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1 Introduction

In the late 1970s Thurston constructed hyperbolic metrics on most 3-manifolds which
fiber over the circle. Around the same time, Feigenbaum discovered universal properties of
period doubling, and offered an explanation in terms of renormalization. Recently Sullivan
established the convergence of renormalization for real quadratic mappings.

In this work we present a parallel approach to renormalization and to the geometrization
of 3-manifolds which fiber over the circle. This analogy extends the dictionary between
rational maps and Kleinian groups; some of the new entries are included in Table 1.1.

Dictionary

Kleinian group Γ ∼= π1(S) Quadratic-like map f : U → V

Limit set Λ(Γ) Julia set J(f)

Bers slice BY Mandelbrot set M

Mapping class ψ : S → S Kneading permutation

ψ : AH(S) → AH(S) Renormalization operator Rp

Cusps in ∂BY Parabolic bifurcations in M

Totally degenerate Infinitely renormalizable
group Γ polynomial f(z) = z2 + c

Ending lamination Tuning invariant

Fixed point of ψ Fixed point of Rp

Hyperbolic structure on Solution to Cvitanović-Feigenbaum
M3 → S1 equation fp(z) = α−1f(αz)

Table 1.1.

Both discussions revolve around the construction of a nonlinear dynamical system which
is conformally self-similar.

For 3-manifolds the dynamical system is a surface group acting conformally on the
sphere via a representation

ρ : π1(S) → Aut(Ĉ).

1



2 Chapter 1. Introduction

Given a homeomorphism ψ : S → S, we seek a discrete faithful representation satisfying

ρ ◦ ψ−1
∗ (γ) = αρ(γ)α−1

for some α ∈ Aut(Ĉ). Such a ρ is a fixed point for the action of ψ on conjugacy classes of
representations. This fixed point gives a hyperbolic structure on the 3-manifold

Tψ = S × [0, 1]/(s, 0) ∼ (ψ(s), 1)

which fibers over the circle with monodromy ψ. Indeed, the conformal automorphisms of
the sphere prolong to isometries of hyperbolic space H3, and Tψ is homeomorphic to H3/Γ
where Γ is the group generated by α and the image of ρ.

For renormalization the sought-after dynamical system is a degree two holomorphic
branched covering F : U → V between disks U ⊂ V ⊂ C, satisfying the Cvitanović-
Feigenbaum functional equation

F p(z) = α−1F (αz)

for some α ∈ C∗. The renormalization operator Rp replaces F by its pth iterate F p, suitably
restricted and rescaled, and F is a fixed point of this operator.

In many families of dynamical systems, such as the quadratic polynomials z2+c, one sees
cascades of bifurcations converging to a map f(z) = z2 + c∞ with the same combinatorics
as a fixed point of renormalization. In Chapter 9 we will show that Rn

p (f) converges
exponentially fast to the fixed point F . Because of this convergence, quantitative features
of F are reflected in f , and are therefore universal among all mappings with the same
topology.

Harmonic analysis on hyperbolic 3-space plays a central role in demonstrating the at-
tracting behavior of Rp and ψ at their fixed points, and more generally yields inflexibility
results for hyperbolic 3-manifolds and holomorphic dynamical systems.

We now turn to a more detailed summary.

Hyperbolic manifolds. By Mostow rigidity, a closed hyperbolic 3-manifold is determined
up to isometry by its homotopy type. An open manifold M = H3/Γ with injectivity radius
bounded above and below in the convex core can generally be deformed. However, such an
M is naturally bounded by a surface ∂M with a conformal structure, and the shape of ∂M
determines M up to isometry.

In Chapter 2 we show these open manifolds with injectivity bounds, while not rigid, are
inflexible: a change in the conformal structure on ∂M has an exponentially small effect on
the geometry deep in the convex core (§2.4). This inflexibility is also manifest on the sphere
at infinity Ĉ: a quasiconformal conjugacy from Γ = π1(M) to another Kleinian group Γ′ is
differentiable at certain points in the limit set Λ. These deep points x ∈ Λ have the property
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that the limit set is nearly dense in small balls about x — more precisely, Λ comes within
distance r1+ǫ of every point in B(x, r).

Chapter 3 presents a variant of Thurston’s construction of hyperbolic 3-manifolds that
fiber over the circle. Let ψ : S → S be a pseudo-Anosov homeomorphism of a closed surface
of genus g ≥ 2. Then the mapping torus Tψ is hyperbolic. To construct the hyperbolic
metric on Tψ, we use a two-step iterative process.

First, pick a pair of Riemann surfaces X and Y in the Teichmüller space of S. Construct
the sequence of quasifuchsian manifolds
Q(ψ−n(X), Y ), ranging in a Bers slice of the representation space of π1(S). Let M =
limQ(ψ−n(X), Y ). The Kleinian group representing π1(M) is totally degenerate — its limit
set is a dendrite.

For the second step, iterate the action of ψ on the space of representations of π1(S),
starting with M . The manifolds ψn(M) are all isometric; they differ only in the choice of
isomorphism between π1(M) and π1(S). A fundamental result of Thurston’s — the double
limit theorem — provides an algebraically convergent subsequence ψn(M) → Mψ. The
theory of pleated surfaces gives an upper bound on the injectivity radius of M in its convex
core. Therefore any geometric limit N of ψn(M) is rigid, and so ψ is realized by an isometry
α :Mψ →Mψ, completing the construction.

Mostow rigidity implies the full sequence converges to Mψ. From the inflexibility theory
of Chapter 2, we obtain the sharper statement that ψn(M) →Mψ exponentially fast.

The case of torus orbifold bundles over the circle, previously considered by Jørgensen,
is discussed in §3.7. We also give an explicit example of a totally degenerate group with no
cusps (see Figure 3.4).

Renormalization. The simplest dynamical systems with critical points are the quadratic
polynomials f(z) = z2+c. In contrast to Kleinian groups, the consideration of limits quickly
leads one to mappings not defined on the whole sphere.

A quadratic-like map g : U → V is a proper degree two holomorphic map between disks
in the complex plane, with U a compact subset of V . Its filled Julia set is K(g) =

⋂
g−n(V ).

If the restriction of an iterate fn : Un → Vn to a neighborhood of the critical point z = 0
is quadratic-like with connected filled Julia set, the mapping fn is renormalizable. When
infinitely many such n exist, we say f is infinitely renormalizable.

Basic results on quadratic-like maps and renormalization are presented in Chapter 4.
In Chapter 5 we define towers of quadratic like maps, to capture geometric limits of renor-
malization. A tower

T = 〈fs : Us → Vs : s ∈ S〉
is a collection of quadratic-like maps with connected Julia sets, indexed by levels s > 0. We
require that 1 ∈ S, and that for any s, t ∈ S with s < t, the ratio t/s is an integer and fs

is a renormalization of f
t/s
s .
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A tower has bounded combinatorics and definite moduli if t/s is bounded for adjacent
levels and the annuli Vs−Us are uniformly thick. In Chapter 6 we prove the Tower Rigidity
Theorem: a bi-infinite tower T with bounded combinatorics and definite moduli admits no
quasiconformal deformations. (This result is a dynamical analogue of the rigidity of totally
degenerate groups.)

To put this rigidity in perspective, note that a single quadratic-like map f1 : U1 → V1 is
never rigid; an invariant complex structure for f1 can be specified at will in the fundamental
domain V1 −U1. In a tower with inf S = 0, on the other hand, f1 is embedded deep within

the dynamics of fs for s near zero (since f
1/s
s = f1). The rigidity of towers makes precise the

intuition that a high renormalization of a quadratic-like map should be nearly canonical.
Chapter 7 presents a two-step process to construct fixed points of renormalization.

The procedure is analogous to that used to find a fixed-point of ψ. For renormalization,
the initial data is a real number c such that the critical point of z 7→ z2 + c is periodic
with period p. The first step is to construct an infinite sequence of superstable points
c∗n in the Mandelbrot set by iterating the tuning map x 7→ c ∗ x. The iterated tunings c∗n

converge to a point c∞ such that f(z) = z2+c∞ is infinitely renormalizable. In the classical
Feigenbaum example, c = −1 and c∗n gives the cascade of period doublings converging to
the Feigenbaum polynomial f(z) = z2 + (−1)∞ = z2 − 1.4101155 · · · . The maps f and
Rp(f) are quasiconformally conjugate near their Julia sets.

The second step is to iterate the renormalization operator Rp, starting with the point
f . By Sullivan’s a priori bounds, we can pass to a subsequence such that Rn

p (f) converges
to a quadratic-like map F . This F can be embedded in a tower

T = 〈fs : s ∈ S = {. . . , p−2, p−1, 1, p, p2, . . . }〉,

such that f1 = F and fpk = limRn+k
p (f). In the limit we also have a quasiconformal

mapping φ : C → C conjugating fps to fs for each s. By the Tower Rigidity Theorem, φ
is a conformal map (in fact φ(z) = αz), and thus F is a fixed point of renormalization.
Just as for 3-manifolds, we use rigidity of the geometric limit T to conclude the dynamics
is self-similar.

Much of the construction also works when c is complex, but some steps at present require
c real.

Deep points and uniform twisting. Chapters 8 and 9 develop results leading to the
proof that renormalization converges exponentially fast.

Chapter 8 exploits the tower theory further to study the geometry and dynamics of
infinitely renormalizable maps f(z) = z2 + c. Assume f has bounded combinatorics and
definite moduli. Then we show:

1. The complement of the postcritical Cantor set P (f) is a Riemann surface with bounded
geometry.
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2. The critical point z = 0 is a deep point of the Julia set J(f). In particular, blowups
of J(f) about z = 0 converge to the whole plane in the Hausdorff topology.

3. There are small Julia sets everywhere in J(f). More precisely, for any z ∈ J(f) and
0 < r < 1, there is a quadratic-like map

g = f−i ◦ f j : U → V

in the dynamics generated by f , such that diam J(g) ≍ r and d(z, J(g)) = O(r).

Chapter 9 lays the foundations for a general theory of holomorphic dynamical systems
F and their geometric limits. With these foundations in place, it is possible to prove
inflexibility results generalizing those for hyperbolic manifolds. The notion of bounded
injectivity radius is replaced by that of uniform twisting.

Roughly speaking, (F ,Λ) is uniformly twisting if the geometric limits of F as seen from
within the convex hull of Λ in H3 are very nonlinear. Condition (3) above implies that
(F(f), J(f)) is uniformly twisting, where F(f) is the full dynamics generated by f and
f−1.

The Deep Conformality Theorem asserts that a quasiconformal conjugacy between uni-
formly twisting systems is C1+α-conformal at the deep points of Λ. By (2) above, we
conclude that any conjugacy from f to another quadratic-like map is differentiable at the
critical point z = 0. Exponentially fast convergence of renormalization then follows.

To state the final result, we remark that a fixed point of renormalization F has a
canonical maximal analytic continuation F̃ : W → C. The domain W of F̃ is an open,
dense subset of the plane. Then there is a λ < 1 such that for any compact K ⊂W ,

sup
K

|F̃ (z)−Rn
p (f)(z)| < λn

for all f with the same inner class as F , and all n≫ 0.
The fixed point constructions for mapping classes and for renormalization operators are

compared retrospectively in Chapter 10. We conclude with some open problems; among
them, the conjectural self-similarity of the boundary of Teichmüller space, as observed
in computer experiments conducted jointly with Dave Wright. These parallels and open
questions are summarized in Table 1.2.

Harmonic analysis. Two appendices develop the analytic foundations of our results.
Appendix A is devoted to quasiconformal flows and Reimann’s theorem, that a vector field
with strain in L∞ generates a unique quasiconformal isotopy. The proof is streamlined by
showing a function with first derivatives in BMO satisfies a Zygmund condition.

Appendix B is devoted to the visual extension of deformations from Sn−1
∞ to Hn. This

extension has been studied by Ahlfors, Reimann, Thurston and others.
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Theorems and Conjectures

Compactness of ψn(M) Compactness of Rn
p (f)

(Thurston’s double limit theorem) (Sullivan’s a priori bounds)

Rigidity of double limits Rigidity of towers

Compactness + rigidity Compactness + rigidity
=⇒ convergence =⇒ convergence

Exponential convergence Exponential convergence
of ψn(M) of Rn

p (f)

Deep points in Λ Deep points in J

Injectivity radius bounded Quadratic-like dynamics at
above in the convex core every scale

Λ is locally connected J is locally connected

area(Λ) = 0 area(J) = 0?

dim(Λ) = 2 dim(J) = 2?

Geodesic flow ergodic Tower dynamics ergodic?

Bers’ boundary self-similar? Mandelbrot set self-similar?

Ending lamination conjecture Mandelbrot set locally connected?

Table 1.2.
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A key role for us is played by the visual distortion Mv(p) of a vector field v on Sn−1
∞ , as

seen from p ∈ Hn. By definition Mv(p) is the minimum, over all conformal vector fields w,
of the maximum visual length of (v − w) as seen from p. The quantity Mv depends only
on the strain Sv (the Beltrami differential µ = ∂v when n = 3), but in a subtle way. Our
inflexibility results are all proved by bounding Mv.

An illustration. The intuitive link between rigidity, deep points in the Julia set and
convergence of renormalization is the following. Let f be the Feigenbaum polynomial, and
let φ be a quasiconformal conjugacy between f and f ◦f . The dilatation of φ is specified by
a field of infinitesimal ellipses supported outside the Julia set J(f) and invariant under the
action of f . To visualize a typical invariant ellipse field, first consider a family of ellipses in
the plane of constant eccentricity whose major axes are along rays through the origin. This
ellipse field is invariant under the mapping z 7→ z2. Now the Riemann mapping from the
outside of the unit disk to the outside of the Feigenbaum Julia set transports the dynamics
of z2 to that of f . Since the Julia set is quite dense near the postcritical set, the argument
of the derivative of the Riemann mapping varies wildly, and so the resulting ellipse field is
more or less random. The stretching in different directions approximately cancels out, so
that φ, while fluctuating at very small scales, is close to a conformal map near the critical
point. The Julia set of a high renormalization of f also resides in a small neighborhood
of the critical point. Since φ also conjugates f2

n

to f2
n+1

, these two mappings are nearly
conformally conjugate, and in the limit we obtain a fixed point of renormalization.

A blowup of the Feigenbaum Julia set near the critical point appears in Figure 1.3. The
tree-like black regions are the points outside the Julia set. The thin postcritical Cantor
set, lying on the real axis and evidently well-shielded from the ellipse field, is also shown in
black. The white region is a 1-pixel neighborhood of the Julia set itself (which is nowhere
dense).

Notes and references. Thurston’s construction of hyperbolic structures on 3-manifolds
which fiber over the circle appears in [Th5]; an early account is in [Sul3]. Recently Otal has
given a self-contained presentation of Thurston’s theorem, using the method of R-trees to
establish the double limit theorem [Ot].

Feigenbaum’s work appears in [Feig]; similar discoveries were made independently by
Coullet and Tresser [CoTr]. Many additional contributions to the theory of renormalization
are collected in [Cvi]. Sullivan’s a priori bounds and a proof of convergence of renormaliza-
tion using Riemann surface laminations appear in [Sul5] and [MeSt].

The dictionary between rational maps and Kleinian groups was introduced in [Sul4].
See [Mc5] for an illustrated account, centering on classification problems for conformal
dynamical systems.

A brief discussion of the results presented here and other iterations on Teichmüller
space appeared in [Mc3]. This work is a sequel to [Mc4], which discussed the foundations
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Figure 1.3. Asymptotic rigidity near the postcritical set.
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of renormalization, and to [Mc2], which began the program of using analytic estimates in
an “effective” deformation theory for Kleinian groups.

Parts of this work were presented at CUNY and IHES in 1989 and 1990, at the Boston
University Geometry Institute in 1991 and in the Keeler Lectures at University of Michigan
in 1993. A preliminary version of this manuscript was circulated in Fall of 1994. Many
useful corrections and suggestions were provided by G. Anderson and the referee. This
research was funded in part by the Miller Institute for Basic Research and the NSF. I would
like to thank all for their support.





2 Rigidity of hyperbolic manifolds

This chapter begins with basic facts about complete hyperbolic manifolds and their
geometric limits. We then give a proof of rigidity for manifolds whose injectivity radius is
bounded above. Mostow rigidity for closed manifolds is a special case; the more general
result will be used in the construction of hyperbolic manifolds which fiber over the circle.

The proof of rigidity combines geometric limits with the Lebesgue density theorem and
the a.e. differentiability of quasiconformal mappings. This well-known argument is carried
further in §2.4 to show certain open hyperbolic manifolds, while not rigid, are inflexible —
any deformation is asymptotically isometric in the convex core. This inflexibility is also
manifest on the sphere at infinity: quasiconformal conjugacies are automatically differen-
tiable and conformal at certain points in the limit set. These results will be applied to
surface groups in Chapter 3.

Useful references on hyperbolic geometry include [CEG], [BP], [Th1] and [Th4].

2.1 The Hausdorff topology

We will frequently need to make precise the idea that certain manifolds, dynamical
systems, compact sets or other objects converge geometrically. To formulate this notion,
we recall the Hausdorff topology.

Let X be a separable metric space, and let Cl(X) be the space of all closed subsets of
X. The Hausdorff topology on Cl(X) is defined by saying Fi → F if

(a) every neighborhood of a point x ∈ F meets all but finitely many Fi; and

(b) if every neighborhood of x meets infinitely many Fi, then x ∈ F .

A subset of Cl(X) is closed if it contains all its sequential limits.
Given an arbitrary sequence 〈Fi〉 of closed sets in X, we define lim inf Fi as the largest

set satisfying condition (a), and lim supFi as the smallest set satisfying condition (b). Both
lim inf Fi and lim supFi are closed and lim inf Fi ⊂ lim supFi. We have Fi → F if and only
if lim inf Fi = lim supFi = F .

Proposition 2.1 The space Cl(X) is sequentially compact in the Hausdorff topology.

Proof [Haus, §28.2]: Let Fi be a sequence in Cl(X), and let Uk be a countable base for
the topology on X. For each k, if Uk ∩ Fi 6= ∅ for infinitely many i, then we may pass to a
subsequence such that Uk ∩ Fi 6= ∅ for all but finitely many i. Diagonalizing, we obtain a
subsequence Fin which converges. Indeed, if x ∈ lim supFin , then for any neighborhood U

11
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of x, Fin ∩ U 6= ∅ for infinitely many n. But then Fin meets U for all but finitely many n,
and thus x ∈ lim inf Fin . Since the upper and lower limits agree, the sequence converges.

Now suppose X is also locally compact. By separability, X can be exhausted by a
countable sequence of compact sets, so its one-point compactification X∗ = X ∪ {∞} is
metrizable. For each closed set F ⊂ X, let F ∗ = F ∪ {∞} ⊂ X∗, and define

δ(F1, F2) = inf{ǫ > 0 : F ∗
1 is contained in an ǫ-neighborhood of

F ∗
2 , and vice-versa }.

Convergence in this metric is the same as Hausdorff convergence on Cl(X), so we have:

Corollary 2.2 If X is a separable, locally compact metric space, then Cl(X) is a compact
metric space.

References: [Haus], [HY, §2-16], [Nad].

2.2 Manifolds and geometric limits

Definitions. Hyperbolic space Hn is a complete simply-connected n-manifold of constant
curvature −1; it is unique up to isometry. The Poincaré ball gives a model for hyperbolic
space as the unit ball in Rn with the metric

ds2 =
4 dx2

(1− r2)2
.

The boundary of the Poincaré ball models the sphere at infinity Sn−1
∞ for hyperbolic space,

and the isometries of Hn prolong to conformal maps on the boundary.
In dimension three, the sphere at infinity can be identified with the Riemann sphere

Ĉ, providing an isomorphism between the orientation preserving group Isom+(Hn) and the
group of fractional linear transformations Aut(Ĉ) ∼= PSL2(C).

A Kleinian group Γ is a discrete subgroup of Isom(Hn). A Kleinian group is elementary
if it contains an abelian subgroup of finite index.

A hyperbolic n-manifold M is a complete Riemannian manifold of constant curvature
−1. Any such manifold can be presented as a quotient M = Hn/Γ of hyperbolic space by
a Kleinian group.

Orientation. All hyperbolic manifolds we will consider, includingHn itself, will be assumed
oriented. The identification between Hn and the universal cover of M will be chosen to
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preserve orientation. Then the group Γ = π1(M) is contained in Isom+(Hn) and it is
determined by M up to conjugacy.

The thick-thin decomposition. The injectivity radius of a hyperbolic manifold M at
a point x is half the length of the shortest essential loop through x.

The Margulis Lemma asserts that a discrete subgroup of Isom(Hn) generated by elements
sufficiently close to the identity contains an abelian subgroup of finite index [BP, §D], [Th4,
§4.1]. This result controls the geometry of the thin part M(0,ǫ] of a hyperbolic manifold,
i.e. the subset where the injectivity radius is less than ǫ. There is an ǫn > 0 such that
every component L of M(0,ǫn] is either a collar neighborhood of a short geodesic, or a cusp,
homeomorphic to N× [0,∞) for some complete Euclidean (n−1)-manifold. In the universal
cover Hn, each component L of the thin part is covered by either an r-neighborhood of a
geodesic, or by a horoball.

The limit set Λ ⊂ Sn−1
∞ of a Kleinian group Γ is the set of accumulation points of Γx

for any x ∈ Hn; it is independent of x.

For E ⊂ Sn−1
∞ , the convex hull of E (denoted hull(E)) is the smallest convex subset of

Hn containing all geodesics with both endpoints in E. The convex core K of a hyperbolic
manifold M = Hn/Γ is given by K = hull(Λ)/Γ. The convex core supports the recurrent
part of the geodesic flow; it can also be defined as the closure of the set of closed geodesics.
We say M is geometrically finite if a unit neighborhood of its convex core has finite volume.

The open manifold M can be prolonged to a Kleinian manifold

M = (Hn ∪Ω)/Γ,

where Ω = Sn−1
∞ − Λ is the domain of discontinuity of Γ. In dimension n = 3, Ω can be

identified with a domain on the Riemann sphere on which Γ acts holomorphically, so

∂M = Ω/Γ

carries the structure of a complex one-manifold (possibly disconnected).

To pin Γ down precisely, one may choose a frame ω over a point p ∈M ; then there is a
unique Γ such that the standard frame at the origin in the Poincaré ball lies over the chosen
frame ω on M . Conversely, any discrete torsion-free group Γ ⊂ Isom+(Hn) determines a
manifold with baseframe (M,ω) by taking M = Hn/Γ and ω = the image of the standard
frame at the origin. When we speak of properties of M holding at the baseframe ω, we
mean such properties hold at the point p over which the baseframe lies.

Geometric limits. The geometric topology on the space of hyperbolic manifolds with
baseframes is defined by (Mi, ωi) → (M,ω) if the corresponding Kleinian groups converge
in the Hausdorff topology on closed subsets of Isom(Hn). In this topology, the space of all
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hyperbolic manifolds (M,ω) with injectivity radius greater than r > 0 at the baseframe ω
is compact.

Here is a more intrinsic description of geometric convergence: (Mi, ωi) → (M,ω) if and
only if, for each compact submanifold K ⊂M containing the baseframe ω, there are smooth
embeddings
fi : K → Mi, defined for all i sufficiently large, such that fi sends ω to ωi and fi tends to
an isometry in the C∞ topology. The last condition can be made precise by passing to the
universal cover: then we obtain mappings f̃i : K̃ → Hn, sending the standard baseframe at
the origin to itself; and we require that fi tends to the identity mapping in the topology of
C∞-convergence on compact subsets of K̃. (See [BP, Thm. E.1.13].)

When viewed from deep in the convex hull, the limit set of any hyperbolic manifold is
nearly dense on the sphere at infinity. Here is a precise statement:

Proposition 2.3 Let (Mi, ωi) be a sequence of hyperbolic n-manifolds with baseframes in
their convex cores. Suppose the distance from ωi to the boundary of the convex core of Mi

tends to infinity.

Then the corresponding limit sets Λi converge to Sn−1
∞ in the Hausdorff topology.

Proof. Let Bi ⊂ Sn−1
∞ − Λi be a spherical ball of maximum radius avoiding the limit set.

The circle bounding Bi extends to a hyperplane Hi in Hn bounding a half-space outside
the convex hull of the limit set. Since the origin of the Poincaré ball corresponds to the
baseframe ωi, the hyperbolic distance from the origin to Hi is tending to infinity. But this
means the spherical radius of Bi is tending to zero, so for i large the limit set comes close
to every point on the sphere.

If Γi → Γ is a geometrically convergent sequence of Kleinian groups, then

Λ(Γ) ⊂ lim inf Λ(Γi).

This follows from that fact that repelling fixed points of elements of Γ are dense in its limit
set. However, the limit set can definitely shrink in the limit. For example, the Fuchsian
groups

Γ(p) = {γ ∈ PSL2(Z) : γ ≡ I mod p}
converge geometrically to the trivial group (with empty limit set) as p → ∞, even though
Λ(Γ(p)) = S1

∞ for all p (since H2/Γ(p) has finite volume).

The situation is more controlled if the injectivity radius is bounded above. Given R >
r > 0, let Hn

r,R denote the space of all hyperbolic n-manifolds (M,ω) such that:
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1. the baseframe ω is in the convex core of M ;

2. the injectivity radius of M is greater than r at ω; and

3. the injectivity radius is bounded above by R throughout the convex core of M .

Proposition 2.4 The space Hn
r,R is compact in the geometric topology, and the limit set

varies continuously on this space.

Proof. First let M = Hn/Γ be any hyperbolic manifold. In terms of the universal cover,
the injectivity radius at a point x is given by

r(x,Γ) =
1

2
inf

γ∈Γ, γ 6=id
d(x, γx).

Let
T (Γ, R) = {x ∈ Hn : r(x,Γ) ≤ R}.

We claim
T (Γ, R) ∩ Sn−1

∞ ⊂ Λ.

Indeed, a point y ∈ M where the injectivity radius is less than R lies on an essential loop
of length at most 2R; shrinking this loop, we find y lies within a distance D (depending
only on R) of either a closed geodesic or a component of the Margulis thin part of M . Lifts
of the closed geodesic lie in the convex hull of the limit set; lifts of the thin part touch the
sphere at infinity in the limit set and have Euclidean diameters tending to zero. In either
case, we conclude that a point y ∈ T (Γ, R) which is close to the sphere at infinity is also
close to the limit set, and the claim follows.

Now let (Mi, ωi) be a sequence in Hn
r,R; by the lower bound on the injectivity radius,

we can assume the sequence converges geometrically to some based manifold (M,ω). Let
Γi → Γ be the corresponding sequence of Kleinian groups.

For any D and x ∈ Hn, the set of hyperbolic isometries with d(x, γx) ≤ D is compact,
so we have r(x,Γi) → r(x,Γ) uniformly on compact subsets of Hn. Therefore

lim supT (Γi, R) ⊂ T (Γ, R)

with respect to the Hausdorff topology on closed subsets of Hn. By hypothesis, the injec-
tivity radius is bounded above by R in the convex core of Mi, so hull(Λi) is contained in
T (Γi, R). Therefore

lim suphull(Λi) ⊂ T (Γ, R).

Since the origin lies in hull(Λi) for all i, T (Γ, R) contains all limits of rays from the origin
to Λi, and thus

lim supΛ(Γi) ⊂ T (Γ, R) ∩ Sn−1
∞ ⊂ Λ(Γ).
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The inclusion Λ(Γ) ⊂ lim inf Λ(Γi) holds generally, so we have shown convergence of the
limit sets. It is easy to verify that (M,ω) ∈ Hn

r,R.

A similar result appears in [KT].

2.3 Rigidity

In this section we discuss various notions of rigidity for hyperbolic manifolds, and prove
a rigidity theorem for manifolds with upper bounds on their injectivity radii. This result
will suffice for later applications to 3-manifolds which fiber over the circle.

Definitions. A diffeomorphism f : X → Y between Riemannian n-manifolds is an L-
quasi-isometry if

1

L
≤ |Df(v)|

|v| ≤ L

for every nonzero tangent vector v to X.
A homeomorphism φ : X → Y (for n > 1) is K-quasiconformal if φ has distributional

first derivatives locally in Ln, and

1

K
|detDφ(x)| ≤

( |Dφ(v)|
|v|

)n
≤ K|detDφ(x)|

for almost every x and every nonzero vector v ∈ TxX (see §A.2).
A hyperbolic manifold M = Hn/Γ is quasiconformally rigid if any quasiconformal map

φ : Sn−1
∞ → Sn−1

∞ , conjugating Γ to another Kleinian group Γ′, is conformal. Similarly M
is quasi-isometrically rigid if any quasi-isometry f :M →M ′, where M ′ is also hyperbolic,
is homotopic to an isometry.

The following result is well-known.

Theorem 2.5 Let f : M1 → M2 be a κ-quasi-isometry between hyperbolic n-manifolds
Mi = Hn/Γi, i = 1, 2. Then the lift

f̃ : Hn → Hn

of f to the universal covers extends continuously to a K(κ)-quasiconformal map on Sn−1
∞

conjugating Γ1 to Γ2. The constant K(κ) tends to one as κ→ 1.
Conversely, in dimension three, a K-quasiconformal mapping

φ : S2
∞ → S2

∞
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conjugating Γ1 to Γ2 has a continuous extension to an equivariant κ(K)-quasi-isometry

f̃ : H3 → H3

which descends to a quasi-isometry f : M1 → M2. The constant κ(K) tends to one as
K → 1.

The quasiconformality of the boundary values of quasi-isometries is a key step in the
proof of Mostow rigidity, and is true under weaker hypotheses (f̃ need only distort large
distances by a bounded factor); see [Mos], [Th1, §5]. For the converse in dimension three,
see Corollary B.23.

Corollary 2.6 If M is a quasiconformally rigid hyperbolic n-manifold, then it is quasi-
isometrically rigid.

Proof. Given a quasi-isometry f : M → M ′, the lifted map f̃ : Hn → Hn extends to
a quasiconformal conjugacy between Γ and Γ′; by hypothesis the boundary mapping is
actually conformal, so it agrees with the boundary values of an equivariant isometry α̃ of
Hn. A homotopy can be constructed by interpolating along the geodesic joining f̃(x) to
α̃(x) for each x.

Invariant line fields. We now identify the sphere at infinity S2
∞ with the Riemann sphere

Ĉ. Let L1(Ĉ, dz2) denote the Banach space of measurable integrable quadratic differentials
ψ = ψ(z)dz2 on the sphere, with the norm

‖ψ‖ =

∫

Ĉ

|ψ(z)| |dz|2.

The absolute value of a quadratic differential is an area form, so the norm above is confor-
mally natural; that is, for any A ∈ Aut(Ĉ), ‖A∗φ‖ = ‖φ‖.

The dual of L1(Ĉ, dz2) is M(Ĉ) = L∞(Ĉ, dz/dz), the Banach space of bounded measur-
able Beltrami differentials µ(z) dz/dz
equipped with the sup-norm. The pairing between L1(Ĉ, dz2) and L∞(Ĉ, dz/dz) is given
by

〈µ,ψ〉 =

∫

Ĉ

µ(z)ψ(z) |dz|2;

it is also conformally natural.
The weak* topology on M(Ĉ) is defined by µn → µ if and only if

〈µn, ψ〉 → 〈µ,ψ〉
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for every ψ ∈ L1(Ĉ, dz2).

A line field is a Beltrami differential with |µ| = 1 on a set E of positive measure and
|µ| = 0 elsewhere. The tangent vectors ξ such that µ(ξ) = 1 span a measurable field of
tangent lines over E, and such a line field determines µ.

Proposition 2.7 A hyperbolic 3-manifold M = H3/Γ is quasiconformally rigid if and only
if there is no Γ-invariant measurable line field on the sphere at infinity.

Proof. The complex dilatation µ = φz/φz of a quasiconformal conjugacy between a pair
of Kleinian groups Γ and Γ′ is a Γ-invariant Beltrami differential; if φ is not conformal,
then µ/|µ| provides an Γ-invariant line field on the set of positive measure where µ 6= 0.
Conversely, if µ is an invariant line field, then for any complex t with |t| < 1 there is a
quasiconformal mapping φt with dilatation tµ [AB], and φt conjugates Γ to another Kleinian
group Γ′. (Conceptually, tµ is a new complex structure invariant under Γ; φt provides a
change of coordinates transporting tµ to the standard structure on the sphere.)

The unit ball in M(Ĉ) is compact in the weak* topology. Thus any sequence of line
fields µn has a weak*-convergent subsequence. However, the weak* limit need not be a line
field: for example, the limit µ may equal 0 if µn is highly oscillatory. In any case we still
have:

Proposition 2.8 If Γn → Γ geometrically and µn are invariant line fields for Γn, then any
weak* limit µ of µn is Γ-invariant.

Proof. For any ψ ∈ L1(Ĉ, dz2), γ ∈ Γ and ǫ > 0, there is a neighborhood U of γ in Aut(Ĉ)
such that ‖δ∗ψ − γ∗ψ‖ < ǫ for all δ in U . By the definition of geometric convergence, there
is a γn ∈ Γn ∩ U for all n sufficiently large, and thus:

|〈µn − γ∗µn, ψ〉| = |〈µn, ψ − γ∗ψ〉| ≤
ǫ + |〈µn, ψ − (γn)∗ψ〉| = ǫ + |〈µn − γ∗nµn, ψ〉| = ǫ,

where we have used the fact that ‖µn‖ = 1. From the definition of weak* limit it follows
that 〈γ∗µ,ψ〉 = 〈µ,ψ〉 for every ψ, and thus µ is Γ-invariant.
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Figure 2.1. A parabolic line field on the sphere.

A group Γ is quasiconformally rigid on its limit set if there is no Γ-invariant line field
supported on Λ. This means any quasiconformal conjugacy φ which is conformal outside Λ
is a Möbius transformation.

A line field is parabolic if it is given by µ = A∗(dz/dz) for some A ∈ Aut(Ĉ). A parabolic
line field is tangent to the pencil of circles passing through a given point in a given direction;
see Figure 2.1. When µ = dz/dz, the circles become the horizontal lines in the plane.

We now show that any hyperbolic manifold whose injectivity radius is bounded above
is quasiconformally rigid. More generally we have:

Theorem 2.9 (Bounded rigidity) A hyperbolic 3-manifold M = H3/Γ whose injectivity
radius is bounded above throughout its convex core is quasiconformally rigid on its limit set.

Proof. Suppose to the contrary that Γ admits an invariant line field µ on its limit set.
By the Lebesgue density theorem, there is a point p ∈ C where |µ(p)| = 1 and µ is almost
continuous; that is, for any ǫ > 0,

lim
r→0

area{z ∈ B(p, r) : |µ(z) − µ(p)| < ǫ}
areaB(p, r)

= 1.

Here µ = µ(z)dz/dz, and area and distance are measured in the Euclidean metric.
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After conjugating by a Möbius transformation, we can assume that p = 0 and that
z = ∞ is also in the limit set Λ of Γ. This implies that the geodesic g from z = 0 to z = ∞
lies in the convex hull of the limit set.

Orient g towards z = 0, and consider its image in M . Either g returns infinitely often
to the thick part of M , or g enters a component of the thin part of M and never exits. In
the latter case, z = 0 must be the fixed point of some nontrivial element of Γ (a hyperbolic
element for a short geodesic, or a parabolic element for a cusp). Since Γ is countable, we
can choose p so these cases are avoided, and therefore g recurs infinitely often to the thick
part of M .

Thus we have an r > 0 and points xn ∈ g tending to z = 0 such that the injectivity
radius of M at [xn] ∈ H3/Γ is at least r. Let Γn = A−1

n ΓAn, where An(z) = anz maps the
origin of the Poincaré ball to xn; then an → 0 and we can assume an > 0. The group Γn
leaves invariant the line field µn = A∗

n(µ), and µn converges weak* to the parabolic line
field µ∞ = µ(0)dz/dz as n tends to infinity.

By construction, Γn belongs to H3
r,R where R is an upper bound on the injectivity radius

in the convex core of M . Thus we can pass to a subsequence such that Γn → Γ∞ ∈ H3
r,R.

The limiting group Γ∞ leaves the parabolic line field µ∞ invariant.

Since z = 0 is a point of Lebesgue density of the limit set Λ(Γ), the magnified limit sets

1

an
Λ(Γ) = Λ(Γn)

converge to the whole sphere in the Hausdorff topology. Thus the limit set of Γ∞ is also
the whole sphere (by Proposition 2.4).

But any automorphism of the sphere preserving µ∞ must fix the point at infinity, con-
tradicting the fact that every orbit of Γ∞ on the sphere is dense.

As is well-known, rigidity fails in dimension 2: even a closed surface can admit many
distinct hyperbolic structures.

On the other hand, the proof just given generalizes easily to hyperbolic n-manifolds,
n ≥ 3. If φ : Sn−1

∞ → Sn−1
∞ is a quasiconformal conjugacy between Γ and Γ′, then φ is

differentiable almost everywhere. The pullback φ∗σ of the spherical metric determines an
ellipsoid in the tangent space to almost every point. The vectors maximizing the ratio
(φ∗σ)(v)/σ(v) span a canonical subspace Ex ⊂ TxS

n−1
∞ , which cuts the ellipsoid in a round

sphere of maximum radius. (On the 2-sphere, Ex is just the line field of major axes of the
ellipses, or the whole tangent space at points where Dφ is conformal.)

If Dφ is not conformal a.e. on the limit set, then there is a set of positive measure F ⊂ Λ
over which rankEx is a constant k with 0 < k < n− 1. Then Ex|F is a Γ-invariant k-plane
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field. Given an upper bound on the injectivity radius of the convex core of M = Hn/Γ, we
can blow up a point of almost continuity of Ex|F , pass to a geometric limit and obtain a
contradiction as in the case of line fields. In summary we have:

Theorem 2.10 Let M = Hn/Γ be a hyperbolic manifold of dimension n ≥ 3 whose in-
jectivity radius is bounded above throughout its convex core. Then Γ admits no measurable
invariant k-plane field on its limit set, 0 < k < n− 1, and M is quasiconformally rigid.

Note that Γ need not be finitely generated.

Ergodicity versus rigidity. By a more subtle argument, Sullivan shows a Kleinian group
admits no invariant k-plane field (0 < k < n − 1) on the part of Sn−1

∞ where its action is
conservative [Sul2]. (The action of a discrete group on a measure space is conservative if
there is no set A of positive measure such that the translates {γ(A) : γ ∈ Γ} are disjoint.)
It is easy to show that an upper bound on the injectivity radius in the convex core implies
Γ acts conservatively on its limit set. Thus Sullivan’s result implies the preceding Theorem.

On the other hand, there exist hyperbolic 3-manifolds M = H3/Γ with bounded injec-
tivity radius such that Γ does not act ergodically on the sphere. Thus ergodicity is stronger
than rigidity.

M

N

Figure 2.2. A Z ∗ Z covering space.

For example, let M be the covering space of a closed hyperbolic 3-manifold N induced
by a surjective mapping π1(N) → Z ∗ Z (see Figure 2.2). The injectivity radius of M
is bounded above since the kernel of ρ is nontrivial (a closed manifold does not have the
homotopy type of a bouquet of circles). Almost every geodesic on M wanders off to one of
the ends of the free group, which form a Cantor set. Those landing in a given nonempty
open set of ends have positive measure, and determine a Γ-invariant set of positive measure
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on the sphere. Since a Cantor set is the union of two disjoint nonempty open sets, the
sphere is the union of two Γ-invariant sets of positive measure.

The origins of the line field viewpoint can be found in [Ah5] and [Sul2].

2.4 Geometric inflexibility

Let M be a hyperbolic 3-manifold whose injectivity radius is bounded above and below
in its convex core, but with ∂M 6= ∅. Then M need not be rigid; deformations are often
possible by changing the conformal structure on ∂M .

In this section we push the logic of geometric limits further to show a deformation of
M decays exponentially fast within its convex core. In other words, the geometry of M
deep within the core is inflexible: it changes only a small amount, even under a substantial
deformation of ∂M . Our main result is:

Theorem 2.11 (Geometric inflexibility) Let Ψ : M → M ′ be an L-quasi-isometry be-
tween a pair of hyperbolic 3-manifolds. Suppose the injectivity radius of M in its convex
core K ranges in the interval [R0, R1], where R0 > 0.

Then there is a volume-preserving quasi-isometry Φ :M →M ′, boundedly homotopic to
Ψ, such that the pointwise quasi-isometry constant L(Φ, p) satisfies

L(Φ, p) ≤ 1 + C exp(−αd(p,M −K)).

The constants C and α > 0 depend only on (R0, R1, L).

Here a bounded homotopy is one which moves points a bounded hyperbolic distance.
The maps Φ and Ψ are boundedly homotopic if and only if they admit lifts to H3 which
agree on S2

∞.

When K =M , the Theorem says Ψ is homotopic to an isometry. Thus Mostow rigidity
for closed manifolds is a special case, and the Theorem can be thought of as an “effective”
version of rigidity for open manifolds. These effective bounds are most interesting when M
is geometrically infinite — then Φ is exponentially close to an isometry deep in the convex
core. But the Theorem also has content when the convex core is compact, because the
constants depend on M only via its injectivity radii.

Idea of the proof. A vector field v on Sn−1
∞ has a canonical visual extension to a vector

field V = ex(v) on Hn. When v represents a quasiconformal deformation of ∂M , V gives a
quasi-isometric deformation of M . For p ∈M , the metric distortion SV (p) is the expected
value of the quasiconformal distortion Sv at the endpoint of a random geodesic ray γ from p
to ∂M (see Figure 2.3). Because of the injectivity bounds on M , a geodesic starting deep in
the core tends to twist quite a bit before reaching ∂M , so under parallel transport the phase
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p
γ

M ∂M
∂K

Figure 2.3. The visual extension from ∂M to M .

of the tensor Sv becomes almost random. Thus there is quite a bit of cancellation in the
visual average, so the strain SV (p) is small. This establishes inflexibility for a deformation,
and the result for mappings follows in dimension three using the Beltrami equation.

The proof of geometric inflexibility will rely on properties of the conformal strain Sv,
the visual extension ex(v) and the visual distortion Mv developed in Appendices A and B.
We will assume familiarity with this material throughout this section.

Definitions. Let M = Hn/Γ be a hyperbolic manifold, n ≥ 3. A deformation of Γ (or of
M) is a vector field v on Sn−1

∞ such that γ∗(v)−v is a conformal vector field for all γ ∈ Γ. A
deformation is trivial if v is conformal. Two deformations v1 and v2 are equivalent if v1− v2
is conformal.

A deformation can be thought of as an infinitesimal map conjugating Γ to another
Kleinian group. The trivial deformations correspond to moving Γ by conjugacy inside
Isom(Hn).

A deformation is quasiconformal if v is a quasiconformal vector field; that is, if v is
continuous and its conformal strain Sv is in L∞ as a distribution. (On the Riemann sphere
this condition is the same as ‖∂v‖∞ < ∞.) By considering the eigenspaces of the strain
tensor Sv, we see a nontrivial quasiconformal deformation determines a Γ-invariant k-plane
field on the sphere for some k, 0 < k < n − 1. Thus we have the infinitesimal form of
Theorem 2.10:

Proposition 2.12 Let M = Hn/Γ be a hyperbolic manifold whose injectivity radius is
bounded above. Then any quasiconformal deformation of M is trivial.

To explore the effect of a quasiconformal deformation v on the geometry of M = Hn/Γ,
let V = ex(v) be the visual extension of v to Hn (§B.1). Then γ∗(V )− V is an infinitesimal
isometry of Hn for each γ ∈ Γ. The extended vector field V is volume-preserving, so its
conformal strain SV also measures its distortion of the hyperbolic metric. Since the strain
of an isometric vector field is zero, the tensor SV is Γ-invariant, and therefore it descends
to a strain field on M which we continue to denote by SV .
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To illustrate the idea of inflexibility, we first show:

Proposition 2.13 Suppose p lies in the convex core K of a hyperbolic n-manifold M whose
injectivity radius is bounded above by R1 on K and below by R0 > 0 at p. Let v be a
quasiconformal deformation of M , and let V = ex(v). Then

‖SV (p)‖ ≤ δ(d(p, ∂K)) · ‖Sv(p)‖∞

where δ(r) → 0 as r → ∞, and δ(r) depends only on (n,R0, R1).

Proof. If not, we can find a sequence of hyperbolic manifolds Mi = Hn/Γi with points pi
in their convex cores Ki, and deformations vi such that ‖SVi(p)‖ = 1, ‖Svi‖∞ is bounded
by a constant k, and d(pi, ∂Ki) → ∞. (Here Vi = ex(vi).) Lift to the universal cover so
that p̃i = 0 is the origin in the ball model for hyperbolic space; then ‖SVi(0)‖ = 1.

Since d(0, ∂K̃i) → 0, the limit set of Γi converges to the whole sphere in the Hausdorff
topology. The injectivity radius of Mi is bounded above on Ki and below at pi, so by
Proposition 2.4 we can pass to a subsequence such that Γi converges geometrically to a
Kleinian group Γ whose limit set is the whole sphere. The injectivity radius of M = Hn/Γ
is bounded above by R1, so M admits no quasiconformal deformations.

Now by Corollary A.11, the space of k-quasiconformal vector fields, modulo conformal
vector fields, is compact in the topology of uniform convergence on the sphere. Thus
after correcting by conformal vector fields (to obtain equivalent deformations), we may also
assume vi converges uniformly to a k-quasiconformal vector field v. Then v is a deformation
of Γ, and v is nontrivial because ‖SV (0)‖ = lim ‖SVi(0)‖ = 1, where V = ex(v). This
contradicts rigidity of Γ and establishes the Proposition.

The preceding Proposition bounds the strain deep in the core in terms of the strain on
the sphere at infinity. The main step in the proof of inflexibility is the next Lemma, showing
a bound on the distortion over a large finite sphere gives an improved bound at the center
of the sphere. When iterated, this improvement yields exponential decay of deformations;
and when integrated, the bounds for deformations give bounds for mappings.

The visual distortion Mv : Hn → R is defined by

Mv(p) = inf
Sw=0

‖v − w‖∞(p),

where ‖v −w‖∞(p) denotes the maximum length of the vector field (v −w) as seen from p
(§B.3). Like the strain SV , Mv only depends on v modulo conformal vector fields. Thus
Mv is Γ-invariant and it too descends to a function on M .
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Although we are mostly interested in bounding ‖SV (p)‖, we will do so by first bounding
the visual distortion. Since µ = Sv determines v up to a conformal vector field, Mv
really only depends on µ — but in a rather implicit way. The use of the visual distortion
Mv to measure the size of µ is crucial; the proof breaks down with many other natural
measurements of the size of µ.

Let S(p, r) denote the hyperbolic sphere of radius r centered at p.

Lemma 2.14 (Geometric decay) Let v be a deformation of a hyperbolic manifold M =
Hn/Γ with convex core K. Suppose the injectivity radius of M is bounded above by R1

on K and below by R0 > 0 at p. Then there is a radius r(n,R0, R1) such that whenever
S(p, r) ⊂ K, we have

Mv(p) ≤ 1

2
sup

q∈S(p,r)
Mv(q).

Proof. Again the proof is by contradiction. We will work in the universal cover, normalizing
so p̃ = 0. If the Lemma is false we can find a sequence of Kleinian groups Γi, a sequence of
deformations vi and a sequence of radii ri → ∞, such that Mvi(p̃) > 1/2 but Mvi(q) ≤ 1
on the sphere S(p̃, ri) ⊂ K̃i. The bounds on the injectivity radius imply that after passing
to a subsequence, Γi tends geometrically to a Kleinian group Γ whose limit set is the whole
sphere, and the injectivity radius of M = Hn/Γ is bounded above by R1.

After passing to a subsequence and correcting by conformal vector fields, we can assume
vi converges uniformly to a quasiconformal vector field v (see Corollary B.18). Since the
convergence is uniform, Mv(p̃) = limMvi(p̃) ≥ 1/2. But since M is rigid, v is conformal,
and therefore Mv = 0. The Lemma follows by contradiction.

Next we show the visual extension of a deformation tends to an (infinitesimal) isometry
exponentially fast in the convex core.

Remark on notation. Here and in the sequel, Cn and C ′
n denote constants that de-

pend only on the dimension n. Different occurrences of these constants are meant to be
independent.

Theorem 2.15 (Infinitesimal inflexibility) Let M be a hyperbolic n-manifold, n ≥ 3.
Suppose the injectivity radius of M in its convex core K ranges in the interval [R0, R1],
where R0 > 0.

Let V = ex(v) be the visual extension of a quasiconformal deformation v of M . Then
for any p ∈M we have:

‖SV (p)‖ ≤ CnMv(p) ≤ C ′
n exp(−αd(p,M −K)) ‖Sv‖∞.

Here α > 0 depends on (n,R0, R1).
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Proof. By Theorem B.15, we have

‖SV (p)‖ ≤ CnMv(p) ≤ C ′
n‖Sv‖∞.

Thus we need only establish the second inequality in the statement of the Theorem, and
we may assume p ∈ K .

Let r be the radius guaranteed by Lemma 2.14 for the constants (R0, R1). Let N be
the largest integer such that d(p, ∂K) ≥ Nr. Then we can apply Lemma 2.14 N times to
conclude that

Mv(p) ≤ 1

2N
sup

q∈S(p,Nr)
Mv(q).

Now 1/2N ≤ 2 exp(−α d(p, ∂K)) where α = (log 2)/r, and Mv(q) ≤ Cn‖Sv‖∞ by Theorem
B.15, so the stated bound on Mv(p) follows.

To give a global version of the preceding result, we need to show a point deep in the
convex core remains reasonably deep after a quasi-isometry.

Proposition 2.16 Let Φ : Hn → Hn be an L-quasi-isometry, and let Λ be a closed subset
of Sn−1

∞ . Then Φ(hull(Λ)) is contained within a d(n,L)-neighborhood of hull(Φ(Λ)).

Proof. Suppose the origin in the ball model for hyperbolic space is contained in the convex
hull of Λ. Then there exist two points x, x′ ∈ Λ whose angular separation is at least π/4;
otherwise Λ (and its convex hull) would be contained in a hemisphere. Thus any point
p ∈ hull(Λ) lies within a universally bounded distance d0 of a geodesic γ ⊂ hull(Λ). Now
Φ(γ) is a quasi-geodesic with endpoints in Φ(Λ), so it lies within distance d1(n,L) of a
geodesic γ′ ⊂ hull(Φ(Λ)) (see, e.g. [Th1, Prop. 5.9.2]), and therefore

d(Φ(p),hull(Φ(Λ))) ≤ d(Φ(p), γ′) ≤ Ld0 + d1(n,L).

Corollary 2.17 For any p ∈M ,

d(Φ(p),M ′ −K ′) ≥ d(p,M −K)

L
− d(n,L).
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Proof. We may assume K ′ 6= M ′, since otherwise both sides are infinite. Suppose Φ(p) ∈
K ′. Let Φ(x) be the endpoint of the ray constructed by following the shortest geodesic
from Φ(p) to ∂K ′ and then continuing distance d(n,L) further. Applying the preceding
Proposition to Φ−1, we find x 6∈ intK. Thus

d(p,M −K) ≤ d(p, x) ≤ Ld(Φ(p),Φ(x))

≤ L(d(Φ(p),M ′ −K ′) + d(n,L)).

Solving for d(Φ(p),M ′ −K ′) gives the Corollary.
The argument when Φ(p) 6∈ K ′ is similar.

Proof of Theorem 2.11 (Geometric inflexibility). Let M = H3/Γ, let M ′ = H3/Γ′,
and let Ψ̃ : H3 → H3 denote a lift of Ψ to the universal cover. Then the boundary values of
Ψ give a K(L)-quasiconformal map ψ : S2

∞ → S2
∞ conjugating Γ to Γ′. Applying Theorem

B.22, we can construct a Beltrami isotopy φt such that φ0 = id, φ1 = ψ, and φt conjugates
Γ to a Kleinian group Γt. The Beltrami isotopy is the integral of a quasiconformal vector
field vt satisfying ‖∂vt‖ ≤ k(L).

Now apply the visual extension to obtain a time-dependent vector field Vt = ex(vt) on
H3. The integral of this vector field gives a family of volume-preserving quasi-isometries
Φt : H3 → H3 prolonging φt (by Theorem B.21). The quasi-isometry constant of Φt is
bounded by a constant L′ depending only L. This isotopy of H3 descends to a family of
maps M →Mt = H3/Γt which we will also denote by Φt.

Since φ1 = ψ, Φ1 : M → M1 = M ′ is homotopic to Ψ. To complete the proof, we will
bound the quasi-isometry constant L(Φ1, p).

Let Kt denote the convex core of Mt. By Theorem B.21, the quasi-isometry constant is
bounded by the integral of the strain of Vt:

logL(Φ1, p) ≤
∫ 1

0
‖SVt(Φt(p))‖ dt. (2.1)

Now it follows from our hypothesis on M and Proposition 2.16 that the injectivity radius
of Mt in its convex core Kt lies in an interval [R′

0, R
′
1] depending only on [R0, R1] and L.

Applying Theorem 2.15, we have

‖SVt(Φt(x))‖ ≤ C ′ exp(−α′ d(Φt(x),Mt −Kt)) ‖Svt‖∞, (2.2)

where C ′ and α′ also depend only on (R0, R1, L).
By the preceding Corollary, there is a constant d(L′) such that

d(Φt(x),Mt −Kt) ≥ d(x,M −K)

L′ − d(L′).
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Using the fact that ‖Svt‖∞ = ‖∂vt‖∞ < k(L), we may rewrite equation (2.2) in the form

‖SVt(Φt(x))‖ ≤ C exp(−α d(x,M −K))

for suitable C and α. Combining this bound with equation (2.1) gives

logL(Φ1, p) ≤ C exp(−α d(p,M −K));

so taking Φ = Φ1, we have established the Theorem.

2.5 Deep points and differentiability

A quasiconformal conjugacy between a pair of Kleinian groups is often nowhere differ-
entiable on the limit set.

In this section we will show a conjugacy is sometimes forced to be differentiable and
conformal at many points. This conformality can be thought of as a remnant of Mostow
rigidity when the limit set is not the whole sphere. It says the fine structure in the limit
set is unchanged by a quasi-isometric deformation.

Definitions. Let Λ ⊂ Sn−1
∞ be a compact set, and let K ⊂ Hn be its convex hull. We say

x ∈ Λ is a deep point of Λ if there is a geodesic ray

γ : [0,∞) → K,

parameterized by arclength and terminating at x, such that for some δ > 0,

d(γ(s), ∂K) ≥ δs > 0

for all s. In other words, the depth of γ inside the convex hull of Λ increases linearly with
hyperbolic length. When quantitative precision is required we say x is a δ-deep point.

In terms of the sphere at infinity, a point x ∈ Λ is deep if and only if the blowups of Λ
about x converge exponentially fast to the sphere in the Hausdorff metric on compact sets.
Equivalently, let B(x, r) be the spherical ball of radius r about x, and let s(r) denote the
radius of the largest ball contained in B(x, r)− Λ. Then x is deep if and only if there is a
β > 0 such that s(r) ≤ r1+β for all r sufficiently small.

A homeomorphism φ : Ĉ → Ĉ is C1+α-conformal at z if, after changing coordinates so
z and φ(z) lie in C, the complex derivative φ′(z) exists and

φ(z + t) = φ(z) + φ′(z) · t+O(|t|1+α)
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for all t ∈ C sufficiently small. We may now state:

Theorem 2.18 (Deep conformality) Let M = H3/Γ be a hyperbolic 3-manifold whose
injectivity radius is bounded above and below in its convex core, and let φ be a quasiconformal
conjugacy from Γ to another Kleinian group Γ′. Then φ is C1+α-conformal at every deep
point in the limit set Λ.

More precisely, if the injectivity radius in the core ranges in [R0, R1], φ isK-quasiconformal
and x is a δ-deep point, then φ is C1+α conformal at x, where α > 0 depends only on
(R0, R1,K, δ).

Proof. The proof follows the same lines as the proof of geometric inflexibility (Theorem
2.11).

We will work in the upper half-space model H3 = C × R+ with coordinates (z, t). Let
γ(s) = (0, e−s) denote the geodesic ray starting at (0, 1) at terminating at z = 0. Let K be
the convex hull of the limit set of Γ.

By a conformal change of coordinates, we can arrange that the deep limit point x is at
the origin z = 0, that γ(0) ∈ K, and that

d(γ(s), ∂K) ≥ δs > 0

for all s > 0. By conjugating Γ′, we can also arrange that φ fixes 0, 1 and ∞.

Next we embed φ in a Beltrami isotopy φt, fixing 0, 1 and ∞, with φ0 = id and φ1 = φ,
using Theorem B.22. The isotopy φt integrates a continuous vector field vt with ‖∂vt‖∞ ≤ k,
where k depends only on the dilatation of φ. Let Vt = ex(vt), and integrate Vt to obtain a
quasi-isometric isotopy Φt of H

3 prolonging φt. Each mapping Φt is an L-quasi-isometry,
where L depends only on k.

The mapping φt ∪ Φt on S
2
∞ ∪ H3 conjugates Γ to a Kleinian group Γt. Let Kt denote

the convex hull of the limit set Λt of Γt.
We claim that

d(γ(s), ∂Kt) ≥ δ′s− d

for all s > 0, where d, δ′ > 0 are independent of t. Indeed, since Φt is an L-quasi-isometry,
Rt = Φt(γ[0,∞)) is a uniformly quasigeodesic ray, starting near γ(0) and terminating at
z = 0. Thus Rt is contained in a uniformly bounded neighborhood of R0, and the point
Φt(γ(s

′)) closest to γ(s) satisfies s′ > s/L−O(1). Applying Corollary 2.17 to estimate the
change in the convex hull gives

d(γ(s), ∂Kt) ≥ d(Φt(γ(s
′)), ∂Kt)−O(1)

≥ d(γ(s′), ∂K)

L
−O(1) ≥ δs

L2
−O(1),
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which is a bound of the required form.

Since Φt is a quasi-isometry, the given upper and lower bounds on the injectivity radius
of M in its convex core provide similar bounds for Mt = H3/Γt. Combining Theorem 2.15
with the estimate on the distance to the convex hull boundary just obtained, we conclude
that the visual distortion of vt tends to zero exponentially fast along the geodesic ray γ.
That is,

Mvt(γ(s)) ≤ Ce−αs

for some C,α > 0 independent of t.

By the normalization of the Beltrami isotopy, we have vt(0) = vt(1) = vt(∞) = 0. Thus
the exponentially decay of the visual distortion implies, by Theorem B.26, that vt is C

1+α

at the origin. More precisely,

|vt(z)− v′t(0)z| ≤ C ′|z|1+α

when |z| ≤ 1, where C ′ is independent of t. Applying Theorem B.27, we conclude that φ1
is C1+α-conformal at the origin, as claimed.

A generalization of this pointwise conformality result to other holomorphic dynamical
systems appears in Theorem 9.15.

2.6 Shallow sets

This section develops further the theme of conformality at deep points, but in the absence
of dynamics. Instead we assume φ : Ĉ → Ĉ is a quasiconformal map that is conformal on
an open set Ω. We will show that conformality persists at points x ∈ ∂Ω that are well-
surrounded by Ω. This well-surroundedness is guaranteed when x is a deep point of Ω and
∂Ω is shallow.

Some applications to Kleinian groups and iterated rational maps are given in examples.

Definitions. A closed set Λ ⊂ Sn−1
∞ is R-shallow if its convex hull in Hn contains no ball

of radius R. We say Λ is shallow if it is R-shallow for some R > 0. The terminology is
suggested by the fact that a shallow set has no deep points.

It is easy to see the following are equivalent:

1. Λ is shallow.

2. There is an ǫ > 0 such that any spherical ball B(x, r), contains a ball B(y, ǫr) disjoint
from Λ.
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3. There is no sequence gn ∈ Aut(Sn−1
∞ ) such that gn(Λ) → Sn−1

∞ in the Hausdorff
topology on compact subsets of the sphere.

In this section we will prove:

Theorem 2.19 Let φ : S2
∞ → S2

∞ be a K-quasiconformal map that is conformal on an
open set Ω. Assume ∂Ω is R-shallow. Then:

1. there is a natural extension of φ to a diffeomorphism Φ : H3 → H3 whose quasi-
isometry constant satisfies

L(Φ, p) ≤ 1 + C exp(−α d(p, ∂K))

for all p ∈ K = hull(Ω); and

2. for any δ-deep point x of Ω, φ is C1+β-conformal at x.

The constants C, α and β depend only on K, R and δ.

The proof depends on some facts about shallow sets.

Proposition 2.20 If Λ ⊂ Sn−1
∞ is R-shallow, then the spherical volume of an r-neighbor-

hood of Λ satisfies
volN (Λ, r) ≤ Cnr

α

where α > 0 depends only on R.

Proof. Express Λ as a union of two R-shallow sets, each contained in a hemisphere. It
suffices to prove the Proposition for each piece. Restricting attention to one piece, we may
assume Λ is contained in the unit cube with respect to stereographic projection; that is,

Λ ⊂ C = [−1, 1]n−1 ⊂ Rn−1
∞ ⊂ Sn−1

∞ .

Since the Euclidean and spherical metrics are quasi-isometric on the unit cube, it is enough
to show volN (Λ, r) = O(rα) in the Euclidean metric on Rn−1

∞ .
For any cube D ⊂ Rn−1

∞ , let Dk denote the collection of subcubes of D of side length
1/2k times that of D. There are 2k(n−1) such cubes.

Since Λ is shallow, there is a k > 0 such that for any cube D, Λ is disjoint from some
cube in Dk. Thus Λ∩D can be covered by 2k(n−1)− 1 cubes chosen from Dk. Since Λ ⊂ C,
by induction, Λ is covered by (2k(n−1) − 1)j cubes chosen from Cjk. Thus for r = 1/2jk,
we have volN (Λ, r) = O(sj), where s = (2k(n−1) − 1)/2k(n−1) < 1. Choose α > 0 such that
1/2αk < s; then we have volN (Λ, r) = O(rα), as required.
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Dimension. A shallow set is also small in the sense of dimension. Recall that the box
dimension of a compact metric space (X, d) is defined by

box-dim(X) = lim sup
r→0

logN(X, r)

log(1/r)
,

where N(X, r) is the minimum number of r-balls required to cover X. The box dimension
is the infimum of those δ ≥ 0 such that N(X, r) = O(r−δ). The Hausdorff dimension
H.dim(X) is the infimum of those δ ≥ 0 such that X can be covered by balls B(xi, ri) with∑
rδi arbitrarily small. Clearly H.dim(X) ≤ box-dim(X).
Since N(Λ, r) = O(r1−n volN (Λ, r)), we have:

Corollary 2.21 If Λ ⊂ Sn−1
∞ is shallow, then the Hausdorff and box dimensions of Λ are

both strictly less than (n− 1).

Compare [Sal], where shallow sets are called porous.
We now turn to the proof of Theorem 2.19. Let Ω ⊂ Sn−1

∞ be an open set such that ∂Ω
is shallow, and let K be its convex hull. The visual measure of a set E ⊂ Sn−1

∞ as seen from
p ∈ Hn is the probability that a random geodesic ray from p lands in E (cf. §B.3).

Proposition 2.22 Let Ω ⊂ Sn−1
∞ be an open set such that ∂Ω is R-shallow. Then there is

an α(n,R) > 0 such that for all p ∈ K = hull(Ω), we have

(the visual measure of (Sn−1
∞ − Ω) as seen from p)

≤ Cn exp(−α d(p, ∂K)).

Proof. Normalize coordinates so p = 0 in the ball model for hyperbolic space. By the defini-
tion of the convex hull, every spherical ball B(x, r) meets Ω, where r = Cn exp(−d(p, ∂K)).
Thus (Sn−1

∞ − Ω) ⊂ N (∂Ω, r). But volN (∂Ω, r) = O(rα) by Proposition 2.20, so the same
bound holds for the visual measure of the complement of Ω.

The visual distortion Mv(p) is bounded in terms of the nth root of the visual measure
of the support of Sv, by Corollary B.20; this yields:

Corollary 2.23 Let v be a quasiconformal vector field on Sn−1
∞ , such that Sv = 0 on Ω.

Then
Mv(p) ≤ Cn exp(−α d(p, ∂K)/n)‖Sv‖∞

for all p ∈ K.
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Proof of Theorem 2.19. The Theorem follows from the decay estimate on quasiconformal
deformations above, by the same reasoning as in the proofs of Theorems 2.11 and 2.18.
Include φ in a Beltrami isotopy φt with φ0 = id and φ1 = φ. Then use the visual extension
to extend the isotopy to a quasi-isometric flow Φt on H3. The quasiconformal image of a
shallow set is shallow, so the Corollary above applies to the vector fields vt = dφt/dt to
show Mvt decays exponential fast in the convex core. The integral of these bounds with
respect to t controls to quasi-isometry constant of Φ1 and the conformality of φ1 at deep
points.

Measurable deep points. Now let Ω ⊂ S2
∞ be a measurable set and let δ be positive.

A point x is a measurable δ-deep point for Ω if area(B(x, r)− Ω) = O(r2+δ). Equivalently,
the visual measure of the complement of Ω tends to zero exponentially fast along a geodesic
ray in H3 tending to x. Note that x need not belong to Ω. By Proposition 2.22 we have:

Proposition 2.24 If x is a deep point of Ω, and ∂Ω is shallow, then x is a measurable
deep point of Ω.

It is known that vol(φ(E)) = O(vol(E)1/K) for a K-quasiconformal map [Ast], so mea-
surable deep points are preserved (with a controlled change in the exponent δ). Thus the
argument proving Theorem 2.19 shows more generally:

Theorem 2.25 (Boundary conformality) Let φ : S2
∞ → S2

∞ be a K-quasiconformal
map that is conformal on a measurable set Ω. Let x be a measurable δ-deep point for Ω.
Then there is an α(K, δ) such that φ is C1+α-conformal at x.

Examples.

1. Let φ : C → C be a quasiconformal map that is conformal outside the strip S = {z :
| Im z| < 1}. Then φ is C1+α-conformal at infinity, because infinity is a deep point of
Ĉ− S. This is consistent with the fact that for a, b > 0, the map

φ(x+ iy) =




ax+ iy if y = 1

bx+ iy if y = −1

extends to a quasiconformal map of the plane if and only if a = b.

2. Here is a criterion for a limit set to be shallow.
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Proposition 2.26 Let Λ ⊂ S2
∞ be the limit set of a finitely generated nonelementary

Kleinian group Γ. Then Λ is shallow if and only if Γ is geometrically finite, with no
cusps of rank 2, and Λ 6= S2

∞.

Proof. If Γ is shallow, then every point in the convex core K of M = H3/Γ is within
a bounded distance of ∂K. Since ∂K has finite area (by Ahlfors’ finiteness theorem),
the thick part of K has finite volume and so Γ is geometrically finite. A rank 2 cusp
would give an end of M entirely contained in K, so these are ruled out.

Conversely, suppose Γ is geometrically finite, with no cusps of rank 2, and Λ 6= S2
∞.

Then ∂K 6= ∅, and the part of K outside a neighborhood of the cusps is compact, so
these points are within a bounded distance of the boundary. In the part of K meeting
a rank 1 cusp, the distance to ∂K tends to zero, so d(p, ∂K) is bounded uniformly for
p ∈ K and Λ is shallow.

3. Let X be a compact Riemann surface of genus g ≥ 2. Let Γ be a geometrically finite
group in the boundary of a Bers slice BX (see §3.2). Then Γ has a finite number of
rank 1 accidental parabolic cusps. The domain of discontinuity Ω of Γ has a unique
invariant component Ω(X), and Ω(X)/Γ = X.

Now let φ : X → Y be a quasiconformal map. Then we can use φ to transport the
complex structure of Y to X, and then lift it to Ω(X) to obtain a new Γ-invariant
complex structure on the sphere. Solving the Beltrami equation, we obtain a group
Γ′ ∈ ∂BY , and a quasiconformal conjugacy φ̃ from Γ to Γ′, such that φ̃ : Ω(X) → Ω(Y )
is a lift of φ, and φ̃ is conformal on Ω− Ω(X).

By the preceding Proposition, the limit set Λ = ∂Ω(X) of Γ is shallow. On the other
hand, each cusp is a deep point of Ω − Ω(X). By Theorem 2.19 we conclude the
conjugacy φ̃ is C1+α-conformal at all rank 1 cusps of Γ.

4. Let f(z) be a rational map with a parabolic fixed point at z = p, and let Ω =
{z : d(fn(z), p) → 0} be its basin of attraction. It is well-known that Ω contains a
bouquet of finitely many petals attached at p, each tangent to its neighbors (see e.g.
[CG, §II.5]). Thus a parabolic fixed-point is a measurable deep point of its basin. Now
let φ : Ĉ → Ĉ be a quasiconformal conjugacy from f to another rational map g. By
Theorem 2.25, if φ is conformal on Ω, then φ is C1+α-conformal at p.

The same result holds with f and g replaced by germs of holomorphic maps with
parabolic fixed-points.
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Figure 2.4. The filled Julia set of a quadratic polynomial with a golden mean Siegel disk.

5. Let f(z) = e2πiθz + z2, where θ is an irrational number of bounded type, meaning its
continued fraction expansion

θ =
1

a1 +
1

a2 +
1

a3 + · · ·
satisfies sup ai <∞. Then z = 0 is the center of a Siegel diskD for f(z). By a theorem
of Herman and Świa̧tek, ∂D is a quasicircle (see Figure 2.4; cf. [Her], [Dou2]). It can
be shown that the Julia set J(f) is shallow, and the critical point of f is a deep point
of the filled Julia set K(f). Now if g : U → V is a quadratic-like map with a fixed
point having the same multiplier e2πiθ, then there exists a quasiconformal conjugacy
φ from f to g near their filled Julia sets that is conformal on intK(f). By Theorem
2.19 we conclude the conjugacy φ is C1+α at the critical point of f . Similar methods
show the boundary of the Siegel disk is self-similar when θ is a quadratic irrational;
see [Mc7] for more details.





3 Three-manifolds which fiber over the circle

This chapter presents the construction of hyperbolic 3-manifolds which fiber over the
circle.

Consider a pseudo-Anosov homeomorphism ψ : S → S of a compact surface of negative
Euler characteristic. To find a hyperbolic structure on the mapping torus Tψ of ψ, one
seeks a hyperbolic manifold Mψ homeomorphic to S ×R on which the homotopy class ψ is
represented by an isometry α. Then Mψ/〈α〉 is homeomorphic to Tψ.

It is easy to find hyperbolic structures on S × R such that ψ is represented by a quasi-
isometry. For example, a hyperbolic structure on S extends to S ×R in a unique way such
that S×{0} is totally geodesic. This amounts to considering the action of a Fuchsian group
on hyperbolic 3-space. Since ψ can be represented by a quasiconformal map on S, it can
be represented by a quasi-isometry on S × R.

The first step in the construction is deform such a Fuchsian manifold to obtain a limit
Mψ,Y , with one geometrically finite end bounded by a Riemann surface Y , and one geo-
metrically infinite end, still quasi-isometrically invariant by ψ.

The second step is to consider the sequence of manifolds ψn(Mψ,Y ). These manifolds
differ only in the marking of their fundamental groups by π1(S). As n→ ∞, the generators
of π1(S) are represented by geodesics deeper and deeper in the convex core of Mψ,Y . By
Thurston’s double limit theorem, we can find an algebraic limitMψ. We extract a geometric
limit N at the same time, and show it is rigid; then ψ is realized by an isometry on Mψ,
completing the construction.

Background on surface groups and marked hyperbolic manifolds is presented in the
first two sections. In §3.3 we discuss the action of the mapping class group Mod(S) on
Teichmüller space and on a Bers slice, and state the version of the double-limit theorem we
will need. The hyperbolic structure on Tψ is constructed in §3.4. In §3.5 a further analysis
shows the manifold Mψ,Y is asymptotically isometric to Mψ. When S is closed, this implies
the injectivity radius of Mψ,Y is bounded above and below.

In 3.6 we use this information, and our earlier inflexibility results, to show ψn(Mψ,Y )
converges to Mψ exponentially fast. This result sets the stage for a parallel development in
the context of renormalization, realized in §9.5.

Finally in §3.7 we study the special case of torus orbifold bundles over the circle. An
explicit example of a totally degenerate group is discussed; its limit set is reminiscent of the
Feigenbaum Julia set, with elliptic points corresponding to the critical orbit.

37
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3.1 Structures on surfaces and 3-manifolds

Let S be a compact connected oriented surface of negative Euler characteristic. We
allow S to have boundary and we let int(S) = S − ∂S.

The Teichmüller space Teich(S) classifies conformal structures on int(S) in which each
boundary component corresponds to a puncture. A point in Teich(S) is specified by a
Riemann surface X, each end of which is conformally isomorphic to a punctured disk, and
a homeomorphism f : int(S) → X, sending the orientation on S to the canonical orientation
of the complex manifold X. The map f is a marking of X.

Two marked surfaces (f1,X1) and (f2,X2) define the same point in Teichmüller space if
there is a complex analytic isomorphism
ι : X1 → X2 such that ι ◦ f1 is homotopic to f2. The Teichmüller metric is defined
by

d(X1,X2) =
1

2
inf logK(φ)

where φ : X1 → X2 ranges over all quasiconformal maps in the homotopy class f2 ◦ f−1
1 ,

and K(φ) denotes the dilatation of φ.

Although we will denote a typical point in Teich(S) by X, there is always an implicit
marking f : S → X.

We now consider 3-manifolds with the homotopy type of a surface. Let H(S) be the set
all marked hyperbolic 3-manifoldsM with the same homotopy type as S. Here a marking of
M is a homotopy equivalence f : S → M , mapping ∂S into horoball neighborhoods of the
cusps of M . Two marked hyperbolic manifolds (f1,M1) and (f2,M2) represent the same
point in H(S) iff there is an orientation-preserving isometry ι : M1 → M2 such that ι ◦ f1
is homotopic to f2.

Equivalently,

H(S) = D(S)/ Isom+(H3),

where the isometry group acts by conjugation on the space D(S) of all discrete faithful
homomorphisms

ρ : π1(S) → Isom+(H3)

such that π1(B) maps to a parabolic subgroup for each component B of ∂S.

The algebraic topology on the setH(S) is defined by [ρn] → [ρ] if there are representatives
of each equivalence class such that ρn(g) → ρ(g) for each g ∈ π1(S). We let AH(S) denote
H(S) endowed with the algebraic topology.

On the level of manifolds, Mn → M in AH(S) iff there are smooth homotopy equiva-
lences hn : M → Mn, compatible with markings, such that on any compact subset of M ,
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hn tends C∞ to a local isometry for all n≫ 0.1

The quasi-isometric topology on H(S) is defined by the metric

d((f1,M1), (f2,M2)) = inf logL(g)

where the infimum is over all quasi-isometric diffeomorphisms
g : M1 → M2 homotopic to f2 ◦ f−1

1 , and L(g) is the quasi-isometry constant of g. If
there is no quasi-isometry in the required homotopy class, the quasi-isometric distance is
+∞. The balls of finite radius form a basis for this topology; the resulting space is denoted
QH(S).

The mapping QH(S) → AH(S) is continuous. Using equicontinuity of suitably normal-
ized quasi-isometries, one may easily check:

Proposition 3.1 The quasi-isometric distance is lower semicontinuous on AH(S)×AH(S):
if Ai → A and Bi → B in AH(S), then

d(A,B) ≤ lim inf d(Ai, Bi).

Remark. In [Th2] and [Th5], H(S) is denoted H(S × I, ∂S × I). We have adopted the
former notation for brevity, since we will almost exclusively be concerned with 3-manifolds
homotopy equivalent to S.

3.2 Quasifuchsian groups

A Fuchsian group is a Kleinian group which stabilizes a round disk on the sphere at
infinity. Any point in the Teichmüller space of S can be presented as a quotient X = H2/Γ
where H2 is the upper halfplane in C and Γ is a Fuchsian group. Considered as a Kleinian
group, the domain of discontinuity Ω of Γ is the union of the upper and lower halfplanes.

A quasifuchsian group is a Kleinian group which is quasiconformally conjugate to a
Fuchsian group. Let

QF (S) ⊂ H(S)

denote the subset of representations [ρ : π1(S) → Isom+(H3)] such that Γ = ρ(π1(S)) is
quasifuchsian. For any such group, the Kleinian manifold

M = (H3 ∪ Ω)/Γ

is bounded by a pair of Riemann surfaces X and Y . There is a homeomorphism between M
and int(S) × [0, 1], compatible with the marking of M and with orientation, that restricts

1It is not required that hn converges to an embedding on compact sets; indeed, when the algebraic and
geometric limits of Mn differ, hn approximates a covering map rather than an embedding.
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to a marking of X by S and Y by S (the same surface with reversed orientation). Bers
showed that the map

QF (S) → Teich(S)× Teich(S)

so determined is a bijection.
We will denote the inverse mapping by Q, and think of Q(X,Y ) as a hyperbolic 3-

manifold determined by X and Y , equipped with an implicit homotopy equivalence f : S →
Q(X,Y ). The map Q is a homeomorphism with respect to the product of the Teichmüller
metrics on the domain and the algebraic or quasi-isometric topology on the range. The
manifold Q(X,Y ) is Fuchsian if and only if Y is the complex conjugate of X.

A Bers slice BY ⊂ AH(S) is the image of Teich(S)× {Y } under Q.

Proposition 3.2 The closure of a Bers slice is compact in the algebraic topology.

See [Bers1, Theorem 3], [Mc1, §6.3]; compactness comes from the fact the hyperbolic
length of a geodesic in Q(X,Y ) is bounded in terms of the length of the corresponding
geodesic on Y . Bers also showed the component Ω(Y ) of the domain of discontinuity which
uniformizes Y persists in the limit at all points in ∂BY .

A point (f : S →M) in the boundary of a Bers slice has an accidental parabolic if there
is an essential loop γ on S, not homotopic into ∂S, such that f(γ) represents a parabolic
element in π1(M). A boundary point is totally degenerate if its domain of discontinuity
consists of a single component, Ω(Y ).

Proposition 3.3 (Bers) A point in the boundary of a Bers slice which has no accidental
parabolics is totally degenerate.

See [Bers1, Prop. 7]. It follows that a generic boundary point (in the sense of Baire
category) is totally degenerate, since the condition tr(ρ(γ)) = ±2 for an accidental parabolic
determines a nowhere dense subset of the boundary.

Theorem 3.4 (Thurston, Bonahon) For any hyperbolic manifold M in AH(S), the in-
jectivity radius of M in its convex core is bounded above by a constant R which depends
only on S.

Remarks. Logically we will only use the fact that this statement holds for certain groups in
the boundary of a Bers slice. The proof of this case is in [Th1]; Thurston shows every point
in the convex core of M is within a bounded distance of a pleated surface. Such a surface
is a pair (f,X) consisting of a hyperbolic surface X ∈ Teich(S) and a map f : X → M ,
inducing an isomorphism on π1, such that through every point of X there is a geodesic
segment which is mapped isometrically to a geodesic segment in M . The injectivity radius
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of X is bounded above in terms of S (because its area is determined by Gauss-Bonnet), so
we obtain an upper bound on the injectivity radius in the convex core of M .

To find sufficiently many pleated surfaces, one interpolates between pairs of such surfaces
by interpolating between their pleating laminations. This idea completes the proof whenM
is quasifuchsian, since the boundary faces of the convex core are pleated surfaces. In general
one must establish that the ends of the thick part of the convex core of M are geometrically
tame, meaning any neighborhood of the end contains a pleated surface. This is established
for M ∈ QF (S) in [Th1] and for all M ∈ AH(S) in [Bon]. (It is conjectured that these two
sets of manifolds are actually the same.) A detailed proof of the Theorem above appears in
[Can, Thm. 6.2].

The same discussion leads to a proof of:

Theorem 3.5 (Tameness) Any M in AH(S) is homeomorphic to int(S)× R.

3.3 The mapping class group

Themapping class group Mod(S) is the group of isotopy classes of orientation-preserving
homeomorphisms from S to itself. It is canonically isomorphic to the group of outer auto-
morphisms of π1(S) that preserve orientation and stabilize the set of conjugacy classes of
boundary curves.

A mapping class ψ : S → S acts on Teich(S) by sending (f,X) to (f ◦ ψ−1,X). There
are similar actions on Teich(S) and on AH(S). These actions are compatible with the
mapping

Q : Teich(S)× Teich(S) → AH(S);

that is, ψ(Q(X,Y )) = Q(ψ(X), ψ(Y )).

A mapping class also acts on a Bers slice BY by Q(X,Y ) 7→ Q(ψ(X), Y ). The action of
Mod(S) on BY is not the restriction of its action on AH(S); the latter sends BY to Bψ(Y ).

A mapping class ψ is reducible if there is a finite system of disjoint essential simple closed
curves on S, none parallel to ∂S, which are permuted up to isotopy.

Theorem 3.6 (Thurston, Bers) A mapping class ψ ∈ Mod(S) either:

1. has finite order and fixes a point in Teich(S), or

2. is reducible and of infinite order, or

3. has no fixed point in Teich(S), but stabilizes a Teichmüller geodesic.

See [FLP], [Th3], [Bers2]. In the last case ψ is pseudo-Anosov.
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Here is a classification of surface homeomorphisms in terms of the dynamics of ψ acting
on a Bers slice BY . For M ∈ AH(S), we say ψ is quasi-isometrically realized on M if there
is a quasi-isometry φ : M → M such that f ◦ ψ is homotopic to φ ◦ f . Equivalently, the
quasi-isometric distance d(ψ(M),M) is finite.

Theorem 3.7 (Limits in a Bers slice) Let Q0 = Q(X,Y ) be any point in the Bers
slice BY , and let Q∞ ∈ BY ⊂ AH(S) be any accumulation point of the sequence Qi =
Q(ψi(X), Y ). Then either:

1. Q∞ ∈ BY is quasifuchsian and ψ has finite order, or

2. Q∞ ∈ ∂BY has an accidental parabolic, and ψ is reducible and of infinite order, or

3. Q∞ ∈ ∂BY is totally degenerate with no accidental parabolics, and ψ is pseudo-
Anosov.

In all cases, ψ is quasi-isometrically realized on Q∞.

Remark. For applications to mapping tori we will only need the pseudo-Anosov case, which
is essentially contained in [Bers3]. We will later see that Q(ψi(X), Y ) actually converges
when ψ is pseudo-Anosov (Theorem 3.11). A refinement of the result above appears in [Sh].

Proof. The Teichmüller distance from ψi+1(X) to ψi(X) is bounded independent of i (since
it is equal to the distance between ψ(X) and X). Thus for every i there is a uniformly
quasiconformal conjugacy between ψ(Qi) and Qi, and therefore

d(ψ(Qi), Qi) = O(1),

where d(, ) is the quasi-isometric distance. By lower semicontinuity of d(, ) on AH(S) ×
AH(S), the limiting manifold Q∞ is also translated a bounded distance by ψ, so ψ is
quasi-isometrically realized on Q∞.

We now turn to the classification.
Since Mod(S) acts on Teichmüller space with discrete orbits and finite point stabilizers,

Q∞ lies in BY if and only if ψ has finite order.
Suppose Q∞ = H3/Γ∞ has at least one accidental parabolic subgroup 〈γ〉 ⊂ Γ∞; we

will show ψ is reducible. Let g be the closed geodesic on Y corresponding to γ. There is a
γ-invariant lift g̃ of g to Ω(Y ), the component of the domain of discontinuity lying over Y .
The geodesic g̃ converges at both ends to the fixed point of γ.

In the Poincaré metric on the disk Ω(Y ), any two geodesics meet in at most one point.
If h̃ ⊂ Ω(Y ) is another geodesic invariant by an accidental parabolic δ 6∈ 〈γ〉, then g̃ and
h̃ are disjoint — otherwise their closures would give two topological circles on the sphere
crossing at one point.
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Consequently the set of all accidental parabolics is represented by a system of disjoint
simple closed geodesics G on Y . Their total number is finite (it is bounded by the topology
of S). A quasi-isometry sends cusps to cusps, so ψ permutes G and is therefore reducible.

Finally suppose ψ is reducible and of infinite order; to complete the proof, we will show
Q∞ has an accidental parabolic.

For simplicity, assume there is a single simple nonperipheral loop g on S preserved by
ψ up to isotopy (the case of a system of loops is similar). Pass to a subsequence such that
Qi → Q∞ algebraically. Then the hyperbolic length of the geodesic representative of g in
Qi converges to a limit L. If L = 0 then g is an accidental parabolic in Q∞ as desired.

Now suppose L > 0. By a result of Sullivan, the faces of the convex hull of Qi are K-
quasi-isometric to the hyperbolic surfaces ψi(X) and Y with a universal constant K [Sul3],
[EpM]. Since ψ stabilizes the isotopy class of g, the length of g on ψi(X) is the same as its
length on X, so it is bounded above independent of i. Thus the shortest curve representing
g on either face of the convex hull has length bounded above. Since the length of g in Qi is
bounded below, both faces are within a bounded distance of the geodesic representative of
g.

In particular the two faces of the convex hull of Qi are a bounded distance apart.
Equivalently, if we normalize the universal cover so the lift of the face corresponding to Y
passes through the center of the hyperbolic ball, then S2

∞−Ω(Y ) contains a ball of definite
spherical radius. In the limit this implies the domain of discontinuity of Q∞ cannot consist
solely of Ω(Y ), and thus Q∞ is not totally degenerate. Since Q∞ ∈ ∂BY , it must have an
accidental parabolic by Proposition 3.3.

Double limits. Whereas a Bers slice is compact, the space AH(S) is not. For example,
the (noncompact) Teichmüller space of S is properly embedded in AH(S) as the space
of Fuchsian groups. It is thus tricky to guarantee compactness, let alone convergence, of
sequences in AH(S).

Thurston’s double limit theorem [Th5, Thm. 4.1] provides a compactness criterion in
this setting. We state a simplified version that suffices for applications to mapping tori.

Theorem 3.8 (Pseduo-Anosov double limits) Let ψ ∈ Mod(S) be pseudo-Anosov. Then
for any (X,Y ) ∈ Teich(S)× Teich(S), the quasifuchsian manifolds

{Q(ψ−i(X), ψj(Y )) : i, j ≥ 0}

lie in a compact subset of AH(S).

Remarks. In Thurston’s compactification of Teichmüller space, ψ−i(X) and ψj(Y ) con-
verge to the projective classes of the stable and unstable measured laminations (µs, µu) for
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ψ. These bind the surface in the sense that the intersection number i(ν, µs)+i(ν, µu) > 0 for
any third measured lamination ν 6= 0. Then compactness of Q(ψ−i(X), ψj(Y )) as i, j → ∞
is immediate from the statement of [Th5, Thm. 4.1].

If i or j stays bounded then there is a subsequence lying in a Bers slice, or a slice with
the factors reversed; either slice has compact closure in AH(S).

Otal has recently given a new proof of the double limit theorem, using R-trees [Ot].

3.4 Hyperbolic structures on mapping tori

The mapping torus of a homeomorphism ψ : S → S is the oriented 3-manifold Tψ
obtained from the cylinder S × [0, 1] by identifying (x, 0) with (ψ(x), 1) for every x ∈ S.
There is a natural fibration Tψ → S1 with fiber S and monodromy ψ. The orientation of
Tψ is the product of the given orientation of S and the positive orientation of [0, 1]. We
may now state:

Theorem 3.9 (Thurston) The mapping torus Tψ admits a complete hyperbolic structure
of finite volume if and only if ψ is pseudo-Anosov.

If ψ is reducible or of finite order, then π1(Tψ) contains copies of Z ⊕ Z which do not
correspond to the boundary, so Tψ cannot be hyperbolic.

In this section we present a variant of Thurston’s construction of a hyperbolic structure
on Tψ when ψ is pseudo-Anosov. The construction will be justified by assembling the
previous results; it proceeds as follows.

1. First, pick a point M0 = (f0 : S →M) in the boundary of a Bers slice BY , such that
Q(ψ−i(X), Y ) accumulates at M0 as i → ∞. The manifold M0 is totally degenerate,
and it admits a quasi-isometry φ in the homotopy class of ψ : S → S.

2. The sequence Mn = ψn(M0) lies in a compact subset of AH(S) by Thurston’s double
limit theorem. Note that theseMn are simply different markings of the same manifold
M .

3. Pass to a subsequence such that Mn converges algebraically to M∞ and geometrically
to N . There is a covering map
π :M∞ → N . The manifold N has injectivity radius bounded above and its limit set
is the whole sphere.

4. The quasi-isometry φ gives rise to limiting quasi-isometries φ∞ and ξ such that the
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diagram

M∞
φ∞−−−→ M∞

π

y π

y

N
ξ−−−→ N

commutes.

5. Since N is rigid, ξ is homotopic to an isometry of N ; therefore φ∞ is also homotopic
to an isometry α of M∞.

6. The mapping torus Tψ is then homeomorphic to the finite volume manifold M∞/〈α〉.

We now fill in the details.

Proof of Theorem 3.9.

Step 1. Let (X,Y ) be any pair of Riemann surfaces in Teich(S) × Teich(S). The quasi-
fuchsian manifolds Q(ψ−i(X), Y ) lie in a Bers slice BY , so as i → ∞ they accumulate on
some boundary pointM0 = (f0 : S →M) in AH(S). By Proposition 3.7, the limit is totally
degenerate, and there is a quasi-isometry

φ :M →M

in the homotopy class of ψ : S → S.

Step 2. The marked manifold

Mn = ψn(M0) = (f0 ◦ ψ−n : S →M) = (fn : S →M)

is an accumulation point of Q(ψn−i(X), ψn(Y )) as i → ∞. Thus the sequence Mn is
precompact by Theorem 3.8 (Pseudo-Anosov Double Limits).

Step 3. Pass to a subsequence such that (fn : S →M) converges algebraically to (f∞ : S →
M∞). Pick a baseframe ω∞ in the convex core of M∞, and consider a compact connected
submanifold K containing the baseframe and the image f∞(S). By algebraic convergence,
there are local quasi-isometries gn : K →M , such that gn ◦ f∞ is homotopic to fn, and the
quasi-isometry constant of gn tends to one.

We can assume gn is an isometry at the baseframe, and let ωn be the image of ω∞.
Since

gn ◦ f∞ : S →M

is a homotopy equivalence, gn cannot map K entirely into the thin part ofM ; thus the injec-
tivity radius ofM is bounded below at ωn. Therefore after passing to a further subsequence,
(M,ωn) converges geometrically to a based manifold (N,ω).
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We now verify properties of the geometric limit N . Choose K large enough that it
contains a closed geodesic γ∞ on M∞, representing the homotopy class f∞(γ) of some loop
γ on S. Then

γn = gn(γ∞)

represents the homotopy class f0 ◦ψ−n(γ) on M , and its length is bounded above. Since ψ
is pseudo-Anosov, these homotopy classes are all distinct as n varies, so γn must eventually
exit any compact subset of M . Thus the distance from γn to the boundary of the convex
core of M tends to infinity.

But the distance from γn to the baseframe ωn is bounded by the diameter of gn(K),
so the baseframe ωn is also very deep in the convex core when n is large. Thus the limit
set Λ(M,ωn) converges to the whole sphere as n → ∞ (Proposition 2.3). The injectivity
radius of M in its convex core is bounded above by Theorem 3.4. By Proposition 2.4, the
injectivity radius of N is also bounded above, and the limit set Λ(N,ω) is the whole sphere,
being the Hausdorff limit of Λ(M,ωn).

A limit of gn gives a local isometry of K into N ; letting K exhaust M∞, we obtain a
covering map π :M∞ → N .

Step 4. Identify the universal covers of (M,ωn), (M∞, ω∞) and (N,ω) with H3 so the
standard frame at the center of the Poincaré ball lies over the given frame on each manifold.
The markings fn and f∞ give representations ρn : π1(S) → Γn and ρ∞ : π1(S) → Γ∞. The
geometric limit of Γn is a Kleinian group Π ⊃ Γ∞ corresponding to N .

Let Ψ : π1(S) → π1(S) be an automorphism of the fundamental group of S representing
the mapping class ψ. Then for each n, the K-quasi-isometry φ : M → M from Step 1 has
a unique extended lift

Φn : (H3 ∪ S2
∞) → (H3 ∪ S2

∞)

which is compatible with Ψ, in the sense that

Φn ◦ ρn(g) ◦ Φ−1
n = ρn(Ψ(g))

for each g ∈ π1(S).
Pick gi ∈ π1(S), i = 1, 2, 3, such that no pair commute. Then Φn maps the triple of

attracting or parabolic fixed points for (ρn(gi)) to the corresponding triple for (ρn(Ψ(gi))).
As n → ∞, these triples converge to triples of distinct points for ρ∞. (The condition of
noncommutativity assures the points are distinct). It follows that Φn|S2

∞ is a precompact
sequence of quasiconformal mappings, and that Φn|H3 is a precompact sequence of K-quasi-
isometries.

Any limiting map Φ∞ satisfies

Φ∞ ◦ ρ∞(g) ◦ Φ−1
∞ = ρ∞(Ψ(g))
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by continuity, and normalizes the geometric limit Π. Thus Φ∞ descends to a quasi-isometry
φ∞ on M∞ and ξ on N compatible with the covering projection π.

Step 5. Since the limit set of N is the whole sphere, and the injectivity radius of N is
bounded above, Theorem 2.9 (Bounded rigidity) implies ξ : N → N is homotopic to an
isometry. The map φ∞ covers ξ, so it is also homotopic to an isometry α :M∞ →M∞.

Step 6. The isometry group of a nonelementary hyperbolic manifold is discrete, and α has
infinite order, so it acts freely and properly discontinuously on M∞. The quotient M∞/〈α〉
has the homotopy type of Tψ because α and ψ act the same way on the fundamental group.
By a theorem of Stallings, the two manifolds are actually homeomorphic [St1].

3.5 Asymptotic geometry

In the construction of the hyperbolic 3-manifold Tψ fibering over the circle, we did not
address the convergence of the two iterative processes involved. It was enough to obtain a
convergent subsequence, by compactness of a Bers slice in one instance and by Thurston’s
double limit theorem in the other.

In this section we show both processes actually converge. When S is closed, we also show
the totally degenerate group Γ on the boundary of a Bers slice enjoys a remarkable rigidity
property: any quasiconformal conjugacy from Γ to another Kleinian group is differentiable
at uncountably many points of the limit set. Finally we characterize the stable manifold of
the fixed point of ψ.

Let Mψ ∈ AH(S) denote the covering space of the oriented hyperbolic manifold Tψ
corresponding to the inclusion of S into Tψ as a fiber.

Proposition 3.10 The mapping class ψ has exactly two fixed points in AH(S), namely
Mψ and Mψ−1 .

Remark. These two fixed points are related by complex conjugation in PSL2(C).

Proof. If ψ(P ) = P , then P is an infinite cyclic covering space of a finite volume hyperbolic
manifold T homotopy equivalent to Tψ. By Mostow rigidity, T is isometric to Tψ. If the
isometry preserves orientation, then P =Mψ; otherwise P =Mψ−1 . Finally Mψ and Mψ−1

are distinct points in AH(S); otherwise the mapping cylinders for ψ and ψ−1 would be
identical, which would imply ψ2 = 1 in Mod(S).
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Theorem 3.11 (Convergence of iteration on AH(S)) For any pseudo-Anosov map-
ping ψ ∈ Mod(S), and any (X,Y ) ∈ Teich(S)×Teich(S), there exists a point Mψ,Y ∈ ∂BY
such that

Q(ψ−n(X), Y ) → Mψ,Y and

ψn(Mψ,Y ) → Mψ

in AH(S). The first limit point is independent of X, and the second is independent of Y .

In the course of the proof we will also establish:

Theorem 3.12 The sequence ψn(Mψ,Y ) converges algebraically and geometrically to Mψ.
The negative end of the pared submanifold of Mψ,Y is asymptotically isometric to that of
Mψ.

Here the pared submanifold of a hyperbolic manifold M is the complement of the open
components of the thin part corresponding to cusps. By the tameness Theorem 3.5, the
pared submanifold is homeomorphic to S × R for any M ∈ AH(S) without accidental
parabolics. This homeomorphism is unique up to isotopy if we require it respect the ori-
entations of M and S × R. Thus we may label the ends of the pared submanifold of M
positive and negative, corresponding to the ends of R.

The Theorem asserts the existence of a diffeomorphism

h : Eψ → Eψ,Y

between the negative ends of the pared submanifolds of Mψ and Mψ,Y . The map h will be
constructed in the natural homotopy class determined by the markings. The condition of
asymptotic isometry means for any k, r and ǫ > 0, there is a compact set K ⊂ Eψ such
that h is ǫ-close to an isometry in the Ck topology on any embedded r-ball in Eψ −K.

Note that when S is closed, there are no cusps and Eψ is simply an end of Mψ.

Corollary 3.13 The manifold Mψ,Y does not have arbitrarily short closed geodesics.

Proof. Any sequence of geodesics whose lengths tend to zero must tend to the negative end
of Mψ,Y . But the geometry of this end is asymptotically periodic, since it is quasi-isometric
to an end of Mψ.
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Corollary 3.14 When S is closed, the injectivity radius of Mψ,Y is bounded above and
below in its convex core.

Proof. By Proposition 3.7, Mψ,Y has no cusps, and it has no short geodesics by the
preceding Corollary, so the injectivity radius is bounded below. The upper bound (true for
general surface groups) is Theorem 3.4.

Corollary 3.15 Suppose S is closed, and Mψ,Y = H3/Γ. Then the limit set Λ of the totally
degenerate group Γ contains an uncountable set of deep limit points D. Any quasiconformal
conjugacy from Γ to another Kleinian group is differentiable and C1+α-conformal at each
point of D.

Proof. Let π : Mψ → R be the pullback of the smooth fibration Tψ → S1, and let
Σ = π−1(0). Consider any geodesic ray γ(s) in Mψ such that π(γ(s)) ≤ −ǫs < 0 for some
ǫ > 0 and all large s. Then clearly d(γ(s),Σ) tends to infinity at a linear rate with s. Thus
the image δ of γ under an asymptotic isometry fromMψ toMψ,Y also penetrates the convex

core of Mψ,Y at a linear rate, and therefore δ̃ ⊂ H3 terminates at a deep limit point of Γ.
Since the injectivity radius of Mψ,Y is bounded above and below in its convex core, any
quasiconformal conjugacy is C1+α-conformal at every deep limit point, by Theorem 2.18.
(The constant α depends on the limit point and the conjugacy.)

To produce such geodesic rays γ(s), one can begin with rays which cover loops in Tψ
that have an essential projection to S1. This gives countably many deep points. To obtain
uncountably many, choose elements α and β generating a free group in π1(Tψ), and mapping
to negative elements in π1(S

1). The geodesic representative of any infinite positive word in
higher powers of α and β produces a deep limit point, and words with different tails give
different points. The set of possible tails is uncountable, so the set of deep limits points is
also uncountable.

Remark. These deep limit points are analogous to the points in the postcritical set P (f)
of an infinitely renormalizable quadratic polynomial; compare Theorems 8.8 and 8.13.

For reference we also record:

Theorem 3.16 (Cannon-Thurston) The limit set of Mψ,Y is locally connected.
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See [CT] or [Min]. Corollary 8.3 below states an analogous result for renormalization.

Proof of Theorems 3.11 and 3.12. For simplicity we will initially assume that S is
closed. Continuing with the notation of the previous section, let M0 = (f0 : S → M)
denote an accumulation point of Q(ψ−i(X), Y ) as i → ∞, let M∞ be an accumulation
point of Mn = ψn(M0) as n→ ∞, and let (N,ω) be a geometric limit of (Mn, ωn) covered
by (M∞, ω∞). We now verify:

1. The sequence Mn converges to M∞. The only possible accumulation points ofMn are
Mψ and Mψ−1 . But the quasi-isometric distance from Mn to Mn+1 is bounded, while the
quasi-isometric distance from Mψ to Mψ−1 is infinite, so the sequence can only accumulate
at one of these two points.

2. The algebraic and geometric limits (M∞, ω∞) and (N,ω) agree. We have seen there
are isometries α and β such that Tψ is homeomorphic to M ′ =M∞/〈α〉 and the diagram

M∞
α−−−→ M∞

π

y π

y

N
β−−−→ N

commutes. Since M ′ has finite volume, the covering map M ′ → N ′ = N/〈β〉 has finite
degree d. But the covering π : M∞ → N is just the pullback of the covering M ′ → N ′, so
it also has degree d. For any δ ∈ Π = π1(N), we have

δd = ρ∞(ζ) ∈ Γ∞ = π1(M∞),

and also δ = lim ρn(γn) for a subsequence of n, where γn and ζ lie in π1(S). Then γdn = ζ
for n sufficiently large; since a surface group is uniquely divisible, γn eventually stabilizes
in π1(S) and therefore δ ∈ Γ∞.2

3. The convex core of M is asymptotically isometric to M∞. Choose the marking
f∞ : S → Σ ⊂M∞ so its image is an embedded surface corresponding to a fiber ofM∞/〈α〉.
We let Σi = αi(Σ), and denote by [Σi,Σj ] the compact submanifold of M∞ bounded by
these two translates of the fiber.

Let K = [Σ−3,Σ3]; then Σ ⊂ K. By geometric convergence, for all n sufficiently large,
there is a smooth embedding gn : K →M such that gn ◦ f∞ is homotopic to fn = f0 ◦ψ−n,
and gn converges towards an isometry in the C∞ topology as n→ ∞.

Let
hn = gn ◦ αn : [Σ−n−3,Σ−n+3] →M.

The map hn lies in the natural homotopy class of maps from M∞ to M determined by the
markings f0 and f∞ (see Figure 3.1). Indeed, α ◦ f∞ is homotopic to f∞ ◦ ψ, so if ρ is a

2Cf. [Th1, Thm. 9.14].
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f∞
SS

M∞

Σ

αnhn

ψn

M

Y

Σ−n

Figure 3.1. Construction of an asymptotic isometry.

retraction of M∞ to the domain of hn, then

hn ◦ ρ ◦ f∞ ∼ hn ◦ α−n ◦ f∞ ◦ ψn = gn ◦ f∞ ◦ ψn ∼ f0,

where ∼ denotes homotopy equivalence of mappings.
We will construct an asymptotic isometry h from one end of M∞ into M by combining

these hn for large n. Let σ : M∞ → [0, 1] be a smooth bump function supported on
[Σ−1,Σ1], such that

∑∞
−∞ σ(αk(x)) = 1 for all x. For all x in

⋃
n≫0[Σ−n−1,Σ−n], let

h(x) =
∑

k

σ(αk(x))hk(x)

where the sum is interpreted as the hyperbolic barycenter of the weighted points. (The
barycenter makes sense because all the maps are in the same homotopy class.)

To check that h is an asymptotic isometry, note that for any fixed x at most two
terms, say hn(x) and hn+1(x), have nonzero weight. Both maps provide almost isometric
embeddings of a definite neighborhood of Σ−n into M , in the same homotopy class. Thus
for all sufficiently large n, the images of hn and hn+1 have substantial overlap, and the map

kn = h−1
n+1 ◦ hn | [Σ−n−1,Σ−n+1]

is well-defined and homotopic to the identity. Therefore

αn ◦ kn ◦ α−n : [Σ−1,Σ1] →M∞
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gives a sequence of almost isometric mappings homotopic to the identity. The only isometry
of M∞ homotopic to the identity is the identity, so αn ◦ kn ◦α−n → id in the C∞ topology.
It follows that hn and hn+1 are C∞ close near x, and therefore a convex combination of
these two maps is still C∞ close to an isometry. This shows h is an asymptotic isometry
from one end of M∞ to the end of the convex core of Mψ,Y .

Since h(Σ−n) exits the geometrically infinite end of Mψ,Y (rather than the end bounded
by Y ), we have:

4. M∞ =Mψ.
To complete the proof we show:
5. For all X ∈ Teich(S), the sequence Q(ψ−n(X), Y ) converges, and the limit is inde-

pendent of X.
Let M0 be an accumulation point of this sequence, and M ′

0 another accumulation point
using X ′ in place of X. Since the geometrically infinite ends of M0 and M ′

0 are both quasi-
isometric to the same end of Mψ, the corresponding groups Γ0 and Γ′

0 are quasiconformally
conjugate. The geometrically finite ends of both manifolds correspond to the Riemann
surface Y , so the conjugacy can be made conformal on the domain of discontinuity. Since
the injectivity radius of the convex core ofM0 is bounded above, the conjugacy is conformal
on the limit set; and therefore M0 =M ′

0, completing the proof.
When ∂S 6= ∅, steps 1, 2 and 4 remain the same; in step 3 the asymptotic isometry is

constructed in the pared submanifold of M∞; and in step 5 the mapping is extended over
the cusps in a straightforward way to show any two limits are quasi-isometric.

A similar argument characterizes the attractor of Mψ in AH(S).

Theorem 3.17 (Stable manifold of Mψ) Let P belong to AH(S). Then ψn(P ) →Mψ

if and only if the negative end of the pared submanifold of P admits an asymptotic isometry
to Mψ compatible with markings.

Proof. Let h : Eψ → E be an asymptotic isometry between negative ends of Mψ and
P compatible with markings, and let f : S → Eψ ⊂ Mψ be a marking of Mψ. Then
h ◦ α−n ◦ f : S → P is a marking of ψn(P ). When n is large, the map h is nearly isometric
on α−n(f(S)), so ψn(P ) is algebraically close to ψn(Mψ) = Mψ. Thus ψ

n(P ) converges to
Mψ.

Conversely, if ψn(P ) → Mψ, a result of Thurston guarantees the convergence is also
geometric (see [Th1, Ch. 9], [Can, Thm. 9.2]). Thus an asymptotic isometry between the
ends of Mψ and P can be constructed by the partition of unity argument of the preceding
proof.
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3.6 Speed of algebraic convergence

Let S be a closed oriented surface of genus g ≥ 2. In this section we apply geometric in-
flexibility to show, for any pseudo-Anosov
ψ ∈ Mod(S), the iterates ψn(MY,ψ) converge exponentially fast to the fixed point Mψ

of ψ. This result, together with the characterization of the stable manifold of the fixed
point above, forms the beginning of a dynamical theory of the action of Mod(S) on AH(S).

Rapid algebraic convergence. To measure the speed of convergence, it is useful to
regard points in AH(S) as conjugacy classes of representations ρ : π1(S) → Isom+(H3).
We say [ρn] → [ρ] exponentially fast in AH(S) if representations can be chosen within each
equivalence class so that for each γ ∈ π1(S), there is a λ < 1 such that

sup
x∈S2

∞

|ρn(γ)(x) − ρ(γ)(x)| = O(λn).

(It suffices to check this condition on the generators of π1(S).)
A second, equivalent definition of exponential convergence can be based on traces:

[ρn] → [ρ] exponentially fast if and only if for each γ ∈ π1(S) there is a λ < 1 such
that

| tr(ρn(γ))2 − tr(ρ(γ))2| = O(λn).

Note that the complex function tr(ρ(γ)) is defined only up to sign, since we are working
in PSL2(C) instead of SL2(C). Again, it suffices to check this condition on finitely many
elements in π1(S).

To relate the two definitions, let R(S) denote the space of all irreducible representations
ρ : π1(S) → Isom+(H3). The space AH(S) is a closed subset of the representation variety

V (S) = R(S)/ Isom+(H3).

The space V (S) is a complex manifold, which can be embedded in CN using the holomorphic
functions

[ρ] 7→ tr(ρ(γ))2

for sufficiently many γ ∈ π1(S).
On a smooth manifold, there is a natural notion of exponential convergence using any

local Euclidean chart. The first definition says [ρn] ∈ V (S) admits a lift to a sequence
ρn converging exponentially fast in the manifold R(S). The second says [ρn] converges
exponentially fast with respect to smooth coordinates on V (S). The two definitions are the
same because the map R(S) → V (S) is a smooth fibration [Gun1, Thm. 28].

Theorem 3.18 (Rapid algebraic convergence) For any pseudo-Anosov mapping ψ ∈
Mod(S), and any Y ∈ Teich(S), ψn(Mψ,Y ) converges to Mψ exponentially fast.
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Corollary 3.19 The derivative of the mapping class ψ has at least one expanding and one
contracting eigenvalue at the fixed point Mψ.

Proof. The action of ψ on V (π1(S)) is smooth, so exponential convergence entails an
eigenvalue of modulus less than one at the fixed point. There is a symplectic structure on
V (π1(S)) preserved by Mod(S) [Go], so we also have an expanding eigenvalue (since the
determinant is 1).

Question. Is the derivative of ψ at Mψ actually hyperbolic (that is, free from eigenvalues
of modulus 1)?

To give the proof of Theorem 3.18, we first show a deformation with a small quasi-
isometry constant has a small effect on the traces. It is easy to bound the distortion of
length, but we also need to know the twist along a closed geodesic is nearly preserved. (The
combination of twist and length gives the trace.)

Lemma 3.20 Let Mi = H3/〈γi〉, i = 1, 2, be a pair of hyperbolic solid tori, with oriented
core geodesics gi of length at most R. Suppose Φ : N (g1, 1) →M2 is a (1+ǫ)-quasi-isometric
embedding of a unit neighborhood of g1 into M2, such that Φ(g1) is homotopic to g2. Then

| tr(γ1)2 − tr(γ2)
2| ≤ C(R)ǫ.

Proof. Lift to the universal cover so γ1 stabilizes a geodesic g̃1 through the origin 0 in the
ball model for H3. Let Φ̃ : N (g̃1, 1) → H3 be a corresponding lift of Φ, conjugating γ1 to
γ2. Let K be the closure of N (g̃1, 1/2)∩B(0, R+1). Since K is compact, by Theorem B.24
there is an isometry ι such that d(ι ◦ Φ̃(x), x)C(R)ǫ for all x ∈ K.

In other words, for an appropriate lift of γ2, we can assume γ1 and γ2 are conjugate by
a mapping Φ̃ which is ǫ-close to the identity on K.

Let vi, i = 1, . . . , 4, be the vertices of a regular tetrahedron of side length 1/4 near 0.
Then

d(γ1(vi), γ2(vi)) = O(ǫ)

for all i, by virtue of the bound on Φ̃. The map γ 7→ (γ(vi)) gives a smooth proper
embedding of the isometry group of H3 into (H3)4; by the implicit function theorem, γ can
be smoothly reconstructed from the data (γ(vi)), and therefore γ1 and γ2 are ǫ-close in
Isom+(H3). In particular the difference of their traces is O(ǫ).
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Proof of Theorem 3.18 (Rapid algebraic convergence). We have seen that the
homotopy class of ψ is realized by a quasi-isometry Ψ :Mψ,Y → Mψ,Y . By Corollary 3.14,
the injectivity radius ofMψ,Y in its convex coreK is bounded above and below. By Theorem
2.11 (Geometric inflexibility), there are constants C and α > 0, and a quasi-isometry

Φ :Mψ,Y →Mψ,Y

homotopic to Ψ, such that the quasi-isometry constant of Φ satisfies

L(Φ, p) ≤ 1 + C exp(−α d(p, ∂K)) (3.1)

for all p ∈ K. To show ψn(Mψ,Y ) →Mψ exponentially fast, we will construct markings that
move out the end of the convex core at a definite rate, and then apply the bound above.

Let α : Mψ → Mψ be the isometry in the homotopy class of ψ. Let f : S → Σ be a
representative marking of Mψ, where Σ is an embedded surface disjoint from its translates
Σi = αi(Σ), i 6= 0. Then Σ represents a fiber of the surface bundle Mψ/〈α〉 = Tψ → S1. As
in the proof of Theorem 3.12, we let [Σi,Σj ] denote the compact submanifold bounded by
two translates of the fiber; and we let (−∞,Σj ] =

⋃
i<j [Σi,Σj ].

By Theorem 3.12, there is an asymptotic isometry h : E → E′ between corresponding
geometrically infinite ends of Mψ and Mψ,Y . We can assume that E = (−∞,Σ], and that
E′ is contained in the convex core K of Mψ,Y .

Let Σ′
i = h(Σi). In the periodic manifold Mψ, the minimal distance between adjacent

fibers is constant: d(Σi,Σi+1) = d(Σ0,Σ1) = D > 0. Since h is an asymptotic isometry, we
have d(Σ′

i,Σ
′
i+1) ≥ D′ > 0 for all i ≤ 0. Any path from Σ′

i to ∂K must cross Σ′
j for all j

with i < j ≤ 0, so we have:

d((−∞,Σ′
i], ∂K) ≥ D′|i|

for all i < 0.

Let fn : S →Mψ,Y be the marking given by the composition

S
f−→ Σ

α−n

−−→ Σ−n
h−→ Σ′

−n ⊂Mψ,Y .

Then ψn(Mψ,Y ) = (fn,Mψ,Y ) as a sequence in AH(S). Let [ρn] be the corresponding
sequence of representations of π1(S).

Picking any nontrivial element γ ∈ π1(S), we will now show tr(ρn(γ))
2 → tr ρ(γ))2

exponentially fast. Let g and gn denote the geodesic representatives of γ in (f,Mψ) and
(fn,Mψ,Y ). We claim there is a constant C such that d(gn, ∂K) ≥ Cn > 0 for all n
sufficiently large. To see this, first note that gn and h(α−n(g)) are homotopic, by the
definition of fn. Since h is an asymptotic isometry, these loops are very close when n is
large. Now g ⊂ (−∞,ΣN ]) for some N , so h(α−n(g)) ⊂ (−∞,Σ′

N−n]. But the distance
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from (−∞,Σ′
N−n] to the boundary of the convex core grows linearly in n for n sufficiently

large, so we have d(gn, ∂K) ≥ Cn > 0 as well.

Since Φ is in the homotopy class of ψ, the geodesic Φ(gn) is homotopic to gn−1. Com-
bining our estimate for d(gn, ∂K) with equation (3.1), we find that on a unit neighborhood
of gn, the mapping Φ is a (1 + ǫn)-quasi-isometry, where

ǫn = O(exp(−α(d(gn, ∂K))) = O(λn)

for all n≫ 0, and λ = exp(−Cα) < 1. By Lemma 3.20, this implies

| tr(ρn(γ))2 − tr(ρn−1(γ))
2| = O(λn),

and thus [ρn] → [ρ] exponentially fast.

A canonical asymptotic isometry. By a similar argument, one can show that

f(x) = lim
n→∞Φn ◦ h ◦ α−n(x)

exists and defines a smooth map of Mψ to Mψ,Y . The mapping f satisfies f ◦α = Φ◦f , and
its quasi-isometry constant tends to one exponentially fast: that is, there is a λ < 1 such
that L(f, x) = 1 + O(λn) for all x ∈ [Σ−n,Σ−n+1] and n > 0. The map f is independent
of the choice of the initial asymptotic isometry h. It can be made canonical — that is,
to depend only on ψ and Y — by using the Teichmüller mapping from Y to itself in the
homotopy class of ψ to construct Φ.

Note. A detailed account of the representation variety of a surface group can be found in
[Gun1], [Go] and [Mor].

3.7 Example: torus bundles

The simplest surface with an interesting mapping class group is the torus. However, a
torus bundle over the circle is never hyperbolic (its natural geometry is Euclidean, nilpotent
or solvable). To obtain hyperbolic examples, we introduce a single cone point of angle 2π/p,
making the torus into a hyperbolic orbifold S. Then any ψ ∈ Mod(S) = SL2(Z) with
| tr(ψ)| > 2 determines a hyperbolic 3-orbifold Tψ which fibers over the circle.

In this section we study the corresponding totally degenerate groups Γψ,Y on the bound-
ary of a Bers slice. We show the limit sets of these groups are deep at each elliptic fixed
point. Any quasiconformal map φ : Ĉ → Ĉ inducing the automorphism ψ of Γψ,Y provides
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a natural asymptotic self-similarity of the limit set, with a universal scaling factor. Analo-
gous statements for the Julia set of an infinitely renormalizable quadratic map will appear
in §9.4.

The problem of giving an explicit example of a totally degenerate group was raised in
[Bers1]. This section also provides a numerical example of such a group, explains how it
was calculated, and presents a picture of the limit set.

The orbifold bundles we consider here were studied by Jørgensen in [Jor]. Punctured
torus groups, which can be thought of as the limiting case p = ∞, are discussed in [MMW]
and [Wr]. Another example of a totally degenerate group, computed by a different method,
appears in [MMW, §6]. For background on orbifolds, see [Th4, Ch. 5].

Hyperbolic torus bundles. Let S be the closed orbifold obtained from a surface of genus
1 by introducing a singular point of index p > 1. The group G = π1(S) has the presentation
〈a, b : [a, b]p = 1〉. We identify H1(S,Z) = G/[G,G] with Z2 using the basis 〈a, b〉. Then
the mapping class group Mod(S) is isomorphic to SL2(Z), faithfully represented by its
action on H1(S), just as for a torus. Up to inner automorphism, the generators R = ( 1 1

0 1 )
and L = ( 1 0

1 1 ) of Mod(S) act on π1(S) by

R : 〈a, b〉 → 〈a, ba〉 and

L : 〈a, b〉 → 〈ab, b〉.

Every complex orbifold X in Teich(S) carries a hyperbolic metric and can be constructed
by gluing together opposites sides of a hyperbolic quadrilateral with total internal angle
2π/p. See Figure 3.2 for a tiling of the hyperbolic plane corresponding to the case p = 2.

Figure 3.2. The universal cover of a torus with a 180◦ cone point.

The orbifold S admits a finite covering space S̃ → S which is a smooth surface. Explic-
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itly, we can adjoin generators and relations to G to obtain the mod p Heisenberg group (of
order p3),

H = 〈a, b, c : c = [a, b], [a, c] = [b, c] = ap = bp = cp = 1〉.
Let S̃ be the covering space corresponding to the kernel of the natural map G→ H. Since
[a, b] has order p in H, S̃ is a manifold. For example, when p = 2, S̃ is a surface of
genus three. Moreover, every ψ ∈ Mod(S) lifts to a map ψ̃ ∈ Mod(S̃); i.e. the covering is
characteristic.

For ψ ∈ Mod(S), let Tψ denote the three-dimensional orbifold fibering over the circle
with fiber S and monodromy ψ. The singular locus of Tψ is topologically a circle (see Figure
3.3).

Tψ

singular knot

p
S

Figure 3.3. A fibered orbifold.

We claim the orbifold Tψ is hyperbolic if and only if ψ is pseudo-Anosov. To see this,

pass to the characteristic cover S̃ and apply Theorem 3.9 to obtain a hyperbolic structure
on T

ψ̃
. Then T

ψ̃
is a finite regular cover of Tψ; by Mostow rigidity the covering group can

be realized by hyperbolic isometries, so the hyperbolic structure descends to Tψ.
The map ψ is pseudo-Anosov if and only if | tr(ψ)| > 2 as an element of SL2(Z), so this

property is easy to test.

Elliptic deep points. Next we examine a totally degenerate group Γψ,Y , and show its
limit set is asymptotically self-similar near any elliptic fixed point. We will apply results of
the preceding sections which, while stated for surfaces, extend by naturality to the orbifold
setting as well.

Let Mψ,Y = H3/Γψ,Y . Then Mψ,Y is a totally degenerate orbifold on the boundary of
a Bers slice BY , Y ∈ Teich(S). The singular locus of Mψ,Y lies along a geodesic running
from the orbifold point of Y into the geometrically infinite end ofMψ,Y . Thus any primitive
elliptic element δ ∈ Γψ,Y has one fixed point in the limit set Λ and the other in the domain
of discontinuity Ω. Normalize coordinates on the sphere so δ(z) = e2πik/pz, and the limit
set contains z = 0.
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Let φ : Y → Y be a quasiconformal map in the isotopy class of ψ. Then φ fixes the
singular point of Y , and prolongs to a quasi-isometry Φ ofMψ,Y , so there is a quasiconformal

map φ̃ : Ĉ → Ĉ fixing 0 and ∞ and covering φ on Ω. The mapping φ is unique up to
composition with a power of δ.

We can now verify:

1. The elliptic fixed point z = 0 is a deep point of the limit set. Indeed, the singular
geodesic γ of Mψ projects to a closed geodesic on Tψ which runs once around, trans-
verse to the fibers; thus d(γ(s),Σ) → ∞ at a linear rate with respect to any reference
fiber Σ in Mψ. Since Mψ,Y is asymptotically isometric to Mψ, its singular locus also
tends to the geometrically infinite end at a linear rate. Thus any elliptic fixed point
in the limit set of Γψ,Y is a deep point.

2. The map φ̃ is a quasiconformal automorphism of Γψ,Y . Indeed, φ̃ ◦ γ = ψ∗(γ) ◦ φ̃. So
by Theorem 2.18 we have:

3. The map φ̃ is C1+α-conformal at all deep points of the limit set. In addition:

4. We have |φ̃′(0)| > 1. To evaluate the derivative, recall the extension of φ to a map
Φ :Mψ,Y →Mψ,Y can be chosen to be an asymptotic isometry in the homotopy class
of ψ. The negative end of Mψ,Y is nearly isometric to Mψ, so Φ is asymptotic to the
generator α of the deck group of the coveringMψ → Tψ. This generator translates the

singular locus towards the positive end of Mψ, and therefore |φ̃′(0)| > 1. Moreover:

5. The self-similarity factor satisfies |φ̃′(0)| = eL, where L is the length of the closed
singular geodesic on Tψ. Therefore:

6. The self-similarity factor is universal, in the sense that it does not depend on the base
surface Y .

At first sight, it may seem paradoxical that φ̃(Λ) = Λ and φ̃ has an expanding fixed
point at z = 0. Indeed, since z = 0 is a deep point, the limit set at a small scale looks much
denser than at a large scale. The point is that φ̃ is not sufficiently smooth to expand small
features of the limit set up to definite size. For example the iterates φ̃k are not uniformly
quasiconformal near the origin.

A totally degenerate group. The assertions above are illustrated in an example in Figure
3.4. This Figure depicts a totally degenerate group corresponding to a representation

ρ : π1(S) → Γψ,Y

with p = 2, ψ = ( 2 1
1 1 ) and tr ρ(a) = 3. As in the preceding discussion, the group is

normalized so z = 0 is an elliptic fixed point.
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Figure 3.4. The limit set of a totally degenerate group Γψ,Y .
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Because tr ρ(a) is real, the convex hull ofMψ,Y is pleated along the geodesic representing
the simple curve Ca corresponding to a. The disk D = {z : |z| > 1} is the boundary of
a supporting half-space for the convex hull, and Ω =

⋃
Γ γ(D). The Figure is drawn by

enumerating the images of ∂D under Γ. These circles cut Ω into two types of tiles: lunes
corresponding to the bending locus, and infinite-sided regions corresponding to the universal
cover of S − Ca.

The origin is a limit of these circles, but since z = 0 is a deep point of the limit set,
the circles become extremely small before they get close to the center of the Figure. Thus
one should imagine the limit set as a nowhere dense but furry tree filling the central white
region.

The four-fold symmetry of the picture is accounted for by the hyperelliptic involution
〈a, b〉 → 〈a−1, b−1〉.

To describe the calculation of this totally degenerate group, we first discuss how one can
locate the fixed point Mψ. It is convenient to work with representations in SL2(C) rather
than PSL2(C). Let

G = 〈a, b, c : c = [a, b]p, c2 = [a, c] = [b, c] = 1〉
be the unique nontrivial Z/2 central extension of G = π1(S). Any standard Fuchsian
representation

ρ : G→ PSL2(R)

lifts to a faithful representation
ρ : G→ SL2(R).

Although ρ[a, b] is elliptic with rotation angle 2π/p, the lifted representation has ρ([a, b]p) =
−I in SL2(R). Thus we have

tr ρ[a, b] = − cos(2π/p). (3.2)

Since the representations we are seeking are obtained by deforming the Fuchsian represen-
tations, they also enjoy these properties.

We claim the conjugacy classes of irreducible representations
ρ : G→ SL2(C) satisfying (3.2) correspond bijectively to points on the affine variety

α2 + β2 + γ2 = αβγ + 2− 2 cos(2π/p) (3.3)

in C3, via
(α, β, γ) = (tr ρ(a), tr ρ(b), tr ρ(ab)).

To see this, first note that an irreducible representation ρ of the free group 〈a, b〉 is deter-
mined by the triple of traces above. Now in SL2(C) one has the identity

tr(A)2 + tr(B)2 + tr(AB)2 = tr(A) tr(B) tr(AB) + 2 + tr[A,B],
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so points on the variety (3.3) correspond to representations with tr ρ[a, b] = −2 cos(2π/p).
But then ρ[a, b] is elliptic of order 2p, so ρ gives a representation of G satisfying (3.2).

In terms of these coordinates, the generators of Mod(S) act by

R(α, β, γ) = (α, γ, αγ − β) and

L(α, β, γ) = (γ, β, βγ − α),

as can be verified using the identity

trA2B + trB = trA trAB

(coming from A+A−1 = (trA)I).
It is now straightforward to solve for the fixed points of ψ = R ◦ L on the variety (3.3).

The solution corresponding to Mψ is (α, β, γ) = (λ, λ, λ), where

λ =
3 +

√
17−

√
2− 2

√
17

4
;

its complex conjugate gives Mψ−1 . The other two solutions are real, so they do not lie in
AH(S). The expanding eigenvalue of Dψ at its fixed point Mψ is

1 +

√
17 +

√
17 + 4

√
17

2
= 5.955184721953 . . .

A similar calculation can be carried out for other values of p and ψ; see [Jor].
To find the representation corresponding to the totally degenerate group Γψ,Y , one may

use Newton’s method to solve numerically for the nearby intersection of the stable manifold
of Mψ with the hyperplane tr(ρ(a)) = α = 3. When normalized as in Figure 3.4, the
resulting group has generators

A =




3+3i
2 −i

√
7
2

i
√

7
2

3−3i
2


 and

B ≈
(

3.9999415228 − 0.62754422329i −3.3746078723 − 1.8636013648i

−2.8699108556 − 3.0395681614i 0.62754422329 + 3.9999415228i

)
.

We remark that the orbifold Tψ is obtained by Dehn filling on the figure eight knot
complement, since the latter is a punctured torus bundle with monodromy ( 2 1

1 1 ). The
singular geodesic of Tψ has length L ≈ 0.7328576759, and zero torsion; thus the totally
degenerate limit set in Figure 3.4 is asymptotically self-similar about the origin with scale
factor eL ≈ 2.0810189966.
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Another totally degenerate representation of the same group, with tr(ρ(a)) = α = 3 and
ψ = ( 5 4

1 1 ), is rendered in Figure 3.5.
A proof that for each pseudo-Anosov ψ and α > 2, there exists a unique totally degen-

erate group of the form Mψ,Y with convex hull bent along 〈a〉 and tr(ρ(a)) = α, can be
found in [Mc6].

Figure 3.5. A totally degenerate group on the stable manifold of Mψ, for ψ = ( 5 4
1 1 ).





4 Quadratic maps and renormalization

We now turn from Kleinian groups and mapping classes to quadratic maps and renor-
malization.

Let f(z) = z2 + c be a quadratic polynomial. The most interesting behavior of f is
associated with the orbit of its critical point z = 0. Suppose an iterate fn maps a disk Un
containing 0 over itself properly by degree two, with image Vn. Then fn : Un → Vn is a
quadratic-like map, of the same general form as f itself. If the critical point remains in Un
under iteration of fn, then fn : Un → Vn is a renormalization of fn. The map f is infinitely
renormalizable if there are arbitrarily high iterates that can be renormalized.

Our goal in the next several chapters is to understand the limiting form of fn : Un → Vn
as n tends to infinity.

This chapter presents basic compactness and continuity properties of quadratic-like maps
that are essential for working in this general setting. The picture of renormalization we
describe is developed more fully in [Mc4].

4.1 Topologies on domains

Recall that the set of closed subsets of the complex plane C is compact in the Hausdorff
topology (§2.2).

A pointed region (U, u) is an open connected set U ⊂ C equipped with a basepoint u ∈ U .
The Carathéodory topology on the space of all pointed regions is defined by (Un, un) → (U, u)
if and only if

(i) un → u ∈ U , and

(ii) for any Hausdorff limit F of a convergent subsequence of C − Un, U is a
component of C− F .

The Carathéodory topology is designed so that convergence of simply connected regions
is the same as locally uniform convergence of their Riemann mappings [Car]. One may also
verify:

Proposition 4.1 With respect to the Carathéodory topology:

1. For any u ∈ C and r > 0, the set of pointed regions (U, u) such that B(u, r) ⊂ U is
compact.

2. The limit of a sequence of simply-connected regions is simply-connected.

65
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3. If (Un, un) → (U, u), and Un and U are hyperbolic, then the hyperbolic metric ρn on
Un converges to the hyperbolic metric ρ on U . The convergence is C∞ on compact
sets.

Consider next the space of all holomorphic functions f : (U, u) → C. The Carathéodory
topology on this space is defined as follows: a sequence fn : (Un, un) → C converges to
f : (U, u) → C if (Un, un) → (U, u) and if fn → f uniformly on compact subsets of U . (Note
that any compact subset of U is also contained in Un for all n sufficiently large.)

A K-quasicircle Λ ⊂ C is the image of a round circle under a K-quasiconformal map of
the plane. Such a curve satisfies the bounded turning condition: for any x, y ∈ Λ,

diamΛxy ≤M(K)|x− y|,

where Λxy is the smaller arc on Λ joining x to y. Conversely, a Jordan curve with bounded
turning is a quasicircle (see [LV]).

A disk U ⊂ Ĉ is a simply-connected region with U 6= Ĉ. We say U is a K-quasidisk if
∂U is a K-quasicircle.

Let (Un, un) be a sequence of K-quasidisks in C converging to (U, u), where U 6= C.
Then U is also a K-quasidisk, and Un → U in the Hausdorff topology. This last property
does not hold for general disks, because islands can pinch off in the limit; the bounded
turning condition prevents such pinching.

4.2 Polynomials and polynomial-like maps

For a polynomial f : C → C of degree d > 1, the filled Julia set K(f) is the compact set
of points which remain bounded under iteration; its boundary is the Julia set J(f).

A polynomial-like map f : U → V is a proper holomorphic map between disks U and V
in C such that U is compact and contained in V . By analogy with polynomials, the filled
Julia set of f is defined by K(f) =

⋂
f−n(U); and the Julia set, by J(f) = ∂K(f).

A polynomial-like map is a more flexible dynamical system retaining many of the features
of a polynomial. To put both kinds of mappings together, we let Polyd denote the space of
all polynomial-like maps f : (U, u) → (V, v) and all polynomials f : (C, u) → (C, v) of degree
d, with connected Julia sets and basepoints u ∈ K(f). We give Polyd the Carathéodory
topology.

Remark. The notation f : (U, u) → (V, v) means V = f(U) and v = f(u). When
fk : (Uk, uk) → (Vk, vk) converges to f : (U, u) → (V, v) in Polyd, it can be shown that the
pointed regions (Vk, vk) tend to (V, v) (compare [Mc4, Thm. 5.6]).

For any f ∈ Polyd, the postcritical set P (f) is the closure of the strict forward orbits of
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the critical points in U :

P (f) =
⋃

n≥1, f ′(c)=0

fn(c).

Note that we have adopted the convention that the postcritical set of a polynomial f ∈ Polyd
does not contain the point at infinity. This convention is consistent with the viewpoint that a
polynomial is a limiting case of a polynomial-like map, and that the domain of a polynomial
is the complex plane.

The following result is well-known for polynomials [Dou3], and easily generalizes to
polynomial-like maps.

Proposition 4.2 As a function on Polyd, the filled Julia set K(f) varies upper semicon-
tinuously, while J(f) varies lower semicontinuously.

In other words, if fk → f , then

lim supK(fk) ⊂ K(f) and

J(f) ⊂ lim inf J(fk).

Thus if K(f) = J(f), both sets vary continuously at f .

The modulus mod(E,V ) of a set E ⊂ V ⊂ C, where V is a simply-connected region,
is the maximum modulus of an annulus A ⊂ V surrounding E. (This means E lies in the
compact component of V −A.) If no such annulus exists we set mod(E,V ) = 0.

The space Polyd(m) ⊂ Polyd consists of all polynomials, and all polynomial-like maps
f : (U, u) → (V, v) with mod(U, V ) ≥ m.

The group Aut(C) of automorphisms α(z) = az + b of the complex plane acts contin-
uously on Polyd by conjugation, sending f(z) to α(f(α−1(z))). The subspace Polyd(m) is
preserved by this action, and we have (cf. [Mc4, Theorem 5.8]):

Proposition 4.3 The space Polyd(m)/Aut(C) is compact. More precisely, any sequence
fn : (Un, un) → (Vn, vn) in Polyd(m), normalized so un = 0 and so the Euclidean diameter
of K(fn) is equal to 1, has a convergent subsequence.

4.3 The inner class

In this section we discuss conjugacies between quadratic-like maps. In particular, we
define the inner class I(f) of f ∈ Poly2, a fundamental invariant introduced by Douady
and Hubbard to record the dynamics on K(f). The ideas in this section are based on [DH],
to which the reader may refer for more details.
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Definitions. Let fi : Ui → Vi, i = 1, 2 be a pair of polynomial-like maps of the same
degree. A hybrid conjugacy is a quasiconformal map φ between neighborhoods of K(f1)
and K(f2), conjugating f1 to f2, with ∂φ = 0 a.e. on K(f1). We say f1 and f2 are hybrid
equivalent if such a conjugacy exists.

Proposition 4.4 Any polynomial-like map f is hybrid equivalent to a polynomial g : C → C

of the same degree as f . The polynomial g is unique up to affine conjugacy when K(f) is
connected.

See [DH, Theorem 1].
Let Pc(z) = z2 + c. The Mandelbrot set M is the set of c ∈ C such that J(Pc) is

connected.
A quadratic-like map is a polynomial-like map of degree two. Any quadratic-like map f

with connected Julia set is hybrid equivalent to Pc for a unique c ∈M .
The inner class I(f) is defined by I(f) = c.
Let fi : Ui → Vi, i = 1, 2, be a pair of quadratic-like maps with connected Julia sets.

The pullback argument is a construction for building a conjugacy φ between f1 and f2. It
proceeds in stages, as follows.

1. After a slight restriction, we can assume Ui and Vi are disks bounded by smooth
circles.

2. Pick an orientation-preserving diffeomorphism φ : ∂V1 → ∂V2.

3. Lift φ using the degree two covering maps fi : ∂Ui → ∂Vi, to obtain an extension to
a conjugacy

φ : (∂U1 ∪ ∂V1) → (∂U2 ∪ ∂V2).

4. Extend φ to a diffeomorphism between the closed annuli Ai = Vi − Ui, i = 1, 2,
bounded by these circles. Since φ is smooth, its dilatation K is bounded.

5. Each annulus Vi − K(fi) is tiled by the annuli Aki = f−ki (Ai), k = 0, 1, 2 . . . (see
Figure 4.1). Define φ : Ak1 → Ak2 inductively by φ = f−1

2 ◦ φ ◦ f1, using the fact that
fi : A

k
i → Ak−1

i is a covering map. (The lift is chosen to agree with φ as already defined
on the outer boundary of Aki .) Since fi is conformal, the dilatation of φ remains the
same during this step.

The final step, extending φ to a conjugacy on the filled Julia sets, can be completed if
I(f1) = I(f2):

Proposition 4.5 A quasiconformal conjugacy φ : (V1 − K(f1)) → (V2 − K(f2)) extends
across the filled Julia sets to a hybrid conjugacy if and only if f1 and f2 have the same inner
class.
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Figure 4.1. Fundamental annuli for a quadratic-like map.

Proof. Suppose f1 and f2 have the same inner class c. Using hybrid conjugacies from fi(z)
to z2 + c, we can reduce to the case where f1(z) = f2(z) = z2 + c. Pulling back φ by the
normalized Riemann mapping

ψ : (C−∆) → (C−K(f1)),

we obtain a quasiconformal homeomorphism φ̃ defined near S1 and satisfying φ̃(z2) =
φ̃(z)2. Any such mapping extends to the identity on the circle. This implies φ extends
by the identity on K(f1) to a topological conjugacy. Extensions by the identity preserve
quasiconformality (cf. [DH, Lemma 2]), so we obtain a hybrid conjugacy extending φ.

The converse is immediate.

Proposition 4.6 Let fi ∈ Poly2(m), i = 1, 2 be quadratic-like maps with the same inner
class. Then for any ǫ > 0, there are restrictions gi of fi in Poly2(m − ǫ), and a K(m, ǫ)-
quasiconformal map φ : C → C providing a hybrid conjugacy between g1 and g2.

Proof. Given f1 and f2, choose slight restrictions such that Ai = Vi − Ui is a smoothly
bounded annulus. Pick a smooth map
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φ : A1 → A2 which is a conjugacy on the boundary, and prolong φ to a hybrid conjugacy
using the pullback construction. Since ∂Vi is a quasicircle, φ extends to a quasiconformal
homeomorphism of the whole plane.

The dilatation of φ is bounded by its dilatation on A1. By continuity, we can control
the modulus of Ai and the dilatation of φ for all pairs of maps on a neighborhood of (f1, f2)
in Poly2(m)× Poly2(m). The Proposition follows by compactness of Poly2(m)/Aut(C).

Proposition 4.7 The inner class I : Poly2 →M is continuous.

Proof. The proof is a straightforward adaptation of [DH, Prop. 14].

Let f : (U, u) → (V, v) be a quadratic-like map in Poly2. The inner class I(f) can be
constructed by a variant of the pullback argument.

Pick a disk D ⊂ U with smooth boundary and compact closure in U , such that D con-
tains K(f) and f : Df → D is quadratic-like, where Df = f−1(D). Pick a diffeomorphism

ψ : (C−D) → {z : |z| ≥ 4},

and extend it to a quasiconformal mapping

ψf : (C−K(f)) → (C −∆)

such that ψf (f(z)) = S(ψ(z)) for z ∈ Df , where S(z) = z2. The map ψf is constructed by
the pullback argument: that is, by lifting ψ|∂D to a map on ∂Df , filling in with a smooth
map from D −Df to {z : 2 ≤ |z| ≤ 4}, and prolonging by the dynamics.

Using ψf we can construct a quadratic polynomial by gluing the dynamics of S(z) onto
the outside of D. More precisely, let µf denote the Beltrami differential which vanishes
on K(f) and is equal to the complex dilatation of ψf on the rest of C. Let φ : C → C

be a quasiconformal mapping with dilatation µf , as provided by the measurable Riemann
mapping theorem. Then

P (z) =

{
φ ◦ f ◦ φ−1(z) z ∈ φ(D),

φ ◦ ψ−1
f ◦ S ◦ ψf ◦ φ−1(z) otherwise,

is a quadratic polynomial, hybrid equivalent to f ; so P (z) is conformally conjugate to z2+c
where c = I(f).

Now letW be a bounded open set withD ⊂W ⊂W ⊂ U , and let Λ be the space of holo-
morphic maps g : W → C such that
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|g(z) − f(z)| < ǫ throughout W . Note that Λ is an infinite-dimensional complex mani-
fold, in fact an open domain in a complex Banach space. Choosing ǫ sufficiently small, we
may assume each g admits a quadratic-like restriction g : Dg → D, where Dg = g−1(D).
Let Λconn ⊂ Λ denote the set of g such that K(g|Dg) is connected. Any map h in Poly2
sufficiently close to f agrees with some g ∈ Λconn on W . The straightening procedure just
described can be carried out for all mappings g in Λconn.

Here are two basic features of the construction. Suppose gn → g∞ in the family Λconn,
I(gn) = cn and I(g∞) = c∞. Then:

(a) the polynomial z2 + c∞ is quasiconformally conjugate to z2 + c for any
accumulation point c of cn; and

(b) if the indicator function of K(gn) converges to that of K(g∞) in L1(C), then
cn → c∞.

Feature (a) follows from compactness properties of quasiconformal maps. The hypothesis of
(b) implies µgn can be chosen to converge in measure to µg∞ , which implies the correspond-
ing solutions to the Beltrami equation converge as well, and thus I(gn) → I(g∞). These
principles generalize to polynomials of any degree.

We will now show gn → g∞ implies cn → c∞, using a property special to degree two: a
quadratic polynomial with an indifferent cycle is quasiconformally rigid.

Let I ⊂ Λconn denote the set of g with an indifferent periodic cycle, and let Λstable =
Λ − I. Then K(g) moves by a holomorphic motion over Λstable ([MSS], [Mc4, §4]). Thus
the indicator function of K(g) varies continuously in L1(C) (using absolute continuity of
quasiconformal maps). So by (b) above, cn → c∞ when g∞ 6∈ I.

Now suppose gn → g∞ ∈ I. Then g∞ = lim hn where hn has an indifferent cycle.
Therefore I(hn) lies in the boundary of the Mandelbrot set, so the same is true of any
accumulation point c′ of I(hn). But then z2+ c′ is quasiconformally rigid, so by (a) we have
c′ = c∞. Similarly (a) implies c = c∞ for any accumulation point c of cn, completing the
proof of continuity of I : Λconn →M .

Since Λconn accounts for a neighborhood of f in Poly2, we have established continuity
of the inner class on Poly2.

Remark. One can define an inner class on Polyd, but it is not continuous for d ≥ 3 [DH].

4.4 Improving polynomial-like maps

As we have seen in the preceding section, it is often beneficial to tame a polynomial-
like map by restricting it. This section presents a general construction which results in a
restriction with several convenient properties.
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The proof depends on basic facts that will also be used frequently in the sequel.

Proposition 4.8 (Modulus of a neighborhood) Let X ⊂ C be a connected set of di-
ameter 1; then:

1. For any ǫ > 0, X is surrounded by an annulus of modulus at least m(ǫ) > 0 contained
in an ǫ-neighborhood of X.

2. Any open set U ⊃ X with mod(U,X) ≥ m > 0 contains an ǫ(m)-neighborhood of X,
where ǫ(m) > 0.

Proof. (1) We may assume ǫ < 1. Let N be the complement of X in an ǫ-neighborhood of
X. The outer boundary γ ⊂ N of an ǫ/2-neighborhood of X has Euclidean length O(1/ǫ).
The hyperbolic metric on N is comparable to |dz|/d(z, ∂N), so the hyperbolic length of γ is
O(1/ǫ2). A standard collar neighborhood of the geodesic representative of γ in N provides
the requisite annulus (cf. [Mc4, Thm. 2.19]).

(2) Suppose x1 ∈ X and z ∈ C − U . Choose x2 ∈ X such that |x1 − x2| ≥ 1. Then
the hyperbolic length of a simple loop in Ĉ−{x1, x2, z,∞} separating {x1, x2} from {z,∞}
tends to infinity as the cross-ratio |z − x1|/|x1 − x2| tends to zero; but it is bounded above
in terms of m = mod(U,X). Thus |z − x1| ≥ ǫ(m) > 0.

Here is a slight modification of [Mc4, Thm. 2.25]:

Proposition 4.9 (Inclusion contraction) Let ι : X →֒ Y be an inclusion of one hyper-
bolic Riemann surface into another, and let s = d(x, Y − X). Then with respect to the
hyperbolic metrics on X and Y ,

‖ι′(x)‖ < C(s) < 1,

where C(s) decreases to zero as s→ 0.

Proof. By passing to universal coverings and applying the Schwarz lemma, we can reduce
to the extremal case Y = ∆, X = ∆∗ = ∆ − {0}, x > 0 and s = d(0, x) in the hyperbolic
metric on the unit disk ∆. Thus we may take

C(s) =
ρ∆(x)

ρ∆∗(x)
=

2|x log x|
1− x2

< 1,

where ρ∆ and ρ∆∗ denote the hyperbolic metrics on the disk and punctured disk. As
s decreases to zero, so does x, and so does the right-hand expression above; thus C(s)
decreases to zero as well.
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Proposition 4.10 (Improving polynomial-like maps) Let
f : U → V be a polynomial-like map of degree d with a connected Julia set of diameter
1. Suppose V contains an ǫ-neighborhood of K(f). Then there is a restriction f : U ′ → V ′

which is also polynomial-like of degree d, and such that:

1. mod(U ′, V ′) ≥ m > 0;

2. U ′ and V ′ are K-quasidisks; and

3. diam(V ′) ≤ C diamK(f).

Here m, K and C depend only on (d, ǫ).

Remark. By Proposition 4.8, V contains an ǫ-neighborhood of K(f) where ǫ > 0 is
determined by mod(U, V ). Thus the same result holds where m, K and C depend only on
d and mod(U, V ).

Proof. We will give a concrete construction of U ′ and V ′. In the course of the proof, all
constants will depend only on ǫ and d.

It suffices to prove the Proposition when mod(K(f), V ) is bounded above. Indeed, there
is a constant M such that mod(K(f), V ) ≥ M implies V contains an ǫ-neighborhood of
K(f). So if mod(K(f), V ) ≥ dM , we can replace V with U and U with f−1(U), and the hy-
potheses will still be satisfied, because mod(K(f), U) = (1/d)mod(K(f), V ). After iterating
this process a finite number of times we obtain
mod(K(f), V ) < dM .

Consider next the hyperbolic Riemann surfaces U0 ⊂ V0 obtained by doubling U−K(f)
and V − K(f) across their ends corresponding to K(f). Then U0 and V0 are annuli with
the same core geodesic γ (which parameterizes the prime ends of K(f)), and f |(U −K(f))
extends to a symmetric mapping F : U0 → V0 sending γ to itself (see Figure 4.2).

U0V0

γ

F

Figure 4.2. Double of a polynomial-like map.
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Now impose the hyperbolic metric on V0. Since mod(V0) = 2mod(K(f), V ) is bounded
above and below, the hyperbolic length of γ is also bounded above and below. Thus there is
a constant R such that the collar of radius R about γ has modulus at least (3/4)mod(V0).
Since mod(U0) = mod(V0)/d ≤ mod(V0)/2, we have d(γ, V0 − U0) < R. Thus ‖F ′(z)‖ >
λ > 1 for all points z ∈ U0 within distance 1 of γ, and some constant λ. (Indeed, F is
an isometry from the hyperbolic metric on U0 to the hyperbolic metric on V0, and the
contraction of the inclusion U0 →֒ V0 at z is bounded in terms of the distance from z to
(V0 − U0) by the preceding Proposition.)

Let V ′
0 ⊂ V0 be a unit collar neighborhood of γ, and let U ′

0 = F−1(V ′
0). Then U ′

0 is
contained in a 1/λ-neighborhood of γ, so the two annuli formed by {z : d(z, γ) ∈ [1, 1/λ]}
surround U ′

0 in V ′
0 . These annuli have definite moduli since the length of γ is bounded

above. Thus U ′ = (U ′
0∩U)∪K(f) and V ′ = (V ′

0 ∩V )∪K(f) provide the domain and range
of a polynomial-like restriction of f with definite modulus.

To check the quasidisk condition, we use the fact for any annulus A ⊂ C, the core curve
of A is a K(m)-quasicircle, where m = mod(A). Since the length of γ is bounded above,
there is an annulus A ⊂ V0 − γ of definite modulus invariant under the circular symmetry
of V0 and with ∂V ′ as its core curve. Then A ⊂ V ⊂ C, so we have established the
quasidisk condition for V ′; since ∂U ′ is the core curve of f−1(A), U ′ is also a K-quasidisk
with controlled K.

To obtain the diameter bound, first recall our preliminary normalization to ensure that
mod(K(f), V ) is bounded above. This implies the diameter of K(f) is bounded below in
the hyperbolic metric on V . On the other hand, mod(V ′, V ) is bounded below, since A ⊂ V ,
so diamV ′ ≤ C ′ diamK(f) in the hyperbolic metric on V . A bound of the same form for
the Euclidean metric follows from the Koebe distortion theorem.

4.5 Fixed points of quadratic maps

A quadratic polynomial has two fixed points, counted with multiplicity. These points
can be labeled in a natural way when the Julia set is connected. This labeling extends to
quadratic-like maps, as discussed in this section.

Let f(z) = z2 + c be a quadratic polynomial with connected Julia set. Let

ψ : (C−∆) → (C −K(f))

be the Riemann mapping, normalized so ψ(z)/z → 1 at infinity.
An external ray Rt is the image under ψ of the ray (1,∞) exp(2πit). The external ray

R0 lands at a fixed point of f which we denote β(f). The other fixed point of f is denoted
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α(f). When c = 1/4 we have α(f) = β(f) and the fixed point is parabolic; otherwise
α(f) 6= β(f) and β(f) is repelling (cf. [Mc4, §6]).

Proposition 4.11 Let f(z) = z2 + c be a quadratic polynomial with connected Julia set,
and let p be a fixed point of f . Suppose there is a closed arc γ ⊂ C with one endpoint at p,
such that γ ⊂ f(γ) and γ ∩K(f) = {p}. Then p = β(f).

Conversely, there exists such an arc in any neighborhood of β(f).

Proof. Consider ψ−1(γ); by Lindelöf’s theorem, this arc terminates at a point q ∈ S1, and
since f(γ) ⊃ γ we have q2 = q. It follows that q = 1 and thus p is the landing point of the
external ray R0, so p = β(f).

For the converse, let γ be the tail of R0.

For a quadratic-like map f ∈ Poly2, we define α(f) and β(f) to be the fixed points of f
corresponding to the α and β fixed points of z2 + c, where c = I(f). By the result above,
β(f) is topologically distinguished from α(f).

Proposition 4.12 The fixed points α(f) and β(f) are continuous functions of f ∈ Poly2.

Proof. If p = β(f) is parabolic then α(f) = β(f) and p is a fixed point of multiplicity two.
Thus both fixed points of g lie close to p when g is close to f , establishing continuity.

Otherwise β(f) is repelling, and by transversality any g near f has fixed points near
α(f) and β(f); we need only show that the fixed point near p = β(f) is labeled β(g).

There is a branch of f−1 fixing p and mapping a small ball B centered at p strictly inside
itself. An invariant arc γ touching p from outside K(f) can be described as the closure of
a sequence of arcs

δ ∪ f−1(δ) ∪ f−2(δ) ∪ . . .
matched end-to-end by f−1 and converging to p, where δ is a closed arc contained in B and
disjoint from K(f).

Since K(f) varies upper-semicontinuously, δ is outside K(g) for g close to f , and a
suitable branch of g−1 still maps B strictly inside itself. A small modification δ′ of δ (so
the endpoints still match) permits one to construct an invariant arc

δ′ ∪ g−1(δ′) ∪ g−2(δ′) ∪ . . .

tending to a fixed point q of g near p. Thus q = β(g) by the arc characterization of the β
fixed point.
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Here is another viewpoint on the proof above. Given a repelling fixed point p for f ,
transversality gives a nearby repelling fixed point pg for all g in a neighborhood U of f in
Poly2. Form a bundle of complex tori

Tg = (B − {pg})/(z ∼ g(z))

over U , where B is a small ball about p; this is the quotient space for the repelling dynamics
near p. Since K(g) is g-invariant, it descends to a compact subset Kg ⊂ Tg.

There is a distinguished isotopy class of simple closed curve ξg on Tg which lifts to a
simple closed curve around pg. We can now reformulate our characterization of the β fixed
point as follows: pg = β(g) if and only if there is a simple closed curve γg ⊂ Tg −Kg having
intersection number 1 with ξg.

If pf = β(f), we can find such a curve γf , and then transport it by local triviality
to a curve γg in the nearby fibers. For g near f , it remains disjoint from Kg by upper
semicontinuity of the filled Julia set, and its intersection number with ξg remains 1. Thus
pg = β(g) for all g near f , establishing continuity of β(g).

4.6 Renormalization

Let f : (U, u) → (V, v) belong to Poly2, and let c be the critical point of f . We say fn

is renormalizable if there exist open disks Un ⊂ Vn ⊂ C such that c ∈ Un and

fn : Un → Vn

is a quadratic-like map with connected Julia set. Then fn : (Un, c) → (Vn, f(c)) also belongs
to Poly2.

The choice of Un and Vn is a renormalization of fn. The Julia set and postcritical set
of fn : Un → Vn will be denoted Jn(f) and Pn(f) respectively; they do not depend on the
particular choice of Un and Vn.

1

The small Julia sets at level n are defined by

Jn(i) = f i(Jn(f)), i = 1, 2, . . . , n.

Let Vn(i) = f i(Un) and let Un(i) be the component of f i−n(Un) contained in Vn(i); then

fn : Un(i) → Vn(i), i = 1, 2, . . . , n

are quadratic-like maps with Julia sets Jn(i). As i varies, the maps so defined are all
conformally conjugate.

1It is also common to refer to fn : Un → Vn, if it exists, as the nth renormalization of f .
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The small filled Julia sets Kn and Kn(i) are defined similarly. The small postcritical
sets are defined by Pn(i) = P (f) ∩Kn(i); their union is P (f).

When necessary we will denote the dependence of these sets on f by Jn(f), Jn(i, f) etc.

Example. The first frame of Figure 4.3 depicts the filled Julia set of f(z) = z2 + c where
c ≈ −1.13000 + 0.24033i; the critical point of this mapping has period six. The second
frame illustrates the domain, range and filled Julia set of a renormalization f2 : U2 → V2.
The renormalized map is hybrid equivalent to “Douady’s rabbit”, with inner class c ≈
−0.22561 + 0.744862i.

Figure 4.3. Renormalization.

The next result shows that the small Julia sets are not too small.

Proposition 4.13 Let fn be renormalizable, where f : U → V is in Poly2(m). Then for
1 ≤ i ≤ n, we have

1 ≥ diam Jn(i)

diamJ(f)
≥ C(m,n) > 0.

Proof. First suppose f(z) = z2 + c. Let B(0, r) be the smallest ball containing Jn. Then
f(Jn) ⊂ B(c, r2). Since f i(Jn) ⊂ J(f) ⊂ B(0, 2), and |f ′(z)| = 2|z|, we can make the
estimate

2r = diam Jn = diam fn(Jn) ≤ 2 · 10nr2;
thus r ≥ 10−n and diam Jn/diam J(f) > 10−n. A similar bound holds for Jn(i).

To treat the case of polynomial-like maps f ∈ Poly2(m), apply Proposition 4.6 and the
distortion theorems for quasiconformal mappings.
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4.7 Simple renormalization

We now recall the notion of simple renormalization. If two distinct small Julia sets
Jn(i) and Jn(j) meet, they do so at a repelling fixed point p of fn. This fixed point
can be classified as type α or β depending on whether it is the α or β fixed point of
fn : Un(i) → Vn(i). It is known that all intersections are of the same type. Accordingly, we
classify the renormalization of fn as:

α-type, if the small Julia sets meet at their α-fixed points;

β-type, if they meet at their β-fixed points; and

disjoint type, if the small Julia sets are disjoint.

Definition. A renormalization is simple if it is of disjoint type or β-type. Equivalently,
simple means that Kn(i)−Kn(j) is connected for any i 6= j (cf. [Mc4, §7]).

We let

R(f) = {n ≥ 1 : fn is renormalizable}, and
SR(f) = {n ≥ 1 : fn is simply renormalizable}.

All renormalizations of real quadratic polynomials are simple, as are the usual renor-
malizations constructed with the Yoccoz puzzle (mapping a single puzzle piece over itself).
If fa and f b are both simply renormalizable, and a < b, then a divides b, Jb ⊂ Ja and for a
suitable choice of Ub, f

b|Ub is a renormalization of fa|Ua. (These properties are not true in
general without the assumption of simplicity.)

We will be concerned exclusively with simple renormalizations in the sequel.

4.8 Infinite renormalization

A mapping f : (U, u) → (V, v) in Poly2 is infinitely renormalizable if SR(f) is infinite.
(This is equivalent to the condition that R(f) is infinite [Mc4, Theorem 8.4].)

Let mod(f, n) be the supremum of mod(Un, Vn) over all simple renormalizations of fn.
We set mod(f, n) = 0 if fn is not renormalizable, and mod(f, 1) = ∞ if f is a polynomial.

For n > 1 such that fn is renormalizable, the quantity mod(f, n) is positive and finite,
and there exists a renormalization fn : Un → Vn with mod(Un, Vn) = mod(f, n).

Proposition 4.14 Let f be infinitely renormalizable, and suppose

lim sup
n∈SR(f)

mod(f, n) > 0.

Then the diameters of the small Julia sets of f tend to zero; that is, sup1≤i≤n diam Jn(i) → 0
as n→ ∞ in SR(f).
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Proof. By assumption, there is an m0 > 0 such that mod(f, n) ≥ m0 for infinitely many
n. By Proposition 4.10 (and the Remark following), for each such n we can choose a
renormalization such that mod(Un, Vn) ≥ m > 0, diamVn ≤ C diam Jn(f), and Un and Vn
are K-quasidisks. Here m, C and K depend only on m0.

Thus we have Vn ⊂ B(c,R), where c is the critical point of f and R = C diam J(f) is
independent of n. Consequently Un ⊂ f−n(B(c,R)). But the sets f−n(B(c,R)) nest down
to the filled Julia set K(f), and since f is infinitely renormalizable, the filled Julia set is
nowhere dense (that is, K(f) = J(f)). Thus the radius of the largest round ball contained
in Un tends to zero as n tends to infinity. But the diameter of a K-quasidisk is bounded in
terms of the diameter of the largest ball it contains, so diamUn → 0.

This shows diam Jn → 0 as n → ∞ along the subsequence where mod(f, n) ≥ m0.
Similar reasoning shows supi diam Jn(i) also tends to zero along this subsequence. But
supi Jn(i) is a decreasing function of n ∈ SR(f) (since the Julia sets at high levels nest
inside those at lower levels), so supi Jn(i) → 0 along the full sequence of n ∈ SR(f).

Under the same hypotheses, one may further establish that J(f) is locally connected at
the critical point of f . Compare [JH], [Ji].

Proposition 4.15 Suppose fk → f in Poly2, and for each k, fnk is simply renormalizable
and mod(fk, n) ≥ m > 0. Then:

1. fn is simply renormalizable;

2. mod(f, n) ≥ m;

3. lim supkKn(fk) ⊂ Kn(f); and

4. Jn(f) ⊂ lim infk Jn(fk).

Proof. We have diam J(f) = lim diam J(fk), so diam J(fk) is bounded above and below;
thus diam Jn(fk) is also bounded above and below, by Proposition 4.13.

Let ck and c denote the critical points of fk and f ; then ck → c. Choose renormalizations

fnk : Ukn → V k
n

with fnk : (Ukn , ck) → C in Poly2(m). By Proposition 4.3, we can pass to a convergent
subsequence, and obtain in the limit a renormalization fn : (Un, c) → C in Poly2(m).

Recall that the Julia set Jn(f) is independent of the choice of renormalization. Thus
J(fn|Un) is the same for any limit of the sequence fnk : (Ukn , ck) → C. So from lower
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semicontinuity of J(·) as a function on Poly2, we obtain Jn(f) ⊂ lim inf Jn(fk). A similar
argument gives upper semicontinuity of Kn(fk).

Finally we check that the renormalization of fn is simple. If not, then two small Julia
sets Jn(i, f) and Jn(j, f) meet at single point p, a repelling fixed point of fn which is also
the α fixed point of both small Julia sets. By continuity of α(f) on Poly2, the α fixed
points of Jn(i, fk) and Jn(j, fk) both converge to p as k → ∞. But since p is repelling,
it is a fixed point of multiplicity one, and so fnk has only one fixed point near p for all k
sufficiently large. Thus the α fixed points of Jn(i, fk) and Jn(j, fk) coincide for large k, and
these renormalizations are not simple either.



5 Towers

We now broaden our scope and consider towers of quadratic-like maps compatible under
renormalization. These towers arise naturally as geometric limits of infinitely renormalizable
quadratic polynomials. (This statement is made precise in §9.4.)

5.1 Definition and basic properties

A level set S ⊂ Q+ is a collection of positive rational numbers containing 1, such that
for any pair s < t in S, t/s is an integer.

A tower T is a collection of quadratic-like maps

〈fs : Us → Vs; s ∈ S〉
such that:

1. S is a level set;

2. the critical point of each fs(z) is at z = 0;

3. the filled Julia set K(fs) is connected; and

4. for any levels s, t with n = t/s > 1, the map fns is simply renormalizable, K(ft) =
Kn(fs), and f

n
s = ft on K(ft).

Two examples.
A. Let f ∈ Poly2 be infinitely renormalizable. Let S = SR(f), and let fs = f s : Us → Vs

be a renormalization of f s. Then T = 〈fs; s ∈ S〉 is a tower.
B. Suppose f : U → V is a quadratic-like fixed point of renormalization, meaning there

is a p > 1 and an α ∈ C∗ such that

f(z) = αfp(α−1z)

for all z ∈ K(f). Let S = {pn : n ∈ Z}, and let fpn = α−nfαn. Then T = 〈fs; s ∈ S〉
is also a tower.

In example (A), Vs ⊂ V1 for all s. However, even in this example one does not generally
have Vt ⊂ Vs for all t > s; we have not required any nesting condition in our definition of
the renormalizations of a quadratic polynomial. Condition (4) in the definition of a tower is
formulated to allow for this greater flexibility; we do not required that Vt ⊂ Vs when t > s,
even when s = 1. In example (B) there may be no relation between Vs and Vt.

The following Proposition allows nesting to be recovered after a controlled loss of mod-
ulus.

81
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Proposition 5.1 Given levels s < t, let U and V be the components of Us ∩Ut and Vs ∩Vt
containing K(ft). Then ft = f

t/s
s on U and the restriction ft : U → V is a simple

renormalization of f
t/s
s .

There is a further restriction ft : U
′ → V ′ which also satisfies mod(U ′, V ′) ≥ m′ > 0,

where m′ depends only on a lower bound for mod(Us, Vs) and mod(Ut, Vt).

Proof. Since ft = f
t/s
s on K(ft), this equality holds throughout U . The restriction

ft : U → V is proper because ft and f
t/s
s are proper maps. Since K(ft) ⊂ U , the restricted

map is still quadratic-like, and its filled Julia set is unchanged. By the definition of towers,

K(ft) = Kt/s(fs), so the restriction is a simple renormalization of f
t/s
s .

A lower boundm on mod(Us, Vs) and mod(Ut, Vt) guarantees that both Vs and Vt contain
an ǫ(m)·diam(K(ft)) neighborhood of K(ft), so the same is true of V . Then by Proposition
4.10, there is a further restriction ft : U

′ → V ′ with mod(U ′, V ′) ≥ m′(ǫ(m)) > 0.

We topologize the space Tow of all towers as follows. First, a sequence of level sets Sk
converges to S if the indicator function of Sk ⊂ Q+ converges pointwise to S. In other
words:

1. S contains all s which belong to Sk for infinitely many k, and

2. every s ∈ S belongs to all but finitely many Sk.

Then a sequence

Tk = 〈fs,k : Us,k → Vs,k; s ∈ Sk〉

converges to T = 〈fs : Us → Vs; s ∈ S〉 if in addition:

3. for each s ∈ S and for all k sufficiently large, fs,k : (Us,k, 0) → C converges
to fs : (Us, 0) → C in the Carathéodory topology.

Conjugating all the maps in a tower by the change of coordinates z 7→ αz determines
another tower; thus we have an action of C∗ on Tow. (Note that the full group Aut(C) does
not act, because the critical point of each fs must remain at z = 0.)

Definite moduli. A tower has definite moduli if inf mod(Us, Vs) > 0. Let Tow(m) denote
the space of all towers such that mod(Us, Vs) ≥ m for all s ∈ S.

Proposition 5.2 The space Tow(m)/C∗ is compact. More precisely, any sequence Tk in
Tow(m) normalized so that diam J(f1,k) = 1 has a convergent subsequence.
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Proof. It is easy to see the space of level sets is compact, so after passing to a subsequence
we can arrange that Sk → S. By assumption, for each s ∈ S the maps fs,k (defined for k
sufficiently large) all lie in Poly2(m). Since Poly2(m)/Aut(C) is compact, and the diameter
of J(f1,k) is normalized to be 1, we obtain convergence of f1,k after passing to a further
subsequence. But by Proposition 4.13, the diameter of J(f1,k) controls the diameter of
J(fs,k), so after passing to a further subsequence we may assume fs,k converges to a map
fs : (Us, 0) → C in Poly2(m), for all s ∈ S.

Now consider levels t and s in S with n = t/s > 1. By Proposition 5.1, mod(fs,k, n) ≥
m′ > 0 for all k. Thus fns is also renormalizable, and the remaining properties required for
a tower follow from Proposition 4.15.

5.2 Infinitely renormalizable towers

The space Lev of all level sets S forms a Cantor set in the topology introduced above,
and the natural map Tow → Lev is continuous. When t is a level of T = 〈fs; s ∈ S〉, we
define T shifted by t as the tower T ′ = 〈gs; s ∈ S′〉, where S′ = {s/t : s ∈ S} and gs = fts.
After shifting by t, ft becomes g1. Shifting by t is continuous on the closed and open subset
of Tow where it is defined.

A tower T = 〈fs; s ∈ S〉 is renormalizable if it has a level s with s > 1. Its renormal-
ization is T shifted by the least level s > 1. We say T is infinitely renormalizable if this
process can be repeated indefinitely; equivalently, if supS = ∞. Clearly if T is infinitely
renormalizable then fs is infinitely renormalizable for every s ∈ S.

Let Tow∞(m) denote the space of all towers with supS = ∞ and mod(Us, Vs) ≥ m for
all s ∈ S.

Proposition 5.3 Both J(f1) and P (f1) are continuous functions on Tow∞(m).

Proof. Since f1 is infinitely renormalizable, J(f1) = K(f1). Then continuity of J(f1)
follows from upper and lower semicontinuity of K(f) and J(f) for f ∈ Poly2.

Now suppose Tk → T in Tow∞(m); passing to a subsequence, we can assume P (f1,k) →
Q in the Hausdorff topology, for some compact set Q. It is easy to see that Q ⊃ P (f1). To
complete the proof we will show Q ⊂ P (f1).

By Proposition 5.1, mod(f1, s) ≥ m′(m) > 0 for all s ∈ S with s > 1. Thus f1 is
infinitely renormalizable, with definite moduli at infinitely many levels. By Proposition
4.14, the diameters of the small Julia sets Js(i, f1) tend to zero as s → ∞. Given ǫ > 0,
choose s ∈ S such that diam Js(i, f1) < ǫ for i = 1, . . . , s.
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The small Julia sets at level s vary continuously, and cover the postcritical set; this
implies Q is contained in a small neighborhood of P (f1). More precisely, for all k large
enough, s belongs to Sk and

P (f1,k) ⊂ Js(1, f1,k) ∪ . . . ∪ Js(s, f1,k).

We have Js(i, f1,k) → Js(i, f1) for each i, so for k large enough, P (f1,k) is within an ǫ-
neighborhood of the union of the small Julia sets at level s for f1. But each Js(i, f1)
contains a point in the postcritical set P (f1), and has diameter less than ǫ, so the union
of the small Julia sets at level s for f1 lies within an ǫ-neighborhood of P (f1). Thus Q is
within 2ǫ of P (f1); since ǫ was arbitrary, Q ⊂ P (f1) and we are done.

Corollary 5.4 If s is in the level set of a tower T ∈ Tow∞(m), then J(fs) and P (fs) are
defined and continuous on a neighborhood of T in Tow∞(m).

Proof. That s is in the level set of nearby towers follows from the definition of the
topology on Tow. The Corollary follows from the preceding result by shifting the level set
so fs becomes f1.

Remark. The postcritical set P (fc) is only lower semicontinuous on the space of all
quadratic polynomials. For example, the postcritical set of f(z) = z2 − 2 consists of the 2
points {−2, 2}, but there are polynomials fk(z) = z2 − ck, ck → 2, such that P (fk) is the
full interval [−ck, ck].

5.3 Bounded combinatorics

Two distinct levels s and t of a tower are adjacent if there is no level between s and t.
A tower has bounded combinatorics, bounded by B, if t/s ≤ B for all adjacent levels t > s.
Let Tow∞(m,B) ⊂ Tow∞(m) denote the space of all infinitely renormalizable towers with
mod(Us, Vs) ≥ m and with combinatorics bounded by B.

Theorem 5.5 The space Tow∞(m,B)/C∗ is compact.

Proof. This is immediate from compactness of Tow(m)/C∗ and compactness of the levels
sets with supS = ∞ and combinatorics bounded by B.
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Note that Tow∞(m)/C∗ itself is not compact; for example, a sequence of infinite level
sets Sk can converge to the trivial level set S = {1}.

The combination of compactness and continuity leads to bounds.

Proposition 5.6 Let T be a tower in Tow∞(m,B), and let n be the least level of T greater
than 1. Then there is definite space between the Julia set J(fn) and the part of the postcritical
set P (f1) it does not contain; that is,

d(J(fn), P (f1)− P (fn))

diam J(fn)
≥ ǫ(m,B) > 0.

Proof. Since f1 is infinitely renormalizable, the postcritical set P (f1) can be written as
the disjoint union

P (f1) = P (fn) ∪ f1(P (fn)) ∪ . . . fn−1
1 (P (fn)),

where P (fn) ⊂ J(fn) and the remaining sets are disjoint from J(fn) [Mc4, Thm. 8.1]. Thus
the ratio above is positive for any given tower T . The numerator can be expressed as the
minimum of
d(J(fn), f

i
1(P (fn))) over i = 1, . . . , n; since J(fn) and P (fn) vary continuously in the

Hausdorff topology, the numerator varies continuously at T . The same is true of the de-
nominator, so the ratio is bounded away from zero on a neighborhood of T . Compactness
of Tow∞(m,B)/C∗ then implies a lower bound valid for all T .

We can immediately generalize this bound:

Proposition 5.7 For any pair of levels s < t for T in Tow∞(m,B), we have

d(J(ft), P (fs)− P (ft))

diam J(ft)
≥ ǫ(m,B) > 0.

Proof. Write the levels between s and t as s = s0 < s1 < . . . sn = t. By the preceding
result and the shift invariance of Tow∞(m,B), there is an ǫ(m,B) > 0 such that Wi ∩
P (fsi−1

) = P (fsi), where Wi is an ǫ(m,B) · diam(J(fsi))-neighborhood of J(fsi). Clearly
W1 ⊃W2 ⊃ . . .Wn, and therefore Wn ∩ P (fs) = P (ft).
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5.4 Robustness and inner rigidity

We now deduce some rigidity results about the mappings occurring in towers with
bounded combinatorics and definite moduli.

Let f : U → V be infinitely renormalizable, and consider the Riemann surface V −P (f)
in its hyperbolic metric. For each n ∈ SR(f), n > 1, let γn(f) denote the unique simple
closed geodesic which is homotopic to a curve separating Jn(f) from P (f)− Jn(f). We say
f is robust if

lim inf
n∈SR(f),n>1

ℓ(γn(f)) <∞,

where ℓ(·) denotes length in the hyperbolic metric on V − P (f). Compare [Mc4, §9].

Theorem 5.8 (Robust rigidity) If f is robust then the Julia set of f carries no invariant
measurable line field.

Proof. If f is robust then there is an annulus of definite modulus in the isotopy class
of γn(f) on V − P (f), for infinitely many n ∈ SR(f). Moreover, a quasiconformal map
distorts the modulus of an annulus by at most a bounded factor. Therefore the quadratic
polynomial g(z) = z2 + c to which f is hybrid equivalent is also robust. By the main result
of [Mc4], this robustness implies J(g) carries no invariant line field. The latter property is
also invariant under quasiconformal conjugacy, so J(f) carries no invariant line field.

Proposition 5.9 (Bounded lengths) For any level s > 1 of a tower T in Tow∞(m,B),
we have

ℓ(γs(f1)) ≤ L(m,B)

where ℓ(·) denotes hyperbolic length on V1 − P (f1).

Proof. By Proposition 5.7, there is an ǫ(m,B) such that for all s > 1, Ws∩P (f1) = P (fs),
where Ws is an ǫ · diam(J(fs))-neighborhood of J(fs). Now there is an annulus of modulus
m in V1 surrounding J1, so by choosing ǫ still smaller if necessary (in terms of m) we can
also assure that Ws ⊂ V1 for all s > 1. By Proposition 4.8, there is an annulus of modulus
at least m(ǫ) > 0 surrounding J(fs) and lying in Ws. The core curve of this annulus is
isotopic in V1 − P (f1) to γs(f1), so by the Schwarz lemma ℓ(γs(f1)) is bounded above in
terms of m and B.
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Corollary 5.10 (Inner rigidity) For any level s of a tower T in Tow∞(m,B), the map-
ping fs is robust and therefore carries no invariant line field on its Julia set.

Proof. By shift invariance, it suffices to prove the case s = 1, and this is contained in the
preceding Proposition.

Remarks. One can also give a lower bound on ℓ(γs(f1)); this point will be pursued further
in §8.1. We will give a self-contained proof of the rigidity Corollary above in §8.3.

Next we check that diam(Js) decreases at a definite rate as s→ ∞.

Corollary 5.11 There is an N(m,B) such that for any tower T in Tow∞(m,B) and any
pair of levels s, t with t/s ≥ N(m,B), we have

diam(J(ft))

diam(J(fs))
≤ 1

2
.

Proof. It suffices to prove the claim for s = 1 by shift invariance. Consider any tower
T in Tow∞(m,B). Since f1 is robust, diamP (ft) → 0 as t → ∞ (compare [Mc4, Thm.
9.4]). But we have diam J(ft) ≤ C(m) diamP (ft) as an easy consequence of compact-
ness of Poly2(m) [Mc4, Cor 5.10], so diam J(ft) → 0. Thus there exists an N such that
diam J(ft)/diam J(f1) ≤ 1/4 for all t ≥ N ; and by continuity of J(f1) and J(ft), the ratio
is less than 1/2 on a neighborhood of T . Thus we may choose N independent of T by
compactness of Tow∞(m,B)/C∗.

Definition. The full postcritical set P (T ) of a tower T is given by

P (T ) =
⋃

s∈S
P (fs).

Corollary 5.12 For any T in Tow∞(m,B), the full postcritical set P (T ) is closed, as is
P (T )− P (fs) for any s ∈ S.

The sets P (T ) and (P (T )−P (fs)) vary continuously with respect to T in the Hausdorff
topology on closed subsets of C.
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Proof. If inf S = t is positive then P (T ) = P (ft) and the Corollary follows easily.
Otherwise, as t → 0, P (ft) is an increasing sequence of compact sets; to verify that

P (T ) and P (T )− P (fs) are closed, we need only check that d(P (ft), P (fu)− P (ft)) → ∞
for adjacent levels u < t. But this distance is bounded below by d(J(ft), P (fu) − P (ft)),
which in turn is bounded below by ǫ(m,B) · diam J(ft). Since diam J(ft) → ∞, these sets
are indeed closed.

Similarly, continuity follows from continuity of P (ft) for each t and the fact that P (fu)−
P (ft) is near ∞ for adjacent levels u < t with t near zero.

5.5 Unbranched renormalizations

A renormalization fn : Un → Vn of an iterate of f ∈ Poly2 is unbranched if Vn ∩P (f) =
Pn(f). Similarly, a tower T is unbranched if Vs ∩ P (T ) = P (fs) for all s ∈ S.

A tower T ′ = 〈gs; s ∈ S′〉 is a restriction of a tower T = 〈fs; s ∈ S〉 if S′ ⊂ S and gs is
a restriction of fs for each s ∈ S′. Then T ′ is a subtower of T . (Note: since each restricted
map gs is still quadratic-like, we have J(gs) = J(fs) and P (gs) = P (fs); compare [Mc4,
Thm. 5.11].)

Proposition 5.13 Any tower T in Tow∞(m,B) can be restricted to an unbranched tower
T ′ in Tow∞(m′, B) with S′ = S, where m′ > 0 depends only on (m,B).

Proof. Let T be a tower in Tow∞(m,B). For n large enough, V ′
1 = f−n1 (V1) is close to

J(f1), so it is a definite distance from
P (T )− P (f1). Then f1 : U

′
1 → V ′

1 is an unbranched restriction of f1, where U
′
1 = f−1

1 (V ′
1).

By continuity of P (T )−P (f1), we have V ′
1 ∩P (T ′) = P (g1) for all towers T ′ = 〈gs; s ∈ S′〉

near enough to T . Thus we can use the same V ′
1 to construct unbranched renormaliza-

tions of g1 with definite moduli for all towers T ′ sufficiently close to T . By compactness of
Tow∞(m,B)/C∗, we find there is an m′(m,B) > 0 such that f1 can always be restricted
to an unbranched mapping of modulus at least m′. The same holds true for every level by
shift invariance.



6 Rigidity of towers

Let T = 〈fs : Us → Vs; s ∈ S〉 and T ′ = 〈gs : U ′
s → V ′

s ; s ∈ S〉 be a pair of towers with
the same level set S. A conjugacy φ between T and T ′ is a bijection

φ :
⋃
Vs →

⋃
V ′
s

such that
φ ◦ fs = gs ◦ φ

for all s ∈ S. A conjugacy may be conformal, quasiconformal, smooth, etc. according to
the quality of φ.

A tower T is quasiconformally rigid if any quasiconformal conjugacy φ from T to another
tower T ′ is conformal.

Here are two equivalent formulations of quasiconformal rigidity which make no reference
to T ′. An L∞ Beltrami differential µ = µ(z)dz/dz on

⋃
Vs is T -invariant if f∗s (µ) = µ|Us

for all s ∈ S. Then we may assert:

A tower T is quasiconformally rigid if and only if any T -invariant Beltrami
differential is zero (a.e. ).

(By the measurable Riemann mapping theorem, invariant Beltrami differentials with ‖µ‖ <
1 correspond bijectively to pairs (φ,T ′) modulo conformal conjugacy; compare [McS].)

By replacing µ with µ/|µ| on the set where µ 6= 0, it is clear that:

T is quasiconformally rigid if and only if T admits no invariant line field.

A tower with level set S is bi-infinite if inf S = 0 and supS = ∞. Let Tow∞
0 (m,B) de-

note the set of bi-infinite towers with combinatorics bounded by B and with mod(Us, Vs) ≥
m for all s. Clearly Tow∞

0 (m,B) is closed in Tow∞(m,B).
The main result of this section is:

Theorem 6.1 (Rigidity of towers) A bi-infinite tower T with
bounded combinatorics and definite moduli is quasiconformally rigid.

(The hypothesis means T ∈ Tow∞
0 (m,B) for some (m,B).)

Idea of the proof. In outline, the proof of rigidity follows the same lines as many other
proofs in conformal dynamics. First, we may assume T is a fine tower (defined below), since
this can be achieved by passing to a subtower. Given an invariant line field µ, pick a point z
where |µ(z)| = 1 and µ is almost continuous. Since there are no invariant line fields on the

89
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Julia sets J(fs), we see that z 6∈ ⋃ J(fs) and thus fks (z) eventually leaves the domain of fs
for every s. Next we use the fact that every fs expands the hyperbolic metric on C−P (T ),
and that the expansion is by a definite factor as z is leaving the domain of fs. Thus we can
build up an arbitrary amount of expansion by choosing s sufficiently small, and blow up the
nearly parallel line field near z to an almost holomorphic line field near fks (z). Passing to
a limit (using compactness of towers), we construct a tower with a holomorphic invariant
line field; this quickly leads to a contradiction. Thus the original tower admits no invariant
line field.

A tower is infinitely high if inf S = 0. We will also establish:

Theorem 6.2 (Relative rigidity) An infinitely high tower with
bounded combinatorics and definite moduli admits no invariant line field supported on
C−⋃SK(fs).

Finally we will show such a tower is determined up to isomorphism by the sequence of
inner classes I(fs).

6.1 Fine towers

Although our results will hold for general towers with definite moduli and bounded
combinatorics, it will be convenient to impose some additional geometric and combinatorial
properties.

An infinitely renormalizable tower T is fine if

1. T is unbranched (Vs ∩ P (T ) = P (fs) for all levels s);

2. T is nested (Vt ⊂ Us whenever t > s);

3. T has bounded combinatorics (t/s ≤ B for adjacent levels
t > s);

4. T has definite moduli (mod(Us, Vs) ≥ m > 0);

5. Vs and Us are K-quasidisks; and

6. diam(Vs) ≤ C diam J(fs) for all s ∈ S.

The constants (m,B,C,K) are independent of s; they are the fine tower constants of T .
The set of all such fine towers will be denoted Tow∞(m,B,C,K).

It is straightforward to verify:
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Proposition 6.3 The space Tow∞(m,B,C,K)/C∗ of fine towers with specified bounds is
compact.

The closed subspace of bi-infinite fine towers will be denoted Tow∞
0 (m,B,C,K); it too

is compact up to scaling.

Proposition 6.4 Any tower T in Tow∞(m,B) can be restricted to a fine tower T ′ in
Tow∞(m′, B′, C,K), where the fine tower constants depend only on (m,B). If T is bi-
infinite then we can also arrange that T ′ is bi-infinite.

Proof. By Proposition 5.13, we can pass to an unbranched tower with the same level set
at the price of reducing m. By Proposition 4.10, for each s ∈ S, we may construct a further
restriction fs : U ′

s → V ′
s such that diam(V ′

s ) ≤ C(m) diam(J(fs)), mod(U ′
s, V

′
s) > m′(m),

and both U ′
s and V

′
s are K(m)-quasidisks.

It remains to obtain the nesting condition; this will be achieved by restricting S. Since
J(fs) is surrounded by an annulus of modulus at least m′(m)/2 in U ′

s, an ǫ(m) ·diam J(fs)-
neighborhood of J(fs) is contained in U ′

s. By Corollary 5.11, there is a constant N(m,B)
such that

diam J(ft) < (ǫ(m)/C(m)) diam J(fs)

whenever t ≥ N(m,B)s; this in turn implies V ′
t lies in an ǫ(m)-neighborhood of J(fs), and

therefore V ′
t ⊂ U ′

s. So to obtain a nested subtower, we need only restrict to an S′ ⊂ S
such that adjacent levels in S′ are at least N(m,B) apart. Let S′ be a maximal such set
containing 1. Since adjacent levels in S have ratio at most B, adjacent levels in S′ have
ratio at most B′ = N(m,B)B. Also maximality guarantees supS = ∞, so the resulting
tower

T ′ = 〈fs : U ′
s → V ′

s ; s ∈ S′〉
lies in Tow∞(m′, B′, C,K). If T is bi-infinite then by maximality of S′, T ′ is also bi-infinite.

6.2 Expansion

For any tower T , let

V (T ) =
⋃

S

Vs.

In this section we discuss expansion in the hyperbolic metric on V (T )− P (T ).
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Proposition 6.5 For any T in Tow∞
0 (m,B), we have

V (T ) = C.

Proof. Since mod(Us, Vs) ≥ m > 0, the region Vs contains an ǫ(m) · diam(J(fs))-
neighborhood of J(fs). But diam(J(fs)) → ∞ as s→ 0, so

⋃
Vs = C.

Lemma 6.6 Let U ⊂ H be a connected region, and let f : U → H be a holomorphic
map such that ‖f ′(z)‖ ≥ 1 for all z ∈ U , with respect to the hyperbolic metric on H. If
‖f ′(z0)‖ = 1 for some z0, then f is an isometry.

Proof. After composing with an isometry of H, we can assume f(z0) = z0 and f ′(z0) = 1;
we will show f(z) = z. Choose a small ball D about z0 such that f−1 admits a univalent
branch sending D to a neighborhood E of z0. Since ‖(f−1)′‖ ≤ 1, E is contained in D. But
f ′(z0) = 1, so the Schwarz lemma implies E = D and f |E = id. Since U is connected, we
conclude f is the identity throughout U , and in particular f is an isometry.

Proposition 6.7 (Expansion) Let T be a fine tower. Then every mapping fs in T ex-
pands the hyperbolic metric on V (T )− P (T ).

More precisely, if z ∈ Us and fs(z) 6∈ P (T ), then ‖f ′s(z)‖ > 1 in the hyperbolic metric.

Proof. Let Ws = Vs − P (fs). Since T is unbranched and nested, we have Ws ⊃ Wt

whenever s < t. Let Q(fs) = f−1
s (P (fs)). The mapping

fs : (Us −Q(fs)) → (Vs − P (fs))

is a covering map, hence a local isometry between the respective hyperbolic metrics; and
the proper inclusion

(Us −Q(fs)) →֒ (Vs − P (fs))

is a contraction by the Schwarz lemma; so fs expands the hyperbolic metric ρs on Vs−P (fs).
Since ft = f

t/s
s |Ut for every t > s, the map ft also expands ρs for all s < t. If T has a

minimal level s (that is, if inf S > 0), then V (T )− P (T ) = Vs − P (fs), so the Proposition
is proved.

Now suppose inf S = 0. Let ρ0 denote the hyperbolic metric on V (T )−P (T ) = C−P (T ).
As s → 0, we have ρs → ρ0 uniformly on compact subsets of V (T )− P (T ). For any t and
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z ∈ (Ut−Q(ft)), we have ‖f ′t(z)‖ > 1 in the ρs metric for all s ≤ t, so in the limit ‖f ′t(z)‖ ≥ 1
in the ρ0 metric.

It remains to show ‖f ′t(z)‖ > 1. If, on the contrary, ‖f ′t(z)‖ = 1, then by the preceding
Lemma ft : (Ut−Q(ft)) → (Vt−P (ft)) is a local ρ0-isometry. It follows that Q(ft) ⊂ P (T ),
so Q(ft) = P (ft). Thus P (ft) is backward invariant by ft, and therefore P (ft) = J(ft).
But this is impossible, because ft is renormalizable.

It also useful to know that the rate of expansion does not vary too rapidly:

Proposition 6.8 (Variation of expansion) Let fks be an interate of a mapping in a fine
tower T . Let γ be a path in the domain of fks joining x1 to x2, such that fks (γ) is disjoint
from P (T ). Let d be the parameterized length of fks (γ) in the hyperbolic metric on V (T )−
P (T ). Then

‖(fks )′(x1)‖α ≥ ‖(fks )′(x2)‖ ≥ ‖(fks )′(x1)‖1/α,
where α = exp(Md) for a universal M > 0.

Proof. For any t < s, we can write fks = fnt where n = k(s/t). Let Wt = f−nt (Vt − P (ft)).
Then fnt : Wt → (Vt − P (ft)) is a covering map, so ‖fnt (z)‖t = 1/‖ι′(z)‖, where the norm
of the inclusion

ι : Wt →֒ Vt − P (ft)

is measured with respect to the hyperbolic metrics on domain and range, and ‖fnt (z)‖t
denotes the norm in the hyperbolic metric ρt on Vt − P (ft). By [Mc4, Cor 2.27], the
distance between x1 and x2 in the hyperbolic metric on Wt controls the variation in ‖ι′(x)‖,
and this distance is equal to the parameterized length of f(γ) in the ρt metric. Thus the
Proposition holds when d and ‖(fks )′‖ are measured using ρt. But ρt tends to the hyperbolic
metric on V (T )− P (T ) as t→ inf S, so the result follows.

Remark. Another way to formulate this theorem is that any branch of the multivalued-
function

log log

(
1

‖(f−ks )′(z)‖

)

is uniformly Lipschitz in the hyperbolic metric on V (T )− P (T ).

We now show that definite expansion is achieved as a point escapes. This is most
conveniently proved for fine towers. Any point which is not in the filled Julia set of fs :
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Us → Vs eventually escapes from Us under iteration. The last iterate occurs when z is in
Us but fs(z) is in Vs − Us.

Proposition 6.9 (Definite expansion) Let T be a fine tower.
Then for fs in T and z ∈ Us such that fs(z) 6∈ Us, we have:

‖f ′s(z)‖ ≥ λ > 1

with respect to the hyperbolic metric on V (T )− P (T ), and

ds(z, J(fs)) ≤ D,

where ds is the hyperbolic metric on Vs − P (fs).

Here λ and D depend only on the fine tower constants of T .

Proof. Suppose T ∈ Tow∞(m,B,C,K). By shift invariance it suffices to prove the
Proposition for s = 1. By hypothesis, z ∈ f−1

1 (V1 − U1).

Since T is a fine tower, the annulus V1 − U1 is bounded by K-quasicircles, and it varies
continuously as a function of T in

Tow∞(m,B,C,K).1 Similarly, f−1
1 (V1 − U1) varies continuously with T .

Let Q(f1) = f−1
1 (P (f1)). Then there is a constant D (depending only on the fine tower

constants for T ) such that

sup{d1(ζ,Q(f1)) : ζ ∈ f−1
1 (V1 − U1)} ≤ D,

because the left hand side defines a continuous function on the compact set Tow∞
0 (m,B,C,K)/C∗.

Since Q(f1) ⊂ J(f1) we have established that d1(z, J(f1)) ≤ D.

To complete the proof, we will show for any z ∈ f−1
1 (V1 − U1),

‖f ′1(z)‖ ≥ λ = 1/C(D) > 1

in the hyperbolic metric on V (T )−P (T ). Here C(·) is the function appearing in Proposition
4.9 (Inclusion contraction).

First observe that f1 is a restriction of f
1/s
s for every s < 1. Let Q′

s = f
−1/s
s (P (fs)), and

let U ′
s = f

−1/s
s (Vs); since T is unbranched and nested, we have U1 ⊂ U ′

s and Q(f1) = Q′
s∩U1.

The mapping

f1/ss : (U ′
s −Q′

s) → (Vs − P (fs))

1The set V1 − U1 does not vary continuously on Tow∞

0 (m,B); this is one reason we require quasidisks in
fine towers. Compare §4.1.
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is a covering map, hence a local isometry between the hyperbolic metrics on domain and
range, while the inclusion

ιs : (U
′
s −Q′

s) → (Vs − P (fs))

is a contraction by the Schwarz lemma. Since f
1/s
s = f1 on U1, for any z ∈ U1 −Q(f1) we

have

‖f ′1(z)‖s = 1/‖ι′s(z)‖,
where the first norm is measured in the hyperbolic metric ρs on Vs−P (fs), and the second
is measured between the metrics on the domain and range of ι.

By Proposition 4.9 (Inclusion contraction),

‖ι′s(z)‖ ≤ C(ds(z,Q
′
s)) < 1.

But (V1−P (f1)) ⊂ (Vs−P (fs)) and Q(f1) ⊂ Q′
s, so the Schwarz lemma implies ds(z,Q

′
s) ≤

d1(z,Q(f1)). Since z ∈ f−1
1 (V1 − U1), we have d1(z,Q(f1)) ≤ D, and thus

‖f ′1(z)‖s ≥ 1/C(D) > 1.

Finally ρs converges to the hyperbolic metric on V (T )−P (T ) as s→ inf S, so we obtain
definite expansion in the hyperbolic metric on V (T )− P (T ).

6.3 Julia sets fill the plane

We now analyze the dynamics of a fine tower T .

Suppose z ∈ V (T ); then z ∈ Vs for some s, and we can consider the forward iterates
fks (z). If z has an infinite forward orbit under fs, then it belongs to J(fs), and we can
restrict our attention to the single polynomial-like map fs to understand the dynamics near
z. If z has a finite orbit under fs, it may still have an infinite forward orbit under ft for
some t < s, and so belong to J(ft).

The remaining possibility is that z does not belong to the Julia set of any mapping in
T . To try to develop an infinite forward orbit for z, we can proceed as follows. Pick s1
such that z0 = z lies in Us1 , and iterate until z1 = fk1s1 (z0) escapes from Us1 . Then pick a
level s2 < s1 so Us2 contains z1, and iterate until z2 = fk2s2 escapes from Us2 . In a bi-infinite

nested tower, this construction can be prolonged indefinitely, and it is consistent: f
s/t
t is an

extension of fs for any t < s, so the forward orbit under ft contains the forward orbit under
fs. Even when inf S > 0, it is useful to organize the forward orbit of z by levels in this way.
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Proposition 6.10 Given a fine tower T with levels s > t and z ∈ Us−J(ft), choose k > 0
so fkt (z) ∈ Ut but f

k+1
t (z) 6∈ Ut. Then with respect to the hyperbolic metric on V (T )−P (T ),

‖(fkt )′(z)‖ ≥ (s/t)β > 1.

Here β > 0 depends only on the fine tower constants for T .

Proof. Let t = sn < sn−1 < . . . < s1 = s enumerate the levels between s and t. Since
z 6∈ J(ft), z does not belong to J(fsi) for any of these levels. Thus the iterates of z under
fs1 eventually escape from Us1 . By the nesting condition, Vs1 ⊂ Us2 , so we can continue
the forward orbit by iterating fs2 . The orbit then escapes from Us2 , and so on, until finally
it reaches f−1

t (Vt − Ut).
By Theorem 6.9, each escape results in expansion by a definite factor λ > 1. By the chain

rule, the expansion of the composition of these maximal iterates is at least λn. Furthermore
the composition is equal to fkt , since each fsi is a renormalization of ft. Since si/si+1 ≤ B
for some constant B, n is bounded below by a multiple of log(s/t). Thus λn ≥ (s/t)β , where
β > 0 depends only on the fine tower constants.

Proposition 6.11 (Asymptotic density of Julia sets) For any fine tower T , levels s >
t of T and z ∈ Us, either z ∈ J(ft) or the distance

d(z, J(ft)) < D

(
t

s

)η

in the hyperbolic metric on V (T )−P (T ). Here D and η > 0 depend only on the fine tower
constants of T .

Proof. Suppose z 6∈ J(ft). Choose k > 0 such that w = fkt (z) ∈ f−1
t (Vt − Ut). By the

preceding Proposition, ‖(fkt )′(z)‖ ≥ M = (s/t)β > 1. By Proposition 6.9, there is a D
depending only on the fine tower constants such that d(w, J(ft)) ≤ D in the hyperbolic
metric on Vt − P (ft). Let δ be a minimal geodesic in Vt − P (ft) joining w to a point p in
J(ft), and let γ be a lift of δ by f−kt to a path with endpoints z and q.

By the Schwarz lemma, the length of δ is less than D in the hyperbolic metric on
V (T )−P (T ). By Proposition 6.8, ‖(fkt )′‖ is bounded below by M1/α(D) along γ, and thus
the length of γ is less than ǫ = DM−1/α(D). But J(ft) is invariant under ft, so we have
constructed a point q in J(ft) within distance ǫ of z. Finally ǫ = D(t/s)β/α(D) so we obtain
the Proposition with η = β/α(D).
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Corollary 6.12 (Julia sets fill the plane) For any bi-infinite
tower T in Tow∞

0 (m,B), the union of the Julia sets J(fs) is dense in C.

Proof. Any z ∈ C belongs to Us for some s. For t < s, either z ∈ J(ft) or the distance
from z to J(ft) is bounded by the preceding result. As t → 0 the bound tends to zero, so⋃
J(ft) is dense.

Remark. Proposition 6.11 has a nice formulation in terms of 3-dimensional hyperbolic
geometry; see Theorem 8.8.

6.4 Proof of rigidity

A line field µ is holomorphic on an open set U if locally

µ = ψ/|ψ|,
where ψ = ψ(z)dz2 is a holomorphic quadratic differential (not identically zero). A holo-
morphic line field on an open disk U is univalent if µ = h∗(dz/dz) for some univalent map
h : U → C.

The unit ball in L∞(Ĉ, dz/dz) is compact in the weak* topology. If towers Tk → T
admit invariant line fields µk, then any weak* limit µ of µk is T -invariant. (The analo-
gous statement for Kleinian groups is Proposition 2.8.) To prove rigidity, it will suffice to
construct a limit µ which is holomorphic, in view of:

Lemma 6.13 A tower T in Tow∞
0 (m,B) admits no invariant line field which is holomor-

phic on a nonempty open set.

Proof. Let U ⊂ C be the maximal open set on which µ is holomorphic. If f ′s(z) 6= 0, then
z ∈ U if and only if fs(z) ∈ U .

Suppose U is nonempty. Then by the density of
⋃
J(fs), U meets the Julia set of fs for

some s.
We claim Vs ⊂ U . First, since U meets the Julia set of fs, we have

⋃
fks (U) = Vs.

Taking into account the condition on f ′s, we can at least conclude (Vs − P (fs)) ⊂ U . But
fs|P (fs) is injective, so every point z ∈ P (fs), other than the critical value v, is the image of
a point in Vs − P (fs). Thus Vs −{v} ⊂ U . Finally v ∈ U because fs(v) ∈ U and f ′s(v) 6= 0.

Since Vs is simply-connected, we can write µ = ψ/|ψ| for some holomorphic quadratic
differential ψ defined on Vs. By invariance of µ, we have f∗sψ = Aψ for some A > 0. But
then ψ has a zero at the critical point z = 0 of fs, and all of its iterated preimages, which
are dense in J(fs). Thus ψ vanishes identically, a contradiction.
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Proof of Theorem 6.1 (Rigidity of towers). Suppose T = 〈fs; s ∈ S〉 is a bi-infinite
tower with bounded combinatorics and definite moduli, admitting an invariant line field µ.
We can assume T is a fine tower, say belonging to Tow∞

0 (m,B,C,K), since µ is invariant
under any subtower of T . Using expansion in the hyperbolic metric on C − P (T ), we will
promote µ to a holomorphic line field, and then obtain a contradiction by the preceding
Lemma.

By Corollary 5.10, µ vanishes almost everywhere on
⋃
J(fs). Since |µ| = 1 on a set

of positive measure, we can choose z ∈ C − ⋃
J(fs) such that |µ(z)| = 1 and µ is almost

continuous at z. This means for each ǫ > 0,

lim
r→0

area{w ∈ B(z, r) : |µ(w) − µ(z)| < ǫ}
areaB(z, r)

= 1.

For all s ∈ S sufficiently small, we have z ∈ Us − J(fs), so there is an integer k(s) such
that

zs = fk(s)s (z) ∈ f−1
s (Vs − Us).

As s tends to zero, the norm of (f
k(s)
s )′(z) tends to infinity in the hyperbolic metric on

C− P (T ), by Proposition 6.10.

Let Ts denote T shifted by s and conjugated by

αs(z) = z/diam J(fs).

Then after passing to a subsequence of s→ 0, the towers Ts converge to a fine tower

T ′ = 〈gs : U ′
s → V ′

s ; s ∈ S′〉.

We can also assume αs(zs) → w for some w ∈ A = g−1
1 (V ′

1 − U ′
1). Here the closed annulus

A = limαs(f
−1
s (Vs − Us)) in the Hausdorff topology.

Passing to a further subsequence, we can assume µs = (αs)∗(µ) converges weak* to a
T ′-invariant Beltrami differential µ′.

Choose an open disk D ⊂ V ′
1 − P (T ′) containing w. Then αs ◦ fk(s)s admits a univalent

inverse hs on D for all s sufficiently large. Since ‖(fk(s)s )′(z)‖ → ∞, the diameter of hs(D)
tends to zero as s→ 0. Thus µ is very nearly parallel on hs(D), and by the Koebe distortion
theorem, µs = h∗s(µ) is very nearly univalent on D. By compactness of univalent maps,
µ′|D is exactly univalent. In particular, µ′ is holomorphic on an open set, contradicting the
preceding Lemma. Thus T has no invariant line field.
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Proof of Theorem 6.2 (Relative rigidity). Pick, as in the preceding proof, a point
z ∈ C −⋃K(fs) where the invariant line field µ is almost continuous. For any level s, the
point z eventually escapes from Us under iteration of fs. As for bi-infinite towers, ‖f ′s‖ ≥ 1
in the hyperbolic metric on C− P (T ). So by pushing µ forward, for arbitrarily small s we
can find a hyperbolic ball Ds of definite radius centered at a point in f−1

s (Vs − Us), such
that µ|Ds is nearly univalent.

Shifting by s and rescaling, we obtain towers Ts converging to a bi-infinite tower T ′ in
Tow∞

0 (m,B) for a subsequence of s tending to zero. Passing to a further subsequence, we
obtain a weak* limiting T ′-invariant Beltrami differential ν. There is a further subsequence
such that Ds converges to a nontrivial disk D. The limit ν is nonzero, because it is univalent
on D. This contradicts the rigidity of bi-infinite towers.

6.5 A tower is determined by its inner classes

Given a rigidity result, such as that just proved for towers, it is desirable to find an
invariant which classifies the rigid objects. In this section we show that for towers, such an
invariant is provided by the inner classes 〈I(fs); s ∈ S〉, a countable sequence of complex
numbers.

Let T = 〈fs; s ∈ S〉 and T ′ = 〈gs; s ∈ S′〉 be a pair of towers. Conformal conjugacy
is usually too fine an equivalence relation on the space of towers, because the domains Us
and Vs are not canonical. We say T is isomorphic to T ′ if S = S′ and if there is a confor-
mal mapping φ between neighborhoods of

⋃
K(fs) and

⋃
K(gs) establishing a conjugacy

between fs|K(fs) and gs|K(gs) for each s. Equivalently, two towers are isomorphic if they
have restrictions (preserving the set of levels) which are conformally conjugate.

Theorem 6.14 (Inner invariants of towers) Let T = 〈fs; s ∈ S〉 and T ′ = 〈gs; s ∈ S〉
be a pair of infinitely high towers with bounded combinatorics and definite moduli. Suppose
I(fs) = I(gs) for all s. Then T and T ′ are isomorphic.

Proof. We may assume both towers belong to Tow(m,B). For any s ∈ S, I(fs) = I(gs),
so by Proposition 4.6 there is a K-quasiconformal hybrid conjugacy φs : V

′
s → V ′′

s between
restrictions fs : U

′
s → V ′

s and gs : U
′′
s → V ′′

s with mod(U ′
s, V

′
s ) > m′ > 0. Here K and m′

depend only on m.

Since diamK(fs) → ∞ as s→ 0, every compact set in C is eventually contained in V ′
s .

By compactness of normalized quasiconformal mappings, we can pass to a subsequence of
s → 0 such that φs → φ : C → C uniformly on compact sets. The mapping φ conjugates
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fs|K(fs) to gs|K(gs) for every s, ∂φ = 0 a.e. on
⋃
K(fs), and φ conjugates T to another

tower T ′′. By the relative rigidity of towers, φ is conformal, so φ provides an isomorphism
between T and T ′.



7 Fixed points of renormalization

In this chapter we study the convergence of iterated renormalization over the complex
numbers.

We begin by defining the renormalization operators Rp and discussing their relation to
tuning and the Mandelbrot set. Then we give a conjectural construction of fixed points of
renormalization, starting from purely combinatorial data, namely a quadratic polynomial
with a periodic critical point. The construction parallels the geometrization of 3-manifolds
that fiber over the circle.

Next we justify several steps in the construction, starting with a quadratic polynomial
f whose inner class is fixed under renormalization. We show that if the quadratic germs of
Rn
p (f) have moduli bounded below, then they converge to a fixed point F of renormalization

uniformly on a neighborhood of J(F ). Moreover F attracts all quadratic-like maps with
the same inner class as f . The proof relies on the rigidity of towers.

To give a more precise discussion of the domain of convergence, we show F has a unique
maximal analytic continuation F̃ :W → C, andRn

p (f) converges to F̃ uniformly on compact
subsets of W .

Finally we use Sullivan’s a priori bounds (Theorem 7.15) to complete the discussion in
the setting of real mappings.

In §9.5 we will study the renormalization operators further, and show Rn
p (f) → F̃

exponentially fast.

7.1 Framework for the construction of fixed points

Let H denote the set of all holomorphic maps f : W → C such that W ⊂ C is a
topological disk, f ′(0) = 0, and the restriction of f to some neighborhood of z = 0 is a
quadratic-like map with connected Julia set.

We refer to H as the space of extended quadratic-like maps. It is topologized as follows:
fi : Wi → C converges to f :W → C if for every compact K ⊂W , we have K ⊂Wi for all
i≫ 0 and fi → f uniformly on K. This topology is not Hausdorff; the closure of a point f
includes all the restrictions of f that are still in H. Nevertheless it is a convenient topology
for describing convergence of renormalization.

Lemma 7.1 If fi : Ui → Vi, i = 1, 2 are two quadratic-like restrictions of f ∈ H to a
neighborhood of z = 0, each with connected Julia set, then K(f1) = K(f2).

Proof. This result is an easy modification of [Mc4, Theorem 7.1].
First we claim K(f1) ∩ K(f2) is connected. Otherwise, there is a component U of
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W − (K(f1) ∪K(f2)) with U compact and ∂U ⊂ K(f1) ∪K(f2). By forward invariance of
the filled Julia sets and the maximum principle, the iterates fn|U are defined for all n and
uniformly bounded. But U covers an interval in the ideal boundary of K(fi) for i = 1 or 2,
so fn(U) contains an annulus surrounding K(fi), for some n > 0. Then {fn} is a normal
family on K(fi), which is impossible (e.g. by the existence of repelling cycles).

Now let U and V be the components of U1 ∩U2 and V1 ∩ V2 containing K(f1) ∩K(f2).
Then f : U → V is a polynomial-like map, and its degree is still two because the critical
point z = 0 lies in U . This implies K(f1) = K(f2) = K(f : U → V ).

Julia set, modulus and normalization. By the Lemma, for f ∈ H we may unam-
biguously define J(f) and K(f) as the Julia set and filled Julia set of any quadratic-like
restriction f : U → V with 0 ∈ U and with connected Julia set.

Themodulus of f , denoted mod(f), is the supremum of mod(U, V ) over all such quadratic-
like restrictions.

Let us say f ∈ H is normalized if the β fixed point of K(f) is at z = 1. Any quadratic-
like map or quadratic polynomial with connected Julia set is affinely conjugate to a unique
normalized map f ∈ H. For example, for c in the Mandelbrot set, the normalized form of
Pc(z) = z2 + c is f(z) = β(c)z2 + c/β(c), where

β(c) =
1

2
+

√
1

4
− c

is the β-fixed point of Pc (with Re β(c) ≥ 1/2). A normalized real even mapping f restricts
to a unimodal map f : [−1, 1] → [−1, 1], and [−1, 1] = K(f) ∩ R.

A variant of Proposition 4.3 is:

Proposition 7.2 The set of normalized maps f with mod(f) ≥ m > 0 is sequentially
compact.

Quadratic germs. The space G of quadratic germs is the quotient of H by the equivalence
relation f1 ∼ f2 if f1|K(f1) = f2|K(f2). Let π : H → G denote the projection of f ∈ H to
its germ [f ] ∈ G.

We give G the following topology: [fn] → [f ] if and only if there are representatives
such that fn → f in H. Note that convergence is required to take place on a definite
neighborhood of K(f), rather than on a neighborhood which can shrink as n increases.
The space of germs is Hausdorff.

Every quadratic germ [f ] has a representative f1 which is a
quadratic-like mapping. We define the inner class I(f) and the periods of simple renor-
malization SR(f) by I(f) = I(f1) and SR(f) = SR(f1). The functions I(f) and SR(f)
depend only on the germ of f .



7.1. Framework for the construction of fixed points 103

The renormalization operator Rp. For p ≥ 1, let Wp denote the component of f−p(C)
containing the origin. By the maximum principle, Wp is a disk. Let H(p) denote the set of
f such that p ∈ SR(f). Then there is a unique α ∈ C∗ such that αfp(α−1z) is normalized.

The renormalization operator
Rp : H(p) → H

is defined by
Rp(f) = αfpα−1 : αWp → C.

Let G(p) be the image of H(p); it consists of all germs [f ] that can be represented by
quadratic-like maps f1 such that fp1 is simply renormalizable. It is easy to see [Rp(f)]
depends only on [f ], so renormalization descends to a map

Rp : G(p) → G.

Similarly the inner class I(f) determines the inner class of Rp(f), so renormalization de-
scends further to a mapping

Rp :M
(p) →M,

whereM is the Mandelbrot set, andM (p) is the set of c such that P pc (z) is simply renormal-
izable. Explicitly, this last map is given by Rp(c) = I(Rp(P

p
c )). Summing up, we obtain a

commutative diagram:

H(p) Rp−−−→ H
π

y π

y

G(p) Rp−−−→ G
I

y I

y

M (p) Rp−−−→ M.

We can now state one of the central motivating problems in the subject:

Describe the fixed points of the renormalization operators Rp and the mappings
they attract.

The discussion of fixed points of Rp can be carried out at successively finer levels. A
fixed point c in the Mandelbrot set corresponds to a quadratic map f(z) = z2 + c such
that fp is quasiconformally conjugate to f near K(f), by a map which is conformal on the
filled Julia set. A fixed point [F ] in the space of germs G is represented by a quadratic-like
mapping F satisfying the Cvitanović-Feigenbaum functional equation

F (z) = αF p(α−1z)
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for all z ∈ K(F ). The renormalization factor α satisfies |α| > 1 since J(F p) is a proper
subset of J(F ). Finally a fixed point F :W → C in H satisfies the functional relation above
throughout the domain of definition of either side of the equation.

A necessary condition for existence of a fixed point. Note that for any quadratic-like
mapping f ∈ H such that n ∈ SR(f), the moduli mod(f, n) and mod(Rn(f)) are equal.

Let F be a quadratic-like mapping whose germ [F ] is fixed by Rp. Then the inner
class c = I(F ) is also fixed by renormalization. From F we can build a tower T with
level set S = {. . . , p−2, p−1, 1, p, p2, . . . } and fpn(z) = α−nF (αnz). By Proposition 5.1,
infnmod(Rn

p (F )) > 0, so the same is true of any mapping hybrid equivalent to F . Thus we
have:

Proposition 7.3 If Rp([F ]) = [F ], and I(F ) = c, then f(z) = z2 + c is hybrid equivalent
to a simple renormalization of fp, and infnmod(f, pn) > 0.

In the remainder of this section we discuss the conjectural availability of quadratic
polynomials f satisfying these two necessary conditions. In the next section we will see
these conditions are also sufficient for the existence of a fixed point [F ] with inner class c
(Theorem 7.9).

The tuning invariant. A point c in the Mandelbrot set is superstable if P pc (0) = 0 for
some p ≥ 1; the least such p is the period of c, denote per(c). The point c is primitive if it
is superstable, per(c) > 1 and SR(Pc) = {1,per(c)}. The primitive points are the centers
of the small cardioids in M .

Now suppose f(z) = z2 + a is infinitely renormalizable, and let p > 1 be the least
integer p > 1 such that fp is simply renormalizable. Then one may construct a natural
primitive point c = Φ(a) of period p, such that Pc provides a combinatorial approximation
to f . The mapping Pc is uniquely determined by the period p and the property that Pc(z)
is a combinatorial quotient of f . To construct Pc, one first collapses the small postcritical
sets Pp(1), . . . , Pp(p) of f to single points. Then f determines a critically finite branched
covering g on the sphere after collapsing. By a result of Thurston, g is combinatorially
equivalent to a unique quadratic polynomial Pc. For more details, see [Mc4, §B.5].1

Now let f ∈ H be an infinitely renormalizable mapping with SR(f) = {n0, n1, n2, . . . }.
(We list the levels in ascending order with n0 = 1.) The tuning invariant

τ(f) = 〈c0, c1, . . .〉

is the sequence of primitive points in M defined by ci = Φ(I(Rni
(f))). We have per(ci) =

ni+1/ni.

1Correction: On p.189 of [Mc4], the definition of quotient should require that φ1 is a quotient map
φ1 : (S2, f−1P (f)) → (S2, g−1P (g)), homotopic among such maps to a representative of φ. The construction
of g on pp.201-202 should be similarly modified.
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Conjecture 7.4 (Combinatorial rigidity) An infinitely renormalizable quadratic poly-
nomial f(z) = z2 + c is uniquely determined by its tuning invariant.

This conjecture implies the density of hyperbolicity in the complex quadratic family
(compare [Mc4, Thm. B.23]).

Tuning maps. For each superstable point s in the Mandelbrot set M , Douady and
Hubbard have constructed a tuning map of M into itself; a detailed construction appears in
[Dou1]. While a complete development of the theory of tuning has yet to appear, its main
properties (both known and conjectural) are presented in [Mil].

Following Milnor, we will use x 7→ s ∗ x to denote the tuning map determined by a
superstable point s ∈M . This map is characterized by the following conditions:

1. s ∗ 0 = s;

2. x 7→ s ∗ x is a homeomorphism of M into itself; and

3. if x 6= 1/4, then s ∗ x ∈M (p) and Rp(s ∗ x) = x, where p = per(s).

It is known that the star product is associative.

Conjecture 7.5 For any sequence of primitive points (c0, c1, c2, . . . ) and any x ∈ M , the
tuning

c0 ∗ c1 ∗ . . . ∗ cn ∗ x
converges, as n→ ∞, to the unique c ∈M such that τ(Pc) = 〈c0, c1, . . .〉.

Renormalization simply shifts the tuning invariant: if SR(f) = {n0, n1, . . . } then

τ(Rni
(f)) = 〈ci, ci+1, . . .〉.

Thus an inner class which is fixed by renormalization must have a periodic tuning invariant.
If c is a superstable point of period p, the preceding conjecture implies the iterated product
c∗n ∗ x converges to the unique point c∞ ∈ M such that c ∗ c∞ = c∞. Compare [Mil,
Conjecture 1.1]. Thus for p > 1 we have:

Conjecture 7.6 (Classification of fixed points in M .) The fixed points of Rp in the
Mandelbrot set correspond bijectively to the superstable points c ∈ M of period p, by the
correspondence c 7→ c∞.

Conjecture 7.7 (Classification of fixed points in G.) For each c ∈M such that Rp(c) =
c, there is a unique fixed point [F ] of Rp in G with I(F ) = c.
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A superstable c factors uniquely as a product c0 ∗ . . . ∗ ck−1 of primitive ci’s, and the
tuning invariant of F should be obtained by periodically repeating (c0, . . . , ck−1).

Example. For the Feigenbaum polynomial f(z) = z2 + c (where c = −1.401155 . . . ), the
tuning invariant τ(f) = 〈−1,−1,−1, . . .〉, and −1 ∗ c = c. It is at present unknown if c is
the unique fixed point of tuning by −1.

In §7.3, we will see any fixed point [F ] for Rp in G has a unique lifting to a fixed point
F̃ in H.

Bounded moduli and combinatorics. Suppose f ∈ Poly2 is infinitely renormaliz-
able, with SR(f) = {n0, n1, n2, . . . }. Then f has bounded combinatorics, or combinatorics
bounded by B, if

supni+1/ni ≤ B.

We say f has definite moduli if

inf
n∈SR(f)

mod(Rn(f)) = m > 0.

Conjecture 7.8 (Definite moduli) If f(z) = z2+c is infinitely renormalizable with com-
binatorics bounded by B, then f has definite moduli; more precisely,

inf
n∈SR(f)

mod(Rn(f)) ≥ m(B) > 0.

Now let c ∈ M be a superstable point of period p. Here is a construction which,
assuming the conjectures above, produces the fixed point of the renormalization operator
Rp corresponding to c.

1. First, let c∞ be the limit of the iterated tunings c∗n, and let f(z) = z2 + c∞. Then
c∗c∞ = c∞, so the inner class of Rp(f) is also c

∞. Therefore we have a quasiconformal
conjugacy φ between f and Rp(f) near K(f).

2. The map f has definite moduli at each level pn of renormalization. Thus the iterates
[Rn

p (f)] lie in a compact subset of the space of germs G.

3. Let T be a tower with definite moduli built from the successive renormalizations of
f ; the level set of T is S = {pn : n ≥ 0}, and f1 = f . Let Tn denote T shifted by
pn. Pass to a subsequence of n such that Tn → T∞ and [Rn

p (f)] → [F ]. Then [F ] is
represented by the mapping F at level 1 in T∞, and the union of the Julia sets in the
tower T∞ is dense in the plane.

4. The quasiconformal map φ gives rise to a limiting quasiconformal automorphism ψ of
T∞ shifting levels by p.
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5. Since T∞ is quasiconformally rigid, ψ is conformal; thus ψ(z) = αz with |α| > 1.

6. Then F p(z) = α−1F (αz) for all z ∈ Kp(F ), so [F ] is a fixed point of Rp. By a similar
argument, [Rn

p (g)] → [F ] for all g with I(g) = c∞.

7. By analytic continuation, [F ] lifts to a unique fixed point
F̃ :W → C of Rp in H.

This procedure is organized to parallel the construction of 3-manifolds which fiber over
the circle given in §3.4.

In the next two sections we will justify steps (3-7) in the above construction, and in §7.4
we will see steps (1-2) at least work over the reals.

7.2 Convergence of renormalization

We now show rigidity of towers can be used to pass from compactness to convergence
for renormalization. That is, if f(z) = z2 + c, Rp(c) = c, and [Rn

p (f)] ranges in a compact
subset of G, then the renormalizations converge to a fixed point of Rp.

Theorem 7.9 (Convergence of renormalization) Suppose that f(z) = z2+ c is hybrid
conjugate to a simple renormalization of fp, p > 1, and infnmod(Rn

p (f)) > 0. Then there
exists a unique fixed point [F ] of Rp in G with I(F ) = I(f).

Moreover, [Rn
p (g)] → [F ] for all g with the same inner class as f . In particular, the

renormalizations of [f ] converge to [F ] in G.

Proof. Let S = {pn : n ≥ 0}, and choose renormalizations fs = f s : Us → Vs for each
s ∈ S, with mod(Us, Vs) ≥ m = inf mod(Rn

p (f)). Then T = 〈fs; s ∈ S〉 is a tower in
Tow∞(m,B) with B = p. By assumption I(fs) = I(f) for all s.

Let Tn denote T shifted by pn and rescaled so f1,n is a normalized quadratic-like map
(its β fixed point is at z = 1). Since f1,n has a definite modulus, after normalization
diam J(f1,n) ≍ 1. By compactness of towers, we can pass to a subsequence such that Tn
converges to a bi-infinite tower T∞ = 〈gs; s ∈ S∞〉 in Tow∞

0 (m,B), where S∞ = {pn :
−∞ < n <∞}.

By continuity of the inner class, we have I(gs) = I(f) for all s. But by Theorem 6.14,
the sequence of inner classes in T∞ determines the germ of each mapping gs. Since T∞ and
T∞ shifted by p have the same inner classes, [F ] = [g1] = [gp] = [Rp(F )] is a fixed point of
renormalization.

Similarly, any two fixed points [F1] and [F2] with the same inner class as f give rise to
towers T1 and T2 with the same inner invariants, so [F1] = [F2] and thus the fixed point is
unique.
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If I(g) = I(f), then inf mod(Rn
p (g)) is also positive, so any accumulation point [G] of

Rn
p (g) can be embedded in a tower with the same inner invariants as T∞. Thus [G] = [F ]

and [Rn
p (g)] → [F ].

7.3 Analytic continuation of the fixed point

In this section we show each fixed point of renormalization [F ] in the space of quadratic
germs has a unique maximal analytic continuation F̃ :W → C. In addition, F̃ is the unique
lifting of [F ] to a fixed point of renormalization in H, and Rn

p (f) → F̃ for all f ∈ H with
the same inner class as F .

The domain of F̃ is an open dense subset of C, containing αnJ(F ) for all n. For example,
when F is real, its analytic continuation F̃ is defined along the entire real axis. Part of the
graph of the analytic continuation of the Feigenbaum fixed point is shown in Figure 7.1.
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Figure 7.1. The analytic continuation of the Feigenbaum map.

Definitions. Let f : U → V and g : U ′ → V ′ be holomorphic maps between connected
regions in C. Say g is an analytic continuation of f if f = g on some nonempty open set.
If all such analytic continuations are restrictions of a single map f̃ , then f̃ is the unique
maximal analytic continuation of f .

Lemma 7.10 Let f : U → V be a proper holomorphic map, and let g : U ′ → V ′ be an
analytic continuation of f . If V ′ ⊂ V , then U ′ ⊂ U and g = f |U .

Proof. Let U ′′ be the union of the components of U ∩ U ′ on which g = f . By hypothesis
U ′′ is open and nonempty, and by properness of f it is closed in U ′.
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Theorem 7.11 Let [F ] be a fixed point of the renormalization operator Rp. That is, sup-
pose F : U → V is a quadratic-like map satisfying

F (z) = αF p(α−1z)

near J(F ), where |α| > 1. Then:

1. F has a unique maximal analytic continuation F̃ : W → C;

2. the image of F̃ is C;

3. the domain W of F̃ is an open, dense, simply-connected region in C;

4. αnJ(F ) ⊂W for all n; and

5. F̃ = limRn
p (F ) in H.

In fact, since Rp(F ) is an analytic continuation of F , we have

F̃ (z) = Rn
p (F )(z) = αnF p

n

(α−nz)

wherever the right-hand side is defined.

Proof. For n ≥ 1 let Fn = Rn
p (F ). Then Fn : Wn → Vn is a polynomial-like map of degree

2p
n

, with Wn = αnF−pn(V ) and Vn = αnV . In particular, Fn is proper. By the functional
equation, Fn = F on a neighborhood of J(F ), so Fn is an analytic continuation of F .

Let W =
⋃
Wn, and let Z be the union of the domains of all analytic continuations of

F . Clearly W ⊂ Z. Now consider compact connected set K with an analytic continuation
g of F defined near K. Then g(K) ⊂ αnV for all n sufficiently large (since V contains
a neighborhood of the origin). By the Lemma, K ⊂ Wn and g = Fn|K. Thus Z = W ,
and we have also shown that F̃ (z) = limFn(z) exists and agrees with g(z) for any analytic
continuation g of F . Since the definition of F̃ is independent of g, F̃ is the maximal analytic
continuation of F .

We have also shown F̃ = limRn
p (F ), because any compact K ⊂ W is eventually con-

tained in Wn. Since each Wn is simply-connected, so is W .
The range of Fn is αnV , so the range of F̃ is the whole plane. Similarly, the domain of

F̃ contains αnJ(F ) for all n > 0, because αnJ(F ) ⊂Wn.
Let

T = 〈fpn = α−nFαn;n ∈ Z〉
be the bi-infinite tower built from conjugates of F by αn. Applying Corollary 6.12 to T , we
find

⋃
αnJ(F ) is dense C. This shows W is an open, dense, simply-connected subset of C.
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Corollary 7.12 The map F̃ : W → C is the unique fixed point of Rp in H with germ [F ].

Proof. To see F̃ is a fixed point, we need to check that F̃ and Rp(F̃ ) have the same
domain of definition. One inclusion follows from the fact that F̃ admits no further analytic
continuation. For the other, note that any compact set K in the domain of F̃ is also
contained in the domain of Rn+1

p (F ) for all n≫ 0, so it is in the domain ofRp(limRn
p (F )) =

Rp(F̃ ).
If G is another fixed point with the same germ as F , then G = Rn

p (G) → F̃ , so the

domain of G contains the domain of F̃ ; but then G = F̃ by maximality of the analytic
continuation.

Theorem 7.13 Let F̃ be a fixed point of Rp in H. Then Rn
p (f) → F̃ for any f ∈ H with

the same inner class as F̃ .

Proof. It suffices to prove the result for a quadratic-like restriction of f . Since I(f) = I(F̃ ),
we can assume there is a quasiconformal map φ : C → C conjugating f to a quadratic-like
restriction F of F̃ .

From φ we obtain quasiconformal maps φn conjugating Rn
p (f) to Rn

p (F ). Since the
critical point and the β fixed point are preserved by φn, each conjugacy fixes z = 0 and
z = 1. Any limit of φn gives a quasiconformal conjugacy to the tower generated by F ,
so by rigidity of towers φn converges to the identity uniformly on compact sets. Since φn
conjugates Rn

p (f) to Rn
p (F ), and Rn

p (F ) → F̃ , we have Rn
p (f) → F̃ .

Remarks. The mapping F̃ : W → C is an infinite-sheeted branched covering, in the sense
that each z ∈ C has a neighborhood V such F̃ : U → V is a proper map for each component
U of F̃−1(V ). Moreover F̃ is σ-proper; that is, its graph is a countable union of graphs of
proper mappings, namely those of Rn

p (F ) ∈ H.

The critical values of F̃ are discrete. For example, when F is the Feigenbaum mapping,
the critical values of F̃ are certain endpoints of intervals complementary to the “large Cantor
set”

P (T ) =
⋃

n≥0

αnP (F ) ⊂ R,

the postcritical set of the tower generated by F . In fact, the dynamical system (P (T ), F̃ )
is topologically conjugate to (Q 2, x 7→ x + 1), where Q 2 denotes the 2-adic completion of
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the rationals. The conjugacy can be chosen uniquely so 0 ∈ Q 2 corresponds to the critical
point of F ; then P (F ) corresponds to Z2, and the critical values of F̃ correspond to the
dyadic rationals {k/2n : 0 < k ≤ 2n, n = 0, 1, 2, . . . } (which are discrete in Q 2).

The arguments of this section can also be adapted to show:

Theorem 7.14 Let T = 〈fs; s ∈ S〉 be an infinitely high tower with bounded combinatorics
and definite moduli. Then f1 admits a unique maximal analytic continuation f̃1 : W → C,
defined by

f̃1(z) = lim
s→0

f1/ss (z).

The analytic continuation is a surjective, σ-proper branched covering of the plane, W is
simply-connected and dense in C, and J(fs) ⊂W for all s ∈ S.

7.4 Real quadratic mappings

In this section we combine Sullivan’s a priori bounds with the rigidity of towers to
construct fixed points of renormalization for real quadratic mappings. We also deduce the
existence and uniqueness of bi-infinite real towers with prescribed bounded combinatorics.
These results were first established in [Sul5].

The tuning invariant of a real quadratic polynomial is equivalent to the sequence (σ0, σ1, . . . )
of shuffle permutations of [Sul5] or the unimodal, non-renormalizable permutations of [MeSt].
The existence of mappings with given (real) tuning invariants is known quite generally for
full families of unimodal maps, as a consequence of the kneading theory [MeSt, Prop.
VI.1.3]. In particular any real tuning invariant is realized by a real quadratic polynomial.

For real tuning invariants with bounded combinatorics, Sullivan shows this real polyno-
mial is unique [Sul5, Thm. 6]. The construction of renormalizations with definite moduli
is carried out in [Sul5, §8]. In summary, we have the following a priori bounds:

Theorem 7.15 (Sullivan) An infinitely renormalizable real quadratic polynomial f(z) =
z2 + c with combinatorics bounded by B has definite moduli m(B) at all levels of renormal-
ization, and f is uniquely determined by its tuning invariant.

We may now establish:

Theorem 7.16 (Real fixed points of renormalization) Let c ∈ R be a superstable point
of period p > 1. Then:

1. the iterated tunings c∗n converge to a point c∞ ∈M ;

2. there is a unique quadratic-like germ [F ] fixed by Rp with inner class c∞; and
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3. for any quadratic-like map g with I(g) = c∞, we have

Rn
p (g) → F̃

uniformly on compact subsets of W , where F̃ : W → C is the maximal analytic
continuation of F .

In particular, Rn
p (f) → F̃ when f(z) = z2 + c∞.

Proof. Let c0 ∗ . . . ∗ ck−1 be the factorization of c into primitives. Then for any limit d of
c∗n, the tuning invariant τ(z2 + d) is the periodic sequence 〈c0, . . . , ck−1, c0, . . . , ck−1, . . .〉.
By Theorem 7.15, z2 + d is uniquely determined by its tuning invariant, so all limits agree
and c∗n converges. (Alternatively, one can use the kneading invariant and the monotonicity
theorem [MeSt, §II.10] to show c∗n is a monotone decreasing sequence of real numbers.)

Let c∞ = lim c∗n. Theorem 7.15 also guarantees that all renormalizations of f(z) =
z2 + c∞ have definite moduli. Since τ(Rp(f)) = τ(f), the map f is hybrid conjugate
to Rp(f). By Theorem 7.9, [Rn

p (f)] converges to the unique fixed point [F ] of Rp with
I(F ) = I(f). The same is true for any g with the same inner class, and Theorem 7.13 gives
convergence of Rn

p (g) to the maximal analytic continuation F̃ .

Finally we restate and reprove [Sul5, Thm. 2] in the language of towers:

Theorem 7.17 Given any bi-infinite sequence 〈. . . c−1, c0, c1, . . .〉 of real primitive points
with per(ci) bounded, there exists a tower

T = 〈fs; s ∈ S = {. . . s−1, s0 = 1, s1, . . . }〉

with definite moduli at all levels such that si+1/si = per(ci) and fsi has tuning invariant
〈ci, ci+1, . . .〉.

Any two such towers are isomorphic.

Proof. Let B = supper(ci). First suppose the sequence ci is periodic; that is ci+k = ci for
some k > 0. Let

p = per(c0) per(c1) · · · per(ck−1).

There is a unique real quadratic polynomial f(z) = z2+ c with tuning invariant 〈c0, c1, . . .〉.
By Sullivan’s a priori bounds we may construct a tower T ∈ Tow∞(m(B), B) with f1 = f
and S = SR(f) = {s0 = 1, s1, s2, . . . }; here si =

∏i−1
0 per(cj). Then τ(fsi) = 〈ci, ci+1, . . .〉.

Let Tn denote T shifted by pn and scaled so diam(J(f1,n)) = 1. By periodicity of
the tuning invariant, the inner class of fs,n is independent of n for all s > p−n. Passing
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to a convergent subsequence, we obtain a limiting tower T∞ in Tow∞
0 (m(B), B) with the

required tuning invariants at each level.
To obtain a tower with an arbitrary bi-infinite tuning invariant, approximate by a pe-

riodic one, and pass to a limit using compactness of towers. (This step uses the fact that
m(B) depends only on B.)

The bi-infinite sequence 〈. . . , c−1, c0, c1, . . .〉 determines the inner class I(fs) for each fs
in the tower. Thus uniqueness up to isomorphism is immediate from Theorem 6.14.

Notes and references. Sullivan’s proof uses a different argument, based on Riemann sur-
face laminations, to conclude uniqueness. The formulation of [Sul5, Thm. 2] was motivated
by the tower approach, presented at IHES in 1990.

The density of hyperbolicity in the real quadratic family (announced in [Sw], [Ly]) im-
plies any infinitely renormalizable real quadratic polynomial is determined up to conformal
conjugacy by its tuning invariant. The corresponding statement for complex quadratic
polynomials is open. In fact, one does not yet know if any complex polynomial g with the
same tuning invariant as the Feigenbaum polynomial f is conformally conjugate to f .

If Theorem 7.15 can be established for complex mappings, the results of this section
will immediately generalize to arbitrary bounded combinatorics. Progress in this direction
appears in [Ly].





8 Asymptotic structure in the Julia set

Let f(z) = z2 + c be an infinitely renormalizable quadratic polynomial with bounded
combinatorics and definite moduli. That is, suppose there are constants B and m > 0 such
that SR(f) = {n0, n1, n2, . . . } satisfies supni+1/ni ≤ B for all i, and mod(f, n) ≥ m > 0
for all n ∈ SR(f).

By Sullivan’s a priori bounds, any real infinitely renormalizable quadratic polynomial
with bounded combinatorics automatically has definite moduli. In particular, the Feigen-
baum polynomial is an example of such an f .

In this section we collect together some additional results about the geometry and dy-
namics of these polynomials. We show the complement of the postcritical set is a hyperbolic
surface of bounded geometry (§8.1); the critical point is a deep point of the Julia set (§8.2);
and at every scale near a point in J(f), the full dynamics of f includes a quadratic-like map
(§8.3). A more general theory of towers is sketched in §8.4.

We will write A ≍ B to mean that C1A < B < C2A for positive constants C1 and C2

depending only on (m,B).

8.1 Rigidity and the postcritical Cantor set

Recall there are natural simple closed curves γn surrounding the small postcritical sets
Pn = P (f) ∩ Jn(f) for all n ∈ SR(f), n > 1. These simple curves are geodesics on the
hyperbolic Riemann surface C−P (f). By definition, robustness of f means lim inf ℓ(γn) <
∞. In this section we will obtain more precise geometric information about lengths in
C− P (f); in fact we will determine the Riemann surface C− P (f) up to quasi-isometry.

Proposition 8.1 Let f(z) = z2+ c have bounded combinatorics and definite moduli. Then
for all n ∈ SR(f):

1. diamPn(i) ≍ diam Jn(i), for 1 ≤ i ≤ n.

2. n−α ≤ diam Jn ≤ 4n−β for constants α, β > 0 depending only on (m,B).

3. There is an unbranched renormalization fn : Un → Vn such that mod(Un, Vn) ≥
m′(m,B) > 0.

4. ℓ(γn) ≍ 1, for n > 1; in particular, f is robust.

Proof. (1) The diameters of Pn(i) and Jn(i) are comparable with constants depending only
on m by [Mc4, Cor 5.10]. (For a quadratic polynomial g, if diamP (g) ≪ diam J(g) then
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g has an attracting fixed point. The same result holds for quadratic-like maps g : U → V
with a constant depending on mod(U, V ).)

(2) Since f has bounded combinatorics and definite moduli, we may construct a tower
T in Tow∞(m,B) with f1 = f and level set S = SR(f). Then the diameters of the Julia
sets shrink at a definite rate by Corollary 5.11, but not too quickly by Proposition 4.13.
(Note that 2 < diam J(f) ≤ 4 for any c in the Mandelbrot set.)

(3) By Propositions 5.13 and 5.1, we can obtain a subtower with the same level set
S such that each fs is an unbranched renormalization of f1 with modulus greater than
m′(m,B) > 0.

(4) For any unbranched renormalization fn : Un → Vn, with mod(Un, Vn) > m′, the
annulus Vn − Un represents the same homotopy class as γn on C − P (f), so we have an
upper bound on the hyperbolic length of ℓ(γn). For the lower bound, observe that if ℓ(γn)
is very short, then the Euclidean diameter of Pn is much less than that of Pn′ , where n′ < n
is the adjacent lower level of simple renormalization. This implies diam Jn ≪ diam Jn′ by
(1), which contradicts Proposition 4.13 when ℓ(γn) is sufficiently small.

Since robustness implies rigidity [Mc4, Thm. 1.7], we have:

Corollary 8.2 Any polynomial quasiconformally conjugate to f is conformally conjugate
to f .

A self-contained proof of this Corollary will be given in §8.3.

Corollary 8.3 (Hu-Jiang) The Julia set of f is locally connected.

See [JH], [Ji]; these authors show in the setting of bounded combinatorics, local connec-
tivity follows from the existence of unbranched renormalizations of definite modulus, and
we have just shown these exist.

For 1 ≤ i ≤ n let γn(i) be the geodesic representing the isotopy class of a curve separating
Jn(i) from P (f)− Jn(i). The curve γn(i) encloses the small postcritical set Pn(i) = f i(Pn),
and

⋃
Pn(i) = P (f). Note γn(n) = γn encloses Pn.

Consider the collection

Γ = {γn(i) : n ∈ SR(f), n > 1, 1 ≤ i ≤ n}

of all such geodesics. These curves are pairwise disjoint, and they partition the Riemann
surface C − P (f) into planar pieces, each with at most B + 1 boundary components (see
Figure 8.1). There is a unique piece containing a neighborhood of infinity in C, which is
geometrically a cusp; all other pieces are bounded by closed geodesics.
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γ3(1) γ3(3) γ3(2)

γ6(1) γ6(4) γ6(3) γ6(6) γ6(5) γ6(2)

∞

Figure 8.1. Part of the Riemann surface C− P (f).
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Theorem 8.4 (Bounded geometry) All curves in Γ have length bounded above and be-
low in terms of (m,B).

Outside a standard neighborhood of the cusp at infinity, the Riemann surface C− P (f)
has injectivity radius bounded above and below in terms of (m,B).

Proof. By the preceding result, we have ℓ(γn) ≍ 1 uniformly in n. But all the curves γn(i)
at a given level n have comparable lengths; in fact

1

2
ℓ(γn) ≤ ℓ(γn(i)) ≤ ℓ(γn)

for i = 1, 2, . . . , n [Mc4, Thm. 9.3]. Thus we have upper and lower bounds for the lengths
of all the curves in Γ.

Next we verify a lower bound on the injectivity radius. Suppose δ is a short geodesic on
C − P (f). If δ is disjoint from Γ, there is a curve γn(i) enclosed by δ with n minimal (an
outermost curve in the disk bounded by δ in C). If δ is very short, then Jn(i) is much smaller
than the Julia set containing it at the adjacent lower level of renormalization, contradicting
Proposition 4.13.

Now suppose δ intersects some curve γ in Γ. The δ cannot be short because an upper
bound on ℓ(γ) gives a lower bound on the width of a standard collar about γ, which δ must
traverse.

Thus the injectivity radius in C − P (f) is bounded below. For the upper bound, cut
along the curves in Γ; we obtain pieces with bounded area. Every point in a given piece is
near a boundary geodesic of bounded length, so the injectivity radius is bounded above.

From the lower bound on the injectivity radius we have (see e.g. [Mc4, Thm. 2.3]):

Corollary 8.5 Away from the cusp at z = ∞, the hyperbolic metric ρ(z)|dz| on C− P (f)
is comparable to the 1/d metric; that is, ρ(z) ≍ 1/d(z, P (f)) where d denotes Euclidean
distance.

Corollary 8.6 The postcritical set P (f) is quasiconformally equivalent to the Cantor middle-
thirds set. In particular, its Hausdorff dimension is less than two.

Proof. Complete the system of curves Γ to a maximal system of disjoint curves Γ′ on the
Riemann surface X = C−P (f). By the bounds obtained above, the curves appearing in Γ′

can also be chosen to have length bounded above and below. Cutting along the curves Γ′, we
obtain a decomposition of X into pairs of pants, each with bounded geometry (apart from
the one component containing the cusp at infinity). There is a combinatorially identical
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bounded pair of pants decomposition for the complement Y = C − C of the standard
middle-thirds Cantor set C. Thus we may construct a quasiconformal map φ : X → Y .

By robustness, P (f) has absolute area zero [Mc4, Thm. 9.4], and thus φ extends to a
quasiconformal map of the sphere to itself sending P (f) to C. This shows P (f) is quasi-
conformally equivalent to the middle-thirds Cantor set.

Sets of Hausdorff dimension two are preserved under quasiconformal maps [GV], so P (f)
also has dimension less than two.

Remark. One may show more precisely that there is a quasiconformal map φ : C → C

sending P (f) to a standard model for the Cantor set proj limn∈SR(f) Z/n and conjugating
f : P (f) → P (f) to x 7→ x+ 1.

8.2 Deep points of Julia sets

Milnor has conjectured that if one magnifies the Mandelbrot set around the fixed point
s∞ of a tuning map x 7→ s ∗ x, then the magnified sets become very nearly dense in the
plane [Mil, Conj. 1.3].

It is a metatheorem that the structure of the Mandelbrot set at c mimics the structure
of the Julia set of z2 + c at its critical value c. (See, for example, [Tan].) In this section we
give a result supporting Milnor’s conjecture, but stated for Julia sets rather than for the
Mandelbrot set.

Theorem 8.7 Let f(z) = z2 + c be infinitely renormalizable, with bounded combinatorics
and definite moduli. Then the Julia set J(f) converges to the whole plane when it is mag-
nified about the critical point z = 0.

Proof. Any Hausdorff limit of the magnified Julia sets λ ·J(f), λ→ ∞, contains the union
of all of the Julia sets in a bi-infinite tower constructed from renormalizations of f . This
tower has bounded combinatorics and definite moduli, so the union of its Julia sets is dense
in the plane (Corollary 6.12).

Here is a more quantitative version formulated in the terminology of §2.5.

Theorem 8.8 (Deep critical points) The critical point z = 0 is a deep point of the Julia
set J(f). More precisely, let γ : [0,∞) → H3 ∼= C×R+ be the geodesic ray γ(τ) = (0, e−τ ).
Then there is an ǫ(m,B) > 0 such that

d(γ(τ), ∂ hull(J)) > ǫτ > 0
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for all τ > 0.

Figure 8.2. Blowups of the Feigenbaum Julia set.

Lemma 8.9 For 0 < ǫ < 1 the cone of consisting of all points within distance ǫτ of γ(τ)
for some τ > 0 lies above the graph of the function t = |z|α, where α = (1 + ǫ)/(1− ǫ).

Proof. Let t0 = e−τ . The hyperbolic ball B about (0, t0) of radius ǫτ is the same as the
Euclidean ball in C×R+ which has as its diameter the segment [t1+ǫ0 , t1−ǫ0 ] along the t-axis.
If (z, t) lies in this ball, then |z| < t1−ǫ0 and t > t1+ǫ0 , so t > |z|α.

Proof of Theorem 8.8. First note that γ is contained in the convex hull of the Julia
set. Indeed, J(f) meets the unit circle in a nonempty set invariant under z 7→ −z, so
γ(0) = (0, 1) ∈ hull(J(f)); and the rest of γ lies in hull(J(f)) because the critical point
(0, 0) = limτ→∞ γ(τ) lies in J(f).

Construct a fine tower T = 〈fs : Us → Vs; s ∈ SR(f)〉 with f1 = f , whose fine tower
constants depend only on (m,B). For all z 6= 0 sufficiently small, there is a Us containing
z with diam(Us) ≍ |z|. Then diamUs ≍ diam J(fs), and log diam J(fs) ≍ log(1/s) by
Proposition 8.1, so log s ≍ log(1/|z|).
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By Proposition 6.11 (Asymptotic density of Julia sets), there are constants D and η > 0
(depending only on (m,B)) such that

d1(z, J(f1)) < D

(
1

s

)η

where d1 is the hyperbolic metric on V1 − P (f1). By the Schwarz Lemma, the same bound
holds in the hyperbolic metric on C − P (f). The hyperbolic metric ρ(z)|dz| on C − P (f)
is comparable to the metric |dz|/d(z, P (f)), where d denotes Euclidean distance (Corollary
8.5). Using the fact that log s ≍ log(1/|z|) and that d(z, P (f)) ≤ d(z, 0) = |z|, we have

d(z, J(f))

|z| = O(|z|α)

for some α(m,B) > 0; equivalently d(z, J(f)) = O(|z|1+α).
Now consider τ ≫ 0, and let H ⊂ H3 be a supporting hyperplane for the convex hull of

the Julia set, such that

d(γ(τ),H) = d(γ(τ), ∂ hull(J)).

Since γ(τ) is near 0 ∈ C, H meets the sphere at infinity in a Euclidean circle S(z, r) with |z|
small and r = d(z, J(f)). By the preceding discussion, r = O(|z|1+α). Thus H lies below
the graph of y = C|z|1+α for some constant C. But by Lemma 8.9, this means there is an
ǫ(m,B) > 0 such that H is disjoint from the hyperbolic ball of radius ǫτ about γ(τ).

Decreasing ǫ if necessary, the bound holds for small τ as well.

Example. Figure 8.2 shows blowups of the Feigenbaum Julia set about its critical point
by powers αn, n = 0, 2, 4, 6, where α = 2.50290 . . . is the asymptotic self-similarity factor
at the origin. (More precisely, the figures represent 1-pixel neighborhoods of the Julia set,
which can be quite thick even though the Julia set is nowhere dense.)

Using generalized towers (§8.4) one can see more generally that all points in the post-
critical set are deep.

8.3 Small Julia sets everywhere

In this section we show that at every scale around every point in the Julia set J(f),
one can find a bounded distortion copy of one of the small Julia sets Jn(f). In fact, this
copy is the preimage of Jn(f) under some iterate f i. The mapping f i conjugates fn to a
quadratic-like map g defined on a definite neighborhood of Jn(f).
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Theorem 8.10 (Small Julia sets everywhere) Let f(z) = z2 + c be infinitely renor-
malizable with combinatorics bounded by B and moduli bounded by m. Then there exist
positive constants m′ and λ, depending only on (m,B), such that the following holds:

For every z in the Julia set J(f), and every r ∈ (0, 1], there is a quadratic-like map
g : U → V such that

1. g has definite modulus: mod(U, V ) ≥ m′;

2. the Euclidean distance from z to J(g) is O(r): d(z, J(g)) ≤ λr;

3. the diameter of J(g) is comparable to r:

r

λ
< diam(J(g)) < λr; and

4. the map g belongs to the dynamics generated by f : for some i ≥ 0 and n ∈ SR(f), f i

maps V univalently to a neighborhood of Jn(f), and conjugates g to fn.

Proof. All bounds in the course of the proof will depend only upon (m,B).
We begin by choosing unbranched renormalizations fn : Un → Vn such that mod(Un, Vn) ≥

m′ > 0 for all n; this is possible by Proposition 8.1.
For 1 ≤ i ≤ n, the map fn−i : Jn(i) → Jn(n) = Jn is injective, with a univalent inverse

defined on Vn; pulling Vn and Un back by this inverse, we obtain quadratic-like maps
fn : Un(i) → Vn(i) (conjugate to fn : Un → Vn by fn−i). Then mod(Un(i), Vn(i)) ≥ m′ > 0
for all i and n.

We now construct the mapping g for various z ∈ J(f) and r ∈ (0, 1].

Case I: z ∈ P (f). Each point z in the postcritical set belongs to a nested sequence of
Julia sets J(f) = J1(1) ⊃ Jn1

(i1) ⊃ Jn2
(i2) ⊃ . . . where SR(f) = {1, n1, n2, . . . } and the

diameters of these small Julia sets tend to zero. On the other hand, ni+1/ni ≤ B, so by
Proposition 4.13, Julia sets at adjacent levels have comparable diameter. Since diam J(f) ≍
1, we have small Julia sets at every scale less than one about z. Thus we can find a small
Julia set Jn(i) with z ∈ Jn(i) and diam Jn(i) ≍ r, and take g = fn : Un(i) → Vn(i). This
establishes the Theorem when z belongs to the postcritical set.

Case II: z 6∈ P (f), d(z, P (f)) < r. This case follows immediately from Case I. Let z′

be a point in P (f) with |z − z′| = d(z, P (f)); then the g just constructed for z′ also works
for z, since d(z, J(g)) ≤ d(z, z′) < r.

We now treat the remaining situation: z 6∈ P (f) and d(z, P (f)) ≥ r. The issue here is
that if r is much less than the distance of z from P (f), there is no obvious quadratic-like
map in the dynamics at scale r about z. To obtain g, we will study the iterates fk(z). We
will show that fk is eventually expanding enough that there is a univalent preimage of some
Jn(i) at scale r near z.
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Let ρ(z)|dz| denote the hyperbolic metric on the Riemann surface C − P (f). Recall
ρ(z) ≍ 1/d(z, P (f)), where d denotes the Euclidean distance (Corollary 8.5). Let v be a
tangent vector to C at z with Euclidean length |v| = r. Then the hyperbolic length ℓ(v) on
C− P (f) satisfies

ℓ(v) ≍ |v|
d(z, P (f))

≤ 1.

Let zk = (fk)(z) and let vk ∈ TzkC be the image of v under the derivative (fk)′.
Consider the sequence of lengths ℓ(vk); if it happens that zk ∈ P (f), set ℓ(vk) = +∞. It is
known that f is expanding in the hyperbolic metric on C − P (f), and that its expansion
at a given point in the Julia set tends to infinity under iteration [Mc4, Thm. 3.6]. Thus
ℓ(v0) ≤ ℓ(v1) ≤ ℓ(v2) . . . and ℓ(vk) → ∞. Since ℓ(v0) = O(1), there exists a k ≥ 0 such that
either ℓ(vk) ≍ 1, or ℓ(vk) ≪ 1 and ℓ(vk+1) ≫ 1.

Case III: the hyperbolic length jumps past 1. By this we mean ℓ(vk) < ǫ and
ℓ(vk+1) > 1/ǫ, where ǫ > 0 is a small constant depending only on (m,B); its size will be
determined in the course of the argument. We allow ℓ(vk+1) = +∞.

f

B(zk, R)

vk+1vk

Pn(i)

Figure 8.3. When ℓ(vk) ≪ 1 and ℓ(vk+1) ≫ 1, it is easy to pull back a copy of Jn(i).

First, since ℓ(vk) < ǫ, and the hyperbolic metric is comparable to the 1/d metric, the
Euclidean distance from zk to the postcritical set is much larger than |vk|, the Euclidean
length of vk. But since the critical point z = 0 of f(z) = z2 + c is contained in P (f),
this means that f is injective on the ball B(zk, R) where R = d(zk, P (f)) ≫ |vk|. Thus
f(B(zk, R)) contains a ball B(zk+1, R

′), where R′ ≫ |vk+1|.
Now ℓ(vk+1) is large, so |vk+1| ≫ d(zk+1, P (f)). By the same reasoning as in case II,

there is a Julia set Jn(i) whose diameter is comparable to |vk+1| and whose distance from
zk+1 is O(|vk+1|). For ǫ small enough, this Julia set is contained in the ball B(zk+1, R

′/2).
We now check that Jn(i) can be pulled back to z0. For i > 1, the sets Pn(i), Un(i), Vn(i)

and Jn(i) each have two preimages under f(z) = z2+c, namely Pn(i−1), Un(i−1), Vn(i−1)
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and Jn(i − 1), and the negatives of these sets, which we denote by P ′
n(i − 1), U ′

n(i − 1),
V ′
n(i− 1) and J ′

n(i− 1). By our assumption that the renormalizations are unbranched, the
primed sets are disjoint from the postcritical set, so all their further preimages under f are
univalent.

Since B(zk, R) is disjoint from the postcritical set, we have

f−1(Jn(i)) ∩B(zk, R) = J ′
n(i− 1).

Since diam(Jn(i)) ≍ |vk+1| and d(zk+1, Jn(i)) = O(|vk+1|), the Koebe distortion theorem
implies the diameter of J ′

n(i − 1) is comparable to |vk| and its distance from zk is O(|vk|).
There is a univalent branch of f−k defined on B(zk, R) and sending zk back to z0 = z;
applying Koebe again, we conclude that f−k(J ′

n(i−1)) has diameter comparable to r = |v0|
and its distance from z is O(r) as desired. The quadratic-like map (−fn) : U ′

n(i − 1) →
V ′
n(i− 1) lifts to a quadratic-like map g : U → V with Julia set f−k(J ′

n(i− 1)), completing
the construction.

Case IV: the hyperbolic length ℓ(vk) ≍ 1. More precisely, ℓ(vk) ∈ [ǫ, 1/ǫ], where ǫ is
the constant in case III. Only this final case is tricky.

Suppose we can find a path δ in C−P (f) from zk to γn(i) (for some n, i) such that ℓ(δ)
is bounded, and such that the germ h of f−k with h(zk) = z0 can be analytically continued
along δ to a single-valued function on γn(i). Then h extends across Pn(i), and then from
Pn(i) to Vn(i).

Let g : U → V be obtained by conjugating fn : Un(i) → Vn(i) by h. We claim
g satisfies the Theorem for z = z0. Indeed, diam Jn(i) and |vk| are comparable, because
diam Jn(i) ≍ diamPn(i) by Proposition 8.1, diamPn(i) ≍ diam(γn(i)) because ℓ(γn(i)) ≍ 1,
and |vk| ≍ diam(γn(i)) because ℓ(vk) ≍ 1 and the hyperbolic distance from zk to γn(i) is
bounded. Similarly, the Euclidean distance from zk to Jn(i) is O(|vk|).

Using the lower bound on the injectivity radius, we can apply Koebe to a bounded
number of balls covering δ ∪ γn(i) to conclude that |h′| ≍ |h′(zk)| = |v0|/|vk| along γn(i).
Applying Koebe twice more, we find |h′| ≍ |v0|/|vk| on Pn(i), and then on Jn(i). Thus
diam J(g) = diamh(Jn(i)) ≍ |v0| = r and d(z0, J(g)) = O(r) as stated in the Theorem.

It remains only to construct δ. Consider the decomposition of the Riemann surface
C − P (f) into planar pieces with bounded geometry obtained by slicing along the curves
Γ = {γn(i) : n ∈ SR(f), n > 1, 1 ≤ i ≤ n} (as in Figure 8.1). One such piece contains zk.
Pick two “lower” boundary components γn(i) and γn(i

′) of this piece, and join them to zk
by geodesic segments ξ, ξ′ of minimal length (see Figure 8.4). We will assume i′ > i.

By the bounded geometry of C− P (f), the hyperbolic lengths of ξ and ξ′ are bounded
(in terms of (m,B)). If f−k has a univalent branch along ξ ∪ γn(i), sending zk to z0, then
we may take δ = ξ and the proof is complete. Similarly the proof is complete if f−k has a
univalent branch along ξ′ ∪ γn(i′).
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γn(i
′)

zk

γn(i)

Pn(i) Pn(i
′)

vk

ξ ξ′

Figure 8.4. When ℓ(vk) ≍ 1, we can pull back a copy of either Jn(i) or Jn(i
′).

If both ξ and ξ′ fail, we claim the path δ = ξ′ ∗ ξ−1 ∗ γn(i) ∗ ξ succeeds. This path joins
zk to γn(i

′) after running once around γn(i).

P ′
n(i

′ − i) Pn(i
′ − i)

δ̃

ξ̃′
zk−i

ξ̃

Pn(n)

−γ̃n(i′) γ̃n(i) γ̃n(i
′)

Figure 8.5. Preimages under f i.

To see that δ works, consider the greatest integer j < k such that f−j has a univalent
branch on ξ ∪ γn(i), sending zk back to zk−j. For this branch, α = f−j(γn(i)) encloses
Pn(1), the part of the postcritical set containing the critical value of f — otherwise both
branches of f−1 would be univalent on α. Consequently j = i − 1. Since i′ > i, the loop
β = f−j(γn(i′)) is a univalent preimage of γn(i

′). Thus β encloses Pn(i
′ − j); otherwise it

would bound a disk disjoint from the postcritical set, on which all inverse branches of f are
univalent.

Now let ξ̃, ξ̃′ and δ̃ be the images of ξ, ξ′ and δ under the branch of f−i sending zk
to zk−i. Then ξ joins zk−i to γ̃n(i) = f−1(α), the latter loop covering α by degree two
and enclosing the critical point of f . The path ξ̃′ terminates at the component γ̃n(i

′) of
f−1(β) enclosing Pn(i

′ − i). But since δ wraps once around γn(i), its lift δ̃ starting at
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zk−i terminates at the other preimage −γ̃n(i′) of β, which bounds a disk disjoint from the
postcritical set (see Figure 8.5.) Thus all branches of f i−k are univalent on δ̃ ∪ −γ̃n(i′), so
f−k is univalent on γn(i

′) ∗ δ, completing the proof.

Remarks. The argument above is closely related to the proof of the rigidity of robust
maps f(z) given in [Mc4, Thm. 10.10]. To establish quasiconformal rigidity, it suffices
to construct quadratic-like dynamics about every z ∈ J(f) and at infinitely many distinct
scales. The proof above uses bounded combinatorics to obtain quadratic-like dynamics at
every scale.

With this result in hand, we can easily reprove the rigidity of f and the rigidity of
towers; we restate these results as corollaries.

Corollary 8.11 The map f admits no invariant line field on its Julia set.

Proof. If the Julia set of f admits an invariant line field µ, we can choose a point z ∈ J(f)
and a scale r > 0 such that the line field is nearly parallel in a ball of radius r about z. By
the result above, there is a quadratic-like map g : U → V defined near z at scale r with
mod(U, V ) ≥ m′ > 0, such that g∗(µ) = µ. By compactness of Poly2(m′), we can rescale
and pass to a limit to obtain a quadratic-like map which leaves invariant a family of parallel
lines in the plane. This is clearly impossible.

Corollary 8.12 A bi-infinite tower T with bounded combinatorics and definite moduli is
quasiconformally rigid.

Proof. Given an invariant line field for T , choose a small disk D in which the line field
is nearly parallel. The union of the Julia sets J(fs) for mappings fs in T is dense in
C, so J(fs) comes close to the center of D for some s; taking s small enough, we can
assume diam J(fs) > diamD as well. The Theorem above yields a quadratic-like map
g : U → V with J(g) ⊂ D and diam J(g) ≍ diamD, under which µ must also be invariant,
a contradiction.
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8.4 Generalized towers

The present theory of towers is intended to capture geometric limits of the iterates of a
single quadratic mapping f under rescaling about its critical point. A similar theory exists
for arbitrary points in the postcritical set P (f). Here we sketch the results that follow from
a more general development.

A generalized tower is a collection T = 〈fs; s ∈ S〉 of maps fs ∈ Poly2, indexed by a
level set S, such that:

whenever n = t/s > 1, fns is simply renormalizable, K(ft) = Kn(i, fs) for some
i, and fns = ft on K(ft).

The basic example comes from an infinitely renormalizable map f ∈ Poly2 with a spec-
ified point p in its postcritical set P (f). A generalized tower can be used to record the
dynamics on the small Julia sets nesting around p. To construct it, set S = SR(f), and for
each level s ∈ S, choose a renormalization f s : Us → Vs; then let fs = f s : Us(i) → Vs(i),
where p ∈ Js(i, f).

The towers we have used before correspond to the case where p is the critical point of
f1. The arguments already presented can be adapted to prove:

Theorem 8.13 Let T be a bi-infinite generalized tower with bounded geometry and definite
moduli. Then:

1. T is quasiconformally rigid.

2. The union of the Julia sets of T is dense in C.

3. T is determined up to isomorphism by its inner classes I(fs) and by the integers i(s, t)
such that J(ft) = Jt/s(i(s, t), fs).

4. For n > 1 and 1 ≤ i ≤ n, define a generalized renormalization operator Rn,i : G(n) →
G by mapping [f ] to [fn : Un(i) → Vn(i)]. Suppose Rn has a fixed point F . Then Rn,i

has a unique fixed point Fi with inner class I(Fi) = I(F ), and Rk
n,i(g) → [Fi] for all

germs g with the same inner class as F .

The germs F and Fi are conformally conjugate.

5. Let f(z) = z2+c be infinitely renormalizable, with bounded combinatorics and definite
moduli. Then every x ∈ P (f) is a deep point of J(f).

Remarks. The conformal conjugacy between the renormalization fixed points F and Fi
results from the fact that fn−i provides a conformal conjugacy between fn : Un → Vn and
fn : Un(i) → Vn(i), for any renormalization of a quadratic polynomial [Mc4, Thm. 7.2].
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The generalized renormalization operators Rn,i and their fixed points seem to have only
rarely appeared in the literature. See however [CoTr] for a discussion of renormalization
around the critical value, rather than the critical point, in the case of period doubling (this
corresponds to the operator R2,1). This reference was provided by H. Epstein.



9 Geometric limits in dynamics

In this chapter we formulate a general theory of holomorphic dynamical systems. The
setting will be broad enough to include both Kleinian groups and iterated rational maps. Its
scope will also encompass geometric limits of rational maps; as we have seen, renormalization
naturally leads from polynomials to polynomial-like maps, and it is useful to allow quite
general transformations in the limiting dynamics.

We then prove inflexibility theorems for dynamical systems which generalize our earlier
results for Kleinian groups. The injectivity bounds in Theorems 2.11 and 2.18 are replaced
by the assumption of uniform twisting, formulated in §9.3 below.

As an application, we sharpen Theorem 7.9 by showing the renormalizations Rn
p (f)

converge exponentially fast to the renormalization fixed point F . In particular, this fast
convergence holds for the Feigenbaum polynomial f . Exponential convergence implies that
f is C1+α conjugate to F on its postcritical set, one of the main renormalization conjectures.

9.1 Holomorphic relations

Definitions. We adopt the convention that a complex manifold has at most countably
many components, all of the same dimension.

Let Z be a complex manifold. A set F ⊂ Z is an analytic hypersurface if for each p ∈ F
there is a neighborhood U of p in Z and a nonconstant holomorphic map f : U → C such
that F ∩ U = f−1(0). We do not require F to be closed in Z.

Now let X be a complex 1-manifold. A holomorphic relation F ⊂ X ×X is a set which
can be expressed as a countable union of analytic hypersurfaces. A (one-dimensional) holo-
morphic dynamical system (X,F) is a collection F of holomorphic relations on a complex
1-manifold X.

Holomorphic relations are composed by the rule

F ◦G = {(x, y) : (x, z) ∈ G and (z, y) ∈ F for some z ∈ X},

and thereby give rise to dynamics.

For any holomorphic relation F , there is a complex 1-manifold F̂ and a holomorphic
map

ν : F̂ → X ×X

such that ν(F̂ ) = F and ν is injective outside a countable subset of F̂ . The surface F̂ is
the normalization of F ; it is unique up to isomorphism over F [Gun2].

129
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Examples. A holomorphic map f : U → X, U ⊂ X gives a holomorphic relation by
identifying f with its graph

gr(f) = {(x, f(x)) : x ∈ U} ⊂ X ×X.

The inverse of f (obtained by interchanging factors) is also a holomorphic relation (generally
multivalued), as is

gr(f−i ◦ f j) = {(z, w) : f i(w) = f j(z)}.
AKleinian group, the iterates of a rational map, a polynomial-like map and the collection

of maps appearing in a tower are all examples of holomorphic dynamical systems.

Conformal and quasiconformal conjugacy. Let α : X → Y be a biholomorphic map
between complex 1-manifolds. Given a holomorphic dynamical system F on X,

G = α∗(F) = {(α × α)(F ) : F ∈ F}

is a holomorphic dynamical system on Y . The map α provides a conformal conjugacy
between (X,F) and (Y,G).

Let M(X) denote the Banach space of L∞ Beltrami differentials on X with ‖µ‖ =
ess. sup |µ|. Let ν : F̂ → F be the normalization of a holomorphic relation F , and let
πi : X ×X → X denote projection to the ith factor. Then µ ∈M(X) is F -invariant if

(π1 ◦ ν)∗µ = (π2 ◦ ν)∗µ

on every component of F̂ where both π1 ◦ ν and π2 ◦ ν are nonconstant. Equivalently,
h∗(µ) = µ|U for every univalent map h : U → V such that the graph of h is contained in
F . (We regard two differentials agreeing outside a set of measure zero as equal.)

The Beltrami differential µ is F-invariant if it is invariant under every relation F in F .
If ‖µ‖∞ < 1, there is a Riemann surface Y and a quasiconformal map φ : X → Y with
complex dilatation µ; and µ is F-invariant if and only if

G = φ∗(F) = {(φ × φ)(F ) : F ∈ F}

is a holomorphic dynamical system on Y . If so, φ is a quasiconformal conjugacy from (X,F)
to (Y,G).
The space of hypersurfaces. To describe a topology on the space of holomorphic dy-
namical systems, we first put a topology on the space of relations.

Let Z be a complex manifold, and let V(Z) denote the set of all analytic hypersurfaces
in Z. Thus V(Ĉ × Ĉ) includes the graphs of all Möbius transformations, rational maps,
algebraic correspondences, entire functions, etc., but excludes holomorphic relations such
as

gr(z
√
2) = {(et, e

√
2t) : t ∈ C}.
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We topologize V(Z) as follows. First, given F ∈ V(Z), let ∂F = F − F . Then ∂F is
closed and F is a closed hypersurface in Z − ∂F .

We say Fi → F in V(Z) if

(a) ∂Fi → ∂F in the Hausdorff topology on closed subsets of Z, and

(b) for any z ∈ Z − ∂F , there is a neighborhood U of z and a collection of
holomorphic functions f, fi : U → C such that

F ∩ U = f−1(0), Fi ∩ U = f−1
i (0) for all i≫ 0,

f vanishes to order one on F ∩ U , and fi → f uniformly on U .

Example: the closure of the group of Möbius transformations. Let Aut(Ĉ) ⊂
V(Ĉ× Ĉ) be the inclusion which sends a Möbius transformation to its graph. Then

Aut(Ĉ) = Aut(Ĉ) ∪
⋃

a,b∈Ĉ,a6=b
{(w, z) : w = a or z = b}.

For example, the sequence of Möbius transformations w =Mn(z) = 1/(nz) goes to infinity
in Aut(Ĉ), but their graphs converge to the hypersurface F = {(z, w) : z = 0 or w = 0}.
Note that each point in Aut(Ĉ) represents the (1, 1) class in H2(Ĉ× Ĉ,Z) ∼= Z⊕ Z.

In passing from Kleinian groups to more general dynamical systems on the sphere, we
will replace Aut(Ĉ) with V(Ĉ × Ĉ), since the latter includes all the relations we wish to
consider. There is an important technical difference between these spaces: the space of
hypersurfaces is not locally compact. For example, R∞

≥0 embeds in V(Ĉ × Ĉ) with closed
image by the map which sends (t1, t2, . . . ) to the hypersurface F = (

⋃
k B(2k, e−tk ))× {0}.

However, we have:

Proposition 9.1 For any complex manifold Z, the space of analytic hypersurfaces V(Z) is
a separable metrizable space.

Proof. In brief, any F ∈ V(Z) defines a positive (1, 1)-current on any compact set disjoint
from ∂F . We have Fi → F in V(Z) if and only if (a) ∂Fi → ∂F and (b) Fi → F as currents
on each compact subset of Z − ∂F . Since the space of closed subsets of Z and the space of
currents on Z − ∂F are both separable metric spaces, so is V(Z).

Here is a more detailed argument. Let Z be a complex n-manifold, and let (Uk, φk) be
a countable collection of open sets Uk ⊂ Z and smooth (n − 1, n − 1)-forms φk on Z, such
that Uk is compact, the Uk form a base for the topology on Z, φk is supported in Uk and
the span of the φk is dense in the space of C∞ compactly supported (n − 1, n − 1)-forms
on Z. Choose a compact set Kk ⊂ Uk whose interior contains the support of φk, and let
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ρk : Cl(Z) → [0, 1] be a continuous bump function such that ρk(E) = 1 if E ∩ Uk = ∅, and
ρk(E) = 0 if E∩Kk 6= ∅. (Since Cl(Z) is a compact metrizable space, such a function exists
by Urysohn’s Lemma.) Define αk : V(Z) → R by

αk(F ) =




ρk(∂F )

∫
F ∗ φk if ∂F ∩ supp(φk) = ∅,

0 otherwise.

Here F ∗ is the complex (n− 1)-manifold of smooth points of F .
We claim αk : V(Z) → R is continuous. Indeed, if Fi → F , and ∂F meets the support

of φk, then ∂Fi meets Kk for all i ≫ 0, so limαk(Fi) = αk(F ) = 0. On the other hand, if
∂F ∩ supp(φk) = ∅, then near each p ∈ supp(φk) there are local defining functions fi for Fi
converging uniformly to a defining function f for F . Then log |fi| → log |f | locally in L1 (as
can be seen using the Weierstrass preparation theorem). Therefore ∂∂ log |fi| → ∂∂ log |f |
as distributional (1, 1) forms; but these forms represent the currents of integration over Fi
and F respectively, so

∫
F ∗

i
φk →

∫
F ∗ φk. This establishes continuity of αk.

Conversely, suppose ∂Fi → ∂F and αk(Fi) → αk(F ) for all k. Then Fi → F as currents
on any compact set disjoint from ∂F . Let p be a point of Z − ∂F and let ∆n ⊂ Z − ∂F be
a polydisk chart with p = 0, in which F is the zero set of a Weierstrass polynomial

w(z) = zd1 + a1(z2, . . . , zn)z
d−1
1 + . . .+ ad(z2, . . . , zn).

The support of Fi converges to the support of F , and the intersection number D · F =
limD · Fi for any disk transverse to F . It follows that Fi is represented by a Weierstrass
polynomial wi for all i sufficiently large, and for each disk D = ∆ × (z2, . . . , zn), the set
D ∩ Fi is close to D ∩ F . Thus wi → w uniformly on ∆n, and Fi → F in V(Z).

Summarizing, the map F 7→ (∂F, αk(F )) gives an embedding V(Z) → Cl(Z) × R∞, so
V(Z) is a separable metric space.

Details on currents and the Weierstrass theory can be found in [GH]. One may also use
the coefficients of Weierstrass polynomials directly to construct local separating functions
on V(Z).
The geometric topology. In the sequel we will consider exclusively dynamical systems
(X,F) where F ⊂ V(X × X). In other words, each relation F ∈ F will be a single
hypersurface (rather than a countable union of hypersurfaces). A dynamical system F is
closed if it is a closed subset of V(X ×X).

The geometric topology on the space of closed dynamical systems is defined to be the
Hausdorff topology on closed subsets of V(X×X) (see §2.1). That is, Fi → F geometrically
if and only if
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(a) every F ∈ F is the limit of a sequence Fi ∈ Fi, defined for all i sufficiently
large; and

(b) if F = limFik for a subsequence Fik ∈ Fik , then F ∈ F .

By definition, a collection of dynamical systems

{Fα} ⊂ Cl(V(X ×X))

is closed in the geometric topology if it contains the limit of every convergent sequence
Fα(i).

Some care is warranted when dealing with this topology, since V(X ×X) is not locally
compact. In general, when E is not locally compact, Cl(E) is not Hausdorff. Also, the
closure of a set is not always obtained by adjoining limits of all sequences in the set; in
general the limits must be iterated. For example, in Cl(NN), let

Fij = {an : a1 ≥ i or a2 ≥ j or a3 ≥ j or . . . ai ≥ j}.

Then

lim
j→∞

Fij = Fi = {an : a1 ≥ i}

and limi→∞ Fi = ∅, but limFi(k)j(k) 6= ∅ for any convergent subsequence of Fij .

On the other hand, the Hausdorff topology on the closed subsets of a separable metric
space is sequentially compact (Proposition 2.1), so we have:

Corollary 9.2 Every sequence Fi of closed dynamical systems has a geometrically conver-
gent subsequence.

Proposition 9.3 If µi is Fi-invariant, µi → µ in the weak* topology onM(X), and Fi → F
in V(Z), then µ is F -invariant.

Proof. It suffices to show h∗(µ) = µ|U for all univalent maps h : U → X such that U is a
disk in X and the graph of h is contained in a compact subset of the smooth points of F .
Near any point of the graph of h, F is defined by a equation of the form f(z1, z2) = z2−h(z1)
in local product coordinates. By the implicit function theorem, for all i sufficiently large,
Fi contains the graph of a function hi : U → X such that hi → h uniformly on U . Then
h∗i (µi) = µi|U , so in the limit h∗(µ) = µ|U .
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Corollary 9.4 If Fi → F in the geometric topology, µi → µ in the weak* topology on
M(X), and µi is Fi-invariant, then µ is F-invariant.

Saturation. Given a set F ⊂ V(X ×X), we define its saturation by

F sat = {F ∩ U : F ∈ F and U is an open subset of X ×X}.

If F = F sat, we say F is saturated. Saturation is preserved under geometric limits. If µ is
F-invariant, it is also F sat-invariant.

We introduce the saturation to take account of convergence on subdomains in X, even
when the original transformations are defined on all of X.

Proposition 9.5 (Saturated convergence) Let Fi → F be a geometrically convergent
sequence of saturated dynamical systems. Then the graph of f : U → X belongs to F if and
only if there is a sequence fi : Ui → X with gr(fi) ∈ Fi for all i sufficiently large, such that
fi → f uniformly on compact subsets of U .

(In particular any compact subset of U is eventually contained in Ui.)

Proof. Let Vk be a increasing sequence of domains with Vk ⊂ U compact, such that
U =

⋃
Vk. Then gr(f |Vk) → gr(f) in V(X ×X).

If gr(f) ∈ F , then by saturation gr(f |Vk) ∈ F for every k. By the implicit function
theorem, there is a sequence of mappings fi,k : Vk → X with gr(fi,k) ∈ Fi for all i ≫ 0,
and with fi,k → f |Vk uniformly as i → ∞. Diagonalizing, we obtain a sequence fi,k(i) :
Vk(i) → X, such that fi,k(i) → f uniformly on compact subsets of U . Setting Ui = Vk(i) and
fi = fi,k(i) completes the proof in one direction.

Conversely, given fi : Ui → X converging to f on compact sets, it is evident that
gr(fi|Vk) → gr(f |Vk) and thus gr(f |Vk) ∈ F . But F is closed, so gr(f) ∈ F as well.

Example: Kleinian groups. We now have two notions of geometric convergence for
Kleinian groups. Let Γn be a sequence of Kleinian groups, and suppose Γsat

n → F as closed
subsets of V(Ĉ × Ĉ). Then it is easy to see that Γn → Γ = F ∩ Aut(Ĉ) in the traditional
sense of geometric convergence (coming from the Hausdorff topology on Cl(Aut(Ĉ)); see
§2.2).

On the other hand, F generally contains more information than the traditional geometric
limit Γ, since it records limits of Möbius transformations tending to infinity in Aut(Ĉ). For
example, the groups Γn generated by γn(z) = nz converge to the trivial group in the
traditional sense, but the relation {(z, w) : w = ∞ or z = 0} is included in the geometric
limit F .
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9.2 Nonlinearity and rigidity

In this section we consider holomorphic dynamical systems F on the Riemann sphere Ĉ.
The group Aut(Ĉ) of Möbius transformations acts on these dynamical systems, and in some
sense the full orbit Aut(Ĉ) · F is a replacement for the hyperbolic 3-manifold M = H3/Γ of
a Kleinian group.

By combining this idea with that of geometric limits, we will say what it means for F to
be uniformly nonlinear on a set Λ ⊂ Ĉ. This notion generalizes upper and lower bounds on
the injectivity radius of a hyperbolic manifold in its convex core. It is then straightforward
to prove an infinitesimal inflexibility theorem for dynamical systems.

In the next section we integrate these bounds and obtain inflexibility of conjugacies.

Nonlinearity. Let F ⊂ V(Ĉ × Ĉ) be a holomorphic dynamical system on the Riemann
sphere. We say F is linear if it leaves invariant a parabolic line field; otherwise, F is
nonlinear. If F is linear, then after changing coordinates by a Möbius transformation, it
preserves the line field µ = dz/dz. In these coordinates h′(z) is constant and real for any
univalent map h : U → Ĉ with gr(h) ⊂ F ∈ F .

It is convenient to have a quantitative measure for the nonlinearity of a dynamical
system. To define one, let

σ(z)|dz| = 2|dz|
1 + |z|2

be the spherical metric, and let B(x, r) ⊂ Ĉ denote the spherical ball of radius r centered
at x. For 0 < r < 1, let Ur be the set of all univalent maps f : (B(x, r), x) → Ĉ such that
r ≤ ‖f ′(x)‖σ ≤ 1/r, and B(f(x), r2) ⊂ f(B(x, r)). Using the Koebe distortion theorem, it is
easy to see that Ur is compact in the Carathéodory topology. Define ν(F), the nonlinearity
of F , by

ν(F) = inf
{parabolic µ}

sup

{f∈Ur ,0<r<1,

with gr(f)∈Fsat}

∫

B(x,r)
|µ − f∗µ| σ2(z)|dz|2.

In other words, ν(F) ≥ δ if and only if, for any parabolic line field µ, there is an f :
B(x, r) → Ĉ in Ur with the graph of f in the saturation of F , such that the L1-deviation
of µ from f∗µ (with respect to spherical area on B(x, r)) is at least δ.

Proposition 9.6 The nonlinearity ν(F) = 0 if and only if F is linear. If Fn → F is a
geometrically convergent sequence of saturated dynamical systems, then ν(Fn) → ν(F).

Proof. These assertions follow easily from compactness of the space of parabolic line fields,
compactness of Ur and Proposition 9.5.
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Obviously ν(F) = ν(F sat), so saturation is unimportant when measuring the nonlinear-
ity of a fixed dynamical system. On the other hand, ν is not continuous under geometric
limits without the assumption of saturation. For example, Fn = {gr(z2 + zn)} converges
geometrically to F = ∅, a linear dynamical system, even though lim inf ν(Fn) > 0.

Uniform nonlinearity. A collection of dynamical systems {Fα} on the sphere is uniformly
nonlinear if limF sat

α(i) is nonlinear for any geometrically convergent sequence in the family
of saturations.

Let
ν({Fα}) = inf

α
ν(Fα).

By continuity of the nonlinearity under geometric limits, we have:

Proposition 9.7 A collection {Fα} is uniformly nonlinear if and only if ν({Fα}) > 0.

Corollary 9.8 If {Fα} is uniformly nonlinear, so is {F sat
α }, where the closure is taken in

the geometric topology.

Note that the Corollary is not immediate from the definition of uniform nonlinearity,
because in general {F sat

α } union its sequential limits is a proper subset of {F sat
α }.

Families of dynamical systems (F ,Λ). Let ω0 denote the standard frame at the origin
in the ball model for hyperbolic space H3. For any other ω in the frame bundle of H3,
there is a unique Möbius transformation g sending ω0 to ω. Mimicking the correspondence
between manifolds with baseframe and Kleinian groups, we let (F , ω) denote the dynamical
system g∗(F). The notation is meant to suggest that (F , ω) is F as seen from ω.

For any compact set Λ ⊂ Ĉ, let

(F ,Λ) = {(F , ω) : ω is a frame in the convex hull of Λ}.
The family of dynamical systems (F , Ĉ) represents the full orbit of F under the automor-
phism group of Ĉ. If Γ is a Kleinian group with normalizer Γ′ in G = Isom+(H3), then
(Γ, Ĉ) can be naturally identified with G/Γ′, the frame bundle of M = H3/Γ′. Thus (F ,Λ)
plays a role similar to M for more general dynamical systems.

Example: uniformly nonlinear groups. Let us define

ν(F ,Λ) = inf
frames ω in hull(Λ)

ν(F , ω).

We will show that this measure of uniform nonlinearity is like an upper and lower bound
on the injectivity radius for a Kleinian group.

Recall that a Kleinian group is elementary if it contains an abelian subgroup of finite
index.
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Proposition 9.9 Let M = H3/Γ be a nonelementary hyperbolic manifold, and let Λ be the
limit set of Γ. Then (Γ,Λ) is uniformly nonlinear if and only if the injectivity radius of M
is bounded above and below in its convex core.

Moreover
ν(Γ,Λ) ≥ ν0(R0, R1) > 0

when the injectivity radius ranges in [R0, R1] and R0 > 0.

Proof. First observe that if Γn is a sequence of Kleinian groups, then by passing to a
subsequence we can assume Γn → Γ in the traditional geometric topology, and Γsat

n → F
as closed subsets of V(Ĉ × Ĉ). The limit F is nonlinear if and only if Γ is nonlinear.
(Indeed, every F ∈ F is either the restriction of an element of Γ, or a relation of the
form {(z, w) : z = a or w = b}. By definition, the latter relation preserves any Beltrami
differential on the sphere.) Thus (Γ,Λ) is uniformly nonlinear if and only if every traditional
geometric limit Γ∞ = lim (Γ, ωn) is nonlinear.

If the injectivity radius in the convex core is unbounded above, then there are baseframes
such that (Γ, ωn) converges to the trivial group, which is linear. If the injectivity radius is
unbounded below, M either has a cusp or M has arbitrarily short geodesics. A sequence of
baseframes tending to a cusp yields a purely parabolic group Γ∞ in the geometric limit. If γ
is a short geodesic, then π1(M) appears to be almost parabolic when seen from a baseframe
deep in the thin part but far from γ. Thus there is purely parabolic geometric limit in this
case as well. Since any purely parabolic group is linear, (Γ,Λ) is not uniformly nonlinear.

Conversely, if the injectivity radius is bounded above and below, then any baseframe ωn
in the convex core is a bounded distance from the thick part ofM . SinceM is nonelementary,
there are two elements αn, βn ∈ (Γ, ωn) moving ω0 a distance bounded independent of n and
generating a nonelementary group. Given any geometric limit Γ∞ = lim (Γ, ωn), we can
pass to a subsequence such that αn → α and βn → β. A limit of discrete, nonelementary
representations of the free group on two generators is still nonelementary, so Γ∞ is nonlinear.
Therefore (Γ,Λ) is uniformly nonlinear.

The lower bound ν0(R0, R1) for ν(Γ,Λ) exists by compactness of the space of manifolds
with given injectivity bounds and continuity of ν.

Proposition 9.10 Let Fn → F be a geometrically convergent sequence of saturated dynam-
ical systems, and suppose Λn → Λ in the Hausdorff topology. Then ν(F ,Λ) ≥ lim inf ν(Fn,Λn).

Proof. For any ω in the convex hull of Λ, we can write ω = limωn where ωn is in the
convex hull of Λn for all n≫ 0; then

ν(F , ω) = lim ν(Fn, ωn) ≥ lim inf ν(Fn,Λn)
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and the Proposition follows.

Rigidity. We say F is rigid if it admits no measurable invariant line field on the sphere.
Equivalently, any quasiconformal conjugacy from F to another holomorphic dynamical sys-
tem F ′ is actually conformal. Similarly, F is rigid on Λ ⊂ Ĉ if Λ supports no F-invariant
line field. The next result overlaps with Theorem 2.9.

Proposition 9.11 If (F ,Λ) is uniformly nonlinear, then F is rigid on Λ.

Proof. Given a Beltrami differential µ, let (µ, ω) denote g∗(µ), where g is the unique
Möbius transformation sending ω0 to ω.

If F is not rigid on Λ, then there is an F-invariant µ supported on Λ. Let γ ⊂ hull(Λ)
be a geodesic ray terminating at a point x ∈ Λ where |µ(x)| = 1 and µ is almost continuous.
Let ωi be a sequence of frames tending to x along γ, and equivalent up to parallel translation
along γ. Then (µ, ωi) converges weak* to a parabolic line field µ∞. Passing to a subsequence,
(F sat, ωi) converges to a dynamical system G which preserves µ∞. Thus G is linear, so (F ,Λ)
is not uniformly nonlinear.

Deformations and inflexibility. We can now adapt the arguments of §2.4 and §2.5
to prove inflexibility theorems for uniformly nonlinear and uniformly twisting dynamical
systems.

A quasiconformal vector field v on Ĉ is a deformation of F if µ = ∂v is F-invariant. Let
S(p, r) denote the hyperbolic sphere of radius r about p ∈ H3, and let Mv(p) denote the
visual distortion of v.

Lemma 9.12 Let (F ,Λ) be uniformly nonlinear, with ν(F ,Λ) ≥ ν0 > 0. Let v be a
quasiconformal deformation of F . Then there is a radius r = r(ν0) > 0 such that whenever
S(p, r) ⊂ hull(Λ), we have

Mv(p) ≤ 1

2
sup

q∈S(p,r)
Mv(q).

Proof. The proof is by contradiction.
After a conformal change of coordinates, we can assume p is the origin in the hyperbolic

ball. If the Lemma is false, we can find a sequence of saturated dynamical systems (Fn,Λn),
radii rn → ∞ and deformations vn, such that ν(Fn,Λn) ≥ ν0 > 0, Mvn(p) ≥ 1/2, but
Mvn(q) ≤ 1 for all q ∈ S(p, rn) ⊂ hull(Λn). After passing to a subsequence, we may assume
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F sat
n → G geometrically and Λn → Ĉ in the Hausdorff topology. By Propositions 9.10 and

9.11, (G, Ĉ) is uniformly nonlinear and therefore G is rigid.
By Corollary B.18, after passing to a subsequence and correcting by conformal vector

fields, we can assume vn converges uniformly to a quasiconformal vector field v on the
sphere. Since Mvn(p) ≥ 1/2, we have Mv(p) ≥ 1/2. Also ∂vn → ∂v as a distribution, so
v too is a deformation of G. But the rigidity of G implies v is conformal, so Mv(p) = 0, a
contradiction.

Iterating this bound, as in Theorem 2.15, we obtain:

Corollary 9.13 (Infinitesimal inflexibility) Let V = ex(v) be the visual extension of a
quasiconformal deformation v of (F ,Λ). Then for any p ∈ H3 we have:

‖SV (p)‖ ≤ CMv(p) ≤ C ′ exp(−α d(p,H3 − hull(Λ))) ‖Sv‖∞,

where α > 0 depends only on ν(F ,Λ) > 0.

The constants C and C ′ are universal.

9.3 Uniform twisting

In this section we complete the proof of a dynamic inflexibility theorem for conjugacies,
analogous to the geometric inflexibility Theorems 2.11 and 2.18.

Definitions. A dynamical system F ⊂ V(Ĉ × Ĉ) is twisting if any F ′ quasiconformally
conjugate to F is nonlinear. A collection of dynamical systems {Fα} is uniformly twisting if
limF sat

α(i) is twisting for any geometrically convergent sequence in the family of saturations.

Examples. The group Γλ = 〈z 7→ λnz : n ∈ Z〉 is linear if λ ∈ R (since it preserves
µ = dz/dz), and twisting if λ ∈ S1−{±1}. If |λ| 6= 1, then Γλ is quasiconformally conjugate
to a group with λ ∈ R, so it is not twisting. Any nonelementary Kleinian group is twisting,
as is any rational map of degree d > 1. In fact, a holomorphic mapping f : U → V with a
critical point in U is never conjugate to a linear mapping, so any holomorphic dynamical
system F with a critical point is twisting.

In applications it is often just as easy to show (F ,Λ) is uniformly twisting as to show
it is uniformly nonlinear. For example, the proof of Proposition 9.9 also shows (Γ,Λ) is
uniformly twisting, since all the geometric limits obtained were nonelementary.

Unlike nonlinearity, twisting is preserved under quasiconformal deformation. This prop-
erty is a substitute, in the dynamical setting, for the fact that the injectivity radius of a
hyperbolic manifold changes by only a bounded factor under quasi-isometry.
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For K ≥ 1, let

νK(F) = inf
φ
ν(φ∗(F)),

where the infimum is over K-quasiconformal mappings φ : Ĉ → Ĉ, fixing 0, 1 and ∞ and
conjugating F to another holomorphic dynamical system φ∗(F). Set

νK(F ,Λ) = inf
frames ω in hull(Λ)

νK(F , ω).

Then (F ,Λ) is uniformly twisting if and only if νK(F ,Λ) > 0 for all K.

Proposition 9.14 Suppose (F ,Λ) is uniformly twisting, and let
φ : Ĉ → Ĉ be a K-quasiconformal map. Then (φ∗(F), φ(Λ)) is also uniformly twisting,
and

ν(φ∗(F), φ(Λ)) ≥ ν0 > 0

where ν0 depends only on K and νK(F ,Λ).

Proof. First we remark that a bounded change in basepoint makes a controlled change in
nonlinearity. That is, if (F , ω1) is nonlinear and ω2 is a frame based at distance less than
r from ω1, then ν(F , ω2) ≥ ǫ > 0, where ǫ depends only on ν(F , ω1) and r.

Returning to the Proposition, let Φ : H3 → H3 be an L-quasi-isometry extending φ;
we may assume L ≤ K3/2 (see Corollary B.23). Consider a frame ω1 over a point p1 in
hull(φ(Λ)). By Proposition 2.16, there is a p0 ∈ hull(Λ) such that d(p1,Φ(p0)) is bounded
in terms of K. Up to a change of coordinates for F , we can assume p0 is the origin in the
hyperbolic ball. After changing φ by post-composition with a Möbius transformation, we
can also assume that φ fixes 0, 1 and ∞. Then by definition,

ν(φ∗(F), ω0) ≥ νK(F ,Λ).

Because of our normalization of φ to fix three points, d(p0,Φ(p0)) is also bounded in
terms of K. Thus d(p0, p1) ≤ d0(K), so by our initial remarks ν(φ∗(F), ω1) ≥ ν0 > 0, where
ν0 depends only on d0(K) and νK(F ,Λ).

Since ω1 was arbitrary, we have ν(φ∗(F), φ(Λ)) ≥ ν0 > 0. This shows (φ∗(F), φ(Λ)) is
uniformly nonlinear. By similar considerations, it is also uniformly twisting.
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Theorem 9.15 (Dynamic inflexibility) Let (F ,Λ) be uniformly twisting, and let φ :
Ĉ → Ĉ be a K-quasiconformal conjugacy from F to another holomorphic dynamical system
F ′. Then:

1. there is a natural extension of φ to a volume-preserving diffeomorphism Φ : H3 → H3

whose pointwise quasi-isometry constant satisfies

L(Φ, p) ≤ 1 + C exp(−αd(p, ∂H))

for all p ∈ H = hull(Λ); and

2. for any δ-deep point x of Λ, φ is C1+β-conformal at x.

The constants C and α, β > 0 depend only on K, δ and νK(F ,Λ).

Because injectivity bounds in the setting of Kleinian groups are the same as the assump-
tion of uniform twisting, this result generalizes Theorems 2.11 and 2.18.

Sketch of the proof. The proofs of these two statements are almost identical to the ones
for Kleinian groups, so we will not repeat all the details. As before, we may include φ in
a Beltrami isotopy φt which extends to a quasi-isometric isotopy Φt of hyperbolic space.
These isotopies are generated by vector fields vt and Vt respectively.

The main new point is that uniform twisting gives the analogue of injectivity bounds
during the course of the isotopy. That is, for (Ft,Λt) = ((φt)∗(F), φt(Λ)), Proposition 9.14
guarantees ν(Ft,Λt) ≥ ν0 > 0 for all t. Then Corollary 9.13 shows the strain SVt and the
visual distortionMvt decay exponentially fast in the convex hull of Λt, with an estimate that
is independent of t. By Proposition 2.16, d(Φt(p), ∂H) does not change too much during
isotopy, so the integrated map Φ1 is close to an isometry when p is deep in the convex hull.
This completes the proof of the bounds on L(Φ, p).

Conformality of φ at deep points follows from bounds on the visual distortion and
Theorem B.26, exactly as in the proof of Theorem 2.18.

Relative inflexibility. One often encounters deformations which leave the conformal
structure fixed on part of the sphere. In this case, one may adjoin the region Ω0 of confor-
mality to the set Λ0 where the dynamics is twisting, to obtain a rigidity theorem on their
union Λ.

Theorem 9.16 (Relative inflexibility) Let Λ = Λ0∪Ω0 ⊂ Ĉ, where Λ and Λ0 are closed
and Ω0 is open. Let (F ,Λ0) be uniformly twisting, and let φ : Ĉ → Ĉ be a K-quasiconformal
conjugacy from F to F ′ which is conformal on Ω0.

Then the conclusions of Theorem 9.15 hold, with constants depending only on K, δ and
νK(F ,Λ0).
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The proof is a straightforward generalization of that of Theorem 9.15.

9.4 Quadratic maps and universality

In this section we describe how towers fit in with the notion of geometric limits. Then we
show certain infinitely renormalizable maps are uniformly twisting on their Julia sets. By
the inflexibility theory just presented, quasiconformal conjugacies between such mappings
are C1+α-conformal at the critical point.

In particular, when the inner class of f is fixed by Rp (as is the case for the Feigenbaum
polynomial), any quasiconformal conjugacy φ between fp and f is differentiable at the
origin, and its derivative φ′(0) = α is universal.

Exponential convergence of renormalization follows easily from differentiability of con-
jugacies, as we will see in the next section.

The full dynamics F(f). Let f : U → V be a holomorphic map between open sets in
the Riemann sphere. The iterates f i(z) generally have smaller domains than f itself. Let
gr(f−i ◦ f j) denote the relation consisting of all pairs (z, w) such that f j(z) = f i(w).

Let F(f) denote the holomorphic dynamical system consisting of the graphs of all holo-
morphic maps g : U ′ → V ′ such that gr(g) ⊂ gr(f−i ◦ f j) for some i, j ≥ 0. We similarly
define F+(f) by the requirement gr(g) ⊂ gr(f i) for some i ≥ 0. It is straightforward to
see that f , F(f), and F+(f) have the same quasiconformal deformations (any Beltrami
differential invariant by one is invariant by the others).

Remark. The space F(f) may contain maps which are not in the saturation of {gr(f−i ◦
f j) : i, j ≥ 0}. For example, when f(z) = z2, the map g(z) = −z belongs to F(f), but
for i > 0 the hypersurface gr(f−i ◦ f i) contains irreducible components other than gr(g)
passing through (0, 0).

When f is infinitely renormalizable, F+(f) contains all the
quadratic-like maps fn : Un → Vn, n ∈ SR(f). So by compactness of towers, it is straight-
forward to check:

Proposition 9.17 Let f(z) = z2 + c be infinitely renormalizable, with bounded combina-
torics and definite moduli bounded by (m,B). Let F = F+(f), and let An(z) = αnz where
αn → ∞. Then after passing to a subsequence, (An)∗(F) converges geometrically, and there
is a bi-infinite tower

T = 〈fs; s ∈ S〉 ∈ Tow∞
0 (m,B)

such that

lim (An)∗(F) ⊃ {gr(fs) : s ∈ S}.
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Thus the theory of towers captures a piece of the geometric limit of f blown up at its
critical point. In particular, any such geometric limit is rigid, by rigidity of towers (Theorem
6.1). We only need the forward dynamics of f to obtain this rigidity.

Next we examine geometric limits about general points in the Julia set of f . These limits
are not always rigid, but if we consider the full dynamics of f , they are at least twisting.

Theorem 9.18 Let f(z) = z2 + c be infinitely renormalizable, with bounded combinatorics
and definite moduli. Then (F(f), J(f)) is uniformly twisting.

Proof. Uniform twisting follows from Theorem 8.10 (Small Julia sets everywhere). Suppose
ωn is a sequence of baseframes in the convex hull of the Julia set, based at points (zn, tn)
in the upper half-space H3 = C × R+. Then the ball B(zn, tn) ⊂ C meets the Julia set
(otherwise (zn, tn) would be separated from J(f) by a half-plane).

By Theorem 8.10, there is a quadratic-like map gn : Un → Vn in F(f) with mod(Vn, Un) >
m′ > 0, d(zn, J(gn)) = O(tn) and diam J(gn) ≍ tn; here the constants depend only on
(m,B). Applying an affine Möbius transformation to move ωn to a frame at the base-
point (0, 1) ∈ H3, we obtain a new polynomial-like map hn with diam J(hn) ≍ 1 and
d(0, J(hn)) = O(1). Any two frames at the basepoint differ by a rotation, so hn belongs
to (F(f), ωn) up to a rotation. Thus any geometric limit of the form G = lim(F(f)sat, ωn)
contains the graph of a limiting quadratic-like map (possibly conjugated by a rotation of
the sphere), so it is twisting. Therefore (F(f), J(f)) is uniformly twisting.

The proof yields a somewhat more precise statement:

Theorem 9.19 Let f(z) = z2 + c be infinitely renormalizable, with combinatorics and
moduli bounded by (m,B), and suppose f : U → V is a quadratic-like restriction of f with
mod(U, V ) ≥ m > 0. Then

νK(F(f |U), J(f)) ≥ ν0(K,m,B) > 0.

Proof. The geometric limits of F(f |U) contain the same quadratic-like maps as in the pre-
ceding proof, except with possibly smaller moduli (still bounded below in terms of (m,B)).
Because of the critical point, these quadratic-like limits retain definite nonlinearity under a
quasiconformal deformation.
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Corollary 9.20 Let f and g be infinitely renormalizable quadratic-like maps with the same
inner class, and with combinatorics and moduli bounded by (m,B). Then there is a quasi-
conformal map φ : C → C which is a conjugacy between f and g near their Julia sets, and
which is C1+α-conformal at the critical point, where α depends only on (m,B).

Proof. It suffices to treat the case where f(z) = z2 + c, c = I(g). By Theorem 8.8, the
critical point z = 0 is a δ(m,B)-deep point of J(f). By Proposition 4.6, there is a K(m)-
quasiconformal map φ : C → C conjugating f : U → V to g : U ′ → V ′, where mod(U, V )
and mod(U ′, V ′) are at both at least m/2. By the preceding result, νK(m)(F(f |U), J(f)) is
bounded below in terms of (m,B), so by Theorem 9.15 φ is C1+α(m,B)-conformal at z = 0.

Universality. Finally consider a real quadratic-like map f : U → V with a periodic tuning
invariant (such as the Feigenbaum polynomial), normalized so f ′(0) = 0. Equivalently,
assume the inner class I(f) ∈ R is fixed by Rp for some p. Then there is a quasiconformal
conjugacy φ : Vp → V between f : U → V and a renormalization fp : Up → Vp. Note
φ(0) = 0 since φ preserves the critical point.

Following the example of totally degenerate groups discussed in §3.7, we can now make
several parallel assertions about the infinitely renormalizable mapping f .

1. The critical point z = 0 is a deep point of J(f). Indeed, this property is proved in §8
for quadratic polynomials, and it is inherited by f via hybrid conjugacy.

2. The map φ is an endomorphism of the dynamics of f . That is, φ ◦ fp = f ◦ φ.

3. The map φ is C1+α-conformal at all deep points of the small Julia set Jp(f). This
follows from Theorems 7.15, 9.15 and 9.19.

4. We have |φ′(0)| > 1.

5. The self-similarity factor φ′(0) is universal, in the sense that it only depends on the
combinatorics of f . To see these last two statements, recall Rn

p (f) → F in G, where
F is the unique fixed point of renormalization with the same combinatorics as f .
Under rescaling, φ(z) converges to the linear map z 7→ αz where F p(z) = α−1F (αz).
Therefore φ′(0) = α depends only on the combinatorics of f , and |α| > 1.

In summary, the fine structure of f at the critical point is uniquely determined by its
combinatorics.
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9.5 Speed of convergence of renormalization

In this section we show that renormalization converges exponentially fast in a fixed inner
class.

Theorem 9.21 (Rapid convergence of renormalization) Let
F̃ : W → C be a fixed point of Rp, p > 1. Then there is a constant λ < 1 such that
for any f ∈ H with the same inner class as F̃ , and any compact K ⊂W , we have

sup
z∈K

|Rn
p (f)(z) − F̃ (z)| ≤ λn

for all n sufficiently large.

Proof. Let α be the renormalization factor for F̃ , so |α| > 1 and F̃ (z) = αF̃ p(α−1z).
A quadratic-like restriction F : U → V of F̃ has combinatorics bounded by B = p. We
claim F has definite moduli. Indeed, since SR(f) is ordered by divisibility and contains all
powers of p, there are finitely many ai such that any n ∈ SR(f) can be expressed in the
form n = pkai. Since Rn

p (F ) → F̃ , we have

lim inf
k

mod(Rpkai(F )) ≥ mod(Rai(F̃ )) > 0

for each i; and therefore m = infSR(F )mod(Rn(F )) > 0.

By Theorem 7.13, we also have Rn
p (f) → F̃ uniformly on compact subsets of W .

So replacing f with a quadratic-like restriction of Rn
p (f) for n ≫ 0, we can assume

infSR(f) mod(Rn(f)) > m/2.

By Corollary 9.20, there is a conjugacy φ from F to f defined near J(F ) which is C1+δ-
conformal at the critical point z = 0. The exponent δ depends only on (m,B), and thus
only on F̃ . We will prove that the Theorem holds for any λ with 1 > λ > α−δ > 0.

Conjugating f by a dilation (which does not affect the sequence of renormalizations),
we can assume the conjugacy φ from F to f satisfies φ′(0) = 1. Then φ(z) = z +O(|z|1+δ)
for all z near 0.

Let βn → 0 denote the β fixed points of fp
n

in Jpn(f). The β fixed points in Jpn(F ) are
at α−n. Since φ(α−n) = βn, the ratios of corresponding fixed points satisfy

ρn =
α−n

βn
= 1 +O(α−nδ) = 1 + o(λn).

Similarly φn = αnφα−n satisfies

φn(z) = z + o(λn)
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uniformly on compact subsets of C. The map ρnφn conjugates Rn
p (F ) to Rn

p (f), so for all
n large enough we have

|Rn
p (F )(z) −Rn

p (f)(z)| = o(λn)

for all z in K. But Rn
p (F ) = F̃ on K, completing the proof.

The main ingredients in this proof — the differentiability of conjugacies and the ex-
ponential shrinking of Julia sets — are present for any quadratic-like map with bounded
combinatorics and definite moduli. Thus we have:

Theorem 9.22 Let f and g be a pair of infinitely renormalizable quadratic-like maps in H
with the same inner class. Suppose f has bounded combinatorics and definite moduli. Then

|Rn(f)(z)−Rn(g)(z)| ≤ n−γ

for all sufficiently large n ∈ SR(f) and for all z in an ǫ-neighborhood of J(Rn(f)). The
constants γ, ǫ > 0 depend only on bounds (m,B) for f .

Note: If SR(f) = {n0, n1, n2, . . . }, then ni ≥ 2i, so n−γi ≤ i−λ, where λ = 2−γ . Thus the
bound above is exponential in the number of renormalizations i.

Proof. Since f and g are quasiconformally conjugate, g also has bounded combinatorics
and definite moduli. So by Corollary 9.20, there is a conjugacy between f and g near their
Julia sets which is differentiable at z = 0. Thus for large n, Rn

p (f) and Rn
p (g) are uniformly

close near their filled Julia sets. By the pullback argument (§4.3), we can obtain a nearly
conformal conjugacy φ between them. Replacing f and g with quadratic-like restrictions
of their high renormalizations, we can assume both have moduli bounded below by m/2.
Applying Corollary 9.20 again, we obtain a new conjugacy φ between f and g such that φ
is C1+α(m,B)-conformal at z = 0.

By Proposition 8.1, diam Jn(f) = O(n−β(m,B)). Therefore φ gives rise to a conjugacy
between Rn(f) and Rn(g) which is within O(n−αβ) of the identity near their Julia sets.
Since both f and g have definite moduli, an ǫ(m)-neighborhood of J(Rn(f)) lies in the
domain of Rn(f). Thus the Theorem holds for any γ with αβ > γ > 0.

Corollary 9.23 Let f and g be infinitely renormalizable real symmetric quadratic-like maps
with combinatorics bounded by B. Suppose f and g have the same tuning invariant. Then

sup
x∈[−1,1]

|Rn(f)(x)−Rn(g)(x)| ≤ n−γ(B)

for all n ∈ SR(f) sufficiently large, where γ(B) > 0.
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Proof. By Sullivan’s Theorem 7.15, f and g have the same inner class c, and h(z) = z2+ c
has moduli bounded below by m(B) > 0. By the preceding Theorem, Rn(f) and Rn(g)
both converge rapidly to Rn(h) on [−1, 1], since [−1, 1] ⊂ J(Rn(h)). The Corollary follows
by the triangle inequality.

Corollary 9.24 There is a C1+α(B) map φ : R → R providing a conjugacy between f and
g on their postcritical sets.

This Corollary follows from the preceding one; a proof can be given using the scale
function of the Cantor set P (f). See [MeSt, Theorem 9.4].





10 Conclusion

In this chapter we briefly recapitulate the analogies between the action of a mapping
class ψ : AH(S) → AH(S) and the action of a renormalization operator Rp : H(p) → H.
We also discuss some open problems on both sides of the dictionary. These parallels and
problems were summarized in Tables 1.1 and 1.2 of §1.

Consider first the algorithms for the construction of fixed points, detailed in §3.4 for ψ
and in §7.1 forRp. In each case, the dynamics at the fixed point seems to be hyperbolic, with
both expanding and contracting directions. The fixed point cannot be located by iterating
a generic starting point; for example, ψn(M) → ∞ in AH(S) if M is a quasifuchsian group,
and Rn

p (f) eventually leaves the domain H(p) of Rp for a generic quadratic-like map f .

Instead, to locate the fixed point, we first construct a point on its stable manifold. See
Figures 10.1 and 10.2.

Mψ,Yψn(Mψ,Y )

Q(ψ−n(X), Y )

BY

{ψ−n(X)} × Teich(S)

Mψ

Figure 10.1. Dynamics of ψ on AH(S).

In the Kleinian group setting, the quasifuchsian subspaceQF (S) of AH(S) has a product
structure

QF (S) = Teich(S)×Teich(S)

which is preserved by ψ. In particular, ψ preserves the foliation whose leaves have the form
{X} × Teich(S). Therefore ψ acts on the space of leaves. A Bers slice BY cuts each leaf
in a single point, so this dynamics on the space of leaves can be represented by the map of
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f(z) = z2 + c∞

z2 + c∗n

Rn
p (f)

M

{g : I(g) = c∗n}

F̃

Figure 10.2. Dynamics of Rp on H.

BY to itself given by Q(X,Y ) 7→ Q(ψ(X), Y ). The point

Mψ,Y = limQ(ψ−n(X), Y )

on the stable manifold of ψ is located by iterating the inverse of this induced mapping on
the transversal BY . Once Mψ,Y is constructed, the fixed point Mψ is simply the limit of
ψn(Mψ,Y ).

In the case of extended quadratic-like maps, the foliation of H by the level sets of the
inner class is preserved by Rp. If we embed the Mandelbrot set M into H by sending c to
z2+c, thenM provides a transversal to the leaves of this foliation. The induced dynamics on
M is many-to-one; the tuning map x 7→ c∗x is a particular inverse branch of the dynamics.
Iterated tuning converges (at least for c ∈ R) to the point f(z) = z2 + c∞ on the stable
manifold of Rp, and then the fixed point F̃ is simply the limit of Rn

p (f).
In both cases, the objects in a given leaf of the foliation lie in a single quasiconformal

conjugacy class.
The first stage of the construction yields a special geometrically infinite object (a totally

degenerate group Mψ,Y or an infinitely renormalizable map z2 + c∞) as a limit of geomet-
rically finite ones (quasifuchsian groups or critically finite maps). In the second stage
(iteration of ψ or Rp), the dynamical system does not change: we simply view it from a
varying perspective, by changing the choice of generators for the group, or by renormalizing
the mapping.

The objects Mψ,Y and f each admit an approximate symmetry of the desired type: ψ
can be realized by a quasi-isometry on Mψ,Y , and f is quasiconformally conjugate to fp.
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By re-marking or renormalization, one passes deeper into the structure of these geometri-
cally infinite objects. The deep structure is more rigid, and in the limit the approximate
symmetry becomes exact (isometric or conformal).

To show the symmetry becomes exact, it suffices to establish rigidity of geometric limits.
In the hyperbolic setting we have used rigidity of manifolds with injectivity radius bounded
above; for renormalization, the rigidity of towers. Note that the quadratic-like germ [F ] of
the fixed point of renormalization is not quasiconformally rigid in its own right; its rigidity
comes about when it is embedded in the tower T∞, which records that fact that F comes
from high renormalizations of f .

Open problems. In conclusion we record some directions for further study.

1. Do the iterated tunings c∗n converge when c is a strictly complex superstable point
in the Mandelbrot set?

2. Do the renormalizations of the limiting map z2 + c∞ have definite moduli?

3. Let f(z) = z2+c be an infinitely renormalizable mapping with bounded combinatorics
and definite moduli. Does the Julia set of f have Hausdorff dimension two? Is its
area zero?

It is known that the limit set of Mψ,Y has Hausdorff dimension two and measure zero,
where Mψ,Y is the totally degenerate point on the boundary of a Bers slice arising as
a limit of Q(ψ−n(X), Y ). The dimension two result was proved by Sullivan in the case
where S is closed [Sul1]; more generally, Bishop and Jones have shown the limit set of
any geometrically infinite, finitely generated Kleinian group has Hausdorff dimension
two [BJ]. The measure zero result was established by Thurston [Th1, §8]; see also
[Bon]. On the other hand, examples of polynomials with Julia sets of positive area
have been announced by Nowicki and van Strien [NS].

4. Let T be a bi-infinite tower with bounded combinatorics and definite moduli. Does
T act ergodically on C? That is, if A ⊂ C is a set of positive measure such that
f−1
s (A) ⊂ A for all maps fs in T , does A = C a.e. ?

This question is suggested by the known ergodicity of the action of the fundamental
group of Mψ on Ĉ, also established in [Th1, §8].

5. What is the analogue of bounded combinatorics in the setting of Kleinian groups?

For example, much of the theory discussed for ψn should work for an arbitrary se-
quence ψn ∈ Mod(S), subject to the condition that the geodesic segments from X to
ψn(X) in Teich(S) lie over a compact set in moduli space. When S is a punctured
torus, this condition is related to continued fractions of bounded type. What property
of ψn corresponds to this Diophantine condition on higher genus surfaces?
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Figure 10.3. Self-similarity in the Mandelbrot set.

6. Is the Mandelbrot set self-similar about c∞?

The self-similarity of the real bifurcation locus about the Feigenbaum point is one of
the basic renormalization conjectures. The self-similarity factor is conjecturally equal
to the expanding eigenvalue λ = 4.66920 . . . of the renormalization operator R2 at its
fixed point.

See Figure 10.3 for two blowups of the Mandelbrot set about the Feigenbaum point.
The conjectural self-similarity of M about generalized Feigenbaum points is discussed
in detail in [Mil].

7. Is the boundary of a Bers slice BY self-similar about Mψ,Y ?

Self-similarity of the boundary of Teichmüller space about limits of pseudo-Anosov
mappings was observed in computer investigations by Wright and the author in 1989.
The particular case we studied was a Maskit slice of AH(S), where S is a torus with
one boundary component. A Maskit slice is like a Bers slice, except that instead of
holding one conformal structure fixed, a particular simple curve γ is pinched to a cusp.
(This accidental parabolic makes the Maskit slice easier to compute with.)

The modular group of a punctured torus is SL2(Z), and the simplest pseudo-Anosov
mapping class is ψ = ( 2 1

1 1 ). The corresponding point Mψ,γ in the boundary of a
Maskit slice can be computed as a limit of cusp groups which are naturally labeled
by ratios of successive Fibonacci numbers.

Figure 10.4 depicts a single period of the Maskit boundary, together with two blowups
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2/3
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1/2
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Figure 10.4. Self-similarity in the boundary of Teichmüller space.
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around the limit point Mψ,γ . The boundary appears to scale by λ = 4.79129 . . . =
(5 +

√
21)/2, which is also the expanding eigenvalue of ψ at its fixed point Mψ in

AH(S). This example appeared in [Mc3]; for more details, see [Wr], [MMW]. The
pictures were drawn by Wright’s computer program, which uses Newton’s method and
Farey fractions to enumerate cusp points on the boundary.

8. Can the ideas of towers, deep points and uniform twisting shed light on other infinitely
renormalizable dynamical systems? Some steps in this direction appear in [NS] for
the Fibonacci kneading sequence, using Lyubich’s generalized quadratic-like maps.
For critical circle mappings, a priori bounds are available by work of de Faria [dF],
and new insights are under development by de Faria and de Melo [dFdM]. Applica-
tions to Siegel disks in the quadratic family appear in [Mc7]. Other approaches to
renormalization contraction are also under development; see for example [Ka].



Appendix A

Quasiconformal maps and flows

In this Appendix we discuss quasiconformal maps and flows in n-dimensional space. The
main result we will develop is:

Theorem A.1 (Quasiconformal integrability) Let v : Sn × [0, 1] → TSn be a continu-
ous, time-dependent quasiconformal vector field on the n-sphere, n > 1, with ‖Svt‖∞ ≤ k
for all t.

Then there is a unique isotopy φ : Sn × [0, 1] → Sn with φ0(x) = x and

dφt
dt

(x) = vt(φt(x)).

The map φt is Kt-quasiconformal, where Kt = exp(ntk).

This theorem is due to Reimann [Rei2]; see also [Ah3]. The tensor Svt measures the
quasiconformal distortion of the vector field vt, as described below.

We begin with an intrinsic discussion of conformal structures and their deformations.
Then we prove a Sobolev-type result: a function with derivatives in BMO satisfies the
Zygmund condition. The Zygmund condition insures that a quasiconformal vector field
has an x log x modulus of continuity, which implies unique integrability. The Theorem
then follows by smoothing and passing to a limit. Several basic estimates and compactness
results for quasiconformal vector fields are also derived.

A.1 Conformal structures on vector spaces

Fix n > 1, and let V be an n-dimensional vector space over R. A metric g on V is a
positive symmetric quadratic form. More precisely, we regard a metric as an isomorphism
g : V → V ∗ such that g∗ = g and 〈g(v), v〉 ≥ 0. The associated norm is given by |v|2g =
〈g(v), v〉.

A conformal structure on V is the choice of a metric up to scale.
Given a linear isomorphism T : (V, g) → (W,h) between metrized vector spaces, the

quasi-isometry constant L(T ) is the least L ≥ 1 such that

1

L
|v|g ≤ |Tv|h ≤ L|v|g

for all v ∈ V . The image of the unit sphere under T lies between spheres of radii L and
1/L.

155
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The conformal distortion of T is measured by the dilatation K(T ), defined to be the
least K ≥ 1 such that

1

K
|detT | ≤

(
|Tv|h
|v|g

)n
≤ K|detT |

for all v 6= 0. Here |detT | is measured using g and h. If T is volume-preserving, then
K(T ) = L(T )n.

It is easy to see K(ST ) ≤ K(S)K(T ), L(ST ) ≤ L(S)L(T ), and the conditions K(T ) = 1
and L(T ) = 1 characterize conformal and isometric linear maps respectively.

The space of conformal structures. Let Conf(V ) denote the space of all conformal
structures on V . The group GL(V ) of automorphisms T : V → V acts transitively on
Conf(V ) on the right, by g · T = T ∗gT .

For any fixed g we may identify Conf(V ) with the homogeneous space

Conf(V ) = (R∗O(V, g))\GL(V ) = SO(V, g)\SL(V )

where R∗ is the center of GL(V ), SL(V ) is the group of automorphisms of determinant one,
and SO(V, g) is the group of orientation-preserving isometries of g.

The Teichmüller metric on Conf(V ) is defined by

d(g, h) =
1

n
logK(I : (V, g) → (V, h)),

where I is the identity map.

Deformations. We now pass to the level of Lie algebras to describe deformations of con-
formal structures. The Lie algebra gl(V ) may be identified with the space of endomorphisms
A : V → V . Let

sym0(V, g) = {A ∈ gl(V ) : A∗g = gA and tr(A) = 0}, and let

so(V, g) = {A ∈ gl(V ) : A∗g = −gA}.

Then

gl(V ) = R⊕ so(V, g) ⊕ sym0(V, g)

is a direct sum decomposition of gl(V ). The first two terms are the Lie algebras of R∗

and SO(V, g). Thus any infinitesimal linear automorphism of (V, g) is the composition of a
dilation, a rotation, and a volume preserving map which stretches at possibly different rates
along orthogonal axes. Only this last transformation distorts the conformal structure.

Therefore sym0(V, g) is naturally identified with the tangent space to Conf(V ) at [g].
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A smooth family of metrics gt with g0 = g determines a path in Conf(V ) and thus a
tangent vector [ġ0] ∈ Tg Conf(V ). To express [ġ0] as an element of sym0(V, g), let

A =
1

2
g−1
0 ◦ ġ0 ∈ gl(V ). (A.1)

(Here ġ0 ∈ Hom(V, V ∗)). We claim

A− 1

n
tr(A)I = [ġ0] ∈ sym0(V, g); (A.2)

that is, the tangent vector to this path is the trace zero part of A. Indeed,

d

dt
(I + tA)∗ ◦ g ◦ (I + tA)

∣∣∣∣
t=0

= A∗g + gA

=
1

2
(ġ0

∗(g−1
0 )∗g + gg−1

0 ġ0) = ġ0,

using the fact that metrics and their derivatives are invariant under ∗. Thus A ∈ gl(V )
infinitesimally moves g by ġ0, so the projection of A to sym0(V ) represents [ġ0].

For A ∈ sym0(V, g) = Tg Conf(V ), let

‖A‖ = sup
v 6=0

|Av|g
|v|g

. (A.3)

This norm is the infinitesimal form of the Teichmüller metric d(g, h). It determines a Finsler
structure on Conf(V ) (only in dimension two is this structure Riemannian). For any smooth
path gt, we have

d(g0, g1) ≤
∫ 1

0
‖ [ġt] ‖ dt. (A.4)

Here ‖ [ġt] ‖ is measured using the norm on Tgt Conf(V ). (This formula follows easily from
the fact that K(I + ǫA) = 1 + nǫ‖A‖+O(ǫ2).)

Any two metrics are joined by a geodesic such that equality holds in the expression
above; however for n ≥ 3 these geodesics are generally not unique, even locally.

A.2 Maps and vector fields

A Riemannian metric on a smooth n-manifold M is a smoothly varying metric g(x)
on the tangent spaces TxM . A conformal structure on M is the choice of a Riemannian
metric up scale; that is, g(x) and α(x)g(x) determine the same conformal structure, for any
smooth function α(x) > 0.
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Let f : (M,g) → (N,h) be a homeomorphism between Riemannian n-manifolds.

Definition. The mapping f is K-quasiconformal if the distributional first derivatives of f
are locally in Ln, and the differential

Df(x) : (TxM,g(x)) → (Tf(x)N,h(f(x)))

satisfies K(Df(x)) ≤ K almost everywhere. (If M and N are Riemann surfaces it is also
conventional to require f to be orientation-preserving.)

Similarly, f is an L-quasi-isometry if L(Df(x)) ≤ L almost everywhere (in this case the
derivatives are in L∞).

The simplest conformal manifold is Rn with the Euclidean metric |x|2 =∑
x2i . If f is a

homeomorphism between domains in Rn, with the entries in its Jacobian matrix

Df =

[
∂fi
∂xj

]

locally in Ln(Rn), then f is K-quasiconformal if and only if the eigenvalues of the matrix

|detDf(x)|−2/nDf(x)∗Df(x)

lie in the interval [K−2/n,K2/n] for a.e. x.

Next we wish to describe vector fields which generate quasiconformal flows. Let v :
M → TM be a continuous vector field on (M,g). Let

Qv =
1

2
g−1Lv(g),

where Lv(g) denotes the Lie derivative of the metric g. The conformal strain Sv is the
distributional section of sym0(TM,g) defined by

Sv = Qv − 1

n
tr(Qv)I, (A.5)

where I denotes the identity map; that is, Sv is the traceless part of Qv.

The conformal strain is an infinitesimal linear map of the tangent space to itself, which
transports the metric g(x) to the pullback of g under the infinitesimal diffeomorphism
generated by v, up to rescaling so the volume element is preserved. In other words,

Sv(x) = [Lv(g)(x)] ∈ Tg(x)Conf(TxM).

The formula for the strain comes from (A.1) and (A.2).



A.2. Maps and vector fields 159

The conformal strain depends only on the conformal class of g. We can check this
directly: for any smooth function α > 0,

(αg)−1Lv(αg) = α−1g−1((vα)g + αLv(g)) = α−1(vα)I + g−1Lv(g);

removing the trace and dividing by 2, we find the strain relative to αg is the same as for g.

Definition. A vector field v is k-quasiconformal if the strain distribution Sv is in L∞,
and if

‖Sv‖∞ = ess. supM ‖Sv(x)‖ ≤ k.

Here ‖Sv(x)‖ is the operator norm determined by g(x) using (A.3).

On a domain in Rn, we can write v(x) =
∑
vi(x) ∂/∂xi; then

Sv =
∑

i,j

(Sv)ij dx
i ⊗ ∂

∂xj

where

(Sv)ij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

n

∑

k

∂vk
∂xk

.

A Riemannian manifold (M,g) is conformally flat if it is locally conformally equivalent
to Rn. Riemann surfaces, spheres, and spaces of constant curvature are all conformally flat.
Stereographic projection gives a conformal model of the sphere Sn as Rn ∪ ∞, with the
inversion R(x) = x/|x|2 providing a chart in a neighborhood of infinity. In the sequel we
will only be interested in conformally flat manifolds, so the local picture of domains in Rn

will suffice.

Riemann surfaces and Beltrami differentials. On a Riemann surface X, there is a
natural sense in which S = ∂. This is not too surprising, since S annihilates conformal
vector fields and ∂ annihilates holomorphic vector fields.

To make the equation S = ∂ precise, recall there is a natural splitting TX ⊗R C =
T′X ⊕ T′′X, where T′X is the holomorphic tangent bundle of X, and T′′X is its complex
conjugate. For a section v̂ : X → T′X, ∂v̂ is a Beltrami differential, that is a section of
Hom(T′′X,T′X).

The composition of TX →֒ TX⊗C with projection to T′X gives a natural isomorphism
TX ∼= T′X. Thus a real vector field v determines a complex vector field v̂ : X → T′X,
which is characterized by v = 2Re(v̂). There is a similar isomorphism

sym0(TX) ∼= Hom(T′′X,T′X) ⊂ Hom(TX,TX) ⊗ C,

also characterized by s = 2Re(ŝ).
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We claim these isomorphisms send the operator S to the operator ∂; that is,

v = 2Re(v̂) =⇒ Sv = 2Re(∂v̂).

This is easily verified in terms of a local coordinate z = x+ iy. If

v = s
∂

∂x
+ t

∂

∂y
, then v̂ = (s+ it)

∂

∂z
,

and

∂v̂ =
∂

∂z
(s+ it)

dz

dz
=

1

2
(sx − ty + i(sy + tx))

dz

dz
,

where the subscripts denote differentiation. With respect to the basis {∂/∂x, ∂/∂y} we have

dz

dz
= (dx− idy)⊗ 1

2

(
∂

∂x
− i

∂

∂y

)
=

1

2


 1 −i

−i −1


 ,

and thus

2Re(∂v̂) =
1

2


 sx − ty sy + tx

sy + tx ty − sx


 = Sv.

The operator norm defined on sym0(TX) by (A.3) corresponds to the usual norm on Bel-
trami differentials, ‖µ(z)dz/dz‖ = |µ(z)|.

In the sequel we will treat v and v̂ interchangeably, as well as Sv and ∂v, implicitly
making use of the natural isomorphisms just discussed.

For any point x on a Riemann surface X, the space Conf(TxX) with its Teichmüller
metric is isometric to a hyperbolic plane of constant curvature −4. There is a natural
identification between Conf(TxX) and the unit ball in sym0(TxX), coming from the Poin-
caré model for the hyperbolic plane. A smooth map f : X → Y between Riemann surfaces
determines a section µ = [f∗g] of the bundle of hyperbolic planes Conf(TX), where g is any
metric representing the conformal structure on Y . With respect to the natural identification
between sym0(TxX) and the Beltrami differentials at x, the section µ is the same as the
complex dilatation of f , given in local coordinates by

µ =
fz
fz

dz

dz
.

Conformal vector fields. A continuous vector field w is conformal if Sw = 0 as a
distribution. By ellipticity considerations, a conformal vector field is smooth. Indeed, on



A.2. Maps and vector fields 161

Rn the condition Sw = 0 is equivalent to the system of equations

∂wi
∂xj

= −∂wj
∂xi

(i 6= j),

∂wi
∂xi

=
1

n

∑

k

∂wk
∂xk

.

Thus for i 6= j we have

∂2wi
∂x2j

= − ∂2wj
∂xi∂xj

= − 1

n

∂

∂xi

∑ ∂wk
∂xk

= −∂
2wi
∂x2i

,

which implies

(n− 1)
∂2wi
∂x2i

+
∑

i 6=j

∂2wi
∂x2j

= 0.

But up to an affine change of coordinates this is just Laplace’s equation, so any weak
solution is automatically smooth.

The global conformal vector fields on the n-sphere form a finite-dimensional space (iso-
morphic to the Lie algebra so(n+ 1, 1)). Regarding Sn as Rn ∪ {∞}, n > 1, the conformal
vector fields are those of the form

w(x) = w0 +Ax+ 2〈w∞, x〉x− |x|2w∞.

Here w0 and w∞ are vectors in Rn, and A : Rn → Rn is a linear map whose symmetric
trace-free part vanishes. Regarded as vector fields on the sphere, the first two terms vanish
at infinity; the last two terms give a parabolic vector field, vanishing at x = 0, but nonzero
at infinity when w∞ 6= 0. When n = 2 we may identify S2 with Ĉ; then the conformal
vector fields are given by

w(z) = (w0 + az + w∞z
2)
∂

∂z
,

where w0, a and w∞ are arbitrary complex numbers.

Further properties of quasiconformal maps.

1. A K-quasiconformal mapping is absolutely continuous with Radon-Nikodym deriva-
tive equal to |detDf | almost everywhere [Vai, Thm. 33.3]. For any ball B,

∫

B

∣∣∣∣∣
∂fi
∂xj

∣∣∣∣∣

n

≤ K

∫

B
|detDf | = vol(fB);

this is why one expects derivatives locally in Ln.
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2. A homeomorphism f between conformally flat manifolds is K-quasiconformal if and
only if any path family Γ of finite modulus satisfies

1

K
mod(Γ) ≤ mod(f(Γ)) ≤ Kmod(Γ).

See [Vai, Thm. 32.3].

In dimension n ≥ 3 there are many possible alternative measures of the dilatation of
a quasiconformal map; see [Vai], [Res] and [Ah4] for examples. The direct connection
with the modulus of a path family makes the present definition especially convenient.
For example, it facilitates the proof of:

3. A homeomorphism f : (M,g) → (N,h) which is a uniform limit of K-quasiconformal
homeomorphisms is itself K-quasiconformal. For domains in Rn this is proved in
[Vai, Cor. 37.3]. The generalization to Riemannian manifolds is immediate, since on
a small scale any continuous Riemannian metric is almost isometric to a flat metric.

4. A K-quasiconformal map f : Bn → Bn defined on the open unit ball extends by
continuity to a quasiconformal map on ∂Bn = Sn−1. Moreover f extends by reflection
to a K-quasiconformal map on Sn [Vai, Theorem 35.2].

5. In dimension n = 1 it is more natural to use a geometric definition of quasiconfor-
mality; one obtains the classes of quasisymmetric functions, which need not even be
absolutely continuous.

6. General references on quasiconformal geometry in higher dimensions include [Res],
[Vai], [Vuo1] and [Vuo2].

A.3 BMO and Zygmund class

To establish regularity of quasiconformal vector fields, we begin with a result from real
analysis.

Let f : Rn → R be continuous, and let ∇f = 〈∂f/∂xi〉 be the distributional gradient of
f . It is easy to see that f is Lipschitz when ∇f is in L∞. In this section we will show that
f is almost Lipschitz when ∇f is almost in L∞.

Theorem A.2 Let f be a compactly supported continuous function on Rn. If ∇f has
bounded mean oscillation, then f is in the Zygmund class, and

‖f‖Z ≤ Cn‖∇f‖BMO.
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(Here and in the sequel, Cn denotes a constant that depends only on n.)

Definitions. The Zygmund norm of f is

||f ||Z = sup
x,y∈Rn,y 6=0

|f(x+ y) + f(x− y)− 2f(x)|
|y| ,

where |y| denotes the Euclidean norm of y. A function is in the Zygmund class if ||f ||Z <∞.
The BMO norm of f is

||f ||BMO = sup
1

|B|

∫

B
|f(x)− fB | dx,

where the supremum is over all round balls B ⊂ Rn, |B| denotes the volume of B and
fB denotes the mean value of f on B (by convention, ||f ||BMO = ∞ if f is not locally
integrable). If ||f ||BMO <∞, f is of bounded mean oscillation.

Each “norm” is actually a pseudo-norm; ||f ||BMO = 0 if f is constant, and ||f ||Z = 0
if the gradient of f is constant. BMO occurs naturally in connection with quasiconformal
mappings, because ‖f‖BMO is scale-invariant. For example, log |detDφ| is in BMO for
any quasiconformal map φ : Rn → Rn, and if a homeomorphism φ : Rn → Rn satisfies
‖f ◦ φ‖BMO ≤ C‖f‖BMO for every f in BMO, then φ is quasiconformal; see [Rei1].

We say f has modulus of continuity ω(r) if

|f(x)− f(y)| ≤ ω(|x− y|).
For example, one may take ω(r) = O(r) if f is Lipschitz. A Zygmund function is almost
Lipschitz, in the following sense:

Proposition A.3 If f : Rn → R is a bounded function in the Zygmund class, then f has
modulus of continuity

ω(r) =Mr

(
1 +

+
log

1

r

)
,

where M = C(‖f‖Z + ‖f‖∞) for a universal constant C.

Here
+
log x = max(0, log x).

Proof. Given any linear segment I = [x, y] ⊂ Rn, let the slope of f over I be the ratio
(f(x)− f(y))/|x− y|. The Zygmund condition says if we cut I into two subintervals I1 and
I2 of equal length, then the slope over I1 or I2 differs a bounded amount from the slope over
I. After subdiving n times we reach segments of length 2−n|I|. The slope over a segment
of length one or more is bounded by 2‖f‖∞, so the slope over a segment of length greater
than 2−n is at most O(‖f‖∞ + n‖f‖Z).
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Similarly, ||f ||BMO <∞ implies f is almost bounded; for instance f is locally in Lp for
all p <∞. More precisely we have from [JN]:

Theorem A.4 (John-Nirenberg) For any ball B, and 1 ≤ p <∞,

(
1

|B|

∫

B
|f(x)− fB|pdx

)1/p

≤ Cp,n||f ||BMO.

Proof of Theorem A.2. Note that the Theorem is immediate on R1.

The function f(x) can be recovered from its gradient by convolving with the vector-
valued kernel

K(x) =
1

ωn−1

x

|x|n

(where x = (x1, . . . , xn) and ωn−1 is the volume of the unit (n− 1)-sphere in Rn). That is,

f(x) = (∇f ∗K)(x) =

∫

Rn
〈∇f(y),K(x− y)〉 dy.

(See [St3, V.2.3]). Note that K(x) is homogeneous of degree 1− n.

To prove the Theorem, it suffices to show

|f(e1) + f(−e1)− 2f(0)| ≤ Cn||∇f ||BMO

(where e1 = (1, 0, . . . , 0)), since any quotient appearing in the Zygmund norm can be trans-
lated into the form above by precomposing f with a suitable similarity, and this operation
leaves the ratio ||f ||Z/||∇f ||BMO unchanged.

Equivalently, we must bound

∣∣∣∣
∫
〈∇f(x), L(x)〉 dx

∣∣∣∣

in terms of ||∇f ||BMO, where

L(x) = K(e1 − x) +K(−e1 − x)− 2K(−x).

To this end, let Rn = A0∪A1∪A2∪ . . . , where A0 is the ball of radius 2 centered at the
origin, and Ak = {x : 2k < |x| ≤ 2k+1} for k > 0. Let Mk denote the mean of ∇f over Ak.
Since

∫
Rn L = 0, replacing ∇f by ∇f −M0 leaves

∫ 〈∇f, L〉 unchanged, so we may assume
M0 = 0. From the definition of BMO we find by induction

|Mk| = O(k||∇f ||BMO);
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moreover for 1 ≤ p < ∞, Theorem A.4 implies the Lp norm of ∇f −Mk restricted to Ak
satisfies

||(∇f −Mk)|Ak||p ≤ O(|Ak|1/p||∇f ||BMO) (A.6)

(where the implied constants depend only on p and n).

We now bound | ∫ 〈∇f, L〉| by breaking the integral into three pieces.

First, on A0, L(x) has three singularities of type 1/|x|n−1, so L|A0 is in Lq for some
q slightly greater than 1. Since M0 = 0 we may apply (A.6) plus Hölder’s inequality to
conclude ∣∣∣∣

∫

A0

〈∇f, L〉
∣∣∣∣ ≤ ||∇f |A0||p ||L|A0||q = O(||∇f ||BMO).

Similarly, for |x| > 2, L(x) = O(1/|x|n+1); so for k > 0,

||L|Ak||q = O(2−k(n+1)|Ak|1/q).

Choosing p = q = 2, Hölder’s inequality implies

∑

k>0

∣∣∣∣
∫

Ak

〈∇f −Mk, L〉
∣∣∣∣ ≤ O

(∑
2−k(n+1)|Ak| ||∇f ||BMO

)

= O(||∇f ||BMO)

since |Ak| = O(2nk).

Finally, the L1-norm of L|Ak is O(2−k), so

∑

k>0

∣∣∣∣
∫

Ak

〈Mk, L〉
∣∣∣∣ = O

(∑
2−kk||∇f ||BMO

)
= O(||∇f ||BMO)

as well. The sum of these three estimates proves the Theorem.

Hölder continuity. Under the weaker assumption that ∇f is in Lp, one may still conclude
that f is Hölder continuous. Thus the Theorem above can be considered as a limiting case
of the more traditional Sobolev estimate:

Theorem A.5 If f is a compactly supported continuous function on Rn with distributional
derivatives in Lp, n < p <∞, then f is Hölder continuous of exponent α = 1− n/p, and

|f(x)− f(y)| ≤ Cp,n‖∇f‖p|x− y|α.
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Proof. After changing coordinates by a Euclidean similarity, we can reduce to the case
x = 0 and y = e1. Thus it suffices to show

|f(0)− f(e1)| ≤ Cp,n ||∇f ||p.

Equivalently, we must bound ∣∣∣∣
∫
〈∇f(x), L(x)〉 dx

∣∣∣∣

where
L(x) = K(−x)−K(e1 − x)

and, as before, K(x) = (1/ωn−1)(x/|x|n). Near its two singularities, |L(x)| behaves like
1/|x|n−1, while for x large it behaves like |x|n. Thus L(x) is in Lq for 1 < q < n/(n − 1),
and the Theorem follows by Hölder’s inequality.

See also [SZ, Theorem 2(b)], [Zie, Thm. 2.4.4].

A.4 Compactness and modulus of continuity

In this section we show a quasiconformal vector field v has an r log(1/r) modulus of
continuity. This estimate is essential for unique integrability. We also show that when the
strain Sv is small (in L∞ or Lp), then v is uniformly close to a conformal vector field.

The key to these results is the fact that a smooth, compactly supported vector field
v on Rn can be recovered from its strain Sv using a Calderón-Zygmund operator. The
general theory of such operators shows Sv controls ∇v, and the latter controls v via the
Sobolev-type bounds of the preceding section.

Definitions. Suppose the kernel K : (Rn − {0}) → R is homogeneous of degree −n, and
its restriction to the unit sphere is smooth and of mean zero. Then the transformation

T (f)(x) = (K ∗ f)(x) =

∫
K(y)f(x− y)dy

is a Calderón-Zygmund operator on Rn.
These operators arise naturally in the context of conformal geometry. For example, the

condition that K is homogeneous of degree −n says exactly that T commutes with real
dilations: (Tf)(λx) = T (f(λx)).

The integral above is intended in the sense of the principal value

lim
r→0

∫

Rn−B(0,r)
K(y)f(x− y) dy.
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It then makes sense for all compactly supported smooth f , and one can consider its proper-
ties as an operator between various function spaces. For example, T is a bounded operator
on Lp for 1 < p <∞. For p = ∞ we have the following result:

Theorem A.6 Let T be a Calderón-Zygmund operator, and f a bounded measurable func-
tion with compact support. Then Tf has bounded mean oscillation and

||Tf ||BMO ≤ C(T )||f ||∞.

See [St2, Thm. 4], which includes a survey of Calderón-Zygmund theory.

Example. Let v = v(z)∂/∂z be a smooth, compactly supported complex vector field on
C. Then

∂v

∂z
(ζ) = − 1

π

∫

C

1

z2
∂v

∂z
(ζ − z) |dz|2.

The transformation vz 7→ T (vz) = vz is a Calderón-Zygmund operator with kernel K(z) =
−π/z2. If v is quasiconformal, then ||∂v||∞ < ∞, so by Theorem A.6 the derivatives of v
are in BMO.

To state a generalization of this classical formula to Rn, for v =
∑
vi ∂/∂xi let

(Av)ij =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
+

1

n

∑

k

∂vk
∂xk

,

so that (∇vi)j = (Av)ij + (Sv)ij . Then we have from [Ah1]:

Theorem A.7 (Ahlfors) There is a matrix-valued Calderón-
Zygmund kernel Kij(x) such that for any smooth, compactly supported vector field v on
Rn,

(Av)ij = Kij ∗ Sv.

Corollary A.8 Let v = 〈vi(x)〉 be a compactly supported quasiconformal vector field on
Rn. Then the distributional derivatives of v have bounded mean oscillation, and

∥∥∥∥∥
∂vi
∂xj

∥∥∥∥∥
BMO

≤ Cn‖Sv‖∞.

Proof. Combining the last two Theorems, we have ‖Av‖BMO ≤ Cn‖Sv‖∞. Since ‖Sv‖BMO ≤
2‖Sv‖∞, the BMO norm of ∇v = Av + Sv is bounded by (Cn + 2)‖Sv‖∞.
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Applying Theorem A.2 and Proposition A.3 we have:

Corollary A.9 The components of v are in Zygmund class, with ‖vi‖Z ≤ Cn‖Sv‖∞, and

v has modulus of continuity Mr(1 +
+
log(1/r)), where M = Cn(‖Sv‖∞ + ‖v‖∞).

Since the sphere is compact, quasiconformal vector fields on Sn satisfy bounds similar
to those for compactly supported vector fields on Rn. However we must take into account
the fact that the sphere carries a finite-dimensional family of conformal vector fields.

Theorem A.10 Given a quasiconformal vector field v on Sn, there is a conformal vector
field w such that

‖v − w‖∞ ≤ Cn‖Sv‖∞.

Moreover (v−w) has modulus of continuity ω(r) =Mr(1+
+
log(1/r)), where M = Cn‖Sv‖∞.

Here the size of (v − w) and its modulus of continuity are measured using the spher-
ical metric and parallel transport. Equivalently, one can measure the size of v using the
Euclidean geometry of a fixed pair of conformally flat charts.

Proof. Let ṽ denote the image of v in the space of quasiconformal vector fields modulo
conformal vector fields, and let

‖ṽ‖∞ = inf{‖v − w‖∞ : Sw = 0}

be the quotient L∞-norm. We will first show there exists a constant Cn such that

‖ṽ‖∞ ≤ Cn‖Sv‖∞.

The proof is by contradiction. If no such Cn exists, then we can find a sequence vk such
that

‖ṽk‖∞ = 1 while ‖Svk‖∞ → 0.

We can also assume ‖vk‖∞ = 1.
Regarding Sn as Rn ∪ {∞}, choose a smooth function f with compact support on Rn

such that f(x) = 1 when |x| ≤ 1. The strain S(fvk) is the sum of fSvk and terms involving
vk and derivatives of f . Thus

‖S(fvk)‖∞ = O(‖Svk‖∞ + ‖vk‖∞) = O(1);

that is, it is bounded independent of k. But fvk is compactly supported on Rn, so by
Corollary A.9, ‖fvk‖Z = O(1) and vk has a uniform modulus of continuity on {x : |x| ≤ 1}.
Rotating the sphere, we may use the same argument to conclude that vk has a uniform
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modulus of continuity on all of Sn. Since ‖vk‖∞ = 1, the Arzela-Ascoli theorem provides
a subsequence such that vk → v∞ uniformly. But ‖Svk‖∞ → 0, so Sv∞ = 0 and therefore
v∞ is conformal. Since ‖vk − v∞‖∞ → 0, we have ‖ṽk‖∞ → 0, a contradiction.

Therefore ‖ṽ‖∞ = O(‖Sv‖∞). So after correcting v by a conformal vector field w, we
have ‖v‖∞ ≤ Cn‖Sv‖∞ as desired. Moreover ‖S(fv)‖∞ = O(‖Sv‖∞), so the modulus of
continuity of the corrected vector field v is also controlled by ‖Sv‖∞.

Corollary A.11 For fixed k ≥ 1, the space of k-quasiconformal vector fields on Sn, modulo
conformal vector fields, is compact in the uniform topology.

Proof. By the preceding Theorem, any sequence ṽi has a uniformly convergent subse-
quence. By general properties of distributional derivatives,

‖S(lim ṽi)‖∞ ≤ lim inf ‖Sṽi‖∞ ≤ k

so the limit is still k-quasiconformal.

Corollary A.12 A quasiconformal vector field on Sn has modulus of continuity ω(r) =

Mr(1 +
+
log(1/r)), where M = Cn(‖v‖∞ + ‖Sv‖∞).

Proof. The strain ‖Sv‖∞ bounds the modulus of continuity of
(v − w) and the size of ‖v − w‖∞, for some conformal vector field w. From ‖v‖∞ we
obtain a bound on ‖w‖∞, which in turn controls the Lipschitz constant of w. Adding w
back in, we obtain control of the modulus of continuity of v.

Lp bounds on strain and Hölder continuity. Additional control of v can sometimes
be obtained from the Lp-norm

‖Sv‖p =

(∫

Sn
‖Sv(x)‖p dV (x)

)1/p

,

where dV (x) is the spherical volume element. For example, this norm takes into account
the measure of the support of Sv, while ‖Sv‖∞ does not. Parallel to Theorem A.10 we
have:
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Theorem A.13 Let v be a continuous vector field on Sn with strain Sv in Lp, n < p <∞.
Then there is a conformal vector field w such that

‖v − w‖∞ ≤ Cp,n‖Sv‖p.

Moreover (v −w) has a Hölder modulus of continuity ω(r) =Mrα, where α = 1− n/p and
M = Cp,n‖Sv‖p .

Proof. First let v be a smooth compactly supported vector field on Rn. By Ahlfors’
Theorem A.7, (∇v − Sv) = T (Sv) for a (matrix-valued) Calderón-Zygmund operator T .
Since T is bounded on Lp [St3, §II.4.2], we have ‖∇v‖p = O(‖Sv‖p). Then ‖∇v‖p controls
the modulus of Hölder continuity of v by the Sobolev-type Theorem A.5.

Now let v be a vector field on Sn = Rn ∪ {∞}. As in the proof of Theorem A.10, by
applying the bounds on Rn to truncated vector fields fv, we may bound the modulus of
continuity of v in terms of ‖v‖∞ and ‖Sv‖p. The same compactness argument as before
then establishes

inf
Sw=0

‖v − w‖∞ = O(‖Sv‖p).

It follows that ‖Sv‖p also controls the modulus of continuity of
(v − w).

A.5 Unique integrability

A vector field is uniquely integrable if it generates a well-defined flow. The following
criterion for unique integrability is classical:

Proposition A.14 (Osgood) A continuous, compactly supported vector field vt(x) on Rn

is uniquely integrable if

|vt(x)− vt(y)| ≤ ω(|x− y|)

for all t, and

∫ 1

0

dr

ω(r)
= ∞.

Heuristically, if φ1t and φ
2
t are two flows generated by vt,then ∆(t) = sup |φ1t (x)−φ2t (x)|

satisfies |d∆/dt| ≤ ω(∆), which gives

∞ =

∫ t=1

t=0

|d∆|
ω(∆)

≤
∫ 1

0
dt = 1
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if ∆ is not identically zero. See [Hil, p.59].

Example. A field of vectors tangent to the horizontal translates of the graph of y = f(x) =
x3 in the plane is not uniquely integrable (see Figure A.1). The x-axis and the graph of f
are both integral curves through (0, 0).

Figure A.1. A non-uniquely integrable line field.

Since
∫ 1
0 dr/|r log r| = ∞, Osgood’s criterion and Corollary A.12 imply:

Corollary A.15 A continuous quasiconformal vector field

v : Sn × [0, 1] → TSn

with ‖Svt‖∞ ≤ k for all t is uniquely integrable.

We are now in a position to prove a quasiconformal vector field on Sn generates a unique
quasiconformal flow.

Proof of Theorem A.1. Existence of a flow φt integrating vt is classical, by compactness
of Sn × [0, 1] and continuity of vt. Uniqueness of φt is given by the preceding Corollary.

Next we verify quasiconformality of φt under the assumption that vt is smooth. Let g0
be the standard metric on Sn, and let gt = φ∗t (g0). Then for each x ∈ Sn, we obtain a
family of metrics gt(x) and hence a path in Conf(TxS

n). As a section of sym0(TS
n, gt), we

have
[dgt/dt] = [φ∗tLvt(g0)] = φ∗t (Svt),

using (A.1), (A.2) and (A.5). The Teichmüller metric on Conf(TxS
n) is invariant under

linear automorphisms of the tangent space, so ‖ [dgt(x)/dt] ‖ = ‖Svt(φt(x))‖ ≤ k. Now

K(Dφt) = exp(nd(g0(x), gt(x))),
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where d is the Teichmüller metric, and by (A.4) we have

d(g0(x), gt(x)) ≤ kt.

Thus φt is Kt-quasiconformal with Kt = exp(nkt) as stated.
To reduce the general case to the smooth case, let αi = αi(g)dg be a family of smooth

probability measures on the isometry group G of Sn, converging weakly to the point mass
at the identity. Then we obtain a sequence of smooth vector fields vit tending uniformly to
vt by setting

vit = αi ∗ vt =
∫

G
g∗(vt) αi(g) dg.

Since G acts conformally and the strain operator is linear, we have ‖Svit‖∞ ≤ ‖Svt‖∞ ≤ k
for all i. Integrating vit, we obtain a flow φit on Sn such that φit is a Kt-quasiconformal
homeomorphism. By unique integrability, φit → φt uniformly as i → ∞. But a uniform
limit of Kt-quasiconformal mappings is Kt-quasiconformal, establishing the Theorem for vt.



Appendix B

Visual extension

In this Appendix we study natural extensions of vector fields and flows from the sphere
at infinity to hyperbolic space.

For functions, vector fields, and strain fields, there are essentially unique linear operators
which provide extensions from Sn−1

∞ to Hn and commute with hyperbolic isometries. We
consolidate results of Ahlfors, Reimann, and Thurston by showing a quasiconformal vector
field v on the sphere extends naturally to a quasi-isometric, volume-preserving and strain-
energy minimizing vector field ex(v) on Hn. A systematic approach to the various extension
operators, based on representation theory, follows.

Next we introduce the visual distortion Mv(p) of a vector field on the sphere, as seen
from p ∈ Hn. By definition Mv(p) is the minimum, over all conformal vector fields w, of
the maximum visual length of (v − w) as seen from p. The function Mv(p) is bounded on
Hn if and only if v is quasiconformal. We establish a maximum principle for Mv and other
properties that are useful for bounding the visual distortion when v is highly oscillatory.

We then use the visual extension to prolong quasiconformal isotopies on the sphere to
quasi-isometric isotopies on hyperbolic space. If the visual distortion is small along a flow
line, then the resulting isotopy has a small pointwise quasi-isometry constant. Similarly,
if Mvt tends to zero exponentially fast along a geodesic ray, then the isotopy is C1+α-
conformal at the endpoint x on the sphere at infinity. These properties are the key to the
inflexibility results stated as Theorems 2.11, 2.18, 2.19 and 9.15.

We conclude with an example where the visual extension can be computed explicitly.

B.1 Naturality, continuity and quasiconformality

Definitions. Given a vector bundle E → M over a smooth manifold M , let C∞(M,E)
and D(M,E) denote the spaces of smooth and distributional sections of E. The first space
is equipped with the topology of C∞ convergence on compact sets. The second space is
the completion of the first with respect to the weak topology, in which σn → 0 if for some
smooth measure dV on M ,

∫ 〈σn, φ〉 dV → 0 for every compactly supported smooth section
φ of the dual bundle E∗. For brevity R and C will denote trivial bundles.

Consider the Poincaré model for hyperbolic space Hn as the open unit ball in Rn,
bounded by Sn−1

∞ . We equip Sn−1
∞ with the usual metric induced from Rn. Let F (Hn),

V (Hn) and S(Hn) denote the spaces of smooth functions, vector fields and strain fields on
hyperbolic space, and similarly for Sn−1

∞ . Since isometries of hyperbolic space extend to

173
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conformal maps on the sphere, the group Isom(Hn) acts on all these spaces, by g ·ω = g∗(ω).
A continuous linear map T between two of these spaces is natural if T (g · ω) = g · T (ω) for
all isometries g (including those that reverse orientation).

We may now state:

Theorem B.1 (Natural maps) The spaces of natural maps

F (Sn−1
∞ ) → F (Hn), n ≥ 1,

V (Sn−1
∞ ) → V (Hn), n ≥ 2, and

S(Sn−1
∞ ) → S(Hn), n ≥ 3

are one-dimensional, as are the spaces of natural maps

F (Sn−1
∞ ) → V (Hn), n ≥ 1,

F (Sn−1
∞ ) → S(Hn), n ≥ 2, and

V (Sn−1
∞ ) → S(Hn), n ≥ 2.

Each map extends continuously to a map from distributional objects on the sphere to smooth
objects on hyperbolic space.

On the other hand, any natural map

V (Sn−1
∞ ) → F (Hn),

S(Sn−1
∞ ) → F (Hn), or

S(Sn−1
∞ ) → V (Hn)

is zero.

Briefly, there are essentially unique natural maps which preserve or raise the complexity
of tensors, but none which lower complexity. The conditions on n rule out the cases where
the domain or range is trivial; similar restrictions implicitly apply in the results below. The
proof of Theorem B.1 is deferred to the next section.

Next we explicitly describe these natural operators.

Functions. We begin with the map

av : C∞(Sn−1
∞ ,R) → C∞(Hn,R).

For x = 0 the origin in Rn (and the center of the sphere), define

av(f)(0) =
1

vol(Sn−1∞ )

∫

Sn−1
∞

f(x) dV (x),
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the average of f over Sn−1
∞ . Since the metric on the sphere is invariant under rotation,

av(g · f)(0) = av(f)(0) for all g ∈ O(n). The function av(f) is extended to all of hyperbolic
space by the formula

av(f)(x) = av(g · f)(0),
where g ∈ Isom(Hn) satisfies g(x) = 0. This definition is unambiguous because O(n) is the
stabilizer of 0 in Isom(Hn).

By construction, av(f) is natural. Intrinsically, av(f)(x) is the visual average of f
as seen from the point x ∈ Hn. That is, if a direction at x is chosen at random (using
the hyperbolic metric), then av(f)(x) is the expected value of f at the endpoint of the
corresponding geodesic ray.

Proposition B.2 The visual average av(f) of any distribution f is a harmonic function
in the hyperbolic metric.

Proof. The map T : f 7→ ∆av(f) is a natural map from functions to functions. By
Theorem B.1, T (f) is a constant multiple of av(f). But T sends constants to zero, so
T = 0.

When n = 2, the hyperbolic and Euclidean Laplacians are the same, and av(f) is given
by the Poisson kernel.

Vector fields. Now let v be a vector field on the sphere. Since Rn is a vector space, its
tangent bundle is canonically trivial; every tangent vector to the sphere can be translated
to the origin. Using this translation, we define

av(v)(0) =
1

vol(Sn−1∞ )

∫

Sn−1
∞

v(x) dV (x).

Clearly acting on v by a rotation of the sphere changes av(v)(0) by the same rotation. Thus
av(v)(x) can be defined unambiguously by first changing coordinates with a hyperbolic
isometry so x = 0, using the definition above, then transporting back to x. The result is a
natural map

av : C∞(Sn−1
∞ ,TSn−1

∞ ) → C∞(Hn,THn).

Proposition B.3 In the Euclidean metric on Hn ∪ Sn−1
∞ , we have

sup
p∈Hn

| av(v)(p)| ≤ 4 sup
Sn−1
∞

|v|.
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Proof. For any hyperbolic isometry g and any x ∈ Sn−1
∞ , |g′(0)| ≤ 4|g′(x)|. (This bound is

clear when n = 2 and g(z) = (z − a)/(1− az), |a| < 1, in complex coordinates. The case of
n > 2 reduces to this case by composing g with an element of O(n) so a 2-plane through 0
and x is preserved.)

Choose an isometry g such that g(0) = p. Then by naturality,

| av(v)(p)| = |g′(0)| · | av(g∗v)(0)|

≤ |g′(0)| 1

vol(Sn−1∞ )

∫

Sn−1
∞

|v(g(x))|
|g′(x)| dV (x) ≤ 4 sup |v|

as claimed.

The averaging map on vector fields can be described intrinsically as follows. First, the
exponential map identifies the sphere at infinity with the unit sphere Sn−1

x in the tangent
space to x ∈ Hn. Then, a tangent vector on the sphere at infinity gives a tangent vector to
Sn−1
x ⊂ TxH

n, and hence a vector at x. Averaging over Sn−1
x yields av(v)(x).

Strain fields, etc. The same procedure can be applied to tensors of any type; in particular,
we obtain a natural map µ 7→ av(µ) defined on strain fields in this way. Using invariant
differential operators on Hn, one can raise the complexity of tensors. The natural maps
f 7→ ∇ av(f), f 7→ S∇ av(f) and v 7→ S av(v) are of this form. Together with av(·), these
maps represent all the nonzero operators appearing in Theorem B.1.

Continuity. For a continuous function f , it is easy to see that f fits together with av(f) to
give a continuous function on Sn−1

∞ ∪Hn. For vectors and other tensors, we need to correct
by a constant factor to achieve this continuity, because of cancellations due to phase. To
this end we define the extension operator by

ex(f) = av(f) for functions,

ex(v) =
n

2(n − 1)
av(v) for vector fields, and

ex(µ) =
n

n− 2
av(µ) for strain fields.

Theorem B.4 (Continuous extension) If ω is a continuous function, vector field or
strain field on Sn−1

∞ , then ω ∪ ex(ω) is continuous on Sn−1
∞ ∪Hn.

To give the proof, it is convenient to use both the ball model and the upper half-space
model for hyperbolic space. We will use coordinates x = (x1, . . . , xn) for the ball model
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(where Hn = {x : |x| < 1}), and coordinates y = (y1, . . . , yn) for the upper half-space
model (where Hn = {(y1, . . . , yn) : yn > 0}). In these coordinates, the hyperbolic metric
is given by

ρ =
2|dx|

1− |x|2 =
|dy|
yn

.

In the upper half-space model, the boundary of hyperbolic space is Rn−1
∞ ∪ {∞}, where

Rn−1
∞ is the plane yn = 0. To relate the two models, identify Rn−1

∞ with the plane xn =
0 in Rn. Then stereographic projection from x = (0, . . . , 0, 1) sends the unit sphere to
Rn−1
∞ ∪ {∞}. This map extends to a Möbius transformation sending the unit ball to the

upper half-space.
The metric on the sphere induced from Rn goes over to the metric |dy|/σ(y) on Rn−1

∞ ,
where

σ(y) =
1 + y21 + . . .+ y2n−1

2
.

Now let ti be the vector field ∂/∂xi|Sn−1
∞ , projected so it is tangent to the sphere. Then

in the upper half-space model, we claim

t1 = (σ − y21, y1y2, . . . , y1yn−1)

(with respect to the basis (∂/∂y1, . . . , ∂/∂yn−1)). The expression for ti is similar, permuting
coordinates.

To check this formula, note that t1 represents the boundary values of an infinitesi-
mal hyperbolic isometry, translating along the hyperbolic geodesic through x = 0 in the
∂/∂x1-direction. Thus t1 vanishes at the intersections of the x1-axis with the sphere, which
correspond to y = (±1, 0, . . . , 0). Also, t1 points in the ∂/∂x1 direction with spherical
length 1 at x = (0, 0, . . . ,−1); equivalently, t1 = (1/2)∂/∂y1 when y = 0. These properties
are all shared by the formula on the right and uniquely determine t1.

The formula above generalizes the complex expression

t1 =
1

2
(1− z2)

∂

∂z
,

when n = 2 and z = y1 + iy2.
With these preliminaries in place, we can now explicitly calculate av(ω) for some simple

tensors.

Lemma B.5 In the upper half-space model,

av

(
∂

∂y1

)
=

n

2(n − 1)

∂

∂y1
.
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Proof. Let v = ∂/∂y1 on Rn−1
∞ , and let w = ∂/∂y1 on Hn. By symmetry considerations,

av(v) = αw, so we need only compute

α =
〈av(v), w〉
〈w,w〉

at any point in hyperbolic space. This expression is conformally invariant, so we can use
the Euclidean inner product on the ball model and compute it at the origin x = 0. In the
ball model, w(0) = (1/2)∂/∂x1 ; thus 〈w,w〉 = 1/4 and

α = 2

〈
av(v)(0),

∂

∂x1

〉
=

2

vol(Sn−1∞ )

∫

Sn−1
∞

〈
v,

∂

∂x1

〉
dV.

Recall that t1 is the vector field ∂/∂x1, projected so it is tangent to the sphere; thus
α is twice the average of 〈v, t1〉 with respect to the spherical metric. Taking into account
the conformal factor σ between the spherical metric and the Euclidean metric, we have
〈v, t1〉 = (σ − y21)σ

−2. Thus

α = 2

(∫

R
n−1
∞

(σ − y21)
dy

σn+1

)/(∫

R
n−1
∞

dy

σn−1

)
.

Here dy = dy1 . . . dyn. Integrating by parts allows one to express the numerator as a rational
multiple of the denominator, and we find α = 2(n − 1)/n.

A Möbius vector field is an infinitesimal Möbius transformation. On the circle, the
Möbius vector fields are sl2(R); on spheres of higher dimension they are the same as the
conformal vector fields.

Since ex(·) is linear and the parabolic vector fields span the Möbius vector fields, we
have:

Corollary B.6 For any Möbius vector field v on Sn−1
∞ , ex(v) is an isometric vector field

on Hn and v ∪ ex(v) is continuous.

To analyze strain tensors, we need a similar calculation for the average of a symmetric
tensor.

Lemma B.7 In the upper half-space model,

av

(
∂

∂y1
⊗ dy1

)
=

(
n− 2

n

)
∂

∂y1
⊗ dy1 +

I

n(n− 1)
.
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Here I is the identity matrix.

Proof. Let µ = (∂/∂y1) ⊗ dy1 on Rn−1
∞ ; then µ is invariant under translations and real

homotheties, so

av(µ) =
∑

αij
∂

∂yi
⊗ dyj,

and to find the constants it suffices to calculate av(µ) at x = 0. By reasoning similar to
that of the preceding proof, we find

αij =
1

vol(Sn−1∞ )

∫

Sn−1
∞

〈µti, tj〉 dV.

A straightforward integration by parts gives

α11 =

(∫

R
n−1
∞

(σ − y21)
2 dy

σn+1

)/(∫

R
n−1
∞

dy

σn−1

)
=
n− 2

n
+

1

n(n− 1)
.

For i > 1, we have

αii =

(∫

R
n−1
∞

y21y
2
i

dy

σn+1

)/(∫

R
n−1
∞

dy

σn−1

)
=

1

n(n− 1)
;

and for i 6= j the integrand is odd in one variable so αij = 0.

Corollary B.8 If µ =
∑
αij(∂/∂yi) ⊗ dyj is a translation-invariant strain field on Rn−1

∞ ,
then µ ∪ ex(µ) is continuous on Sn−1

∞ ∪Hn.

Proof. Since αij is symmetric, µ is a linear combination of tensors equivalent to (∂/∂y1)⊗
dy1 up to rotations of Rn−1

∞ . By the preceding lemma, ex(µ) and µ agree on Sn−1
∞ apart

from a multiple of I. But this multiple vanishes because tr(αij) = 0.

Proof of Theorem B.4 (Continuous extension). Let v be a continuous vector field, x
a point in the sphere and p a point in hyperbolic space. Applying a rotation if necessary,
we can assume x ∈ Rn−1

∞ . As p → x, the maximum visual length of v on any compact
set disjoint from x tends to zero. Thus if v(x) = 0, then ex(v)(p) → 0, and v ∪ ex(v) is
continuous at x. But we can always find a translation-invariant vector field v0 such that
(v− v0)(x) = 0. By Corollary B.6, v0 ∪ ex(v0) is continuous, so v ∪ ex(v) is also continuous
at x for any continuous vector field v.
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For a continuous strain field, the visual size of µ is independent of the choice of viewpoint
p (since a strain tensor has degree zero). However, when p is near x, most geodesics through
p land near x, so the limiting behavior of ex(µ) still depends only on the germ of µ at x.
Thus if µ(x) = 0, then ex(µ)(p) → 0 as p→ x. As before, we can correct µ by a translation-
invariant strain field µ0 so that (µ−µ0)(x) = 0, and then continuity of µ∪ex(µ) at x follows
from the continuity of µ0 ∪ ex(µ0) provided by Corollary B.8.

Even when v is smooth, we need to check the regularity of v ∪ ex(v) further to assert
that it is uniquely integrable on the closed ball. The following result is sufficient for our
applications (cf. [Th1, Prop. 11.1.1]):

Proposition B.9 (Lipschitz extension) If v is Lipschitz, then
v ∪ ex(v) is Lipschitz on Sn−1

∞ ∪Hn.

Proof. In the ball model for hyperbolic space, Sn−1
∞ is the unit sphere in Rn, so we may

regard v as a map from the sphere to Rn. The Lipschitz condition means |v(x) − v(x′)| ≤
M |x− x′| for some M , where | · | denotes the Euclidean norm on Rn.

To show v∪ ex(v) is Lipschitz, pick p ∈ Hn, p 6= 0; it suffices to show | ex(v)(p)−v(x)| ≤
M ′|p−x| where x is the radial projection of p to the sphere andM ′ is independent of p. Let
v0 be the unique parabolic vector field on Sn−1

∞ ∪Hn vanishing at −x and with v0(x) = v(x).
Since |v(x)| is bounded, the Lipschitz constant of v0 is bounded; moreover, v0 is equal to the
extension of its boundary values. Thus it suffices to show | ex(v − v0)(p)| ≤M ′|x− p|. But
(v−v0) is Lipschitz and vanishes at x, so |(v−v0)(x′)| = O(|x−x′|). Thus the visual length
of (v − v0) as seen from p is bounded, and therefore the hyperbolic length of ex(v − v0)(p)
is also bounded. The conformal factor between the Euclidean and hyperbolic metrics is
approximately |p−x| where p is near the sphere, so | ex(v−v0)(p)| = O(|p−x|) as required.

Strain energy. An invariant inner product between smooth, compactly supported vector
fields on Hn is given by

〈V,W 〉 =
∫

Hn
〈V (x),W (x)〉 ρn+2(x) dx.

Here ρn(x) dx is the hyperbolic volume form, and 〈V (x),W (x)〉 is the Euclidean inner
product (which becomes hyperbolic when scaled by ρ2).
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Similarly, we define an inner product on strain fields by

〈µ, ν〉 =

∫

Hn
tr(µ(x)ν(x)) ρn(x) dx.

A function f on Hn is harmonic if it formally minimizes the Dirichlet energy E(f) =
〈∇f,∇f〉. Similarly, a vector field V is strain-harmonic if it formally minimizes the strain
energy

E(V ) = 〈SV, SV 〉.
More precisely, we require that 〈SV, SW 〉 = 0 for every compactly supported smooth vector
field W . Then

E(V +W ) = E(V ) + E(W ) + 2〈SV, SW 〉 ≥ E(V )

for every compactly supported modification of V . (This calculation is only formal, since
E(V ) may be infinite.)

Integrating by parts, we have

〈SV, SW 〉 = 〈S∗
hSV,W 〉 = −〈ρ−n−2S∗ρnSV,W 〉,

where

S∗
(∑

µij
∂

∂xi
⊗ dxj

)
=

∑ ∂µij
∂xi

∂

∂xj
.

Thus V is strain-harmonic if and only if

S∗
hSV = 0.

When n = 2, this condition is equivalent to ∂ρ2∂V = 0.
The notation S∗

h indicates the hyperbolic adjoint to S (as opposed to the Euclidean
adjoint S∗). Since S is natural, the map

µ 7→ S∗
h(µ) = ρ−n−2S∗ρnµ

(from smooth strain fields on Hn to smooth vector fields on Hn) is also natural with respect
to hyperbolic isometries.

We have seen that the visual extension of a function on the sphere is harmonic; similarly,
the visual extension of a vector field is strain-harmonic.

Theorem B.10 (Quasiconformal extension) Let v be a quasiconformal vector field on
Sn−1
∞ , n ≥ 3, and let V = ex(v). Then V is a smooth, volume-preserving quasi-isometric

vector field, continuously extending v and formally minimizing strain energy. Moreover

SV = ex(Sv),

so ‖SV ‖∞ ≤ (n/(n − 2))‖Sv‖∞.
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Proof. We have already seen that V is a smooth vector field continuously extending v.
The operator v 7→ ∇ · ex(v) is a natural map from vector fields to functions, so by Theorem
B.1 it is zero; thus V is volume preserving. Similarly, S(ex(v)) and ex(Sv) can only differ
by a real multiple; but for v = (y1,−y2, 0, . . . , 0) on Rn−1

∞ , both are continuous extension
of Sv, so they are equal. Clearly

‖SV (0)‖ =
n

n− 2
‖ av(Sv)(0)‖ ≤ n

n− 2
‖Sv‖∞;

since av(·) is natural and the norm of a strain tensor is conformally invariant, the same
bound on SV holds throughout hyperbolic space.

Thus V is quasiconformal; since it is also volume-preserving, it is actually a quasi-
isometric vector field.

The operator µ 7→ S∗
h ex(µ) is a natural map from smooth strain fields on Sn−1

∞ to
smooth vector fields on Hn, so it is zero by Theorem B.1. By continuity, the same is true
when µ is a distributional strain field. But then

S∗
hS(ex(v)) = S∗

h(ex(Sv)) = 0,

so ex(v) is strain-harmonic.

Remark. Since ∇ · V = 0, the conformal strain accounts for the total distortion of the
metric under V = ex(v), so ex(v) is also an infinitesimal harmonic map.

Now let Sn = Rn ∪ {∞}, and let ex(v) denote the pushforward of ex(v) by reflection
through Sn−1

∞ .

Corollary B.11 If v is a k-quasiconformal vector field on Sn−1
∞ , then V = v∪ex(v)∪ex(v)

is a k′-quasiconformal vector field on Sn, where k′ = nk/(n− 2).

Proof. The only possible difficulty is that the distribution SV might be singular along
Sn−1
∞ . To rule this out, as in the proof of Theorem A.1 we express v as the uniform limit of

smooth vectors fields vi = αi∗v, for a sequence of smooth probability measures αi on SO(n)
converging to the δ-mass at the identity. Since vi is Lipschitz, V i = vi ∪ ex(vi)∪ ex(vi) is a
Lipschitz vector field on Sn (Proposition B.9). Thus V i has derivatives locally in L∞, and

‖SV i‖∞ ≤ n

n− 2
‖Svi‖∞ ≤ n

n− 2
‖Sv‖∞ ≤ nk

n− 2
.

Passing to the limit as i→ ∞, we conclude V is k′-quasiconformal.
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Fundamental solutions. Another approach to the properties of ex(v) is to observe that
if v = δ(x − N)∂/∂x1 is a distributional vector field on the sphere, concentrated at N =
(0, 0, . . . , 1), then ex(v) is a positive multiple of yn+1

n ∂/∂y1. This “fundamental solution” is
evidently volume-preserving (it is a shear), and one can also check that it is strain-energy
minimizing. Since the linear span of the orbit of v under Isom(Hn) is dense in the space of
distributional vector fields, these properties are inherited by ex(v) for all vector fields.

B.2 Representation theory

In this section we prove Theorem B.1. The proof will use some basic facts from repre-
sentation theory, which we now recall.

Definitions. A representation of a Lie group G is a continuous linear action of G on a
complete topological vector space V . We refer to V as a G-module; the G-action will be
written (g, v) 7→ g · v. A G-module is irreducible if dimV > 0 and V contains no closed
invariant subspace other than {0} and V . Given a pair of G-modules, HomG(V0, V1) is the
space of continuous linear maps T : V0 → V1 which respect the action of G. For finite-
dimensional irreducible representations over C, Schur’s Lemma states that HomG(V0, V1) is
one-dimensional if V0 and V1 are isomorphic G-modules, and zero-dimensional otherwise.

Let X = G/K be a homogeneous space, where K is a closed subgroup of G. Given a
finite-dimensional K-module V , we obtain a vector bundle E(V ) → X by setting

E(V ) = G×K V = (G× V )/{(gk, v) ∼ (g, k · v) for all k ∈ K}.

The action of G on G/K is covered by a natural action on E(V ), so we obtain an action of
G on the space

IndGK(V ) = C∞(X,E(V ))

of smooth sections of E(V ). This G-module is induced from K to G.

An equivalent description of IndGK(V ) is the following: it is the space of smooth maps
f : G → V such that f(g) = k · f(gk) for all k ∈ K. The action of G is given by
(g0 · f)(g) = f(g−1

0 g).

Theorem B.12 (Frobenius reciprocity) Let V and W be finite-dimensional modules
over K and G respectively. Then there is a natural isomorphism

HomG(W, Ind
G
K(V )) ∼= HomK(W,V ).
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Proof. Let α belong to HomG(W, Ind
G
K(V )). Thinking of α(w) as a smooth map from G

to V , we obtain a linear map β :W → V by setting β(w) = α(w)(id). It is easy to see that
β respects the action of K, so it belongs to HomK(W,V ). The mapping β 7→ α given by
α(w)(g) = β(g · w) inverts this correspondence, so we have an isomorphism.

Proposition B.13 If, in addition, G is compact, then any natural map α : C∞(X,E(V )) →
W is given by pairing with a smooth kernel. Thus α extends continuously to a map from
D(X,E(V )) to W , and we may construct an isomorphism

HomG(Ind
G
K(V ),W ) ∼= HomG(W, Ind

G
K(V )).

Proof. Since G is compact, there are G-invariant inner products on V and W , and there
is a finite smooth G-invariant measure dx on X = G/K. Thus we have an invariant inner
product

〈σ1, σ2〉 =
∫

X
〈σ1(x), σ2(x)〉 dx

on the space of smooth sections of E(V ) over X, and we can identify IndKG (V )∗ with the
space of distributional sections D(X,E(V )). By dualizing, any G-map α : IndGK(V ) → W
determines a map

α∗ : W ∼=W ∗ → D(X,E(V )).

Now for any smooth measure µ = µ(g)dg on G, and any distributional section φ of
E(V ), the convolution µ ∗ φ is a smooth section of E(V ). If µ is concentrated sufficiently
close to the identity, then convolution with µ sends a basis for W ∗ to another basis. But
α∗(µ ∗ w) = µ ∗ α∗(w), so α∗ actually maps W to the space of smooth sections IndGK(V ).

Dualizing once more, we find α∗∗ is an extension of α to the space of distributional sec-
tions. In particular, α 7→ α∗ is an isomorphism from HomG(Ind

G
K(V ),W ) to HomG(W, Ind

G
K(V )).

To apply these ideas to hyperbolic space, we need some facts about the orthogonal group.
For n, d ≥ 0, let Pd(n) denote the space of real-valued polynomials on Rn, homogeneous
of degree d. Let Hd(n) ⊂ Pd(n) be the harmonic polynomials (those annihilated by the
Laplacian ∆ = ∂2/∂x21 + . . . + ∂2/∂x2n).

The space Hd(n)⊗C is an irreducible O(n)-module whenever its dimension is positive.
These irreducible representations are distinct as d varies. We have an invariant splitting

Pd(n) = Hd(n)⊕ |x|2Pd−2(n),
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which implies

dimHd(n) = dimPd(n)− dimPd−2(n) =
(n+d−1

d

)− (n+d−3
d−2

)

(see Table B.1). For proofs of these basic facts see, e.g. [Hel, p.16].

dimHd(n) d = 0 d = 1 d = 2 d = 3 d = 4

n = 0 1 0 0 0 0

n = 1 1 1 0 0 0

n = 2 1 2 2 2 2

n = 3 1 3 5 7 9

n = 4 1 4 9 16 25

Table B.1. Spaces of harmonic polynomials

Next we examine how Hd(n) decomposes as an O(n − 1)-module under the standard
inclusion O(n− 1) ⊂ O(n).

Proposition B.14 For n ≥ 2,

Hd(n) ∼= H0(n− 1)⊕H1(n− 1)⊕ · · · ⊕Hd(n− 1)

as an O(n− 1) module. Consequently, when both spaces have positive dimension,

dimHomO(n−1)(Hd(n),He(n− 1)) =





1 e ≤ d,

0 otherwise.

Proof. Given p ∈ Hd(n), write p =
∑d
e=1 pe(x)x

d−e
n , where pe ∈ Pe(n−1) is independent of

xn. Define T : Hd(n) →
⊕d

1He(n − 1) by projecting pe(x) to the harmonic polynomials of
degree e for each e. Clearly T respects the action of O(n− 1). Suppose p 6= 0, and consider
the least e such that pe 6= 0. Then the part of ∆p of highest degree in xn is (∆pe)x

d−e
n .

Since p is harmonic, we conclude ∆pe = 0, and thus T (p) 6= 0. This shows T is injective.
Surjectivity follows by counting dimensions.

Since the irreducible representations He(n− 1) are distinct as e varies, and each occurs
with multiplicity at most one in Hd(n), the last part of the Theorem follows over C by
Schur’s Lemma. But it is also true over R, since the map T is defined over R.
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Proof of Theorem B.1 (Natural maps). Let G = O(n) and K = O(n − 1), so
X = G/K = Sn−1

∞ . Let N = (0, 0, . . . , 1) ∈ Rn be the “north pole” of the sphere; then K
is the stabilizer of N , and so it acts on the tangent space to N . Thus R, TN (S

n−1
∞ ) and

sym0(TN (S
n−1
∞ )) are K-modules; in fact, they are isomorphic to Hd(n − 1) for d = 0, 1, 2.

Consequently, Vd = IndGK(Hd(n− 1)) is isomorphic to F (Sn−1
∞ ), V (Sn−1

∞ ) or S(Sn−1
∞ ), when

d = 0, 1 or 2. Similarly, G is the stabilizer of the origin x = 0 in hyperbolic space, and
the G-modules R, T0(H

n) and sym0(T0(H
n)) are isomorphic to H0(n), H1(n) and H2(n).

Denote F (Hn), V (Hn) and S(Hn) by W0, W1 and W2.

For 0 ≤ d, e ≤ 2, let α : Ve → Wd be a map which is natural with respect to Isom(Hn).
Then using the identifications above, β(ω) = α(ω)(0) is a G-map from Ve to Hd(n). Con-
versely, any G-map β : Ve → Hd(n) prolongs to a natural map α : Ve → Wd by setting
α(ω)(g0) = g∗β(ω)(0). Indeed, by Proposition B.13, β is given by pairing with a smooth
kernel, so the same is true of α. This shows α(ω) is smooth on Hn and also provides an
extension of α to the space of distributional sections.

Applying Frobenius reciprocity and Proposition B.13, we find the space of natural maps
α : Ve → Wd has the same dimension as HomK(Hd(n),He(n − 1)). By the preceding
Proposition, this dimension is 1 for d ≥ e and zero otherwise (as long as both Hd(n) and
He(n − 1) have positive dimension). As d and e vary we obtain the nine cases stated in
Theorem B.1.

Remark. A vector field v(z)∂/∂z on S2
∞ = Ĉ can be rotated by a complex scalar α. Using

this freedom, we obtain additional mappings v 7→ av(αv) which are natural with respect to
Isom+(H3). However, these maps commute with orientation-reversing isometries only when
α is real, so Theorem B.1 remains valid.

B.3 The visual distortion

A vector field v on the sphere is quasiconformal if and only if ‖Sv‖∞ < ∞. In this
section we introduce a more geometric measure of quasiconformality, the visual distortion
Mv(p). This function measures the visual distance from v to the conformal vector fields,
as seen from p ∈ Hn. The visual distortion plays a pivotal role in establishing “effective
rigidity” for hyperbolic manifolds and conformal dynamical systems (see §2.4 and §9.3).

It is easy to see v is quasiconformal if and only if Mv is bounded. The visual distortion
has the virtue of measuring the behavior of v at different scales; in particular, Mv can
detect that v is uniformly close to a vector field whose distortion is much less than ‖Sv‖∞.
We develop several estimates and a maximum principle based on these ideas.
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Definitions. Let v be a vector field on Sn−1
∞ , and let p be a point in hyperbolic space Hn.

We let ρp denote the visual metric on Sn−1
∞ as seen from p. In the ball model, the visual

length ρ0(v(x)) agrees with the Euclidean length |v(x)| induced from Rn. The visual metric
is defined at other points p = g(0) by naturality (ρp(g∗v) = ρ0(v)).

The visual maximum of v as seen from p is given by

‖v‖∞(p) = sup
x∈Sn−1

∞

ρp(v(x)).

Thus the Euclidean maximum ‖v‖∞ is the same as ‖v‖∞(0).
The visual distortion is defined by

Mv(p) = inf
Sw=0

‖v − w‖∞(p).

The infimum is over all conformal vector fields w on Sn−1
∞ . The visual distortion is the

apparent size of v as seen from p, after correcting by a conformal vector field to make the
size as small as possible.

Theorem B.15 For any continuous vector field v on Sn−1
∞ ,

1

Cn
‖Sv‖∞ ≤ sup

Hn

Mv(p) ≤ Cn‖Sv‖∞.

Thus v is quasiconformal if and only if the visual distortion Mv(p) is uniformly bounded
on hyperbolic space. We also have the pointwise bound

‖SV (p)‖ ≤ CnMv(p),

where V = ex(v).

Proof. We begin by bounding ‖SV (0)‖. Since SV is unchanged by adding a conformal
vector field w to v, we may as well assume ‖v‖∞ ≤ Mv(0). The extension operator is
continuous from the space of distributional vector fields on the sphere to the space of C∞

vector fields on hyperbolic space (Theorem B.1), so a bound on ‖v‖∞ gives a bound on V
and its derivatives at the origin in hyperbolic space. Thus ‖SV (0)‖ ≤ CnMv(0), and by
naturality the same bound holds at every point p ∈ Hn.

Consequently ‖SV ‖∞ ≤ Cn‖Mv‖∞. Now if v is smooth, then SV is a continuous
extension of Sv, and thus ‖Sv‖∞ ≤ ‖SV ‖∞. As we have seen, a continuous vector field can
be approximated by a smooth one by convolving with a smooth measure on the rotation
group, so ‖Sv‖∞ ≤ Cn‖Mv‖∞ for general v.

The reverse inequality follows from Theorem A.10, which states that a quasiconformal
vector field on the sphere can be corrected by a conformal vector field so ‖v‖∞ is bounded
in terms of ‖Sv‖∞. This shows Mv(0) ≤ Cn‖Sv‖∞; by naturality, the same is true at every
point in hyperbolic space, so ‖Mv‖∞ ≤ Cn‖Sv‖∞.
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Remark. A bound on the visual distortion Mv provides much more control over v than
the corresponding bound on SV , where V = ex(v). For example, we have just shown
SV (p) = O(Mv(p)). On the other hand, there exist vector fields vi with Mvi(p) → ∞, but
with SVi → 0 uniformly on compact subsets of Hn.

Let S(p, r) denote the hyperbolic sphere of radius r about p ∈ Hn. The next Proposition
says any vector field that has bounded visual distortion on a large hyperbolic sphere is well-
approximated by a k-quasiconformal vector field, as seen from the center of the sphere.

Theorem B.16 If Mv(q) ≤ 1 for all q ∈ S(p, r), then there is a k-quasiconformal vector
field v0 on Sn−1

∞ such that

‖v − v0‖∞(p) ≤ Cne
−r.

Here k depends only on the dimension n.

Proof. By naturality we can assume p = 0 in the ball model. Let us translate the hypothesis
of the Theorem into bounds in the Euclidean metric.

The Euclidean distance from S(0, r) to Sn−1
∞ is comparable to ǫ = e−r when r is large.

Each point x ∈ Sn−1
∞ projects radially to a point q ∈ S(0, r), and the conformal factor

between ρq and the Euclidean metric ρ0 is approximately 1/ǫ on an ǫ-ball around x. Since
Mv(q) ≤ 1, there is a conformal vector field w such that |v − w| = O(ǫ) on B(x, ǫ). By
compactness the unit sphere is covered by a finite collection of ǫ-balls Bi, each equipped
with a conformal vector field wi such that |v − wi| = O(ǫ) on Bi. We can also assume any
point on the sphere belongs to at most N balls, where N depends only on n.

Choose a smooth partition of unity ρi, with ρi supported on Bi,
∑
ρi = 1 and |∇ρi(x)| =

O(1/diamBi) = O(1/ǫ). Let v0 =
∑
ρiwi. Clearly ‖v(x) − v0(x)‖ = O(ǫ). It remains to

estimate Sv0. For x ∈ Bi, we can replace v0 by v0 − wi without changing its strain. Then

‖Sv0(x)‖ = O


 ∑

Bj∩Bi 6=∅
|∇ρj(x)| · |wj(x)− wi(x)|




= O(N · ǫ−1 · ǫ) = O(1).

Thus v0 is k-quasiconformal for a universal k, completing the proof.
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Corollary B.17 The visual distortion satisfies the following maximum principle: for any
ball B in hyperbolic space,

sup
B
Mv(p) ≤ Cn sup

∂B
Mv(p).

Proof. By homogeneity we can assume sup∂BMv(p) = 1. Then it suffices to showMv(p) =
O(1) for all p ∈ B.

Let c and r > 0 be the center and radius of B. The preceding Theorem gives v = v0+v1
where v0 is k-quasiconformal and Mv1(c) ≤ e−r. Since ρp/ρc = O(er) for any p ∈ B,
we have Mv1(p)/Mv1(c) = O(er) and thus Mv1(p) = O(1). Since v0 is k-quasiconformal,
Mv0(p) = O(1) also. Thus Mv(p) = O(1); more precisely, Mv(p) is bounded by a constant
depending only on n.

Corollary B.18 Suppose vi is a sequence of continuous vector fields on Sn−1
∞ , such that

Mvi(q) ≤ 1 on the sphere of radius ri → ∞ about p ∈ Hn. Then after passing to a subse-
quence and correcting by conformal vector fields, vi converges uniformly to a quasiconformal
vector field v.

Proof. By Theorem B.16 there are k-quasiconformal vector fields ui such that ‖vi −
ui‖∞(p) ≤ ǫi → 0 as i → ∞. By compactness of k-quasiconformal vector fields (Corollary
A.11), there are conformal vector fields wi such that ui + wi converges uniformly to a
k-quasiconformal vector field v∞. Then the same is true of vi + wi.

Remarks. The vector fields vi in the preceding Corollary can be wild on a small scale (for
example, they need not be quasiconformal). However, this scale tends to zero as i→ ∞.

The visual Lλ norm. If one has a bound on both ‖Sv‖∞ and the size of the support
of Sv, then one can improve the estimate for the visual distortion. This improvement is
conveniently phrased in terms of the Lλ norm, where (n− 1) < λ <∞.

Let v be a continuous vector field on Sn−1
∞ with strain Sv in Lλ. The Lλ norm of v

depends on a choice of measure. For each p ∈ Hn, let dVp(x) denote the measure on the
sphere corresponding to the visual metric ρp, scaled to have total mass one. In the ball
model dV0 is a multiple of the (n− 1)-dimensional Lebesgue measure induced from Rn.

The visual Lλ norm of the strain Sv is defined by

‖Sv‖λ(p) =

(∫

Sn−1
∞

‖Sv(x)‖λ dVp(x)
)1/λ

.

By Theorem A.13 we have:
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Theorem B.19 For any p ∈ Hn, and (n− 1) < λ ≤ ∞, we have

Mv(p) ≤ Cλ,n‖Sv‖λ(p).

For example, setting λ = n one obtains:

Corollary B.20 If v is a quasiconformal vector field, and Sv = 0 outside a measurable set
E ⊂ Sn−1

∞ , then

Mv(p) ≤ Cn ‖Sv‖∞ · (visual measure of E as seen from p)1/n.

The case of Ĉ: cross-ratios and quadratic differentials. It is clear that Mv depends
only on Sv, because if Sv1 = Sv2 then v1− v2 is a conformal vector field. Thus it is natural
to try to express Mv directly in terms of µ = Sv, at least up to a bounded factor. In
dimension two this can be done fairly explicitly.

First, call a quadruple of points {a, b, c, d} on the Riemann sphere well-separated (relative
to p ∈ H3) if the visual distance between any two distinct points is at least 1/10. Let w be
the unique conformal vector field such that v(x) = w(x) when x = a, b or c. Then the visual
length of (v − w)(d) measures the distortion of the cross-ratio
[a : b : c : d] under v. It is not hard to show that Mv(p) is comparable to the supre-
mum of the cross-ratio distortion over all well-separated quadruples. But the cross-ratio
distortion is itself comparable to ∣∣∣∣

∫

Ĉ

µφ

∣∣∣∣
/∫

Ĉ

|φ|,

where φ is the quadratic differential dz2/((z − a)(z − b)(z − c)(z − d)) (and µ = ∂v). One
way to check this is to integrate by parts, and use the fact that ∂φ is a distribution concen-
trated at {a, b, c, d}. More conceptually, µ represents a tangent vector to the Teichmüller
space of the four-times punctured sphere Ĉ− {a, b, c, d}, and the ratio above is exactly the
Teichmüller length of this vector (cf. [Ga]). For well-separated quadruples, the cross-ratio
distortion is comparable to this Teichmüller length.

The case of S1. It is natural to define the visual distortion of a vector field on the
circle by simply replacing Sw = 0 with the condition that w is a Möbius vector field (an
element of sl2(R)). Then the vector fields with Mv(p) bounded on H2 are exactly those
which satisfy the Zygmund condition; they are also characterized by ‖SV ‖∞ < ∞, where
V = ex(v). These vector fields generate quasisymmetric flows and form the natural class of
quasiconformal vector fields in dimension one (cf. [AK]).
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B.4 Extending quasiconformal isotopies

We now apply the infinitesimal deformation theory described above to extend a qua-
siconformal isotopy of the sphere to a quasi-isometric isotopy of hyperbolic space. In our
primary case of interest, extension from S2

∞ to H3, any quasiconformal map can be included
in an isotopy by solving the Beltrami equation. As a Corollary, we obtain a quasi-isometry
between the quotient manifolds of any pair of quasiconformally conjugate Kleinian groups.

First assume n ≥ 3.

Theorem B.21 (Visual isotopy extension) Let φ : Sn−1
∞ × [0, 1] → Sn−1

∞ be an isotopy
of the sphere, obtained by integrating a continuous k-quasiconformal vector field v : [0, 1] ×
Sn−1
∞ → TSn−1

∞ ; then:

1. There is a unique isotopy
Φ : Hn × [0, 1] → Hn

obtained by integrating the visual extension Vt = ex(vt).

2. For each t, Φt is a volume-preserving Lt-quasi-isometry of hyperbolic space, where
Lt = exp(nkt/(n− 2)).

3. The map φ ∪ Φ is an isotopy of the closed ball Sn−1
∞ ∪Hn.

4. The pointwise quasi-isometry constant L(Φt, x) satisfies

logL(Φt, x) ≤
∫ t

0
‖SVs(Φs(x))‖ ds.

5. The extension is natural in the sense that for any family gt of hyperbolic isometries
such that

gt ◦ φt = φt ◦ g0
on the sphere, we also have gt ◦ Φt = Φt ◦ g0 on hyperbolic space.

Proof. Let Wt = vt ∪ ex(vt) ∪ ex(vt), where ex(vt) is ex(vt) reflected through Sn−1
∞ .

By Corollary B.11, Wt is a continuous, k′-quasiconformal vector field on Sn, where k′ =
nk/(n − 2). By Proposition B.3, a uniformly small change in vt makes a small change in
ex(vt); thusW is continuous on Sn×[0, 1]. By Theorem A.1, there is a unique quasiconformal
flow Ψ : Sn× [0, 1] → Sn integrating W , and the dilatation K(Ψt) is bounded by exp(nk′t).

Since Wt is tangential to Sn−1
∞ , Ψt maps hyperbolic space into itself, so by restriction

we obtain a flow Φ : Hn × [0, 1] → Hn integrating V . Theorem B.10 implies Φt preserves
hyperbolic volume, so its quasi-isometric distortion is bounded by the nth root of its qua-
siconformal distortion, K(Ψt)

1/n ≤ exp(k′t) = exp(nkt/(n − 2)). The pointwise bound
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follows by considering the family of metrics rhot = Φ∗
t rho0, where rho0 is the hyperbolic

metric, and applying equation (A.4).

Finally we check naturality. Let gt be a family of automorphisms of the closed ball
Sn−1
∞ ∪Hn such that gt ◦ φt = φt ◦ g0. Then

κt =
d

ds
gs ◦ g−1

t

∣∣∣∣
s=t

is vector field which is conformal on the sphere and isometric on hyperbolic space. Substi-
tuting gs = φs ◦ g0 ◦ φ−1

s , we find

κt|Sn−1
∞ = vt − (gt)∗(vt).

(This equation expresses κt as the coboundary of vt.) Applying ex(·) to this equation, we
have

κt|Hn = Vt − (gt)∗(Vt).

But the right-hand side of this equation is the derivative of Φt ◦ g0 ◦ Φ−1
t at time t. Thus

Φt ◦ g0 ◦ Φ−1
t = gt.

Remarks. Since the visual extension of a vector field is smooth, one may wonder if the
more delicate results on unique integrability are really needed in the proof above. In fact
these results play two roles: first, to assure that a flow line for the extended vector field does
not reach the edge of Hn in finite time; and second, to show that the flow on Hn extends the
given flow on Sn−1

∞ . Note that the non-uniquely integrable vector field in Figure A.1 of §A.5
is smooth in the upper and lower half-planes, and tangential to the real axis. Nevertheless
it admits a flow line crossing from one half-plane to the other.

The Beltrami isotopy. Let f : S2
∞ → S2

∞ be a quasiconformal map fixing 0, 1 and ∞.
Then f can be included in a quasiconformal isotopy by solving the Beltrami equation. To
make this precise, identify S2

∞ with the Riemann sphere Ĉ, let µ = (fz/fz)dz/dz be the
complex dilatation of f , let τ = ‖µ‖∞ and let ν = (1/τ)µ. Then there is a unique map
ψ : ∆× Ĉ → Ĉ, sending (λ, z) to ψλ(z), such that:

1. ψ is continuous;

2. for fixed λ, z 7→ ψλ(z) is a quasiconformal map with complex dilatation λν, fixing 0,
1 and ∞;

3. for fixed z, λ 7→ ψλ(z) is holomorphic;
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4. dψλ(z)/dλ = vλ(ψλ(z)), where vλ(z) is a continuous, quasiconformal vector field with
‖∂vλ‖∞ = 1/(1 − |λ|2); and

5. ψτ (z) = f(z).

For a proof, see [AB].

It is convenient to reparameterize the isotopy ψ by hyperbolic arc length along the
interval [0, τ ], scaled so the total length is one. After reparameterization, we obtain an
isotopy φt with a constant bound on ‖∂vt‖∞ instead of a bound which depends on t. The
complex dilatation of φt is tanh(tk)ν. In summary we have:

Theorem B.22 (Beltrami isotopy) Let f : S2
∞ → S2

∞ be a K-quasiconformal map fixing
0, 1 and ∞, and let K = e2k. Then there is a quasiconformal isotopy

φ : S2
∞ × [0, 1] → S2

∞,

also fixing 0, 1 and ∞, obtained by integrating a continuous k-quasiconformal vector field
v, such that φ0 = id and φ1 = f .

The isotopy is natural in the sense that for any Möbius transformations γ0, γ1 such that

γ1 ◦ f = f ◦ γ0,

there are interpolating Möbius transformations γt such that

γt ◦ φt = φt ◦ γ0.

Applying Theorem B.21 to the Beltrami isotopy, we have:

Corollary B.23 Let Mi = H3/Γi, i = 1, 2 be a pair of hyperbolic 3-manifolds, and let φ
be a K-quasiconformal conjugacy between Γ0 and Γ1. Then φ extends to an equivariant
L-quasi-isometry Φ : H3 → H3, where L = K3/2. In particular, M1 and M2 are quasi-
isometric manifolds.

Remarks.

1. Applying the Corollary to the trivial group, we see any quasiconformal map on Ĉ

extends to a quasi-isometry of hyperbolic space.

2. The Beltrami isotopy shows a quasiconformal map on the Riemann sphere can be
factored in a natural way into maps of small dilatation. (Such a factorization result
is unknown in higher dimensions.)
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3. It is worth noting that there are K-quasiconformal mappings fn fixing 0, 1 and ∞,
such that the complex dilatation µn of fn converges weak* to zero, but fn does not
converge to the identity mapping. One such family is given by fn(x, y) = (x, gn(y)),
where g′n(y) = K when y ∈ (i/n, (i + 1)/n) and i is even, and g′n(y) = 1/K when
i is odd. The mapping fn sends horizontal strips of height 1/n to strips of heights
alternating K/n and 1/(nK). The complex dilatation alternates sign from strip to
strip, so it tends weakly to zero; but fn(x, y) → (x,Ay) where A = (K + 1/K)/2.

Because of this phenomenon, it is not possible to estimate the terminal mapping φ1
of a Beltrami isotopy in terms of the size of the vector field v0 = dφt/dt|t=0. That is,
even if the spherical length of v0 is small, the distance from φ1 to the identity map
can be large.

On the other hand, if ‖µ‖∞ = 1 and ψλ(z) is the unique normalized map with complex
dilatation λµ, then we do have

d(z, ψλ(z)) ≤ C(|λ| · ‖v(z)‖ + |λ|2)

for a universal constant C. Here d and ‖v‖ are measured in the spherical metric.
This estimate follows from the Schwarz lemma and the fact that λ 7→ ψλ(z) is a
holomorphic map from the unit disk into Ĉ− {0, 1,∞}. So when ‖v‖∞ is very small,
we at least get an estimate of size |λ|2 for d(φλ(z), z).

4. Extension from S1
∞ to H2 and other quasiconformal isotopy problems are discussed in

[EaM].

Barycenters and the baseball curve. To conclude we briefly discuss a natural con-
struction due to Douady and Earle that extends any homeomorphism f : Sn−1

∞ → Sn−1
∞ to a

smooth mapping
F : Hn → Hn.

Given a probability measure µ on the sphere with no atom of mass 1/2 or more, there is
a unique point β(µ) ∈ Hn from which the measure appears to be balanced. This barycenter
is characterized by the property that if one moves β(µ) to the center 0 in the ball model for
hyperbolic space, then µ is transported to a measure whose Euclidean barycenter is also at
the origin. The barycenter extension of f is defined by F (p) = β(f∗(µp)), where µp is the
visual measure on Sn−1

∞ as seen from p.

Since the construction only uses the elements of hyperbolic geometry, it is natural. That
is, for any pair of hyperbolic isometries g and h, the barycenter extension of g ◦ f ◦ h is
g ◦ F ◦ h.

In dimension n = 2, the extended mapping F is always a diffeomorphism of the hyper-
bolic plane. Unfortunately this property fails to hold in dimension n ≥ 3.
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f

Figure B.2. The equator is sent to a baseball curve.

A counterexample is sketched in Figure B.2. Let f : S2
∞ → S2

∞ be a smooth area-
preserving map that sends the equator to a curve shaped something like the threads on a
baseball. This curve divides the sphere into two interlocking congruent disks. The map
f fixes the north and south poles, but it sends most of the northern hemisphere into the
southern hemisphere, and vice-versa.

We can arrange that A ◦R ◦ f = f ◦A ◦R, where A is the antipodal map and R is a 90◦

rotation fixing the poles. Then by naturality, F maps the geodesic γ joining the poles to
itself with degree one, and F fixes the center 0 of the sphere. But as p moves north along
γ from 0, the mass of f∗(µp) in the southern hemisphere increases, so F (p) initially moves
south. Thus F |γ is not a homeomorphism.

On the other hand, one can show that F is a quasi-isometry whenever the dilatation
K(f) is close enough to one. Thus another method for extending quasiconformal maps on
the sphere is to first factor them into maps of small distortion, extend each of these by the
barycenter construction, and then take the composition. As the factorization becomes finer
and finer, this alternate construction converges to the visual isotopy extension presented
above.

B.5 Almost isometries

The results of the preceding section allow one to construct quasi-isometries of hyperbolic
space with explicit estimates on the pointwise distortion. (Compare Theorem 2.11.) To
exploit the fact that a diffeomorphism has quasi-isometry constant close to 1, we need a
stability result showing such a mapping is globally close to an isometry.

Theorem B.24 (Almost isometries) Let K ⊂ U be a connected compact subset of an
open set in Hn, and let φ : U → Hn be a (1 + ǫ)-quasi-isometric embedding. Then there is
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an isometry ι of Hn such that

sup
K
d(ι ◦ φ(x), x) ≤ C(K,U)ǫ.

To prove this result we use the fact that distances control the location of points.

Lemma B.25 Let {vi, i = 0, . . . , n} be the vertices of a regular n-simplex with edge length
r > 0 in hyperbolic space Hn. Then for any p, q ∈ Hn, if d(p, v0) ≤ R and |d(p, vi) −
d(q, vi)| ≤ ǫ for all i, then d(p, q) ≤ C(n, r,R)ǫ.

Proof. Consider the mapping D : Hn → Rn+1 given by D(p) = (d(p, v0), . . . , d(p, vn)).
It is easy to see D is an injective, proper mapping, using the fact that an n-simplex is
determined up to isometry by the lengths of its edges. (In fact the last n coordinates of
D(p) determine p up to two possible choices, since they determine the simplex (p, v1, . . . , vn)
up to isometry. The first coordinate distinguishes the two possibilities for p.)

Except at the vertices vi, the mapping D is a smooth embedding. Indeed, the gradient
of −d(p, vi) is in the direction of the geodesic from p to vi, and these directions span the
tangent space at p, so long as p is not a vertex. As for the vertices, at p = vi the coordinates
d(p, vj) with i 6= j provide a local diffeomorphism to Rn.

It follows that the function

d(p, q)

supi |d(p, vi)− d(q, vi)|
is bounded above on K ×K −{the diagonal} for any compact set K ⊂ Hn. The Lemma is
an immediate consequence.

Proof of Theorem B.24 (Almost isometries). First we treat the case where K and U
are balls, say K = B(p,R) ⊂ U = B(p, S).

Suppose φk : U → Hn is a sequence of quasi-isometric embeddings, normalized so
φk(p) = p, and such that L(φk) → 1. Then 〈φk〉 is equicontinuous, and φk is nearly volume-
preserving for k ≫ 0. Any uniform limit of a subsequence is a volume-preserving conformal
map, hence an isometry. Thus when ǫ is small, a (1 + ǫ)-quasi-isometry on U is uniformly
close to an isometry on K.

It follows that the convex hull of φ(K) is contained in φ(U) whenever ǫ is sufficiently
small. Since φ−1 is also a (1 + ǫ)-quasi-isometry, we may apply φ−1 to the geodesic joining
φ(p) to φ(q) to conclude that

1

1 + ǫ
d(p, q) ≤ d(φ(p), φ(q)) ≤ (1 + ǫ) d(p, q)
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for any p, q ∈ K.
Now let (v0, . . . , vn) be a regular simplex contained in K with edge length R/2. Then

φ changes the lengths of the edges of the simplex by an additive factor which is O(ǫ), so
there is another regular R/2-simplex (w0, . . . , wn) with d(wi, φ(vi)) ≤ O(ǫ). Let ι be the
unique hyperbolic isometry such that ι(wi) = vi. Then for any point x ∈ K, and any i,
the distances d(x, vi) and d(ι ◦ φ(x), vi) differ by an additive amount which is O(ǫ). By the
preceding Lemma, this implies d(x, ι ◦ φ(x)) = O(ǫ), completing the proof when K and U
are concentric balls.

To treat the case of general (K,U), cover K with a finite collection of balls B(pi, Ri)
such that B(pi, 2Ri) ⊂ U . Then given φ we have isometries ιi such that d(ιi◦φ(x), x) = O(ǫ)
on B(pi, Ri). Whenever two balls overlap, we can conclude that ιi and ιj nearly agree on
the overlap, so d(ιi ◦ φ(x), ιj ◦ φ(x)) = O(ǫ) for all x ∈ K. Since K is connected, any
two balls are joined by a chain of overlapping balls. The total number of balls is finite, so
d(ι1 ◦ φ(x), x) = O(ǫ) for all x ∈ K.

Stability results of this type for Euclidean space appear in [John]. More recent work on
stability of quasi-isometries and quasiconformal maps is surveyed in [Res].

B.6 Points of differentiability

In this section we show that if Mv → 0 rapidly along a geodesic in Hn terminating at
p ∈ Sn−1

∞ , then v is differentiable at p. An integrated form of this result asserts that certain
quasiconformal isotopies are differentiable, indeed nearly conformal, at p.

For convenience, we express these result in terms of the upper half-space model, where
Hn = {y = (y1, . . . , yn) : yn > 0}, and Rn−1

∞ = {y : yn = 0}. Let γ(s) = (0, . . . , 0, e−s) be
a geodesic ray in Hn, parameterized by arc length, converging to the origin y = 0 in Rn−1

∞
as s→ ∞.

A conformal vector field w is linear if w(y) ∈ TyR
n−1
∞ ∼= Rn−1 depends linearly on

y ∈ Rn−1
∞ ; equivalently, if w(0) = w(∞) = 0.

A vector field v is C1+α-conformal at a point p ∈ Rn−1
∞ if for all t sufficiently small,

v(p + t) = v(p) + v′(p) · t+O(|t|1+α),

and t 7→ v′(p) · t is a conformal vector field.

Theorem B.26 (Pointwise conformal vector field) Let v be a vector field on Sn−1
∞ =

Rn−1
∞ ∪ {∞}. Suppose

Mv(γ(s)) ≤ e−αs
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for some α > 0 and for all s ≥ 0. Then v(y) is C1+α-conformal at y = 0. Moreover, if
v(0) = v(∞) = 0, then

|v(y) − v′(0) · y| ≤ C(n, α)|y|1+α

when |y| ≤ 1.

Proof. After correcting by a conformal vector field, we may assume v(0) = v(∞) = 0.
For each j ≥ 0, let pj = γ(j). From the hypothesis on Mv(pj) we find there is a linear
conformal vector field wj such that

‖v − wj‖∞(pj) = O(e−jα).

The linear vector field wj is specified by a linear map Aj : R
n−1 → Rn−1.

Consider the annulus Wj = {y : e−j > |y| > e−j−1}. The visual metric on Wj as seen
from either pj or pj+1 is approximately equal to the Euclidean metric divided by |y|. Thus

|v(y)− wj(y)| = O(e−jα|y|) = O(|y|1+α)

on Wj , and therefore
|Aj+1(y)−Aj(y)|

|y| = O(|y|α).

Consequently ‖Aj−Aj+1‖ = O(e−jα) (using the usual norm on linear maps), so A = limAj
exists and ‖Aj −A‖ = O(e−jα/(1 − e−α)).

Let w be the linear vector field corresponding to the linear map A(y). If |y| < 1, then
y ∈ Wj for some j, and we have |v(y) − w(y)| ≤ C(n, α)|y|1+α. Since v(0) = w(0) = 0, we
have v′(0) = w′(0) and thus w(y) = v′(0) · y.

Since we will only use the integrated form of this assertion in conjunction with the
Beltrami isotopy, we state it for the slightly simpler specific case of the Riemann sphere.

Definition. A map φ : Ĉ → Ĉ is C1+α-conformal at z ∈ C if the complex derivative φ′(z)
exists, and

φ(z + t) = φ(z) + φ′(z) · t+O(|t|1+α)
for all t sufficiently small.

Theorem B.27 (Pointwise conformal map) Let φ : Ĉ × [0, 1] → Ĉ be an isotopy gen-
erated by a continuous, time-dependent vector field v, such that vt(0) = vt(1) = 0. Suppose
the complex derivative v′t(0) exists and for all t,

|vt(z) − v′t(0)z)| ≤ C|z|1+α
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when |z| ≤ 1. Then φ1(z) is C1+α-conformal at z = 0, and

|φ1(z)− φ′1(0)z| ≤ C ′|z|1+α

when |z| < η, where C ′ and η > 0 depend only on C and α.

Proof. Since C is independent of t, vt(z)/z → v′t(0) uniformly in t, and thus v′t(0) is
continuous. Also |v′t(0)| ≤ C since vt(1) = 0. Therefore when |z| < 1, we have

|vt(z)| ≤ |v′t(0)||z| + C|z|1+α ≤ 2C|z|.

By assumption, dφt(z)/dt = vt(φt(z)). Thus the inequality above bounds the rate of change
of log |φt(z)|, and we find that

|φt(z)| ≤ e2C |z|

for all t, when |z| < η = e−2C .

Let

λt = exp

(∫ t

0
v′s(0) ds

)
,

and let At(z) = λtz be the integral of the conformal vector field v′t(0)z. That is, the
time-dependent linear map At(z) is the solution to the differential equation A0(z) = z and
dAt(z)/dt = v′t(0)At(z).

Let δt(z) = φt(z)−At(z). Then for all z < η, we have

∣∣∣∣
dδt(z)

dt

∣∣∣∣ =

∣∣∣∣
dφt(z)

dt
− dAt(z)

dt

∣∣∣∣ =
∣∣vt(φt(z))− v′t(0)At(z)

∣∣

=
∣∣vt(φt(z))− v′t(0)φt(z) + v′t(0)(φt(z)−At(z))

∣∣

≤ C|φt(z)|1+α + C|φt(z) −At(z)|
≤ C(e2C(1+α)|z|1+α + |δt(z)|)
= O(|z|1+α + |δt(z)|).

Since δ0(z) = 0, this differential inequality implies δ1(z) ≤ C ′|z|1+α, where C ′ depends only
on C and α. In particular, |φ1(z) − A1(z)| ≤ C ′|z|1+α, so φ1(z) is C1+α-conformal at the
origin with φ′1(0) = A′

1(0) = exp
∫ 1
0 v

′
s(0) ds.
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B.7 Example: stretching a geodesic.

The vector field V = ex(v), its strain SV and the flow it generates can be computed
explicitly in simple examples.

Consider the quasiconformal flow on the Riemann sphere given by φt(z) = |z|exp(t)z/|z|.
In logarithmic polar coordinates (ρ, θ) where z = exp(ρ + iθ), we have φt(ρ, θ) = (etρ, θ).
The infinitesimal generator of this flow is the time-independent vector field

v = ρ
∂

∂ρ
= z log |z| ∂

∂z
;

and its conformal strain is given by

µ = ∂v =
z

2z

dz

dz
.

Let V = ex(v). By integration, we obtain a volume preserving flow Φt : H3 → H3

extending φt and integrating V . By symmetry, Φt stabilizes the geodesic γ joining 0 to ∞
as well as the plane perpendicular to γ meeting Ĉ in the unit circle.

Any point p in H3 lies in a hyperbolic plane H(p) perpendicular to γ. Introduce cylin-
drical coordinates (r, θ, h) on H3, where (r, θ) are hyperbolic polar coordinates in H(p), and
h(p) is the distance from H(p) to the equatorial plane. (A ray perpendicular to γ travels
distance r(p) before hitting p and then terminates on Ĉ at a point with argument θ.)

In these coordinates the hyperbolic metric becomes

ds2 = dr2 + sinh2(r)dθ2 + cosh2(r)dh2

(using e.g. [Bea, §7.2 and §7.20]). The volume of the cylinder

C(r, h) = [0, r]× [0, 2π] × [0, h]

is therefore πh sinh2(r).

By symmetry, Φt(r, h, θ) = (rt, e
th, θ). Since Φt is volume preserving, and Φt(C(r, h)) =

C(rt, e
th), at t = 0 we have

0 =
d volC(rt, e

th)

dt
= πh

(
sinh2(r) + 2 sinh(r) cosh(r)

drt
dt

)
;

therefore drt/dt = − tanh(r)/2 and

V =
dΦt
dt

∣∣∣∣
t=0

= −tanh(r)

2

∂

∂r
+ h

∂

∂h
.
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A computation, using formula (A.5), shows the strain tensor SV is diagonal in the cylindrical
coordinates (r, θ, h), with diagonal entries

(
−1

2 cosh2(r)
, −1

2
,

1

2
+

1

2 cosh2(r)

)
.
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1

Figure B.3. Strain eigenvalues.

The behavior of the eigenvalues as a function of r is graphed in Figure B.3. At r = 0
the eigenvalues are (−1/2,−1/2, 1) with maximum strain in the h direction; as r → ∞
the radial strain tends to zero and SV tends to the tangential strain µ, with eigenvalues
(0,−1/2, 1/2).

In this example, Φt is a linear stretch with factor et on the geodesic γ. For any hyperbolic
isometry g0(z) = λ0z, we have gt ◦ φt = φt ◦ g0, where gt(z) = λexp(t)z. If |λ0| > 1, then the
group Γt generated by gt is discrete, and the manifold Mt = H3/Γt is a solid torus with core
geodesic of length et log |λ0|. The map Φt descends to a volume-preserving quasi-isometry
from M0 to Mt. The quasi-isometry constant of Φt is exactly e

t; its distortion is maximum
on the geodesic.

Notes and references. The theory of visual extension of vector fields from Sn−1 to Hn

is developed in [Ah2], [Th1, Chapter 11], [Rei3] and [Gai]. Ahlfors studied general strain-
harmonic vector fields on hyperbolic space and showed, with suitable regularity at infinity,
that they can be recovered from their boundary values by visual extension. The idea that
uniqueness of the visual extension is related to Frobenius reciprocity appears in [Earle].
For background in representation theory one may refer to [Kn] and [BD]; decompositions
of representations over subgroups are discussed in [Zel, §XVIII]. The applications of the
visual extension to the generation of flows and quasi-isometries, given in Theorem B.21 and
Corollary B.23, were established by Reimann [Rei3], completing the development begun by
Ahlfors and Thurston.
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Some papers implicitly appeal to compactness of K-quasiconformal maps, but using a
measure of the dilatation different from the one we use here (such as the linear dilatation).
To our knowledge these compactness results are not available in the published literature.



Bibliography

[AK] S. B. Agard and J. Kelingos. On parametric representation for quasisymmetric
functions. Comm. Math. Helv. 44(1969), 446–456.

[Ah1] L. Ahlfors. Conditions for quasiconformal deformations in several variables. In
Contributions to Analysis, pages 19–25. Academic Press, 1974.

[Ah2] L. Ahlfors. Invariant operators and integral representations in hyperbolic space.
Math. Scand. 36(1975), 27–43.

[Ah3] L. Ahlfors. Quasiconformal deformations and mappings in Rn. J. d’Analyse Math.
30(1976), 74–97.

[Ah4] L. Ahlfors. A somewhat new approach to quasiconformal mappings in Rn. In
Complex Analysis, volume 599 of Lecture Notes in Math. Springer, 1977.

[Ah5] L. Ahlfors. Some remarks on Kleinian groups. In Collected Papers, volume 2, pages
316–319. Birkhäuser, 1982.
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