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Preface

Superconductivity was discovered 1911 by Kamerlingh Onnes. During the last centu-
ry, the history of superconductivity has been full of theoretical challenges and practi-
cal developments. In 1986, the discovery of Bednorz and Miiller of an oxide supercon-
ductor with critical temperature (Tc) approximately equal to 35 K, has given a novel
impetus to this fascinating subject. Since this discovery, there are a great number of la-
boratories all over the world involved in research of superconductors with high Tc
values, the so-called “high-Tc superconductors”. The discovery of a room temperature
superconductor has been a long-standing dream of many scientists. The technological
and practical applications of such a discovery should be tremendous. However, the ac-
tual use of superconducting devices is limited by the fact that they must be cooled to
low temperatures to become superconducting. Until 2011, one hundred years after the
first Kamerlingh Onnes' discovery, the highest Tc value is approximately equal to 135
K at 1 atm. The knowledge of the microscopic mechanisms of high-Tc superconductors
should be a theoretical guide in the researches of room temperature superconductivity.

This book contains 15 chapters reporting interesting researches about theoretical and
experimental aspects of superconductivity. Here you will find a great number of
works containing theories and describing properties of high-Tc superconductors (ma-
terials with Tc > 30 K). In a few chapters there are also discussions about low-Tc super-
conductors (materials with Tc < 30 K).

The plan of this book is:

Chapter 1 contains theoretical discussions about the possibility of room temperature
superconductivity.

In the chapters 2, 3, 4 and 5 are discussed interesting theories about physical proper-
ties of superconductors.

Chapter 6 presents report about the electronic transport in an NS system with a pure
normal channel.

In chapter 7 can be found a theoretical discussion concerning the effects of impurities
on a noncentrosymmetric superconductor.



X

Preface

Chapter 8 contains a research about the Meissner effect and the use of superconduc-
tors as magnets.

Chapter 9 is a report about the properties of macroscopic quantum effects in super-
conductors.

Chapter 10 presents theoretical discussions concerning the vortex state of supercon-
ductors.

In Chapter 11 the development of Josephson voltage standards is analyzed.

Chapter 12 contains critical state analysis using a SQUID magnetometer.

Chapter 13 is a theoretical discussion about superconducting transistors.

Chapter 14 presents some physical properties of the superconductor photonic crystal.

Finally, in chapter 15 you can find a theoretical discussion about the electrodynamics
of high pinning superconductors.

I expect that this book will be useful to encourage further experimental and theoretical
research of superconductivity.

Adir Moysés Luiz
Instituto de Fisica, Universidade Federal do Rio de Janeiro
Brazil









Room Temperature Superconductivity

Adir Moysés Luiz
Instituto de Fisica, Universidade Federal do Rio de Janeiro
Brazil

1. Introduction

Superconductivity was discovered by Kamerlingh Onnes in 1911. For one century
superconductivity has been a great challenge to theoretical physics. The first successful set of
phenomenological equations for superconducting metals was given by F. London in 1935. Yet,
in 1950, almost 40 years after the discovery of this phenomenon, there was not any adequate
microscopic theory of superconductivity. However, by 1935, single elements necessary to a
successful theory to explain superconductivity was known to theorists. The peculiar
condensation of a Bose-Einstein gas was predicted by Einstein in 1925. The idea that pairs of
fermions can combine to form bosons has been known since 1931. In 1950 the most relevant
ideas of superconductivity has been summarized by F. London in his famous book
“Superfluids”, volume 1. At last, BCS theory (Bardeen et al., 1957) was the first successful
theory to explain the microscopic mechanisms of superconductivity in metals and alloys.
Practical applications of superconductivity are steadily improving every year. However, the
actual use of superconducting devices is limited by the fact that they must be cooled to low
temperatures to become superconducting. For example, superconducting magnets used in
most particle accelerators are cooled with liquid helium, that is, it is necessary to use
cryostats that should produce temperatures of the order of 4 K. Helium is a very rare and
expensive substance. On the other hand, because helium reserves are not great, the world's
supply of helium can be wasted in a near future. Thus, because liquid nitrogen is not
expensive and the reserves of nitrogen could not be wasted, it is important to use high-T.
superconductors cooled with liquid nitrogen. Superconductors with critical temperatures
greater 77 K may be cooled with liquid nitrogen.

We know that BCS theory (Bardeen et al., 1957) explains the microscopic mechanisms of
superconductivity in metals. According to BCS theory, electrons in a metallic
superconductor are paired by exchanging phonons. According to many researchers (De
Jongh, 1988; Emin, 1991; Hirsch, 1991; Ranninger, 1994), BCS theory is not appropriate to be
applied to explain the mechanisms of superconductivity in oxide superconductors.
Nevertheless, other models relying on a BCS-like picture replace the phonons by another
bosons, such as: plasmons, excitons and magnons, as the mediators causing the attractive
interaction between a pair of electrons and many authors claim that superconductivity in
the oxide superconductors can be explained by the conventional BCS theory or BCS-like
theories (Canright & Vignale, 1989; Tachiki & Takahashi, 1988; Takada, 1993).

Copper oxide superconductors are the most important high-T. superconductors. The
discovery of a room temperature superconductor should trigger a great technological
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revolution. There are claims of synthesis of a room temperature superconductor (see, for
example, www.superconductors.org, 2011). But these claims are not accepted by the
scientific community. It is generally accepted in the scientific literature that the highest T. is
approximately equal to 135 K at 1 atm in the Hg-Ba-Ca-Cu-O system (Schilling & Cantoni,
1993). However, T. in this system can be raised up to 180 K using high external pressures.
We believe that the discovery of a room temperature superconductor would be possible
only when the microscopic mechanisms of oxide superconductors should be clarified.
However, up to the present time, the microscopic mechanisms responsible for high-T.
superconductivity are unclear. In a recent article (Luiz, 2010), we have discussed a simple
model to study microscopic mechanisms in high-T. superconductors. The objective of this
chapter is to present new studies in order to give new theoretical support for that simple
model. We also discuss the possibility of room temperature superconductivity.

2. Possibility of room temperature superconductivity

It is well known that the superconducting state is characterized by a quantum macroscopic
state that arises from a Bose-Einstein condensation (BEC) of paired electrons (Cooper pairs).
Initially, it is convenient to clarify some concepts regarding BEC. It is well known that a
collection of particles (bosons) that follows the counting rule of Bose-Einstein statistics
might at the proper temperature and density suddenly populate the collections ground state
in observably large numbers (Silvera, 1997). The average de Broglie wavelength Agp which is
a quantum measurement of delocalization of a particle, must satisfy this condition. We
know that Agg = h/p, where h is Planck’s constant and p is the momentum spread or
momentum uncertainty of the wave packet. In the other extreme, for particles in the zero
momentum eigenstate, the delocalization is infinite; i.e., the packet is spread over the entire
volume V occupied by the system. It is generally accepted that BEC occurs when the
interparticle separation is of the order of the delocalization Agp (Silvera, 1997).

The thermal de Broglie wavelength Agqp is a measure of the thermodynamic uncertainty in
the localization of a particle of mass M with the average thermal momentum. Thus, Agp is
given by

Aas = h/[3MKT]1/2 )

where k is Boltzmann’s constant. Equation (1) shows that at a certain low temperature T
or/and for a small mass M, Aqp may be spread over great distances. In order to determine
the critical temperature T. at which the addition of more particles leads to BEC it is sufficient
to calculate a certain critical density n = N/V, where N is the number of bosons. This
calculation is performed using Bose-Einstein statistics; according to (Silvera, 1997) and
considering the mass of the boson (Cooper pair) M = 2m*, where m* is the effective mass of
the electron, we obtain

Te = 3.31h2n2/3/ (4n2kM) ?)

The first application of BEC theory to explain “He superfluidity was realized in 1938
(London, 1938). In an important paper (Blatt, 1962), the BEC approach has been extended to
give the same results predicted by BCS theory. Thus, it is reasonable to conclude that the
conventional n-type superconductivity in metals (explained by BCS theory) is a special case
that can also be considered as a phenomenon of BEC of Cooper pairs.
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There are three possibilities of occurrence of BEC: (a) BEC involving just bosons, (b) BEC
involving just fermions, and (c) BEC involving bosons and fermions simultaneously. In (a)
there is a direct BEC without the need of an interaction to bind the bosons. However, in the
cases (b) and (c) BEC is possible only indirectly in two steps: in the first step it occurs the
binding between pairs of fermions giving rise to bosons and, in the second step, BEC of
these bosons may occur.

Because liquid 4He is a system of bosons, the condensation of 4He is a BEC of type (a).
Superfluidity of 3He (Lee, 1997) is an example of BEC of type (b). Because liquid 3He is a
system of fermions, in order to occur BEC, two particles must be binded to form a boson
and, in he next step, a BEC of these bosons may occur. Another example of BEC of type
(b) is the phenomenon of superconductivity in metals and alloys. In the last case, BCS
theory (Bardeen et al., 1957) is a successful theory to explain the microscopic mechanisms
of superconductivity in metals, and in this case, Equation (2) is not appropriate to
calculate the critical temperature T. because we cannot predict the density n of the bosons
formed exchanging phonons. In BCS theory, the critical temperature T, is the temperature
at which a great number of Cooper pairs are formed by exchanging phonons. When the
density n of pairs formed are sufficiently high it is possible to occur a Bose-Einstein
condensation. For example, in pure copper the density n of Cooper pairs formed are not
sufficiently high, thus pure copper cannot become superconductor even at temperatures
in the neighborhood of 0 K.

We study now the possibility of occurrence of a Bose-Einstein condensation in an oxide
material. If possible, this phenomenon should be a BEC of type (c) just mentioned, that is,
the mechanism should involve bosons and fermions simultaneously. In order to verify if
BEC is possible in oxide superconductors, it is sufficient to calculate the order of magnitude
of the critical temperature T. using Equation (2). According to Table 1 in the reference (De
Jongh, 1988), in a p-type copper oxide superconductor, a typical order of magnitude of the
carrier density is given by n = 102/cm3. Considering an effective mass m* = 12m, where m
is the rest mass of the electron, we obtain by Equation (2) the following approximated value:
T. = 100 K. This calculation is very crude because Equation (2) is based on an isotropic
model of an ideal Bose gas. However, oxide superconductors are not isotropic; on the other
hand, pair of electrons (bipolarons) in oxide materials are not an ideal Bose gas because we
must consider Coulomb interactions. But the crude calculation based on Equation (2) is
sufficient to show that BEC in oxide superconductors cannot be ruled out. A more
appropriate formula to calculate T. (supposing BEC) has been derived in (Alexandrov &
Edwards, 2000).

On the basis of the crude calculation based on Equation (2) we will now discuss the
possibility of room temperature superconductivity. Using the same above mentioned values
and considering a carrier density greater than n = 1021/cm3 we conclude that the critical
temperature T. could be enhanced. For example, considering m* = 12m and a carrier density
n =3 x1021/cm3, we obtain a critical temperature T. = 300 K. Thus, if we apply Equation (2),
it is reasonable to conclude that room temperature superconductivity is possible.

According to the type of charge carriers, superconductors can be classified in two types: n-
type superconductors, when the charge carriers are Cooper pairs of electrons and p-type
superconductors, when the charge carriers are Cooper pairs of holes.

We claim that only p-type materials should be considered in the researches to synthesize a
room temperature superconductor. We claim that n-type materials are not qualified to
obtain a room temperature superconductor, because in an n-type material the carriers are
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electrons and these electrons should be binded in order to form bosons. On the other hand,
due to Coulomb interactions, it is very difficult to accept a situation of an ideal Bose gas of
electrons pairs in order to apply Equation (2). However, considering p-type materials, there
are two types of interactions: Coulomb repulsions between electrons, but Coulomb
attractions between electrons and holes. Thus, it is reasonable to accept an approximation
considering an ideal Bose gas of Cooper pairs of holes in order to apply Equation (2). On the
other hand, Bose-Einstein condensation is not restricted only to an ideal Bose gas of bosons
(Blatt, 1962). The phenomenon of Bose-Einstein condensation could also be extended to a
real Bose gas. It is worthwhile to develop a complete theory to extend the predictions of BEC
to a real Bose gas. A fermion-boson mixture of unpaired electrons coexisting and interacting
with Cooper pairs treated as real two-electrons and two-holes has been proposed in a letter
(Tolmachev, 2000). Finally, considering the simple calculation based on Equation (2) we
conclude that the possibility of room temperature superconductivity cannot be ruled out.

3. Superconductors containing oxygen

The most relevant metallic superconductors are pure metals and alloys. BCS theory is
appropriate to explain the microscopic mechanisms of superconductivity in pure metals and
alloys. However, a great number of oxide materials may become non-metallic
superconductors. It seems that BCS theory is not appropriate to explain the microscopic
mechanisms in superconductors containing oxygen. An interesting review about oxide
superconductors is found in the references (Cava, 2000). The history of oxide
superconductors begins in 1933 with the synthesis of the superconductor NbO; with T. = 1.5
K (Sleight, 1995). In 1975 it was discovered the oxide superconductor BaPby7Bip303 (Sleight
etal., 1975) with T. =13 K.

Superconductor Year Tc Reference
NbO 1933 15 Sleight, 1995
K\WO;3 1967 6.0 Remeika et al., 1967
LiTip + xO4 1973 1.2 Johnston et al., 1973
BaPb; . «BiO; 1975 13 Sleight et al., 1975
La;_«Ba,CuOy4 1986 30 Bednorz & Miiller, 1986
YBa,CusOy -« 1987 90 Wu et al., 1987
Ba; . xK\BiO3 1988 30 Cava et al., 1988
BiSrCaCuyOg + x 1988 105 Maeda et al., 1988
TlxBaxCayCusOo + x 1988 110 Shimakawa et al., 1988
HgBaxCaxCu30s + x 1993 130 | Schilling & Cantoni, 1993
NdFeAsO1 2008 54 Yang et al., 2008

Table 1. List of the most relevant superconductors containing oxygen in chronological order.

In 1986, the oxide superconductor BagisLaissCuOs with Tc = 30 K has been discovered
(Bednorz & Miiller, 1986). The expression “high-T. superconductors” has been generally
used in the literature to denote superconductors with critical temperatures higher than 30 K.
After this famous discovery many cuprate high-T. superconductors have been synthesized.
The cuprate superconductor HgBarCa,Cu3Os + x (Hg-1223) has the highest critical
temperature (T. = 135 K) at 1 atm (Schilling & Cantoni, 1993). In 2008, a new type of high-T.
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superconductor containing iron (without copper) has been discovered (Yang et al., 2008). In
Table 1, we list in chronological order the most important discoveries of superconductors
containing oxygen. In Table 1, T. is expressed in Kelvin and x is a variable atomic fraction of
the doping element.

4. Valence skip and double valence fluctuations

What is the principal feature observed in all superconductors listed in Table 1? It is easy to
verify that all metals used in the synthesis of superconductors containing oxygen have
mixed oxidation states. For example, we can verify that in the superconductor NbO, Nb may
have the oxidation states Nb(+III) and Nb(+V). In the bronze superconductor K\WO3;, W
may have the oxidation states W(+IV) and W(+VI). In the superconductor LiTi + xO4, Ti may
have the oxidation states Ti(+II) and Ti(+IV). In the superconductor BaPb; - xBi\O3, Pb may
have the oxidation states: Pb(+II) and Pb(+IV) and Bi may have the oxidation states Bi(+III)
and Bi(+V). Finally, we verify that in the copper oxide superconductors listed in Table 1, Cu
may have the oxidation states Cu(+I) and Cu(+III).

Note also that in the superconductor NdFeAsO,.,, an example of the recent discovery of
iron-based superconductors (Yang et al., 2008), we can verify that Fe may have the oxidation
states Fe(+II) and Fe(+IV) and As may have the oxidation states As(+III) and As(+V).
According to a number of authors the probable existence of double charge fluctuations in
oxide superconductors is very likely (Callaway et al., 1987; Foltin, 1988; Ganguly & Hegde,
1988; Varma, 1988). Spectroscopic experiments (Ganguly & Hegde, 1988), indicate that
double charge fluctuations is a necessary, but not sufficient, criterion for superconductivity.
We argue that these charge fluctuations should involve paired electrons hoping from ions
(or atoms) in order to occupy empty levels. That is, our basic phenomenological hypothesis
is that the electrons involved in the hopping mechanisms might be paired electrons coming
from neighboring ions or neighboring atoms.

The discovery of Fe-based high-T. superconductors (Yang et al., 2008) has reopened the
hypothesis of spin fluctuations for the microscopic mechanisms of high-T.
superconductivity. However, it is interesting to note that Fe may have the oxidation states
Fe(+II) and Fe(+IV). Thus, the conjecture of double charge fluctuations cannot be ruled out
in the study of the microscopic mechanisms in all Fe-based high-T. superconductors. It is
worthwhile to study the competition between double charge fluctuations and spin
fluctuations in order to identify which phenomenon is more important in the microscopic
mechanisms responsible for the condensation of the superconducting state of Fe-based
materials.

What is valence skip? About fifteen elements in the periodic table skip certain valences in all
compounds they form. For example, it is well known that the stable oxidation states of
bismuth are Bi(+IIl) and Bi(+V). The oxidation state Bi(+IV) is not stable. If the state Bi(+IV)
is formed, it occurs immediately a disproportionation, according to the reaction: 2Bi(+IV) =
Bi(+III) + Bi(+V). In the compound BaBiO;, the formal valence Bi(+IV) is understood as an
equilibrium situation involving a mixture of equal amounts of the ions Bi(+III) and Bi(+V).
Other important examples of elements with valence skip are As, Pb and TI. In (Varma, 1988)
there is an interesting discussion about the microscopic physics responsible for the
phenomenon of valence skip. The electronic states of valence-skipping compounds are
described in a conference paper (Hase & Yanagisawa, 2008). Elements with valence skip,
like Bi and Pb, are the most appropriate elements to study the hypothesis of double charge
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fluctuations proposed in this chapter. It has been claimed that all elements with valence skip
may be used in the synthesis of superconductors (Varma, 1988).

5. Oxygen doping by diffusion

The most relevant doping procedures used for the synthesis of cuprate superconductors
have been described in a review article (Rao et al., 1993). Historically, the first synthesis of a
high-T. oxide superconductor was the copper oxide BayLa>xCuOs (Bednorz & Muller, 1986).
This superconductor is synthesized by doping the parent material La,CuO4 with Ba atoms.
Soon after this discovery, it was realized (Schirber et al., 1988) that doping the parent
material LaoCuOy4 with oxygen, without the introduction of any Ba atomic fraction x, it is
also possible to synthesize the superconductor LayCuOs+x. Thus, in this case, we conclude
that the introduction of oxygen is responsible for the doping mechanism of the parent
material LaoCuOy (Schirber et al., 1988).

Oxide materials may become superconductors when a parent material is doped by the
traditional doping mechanism with cation substitution or by a doping mechanism based on
oxygen nonstoichiometry (De Jongh, 1988). If a certain oxide contains a metal with mixed
oxidation numbers, by increasing (or decreasing) the oxygen content, the metal may be
oxidized (or reduced) in order to maintain charge neutrality. Therefore, the synthesis of p-
type superconductors may be obtained by doping the parent materials with an excess of
oxygen atoms and the synthesis of n-type superconductors may be obtained by doping the
parent materials with a deficiency of oxygen atoms.

The most famous example of oxygen doping is provided by the family of p-type oxide
superconductors Y-Ba-Cu-O. It is well known that YBa;CuzOe+x, considering compositions x
between x = 0.5 and x = 0.9, are superconductors, and with a maximum T. corresponding to
a composition x = 0.9. An important example of n-type superconductor is provided by the
recent discovery of the superconductor GdFeAsOy.y, a high-T. superconductor with oxygen-
deficiency; it has been shown that oxygen doping is a good and reliable procedure for the
synthesis of a new family of iron-based high-T. superconductors (Yang et al., 2008).

In the present chapter we shall study only oxygen doping of p-type oxide superconductors.
It is well known that high-T. superconductors are generally synthesized when a parent
material is doped by the traditional doping mechanism with cation (or anion) substitution.
But it seems that doping mechanisms based on oxygen nonstoichiometry are more
appropriate than doping mechanisms based on cation (or anion) substitutions. However,
doping mechanisms based on oxygen nonstoichiometry are not completely clear. In this
chapter we give some ideas to study the microscopic mechanisms associated with oxygen
doping of p-type oxide superconductors.

A normal atmosphere contains about 21% of Oz, 78% of N, and 1% of other gases. Consider
an oxide material. When it is heated in a furnace containing atmospheric air at ambient
pressure or containing an oxygen reach atmosphere, due to diffusion, some O, molecules
may be absorbed in the bulk of the solid material. Thus, oxygen nonstoichiometry is a
necessary consequence of heating processes of oxide materials submitted to ambient
pressure or submitted to atmospheres containing an oxygen excess. The diffusion of oxygen
in binary metal oxides has been studied in a book (Kofstad, 1983).

According to molecular orbital (MO) theory (Petrucci et al., 2000), to obtain the molecular
orbital electronic configuration of O, molecule it is necessary to combine the atomic orbitals
of two O atoms. We obtain the following molecular orbital electronic configuration of O
molecules:



Room Temperature Superconductivity 7

[MO configuration of O]: [inner electrons](c2s)2(6%2s)2(m2p)4(02p)2(1*2p)?

Considering the above MO configuration of O, we conclude that there are two unpaired
electrons in the orbital n*y,. By diffusion and solid state reaction, O molecules may oxidize
metal atoms or ions in the bulk material. Because there are two unpaired electrons, the O,
molecule may pick two electrons in the neighboring metal ions, becoming a peroxide ion
Oy(-II) species. Our hypothesis of formation of peroxide ion species in oxide
superconductors is supported by a great number of spectroscopic measurements (Rao et al.,
1987; Sarma et al., 1987; Dai et al., 1988; Mehta et al., 1992).

In order to understand the microscopic mechanisms of oxygen doping, we give an example.
Consider an oxide material containing bismuth (without copper); for instance, consider
BaBiOs. As we have stressed in Section 4, the bismuth stable oxidation states are Bi(+III) and
Bi(+V). When an oxygen molecule reacts with a Bi(+III) ion, it is reasonable to suppose that
this ion gives two electrons to the O, molecule, that is, we may write the following reaction:

Oy + Bi(+IIT) - O(-II) + Bi(+V)

Considering this oxidation reaction we conclude that the formation of the peroxide species
Ox(-II) corresponds to the creation of a double hole. In many oxide compounds the electrons
or holes may be considered to be localized at lattice atoms forming lattice defects. In such a
case, we may suppose that p-type conduction may involve hopping of electrons from site to
site (Kofstad, 1983). Therefore, in the bismuth example just mentioned, we claim that
conductivity (and superconductivity) may be explained by hopping of electron pairs that
jump from neighboring sites to occupy hole pairs.

It is well known that for p-type superconductors the optimal oxygen doping of high-T.
oxide superconductors corresponds to a certain critical hole content. An under-doped
superconductor is synthesized when the hole content is less than this critical value and an
over-doped superconductor is synthesized when the hole content is greater than this critical
value. The prediction of the optimal doping is an unresolved issue. In the next Section we
propose a simple model to estimate the optimal doping of p-type oxide superconductors.

6. Optimal doping of p-type oxide superconductors containing bismuth
without copper

Our basic hypothesis is that the existence of double charge fluctuations involving paired
electrons may be a key to study the microscopic mechanisms in oxide superconductors. The
essential concept in this hypothesis is that the hopping mechanism involves two paired
electrons, instead of the hopping of a single electron. Our hypothesis may be easily applied
in the oxide superconductors containing Bi (without Cu) because, in this case, it is well
known that Bi (+III) and Bi (+V) are the only stable oxidation states for the Bi ions. Thus,
double charge fluctuations may occur between the ions Bi (+III) and Bi (+V). In this Section
we propose a simple method to calculate the optimal doping of oxide superconductors
containing bismuth without copper and in the next Section we consider oxide
superconductors containing copper without bismuth.

What should be the ideal chemical doping of oxide p-type superconductors containing
bismuth without copper in order to obtain the maximum value of Tc? This optimal doping
should be obtained by cation substitution or by increasing the oxygen content in the
material.
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Let us first suppose equal amounts of the ions Bi (+III) and Bi (+V). In this case the formal
oxidation state of bismuth should be Bi (+IV). Thus, charge fluctuations should be balanced
and the formation of holes is very difficult.

For example, it is well known that BaBiOs is an insulator because in this material the formal
oxidation state of bismuth is Bi (+IV). However, by doping BaBiOs by cation substitution or
by increasing the oxygen content a superconductor may be obtained. Chemical doping may
destroy the balance between the ions Bi (+1II) and Bi (+V). If the ions Bi (+V) are increased, it
is possible to create holes. It is reasonable to suppose that the maximum concentration for
optimal doping should correspond to a ratio [(Bi(+V) ions)/(Bi(+III) ions)] = 2, that is, the
optimal concentration of the ions Bi (+V) should be the double of the concentration of the
ions Bi (+1II). Why we have proposed the ratio [(Bi(+V) ions)/(Bi(+III) ions)] = 2 for optimal
doping? It is well known that T. decreases when the hole concentration is higher than a
certain critical concentration (Zhang & Sato, 1993). This important property is the
nonmonotonic dependence of T. on the carrier concentration, a high-T. characteristic feature
of all oxide superconductors. If the concentration of the ions Bi (+V) are further increased
(and the concentration of the ions Bi (+III) are further decreased), the material becomes
overdoped and T. decreases. Thus, for optimal doping, the bismuth ion concentrations
should be: (2/3)Bi (+V) and (1/3)Bi (+III). In the next section we propose an analogous
simple model to estimate the optimal doping of p-type copper oxide superconductors
(without bismuth).

Now we apply the above simple model to estimate the optimal doping of p-type oxide
superconductors containing bismuth without copper. As an example, we apply our
hypothesis to the material BaoKo4BiOx, a famous oxide superconductor without copper,
with Tc approximately equal to 30 K (Cava et al., 1988).

We shall suppose for the Bi ions the proportionality assumed in the model just suggested,
that is, for optimal doping, we assume that the relative concentrations should be given by:
(2/3)Bi(+V) and (1/3)Bi(+III). Considering the oxidation states Ba(+II) and K(+I) and using
the charge neutrality condition, we have:

12+04+(1/3)(3) + (2/3)(5) - 2x =0 ®)

From Equation (3) we obtain the result:

x =2.97 4)

The result (4) is in good agreement with the value (x = 3) reported in the reference (Cava et
al., 1988).

In the next section we extend the simple model just proposed to estimate the optimal doping
of p-type oxide superconductors containing copper without bismuth.

7. Optimal doping of p-type oxide superconductors containing copper
without bismuth

To apply our hypothesis to a copper oxide superconductor (without Bi) it should be
necessary to suppose the existence of Cu (+I) because we are assuming double charge
fluctuations between the states Cu(+I) and Cu(+IIl). In p-type Cu oxide superconductors,
the existence of the oxidation state Cu(+IIl) is obvious by the consideration of charge
neutrality. Thus, from an experimental point of view, it is very important to verify if the
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oxidation state Cu(+I) is present in the high-T. Cu oxide superconductors. The probable
existence of the states Cu(+I) and Cu(+III) has been verified in the works (Karppinen et al.,
1993; Sarma & Rao, 1988).

It is generally believed that the microscopic mechanisms in a cuprate superconductor
depends only on the ions Cu(+II) and Cu(+III), without the presence of the ions Cu(+I).
Let us suppose that the hopping mechanism involves just a single electron between
Cu(+Il) and Cu(+III); if this single charge fluctuation would be responsible for
superconductivity, we should conclude that the enhancement of Cu(+III) ions should
produce a continuous enhancement of the critical temperature T.. However, it is well
known that T. decreases when the hole concentration is higher than a certain
concentration (Zhang & Sato, 1993). This important property is the nonmonotonic
dependence of T. on the carrier concentration, a high-T. characteristic feature of all oxide
superconductors. Thus, by this reasoning and considering the experimental results
(Karppinen et al., 1993; Sarma & Rao, 1988), we can accept the presence of the mixed
oxidation states Cu(+I), Cu(+II) and Cu(+III) in the copper oxide superconductors. On the
other hand, this conjecture is supported if we consider the copper disproportionation
reaction (Raveau et al, 1988): 2Cu(+II) = Cu(+I) + Cu(+I1I).

What should be the optimal chemical doping of Cu oxide superconductors in order to obtain
the maximum value of T.? Initially, considering the disproportionation reaction (Raveau et
al, 1988): 2Cu(+II) = Cu(+I) + Cu(+Il), we may suppose an equal probability for the
distribution of the copper ions states Cu (+I), Cu (+II) and Cu (+II). Thus, the initial
concentrations of these ions should be (1/3)Cu(+l), (1/3)Cu(+II) and (1/3)Cu(+II).
However, we may suppose that by oxidation reactions, (1/3)Cu(+II) ions may be completely
converted to (1/3)Cu(+III) ions. In this case, the maximum concentration of the Cu(+III) ions
should be: (1/3) + (1/3) = (2/3). Thus, the optimal doping should correspond to the
following maximum relative concentrations: (1/3)Cu(+I) ions and (2/3)Cu(+IIl) ions. That
is, the optimal doping, should be obtained supposing the following concentration ratio:
[(Cu(+111) ions)/ (Cu(+]) ions)] = 2.

We apply this hypothesis to estimate the optimal doping of the famous cuprate
superconductor YBaxCuzOy, where x is a number to be calculated. Using the relative values:
(1/3) for Cu(+I) ions and (2/3) for Cu(+II) ions, we may write the formula unit:
YBaxCuy(+I)Cup(+III)Ox. Considering the oxidation states Y(+III), Ba(+II) and O(-II) and
using the charge neutrality condition, we get:

3+2x2)+(1Ix1)+(2x3)-2x=0 ®)

From Equation (5) we obtain:

x=7.0 6)

The result (6) is in good agreement with the result (x = 6.9) reported in (Kokkallaris et al.,
1999).

Using the simple model just described, we estimate the necessary oxygen content to
obtain the optimal doping of the most relevant p-type cuprate superconductors. It is
important to note that the experimental determination of the oxygen content is a very
difficult task. In Table 2 we have selected a number of works containing this experimental
information.
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Superconductor Predicted Measured REFERENCE
Bag15La1.s5CuOy x=4.1 x=4.0 Bednorz & Miiller, 1986
La,CuOy x=42 x=4.1 Schirber et al., 1988
YBayCuszOy x=70 x=6.9 Kokkallaris et al., 1999
YBayCusOy x=82 x =8.0 Rao et al., 1993
SroCuOy x =317 x=23.16 Hiroi et al., 1993
HgBaxCaxCusOx x =85 x =84 Hung et al., 1997

Table 2. Comparison between the values of oxygen content of copper oxide superconductors
(not containing Bi) predicted by our simple model and the experimental values reported in
the literature.

According to our model, we have used for the copper ions the following relative values:
(1/3) for Cu(+1I) ions and (2/3) for Cu(+III) ions. For the other elements in Table 2, we have
considered the following stable oxidation states: La(+III), Y(+III), Ba(+II), Sr(+II), Ca(+II),
Hg(+II) and O(-II). We verify that the results predicted by the simple model proposed here
are in good agreement with the experimental results listed in Table 2.

8. Discussion

We believe that the simple model proposed in this paper in the case of p-type oxide
superconductors could also be extended to estimate the optimal doping of n-type oxide
superconductors. However, in the case of n-type oxide superconductors, the reaction
produced by oxygen doping is a reduction reaction instead of an oxidation reaction that
occurs in p-type oxide superconductors. Since we have not found in the literature any
experimental determination of the oxygen content in the case of n-type oxide
superconductors we shall not discuss this issue here. This question will be addressed in a
future work.

We have proposed a simple model to estimate the relative concentrations of the ions
involved to estimate the oxygen content for optimal doping of p-type oxide
superconductors. The predictions based on this model are in good agreement with
experimental results reported in the literature (Table 2). However, we emphasize that the
model proposed in this chapter is not a complete theoretical model, it is just a simple
phenomenological model.

Our conjectures can be used to explain some remarkable properties of high-T.
superconductors: (a) the anisotropy is explained considering that the electrons involved in
the hopping mechanisms are 3d-electrons (in the case of copper oxide superconductors); (b)
the order of magnitude of the coherence length (the mean distance between two electron
pairs) is in accordance with the order of magnitude of the distance between the electron
clouds of two neighboring ions; (c) the nonmonotonic dependence of T. on the carrier
concentration is explained by the hypothesis of double charge fluctuations and the optimal
doping model proposed in this chapter.

The theory of bipolaronic superconductivity (Alexandrov & Edwards, 2000) is similar to our
phenomenological model. In the theory of bipolaronic superconductivity, bipolarons are
formed supposing a mechanism to bind two polarons. However, by our hypothesis, it is not
necessary to suppose the formation of bipolarons by the binding of two polarons. We have
assumed that the preformed pairs are just pairs of electrons existing in the electronic
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configurations of the ions or atoms involved in double charge fluctuations. These pairs
should be, for example, lone pairs in atoms or ions or pairs of electrons in the electronic
configurations obtained when Hund'’s rule is applied.

9. Concluding remarks

In this chapter we have studied the most relevant questions about the microscopic
mechanisms of superconductivity in oxide materials. Parts of our arguments may be found
in the list of references in the next Section. However, we believe that our ideas have been
expressed in a clear form for the questions at hand.

The simple model described here is not a theoretical model and cannot be used to account
quantitatively for the microscopic mechanisms responsible for superconductivity in oxide
materials. However, we believe that our assumptions are helpful to the investigations of the
microscopic mechanisms in oxide superconductors. We expect that this simple model will
also be wuseful to encourage further experimental and theoretical researches in
superconducting materials. It is worthwhile to study the details of the role of double charge
fluctuations in the microscopic mechanisms responsible for superconductivity in oxide
materials.

We have stressed in Section 2 that in p-type materials there are two types of interactions:
Coulomb repulsions between electrons, but Coulomb attractions between electrons and
holes. Thus, considering the possibility of a Bose-Einstein condensation, we claim that only
p-type materials are qualified to be considered in the researches to obtain a room
temperature superconductor.

Finally, we suggest some future researches. It is worthwhile to make experiments to verify if
this model is correct. Supposing that this simple model works, it would be possible to
calculate stoichiometric compositions in order to obtain the optimal doping in the researches
to synthesize new oxide superconductors. It is well known that the most important method
in semiconductor technology is obtained by ion implantation techniques. Similarly, we
believe that ion implantation techniques probably will be important in superconductor
technology as well. Thus, we hope that future researches based on ion implantation
techniques could open a new route in the synthesis of high-T. superconductors. These future
researches, using ion implantation, should take advantage of the possibility of double
charge hoping mechanisms, instead of single charge hoping mechanisms existing in the case
of ion implantation in the semiconductor technology.
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1. Introduction

Two different ground states, superconductivity and magnetism, were believed to be
incompatible, and impossible to coexist in a single compound. The Ce based heavy Fermion
superconductor CeCu;,Sip, however, was discovered in the vicinity of magnetic phase Steglich
et al. (1979). This new class of superconductors, which are referred to as "unconventional"
superconductor, demonstrate various novel properties which are not accounted for in the
framework of the BCS theory. Electrons in unconventional superconductors are strongly
correlated through the Coulomb interaction, while strong electron-electron correlations are
not preferable for the conventional BCS superconductors. Modern theory predicts that the
repulsive Coulomb interaction can induce attractive interaction to form superconducting
Cooper pairs as the result of many-body effect

Unconventional superconductivity is often observed nearby a quantum critical point
(QCP), where magnetic instability is suppressed to T = 0 by some physical parameters.
It is invoked that the quantum critical fluctuations, which are enhanced around
QCP, drive the superconducting pairing interactions, instead of the electron-phonon
interaction proposed in the BCS theory. In addition to the novel pairing mechanisms,
unconventional superconductivity shows various novel superconducting states, such as
Fulde-Ferrell-Larkin-Ovchinnikov state and spin-triplet pairing state. ~Unveiling novel
mechanism and resulting novel properties is the main topic of condensed matter physics.
The cobaltate compound is also classified to an unconventional superconductor when we take
the results of nuclear spin-lattice relaxation rate Fujimoto et al. (2004); Ishida et al. (2003),
and specific heat Yang et al. (2005) measurements into account. A power-law temperature
dependence, observed for both physical quantities in the superconducting state, yields the
existence of nodes (zero gap with sign change) on the superconducting gap, and addresses
the unconventional pairing mechanism. Besides, a magnetic instability was found in the
sufficiently water intercalated cobaltates Ihara, Ishida, Michioka, Kato, Yoshimura, Takada,
Sasaki, Sakurai & Takayama-Muromachi (2005). The close proximity of superconductivity
to magnetism in cobaltates lead us to consider that the same situation as heavy Fermion
superconductors is realized in cobaltates.
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In this chapter, the relationship between superconductivity and magnetism will be explored
from the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)
experiments on superconducting and magnetic cobaltate. The principles of experimental
technique is briefly reviewed in §3. Then the experimental results are presented in
the following sections, §4 and §5. Finally, we will discuss the superconducting paring
mechanisms in bilayer-hydrate cobaltate, showing the similarity between cobaltate and heavy
Fermion superconductors.

2. Water induced superconductivity in Na,(H30),Co0, - yH,0

Superconductivity in a cobalt oxide compound was discovered in 2003 Takada et al. (2003).
The hydrous cobaltate Nay(H30),Co0O, - yH,O demonstrates superconductivity when water
molecules are sufficiently intercalated into the compound by a soft chemical procedure. In
contrast, anhydrous Na,yCoO, does not undergo superconducting transition at least above 40
mK Li et al. (2004). A peculiarity of superconductivity in Na,(H30),CoO; - yH,O compound
is the necessity of sufficient amount of water intercalation between the CoO, layers, and
depending on the water content, superconducting transition temperatures vary from 2 K to
4.8 K. This compound is the first superconductor which shows superconductivity only in the
hydrous phase.

The cobaltate compound has three types of crystal structures with different water
concentrations as shown in Fig. 1. The parent compound Na,CoO,, which is y = 0
and z = 0, contains the randomly occupied Na layer between the CoO, layers. When
Na ions are deintercaleted and water molecules are intercalated between the CoO, layers,
the crystal structure changes to bilayer hydrate (BLH) structure, in which the Na layer
is sandwiched with double water layers to form H;O-Na-H,O block layer. Due to the
formulation of this thick block layer, the CoO; layers are separated by approximately 10 A,
and is considered to have highly two-dimensional nature. Superconductivity is observed in
this composition below 5 K. The crystal structure of the superconducting BLH compound
changes to mono-layer hydrate (MLH) structure, which forms Na-H,O mixed layers between
the CoO; layers containing less water molecules than those of BLH compounds. The water
molecules inserted between CoO; layers are easily evaporated into the air at an ambient
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condition, seriously affecting the physical properties, namely superconductivity, of BLH
compounds.

A BLH compound left in the vacuum space for three days becomes a MLH compound,
and does not demonstrate superconductivity. Inversely the crystal structure of the MLH
compound stored in high-humid atmosphere comes back to the BLH structure, and
superconductivity recovers, although the transition temperature of the BLH compound
after the dehydration-hydration cycle is lower than that of a fresh BLH compound.
Superconducting and normal-state properties in various kinds of samples have been
investigated with several experimental methods.

In the normal state, spin susceptibility is almost temperature independent above 100 K, which
is a unique behavior irrespective of samples. The sample dependence appears below 100
K, for instance, spin susceptibility increases with decreasing temperature in some samples,
but some do not. From the temperature dependence of spin susceptibility below 100 K,
temperature independent susceptibility xo, effective moment ¢ and Weiss temperature Oy
were reported to be xo = 3.02 x 107* emu/mol, yeg ~ 0.3 up and @y = —37 K by Sakurai
et al. (2003). Different values are reported by Chou, Cho & Lee (2004), where the increase
of susceptibility toward low temperature is hardly observed, and correspondingly, ies is
rather small. Although the low temperature behavior of susceptibility is strongly sample
dependent, we believe that the slight increase below 100 K is an intrinsic behavior because it
is observed in most of the high-quality powder samples and also observed in the Knight shift
measured by nuclear magnetic resonance Ihara, Ishida, Yoshimura, Takada, Sasaki, Sakurai &
Takayama-Muromachi (2005) and muon spin rotation measurements Higemoto et al. (2004).
In the superconducting state, specific heat is intensively measured by several groups Cao et al.
(2003); Chou, Cho, Lee, Abel, Matan & Lee (2004); Jin et al. (2005); Lorenz et al. (2004); Oeschler
et al. (2005); Ueland et al. (2004); Yang et al. (2005). The specific heat jump at superconducting
transition temperature AC/«T. is estimated to be approximately 0.7, which is half of the
BCS value 1.43. The small jump suggests either the quality of the sample is insufficient, or
the superconductivity is an unconventional type with nodes. Below the superconducting
transition temperature, C/ T does not follow exponential temperature dependence but follows
power law behavior, which is universally observed in unconventional superconductor. The
power law behavior observed from nuclear-spin-lattice relaxation rate 1/T; measurement
also supports unconventional superconductivity Fujimoto et al. (2004); Ishida et al. (2003).
The results of 1/T; measurements are presented in § 4. The values of Sommerfeld constant,
which are 12 ~ 16 mJ/molK?2 depending on samples, are comparable to those of anhydrous
compound Nay3Co0; and less than those of mother compound Nag7;CoO,. It is curious
that the BLH compound which has smaller density of state compared to mother compounds
demonstrates superconductivity, while a single crystal of NagyCoO, with larger density of
state is not a superconductor. The hydrous phases ought to have specific mechanisms to
induce superconducting pairs.

The discovery of magnetism in a sufficiently water intercalated BLH compound provides
important information to understand the origin of superconductivity. The superconducting
BLH is located in the close vicinity of magnetic phase, as in the case for heavy Fermion
superconductors. This similarity lets us invoke that the magnetic fluctuations near magnetic
criticality can induce superconductivity in BLH system. The magnetic fluctuations are
examined in detail with nuclear quadrupole resonance and nuclear magnetic resonance
technique in order to unravel the superconducting mechanisms.
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3. Nuclear magnetic resonance and nuclear quadrupole resonance

3.1 Nuclear quadrupole resonance measurement

In this section, the fundamental principles of nuclear quadrupole resonance (NQR) are
briefly reviewed. Resonance phenomena are observed between split nuclear states and radio
frequency fields with energy comparable to the splitting width. To observe the resonance,
degenerated nuclear spin states have to be split by a magnetic field and/or an electric-field
gradient (EFG). For NQR measurements, a magnetic field is not required because the nuclear
levels are split only by the electric-field gradient. Under zero magnetic field, nuclear levels
are determined by the electric quadrupole Hamiltonian H g, which describes the interaction
between the electric quadrupole moment of the nuclei Q and the EFG at the nuclear site. In
general, H( is expressed as

v 1 6e?
Ho = % (3122_12)"'577(1?#""1%)}/ <sz = %) (1)
where eq(= V;;) and 7 = (Vyy — Viy)/Vz; are the EFG along the principal axis (z axis) and
the asymmetry parameter, respectively. The resonant frequency is calculated by solving the
Hamiltonian. From the measurement of these resonant frequencies, v, and 7 are estimated
separately. These two quantities provide information concerning with the Co-3d electronic
state and the subtle crystal distortions around the Co site, because the EFG at the Co site
is determined by on-site 3d electrons and ionic charges surrounding the Co site. The ionic
charge contribution is estimated from a calculation, in which the ions are assumed to be point
charges (point-charge calculation). The result of the point-charge calculation indicates that V,
is mainly dependent on the thickness of the CoO; layers, because the effect of the neighboring
O’ ions is larger than that of oxonium ions and Na* ions that are distant from the Co ions.
Due to the ionic charge contribution, the resonant frequency was found to increase with the
compression of the CoO; layers.
When small magnetic fields, which are comparable to EFG, are applied, the perturbation
method is no longer valid to estimate the energy level. The resonant frequency should
be computed numerically by diagonalizing Hamiltonian, which includes both Zeeman and
electric quadrupole interactions. The total Hamiltonian is expressed as

H=Hqg+Hz @
1
= Z1BR - 1)+ yn(B + )| = (LH: + LHy + [ Hy). )

The results of a numerical calculation is displayed in Fig. 2, where the parameters v, # are
set to be 4.2 MHz and 0.2, respectively. The shift of the resonant frequency depends on the
direction of the small magnetic fields. The magnetic fields parallel to the principal axis of EFG
(z axis) affect the transition between the largest m states, while spectral shift of this transition
is small when the magnetic fields are perpendicular to z axis. In other word, when internal
magnetic fields appear in the magnetically ordered state, the direction of the internal fields can
be determined from the observation of NQR spectrum with the highest resonant frequency
above and below the magnetic transition.

3.2 Nuclear spin-lattice relaxation rate
The nuclear spin system has weak thermal coupling with the electron system. Through the
coupling, heat supplied to the nuclear spin system by radio-frequency pulses flows into the
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Fig. 2. NOR frequency calculated from equation (3) with small magnetic fields up to 0.2 T.
The solid and dashed lines are the resonant frequency in magnetic fields perpendicular and
parallel to the principal axis of EFG (z axis). The parameters v,, and 1 were set to the realistic
values of 4.2 MHz and 0.2, respectively

electron system, and the excited nuclear spin system relaxes after a characteristic time scale
T;. The nuclear spin-lattice relaxation rate 1/T; contains important information concerning
with the dynamics of the electrons at the Fermi surface.

When the nuclear spin system is relaxed by the magnetic fields induced by electron spins 6 H,
the transition probability is formulated by using the Fermi’s golden rule as

27 2
Wonyosma 1 = 5 ] (m, v|yaht - S |m + 1,0 6(Em + Ey — Epy1 — Eur). @

With this transition probability, 1/ T is defined as

l _ Z 2Wm,v%m+1,v’ (5)
Ty S d=-m)(I+m+1)

R /oo dtcos oyt <(5H+(t)(5H_(O)+(5H_(t)(5H+(0)>
2 Jowo ’

. ©®)
Equation (6) is derived by expanding equation (4) with the relation dH{(T) =
exp(iHt/h)6H  exp(—iHt/h).  When fluctuation-dissipation theorem is adopted to
equation (6), the general representation for 1/Tj is obtained.

1 292kgT x'| (g, wo)
= = AgA_q———= 7
Tl (’Yeh)z ; q q wp ( )
Here, A4 and X'/ (q,w) are the coupling constant in g space and the imaginary part of the
dynamical susceptibility, respectively. wy in the equation is the NMR frequency, which is
usually less than a few hundreds MHz. The q dependence of Aq4 is weak, when 1/Tj is
measured at the site where electronic spins are located.
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The temperature dependence of 1/T; has been studied by using the self-consistent
renormalization (SCR) theory Moriya (1991). The dynamical susceptibility assumed in this
theory is formulated as

_ x(Q)
14 ¢?Ax(Q) — iwg=Cx(Q)’

The dynamical susceptibility is expanded in g space around Q, which represents the ordering
wave vector. When the magnetic ordering is ferromagnetic (Q = 0), 0 = 1 is used to calculate
x(g,w), and when it is anti-ferromagnetic (Q > 0), 6 is zero. The parameters A and C are
determined self-consistently to minimize the free energy. The SCR theory is available when
the electronic system is close to a magnetic instability. The temperature dependence of 1/T;
above Tc and Ty is derived using the renormalized dynamical susceptibility. The results
depend on the dimensionality and the 6 values, which determine that the magnetic ordering
is ferromagnetic (FM) or anti-ferromagnetic (AFM). The temperature dependence anticipated
from the SCR theory is listed in Table 1.

xX(Q+qw) ®)

2-D 3-D

FM (1/Ty « T/(T —Tc)¥?| 1/T; « T/(T — Tc)

AFM| 1/T; « T/(T —Txn) |1/Ty &« T/(T — Tn)'/?

Table 1. Temperature dependence of 1/T; anticipated from the SCR theory.

In the superconducting state, thermally exited quasiparticles can contribute to the Knight shift
K and the nuclear spin-lattice relaxation rate 1/T;. Since the quasiparticles do not exist within
the superconducting gap, the energy spectrum of the quasiparticle density of state is expressed
as
NoE
B2 2(6,9)
=0 for 0 < E < A(6,¢), (10)

N(E;0,¢) = for E > A6, ¢) )

where E is the quasiparticle energy, which is determined as E?> = &> 4+ A%, and Nj is the
density of state in the normal state. In order to obtain the total density of state N(E), N(E; 6, ¢)
should be integrated over all the solid angles. N(E) is calculated with considering simple
angle dependence for A, and the resulting energy spectra are represented in Fig. 3. The angle
dependence of the superconducting gap, which we considered for the calculations, are listed
below.

A, ) = Ag for s-wave, (11)
A0, ¢) = Agsinfe'® for p-wave axial state, (12)
A(8,$) = Agcosfe’®  for p-wave polar state, (13)
A6, ¢) = Ap cos 2¢ for two-dimensional d-wave. (14)

The temperature dependence of the Knight shift and the nuclear spin-lattice relaxation rate
in the superconducting state can be computed from the following equations with using N(E)



Unconventional Superconductivity Realized
Near Magnetism in Hydrous Compound Na (H,0),CoO, - yH,0 21

calculated above. The temperature dependence of the gap maximum Aj was assumed to be
that anticipated from the BCS theory for all the gap symmetry considered above.

_ Ahf o 4l’lBAhf
K= N = N (15)
1 _ T[A%f A2 )
T,  hN? / (1+ 22 | N(E)’f(E)(1 = f(E))dE. (16)

Here, f(E) is the Fermi distribution function. The term (14 A% /E?) in equation (16) is referred
to as the coherence factor, which is derived from the spin flip process of unpaired electrons
through the interactions between the unpaired electrons and the Cooper pairs Hebel & Slichter
(1959).

As an initial state |i), it is assumed that one unpaired electron with up spin and one Cooper
pair have wave numbers k and kK, respectively. After the interaction between these particles,
the wave numbers are exchanged, and the electronic spin of the unpaired electron can flip
with preserving energy. The final state |f) is chosen to be one electron with down spin and
wave number —k’, and one Cooper pair with wave number k. This process can contribute to
the relaxation rate by exchanging the electronic spins and the nuclear spins. The initial state
and the final state are expressed with using the creation and annihilation operators ¢} and c;

4 T l T T l T l T
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Fig. 3. Quasiparticle density of state in various superconducting states. Finite Ns(E) exists at
the energy lower than maximum gap size, when superconducting gap has nodes. The energy
dependence of N;(E) at low energy determines the exponents for the power-law temperature
dependence of physical quantities.
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as
i) = [VT= T + Ve ] iy lo) (17)
1) = [VT= T+ Vicie ] o), (18)

where ¢y represents the vacuum state, and hj is determined as Iy = (1 — ¢, /E;)/2. The
perturbation Hamiltonian, which flips one electronic spin, is described as

Hp= A ,§ % (I+c;g, Lokt + TGy i) : (19)

The transition probability from |i) to |f) originating from Hy, is derived as
[trpli | = 5 (VI= e/ T+ i) 20
deted)

Here, the anticommutation relation of c;; and E;, = 4/ s% + A? are used. The second term of

equation (21) is canceled out when this term is integrated over the Fermi surface, because ¢
is the energy from the Fermi energy. The counter process that a down spin flips to an up
spin should also be considered. When this process is included, the transition probability
becomes twice of |(f|Hp|i)|>. The third term A?/EEy possesses finite value only for an
s-wave superconductor with an isotropic superconducting gap, such as Al metal Hebel &
Slichter (1959). This term vanishes when the superconducting pairing symmetry is p-wave
and two-dimensional d-wave type, which are represented in equations (12), (13) and (14).

In unconventional superconductors with an anisotropic order parameter, the temperature
dependence of 1/T; shows power-law behavior, because the quasiparticle density of states
exist even below the maximum value of the gap Ag. The existence of the density of states
in the small energy region originates from the nodes on the superconducting gap. In the
p-wave axial state, where the superconducting gap possesses point nodes at § = 0,71, N(E)
is proportional to E? near E = 0. As a result, 1/Tj is proportional to T° far below T. In the
p-wave polar state and the d-wave state, where the superconducting gap possesses line nodes
at0 = /2 and ¢ = 0,71/2, respectively, the temperature dependence of 1/T; becomes T3,
which is derived from the linear energy dependence of N(E) in the low energy region. The
observation of the power-law behavior in the temperature dependence of 1/Tj far below T is
strong evidence for the presence of nodes on the superconducting gap, and therefore, for the
unconventional superconductivity.

4. Ground states of Na,(H30),Co0, - yH,0

4.1 Superconductivity

In order to investigate the symmetry of superconducting order parameter, 1/ T; was measured
at zero field using NOR signal of the best superconducting sample with T, = 4.7 K. The
temperature dependence of 1/T; observed in the superconducting state shows a power-law
behavior as shown in Fig. 4 Ishida et al. (2003). This power-law decrease starts just below T
without any increase due to Hebel-Slichter mechanism, and gradually changes the exponent
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from ~ 3 at half of T, to unity below 1 K. The overall temperature dependence can be
sufficiently fitted by the theoretical curve assuming the two-dimensional d-wave pairing
state with the gap size 2A/kpT. = 3.5 and residual density of state Nres/Np ~ 0.32. The
unconventional superconductivity with nodes on the superconducting gap is concluded for
the superconductivity in BLH compounds. The residual density of states are generated by
tiny amount of impurities inherent in the powder samples, because superconducting gap
diminishes to zero along certain directions in the unconventional superconductors.

Next, the normal-state temperature dependence of 1/T; T for BLH compound is compared
with those of non-superconducting MLH and anhydrous compounds in order to identify
the origin of superconductivity. Surprisingly, 1/T1T in MLH is nearly identical to that in
anhydrous cobaltate, even though the water molecule content is considerably different. In
these compositions, gradual decrease in 1/T;T from room temperature terminates around
100 K, below which Fermi-liquid like Korringa behavior is observed. This gradual decrease
in 1/TT at high temperatures is reminiscent of the spin-gap formation in cuprate Alloul
et al. (1989); Takigawa et al. (1989). The temperature dependence of the MLH and anhydrous
samples are mimicked by

1 _ A g1
(W)PG—8.75+15exp( T) (sec” "' K™Y)

with A = 250 K. The value of A is in good agreement with the pseudogap energy ~ 20 meV
determined by photoemission spectroscopy Shimojima et al. (2006). The spin-gap behavior
observed by relaxation rate measurement indicates the decrease in density of states due to the
strong correlations.

(22)

T T T T v LA A | T T T T Ty
T
1000} (@) 20 (b) lc T
A
~ adh
100} ER 4 &
~ ; s A @
© 2 Py Assm - %qf”a
- ~ A
L 4 10
= 10 NPT o O 9067 80 M
- = DD@
‘A‘
1t [ AN A Bilayer hydrate
Monolayer hydrate
Superconducting -
Na (H,0),C0, - 4.0 ‘ unhydrous Na, ,,CoO,
01 1 0 sl sl
0.1 1 10 100 1 10 100
T (K) T (K)

Fig. 4. (a) Temperature dependence of 1/T; measured at zero magnetic field Ishida et al.
(2003). Red solid curve is a theoretical fit to the date below T, = 4.7 K, for which line nodes

on the superconducting gap are taken into account. (b) Temperature dependence of 1/T; T in

superconducting BLH compound, MLH compound, and anhydrous cobaltate Nag 35C00O5.
The experimental data of the anhydrous cobaltate was reported by Ning et al. (2004). The
dashed line represents the sample-independent pseudogap contribution, which is expressed

in equation (22). Ihara et al. (2006)
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In contrast to the sample independent high-temperature behavior, the Korringa behavior
is not observed in the superconducting BLH samples and, instead, magnetic fluctuations
increase approaching to T.. The sample independent high-temperature behavior and
strongly sample dependent low-temperature behavior lead us to conclude that the pseudogap
contribution robustly exists in all phases, and the increasing part of 1/T; T detected only in
the superconducting BLH sample is responsible for the superconducting pairing interactions.
Multi orbital band structure of cobaltate allows to coexist strongly and weakly correlated
bands in a uniform system. The sophisticated analyses based on the sample dependent1/T; T
measurements are made in § 5.

4.2 Magnetism
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Fig. 5. (a) Temperature dependence of 1/T; for magnetic ordering sample Ihara, Ishida,
Michioka, Kato, Yoshimura, Takada, Sasaki, Sakurai & Takayama-Muromachi (2005). Abrupt
increase in relaxation rate was observed at the magnetic ordering temperature Ty; = 6 K. (b)
The Co NQR spectra above and below T);. The clear spectral broadening was observed at
1.5 K. The internal field distribution is estimated from the broadened spectra and exhibited in
the inset.

Immediately after the water filtration for BLH compounds, some samples do not show
superconductivity. Superconductivity appears, even for these samples, after a few days of
duration. NQR experiment on freshly hydrated non-superconducting samples has revealed
that magnetic ordering sets in below Ty = 6 K. Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005) This magnetism was evidenced from
divergence of 1/T; at Ty (Fig. 5(a)) and NQR spectral broadening (Fig. 5(b)).

In a case of conventional Néel state, in which the same size of ordered moments are arranged
antiferromagnetically, the internal-field strength could be uniquely determined from the split
NQR spectra. The frequency separation between the split spectra is converted to internal field
strength through the frequency-field relation derived from the Hamiltonian introduced by
equation (3). For the cobaltate, however, the NQR spectrum does not split but just broadens
due to the distributing internal fields. We have succeeded in extracting the distribution of the
internal fields by taking the process explained below.
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First, we determined the direction of the internal field to Hj,; L ¢, where the ¢ axis is
the principal axis of the electric field gradient, because the resonance peak arising from
m = £5/2 « £3/2 transitions become broader than that arising from m = £7/2 < +5/2
transitions. If the internal fields were along the ¢ axis, £7/2 ¢+ £5/2 transition line would
become the broadest within the three NOR lines. Obviously, this is not a case. The anisotropic
broadening of £7/2 <+ £5/2 transitions is also consistently explained by assuming Hj,; L c.
These two results suggest that the internal fields direct to the ab plane.

Next, the intensity of the internal fields is estimated using frequency-field map derived from
equation (3), and shown in Fig. 2. The details of the analyses are described in the separate
paper Ihara et al. (2008). For the estimation of the fraction, we used the NQR spectra in the
frequency range of 7 ~ 10.5 MHz, because almost linear relationship was observed between
the frequency and internal field in this frequency range. The internal field profile is exhibited
in the inset of Fig. 5.

It is found that the maximum fraction is at zero field, and that rather large fraction is in the
small field region. We also point out a weak hump around 0.15 T, which corresponds to 0.1 yp
when we adopt 1.47 T/ up as the coupling constant Kato et al. (2006). It should be noted that
NOR measurements were performed for Co nuclei, where the magnetic moments are located.
The distribution of the hyperfine fields at the Co site suggests that the size of the ordered
moments has spatial distributions. The magnetic ordering with the modulating ordered
moments is categorized to the spin-density-wave type with incommensurate ordering vector.
In order to investigate the magnetic structure in detail, neutron diffraction measurements are
required.

4.3 Phase diagram

The ground state of Na,(H30),CoO; - yH,O strongly depends on the chemical compositions,
Na ion (x), oxonium ion H3O" (z) and water molecule (y) contents. The samples evolve
drastically after water intercalation, as the water molecules evaporate easily into the air,
when the samples were preserved in an ambient condition. This unstable nature causes
the sample dependence of various physical quantities. The sample properties of the fragile
BLH compounds have to be clarified in detail both from the microscopic and macroscopic
measurements before the investigation on ground states.

In order to compare the physical properties of our samples to those of others, the
superconducting transition temperatures reported in the literature Badica et al. (2006); Barnes
etal. (2005); Cao et al. (2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo
et al. (2005; 2003); Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al.
(2004); Lynn et al. (2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai
et al. (2005); Schaak et al. (2003); Zheng et al. (2006) are plotted against the c-axis length of
each sample in Fig. 6(a). A relationship was observed between T and the c-axis length. The
scattered data points indicate that the c-axis length is not the only parameter that determines
the ground state of the BLH compound. The c-axis length, however, behaves as a dominant
parameter, and can be a useful macroscopic reference to compare the sample properties of
various reports. In the figure, superconductivity seems to be suppressed in some samples with
¢ ~19.75 A, probably due to the appearance of magnetism. The magnetism was reported on
samples in the red region Higemoto et al. (2006); Ihara, Ishida, Michioka, Kato, Yoshimura,
Takada, Sasaki, Sakurai & Takayama-Muromachi (2005); Sakurai et al. (2005). We also found,
in some samples, that both the magnetic and superconducting transitions are observed Ihara
et al. (2006). It has not been revealed yet how these two transitions coexist in one sample.
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The NQR frequency sensitively reflects the crystalline distortions around the Co site, which is
induced by the water intercalation. Therefore, in our phase diagram shown in Fig. 6(b), the
Co-NQR frequency v was used as a microscopic reference for the ground states Thara et al.
(2006). Similar phase diagrams, in which NQR frequency is used as the microscopic reference,
were reported by subsequent experiments Kobayashi et al. (2007); Michioka et al. (2006), and
extended to the higher frequency region. It is empirically shown that the v detects the sample
dependence of parameters which are closely related to the formation of superconductivity.
Theoretically, the compression of CoO; layer along the ¢ axis has been predicted to have a
relation with the formation of superconductivity Mochizuki et al. (2005); Yanase et al. (2005).
However, for the full understanding of the relationship between the ground state of the BLH
compounds and the NOR frequency, the effect of the hole doping to the CoO; layers has to be
investigated in detail, because the NQR frequency depends also on the concentration of the
on-site 3d electrons in addition to the dominant lattice contributions.

5. Magnetic fluctuations near quantum critical point

5.1 Magnetically ordering regime
In this section, we analyze the magnetic fluctuations of BLH phases in detail. First, we
analyze the temperature dependence of 1/T7T in the magnetically ordering M1 sample,
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Fig. 6. Superconducting transition temperature T, and magnetic transition temperature Ty,
of various samples reported in the literature Badica et al. (2006); Barnes et al. (2005); Cao et al.
(2003); Chen et al. (2004); Chou, Cho, Lee, Abel, Matan & Lee (2004); Foo et al. (2005; 2003);
Ihara et al. (2006); Jin et al. (2003; 2005); Jorgensen et al. (2003); Lorenz et al. (2004); Lynn et al.
(2003); Milne et al. (2004); Ohta et al. (2005); Poltavets et al. (2006); Sakurai et al. (2005);
Schaak et al. (2003); Zheng et al. (2006). These values are plotted against (a) the c-axis length
and (b) the NQR frequency. The circles and the triangles indicate T, and Ty, respectively.
The down arrow indicates that the superconducting transition was not observed down to 1.5
K. The superconducting transition temperature becomes maximum around ¢ = 19.69 A. The
magnetic phase appears in the red region, where the ¢ axis is approximately 19.8 A.
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Fig. 7. (a) Temperature dependence of 1/T7T in magnetically ordering sample (M1 in Fig. 6).
A prominent peak is observed at Ty = 6 K. The full lines are the fitting curves for 2-D
antiferromagnetic fluctuations (black) and 3-D antiferromagnetic fluctuations (orange). A
good fit of experimental results to the orange line indicates the 3-D nature of magnetic
fluctuations in BLH compounds Ihara et al. (2006). (b) Sample dependence of 1/T;T on the
samples in the red region in our phase diagram. The full lines are fit to the equation (24). The
fitting parameters for each sample are given in Table. 2.

whose position in our phase diagram is located in Fig. 6(b). The strongly enhanced 1/T7T
in M1 sample is shown in Fig. 7(a) together with the pseudogap behavior of MLH compound.
It is noteworthy that a prominent divergence of 1/T; T at Ty = 6 Kis observed in M1 sample,
which has the highest NOR frequency among thirteen samples examined. We found that the
diverging 1/T1T in M1 sample could be fitted to a function consisting of two contributions
expressed as

1 1 20 -1
<T1T>M1 <T1T>PG+ T—¢ (sec” "K™). (23)
The first term on the right-hand side is the pseudogap contribution expressed in equation (22).
The second term represents the magnetic contribution, which gives rise to the magnetic
ordering. The functional form of the magnetic-fluctuations contribution, (T — TM)_l/ 2 is the
temperature dependence anticipated for the three-dimensional itinerant antiferromagnet in
the framework of the self-consistent renormalization (SCR) theory Moriya (1991), as explained
in §3. The functional form for two-dimensional antiferromagnet, (T — Tam) !, would be more
appropriate if the two-dimensional crystal structure of the BLH compound were taken into
account, but the experimental data cannot be fitted well by the temperature dependence of
2-D antiferromagnet, as shown in Fig. 7(a). The magnetic correlation length is longer than the
neighboring Co-Co distance along c axis, which is approximately 10 A.

We adopted a fitting function with two fitting parameters, a and 6,

1 1 a
= = 4+ — 24
T (TlT)PG T-90 24
to inspect the sample-dependent low-temperature magnetic fluctuations. Here, a is a
proportionality constant related to the band structure at the Fermi level and to the hyperfine
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coupling constant. The other parameter 6 is the ordering temperature for the magnetically
ordering samples and the measure of the closeness to the magnetic instability for the samples

without magnetic ordering.

Sample ID|c axis A) vo (MHz)|T. (K)| Ty (K) |0 (K)| a
SC 19.691 12.39 48 - —1 120
™M 19.739 12.50 44 - 4 120
M1 19.820 12.69 3.6 6 6 |20
M2 19.751 12.54 - 5 20

Table 2. Various parameters for the samples shown in Fig. 6. The 6 and a values are
determined from the fitting (see text).

Figure 7(b) shows the temperature dependence of 1/T1T in SC, IM, M1, and M2 samples.
The microscopic and macroscopic sample properties of these samples are summarized in
Table. 2 together with the parameters used for the fitting. As shown in Fig. 7(b), the sample
dependent 1/T1T of four samples in red regime in our phase diagram is fitted by tuning
only the ordering temperature . The sample independent a value indicates that in the red
regime, where magnetism appears at low temperatures, the magnetic part of Fermi surface is
stably formed. For the samples in superconducting blue region, the a coefficient is also sample
dependent, as shown in the next subsection. It should be noted here, that 6 for SC sample is
—1K, which indicates that the system is very close to the quantum critical point (6 = 0).

5.2 Superconducting regime

For the superconducting samples, which are located in the blue region in our phase diagram,
the magnetic-fluctuations term of equation (24) disappears abruptly so that the a coefficient
should also have sample dependence. To better explore the magnetic contribution, the
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Fig. 8. Scaling plot with respect to T in five different samples. The definition of the universal
function F(t) and reduced temperature t are found in the text. All the temperature
dependence in five samples with various T, are scaled to single line.
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pseudogap contribution is subtracted from the experimental data, and the normalized spin
term F(t) is derived from the following formula,

0= 7| () e (217 &

Here, t = T/ T, is the reduced temperature. A coefficient 1/T. was introduced to normalize
the magnetic contribution. The physical interpretation for this coefficient will be given later.
As shown in Fig. 8, where F(t) is plotted against the reduced temperature, all the F(t) curves
in five different SC samples fall onto a universal line both in superconducting and normal
states. A good scaling in superconducting state is not surprising, as the energy scale of
superconducting gap determines the character of magnetic excitations. In the normal state,
however, a special condition is required to obtain this scaling.

Generally, when the energy and momentum distribution of the spin fluctuations is assumed
to be of a Lorentzian form, 1/T; T of a three-dimensional system is proportional to xo /I Q§3,
where xo, Ig and ¢ are the weight of the spin fluctuations at the wave number Q,
the characteristic energy of them and the magnetic correlation length, respectively. The
temperature dependent I'(T) and ¢(T) give rise to the magnetic contribution of 1/T1T. The
universal scaling by T, indicates that superconducting energy scale determines Iy and ¢ in
the normal state. In addition to Iy and ¢, xp can also be normalized by T. for the BLH
system. This xo normalization was not observed in a similar scaling plot performed for
high-T. cuprate Tokunaga et al. (1997). The weight of spin fluctuations has to be normalized
for the multi-band cobaltate superconductor, since magnetic part of the Fermi surface develop
only in the superconducting samples, while for the cuprate, a rigid single band is not
modified through the carrier doping. The scaling of normal-state magnetic properties by
superconducting energy scale clearly evidences that the magnetic fluctuations developed only
in the BLH compounds are responsible for the superconducting pairing formation.

5.3 Intermediate regime

In this subsection, let us give an insight into the samples located on the phase boundary, which
are labeled as SC and IM in Fig. 6(b). As shown in the Table 2, IM sample with T, = 4.4 K has
a positive 6 value, indicating a magnetic ground state, while 6 for the SC sample with T, = 4.8
K is very close to 0 K. The NQR measurements in zero magnetic field have revealed that the
sample inhomogeneity, which is evaluated using the NOR spectral width, is the same for the
two samples, and no trace of magnetic anomaly is observed even at the lowest temperature
measured. We have carried out NMR measurements, an experiment under magnetic fields,
in order to suppress superconducting state and investigate the metallic ground state at low
temperatures Ihara et al. (2007; 2009).

The temperature dependence of 1/T; T was measured on SC and IM samples in various fields
up to 14 T, and the results for SC sample is displayed in Fig. 9, together with that obtained
in zero magnetic field with the NQR measurement. The NOR results are normalized at 10
K in order to eliminate the angle dependence of the coupling constant. For this NMR study,
external fields were applied parallel to the EFG principal axis.

In the field-induced normal state, 1/T; T increases at low temperature following the fitting
curve defined above 5 K, which is expressed by equation (24) with 2 = 30 and 0 =
—0.7 £ 0.2 K. The continuous increase is interrupted only by the onset of superconductivity.
The arrows indicate the superconducting transition temperatures in various fields, which
were determined as the temperature where 1/T;T starts to deviate from the normal-state
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temperature dependence. The strongly temperature dependent 1/T;T in the field-induced
normal state is a great contrast to the Korringa behavior (T{T = const.), which would be
observed when the electron-electron interactions are weak enough to construct Fermi liquid
state. The absence of Korringa behavior down to T.(H) indicates the existence of the strong
electronic correlations. Especially in SC sample, its small 6 value indicates that the magnetic
fluctuations possess quantum critical nature. As the superconducting transition temperature
is the highest in this SC sample, we conclude that the quantum critical fluctuations induce
attractive interactions between electrons to cause superconductivity.

The physical properties of the IM sample are quite different from those of the SC sample in
magnetic fields, although they are nearly identical in zero field. At the temperatures above 4
K, the relaxation curves were consistently explained by the theoretical function written by

m(co) —m(t) _ , (3 -3 50 —p 3
mioo)  ~M\1a® Tt Tt ) (26)

where t is the time after the saturation pulse Narath (1967). The coefficient A is a fitting
parameter, which represents how completely nuclear magnetization is saturated. When IM
sample was cooled down below 4 K, the experimental results could not be fitted by the same
function. The results of the least square fitting to the whole relaxation curves obtained at 2.5
K and 5.5 K are exhibited in Fig. 10. The insufficient fit at 2.5 K is due to the appearance of
short-T; components, which originate from the ordered magnetic moments. In Fig. 10, the
relaxation curves are plotted against the product of the time and the temperature, in order
to represent the existence of the short-T; components at low temperatures. If a short-T;
component contributes to the relaxation curve, the slope would become steep. Obviously,
the relaxation curve obtained at 2.5 K indicates the presence of short-T; components in the
short time regime. In addition, the existence of the long-T; components is also observed in
the long time regime. The relaxation rate in the magnetically ordered state is distributed in
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Fig. 9. Temperature dependence of 1/T; T in the SC sample at various magnetic fields Ihara
et al. (2007). The arrows indicate the superconducting transition temperatures at each field,
which were determined by the deviation of 1/T; T from the normal-state temperature
dependence. The dashed line is the fitting function described in the text.



Unconventional Superconductivity Realized

Near Magnetism in Hydrous Compound Na (H,0),CoO, - yH,0 31
1 T T
&
= NS
e o1t A
5 N e
3 N
E \ C )
\
\ ®egq0
4 T=55K \
e T=25K N
N
uH=101T // ab
0.01 L

0 10

tT (10°sK)

Fig. 10. Relaxation curves of the nuclear magnetization on the IM sample Ihara et al. (2009).
The dashed lines represent the theoretical curves for a single Tj. The experimental data
cannot be fitted by the single T; at low temperatures. Inset shows the temperature
dependence of 1/T1T at 5.6 T, 10.1 T, and 0 T(NQR). The absolute value of 1/T; T obtained
with NQR measurements were normalized to those with NMR measurement.

space probably due to the distribution of the internal fields at the Co site. More than two
distinct components (long and short T;) are needed for the best fitting, suggesting that the
T values are continuously distributed. The spatial distribution could not be resolved by the
present NMR experiments on powder samples. We fitted all the relaxation curves to the same
theoretical function with the single T; component even in the magnetically ordered state to
determine the typical T; values. The least square fits with using full time range can extract the
relaxation rates of the major fraction with large errors below 4 K.

The temperature dependence of 1/T;T is displayed in the inset of Fig. 10, where the
normalized NQR results are shown together. Field dependence of 1/T1T is negligible
in the normal state, while significant anomaly was observed below 4 K. In the normal
state, where the relaxation curves were consistently fitted by the theoretical curve, 1/T7T
already has a tendency to diverge toward 4 K, which was foreseen from the positive 0
value obtained by the NQR experiment. An anomaly is actually observed at 4 K, when the
superconductivity is suppressed by the strong magnetic fields. It should be stressed, here,
that the superconductivity of IM sample at zero field is uniform and magnetism is absent at
any part of the sample. The magnetic anomaly in IM sample cannot be explained by the
sample inhomogeneity, because the anomaly is absent in any fields in SC sample, whose
sample inhomogeneity is comparable to that of IM sample.

6. Superconductivity near quantum critical point

Superconductivity in BLH cobaltates appears in the close vicinity of magnetism. We have
shown, in the previous sections, that the quantum critical fluctuations bind two electrons
to form the Cooper pairs, and induce unconventional superconductivity. The ground state
of the samples at the superconductivity-magnetism phase boundary is easily modified by
a small perturbation, such as magnetic field. The field-temperature phase diagrams for
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Fig. 11. Field-temperature phase diagram for (a) SC sample, and (b) IM sample. Field
induced magnetic anomaly is observed only in the IM sample, which is located just on the
superconductivity-magnetism phase boundary.

SC and IM samples, which are located nearby the phase boundary, are shown in Fig. 11.
The field-induced normal state for SC sample is paramagnetic with low-energy magnetic
fluctuations. The continuous increase in 1/T; T, shown in Fig. 9, suggests the existence of
quantum critical point at low temperature and high field, where a star is located in Fig. 11(a).
In the IM sample, whose chemical composition is slightly different from SC sample, a
magnetic phase sets in at high fields, as shown by the red region in Fig. 11(b). The field
induced magnetic anomaly suggests that magnetic interactions are strong enough to cause
magnetic transition at 4 K, but at zero field in fact, superconductivity disguises magnetism.

A similar phase diagram has been reported for the Ce-based heavy Fermion superconductors,
CeCu,Si, Steglich et al. (1979), CeRhIns Knebel et al. (2006) and CeColns Young et al. (2007),
in which ground states are tuned by pressures of few GPa.

In CeRhlIns, for instance, the optimal pressure p. for superconductivity is reported to be
~ 2.4 GPa, and a magnetism is induced in pressures lower than p.. When the pressure is
reduced to 2.07 GPa, magnetism is stabilized only in the field-induced normal state with
uniform superconductivity in zero field Knebel et al. (2006; 2008). At the optimal pressure,
this field-induced magnetism is suppressed to zero K, showing a quantum critical behavior.
In a case of CeColns, the critical point is at an ambient pressure. The continuous increase in
the density of state at low temperatures has been reported from the specific heat measurement
Ikeda et al. (2001), which is a quantity equivalent to 1/T;T. A magnetism was detected by the
NMR spectral broadening in strong magnetic fields Young et al. (2007). In this compound,
the magnetism can also be induced surrounding a small amount of impurity injected in
the sample. Both the field and impurity induced magnetism results from the proximity to
quantum critical point.

The interplay between superconductivity and magnetism is universally observed for the
superconductivity near quantum critical point. We would refer the interplay as cooperative
effects rather than competitive one, as superconductivity can exist only in the vicinity of
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quantum critical point. The sample quality is a fatal parameter nearby the quantum critical
point, where even a small perturbation can drastically modify the ground state. A fine sample
control on BLH cobaltates with novel synthetic method, and eventually the single crystal
growth will open a path to uncover physics at quantum critical point.
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1. Introduction

To present day overwhelming majority works on theory of superconductivity were devoted
to single gap superconductors. More than 50 years ago the possibility of superconductors
with two superconducting order parameters were considered by V. Moskalenko
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Fig. 1. a. The structure of MgB, and the Fermi surface of MgB; calculated by Kortus et al.
(Kortus et al., 2001).
b. The coexistence of two complex order parameters (in momentum space).
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(Moskalenko, 1959) and H. Suhl, B.Matthias and L.Walker (Suhl et al., 1959). In the model of
superconductor with the overlapping energy bands on Fermi surface V.Moskalenko has
theoretically investigated the thermodynamic and electromagnetic properties of two-band
superconductors. The real boom in investigation of multi-gap superconductivity started
after the discovery of two gaps in MgB, (Nagamatsu et al., 2001) by the scanning tunneling
(Giubileo et al., 2001; Iavarone et al., 2002 ) and point contact spectroscopy (Szabo et al.,
2001; Schmidt et al., 2001; Yanson & Naidyuk, 2004). The structure of MgB, and the Fermi
surface of MgB, calculated by Kortus et al. (Kortus et al, 2001) are presented at Fig.1.a. The
compound MgB, has the highest critical temperature T.=39 K among superconductors
with phonon mechanism of the pairing and two energy gaps A; =7meV and A, =2,5meV
at T=0. At this time two-band superconductivity is studied also in another systems, e.g. in
heavy fermion compounds (Jourdan et al., 2004; Seyfarth et al., 2005), high-T. cuprates
(Kresin & Wolf, 1990), borocarbides (Shulga et al., 1998), liquid metallic hydrogen (Ashcroft,
2000; Babaev, 2002; Babaev et. al, 2004). Recent discovery of high-temperature
superconductivity in iron-based compounds (Kamihara et al., 2008) have expanded a range
of multiband superconductors. Various thermodynamic and transport properties of MgB,
and iron-based superconductors were studied in the framework of two-band BCS model
(Golubov et al., 2002; Brinkman et al., 2002; Mazin et al., 2002; Nakai et al., 2002; Miranovic
et al., 2003; Dahm & Schopohl, 2004; Dahm et al., 2004; Gurevich, 2003; Golubov & Koshelev,
2003). Ginzburg-Landau functional for two-gap superconductors was derived within the
weak-coupling BCS theory in dirty (Koshelev & Golubov, 2003) and clean (Zhitomirsky &
Dao, 2004) superconductors. Within the Ginzurg-Landau scheme the magnetic properties
(Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999) and peculiar vortices (Mints et al.,
2002; Babaev et al., 2002; Gurevich & Vinokur, 2003) were studied.

Two-band superconductivity proposes new interesting physics. The coexistence of two
distinctive order parameters ¥, =|¥|exp(ig)and ¥, =|¥,|exp(i¢,) (Fig.1.b.) renewed
interest in phase coherent effects in superconductors. In the case of two order parameters we
have the additional degree of freedom, and the question arises, what is the phase shift
op = ¢, — ¢, between ¥, and ¥, ? How this phase shift manifested in the observable effects?
From the minimization of the free energy it follows that in homogeneous equilibrium state
this phase shift is fixed at 0 or 7 , depending on the sign of interband coupling. It does not
exclude the possibility of soliton-like states Jg(x) in the ring geometry (Tanaka, 2002). In
nonequilibrium state the phases ¢, and ¢, can be decoupled as small plasmon oscillations
(Leggett mode) (Legett, 1966) or due to formation of phase slips textures in strong electric
field (Gurevich & Vinokur, 2006).

In this chapter we are focusing on the implication of the J¢-shift in the coherent
superconducting current states in two-band superconductors. We use a simple (and, at the
same time, quite general) approach of the Ginsburg-Landau theory, generalized on the case
of two superconducting order parameters (Sec.2). In Sec.3 the coherent current states and
depairing curves have been studied. It is shown the possibility of phase shift switching in
homogeneous current state with increasing of the superfluid velocity v,. Such switching
manifests itself in the dependence j(v,)and also in the Little-Parks effect (Sec.3). The
Josephson effect in superconducting junctions is the probe for research of phase coherent
effects. The stationary Josephson effect in tunnel S;-I-S; junctions (I - dielectric) between
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two- and one- band superconductors have been studied recently in a number of articles
(Agterberg et al.,, 2002; Ota et al., 2009; Ng & Nagaosa, 2009). Another basic type of
Josephson junctions are the junctions with direct conductivity, S-C-S contacts (C -
constriction). As was shown in (Kulik & Omelyanchouk, 1975; Kulik & Omelyanchouk,
1978; Artemenko et al., 1979) the Josephson behavior of S-C-S structures qualitatively differs
from the properties of tunnel junctions. A simple theory (analog of Aslamazov-Larkin
theory( Aslamazov & Larkin, 1968)) of stationary Josephson effect in S-C-S point contacts for
the case of two-band superconductors is described in Sec.4).

2. Ginzburg-Landau equations for two-band superconductivity.

The phenomenological Ginzburg-Landau (GL) free energy density functional for two
coupled superconducting order parameters y,; and y, can be written as

2
Foq=FE+FK+F, +H—,
87

Where
1 1 2e g
2 4 .
B =aq|y| + iyl +7(—17N—*A]‘//1 @
2 2my
2 1 4 1 2e 2
B=aall 3 alalt s 5| -1y -2 v, @
2 2m,
and
[4W—§§%{mvﬁiﬂ%+
* * C C
%=ﬂ@ﬂﬁ%w%n ®)

+(ihV - %Ajl//; (—ihV - §Ajz//2
c c

The terms F, and F, are conventional contributions from y, and y,, term F, describes

without the loss of generality the interband coupling of order parameters. The coefficients
y and 7 describe the coupling of two order parameters (proximity effect) and their
gradients (drag effect) (Askerzade, 2003a; Askerzade, 2003b; Doh et al., 1999), respectively.
The microscopic theory for two-band superconductors (Koshelev & Golubov, 2003;
Zhitomirsky & Dao, 2004; Gurevich, 2007) relates the phenomenological parameters to
microscopic characteristics of superconducting state. Thus, in clean multiband systems the
drag coupling term (7 ) is vanished. Also, on phenomenological level there is an important

.\ .. . 1 .
condition , that absolute minimum of free GL energy exist: \77\ < 27 (see Yerin et al.,
11411,

2008).
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2
By minimization the free energy F= f(Fl +E +F,+ 18_1—)1137 with respect toy; , w, and A
Ya

we obtain the differential GL equations for two-band superconductor

2 2
1 . 2e - 2 . 2e -
T(—IW —*A} 1 +ay + Bulv| v - s +77(—th —*A] yr =0
my c c @)
1 2e -\ 2 2e -\
7(—ihv —*Aj Yo+, + B ‘Wz‘ W= YY1 +77(—ihV —*Aj y1=0
2m, c c
and expression for the supercurrent
. dehy «\ deh .
] :—*(Uﬁ Vi -y Vi )_7(% Vi, —yVi, )
my My
“2iehn(wiVy, —vaV i~y Vs +waV ) - ®)

4¢? 4¢? 8ne? [ . e V=
—[e R 2 (‘//1V/2+V/2V/1)JA-
1myc myce c

In the absence of currents and gradients the equilibrium values of order parameters

Wip = l//i?z)eill’z are determined by the set of coupled equations

a? + P -y <, .
axp§ + ppl?° a7 0 ©
For the case of two order parameters the question arises about the phase difference
¢=x1— X, between y; and w,. In homogeneous zero current state, by analyzing the free
energy term Fi» (3), one can obtain that for y >0 phase shift ¢=0 and for y<0 ¢=7.
The statement, that ¢ can have only values 0 or 7 takes place also in a current carrying
state, but for coefficient 77 #0 the criterion for ¢ equals 0 or 7 depends now on the value
of the current (see below).

If the interband interaction is ignored, the equations (6) are decoupled into two ordinary
GL equations with two different critical temperatures T, and T, . In general, independently
of the sign of  , the superconducting phase transition results at a well-defined temperature
exceeding both T, and T , which is determined from the equation:

al(Tc)az(Tc):}’z- @)

Let the first order parameter is stronger then second one, ie. T, >T, . Following
(Zhitomirsky & Dao, 2004) we represent temperature dependent coefficients as

y(T)=-a,(1-T / T,4),

8
oy (T) = ay —a,(1-T / Ty). ®

Phenomenological constants a4, ,,4,, and f; ,,7 can be related to microscopic parameters
in two-band BCS model. From (7) and (8) we obtain for the critical temperature T, :
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2 2
T.=T,|1+ ["ZOJ + L )
2a, ma, 2a,

For arbitrary value of the interband coupling » Eq.(6) can be solved numerically. For y =0 ,
T.=T, and for temperature close to T. (hence forT,, <T <T,) equilibrium values of the

order parameters are y, (T)=0, y,(T)=/a,(1-T /T.)/ 3, . Considering in the following

weak interband coupling, we have from Egs. (6-9) corrections ~ »* to these values:

a T. »* 1 T 1
TP =1y L — =
B T B gy —a,1-—) Ted
T, (10)
a T 2
e
1 ¢ (ay —ay(1--))

Expanding expressions (10) over (1_T£) «1 we have conventional temperature
c

dependence of equilibrium order parameters in weak interband coupling limit
v O(T) ~ /’11 [1+ 1 ay +“2 sz 1_1’
2 ay’ay T,
(0) / |
B ‘120

Considered above case (expressions (9)-(11)) corresponds to different critical temperatures
T, >T,, in the absence of interband coupling y . Order parameter in the second band yl?
arises from the “proximity effect” of stronger y\” and is proportional to the value of y .
Consider now another situation, which we will use in the following as the model case.
Suppose for simplicity that two condensates in current zero state are identical. In this case
for arbitrary value of y we have

(11)

a(T) = (T)=a(T) =—a[1—ﬂ,ﬂ1 =p =P (12)
o= 2 ®

2. Homogeneous current states and GL depairing current

In this section we will consider the homogeneous current states in thin wire or film with
transverse dimensionsd <« &) »,(T), 4, »(T), where & ,(T)and 4, ,(T)are coherence lengths
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and London penetration depths for each order parameter, respectively. This condition leads
to a one-dimensional problem and permits us to neglect the self-magnetic field of the
system. (see Fig.2) . In the absence of external magnetic field we use the calibration A=0.

/ |

v

Fig. 2. Geometry of the system.

The current density j and modules of the order parameters do not depend on the
longitudinal direction x. Writing w, ,(x) as w;, :‘(//1,2‘exp(i Z1,2(x)) and introducing the
difference and weighted sum phases:

{ =122 (14)
O=ci+C,
for the free energy density (1)-(3) we obtain
2 1 4 2 1 4
F=ay|y] +*,B1‘W1‘ + |y +Eﬂ2"/2‘ +
2
+h? ‘%‘ ‘1//2‘ +277‘W1HI//2‘COS¢ (dﬁ] +
2my 2m dx (15)
‘%‘ “//2‘ dg :
+h? +c2 +2010277‘W1HI//2‘C05¢ ( ] -
2m1 2m, dx

—27“#1“’//2‘C05¢-
Where

WAL 5 s fcos Vol 5yl coss
1= il ,Cp = ™ . (16)

bl “”2‘ canlalcoss L “”2‘ +dnly || cosg
1 1

The current density j in terms of phases 8 and ¢ has the following form

‘1/11‘ “//2‘

j=2eh +477‘1//1Hz//2‘cos¢ (17)

Total current j includes the partial inputs j; , and proportional to 7 the drag current j, .
In contrast to the case of single order parameter (De Gennes, 1966), the condition
divj = 0 does not fix the constancy of superfluid velocity. The Euler - Lagrange equations for
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6(x) and ¢(x) are complicated coupled nonlinear equations, which generally permit the
soliton like solutions (in the case 7=0 they were considered in (Tanaka, 2002)). The
possibility of states with inhomogeneous phase ¢(x)is needed in separate investigation.
Here, we restrict our consideration by the homogeneous phase difference between order
parameters ¢ =const. For ¢=const from equations it follows that &(x)=gx (q is total
superfluid momentum) and cos¢ =0, i.e. ¢ equals 0 or 7 . Minimization of free energy for

@ gives

cos¢:sign(;/—77h2q ) (18)

Note, that now the value of ¢, in principle, depends on q, thus, on current density j. Finally,
the expressions (15), (17) take the form:

1 n? 1 n?
F=o \%\2 +§[”1 \%\4 +27\l//1\2 9 +a, “/’2‘2 +=> b ‘%‘4 +7“//2‘2 9’ -
My 2 2m2 (19)
=2y =g | llwa|sign(y - ni’q?),
2 2
j=2en m+M+477\1//1\\41/2\51'311(7—771‘12112) . (20)
my 1y

We will parameterize the current states by the value of superfluid momentum g, which for
given value of j is determined by equation (20). The dependence of the order parameter
modules on g determines by GL equations:

? ,
alyal+ Bl + 5 —lala® lwal(r - m%a? Jsign(y - ni’e?) <o, 1)
1

n? :
||+ Bolwal + 5 ol 4® =yl (7 1 sign (v - mh*g? ) = 0. 22)
2

The system of equations (20-22) describes the depairing curve j(q,T) and the
dependences || and |y,| on the current j and the temperature T. It can be solved
numerically for given superconductor with concrete values of phenomenological
parameters.

In order to study the specific effects produced by the interband coupling and dragging
consider now the model case when order parameters coincide at j=0 (Egs. (12), (13)) but
gradient terms in equations (4) are different. Egs. (20)-(22) in this case take the form

A(1-(1+17) £2) - 2g” + fo (7 =730 )sign(7~7ig> ) = 0
fz(l—(1+‘77‘)f22)—kf2‘72 +f1(77—77‘72)5i8”(77_77‘72) =0
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j= f2q+ Kf2q -+ 27ify fagsign(7 - g’ (24)

Here we normalize y; , on the value of the order parameters at j =0 (13), j is measured in

2
units of ZﬁeM M , qis measured in units of " , 7= e , 1=2nmy, k= " .
g my 2my ‘a‘ ‘a m,

If k=1 order parameters coincides also in current-carrying state f; = f, = f and from egs.

(23), 24) we have the expressions

1-q +|7-iig’|
P )
j(a) =21 (1+ isign(7 - %) Ja, (26)

which for 7=7=0 are conventional dependences for one-band superconductor (De
Gennes, 1966) (see Fig. 3 a,b).

0,94

0,6 4 \

0,34
0,04

00 \
00 02 04 06 08 10 0,0 03 06 09

@) (b)

Fig. 3. Depairing current curve (a) and the graph of the order parameter modules versus
current (b) for coincident order parameters. The unstable branches are shown as dashed
lines.

For k#1 depairing curve j(g) can contain two increasing with g stable branches, which
corresponds to possibility of bistable state. In Fig. 4 the numerically calculated from
equations (23,24) curve j(g)is shown for k=5 and 7=7=0.

The interband scattering (7 # 0 ) smears the second peak in j(q), see Fig.5.

If dragging effect (77#0) is taking into account the depairing curve j(g) can contain the
jump at definite value of g (for k=1 see eq. 34), see Fig.6. This jump corresponds to the
switching of relative phase difference from 0 to 7 .
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Fig. 4. Dependence of the current j on the superfluid momentum g for two band
superconductor. For the value of the current j = j, the stable (o) and unstable (- ) states are

depicted. The ratio of effective masses k=5 ,and y=7=0.

0,2 4

0,0
0,0

0,2

0,4
q

0,6

Fig. 5. Depairing current curves for different values of interband interaction: 7 =0 (solid
line), 7=0.1 (dotted line) and 7 =1 (dashed line). The ratio of effective masses k=5 , and

n=0.
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Fig. 6. Depairing current curves for different values of the effective masses ratio k=1 (solid
line), k=1.5 (dotted line) and k =5 (dashed line). The interband interaction coefficient
7=0.1 and drag effect coefficient77 =0.5.

4. Little-Parks effect for two-band superconductors

In the present section we briefly consider the Little-Parks effect for two-band
superconductors. The detailed rigorous theory can be found in the article (Yerin et al., 2008).
It is pertinent to recall that the classical Little-Parks effect for single-band superconductors
is well-known as one of the most striking demonstrations of the macroscopic phase
coherence of the superconducting order parameter (De Gennes, 1966; Tinkham, 1996). It is
observed in open thin-wall superconducting cylinders in the presence of a constant external
magnetic field oriented along the axis of the cylinder. Under conditions where the field is
essentially unscreened the superconducting transition temperature T,, ( @ is the magnetic
flux through the cylinder) undergoes strictly periodic oscillations (Little-Parks oscillations)

T,-T,

[

., D 5
oc min(— —n)-,(n=0,%+1,%2,...), 2
. (o~ ) @)

where Ty, =T.q| oo and @, =7hc / e is the quantum of magnetic flux.

How the Little-Parks oscillations ( 27) will be modified in the case of two order parameters
with taking into account the proximity () and dragging (7 ) coupling? Let us consider a
superconducting film in the form of a hollow thin cylinder in an external magnetic field H
(see Fig.6).

We proceed with free energy density (19), but now the momentum g is not determined by
the fixed current density j as in Sec.3. At given magnetic flux (ﬁA-d? :IH -do = O the
superfluid momentum g is related to the applied magnetic field
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1 0]
q:R[n_CDOJ. )

At fixed flux ® the value of g take on the infinite discrete set of values for n=0,%1,£2,.... The
val.q]. Asa
result the critical temperature of superconducting film depends on the magnetic field. The
dependencies of the relative shift of the critical temperature Af.=(T,-T,,) /T, for different
values of parameters y,3,R were calculated in (Yerin et al., 2008). The dependence of At (®)
as in the conventional case is strict periodic function of ® with the period @, (contrary to the
assertions made in Askerzade, 2006). The main qualitative difference from the classical case is
the nonparabolic character of the flux dependence Af.(®) in regions with the fixed optimal
value of n. More than that, the term ( 7 —nh’q? 2) in the free energy (19)

7

possible values of 1 are determined from the minimization of free energy F[|y,

)sign(y - nh’q?)
engenders possibility of observable singularities in the function At.(®), which are completely
absent in the classical case (see Fig.8.).

Fig. 7. Geometry of the problem.

0.07

Fig. 8. At.(®) for the case where the bands 1 and 2 have identical parameters and values of
7 are indicated.
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5. Josephson effect in two-band superconducting microconstriction

In the Sec.3 GL-theory of two-band superconductors was applied for filament’s length
L — . Opposite case of the strongly inhomogeneous current state is the Josephson
microbridge or point contact geometry (Superconductor-Constriction-Superconductor
contact), which we model as narrow channel connecting two massive superconductors
(banks). The length L and the diameterd of the channel (see Fig. 9) are assumed to be
small as compared to the order parameters coherence lengths &;,4, .

¥1(1)="F n expip®) l J Wi(L)="Fn exp(in®)
a
[
Wo(0)="F 2 exp(ixt) T | F2A0)="Fresp(ix:"®)
L

Fig. 9. Geometry of S-C-S contact as narrow superconducting channel in contact with bulk
two-band superconductors. The values of the order parameters at the left (L) and right (R)
banks are indicated

For d <« L we can solve one-dimensional GL equations (4) inside the channel with the rigid
boundary conditions for order parameters at the ends of the channel.

In the case L « &;,&, we can neglect in equations (4) all terms except the gradient ones and
solve equations:

dzl/ll =0
2 7
dx (29)
d Yo =0
dx?
with the boundary conditions:
v1(0) =y eXP(iJhL)  ¥2(0) =y eXP(illR)/ (30)
(L) =va exp(i;(ZL) v (L) =vo eXP(illR)-
Calculating the current density j in the channel we obtain:
J=intjntintin, G

. 2eh 2 . R L
=——wy sin - ,
Jn L, Yo1 (Zl X1 )

. 2eh 2 . R L
=——wj sin - ,
J22 L, Yo1 (lz X2 )
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. 4eh .
Ji2 = UTV/Oll//oz sm(;(lR —ZzL)/

. deh .
Jn =1 —VoVo Sm(ZzR - ZlL)-
The current density j (31) consists of four partials inputs produced by transitions from left
bank to right bank between different bands. The relative directions of components j;
depend on the intrinsic phase shifts in the banks §g" = 7 — 75 and 6" = yF — X (Fig.10).

(a)

(b)

(©

(@

Fig. 10. Current directions in S-C-S contact between two-band superconductors. (a) - there is
no shift between phases of order parameters in the left and right superconductors; (b) - there
is the 7 -shift of order parameters phases at the both banks ; (c) - 7 -shift is present in the
right superconductor and is absent in the left superconductor; (d) - 7 -shift is present in the
left superconductor and is absent in the right superconductor .
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Introducing the phase difference on the contact ¢ =y — 7f we have the current-phase
relation j(¢) for different cases of phase shifts 5¢™" in the banks:
a. opf=6p"=0

2 2
2¢h Vion , Vip

j=jesing = +4nyavo)sing
my N
b. spR=6p"=x
L 2eh wy vy .
j=jesing="2 (Y0 Y2 4py i )sing
L "m m,
c. of=x,68"=0
L 2eh yl .
j=jesing === (E8 - Y2 sin ()
L "m m
d. spR=0,6¢" =7
L 2eh 2 S
]E]Csmqﬁ:T(—@-km)sm(gﬁ)
my 1

The critical current j. in cases a) and b) is positively defined quadratic form of y; and

o, for || < ; In cases c) and d) the value of j. can be negative. It corresponds to
2, Jmymy

the so-called 7 —junction (see e.g. (Golubov et. al, 2004)) (see illustration at Fig.11).

| 1 ,3,;;.1 =0

S6F =0 m-junction

1

(;@' L =0

le

- R
oN” =T
@

Fig. 11. Current-phase relations for different phase shifts in the banks.

This phenomenological theory, which is valid for temperatures near critical temperature T,
is the generalization of Aslamazov-Larkin theory (Aslamazov & Larkin, 1968) for the case of
two superconducting order parameters. The microscopic theory of Josephson effect in S-C-S
junctions (KO theory) was developed in (Kulik & Omelyanchouk, 1975; Kulik &
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Omelyanchouk, 1978;) by solving the Usadel and Eilenberger equations (for dirty and clean
limits). In papers (Omelyanchouk & Yerin, 2009; Yerin & Omelyanchouk, 2010) we
generalized KO theory for the contact of two-band superconductors. Within the microscopic
Usadel equations we calculate the Josephson current and study its dependence on the
mixing of order parameters due to interband scattering and phase shifts in the contacting
two-band superconductors. These results extend the phenomenological theory presented in
this Section on the range of all temperatures 0<T <T,. The qualitative feature is the
possibility of intermediate between sing and —sing behavior j(¢) at low temperatures
(Fig.12).

0<T<T,

Fig. 12. The possible current-phase relations j(¢) for hetero-contact with 5¢% =0,54" = 7 .

6. Conclusion

In this chapter the current carrying states in two-band superconductors are described in the
frame of phenomenological Ginzburg-Landau theory. The qualitative new feature, as
compared with conventional superconductors, consists in coexistence of two distinct
complex order parameters ¥, and ¥,. It means the appearing of an additional internal
degree of freedom, the phase shift between order parameters. We have studied the
implications of the J¢ -shift in homogeneous current state in long films or channels, Little-
Parks oscillations in magnetic field, Josephson effect in microconstrictions. The observable
effects are predicted. Along with fundamental problems, the application of two band
superconductors with internal phase shift in SQUIDS represents significant interest (see
review (Brinkman & Rowell, 2007).
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1. Introduction

In the mixed state of type II superconductors, the external magnetic field penetrates the
superconducting material in the form of normal cored regions, each carrying a quantum
of flux (®p = 2.07x10-7 G-cm?2). These normal cores have radii equal to the coherence length
(§). Surrounding each normal core is a vortex of supercurrent that decays over a
characteristic length scale known as the penetration depth (A). These elastic string-like
normal entities (or vortices) mutually repel each other leading to the formation of
triangular vortex lattices in ideal superconductors (Blatter et al., 1994; Natterman &
Scheidl, 2000). However, real samples always have defects (point defects, dislocations)
and inhomogeneities. The superconducting order parameter is preferentially suppressed
at these random defect locations, thereby energetically favoring pinning of vortices at
these locations. But, pinning also leads to loss of long range order in the vortex lattice. The
vortex matter can be considered as a typical prototype for soft materials, where pinning
forces and thermal fluctuations are comparable to the elastic energy scale of the vortex
lattice. The perennial competition between elastic interactions in the vortex lattice, which
establishes order in the vortex state and effects of pinning and thermal fluctuations which
try to destabilize the vortex lattice, leads to a variety of pinning regimes, viz., the weak
collective pinning regime and the strong pinning regime (Blatter et al.,, 2004). The
competition in different portions of the field-temperature (H,T) phase space leads to the
emergence of a variety of vortex phases, like, the Bragg glass, vortex glass, vortex liquid
(for review see, Blatter et al., 1994, Natterman & Scheidl, 2000) and transformation
amongst them, along with the appearance of significant thermomagnetic history
dependent response. The competing effects ever present in the vortex lattice also lead to a
quintessential phenomenon called the peak effect (PE), which we shall discuss in the next
section.
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2. The peak effect phenomenon

Theoretical works in late nineteen eighties and nineties have shown that by taking into
account the effects of thermal fluctuations and pinning centers on vortices, the mean field
description of a type II superconductor gets substantially modified and new phases and
phase boundaries in the vortex matter were predicted. In particular, in a clean pinning free
system, it was shown that under the influence of thermal fluctuations, the vortex lattice
phase is stable only in the intermediate field range. A new phase was predicted to be
present at both very low and at very high fields, viz., the Vortex Liquid State (Nelson, 1988),
in which the r.m.s, fluctuation of the vortices about their mean positions become ~10 - 20 %
of the intervortex spacing ao (ao o« B1/2, where B is the field) and the vortex-vortex spatial
correlations reduced down length scales of the order ~ ao. Experimental works on the high
temperature superconductors (HTSC) have established the vortex solid to liquid transition
at high fields, however, the demonstration of the reentrant behavior of the vortex solid to
liquid phase boundary has so far not been vividly elucidated (Blatter et al, 1998; Natterman
& Scheidl, 2000). The mean field picture of a perfectly periodic arrangement of vortices in
the vortex solid phase is also expected to be modified under the influence of pinning and the
vortex solid phase is considered to behave like a vortex glass (Fisher 1989; Fisher, et al.
1989), which is characterized by zero linear resistivity, and could exhibit many metastable
states. Further detailed investigations (Giammarchi and P. Le Doussal, 1995), showed, the
existence of a novel vortex solid to solid transformation as a function of varying field at a
fixed temperature in which a novel Bragg Glass phase (a reasonably well ordered lattice
with correlation extending over few hundreds of ag ) at low fields transforms into a Vortex
Glass state with spatial correlations surviving over a very short range at high fields. This
solid to solid transformation is considered to arise due to a sudden injection / proliferation
of dislocations into the Bragg glass phase (for a review see Natterman & Scheidl, 2000).

J

[+

Hp (or Tp)

!

H(orT)

Fig. 1. Schematic representation of the peak effect (PE) in the critical current density, J., with
applied field (or temperature). The field H,, (or temperature Tp) represents the peak position
of the PE.

To experimentally investigate the phases of vortex matter, few popular routes are via ac
susceptibility, dc magnetization, transport measurements, all of which provide information
on the critical current density (J.) (the maximum dissipationless current which is carried by
a superconductor). Usually a change in the phase of vortex matter is accompanied by a
change in the pinning experienced by the vortices. As the J. is a direct measure of the
pinning experienced by a given phase, changes in the behavior of J. are a good indicator of
the transformation/transition in the vortex matter. Usually the J. of a superconductor is
expected to monotonically decrease with increasing values of the temperature or field.
However, in a large variety of superconductors it is found that the monotonic decrease in J.
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with increasing field (H) or temperature (T) is interrupted by an anomalous enhancement in
Jc just before the superconductor turns normal (Figure.1). This anomaly in the J. behavior is
known as the peak effect (PE) phenomenon and has been observed in many low and high-
temperature superconductors (Berlincourt, 1961; Bhattacharya & Higgins, 1993; Higgins and
Bhattacharya, 1996; Ling et al., 2001; Ghosh et al., 1996; Banerjee et al., 1998, 1999a, 1999b,
2000a, 2000b, 2001). In electrical transport experiments, from which J. is deduced, the PE
appears as a bump in Jc as in the schematic of Fig.1. Due to the enhancement in pinning, the
PE appears as an anomalous increase of the diamagnetic screening or shielding response
and a drop in the dissipation response in the ac susceptibility (quadrature signal)
measurements before the diamagnetic ac-susceptibility (in -phase signal) crashes to zero at
He; or T.(H) (Banerjee et al., 1998-2001; Mohan et al., 2007).

Though a complete theoretical description of the PE is lacking, there have been plausible
proposals articulating different mechanisms to explain this phenomenon. Pippard (Pippard,
1969) put forth the notion that if the vortex lattice (VL) loses rigidity near H., at a rate much
faster than the pinning force, then the softened vortices would conform more easily to the
pinning centers thereby getting strongly pinned, and consequently producing the peak in J.
The idea acquired a quantitative basis, when a correct statistical summation procedure for the
pinning force was proposed by A. I. Larkin and Yu. N. Ovchinnikov (LO) (Larkin, 1970a,
1970b; Larkin and Ovchinnikov, 1979), which took into account the elasticity of the vortex
lattice. The basic premise of the LO theory is that the flux lines lower their free energy by
passing through the pinning sites, thereby deviating from an ideal periodic arrangement. The
deformation of the FLL costs elastic energy despite the lowering in free energy due to the
pinning of flux lines. The equilibrium configuration of the flux lines in a deformed state is
obtained by minimizing the sum of these two energies. This work of Larkin and Ovchinnikov
showed that random distribution of weak pins destroys long range order in the FLL, with
short range order being preserved only within a volume bounded by two correlation lengths
viz., the radial (R, the correlation length across the surface of the sample and perpendicular to
the vortex line) and the longitudinal (L., the correlation length parallel to the vortex line).
These length scales were shown to be related to the elastic modulii of the vortex lattice (Larkin
and Ovchinnikov, 1979), and the net pinning force experienced by the VL, viz., F, o« RZ“L”,
where o and f are positive powers. The PE stood explained within the LO theory due to
softening of the elastic modulii of the VL, which caused a decrease in R. and L, thereby
causing F,, or J. to anomalously increase at PE. While the LO theory provides an explanation
of the PE phenomenon, a quantitative match of the details of the PE with LO theory lacked.
While theoretically some difference persist as regards the origin of the PE phenomenon, the
experimental investigations (Banerjee et al, 1998, 1999a, 1999b, 2000a, 2000b, 2001;
Bhattacharya & Higgins, 1993; Gammel et al, 1998, Ghosh et al, 1996; Higgins and
Bhattacharya, 1996, Marchevsky et al., 2001; Thakur et. al, 2005, 2006; Troyanovski et al.,
1999, 2002) are almost concurrent towards in establishing PE as an order to disorder
transformation in the vortex lattice. Studies (Banerjee et al, 1998, 1999a, 1999b, 2000a,b, 2001)
on different single crystals of 2H-NDbSe;, with progressively increasing amounts of the
quenched random pinning have revealed that the details of PE phenomenon are
significantly affected by level of disorder, amounting to the appearance of significant
variation in the metastable response(s) of the vortex lattice. These studies were able to
demonstrate the correlation between the thermomagnetic history effects (i.e., difference
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between the field cooled (FC) and zero - field cooled (ZFC) response exhibited by the FLL in
single crystal of a conventional superconductor 2H-NbSe, and the pinning strength in the
samples (Banerjee et al, 1999b). These observations lead to proposals pertaining to the
existence of a pinning induced transformation across glassy phases of the vortex matter. In
recent times an interesting explanation for PE has been proposed based on a crossover from
weak to collective pinning in the vortex matter (Blatter et al. 2004). We shall discuss this
work in relation to the experimental findings in section 3.3.

2.1 The effect of disorder on the behavior of critical current (Jc) and the peak effect
(PE) phenomenon

2.1.1 Single crystals of different pinning strengths

We are collating here results reported on good quality single crystals of 2H-NbSe,, grown in
different laboratories (University of Warwick, UK, NEC research Institute, Princeton, USA
and Bell Labs, Murray Hills, USA). On the basis of correlation between pinning strength
and the metastability effects in the elastic region of vortex phase diagram, the crystals can be
sequentially enumerated in terms of the progressively enhanced pinning. For instance, in
2H-NDbSe; crystals, ranging from nomenclature A to C, the J. values vary from 10 A/cm? to
1000 A/cm? (Banerjee et al., 1998, 1999a, 1999b, 2000a, 2000b, 2001; Thakur et al. 2005, 2006).

2.1.2 Identification of different pinning regimes and the behavior of PE as a function
of pinning

We extracted J.(H) (for H/ /c) in two varieties of single crystals A and B, of 2H-NbSe,, either
by directly relating J.(H) to the widths of the isothermal magnetization hysteresis loops
(Bean, 1962, 1964) or by analyzing the in-phase and out-of-phase ac susceptibility data
(Bean, 1962, 1964; Angurel et al., 1997). Figure 2 summarizes the J. vs. H data (H\\c) for the
crystals A and B in two sets of log-log plots in the temperature regions close to the
respective T.(0) values (Banerjee, 2000b; Banerjee et al. 2001). The peaks in J.(H) occur at
fields (Hp) less than 1 kOe (see insets in Fig.2(c) and Fig.2(g) for the t,(H) curves in A and B,
viz., locus of the PE in the H - reduced temperature (t = T/T.(0)) space for the two samples,
with pinning strength in B > A).

We first focus on the shapes of the J.(H) curves (cf. Fig.2(a) to 2(d)) in the crystal A. In
Fig.2(a), the three regimes (marked I, II and III in the figure) of J.(H), at a reduced
temperature t~0.973, are summarized as follows : (1) At the lowest fields (H < 10 Oe), J.
varies weakly with H (region I), as expected in the individual pinning or small bundle
pinning regime, noted earlier (Duarte et al. 1996), (2) Above a threshold field value, marked
by an arrow, J.(H) variation (in region II) closely follows the archetypal collective pinning
power law (Duarte et al. 1996, Larkin, 1970a, 1970b; Larkin and Ovchinnikov, 1979)
dependence (see the linear behaviour in region II of J. vs. H on log-log scale in Fig.2), (3)
This power law regime terminates at the onset (marked by another arrow) position of the PE
phenomenon (region III).

On increasing the temperature (see Figs. 2(a) and 2(b) for the data at t=0.973 and 0.994), the
following trends are immediately apparent: (1) the peak effect becomes progressively
shallower, i.e., the ratio of J.(H) at the peak position to that at the onset of PE becomes
smaller. For instance, the said ratio has a value of about 8 at t=0.973 and it reduces to a value
of 3.5 at t=0.994. ; (2) The power law region shrinks; for example, the field interval between
the pair of arrows (identifying the power law region) spans from 10 Oe to about 500 Oe at
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Fig. 2. Log-Log plots of J. vs. H for H\\ ¢ at selected reduced temperatures (t = T/T.(0)) in
crystals A and B of 2H- NbSe». The insets in Fig.2(c) and Fig.2(g) display the locus of PE
curve, tp(H)(=Tp(H)/Tc(0)) and the superconductor-normal phase boundary
t(H)(=T.(H)/Tc(0)) in crystals A and B, respectively. The marked data points on the PE
curves in each of these insets identify the reduced temperatures at which J.(H) data have
been displayed in Figs.2(a) to 2(d) and in Figs.2(e) to 2(h). (Ref. Banerjee et al, 2000a)

t=0.973 in Fig.2(a), whereas at t=0.996 in Fig. 2(c), the power law regime terminates near 40
Oe. Also, the slope value of linear variation of log J. vs. log H in the latter case is somewhat
smaller. At still higher temperatures (see, for instance, Fig.2(d) at 0.997), the power law
region is nearly invisible and the anomalous PE peak cannot be distinctly identified
anymore, as only a residual shoulder survives.

In contrast, the second set of plots (see Figs. 2(e) to 2(h)) in the crystal B shows a different
behaviour, although the overall evolution in the shapes of J.(H) curves is generically the
same. In Fig.2(e), at a reduced temperature t~0.965, one can see the same power law regime
as in Fig.2(a), but as the extrapolated dotted line shows, J.(H) departs from the power law
behaviour in the low field region (i.e., for H < 200 Oe). As the field decreases below 200 Oe,
the current density in crystal B (t=0.965) increases rapidly towards the background
saturation limit (i.e., in the single vortex pinning regime). The approach to background
saturation limit occurs at much lower field (H < 10 Oe) in crystal A. The smooth crossover to
individual or small bundle pinning regime as seen in the crystal A, therefore adds on an
additional characteristic in the crystal B. We label the region of rapid rise of J.(H) at low
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fields from a power law behaviour in region II into the weakly field dependent J.(H)
behaviour in region I, as the region with "loss of order" (cf. Fig.2(f)). Further, with increasing
temperature, the power law regime in the crystal B shrinks faster than that in sample A (cf.
Fig.2(e) at t=0.965 and Fig.2(f) at t=0.973), leaving only a rather featureless monotonic J.(H)
behaviour upto the highest fields (cf. Fig.2(g) and Fig.2(h)). Note, also, that the limiting
value of the reduced temperature upto which the power law regime along with the PE peak
survives in the crystal B is smaller than that in crystal A. In crystal B, the PE peak can be
distinctly discerned only upto t=0.977, whereas in crystal A it can be seen even upto t=0.994.
Recalling that the crystal B is more strongly pinned than crystal A, the above observation
reaffirms the notion that the progressive enhancement in effective pinning (which occurs as
we go from sample A to B) shrinks the (H,T) region over which the vortex matter responds
like an elastically (ordered) pinned vortex lattice.

Having identified the regime of collective pinning where the vortex matter behaves like an
ordered elastic medium and determined its sensitivity to pinning, it is fruitful to explore
transformation in the elastic regime for weak collective to strong pinning (Blatter et al.,
2004), and investigate if it coincides with the appearance of PE

3. Weak collective pinning, strong pinning and thermal fluctuations
dominated regimes for the quasi-static vortex state

3.1.1 AC susceptibility measurements:

It is chosen to focus on A’ type of a crystal of 2H-NbSe; (cf. section 2.1.1, A" has pinning
inbetween that of samples A and B), has dimensions 1.5 x 1.5 x 0.1 mm3, T.(0) ~ 7.2 K and J.
~ 50 - 100 A/cm? (at 4.2 K and 10 kOe). The 2H-NbSe; system, being a layered material,
often has extended defects (dislocations, stacking faults) present along its crystalline c axis.
If H is applied along the c axis, then the vortex lines (also oriented along ¢ direction) could
be strongly pinned by these extended defects between layers. To reduce the emphasis on the
inevitably present strong pinning centers, we have chosen to focus on behaviour obtained
for the H L c orientation (the c-axis of hexagonal crystallographic lattice is aligned along the
thickness of the platelet shaped sample) for our measurements. This choice of the field
direction also avoids geometric and surface barrier effects, which are known to persist up to
the PE in H / /c orientation (Zeldov, et al. 1994; Paltiel et al., 1998).

We measured the ac susceptibility response as well as DC magnetization of the vortex state
in the weak pinning 2H-NbSe; sample in the above mentioned orientation. The real ()
component of the ac susceptibility response (viz., x=y+ix"’) is a measure of its diamagnetic
shielding response. The maximum value of (normalized) y'= -1 corresponds to the perfectly
shielded, Meissner state of the superconductor. The y’ is related to the shielding currents

(=Jc) setup in the sample via (Bean 1962, 1964), y' —% for h,. > H*, where h, is the ac
ac

excitation magnetic field used to measure the ac susceptibility response and H* is the
penetration field value at which induced screening currents flow through the entire bulk of
the sample. (Note, H* oc Jo(H,T)). The quadrature " signal is a measure of energy dissipated
by vortices, which maximizes at h,. = H*. If the vortices get strongly pinned then y"’shows a
decrease, which is encountered in the PE regime. In the PE region, vortex matter gets better
pinned and the x” response anomalously decreases.
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3.1.2 Typical characteristics of AC susceptibility response

The y/(T) behavior in the presence of a dc field (H) of 100 Oe is shown in Fig.3(a). In this figure
the various curves correspond to different values of the amplitude of the h,. at a frequency of
211 Hz applied parallel to H (L c). Note that at a fixed T, on increasing h.. the y" (viz., the
diamagnetic shielding) response progressively decreases from -1 value (see the dashed arrow
marked at 6.8 K in Fig.3(a)). At fixed T, the decrease in " is due to h,. approaching close to H*
(< J«(100 Oe, 6.8 K) and the magnetic flux penetrates the bulk of the sample, leading to a
decrease in the screening response. As the h,. penetrates deeper into the superconductor, one
begins to clearly observe features associated with the bulk pinning of vortices inside the
superconductor, viz., the peak effect (PE) phenomenon. The quintessential PE is easily
observed as the anomalous enhancement in y’ between T, (corresponding to the onset of PE
at a given H, T) and T, (the peak of PE at a given H, T) . Notice that due to the enhanced
pinning in the PE regime between T,, and T, the sample attempts to shield its interior better
from the penetrating h.. as a consequence the " increases. Also notice that as the h,. increases,
the PE width between Ton and Ty, becomes narrower.
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Fig. 3. (a) The behaviour of y'(T) at H=100 Oe for different values of hac. Ton and T, denote
the onset and peak temperatures of the PE phenomenon. (b) The y"'(T) behaviour at H=100
Oe for different values of h,.. Location marked as A indicates the broad dissipation peak due
to penetration of h,c into the bulk of the sample (h,. > H*). [Banerjee 2000b; Mohan (2009)b]

The behaviour of the out-of-phase component (y") of the ac susceptibility for various values
of hac at H =100 Oe is shown in Fig,.3(b). It is clear that for h,c <1 Oe and at low T, due to
almost complete shielding of the probing h,. from the bulk of the sample, the )" 'response is
nearly zero. At a fixed T, say T=6.8 K, as h, increases, 3’ response also increases
monotonically. Full penetration of h,. into the bulk of the sample causes a significant rise in
dissipation, which in turn leads to a broad maximum in the %" response (location marked as
A in Fig.3(b) for h,. =2 Oe). On approaching the PE region, due to enhancement in vortex
pinning, one observes a drop in " ’response (marked as T, for h.. = 2 Oe). Beyond Tp,
dissipation has a tendency to rise sharply before decreasing close to T.(H). From Fig.3(b) we
note that at H =100 Oe and T=6.8 K, significant flux penetration starts at h,c = 1.6 Oe. Within
the Bean’s Critical State model (Bean 1962, 1964) the field for flux penetration is given by
H*~J..d, where d is the relevant dimension in which the critical state is established. Using
Fig.3(b), by approximating H*= 1.6 Oe, we estimate the J. ~ 130 A/cm2 at 6.8 K at 100 Oe
(note ] decreases significantly with increasing H).
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3.2 Transformation in the vortex state deep in the elastic regime

From Fig.3 it can be noted that the PE phenomenon is distinctly observed for h,. 22 Oe as at
these ha, the ac field fully penetrate the bulk of the superconductor, and one can probe
changes in the bulk pinning characteristics of the sample. Choosing h,. = 2 Oe, we measured
the ¢'(T) and y"’(T) for different values of H. Figures 4(a) and 4(c) and Figs. 4(b) and 4(d)
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Fig. 4. The real ((a),(c)) and imaginary ((b), (d)) parts of the ac susceptibility as a function of
T with h,c=2 Oe and for different H. [Mohan 2009b]

show the x'(T) and x”(T), respectively. At 7.0 K in Fig.4(a), with increasing H the value of
x'varies from about -1 at 25 Oe to about -0.2 at 250 Oe. This decrease in the diamagnetic
shielding response, we believe, arises from the inverse field relation of the critical current

density, e.g., J. < %—I (Kim et al., 1962). In all the curves the location of PE is clearly visible

as the anomalous enhancement in y’ due to the anomalous increase in pinning or J..
However below 100 G the PE is very shallow, and we see an enhancement in y”which
occurs very close to Tc(H). At 100 Oe we see the decrease in 3" at PE quite clearly, before the
x"'increases near T¢(T). At higher fields of 250 Oe (Fig.4(a)) from y’(T) we see that the PE gets
narrower in temperature width. As one moves to still higher fields (Fig.4(c)), the PE width
gets still narrower and sharper. In the y"’(T) at Fig.4(d), as well as in Fig.4(b) (above 100 Oe)
we do not find the drop in " associated with PE as the drop over a narrow temperature
window in %" due to PE gets merged into the enhancement in y”” signal one observes in the
vicinity of T.(H). However from Figs.4(c) and 4(d), we see that there is a decrease in "
which begins (see an arrow in Fig.4(d)) well before the anomalous enhancement in ’(T) sets
in at PE.

The fig. 5 provides a glimpse into ac susceptibility data at high fields. Above H = 750 Oe, the
signature of PE survives as a subtle change in slope of y'(T) at T, (see locations marked by
arrows in Fig.5(a)) just before y crashes to zero value at T.(H). A distinct feature seen at these
fields is that the dissipation " behaviour (Fig.5(b)), which is large at lower T, decreases
sharply as one approaches T.. This decrease begins from a region located far below the PE and
is similar to the decrease in y"(T) found above 450 Oe in fig. 4(d). The sharp increase in the
dissipation (on x”(T)) very close to T.(H) (as noted in Fig.4), is observed only for 1000 Oe
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Fig. 5. The real (a) and imaginary (b) parts of the ac susceptibility measured with h,. =2 Oe
and for different dc fields: 1000 Oe < H < 12500 Oe. The arrows in panel (a) mark the peak
locations of the PE. (c) The 3" response for 1000 Oe, 5000 Oe and 12500 Oe. The T and Tq
locations determine the different regimes of dissipation marked as the regions 1, 2 and 3

(See text for details). (d) The y’ response corresponding to (c). [Mohan et al. 2007; Mohan
2009b].

(position marked C in Fig.5(b)). Above 1000 Oe, instead of a peak in %" (T), the y"* response
exhibits only a change in slope near T.(H) before becoming zero on reaching T.(H). It should
be noted that the temperature at which where the x"response drops sharply from a large
value does not correspond to any specific feature in y'(T) and, also, occurs well before the
onset of PE. In Figs.6 (a) to (c) we can identify locations of the drop in dissipation " by
detecting the change in slope of through plots dy”’/dT vs T (see Figs.6(f), 6(e) and 6(d)) .

In Figs.6(d)-(f), the onset of the drop in dissipation at lower T is marked with arrows as T
and the T at which there occurs a change in slope of the dissipation curves close to T.(H) are
marked as Tg. (The nomenclature Ter and Ty, signify the temperature above which, there
occur pinning crossover and thermal fluctuation dominated regimes, respectively). The
dashed lines are a guide to the eye representing the base line behavior of the dy”’/dT. The
onset of deviation in dy”’/dT from the baseline identifies T, (cf. Figs.6(d) - (f)). In Figs.6 (d)-
(f) the base lines for different H have been artificially offset for clarity in the data
representation. After the locations of T, and Ty are identified from dy”’/dT (cf. Figs.6(d) -
(f)), their positions are identified and marked on the corresponding y"'(T) curves (Figs.6(a)-
(c)). We now consider three representative y’(T) curves, namely the response for 1000 Oe,
5000 Oe and 12500 Oe in Fig.5(c) to understand the significance of the T and Th.
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Fig. 6. The panels on the left (a)-(c) show the y"’(T) response for different H. The right hand
panels (d)-(f), show the derivative dy”'/dT determined from the corresponding "’ (T) curves
on the left panel. (see discussion in the text) [Mohan et al. 2007; Mohan 2009b]

In Fig.5(c), for H= 12500 Oe, three distinct regimes of behaviour in the 3”’(T) response have
been identified as the regions 1, 2 and 3. Region 1 is characterized by a high dissipation
response. As noted earlier, this high dissipation results from full penetration of h.. to the
center of the sample, similar to the dissipation peak marked at A in Fig.3(b). As noted earlier
in Fig.5(a), at these high fields beyond 1000 G, at T > T, y'(T) response possesses no distinct
signature of the PE phenomenon. The absence of any distinct PE feature in %’(T) should have
caused no modulations in the behavior of " (T) response, except for a peak in dissipation
close to T.(H). Instead, in the region 2 (cross shaded and located between the T and Tg
arrows in Fig.5(c)) a new behaviour in the dissipation response is observed, viz., in this
region there is a substantial decrease in dissipation.

As seen earlier in the context of PE in Fig.3(b), that any anomalous increase in pinning
corresponds to a decrease in the dissipation. The observation of a large drop in dissipation
across Ter (Fig.5(c)) indicates there is a transformation from low J. state to a high J. state, i.e.,
a transformation from weak pinning to strong pinning. Subsequent to the drop in y”’(T) in
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region 2, the dissipation response attempts to show an abrupt increase (see change in slope
in dy”’/dT in Fig.6(d) to (f)) at the onset of region 3 (marked as Ty in Fig.5 and Fig.6). The
abrupt increase in dissipation beyond Tq is more pronounced at low H and high T (see
behavior in Fig.5(b)). The significance of Tg will be revealed in subsequent sections. In brief,
the Tqg will be considered to identify the onset of a regime dominated by thermal
fluctuations, where pinning effects become negligible and dissipation response goes through
a peak. It is interesting to note that the Tq locations are identical to the location of T} (viz.,
the peak of PE) in Figs.5(a) and 5(c). For H < 750 Oe, the Ty location can be identified with
the appearance of a distinct PE peak at T, (see Fig.4, where dissipation enhances at T}, = Tg).
It is important to reiterate that the anomalous drop in dissipation in region 2 near T, is not
associated with the PE phenomenon.
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Fig. 7. The real (a) and imaginary (b) parts of the ac susceptibility measured in the ZFC and
FC modes, for H = 1000 Oe. Also marked for are the locations of the T, and Tg. [Mohan et
al. 2007; Mohan 2009b]

All the above discussions pertain to susceptibility measurements performed in the zero field
cooled (ZFC) mode. Detailed studies of the dependence of the thermomagnetic history
dependent magnetization response on the pinning (Banerjee et al. 1999b, Thakur et al.,
2006), had shown an enhancement in the history dependent magnetization response and
enhanced metastablility developing in the vortex state as the pinning increases across the
PE. While the ZFC and field cooling (FC), y'(T) response can be identical in samples with
weak pinning, the will show that y"’(T) is a more sensitive measure of small difference in the
thermomagnetic history dependent response. Figures 7(a) and 7(b) display '(T) and " (T)
measured for a vortex state prepared either in ZFC or FC state in 1000 Oe. Figure 7(a) shows
the absence of PE at T, in the %'(T) response at 1000 Oe for vortex state prepared in both FC
and ZFC modes. Furthermore, there is no difference between the ZFC and FC y'(T)
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responses (cf.Fig.7(a)). However, the dissipation (x”(T)) behaviour in the two states
(Fig.7(b)) are slightly different. While there are no clear signatures of T. in the y'(T)
response, in x”(T) response (Fig.7(b)) below T. one observes that the FC response
significantly differs from that of the ZFC state, with the dissipation in the FC state below Te
being lower as compared to that in the ZFC state. The presence of a strong pinning vortex
state above T, causes the freezing in of a metastable stronger pinned vortex state present
above Te, when the sample is field cooled to T < T,. As the FC state has higher pinning than
the ZFC state (which is in a weak pinning state) at the same T below T, therefore, the " (T)
response is lower for the FC state. Above T the behavior of ZFC and FC curves are
identical, as both transform into a maximally pinned vortex state above T... The behavior of
x”’(T) in the FC state indicates that the pinning enhances across T.. Beyond Te, the ZFC and
FC curves match and the high pinning regime exists till Tg. This observation holds true for
all Hqc above 1000 Oe as well.

3.2.1 Transformation in pinning: evidence from DC magnetization measurements
Figure 8 displays measured forward (Mfwd) and (Mrev) reverse magnetization responses of
2H-NDbSe; at temperatures of 4.4 K, 5.4 Kand 6.3 K for H L c.
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Fig. 8. The M-H hysteresis loops at different T. (a) The forward and reverse legs of the M-H
loops are indicated as Mgwd and Mrev. (b) in Mrey (H) array at different T. The locations of the
observed humps in the Mey(H) curves are marked with arrows. Also indicated, in the 6.3 K
curve, is the location of the field that corresponds to the temperature, Ty = Tir. [Mohan et al.
2007; Mohan 2009b]

A striking feature of the M-H loops in Fig. 8 is the asymmetry in the forward (Mgwq) and
reverse (Mrey) legs. The My leg of the hysteresis curve exhibits a change in curvature at low
fields. In Fig.8(b) we plot only the My, from the M-H recorded at 4.4 K, 5.4 K and 6.3 K. At
low fields, the My leg exhibits a hump; the location of the humps are denoted by arrows in
Fig.8(b). The characteristic hump-like feature (marked with arrows in Fig.8(b)) can be
identified closely with T locations identified in Figs.4, 5 and 6. The tendency of the
dissipation y'* to rapidly rise close to Ta(H) (cf. Figs.4, 5 and 6) is a behaviour which is
expected across the irreversibility line (Ti(H)) in the H-T phase diagram, where the bulk
pinning and, hence, the hysteresis in the M(H) loop becomes undetectably small. The
decrease in pinning at Ti.(H), results in a state with mobile vortices which are free to
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dissipate. We have confirmed that Tg(H) coincides with Ti(H), by comparing dc
magnetization with y”* response measurements (cf. arrow marked as Tg= Tjy in Fig.8 for the
6.3 K curve). Thus Ta(H) coincides with Ti.(H), which is also where the peak of the PE
occurs, viz., the peak of PE at Tj, occurs at the edge of irreversibility (cf. H-T phase diagram
in Fig.9).

3.3 The H-T vortex phase diagram and pinning crossover region

Figure 9(a) shows the H - T, vortex matter phase diagram wherein we show the location of
the T(H) line which is determined by the onset of diamagnetism in y'(T), the Ty(B) line
which denotes the location of the PE phenomenon, the T.(H) line across which the y'(T)
response (shaded region 2 in Fig.5(c)) shows a substantial decrease in the dissipation and
the Tg line beyond which dissipation attempts to increase. The PE ceases to be a distinct
noticeable feature beyond 750 G and the Tp(H) line (identified with arrows in Fig. 5(a))
continues as the Ta(H) line. Note the Ta(H) line also coincides with Ti.(H). For clarity we
have indicated only the Tq(H) line in the phase diagram with open triangles in Fig.9(a).

w0Fs 7 P =
N 10004 g
2
“
“w
JSH) g
. . ~ 1004 S
] R C
2 \ - Thcrmall g £
= %, ¥, fluctuations | < a
= "&__‘ 5 ' 104 <
AR
] ()
e weak
1 o
0.0 05 1.0 15 2.0
72 Vi
T(K)
(a) (b)

Fig. 9. (a) The phase diagram showing the different regimes of the vortex matter. The inset is
a log-log plot of the width of the hysteresis loop versus field at 6K. (b) An estimate of
variation in J. with f,/frap in different pinning regimes. [Mohan et al. 2007; Mohan 2009b].

We consider the T.(H) line as a crossover in the pinning strength experienced by vortices,
which occurs well prior to the PE. A criterion for weak to strong pinning crossover is when
the pinning force far exceeds the change in the elastic energy of the vortex lattice, due to
pinning induced distortions of the vortex line. This can be expressed as (Blatter et al, 2004),
the pinning force (f,) ~ Labusch force (fra) = (0&/ao0), where gy = (¢o/4m))? is the energy
scale for the vortex line tension, & is the coherence length, ¢o flux quantum associated with a
vortex, ) is the penetration depth and ap is the inter vortex spacing (ag o« H-05). A softening of
the vortex lattice satisfies the criterion for the crossover in pinning. At the crossover in
pinning, we have a relationship, ap = €& fp1. At Ho(T) and far away from T,, if we use a
monotonically decreasing temperature dependent function for f, ~ fpo(1-t)", where t=T/Tc(0)
and B > 0, then we obtain the relation He(T) oc (1-t)2". We have used the form derived for
H(T) to obtain a good fit (solid line through the data Fig.9(a)) for T(B) data, giving 2~
1.66 £ 0.03. Inset of Fig. 9(a) is a log-log plot of the width of the magnetization loop (AM)
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versus H. The weak collective pinning regime is characterized by the region shown in the
inset, where the measured AM(H) (red curve) values coincide with the black dashed line,

viz.,, AM oc |, o %—I” , with p as a positive integer (discussed earlier). Using expressions for

Je(fp/fLab) (Blatter, 2004), ap ~ A and A= 2300 A°, &= 23 A° for 2H-NbSe, (Higgins and
Bhattacharya, 1996) and parameters like density of pins suitably chosen to reproduce J.
values comparable to those experimentally measured for 2H-NbSe;, Fig.9(b) shows the
enhancement in J. expected at the weak to strong pinning regime, viz., around the shaded
region in Fig.9(b) marked AJ,, in the vicinity of f,/fr., ~ 1. In Fig.9(a), the shaded region in
the AM(H) (ec Jo(H), Bean, 1962; 1967) plot shows the excess pinning that develops due to the
pinning crossover across He(T) (= Ter(H)). Comparing Figs.9(b) and 9(a) we find AJc/Jc,weak
~ 1 compares closely with the (change in AM in shaded region ~ 0.6 T in Fig.9(a) inset)/ AM
(along extrapolated black line ~ 0.6 T) ~ 0.5. In the PE regime, usually AJc/]Jcweak = 10 (see
for example in Fig.2). Note from the above analysis and the distinctness of the T and T,
lines in Fig.9(a), shows that the excess pinning associated with the pinning crossover does
not occur in the vicinity of the PE, rather it is a line which divides the elastically pinned
regime prior to PE. Based on the above discussion we surmise that the T.(H) line marks the
onset of an instability in the static elastic vortex lattice due to which there is a crossover
from weak (region 1 in Fig.5(c)) to a strong pinning regime (region 2 in Fig.5(c)). The
crossover in pinning produces interesting history dependent response in the
superconductor, as seen in the M.y measurements of Fig. 8 and in the %" (T) response for the
ZFC and FC vortex states, in the main panel of Fig.7. In the inset (b) of Fig.8 we have
schematically identified the pinning crossover (by the sketched dark curved arrows in
Fig.8(b)) by distinguishing two different branches in the M,(H) curve, which correspond to
magnetization response of vortex states with high and low J.. We reiterate that the onset of
instability of the elastic vortex lattice sets in well prior to PE phenomenon without
producing the anomalous PE.

As the strong pinning regime commences upon crossing He, how then does pinning
dramatically enhance across PE? The Tq(H) line in Fig.9 marks the end of the strong pinning
regime of the vortex state. Above the Tq(H) line and close to T.(H), the tendency of the
dissipation response to increase rapidly (Figs.1 and 2) especially at low H and high T,
implies that thermal fluctuation effects dominate over pinning. We find that our values (Hg,
Tn) in Fig.9(a), satisfies the equation governing the melting of the vortex state, viz.,

ct T ’ Tﬂ Bﬂ ?
By=f,| £ |Ho(0)| = | |1~ , where, B, = 5.6 (Blatter et al, 1994),
Gi Tﬂ Tc HC2(0)

Lindemann no. ¢; ~ 0.25 (Troyanovski et al. 1999, 2002), H,5 (0) = 14.5 T, if a parameter, G; is

in the range of 1.5 x 102 to 10-4. The Ginzburg number, G;, in the above equation controls the
size of the H - T region in which thermal fluctuations dominate. A value of O(104) is
expected for 2H-NbSe; (Higgins & Bhattacharya, 1996). The above discussion implies that
thermal fluctuations dominate beyond Tu(H). By noting that T,(H) appears very close to
Ta(H), it seems that PE appears on the boundary separating strong pinning and thermal
fluctuation dominated regimes.

The above observations (Mohan et al, 2007) imply that instabilities developing within the
vortex lattice lead to the crossover in pinning which occurs well before the PE. Infact, PE
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seems to sit on a boundary which separates a strong pinning dominated regime from a
thermal fluctuation dominated regime. These assertions could have significant ramifications
pertaining to the origin of PE which was originally attributed to a softening of the elastic
modulii of the vortex lattice. Even though thermal fluctuations try to reduce pinning, we
believe newer results show that at PE, the pinning and thermal fluctuations effects combine
in a non trivial way to dramatically enhance pinning, much beyond what is expected from
pinning crossovers. The change in the pinning response deep in the elastic vortex state is
expected to lead to nonlinear response under the influence of a drive. It is interesting to ask
if these crossovers and transformation in the static vortex state evolve and leave their
imprint in the driven vortex state.

4 Nonlinear response of the moving vortex state

4.1 1-V characteristics and the various phases of the driven vortex matter

In the presence of an external transport current (I) the vortex lattice gets set into motion. A
Lorentz force, fi=] x ¢o/c, acting on each vortex due to a net current density J (due to current
(I) sent through the superconductor and the currents from neighbouring vortices) sets the
vortices in motion. As the Lorentz force exceeds the pinning force, i.e fi>f,, the vortices begin
to move with a force-dependent velocity, v. The motion of the flux lines induces an electric
field E = B x v, in the direction of the applied current causing the appearance of a longitudinal
voltage (V) across the voltage contacts (Blatter et al, 1994). Hence, the measured voltage, V in a
transport experiment can be related to the velocity (v) of the moving vortices via V=Bvd,
where d is the distance between the voltage contacts. Measurements of the V (equivalent to
vortex velocity v) as a function of I, H, T or time (t) are expected to reveal various phases and
their associated characteristics an nonlinear behavior of the driven vortex state.

When vortices are driven over random pinning centers, broadly, four different flow regimes
have been established theoretically and through significantly large number of experiments
(Shi & Berlinski 1991; Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998;
Giammarchi & Bhattacharya, 2002). These are: (a) depinning, (b) elastic flow, (c) plastic
flow, and (e) the free-flow regime. At low drives, the depinning regime is first encountered,
when the driving force just exceeds the pinning force and the vortices begin moving. As the
vortex state is set in motion near the depinning regime, the moving vortex state is
proliferated with topological defects, like, dislocations (Falesky et al, 1996). As the drive is
increased by increasing the current through the sample, the dislocations are found to heal
out from the moving system and the moving vortex state enters an ordered flow regime
(Giammarchi & Le Doussal, 1996; Yaron et al., 1994; Duarte, 1996). The depinning regime is
thus followed by an elastically flowing phase at moderately higher drives, when all the
vortices are moving almost uniformly and maintain their spatial correlations. The nature
and characteristics of this phase was theoretically described as the moving Bragg glass
phase (Giammarchi & Le Doussal, 1996; Le Doussal & Giammarchi, 1998). In the PE regime
of the H- T phase diagram, it is found that as the vortices are driven, the moving vortex state
is proliferated with topological defects and dislocations, thereby leading to loss of
correlation amongst the moving vortices (Falesky et al, 1996; Giammarchi & Le Doussal,
1996; Le Doussal & Giammarchi, 1998; Giammarchi & Bhattacharya 2002). This is the regime
of plastic flow. In the plastic flow regime, chunks of vortices remain pinned forming islands
of localized vortices, while there are channels of moving vortices flowing around these
pinned islands, viz., different parts of the system flow with different velocities
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(Bhattacharya & Higgins, 1993, Higgins & Bhattacharya 1996; Nori, 1996; Tryoanovski et al,
1999). The effect of the pins on the moving vortex phase driven over random pinning
centers is considered to be equivalent to the effect of an effective temperature acting on the
driven vortex state. This effective temperature has been theoretically considered to lead to a
driven vortex liquid regime at large drives (Koshelev & Vinokur, 1994). At larger drives, the
vortex matter is driven into a freely flowing regime. Thus, with increasing drive, interplay
between interaction and disordering effects, causes the flowing vortex matter to evolve
between the various regimes.

The plastic flow regime has been an area of intense study. The current (I) - voltage (V)
characteristics in the plastic flow regime across the PE regime are highly nonlinear (Higgins
& Bhattacharya, 1996), where a small change in I is found to produce large changes in V.
Investigations into the power spectrum of V fluctuations revealed significant increase in the
noise power on entering the plastic flow regime (Marley, 1995; Paltiel et al., 2000, 2002). The
peak in the noise power spectrum in the plastic flow regime was reported to be of few Hertz
(Paltiel et al., 2002). The glassy dynamics of the vortex state in the plastic flow regime is
characterized by metastability and memory effects (Li et al, 2005, 2006; Xiao et al, 1999). An
edge contamination model pertaining to injection of defects from the nonuniform sample
edges into the moving vortex state can rationalise variety of observations associated with
the plastic flow regime (Paltiel et al., 2000; 2002). In recent times experiments (Li et al, 2006)
have established a connection between the time required for a static vortex state to reach
steady state flow with the amount of topological disorder present in the static vortex state.
By choosing the H-T regime carefully, one finds that while the discussed times scales are
relatively short for a well ordered static vortex state, the times scales become significantly
large for a disordered vortex state set into flow, especially in the PE regime. The discovery
of pinning transformations deep in the elastic vortex state (Mohan et al, 2007), motivated a
search for nonlinear response deep in the elastic regime as well as to investigate the time
series response in the different regimes of vortex flow (Mohan et al, 2009).

4.2 Identification of driven states of vortex matter in transport measurements

The single crystal of 2H-NbSe; used in our transport measurements (Mohan et al, 2009) had
pinning strength in between samples of A and B variety (see section 2.1.1). The dc magnetic
field (H) applied parallel to the c-axis of the single crystal and the dc current (I4) applied
along its “ab” plane (Mohan et al, 2009). The voltage contacts had spacing of d ~ 1 mm apart.
Figure 10(a) shows the plots of resistance (R=V/I4c) versus Hat 25K, 4K, 45K,5K, 58 K
and 6 K measured with 13:=30 mA. With increasing H, all the R-H curves exhibit common
features viz., nearly zero R values at lowest H, increasing R after depinning at larger H, an
anomalous drop in R associated with onset of plastic flow regime and finally, a transition to
the normal state at high values of H. To illustrate in detail these main features, and to
identify different regime of driven vortex state, we draw attention only to the 5 K data in
Figure 10(b).

At 5 K, for H < 1.2 kOe, R < 0.1 mQ, which implies an immobile, pinned vortex state.
Beyond 1.2 kOe (position marked as Hgp in Fig.10(b)), the FLL gets depinned and R
increases to mQ range. From this we estimate the critical current I. to be 30 mA (at 5 K, 1.2
kOe). The enhanced pinning associated with the anomalous PE phenomenon leads to a drop
in R starting at around 6 kOe (onset location marked as H;j) and continuing up to around 8
kOe (location marked as Hp). The PE (= plastic flow) region is shaded in Fig.10(b). As
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Fig. 10. (a) R versus H (H \\ c) of the vortex state, measured at different T with 14.=30 mA.
(b) R-H at 5 K only, with the different driven vortex state regimes marked with arrows. The
arrows marks the locations of, depinning (Haqp), onset of plastic deformations (Hp), peak
location of PE (Hy) and upper critical field (H2) at 5 K, respectively. The inset location of
above fields (Fig.10(b)) on the H-T diagram. [Mohan et al. 2009a; Mohan 2009b].
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Fig. 11. (a) The V-Ig characteristics and dV/dl4c vs I4c in the elastic phase at 4 K and 7.6 kOe.
The solid line is a fit to the V-I4. data, (cf. text for details). (b) R-H curve at 4.5 K and I4.= 30

mA. [Mohan et al. 2009a; Mohan 2009b]

discussed earlier (Fig.9), beyond Hy, thermal fluctuations dominate causing large increase in
R associated with pinning free mobile vortices until the upper critical field He is reached.
We determine He(T) as the intersection point of the extrapolated behaviour of the R-H
curve in the normal and superconducting states, as shown in Fig.10(b). By identifying these
features from the other R-H curves (Fig.10(a)), an inset in Fig.10(b) shows the H-T vortex

phase diagram for the vortex matter driven with Ig. = 30 mA.
Figure 11 shows the V-4 characteristics at 4 K and 7.6 kOe; this field value lies between

Hap(T) and Hyi(T) (see inset, Fig.10(b)), i.e. in the elastic flow regime. It is seen that the data
fits (see solid line in Fig.11(a)) to V~(I4. - Ic)ﬁ, where f ~2and I. =18 mA (I =1, when V=5
uV, as V develops only after the vortex state is depinned), which inturn indicates the onset
of an elastically flow. Experiments indicate the concave curvature in I-V coincides with
ordered elastic vortex flow (Duarte et al, 1996; Yaron et al., 1994; Higgins and Bhattacharya
1996). Unlike the elastic flow regime, the plastic flow regime is characterized by a convex
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curvature in the V-Ig. curve alongwith a conspicuous peak in the differential resistance
(Higgins and Bhattacharya, 1996), which is absent in Fig.11 (see dV/dl4c vs I4 in Fig.11(a)).
All the above indicate ordered elastic vortex flow regime at 4 K, 7.6 kOe and I = 30 mA. The
dV/dlgc curve also indicates a nonlinear V-l4c response deep in the elastic flow regime.

4.3 Time series measurements of voltage fluctuations and its evolution across
different driven phases of the vortex matter

Figure 11(b), shows the R-H curve for 4.5 K. Like Fig.10(b), in Fig. 11 (b), the Hqp, Hpi, Hp
and H., locations are identified by arrows, which also identify the field values, at which
time series measurements were performed. The protocol for the time series measurements
was as follows: At a fixed T, H and I, the dc voltage Vy across the electrical contacts of the
sample was measured by averaging over a large number of measurements ~ 100. The Vo
measurement prior to every time series measurement run, ensures that we are in the desired
location on R-H curve, viz., the V(/I value measured before each time series run should be
almost identical to the value on the R(H) curve at the given H,T, like the one shown in
Figs.10(b) or 11(b). After ensuring the vortex state has acquired a steady flowing state, viz.,
by ensuring the mean V,ie., <V> ~ V,, the time series of the voltage response (V(t)) is
measured in bins of 35 ms for a net time period of a minute, at different H, T.
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Fig. 12. (a) The left most vertical column of panels represent the fluctuations in voltage
V(t)/ Vo measured at different fields at 4.5 K with I4c of 30 mA. Note: V(2.6 kOe) =1.4 uV,
Vo(3 kOe) = 3.7 nV, V(3.6 kOe) = 9.5 uV, Vo(5 kOe) = 21.1 uV, V(7.6 kOe) = 50.7 uV. The
middle set of panels are the C(t) calculated from the corresponding V(t)/ Vo panels on the
left. The right hand set of panels show the amplitude of the FFT spectrum calculated from
the corresponding C(t) panels. In Fig.12 (b), the organization of panels is identical to that in
Fig.12 (a) with, V(8 kOe) = 54.5 uV, V(9.6 kOe) = 9.8 uV, Vo(10 kOe) = 1.0 nV, Vo(10.8 kOe)
=0.2 uV, Vo(12 kOe) = 3.2 uV. [Mohan et al. 2009a; Mohan 2009b]

The time series V(t) measurements at T=4.5 K are summarised in Figs.12 (a), Fig.12 (b), Fig.
13 (a) and Fig.13 (b). The stack of left hand panels in Figs. 12(a), 12(b), 13(a) and 13(b) show
the normalized V(t)/V, versus time (t) for different driven regimes, viz., the just depinned
state (H ~ Haqp), the freely flowing elastic regime (Hgqp, <H < Hy), above the onset of the
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plastic regime (H > Hyy), deep inside the plastic regime (H ~ Hy) and above PE regime (H >
Hp) (cf. Fig.11(b)). A striking feature in these panels is the amplitude of fluctuations in V(t)
about the V value are significantly large, varying between 10-50% of Vo, depending on the
vortex flow regime. As one approaches very near to the normal regime, the fluctuations in
V(t) are about 1% of Vj (see bottom most plot at 16 kOe the left stack of panels in Fig.13(a))
and is about 0.02% deep inside the normal state (see Fig. 13(b), left panel). Near Hqp (2.6 kOe
and 3 kOe, Fig.12(a)) the fluctuations are not smooth, but on entering the elastic flow
regime, one can observe spectacular nearly-periodic oscillations of V(t) (see at 3.6 kOe, 5 kOe
and 7.6 kOe in panels of Fig.12(a)). Such conspicuously large amplitude, slow time period
fluctuations of the voltage V(t), which are sustained within the elastically driven state of the
vortex matter (up to 7.6 kOe), begin to degrade on entering the plastic regime (above 8 kOe,
see Fig.12(b)).
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Fig. 13. (a) consists of three columns representing V(t)/ Vo, C(t) and power spectrum of
fluctuations (see text for details) measured with I4c of 30 mA. Note: V(12.4 kOe) = 13.6 uV,
Vo(12.8 kOe) = 49.6 1V, Vo(13.6 kOe) = 284.9 uV, V(14 kOe) = 404.5 pV, Vo(16 kOe) = 513.7
pV. (b)Panels show similar set of panels as (a) in the normal state at T = 10 K and H = 10 kOe
with Igc of 30 mA (Vo= 539. 6 uV). [Mohan et al. 2009a; Mohan 2009b]

Considering that the voltage (V) developed between the contacts on the sample is
proportional to the velocity (v) of the vortices (see section 4.1, V=Bvd), therefore to
investigate the velocity - velocity correlations in the moving vortex state, the voltage-

1 '
voltage (= velocity - velocity) correlation function: = 702<V(t * t)V(t», was determined

from the V(t)/ Vo signals (see the middle sets of panels in Figs.12 (a) and 12 (b) and Fig. 13
for the C(t) plots). In the steady flowing state, if all the vortices were to be moving
uniformly, then the velocity - velocity correlation (C(t)) will be featureless and flat. While if
the vortex motion was uncorrelated then they would lose velocity correlation within a short
interval of time after onset of motion, then the C(t) would be found to quickly decay. Note
an interesting evolution in C(t) with the underlying different phases of the vortex matter.
While there are almost periodic fluctuations in C(t) at 3.6 kOe, 5 kOe and 7.6 kOe (at H <
Hp) sustained over long time intervals, there are also intermittent quasi-periodic
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fluctuations sustained for a relatively short intervals even at H > Hy,, viz., at 10.8 kOe and
13.6 kOe (see Fig.12 and Fig.13). The periodic nature of C(t) indicates that in certain regimes
of vortex flow, viz., even deep in the driven elastic regime (viz., 3.6 kOe, 5 kOe and 7.6 kOe
in Fig.12(a) panels) the moving steady state of the vortex flow, the vortices are not always
perfectly correlated. Instead their velocity appears to get periodically correlated and then
again drops out of correlation.

Once can deduce the power spectrum of the fluctuations by numerically determining the
fast Fourier transform (FFT) of C(t). The FFT results are presented in the right hand set of
panels in Figures 12(a), 12(b), 13(a) and 13(b). A summary of the essential features of the
power spectrum are as follows. At 2.6 kOe where the vortex array is just above the
depinning limit for Is. = 30 mA, one finds two peak-like features in the power spectrum
centered around 0.25 Hz and 2 Hz (Fig.12(a)). With increasing field, the peak feature at 2 Hz
vanishes, and with the onset of freely flowing elastic regime (>3 kOe), a distinct sharp peak
located close to 0.25 Hz survives. This low-frequency peak, which exists up to H = 7.6 kOe,
has an amplitude nearly five times that at 0.25 Hz for 2.6 kOe. In the plastic flow regime,
viz., H > Hp ~ 8 kOe, the amplitude of the 0.25 Hz frequency starts diminishing (Figs.12(b),
the right most panel). At the peak location of the PE (H,=10.8 kOe), the 0.25 Hz frequency is
absent but there is now a well defined peak in the power spectrum close to 2 Hz (see
Fig.12(b)). Close to the vortex state depinning out of the plastic regime (i.e., close to the
termination of PE (e.g., at 12.4 kOe and beyond, in Fig.13(b)), the 2 Hz peak dissappears and
a broad noisy feature, which seems to be peaked, close to mean value ~ 0.25 Hz makes a
reappearance (cf. right hand panels set in Fig.13(a)).

Close to 13.6 kOe and 14 kOe, one finds that the fluctuations begin to appear at multiple
frequencies, indicating a regime of almost random and chaotic regime of response. Features
related to a chaotic regime of fluctuations are being described later in section 4.6. As one
begins to approach close to He, i.e., at 16 kOe, one observes a broad spread out spectrum
with weak amplitude. For the sake of comparison, in the panels in Fig.13(b), the measured
and analyzed V(t)/ Vo, C(t) and the power spectrum of voltage fluctuations in the normal
state of the superconductor at 10 K and 10 kOe stand depicted. Note that the V(t) is just abut
0.02% of Vo, which is far lower than that present in the superconducting state. The C(t) is
featureless and the power spectrum of the fluctuations in the normal state also does not
show any characteristics peak in the vicinity of 0.25 Hz or 2 Hz.

The evolution in the fluctuations described above at T=45 K is also found at other
temperatures. Similar to 4.5 K measurements of the voltage - time series were done at 2.5 K, 5
K, 58 K, 6 K (Mohan, 2009b). Figure 14 shows the power spectrum of the fluctuations in V
recorded at 2.5 K in different field regimes (Mohan, 2009a). Panel (a) of Fig.14 shows the R-H
behavior plot for T=2.5 K, where the field locations of Hap, Hpl, Hp and He, have been marked
with arrows. By comparing the power spectrum of fluctuations at 2.5 K (Figs.14 (a) and 14(b))
with those at 4.5 K (the left most set of panels in Figs.12(a), 12(b) and 13(a)), one can find
similarity in overall features, along with some variations as well. For example, note that like at
45K, in 2.5 K also, just after depinning, the vortex state viz., at 6. 5 kOe at 2.5 K (Fig.14) and
2.6 kOe at 4.5 K (Fig.12(a)), one can observe the presence of two discernable features in the
power spectrum located in the vicinity of the 0.2 Hz and 2.25 Hz. However, unlike at 4.5 K
where the peak at 2 Hz quickly disappeared by 3 kOe (Fig.12(a)) at 2.5 K on moving to fields
away from the Hgp, the two peak structure (one close to 0.2 Hz and another close to 2.25 Hz) in
the power spectrum persists upto field of 12. 5 kOe (see Fig.14(b)). At 2.5 K the peak located
near 2.25 Hz in the power spectrum progressively decreases with increasing H until it
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dissapears at 13.5 kOe and only a broad feature with peaks in the sub- Hertz regime remains
(see, 13.5 kOe and 14.5 kOe data in the panels of Fig.14(c)). Unlike at 4.5 K, where the
periodic nature of the fluctuations in the ordered elastic flow regime was clearly
discernable, at 2.5 K the fluctuations in V(t) are not as periodic (perhaps due to the
admixture of the two characteristic frequencies). Here one can argue that both drive and
thermal fluctuation effects play a significant role in generating the characteristic
fluctuations. At 2.5 K, on entering the PE regime, similar to 4.5 K data, one finds only find a
lone peak surviving near 2 Hz in the power spectrum of fluctuations (compare 18 kOe data
at 2.5 K in Fig.14(c) panel with the 10.8 kOe data in Fig.12(b)). Beyond the PE regime at 22
kOe at 2.5 K only the broad feature in the sub-Hertz regime survives. At other higher T (>
4.5 K and close to Tc(H)) the features in the power spectrum are almost identical to those
seen for 4.5 K with the difference being that features in the sub-Hertz regime become

dominant compared to the Hertz regime (Mohan, 2009).
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Fig. 14. (a) R-H behavior at 2.5 kOe measured with I = 30 mA. Panels (b) and (c) represent
the power spectrum of fluctuations at 2.5 K at different H. [Mohan 2009b]

4.4 Excitation of resonant like modes of fluctuations in the driven vortex phase

The above measurements have revealed that a dc drive (with l4c) excites large fluctuations in
voltage (equivalent to velocity) in the range of 10 - 40% of the mean voltage level (Vo) at
characteristic frequencies (fo and f'o) located in the range of 0.2 Hz and 2 Hz, respectively.
The observation that low-frequency modes can get excited in the driven (by li) vortex
lattice had led Mohan et al, (2009) to explore the effect of a small ac current (li)
superimposed on Iy, where the external periodic drive with frequencies (f) close to fo and f'o
may result in a resonant like response of the driven vortex medium. The vortex lattice was
driven with a current, I = I4c +1.., where I, = I)Cos(2nft) is the superposed ac current on Igc.
At 4 K at different H, the vortex state is driven with I(f), and the dc voltage V of the sample
was measured while varying the f of I..(f). Figure 15 shows the measured V against f at
different values of H, where Iqc = 22 mA and Iy = 2.5 mA (L. = IoCos(2xft)), where the I is
chosen to ensure that Is.+]p gives the same V as with only I¢. = 30 mA, at the given H,T.
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In the elastic regime (7.6 kOe, cf. Fig. 15(a)) one observes spectacular oscillations in V(f).
Significantly large oscillations are observed in V at low f , viz.,, f < 3 Hz, where the
oscillations can exceed (by nearly 100%) of the mean V level determined by the Is.. Shown in
Fig.15(b) is an enlarged view of the low-f region of the V(f) data at 7.6 kOe presented in
Fig.15(a). An important feature to note in Fig. 15(b) is the enhanced regimes of fluctuations
in V(f) occurring at the harmonics of 0.25 Hz (see arrows in bold in Fig.15(b)).
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Fig. 15. (a) The measured dc voltage V against frequency f of L. at different values of H at 4
K and with a current I = Igc +I.., where I = 22 mA and Ip = 2.5 mA. (b) An enlarged view of
V(f) at 4 K and 7.6 kOe (panel (a)). The arrows in ‘bold” mark the location of the resonant
peaks in V(f). [Mohan et al. 2009a; Mohan 2009b]

Note that the peak of the fluctuations in V(f) at the harmonics of 0.25 Hz appears to follow
an envelope curve, which has a frequency of 2 Hz (see envelope curve in Fig.15(b)), though
the envelope of fluctuation at fo’ ~ 2 Hz damps out faster than that at fo~ 0.25 Hz. However,
one can see that f of I, matches with the characteristic frequencies fo and f'o (cf Figs. 12 and
13), which are excited with 4., viz., ~ 0.25 Hz and ~ 2 Hz, where one observes resonant
oscillations in the V. Note that by increasing H as one enters the plastic regime, for example
at 9.2 kOe (Fig.15(a)), the enhanced resonant like fluctuations in V(f) at the harmonics of 0.25
Hz seem to rapidly diminish. At 7.6 kOe, while one observes resonant like fluctuations in
V(f) upto 6fo, fo = 0.25 Hz, at 9.2 kOe, one observes the same till only about 4f,. Notice that
above the peak of the PE, viz., at 14 kOe and beyond, one observes no resonant like behavior
in V(f), instead the system seems to exited at all frequencies, which is indicative of a chaotic
regime of fluctuations. It is interesting to note similar behavior was also observed in the
power spectrum of fluctuations in the vortex velocity excited at 14 kOe in Fig.13(a). Thus,
the observation of large (~100%) excursions in the measured V. signal at harmonics of 0.25
Hz indicates a significantly large nonlinear response in the traditionally assumed linear,
weakly disordered - driven vortex solid prior to the PE. The above chaotic behavior
continues well above the onset of the PE regime. Though from the earlier discussion of Figs.
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12 and 13, it may have appeared that fy ~ 0.2 - 0.25 Hz makes a comeback above the PE,
leading one to propose a similarity of driven phases before and above the PE, yet the present
measurements indicate that above PE, the fy does not excite the resonant like feature which
are characteristic of fo deep in the elastic regime (viz., see Fig.15).

It has been proposed (Mohan et al, 2009a) that the resistance of the sample varies as,

m
R=Ry+ Z[RnCos(nZﬂ fob) + R.Sin(n27 fyt)] under the influence of current, I = I . +I,.. Here,
n=1
Ry is the resistance of the sample in response to the I alone, R, and R,/ are the f dependent
coefficients of the in-phase and out-of-phase responses, and fy is the characteristic frequency
of fluctuations. The fy (= 0.25 Hz) corresponds to the peak value in the power spectrum for H
= 7.6 kOe and T = 4.5 K in Fig.15(b). Taking the time average of the expression, V = IR,
yields, Vi = IacRo £ (Io)Ry)/2, at f = nfy. From the very large fluctuations (~100%) seen in
Fig.15, it is clear that (IopR1)/2 = IaRo or R; ~ 20 Ry, is a substantially large component excited
at f = fo. Similarly, at f = 2 fo, R, ~ 15 Ro. Notice from Fig.15, that the nonlinear response can
be easily seen upto f =5 to 6fy (see the positions of solid arrows in Fig.15(b)). The envelope of
the amplitude of fluctuations in Fig.15(b) appears to decrease upto 5 fy; thereafter, the
envelope regenerates itself into second and third cycles of oscillations, but, with
progressively, reduced intensities. Thus, a small perturbation with I, ~ 0.1 I, triggers large
fluctuations along with a higher-harmonic generation indicating a highly nonlinear nature
of the dynamics. It is noteworthy that the envelope of the resonant oscillations at nfy seen at
7.6 kOe with a frequency of 2 Hz (= f'o) is damped out in the plastic regime. Thus, the peak
in the vicinity of fo’=2 Hz as seen in Figs.12, 13 and 14, have properties different from fo ~ 0.2
- 0.25 Hz. Unlike fo, the I.(fo") does not excite resonant like modes of fluctuations especially
in the plastic regime, and even in the elastic regime as noted earlier the envelope (dotted
curve in Fig.15(b)) with frequency fo’ = 2 Hz damps out very quickly. Thus fo and f," are
associated with distinct behavior of different states of the driven vortex matter.

4.5 Evolution in the characteristic frequencies observed in the power spectrum with
vortex velocity

It is known that the periodically spaced vortices when driven over pins, lead to a specific
variety of vortex-velocity fluctuations, called the washboard frequency (Fiory 1971; Felming &
Grimes 1979; Harris et al., 1995; Kokubo et al, 2005), which are in the range of 0.1-1 MHz. The
wash board frequency is far larger than the frequencies, elucidated above. It has also been
reported that the nonlinear I-V characteristics in the PE regime is accompanied with low
frequency noise (<< washboard frequency) in the range of few Hz (Higgins and Bhattacharya
1996; Paltiel et al, 2000; 2002; Gordeev et al 1997; Marley et al 1995; Merithew et al. 1996). The
peak in the noise power density in the vicinty of 3 Hz in the PE regime in 2H-NbSe; was
rationalized within the edge contamination framework (Paltiel et al., 2000;,2002). Qualitatively,
as per the edge contamination model (Paltiel et al, 2000; 2002), the disordered vortices injected
from irregularities on the sample boundaries lead to a slow down of the ordered vortices
driven inside the sample. This causes a reduction in the injection rate of the disordered
vortices. As the fraction of the injected disordered vortices decreases, the velocity of the driven
state inturn increases and the entire process repeats. This is the source of velocity fluctuations
via the edge contamination picture. It has been argued that edge contamination should result
in velocity fluctuations, which are proportional to the rate of injection of vortices which
typically are in the range few Hz. In our case, vortices need about 0.1 s to traverse the typical
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width of our sample of ~ 0.1 cm, with a vortex velocity , v = <V(t)>/(d.B) ~ 102 m/s( =1
cm/s), where V ~ 10 puV observed at 30 mA, B =pgH = 1 Tesla, and d is the distance between
the electrical contacts = 103 m. Therefore, the injection rate of disordered vortices into the
moving vortex medium from irregularities at the sample edges is at the rate of ~ 10 Hz. The
observation of a peak in the velocity fluctuation spectrum centered around 2 Hz (cf. Figs. 12,
13 and 14) in the PE region could be termed as consistent with earlier reported observations of
peak in noise power in similar frequency range in the PE regime of NbSe; (Paltiel et al., 2002;
Merithew et al., 1996) and YBa,CuOy.s (Gordeev et al., 1997). However, in the ordered elastic
driven vortex state prior to PE, one also notes a much lower frequency of 0.25 Hz (cf. Figs.12,
13 and 14), which as per the edge contamination model would imply an effective sample
width of 4 cm (with u =1 cm/s), which would be >> actual sample width (~ 0.1 cm). This
implies a deviation from the edge contamination picture.
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Fig. 16. The evolution of the characteristic frequencies associated with fluctuations in vortex
motion as a function of velocity of vortices. The shaded band represents the behaviour of the
higher characteristic frequency. [Mohan et al. 2009a; Mohan 2009b]

Figurel6 shows an evolution in fy (~ 0.05 H,, solid squares) and f'o (~ 2 Hz, solid triangles)
with velocity (v) of the vortices (Mohan et al, 2009). This compilation is based on
measurements at different H, T, and Ij.. One can see that the higher characteristic frequency fy’
increases with v, varying from around 1.75 Hz to 3.5 Hz, while the lower fy is v independent.
This is consistent with the impression from the Is-+1.c experiments that fo and fo" have distinct
behavior and do not correspond to part of the same behavior repeating at different
frequencies. From the conventional noise mechanism, based on edge contamination model,
one would expect the frequency of v fluctuations (equivalent to the disorder injection rate) to
increase with v without showing any tendency to saturate with v. However, this is not the case
as seen in Fig.16. While the higher frequency fo’"does seem to increase with v at lower values
(see shaded region in Fig.16), it shows a much more slower change with v at higher values,
with a tendency to saturate. The lower frequency appears to be nominally v independent,
which is unexpected within edge contamination model. One may clarify that in certain v
regimes only one of the two frequencies survives. It can be stated that the detailed richness of
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the fluctuations in the descriptions presented here do not find a rationalization within the
present models relating to noise in the driven vortex state.

The current understanding of the nature of the flowing vortex state and transitions within it
are inadequate. This is best illustrated by the nonlinear nature of the response within the
steady state of driven elastic vortex medium (cf. discussion pertaining to Figs.12 - 16 above),
which is far from the conventional notion that the elastic medium is almost a benign medium,
which responds almost linearly to drive. Infact though a lot has been understood regarding the
plastic flow regime (see discussion relating to the plastic flow regime in section 4.1), newer
works (Olive & Soret, 2006; 2008) have indicated that the vortices in this regime exhibit chaotic
regimes of flow, where the velocity fluctuations of the vortices may show intermittent velocity
bursts which can be a route for the emergence of chaos in the vortex state.

4.6 Intermittent voltage bursts in driven vortex state

The nature of voltage fluctuations and the associated power spectrum of fluctuations at 4.5 K
(cf. Fig.13(a), 14 kOe data) reveal that in the regime just after PE the vortices driven by a dc
drive (Is) begin to exhibit v fluctuations at all possible frequencies. This behavior is further
corroborated by the V(f) data in Fig.15, which shows that the vortex state at 14 kOe (just above
the PE regime) when driven with I4. and perturbed with L. The driven vortex state at 14 kOe
begins to show large nonlinear excursion in v (equivalent to V) at all f in the range over which
f is varied. Such a behavior, where the nonlinear fluctuations in v exists uniformly over a large
frequency interval is indicative of the onset of a chaotic regime of flow in the vortex state.

2 3
1(s)

2 3
t(s)

Fig. 17. Panels (a) and (b) show the measured temporal response of the dc voltage (V(t)) at 6
K in the plastic flux-flow regime. Panel (c) is a blow-up of the rectangular region marked in
(b). [Mohan et al. 2009a; Mohan 2009b]

One can capture the time resolved voltages (V(t)) in smaller time intervals of 1.25 ms (as
against the 35 ms interval in the earlier data) using the data storage buffer of the ADC in a
lock-in amplifier. At a higher T and deep in the plastic phase, one observe, the development
of an interesting fluctuation behaviour in the time domain, viz., that of intermittency
(Mohan et al, 2009a). The panels (a) and (b) in Fig.17 show the measured V(T) data at 6 K in
the plastic regime with H=2 kOe and H=2.2 kOe (see phase diagram in the inset of Fig.10).
At 2 kOe, one observes nearly-periodic fluctuations about a mean level 160 pV. But, these V
fluctuations are interrupted by large, sudden voltage bursts. On entering deeper into the
plastic regime, i.e. at 2.2 kOe, these chaotic voltage bursts become much more prominent
(see Fig.17(b)). The intermittent large V (equivalent to v) bursts are almost twice as large as
the mean V level. In terms of the vortex velocity (v=V/Bd), the mean velocity level at 6 K
and 30 mA, is 750 mm/sec whereas during the intermittent bursts the voltage shoots up to a
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maximum v ~ 1500 mm/sec. Such bursts are followed by time intervals, when the
fluctuations are nearly periodic, as can be clearly seen in panel (c) of Fig.17. Here, it is useful
to mention that from simulations studies Olive and Soret (2006, 2008) have proposed that in
the plastic regime of flow the vortex motion within the channels periodically synchronizes
with the fluctuating vortices trapped in the pinned islands leading to periodic fluctuations.
This periodic regime can become unstable and give way to a chaotic burst, with large
velocity fluctuations. The intermittent velocity bursts indicate the onset of disordered
trajectories of the moving vortices, which is symptomatic of the onset of chaotic motion of
vortices. Apart from observing intermittency features in the plastic flow regime (Fig.17) at 6
K there are indirect evidences at 14 kOe at 4.5 K close to T.(H) (see Fig.13(a)) and Fig.15(a),
which indicate the onset of chaotic behavior at these T, H. Perhaps onset of such intermittant
velocity bursts appear closer to a regime where thermal fluctuations also begin to play a
significant role in the behavior of the vortices in the driven state especially after the onset of
plastic flow.

5. Epilogue and future directions

The nonlinear response deep within the driven elastic medium is presumably related to a
possible transformation into a heterogenous vortex configuration observed deep within the
elastic phase (Mohan et al, 2007). Complex nonlinear systems under certain conditions can
produce slow spontaneous organization in its dynamics. Under the influence of a sufficient
driving force, the system can exhibit coherent dynamics, with well-defined one or more
frequencies (Ganapati & Sood 2006; Ganapati et al., 2008). The evolution of fluctuations,
such as those illustrated in Figures 12, 13 and 14, can be viewed as the complex behavior of a
nonlinear driven vortex state with multiple attractors (stable cycles). The appearance of
stable cycles are characteristic of a particular phase of the driven vortex state. Underlying
phase transformations in the driven vortex state induce the system to fluctuate between
different stable cycles, leading to a typical spectrum of fluctuations discussed in Figs. 12, 13
and 14. The above nature may lead to extreme sensitivity of the driven vortex system to the
low amplitude perturbations, as is shown in Fig.15. We believe that the fluctuations with
characteristic frequencies with the nonlinear response discussed above are indicative of
phase transformations in the driven vortex state. Figures 15 and 16 have shown that the
behavior the characteristic low frequencies fy and 'y are distinct and cannot be completely
attributed to irregular edge related effects of the superconductor. Infact fo can be attributed
to the due to the elastic fraction of the vortices, where its response is found to be maximum
in Figs.12-16, while the 2 Hz represents to disordered fraction in the driven vortex state.

To summarise, we have dwelled the nature of transformations deep in the quasi static elastic
vortex state. As the vortex state is driven in the steady state, exploration of vortex-velocity
fluctuations in the time domain have uncovered signatures of complex nonlinear dynamics
even deep in the elastic driven vortex state prior to the onset of plastic flow. These pertain to
new regimes of coherent driven dynamics in the elastic phase with distinct frequencies of
fluctuations. These regimes are a precursor to chaotic fluctuations, which can germinate
deep in the plastic regime. In ongoing experiments pertaining to more detailed time series
measurements on systems other than NbSe; novel interesting signatures of critical
behaviour at dynamical phase transition in driven mode of plastically deformed vortex
matter have recently been identified (Banerjee et al, 2011, unpublished).



Nonlinear Response of the Static and Dynamic Phases of the Vortex Matter 81

6. Acknowledgements

We first acknowledge Prof. A.K. Sood of 1.LSc., Bangalore for sharing his insights on non-
linear response in soft condensed matter and motivating our recent investigations in vortex
state studies. The author acknowledge Prof. Shobo Bhattacharya and Prof. Eli Zeldov for
collaborative works in the past. A.K. Grover thanks C.V. Tomy, Geetha Balakrishnan, M.].
Higgins and P.L. Gammel for the crystals of 2H-NbSe; for vortex state studies at TIFR. We
thank Ulhas Vaidya for his help during experiments at TIFR. Satyajit S. Banerjee (S. S.
Banerjee) acknowledges funding from DST, CSIR, DST Indo-Spain S &T forum, IIT Kanpur.

7. References

Angurel, L. A,, Amin, F.,, Polichetti, M., Aarts, ]. & Kes, P. H. (1997). Dimensionality of
Collective Pinning in 2H-NbSe; Single Crystals. Physical Review B Vol. 56, No. 6, pp.
3425-3432

Banerjee, S. S., Patil, N. G., Saha, S., Ramakrishnan, S., Grover, A. K., Bhattacharya, S.,
Ravikumar, G., Mishra, P. K., Chandrasekhar T. V. Rao, Sahni, V. C., Higgins, M. J.,
Yamamoto, E.,, Haga, Y., Hedo, M., Inada, Y. & Onuki, Y. (1998). Anomalous Peak
Effect in CeRu, and 2H-NbSey: Fracturing of a Flux Line Lattice. Physical Review B
Vol. 58, No. 2, pp. 995-999

Banerjee, S. S., Patil, N. G., Ramakrishnan, S., Grover, A. K., Bhattacharya, S., Ravikumar, G.,
Mishra, P. K., Rao, T. V. C,, Sahni, V. C. & Higgins, M. ]. (1999a). Metastability and
Switching in the Vortex State of 2H-NbSe». Applied Physics Letters Vol. 74, No. 1, pp.
126-128

Banerjee, S. S., Patil, N. G., Ramakrishnan, S., Grover, A. K., Bhattacharya, S., Ravikumar, G.,
Mishra, P. K., Rao, T. V. C,, Sahni, V. C,, Higgins, M. J., Tomy, C. V., Balakrishnan, G.
& Mck Paul, D. (1999b). Disorder, Metastability, and History Dependence in
Transformations of a Vortex Lattice. Physical Review B Vol. 59, No. 9, pp. 6043-6046

Banerjee, S. S., Ramakrishnan, S., Grover, A. K,, Ravikumar, G., Mishra, P. K., Sahni, V. C,
Tomy, C. V., Balakrishnan, G., Paul, D. Mck., Gammel, P. L., Bishop, D. J., Bucher, E.,
Higgins, M. J. & Bhattacharya, S. (2000a). Peak Effect, Plateau Effect, and Fishtail
Anomaly: The Reentrant Amorphization of Vortex Matter in 2H-NbSe,. Physical
Review B Vol. 62, No. 17, pp. 11838-11845

Banerjee, S. S., (2000b). In: Vortex State Studies In Superconductors. Thesis. Tata Institute of
Fundamental Research, Mumbai - 400005. University of Mumbai. India

Banerjee, S. S., Grover, A. K., Higgins, M. ], Menon, Gautam 1., Mishra, P. K. , Pal, D.,
Ramakrishnan, S., Chandrasekhar Rao, T.V., Ravikumar, G., Sahni, V. C., Sarkar S.
and Tomy C.V. (2001) Disordered type-II superconductors: a universal phase
diagram for low-Tc systems, Physica C Vol 355, pp. 39 - 50.

Bean, C. P. (1962). Magnetization of Hard Superconductors. Physical Review Letters Vol. 8, No.
6, pp. 250-253

Bean, C. P. (1964). Magnetization of High-Field Superconductors. Reviews of Modern Physics
Vol. 36, No. 1, pp. 31-39

Berlincourt, T. G., Hake, R. R. & Leslie, D. H. (1961). Superconductivity at High Magnetic
Fields and Current Densities in Some Nb-Zr Alloys. Physical Review Letters Vol. 6, No.
12, pp. 671 -674



82 Superconductivity — Theory and Applications

Bhattacharya, S. & Higgins, M. J. (1993). Dynamics of a Disordered Flux Line Lattice. Physical
Review Letters Vol. 70, No. 17, pp. 2617-2620

Blatter G., Feigel'man, M. V., Geshkenbein, V. B,, Larkin, A. I. & Vinokur, V. M. (1994).
Vortices in High-Temperature Superconductors. Reviews of Modern Physics Vol. 66,
No. 4, pp. 1125-1388

Blatter, G., Geshkenbein, V. B. & Koopmann, J. A. G. (2004). Weak to Strong Pinning
Crossover. Physical Review Letters Vol. 92, No. 6, pp. 067009(1)-067009(4)

Le Doussal, P. & Giamarchi, T. (1998). Moving Glass Theory of Driven Lattices with Disorder.
Physical Review B Vol. 57, No. 18, pp. 11356-11403

Duarte, A., Righi, E. F., Bolle, C. A,, Cruz, F. de la, Gammel, P. L., Oglesby, C. S., Bucher, E.,
Batlogg, B. & Bishop, D. J. (1996). Dynamically Induced Disorder in the Vortex Lattice
of 2H-NbSe;. Physical Review B Vol. 53, No. 17, pp. 11336-11339

Faleski, M. C., Marchetti, M.C. & Middleton, A. A. (1996). Vortex Dynamics and Defects in
Simulated Flux Flow. Physical Review B Vol. 54, No. 17, pp. 12427-12436

Fiory, A. T. (1971). Quantum Interference Effects of a Moving Vortex Lattice in Al Films.
Physical Review Letters Vol. 27, No. 8, pp. 501-503

Fisher, M. P. A. (1989). Vortex Glass Superconductivity: A Possible New Phase in Bulk High-T
Oxides. Physical Review Letters Vol. 62, No. 12, pp. 1415-1418

Fisher, D. S., Fisher, M. P. A. & Huse, D. A. (1990). Thermal Fluctuations, Quenched Disorder,
Phase Transitions, and Transport in Type-II Superconductors. Physical Review B Vol.
43, No. 1, pp. 130-159

Fleming, R. M. & Grimes, C. C. (1979). Sliding-Mode Conductivity in NbSes: Observation of a
Threshold Electric Field and Conduction Noise. Physical Review Letters Vol. 42, No.
21, pp. 1423-1426

Gammel, P. L., Yaron, U., Ramirez, A. P., Bishop, D. J., Chang, A. M., Ruel, R,, Pfeiffer, L. N,
Bucher, E., D'Anna, G., Huse, D. A., Mortensen, K., Eskildsen, M. R. & Kes, P. H.
(1998). Structure and Correlations of the Flux Line Lattice in Crystalline Nb Through
the Peak Effect. Physical Review Letters Vol. 80, No. 4, pp. 833-836

Ganapathy, R. & Sood, A. K. (2006). Intermittent Route to Rheochaos in Wormlike Micelles
with Flow-Concentration Coupling. Physical Review Letters Vol. 96, No. 10, pp.
108301(1)-108301(4)

Ganapathy, R, Mazumdar, S. & Sood, A. K. (2008). Spatiotemporal Nematodynamics in
Wormlike Micelles Enroute to Rheochaos. Physical Review E Vol. 78, No. 2, pp.
021504(1)- 021504(6)

Ghosh, K., Ramakrishnan, S., Grover, A. K, Menon, G. I, Chandra, G., Rao, T. V. C,,
Ravikumar, G., Mishra, P. K., Sahni, V. C., Tomy, C. V., Balakrishnan, G., Mck Paul,
D. & Bhattacharya, S. (1996). Reentrant Peak Effect and Melting of a Flux Line Lattice
in 2H-NbSe;. Physical Review Letters Vol. 76, No. 24, pp. 4600-4603

Giamarchi T. & Le Doussal, P. (1995). Elastic Theory of Flux Lattices in the Presence of Weak
Disorder. Physical Review B Vol. 52, No. 2, pp. 1242-1270

Giamarchi, T. & Le Doussal, P. (1996). Moving Glass Phase of Driven Lattices. Physical Review
Letters Vol. 76, No. 18, pp. 3408-3411

Giamarchi, T. & Bhattacharya, S. (2002). Vortex Phases, In: High Magnetic Fields: Applications in
Condensed Matter Physics and Spectroscopy, C. Berthier, L. P. Levy and G. Martinez
(Eds.), Springer, 314-360, ISBN: 978-3-540-43979-0

Ghosh, K., Ramakrishnan, S., Grover, A. K., Menon, G. 1., Chandra, Girish, Chandrasekhar
Rao, T. V., Ravikumar, G., Mishra, P. K,, Sahni, V. C,, Tomy, C. V., Balakrishnan, G.,



Nonlinear Response of the Static and Dynamic Phases of the Vortex Matter 83

Mck Paul, D., Bhattacharya, S. (1996) Reentrant peak effect and melting of flux line
lattice in 2H-NbSe». Physical Review Letters Vol. 76, pp. 4600 - 4603.

Gordeev, S. N., de Groot, P. A. J.,, Ousenna, M., Volkozub, A. V., Pinfold, S., Langan, R,
Gagnon, R. & Taillefer, L. (1997). Current-Induced Organization of Vortex Matter in
Type-II Superconductors. Nature Vol. 385, pp. 324-326

Harris, . M., Ong, N. P., Gagnon, R. & Taillefer, L.(1995). Washboard Frequency of the Moving
Vortex Lattice in YBa;Cu3Os93 Detected by ac-dc Interference. Physical Review Letters
Vol. 74, No. 18, pp. 3684-3687

Higgins, M. J. & Bhattacharya, S. (1996). Varieties of Dynamics in a Disordered Flux-Line
Lattice. Physica C Vol. 257, pp. 232-254

Kim, Y. B, Hempstead, C. F. & Strnad, A. R. (1962). Critical Persistent Currents in Hard
Superconductors. Physical Review Letters Vol. 9, No. 6, pp 306-309

Kokubo, N. , Kadowaki, K. and Takita, K. (2005). Peak Effect and Dynamic Melting of
Vortetex matter in NbSe, Crystals. Physical Review Letters Vol. 95, No. 17, pp
177005(1)-177005(4)

Larkin, A. I. & Ovchinnikov, Yu. N. (1979). Pinning in Type II Superconductors. Journal of Low
Temperature Physics, Vol. 34, No. 3/4, pp 409-428

Larkin, AL (1970a). Vliyanie neodnorodnostei na strukturu smeshannogo sostoyaniya
sverkhprovodnikov. Zh. Eksp. Teor. Fiz, Vol. 58, No. 4, pp. 1466-1470

Larkin, AL (1970b). Effect of inhomogeneities on the structure of the mixed state of
superconductors, Sov. Phys. JETP Vol. 31, No. 4, pp 784

Li, G.,, Andrei, E. Y., Xiao, Z. L., Shuk, P. & Greenblatt. M. (2005). Glassy Dynamics in a
Moving Vortex Lattice. J. de Physique IV, Vol. 131, pp 101-106 (and references therein
to their earlier work)

Li, G.,, Andrei, E. Y., Xiao, Z. L., Shuk, P. & Greenblatt, M. (2006). Onset of Motion and
Dynamic Reordering of a Vortex Lattice. Physical Review Letters Vol. 96, No. 1, pp
017009(1)-017009(4)

Ling X. S, Park, S. R, McClain, B. A.,, Choi, S. M., Dender D. C. & Lynn ]J. W. (2001).
Superheating and Supercooling of Vortex Matter in a Nb Single Crystal: Direct
Evidence of a Phase Transition at the Peak Effect from Neutron Diffraction. Physical
Review Letters Vol. 86, No. 4, pp 712-715

Marchevsky, M., Higgins, M. ]. & Bhattacharya, S. (2001). Two Coexisting Vortex Phases in the
Peak Effect Regime in a Superconductor. Nature, Vol. 409, pp 591-594

Marley, A. C., Higgins, M. ]J. and Bhattacharya, S. (1995). Flux Flow Noise and Dynamical
Transitions in a Flux Line Lattice. Physical Review Letters, Vol. 74, No. 15, pp 3029-
3032

Merithew, R. D., Rabin, M. W., Weissman, M. B., Higgins, M. ]J. and Bhattacharya, S. (1996).
Physical Review Letters Vol. 77, No. 15, pp 3197-3199

Mohan, S., Sinha, J., Banerjee, S. S. & Myasoedov, Y., (2007). Instabilities in the vortex matter
and the peak effect phenomenon. Physical Review Letters Vol. 98, No. 2, pp 027003 (1)-
027003(4)

Mohan, S, Sinha, J., Banerjee, S. S., Sood, A. K., Ramakrishnan, S.& Grover, A. K. (2009a).
Large Low-Frequency Fluctuations in the Velocity of a Driven Vortex Lattice in a
Single Crystal of 2H-NbSe, Superconductor. Physical Review Letters Vol. 103, No. 16,
pp 167001(1)-167001(4)

Mohan, S., (2009b). In: Instabilities in the vortex state of type II superconductors. Thesis.
Department of Physics. Indian Intitute of Technology — Kanpur, India



84 Superconductivity — Theory and Applications

Natterman, T and Scheidl, S (2000), Vortex - Glass phases in type II superconductors, Advances
in Physics 1460-6967, 49, 607-705.

Nelson, D. R. (1988). Vortex Entanglement in High Tc Superconductors. Physical Review
Letters Vol. 60, No. 19, pp 1973-1976

Nori, F. (1996). Intermittently Flowing River of Magnetic Flux. Science Vol. 271, pp 1373-1374

Olive, E. & Soret, J. C. (2006) Chaotic Dynamics of Superconductor Vortices in the Plastic
Phase. Physical Review Letters Vol. 96, No. 2, pp 027002(1)-027002(4)

Olive, E. & Soret, J. C. (2008). Chaos and Plasticity in Superconductor Vortices: Low-
Dimensional Dynamics. Physical Review B Vol. 77, No. 14, pp 144514(1)-144514(8)

Pippard A. B, (1969). A Possible Mechanism for the Peak Effect in Type II Superconductors.
Philosophical Magazine Vol. 19, No. 158, pp 217-220

Paltiel, Y., Fuchs, D. T., Zeldov, E., Myasoedov, Y., Shtrikman, H., Rappaport, M. L. & Andrei,
E. Y. (1998). Surface Barrier Dominated Transport in NbSey, Physical Review B Vol. 58,
No. 22, R14763-R14766

Paltiel, Y., Zeldov, E., Myasoedov, Y. N., Shtrikman, H., Bhattacharya, S., Higgins, M. J., Xiao,
Z. L., Andrei, E. Y., Gammel, P. L. & Bishop, D. J. (2000). Dynamic Instabilities and
Memory Effects in Vortex Matter. Nature, Vol. 403, pp 398-401

Paltiel, Y., Jung, G, Myasoedov, Y., Rappaport, M. L, Zeldov, E., Higgins, M. ]. &
Bhattacharya, S. (2002). Dynamic Creation and Annihilation of Metastable Vortex
Phase as a Source of Excess Noise. Europhysics Letters Vol. 58, No. 1, pp 112-118

Shi, A. C. & Berlinsky, A. J. (1991). Pinning and I-V characteristics of a two-dimensional
defective flux-line lattice. Physical Review Letters Vol. 67, No. 14, pp 1926-1929

Thakur, A. D., Banerjee, S. S., Higgins, M. J., Ramakrishnan, S. and Grover, A. K. (2005)
Exploring metastability via third harmonic measurements in single crystals of 2H-
NbSe; showing an anomalous peak effect. Physical Review B Vol.72, pp 134524-134529.

Thakur, A. D., Banerjee, S. S., Higgins, M. J., Ramakrishnan, S. and Grover, A. K. (2006) Effect
of pinning and driving force on the metastability effects in weakly pinned
superconductors and the determination of spinodal line pertaining to order-disorder
transition. Pramana Journal of Physics Vol. 66, pp. 159 - 177.

Troyanovski, A. M., Aarts, J. & Kes, P.H. (1999). Collective and plastic vortex motion in
superconductors at high flux densities, Nature Vol. 399, pp 665-668

Troyanovski, A. M., van Hecke, M., Saha, N., Aarts, J. & Kes, P. H. (2002). STM imaging of flux
line arrangements in the peak-effect regime. Physical Review Letters Vol. 89, No. 14, pp
147006(1)-147006(4)

Xiao, Z. L., Andrei, E. Y. & Higgins, M. J. (1999). Flow Induced Organization and Memory of a
Vortex Lattice. Physical Review Letters Vol.83, No. 8, pp 1664-1667.

Yaron, U., Gammel, P. L., Huse, D. A., Kleiman, R. N., Oglesby, C. S., Bucher, E., Batlogg, B.,
Bishop, D. J., Mortensen, K., Clausen, K., Bolle, C. A. & de la Cruz, F. (1994). Neutron
Diffraction Studies of Flowing and Pinned Magnetic Flux Line Lattices in 2HNDbSe.
Physical Review Letters Vol. 73, No. 20, pp 2748-2751 (1994)

Zeldov, E., Larkin, A. I, Geshkenbein, V. B., Konczykowski, M., Majer, D., Khaykovich, B.,
Vinokur, V. M. & Shtrikman, H. (1994). Geometrical Barriers in High-Temperature
Superconductors, Physical Review Letters Vol. 73, No. 10, pp 1428-1431.



5

Energy Dissipation Minimization
in Superconducting Circuits

Supradeep Narayana! and Vasili K. Semenov?
1Rowland Institute at Harvard,

Harvard University, Cambridge

2Department of Physics and Astronomy,

Stony Brook University, Stony Brook

USA

1. Introduction

Low energy dissipation and ability to operate at low temperatures provide for Josephson
junction circuits a niche as a support for low temperature devices. With high speed
operation (Chen W. et al., 1999) capability the Josephson junction circuits make a prime
candidate for applications which are difficult to engineer with existing CMOS technology.
The development of Josephson junction technology took a major turn for the better with
the invention of the Rapid-Single-Flux-Quantum (RSFQ) devices (Likharev K.K. et al.,
1991), an improvement over voltage biased Josephson Junctions logic which were plagued
with the junction switching and reset problems. The modern applications of SFQ circuits
extend to a larger range of temperature operation and the applications vary from low
temperature magnetic sensor, to high speed mixed signal circuits, voltage and current
standards (Turner C.W. et al., 1998), and auxiliary components for quantum computing
circuits. Most of the SFQ circuits are fabricated with Niobium, but Aluminum based
circuits are being used for quantum gates (Nielsen M.A. et al., 2000) and qubit operations.
SFQ circuits based on Magnesium di-Boride junctions are being developed for higher
temperature operations (Tahara S. et al.,, 2004). Predominantly most of the Josephson
junction circuits today are operated at around 4K. All the circuits are optimized usually
for liquid helium temperatures, so the circuits operated in helium bath Dewars or
cryostat's do not experience any temperature gradients or drift effects which can affect the
operating margins.

With the improvement in the fabrication technology and soft-wares for SFQ circuit
technology, the designing complex circuits have become easier. Complex Circuits with over
20K junctions such digital synthesizer and digital RF Trans-receiver have already been
demonstrated (Oleg M.A. et al., 2011). Development of circuits over 100K junctions are
actively under progress. However, with enormously large circuits, power requirements also
increase.

Looking at the range of applications and complexity of the problems of energy
minimization, we try to look at the problem in two approaches. One for large complex
circuits, we try to reduce the power bias itself, or the overall load of current that is supplied
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to the chip. And secondly, we try to improve the operation of the circuit blocks by designing
components that can be operated in power independent mode.

The proposals made here should be applicable to all operations to make the maximum
benefit of the advantage of the design. To operate at lower temperatures such as in milli-
Kelvin ranges, required for quantum computing, the junctions and circuit components have
to be scaled. The cells, modules or blocks used in design of building larger parts of circuits,
are modified in a way such that the cells are capable of maintaining the state of the logic
even when the power bias is switched off.

The second and larger energy dissipation source, which can be directly, reduced by
lowering the bias current supply. One of the simplest methods of reducing the DC bias
current is recycling the bias from one part of the circuit to bias the other parts. This
technique called current recycling is a method for serially biasing the circuits. Small scale
demonstrations of the technique have been demonstrated a few years ago (Johnson M.W. et
al.,, 2003). We present here some of the results for techniques for over 1k junctions in a single
chip and also discuss some of the limitations of these techniques.

2. Background and related work

The problem of power dissipation has been attempted by several groups over the last two
decades and the problem has gained more attention based on the new developments of
applications into quantum computing technology and wireless technology applications
(Tahara S. et al., 2004, Narayana S. 2011). If Josephson SFQ technology has to be extended to
quantum computers, which require far fewer junctions but must be operated at much lower
temperatures to maintain longer quantum coherence, the issue of power dissipation comes
to the forefront.

Despite the numerous advantages, over its semiconductor counterparts, the power
dissipation is high in the conventional digital Josephson technology. If the application
revolves around quantum computation, the size of circuit is small but power dissipation
could seriously disrupt the quantum operations. On the other hand, if the circuits being
designed are large power dissipation in the bias lines could be larger by several orders of
magnitude compared to the power dissipation in single block or cell.

Early efforts of reducing power dissipation were using large inductances connected to the
bias resistors. This method was demonstrated for moderate size circuits in (Yoshikawa N. et
al., 2001), but operating margins were reported to be reduced at higher frequencies due
limitation of L/R time constant compared to the switching frequency. But reducing R also
reduces the maximum clock frequency, which limits the high circuit design.

Static power dissipation, largest source of power dissipation, was eliminated by
eliminating resistive biasing elements in circuit design (Polonsky S. 1999). An effort to
mimic CMOS logic, also to eliminate static power dissipation was presented by (Silver
A.H. et al, 2001), but was harder to integrate into SFQ circuits. But the method
successfully was designed for high speed circuits. A new RQL logic has been presented
which involves multi phase AC bias, which has been known to cause AC crosstalk (Silver
AH. et al, 2006). Another method for static power dissipation was presented in
(Kirichenko D.E. et al., 2011), where the JTL is used to a digital controller to supply bias
current to the circuits under operation.
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3. Power dissipation in RSFQ circuits

Before we go into methods and experiments results, we can go to present a simplified model
as which are well studied in Detail (Rylyakov A. 1997). We will just recap some of the main
purpose with a numerical example so as to provide a continuation and feel for the value of
method presented. Let us begin with a simple model as to get an idea of the power
estimated without going into detailed mathematical models. The most power is dissipated
in the bias resistors and second source of power dissipation is the shunt resistors in the
junctions when junctions are in the resistive state.

If the clock operation has a frequency f , the power dissipation due to the switching of the
Josephson junction is

P=FE= f®,lc 1)

Where, E is the total energy dissipated, Ic is the critical current of the junction and @y is the
quantum flux constant. Now for a critical current of 100pA, and the clock frequency of
50GHz the power dissipated for a single junction by switching is 10 nW.

Now let us look at the second source of power dissipation, in figure 1, is a Josephson
junction network, the junctions are usually biased to a lower value than I¢, about 0.7 I, the
junction can switch when a correct SFQ pulse arrives.

Fig. 1. Josephson junction network

The inductances can Ly; and L;, ratios influences the order of switching events and the effects
have been studied well in (Chen W. et al., 1999 and references therein) power dissipation.
So for a typical power dissipation based on V = 2.6mv, which is the sub band gap of the
niobium superconductors, and critical current 100uA. The power dissipation is P = VI, so
the power dissipation is P = 260nW, which is nearly 25 times higher in the bias resistors
compared to the junctions. In broader context, one can say that, the power dissipation is at
least one order of magnitude higher in bias resistors.

3.1 Temperature scaling

With the growing interest in quantum computing and the favorable choice of single flux
quantum circuits for its application, we do have to modify a few parameters for better
design. Since most of the quantum computing circuits are operate in milli- Kelvin range, we
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present a simple scaling method to avoid errors in design of SFQ circuits. The resistance of
the shunt resistance (Rsn) and the sub-band gap resistance of the junction is Ry, and both the
resistances can be seen in parallel and can be calculated as in equation 2.

Rm.Rsh

- o 2
Rm + Rsh @)

The principle governing factors for the Josephson junction with the combined resistance R is
such that disparity must be avoided so the scaling of resistance should avoid errors due to
quantum fluctuations and these quantum fluctuations must be smaller than the thermal
fluctuations. So, the ratio of resistances must be smaller to the ratio of thermal noise and
critical current contributions and resistance scaling must be smaller. So for scaling
conditions to be satisfied we must have,

Iy R

>

TR )

T . .. . . .
Where RQ ==, Ic is the critical current, It is the thermal noise. Bias voltage cannot be
e

scaled similarly as resistance. However, for all conventional reasons the bias voltage is
fairly independent of temperature. But in reduction to the crosstalk reductions and circuit
designs specifics, the bias voltage can be reduced by a factor of 2 to 5 (Narayana S. 2011,
Salvin A. et al., 2006).

4. Power independent RSFQ logic

Superconducting structures have been known to keep circulating currents for unlimited
time. If this current or magnetic field caused by this persistent current then one can use this
phenomenon to perform useful functions without any energy dissipation. Unfortunately,
the list of such functions is quite small (Tahara S. et al., 2004). This are because most of
functions or blocks using the persistent currents such as RSFQ cells/latches lose their state
when the power is turned off. However, below we would like to show that RSFQ cells could
be modified for Power Independent (PI) operation. Let us remind that power independence
means an ability of circuits to be un-powered without any loss of stored information. As a
result, power independent circuits should be powered only when logic operations should be
performed.

The simplest power independent circuit with memory is a well-known single junction
SQUID as shown in figure 2a. The single junction SQUID is a superconducting loop with
sufficiently large loop inductance L interrupted by a single Josephson junction. The
dynamics of single Josephson junction SQUID has been well known for many years now
and will not be discussed in detail here. But, it may be sufficient to recap the flux
modulation as a function of the bias current to the SQUID as shown in figure 2b. From the
figure 2b we can see that, we can write "1" or "0" by applying large enough positive
(I, > I, ) or negative (I, > 1, ) bias current I, .

The device continues to remember any of these states if bias current is switched off (I, =0 )
as there is no dissipation in the superconducting loop.
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Fig. 2. (a) Single Junction SQUID ;(b) Current vs Flux characteristics. A single junction
SQUID as the simplest power independent cell.

The introduced memory cell of single junction SQUID could be incorporated into RSFQ flip-
flops and logic gates. The construction of power independent RS flip flop is presented in the
next section.

4.1 Power Independent RSFQ RS flip-flop

The transformation of the RSFQ cell into Power Independent RSFQ cell is explained here. In
the case of regular RSFQ RS Flip Flop (Turner CW. et al., 1998), as shown in figure 3a, the
Josephson junctions J3, J4 and loop inductance L, form a two junction interferometer
with [-L =1.25®,, , so that a flux quantum can be stored in it. The current in the loop can be
expressed as the sum of the bias current equally divided between the two junctions and
circulating currentI, =+® /2L . Initially, the circulating current is counterclockwise,
representing a stored “0”. The currents when the bias is applied are I;;=(I, /2)+Ip and

1]4:(Ib /2)=1Ip .

b sin

out out

Fig. 3. (a) RSFQ RS- Flip Flop (b) RSFQ Power Independent Flip Flop. Transformation of a
conventional RSFQ RS Flip flop into power independent RSFQ RS Flipflop.
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When input pluses are applied to the input (set) and clock (reset) terminals, this causes
circulating current to reverse polarity. When pulse arrives on the input, its current passes
through the ]2 (nearly biased at ® = 0) and causes J3 to switch and the circulating current is
transferred to J4. The clockwise circulating current is representative of a stored “1”. Then,
when a clock pulse (reset) is applied, it passes through L1 and J1 and into J4, thus causing it
to switch. The voltage pulse developed during the switching reverses the circulating
current, so again a “0” is stored in the loop; it simultaneously applies this SFQ voltage pulse
to the output inductor L3.

The junctions J1 and J2 have lower critical currents than J3 and J4 and to protect the inputs
from back reaction of the interferometer if pulses come under the wrong circumstances.

In the RSFQ RS Flip Flop cell as shown in figure 3a, the magnetic bias is created by
asymmetrically applying bias current I, . This magnetic bias disappears if the bias current is
switched off. As a result the circuit keeps its internal state only as long as the bias current
remains applied.

In figure 3b the transformation for the RS flip-flop into Power Independent cell is shown.
The operation of the Power independent RS flip flop operates in the similar manner as the
conventional RSFQ RS flip flop, the junction and inductance parameters have to be adjusted
accordingly. In contrast PI cell (Figure 3b) holds its magnetic bias inside its SQUID, instead
of a single quantizing inductance L. To activate the SQUID and the circuit one should apply
large enough bias current I. (Note that this "activating" current is slightly greater than its
nominal value for regular logic operation.) Being activated the circuit remains magnetically
biased (presumably by flux about ®y/2 ) even if bias current is off. Note that even power
independent circuits should be powered to perform logic operations, in order to provide the
needed additional magnetic flux bias.

4.2 Investigations of power independent circuits

In order to investigate the power independent RSFQ flip flop we simulated the RSFQ flip
flop. The clocked RS flip flop, where the reset terminal used as the clock terminal can be
used as the RSFQ D flip-flop. The circuits were designed based on the simulations to be
fabricated for Hypres 1KA/cm2 Nb trilayer technology.

CLOCK
I
IPI LI

INPUT £, %t ) ! <. ok OUTPUT

Fig. 4. Power independent D flip-flop( Clocked RS Flip-flop). Bias current IPI does 2 things:
it “activates” the SQUID with junction JO and the power the cell during normal operation.
Values of paramerters are shown in dimensionless ‘PSCAN’ units (Polonsky S. et al., 1991).
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4.3 Design of 6-bit shift register with Pl cells

Figure 4 shows schematics of a D flip-flop (Clocked RS Flip flop), re-optimized for operation
in power independent mode at 4 K. The power independent D flip-flop has the single
junction interferometer that can be identified by schematic components L1, L2, LD4 and ]O.
The interferometer is biased by current IPI. The components in the figure 4 are represented
by dimensionless PSCAN units, which are easier for computation.

Figure 5 illustrate current and input data patterns used for a numerical circuit optimization
with PSCAN software package. The new feature of the simulation is a more complex shape
of applied bias current IPI. During the simulation it was required that junction JO is switched
only one time and when IPI current it applied for the first time. No other junctions switched
when bias current goes down.

piRine U i
10 A. }L }L V(INPUT) |

10 | V(DATS) |
10 J V(OUTPUT) |

10 q vy |
0 -

10 | V(JIL |
0

o A I, j vz |

10 A vid4) |
0

0 100 200 zo0 400 500 600 700 800 900 T(ps)

Fig. 5. Current (upper trace) and voltage waveforms illustrating the power independent
operation of D cell. Note that the initial “activation” procedure could require larger current
IPI than those during the regular circuit operation

A 6-bit shift register with PI D cells has been designed and laid out for HYPRES fabrication
technology. The shift register has been incorporated into a benchmark test chip developed
for a comparative study of flux trapping sensitivities (Polyakov Y.A. et al., 2007) of different
D cells. (The earlier revisions of the test circuits are documented in Narayana S. 2011.)

Figure 6 shows a microphotograph of a fully operational circuit (as shown in Figure 4)
fabricated at HYPRES (1 KA/cm?2 technology). Bias current margins (¥16%) for the only
measured chip are about 2 times below our numerical estimations (35%). The figure 7 the shift
register was tested with Octupux (Zinoviev D. et al.,) setup where the low speed testing was
use to confirm the correct operation of the shift registers. Since the shift register is a counter
shift register, the clock and the data pulses travel in the opposite direction and this can be
confirmed by the traces in figure 5. The chip was not tested for high speed operation

These measurements show a complete operation of the circuit but with about +16% bias
current margins that are more than 2 times below of our numerical estimations (35%). We
believe that the discrepancy is mostly because of the large number (over a dozen) of corners
in the SQUID loop. This is because we believe that the inductances for the corners in the
loop have been overestimated (Narayana S 2011).
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Fig. 6. The microphotographs of the chip and 2 cell fragment of the shift register (encircled
on the left) consisting of power independent RSFQ D cells. Horizontal pitch of the 2 cells is
270pm.
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Fig. 7. The low frequency operation of counter flow shift register. The traces 3(clock), 5(data)
are the inputs and 1, 2 are the clock and data output traces respectively.

5. Current recycling

One of the main advantages of RSFQ circuit is that only dc bias is needed. It eliminates the
cross-talk problems caused by ac biasing and makes designing larger circuits easier.
However, in larger circuits the total dc bias current could add up to a few amperes and such
large bias currents cause large heat dissipation, which is not preferred (for larger modular
designs the bias currents could add up several amperes).One of the techniques that has been
proposed (Kang J.H. 2003) is biasing the circuits serially otherwise commonly known as
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'current recycling'. Biasing large circuit blocks in series (referred to as current recycling or
current re-use) will essentially reduce the total current supply for the superconducting IC to
a manageable value. Both capacitive (Teh C.K,, et al., 2004) and inductive methods (Kang
J.H., et al., 2003) of coupling for current recycling have been demonstrated at a small scale. It
is difficult to estimate the impact of the technique based on single gate operation as in
(Johnson MW et al, 2003). Current recycling becomes easier at higher current density of the
superconducting IC (Narayana S 2011). Current recycling however has its limitations; it
does not reduce the on-chip static power dissipation by the circuit blocks and also due to
additional structures, the area occupied by the circuit increases.

To demonstrate the method of current recycling, we have designed a Josephson junction
transmission line (JTL) as shown in figure 8, which represents one module. The module
consists of three parts, the driver, receiver and the payload. The payload is usually the
circuit block that is used for operation, in this case to keep matters simple a JTL has been
used, as its operating margins are very high. The payload can otherwise be replaced by flip-
flops, filters, or logic gates.

C_onne(_:tion BIOCk
in series r ~
™| Payload ®
ayload [
N DRV 3 E RES JTL) DRV gng RES_’
@

Fig. 8. Block diagram of current recycling digital transmission line

Before we explain the operation of the driver-receiver circuit, it is important to remember a
few thumb rules for the current recycling design. For current recycling, the ground planes
under adjacent circuit blocks must be separated and subsequent blocks biased in series. It
will also be necessary to isolate SFQ transients between adjacent blocks. This may be
achieved by low pass filters, but will need to avoid power dissipation in the filters. Series
inductance could provide high frequency isolation; the inductors could be damped by
shunting with suitable resistance, such that there is no large DC power dissipation.
Capacitive coupling between adjacent blocks can be used for current recycling however they
are not discussed here and also capacitors (Teh C.K.,, et al, 2004) used for this method also
occupy larger space compared to the inductive filtering method.

5.1 Current recycling basics

The fundamental requirement for serial biasing of circuits is that current drawn from
(supplied to) each circuit must be equal and the input/output must not add current to the
serially biased circuits. The inputs and outputs are connected via galvanic connection to
satisfy the above requirements.

In figure 9, the complete schematic of the driver- receiver is shown. The driver and receiver
circuits are completely different electrical grounds. An inductor connecting two Josephson
junctions momentarily stores a single flux quantum while an SFQ pulse propagates from one
junction to another. Typically, this duration time is about 5picoseconds, depending on the
circuit parameters. Between the time when J13 and J14 generate a voltage pulse, the magnetic
flux stored in the inductor that connects J13 and J14 induces a current in the inductor, L1u,
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connecting J1 and J2. With proper circuit parameters, this induced current causes a voltage
pulse to be created on J1 and this pulse then propagates through J2 to be further processed. In
this way, an SFQ signal pulse is transferred from one ground to another plane.

7 brv | 3¢ | Res i

Driver Receiver

l Ground?2

Groundl

Fig. 9. Circuit schematic for magnetic coupled SFQ pulse transfer between driver and
receiver

5.2 Current recycling experimental demonstration

The complete block diagram for the circuit is shown in figure 11a along with the connection
scheme for the 80 blocks to be biased serially. Figure 11b shows the microphotograph of the
chip which was fabricated for the circuit schematics discussed in of figure 8 and 9. The bias
Current for the junction on the input side is passed to one ground plane while the ground
for the junctions on the output side is isolated from the other ground by a ground plane
moat. The Josephson junction J13 and J14 are damped more heavily than other junctions to
guarantee that minimum reflections take place at the end of the input JTL. Tight magnetic
coupling is required between the pulse transmitting the JTL and the pulse receiving JTL to
obtain a robust circuit with excellent operational margins. To ensure higher coupling holes
were opened in both the upper and lower ground planes as shown in figure 10.

Fig. 10. The layout showing the JTL-driver-receiver connections is shown.
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Fig. 11. (a) The block diagram for serial biasing.(b)The microphotograph of the chip for
demonstrating current recycling.

The digital traces for the correct operation of the circuit are shown in figure 12. The
measurements were carried out at low frequency using Octupux setup (Zinoviev 1997). The
circuit tested used the standard I/O blocks of SFQ/DC converters to measure the operating
margins of the circuits. The circuits were fabricated for both 1kA and 4.5KA/cm?2 Hypres tri-
layer Niobium technology. The circuit has margins of +15%. The bias current to obtain
correct operation was reduced to 1.7mA by current recycling method; otherwise the
operation of 80 blocks with parallel biasing would require nearly 200mA.
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Fig. 12. The digital waveform of the input and three outputs as shown in figure 5.4. The
traces 1,3,5 are the outputs and 2 is the input trace
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6. Discussions and summary

In sections 4 and 5, we have demonstrated the operation of power independent RSFQ cell
and current recycling technique for over 1k junctions in a single chip.. Now let us consider
the latter case. If N blocks were parallel biased (that is individually biased), the power
dissipated would be

N
Pp=Y Ib’R, )
i=1

For the serially biased case

Ps=Ib?.RN (5)

Comparing the two cases for N uniform cells, the ratio of Pp/Ps is N. So essentially, one can
reduce the bias current by maximum of N times by serial biasing scheme. However, one
should note that, this scheme cannot reduce the on chip power dissipation but only reduce
the total bias current load, which could prove very significant in designing large circuits.

In the power independent mode the cells can be turned on only when the cells have to be
operated and can be turned off, rest of the time. Also they retain the logic state of the circuit,
when they are switched off so one can eliminate static power dissipation by this method. In
both the schemes discussed, we note that there is a significant increase in area overhead
(about 30%).

In this chapter, we have presented solutions for energy minimization in single flux quantum
circuits. We have also presented a method for scaling resistances to modify existing SFQ
based circuits to fit designs for quantum computation. We have also presented some of the
short comings of the proposed methods, giving us an avenue for further research in the
areas to make the proposed methods more widely acceptable for application in quantum
computing and high performance mixed signal circuits.
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1. Introduction

The proved possibility really to observe quantum-interference phenomena in metals of
various purity, in conditions when the scattering occurs mainly at static defects and the
electron mean free path, I, is much less than the size L of the investigated sample, convinces
that the phase ¢ of electron wave functions does not break down at elastic (without changing
electron energy) scattering. Even in very pure metals with [;; ~ 0.1 mm, at T < 4 K,
collisions of electrons with phonons occur much less frequently than those with static defects
occur, so that the role of the former in electron kinetics becomes minor. In other words, the
inequality Ly > I, is usually satisfied in a metal at sufficiently low temperatures, where L,
is the phase-breaking length. This condition, however, is not sufficient to observe coherent
phenomena. For example, the phenomena of interference nature such as the oscillations
in conductance in a magnetic flux ¢ in normal - metal systems (Sharvin & Sharvin, 1981)
or coherent effects in hybrid systems "normal metal/superconductor” (NS) (Lambert &
Raimondi, 1998), can become apparent given certain additional relations are fulfilled between
the parameters, which define the level of the effects: [,; < L < {1 < L,. Here, {1 is the thermal
coherence length. Otherwise, at reverse inequalities, a fraction of the coherent phenomena in
total current is expected to be exponentially small. It follows from the general expression for
the phase-sensitive current: (¢) ~ F(¢)(l,/L) exp(—L/&r) exp(—Ly/&t) (F(¢) is a periodic
function).

The majority of coherent effects, as is known, is realized in experiments on mesoscopic
systems with typical parameters L ~ 1 ym > [,; ~ 0.01 ym, i. e., under conditions where
the level of the effects is exponentially small, but still supposed to be detected (Lambert &
Raimondi, 1998; Washburn & Webb, 1986). Really, the maximum possible (in the absence of
scattering) spatial coherence length, ¢y, according to the indeterminacy principle, is of the
order of &y = (hvg/kgT) ~ 1 um in value, for a pair of single-particle excitations in a normal
metal (for example, for e — h hybrids resulting from the Andreev reflection (Andreev, 1964)).
That value is the same as a typical size of mesoscopic systems. As a consequence, from the
ratio {1 ~ +/(1/3)Cole; it follows that in these systems, coherent effects are always realized
under conditions L > {1 >> I,; and are exponentially small on the L scale.
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From the above typical relations between the basic microscopic parameters in mesoscopic
systems one can see that such systems cannot give an idea about a true scale of the most
important parameter - the phase-breaking length L, for electron wave functions. It is only
possible to say that its value is greater than L ~ 1 ym. In mesoscopic systems, a value of the
thermal coherence length {7 remains not quite clear as well, since, under strong inequality
¢t > I, the scale of this parameter should be additionally restricted: At high frequency of
elastic scattering processes on impurity centers (at short /,;), the portion of inelastic scattering
on the same impurities, which breaks down a phase of wave functions, should be also
significant.

It is clear that due to spatial restrictions, mesoscopic systems are also of little use for
experimental investigation of non-local coherent effects; a keen interest in those effects has
recently increased in connection with the revival of general interest in non-local quantum
phenomena (Hofstetter et al., 2009).

Our approach to the investigation of phase-breaking and coherence lengths in metals is based
on an alternative, macroscopical, statement of the experiment. We presume that in order to
assess the real spatial scale of the parameters Ly, {1, and {o in metals, the preference should be
given to studying coherent effects, first, in pure systems, where the contribution from inelastic
scattering processes is minimized due to the lowered concentration of impurities, and, second,
at such sizes of systems, which would certainly surpass physically reasonable limiting scales
of the specified spatial parameters. The listed requirements mean holding the following chain
of inequalities: L > Ly > I, > o (l7/Go > 10). They can be satisfied by increasing the
electron mean free path [,; and the system size L by several orders of magnitude in comparison
with the same quantities for mesoscopic systems.

At first glance, such changing in the above parameters should be accompanied by the same,
by several orders, reduction in the value of registered effects. Fortunately, this concerns only
normal-metal systems, where coherent effects have a weak-localization origin (Altshuler et
al., 1981). The remarkable circumstance is that the value of coherent effects in normal (N) and
NS systems can differ by many orders of magnitude in favor of the latter. Thus, oscillation
amplitude of the conductance in a magnetic field in a normal-metal ring (the Aharonov - Bohm
effect in a weak - localization approach (Altshuler et al., 1981; Washburn & Webb, 1986)) can
be m times less than that in a ring of similar geometry with a superconducting segment (NS -
ring) due to possible resonant degeneration of transverse modes in the Andreev spectrum
arising in the SNS system (Kadigrobov et al., 1995). For example, for mesoscopic rings
m ~ 10%* = 10°. As it will be shown below, coherent effects in macroscopical formulation of
experiments remain, nevertheless, rather small in value, and for their observing, the resolution
of a voltage level down to 10~ V is required. Unlike mesoscopic statement of the experiment,
it makes special non-standard requirements for measuring technique of such low signals. To
satisfy the requirements, we have developed the special superconducting commutator with
picovolt sensitivity (Chiang, 1985).

Here, we describe the results of our research of quantum coherent phenomena in NS
systems consisting of normal metals with macroscopical electron mean free path and having
macroscopical sizes, which fact allows us to regard our statement of the experiment as
macroscopical. The phenomena are considered, observed in such systems of different
connectivity: for both simply connected and doubly connected geometry.

In Section 2, phase-sensitive quantum effects in the "Andreev conductance” of open and closed
macroscopic SNS systems are briefly considered. The open SNS systems contain segments,
up to 350 ym in length, made of high-pure (I,;; ~ 100 ym) single-crystal normal metals Cu
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and Al which are in contact with In, Sn, and Pb in the superconducting or intermediate
state. The phase-sensitive magnetoresistive oscillations are described, with a period equal
to the flux quantum hc/2e, which were found in hybrid quasi-ballistic doubly connected SNS
structures with single-crystal normal segments of macroscopic sizes (L = 100 - 500 ym) and
elastic electron mean free path on the same scale. The description of resistive oscillations
of a resonance shape for the structure In(S) - AI(N) - In(S) of the similar size is provided.
The oscillations undergo a phase inversion (a shift by 7r) with respect to the phase of the
nonresonance oscillations.

In Section 3, the results of studying coherent and spin-dependent effects in the conductance
of macroscopic heterosystems "magnetic (Fe, Ni) - superconductor (In)" are presented. The
first proof of the possibility of observing, with adequate resolution, the characteristic coherent
effect in the conductivity of sufficiently pure ferromagnets was given on the example of nickel.
The effect consists in an interference decrease in the conductivity on the scale of the very
short coherence length of Andreev ¢ — h hybrids. It was shown that this length did not
exceed the coherence length estimated using the semiclassical theory for ferromagnetic metals
with high exchange energy. Additional proof was obtained for spin accumulation on F/S
interfaces. This accumulation comes from the special features of the Andreev reflection under
the conditions of spin polarization of the current in a ferromagnet.

The first observation of the hic/2e-oscillations (solid-state analogue of the Aharonov-Bohm
effect (Aharonov & Bohm, 1959)) is described in the conductance of a ferromagnet, Ni, as a
part of the macroscopical S(In) - F(Ni) - S(In) interferometer (LN! ~ 500 ym). A physical
explanation is offered for the parameters of the oscillations observed. We have found that
the oscillation amplitude corresponds to the value of the positive resistive contribution to the
resistance from a ferromagnetic layer, several nanometers thick, adjacent to the F/S interface.
We have demonstrated that the scale of the proximity effect cannot exceed that thickness.
The oscillations observed in a disordered conductor of an SFS system, about 1 mm in length,
indicate that the diffusion phase-breaking length is macroscopical in sufficiently pure metals,
including ferromagnetic ones, even at not too low helium temperatures. The analysis of the
non-local nature of the effect is offered.

Section 4 is the Conclusion.

2. Macroscopical NS systems with a non-magnetic normal-metal segment

While trying to detect possible manifestations of quantum coherent phenomena in
conductivity of normal metals, the main results were obtained in experiments on the samples
of mesoscopic size under diffusion transport conditions, L > {1 > ;. In such case,
the contribution from the coherent electrons is exponentially small relative to the averaged
contribution from all electrons in all distributions. The portion of coherent electrons can
be increased due to weak-localization effect. For example, in a doubly connected sample,
so-called self-intersecting coherent trajectory of interfering electrons is artificially organized
(Washburn & Webb, 1986). If the length of the loop, L, covering the cavity of the doubly
connected system does not exceed the phase-breaking length, L, then introducing a magnetic
field into the cavity may lead to a synchronous shift of the phase of wave functions of
all electrons. As a result, the conductance of the system, determined by a superposition
of these functions, will oscillate periodically in the magnetic field. The amplitude of the
oscillations will be defined by the weak-localization contribution from interfering reversible
self-intersecting transport trajectories (Aharonov & Bohm, 1959; Sharvin & Sharvin, 1981),
and the period will be twice as small as that for the conventional Aharonov-Bohm effect in a
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Fig. 1. Positive jump of resistance of bimetallic system Bi/In at converting indium into the
superconducting state. Inset: Superconducting transition of In.

normal-metal ring, where the reversibility of the trajectories in the splitted electron beam is
not provided.

2.1 Singly connected NS systems
2.1.1 Artificial NS boundary

2.0¢

R,10-8Ohm
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Fig. 2. Positive jump of resistance of bimetallic system Cu/Sn measured on the probes Lyy;
L2 at converting tin into the superconducting state (curve 1); calculated portion of the
boundary resistance (curve 2); crosses are experimental points excluding curve 2; dotted
curve 3 is calculated in accordance with Eq. (4). Inset: Schematic view of the sample.

As it has been noted in Introduction, in comparison with weak-localization situation, the
role of coherent interference repeatedly increases in the normal metal, which is affected
by Andreev reflection - the mechanism naturally generating coherent quasiparticles. In a
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hybrid "normal metal/type I superconductor” system (NS system), the contribution from the
coherent excitations into normal conductivity dominates over the distance scale of the order of
a ballistic path from the NS boundary (~ 1um), irrespective of the system size, its connectivity,
and, generally, the electron mean free path; due to Andreev reflection, the spectrum of
coherent excitations is always resolved on this scale. From the discussion in Introduction it
clearly follows that in macroscopical statement of experiments, maximum level of the coherent
effects should be reached in conditions, where the electron mean free path, [,;, the greatest
possible coherence length, ¢y, and the sample length, L (the separation between potential
probes), are of the same order of magnitude. In these conditions, when studying even
singly connected NS systems in 1988, we first revealed an unusual behavior of the normal
conductivity of the heterosystem Bi(N)/In(S) (Chiang & Shevchenko, 1988): The resistance of
the area containing the boundary between the two metals unexpectedly decreased rather than
increased at the transition of one of the metals (In) from the superconducting into normal state
(Fig. 1).

Further theoretical (Herath & Rainer, 1989; Kadigrobov, 1993; Kadigrobov et al., 1995) and
our experimental research have shown that the effect is not casual but fundamental. It
accompanies diffusive transport of electrons through non-ballistic NS contacts. Figure
2 presents some experimental data revealing the specific features of coherent excitation
scattering in the vicinity of the NS boundaries (see more data in (Chiang & Shevchenko, 1998))
for Cu(N)/Sn(S) system (schematic view of the sample is shown in the Inset). The basis of the
bimetallic NS system under investigation was a copper single crystal with a "macroscopically"
large elastic mean free path I)Y ~ 10 — 20 ym. The single crystal was in contact with a type
I superconductor (tin) (lesl ~ 100 ym). The transverse size of contact areas under probes
was 20-30 ym so that tunnel properties were not manifested in view of the large area of the
junction. Separation of the N-probes from the boundary Ly, Ly2, and Lg were 13, 45, and 31
um, respectively. The curve 1 shows a general regularity in the behavior of the resistance of
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Fig. 3. Resistance of the region of the Cu/In system incorporating the NS boundary, below T
of the superconductor (In): Experimental points (curve 1) and calculated contributions of the
boundary resistance (z # 0, curve 2) and of the proximity effect (curve 3).
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normal regions adjoining the common boundary of two contacting metals - occurrence of the
positive contribution to the resistance closely related to the temperature dependence of the
superconducting gap at transition of one of the metals into the superconducting state. This
effect is most pronounced just in the macroscopical statement of experiment in the formulated
above optimum conditions [}y ~ So(n) ~ L.

The considered effect was predicted in (Herath & Rainer, 1989) and (Kadigrobov, 1993). It has
been shown that there exists a correction to the normal resistance (hereafter, 5R‘I§,“dr) leading
to an increase in the metal resistance within ballistic distances from the NS boundary upon
cooling. The correction may occur due to increased cross section of electron scattering by
impurities during multiple interaction of phase-coherent electron and Andreev excitations
with impurities and with the NS boundary. According to (Kadigrobov et al., 1995), the relative
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Fig. 4. Temperature hic/2e oscillations of the resistance of the Pb plate (see the outline above)
in the intermediate state.
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increase in the resistance of a layer, Ly in thickness, measured from the NS boundary and
having a resistance Ry prior to the formation of this boundary, should be equal to
And
JRNI’I r
Rn

= (1Y /Ln){Tp ), 1)

where {T}} is the effective probability of electron scattering by a layer of thickness of the order
of "coherence length" {1 taking into account Andreev reflection and the conditions / g\[ ~CN
Ly. The quantity {T,} can be obtained by integrating T, = hvg/ slg\[ , viz., the probability
that the particle is scattered by an impurity and reflects as an Andreev particle with energy
¢ (measured from the Fermi level), thus contributing to the resistance over the length ! é\l] ; the

integration is over the entire energy range between the minimum energy ¢,,;, = fivg/I é\l] and
the maximum energy of the order of the gap energy A(T):

AT afy

{T,} :/ (=50 Tyde. @
Emin

Integration to a second approximation gives the following analytical result for the correction

to the resistance of the layer Ly under investigation as a function of temperature:

5R1]§fndr _ CLF
RN LN

(T), ©)

where F(T) is of order of unity with &7 ~ I). For a pair of probes (Ly1; Ln2) (see Fig. 2) with
Lynip > lé\{ it provides
5RAndr gT

Ln1;Lne

In(Ly1/Ln2)F(T). “4)

RLNI;LNZ LN1 - LN2

Using Eq. (4) we have estimated the data received for different samples, including those
presented in Fig. 2. The analysis reveals not only qualitative but also quantitative agreement
between the experiment and the concept of increasing the dissipative scattering contribution
due to Andreev reflection (dotted curve 3 in Fig. 2). It is thus important to emphasize once
again that optimum conditions for observing this effect are realized by setting measuring
probes at a distance of several ballistic coherence lengths ¢y from the NS boundary;, i. e,
in the macroscopical statement of experiment.

Curve 2 in Fig. 2 gives an idea of the portion of the boundary resistance which arises due
to dissipative quasiparticle current flowing in the areas close to NS borders, where the order
parameter A = A(x) is less than A(oo) = 1. Since the condition ¢V <« kg T was satisfied in our
experiment we calculated this curve using the CESST-HC theory (Clarke et al., 1979; Hsiang
& Clarke, 1980). In accordance with the theory, the boundary resistance, RIb\IS, caused by the

potential VbNS extending into the near-boundary region of a superconductor where A(x) < 1,
should be of the order of

RS =vNS/1=Y(z, T)R®Y;  R™ =g p%"/4, (5)

where A is the distance from the boundary on the side of the superconductor, over which the
potential decays that arises from the imbalance between the charges of the pair current and
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Fig. 5. Temperature /ic/2e oscillations of the resistance of the intermediate-state Sn
constriction (see the outline above) in a self-current magnetic field of the measuring current
I =1 A as the critical magnetic field (50G - intervals are specified).

that of independent quasiparticles; P = 3/2¢2N(0)IS%0p; N(0) is the density of states per
spin at the Fermi level, e is the electron charge, vy is the Fermi velocity, and

Y(zT) = (1 +z2)kBTT,/g—$ exp(—A/ksT). ©)

Measurements across the probes Ly1; Lg, with the NS boundary between them and Ly; >
leclu, and estimation of the boundary resistance of Eqs. (5; 6) indicate a manifestation of
such coherent transport mechanism, which leads to an increase in conductivity in these
non-ballistic conditions (Fig. 3).

According to the Landauer concept (Landauer, 1970), complete thermalization of an electron
is the result not of momentum relaxation but of relaxation of the wave function phase due
to inelastic scattering in regions with an equilibrium distribution, called "reservoirs" (regions
that are sinks and sources of charges). The simulation of a continuous random walk of an
elastically scattered particle in a three-dimensional normal layer of the metal showed the need
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to consider the trajectories with multiple Andreev reflections. As shown in (Van Wees et al.,
1992), the mean diffusional path length (L) depends linearly on the width d of the normal
layer, where d is the distance between the boundary and the region of equilibrium distribution
(reservoir), which is of the order of magnitude of the inelastic mean free path [, i. e., d ~
liner- Since the probability 7, for excitations to pass from the boundary to the reservoir is
inversely proportional to the layer width, 7 ~ (I,;/d), it follows from the linear relation
between (L) and d that (L) ~ 7,7 & i

It is also necessary to take into account the probability of realizing a diffusional trajectory by
equating its length to the elastic mean free path, or, equivalently, equating the length (L) ~
VhD /kgT (D is the diffusion coefficient) to the real length L of the trajectory. On the other
hand, (L) = /Dt with t = L/vg. Therefore, (L)/L = l,/(L). In addition, we assume
that the only temperature-dependent cause of inelastic scattering is inelastic electron-phonon
collisions, with a corresponding mean free path /;;,,; ~ llen; f " T8,

As a result, the effective probability for coherent excitations to pass through the phase
coherence region in elastic scattering can be written in the form

L Lo 35

Tr = SN ,BT ~
linel <L> 7)

3/2 -1/2 3y-1

B = 13/2(hog) V217, T3) 7L,
In accordance with the Landauer concept, we find the relative contribution to the conductance
G in the phase coherence region by calculating the proportion F(m) of coherent trajectories
(those that return to the reservoir after m reflections from the boundary, starting with the
trajectory with m = 1) and their contribution to the current and summing over all trajectories:

g - ZlF(m)I(m), ®)

where 6G = G — Gy, Go = Gr—g; F(m) = 2(1 — )" (m #0).
The probabilistic contribution to the current from a charge on trajectory with reflections is
(Blonder et al., 1982; Van Wees et al., 1992)

1(m) = 1+ |ron(m) Plree(m) 2, [ren(m)|* + |ree(m)|? = 1,
where |ree(m)|? and |y, (m)|? are the probabilities for an electron incident on the NS boundary,
to leave the boundary after m reflections in the form of an electron wave or a hole (Andreev)
wave, respectively. The expression for I(m) shows that for a large enough number of
reflections, which increases the probability of Andreev reflection to such a degree that
|ren(m)|?> — 1, the contribution of the corresponding trajectory to the current increases
by a factor of 2. If all of those trajectories reached the reservoir, the dissipation would
be increased by the same factor. Formally this is a consequence of the same fundamental
conclusion of the theory which was mentioned above: in coherent Andreev reflection the
efficiency of the elastic scattering of the electron momentum increases as a result of the
interference of the e and & excitations. Actually, the fraction of the coherent trajectories that
returns to the reservoir decreases rapidly with increasing distance to the reservoir from the
boundary and with increasing number of reflections, which determines the length of the
trajectory; thus we have the directly opposite result. In fact, assuming that for low electron
energies (eV/(hvg/l,;) < 1) and a large contact area the main contribution to the change in
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conductivity is from coherent trajectories with large numbers of reflections, so that I(m) ~ 2,
and converting the sum in Eq. (8) to an integral, we find to a second approximation:

oG ~2 /m F(m)dm ~ —12(m*?1, — 2m"*). 9)
G() J1

The upper limit of integration m™* is the number of reflections corresponding to a certain
critical length for a coherent trajectory L that reaches the reservoir. This limit can be
introduced as m* = 7, ! with a certain coefficient <y that is to be determined experimentally.
Substituting m* into Eq. (9), we finally obtain

G 2 3.5
Zn (2= 29)T = —AT3S,
C (=27 10

A=B(r? —29).

The nature of the effect consists in the fact that the number of trajectories leaving from the
number of attainable reservoirs increases in the long-range phase coherence region, i.e., an
ever greater number of trajectories appear on which the phase of the coherent wave functions
does not relax; this decreases the dissipation. Thus, in accordance with Eq. (9), one expects
that the temperature dependence of the relative effective resistance measured at the probes
located within the phase coherence region will be in the form of a function that decreases with
decreasing temperature below T, as curve 1 in Fig. 3:

R/Ry = (Ro/Ry)(1+ AT>?). (11)

2.1.2 Natural NS boundary

The discovery of an unusual increase in the resistance of normal conductors upon the
appearance of an NS boundary (Figs. 1, 2) pointed to the need to deeper understand the
properties of the systems with such boundaries. Since then study of the unconventional
behavior of the electron transport in such systems has been taken on a broader scope.

As it was noted in Introduction, the early experiments detecting the phase-coherent
contribution of quasiparticles to the kinetic properties of normal metals were carried out
on samples that did not contain NS boundaries. In such a case this contribution, due
solely to the mechanism of weak localization of electrons, appears as a small quantum
interference correction to the diffusional contribution. Nevertheless, the existence of coherent
transport under those conditions was proved experimentally. Study of the NS structures
containing singly connected type I superconductors in the intermediate state, with large
electron elastic mean free path, /,;, revealed resistance quantum oscillations of a type similar
to the Aharonov-Bohm effect (Tsyan, 2000). The temperature - dependent resistances of Pb
and In plates and Sn constriction were studied. The intermediate state was maintained by
applying a weak external transverse magnetic field Bey; to the plates and by a self-current
field By in the constriction. Thickness of Pb plates was 20 um, with a separation L;, ~ 250 ym
between the measuring probes in the middle part of the samples. A rolled In slab with
dimensions L x W x t = 1.5 mm x 0.5 mm x 50 ym was soldered at its ends to one of the
faces of a copper single crystal and was separated from this face by an insulating spacer.
Measurements of the system with In were carried out at a direct current 0.7 A, which
self-current magnetic field at a surface of the slab with the specified sizes made 5 G. The tin
constriction was t ~ 20 ym in diameter and L ~ 50 ym in length, with L,;, ~ 100 ym. At the
constriction surface, By amounted to ~ 100 G at I =1 A. The bulk elastic mean free path in the
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Fig. 6. R - oscillations for the doubly connected Cu-In system as a function of temperature

(upper curve) and of the critical magnetic field (lower curve) at temperatures below T in
the self-magnetic field (~ 5 G) of the measuring direct current.

workpieces from which the samples were fabricated was [,; ~ 100 ym. Such macroscopical
value of elastic mean free path in macroscopical statement of experiment makes it necessary to
measure samples of (0.1 + 1) lgl in volume, which resistance may make down to 1078 =10"°
Ohm.

Figures 4, 5, and 6 show the oscillatory parts of the current-normalized potential difference R
(hereinafter referred to as R - oscillations), obtained by subtracting the corresponding mean
monotonic part for each of the samples. It follows from these graphs that the resistances of
the samples oscillate in temperature in the fields maintaining the intermediate state. As is
seen, the oscillation amplitude (0R);ax weakly depends on the temperature and the external
magnetic field (although the monotonic resistance components vary over no less than two
orders of magnitude). The character of oscillations in the Pb plate at various Bey; values
(Fig. 4) indicates that the oscillation phase ¢ depends on the strength and sign of the external
magnetic field: ¢(480 G) is shifted from ¢(550 G) by approximately 7, while ¢(520 G) and
¢(550 G) coincide.

Constructing the critical-field scale for the oscillation region according to the equation B (T) =~
B.(0)[1 — (T/T.(0))?] (T, is the superconducting transition temperature), one finds that the
oscillation period Ap in a magnetic field is constant for any pair of points one period apart and
is equal to the difference in the absolute values of the critical field (see Figs. 4 and 5) for each
of the samples. Here, we used BE?(0) = 803 G and B3"(0) = 305 G ((Handbook, 1974-1975)).
This suggests that the Ap(B.) period is a function of the direct rather than inverse field. The
temperature T* corresponding to the onset of R-oscillations in the Sn constriction is equal to
the temperature for which BS"(T*) = Bj(~ 100 G), viz., the temperature of the appearance
of the intermediate state. The conditions for the confident resolution of the oscillations were
fully satisfied for this sample up to 3.5 K. With the values of Bey; used for the Pb plate, T*
should lie outside the range of helium temperatures.

It is known that in the intermediate state of a type-I superconductor in a magnetic field, a
laminar domain structure arises, with alternating normal and superconducting regions. The
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observed dependence of the magnitude of the effect on the critical field in the intermediate
state, first, provides direct evidence for the presence of a laminar domain NS structure and,
second, indicates that the mechanism responsible for the R-oscillations occurs in the normal
areas of domains, where, as is known, the magnetic field is equal to the superconductor critical
field B.(T) (De Gennes, 1966). The use of the phenomenological theory of superconductivity
(De Gennes, 1966; Lifshitz & Sharvin, 1951) for estimating the number of domains between the
measuring probes brought about the values of approximately 12 at 3 K and 16 at 1.5 K for the
Pb plate, 1 or 2 for the Sn constriction, and the value of 15-22 mm for the distance d,, between
the NS boundaries in the oscillation region of interest. These data suggest the lack of any
correlation between the indicated numbers and the number of observed oscillation periods.

Fig. 7. The criterion of coherent interaction of an electron e and an Andreev hole /1 with the
same elastic scattering center (see Eq. (12) in the text) establishes a distribution of areas A of
quantization of the flux of the magnetic vector potential. The maximum admissible area

Agéagxe, bounded by the ballistic trajectories passing through the impurities m of maximum

cross section ~ 2., at the positions [xg‘ifg’;, y, z] for Ocdge = 7T/ 2 is separated.

As is known, the direct dependence of the oscillation phase on the field strength arises when
the quantization is associated with a real-space "geometric" factor, i. e., with the interference
of coherent excitations on the geometrically specified closed dissipative trajectories in a
magnetic vector-potential field (Aharonov & Bohm, 1959; Altshuler et al., 1981). At distances
of the order of the thermal length {t ~ §y ~ hovg/kgT from the NS boundary, where
I,y > Cp, the main type of dissipative trajectories are those coherent trajectories on which
the elastic-scattering center (impurity) interacts simultaneously with the coherent e (usual)
and /1 (Andreev) excitations (Herath & Rainer, 1989; Kadigrobov, 1993). It was demonstrated
in (Herath & Rainer, 1989) that, owing to the doubled probability for the h excitations to be
scattered by the impurity, the interference on these trajectories generated the R-oscillations.
In the presence of an electric field alone, neither the impurity nor the relevant coherent -
trajectory size are set off, so that the oscillations do not arise (Kadigrobov et al., 1995; Van
Wees et al., 1992).

Since the e and h trajectories spatially diverge in a magnetic field, the distance r from
the impurity to the outermost boundary point, from which the particle can return to the
same impurity after being Andreev-reflected, is bounded, according to the simple classical
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geometric considerations, by the value

r = \/24Ry [Be(T)]. (12)

In Eq. (12), Ry, is the Larmor radius and g is the parameter (of the order of a screening radius)
characterizing the impurity size. For instance, in fields of several hundred Gauss, Ry, ~ 1.5 -
10~2 cm and r does not exceed (1-2) pmatg ~ (2-5)- 108 cem; i e, & <r <& ~
10_2181 (ly > du, 15 &1 ~ 3 um). Therefore, for every impurity with coordinate z, the
magnetic field separates in the z = const plane a finite region of possible coherent trajectories
passing through the impurity and closing two arbitrary reflection points on the NS boundary
between the two most distant points which positions are determined by Eq. (12) (see Fig. 7).

After averaging over all impurities, only a single trajectory (or a group of identical trajectories)
specified by the edge of integration over the quantization area A makes an uncompensated
contribution to the wave-function phase. The integration edge Acgge = (1/ 2)72x
corresponds to the area bounded by the trajectory passing through the most efficient (with
~ gZax) impurity situated at a maximum distance from the boundary, as allowed by criterion
(12). One can easily verify that in our samples with /,; < 0.1 mm, every layer of impurity-size
thickness parallel to the NS boundary comprises no less than 10% impurities; i. e., the coherent
trajectories corresponding to the integration edge continuously resume upon shifting or the
formation of new NS boundaries, so that Aeqg, is a continuously defined constant accurate to

~ Gmax/Tgma ~ 10~%. According to (Aronov & Sharvin, 1987; Chiang & Shevchenko, 1999),
the wave-function phase of the excitations with energy E = el in the field B should change
along a coherent trajectory of length A as follows

¢ = ¢o + ¢y, = 27t[(1/7)(E/hog) A + BA/ (Py/2)], (13)

where ®) = hc/e = 4.14-1077 G-cm?. The first term in Eq. (13) can be ignored because, in
our samples, it does not exceed 1075 at U < 1078 V. One can thus expect that the interference
contribution coming from the elastic-scattering centers to the conductivity oscillates as 6R
O0Rmax cos ¢ (Chiang & Shevchenko, 2001), where 6Rmax is the amplitude depending on the
concentration of the most efficient scattering centers and, hence, proportional to the total
concentration c.

The maximum number of oscillation periods AB,,. that can be observed in a magnetic field
upon changing the temperature clearly depends on the B, variation scale. It varies from the
value B:(Tp) = Beyt1 at the temperature Ty at which the SNS structure with the intermediate
state arises, to the value B.(T) at a given temperature. Therefore, the phase of the oscillations
at a given temperature should depend on the values of B, in a following way:

[BC(T) — Bext;[] Amax

¢ =2m Bora (14)

To estimate the interval of Bc values within which the change in Aegge with varying B, may be
neglected, we used Eq. (14) and the differential of the parameter r from Eq. (12). This yields
AB, ~ 3AB,yy1.

From the condition AB - Aggge = ®o/2 and AB ~ (45;50) G, we obtain r ~ 1 pym, in
accordance with the above-mentioned independent estimation. The ratio of the oscillation
amplitudes also conforms to its expected value: [(6Rpsc)%/(0Rosc)™?] ~ (¢S"/cPP) ~
(lflb / l?l“) ~ 10. One can expect that a change in the number of domains in the plate from
12 to 16 alters the oscillation amplitude by no more than 40%; i. e., it only modifies the
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Fig. 8. Oscillations of the generalized resistance of the interferometer s1 (In-Cu-Sn) vs
magnetic field at T = 3.25 K. The oscillation period is AH = (hc/2e)/ Amax, where Amay is the
area of the abcd contour in the (xy) cross section of the interferometer (see right panel).

oscillations but does not disturb the overall periodicity pattern (Fig. 4). It also follows from
Eq. (14) that the number of periods between the temperature of oscillation onset, T, and an
arbitrary temperature depends on the value of B.(Tg) = B.yt. This makes understandable
the relation between the phases of oscillations observed for the Pb plate in different fields:
(¢s506 — PasoG) =~ 37 and (Pspoc — Pasoc + 77) ~ 37t (it is taken into account that B[520 G] =
-B[480 G]). Such a relation is a result of the different number of periods, AB, measured from
Bext;l .

The significant distortions of the shape of the oscillation curves in the Pb sample is most likely
due to variations in the value of gmax when the number of domains varies in the investigated
temperature interval, thereby changing the position of the NS boundaries.

In the sample containing In, the values of Tp and T¢(B = 0) are extremely close to each other
because of the small B; ~ 5 G. As a result, in the same temperature interval as for Sn and Pb
one can observe more than three oscillation periods (compare Figs. 5 and 6). In such case, the
change in Amax and, hence, in the oscillation period is hardly noticeable (see the estimation
above).

It is appropriate here to compare (although qualitatively) the order of magnitude of the
interference contributions to the conductance in the absence of an NS boundary, in the
approximation of a weak-localization mechanism, and in the presence of an NS boundary.
According to the theory of weak localization (Altshuler et al., 1980), the probability of an
occurrence of self-intersecting trajectories is of the order of (Ag/l,)?> ~ 1077 (Ag(~ q) is
the de Broglie wavelength; I,; ~ 100 ym), while as the probability that coherent trajectories
will arise in the case of an NS boundary in a layer with a characteristic size of the order of
the mean free path is larger by a factor of (r/Ag)? ~ 10° than the probability of formation of
self-crossing trajectories. The existence of coherent trajectories in the NS system is determined
by the area of the base of the cone formed by accessible coherent trajectories arising as a result
of Andreev reflection, the base of the cone resting on the superconductor and the vertex at an
impurity (see Fig. 7). Hence, the expected relative interference contribution to the resistance
of an NS system is as follows

(6R/R) ~ (r/Ag)*(Ap/l,1)* > 1, (15)

and agrees completely with the amplitude of the oscillations we observed in a Pb slab.
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Fig. 9. Oscillations of "Andreev resistance" R = R(Hext) — R(Heyt = 0) in interferometer s3
(Pb/Cu/Pb) as a function of magnetic field at T = 4.125 K. The oscillation period is

AH = (hc/2e)/ Ay, whereA,,;, is the area of xy projection of the stretched opening of the
interferometer onto the direction of magnetic field upon the deviation from the z axis;
R(Heyt = 0) = 2.6245 x 10~8 Ohm.

2.2 Doubly connected SN structures

Below we present the results from the study of the conductance of doubly connected
NS systems. Similarly to singly connected ones considered above, they meet the same
"macroscopic" conditions, namely, L, l,; > &1 = & (L/{r ~ 100). This means that a spatial
scale of the possible proximity effect is much less than the size of a normal segment of the
system, this effect can be therefore neglected completely when considering phenomena of the
interferential nature in such "macroscopical” systems.

Macroscopical hybrid samples s1 [In(S)/Cu(N)/Sn(S)], s2 [Sn(S)/Cu(N)/Sn(S)], s3
[Pb(S)/Cu(N)/Pb(S)], and [In(S)/Al(N)/In(S)] were prepared using a geometry of a doubly
connected SNS Andreev interferometer with a calibrated opening. Figures 8 (right panel) and
10 (upper panel) show schematically (not to scale) the typical construction of the samples,
together with a wire turn as a source of an external magnetic field Hex: for controlling the
macroscopic phase difference in the interferometer formed by a part of a normal single crystal
(Cu, Al) and a superconductor connected to it. Interferometers varied in size, type of a
superconductor, and area of the NS interfaces. The field Hext was varied within a few Oersteds
in increments of 10~° Oe. An error of field measurement amounted to no more than 10 %. To
compensate external fields, including the Earth field, the container with the sample and the
turn was placed into a closed superconducting shield.

Conductance of all the systems studied oscillated while changing the external magnetic field
which was inclined to the plane of the opening. It has thus appeared that the areas of extreme
projections, Seytr, onto the plane normal to the vector of the external magnetic field are related
to the periods of observed oscillations, AH, by the expression S,y AH = ®j, where ®j is
the magnetic flux quantum hc/2e. The values of Sy, and Smax differed from each other by
more than an order of magnitude for each of the interferometers, allowing the corresponding
oscillation periods to be resolved (see Figs. 8 - 10).
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The sensitivity of dissipative conduction to the macroscopic phase difference in a closed SNS
contour is a direct evidence for the realization of coherent transport in the system and the
role played by both NS interfaces in it. In turn, at L > {7, the coherent transport can
be caused by only those normal-metal excitations which energies, ¢ < T < A, fill the
Andreev spectrum that arises due to the restrictions on the quasiparticle motion because of
the Andreev reflections (Zhou et al., 1995). It follows from the quasiclassical dimensional
quantization (Andreev, 1964; Kulik, 1969) that the spacing between the levels of the Andreev
spectrum should be e5 ~ Twp/Ly ~ 20 mK for the distance between NS interfaces Ly =~
0.5 mm. It corresponds to the upper limit for energies of the e — h excitations on the
dissipative (passing through the elastic scattering centers) coherent trajectories in the normal
region. To zero order in the parameter Ag/I, only these trajectories can make a nonaveraged
phase-interference contribution to conductance, often called the "Andreev" conductance G,
(Lambert & Raimondi, 1998). Accordingly, it was supposed that the modulation depth for the
normal conductance Gy (or resistance Ry) in our interferometers in the temperature range
measured would take the form

1—2A Z0FA 8 qp2, (16)

In the approximation of noninteracting trajectories, the macroscopic phase, ¢;, which coherent
excitations with phases ¢,; and ¢y,; is gaining while moving along an i-th trajectory closed by
a superconductor, depends in an external vector-potential field A on the magnetic flux as
follows

D
$i = Pei + Pni = Poi + 2715(;, (17)

where ¢y; is the microscopic phase related to the length of a trajectory between the interfaces
by the Andreev-reflection phase shifts; ®; = H,y; - S; is the magnetic flux through the
projection S; onto the plane perpendicular to Heyt; Heyt = V X A is the magnetic field vector;
S; = ng, - S;; ng, is the unit normal vector; S; is the area under the trajectory; and @ is the
flux quantum hc/2e.

The evaluation of the overall interference correction, 2Re(f.f;), in the expression for the
total transmission probability |f. + f4|* (f, are the scattering amplitudes) along all coherent
trajectories can be reduced to the evaluation of the Fresnel-type integral over the parameter S;
(Tsyan, 2000). This results in the separation of the S-nonaveraged phase contributions at the
integration limits. As a result, the oscillating portion of the interference addition to the total
resistance of the normal region in the SNS interferometer, in particular, for Hey||z, takes the

for OR HextS
A EA . extOextr
08 | EA ginf2rm(gg + Koot 1
Ry T sin[277(¢o @y ) (18)

where S,y is the minimal or maximal area of the projection of doubly connected SNS
contours of the system onto the plane perpendicular to H, and ¢g ~ (1/7)(L/l,) ~ 1 (Van
Wees et al., 1992). Our experimental data are in good agreement with this phase dependence
of the generalized interferometer resistance and the magnitude of the effect. Since all doubly
connected SN'S contours include e — h coherent trajectories in the normal region with a length
of no less than ~ L =~ 102(§T, one can assert that the observed oscillations are due to the
long-range quantum coherence of quasiparticle excitations under conditions of suppressed
proximity effect for the major portion of electrons.
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Fig. 10. Non-resonance oscillations of the phase-sensitive dissipative component of the
resistance of the indium narrowing (curve 1) at T = 3.2 K and the resonance oscillations of
this component in the aluminum part (curve 2) at T = 2 K for the interferometer with

Rq; < Ry, as functions of the external magnetic field.

3. Macroscopical NS systems with a magnetic N - segment

The peculiarities of electron transport arising due to the influence of a superconductor
contacted to a normal metal and, particularly, to a ferromagnet (F) have been never deprived
of attention. Recently, a special interest in the effects of that kind has been shown, in
connection with the revived interest to the problem of nonlocal coherence (Hofstetter et al.,
2009). Below we demonstrate that studying the coherent phenomena associated with the
Andreev reflection, in the macroscopical statement of experiments, may be directly related
to this problem. As is known, even in mesoscopic NS systems, the coherent effects has been
noted in a normal-metal (magnetic) segment at a distance of x >> Ceycp, from a superconductor
(Cexch is the coherence length in the exchange field of a magnetic) (Giroud et al., 2003;
Gueron et al.,, 1996; Petrashov et al., 1999). That fact gave rise to the intriguing suggestion
that magnetics could exhibit a long-range proximity effect, which presumed the existence
of a nonzero order parameter A(x) at the specified distance. Such a suggestion, however,
contradicts the theory of FS junctions, since eyey << ¢1 ~ vp/T, and vg/T is the ordinary
scale of the proximity effect in the semiclassical theory of superconductivity (De Gennes,
1966). This assumption, apparently, is beneath criticism, because of the specific geometry
of the contacts in mesoscopic samples. As a rule, these contacts are made by a deposition
technology. Consequently, they are planar and have the resistance comparable in value
with the resistance of a metal located under the interface. A shunting effect arises, and the
estimation of the value and even sign of the investigated transport effects becomes ambiguous
(Belzig et al., 2000; Jin & Ketterson, 1989; De Jong & Beenakker, 1995).



116 Superconductivity — Theory and Applications

Influence of the shunting effect is well illustrated by our previous results (Chiang &
Shevchenko, 1999); one of them is shown in Fig. 11. The conductance measured outside the
NS interface (see curve 1 and Inset 1) behaves in accordance with the fundamental ideas of
the semiclassical theory (see Sec. 2. 1): Because of "retroscattering”, the cross section for elastic
scattering by impurities in a metal increases at the coherence length of ¢ — I hybrids formed
in the process of Andreev reflection, i. e., the conductivity of the metal decreases rather than
increases. Additional scattering of Andreev hole on the impurity is completely ignored in case
of a point-like ballistic junction (Blonder et al., 1982). At the same time, the behavior of the
resistance of the circuit which includes a planar interface (see Inset 2) may not even reflect
that of the metal itself (curve 2; see also (Petrashov et al., 1999)), but it is precisely this type of
behavior that can be taken as a manifestation of the long-range proximity effect.
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Fig. 11. Temperature dependences of the resistance of the system normal
metal /superconductor in two measurement configurations: outside the interface (curve 1,
Inset 1) and including the interface (curve 2, Inset 2).

3.1 Singly connected FS systems

Here, we present the results of experimental investigation of the transport properties of
non-film single - crystal ferromagnets Fe and Ni in the presence of F/ In interfaces of various
sizes (Chiang et al., 2007). We selected the metals with comparable densities of states in the
spin subbands; conducting and geometric parameters of the interfaces, as well as the thickness
of a metal under the interface were chosen to be large in comparison with the thickness of the
layer of a superconductor. In making such a choice, we intended to minimize the effects of
increasing the conductivity of the system that could be misinterpreted as a manifestation of
the proximity effect.

The geometry of the samples is shown (not to scale) in Fig. 12. The test region of the samples
with F/S interfaces a and b is marked by a dashed line. After setting the indium jumper,
the region abdc acquired the geometry of a closed "Andreev interferometer"”, which made it
possible to study simultaneously the phase-sensitive effects. Both point (p) and wide (w)
interfaces were investigated. We classify the interface as "point" or "wide" depending on the
ratio of its characteristic area to the width of the adjacent conductor (of the order of 0.1 or 1,
respectively).
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3.1.1 Doubling the cross section of scattering by impurities

Figure 13 shows in relative units 6R/R = [R(T) — R(T = T!")]/R(T = T™) the resistance of
the ferromagnetic segments with point (Fe, curve 1 and Ni, curve 2) and wide (Ni, curve 3)
F/S interfaces measured with current flow parallel to the interfaces [for geometry, see Insets
(a) and (b)]. In this configuration, with indium in the superconducting state, the interfaces, as
parts of the potential probes, play a passive role of "superconducting mirrors". It can be seen
that for T < T!" (after Andreev reflection is actuated), the resistance of Ni increases abruptly
by 0.04% (R, ~ 1 x 108 Ohm) in the case of two point interfaces and by 3% (6Ry, ~ 7 x 1077
Ohm) in the case of two wide ones. In Fe with point interfaces, a negligible effect of opposite
sign is observed, its magnitude being comparable to that in Ni, 5RI}}H.

Just as in the case of a nonmagnetic metal (Fig. 11), the observed decrease in the conductivity
of nickel when the potential probes pass into the "superconducting mirrors" state, corresponds
to an increase in the efficiency of the elastic scattering by impurities in the metal adjoining the
superconductor when Andreev reflection appears. (We recall that the shunting effect is small).
In accordance with Eq. (3), the interference contribution from the scattering of a singlet pair of
e — h excitations by impurities in the layer, of the order of the coherence length ¢ in thickness, if
measured at a distance L from the N/ interface, is proportional to ¢ /L. From this expression
one can conclude that the ratio of the magnitude of the effect, JR, to the resistance measured at
an arbitrary distance from the boundary is simply the ratio of the corresponding spatial scales.
It is thereby assumed that the conductivity o is a common parameter for the entire length, L,
of the conductor, including the scale ¢. Actually, we find from Eq. (3) that the magnitude of
the positive change in the resistance, R, of the layer ¢ in whole is

1 2
i
e TP
5| Fe, Ni ¢ d: 6
3 4

Fig. 12. Schematic view of the F/S samples. The dashed line encloses the workspace. F/In
interfaces are located at the positions a and b. The regimes of current flow, parallel or
perpendicular to the interfaces, were realized by passing the feed current through the
branches 1 and 2 with disconnected indium jumper a — b or through 5 and 6 when the
jumper was closed (shown in the figure).

Nim,
SRE = (&/0pAy)F = Zp SRE. (19)

i=1

Here, 07 is the conductivity in the layer ¢; Aj¢ is the area of the interface; Nimp is the number

of Andreev channels (impurities) participating in the scattering; ¢ R? is the resistance resulting
from the e — & scattering by a single impurity, and 7 is the effective probability for elastic
scattering of excitations with the Andreev component in the layer ¢ as a whole. Control



118 Superconductivity — Theory and Applications

measurements of the voltages in the configurations included and not included interfaces
showed that in our systems, the voltages themselves across the interfaces were negligibly
small, so that we can assume 7 ~ 1. It is evident that the Eq. (19) describes the resistance
of the ¢-part of the conductor provided that oz = oy i.e., for { > l,;. For ferromagnets,
< lyand ] eLl # 1,;. In this case, to compare the values of R measured on the length L with
the theory, one should renormalize the value of Ry from the Eq. (3).

In the semiclassical representation, the coherence of an Andreev pair of excitations in a metal
is destroyed when the displacement of their trajectories relative to each other reaches a value
of the order of the trajectory thickness, i. e., the de Broglie wavelength Ap. The maximum
possible distance ¢, (collisionless coherence length) at which this could occur in a ferromagnet
with nearly rectilinear e and / trajectories (Fig. 14a) is

A tho
gmNiB: E.

€oxch/ EF Eexch

€exch = MBHexcn ~ Texcn (20)
(up is the Bohr magneton, H,,, is the exchange field, and T, is the Curie temperature).
However, taking into account the Larmor curvature of the e and & trajectories in the field
Hyycp, together with the requirement that both types of excitations interact with the same
impurity (see Fig. 14b), we find that the coherence length decreases to the value (De Gennes,
1966) &* = \/2qr = \/2q&m (compare with Eq. (12)). Here, r is the Larmor radius in the field
H,ycp, and g is the screening radius of the impurity ~ Ap. Figure 14 gives a qualitative idea
of the scales on which the dissipative contribution of Andreev hybrids can appear, as a result
of scattering by impurities (Nimp > 1), with the characteristic dimensions of the interfaces
Y,z > 1.
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Fig. 13. Temperature dependences of the resistance of Fe and Ni samples in the presence of
F/In interfaces acting as "superconducting mirrors" at T < T:". Curves 1 and 2: Fe and Ni
with point interfaces, respectively; curve 3: Ni with wide interfaces. Insets: geometry of

point (a) and wide (b) interfaces.

For Fe with T,y ~ 103 K and Ni with T,,,, ~ 600 K, we have ¢* ~ 0.001 ym. It follows

that in our experiment with [, ~

0.01 ym (Fe) and /,; ~

1 pm (Ni), the limiting case [,; >

*and [, L P 7 l ) is realized. From Fig. 14b it can be seen that for y,z > I,; > ¢* in the normal
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state of the interface, the length lfl within the layer ¢* corresponds to the shortest distance

between the impurity and the interface, i. e., lfl =" (o # U’C»«). Note that for an equally
probable distribution of the impurities, the probability of finding an impurity at any distance
from the interface in a finite volume, with at least one dimension greater than /., is equal to
unity. Renormalizing Eq. (3), with {1 replaced by ¢*, we obtain the expression for estimating
the coherence correction to the resistance measured on the length L in the ferromagnets:

RO

SR & 1y o n L

_ ‘ ¢ o
“r 6RY = > —7=Y 6RS. (21)
L Oz Ay i=1

Here, og- is the conductivity in the layer {*; 6R iéx is the result of e — I scattering by a single
impurity. Equation (21) can serve as an observability criterion for the coherence effect in
ferromagnets of different purity. It explains why no positive jump of the resistance is seen
on curve 1, Fig. 13, in case of a point Fe/In interface: with lfle ~ 0.01 ym, the interference
increase in the resistance of the Fe segment with the length studied should be ~ 10~ Ohm and
could not be observed at the current 1,45, < 0.1 A, at which the measurement was performed,
against the background due to the shunting effect.

Comparing the effects in Ni for the interfaces of different areas also shows that the observed
jumps pertain precisely to the coherent effect of the type studied. Since the number of Andreev
channels is proportional to the area of an N/S interface, the following relation should be met
between the values of resistance measured for the samples that differ only in the area of the
interface: 6RS, / 5R%X = Ni’fnp/ Nf;np ~ A/ Ap (the indices p and w refer to point and wide
interfaces, respectively). Comparing the jumps on the curves 2 and 3 in Fig. 13 we obtain:
0Ry/6Ry = 70, which corresponds reasonably well to the estimated ratio A,/ Ap = 25 — 100.
In summary, the magnitude and special features of the effects observed in the resistance of
magnetics Fe and Ni are undoubtedly directly related with the above-discussed coherent
effect, thereby proving that, in principle, it can manifest itself in ferromagnets and be
observed provided an appropriate instrumental resolution. Although this effect for magnetics
is somewhat surprising, it remains, as proved above, within the bounds of our ideas about
the scale of the coherence length of Andreev excitations in metals, which determines the
dissipation; therefore, this effect cannot be regarded as a manifestation of the proximity effect
in ferromagnets.

3.1.2 Spin accumulation effect

The macroscopic thickness of ferromagnets under F/S interfaces made it possible to
investigate the resistive contribution from the interfaces, Rif, in the conditions of current
flowing perpendicular to them, through an indium jumper with current fed through the
contacts 5 and 6 (see Fig. 12 and Inset in Fig. 15).

Figure 15 presents in relative units the temperature behavior of Rff for point Fe/In
interfaces (curve 1) and R;“} for wide Ni/In interfaces (curve 2) as 0R;s/R;y = [Rif(T) —
R; f(TCI”)} /R; f(TCI”). The shape of the curves shows that with the transition of the interfaces
from the F/N state to the F/S state the resistance of the interfaces abruptly increases but
compared with the increase due to the previously examined coherent effect it increases by an
incomparably larger amount. It is also evident that irrespective of the interfacial geometry
the behavior of the function R;¢(T) is qualitatively similar in both systems. The value of

R; f(TCI") is the lowest resistance of the interface that is attained when the current is displaced
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Fig. 14. Scattering of Andreev e — /i hybrids and their coherence length ¢* in a normal
ferromagnetic metal with characteristic F/S interfacial dimensions greater than [,;. Panels

a,b: & <l panelc: & > 1,y &P ~ /1,8

to the edge of the interface due to the Meissner effect. The magnitudes of the positive
jumps with respect to this resistance, 6R,-f/Rif(TCI”) = 6Rp;s/Rp,N, are about 20% for Fe
(curve 1) and about 40% for Ni (curve 2). The values obtained are more than an order of
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Fig. 15. Spin accumulation effect. Relative temperature dependences of the resistive
contribution of spin-polarized regions of Fe and Ni near the interfaces with small (Fe/In) and
large (Ni/In) area.

magnitude greater than the contribution to the increase in the resistance of ferromagnets
which is related with the coherent interaction of the Andreev excitations with impurities
(as is shown below, because of the incomparableness of the spatial scales on which they
are manifested). This makes it possible to consider the indicated results as being a direct
manifestation of the mismatch of the spin states in the ferromagnet and superconductor,
resulting in the accumulation of spin on the F/S interfaces, which decreases the conductivity
of the system as a whole. We suppose that such a decrease is equivalent to a decrease in
the conductivity of a certain region of the ferromagnet under the interface, if the exchange
spin splitting in the ferromagnetic sample extends over a scale not too small compared to the
size of this region. In other words, the manifestation of the effect in itself already indicates
that the dimensions of the region of the ferromagnet which make the effect observable are
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comparable to the spin relaxation length. Therefore, the effect which we observed should
reflect a resistive contribution from the regions of ferromagnets on precisely the same scale.
The presence of such nonequilibrium regions and the possibility of observing their resistive
contributions using a four-contact measurement scheme are due to the "non-point-like nature"
of the potential probes (finiteness of their transverse dimensions). In addition, the data
show that the dimensions of such regions near Fe/S and Ni/S interfaces are comparable
in our experiments. Indeed, the value of dRyj,s/Rni/n corresponding according to the
configuration to the contribution from only the nonequilibrium regions and the value of
0Rpe s/ Rpe/n obtained from a configuration which includes a ferromagnetic conductor of
length obviously greater than the spin-relaxation length, are actually of the same order of
magnitude. In addition, according to the spin-accumulation theory (Hofstetter et al., 2009;
Lifshitz & Sharvin, 1951; Van Wees et al., 1992), the expected magnitude of the change in the
resistance of the F/S interface in this case is of the order of

2

(SRF/S:(?—Z-lf—PZ; P= (o4 —0y)/0; o =0 +0. (22)
Here, As is the spin relaxation length; P is the coefficient of spin polarization of the
conductivity; o, oy, 0, and A are the total and spin-dependent conductivities and the cross
section of the ferromagnetic conductor, respectively. Using this expression, substituting the
data for the geometric parameters of the samples, and assuming pFe ~ PNi we obtain
As(Fe/S)/A¥(Ni/S) ~ 2. This is an additional confirmation of the comparability of the
scales of the spin-flip lengths As for Fe/S and A} for Ni/S, indicating that the size of the
nonequilibrium region determining the magnitude of the observed effects for those interfaces
is no greater than (and in Fe equal to) the spin relaxation length in each metal. In this case,
according to Eq. (22), the length of the conductors, with normal resistance of which the values
of 6Rr,s must be compared, should be set equal to precisely the value of A for Fe/S and A
for Ni/S. This implies the following estimate of the coefficients of spin polarization of the
conductivity for each metal:

pP= \/(5RF/5/RF/N)/[1 + (0Rp/s/RE/N)]- (23)

Using our data we obtain PFe ~ 45% for Feand PN =~ 50% for Ni, which is essentially
the same as the values obtained from other sources (Soulen et al., 1998). If in Eq. (22) we
assume that the area of the conductor, A, is of the order of the area of the current entrance
into the jumper (which is, in turn, the product of the length of the contour of the interface
by the width of the Meissner layer), then a rough estimate of the spin relaxation lengths in
the metals investigated, in accordance with the assumption of single-domain magnetization
of the samples, will give the values Af® ~ 90 nm and AN > 50 nm. Comparing these
values with the value of coherence length in ferromagnets {* ~ 1 nm we see that although the
coherent effect leads to an almost 100% increase in the resistance, this effect is localized within
a layer which thickness is two orders of magnitude less than that of the layer responsible for
the appearance of the spin accumulation effect, therefore it does not mask the latter.

3.2 Doubly connected SFS systems

The observation of the coherent effect in the singly connected FS systems raised the following
question: Can effects sensitive to the phase of the order parameter in a superconductor be
manifested in the conductance of ferromagnetic conductors of macroscopic size? To answer
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Fig. 16. Schematic diagram of the F/S system in the geometry of a doubly connected
"Andreev interferometer". The ends of the single-crystal ferromagnetic (Ni) segment (dashed
line) are closed by a superconducting In bridge.

this question we carried out direct measurements of the conductance of Ni conductors in a
doubly connected SFS configuration (in the Andreev interferometer (AI) geometry shown in
Fig. 16).

Figures 17 and 18 show the magnetic-field oscillations of the resistance of two samples in
a doubly connected S/Ni/S configuration with different aperture areas, measured for the
arrangement of the current and potential leads illustrated in Fig. 16. The oscillations in Fig.
17 are presented on both an absolute scale (6Rosc = Ry — Ry, left axis) and a relative scale
(0Rosc/Ro, right axis). Rp is the value of the resistance in zero field of the ferromagnetic
segment connecting the interfaces in the area of a dashed line in Fig. 16. Such oscillations
in SFS systems in which the total length of the ferromagnetic segment reaches the values of
the order of 1 mm (along the dashed line in Fig. 16), were observed for the first time. Figures
17 and 18 were taken from two samples during two independent measurements, for opposite
directions of the field, with different steps in H and are typical of several measurements, which
fact confirms the reproducibility of the oscillation period and its dependence on the aperture
area of the interferometer.

The period of the resistive oscillations shown in Fig. 17 is AB ~ (5 —7) x 107* G and is
observed in the sample with the geometrical parameters shown in Fig. 16. It follows from
this figure that the interferometer aperture area, enclosed by the midline of the segments and
the bridge, amounts to A ~ 3 x 10~#cm?. In the sample with twice the length of the sides
of the interferometer and, hence, approximately twice the aperture area, the period of the
oscillations turned out to be approximately half as large (solid line in Fig. 18). From the values
of the periods of the observed oscillations it follows that, to an accuracy of 20%, the periods are
proportional to a quantum of magnetic flux &y = hc/2e passing through the corresponding
area A: AB ~ ®y/A.

Obviously, the oscillatory behavior of the conductance is possible if the phases of the
electron wave functions are sensitive to the phase difference of the order parameter in the
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Fig. 17. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)

conductor in an Al system with the dimensions given in Fig. 16, in absolute (left-hand scale)
and relative (right-hand scale) units. Ry = 4.12938 x 1072 Ohm. T = 3.1 K.
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Fig. 18. The hc/2e magnetic-field oscillations of the resistance of a ferromagnetic (Ni)
conductor in an Al system with an aperture area twice that of the system illustrated in Fig. 16

(solid curve, right-hand scale). Ry = 3.09986 x 10~® Ohm. T = 3.2 K. The dashed curve
shows the oscillations presented in Fig. 17.

superconductor at the interfaces. Consequently, this parameter should be related to the
diffusion trajectories of the electrons on which the "phase memory" is preserved within the
whole length L of the ferromagnetic segment. This means that the oscillations are observed in
the regimes L < Ly, = /D1, > i (D is the diffusion coefficient, ¢t is the coherence length
of the metal, over which the proximity effect vanishes, and 7, is the dephasing time). It is
well known that the possibility for the Aharonov-Bohm effect to be manifested under these
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conditions was proved by Spivak and Khmelnitskii (Spivak & Khmelnitskii, 1982), although
the large value of L, coming out of our experiments is somewhat unexpected.

3.2.1 The entanglement of Andreev hybrids

The estimated value of L, raises a legitimate question of the nature of the observed effect and
the origin of the dephasing length scale evaluated. Since, as discussed in the Introduction,
Ly is determined by the scale of the inelastic mean free path, the main candidates for the
mechanism of inelastic scattering of electrons in terms of their elastic scattering on impurities
remain electron-electron (e — ) and electron-phonon (e — ph) interactions.

Direct measurement of the temperature-dependent resistance of the ferromagnetic (Ni)
segment in the region below T found that (ORe—pn/Rer) ~ (ler/le—pn) = 1073 -10"% It
follows that for our Ni segment with I,; > 1073 cm and D ~ 10° cm?/s, the electron-phonon
relaxation time should be 7,_,, ~ (1077 — 1078) s, which value coincides, incidentally,
with the semiclassical estimate 7, ~ (7/T)(Tp/ T)* (Tp is the Debye temperature). On
the other part, T,—. ~ Tipe/ T2 (pe is the chemical potential) at 3 K has the same order of
magnitude. Thereby, the dephasing length in the studied systems can have a macroscopical
scale of the order of L, = /DTy ~ 1 mm, which corresponds to the length of F segments of
our interferometers.

Under these conditions the nature of the observed oscillations can be assumed as follows.
According to the arguments offered by Spivak and Khmelnitskii (Spivak & Khmelnitskii,
1982), in a metal, regardless of the sample geometry (the parameters Ly ,z), there always
exists a finite probability for the existence of constructively interfering transport trajectories,
the oscillatory contribution of which does not average out. Such trajectories coexist
with destructively interfering ones, the contributions from which average to zero. An
example would be the Sharvin’s experiment (Sharvin & Sharvin, 1981). In the doubly
connected geometry, the probability for the appearance of trajectories capable of interfering
constructively increases.

Consider the model shown in Fig. 19. Cooper pairs injected into the magnetic segment are
split due to the magnetization and lose their spatial coherence over a distance ¢* = /2Ag7exch
from the interface (see Sec. 3. 1. 1). 7oy, is the Larmor radius in the exchange field Hqyo, =
kgTc; Texch ~ 1 pm. (Recall that ¢* is the distance at which simultaneous interaction of e and
h quasiparticles with the same impurity is still admissible.)

The phase shifts acquired by (for example ) an electron 3 and hole 2 on the trajectories
connecting the interfaces are equal, respectively, to

¢g = (kp =+ ST/hUF)Le + Zﬂq)/q)o = (Poe + Zﬂq)/q)(),

24
¢ = — (kg — e /hvg)Ly, 4+ 2n® /Dy = Pgp, + 21D/ Dy 4)

Here e7 and kg are the energy, measured from the Fermi level and the modulus of the Fermi
wave vector, respectively. Since the trajectories of an e — i pair are spatially incoherent, their
oscillatory contributions, proportional to the squares of the probability amplitudes, should
combine additively:

fu@)® + |fe()|* ~ cos g + cos g ~ cos(g + 271®/ ), (25)
where ¢y is the relative phase shift of the independent oscillations, equal to

$o = (1/2)(doe + Pon) ~ (er/er)(Le + Ly,) /2L, (26)
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Fig. 19. Geometry of the model.

where e = fwg/L; e = kgT = hD/&%. Hence it follows that any spatially separated e and
h diffusion trajectories with ¢9 = 277N, where N is an integer, can be phase coherent. Clearly
this requirement can be satisfied only by those trajectories whose midlines along the length
coincide with the shortest distance L connecting the interfaces. In this case, (L, + Lj)/2L
is an integer, since Ly, ), L o« I,y and (Lj;)/L) = m(1+a), where « < 1. Furthermore,
(er/€r)/2m is also an integer n to an accuracy of n(1+ vy), where v ~ (d/L) < 1 (d is the
transverse size of the interface). In sum, considering all the foregoing we obtain

cos(¢g + 21D/ Dg) ~ cos(2tD/Dy). (27)

This means that the contributions oscillatory in magnetic field from all the trajectories should
have the same period. Taking into consideration the quasiclassical thickness of a trajectory,
we find that the number of constructively interfering trajectories with different projections
on the quantization area, those that must be taken into account, is of the order of (I,;/Ap).
However, over the greater part of their length, except for the region ¢*, all (I,;/Ap) trajectories
are spatially incoherent. They lie with equal probability along the perimeter of the cross
section of a tube of radius /,; and axis L, and therefore outside the region ¢* they average out.
Constructive interference of particles on these trajectories can be manifested only over the
thickness of the segment ¢*, reckoned from the interface, where the particles of the e — / pairs
are both phase- and spatially coherent. In this region the interaction of pairs with an impurity,
as mentioned in the Introduction, leads to a resistive contribution. When the total length of the
trajectories is taken into account, the value of this contribution for one pair should be of the
order of ¢*/L. Accordingly, one can expect that the amplitude of the constructive oscillations
will have a relative value of the order of

SRS /Ry, ~ (&*/L)(1,/15) ~15/L, (28)

(lf; ~ Ap, see sec. 2.1.1), i. e., the same as the value of the effect measured with the
superconducting bridge open. Our experiment confirms this completely: For the samples
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with the oscillations shown in Figs. 17 and 18, 6RS" /Ry ~ 0.03% and 0.01%, respectively.
This is much larger than the total contribution from the destructive trajectories, which in the
weak-localization approximation is of the order of (Ag/1,;)? and which can lead to an increase
in the conductance (Altshuler et al., 1981). One should also note that the property of the
oscillations under discussion described by Eq. (27) presupposes that the resistance for H = 0
will decrease as the field is first introduced, and this, as can be seen in Figs. 17 and 18, agrees
with the experiment.

4. Conclusion

Here, we presented the results of the study of Andreev reflection in a macroscopic formulation
of experiments, consisting in increasing simultaneously the diffusion coefficient in normal
segments of NS hybrid systems and the size of these segments by a factor of 10° — 10*
as compared with those characteristics of mesoscopic systems. Our data prove that at
temperatures below 4 K, the relaxation of the electron momentum, at least at sufficiently
rare collisions of electrons with static defects, are not accompanied by a break of the phase
of electron wave functions. Hence, the electron trajectories in the classical approximation
may be reversible on a macroscopic length scale of the order of several millimeters, both
in a nonmagnetic and in a sufficiently pure ferromagnetic metal. In this situation, there
appears a possibility to observe conductance oscillations in doubly connected NS systems
in Andreev-reflection regime, with a period /ic/2e in a magnetic field, which indicates that the
interference occurs between singlet bound quasiparticles rather than between triplet bound
electrons, as in the Aharonov-Bohm ring. With the current flowing perpendicular to the
N(F)S interfaces in singly connected samples, a nonequilibrium resistive contribution of the
interfaces was found. We associate this with the spin polarization of a certain region of a
ferromagnet under the interface. The observed increase in the resistance corresponds to the
theoretically predicted magnitude of the change occurring in the resistance of a single-domain
region with spin-polarized electrons as a result of spin accumulation at the F/S interface
under the conditions of limiting Andreev reflections.
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1. Introduction

In the past two decades, a number of novel superconducting materials have been discovered
where order parameter symmetries are different from an s-wave spin singlet, predicted by
the Bardeen-Cooper-Schrieffer (BCS) theory of electron-phonon mediated pairing. From the
initial discoveries of unconventional superconductivity in heavy-fermion compounds, the
list of examples has now grown to include the high-T, cuprate superconductors, ruthenates,
ferromagnetic superconductors, and possibly organic materials.

In most of these materials, there are strong indications that the pairing is caused by the
electron correlations, in contrast to conventional superconductors such as Pb, Nb, etc.
Nonphononic mechanisms of pairing are believed to favor a nontrivial spin structure and
orbital symmetry of the Cooper pairs. For example, the order parameter in the high-T,
superconductors, where the pairing is thought to be caused by the antiferromagnetic
correlations, has the d-wave symmetry with lines of zeroes at the Fermi surface. A powerful
tool of studying unconventional superconducting states is symmetry analysis, which works
even if the pairing mechanism is not known.

In general, the superconducting BCS ground state is formed by Cooper pairs with zero total
angular momentum. The electronic states are four-fold degenerate‘k l>, and ‘—k T> have
the same energy ¢(k). The states with opposite momenta and opposite spins are
transformed to one another under time reversal operation K‘k ™= ‘—k 1) and states with
opposite momenta are transformed to one another under inversion operation I ‘ k T> = ‘—k T> .
The four degenerate states are a consequence of space and time inversion symmetries. Parity
symmetry is irrelevant for spin-singlet pairing, but is essential for spin-triplet pairing. Time
reversal symmetry is required for spin-singlet configuration, but is unimportant for spin-
triplet state (Anderson, 1959, 1984).

If this degeneracy is lifted, for example, by a magnetic field or magnetic impurities coupling
to the electron spins, then superconductivity is weakened or even suppressed. For spin-
triplet pairing, Anderson noticed that additionally inversion symmetry is required to obtain
the necessary degenerate electron states. Consequently, it became a widespread view that a
material lacking an inversion center would be an unlikely candidate for spin-triplet pairing.
For example, the absence of superconductivity in the paramagnetic phase of MnSi close to
the quantum critical point to itinerant ferromagnetism was interpreted from this point of
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view (Mathur, 1998; Saxena, 2000). Near this quantum critical point the most natural spin
fluctuation mediated Cooper pairing would occur in the spin-triplet channel. However,
MnSi has the so-called B20 structure (P2;), without an inversion center, inhibiting spin-
triplet pairing.

Unusual properties are expected in superconductors whose crystal structure does not
possess an inversion center (Edelstein, 1995; Frigeri et al., 2004; Gor’kov & Rashba, 2001;
Samokhin et al., 2004; Sergienko& Curnoe, 2004).

Recent discovery of heavy fermion superconductor CePt;Si has opened up a new field of the
study of superconductivity (Bauer et al., 2004). This is because this material does not have
inversion center, which has stimulated further studies (Akazawa et al., 2004; Yogi et al.,
2005). Because of the broken inversion symmetry, Rashba-type spin-orbit coupling (RSOC)
is induced (Edelstein, 1995; Rashba, 1960; Rashba & Bychkov, 1984)), and hence different
parities, spin-singlet pairing and spin triplet pairing, can be mixed in a superconducting
state (Gor’kov & Rashba, 2001).

From a lot of experimental and theoretical studies, it is believed that the most possible
candidate of superconducting state in CePtsSi is s+p-wave pairing (Frigeri et al., 2004;
Hayashi et al., 2006). This mixing of the pairing channels with different parity may result in
unusual properties of experimentally observed quantities such as a very high upper critical
field H_, which exceeds the paramagnetic limit (Bauer et al., 2004; Bauer et al., 2005a,
2005b; Yasuda et al., 2004), and the simultaneous appearance of a coherence peak feature in
the NMR relaxation rate Tl_1 and low-temperature power-law behavior suggesting line
nodes in the quasiparticle gap (Bauer et al., 2005a, 2005b; Yogi et al., 2004). The presence of
line nodes in the gap of CePtsSi is also indicated by measurements of the thermal
conductivity (Izawa et al., 2005) and the London penetration depth (Bauer et al., 2005;
Bonalde et al., 2005).

It is known that the nonmagnetic as well as the magnetic impurities in the conventional and
unconventional superconductors already have been proven to be a useful tool in
distinguishing between various symmetries of the superconducting state (Blatsky et al.,
2006). For example, in the conventional isotropic s-wave superconductor, the single
magnetic impurity induced resonance state is located at the gap edge, which is known as
Yu-Shiba-Rusinov state (Shiba, 1968). In the case of unconventional superconductor with
dxz—yz -wave symmetry of the superconducting state, the nonmagnetic impurity-induced

bound state appears near the Fermi energy as a hallmark of dxzfy2 -wave pairing symmetry

(Salkalo et al., 1996). The origin of this difference is understood as being due to the nodal
structure of two kinds of SC order: in the dxzfy2 -wave case, the phase of Cooper pairing

wave function changes sign across the nodal line, which yields finite density of states (DOS)
below the superconducting gap, while in the isotropic s-wave case, the density of states is
gapped up to energies of aboutA;, and thus the bound state can appear only at the gap

edge. In principle the formation of the impurity resonance states can also occur in
unconventional superconductors if the nodal line or point does not exist at the Fermi surface
of a superconductor, as it occurs for isotropic nodeless p-wave and/or d, +id, -wave

superconductors for the large value of the potential strength (Wang Q.H. & Wang,Z.D,
2004).
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In unconventional superconductors non-magnetic impurities act as pair-breakers, similar to
magnetic impurities in s-wave superconductors. A bound state appears near an isolated

non-magnetic strong (scattering phase shift% , Or unitarity) scatterer, at the energy close to

the Fermi level. The broadening of this bound state to an impurity band at finite disorder
leads to a finite density of states at zero energy, N(0), that increases with increasing

impurity concentration (Borokowski & Hirschfeld, 1994). The impurity scattering changes
the temperature dependence of the physical quantities below T corresponding to the

impurity bandwidth: A changes the behavior fromT toT? the NMR relaxation rate
changes fromT> toT, and specific heat C (T) changes from T? toT . In other words, the

impurities modify the power laws, especially at low temperatures.

The problem of a magnetic impurity in a superconductor has been extensively studied, but
is not completely solved because of the difficulty of treating the dynamical correlations of
the coupled impurity-conduction electron system together with pair correlations. Generally,
the behavior of the system can be characterized by the ratio of the Kondo energy scale in the

. iy T, T .
normal metal to the superconducting transition temperatureTK. For X « 1, conduction
[ [

electrons scatter from classical spins and physics in this regime can be described by the

Abrikosov-Gor'kov theory (Abrikosov & Gor'kov, 1961). In the opposite limit,I;—K >1 the

[
impurity spin is screened and conduction electrons undergo only potential scattering. In this
regime s-wave superconductors are largely unaffected by the presence of Kondo impurities
due to Anderson's theorem. Superconductors with an anisotropic order parameter, e.g. p-
wave, d-wave etc., are strongly affected, however and the potential scattering is pair-
breaking. The effect of pair breaking is maximal in s-wave superconductors in the

intermediate region, Ty ~T., while in the anisotropic case it is largest for—X — o
[

(Borkowski & Hirschfeld, 1992).

In the noncentrosymmetric superconductor with the possible coexistence of s-wave and p-
wave pairing symmetries, it is very interesting to see what the nature of the impurity state is
and whether a low energy resonance state can still occur around the impurity through
changing the dominant role played by each of the pairing components. Previously, the effect
of nonmagnetic impurity scattering has been studied in the noncentrosymmetric
superconductors with respect to the suppression of T, and the behavior of the upper critical
field (Frigeri et al., 2004; Mineevé& Samokhin, 2007).

This in turn stimulates me to continue studying more properties. My main goal in this
chapter is to find how the superconducting critical temperature, magnetic penetration
depth, and spin-lattice relaxation rate of a noncentrosymmetric superconductor depend on
the magnetic and nonmagnetic impurity concentration and also discuss the application of
our results to a model of superconductivity in CePtsSi. I do these by using the Green’s
function method when both s-wave and p-wave Cooper pairings coexist.

The chapter is organized as follows. In Sect. 2, the disorder averaged Green’s functions in
the superconducting states are calculated and the effect of impurity is treated via the self-
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energies of the system. In Sect. 3, the equations for the superconducting gap functions
renormalized by impurities are used to find the critical temperature T, .

In Sect. 4, by using linear response theory I calculate the appropriate correlation function
to evaluate the magnetic penetration depth. In this system the low temperature behavior
of the magnetic penetration depth is consistence with the presence of line nodes in the
energy gap.

In Sect. 5, the spin-lattice relaxation rate of nuclear magnetic resonance (NMR) in a
superconductor without inversion symmetry in the presence of impurity effect is
investigated.

In the last two cases I assume that the superconductivity in CePtsSi is most likely
unconventional and our aim is to show how the low temperature power law is affected by
nonmagnetic impurities.

Finally sect. 6 contains the discussion and conclusion remarks of my results.

2. Impurity scattering in normal and superconducting state

By using a single band model with electron band energy &, measured from the Fermi
energy where electrons with momentum k and spin s are created (annihilated) by

operators C :r (C ks ) , the Hamiltonian including the pairing interaction can be written as

1
H= z ‘fkclt,sck,s + E Z zVk,k’Cg,sCEk,s’C—k',s’ck’,s (1)
k,s k,k's,s'

This system possesses time reversal and inversion symmetry (& =& ;) and the pairing
interaction does not depend on the spin and favors either even parity (spin-singlet) or odd
parity (spin-triplet) pairing as required. The absence of inversion symmetry is incorporated
through the antisymmetric Rashba-type spin-orbit coupling

Hso = Z agk'a-s,s’cltscks' (2)

k,s,s"

which removes parity but conserves time-reversal symmetry, ie, [H, I '=-H, and
TH, T =H, . In Eq. (2), o denotes the Pauli matrices (this satisfies the above condition
Iol'=-c andToT'=c), g,is a dimensionless vector [g, =-g , to preserve time
reversal symmetry], and «(>0)denotes the strength of the spin-orbit coupling. The
antisymmetric spin-orbit coupling (ASOC) termag,.c is different from zero only for
crystals without an inversion center and can be derived microscopically by considering the
relativistic corrections to the interaction of the electrons with the ionic potential (Frigeri
et al., 2004; Dresselhaus, 1995). For qualitative studies, it is sufficient to deduce the structure
of the g-vector from symmetry arguments (Frigeri et al., 2004) and to treat a as a parameter.
I set < g,%> =1, where (...) denotes the average over the Fermi surface. The ASOC term lifts
the spin c,iegeneracy by generating two bands with different spin structure.

In the normal state the eigenvalues of the total Hamiltonan (H + H,,) are

b= —nFalg ®)
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2
where g, = ;(— and and u is the chemical potential.
m

It is obvious from here that the time reversal symmetry is lost and the shape of the Fermi
surfaces does not obey the mirror symmetry.

Due to the big difference between the Fermi momenta we neglected the pairing of electronic
states from different bands. The structure of theory is now very similar to the theory of
ferromagnetic superconductors with triplet pairing (Mineev, 2004).

Effects of disorder are described by potential scattering of the quasiparticles, which in real-
space representation is given by

H,y,p Zf% U (F)dF @)

where U, =U, +U, ,U,is the potential of a non-magnetic impurity, which we consider
rather short-ranged such that s-wave scattering is dominant andU,, =J(7)S.6 is the
potential interaction between the local spin on the impurity site and conduction electrons,

here ] is the exchange coupling and S is the spin operator.

2.1 Impurity averaging in superconducting state

Let us calculate the impurity-averaged Green's functions in the superconducting state. The
Gor’kov equations with self-energy contributions are formally analogous to those obtained
for system with inversion symmetry (Abrikosov et al., 1975).

(i, — &~ Ze (i0,)) 3. (kiw, ) + (A + Ze (i0,) ) E (K, 0,) = 64 ®)
(i, + &1+ ZF (i0,) ) E (K, 0,) + (Af + S (ie,)) 5. (K, @,) = 0 6)

where @, =(2n+1)zT are the Matsubara Fermionic frequencies, & is the unit matrix in the
spin state, and the impurity scattering enters the self-energy of the Green's function of the
normal, >, and the anomalous type, > , their mathematical expressions read

Se(io,) = (muf +n, umz”(;’;f (i, @)

dk
(27)

here n,and n, are the concentrations of nonmagnetic and magnetic impurities,
respectively.

The equations for each band are only coupled through the order parameters given by the
self-consistency equations

> (ia)n):(nn‘lln‘z+nm‘Um‘2)J- 3F(k,za)”) (8)

A ==T ¥ Vo (K R)E, (K,,) )

k', o,n
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where v==.
Solving the Gor’kov equations one obtains the following expressions for the disorder-
averaged Green’s functions

o 3. ki F, k,io,
3.(Fo,)= +(_ ) B ! 2 (10)
Ef (k,la)n -3, (—k,—za)n)
where
~ (1 iw, + §—k+
Ik o, )= = 1 = = 11)
i( ”) (M)n _Zimp 'Hjs'kF _gki)(ia)n _zimp +55'kF +§—ki)_AkirA-L (
- -A
E(Ko,)=1 . ok 12)
( ) (Za)n - Zimp +5s'kF - é:ki )(lwn - Zimp -H—)s'kF + é:—kt) - AkiAL
hereX,, =%, (n +Zimp(m) is the self energy due to non magnetic and magnetic impurities.
The energies of el)ementary excitations are given by
st Gty
Ey, =2 5 e+ ( = 5 7“} +ApALL (13)

The presence of the antisymmetric spin-orbit coupling would suppress spin-triplet pairing.

However, it has been shown by Frigeri et al., (Frigeri et al.,, 2004) that the antisymmetric

spin-orbit coupling is not destructive to the special spin-triplet state with the d vector

parallel to g, (Elk [ gk) . Therefore, by choosing g, :\/gki(—kwkx,O), one adopts the p-
oL

wave pairing state with parallel d  vector dk:A(—l;y,lzx,O). Here the unit

vector k = (sz,lzy,lzz) =(cos@sin,singsinf,cosp) .

By considering this parity-mixed pairing state the order parameter defined in (5) and (6) can
be expressed as

A(7K) =[ 80 (F) 60+ d(k).6 Ji6, =] A0 (F) 6y +A(F)(~k,6, + k6, )| 1

with the spin-singlet s-wave component Ay(7) and the d vector d, ()= A(?)(—lzy,l;x,O),
here, the vector 7 indicates the real-space coordinates. While this spin-triplet part alone has
point nodes (axial state with two point nodes), the pairing state of Eq. (14) can possess line
nodes in a gap as a result of the combination with the s-wave component (Hayashi et al.,
2006; Sergienko 2004). In the presence of uniform supercurrent the gap function has the
7 dependence as

A7, F) = Ay (15)

where m is the bare electron mass.
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The particular form of order parameter prevents the existence of interband terms in the
Gor’kov equations

(ia)n - ék,i - Z:G (1'0)" ))St (klia)n ) + (Ak,ir + ZF (ia)n ))FirT (k'a)n) =1 (16)
(i, +& e+ 2 (ia)n))Fj(k,a)n)Jr(AL +Z}(ia)n))3i(k,a)n) -0 (17)

where in this case

ic(m%)=(m,un2+nmthﬂj(;f%[s+(?ﬂah)+s(?Jamﬂ (18)
iFU@J—(%L@2+mnumﬂjéf%[a(?J@J+F(?JQJ] (19)

and
Ay =Ag £d|g (20)

I consider the superconducting gaps |A, +Asing| and |A; —Asing| on the Fermi surfaces I
and II, respectively (such as superconductor CePt35i). Such a gap structure can lead to line
nodes on either Fermi surface I or II (Hayashi et al., 2006). These nodes are the result of the
superposition of spin-singlet and spin-triplet contributions (each separately would not
produce line nodes). On the Fermi surface I, the gap is |A, + Asin6| and is nodeless, (not that
we choose Ay >0 and A >0). On the other hand, the form of the gap on the Fermi surface II
is |Ag - , where line nodes can appear for A, <A (Hayashi et al., 2006).

3. Effects of impurities on the transition temperature of a
noncentrosymmetrical superconductor

In the case of large SO band splitting, the order parameter has only intraband components
and the gap equation (Eq. (9)) becomes
311
dk V., (kK A - 1)
(an - Zimp 7§ki )(lwn - zimp +§—ki ) - AktAki

ZI

n,v

The coupling constants V (E,E') ' I have used in previous considerations can be expressed
through the real physical interactions between the electrons naturally introduced in the
initial spinor basis where BCS type Hamiltonian has the following form

H =3 3 [V () Vg () V)

kk q apud (22)

t ot
XC- 7 T
Chr,aC Ok, A ki
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where the pairing interaction is represented as a sum of the k-even, k-odd, and mixed-parity
terms: V =V°+V'+ V™. The even contribution is

Vi (K, K) = V2 (K, 1) (i) . (i) 5 (23)

The odd contribution is

Véﬂw(l;,]?) = V;(l;,l?)(iaiaz)aﬁ(iajoz )15 (24)

here the amplitudes VS(E,k')and Vt(lz E) are even and odd with respect to their

arguments correspondingly.
Finally, the mixed-parity contribution is

s (K, ) "k, gzaaz 4 (io2)ts )

v (E

The first term on the right-hand side of Eq. (25) is odd in k and even in k', while the second
term is even in k and odd in k'.

The pairing interaction leading to the gap function [Eq. (14)] is characterized by three
coupling constants, V,, V,, andV,,. Here, V,, and V result from the pairing interaction
within each spin channel (s: singlet, t: triplet). V,, is the scattering of Cooper pairs
between those two parity channels, present in systems without inversion symmetry. The

linearized gap equations acquire simple algebraic form

) i0y),,(ici0, )Jr

Ay = V;rTz )+V, sz (sinéE_) (26)
A=VzT) (sintE_)+V,zTY (E,) (27)
n n

where the angular brackets denote the average over the Fermi surface, assuming the

spherical Fermi surface for simplicity, E, = E By E; ;= _ Do *Asing ,and

B ' B
2 /A

B, = [(a)n + iz,-m,,) + ‘AO iAsinH‘z} (28)

From Egs. (26) and (27) one obtains then the following expression for the critical
temperature

T, 1 1 1 1 1 1 1 1
lnf0 =(1 —X){\P[zwt 4”Trmj—‘{’(2ﬂ+ X{TL+47TTC[%+%]_\P(2H} (29)

where
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¥ (x)is the digamma function, Ny =(N, +N_)/2, N, are the densities of state (DOS) of
the two bands at the Fermi level, and T, is the critical temperature of the clean
superconductor.

(8(p)ss
(2%(p),

on the Fermi surface (FS), where the angular brackets <"'>FS stand for a FS average.

The coefficient X =1 - quantifies the degree of anisotropy of the order parameter

For isotropic s-wave pairing <A(p)>i5 =<A2(p)>FS (X=0)and for any pairing state with

angular momentum!>1, e.g., for p-wave and d-wave states(l = 1,2) , (X = 1,% = 0) Eq.
m

(29) reduces to the well-known expressions (Abrikosov, 1993; Abrikosov, A. A. & Gor’kov,
1959).

R S S \11(1] (31)
T, 2 4rlr, 2

mlo_g[l, 1 —T[l) (32)
T, 2 4rlz, 2

For mixing of s-wave state with some higher angular harmonic state , e.g., for example

s+pand s+d, (0<X<1,% :OJ,Eq. (29) becomes
m

mleo _ x|yl 1 —\1{1] (33)
T, 2 4rlz, 2
At 7,T, > 1and 7,T,, > 1 (weak scattering) one has from Eq. (29):
1-X
To-T. ~2= §l+7é (34)
4| 2 g, T

In two particular cases of (i) both nonmagnetic and magnetic scattering in an isotropic s-
wave superconductor (X =0) and (ii) nonmagnetic scattering only in a superconductor with

arbitrary anisotropy of A(p) (% =0,0<X<1), the Eq. (34) reduces to well-known

expressions

T, —T ~"— 35
c0 c 4Tm ( )
L,-T.~ 2% (36)
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In the strong scattering limit (7T, <1, 7,,T, < 1), by using

1, 1 1Ny ). 272 3
e I P N Rt ) )

From Eq. (29) one finds

1 1-X 1 1 X
[] ( + j =27 2% (38)
Tm TVI Tm 7/

One can see that the left hand side of Eq. (38) increases monotonically with bothl and

n

ifor any value of X , with the exception of the case X =0which does not depend on

Tm

magnetic impurities.
For strongly anisotropic gap parameter (X ~ 1), Eq. (38) reduces to

1 1 =
L L2, (39)

T T

n m

i.e., the contribution of magnetic and nonmagnetic impurities to pairing breaking is about
the same.
For strongly isotropic case (X < 1), one has

1 =z
—="To (40)
T 27
and T, is determined primarily by magnetic impurities.
For the case of s+ p wave pairing in the absence of magnetic impurities, one has
1\
(] =Z¥ 1, (41)
Tn v

In this case the value of T, asymptotically goes to zero asz," increase, whereas T, of a d or
. . o 1 7T,
p wave superconductor with X =1 vanishes at a critical value —=—=.
T, 7
In the absence of nonmagnetic impurities one obtains

(1] =X, 42)
Tm
And for the s-wave superconductor with X =0 one has iﬂ =z "0 -

° 2y

m
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Application of these results to real noncentrosymmetric materials is complicated by the lack
of definite information about the superconducting gap symmetry and the distribution of the
pairing strength between the bands.

As far as the pairing symmetry is concerned, there is strong experimental evidence that the
superconducting order parameter in CePt3Si has lines of gap nodes (Yasuda et al., 2004;
Izawa et al., 2005; Bonalde et al., 2005). The lines of nodes are required by symmetry for all
nontrivial one-dimensional representations of C,,(A,,B;, andB,), so that the
superconductivity in CePtsSi is most likely unconventional. This can be verified using the
measurements of the dependence of T,on the impurity concentration: For all types of
unconventional pairing, the suppression of the critical temperature is described by the
universal Abrikosov-Gor’kov function, see Eq. (32).

It should be mentioned that the lines of gap nodes can exist also for conventional pairing
(A representation), in which case they are purely accidental. While the accidental nodes
would be consistent with the power-law behavior of physical properties observed
experimentally, the impurity effect on T, in this case is qualitatively different from the
unconventional case. In this case in the absence of magnetic impurities one obtains the
following equation for the critical temperature:

Lo R S Y
In TO_X{W[2+477TCTHJ W(zﬂ (43)

c

In the low (7, T, 1) and dirty (7,T,, < 1) limit of impurity concentration one has

X
To-Tc= 781” To>1 (44)
X
T.o \i-
TC = TcO (”Tenc = jl ¥ Z-TEO <1 (45)

This means that anisotropy of the conventional order parameter increases the rate at which
T.is suppressed by impurities. Unlike the unconventional case, however, the
superconductivity is never completely destroyed, even at strong disorder.

4. Low temperature magnetic penetration depth of a superconductor without
inversion symmetry

To determine the penetration depth or superfluid density in asuperconductor without
inversion symmetry one calculates the electromagnetic response tensor K(g,7,,T), relating
the current density | to an applied vector potential A

J(9)=-K(7,5.,T) A(7) (46)
The expression for the response function can be obtained as
2

K(4,3,,T,0,)= ”6(1 + 2;1’<T21€23+ (k. o,)3. (k. 0, o, )>} (47)
n,k

mc
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where k, :ki%, IQHZ is the direction of the supercurrent and (....... ) represents a Fermi

surface average.
By using the expression of Green's function into Eq. (47) one obtains

K(4,5,,T,m,) =~

me
. o= \2
22T d2k ) (lwﬂ _Zimp 'H]s'kF) +§k+/i§k,/i +Ak+Ak7 (48)
+72f(27[)2 ki RSy St
| L B [ L

Now we separate out the response function as
K(§,3,,T)=K(0,0,0)+5K(g,7,,T) (49)

c mc? %
where K(0,0,0)=————— (A(0)= is the zero temperature London penetration

(0.0.0) 472%(0) (4(0) [47[1162] P P

depth).
Doing the summation over Matsubara frequencies for each band one gets

~

(oo sloo-o.57)s.

2
oo otk o[ 22 —<zagk>2—(w—fzi,np)ﬂ

Z/A @
5K (7,3,,T)= 2’;:: i [ doR
0

2
! (w—iZ,vm,,)z—A;, Af',Jr[q'kF] —(2agk)2—(w—iz,vm,,)2}

2n_¢? <1€2waR [f(“’*?yh)*f(*f”*f’r];p)Af,f]

_ —n,e’

mc

- .2 2
G.ke 14 G.ke N 2ag;, (50)
2mAy . 2mAy . Apv
| Gk ) ik ) (2ag ) Gk Gk Y (4ma :
A2 9% | |1 q-Ke _| 208k | 9k 1 q-Ke _| EMA 28k | [s2 a2
ke +[ 2m j [ -*—[ZmA,{,+ Ay Zinp 2mA, . * 2mA, Gkp Zimp A,
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2 2 - - 2 2
2ag; ke Gk 4mAy,_agy 2 2
- — 1 - = -A

2 2 = — 2
208, G.kp G.kp [ 4mhy, agk 2 2
_ _ 1 2 _A
[Ak,— ] ]Zmp {2'”Ak,— 2, - ik i =8

+2 Iguzjd(uR

Wo=i%,, ) -2 Ai,,{@fgj —(zagk)z—(w—izm,n)ﬂ

The factor g, characterizes and quantifies the absence of an inversion center in a crystal lattice.
This is the main result of my work ie. nonlocality, nonlineary, impurity and
nonsentrosymmetry are involved in the response function. The first two terms in Eq. (50)
represent the nonlocal correction to the London penetration depth and the third represents the
nonlocal and impure renormalization of the response while the forth combined nonlocal,
nonlinear, and impure corrections to the temperature dependence.

I consider a system in which a uniform supercurrent flows with the velocity 7,, so all
quasiparticles Matsubara energies modified by the semiclassical Doppler shift 5, kr .

The specular boundary scattering in terms of response function can be written as (Kosztin &
Leggett, 1997)

Agee(T) _ 27 i oK (4,9,,T) 1)

A ”oq(E] +1)

In the pure case there are four relevant energy scales in the low energy sector in the
Meissner state: T, E, i, , Ejonoe» and agy . The first two are experimentally controlled
parameters while the last two are intrinsic one.

In low temperatures limit the contribution of the fully gap (‘Ao + Asin 9‘) Fermi surface I
decrease and the effect of the gap ‘Ao 7Asin0‘ Fermi surface II is enhanced. I consider
geometry where the magnetic field is parallel to ¢ axis and thus @, and the penetration
direction g are in the ab plane, and in general, 7, makes an angle ¢ with the axis. There are
two effective nonlinear energy scales E,ontin = vkpuy, and E,,y, = vkpu,, .where

nonlin nonlin
=|cosp+Ising| andl,l, =+1.

Upl =
In the nonlocal (9 #0), linear (v, —0)limit, ie, in the range of temperature where
Emmlin <T< Enonloc one gets
_—Cz(Zan)l ad'wy <T
47[/10 AO
K(4,0,T)= 2)

ﬂawal 3 T°

4 /1022 ol 4 A() 25(3)

!
— ad'wy >T
2.2 ol

Aga W
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' qu
,and o =1E _ ae, .
2\/5 8k

where wy, =[sin@-1Icosd|, uy =|cosd +Isind

Depending on the effective nonlocal energy scales
( nonloc = OFttan o’ nonloc = Orta, o il = il} one obtains
AL (T) T ;onloc’E;onlac <T
% oy T Er_lonlac <«<T< E:anloc (53)
T? . ontoe =T

nonloc 7 ~nonloc

For CePtsSi superconductor withT, =0.75K, the linear temperature dependence would
~0.015K .
Magnetic penetration depth measurements in CePt3Si did not find a T?law as expected for

crossover to a quadratic dependence below T, ;..
line nodes. I argue that it may be due to the fact that such measurements were performed
above 0.015K. On the other hand, it is note that CePt3Si is an extreme type-II
superconductor with the Ginzburg-Landau parameter, K =140, and the nonlocal effect can
be safely neglected, and because this system is a clean superconductor, neglect the impurity
effect can be neglected (Bauer et al., 2004; Bauer et al., 2005).

In the local, clean, and nonlinear limit (g — 0,7, #0) the penetration depth is given by

Y
oc C
2000 :( ] (54)

476K (q—0,7,,T)
Where
5K(7,3,,T) =

sinh’l( Gk ] - -

-0,k k
_onetly ol g 2 ) ol izfaoke Ef (“’2“’5 i):f (“’“’s;)JZ
me ( ﬁ.Ep j\/1+(2akFJ \/a) _Ak,+|:Ak,+ _(2agk) —50}

2mAk,+ Ak+ (55)

[f(a)—is.lzp)+f(w+ﬁs.le)}
\/a)z - Afﬁ \‘A%ﬁ - (Zagk )2 - a)z]

+2( kf [dwRe

Thus by considering only the second term in the right hand side of Eq. (55) into Eq. (51) one
gets
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*ln 2 Z Ug E;:anlin ’ Enanhn <T
1=+1 0
oY)
Spec ~ lanuélz T Hll |:'U kF 2agk:| E;;onlm <T< Emmlln (56)
o 2 A, N 20, A
2
Z ; Bf ng} (ke +iag,)
\/EO 0 +o| Te Jar :zronlin'Enonlm >T

The linear temperature dependence of penetration depth is in agreement with Bonalde et
al's result (Bonalde et al., 2005).

Thus the T behavior at low temperatures of the penetration depth in Eq. (56) is due to
nonlineary indicating the existence of line nodes in the gap parameter in CePt35i compound.
A T linear dependence of the penetration depth in the low temperature region is expected
for clean, local and nonlinear superconductors with line nodes in the gap function.

Now the effect of impurities when both s-wave and p-wave Cooper pairings coexist is
considered.

I assume that the superconductivity in CePt3Si is unconventional and is affected only by
nonmagnetic impurities. The equation of motion for self-energy can be written as

Zimp(n)(fj'i(on) = ”nT(ﬁ/ﬁ,'iwn) (57)
where the T matrix is given by

Uoy

TP 55 i) ©
here o3 is the third Pauli-spin operator.
By using the expression of the Green’s function in Eq. (58) one can write
. 7N, OuSI
T(P'Pflwn)zm (59)
where
o) "
0

4 [(a)+12,mp( ) +A+A}%

and u, is a single s-wave matrix element of scattering potential u .Small u, puts us in the
limit where the Born approximation is valid, where largeu,(1y — ), puts us in the
unitarity limit.
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Theoretically it is known that the nodal gap structure is very sensitive to the impurities. If
the spin-singlet and triplet components are mixed, the latter might be suppressed by the
impurity scattering and the system would behave like a BCS superconductor. For p-wave
gap function the polar and axial states have angular structures, A, (T)=A,(T)cos, and
Ay (T) = Ay (T)sin 6, respectively. The electromagnetic response now depends on the mutual
orientation of the vector potential A and I (unit vector of gap symmetry), which itself may
be oriented by surfaces, fields and superflow. A detailed experimental and theoretical study
for the axial and polar states was presented in Ref. (Einzel, 1986). In the clean limit and in
the absence of Fermi-Liquid effects the following low-temperature asymptotic were
obtained for axial and polar states

I, 1
7A/1(T) =41 [m] (61)

4
where in the axial state n=2(4) anda= 72 [717[5}, and in the polar state n=3(1) and

4

The influence of nonmagnetic impurities on the penetration depth of a p-wave
superconductor was discussed in detail in Ref (Gross et al., 1986). At very low temperatures,
the main contribution will originated from the eigenvalue with the lower temperature
exponent n, i.e., for the axial state (point nodes) with T? low, and for the polar state (line
nodes) the dominating contribution with a linear T . The quadratic dependence in axial state
may arise from nonlocality.

The low temperature dependence of penetration depth in polar and axial states used by
Einzel et al, (Einzel et al. 1986) to analyze the A(T)~ T2 behavior of Ubejs at low
temperatures. The axial A [II case seems to be the proper state to analyze the experiment
because it was favored by orientation effects and was the only one withT? dependence.
Meanwhile, it has turned out thatT? behavior is introduced immediately by T-matrix
impurity scattering and also by weak scattering in the polar case. The axial sate., and
according to the Andersons theorem the s-wave value of the London penetration depth are
not at all affected by small concentration of nonmagnetic impurities.

Thus, for the polar state, Eq. (60) can be written as

277E(3
a= L()(B)E;HZJ , for the orientations ||(L).

—(a)+izi,np(n))

{(a) + izmp(”) )2 + Aécoszﬁ}

N‘m
N |

T (62)

1:! 7

Doing the angular integration in Eq. (62) and using Eqs. (57) and (59) one obtains
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2
—[2@N(o)n,,u§ J\@* + A2 }K[AO]
5 B «/a)z + AS (63)

imp(n) —
1+[aN(Puga? /(7 +83) K2 [A(Z) }

«/&)2+A§

here K is the elliptic integral and @=w+iX imp(n) - Ve note that in the impurity dominated
gapless regime, the normalized frequency @ takes the limiting form & - @+iy , where y is
a constant depending on impurity concentration and scattering strength.

In the low temperature limit we can replace the normalized frequency @& everywhere by its
low frequency limiting form and after integration over frequency one gets

5K(4,7,,T)= ki (64)
’ me 3 >
(a2+72)2
As in the case of d-wave order parameter, from Eqgs. (64) and (51) one finds
T
AN 7 o[), 7 _p (65)
A(0) 4z, 14 24yA

In p-wave cuprates, scattering fills in electronic states at the gap nodes, thereby suppressing
the penetration depth at low temperatures and changing T -linear to T? behavior.

5. Effect of impurities on the low temperature NMR relaxation rate of a
noncentrosymmetric superconductor

I consider the NMR spin-lattice relaxation due to the interaction between the nuclear spin
magnetic moment y,I (7,is the nuclear gyro magnetic ratio) and the hyperfine field h,
created at the nucleus by the conduction electrons. Thus the system Hamiltonian is

H= HO +Hsa +Hn + Hint (66)

where H, and H,, are defined by Egs. (1) and (2), H, =—y,IH is the Zeeman coupling of
the nuclear spin with the external field H , and H,,, =—,Ih is the hyperfine interaction.

The spin-lattice relaxation rate due to the hyperfine contact interaction of the nucleus with
the band electron is given by

:L_ ]2 I Imeﬁ(a))

T 27 ws0 @

(67)

where @ is the NMR frequency, | :8?”;/”;/6 (7.1s the electron geomagnetic ratio) is the

hyperfine coupling constant, and Kli (7), the Fourier transform of the retarded correlation
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function of the electron spin densities at the nuclear site, in the Matsubara formalism is
given by (in our units kzy=#/=1)

KX () =~(1,5, ()5.(0)) (68)

T

here T, is the time order operator, 7 is the imaginary time, S, (7) = e’ e and

S, =viEw(F) S ()=l (P) (69)

with y!(7)and v, () being the electron field operators.
The Fourier transform of the correlation function is given by

'
K (im,) = [dre K (7) (70)
0

The retarded correlation function is obtained by analytical continuation of the Matsubara

correlation functionK® (w) =K% _(ie,)

iw, >0+i6

From Egs. (66)- (70), one gets

(71)
xIm{T > [Tr(3.(prio, +i0,)3. (P io,)) - Tr(E. (B io, +i0,, ) E.(Pio,)) ] }

where Q, =2mzT are the bosonic Matsubara frequencies. By using Egs. (11) and (12) into

Eq. (71), the final result for the relaxation rate is

1

T ]zzdw(—g)j{NJr(w)N(a))+M+(a))M(a))} (72)

4
where f (w):(e/T +1) is the Fermi Function, N,(®) and M,(w) defined by the

retarded Green'’s factions as

N,(@)=- Im3}(p,o) (73)
p,v==t

M, (w)=-" ImEf(p, ) (74)
p,v=t

In low temperatures limit the contribution of the fully gap (|A, +Asiné|) Fermi surface I
decrease and the effect of the gap |A, — Asin 6| Fermi surface II is enhanced.
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As I mentioned above, the experimental data for CePt35i at low temperature seem to point
to the presence of lines of the gap nodes in gap parameter (In our gap model for A, <A,
|Ag—Asiné| has line nodes). Symmetry imposed gap nodes exist only for the order
parameters which transform according to one of the nonunity representations of the point
group. For all such order parameters M, =0 .Thus, Eq. (72) can be written as

1 Pt de
T,;T 4Ty cosi? (w){N*(w)N(w)} )

In the clean limit the density of state can be calculated from BCS expression

N, (0)=N, Re<\/w2w_7ﬁ> (76)

For the gap parameter with line nodes from Eq. (76) one gets

Thus from Eq. (75) one has

2_2x7273
1 _JATGT (78)
T, 2A2

Therefore, line nodes on the Fermi surface II lead to the low-temperature T? law in
T, ! which is in qualitative agreement with the experimental results.
In the dirty limit the density of state can be written as

Npcs(@,0)
Ny (@) = [d—2——— 79
inp (@) I 1+uiN? _(@,0) )
BCS
P nimp N N . . . .
In the limit, T’ << A, where I' = N\ (V is the electron density) the density of state is
TiNg

Ny (@) = N(0) +ac’w (80)

where ¢ =cotgd, (&, is the s-wave scattering phase shift), ais a constant, and N(0) the
zero energy (@ =0) quasi-particle density of state is given by
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b2

N(0)=N,| -—=—— (81)

I
where ¢ =— .
¢ A

In the unitary limit (#, > ),c=0 (& =7/2), from Eqgs. (75) and (80) one obtains

1
— = I>N(0)’T (82)
h
Thus the power-low temperature dependence of T, is affected by impurities and it
changes to linear temperature dependence characteristic of the normal state Koringa relation
again is in agreement with the experimental results.

6. Conclusion

In this chapter I have studied theoretically the effect of both magnetic and nonmagnetic
impurities on the superconducting properties of a non-centrosymmetric superconductor and
also I have discussed the application of my results to a model of superconductivity in
CePt35i.

First, the critical temperature is obtained for a superconductor with an arbitrary of impurity
concentration (magnetic and nonmagnetic) and an arbitrary degree of anisotropy of the
superconducting order parameter, ranging from isotropic s wave to p wave and mixed (s+p)
wave as particular cases.

The critical temperature is found to be suppressed by disorder, both for conventional and
unconventional pairings, in the latter case according to the universal Abrikosov-Gor'kov
function.

In the case of nonsentrosymmetrical superconductor CePt3Si with conventional pairing ( A;
representation with purely accidental line nodes), I have found that the anisotropy of the
conventional order parameter increases the rate at which T, is suppressed by impurities.
Unlike the unconventional case, however, the superconductivity is never completely
destroyed, even at strong disorder.

In section 4, I have calculated the appropriate correlation function to evaluate the magnetic
penetration depth. Besides nonlineary and nonlocality, the effect of impurities in the
magnetic penetration depth when both s-wave and p-wave Cooper pairings coexist, has
been considered.

For superconductor CePt;Si, I have shown that such a model with different symmetries
describes the data rather well. In this system the low temperature behavior of the magnetic
penetration depth is consistence with the presence of line nodes in the energy gap and a
quadratic dependence due to nonlocality may accrue below T, =0.015K. In a dirty
superconductor the quadratic temperature dependence of the magnetic penetration depth
may come from either impurity scattering or nonlocality, but the nonlocality and nodal
behavior may be hidden by the impurity effects.
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Finally, I have calculated the nuclear spin-lattice relaxation of CePt;Si superconductor. In
the clean limit the line nodes which can occur due to the superposition of the two spin
channels lead to the low temperature T> law inT,'. In a dirty superconductor the linear
temperature dependence of the spin-lattice relaxation rate characteristic of the normal state
Koringa relation.
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1. Introduction

It has long been known that a repulsive force arises between a magnetic field (generated,
for instance, by a permanent magnet - PM) and a superconductor -Sc (Arkadiev, 1947).
This force is due to the repulsion of the magnetic field away from the superconductor -
the Meissner effect. Type I superconductors only can be in the Meissner state, which
means that a magnetic field will be always expelled from the superconductor,
independently of its poles orientation. Nevertheless, type II superconductors may be in
two different states: first, provided the magnetic field is low enough, they are at a
Meissner state similar to type I superconductors. In this Meissner state they absolutely
expel the magnetic field and prevalent repulsive forces appear. Second, for magnetic
fields larger than the so-called First Critical Field Hci, the magnetic flux penetrates the
superconductor creating a magnetization which contributes to an attractive resulting
force. This second state is known as mixed state.

In 1953 Simon first tried to make a superconducting bearing (Simon, 1953) using
superconductors in the mixed state.The first engine using a superconducting bearing was
made in 1958 (Buchhold, 1960). After the discovery of high critical temperature
superconductors (Bednorz & Miiller, 1986), the Meissner repulsive force has become a
popular way of demonstrating superconducting properties (Early et al, 1988).For
calculating forces between a magnet and a superconductor it is necessary to have models
that describe both the flux penetration state and the Meissner state repulsion. The first one
can be solved by using conventional methods to compute forces between magnetic elements
and magnetized volumes. However, for the Meissner state the question has remained open
until these last years.

Several models using the method of images to calculate superconducting repulsion forces
(Lin, 2006; Yang & Zheng, 2007) have been proposed. However, this method of images is
limited to a few geometrical configurations that can be solved exactly, and the physical
interpretation of the method is under discussion (Giaro et al., 1990; Perez-Diaz & Garcia-
Prada, 2007). Furthermore, some discrepancies within experiments still exist (Hull, 2000).

A general local model based on London’s and Maxwell’s equations has been developed to
describe the mechanics of the superconductor-permanent magnet system (Perez-Diaz et al.,
2008). Due to its differential form, this expression can be easily implemented in a finite
elements analysis (FEA) and is consequently appliable to any shape of superconductor in
pure Meissner state (Diez-Jimenez et al. 2010).
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In this chapter, we present the demonstration of the model, the implementation into a finite
elements program, the experimental verification and its limit of application. To finish, we
show an example of usage.

2. Magneto-mechanics of a superconductor in Meissner state

A superconductor is in a pure Meissner state when it is exposed to an externally applied
magnetic field, H", lower than a certain value, Hci. Hey is a characteristic of the material
(Alario & Vincent, 1991), which depends on temperature. In this case, it is assumed that both
H and B are equal to zero inside the superconductor. When a magnetic field is then
applied —for example by moving a permanent magnet close to the superconductor - a
surface current density is generated on the outermost surfaces. According to the London
equation, this current is confined only to a depth of A(T). Type II superconductors, such as
the rare earth oxide high temperature superconductors, have the highest values for A,
reaching typical values of thousands of Amstrongs (Umezawa & Crabtree, 1998). Therefore,
as this paper deals with macroscopic elements, it can be approximated that current density
has an infinitely localized surface current

] =js(x,)5(2) 1)

where j,(x,y) is a surface current density tangent to the surface vector field and &(z) is a
Dirac delta function on z. This current density will make H discontinuous when passing
from the air or vacuum (z>0) into the superconductor (z<0).The second Maxwell law
(Jackson, 1975) relates the magnetic field and the current density in such a way that j(x,¥)
is determined by H™ .Using units from the MKSA system, this second Maxwell law can be
written as

- - - D
VxH=j+— 2
H=j+7, 2
C e oD . . .
In the static limit it can be assumed that o 0. Therefore it may simply be written as:
VxH=] ©)

H may be decomposed in that externally applied H? and that generated by the
superconducting currents H* . Furthermore, these three vector fields will be decomposed
both in tangent and normal to the surface components:

Hy =H}) +HJ (4)

and

H, =HT+HY @)
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Note that H® is continuous and fulfils: VxH% =0, provided the permanent magnet does
not touch the superconductor surface. On the contrary, both H and H* are discontinuous
at the superconducting surface. In particular, both H,, and H} are discontinuous.

By using the divergence theorem (Jackson, 1975) on a small parallelepiped with volume V, a
face just above the superconductor surface and another parallel face under it, it can be
written that:

j(ﬁxﬁ)d%:l(ﬁsxﬁ)ds (6)

v

where S is the surface defining this parallelepiped andng its normal vector. By using
Maxwell law (3) it can be reduced to:

[T &= [(7i,x H)ds @)
14 S

But, taking (1) into account, and considering H =0 under the superconducting surface it
can be written that:

[j.ds =[(7i,xH,,)ds @)
S S

where H ;, is evaluated at z=0* (limit above the superconductor surface).
As this result is independent of the small parallelepiped previously chosen, the integrands
must equal:

jo=n,xH, (z—0") )
Furthermore, H//(z —07)=0 and Ijl;c/(z —>0")= —I:I;C/(z — 07) implies:

H5(z—>0") = H})(z—>0") (10)

Therefore, an expression for the superconducting current as a function of the applied
magnetic field may be written:

]5:2 ﬁsxﬂjr;:z ﬁSXH”}” (11)

All expressions shown use the MKS unit system.

Applying the divergence theorem clearly shows that the total charge is always conserved,
for whichever surface shape the superconductor has, provided the source of the applied
field is outside the superconductor:

[J.ds = [2 7, x HPdS = [V x H?d’x =0 12)
S S 1%
Furthermore,

H, =HY +HY =0 (13)
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which is consistent with the previous expression for the superconducting current.

The total field thus generated for a semi-infinite plane is equivalent to that generated by the
method of images (Cansiz & Hull, 2005; Hellman et al. 1988; Hull & Cansiz, 1999; Moon,
1994). As the expression (11) has been derived using only local arguments, it may be used
for any shape of superconductor. It does not depend on the curvature of the surface.

2.1 Force calculation
The external force (by unit surface) experienced by the superconductor can be calculated by
using Lorentz force.

afF = -
—=j,xB" 14
L (14)
Using the previous expression for the superconducting current (1) and the constituent
equation of air (15) (the medium in which the field is generated)

BY = ﬂoH v (15)

it can be written that:

dar _ 2410 (i, x HP)x HY (16)
das

This is a local and exact expression for the “pressure” or more precisely “stress” or force per
unit surface on the superconductor, which depends only on the applied magnetic field. It is
useful for any shape of superconductor. This differs fundamentally from the general
expression used to calculate the magnetic stress between magnetic materials as given by
Moon.

According to Newton’s law, the force exerted by the superconductor on the magnet is
simply the opposite one. Therefore, for any shape of superconductor, the force exerted by
the superconductor on the magnet can be written as:

F=-[ JSCZyO(ﬁS x H")x H"dS 17)
where the integration extends over the whole surface of the superconductor.

2.2 Torque calculation
The torque suffered by the superconductor can easily be deduced as :

Mg, = [[, Fx2u (i, x H?)x HP)dS (18)

where 7 is the position vector between the differential surface element and the center of
mass of the superconductor bulk. Again, the integration extends over the whole surface of
the superconductor.

In order to calculate the moment applied over the magnet, the 7y, must be the position
vector between the differential surface element and the center of mass of the permanent
magnet. As noted previously, the force exerted by the superconductor on the external
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magnetic field (in this case a single permanent magnet) is simply the opposite one, and the
same applies for the torque.

Mg ==, Font * Qg (e x H™) x H )dS (19)

3. Finite elements implementation

Due to this differential form equation (16) can be easily implemented in a finite element

program. A FEM algorithm has been adapted for the commercial software ANSYS. The

SURF154 element of ANSYS was used insofar as it has defined a set of useful attributes e.g.

the surface normal direction. The algorithm is valid in the context of a common

electromechanical simulation. The steps for the simulation were:

- Select Element Type: SOLID98 (with a maximum of one degree of freedom MAG) and
SURF154.

- Create the different materials to be used. For the superconductor bulk, air properties
were used.

- Generate the geometries of the volumes for the electromagnetic system.

- Assign materials” properties to each volume, selecting air for the superconductor.

- Mesh the whole system with the SOLID98 element (as fine as is considered adequate -
discussed further below).

- Mesh the superconductor surface with the SURF154 element.

- Apply the electromechanical loads to the system.

- Solve the electromagnetic equation system.

Once the system has been solved, the algorithm can be applied using a Command List. Fig. 1

shows a flow-diagram of the procedure.

This procedure has to be performed for each piece of superconductor in the system. Should

there be more than one piece, a different internal SURF154 element must be created and

accordingly, the number of SURF154 elements in the first step (ESEL) must be changed.

These steps provide the three components of the force vector. The torque applied on the

superconductor can also be calculated, from which the torques values can then be derived.

3.1 Results provide by the post-processing

The algorithm has been tested using one of the most common experiments found in relevant
literature: a permanent magnet oriented vertically over a superconductor pile in any
arbitrary position.

Firstly, an electromagnetic system composed of a small magnet suspended over a
superconducting cylinder was designed, as shown in Fig. 2.

The dimensions of the superconductor were: 20 mm diameter and 7.5 mm height, and the
small magnet was characterized by a coercivity of 875 kA/m and a remanence of 1.18 T,
with a 3.5 mm diameter and a 2 mm height. The magnet’s centroid was placed 10 mm over
the surface of the superconductor. The entire system was placed in surroundings measuring
100x100x100 mm.

The results that can be obtained are the distribution of forces, torque and current densities
per surface element. In fig 3, these distributions for an arbitrary position of the magnet over
the superconductor are shown.
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| Select SURF154 elements - ESEL |

.

| Get tables with normal vectors [nx, ny, nz) - ETABLE |

Change vectors
Y direction

Are the normal

vectors out-
pointing?

| Get tables of areas of each element - ETABLE |

'

| Save magnetic fields H values of each superficial Node of 5C- VGet |

:

| Average the H values of each element - VPut |

:

| Cross product of normal vectors and magnetic field vectors - VCross |

.

| MNormal product of previous result and 4, and the area - SMult |

}

| Summatory of each element calculation - SSum |

Fig. 1. Flow-diagram of the algorithm.

Fig. 2. Small permanent magnet (m=0.016 Am2) over superconductor.
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Fig. 3. Force, torque and current density distributions per surface element.
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The same simulation was repeated several times with different meshes, increasing the
number of elements for the whole simulation. Using the parameter a, the fineness of the
mesh can be defined as the ratio between the maximum of the area of the elements and the
total area of the superconductor multiplied by 100.

_ max (elements areas)

x 100 3)
total SC area

Different meshes along with their respective a parameters are shown in fig. 4. The number
of SURF154 elements and the values of the solution are also displayed.

a=0.56 a=0.22 a=0.07
n? of elements =328 n? of elements=1216 n? of elements=4868
Fz=1.33 mN Fz=1.6mN Fz=1.68 mN

Fig. 4. Different meshes of the superconductor pile.

Fig. 5 shows the relative error of the calculations in relation to the analytical solution (with a
magnetic moment of 0.016 A m2). The higher the number of surface elements, the smaller
the relative error of the result. For example, where a is smaller than 0.1 %, the resulting
relative error is less than 3 %.

25% -
20% A

15%

relative error

10%

5%

0% | | | | | | |
0,00% 0,10% 0,20% 0,30% 0,40% 0,50% 0,60%

o parameter

Fig. 5. Relative errors of the results vs. alpha for z=10 mm.

In Fig. force versus z are shown for different values of a. The FEM results tend towards the
analytical values as a decreases. It is noted that the magnetic dipole approximation made for
the analytical calculation only remains valid where there is a large distance between the
permanent magnet and the superconductor.
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Fig. 6. Levitation force computed by the analytical expression with a point magnetic dipole
and by FEM with different a.

The convergence of the algorithm has been checked in relation to the finite elements’ size,
and compared to analytical solutions for simple geometries. An a parameter has been
proposed to assess the relative error in the results. The results showed good accuracy, whilst
not requiring high specification computing technology.

4. Experimental verification

Different experiments were carried out in order to check the validity of the model. Some of
them will be summarized in the following,.

4.1 Force measurement

The following methodology was used to measure the forces: a cylindrical superconductor
made of polycrystalline YBa2Cu307-x,manufactured by CAN superconductors (Kamenice
25168, Czech Republic) was immersed in a bath of liquid nitrogen N> (77 K) at ambient
pressure. The cylinder had a diameter of 45 mm and a height of 13 mm. It was fixed to a
nitrogen vessel. The vessel, containing the superconductor, was placed on a lab jack stand to
adjust the height. A small cylindrical permanent magnet was used, which had a coercivity of
875 kA/m, a remanence of 1.18 T, and had a diameter of 5 mm and a height of 5 mm. All
experimental measurements followed the same coordinate system shown in Fig. 7. The
origin of the coordinates was set at the center of the upper surface of the superconductor.
The permanent magnet was placed over the superconductor (Z coordinate),and fixed
vertically to a PVC cantilever according to its magnetization direction (6 = 90°). The
cantilever had 2 pairs of strain gauges to measure vertical forces at its extremes. This strain
gauge configuration is not sensitive to the lateral and axial forces. The torques were
neglected due to the size of the magnet. The PVC cantilever was joined to a 3D positioning
table. The position of the magnet was then fixed in relation to the superconductor surface
with a precision of 0.1 mm. The strain gauges were calibrated using a dynamometer and a
set of 12 references forces. The calibration constant was established by least squares fitting in
K = (3.87+0.14)x104 N/ pe, with a correlation coefficient of R2= 0.997.
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Fig. 7. Coordinate system of the PM-SC configuration. The superconductor is down and the
permanent magnet is over it. Figure is not scaled to real sizes.

The measurement for every position was made in zero field cooling conditions (ZFC). The
vertical forces were recorded where X = 0.0, 5.0, 10.0, 15.0, 17.5, 20.0, 22.5 and 25.0 £ 0.1 mm;
at 3 different heights from the surface of the superconductor: 12.0, 10.0, and 8.0 + 0.1 mm.
Furthermore, measurements were taken in the center of the upper superconductor face, X =
0 mm from Z = 7.0 to 14.0 £ 0.1 mm. The Y position was always fixed at 0 mm.

These positions were chosen in order to avoid exceeding a limit of 3.5 mT of magnetic flux
density at any point of the superconductor surface. Using this limit ensures the Meissner state
is retained. Regardless of this, after every measurement the remanent magnetization of the
superconductor bulk was checked and in most cases no measurable magnetization was found.
In order to compare the experimental and theoretical values, expression (16) was implemented
in a finite element analysis program. The following figures (Fig 8-11) show the results.

0.04 I I
] » Experimental
s e FEA results
0.03
€ 0.02 g
N
=
(]
A
0.01 *
A
L
2
P
LN )
0.00 T T
5 7 9 11 13 15 17
Z. (mm)

Fig. 8. Z dependence of vertical force for X=0 mm.
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The FEA errors are estimated to be less than 3 %.

The figures show positive agreement between experimental and theoretical values. Only
Fig. 9 shows an appreciable difference for values approaching X = 20 mm. However, it must
be pointed that the radius of the superconductor is 22.5 mm. It is only in these surroundings
that a very low remanent magnetization was recorded, which indicates a non complete
Meissner state. This explains why some experimental values were lower than those of a

complete Meissner state.

0.03 :
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Fig. 9. X dependence of vertical force for Z=8 mm.
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Fig. 10. X dependence of vertical force for Z=10 mm.
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Fig. 11. X dependence of vertical force for Z=12 mm.

4.2 Equilibrium angle measurement

In addition to previous experiments, the mechanical behavior of a magnet which has the
ability to tilt over the superconductor in the Meissner state was also studied in this paper. In
the present experiment only one degree of freedom was permitted in the tilt angle of the
magnet (0 coordinate). The equilibrium angle of the permanent magnet over the cylindrical
superconductor was measured for different relative positions. The results can be used to
understand not only how the permanent magnet is repelled, but also how it turns when it is
released over a superconductor.

Fig. 12. Measurement system: 1 - Superconductor bulk, 2 - Permanent magnet, 3 -
Goniometer, 4 - Bearing (hidden), 5 - 3D table, 6 - Lab jack stand, 7 - Nitrogen vessel.
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A cylindrical permanent magnet (made of NdFeB with a coercivity of 875 kA/m and a
remanence of 1.29 T) was placed over the superconductor. Their dimensions were 6.3 mm in
diameter and 25.4 mm in length and it had a magnetization direction parallel to its axis of
revolution. A rigid plastic circular rod was fixed in the center of mass, perpendicular to the
axis of revolution. This rod was used as the shaft in a plastic bearing, which was lubricated
with oil. The whole bearing system was joined to a 3D displacement table. This arrangement
ensured it was possible to control the position of the permanent magnet with an accuracy of
0.1 mm, and the only permitted degree of freedom was the rotation around the Y axis.
Concentric to the bearing, a graduate goniometer measured the angle of rotation of the
magnet. The whole experiment design is shown in Fig 12.

Fig. 13 shows the comparison between the equilibrium angles measured and those
calculated by expression (19).

A Experimental

® FEA results

> @
>-@

40

0 equilibrium (degrees)
reb

0 5 10 15 20 25 30 35 40
X(mm)

Fig. 13. Comparative graph between experimental and FEA calculus of the equilibrium
angle versus x position. Hight z was fixed at + 15 mm.

Again, there was a good agreement between the calculus made according to our model and
the experiments. These experiments were carried out in Zero Field cooling condition (ZFC),
and consequently there is no remanent magnetization.

5. Limits of application

The lower critical field, Hc, is one of the typical parameters of type II superconductors,
which has been experimentally being assessed from the magnetization changes from the
Meissner state slope to the reversible mixed-state behavior (Poole, 2007). H. is directly
related to the free energy of a flux line and contains information on essential mixed-state
parameters, such as the London penetration depth, Ay, and the Ginzburg-Landau
parameter, k. Measurements of H.; and, of course, of the upper critical field, Hp, therefore
provide a complete characterization of the mixed-state parameters of the superconductor.
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Differences between the predicted Meissner forces and the experimentally measured ones
indicate that a part of the sample is in the mixed-state. Establishing with precision the
instant when the differences begin will permit us to determine the H; mechanically.
Nevertheless, many other experimental techniques have been used to determine the state
transition; most of them based on some kind of d.c. or a.c. magnetic measurement, but also
on muon spin rotation (uSR) or magneto-optical techniques (Meilikhov & Shapiro, 1992).
The basic problem of magnetization measurements introduced by flux pinning lies in the
fact that the change of slope at the lower critical field is extremely small, since the first
penetrating flux lines are immediately pinned and change the overall magnetization
(M=m/V) only marginally. Elaborate schemes of subtracting the measured moments
from an initial Meissner slope (Vandervoort et al., 1991; Webber et al., 1983) or experiments
providing us directly the derivative of magnetization (Hahn & Weber, 1983; Wacenoysky et
al.,, 1989; Weber et al., 1989) have been employed, SQUIDS have also been used to improve
the precision of these kind of means (Bohmer et al., 2007).

The method also determines the zone at the sample where transition from Meissner to
mixed state occurs.

For a position of the magnet with respect to the superconductor we define the Meissner
Efficacy as

Fex (27)
FM

77:

where F,, is the experimentally measured force and Fy is the calculated force according with
the Meissner model cited above. For a certain position of the magnet a Meissner Efficacy
equal to one (17 =1) proves that the superconductor is completely in the Meissner state and
there is not any flux penetration. On the contrary, values lower than 1 indicate that a part of
the superconductor has flux penetration and is in the mixed-state.

The measurement for every position was made in zero field cooling conditions (ZFC). The
origin of coordinates was set at the center of the upper surface of the superconductor. The
reference point of the magnet was placed in the center of the lower surface of the magnet.
Therefore, the Z coordinate is the distance between the faces of the magnet and the
superconductor. X is the distance of the center of the magnet to the axis of the
superconductor cylinder (radial position). We have recorded the vertical forces for X = 0.0,
5.0,10.0,15.0, 17.5, 20.0, 22.5 and 25.0 + 0.1 mm; at 4 different heights from the surface of the
superconductor: 12.0, 10.0, 8.0 and 6.0 + 0.1 mm.

Fig. 14 shows the Meissner Efficacy versus the maximum of the surface current density
distribution [ for different positions.

We observe that for low values of the maximum surface current density, the Meissner
Efficacy is just 1.

From a certain value, the Meissner Efficacy decays linearly. From this data we can derive a
weighted mean value of ] sur= 6452 + 353 A/m for a polycrystalline YBa;CuzO7.x sample at
77 K.

In Table 1 H.;values from different authors are shown for comparison. The values are those
obtained for the H. parallel to c-axis in monocrystalline samples. Our value for a
polycrystalline sample is of the same order of magnitude than the lowest monocrystalline
values.
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Fig. 14. Meissner Efficacy versus maximum Jsurf for different positions. The values obtained
for X=5.0, 10.0, 15.0 mm radial positions are similar to those obtained for the X=0.0 mm
values.

Now, if we use a value of 1;=4500 A, carried out from the literature (Geflbaux & Tazawa,
1998; Mayer & Schuster, 1993) we have a lower critical current density value of Jc; = (1.43 +
0.08) x107A/cm2. By using Eq. 2 we calculate Hc; = 3226 + 176 A/m.

C. Bomer et al| Umewaza et | Kaiser et al Wu et al Mechanical
(2007) al (2007) (1991) (1990) method
(monocr.) (monocr.) (monocr.) | (monocr.) (polycr.)
Results for H. 2900 + 250 3580 4950
+
(A/m) 6000 + 2300 4500 £ 450 11000 15518 3226 £176

Table 1. Comparison of the values found in different articles with that measured in this
paper. The values and relative errors have been obtained directly from graphs, at 77 K.
Available values for H L (a,b) and H || (c) in monocrystals are shown. H || (c) is always
greater than H L (a,b)

The uncertainty in the determination of J. s may be reduced by increasing the number of
series of measurements (or paths). Therefore, this is a method intrinsically more precise than
other common methods.

In fact, the values far from the Meissner state contribute to improve the accuracy of the Je1 surf
determination. The determination of the slopes of straight lines has a propagation of errors
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more convenient than that in the case of the measurement of a change in the slope of the
tangents to a curve. Other methods, therefore, would require high precision measurements
to obtain a reasonable error for Hel.

This results are in according to the border and thickness effects and border magnetization
that have been already described by other authors in an uniform magnetic field ( Brandt,
2000; Morozov et al., 1996; Li et al., 2004; Schmidt et al., 1997):

6. Example of application - permanent magnet over a superconducting torus

We calculate the torque exerted between a superconducting torus and a permanent magnet
by using this model. We find that there is a flip effect on the stablest direction of the magnet
depending on its position. This could be easily used as a digital detector for proximity.
We consider a full superconducting torus and a cylindrical permanent NdFeB magnet over
the superconductor axis (Z axis). In figure 15 we can observe the geometrical configuration
of both components. Every calculation is referenced with respect of a Cartesian coordinate
system placed in the center of mass of the torus which Z axis is coincident with the axis of
the torus.

!
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Fig. 15. Permanent magnet over a toroidal superconductor set-up. The dimensions are: Lpy -
length of the cylindrical permanent magnet, Jpy - diameter of the cylindrical permanent
magnet, Rint - Inner radius of the torus, @sgction - Diameter of the circular section of the
torus. z is the vertical coordinate of the center of the magnet and 0 is the angle between the
axis of the magnet and the vertical Z axis.

The superconducting torus has an internal radius Ryt = 6 mm and a diameter of the section
Osecrion = 10 mm. The cylindrical permanent magnet has a length Lpy = 5 mm and a
diameter @pv = 5 mm. When calculating the magnetic field generated by the magnet we
define its magnetic properties as: Coercive magnetic field Hcoercviry = 875 kA/m and
remanent magnetic flux density Bremanent = 1.18 T. We assume that the direction of
magnetization of the permanent magnet coincides with its axis of revolution.

The variables 0 and z are the coordinates we modify in order to analyze the mechanical
behavior of the magnet over the superconductor. z is the distance along the Z axis between
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the center of mass of the torus and the one of the cylindrical permanent magnet. 0 is the
angle between the axis of the magnet and the vertical Z axis.

The equilibrium angle (0cq) as a function of z can be determined as follows. For a certain z
we calculate the Y component of the torque (My) exerted on the magnet by the
superconductor as a function of 8 and we find the equilibrium angle as the value for which
My (eq)=0. The sign of the slope dMy/d6 at that point determines the stability or instability
of the equilibrium point.
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Fig. 16. My applied to the permanent magnet by the superconductor as a function of 8 for z=
0,3,6,9, 12 and 15 mm.

In figure 16 the torque (My) exerted on the magnet by the superconductor as a function of 0
is shown for z=0, 3, 6, 9, 12 and 15 mm. The maximum values for the torque exerted to the
permanent magnet appear at 0 = 45° and 0 = 135° for every z. The remarkable fact is that the
sign suddenly changes when moving from z = 3 mm to z = 6 mm. The equilibrium points
are always at 0 = 0° and 6 = 90°, but 0 = 0° is a stable equilibrium point for z=0 mm and z =
3 mm, while it is unstable for the rest of the positions. On the other hand 0 = 90° is unstable
for z = 0 mm and z = 3 mm, but it is stable for the rest of the positions. That means that if
you approach a magnet along the Z axis and it is able to rotate, it will be perpendicular to
the Z axis while it is at z > 6 mm, but it will suddenly rotate to be parallel to the Z axis when
you pass fromz =6 to z<3.

In figure 17 the variation of the torque at 0 = 45° as a function of z. The torque changes its
sign between z =3 mm and z =4 mm.

Finally, figure 18 shows the stable equilibrium angle as a function of z. It is evident that, at a
certain position between z =+ 3 and z =+ 4 mm we found that the stable equilibrium angle
switches from a vertical orientation of the magnet to an horizontal one describing the flip
effect claimed in this work.

Therefore, it can be concluded that if you approach a magnet along the Z axis and it is able
to rotate, it will be perpendicular to the Z axis while it is at a certain distance (z = 4 mm in



170 Superconductivity — Theory and Applications

our example) and it will change to be parallel to the Z axis for closer positions (z <3 mm in
our example). As the equilibrium angle does not depend on the magnetic moment, the
magnet can be much smaller. As a flip in the orientation of a permanent magnet can be
easily instrumented, this effect can be easily used as a binary detector for proximity.
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Fig. 17. Torque My exerted on the magnet for 0 = 45° as a function of z.
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Fig. 18. Stable equilibrium angle (0.q) as a function of z.

7. Conclusion

Magnet-superconductor forces both in Meissner and mixed states can be calculated with the
accuracy required to engineer useful levitating devices.

The implementation of a local differential expression in a finite elements program opens
new perspectives to the use of magnet-superconductor devices for engineering. This can be
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used to calculate forces whatever the size, shape and geometry of the system, for both
permanent magnets and electromagnets.

Accuracy and convergence, in addition to the experimental verification for different cases
have been tested. There is a good agreement between experimental results and calculation,
even with very low-cost computing resources involved.

Moreover, the expression can be used to determine the point when the mixed state arises in
a superconductor piece.
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1. Introduction

So-called macroscopic quantum effects(MQE) refer to a quantum phenomenon that occurs
on a macroscopic scale. Such effects are obviously different from the microscopic quantum
effects at the microscopic scale as described by quantum mechanics. It has been
experimentally demonstrated [1-17] that macroscopic quantum effects are the phenomena
that have occurred in superconductors. Superconductivity is a physical phenomenon in
which the resistance of a material suddenly vanishes when its temperature is lower than a
certain value, Tc, which is referred to as the critical temperature of superconducting
materials. Modern theories [18-21] tell us that superconductivity arises from the irresistible
motion of superconductive electrons. In such a case we want to know “How the
macroscopic quantum effect is formed? What are its essences? What are the properties and
rules of motion of superconductive electrons in superconductor?” and, as well, the answers
to other key questions. Up to now these problems have not been studied systematically. We
will study these problems in this chapter.

2. Experimental observation of property of macroscopic quantum effects in
superconductor

(1) Superconductivity of material. As is known, superconductors can be pure elements,
compounds or alloys. To date, more than 30 single elements, and up to a hundred alloys and
compounds, have been found to possess the characteristics [1-17] of superconductors.
WhenT <T,., any electric current in a superconductor will flow forever without being
damped. Such a phenomenon is referred to as perfect conductivity. Moreover, it was
observed through experiments that, when a material is in the superconducting state, any
magnetic flux in the material would be completely repelled resulting in zero magnetic fields
inside the superconducting material, and similarly, a magnetic flux applied by an external
magnetic field can also not penetrate into superconducting materials. Such a phenomenon is
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called the perfect anti-magnetism or Maissner effect. Meanwhile, there are also other
features associated with superconductivity, which are not present here

How can this phenomenon be explained? After more than 40 years’ effort, Bardeen, Cooper
and Schreiffier proposed the new idea of Cooper pairs of electrons and established the
microscopic theory of superconductivity at low temperatures, the BCS theory [18-21],in
1957, on the basis of the mechanism of the electron-phonon interaction proposed by Frohlich
[22-23]. According to this theory, electrons with opposite momenta and antiparallel spins
form pairs when their attraction, due to the electron and phonon interaction in these
materials, overcomes the Coulomb repulsion between them. The so-called Cooper pairs are
condensed to a minimum energy state, resulting in quantum states, which are highly
ordered and coherent over the long range, and in which there is essentially no energy
exchange between the electron pairs and lattice. Thus, the electron pairs are no longer
scattered by the lattice but flow freely resulting in superconductivity. The electron pairs in a
superconductive state are somewhat similar to a diatomic molecule but are not as tightly
bound as a molecule. The size of an electron pair, which gives the coherent length, is
approximately 10-% cm. A simple calculation shows that there can be up to 10¢ electron pairs
in a sphere of 104 cm in diameter. There must be mutual overlap and correlation when so
many electron pairs are brought together. Therefore, perturbation to any of the electron
pairs would certainly affect all others. Thus, various macroscopic quantum effects can be
expected in a material with such coherent and long range ordered states. Magnetic flux
quantization, vortex structure in the type-II superconductors, and Josephson effect [24-26] in
superconductive junctions are only some examples of the phenomena of macroscopic
quantum mechanics.

(2) The magnetic flux structures in superconductor. Consider a superconductive ring.
Assume that a magnetic field is applied at T >Tc, then the magnetic flux lines ¢, produced
by the external field pass through and penetrate into the body of the ring. We now lower the
temperature to a value below Tc, and then remove the external magnetic field. The magnetic
induction inside the body of circular ring equals zero (B= 0) because the ring is in the
superconductive state and the magnetic field produced by the superconductive current
cancels the magnetic field, which was within the ring. However, part of the magnetic fluxes
in the hole of the ring remain because the induced current is in the ring vanishes. This
residual magnetic flux is referred to as “the frozen magnetic flux”. It has been observed
experimentally, that the frozen magnetic flux is discrete, or quantized. Using the
macroscopic quantum wave function in the theory of superconductivity, it can be shown
that the magnetic flux is established by ®'=n¢, (n=0,1,2,...), where ¢, =hc/2e=2.07x10-15
Wb is the flux quantum, representing the flux of one magnetic flux line. This means that the
magnetic fluxes passing through the hole of the ring can only be multiples of ¢, [1-12]. In
other words, the magnetic field lines are discrete. We ask, “What does this imply?” If the
magnetic flux of the applied magnetic field is exactly n, then the magnetic flux through the
hole is n¢,, which is not difficult to understand. However, what is the magnetic flux
through the hole if the applied magnetic field is (n+1/4) ¢,? According to the above, the
magnetic flux cannot be (n+1/4)¢,. In fact, it should be n¢,. Similarly, if the applied
magnetic field is (n+3/4)¢, and the magnetic flux passing through the hole is not
(n+3/4) ¢, , but rather (n+1) ¢, therefore the magnetic fluxes passing through the hole of
the circular ring are always quantized.
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An experiment conducted in 1961 surely proves this to be so, indicating that the
magnetic flux does exhibit discrete or quantized characteristics on a macroscopic scale.
The above experiment was the first demonstration of the macroscopic quantum effect.
Based on quantization of the magnetic flux, we can build a “quantum magnetometer”
which can be used to measure weak magnetic fields with a sensitivity of 3x10-7 Oersted.
A slight modification of this device would allow us to measure electric current as low as
2.5x109 A.

(3) Quantization of magnetic-flux lines in type-II superconductors. The superconductors
discussed above are referred to as type-I superconductors. This type of superconductor
exhibits a perfect Maissner effect when the external applied field is higher than a critical
magnetic value H. . There exists other types of materials such as the NbTi alloy and NbsSn
compounds in which the magnetic field partially penetrates inside the material when the
external field H is greater than the lower critical magnetic field Hc1, but less than the
upper critical field Hc2[1-7]. This kind of superconductor is classified as type-II
superconductors and is characterized by a Ginzburg-Landau parameter greater than 1/2.
Studies using the Bitter method showed that the penetration of a magnetic field results in
some small regions changing from superconductive to normal state. These small regions in
normal state are of cylindrical shape and regularly arranged in the superconductor, as
shown in Fig.1. Each cylindrical region is called a vortex (or magnetic field line)[1-12]. The
vortex lines are similar to the vortex structure formed in a turbulent flow of fluid. Both
theoretical analysis and experimental measurements have shown that the magnetic flux
associated with one vortex is exactly equal to one magnetic flux quantum ¢,, when the
applied field H > He1, the magnetic field penetrates into the superconductor in the form of
vortex lines, increased one by one. For an ideal type-II superconductor, stable vortices are
distributed in triagonal pattern, and the superconducting current and magnetic field
distributions are also shown in Fig. 1. For other, non-ideal type-II superconductors, the
triagonal pattern of distribution can be also observed in small local regions, even though its
overall distribution is disordered. It is evident that the vortex-line structure is quantized and
this has been verified by many experiments and can be considered a result of the
quantization of magnetic flux. Furthermore, it is possible to determine the energy of each
vortex line and the interaction energy between the vortex lines. Parallel magnetic field lines
are found to repel each other while anti-parallel magnetic lines attract each other.

(4) The Josephson phenomena in superconductivity junctions [24-26]. As it is known in
quantum mechanics, microscopic particles, such as electrons, have a wave property and that
can penetrate through a potential barrier. For example, if two pieces of metal are separated
by an insulator of width of tens of angstroms, an electron can tunnel through the insulator
and travel from one metal to the other. If voltage is applied across the insulator, a tunnel
current can be produced. This phenomenon is referred to as a tunneling effect. If two
superconductors replace the two pieces of metal in the above experiment, a tunneling

current can also occur when the thickness of the dielectric is reduced to about 30 2 .
However, this effect is fundamentally different from the tunneling effect discussed above in
quantum mechanics and is referred to as the Josephson effect.

Evidently, this is due to the long-range coherent effect of the superconductive electron pairs.
Experimentally, it was demonstrated that such an effect could be produced via many types
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of junctions involving a superconductor, such as superconductor-metal-superconductor
junctions, superconductor-insulator- superconductor junctions, and superconductor bridges.
These junctions can be considered as superconductors with a weak link. On the one hand,
they have properties of bulk superconductors, for example, they are capable of carrying
certain superconducting currents. On the other hand, these junctions possess unique
properties, which a bulk superconductor does not. Some of these properties are summarized
in the following.

(A) When a direct current (dc) passing through a superconductive junction is smaller than a
critical value Ic, the voltage across the junction does not change with the current. The critical
current Ic can range from a few tens of pA to a few tens of mA.

(B) If a constant voltage is applied across the junction and the current passing through the
junction is greater than Ic, a high frequency sinusoidal superconducting current occurs in
the junction. The frequency is given by v=2eV/h, in the microwave and far-infrared regions
of (5-1000)x10°Hz. The junction radiates a coherent electromagnetic wave with the same
frequency. This phenomenon can be explained as follows: The constant voltage applied
across the junction produces an alternating Josephson current that, in turn, generates an
electromagnetic wave of frequency, v. The wave propagates along the planes of the junction.
When the wave reaches the surface of the junction (the interface between the junction and its
surrounding), part of the electromagnetic wave is reflected from the interface and the rest is
radiated, resulting in the radiation of the coherent electromagnetic wave. The power of
radiation depends on the compatibility between the junction and its surrounding,.

(C) When an external magnetic field is applied over the junction, the maximum dc current,
Ice , is reduced due to the effect of the magnetic field. Furthermore, I. changes periodically
as the magnetic field increases. The I.— H curve resembles the distribution of light intensity
in the Fraunhofer diffraction experiment , and the latter is shown in Fig. 2. This
phenomenon is called quantum diffraction of the superconductivity junction.
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Fig. 2. Quantum diffractionsuperconductor junction

(D) When a junction is exposed to a microwave of frequency, v, and if the voltage applied
across the junction is varied, it can be seen that the dc current passing through the junction
increases suddenly at certain discrete values of electric potential. Thus, a series of steps
appear on the dc I - V curve, and the voltage at a given step is related to the frequency of
the microwave radiation by nv=2eVn/h(n=0,1,2,3...). More than 500 steps have been
observed in experiments.

Josephson first derived these phenomena theoretically and each was experimentally verified
subsequently. All these phenomena are, therefore, called Josephson effects [24-26]. In
particular, (1) and (3) are referred to as dc Josephson effects while (2) and (4) are referred to
as ac Josephson effects. Evidently, Josephson effects are macroscopic quantum effects, which
can be explained well by the macroscopic quantum wave function. If we consider a
superconducting junction as a weakly linked superconductor, the wave functions of the
superconducting electron pairs in the superconductors on both sides of the junction are
correlated due to a definite difference in their phase angles. This results in a preferred
direction for the drifting of the superconducting electron pairs, and a dc Josephson current
is developed in this direction. If a magnetic field is applied in the plane of the junction, the
magnetic field produces a gradient of phase difference, which makes the maximum current
oscillate along with the magnetic field, and the radiation of the electromagnetic wave occur.
If a voltage is applied across the junction, the phase difference will vary with time and
results in the Josephson effect. In view of this, the change in the phase difference of the
wave functions of superconducting electrons plays an important role in Josephson effect,
which will be discussed in more detail in the next section.

The discovery of the Josephson effect opened the door for a wide range of applications of
superconductor theory. Properties of superconductors have been explored to produce
superconducting quantum interferometer—magnetometer, sensitive ammeter, voltmeter,
electromagnetic wave generator, detector, frequency-mixer, and so on.
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3. The properties of boson condensation and spontaneous coherence of
macroscopic quantum effects

3.1 A nonlinear theoretical model of theoretical description of macroscopic quantum
effects
From the above studies we know that the macroscopic quantum effect is obviously different
from the microscopic quantum effect, the former having been observed for physical
quantities, such as, resistance, magnetic flux, vortex line, and voltage, etc.

In the latter, the physical quantities, depicting microscopic particles, such as energy,
momentum, and angular momentum, are quantized. Thus it is reasonable to believe that the
fundamental nature and the rules governing these effects are different.

We know that the microscopic quantum effect is described by quantum mechanics.
However, the question remains relative to the definition of what are the mechanisms of
macroscopic quantum effects? How can these effects be properly described?

What are the states of microscopic particles in the systems occurring related to macroscopic
quantum effects? In other words, what are the earth essences and the nature of macroscopic
quantum states? These questions apparently need to be addressed.

We know that materials are composed of a great number of microscopic particles, such as
atoms, electrons, nuclei, and so on, which exhibit quantum features. We can then infer, or
assume, that the macroscopic quantum effect results from the collective motion and
excitation of these particles under certain conditions such as, extremely low temperatures,
high pressure or high density among others. Under such conditions, a huge number of
microscopic particles pair with each other condense in low-energy state, resulting in a
highly ordered and long-range coherent. In such a highly ordered state, the collective
motion of a large number of particles is the same as the motion of “single particles”, and

since the latter is quantized, the collective motion of the many particle system gives rise to a
macroscopic quantum effect. Thus, the condensation of the particles and their coherent state
play an essential role in the macroscopic quantum effect.

What is the concept of condensation? On a macroscopic scale, the process of transforming
gas into liquid, as well as that of changing vapor into water, is called condensation. This,
however, represents a change in the state of molecular positions, and is referred to as a
condensation of positions. The phase transition from a gaseous state to a liquid state is a first
order transition in which the volume of the system changes and the latent heat is produced,
but the thermodynamic quantities of the systems are continuous and have no singularities.
The word condensation, in the context of macroscopic quantum effects has its’ special
meaning. The condensation concept being discussed here is similar to the phase transition
from gas to liquid, in the sense that the pressure depends only on temperature, but not on
the volume noted during the process, thus, it is essentially different from the above, first-
order phase transition. Therefore, it is fundamentally different from the first-order phase
transition such as that from vapor to water. It is not the condensation of particles into a
high-density material in normal space. On the contrary, it is the condensation of particles to
a single energy state or to a low energy state with a constant or zero momentum. It is thus
also called a condensation of momentum. This differs from a first-order phase transition and
theoretically it should be classified as a third order phase transition, even though it is really
a second order phase transition, because it is related to the discontinuity of the third
derivative of a thermodynamic function. Discontinuities can be clearly observed in
measured specific heat, magnetic susceptibility of certain systems when condensation
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occurs. The phenomenon results from a spontaneous breaking of symmetries of the system
due to nonlinear interaction within the system under some special conditions such as,
extremely low temperatures and high pressures. Different systems have different critical
temperatures of condensation. For example, the condensation temperature of a
superconductor is its critical temperature T, , and from previous discussions[27-32].

From the above discussions on the properties of superconductors, and others we know that,
even though the microscopic particles involved can be either Bosons or Fermions, those
being actually condensed, are either Bosons or quasi-Bosons, since Fermions are bound as
pairs. For this reason, the condensation is referred to as Bose-Einstein condensation[33-36]
since Bosons obey the Bose-Einstein statistics. Properties of Bosons are different from those
of Fermions as they do not follow the Pauli exclusion principle, and there is no limit to the
number of particles occupying the same energy levels. At finite temperatures, Bosons can
distribute in many energy states and each state can be occupied by one or more particles,
and some states may not be occupied at all. Due to the statistical attractions between Bosons
in the phase space (consisting of generalized coordinates and momentum), groups of Bosons
tend to occupy one quantum energy state under certain conditions. Then when the
temperature of the system falls below a critical value, the majority or all Bosons condense to
the same energy level (e.g. the ground state), resulting in a Bose condensation and a series of
interesting macroscopic quantum effects. Different macroscopic quantum phenomena are
observed because of differences in the fundamental properties of the constituting particles
and their interactions in different systems.

In the highly ordered state of the phenomena, the behavior of each condensed particle is
closely related to the properties of the systems. In this case, the wave function ¢ = fe'® or
o= \/Beie of the macroscopic state[33-35], is also the wave function of an individual
condensed particle. The macroscopic wave function is also called the order parameter of the
condensed state. This term was used to describe the superconductive states in the study of
these macroscopic quantum effects. The essential features and fundamental properties of
macroscopic quantum effect are given by the macroscopic wave function ¢ and it can be
further shown that the macroscopic quantum states, such as the superconductive states are
coherent and are Bose condensed states formed through second-order phase transitions after
the symmetry of the system is broken due to nonlinear interaction in the system.

In the absence of any externally applied field, the Hamiltonian of a given macroscopic
quantum system can be represented by the macroscopic wave function ¢ and written as

H=jdxH'=jdx[—%\V¢\2—a\¢\2 + ol (1)

Here H'=H presents the Hamiltonian density function of the system, the unit system in
which m=h=c=1 is used here for convenience. If an externally applied electromagnetic field
does exist, the Hamiltonian given above should be replaced by

_ =2
H= [t = [ x| 27 —ie R - ofof +2Jof' + 2

or, equivalently
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1 L 2 1 ],
H:jdle:jdx[—E\(aj —ie"A))o| —afof +A|g|* +ZF}-1.F"}

whereF; =0d;A; -d,A;is the covariant field intensity, IEI=V xA is the magnetic field
intensity, e is the charge of an electron, and e*=2e, A is the vector potential of the
electromagnetic field, oo and A can be said to be some of the interaction constants. The
above Hamiltonians in Egs.(1) and (2) have been used in studying superconductivity by
many scientists, including Jacobs de Gennes [37], Saint-Jams [38], Kivshar [39-40], Bullough
[41-42], Huepe [43], Sonin [44], Davydov [45], et al., and they can be also derived from the
free energy expression of a superconductive system given by Landau et al [46-47]. As a
matter of fact, the Lagrangian function of a superconducting system can be obtained from
the well-known Ginzberg-Landau (GL) equation [47-54] using the Lagrangian method, and
the Hamiltonian function of a system can then be derived using the Lagrangian approach.
The results, of course, are the same as Eqs. (1) and (2). Evidently, the Hamiltonian operator
corresponding to Egs. (1) and (2) represents a nonlinear function of the wave function of a
particle, and the nonlinear interaction is caused by the electron-phonon interaction and due
to the vibration of the lattice in BCS theory in the superconductors. Therefore, it truly exists.
Evidently, the Hamiltonians of the systems are exactly different from those in quantum
mechanics, and a nonlinear interaction related to the state of the particles is involved in Egs.
(1) -(2). Hence, we can expect that the states of particles depicted by the Hamiltonian also
differ from those in quantum mechanics, and the Hamiltonian can describe the features of
macroscopic quantum states including superconducting states. These problems are to be
treated in the following pages. Evidently, the Hamiltonians in Egs. (1) and (2) possess the U
(1) symmetry. That is, they remain unchanged while undergoing the following
transformation:

OF 1) = O'(F 1) = V007, 1)

where Q; is the charge of the particle - 8 is a phase and, in the case of one dimension, each
term in the Hamiltonian in Eq. (1) or Eq. (2) contains the product of the ¢;(x,t)s, then we
can obtain:

07 (3, )05 (x,£)...0,, (x, £) = e+ L+ (v 1o, (x, £)...0,, (x, 1)

Since charge is invariant under the transformation and neutrality is required for the
Hamiltonian, there must be (Q; + Q2 + - - - + Q) = 0 in such a case. Furthermore, since 9 is
independent of x, it is necessary that V¢; — e 'V¢ ;. Thus each term in the Hamiltonian in
Egs. (1) is invariant under the above transformation, or it possesses the U(1) symmetry[16-17].
If we rewrite Eq. (1) as the following

H' = (V0)" + Ug(6), U (9) =~ + o' ©)

We can see that the effective potential energy, U, (9), in Eq. (3) has two sets of extrema,
¢y =t/ 2h and ¢, =0, but the minimum is located at

g =+Jou / 20 =(0]0]0), (4)
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rather than at ¢, =0 . This means that the energy at ¢, =+\/a. / 2A is lower than that at ¢, =0.
Therefore, ¢, =0 corresponds to the normal ground state, while ¢, =%\/o. / 2A is the ground
state of the macroscopic quantum systems .

In this case the macroscopic quantum state is the stable state of the system. This shows that
the Hamiltonian of a normal state differs from that of the macroscopic quantum state, in
which the two ground states satisfy (0[¢|0)#—(0|¢|0) under the transformation, ¢ ——¢ .
That is, they no longer have the U(l) symmetry. In other words > the symmetry of the
ground states has been destroyed. The reason for this is evidently due to the nonlinear term
A" in the Hamiltonian of the system. Therefore, this phenomenon is referred to as a
spontaneous breakdown of symmetry. According to Landau’s theory of phase transition,
the system undergoes a second-order phase transition in such a case, and the normal ground
state ¢y ==0 is changed to the macroscopic quantum ground state ¢, = +./o. / 2A . Proof will
be presented in the following example .

In order to make the expectation value in a new ground state zero in the macroscopic
quantum state, the following transformation [16-17] is done:

0 =0+0, )
so that
(oloj0)=0 (©)

After this transformation, the Hamiltonian density of the system becomes
1
H(+00) = 5[Vl + (6107 —)0” + 4ho0” + (4105 ~ 20100)0 + 10" 00 +205  (7)

Inserting Eq. (4) into Eq. (7), we have <¢0 ‘4X¢% - 20(‘ ¢0> =0.
Consider now the expectation value of the variation 8H'/8¢ in the ground state, i.e.

<0‘867Ij‘0> =0, then from Eq. (1), we get

SH' \ _ 2 310) =
<0‘T¢‘0>_<0 V20 + 2010 — 400 \o>_o ®)

After the transformation Eq. (6), it becomes
V20, + (4102 — 200)0, + 1240, <o\¢2\0> + 4x<o\¢3\o> ~ (20~ 12003)(0[6]0) =0 )

where the terms (0[¢”|0) and (0]¢|0) are both zero, but the fluctuation 121, (0[¢?|0) of the

ground state is not zero. However, for a homogeneous system, at T=0K, the term <0\¢2 |0) is

very small and can be neglected.
Then Eq. (9) can be written as

-V29) — (4M05 —20)0 =0 (10)
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Obviously, two sets of solutions, ¢, =0 , and ¢, =%/o /2%, can be obtained from the
above equation, but we can demonstrate that the former is unstable, and that the latter is
stable.

If the displacement is very small, i.e. ¢, — 0+ 80, = ¢, , then the equation satisfied by the
fluctuation 8¢, is relative to the normal ground state ¢, =0 and is

V28, — 2080, =0 (11)

Its” solution attenuates exponentially indicating that the ground state, ¢, =0 is unstable.

On the other hand, the equation satisfied by the fluctuation 8¢, , relative to the ground
state ¢y ==%/o./2A is Vz&bo +200¢, =0 . Its” solution, 8¢y, is an oscillatory function and
thus the macroscopic quantum state ground state ¢,==00/2\ is stable. Further

calculations show that the energy of the macroscopic quantum state ground state is lower
than that of the normal state by e,=-0? /4L <0 .Therefore, the ground state of the
normal phase and that of the macroscopic quantum phase are separated by an energy gap
of o / (41)so then, at T=0K, all particles can condense to the ground state of the

macroscopic quantum phase rather than filling the ground state of the normal phase.
Based on this energy gap, we can conclude that the specific heat of the macroscopic
quantum systems has an exponential dependence on the temperature, and the critical
temperature is given by: T.=1.14w,exp[-1/(3A /a)N(0)] [16-17]. This is a feature of the

second-order phase transition. The results are in agreement with those of the BCS theory
of superconductivity.

Therefore, the transition from the state ¢,=0to the state ¢,==\a/2L and the
corresponding condensation of particles are second-order phase transitions. This is
obviously the results of a spontaneous breakdown of symmetry due to the nonlinear
interaction, 7»¢4 .

In the presence of an electromagnetic field with a vector potential A , the Hamiltonian of the
systems is given by Eq. (2). It still possesses the U (1) symmetry.Since the existence of the
nonlinear terms in Eq. (2) has been demonstrated, a spontaneous breakdown of symmetry
can be expected. Now consider the following transformation:

1 1
o(x) = ﬁ[%(X) +i0 (X)) = ﬁ[%(X) + 09 +i0 (X)] (12)
Since <0\¢i \ 0> =0 under this transformation, then the equation (2) becomes

(e’
2
1 1
e (02V0; —01V0,)A; — 2 (~12005 + 20007 — (12005 + 20003 + 4A0001 (07 +02)+  (13)
4007 +03)" = 0 (4107 + 200, — 05 + 105

We can see that the effective interaction energy of ¢, is still given by:

1 1 1
H'= Z(aiA]’ - ain)z - E(V(I)z)2 - E(V% )+ (91 +09)* + 03 ]AT —e * 0yA, Vo, +
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U, g5(09) = 0105 + Adyg (14)

and is in agreement with that given in Eq. (4). Therefore, using the same argument, we can
conclude that the spontaneous symmetry breakdown and the second-order phase transition
also occur in the system. The system is changed from the ground state of the normal
phase, ¢, =0 to the ground state ¢, =+./o. /2% of the condensed phase in such a case. The
above result can also be used to explain the Meissner effect and to determine its critical
temperature in the superconductor. Thus, we can conclude that, regardless of the existence
of any external field macroscopic quantum states, such as the superconducting state, are
formed through a second-order phase transition following a spontaneous symmetry
breakdown due to nonlinear interaction in the systems.

3.2 The features of the coherent state of macroscopic quantum effects

Proof that the macroscopic quantum state described by Egs. (1) - (2) is a coherent state, using
either the second quantization theory or the solid state quantum field theory is presented in
the following paragraphs and pages.

As discussed above, when 8H'/ 8¢ =0 from Eq. (1), we have

V20— 200 +4A|0 9 =0 (15)

It is a time-independent nonlinear Schrodinger equation (NLSE), which is similar to the GL
equation. Expanding ¢ in terms of the creation and annihilation operators, b; and b,

1 1

b=—1 27(
V52,

where V is the volume of the system. After a spontaneous breakdown of symmetry, ¢, , the

ground-state of ¢, for the system is no longer zero, but ¢, ==*\/a. / 2A . The operation of the
annihilation operator on ‘4)0) no longer gives zero, i.e.

be P +brelPX) (16)

bp\%) #0 (17)

A new field ¢' can then be defined according to the transformation Eq. (5), where ¢, is
a scalar field and satisfies Eq. (10) in such a case. Evidently, ¢,can also be expanded
into

1

¢ = —\Ng\/z%(?;pe‘“’* +relX) (18)
P

The transformation between the fields ¢ and ¢' is obviously a unitary transformation, that
is

0 =UU™ =e™¢e” = 0+, (19)

where
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s—ljdx (1) (X, ) = 0o (X, )X, 1)] (20)

¢ and ¢' satisfy the following commutation relation

[0 (x,£),0(x, )] = 18(x ~x) (1)

From Eq. (6) we now have (0[¢'|0)=¢,=0. The ground state \q>'0> of the field ¢'thus
satisfies

by[0p) =0 22)
From Eq. (6), we can obtain the following relationship between the annihilation operator a,
of the new field ¢' and the annihilation operator b, of the ¢ field

a, =e b e’=b +{, (23)

where

Cp = 2n) 3/2 I\/f[%(x D)X+ iy (x, t)e ] (24)

Therefore, the new ground state‘¢6> and the old ground state \%) are related through

00) =<°|00)-

Thus we have

a,|00) = (b, +5,)[00) = G, |00) (25)

According to the definition of the coherent state, equation (25) we see that the new ground
state \¢'0> is a coherent state. Because such a coherent state is formed after the spontaneous
breakdown of symmetry of the systems, thus, it is referred to as a spontaneous coherent
state. But when ¢, =0, the new ground state is the same as the old state, which is not a
coherent state.The same conclusion can be directly derived from the BCS theory [18-21]. In
the BCS theory, the wave function of the ground state of a superconductor is written as

‘¢o> =TT (s + viéia’o)|0) = [T (s + vibica )| 0o) ~ ﬂ'exp(zl%];ﬁ-k)‘qw (26)
K K K

where lA)ltk =4aya’, . This equation shows that the superconducting ground state is a
coherent state. Hence, we can conclude that the spontaneous coherent state in
superconductors is formed after the spontaneous breakdown of symmetry.

By reconstructing a quasiparticle-operator-free new formulation of the Bogoliubov-Valatin
transformation parameter dependence [55], W. S. Lin et al [56] demonstrated that the BCS
state is not only a coherent state of single-Cooper-pairs, but also the squeezed state of the
double-Cooper- pairs, and reconfirmed thus the coherent feature of BCS superconductive
state.
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3.3 The Boson condensed features of macroscopic quantum effects

We will now employ the method used by Bogoliubov in the study of superfluid liquid
helium 4He to prove that the above state is indeed a Bose condensed state. To do that, we
rewrite Eq. (16) in the following form [12-17]

1 . 1
x):ﬁ%:qpep 'qp:ﬁ(brﬁb-}) (27)

Since the field ¢ describes a Boson, such as the Cooper electron pair in a superconductor
and the Bose condensation can occur in the system, we will apply the following traditional
method in quantum field theory, and consider the following transformation:

by =\[No8(p) + ¥y by =[NoB(p) +B, (28)

0,fp=0
where N is the number of Bosons in the system and  &(p) ={ b . Substituting Egs.

1,ifp=0
(27) and (28) into Eq. (1), we can arrive at the Hamiltonian operator of the system as follows

~ [4AN? o 4L N AAN?
H=| —="—— |No (Yo +7, +Bo +B! )+ D | ——="—¢, |(vpBlp + =

[ ESV 80] O(YO Yn BO Bn) ;(EOSP % (YpB—p YpB-p) ESV

+n+ +_+
2Nt | ANg -~ 1 BBy +BuBp + 1Y + . 29)
& &V T & VY. +2VBs + 280,
o 4AN, 4\ N, VN N
> &5 g (ypyp+]3 B ) =L 0400 +O(,—gj
b g &, v 7 €€p V 1% Vv

Because the condensed density N,/V must be finite, it is possible that the higher order
terms O(JNO / ‘7) and O(N0 / ‘72) may be neglected. Next we perform the following
canonical transformation

Yp = UpCp + 0,7, By = iy +0,d7, (30)

where v, and u,, are real and satisfy (up - Dp) =1. This introduces another transformation

_ 1 + + + _ 1 + +
Sp = ﬁ(”ﬂp =~ Yy ity 0By ) My = ﬁ(”pyp ~0y ¥ty 0B ) (1)
the following relations can be obtained
— + _ 7+
[QP’HJ_ngP +MpSp, [nP'H}_gpnp +Mpn., (32)
where
— 2 _ 2 2
8 =Gy (up +v )+F 2u,0,, M, =F, (up +up)+Gp2uPUP;

8o =G, (up + v} )+ F,2u,v,, M, =F, (uf +7 )+ G} 2u,v,

(33)
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while
o , o , , (04 ’ ! o ’
G, =¢, _§+6§p’ E, :_f+6gp’ G, =g, —§+2§p, E, =§—2§p (34)
p P p p
where ép AN
€0€p A

We will now study two cases to illustrate the concepts.
(A) Let M; =0, then it can be seen from Eq. (32) that n; is the creation operator of
elementary excitation and its energy is given by

g =1 lsf) +4e.& - 20 (35)

Using this concept, we can obtain the following form from Egs. (32) and (34)

()" :;[1+G§3J and  (v,)’ =;(—1+G,;’j (36)

8p 8p

From Eq. (32), we know that é; is not a creation operator of the elementary excitation. Thus,
another transformation must be made

xp\z —\up\z =1 (37)

_ ’ 7+
By =XpSp +MpSp s
We can then prove that
[B, H] =E,B, (38)

where E, =,[12¢ & +e; - 20
Now, inserting Egs. (30), (37)-(38) and M; =0 into Eq. (29), and after some reorganization,
we have

fl =U+E)+ z |:EP (B;Bp + B-erB-P)Jr g;, (n;ﬂp +n'+Pn'P)} )
p>0

where

U= XNO ZZNO 245, +Z( ++4§J4n'2+24n 2urv
0

V & p>0

EO:—ZZE \pp\ _—p> (s, -E,) (40)

Both Uand Ejare now independent of the creation and annihilation operators of the

Bosons. U +E, gives the energy of the ground state. N,can be determined from the

3(U+E)
0

condition, =0, which gives
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070 _ ¢ 41

7o 2 00 (41)

This is the condensed density of the ground state ¢,. From Egs. (36), (37) and (40), thus we

can arrive at:
g;,:qls;—oc, Ep:Jefj—a (42)

These correspond to the energy spectra of n; and B} respectively, and they are similar to
the energy spectra of the Cooper pair and phonon in the BCS theory. Substituting Eq. (42)
into Eq. (36), thus we now have:

-0 2¢2 — 0,
v2=1 g4

1 P
P2 2,/8123-0Lep P2 2,/8; —ag,
(B) In the case of Mp=0, a similar approach can be used to arrive at the energy spectrum

[.2
P

: + . . + + .
corres (;ndmg to &,as E, =&, +o, while that corresponding to Ay =y n, +u,n., is
gp =4Ep T, where

(43)

2 2
u2=1 1+ 2e,+0 Dzzl 14 2e,+0 (44)
P9 5 2 A ) 2

EpnEp T Zsp g, +o

Based on experiments in quantum statistical physics, we know that the occupation number
of the level with an energy of ¢,, for a system in thermal equilibrium at temperature
T(= 0) is shown as:

N, = <b;bp> = esp/KlBT 1 (45)
Sp [e*”/ KT

trace in a Gibbs statistical description. At low temperatures, or T — 0 K, the majority of the
Bosons or Cooper pairs in a superconductor condense to the ground state with p=0.

where <> denotes Gibbs average, defined as <>= , here SP denotes the

Therefore <b5b0>:N0, where Njis the total number of Bosons or Cooper pairs in the
system and N, >>1, i.e. <b+b> =1<< <b8b0> .

As can be seen from Egs. (27) and (28), the number of particles is extremely large when they
lie in condensed state, that is to say:

bo+by) (46)

1
P9 =dp=o :ﬁ(
0

Because v, ‘4)0) =0and Bo‘¢o> =0, byand b; can be taken to be /N, . The average value of
"¢ in the ground state then becomes
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00)=(0°0), = ﬁ 4Ny = 28%0 47)

Substituting Eq. (41) into Eq. (47), we can see that:

=g o ()s5

which is the ground state of the condensed phase, or the superconducting phase, that we
have known. Thus, the density of states, N,/V, of the condensed phase or the
superconducting phase formed after the Bose condensation coincides with the average value
of the Boson’s (or Copper pair’s) field in the ground state. We can then conclude from the
above investigation shown in Egs. (1) - (2) that the macroscopic quantum state or the
superconducting ground state formed after the spontaneous symmetry breakdown is indeed
a Bose-Einstein condensed state. This clearly shows the essences of the nonlinear properties
of the result of macroscopic quantum effects.

In the last few decades, the Bose-Einstein condensation has been observed in a series of
remarkable experiments using weakly interacting atomic gases, such as vapors of rubidium,
sodium lithium, or hydrogen. Its’ formation and properties have been extensively studied.
These studies show that the Bose-Einstein condensation is a nonlinear phenomenon,
analogous to nonlinear optics, and that the state is coherent, and can be described by the
following NLSE or the Gross-Pitaerskii equation [57-59]:

(0000

.874)__824)_ 3
i = Mo+ V(x)o0 )

where t'=t/n, x'= xv2m /h . This equation was used to discuss the realization of the Bose-
Einstein condensation in the d+1dimensions (d=1,2,3) by H. K. Bullough et.al [41-42].
Too, Elyutin et al [60-61]. gave the corresponding Hamiltonian density of a condensate
system as follows:

-2

2
NI PYIE
" +V(x")|9| 2x\¢\ (49)

where H'=H, the nonlinear parameters of A are defined asA=-2Naa, / a3 , with N being
the number of particles trapped in the condensed state, a is the ground state scattering
length, ap and a; are the transverse (y, z) and the longitudinal (x) condensate sizes (without
self-interaction) respectively, (Integrations over y and z have been carried out in obtaining
the above equation). A is positive for condensation with self-attraction (negative scattering
length).The coherent regime was observed in Bose-Einstein condensation in lithium. The
specific form of the trapping potential V (x’) depends on the details of the experimental
setup. Work on Bose-Einstein condensation based on the above model Hamiltonian were
carried out and are reported by C. F. Barenghi et al [31].

It is not surprising to see that Eq. (48) is exactly the same as Eq. (15), corresponding to the
Hamiltonian density in Eq. (49) and, where used in this study is naturally the same as Eq.
(1). This prediction confirms the correctness of the above theory for Bose-Einstein
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condensation. As a matter of fact, immediately after the first experimental observation of
this condensation phenomenon, it was realized that the coherent dynamics of the condensed
macroscopic wave function could lead to the formation of nonlinear solitary waves. For
example, self-localized bright, dark and vortex solitons, formed by increased (bright) or
decreased (dark or vortex) probability density respectively, were experimentally observed,
particularly for the vortex solution which has the same form as the vortex lines found in
type II-superconductors and superfluids. These experimental results were in concordance
with the results of the above theory. In the following sections of this text we will study the
soliton motions of quasiparticles in macroscopic quantum systems, superconductors. We
will see that the dynamic equations in macroscopic quantum systems do have such soliton
solutions.

3.4 Differences of macroscopic quantum effects from the microscopic quantum

effects

From the above discussion we may clearly understand the nature and characteristics of

macroscopic quantum systems. It would be interesting to compare the macroscopic

quantum effects and microscopic quantum effects. Here we give a summary of the main
differences between them.

1. Concerning the origins of these quantum effects; the microscopic quantum effect is
produced when microscopic particles, which have only a wave feature are confined in a
finite space, or are constituted as matter, while the macroscopic quantum effect is due
to the collective motion of the microscopic particles in systems with nonlinear
interaction. It occurs through second-order phase transition following the spontaneous
breakdown of symmetry of the systems.

2. From the point-of-view of their characteristics, the microscopic quantum effect is
characterized by quantization of physical quantities, such as energy, momentum,
angular momentum, etc. wherein the microscopic particles remain constant. On the
other hand, the macroscopic quantum effect is represented by discontinuities in
macroscopic quantities, such as, the resistance, magnetic flux, vortex lines, voltage, etc.
The macroscopic quantum effects can be directly observed in experiments on the
macroscopic scale, while the microscopic quantum effects can only be inferred from
other effects related to them.

3. The macroscopic quantum state is a condensed and coherent state, but the microscopic
quantum effect occurs in determinant quantization conditions, which are different for
the Bosons and Fermions. But, so far, only the Bosons or combinations of Fermions are
found in macroscopic quantum effects.

4. The microscopic quantum effect is a linear effect, in which the microscopic particles
and are in an expanded state, their motions being described by linear differential
equations such as the Schrodinger equation, the Dirac equation, and the Klein-
Gordon equations.

On the other hand, the macroscopic quantum effect is caused by the nonlinear interactions,

and the motions of the particles are described by nonlinear partial differential equations

such as the nonlinear Schrédinger equation (17).

Thus, we can conclude that the macroscopic quantum effects are, in essence, a nonlinear

quantum phenomenon. Because its’ fundamental nature and characteristics are different

from those of the microscopic quantum effects, it may be said that the effects should be
depicted by a new nonlinear quantum theory, instead of quantum mechanics.
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4. The nonlinear dynamic natures of electrons in superconductors

4.1 The dynamic equations of electrons in superconductors

It is quite clear from the above section that the superconductivity of material is a kind of
nonlinear quantum effect formed after the breakdown of the symmetry of the system due to
the electron-phonon interaction, which is a nonlinear interaction.

In this section we discuss the properties of motion of superconductive electrons in
superconductors and the relation of the solutions of dynamic equations in relation to the
above macroscopic quantum effects on it. The study presented shows that the
superconductive electrons move in the form of a soliton, which can result in a series of
macroscopic quantum effects in the superconductors. Therefore, the properties and motions
of the quasiparticles are important for understanding the essences and rule of
superconductivity and macroscopic quantum effects.

As it is known, in the superconductor the states of the electrons are often represented by a
macroscopic wave function,

(])(;,t) = f(;,t)(l)oeie(;'t) , or ¢= \/Beie ,

as mentioned above, where (])% =0/ 2\ . Landau et al [45,46] used the wave function to give
the free energy density function, f, of a superconducting system, which is represented by

hZ
fo= fu =Vl - alof +of (50)
m

in the absence of any external field. If the system is subjected to an electromagnetic field
specified by a vector potential A , the free energy density of the system is of the form:

n* iex— | 2 4 1 =,
fo= fy =5V =R —ofof” +Mof* +—-F1 1)
m ch 8m

where e*=2e , H=Vx A, a.and A are some interactional constants related to the features of
superconductor, m is the mass of electron, e* is the charge of superconductive electron, c is
the velocity of light, h is Planck constant, #=h /2xn, fn is the free energy of normal state.
The free energy of the system is F = J f.d>x. In terms of the conventional
field, F; = 0,4, ~9,A7, (j, 1=1, 2, 3), the term H?/8n can be written as F]-lFfl / 4. Equations
(50) - (51) show the nonlinear features of the free energy of the systems because it is the
nonlinear function of the wave function of the particles, ¢(r,t) . Thus we can predict that the
superconductive electrons have many new properties relative to the normal electrons. From

OF, /80p=0 we get

2

ﬂv2¢ —00+2A¢° =0 (52)
and
h2 ie*— 2 3
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in the absence and presence of an external fields respectively, and

- *p oo
J=+2 (0" Vo-oVe") -~ o] A4 (54)
mi mc

Equations (52) - (54) are just well-known the Ginzburg-Landau (GL) equation [48-54] in a
steady state, and only a time-independent Schrédinger equation. Here, Eq. (52) is the GL
equation in the absence of external fields. It is the same as Eq. (15), which was obtained from
Eq. (1). Equation (54) can also be obtained from Eq. (2). Therefore, Egs. (1)-(2) are the
Hamiltonians corresponding to the free energy in Egs. (50)- (51).

From equations (52) - (53) we clearly see that superconductors are nonlinear systems.
Ginzburg-Landau equations are the fundamental equations of the superconductors
describing the motion of the superconductive electrons, in which there is the nonlinear term
of 216> . However, the equations contain two unknown functions ¢ and A which make
them extremely difficult to resolve.

4.2 The dynamic properties of electrons in steady superconductors

We first study the properties of motion of superconductive electrons in the case of no
external field. Then, we consider only a one-dimensional pure superconductor [62-63],
where

0 =00(x, 1), E2(T)=1* / 2m|a, ¥’ =x / E'(T) (55)

and where&'(T) is the coherent length of the superconductor, which depends on
temperature. For a uniform superconductor, &'(T)=0.94&[T. /(T. -T)]*, where T. is the
critical temperature and &, is the coherent length of superconductive electrons at T=0. In
boundary conditions of ¢ (x’=0)=1 , and @ (X" — %o ) =0, from Egs. (52) and (54) we find
easily its solution as:

X—Xx
(p:iﬁsech{ &'(T;)}

or

¢=i\/§sech[2};;]=i %SeCh[Vz;:a (x—x,)] (56)

This is a well-known wave packet-type soliton solution. It can be used to represent the
bright soliton occurred in the Bose-Einstein condensate found by Perez-Garcia et. al. [64]. If
the signs of o and A in Eq. (52) are reversed, we then get a kink-soliton solution under the
boundary conditions of ¢ (x’=0)=0, ¢ (X' = $eo)=%1,

o ==*(at / 21)"/? tanh{[mo(x — x,, / n*]"/?} (57)

The energy of the soliton, (56), is given by
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_”ﬁ@z_ 2 a4 _4h0ﬁa/2
Esol _J.—m|:2m(dx) (1(1) 7"¢ :|dX— 37\‘@ (58)

We assume here that the lattice constant, rp=1. The above soliton energy can be compared
with the ground state energy of the superconducting state, Eground=—o?/4A. Their
16h
3v2m

is not in the ground state, but in an excited state of the system, therefore, the soliton is a
quasiparticle.

From the above discussion, we can see that, in the absence of external fields, the
superconductive electrons move in the form of solitons in a uniform system. These solitons
are formed by a nonlinear interaction among the superconductive electrons which
suppresses the dispersive behavior of electrons. A soliton can carry a certain amount of
energy while moving in superconductors. It can be demonstrated that these soliton states
are very stable.

difference is E .y —Egoung = o’/? [\/& + ] / 2\ >0 . This indicates clearly that the soliton

4.3 The features of motion of superconductive electrons in an electromagnetic field
and its relation to macroscopic quantum effects

We now consider the motion of superconductive electrons in the presence of an
electromagnetic field A ; its equation of motion is denoted by Egs. (53)-(54) - Assuming now
that the field A satisfies the London gauge V.A=01[65], and that the substitution of
o(r, 1) = o(r, t)d,e®") into Egs. (53) and (54) yields [66-67]:

* 2 *_
=59 (nvo - £ A2 (59)
m c
and
e*— 2m
V2~ [(V0- LK) 0]~ 5 (o~ 20007 )p =0 (60)

For bulk superconductors, ] is a constant (permanent current) for a certain value of A , and
it thus can be taken as a parameter. Let B* =m?]* / h*(e*)*¢;, b=2mo / h* =&, from Egs.
(59) and (60), we can obtain [66-67]:

e*— Jm
WwVe-—A)= 61
o i ©D)
do__d B2 1, ,.1,,
de = _%ueff(w)rueff(@) = 27(‘)2 - Eb(p + Zb(p (62)

where Ueff is the effective potential of the superconductive electron in this case and it is
schematically shown in Fig. 2. Comparing this case with that in the absence of external
fields, we found that the equations have the same form and the electromagnetic field
changes only the effective potential of the superconductive electron. When A =0, the
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effective potential well is characterized by double wells. In the presence of an
electromagnetic field, there are still two minima in the effective potential, corresponding to
the two ground states of the superconductor in this condition. This shows that the
spontaneous breakdown of symmetry still occurs in the superconductor, thus the
superconductive electrons also move in the form of solitons. To obtain the soliton solution,
we integrate Eq. (62) and can get:

(63)

= I ® do
O J2[E = U (0)

Where E is a constant of integration which is equivalent to the energy, the lower limit of the
integral, @, is determined by the value of ¢ at x=0, i.e. E=U.4(®g)=U.,(9;). Introduce

b 4% m

the following dimensionless quantities ¢* =u, E =Es, 2d = and equation (63) can

(o’

be written as the following upon performing the transformation u——u,

—2bx = j N du (64)

u® —2u% —3eu - 242

It can be seen from Fig. 3 that the denominator in the integrand in Eq. (64) approaches zero
linearly when u=u;= @? , but approaches zero gradually when u=u,= ¢} . Thus we give [66-67]

u(x) = 9> (x) = uy — gsech? (, f;gbx] =u, + gtanh’ (1 /;gbx] (65)

where g= up—u; and satisfies

(2+9)*(1—g)=27d%, 2uq + uy =2 , u? + 2ugu;, = —2¢, uyui=2d> (66)

It can be seen from Eq. (65) that for a large part of sample, u; is very small and may be
neglected; the solution u is very close to up. We then get from Eq. (65) that

o(x)=¢, tanh[, [;gbx] (67)

Substituting the above into Eq. (61), the electromagnetic field A in the superconductors can

be obtained
Aem et oo < e o L 2vo
() 9o 0° e (€*)" 9oy 2 e

For a large portion of the superconductor, the phase change is very small. Using H =Vx A
the magnetic field can be determined and is given by [66-67]

g med2sh, s 1 [
H= 202G [coth ( 2gbxj+coth( 2gbe] (68)
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Equations (67) and (68) are analytical solutions of the GL equation.(63) and (64) in the one-
dimensional case, which are shown in Fig. 3. Equation (67) or (65) shows that the
superconductive electron in the presence of an electromagnetic field is still a soliton.
However, its amplitude, phase and shape are changed, when compared with those in a
uniform superconductor and in the absence of external fields, Eq. (66). The soliton here is
obviously influenced by the electromagnetic field, as reflected by the change in the form of
solitary wave. This is why a permanent superconducting current can be established by the
motion of superconductive electrons along certain direction in such a superconductor,
because solitons have the ability to maintain their shape and velocity while in motion.

It is clear from Fig.4 that H(x) is larger where ¢(x) is small, and vice versa. When x -0,
H (x) reaches a maximum, while ¢ approaches to zero. On the other hand, when x — e, ¢
becomes very large, while H(x) approaches to zero. This shows that the system is still in
superconductive state.These are exactly the well-known behaviors of vortex lines-magnetic
flux lines in type-II superconductors [66-67]. Thus we explained clearly the macroscopic
quantum effect in type-II superconductors using GL equation of motion of superconductive
electron under action of an electromagnetic-field.
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Fig. 3. The effective potential energy in Eq. (67).
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Fig. 4. Changes of ¢(x) and ‘H (x)‘ with x in Egs. (67)-(68)
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Recently, Garadoc-Daries et al. [68], Matthews et al. [69] and Madison et al.[70] observed
vertex solitons in the Boson-Einstein condensates. Tonomure [71] observed experimentally
magnetic vortexes in superconductors. These vortex lines in the type-II-superconductors are
quantized. The macroscopic quantum effects are well described by the nonlinear theory
discussed above, demonstrating the correctness of the theory.

We now proceed to determine the energy of the soliton given by (67). From the earlier
discussion, the energy of the soliton is given by:

tol 1 dpy b 5 b 4 B 2 Zb(PS b (P% B’
E=[ 7|2 E +2¢? - 2¢* —— |d 0 14+ 20-2y |- 2
20 T 0 202 | T Ay 207

which depends on the interaction between superconductive electrons and electromagnetic
field.

From the above discussion, we understand that for a bulk superconductor, the
superconductive electrons behave as solitons, regardless of the presence of external fields.
Thus, the superconductive electrons are a special type of soliton. Obviously, the solitons are
formed due to the fact that the nonlinear interaction lwz @ suppresses the dispersive effect
of the kinetic energy in Eqs. (52) and (53). They move in the form of solitary wave in the
superconducting state. In the presence of external electromagnetic fields, we demonstrate
theoretically that a permanent superconductive current is established and that the vortex
lines or magnetic flux lines also occur in type-II superconductors.

5. The dynamic properties of electrons in superconductive junctions and its
relation to macroscopic quantum effects

5.1 The features of motion of electron in S-N junction and proximity effect

The superconductive junction consists of a superconductor (S) which contacts with a normal
conductor (N), in which the latter can be superconductive. This phenomenon refers to a
proximity effect. This is obviously the result of long- range coherent property of
superconductive electrons. It can be regarded as the penetration of electron pairs from the
superconductor into the normal conductor or a result of diffraction and transmission of
superconductive electron wave. In this phenomenon superconductive electrons can occur in
the normal conductor, but their amplitudes are much small compare to that in the
superconductive region, thus the nonlinear term 7»‘(])‘2(]) in GL equations (53)-(54) can be
neglected. Because of these, GL equations in the normal and superconductive regions have
different forms. On the S side of the S-N junction, the GL equation is [72]

n? ie" — 3
while that on the N side of the junction is

2 L
:;(V-%A)q)-a'q):o (70)

Thus, the expression for 7 remains the same on both sides.
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J= (¢ Vo-ove) \¢\ A (71)

In the S region, we have obtained solution of (69) in the previous section, and it is given by
(65) or (67) and (68). In the N region, from Egs. (70)- (71) we can easily obtain

¢ = %J( g)? —4d? sin 2\/bx)+—
o = 005e° % (e)? —4d* sin(2 b’x)e*ﬂe+%¢§e*ﬂ"

| =2 ,
2rr12(x :%/ 2d2 = 4] ;n?;, ‘:b K
h 3 (e a 2

heree' is an integral constant. A graph of ¢ vs. x in both the S and the N regions, as shown
in Fig.5, coincides with that obtained by Blackbunu [73]. The solution given in Eq. (72) is the
analytical solution in this case. On the other hand, Blackbunu’s result was obtained by
expressing the solution in terms of elliptic integrals and then integrating numerically. From
this, we see that the proximity effect is caused by diffraction or transmission of the
superconductive electrons

where b =

5.2 The Josephson effect in S-I-S and S-N-S as well as S-I-N-S junctions

A superconductor-normal conductor -superconductor junction (S-N-S) or a superconductor-
insulator-superconductor junction (S-I-S) consists of a normal conductor or an insulator
sandwiched between two superconductors as is schematically shown in Fig.6a - The
thickness of the normal conductor or the insulator layer is assumed to be L and we choose
the z coordinate such that the normal conductor or the insulator layer is located
at—-L /2<x<L /2. The features of S-I-S junctions were studied by Jacobson et al.[74]. We
will treat this problem using the above idea and method [75-76].

The electrons in the superconducting regions (|x|>L /2 ) are depicted by GL equation (69).

Its” solution was given earlier in Eq.(67). After eliminating u; from Eq.(66), we have [73-74]

1 / o
]=Ee*(xu0 m(l—)uO .

o

Fig. 5. Proximity effect in S-N junction



Properties of Macroscopic Quantum Effects
and Dynamic Natures of Electrons in Superconductors 197

—L[z o Lfz
L

N
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(&) S-N(I)-5

(b)) S-N(I)-5
Fig. 6. Superconductive junction of S-N(I)-S and S-N-I-S
The electrons in the superconducting regions (|x| > L / 2 ) are depicted by GL equation (69). Its’

e*a | o
3 \V3mh
This is the critical current of a perfect superconductor, corresponding to the three-fold

degenerate solution of Eq.(66), i.e.,ur=uo.

solution was given earlier. Setting dJ/du, =0, we get the maximum current J =

mjc hc

From Eq.(71), we have A = _()T +—V0. Using the London gauge, V. A=0,wecan
e e~ e~

2
Z—? = :)] 7 dd (— ! 5) - Integrating the above equation twice , we get the change
x x

of the phase to be

get[75-76]

- 73
= ¢ , - (@ (73)
where ¢@®=u, and @2 =u,. Here we have used the following de Gennes boundary
conditions in obtaining Eq. (73)

do

) _, 98
" dx

dx

=0, 9(x| > ) =¢.. (74)

e e

If we substitute Eqs.(64) - (67) into Eq.(73), the phase shift of wave function from an
arbitrary point x to infinite can be obtained directly from the above integral, and takes the
form of:

-1

+tan”! [—L (75)
uy—uy u-—uy

AB; (x = o0) =—tan

For the S-N-S or S-I-S junction, the superconducting regions are located at \x\ >L /2 and the
phase shift in the S region is thus
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A8, =248, (£ = o) = 2tan™! |1 (76)
2 u, —uy

According to the results in (70) - (71) and the above similar method, the change of the phase
in the I or N region of the S-N-S or S-I-S junction may be expressed as [75-76]

on [ o2 ‘ i
ABy = 2tan [ [ & tan(\/gL)]+ mjL 77)
] 8mA 2 2e*hu,

where h = Smh _J_tan(Ay /2) , m]F is an additional term to satisfy the boundary
2 e * ' *
o 2e*tan(bL/2) 2e*hu,
conditions (74),and may be neglected in the case being studied.
Near the critical temperature (T<Tc), the current passing through a weakly linked
4 m)
()0

superconductive junction is very small (j<<1), we then have ;= :ZKZ, and

g'=1. Since N¢* and de* / dx are continuous at the boundary x=L/2, we have

du

dus _ N
x=L/2 — dx

dx

x=L/2 + MsMs|x=L/2 =MNHUN [x=L/2 +

where m,and my are the constants related to features of superconductive and normal
phases in the junction, respectively. These give [75-76]

24/b Asin(248y,) = &,[1 - cos(248, )]sin(b' L),
cos(v/b'L)sin(246,) = esin(2A6, ) + sin(2A8, + A8y, )

where €, =7y /Mg . From the two equations, we can get

sin(A8, + A8y ) = LZ;“”J? sin(vbL).
e o

Thus

J= e SIN(AB, + ABY ) = J 1y SIN(AB) (78)

max

where

L eroy 1
242mib sin(Wb'L)

J max —
Equation (78) is the well-known example of the Josephson current. From Section I we know
that the Josephson effect is a macroscopic quantum effect. We have seen now that this effect
can be explained based on the nonlinear quantum theory. This again shows that the
macroscopic quantum effect is just a nonlinear quantum phenomenon.

,A0 = AB_ + Ay (79)

From Eq. (79) we can see that the Josephson critical current is inversely proportional to sin
(Vb'L), which means that the current increases suddenly whenever b L approaches to nr,
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suggesting some resonant phenomena occurs in the system - This has not been observed
before. Moreover J, . is proportional to e*o /2v2mAb = (e*ho,/4m /Aoy ), which is
related to (T-T.)? -

Finally, it is worthwhile to mention that no explicit assumption was made in the above on
whether the junction is a potential well (o <0) or a potential barrier ( o >0). The results are
thus valid and the Josephson effect in Eq. (2.78), occurs for both potential wells and for
potential barriers.

We now study Josephson effect in the superconductor -normal conductor-insulator-
superconductor junction (SNIS) is shown schematically in Fig. 6b. It can be regarded as a
multilayer junction consists of the S-N-S and S-I-S junctions. If appropriate thicknesses for
the N and I layers are used (approximately 20 °A- 30 °A), the Josephson effect similar to that
discussed above can occur in the SNIS junction. Since the derivations are similar to that in
the previous sections, we will skip much of the details and give the results in the following.
The Josephson current in the SNIS junction is still given by

J=] max SIN(AB)

but, where A0 =A8 + Aby +Ab; + AB,, and

- 1 ( g,sinh(ybyL) I
" by 2lcosh(ybyL) - cos(2A8)]
1

\/[1 +cos(2A0y)][1 + cos(2A6;)] - \/[1 —cos(2A0y)][1 - cos(2A6;)] -

L efi-cf@any kol '
Jby 2[cosh(y/by L) - cos(248, ) — 1+ cos? (246, )
1
J[1-cos(248,)][1 - cos(248;)] +/[1+cos(2A6,)][1 + cos(248, )]

It can be shown that the temperature dependence of ], is [y o (T, —Tp)? ,which is quite
similar to the results obtained by Blackburm et al[73] for the SNIS junction and those by
Romagnan et al[7] using the Pb-PbO-Sn-Pb junction. Here, we obtained the same results
using a complete different approach. This indicates again that we can obtain some results,
which agree with the experimental data.

6. The nonlinear dynamic-features of time- dependence of electrons in
superconductor

6.1 The soliton solution of motion of the superconductive electron

We studied only the properties of motion of superconductive electrons in steady states in
superconductors in section 2.3.2, and which are described by the time-independent GL
equation. In such a case, the superconductive electrons move as solitons. We ask, “What are
the features of a time-dependent motion in non-equilibrium states of a superconductor?”
Naturally, this motion should be described by the time-dependent Ginzburg-Landau
(TDGL) equation [48-54,77] in this case. Unfortunately, there are many different forms of the
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TDGL equation under different conditions. The one given in the following is commonly
used when an electromagnetic field A is involved

F{hi—%eu(r)}q) 1(hv—%Aj +a0—- 2o o (80)
ot 2m
and
1—0[—1“—%( )} 1N 0% Vo — Vo) - Aw (81)
c ot m

here i=+-1 JVXVXA= 1;(—13;—Vu]+4n] and o is the conductivity in the normal
c c c

state, I~ is an arbitrary constant, and u is the chemical potential of the system. In practice,
Eq. (80) is simply a time-dependent Schrédinger equation with a damping effect.
In certain situations, the following forms of the TDGL equation are also used.

'iq’__ﬁ( _% ] 82
i = V=" —A| o+ao- Ao o (82)
or
i(ha—i?.eu)q)z1(a—k¢2)¢+§‘2(V—2ieZJ2¢ (83)
ot r r hc

here &'=h/~2m, and equation (82) is a nonlinear Schrodinger equation under an
electromagnetic field having soliton solutions. However, these solutions are very difficult to
find, and no analytic solutions have been obtained. An approximate solution was obtained
by Kusayanage et al [78] by neglecting the ¢° term in Eq. (80) or Eq. (82), in the case of
=(0,Hx,0), w=-KEx, H=(0, 0, H) and E=(E,0,0), where H is the magnetic field, while
E is the electric field .We will solve the TDGL equation in the case of weak fields in the
following.
TDGL equation (83) can be written in the following form when A is very small[80-81]

L00 R o A o

ih at+2mFV ¢+F\¢\ ¢_(r 2eu)¢ (84)
Where o and I' are material dependent parameters, A is the nonlinear coefficient, m is the
mass of the superconductive electron. Equation (84) is actually a nonlinear Schrédinger
equation in a potential field o/ 7" —2ep . Cai, Bhattacharjee et al [79], and Davydov [45]
used it in their studies of superconductivity. However, this equation is also difficult to
solve - In the following, Pang solves the equation only in the one-dimensional case.

For convenience, lett' =t /1, x'=x~/2mI" / i, then Eq. (84) becomes

8(]) a¢ A
at ax

2 oo [—-Zeu(x'ﬂq» (85)
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If we let %—241:0, then Eq. (85) is the usual nonlinear Schrodinger equation whose

solution is of the form [80-81]

0 =g (', £)e 1, (86)
2 2
0o () = | {0 —20c0e) : f”cvf) xsech[ (Ve ~20c0,) i”f”f) (x' - Uet’)} (87)

here 6,(x,t)= %Ue(x' - ). In the case of %—25,11. #0, let u=-KEx’, where K is a constant,
and assume that the solution is of the form [80-81]

0=¢'(x,F) £0EE) (88)
Substituting Eq. (88) into Eq. (86), we get:

20 1Y % A o
—0' —0' — =| 2KeE 89
0= ‘p(at'J +a(x,)2+r(tp) ( eEx +F]tp 89)

! | 2
E)(p’+ a(p’ 89,+(p, 070 _
of  Tox o T 9(x)>

(90)
Now let ¢'(x,t)=0&), &=x"—u(t), u(t)= —2EKe(t)* +vt'+d, where u(t')describes the

accelerated motion of ¢'(x’,#") . The boundary condition at & — e requires @(&) to approach

zero rapidly. When 2 06/0€ — 11 # 0, equation (90) can be written as: @2 = Lﬁ) , Or
pidly / q (90) ¥ = Gee-i/2)
0 gt u
=S4 — 91
ox’ (p2 2 O

where i1 =du /dt'. Integration of (91) yields:
0(x’,t) j —+ x "+ h(t) 92)

and where hi(t') is an undetermined constant of integration. From Eq. (92) we can get:

00 . . e¥dx" gu gu
R RRE e 1 93)

o 0 ¢ ¢ ¢

Substituting Egs. (92) and (93) into Eq. (89), we have:

%o
a(x’)

. .2 , . 2

o i, o U X dx" g A3 g
2KEex’ + +—x"+h(t) +—+ —+5 0 [0——0” + 25 94
|:( F\J 2 ( ) 4 gO (PZ (PZ x=0 |P F(p (P3 ( )
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o’ _d’
a(x/)Z déz 4

function of & only, so it is necessary that g()=g,=constant, and

Since

which is a function of & only, the right-hand side of Eq. (94) is also a

.. ) .
(KEex +Z)+2x + ht )+ + &1
r’ 2 4 ¥

B is real and arbitrary, then

0= V(&) . Next, we assume that Vy(&)=V(E)-B, where

x =

=, 0 i , gu S U
2KEex"+ ==V () —=x" +|B—5|yoo —h(t) —— 95
T =@ + Bl i) %5)
Clearly in the case discussed, V;,(§)=0, and the function in the brackets in Eq. (95) is a
function of t’. Substituting Eq. (95) into Eq. (94), we can get [80-81]:

¢ .~ A-~3 ~3
£=B(P—F(P +g§/(P (96)

This shows that ¢ is the solution of Eq. (96) when B and g are constant. For large [¢|, we
may assume that ‘fp‘ <B/ \é\HA , when A is a small constant. To ensure that ¢ and d*¢/d&>
approach zero when [g| — o, only the solution corresponding to go=0 in Eq. (96) is kept, and
it can be shown that this soliton solution is stable in such a case. Therefore, we choose go=0
and obtain the following from Eq. (91):

00 /0x" =i /2 (97)
Thus, we obtain from Eq. (95) that

.. ) .2 n_ _g_l 2 /_é N2 /413 T2
2KEex’+g=—Ex'+B—h(t‘)-u ) h(t)—[ﬁ = 41) Jt 3(KEe) (t)’ + evKE(t) (98)
r 2 4
Substituting Eq. (98) into Egs. (92) - (93), we obtain:
o 1 ’ o 1 2 |y 4 7 N\2 (417\3 (112
0=| —2KEet' +— +|B——=—=v" | —=(KEe)*(t)” + evKE(t 99
(2KEer s 2o+ B -1 |- (KB (1) + vk EC) (99
Finally, substituting the Eq. (99) into Eq. (96), we can get
ﬂ_5~+£~3_0 (100)
P ¢+

When >0, the solution of. Eq. (100) is of the form

0= IZBTF sech(/BE) (101)

Thus [80-81]
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2_ —
oe 2[5{ sech[ﬁ[ /21:2rx+2e1<15t . ot dﬂx
N £12,3 £.2
expli ( ZeKEt+B] errzzl"x+(B_(x_1U2]t_4(eKE3) £, VKeEt (102)
h 2 h I 4 h 3h h

This is also a soliton solution, but its shape, amplitude and velocity have been changed
relatively as compared to that of Eq. (87). It can be shown that Eq. (102) does indeed satisfy
Eq. (85). Thus, equation (85) has a soliton solution. It can also be shown that this solition
solution is stable.

6.2 The properties of soliton motion of the superconductive electrons
For the solution of Eq. (102), we may define a generalized time-dependent wave number,

k= 89, =Y _oKEet and a frequency
o’ 2

o= _g? = 2I<Eex'—([5 —% —iuzj +e(KEe)* (t')? -

(103)
2KEevt = 2KEex' —B— % + K2

The usual Hamilton equations for the superconductive electron (soliton) in the macroscopic

quantum systems are still valid here and can be written as [80-81] ;ii{, :_gut , =—2KEe,
X
then the group velocity of the superconductive electron is
X’ dm v =, -,
Vv, =—=—1|, =2| =—2KEet’' |=v—4KEet 104
& dr ok’ (2 J (104)

This means that the frequency o still represents the meaning of Hamiltonian in the case of
do _do  dk dw, dx’

ar— dk'ar T o'k dr

nonlinear quantum systems. Hence, =0, as seen in the usual

stationary linear medium.

These relations in Eqgs. (103)-(104) show that the superconductive electrons move as if they
were classical particles moving with a constant acceleration in the invariant electric-field,
and that the acceleration is given by —4KEe . If v >0, the soliton initially travels toward the
overdense region, it then suffers a deceleration and its velocity changes sign. The soliton is
then reflected and accelerated toward the underdense region.The penetration distance into
the overdense region depends on the initial velocity v .

From the above studies we see that the time-dependent motion of superconductive electrons
still behaves like a soliton in non-equilibrium state of superconductor. Therefore, we can
conclude that the electrons in the superconductors are essentially a soliton in both time-
independent steady state and time-dependent dynamic state systems. This means that the
soliton motion of the superconductive electrons causes the superconductivity of material.
Then the superconductors have a complete conductivity and nonresistance property
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because the solitons can move over a macroscopic distances retaining its amplitude,
velocity, energy and other quasi- particle features. In such a case the motions of the
electrons in the superconductors are described by a nonlinear Schrédinger equations (52),
or (53) or (80) or (82) or (84). According to the soliton theory, the electrons in the
superconductors are localized and have a wave-corpuscle duality due to the nonlinear
interaction, which is completely different from those in the quantum mechanics.
Therefore, the electrons in superconductors should be described in nonlinear quantum
mechanics[16-17].

7. The transmission features of magnetic-flux lines in the Josephson
junctions

7.1 The transmission equation of magnetic-flux lines
We have learned that in a homogeneous bulk superconductor, the phase 6(r,t) of the
electron wave function ¢(7,t)=f (?,t)eig(i’f) is constant, independent of position and time.
However, in an inhomogeneous superconductor such as a superconductive junction
discussed above, 6 becomes dependent of r and t. In the previous section, we discussed
the Josephson effects in the S-N-S or S-I-5, and SNIS junctions starting from the
Hamiltonican and the Ginzburg-Landau equations satisfied by ¢(7,t), and showed that the
Josephson current, whether dc or ac, is a function of the phase change, p =A6=6, — 6, . The
dependence of the Josephson current on ¢ is clearly seen in Eq. (78) . This clearly indicates
that the Josephson current is caused by the phase change of the superconductive electrons.
Josephson himself derived the equations satisfied by the phase difference ¢, known as the
Josephson relations, through his studies on both the dc and ac Josephson effects. The
Josephson relations for the Josephson effects in superconductor junctions can be
summarized as the following,

J.=J,sino, 129 _2ev ha—“’=2ed'ﬁy /c, 799 —oed'H, /c (105)

ot ox oy

where d’ is the thickness of the junction. Because the voltage V and magnetic field H are
not determined, equation (105) is not a set of complete equations. Generally, these equations
are solved simultaneously with the Maxwell equation Xxﬁ =(4n/c)] . Assuming that the
magnetic field is applied in the xy plane, i.e. H=(Hx,Hy,0), the above Maxwell equation
becomes

Jd — J — 4t
—Hy(x,y,t)——Hx(x,y,t)=—]J(x,y,1) (106)
ox dy c

In this case, the total current in the junction is given by [ = J (x,y,t)+ ], (x,y,t)+ J;(x,y,£) + ]y
In the above equation, J(x,y,t)is the superconductive current density, ], (x,y,t)is the
normal current density in the junction (J, =V/R(V ) if the resistance in the junction is R(V )
and a voltage V is applied at two ends of the junction), J,(x,y,t) is called a displacement
current and it is given by ], =CdV/(t) / dt , where C is the capacity of the junction, and ], is a
constant current density. Solving the equations in Eqgs,(102) and (106) simultaneously, we
can get
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1 9% Jdo, 1
Vio-— — —sm +1 10
0 Uo(at Yo at) " o+ (107)

where v, = c? /4nCd',y,=1/RC, 7», =\/c2h/4nd'e*,lo =4e* 1), /ch,et=2e .
Equation (107) is the equation satisfied by the phase difference. It is a Sine-Gordon equation
(SGE) with a dissipative term. From Eq.(105), we see that the phase difference ¢ depends on

the external magnetic field ﬁ, thus the magnetic flux in the junction

IHds = Sf)A odl = (j)(pdl can be specified in terms of ¢, where A is vector potential of

electromagnetic fleld, dlis line element of vortex lines. Equation (107) represents
transmission of superconductive vortex lines. It is a nonlinear equation. Therefore, we know
clearly that the Josephson effect and the related transmission of the vortex line, or magnetic
flux, along the junctions are also nonlinear problems. The Sine-Gordon equation given
above has been extensively studied by many scientists including Kivshar and Malomed[39-
40]. We will solve it here using different approaches.

7.2 The transmission features of magnetic-flux lines
Assuming that the resistance R in the junction is very high, so that J,, — 0, or equivivalently
Yo — 0, setting also Iy = 0, equation (107) reduces to

19% 1
v2<p—:a - xz —sin@ (108)
0

Define X =x/A;,T=0vyt/A; , then in one-dimension, the above equation becomes

9% : 9%¢
X" or’

=sin@

which is the 1D Sine-Gordon equation. If we further assume that ¢ = ¢(X,T) = ¢(8') with

0'=X'-X,— 0T, X'=X /Jhc / 2LI,e,T'=T / \[2I,¢ / he

it becomes (1—12?)@3.(0') = 2(A'= cos@) ,where A’ is a constant of integration. Thus

Ja 1A'~ coso) 2 dp=28v6!

where v=1/+1- v?,8=141. Choosing A’=1, we have

i -1/2
["lsin(e/2)]  dp=2ve'

A kink soliton solution can be obtained as follows +v0'=In[tan(¢/2)], 'or
@(0') = 4tan'[exp(+v0'")] . Thus yields

O(X',T") = 4tan" {exp[dv(X - X, — vT")]} (109)
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From the Josephson relations, the electric potential difference across the junction can be
written as

y= Ao _ e 49 o5, 121 @0 coopry(x- X, - oT)]
2edT' 2cmdT! hic” 2cm

where ¢, =nhc=2x107 Gauss / cm™'is a quantum fluxon, c is the speed of light. A similar
expression can be derived for the magnetic field

Ho= 2t 40 _ @ 40 _pgy 1218 @0 cooppy(x- X, - oT)]
2edX' 2cmdX' hict 2cm

We can then determine the magnetic flux through a junction with a length of L and a cross
section of 1 cm2. The result is

®'= [~ H,(x,t)dx=By[ " H, (X', T)dX' =8¢,

Therefore, the kink (8=+1) carries a single quantum of magnetic flux in the extended
Josephson junction. Such an excitation is often called a fluxon, and the Sine-Gordon
equation or Eq.(107) is often referred to as transmission equation of quantum flux or fluxon.
The excitation corresponding to 8 = —1 is called an antifluxon. Fluxon is an extremely stable
formation. However, it can be easily controlled with the help of external effects. It may be
used as a basic unit of information.

This result shows clearly that magnetic flux in superconductors is quantized and this is a
macroscopic quantum effect as mentioned in Section 1. The transmission of the quantum
magnetic flux through the superconductive junctions is described by the above nonlinear
dynamic equation (107) or (108).The energy of the soliton can be determined and it is given by

E=8m? /B, where mz/le/X%.

However, the boundary conditions must be considered for real superconductors. Various
boundary conditions have been considered and studied. For example, we can assume the
following boundary conditions for a 1D superconductor, ¢,.(0,t)=¢,(L,t)=0. Lamb[47]
obtained the following soliton solution for the SG equation (108)

o(x, ) = 4tan” [A(x)g(1)] (110)

where h and g are the general Jacobian elliptical functions and satisfy the following
equations

[h() P =a'h* +( A +bY* —c', [ =c'h* +b'h* —a'

with a’, b’, and ¢’ being arbitrary constants. Coustabile et al. also gave the plasma oscillation,
breathing oscillation and vortex line oscillation solutions for the SG equation under certain
boundary conditions. All of these can be regarded as the soliton solution under the given
conditions.

Solutions of Eq.(108) in two and three-dimensional cases can also be found[80-81]. In two-
dimensional case, the solution is given by
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18X, T)

X,Y, TY=4tan™
o( )=4tan FXYT)

]
where X=x/A;, Y=y /A, T=0vpt/A;, f =1+a(1,2)e"1*¥2 = (2,3)e">"¥34(3,1)e¥1 ¥

g=e"" +e¥2 +a(1,2)a(2,3)a(3,1)e" 2+

and

y1=pX+qY -Qa-y),pl +q7 -Q7 =1,(i=1,2,3)

(pi —Pj)2+(‘7i—‘ij)2+(9i _QJ')Z

(111)

(i +p;) + (0 +4;) +(Q +))?
1 N Q,
In addition, Py, qi and Q; satisfy det|p, g, €|=0. In the three-dimensional case, the
ps g3 Q3
solution is given by
o(X,Y,Z,T)= 4tan’1[M], )

f(X,Y,Z,T)

where X, Y , and T are similarly defined as in the 2D case given above, and Z=2z /A ] -

functions f and g are defined as

f=dX,e"" 4 dY,eV2 ™V 1 dZ,e"1 Y 11, g=et +e2 + e +dX,dY,dZ,et Y

v, =y X +a,Y + a5 +bT —C; a4 +a,° +a5> —b? =1,(i=X,Y,Z)

with

] zkl Ay = (b b)],(ls]s3),

Zk 1k+a]k (bi+bj) ]

here y; is a linear combination of y; andy, , ie., y;=o0y; +By,.

(112)

The

We now discuss the SG equation with a dissipative term Y,d¢ /dt. First we make the

following substitutions to simplify the equation
X=x/A,T=0vpt/Aj=t/w,a :yok% /UO,B‘:IOA%

In terms of these new parameters, the 1D SG equation (107) can be rewritten as

0%¢p %9 0o . ,
axz—ﬁ—aﬁ:squB

The analytical solution of Eq.(113) is not easily found. Now let

(113)
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2
_1-w

1 X-o,T av,
o =- M= 7 '= /P = T+ ' 114
22 T " P=n+e (114)
Equation (113) then becomes
2
i%+q@f+ﬂn¢—E:0 (115)
an an

This equation is the same as that of a pendulum being driven by a constant external moment
and a frictional force which is proportional to the angular displacement. The solution of the
latter is well known, generally there exists an stable soliton solution[80-81]. Let Y =d¢'/dn,
equation (115) can be written as

oY
2 4 g'Y+sing'-B'=0 116
n q 0 (116)

For 0<B'<1,wecanlet B'=sing,(0 <@, <n/2) and ¢'=-n—¢@, +9,, then, equation (116)
becomes

Yg—yz—q'Y+sin(p0 + sin(Q; — @) (117)
m

Expand Y as a power series of ¢, ie, Y= chn(pgl, and inserting it into Eq.(117), and
comparing coefficients of terms of the same power of ¢; on both sides, we get

2 .
q' 1 sing, 1 52 cosg

+—4cosQ,,C) = 7 0y = —2c5 — ,Cp = (—=5cyc53 —
1 ®o,C2 7730, 2 51\ 2 3 )€y =— 561\ 203

1
[ :—%i

singu - (118)

and so on. Substituting these c,'s into Y =d¢'/ dn:zncn(p%, the solution of ¢, may be
found by integrating m :J.d(p1 / Z"cn(p%. In general, this equation has soliton solution or
elliptical wave solution. For example, when d¢'/ dn = c,¢; +c,¢} +c;9; it can be found that

2 A-B . 4 \/A—(pl
- F ,
"=Ta-c (\/A—C sin (=g )

where F(k,@;) is the first Legendre elliptical integral, and A, B and C are constants. The
inverse function ¢, of F(k,¢,) is the Jacobian amplitude ' ¢, = amF . Thus,

1, [A-ep, \/A—C \/A—(pl B \/A—C
sin (\/A_B)—am A—Bn or A_B)—sn( A—Bn)

where snF is the Jacobian sine function. Introducing the symbol cscF = 1/snF, the solution

can be written as
A-C
P =A—(A—B)[csc(,/ﬁn)]z (119)
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This is a elliptic function. It can be shown that the corresponding solution at [n|— e is a
solitary wave.

It can be seen from the above discussion that the quantum magnetic flux lines (vortex lines)
move along a superconductive junction in the form of solitons. The transmission velocity v,
can be obtained from h=o0wy1-v; and ¢
Yo =1/\/1+[(X/h(%)]2 .

That is, the transmission velocity of the vortex lines depends on the current I, injected and
the characteristic decaying constant o of the Josephson junction. When o is finite, the
greater the injection current Iy is, the faster the transmission velocity will be; and when Iy is
finite, the greater the a is, the smaller the v, will be, which are realistic.

in Eq. (118) and it is given by

n

8. Conclusions

We here first reviewed the properties of superconductivity and macroscopic quantum
effects, which are different from the microscopic quantum effects, obtained from some
experiments. The macroscopic quantum effects occurred on the macroscopic scale are
caused by the collective motions of microscopic particles , such as electrons in
superconductors, after the symmetry of the system is broken due to nonlinear interactions.
Such interactions result in Bose condensation and self-coherence of particles in these
systems. Meanwhile, we also studied the properties of motion of superconductive electrons,
and arrived at the soliton solutions of time-independent and time-dependent Ginzburg-
Landau equation in superconductor, which are, in essence, a kind of nonlinear Schrédinger
equation. These solitons, with wave-corpuscle duality, are due to the nonlinear interactions
arising from the electron-phonon interaction in superconductors, in which the nonlinear
interaction suppresses the dispersive effect of the kinetic energy in these dynamic equations,
thus a soliton states of the superconductive electrons, which can move over a macroscopic
distances retaining the energy, momuntum and other quasiparticle properties in the
systems, are formed. Meanwhile, we used these dynamic equations and their soliton
solutions to obtain, and explain, these macroscopic quantum effects and superconductivity
of the systems. Effects such as quantization of magnetic flux in superconductors and the
Josephson effect of superconductivity junctions,thus we concluded that the
superconductivity and macroscopic quantum effects are a kind of nonlinear quantum effects
and arise from the soliton motions of superconductive electrons. This shows clearly that
studying the essences of macroscopic quantum effects and properties of motion of
microscopic particles in the superconductors has important significance of physics.
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FFLO and Vortex States in Superconductors With
Strong Paramagnetic Effect
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1. Introduction

In type-II superconductors (Fetter & Hohenberg, 1969), magnetic fields penetrate into
superconductors as quantized flux lines with flux quanta ¢g = hc/2e, where h is Planck
constant, ¢ velocity of light, e electron’s charge. Around a flux line, pair potential A(r) of
Cooper pair has a vortex structure, where A(r) has phase winding 27 reflecting screening
super-current around a flux line. At the vortex core, amplitude |A(r)| is suppressed, and low
energy excitations appear within the superconducting gap of the electronic states.

Vortex physics makes important roles in the study of unconventional superconductors,
because unconventional characters hidden in the uniform superconducting state at a zero field
appear around vortices. For example, in superconductors with anisotropic superconducting
gap on Fermi surface in momentum space, electronic states around a vortex show real-space
anisotropy in the local density of states (LDOS) N(E, r) around vortex core. The vortex core
image is observed by scanning tunneling microscopy (STM) (Hess et al., 1990; Nishimori et al.,
2004). Around vortex cores, local zero-energy electronic states at Fermi level are seen as star
shape with tails extending toward node or weak-gap directions (Hayashi et al., 1996; 1997;
Ichioka et al., 1996; Schopohl & Maki, 1995). From the spatial average of the zero-energy
states, we can estimate the zero-energy density of states (DOS) N(E = 0), which determines
low temperature (T) behaviors of physical quantities. Due to the differences of electronic
states around the vortex core, N(E = 0) shows different magnetic field (H) dependences.
These H-dependences are studied to identify the pairing symmetry in the experiments for
vortex states, such as, electronic specific heat (Moler et al., 1994; Nohara et al., 1999), electronic
thermal conductivity, and paramagnetic susceptibility (Zheng et al., 2002). For example, the
H-dependence of low temperature specific heat C(H) is often used to distinguish the presence
of nodes in the pairing potential. As for Sommerfeld coefficient y(H) = limr_,0 C(H)/T,
9(H) o H in s-wave pairing with full gap, and (H) o v/H by the Volovik effect in d-wave
pairing with line nodes (Ichioka et al., 1999a;b; Miranovi¢ et al., 2003; Nakai et al., 2004;
Volovik, 1993). The curves of (H) are expected to smoothly recover to the normal state
value towards the upper critical field Hy. However, in some heavy fermion superconductors,
C(H) deviates from these curves. In CeColns, C(H) shows convex curves, i.e., C(H) o H*
(« > 1) at higher fields(Ikeda et al., 2001). This behavior is not understood only by effects
of the pairing symmetry. A similar C(H) behavior is observed also in UBej; (Ramirez et al.,
1999). The experimental data of magnetization curve My, (H) in CeColns show a convex
curve at higher fields, instead of a conventional concave curve (Tayama et al., 2002). As an
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unconventional behavior of CeColns, the small angle neutron scattering (SANS) experiment
reported anomalous H-dependence of flux line lattice (FLL) form factor determined from the
Bragg intensity (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al., 2010). While
the form factor shows exponential decay as a function of H in many superconductors, it
increases until near Hy, for H || ¢ in CeColns. In some heavy fermion superconductors, the
paramagnetic effects due to Zeeman shift are important to understand the properties of the
vortex states, because the superconductivity survives until under high magnetic fields due to
the effective mass enhancement. A heavy fermion compound CeColns is a prime candidate of
a superconductor with strong Pauli-paramagnetic effect (Matsuda & Shimahara, 2007). There
at higher fields H, changes to the first order phase transition (Bianchi et al., 2002; Izawa et al.,
2001; Tayama et al., 2002) and new phase, considered as Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, appears (Bianchi, Movshovich, Capan, Pagliuso & Sarrao, 2003; Radovan
et al., 2003). As for properties of CeColns, the contribution of antiferromagnetic fluctuation
and quantum critical point (QCP) is also proposed in addition to the strong paramagnetic
effect (Bianchi, Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003). Therefore,
it is expected to study whether properties of vortex states in CeColns are theoretically
explained only by the paramagnetic effect. Theoretical studies of the H-dependences also
help us to estimate strength of the paramagnetic effect, in addition to pairing symmetry, from
experimental data of the H-dependences in various superconductors.

In this chapter, we concentrate to discuss the paramagnetic effect in the vortex states, to see
how the paramagnetic effect changes structures and properties of vortex states. The BCS
Hamiltonian in magnetic field is given by

HopoN = T [l (nKe(ne(n

o=11
—/d311/d3r2 {A(fhrz)ﬂ(fl)lﬁf(fz) +A (ry, 1)) (r2) 4 (r1) } 1
for superconductors of spin-singlet pairing, with
AV I
Ky (r) = 7m (T + %A) +ougB(r) — po, )

o = =1 for up/down spin electrons. Suppression of superconductivity by magnetic field
occurs by two contributions. One is diamagnetic pair-breaking from vector potential A in
Hamiltonian inducing screening current of vortex structure. And the other is paramagnetic
pair-breaking from Zeeman term, which induces splitting of up-spin and down-spin Fermi
surfaces as schematically presented in Fig. 1. Due to the Zeeman shift, in normal states,
numbers of occupied electron states are imbalance between up-spin and down-spin electrons.
The imbalance induces paramagnetic moment. In superconducting state with spin-singlet
pairing, formations of Cooper pair between up-spin and down-spin electrons reduce the
imbalance, and suppress the paramagnetic moment. However, the paramagnetic moment
may appear at place where superconductivity is locally suppressed, such as around vortex
core. Therefore, it is important to quantitatively estimate the spatial structure of paramagnetic
moment and the contributions to properties of superconductors in vortex states.

One of other paramagnetic effect is paramagnetic pair breaking. When the Zeeman effect is
negligible, as in Fig. 1(a), for Cooper pair of up-spin and down-spin electrons at Fermi level,
total momentum Q of the pair is zero, i.e., Q = k+ (—k) = 0. However, in the presence of
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Fig. 1. Paramagnetic effect by Zeeman shift of energy dispersion is schematically presented.
Bold lines indicate occupied states. (a) The case when Zeeman shift is negligible. For Cooper
pairs at Fermi level, total momentum Q = k + (—k) = 0. (b) When Zeeman shift is
significant, the energy dispersions of up-spin and down-spin electrons are separated. When
Q =0, the electrons of Cooper pair are not at Fermi level. In FFLO states, Q # 0 so that
electrons of Cooper pair are located at Fermi level.

Zeeman splitting, in order to keep Q = 0, Cooper pair is formed between electrons far from
Fermi level, as shown in Fig. 1(b). Since the energy gain by this pairing is smaller than that
of negligible paramagnetic case, the Zeeman splitting induces paramagnetic pair-breaking
of superconductivity. In addition to H suppressed by the paramagnetic pair-breaking, it
is important to quantitatively estimate the contribution of paramagnetic pair-breaking on
properties of vortex states at H < Hcp.

When paramagnetic effect by Zeeman shift is further significant, transition to FFLO state
occurs at high magnetic fields near Hp. In FFLO state, as shown in Fig. 1(b), electrons at Fermi
level form Cooper pair with non-zero total momentum (Q # 0), which indicates periodic
modulation of pair potential (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965; Machida &
Nakanishi, 1984). When FFLO state appears in vortex state, we have to estimate properties
of the FFLO state, considering both of vortex and FFLO modulation (Adachi & Ikeda, 2003;
Houzet & Buzdin, 2001; Ichioka et al., 2007; Ikeda & Adachi, 2004; Mizushima et al., 2005a;b;
Tachiki et al., 1996). Another system for significant paramagnetic effect is superfluidity of
neutral °Li atom gases under the population imbalance of two species for pairing (Machida
et al., 2006; Partridge et al., 2006; Takahashi et al., 2006; Zwierlein et al., 2006). There, we can
study vortex state by rotating fermion superfluids, under control of paramagnetic effect by
loaded population imbalance.

For theoretical studies of vortex states including electronic structure, we have to use
formulation of microscopic theory, such as Bogoliubov-de Gennes (BdG) theory (Mizushima
et al., 2005a;b; Takahashi et al., 2006) or quasi-classical Eilenberger theory (Eilenberger,
1968; Klein, 1987). In this chapter, based on the selfconsistent Eilenberger theory (Ichioka
et al., 1999a;b; 1997; Miranovi¢ et al., 2003), we discuss interesting phenomena of vortex
states in superconductors with strong paramagnetic effect, i.e.,, (i) anomalous magnetic
field dependence of physical quantities, and (ii) FFLO vortex states. We study the spatial
structure of the vortex states with and without FFLO modulation, in the presence of the
paramagnetic effect due to Zeeman-shift (Hiragi et al., 2010; Ichioka et al., 2007; Ichioka &
Machida, 2007; Watanabe et al., 2005). Since we calculate the vortex structure in vortex lattice
states, self-consistently with local electronic states, we can quantitatively estimate the field
dependence of some physical quantities. We will clarify the paramagnetic effect on the vortex
core structure, calculating the pair potential, paramagnetic moment, internal magnetic field,
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and local electronic states. We also study the paramagnetic effect by quantitatively estimating
the H-dependence of low temperature specific heat, Knight shift, magnetization and FLL
form factors. For quantitative estimate, it is important to appropriately determine vortex core
structure by selfconsistent calculation in vortex lattice states. These theoretical studies of the
magnetic field dependences help us to evaluate the strength of the paramagnetic effect from
the experimental data of the H-dependences in various superconductors.

After giving our formulation of selfconsistent Eilenberger theory in Sec. 2, we study the
paramagnetic effect in vortex states without FFLO modulation in Sec. 3, where we discuss the
H-dependence of paramagnetic susceptibility, low temperature specific heat, magnetization
curve, FLL form factor, and their comparison with experimental data in CeColns. We also
show the paramagnetic contributions on the vortex core structure, and the local electronic
state in the presence of Zeeman shift. Section 4 is for the study of FFLO vortex state, in order
to theoretically estimate properties of the FFLO vortex states, and to show how the properties
appear in experimental data. We study the spatial structure of pair potential, paramagnetic
moment, internal field, and local electronic state, including estimate of magnetic field range
for stable FFLO vortex state. As possible methods to directly observe the FFLO vortex state,
we discuss the NMR spectrum and FLL form factors, reflecting FFLO vortex structure. Last
section is devoted to summary and discussions.

2. Quasiclassical theory including paramagnetic effect

One of the methods to study properties of superconductors by microscopic theory is a
formulation of Green'’s functions. With field operators ¢y, 1|, Green’s functions are defined
as

G(r,mr,v') = —(Te[ps(r, DI, 7)),
F(r, ', ') = —(Telp(r, D)y, (¢, 7)), Fl(rmr,v) = ~(Te[p{(r, )i (', 7)) ©)

in imaginary time formulation, where T; indicates time-ordering operator of 7, and (- - - ) is
statistical ensemble average. The Green’s functions obey Gor’kov equation derived from the
BCS Hamiltonian of Eq. (1). Behaviors of Green’s functions include rapid oscillation of atomic
short scale at the Fermi energy. Thus, in order to solve Gor’kov equation or BAG equation
for vortex structure, we need heavy calculation treating all atomic sites within a unit cell of
vortex lattice. To reduce the task of the calculation, we adopt quasiclassical approximation to
integrate out the rapid oscillation of the atomic scale ~ 1/kg (kg is Fermi wave number), and
consider only the spatial variation in the length scale of the superconducting coherence length
Co- This is appropriate when &y > 1/kg, which is satisfied in most of superconductors in solid
state physics. The quasiclassical Green’s functions are defined as

s@nkin) = [ 6w in),
f(wy, kg, 1) = / d—fF(wn,k,r), f+(wn,k1:,r) = / d—fP’L(wn,k,r), (4)

where we consider the Fourier transformation of the Green’s functions; from T — T to
Matsubara frequency w;,, and from r —r’ to relative momentum k, and integral about
&= K/2m— Mo, i.e., momentum directions perpendicular to the Fermi surface. Thus, the
quasiclassical Green’s functions depends on the momentum kg on the Fermi surface, and the
center-of-mass coordinate (r +1')/2 — 1.
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From the Gor’kov equation, Eilenberger equations for quasiclassical Green’s functions are
derived as

{wn +ipB+v- (V+iA)} f = A(r, kg)g,
{wp +iuB —v-(V —iA)} fT = A*(r,kp)g, 5

with v- Vg = A*(r,kg)f — Al ke)ff, g = (1= fF)1/2, Reg > 0, Alrke) = A(r)g(ke),
and p = By / kg Te. In this chapter, length, temperature, Fermi velocity, magnetic field and
vector potential are, respectively, in units of Ry, T, O, By and BgRy. Here, Ry = hop/2mkgT,
is in the order of coherence length, By = fc/2|e|R3, and o = <U}2;>]1(£ Zis an averaged Fermi
velocity on the Fermi surface. (- - )y, indicates the Fermi surface average. Energy E, pair
potential A and Matsubara frequency w; are in unit of wkgT.. We set the pairing function
¢(kp) = 1 in the s-wave pairing, and ¢(kp) = v2(k2 — k2)/ (k2 + k2) in the d-wave pairing.
The vector potential is given by A = 1B x r + a in the symmetric gauge, with an average flux
density B = (0,0, B). The internal field is obtained as B(r) = B+ V x a.

The pair potential is selfconsistently calculated by

AR =goNoT Y, (9" 0ke) (F 7)), ©)

0<wy<weut

with (goNo)™' = InT + 2T Yp<(p, <co,, Wn *-  We set high-energy cutoff of the pairing
interaction as weyt = 20kgT.. The vector potential is selfconsistently determined by the
paramagnetic moment Mpara = (0,0, Mpara) and the supercurrent js as

V x V xa(r) =js(r) + V X Mpara(r) = j(1), (7)
with
o) =25 ¥ (veimi{gh. ®
0<wy,
B 2T
Mpara(l‘) = M() (l(;) - ﬁ Ogn (Im {g}>kF> . (9)

Here, the normal state paramagnetic moment My = (u/x)?B, x = By/7mtkgTe\/87Np, N is
DOS at the Fermi energy in the normal state.

The unit cell of the vortex lattice is given by r = wj(u; — up) + wpuy + wzuz with —0.5 <
w; < 0.5 (i=1, 2, 3), uy = (a,0,0), up = (fa,ay,0) with { = 1/2, and u3 = (0,0,L). For
triangular vortex lattice a,/a = V3/2, and ay/a = 1/2 for square vortex lattice. For the
FFLO modulation, we assume A(x,y,z) = A(x,y,z+ L) and A(x,y,z) = —A(x,y, —z). Then,
A(r) = 0 at the FFLO nodal planes z = 0, and £0.5L. These configurations of the FFLO vortex
structure are schematically shown in Fig. 2, which show the unit cell in the xz plane including
vortex lines, and in the xy plane. We divide w; to N;-mesh points in our numerical studies,
and calculate the quasiclassical Green’s functions, A(r), Mpara(r) and j(r) at each mesh point
in the three dimensional (3D) space. Typically we set Ny = N, = N3 = 31 for the calculation
of vortex states with FFLO modulation. For the vortex states without FFLO modulation, we
assume uniform structure along the magnetic field direction, and set Ny = Np = 41.

We solve Eq. (5) for g, f, f T and Egs. (6)-(9) for A(r), Mpara(r), A(r), alternately, and obtain
selfconsistent solutions, by fixing a unit cell of the vortex lattice and a period L of the FFLO
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Fig. 2. Configurations of the vortex lines and the FFLO nodal planes are schematically
presented in the xz plane including vortex lines (a) and in the xy plane (b). The inter-vortex
distance is a in the x direction, and the distance between the FFLO nodal planes is L/2. The
hatched region indicates the unit cell. In (a), along the trajectories presented by “0 — 7”,
the pair potential changes the sign (+ — —) across the vortex line or across the FFLO nodal
plane, due to the 7r-phase shift of the pair potential. Along the trajectory presented by

“0 — 27", the sign of the the pair potential does not change (+ — +) across the
intersection point of the vortex line and the FFLO nodal plane, since the phase shift is 277. In
(b), e indicates the vortex center. u; — up and u, are unit vectors of the vortex lattice.

modulation. When we solve Eq. (5), we estimate A(r) and A(r) at arbitrary positions by the
interpolation from their values at the mesh points, and by the periodic boundary condition of
the unit cell including the phase factor due to the magnetic field. The boundary condition is
given by

A(r+R) = A(r)eiX(r'R) (10)
1
(e R) =27 (0 = ) 5 (ot ) 02— ) ()

for R = muy + nuy (m, n : integer), when the vortex center is located at (xo, yo) — %(ul +uy).
In the selfconsistent calculation of a, we solve Eq. (7) in the Fourier space q;,m,,m;, taking
account of the current conservation V - j(r) = 0, so that the average flux density per unit cell
of the vortex lattice is kept constant. The wave number q is discretized as

Qg my,my = M1q1 + Maq2 + m3q3 (12)

with integers m; (i = 1,2,3), where q1 = (271/a,—7/ay,0), @ = (27/a,/ay,0), and
q3 = (0,0,2/L). The lattice momentum is defined as G(quy,m,m;) = (Gx, Gy, Gz)
with Gy = [Nysin(27m;/Ny) + Npsin(2mmy/Np)]/a, Gy = [—Nysin(27tmy/Ny) +
Ny sin(27tmy/No)|/2ay, and G; = Nzsin(27m3z/N3)/L. We obtain the Fourier component
of a(r) as a(q) = j'(q)/|G|?, where j'(q) = j(q) — G (G -j(q)) /|G|* ensuring the current
conservation V -j'(r) = 0, and j(q) is the Fourier component of j(r) in Eq. (7) (Klein, 1987).
The final selfconsistent solution satisfies V - j(r) = 0.
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Using selfconsistent solutions, we calculate free energy, external field, and LDOS. In
Eilenberger theory, free energy is given by

F=[ ar{[B@) —HP - 2[B(x)]
unitcell
HAMPIT+2T Y w) =T ¥ (Imkwn) ) (13)
0<wn <Weut ‘wn ‘ <Weut

with
I(r,k,wy) = ApfT + A*¢p* f

Wi 1 . :
+(g— Iwn|){7 (@Wn +ipB +v- (V +iA)) f +

fiJr (wn +ipB+v- (V —iA))f*}. (14)

Using Egs. (5) and (6), we obtain

F= dr{xz\B(r)—H|2—y2\B(r)\2+T y Re<§%(A¢f*+A*¢*f)>k }.(15)

unitcell |n| <@eat

Using Doria-Gubernatis-Rainer scaling (Doria et al., 1990; Watanabe et al., 2005), we obtain
the relation of B and the external field H as

2

H = ( - %) (B+ (B - B)?) /B)

+ *
i <0<Zw <yB(r)Im {gh+ %Re{(f?_%)g} + wiRe{g — 1}>kF>r, (16)

where (---); indicates the spatial average. We consider the case when ¥ = 89 and low
temperature T/T. = 0.1. For two-dimensional (2D) Fermi surface, k = (7¢(3)/8)"/?x¢p ~
kgL (Miranovi¢ & Machida, 2003). Therefore we consider the case of typical type-II
sup4erconduct0rs with large Ginzburg-Landau (GL) parameter. In these parameters, |B — H| <
10~*By.

When we calculate the electronic states, we solve Eq. (5) with iw, — E +in. The LDOS is
givenby N(r, E) = Ny(r,E) + N|(r, E), where

No(r, E) = No(Re{g(wn + iopuB, kg, 1) ico, 5 Etip } )i (17)

with ¢ = 1 (—1) for up (down) spin component. We typically use # = 0.01, which is small
smearing effect of energy by scatterings. The DOS is obtained by the spatial average of the
LDOS as N(E) = N4+(E) + N (E) = (N(r,E))r.

3. Vortex states in superconductors with strong paramagnetic effect

In this section, we study the paramagnetic effect in vortex state without FFLO modulation.
For simplicity, we consider fundamental case of isotropic Fermi surface, that is, 2D cylindrical
Fermi surface with kg = kg(cos6,sin @) and Fermi velocity v = vpy(cos6,sinf). Magnetic
field is applied along the z direction. Even before the FFLO transition, the strong paramagnetic
effect induces anomalous field dependence of some physical quantities by paramagnetic
vortex core and paramagnetic pair-breaking. There are some theoretical approaches to
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the study of paramagnetic effect, such as by BdG theory (Takahashi et al., 2006), or by
Landau level expansion in Eilenberger theory(Adachi et al., 2005). Here, we report results of
quantitative estimate by selfconsistent Eilenberger theory given in previous section (Ichioka
& Machida, 2007).

3.1 Field dependence of paramagnetic susceptibility and zero-energy DOS

First, we discuss the field dependence of zero-energy DOS ¢(H) = N(E = 0)/Np
and paramagnetic susceptibility x(H) = (Mpara(r))r/ My, which are normalized by the
normal state values. From low temperature specific heats C, we obtain y(H) o« C/T
experimentally. And x(H) is observed by the Knight shift in NMR experiments, which
measure the paramagnetic component via the hyperfine coupling between a nuclear spin
and conduction electrons. As shown in Fig. 3, 7 (dashed lines) and x (solid lines) show
almost the same behavior at low temperatures. First, we see the case of d-wave pairing
with line nodes in Fig. 3(a). There (H) and x(H) describe v/H-like recovery smoothly
to the normal state value (y = x = 1 at Hy) in the case of negligible paramagnetic effect
(u = 0.02). With increasing the paramagnetic parameter 1, He is suppressed and the Volovik
curve (H) « v/H gradually changes into curves with a convex curvature. For large 4, He
changes to first order phase transition. We note that at lower fields all curves exhibit a v'H
behavior because the paramagnetic effect (x H) is not effective. Further increasing H, y(H)
behaves quite differently. There we find a turning point field which separates a concave curve
at lower H and a convex curve at higher H. H/H at the inflection point increases as y
decreases. From these behaviors, we can estimate the strength of the paramagnetic effect, .

1

Fig. 3. The magnetic field dependence of paramagnetic susceptibility x(H) (solid lines) and
zero-energy DOS y(H) (dashed lines) at T = 0.1T; for various paramagnetic parameters
u = 0.02,0.86, 1.7, and 2.6 in the d-wave (a) and s-wave (b) pairing cases.

To examine effects of the pairing symmetry, we show (H) and x(H) also for s-wave
pairing in Fig. 3(b). In the H-dependence of y(H) and x(H), differences by the vortex
lattice configuration of triangular or square are negligibly small. The difference in the
H-dependences of Figs. 3(a) and 3(b) at low fields comes from the gap structure of the pairing
function. In the full gap case of s-wave pairing, v(H) and x(H) show H-linear-like behavior at
low fields. With increasing the paramagnetic effect, H-linear behaviors gradually change into
curves with a convex curvature. As seen in Figs. 3(a) and 3(b), paramagnetic effects appear
similarly at high fields both for s-wave and d-wave pairings.

The H-dependence of y(H) for H || c and H || ab was used to identify the pairing symmetry
and paramagnetic effect in URu,Si, (Yano et al., 2008).
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3.2 Field dependence of magnetization

We discuss the paramagnetic effect on the magnetization curves. The magnetization Mg, =
B — H includes both the diamagnetic and the paramagnetic contributions. In Fig. 4,
magnetization curves are presented as a function of H for various y at T = 0.1T; for s-wave
and d-wave pairings. When the paramagnetic effect is negligible, we see typical magnetization
curve of type-II superconductors. There, | M| in s-wave pairing is larger, compared with
that in d-wave pairing. Dashed lines in Fig. 4 indicate the magnetization in normal states,
which shows linear increase of paramagnetic moments as a function of magnetic fields.
When paramagnetic effect is strong for large pt, M1 (H) exhibits a sharp rise near He, by
the paramagnetic pair breaking effect, and that My, (H) has convex curvature at higher
fields, instead of a conventional concave curvature. These behaviors are qualitatively seen
in experimental data of CeColns (Tayama et al., 2002).

u=2.6

Fig. 4. Magnetization curve My, as a function of H at T/T. = 0.1 for u = 0.02, 0.86, 1.7 and
2.6 in s-wave (a) and d-wave (b) pairings. Dashed lines are normal state magnetization.

In Fig. 5(a), magnetization curves are presented as a function of H for various T at u = 1.7.
With increasing T, the rapid increase of My, (H) near Hp is smeared. In Fig. 5(b), Miotal
is plotted as a function of T? for various B. We fit these curves as Mo (T, H) = My +
IB(H)T? + O(T®) at low T. The slope B(H) = limr_, 0> Mo /9T? decreases on raising H
at lower fields. However, at higher fields approaching He, the slope B(H) sharply increases.
Thus, as shown in Fig. 5(c), B(H) as a function of H exhibits a minimum at intermediate H
and rapid increase near H., by the paramagnetic effect when y = 1.7. This is contrasted with
the case of negligible paramagnetic effect (1 = 0.02), where B(H) is a decreasing function of H
until H,. The behavior of B(H) is consistent with that of y(H), since there is a relation f(H) o
9y(H)/9H obtained from a thermodynamic Maxwell’s relation 9> My, /0T> = 9(C/T) /9B
and B ~ H (Adachi et al., 2005). In Fig. 3, we see that for y = 1.7 the slope of y(H) is
decreasing function of H at low H, but changes to increasing function near H,. This behavior
correctly reflects the H-dependence of B(H).

3.3 Paramagnetic contribution on vortex core structure

In order to understand contributions of the paramagnetic effect on the vortex structure, we
illustrate the local structures of the pair potential |A(r)|, paramagnetic moment Mpara(r),
and internal magnetic field B(r) within a unit cell of the vortex lattice in Fig. 6. Since we
assume d-wave pairing with the line node gap here, the vortex core structure is deformed
to fourfold symmetric shape around a vortex core (Ichioka et al., 1999a;b; 1996). It is noted
that the paramagnetic moment is enhanced exclusively around the vortex core, as shown in
Fig. 6(b). Since the contribution of the paramagnetic vortex core is enhanced with increasing



222 Superconductivity — Theory and Applications

"0,
5x10°F 1 510
E Norm: 2
0 ) EE=X)
0,
0,
0, s
-sx10°F /T=0.1 ‘ T L A
E— B — ‘ 0 205 i
@ 0 01 H 02 T (00 rp e

Fig. 5. (a) Magnetization curve M, as a function of H for y = 1.7at T/T. = 0.1, 0.3, 0.5,
0.7,0.9 and 1.0 (normal state) in d-wave pairing. (b) My, as a function of T? at H = 0.01,
0.02,0.03, - - -, 0.21. (c) H-dependence of factor (H) at = 0.02 and 1.7.
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Fig. 6. Spatial structure of the pair potential (a), paramagnetic moment (b) and internal
magnetic field (c) at T = 0.1T; and H ~ B = 0.1By, where a = 11.2R, in d-wave pairing. The
left panels show |A(r)|, Mpara(r), and B(r) within a unit cell of the square vortex lattice at

u = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. y = 0.02, 0.86, 1.7, and 2.6.
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u, internal field B(r) consisting of diamagnetic and paramagnetic contributions is further
enhanced around the vortex core by the paramagnetic effect, as shown in Fig. 6(c). When
u is large, the pair potential |A(r)| is slightly suppressed around the paramagnetic vortex
core, and the vortex core radius is enlarged, as shown in Fig. 6(a).

The enhancement of Mpara(r) around vortex core is related to spatial structure of the LDOS
Ny (r, E). Asshown in Fig. 7(a), the LDOS spectrum shows zero-energy peak at the vortex center,
but the spectrum is shifted to E = & H due to Zeeman shift. There is a relation between the
LDOS spectrum and local paramagnetic moment, as

Mipara(6) =~ [_{Ny(Ex) N (E,1)JdE. (18)

In Fig. 7(a), the peak states at E > 0 is empty for Ny (E, r), and the peak at E < 0 is occupied
for N L(E' r). Therefore, because of Zeeman shift of the zero-energy peak at the vortex core,
large Mpara(r) appears due to the local imbalance of up- and down-spin occupation around
the vortex core. As shown in Figs. 7(b) and 7(c), moving from the vortex center to outside,
the peak of the spectrum is split into two peaks, which are shifted to higher and lower
energies, respectively. When one of split peaks crosses E = 0, the imbalance of up- and
down-spin occupation is decreased. Thus, Mpara(r) is suppressed outside of vortex cores.
This corresponds to the behavior of Knight shift, i.e., the paramagnetic moment is suppressed
in uniform states of spin-singlet pairing superconductors by the formation of Cooper pair
between spin-up and spin-down electrons.

In Figs. 7(d) and 7(e), we present the spectrum of spatially-averaged DOS. In the DOS
spectrum, peaks of the LDOS are smeared by the spatial average. Because of the flat spectrum
at low energies, paramagnetic susceptibility x(H) shows almost the same H-behavior as the
zero-energy DOS y(H) ~ N(E = 0) even for large y, as shown in Fig. 3, while x(H) counts
the DOS contribution in the energy range |E| < uH, i.e., from Eq. (18),

x(H) ~ /OV N;(E)dE/pH. (19)

3.4 Field dependence of flux line lattice form factor

One of the best ways to directly see the accumulation of the paramagnetic moment around the
vortex core is to observe the Bragg scattering intensity of the FLL in SANS experiment. The
intensity of the (h, k)-diffraction peak is given by I,y = |F,x|>/|qy x| with the wave vector
Qi k = hqi +kqo, q1 = (271/a,—m/ay,0) and qo = (27w/a, w/ay,0). The Fourier component
Ey . is given by B(r) = Y,  Fy xexp(iqy k - r). In the SANS for FLL observation, the intensity
of the main peak at (1, k) = (1,0) probes the magnetic field contrast between the vortex cores
and the surrounding.

The field dependence of |F;o|? in our calculations is shown in Fig. 8(a). In the case of
negligible paramagnetic effect (4 = 0.02), |F; o|*> decreases exponentially as a function of H.
This exponential decay is typical behavior of conventional superconductors. With increasing
paramagnetic effect, however, the decreasing slope of | F; o|?> becomes gradual, and changes to
increasing functions of H at lower fields in strong paramagnetic case (i = 2.6).

The reason of anomalous enhancement of |Fjg| at high fields is because |F; | reflects
the enhanced internal field around the vortex core, shown in Fig. 6(c), by the induced
paramagnetic moment at the core. We present H-dependence of |F; o| with the paramagnetic
contribution |M; o| in Fig. 8(b). Fourier component M g is calculated from paramagnetic
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Fig. 7. Local density of states at r/Ry = 0 (a), 0.8 (b) and 1.6 (c) from the vortex center
towards the nearest neighbor vortex direction in d-wave pairing. Solid lines show
N (x, E)/ Ny for up-spin electrons, and dashed lines show N (r,E)/Ng at H = 0.1Bg. 1 = 1.7
and T = 0.1Tc. Spatial-averaged DOS at H/By = 0.01 (d) and 0.1 (e) in d-wave pairing. Solid
lines show N3 (E)/ N for up-spin electrons, and dashed lines show N, (E)/Np.
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Fig. 8. Field dependence of FLL form factor F o for u = 0.02,0.86, 1.7, and 2.6 at T = 0.1T¢ in
d-wave pairing. (a) |F; |? is plotted as a function of H. The vertical axis is in logarithmic

scale. (b). Field dependence of |F; | and the paramagnetic contribution |Mj o| for j = 2.6.
The vertical axis is in linear scale.

moment Mpara(r). From Fig. 8(b), we see that the increasing behavior of |F; o is due to the
paramagnetic contribution My proportional to xH. In Fig. 9, we present how profiles of
Mopara(r) and B(r) change, depending on magnetic fields. The form factors |F; | and |M; o
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |Fj g| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F; o| and | M | decrease at high
fields near Hc, in Fig. 8(b).

The SANS experiment in CeColns for H || c reported that |F; o increases until near H,
instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
2010). The anomalous increasing H-dependence of the SANS intensity in CeColns can
be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
The detailed comparison with the experimental data will be discussed later. Anomalous



FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect 225

0.0002

B-B

0.0001
0.0001F

@ ’ rot )
Fig. 9. Profile of paramagnetic moment Mpara(r) (a) and internal field B(r) — B (b) as a
function of radius r until a midpoint between vortices along nearest neighbor vortex
directions. y = 2.6 and H = 0.02, 0.06, 0.10, 0.12 and 0.14.

enhancement of FLL form factor was also observed in TmNi;B,C, and explained by effective
strong paramagnetic effect (DeBeer-Schmitt et al., 2007).

3.5 Comparison with experimental data in CeColnjs

Here, we discuss anomalous field dependence of low T specific heat, magnetization curve,
and FFL form factor in CeColns, based on the comparison with theoretical estimates of
strong paramagnetic effect by Eilenberger theory. In Fig. 10(a), we present H-dependence of
zero-energy DOS N(E = 0) and low-T specific heat (Ikeda et al., 2001). Both H-dependences
show rapid increase at higher H. However, we see quantitative differences between theory
(line A) and experimental data (circles). Compared to the theoretical estimates, C/T by
experiments is smaller at low H and increase more rapidly at higher H. In order to
quantitatively reproduce the H-dependence of C/T, we phenomenologically introduce factor
Np(H) coming from the H-dependence of normal state DOS. So far, Ny was assumed to be a
constant in theoretical calculation. Thus, in calculation of Fermi surface average, we modify
(- )ie = ()i No(H)/No(Hez). As shown in Fig. 10(a), the H-dependence of C/T can be
reproduced, if we set No(H)/Ny(He) = 1 —0.53{tanh4(1 — H/H)}3. This expression of
Np(H) is phenomenological one to reproduce the experimental behavior, without microscopic
theoretical consideration. This H-dependence of Ny(H) indicates that normal states DOS is
enhanced near Hg,, and may be related to the effective mass enhancement near QCP (Bianchi,
Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003), which is suggested to
existat Ho (T = 0) in CeColns.

Theoretical and experimental (Tayama et al., 2002) magnetization curve is presented in Fig.
10(b). There we see rapid increase at high fields and jump at H., by strong paramagnetic
effects. The differences between experimental data (average of magnetization curves for
increasing and decreasing H) and theoretical estimate with constant Ny (line A) are improved
by considering the H-dependence of Ny(H) (line B). There, by Ny(H), slope of Mya1(H)
becomes similar to that of experimental curve.

The H-dependence of FLL form factors using Ny(H) is presented in Fig. 11. There, |F;g|?
shows further increases until higher H. This sharp peak at high fields resembles to the
anomalous increasing behavior observed by SANS experiment in CeColns (Bianchi et al.,
2008; DeBeer-Schmitt et al., 2006). For higher T, the peak is smeared and the peak position is
shifted to lower fields. This T-dependence is consistent to those in experimental observation
in CeColns (White et al., 2010).



226 Superconductivity — Theory and Applications

I [ "
£ No(H) 1 1+ ]
N 0.5:— E M [ NOI‘I’I’I?’I’/,,,
CIT | o o5 H/ chil 0.5 /‘,/’/ ]
0.5 A N [ el ]
B 0:“/:/ B 4
. eXp. &z
0 : -0.5% : ‘
0 0.5 1 0 0.5 1
(@) H/H, b) H/H,

Fig. 10. (a) H-dependence of theoretical estimate (lines) for N(E = 0), and experimental

data (Ikeda et al., 2001) of low-T specific heat C/T (circles). Line A is an original estimate for
constant Ny. For line B, we assume Ny(H)/Ny(He) = 1 — 0.53{tanh 4(1 — H/H)}>. Inset
shows No(H)/Ny(H¢2) as a function of H/H,. (b) Magnetization curve My, (H) for
constant Ny (line A), and for Ny(H) (line B). Experimental magnetization curves for
increasing H(line with right arrow), decreasing H (line with left arrow), and their average
(line with dots) are presented (Tayama et al., 2002). We compare the average line with lines A
and B.

Fig. 11. H-dependence of FLL form factor |Fjo|? at T/T. = 0.1 (line B), 0.3, and 0.5 for Ny (H).
The line A is for constant Ng and T = 0.1T.. y = 2.6.

The above phenomenological discussion by Ny(H) indicates that anomalous H-dependences
observed in CeColn; is qualitatively reproduced by theoretical estimate considering strong
paramagnetic effect, but they still show systematic quantitative deviations from theoretical
estimate. These indicate that we need to consider additional effect, such as effective mass
enhancement near QCP, in addition to strong paramagnetic effect, in order to understand
anomalous H-dependence in CeColns.

4. Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex state

The FFLO state (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965) is an exotic
superconducting state expected to appear at low temperatures and high fields, when the
paramagnetic effect due to the Zeeman shift is significant. In the FFLO state, since the Fermi
surfaces for up-spin and down-spin electron bands are split by the Zeeman shift, Cooper pairs
of up- and down-spins acquire non-zero momentum for the center of mass coordinate of the
Cooper pair, inducing the spatial modulation of the pair potential. The possible FFLO state
is widely discussed in various research fields, ranging from superconductors in condensed
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matters, neutral Fermion superfluids in an atomic cloud (Machida et al., 2006; Partridge et al.,
2006; Zwierlein et al., 2006), to color superconductivity in high energy physics (Casalbuoni &
Nardulli, 2004).

Experimentally, the FFLO state is suggested in a high field phase of a quasi-two dimensional
(Q2D) heavy Fermion superconductor CeColns for H || ab and H || ¢ (Bianchi, Movshovich,
Capan, Pagliuso & Sarrao, 2003; Radovan et al., 2003), as reviewed by Matsuda & Shimahara
(2007). There, it is supposed that nodal planes of the pair potential run perpendicular to
the vortex lines. For H || ab, since spin density wave (SDW) appears in the high-field
phase (Kenzelmann et al., 2010; 2008; Koutroulakis et al., 2010; Young et al., 2007), we are
interested in the relation of FFLO and SDW.

In theoretical studies, many calculations for the FFLO states have been done by neglecting
vortex structure. However, we have to consider the vortex structure in addition to the FFLO
modulation, because the FFLO state appears at high fields in the mixed states. Among the
FFLO states, there are two possible spatial modulation of the pair potential A. One is the
Fulde-Ferrell (FF) state (Fulde & Ferrell, 1964) with phase modulation such as A « /9%, where
q is the modulation vector of the FFLO states. The other is the Larkin-Ovchinnikov (LO)
state (Larkin & Ovchinnikov, 1965) with the amplitude modulation such as A « sin gz, where
the pair potential shows periodic sign change, and A = 0 at the nodal planes. We discuss the
case of the LO states in this section, since some experimental (Matsuda & Shimahara, 2007)
and theoretical (Houzet & Buzdin, 2001; Ikeda & Adachi, 2004) works support the LO state for
the FFLO states in CeColns. In the FFLO vortex state, it is instructive to clarify the role of the
FFLO nodal plane in order to obtain clear evidence of the FFLO states among the experimental
data.

When we consider vortex structure in the LO state, there are two possible choices of the
configuration for the vortex lines and the FFLO modulation. That is, the modulation vector of
the FFLO state is parallel (Tachiki et al., 1996) or perpendicular (Klein et al., 2000; Shimahara,
1994) to the applied magnetic field. In our study, 3D structure of the former case is investigated
by the selfconsistent Eilenberger theory. We calculate the spatial structures of pair potentials,
paramagnetic moments, internal magnetic fields and electronic states in the vortex lattice
state with the FFLO modulation. In our study, fully 3D structures of the vortex and the
FFLO modulation are determined by the selfconsistent calculation with local electronic states.
Since we can consider the system of vortex lattice and periodic FFLO modulation by the
periodic boundary condition, we can discuss the overlaps between tails of the neighbor vortex
cores or FFLO nodal planes. These calculations for the periodic systems make us possible to
estimate the resonance line shapes in the NMR experiments and FLL form factors in SANS
experiments.

On the other hand, the vortex and FFLO nodal plane structures in the FFLO state were
calculated by the BAG theory for a single vortex in a superconductor under a cylindrical
symmetry situation (Mizushima et al., 2005b). This study clarifies that the topological
structure of the pair potential plays important roles to determine the electronic structures
in the FFLO vortex state. The pair potential has 27r-phase winding around the vortex line,
and 7r-phase shift at the nodal plane of the FFLO modulation. These topologies of the pair
potential structure affect the distribution of paramagnetic moment and low energy electronic
states inside the superconducting gap. For example, the paramagnetic moment is enhanced
at the vortex core and the FFLO nodal plane. These structures are related to the bound states
due to the 7r-phase shift of the pair potential.
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In this section, we report our study of FFLO vortex states for a fundamental case of s-wave
pairing and 3D spherical Fermi surface, where kg = kg(sin 6 cos ¢, sin 6 sin ¢, cos 6) and Fermi
velocity vp = vpg(sin 6 cos ¢, sin 0 sin ¢, cos 0). The calculations of FFLO vortex states for Q2D
Fermi surface with rippled cylinder-shape and H || ab both for s-wave and d-wave pairings
were reported elsewhere (Ichioka et al., 2007). Main characteristic properties of FFLO vortex
state do not seriously depend on the pairing symmetry.

4.1 Spatial structure of FFLO vortex states

In the left panels of Fig. 12, we show the spatial structure of the FFLO vortex state within a
unit cell in the slice of the xz plane, i.e., the hatched region shown in Fig. 2(a). Right panels
of Fig. 12 are for profiles of the spatial structure along the path UNCVU shown in Fig. 2(a).
The point C (x = y = z = 0) is the intersection point of a vortex and a nodal plane. The point
V (x =y = 0,z = L/4) is at the vortex center and far from the FFLO nodal plane. The point
N (x = a/2, y = z = 0) is at the FFLO nodal plane and outside of the vortex. The point U
(x =a/2,y =0,z = L/4)is far from both the vortex and the FFLO nodal plane.
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Fig. 12. Spatial structure of the FFLO vortex state in the xz plane at B = 0.17985B,, T = 0.2T
and L = 100R for the s-wave pairing and spherical Fermi surface. (a) Amplitude of the pair
potential |A(r)|. (b) Paramagnetic moment Mpara(r). (c) Internal magnetic field B;(r). The
left panels show the spatial variation within a unit cell, i.e., hatched region in Fig. 2(a). The
right panels present the profiles along the path UNCVU shown in Fig. 2(a).

In the left panel of Fig. 12(a), we show the amplitude of the order parameter, |A(r)|, which is
suppressed near the vortex center at x = y = 0 and the FFLO nodal plane at z = 0, +0.5L. Far
from the FFLO nodal plane such as z = 0.25L [along path VU], |A(r)| shows a typical profile
of the conventional vortex. When we cross the vortex line or the FFLO nodal plane, the sign
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of A(r) changes due to the 7r-phase shift of the pair potential as schematically shown in Fig.
2(a). In the profile of |A(r)| presented in the right panels of Fig. 12(a), |A(r)| = 0 along the
FFLO nodal plane NC and along the vortex line CV.

Correspondingly, paramagnetic moment Mpara(r)/My is presented in Fig. 12(b). The
paramagnetic moment is suppressed, as Knight shift, at uniform-A region in the spin-singlet
pairing superconductors. In the figures, we see that Mpara (r) is suppressed outside of vortex
core and far from the FFLO nodal plane, as expected. However, Mpara(r) is enhanced at the
vortex core or at the FFLO nodal plane. The reason for these structures of Mpara (r) is discussed
later in connection with the LDOS. At the FFLO nodal plane Mpara (r) ~ My [path NC in Fig.
12(b)]. Along the vortex line, Mpara(r) is enhanced more than M far from the FFLO nodal
planes [position V in Fig. 12(b)].

Figure 12(c) presents the z-component of the internal field, B;(r). Due to the contribution
of the enhanced Mpam(r), B, (r) is enhanced at the FFLO nodal plane even outside of
the vortex. A part of the contributions by Mpara(r) is compensated by the diamagnetic
contribution, because the average flux density per unit cell of the vortex lattice in the xy plane
should conserve along the magnetic field direction. Therefore, due to the conservation, the
enhancement of B (r) at the FFLO nodal plane [path NC in Fig. 12(c)] is smaller, compared
with the enhancement of Mpara(r) at the FFLO nodal plane [path NC in Fig. 12(b)]. While
B:(r) is largely enhanced than B at the vortex core far from the FFLO nodal plane [position V
in Fig. 12(c)], B (r) is not largely enhanced at the vortex core in the FFLO nodal plane [position
C]. Therefore B;(r) ~ B at the FFLO nodal plane [path NC].

To estimate magnetic field range where the FFLO vortex state is stable, and the FFLO wave
number g = 271/L, we present the field dependence of the free energy F for some L in Fig.
13(a). At H < 0.9987H, conventional Abrikosov vortex state with g = 0 is stable, but H >
0.9987H., FFLO vortex state with finite § becomes stable. This is an estimate in the presence
of vortices in addition to FFLO modulation. At higher H, g increases for stable FFLO state,
as shown in Fig. 13(b), which indicates that the FFLO period L becomes shorter at higher
H. In Figs. 13(c) and 13(d), respectively, we present profiles of A(r) and Mpara(r) along the
z-direction at a midpoint between vortices, i.e., along a line thorough UN in Fig. 2(a). When L
is longer at lower H, the FFLO vortex states have wide region of constant |A(r)| and Mpara(1).
They change only near the FFLO nodal plane, where A(r) has sign change and Mpara(r) locally
accumulates as in soliton structure. On the other hand, when L becomes shorter at higher H,
the region near FFLO nodal plane overlaps with that of neighbor nodal planes. Thus, both
|A(r)| and Mpara(r) become spatial structure of sinusoidal wave along z-directions.

Due to the presence of FFLO vortex states at high fields, instead of conventional Abrikosov
vortex state, Hyp to normal state [F = 0 in Fig. 13(a)] is enhanced. We note that the FFLO
vortex state is stable only in narrow H range near Hy at T = 0.2T. and p = 2 for spherical
Fermi surface. At lower T or for larger paramagnetic parameter i, the FFLO vortex states
becomes stable in wider H-range.

4.2 Electronic structure in the FFLO vortex state

The LDOS spectrum for up- and down-spin electrons are presented at some positions in Fig.
14. In the quasiclassical theory, Ny (E, ) are symmetric by E <+ —E in the absence of the
paramagnetic effect (# = 0). In the presence of the paramagnetic effect, the LDOS spectrum
for up- (down-) spin electrons is shifted to positive (negative) energy by yH due to the Zeeman
shift. In this case, we have a relation NT(E, r) = N|(—E, r) within the quasiclassical theory.
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (g = 0)
and FFLO vortex state for some g = 27t/L(# 0). (b) Field dependence of FFLO wave number
q estimated from (a). (c) Profile of pair potential A(r) along z-direction at midpoints between
vortices for L =24, 50, 200. Normalized value A(r)/A(z = —0.25L) is presented. (d) The
same as (c) but for Mpara(r). We present normalized value Mpara(r)/ Mpara(z = 0). pt = 2
and T = 0.2T.
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Fig. 14. Spectrum of the LDOS for up-spin electrons N (E, r)/(0.5Np) (solid lines) and for
down-spin electrons N (E,r)/(0.5Ng) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2T, B = 0.17985By, and L = 100R in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the
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LDOS spectrum and local paramagnetic moment. Because of superconducting gap structure,
the LDOS within superconducting gap is suppressed. Thus, difference of occupation number
between up- and down-spin electrons is small, since the LDOS at E < 0 are occupied similarly
in Ny(E,r) and N|(E,r), except for small LDOS within the gap. This is the reason why
Mpara (r) is suppressed at the position U. Small but finite Mpara (r) comes from the small LDOS
weight of low energy states inside the gap at U in FFLO vortex states.

In the LDOS spectra at the position V on the vortex center and at the position N on the FFLO
nodal plane presented in Fig. 14, N;(E,r) and N|(E,r), respectively, have a sharp peak at
E =pyand E = p_, with pt = pg = pH. These peaks are related to the topological structure
of the pair potential, as schematically shown in Fig. 2. Since a vortex has phase winding
27, along the trajectory through the vortex center, A(r) changes the sign by the 7-phase shift
across the vortex center. Also at the trajectory through the FFLO nodal plane, A(r) changes
the sign across the nodal plane. The bound states appear as zero-energy peak, when the pair
potential has the 7r-phase shift. This peak is shifted to E = pi or E = p_ due to the Zeeman
effect. Since the peak of the LDOS spectrum for up-spin electrons is an empty state (E > 0)
and the peak of the LDOS for down-spin electrons is an occupied state (E < 0), Mpara(r)
becomes large at these positions, from the relation in Eq. (18).

On the other hand, along the trajectory through the intersection point of a vortex and a nodal
plane, A(r) does not change the sign, because the phase shift is 27t by summing 7t due to
vortex and 7t due to the nodal plane, as schematically shown in Fig. 2. Thus, the sharp
peaks do not appear at E = y4 as seen from the LDOS spectrum at the position C in Fig. 14.
Instead, Nt (E, r) has two broad peaks at finite energies shifted upper or lower from . In
this situation, Mpara(r) is still large at position C, as in positions V and N, since the LDOS in
both peaks are empty (E > 0) in Ny(E, r), and occupied (E < 0) in N (E, r).

4.3 NMR spectrum in FFLO vortex states

In the NMR experiment, resonance frequency spectrum of the nuclear spin resonance is
determined by the internal magnetic field and the hyperfine coupling to the spin of the
conduction electrons. Therefore, in a simple consideration, the effective field for the nuclear
spin is given by Beg(r) = Bz(r) + AptMpara(r), where Ay is a hyperfine coupling constant
depending on species of the nuclear spins. The resonance line shape of NMR is given by

P(w) = [ é(w — Bug())d, 20)

i.e., the intensity at each resonance frequency w comes from the volume satisfying w = Beg(r)
in a unit cell. When the contribution of the hyperfine coupling is dominant, the NMR
signal selectively detects Mpara(r). This is the experiment observing the Knight shift in
superconductors. As the NMR spectrum of the Knight shift, we calculate the distribution
function P(M) = [ (M — Mpara(r))dr from the spatial structure of the paramagnetic moment
Mpara(r) shown in Fig. 12(b). On the other hand, in the case of negligible hyperfine
coupling, the NMR signal is determined by the internal magnetic field distribution. This
resonance line shape is called Redfield pattern of the vortex lattice. The distribution function
P(B) = [ 6(B — B;(r))dr s calculated from the internal field B;(r).

First we discuss the line shape of the distribution function P(M), shown in Fig. 15(a). The
spectrum of P(M) in the conventional vortex state without FFLO modulation is shown by the
lowest line in Fig. 15(a). There, the peak of P(M) comes from the signal from the outside of
the vortex core. Shift of the peak position from My gives Knight shift in superconductors. The
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spectrum of P(M) has a tail toward larger M by the vortex core contribution of large Mpara (1).
The vortex core contribution is a one-dimensional (1D) structure, their volume contribution is
small in the spectrum, compared with the peak intensity due to the large volume contribution
from outside of the vortex core. After the FFLO transition, the line shape P(M) becomes
double peak structure in the FFLO vortex states, as presented by upper lines in Fig. 15(a).
The height of the main peak decreases, and there appears a new peak coming from the FFLO
nodal plane near Mpara ~ My. The contribution from 2D structure of the FFLO nodal plane
appears in P(M) more clearly than that of the 1D structure of the vortex line. When the period
L becomes shorter at higher H, new peak at Mj is enhanced, because the relative volume ratio
of region near FFLO nodal plane becomes larger.
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Fig. 15. (a) Distribution function of the paramagnetic moment. We show P(M) as a function
of Mpara/ M. (b) Distribution function of the internal magnetic field. We show P(B) as a
function of B;/B. T = 0.2T, and u = 2. Right-side axis pointed by arrows from each line
indicates applied field H/H, for each NMR spectrum. Lowest line is for conventional
Abrikosov vortex state of g = 0. Other upper lines are for FFLO vortex states. The heights of
P(M) and P(B) are scaled so that [ P(M)dM = [ P(B)dB = 1.

Second, we discuss the distribution function P(B) of the internal magnetic field, presented in
Fig. 15(b). There, in the absence of the FFLO modulation (the lowest line), the Redfield pattern
P(B) has sharp peak corresponding to saddle points of the internal field distribution. The tail
to higher B comes from the vortex core region of larger B;(r). In the presence of the FFLO
modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ~ B as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeColns (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H || ¢, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H || ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H || ab will be clarified in future studies.
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4.4 Small Angle Neutron Scattering (SANS) in FFLO vortex states

The modulation of the internal magnetic field B, (r) may be observed by SANS experiment.
If the periodic modulation along the z-direction is observed, it can be direct evidence of the
FFLO modulation. Therefore, we discuss the neutron scattering in the FFLO vortex state.
The intensity of the (I, k, 1)-diffraction peak is given by I, x; = |F,x1|?/|q.x1| with the wave
vector qy, i ; given in Eq. (12). Here we write (my,my, m3) = (h, k, 1) following notations of the
neutron scattering. The Fourier component Fy, ;| is given by B, (r) = Yy, k1 Fy 1 exp(iqp i - 1)-
The spots at (I,k,1) = (1,0,0) and (0,1,0) are used to determine the configuration and the
orientation of the vortex lattice in SANS experiments (Bianchi et al., 2008, DeBeer-Schmitt
et al., 2006), and the higher component Fj,  ( is used to estimate the detailed structure of the
internal magnetic field B;(r) (Kealey et al., 2000; White et al., 2010). It is noted that Fo = B
and Fyo; = 0 for | # 0, because average flux density B within the unit cell of the vortex lattice
is constant along the z-direction. Therefore, to detect the FFLO modulation, we have to use
the spot (1,0,2). The spot (1,0,2) is near the spot (1,0,0), which is used in the conventional
SANS experiment to observe the stable vortex lattice configuration.

Change of intensity \F1,0,0|2 in the FFLO vortex state is presented in Fig. 16(a). This shows
narrow H-range near He, among the H-dependence of |Fj o|? in Fig. 8. After the transition
from conventional Abrikosov vortex state (q=0) to FFLO vortex state (g # 0), \F1,0,0|2 shows
rapid decrease. This is because B, (r) of vortex core expands at FFLO nodal plane, and the
contrast of B;(r) between vortex core and outside is smeared after the average along the
z-direction. When L becomes shorter at higher H, the relative volume ratio of the FFLO nodal
plane increases, and |Fj | decreases. As presented in Fig. 16(b), intensity |Fj o,|? for the
signal of the FFLO vortex state appears at the FFLO transition. When L becomes shorter at
higher H, |F; g|? decreases, due to the overlap between neighbor FFLO nodal regions.
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Fig. 16. Magnetic field dependence of FLL form factor |F1,0,0\2 (a) and |F1,0,2\2 (b) in FFLO
vortex states. FFLO wave number g = 27t/L at each H is given in Fig. 13. T = 0.2T; and
i = 2. Lines are guide for the eye. Inset in (a) presents wider H-range.

5. Summary and discussion

We discussed interesting phenomena of vortex states in superconductors with strong
paramagnetic effect, based on quasi-classical Eilenberger theory. The paramagnetic effect
comes from splitting of up-spin and down-spin Fermi surfaces due to the Zeeman effect.
In our calculations, since spatial structures of the order parameter and the internal field
are calculated in vortex lattice states self-consistently with local electronic states, we
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can quantitatively estimate the field dependence of physical quantities from obtained
quasi-classical Green’s functions in Eilenberger theory. These theoretical calculations give
helpful information to evaluate contributions of pairing symmetries and paramagnetic effects
etc. in experimental data observing physical properties of vortex states in unconventional
superconductors.

First, we discussed anomalous field dependence of physical quantities by strong
paramagnetic effect in vortex states at lower fields than the FFLO transition. Calculating the
spatial structure of the vortex states and local electronic states, we clarified the paramagnetic
effects in the vortex core structure. There, the core radius is enlarged and the internal field
around the core is further enhanced, due to the enhanced paramagnetic moments at the vortex
core. This occurs as a result of Zeeman splitting of bound electronic states at the vortex core.
We estimated the magnetic field dependence of low temperature specific heat, Knight shift,
magnetization, and flux line lattice form factor. There we found anomalous field dependence
when the paramagnetic effect is strong. The specific heat, Knight shift, and magnetization
show rapid increase near Hp, due to the paramagnetic pair breaking which is eminent at
higher fields. Anomalous enhancement of the FLL form factor as a function of magnetic
field observed in CeColns may reflect the paramagnetic vortex core structure by the strong
paramagnetic effect. We quantitatively compared the anomalous magnetic field dependence
of specific heat, magnetization curve, and the FLL form factor observed in CeColns with
results of our theoretical calculations. The paramagnetic effect can explain the anomalous field
dependences qualitatively. However we found systematic quantitative deviation between the
theory and the experimental data. Therefore, we showed that the deviation can be improved
by considering phenomenological field dependence of normal state density of states, which
reflects mass enhancement near quantum critical point at He,.

Next, we studied the FFLO states coexisting with vortices. When the paramagnetic effect
is very strong, at high magnetic fields we can expect a transition to the FFLO phase where
the order parameter has periodic oscillation originating from the Zeeman splitting of the
Fermi surface. To discuss the FFLO states suggested in high field phase of CeColns, we
have to consider vortices in addition to the FFLO modulation. By Eilenberger theory, we
selfconsistently calculated fully 3D spatial structure of the pair potential, the internal magnetic
field, the paramagnetic moment, and local electronic states in the vortex lattice state with
FFLO nodal planes perpendicular to vortex lines. In the FFLO vortex states, topological
structures of the pair potential determine their qualitative properties. At the FFLO nodal
plane or at the vortex line, 7t-phase shift of the pair potential gives rise to sharp peaks in the
LDOS at Fermi level of electronic states, and the Zeeman shift of the peaks enhances the local
paramagnetic moment. Based on these spatial structures, we discussed NMR spectrum and
neutron scattering, to identify characteristic behaviours in the FFLO states. We estimated the
period of FFLO modulation and the phase diagram as a function of magnetic field H, and
discussed the field dependence of NMR spectrum and FLL form factors in the FFLO vortex
states. We hope that these features will be used to identify the FFLO vortex structure in the
high-field phase of CeColns for H || ¢ and for H || ab. For the latter, the FLLO modulation
may coexist with SDW states.
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