparticle

[this is why the labelling of solutions in the antiparticle spinor is sometimes reversed]
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We can project out a particular helicity from a Dirac spinor using γ matrices.

Then a spinor PLu will be left handed, while  PRu will be right handed.

Define

and projection operators

This is the Dirac 
representation.

e.g.

but so PRu is right handed.
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We can make this more explicit by using a different representation of the γ matrices.

Now

The left-handed Weyl spinor sits in the upper part of the Dirac spinor, while the right 
handed Weyl spinor sits in the lower part.

e.g.

The chiral representation (sometimes called the Weyl representation ) is:
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Also, helicity is only a good quantum number for massless particles.

If a particle has a mass, I can always move to a reference frame where I am going 
faster than it, causing the momentum to reverse direction. This causes the helicity to 
change sign.

For a massless particle there is no such frame and helicity is a good quantum number.

The weak interaction acts only on left handed particles.

Parity transforms                    but leaves spin unchanged (it doesn’t change which of 
the solutions you have). Therefore parity changes helicity - it transforms left handed 
particles onto right handed ones (and vice versa),

i.e.                                and 

So the weak interactions are parity violating.
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We saw earlier that the mass term in the Dirac Lagrangian looks like

Mass terms mix left and right handed states.
(chiral representation)

Therefore massive particle are not compatible with the weak interaction!

The solution to this problem is to introduce a new field called the Higgs field . This 
couples left handed particles, to right handed ones, mixing them up and giving them an 
effective mass . 

If the vacuum (lowest energy state) of the system contains a non-zero amount of this 
new field              , we generate a mass

The theory also predicts a new particle, the Higgs boson , which we hope to find soon!
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Symmetries of the Dirac Equation

The Lorentz Transformation

How does the field           behave under a Lorentz transfromation?

( γµ and m are just numbers and don’t transform)

Premultiply by          :

This notation differs in different texts. 
e.g. Peskin and Schroeder would write
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We can find S for an infinitesimal proper transformation

[antisymmetric]

This tells us how a fermion field transforms under a Lorentz boost.

write                                       (just a parameterisation)

[ignoring terms            ]

[I jumped a few steps here]

Exercise : Demonstrate that this choice of         satisfies the transformation 
equation (ignoring terms            )              
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The adjoint transforms as 

[since                            for the explicit form of S derived above]

So          is invariant.

And                                                             so our current is a four-vector.

scalar

pseudoscalar

vector

axial vector

tensor

Common fermion bilinears:
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Can you derive the parity transformations of the bilinears given on the last slide?

You should see that η drops out, so there is no loss of generality setting η = 1

Parity

A parity transformation is an improper Lorentz transformation                          
described by

Again                                       ,  so               and 

Since        commutes with itself (trivially) and anticommutes with      , a suitable choice is    
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Charge Conjugation

Another discrete symmetry of the Dirac equation is the interchange of particle and anti-
particle.

Therefore we need C such that

Premultiply by              and the Dirac equation becomes: 

used                             and 

Take the complex conjugate of the Dirac equation:
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The form of C changes with the representation of the γ-matrices. For the Dirac 
representation a suitable choice is

How does this transformation affect the stationary solutions?

We have mapped particle states onto antiparticle states, as desired.

etc
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Time Reversal

A naive transformation of the wavefunction is not sufficient for time 
reversal. Since the momentum of a particle, is a rate of change , it too must change sign. 

We must (again!) make a complex conjugation:

Take complex conjugation of Dirac Equation, switch              and pre-multiply by T:

Changing the momentum direction and time for a plane wave gives:
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Need:

A suitable choice is:
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CPT

For the discrete symmetries, we have shown:

Doing all of these transformations gives us

So if            is an electron,                     is a positron travelling backwards in space-time 
multiplied by a factor         . 

This justifies the Feynman-Stuckleberg interpretatio n!
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4. Quantum Electrodynamics

Maxwell’s equations:

Maxwell wrote these down in 1864, but amazingly they are covariant!

James Clerk Maxwell

Classical Electromagnetism

Note: the ability to write 
Maxwell’s Equations in this form 
is not a proof of covariance!] 

[

Writing                                                         and                           they are

[Note:                         ]

[without using QFT]
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Maxwell’s equations can also be written in terms of a potential Aµ

Writing

we have

Choose λ such that 

This is a gauge transformation , and the choice                     is know as the Lorentz gauge .

In this gauge:

Now, notice that I can change Aµ by a derivative of a scalar and leave Fµ ν unchanged

does this look 
familiar?
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The wave equation with no source,                     has solutions 

with

We still have some freedom to change Aµ, even after our Lorentz gauge choice:

is OK, as long as 

Usually we choose       such that                     . This is known as the Coulomb gauge .

So only two polarisation states remain (both transverse).

polarisation vector with 4 
degrees of freedom

So       has only 3 degrees of freedom (two transverse d.o.f. and one longitudinal d.o.f.)

The Lorentz condition 
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A Lagrangian for the free photon field

We want a Lagrangian which will give us                      (Maxwell’s equations with no sources)

Recall                                            ,  so

antisymmetric
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The Dirac Equation in an Electromagnetic Field

So far, this has been entirely classical. So how do we incorporate electromagnetism into 
the quantum Dirac equation?

We have one more symmetry of the Dirac Lagrangian which we haven’t looked at yet.

Consider phase shifting the electron field by                   .

The adjoint field transforms as                               and the Lagrangian transforms as

The Lagrangian doesn’t change so the physics stays the same.

This is known as a global U(1) symmetry

(since        is a unitary 1×1 matrix)
(since       doesn’t vary with 
space-time coordinate) 
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What happens if we make our transformation local , i.e. depend on space-time point?

The free Dirac Lagrangian is no longer invariant. If we really want this to be a symmetry 
of the theory, we will have to add in something new.

Let’s postulate a new field         which couples to the electron according to

Often this is written in terms of a “covariant derivative”

charge of the electron = -e

Beware: conventions differ, 
e.g. Halzen and Martin have

while Peskin & Schroeder 
have as above
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Now

therefore we need       to transform as

This is the gauge transformation we saw for the (cl assical) photon earlier!

So, to preserve the Lagrangian, we need         to transform too: 

Coupling the electron to a photon makes the theory locally U(1) symmetric
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The Magnetic Moment of the Electron

We saw that the interaction of an electron with an electromagnetic field is given by

Writing                      as before,

Coulomb gauge ⇒ A0=0

Also,

andSo
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So we have,

This is an magnetic moment interaction                with 

The magnetic moment       is composed of a contribution from the orbital angular momentum, 

and the intrinsic spin angular momentum

gyromagnetic ratio

In the non-relativistic limit,                    and                      , so we can 

write  the Dirac equation as approximately:
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The Dirac equation predicts a gyromagnetic ratio  g = 2

We can compare this with experiment:  gexp = 2.0023193043738 ± 0.0000000000082

The muon’s magnetic moment is more interesting because it is more sensitive to new physics.

The discrepancy of g-2 from zero is due to radiative corrections

The electron can emit a photon, interact, and reabsorb the photon.

Theory:

Experiment:

excellent 
agreement!

If one does a more careful calculation, including these effects, QED predicts:
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Now we have the Dirac equation in an Electromagnetic field we can calculate the 
scattering of electrons (via electromagnetism)                  .

We will assume that the coupling e is small, and that far away from the interaction, 
i.e. outside the shaded area, the electrons are free particles. 

γ

a

b

c

d

5. Scattering and Perturbation theory

Then the initial state is a solution of the free Dirac Equation. 

It will evolve in time according to the Hamiltonian of the interacting Dirac Equation.

The probability of finding a particular final state (also a solution of the free Dirac 
Equation) is the projection of the evolved state onto this particular final state.
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Our Dirac equation in an external field is

We need to solve this equation for    .

The Dirac Equation (in a field) can be written:

with 

c.f. the Schrödinger equation in a potential V [Remember γ0γ0 = 1 ] 

Let’s assume that the state at time                  is an momentum eigenstate of the

free Dirac equation (V=0) with energy

i.e. with
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Let’s expand k in powers of e:

Now, since        form a complete set, any solution must be of the form 

with

(this normalisation choice to ensure |κ|2 can be interpreted as a probability)

Let’s stick this in and see what we get:

cancel
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To order e:

We can now extract             using the orthogonality of        :     

To order e:

Equate order by order in en
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But at time                  the initial state is               ,  

Integrate over t:

zero

By time               the interaction has stopped. The probability of finding the system in a state

is given by                               to order e with:
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Explicitly putting in our                                 gives 

OK, so now we know the effect of the field Aµ on the electron, but what Aµ does the 
other electron produce to cause this effect?

a c

b d
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Putting this all together:

forces momentum conservation

Note: This is not just a pretty picture, or a graphical aid. This diagram is a 
mathematical notation for the expression above!

a

b

c

d

q

pa

pdpb

pc
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Feynman Diagrams: The QED Feynman Rules

We can construct transition amplitudes simply by associating a 
mathematical expression with the diagram describing the interaction.

• for each incoming electron
• for each outgoing electron
• for each incoming positron
• for each outgoing positron

• for each incoming photon

• for each outgoing photon

• for each internal photon

• for each internal electron

• for each vertex

p

Remember that γ-matrices and spinors do not commute, so be careful 
with the order in spin lines. Write left to right, against the fermion flow.

Richard Feynman

For each diagram, write:

p

(fermion charge Q)
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2 details:

• Closed loops :  

Integrate over loop momentum                   and include an extra factor of -1 if 
it is a fermion loop.

• Fermi Statistics : If diagrams are identical except for an exchange of 
electrons, include a relative – sign.

k

p

p

p

p

p

p

p

p
–

These rules provide           , and the transition amplitude is

The probability of transition from initial to final state is



77

An example calculation:

k

p′

k′

p

e- e-

µ- µ-

This is what we had before. 

To get the total probability we must square this, 
average over initial spins , and sum over final 
spins .

But
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(summation over i,j,m,n = 1,..,4)

But don’t forget that the u are 4-component spinors and the γ are 4×4 matrices:

So

We need some trace identities!

spinor indices

We can simplify this using the completeness relation for spinors:

beware normalization here – this is only 
true for 2E particles per unit volume

Then 
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Trace Identities

[This is true for any odd

number of γ-matrices]

be careful with this one!

Exercise : Show that               

Using this identity and                            , show:
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So 

If we are working at sufficiently high energies, then           and we may 
ignore the masses. 
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Often this is written in terms of Mandlestam Variables , which are defined:

[Note that                                                      ]

Then

k

p′

k′

p

e- e-

µ- µ-

s is the square of the momentum flowing in the time direction

t is the square of the momentum flowing in the spacee direction

s

t
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Cross-sections
So we have          but we are not quite there yet – we need to turn this into a cross-section.

Recall

⇒

since

But we need the transition probability per unit time and per unit volume is:
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The cross-section is the probability of transition per unit volume, per unit time × the number 
of final states / initial flux.

This must also be true for a collider , where A and B are both moving, since the lab 
frame and centre-of-mass frame are related by a Lorentz boost.

Initial Flux

In the lab frame, particle A, moving with velocity      , hits particle B, which is stationary.

A B

The number of particles like A 
in the beam, passing through 
volume V per unit time is

The number of particles like B 
per volume V in the target is

So the initial flux in a volume V is

But we can write this in a covariant form: 
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# final states

How many states of momentum     can we fit in a volume V?

In order to not have any particle flow through the boundaries of the box, we must impose 
periodic boundary conditions .

so the number of states between px and px+dpx is

L

So in a volume V we have 

But there are 2EV particles per volume V, so

# final states per particle =

Note that                                                       so this is covariant!
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Putting all this together, the differential cross-section is:

where the Flux F is given by,

and the Lorentz invariant phase space is,

momentum conservation on-shell conditions integration measure
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In the centre-of-mass , this becomes much simpler

This frame is defined by                          and
Remember

So                               and

with 

Then the Flux becomes
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Also                        and                               with relations analogous to those for pa and pb

since

The phase space measure becomes:

Putting this together:
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Returning to our process With me   =  mµ = 0

Τhe fine structure constant

θa b

c

d

In terms of the angle between a and c

The differential cross-section is:

Notice that this is divergent for small angles:                 as 

This is exactly the same divergence as is in the Rutherford scattering formula.
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Crossing symmetry

Generally, in a Feynman diagram, any incoming particle with momentum p is equivalent to 

an outgoing antiparticle with momentum –p.

crossing

This lets us use our result for e- µ- → e- µ- to easily calculate the differential cross-section 

for e+e-→ µ+µ-.

crossing

i.e. 
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e+

e-

µ+

µ-

Be careful not to change the s
from flux and phase space!

⇒

Writing θ as the angle between the e- and µ-,

as before

The total cross-section is

⇒ Notice the singularity 
is gone!
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Identical particles in initial or final state

So far, in the reactions we have looked at, the final state particles have all been 
distinguishable . form one another. If the final state particles are identical , we 
have additional Feynman diagrams.

pc and pd interchanged
interchange of identical 
fermions ⇒ minus sign

e.g. e- e- → e- e-

pa

pb

pc

pd

e-

e-

e-

e-

[See Feynman rules]

pa

pb

pc

pde-

e- e-

e-
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Since the final state particles are identical, these diagrams are indistinguishable
and must be summed coherently .

We have interference between the two contributions.

Exercise : Show that the spin summed/averaged differential cross-section for                       
______________ in QED is given by the above equation, neglecting the 
electron mass. 
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Compton Scattering and the fermion propagator

Compton scattering is the scattering of a photon with an electron.

e-e- e-e-

γ γ γγ
+

I just quoted the Feynman rule for the fermion propagator , but where did it come from?

Let’s go back to the photon propagator first.

Recall the photon propagator is

The         is the inverse of the photon’s wave equation: 
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The gµν is coming from summing the photon polarization vectors over spins:

this is for virtual photons

So, the photon propagator is then 

For a fermion propagator we follow the same procedure

The massless fermion spin sum is

so the fermion propagator is

sometimes written

Remember that     also 
obeys the KG equation.
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More precisely, the propagator is the momentum space Fourier transform of the wave 
equation’s Greens function

Green’s function S obeys:

This is a definition of a Green’s function. They are very useful to know since we can use 
them to build up solutions for any source.

Writing , and pre-multiplying by

gives

⇒
Remember
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So now we are armed with enough information to calculate Compton Scattering

+

Putting in the Feynman rules, and following through, with me = 0 

You will need to use

Exercise : Reproduce the above equation (starting from the Feynman Rules). 

[sum over transverse 
polarizations] What happened to the interference?
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Decay Rates

So far we have only looked at 2 → 2 processes, but what about decays?

A decay width is given by:

This replaces the Flux.

# of decay particles per unit volume

For a decay                         we have

# final states

⇒
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In the rest frame of particle a:

a
b

c The decay is back-to-back

with

But
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Remember, to get the total decay rate, you need to sum over all possible decay processes.

The inverse of the total width              will give the lifetime of the particle:

If the number of particles = Na   then,
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6. Quantum Chromo Dynamics (QCD)

QCD describes the interaction of quarks and gluons .  

It is very similar to QED, except we have 3 types of ‘charge’ instead of just one. 

Conventionally we call these charges red , green and blue , and each quark can be 
written as a vector in “color space”:

The force between the quarks is mediated by gluons which can also change the 
color of the quarks. 

However, QCD is symmetric under rotations in this color-space, so we can always 
rotate the quarks to pure color states and say they are either red, green or blue.

This symmetry is known as SU(3)color, and parallels the U(1)QED symmetry of QED.

Quarks, Gluons and Color

R

G

B
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Since we have 3 different sorts of quark (red, green and blue), to connect them all together 
we naϊvely need 3 × 3  = 9 different gluons.

Since we are connecting together 
quarks of different color, the gluons 

must be colored too.

B B

particle flow color flow

B

R

R

R

RB
_

≡

Since QCD is symmetric to rotations in color-space, the first 8 of these must have 
related couplings. However, the last one is a color singlet, so in principle can have an 
arbitrary coupling. In QCD, its coupling is zero.

⇒ We have 8 gluons

So, for example, we could have gluons:

three orthogonal combinations of

Conventionally these last 3 are
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In order to transform one quark color-vector onto another, we need eight 3×3 matrices.

These matrices are generators of the SU(3) group and obey the SU(3) algebra ,

SU(3) structure constants

For example to turn a blue quark into a red quark we need a     gluon represented by 

i.e.

The above matrix is not a very convenient choice (it is actually a ladder operator). 
Instead we normally write TA in terms of the Gell-Mann λ matrices .

are conventionally normalised by                                and are traceless . 

Hence the removal of
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The Gell-Mann matrices are:

Notice there are only 2 diagonal Gell-Mann matrices.
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The covariant derivative is now a 3×3 matrix in color space:

QCD from a Lagrangian

Just like QED, we can describe the physics of QCD with a Lagrangian:

kinetic term 
for the gluon up, down etc.

covariant 
derivative

quark field

gluon field 
(with color A)

coupling 
constant

The gluon field strength has an extra term compared to the photon’s:

gluon self 
interaction
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The full QCD Feynman rules will be given to you in the Standard Model course.

At a vertex between quark and gluons we need to include a factor

b c

A α

i j

The gluons also carry color , so we must also include a gluon-gluon interaction. This is 
given by

A

B

C
α γ

β
p

p p
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Renormalisation

When we calculate beyond leading order in our perturbative expansion, we will find that 
we have diagrams with loops in them.

For example, the corrections to our e+e- → µ+µ- would include the diagram

kp p

k + p

This integral is infinite!

But momentum conservation at all vertices leaves the momentum flowing around the 
loop unconstrained! We need to integrate over this loop momentum, and find a result 
containing
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To see that it is infinite, lets look at this integral in the limit as k → ∞. Then we can 
neglect the momentum p and the mass m. The integral becomes

This is not really that surprising. Even in classical electromagnetism we have 
singularities when we go to small distances/high energies.

For example, in classical electromagnetism, the energy associated with a charged 
sphere of radius R is:

So classically, a point charge should have infinite energy!

Ultra-Violet (UV) singularity
this is a fake, because our 

approximation doesn’t work 
for k→ 0
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Our theories such as QED and QCD make predictions of 
physical quantities . While infinities may make the theory difficult 
to work with, there is no real problem as long as our predictions of 
physical quantities are finite and match experiment. 

Are infinities really a problem?

In order for the physically measured mass to be finite , the ‘bare mass’ must be infinite 
and cancel the divergence from the loop. But this is OK, since m0 is not measurable, only 
m is.

We absorb infinities into unmeasurable bare quantities.

To understand this, lets think about the one-loop calculation of the electron mass

We find, that in both QED and QCD, that our physical observables are finite: they are 
renormalizable theories. 

Gerardus
't Hooft

Martinus
Veltman

+ +=

finite
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In reality, what we are doing is measuring differences between quantities.

Since the loop contains a dependence on the momentum scale, Q, the mass changes 
with probed energy. The difference between two masses at different scales is:

+ +=
Q2

infinities are the same in both m1’s 
⇒ finite

The difference between the masses is finite .
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Both philosophies, absorption or subtraction of singularities, are doing the same thing. 
We replace the infinite bare quantities in the Lagrangian with finite physical ones . 
This is called renormalization .

The beauty of QED (and QCD) is that we don’t need to do this for every observable 
(which would be rather useless). Once we have done it for certain observables, 
everything is finite! This is a very non-trivial statement. We say that QED and QCD 
are renormalizable .

In QED we choose to absorb the divergences into:

electron
charge electron 

mass
electron 

wave-function

photon 
wave-function

Instead of writing observables in terms of the infinite bare quantities                        , 
we write them in terms of the measurable ‘renormalized’ quantities                             .

In order to do this, we must first regularize the divergences in our integrals.
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Regularization by a Momentum cut-off

The most obvious regularization is to simply forbid any momenta above an scale Λ. 
Then, the integral becomes

The UV divergence has been regularized (remember the infra-red divergence here, 
log 0, is fake). This isn’t very satisfactory though, since this breaks gauge invariance. 

Dimensional Regularization

The most usual way to regulate the integrals is to work in      dimensions 
rather than 4 dimensions.

we have increased the power of k in the 
denominator, making the integral finite
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More precisely, our original integral (ignoring masses for simplicity)  gives:

finite divergent as

Also notice the renormalization scale Q .

Notice that it is rather arbitrary which bit one wants to absorb or subtract off.

One could subtract off only the pole in ǫ, i.e.                   for the above integral.

This is known as the Minimal Subtraction , denoted MS.

[Euler-Mascheroni Constant]

This choice is known as MS

Alternatively we could have removed some of the finite terms too,

e.g.
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Running couplings

How does the QED coupling e change with quantum corrections?

these cancel, due to a Ward Identity

Writing                                           this is

= ++ + + …+

I can include some extra loops by….

= ++ + …+
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In terms of                , we find  

cut-off

The QED coupling changes with energy.

but since this was general, I could have chosen to evaluate my coupling at a different scale

e.g.

I can use this second equation to eliminate α0 (which is infinite) from my first equation.
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We can do the same thing for QCD, except we have some extra diagrams

e.g. We find,

where Nc = # of colors = 3
Nf = # of active flavors

At higher orders in perturbation theory we will have more contributions. The complete 
evolution of the coupling is described by the beta function
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For                 . the QCD and QED couplings run in the opposite direction.

At low energies QCD becomes strong enough to confine quarks inside hadrons.
(The β function is not proof of this!)

At high energies QCD is asymptotically free , so we can use perturbation theory.

QED

absurdly
high energy

Asymptotic 
freedom

QCD

confinement


